
Integrated Plan Tracking and Prognosis for Autonomous Production Processes

Paul Maier, Martin Sachenbacher, Thomas Rühr
Technische Universität München

Boltzmannstraße 3, 85748 Garching, Germany
{maierpa,sachenba,ruehr}@in.tum.de

Lukas Kuhn
PARC

Palo Alto, USA
Lukas.Kuhn@parc.com

Abstract

Today’s complex production systems allow to simulta-
neously build different products following individual pro-
duction plans. Such plans may fail due to component
faults or unforeseen behavior, resulting in flawed prod-
ucts. In this paper, we propose a method to integrate di-
agnosis with plan assessment to prevent plan failure, and
to gain diagnostic information when needed. In our set-
ting, plans are generated from a planner before being ex-
ecuted on the system. If the underlying system drifts due
to component faults or unforeseen behavior, plans that are
ready for execution or already being executed are uncer-
tain to succeed or fail. Therefore, our approach tracks
plan execution using probabilistic hierarchical constraint
automata (PHCA) models of the system. This allows to
explain past system behavior, such as observed discrep-
ancies, while at the same time it can be used to predict
a plan’s remaining chance of success or failure. We pro-
pose a formulation of this combined diagnosis/assessment
problem as a constraint optimization problem, and present
a fast solution algorithm that estimates success or failure
probabilities by considering only a limited number k of
system trajectories.

1 Introduction

As the market demands for customized and variant-
rich products, the industry struggles to implement pro-
duction systems that demonstrate the necessary flexibil-
ity while maintaining cost efficiency comparable to highly
automated mass production. A main cost driver in au-
tomated production is the human workforce needed for
setup steps, the development of processes, and quality as-
surance. These high labor costs can typically only be
amortized by very large lot sizes. For small lot sizes as
found in prototype and highly customized production, hu-
man workers are still unchallenged in flexibility and cost
by automated systems. Therefore, to facilitate the emer-
gence of mass customization, levels of flexibility similar
to the flexibility of human workers must be reached at
prices only highly automated systems can achieve.

The German research cluster ”Cognition for Technical

Figure 1. Model-based plan assessment.

Systems” (CoTeSys) [2] was founded to understand hu-
man cognition and make its performance accessible for
technical systems. Future technical systems are expected
to act robustly under high uncertainty, reliably handle
unexpected events, quickly adapt to changing tasks and
own capabilities. A key technology for the realization of
such systems is automated planning combined with self-
diagnosis and self-assessment. These capabilities can al-
low the system to plan its own actions, and also react to
failures and adapt the behavior to changing circumstances.

From the point of view of planning, production sys-
tems are a relatively rigid environment, where the nec-
essary steps to manufacture a product can be anticipated
well ahead. However, from a diagnosis point of view, pro-
duction systems are typically equipped with only few sen-
sors, so it cannot be reliably observed whether an individ-
ual manufacturing step went indeed as planned; instead,
this becomes only gradually more certain during execu-
tion of the production plan. Therefore, in the presence of
faults or other unforeseen events – which become more
likely in individualized production – the question arises
whether plans that are ready for execution or already being
executed will indeed succeed, and whether it is necessary
to revise a plan or even switch to another plan.

To address this problem, we propose in this paper a
model-based capability that estimates the success proba-
bility of production plans in execution (figure 1). We as-
sume that a planner provides plans given a system model.
A plan is a sequence of actions where each action is ex-
ecuted at its corresponding start time. Whenever the sys-

1

Figure 2. Effects of cutter deterioration un-
til breakage in machining (Image (c) Prof.
Shea TUM PE).

tem produces an observation, it is forwarded to a module
that performs simultaneous plan tracking and plan prog-
nostic using probabilistic hierarchical constraint automata
(PHCA) models [11] of the system. We propose a for-
mulation of this problem as a soft constraint optimization
problem [10] over a window of N time steps that extends
both into the past and the future, and present a fast but ap-
proximate solution method that enumerates only k most
likely system trajectories. The resulting success or fail-
ure prognosis can then be used to autonomously react in
different ways depending on the probability estimate; for
instance, continue with plan execution, discard the plan,
or augment the plan by adding observation-gathering ac-
tions to gain further information [5].

In the remainder of the paper, we first motivate the ap-
proach informally with an example from an automated
metal machining process, and then present our algorith-
mic solution and experimental results.

2 Metal Machining and Assembly Example

As part of the CoTeSys cognitive factory test-bed, we
set up a customized and extended Flexible Manufacturing
System (FMS) based on the iCim3000 from Festo AG (see
figure 5). The system consists of a conveyor transport and
three stations: storage, machining (milling and turning),
and assembly. We built a simplified model of this manu-
facturing system (see figure 4) which consists only of the
machining and the assembly station and allows to track
system behavior over time, including unlikely component
faults. In particular, the machining station can transition
to a “cutter blunt” composite location, where abrasions are
caused during operation due to a blunt cutter. This makes
it very probable that the cutter breaks, leading to flawed
products (see figure 2). The assembly station model con-
tains a composite location which models occasional abra-
sions. A vibration sensor at the assembly station can de-
tect these abrasions, yielding binary signals “abrasion oc-
curred” and “no abrasion occurred”. However, the sig-
nal is ambiguous, since the sensor cannot differentiate be-
tween the two possible causes.

Two products are produced using a single production

Figure 3. The robotic arm product (Image (c)
Prof. Shea TUM PE).

plan Pprod: a toy maze consisting of an alloy base plate
and an acrylic glass cover, and an alloy part of a robotic
arm (see figure 3). Pprod consists of these steps: (1) cut
maze into base plate (one time step), (2) assemble base
plate and cover (one time step), (3,4,5,6) cut robot arm
part (one to four time steps). The plan takes two to six
time steps (starting at t = 0). The plan is considered suc-
cessful if both products are flawless. In our example, only
a broken cutter causes the machined product to be flawed,
in all other cases the production plan will succeed. Now
consider the following scenario: after the second plan step
(assembling the maze base plate and its cover at t = 2) an
abrasion is observed. Due to sensor ambiguity it remains
unclear whether the plan is unaffected (abrasion within
assembly) or whether it might fail in the future due to a
broken cutter (abrasion caused by a blunt cutter), and the
question for the planner is: How likely is it that the current
plan will still succeed? Our new capability allows to com-
pute this likelihood, taking into account past observations
and future plan steps.

3 Modeling System Behavior with PHCA

Probabilistic hierarchical constraint automata (PHCA)
were introduced in [11] as a compact encoding of hidden
markov models (HMMs). These automata have the
required expressivity to uniformly model both proba-
bilistic hardware behavior (e.g., likelihood of component
failures) and complex software behavior (such as high
level control programs).

Definition 1 (PHCA)
A PHCA is a tuple 〈Σ, PΞ,Π, O,Cmd, C, PT 〉, where:

• Σ is a set of locations, partitioned into primitive lo-
cations Σp and composite locations Σc. Each com-

2

idle
PF = OK

Abrasion = NONE

cut
PF = OK

Abrasion = NONE

cutter blunt

idle
PF = OK

Abrasion = OCCURRED

cut
PF = OK

Abrasion = OCCURRED

cutter broken
PF = FAULTY

Abrasion = OCCURRED

machining

cmd = cut; 0.5

cmd = cut; 0.5

cmd = noop; 1.0

cmd = noop; 1.0

cmd = cut; 0.5

cmd = cut; 0.5

; 1.0

cmd = cut; 0.9

cmd = cut; 0.1
cmd = noop; 1.0

cmd = noop; 1.0

cmd = cut; 0.1
cmd = cut; 0.9

idle assemble
idle

Abrasion = NONE
no abrasion

Abrasion = NONE

abrasion
Abrasion = OCCURRED

assembly

abrasion

cmd 6= noop; 0.8

cmd 6= noop; 0.2

cmd = noop; 1.0

cmd = noop; 1.0

cmd 6= noop; 0.2

cmd 6= noop; 0.8

cmd = noop; 1.0 cmd 6= noop; 0.8

cmd 6= noop; 0.2

cmd = assemble; 1.0

cmd = noop; 1.0

cmd = noop; 1.0

cmd = assemble; 1.0

Abrasion = OCCURRED ⇔ machining.Abrasion = OCCURRED ∨ assembly.Abrasion = OCCURRED

Figure 4. Simplified PHCA of the manufacturing system. The machining and assembly station are
modeled as parallel running composite locations (indicated by dashed borders). Variables appear-
ing within a location are local to this location, i.e. machining.cmd refers globally to the command
variable cmd within composite location machining. Note: “noop” stands for “no operation”.

posite location denotes a hierarchical, constraint au-
tomaton. A location may be marked or unmarked.
A marked location represents an active execution
branch.

• PΞ(Ξi) denotes the probability that Ξi ⊆ Σ is the
set of start locations (initial state). Each composite
location li ∈ Σc may have a set of start locations that
are marked when li is marked.

• Π is a set of variables with finite domains. C[Π] is
the set of all finite domain constraints over Π.

• O ⊆ Π is the set of observable variables.

• Cmd ⊆ Π is the set of command variables.

• C : Σ→ C[Π] associates with each location li ∈ Σ a
finite domain constraint C(li).

• PT (li), for each li ∈ Σp, is a probability distribu-
tion over a set of transition functions T (li) : Σ

(t)
p ×

C[Π](t) → 2Σ(t+1). Each transition function maps a
marked location into a set of locations to be marked
at the next time step, provided that the transition’s
guard constraint is entailed.

Definition 2 (PHCA State) The state of a PHCA at time
t is a set of marked locations called a marking m(t) ⊂ Σ.

The example PHCA shown in figure 4 illustrates
the PHCA definition. The main factory components
machining and assembly are encoded as top level com-
posite locations. A dashed border indicates that loca-
tions may be marked at the same time, which means
they can run in parallel. There is a third top level lo-
cation at the bottom of figure 4 whose behavior con-
straint encodes that an observed abrasion is caused by
one of the two components or both. Primitive locations
are for example machining.idle and machining.cut,
which encode the machining station being in an idle state
and working on a piece. An example for an observ-
able variable is Abrasion, which encodes whether an
abrasion has occurred or not. The dependent variables

3

Figure 5. The hardware setup for exper-
imentation, showing storage, transport,
robot and machining components.

machining.Abrasion and assembly.Abrasion encode
for each component whether it caused an abrasion. A
command variable is, e.g., machining.cmd. It occurs
in the guard constraint for transition idle → cut within
composite location machining: machining.cmd =
cut. Transition guards have the general form <guard
constraint>;<transition probability>. The guard con-
straint is a logical constraint over PHCA variables, usually
an assignment to command variables. The transition is
non-deterministic: Given the guard is satisfied, it is taken
with probability 0.9. The remaining possibility (complet-
ing the conditional probability distribution) is the tran-
sition from idle to the composite location cutter blunt,
which has the same guard and is taken with probability
0.1.

4 Plan Assessment as Constraint Optimiza-
tion over PHCA Models

Plan assessment requires tracking of the system’s plan-
induced evolution; in our case, it means tracking the evo-
lution of PHCA markings. In previous work [9], we in-
troduced an encoding of PHCA as soft constraints and
casted the problem of tracking markings as a soft con-
straint optimization problem (COP) [10], whose solutions
correspond to the most likely sequences of markings given
the available observations. The encoding is parameterized
by N , which is the number of time steps considered (for a
detailed description of the encoding, see [9]).

Observations made online are encoded as hard con-
straints specifying assignments to observable variables at
time t (e.g., Abrasion(2) = OCCURRED), and added
to the constraint optimization problem.

Plans are added analogously as assignments to com-
mandable variables at time t; for example, a(t)

cut and
a

(t)
assemble are assignments machining.cmd(t) = cut ∧
assembly.cmd(t) = noop and assembly.cmd(t) =
assemble ∧machining.cmd(t) = noop. Note that vari-

ables appear time independent in the PHCA notation (see,
e.g., figure 4), i.e. without superscript (t).

The plan’s goal G is to produce a flawless product.
We encode this informal description as a logical con-
straint G ≡ ∀PF (tend) ∈ RelevantFeatures(P) :
PF (tend) = OK over product feature variables PF (t) ∈
{OK,FAULTY } at the end of the execution, tend.
RelevantFeatures() is a function mapping a production
plan to all product feature variables which define the prod-
uct. Each system component is responsible for a prod-
uct feature in the sense that if it fails, the product feature
is not present (PF (t) = FAULTY). In our example,
there is only a single product feature PF , which is ab-
sent if the cutter is broken. The goal constraint for the
above mentioned plan (three time steps long) is accord-
ingly PF (3) = OK.

4.1 Solving Constraints to Enumerate Most Likely
System Trajectories

The soft constraint encoding of PHCA model, plan and
observations form a COP that captures the probabilistic
behavior of the system over a horizon of N time steps.
The model encoding can be done offline, while the plan
and the observations have to be encoded and added to the
COP online. The effect of adding the plan and observa-
tions constraints is that they render certain PHCA trajec-
tories impossible (zero probability). For example, the ob-
servation of an abrasion renders impossible the trajectory
which doesn’t entail an observed abrasion. The goal con-
straint, however, is not added to the COP, since adding this
constraint would render all non-goal-achieving trajecto-
ries impossible (we need these failure trajectories for nor-
malization in computing the plan’s success probability, as
shown in the next section).

For a given plan P and available observations, we
then enumerate the k best solutions to the COP. These
correspond to the system’s most likely execution trajec-
tories, or diagnoses, within the N -step horizon. An ex-
ecution trajectory is a sequence of markings for each
time step, encoded as assignment to location variables.
These are the variables of interest for our COP. For ex-
ample, Table 1 shows the most likely execution trajectory
of the example PHCA, given production plan Pprod =
(acut, aassemble, acut) and observation Abrasion(2) =
OCCURRED.

Technically, the k-best enumeration is done by trans-
lating the generated COP (as part of the compilation step)
into the weighted CSP format as used by the soft con-
straint solver toolbar [3]. In the online step, we used a
modified version of toolbar that implements mini-bucket
elimination to generate a search heuristic for the problem.
The heuristic is used by a subsequent A* search to enu-
merate the k-best solutions. This approach is described in
more detail in [4].

4

time marking

0 assembly.abrasion.idle
(0)
L , assembly.idle(0)

L ,
machining.idle

(0)
L

1 assembly.abrasion.idle
(1)
L , assembly.idle(1)

L ,
machining.cut

(1)
L

2 assembly.abrasion.abrasion
(2)
L ,

assembly.assemble
(2)
L , machining.idle(2)

L

3 assembly.abrasion.idle
(3)
L , assembly.idle(3)

L ,
machining.cut

(3)
L

Table 1. Most probable PHCA trajec-
tory for production plan Pprod =
(acut, aassemble, acut), given an abrasion
occurred at t = 2. A shown variable X

(t)
L

indicates a marking of location L at time t.

4.2 Combining Plan Tracking and Prognosis

In the previous section, we described a method to track
plan execution within an N -step time window based on a
system model and observations. To assess a plan’s proba-
bility of success, we require not only to track past system
behavior, but also to predict its evolution in the future.
In principle, this could be accomplished in two separate
steps: first, assess the system’s state given the past be-
havior, and then predict its future behavior given this be-
lief state and the plan. However, this two-step approach
leads to a problem. Computing a belief state (complete
set of diagnoses) is intractable, thus it must be replaced
by some approximation (such as considering only k most
likely diagnoses [6]). But if a plan uses a certain compo-
nent intensely, then this component’s failure probability is
relevant for assessing this plan, even if it is very low and
therefore would not appear in the approximation. In other
words, the plan to be assessed determines which parts of
the belief state (diagnoses) are relevant.

To address this mutual dependency, we propose a
method that performs diagnosis and plan assessment si-
multaneously, by framing it as a single optimization prob-
lem. The key idea is as follows: The optimization problem
formulation is independent of where the present time point
is within the N -step time window. We therefore choose
it such that the time window covers the remaining future
plan actions as well as the past behavior. Now solutions to
the COP are system trajectories which start in the past and
end in the future. We then compute a plan’s success prob-
ability by summing over trajectories that achieve the goal.
Again due to complexity reasons, we approximate the suc-
cess probability by generating only the k most probable
trajectories. But since we have only a single optimization
problem now, we don’t have to prematurely cut off un-
likely hypotheses and have only one source of error, com-
pared to approximating the belief state and predicting the
plan’s evolution based on this estimate.

4.3 Approximating the Plan Success Probability
We denote the set of all trajectories as Θ and the set

of the k-best trajectories as Θ∗. A trajectory is considered
successful if it entails the plan’s goal constraint. We define
SUCCESS := {θ ∈ Θ|∀s ∈ Rsol, s ↓Y = θ : FG(s) =
true}, where Rsol is the set of all solutions to the prob-
abilistic constraint optimization problem, s ↓Y their pro-
jection on marking variables, and FG(s) is the goal con-
straint. SUCCESS∗ is the set of successful trajectories
among Θ∗. The exact success probability is computed as

P (SUCCESS|Obs,P) =∑
θ∈SUCCESS

P (θ|Obs,P) =

∑
θ∈SUCCESS

P (θ,Obs,P)

P (Obs,P)
=

∑
θ∈SUCCESS

P (θ,Obs,P)∑
θ∈Θ P (θ,Obs,P)

=∑
θ∈SUCCESS P (θ,Obs,P)∑

θ∈Θ P (θ,Obs,P)

The approximate success probability
P ∗(SUCCESS∗|Obs,P) is computed the
same way, only SUCCESS is replaced with
SUCCESS∗ and Θ with Θ∗. We define the er-
ror of the above k-best approximation as E(k) :=
|P (SUCCESS|Obs,P)− P ∗(SUCCESS∗|Obs,P)|.
E(k) converges to zero as k goes to infinity. Also,
E(k) = 0 if P (SUCCESS|Obs,P) is 0 or 1. However,
as the example in figure 6 shows, E(k) does in general
not decrease monotonically with increasing k.

4.4 Algorithm for Plan Evaluation
Plans are generated by the planner and then advanced

until they are finished or new observations are available.
In the latter case the currently executed plan is evalu-
ated using Algorithm 1. It first computes the k-best so-
lutions to the COP using an external solver (toolbar in
our case). This results in the k most probable trajecto-
ries. Then, using these trajectories, it approximates the
success probability of plan P and finally compares the
probability against the two thresholds ωsuccess and ωfail.
Now we have to address one of three cases: (1) The
probability is above ωsuccess, i.e. the plan will proba-
bly succeed, (2) the probability is below ωfail, i.e. the
plan will probably fail or (3) the probability is in be-
tween both thresholds, which means the case cannot be
decided. In the first case we simply continue execu-
tion. In the second case we have to adapt the plan to
the new situation. This is done by REPLAN(P , Θ∗),
which modifies the future actions of P taking into ac-
count the diagnostic information contained in Θ∗. The
third case indicates that not enough information about the
system’s current state is available. As a reaction, the
procedure REPLANPERVASIVEDIAGNOSIS(P , Θ∗) im-
plements a recently developed method called pervasive

5

diagnosis [5]. It addresses this problem by augmenting a
plan with information gathering actions (we do not detail
the procedures REPLAN and REPLANPERVASIVEDIAG-
NOSIS as they are beyond this paper’s scope).

Algorithm 1
1: procedure EVALUATEPLAN(R = (X,D,C), Obs,
P)

2: R’← add constraints over Obs and P toR
3: Θ∗ ← k-best solutions ofR’ for Y
4: p← P ∗(SUCCESS∗|Obs,P)
5: if p > ωsuccess then return
6: else if p < ωfail then
7: stop execution of P
8: REPLAN (P , Θ∗)
9: else

10: stop execution of P
11: REPLANPERVASIVEDIAGNOSIS(P , Θ∗)
12: end if
13: end procedure

5 Experimental Results

We ran experiments for five small variations of our
example scenario, where Pprod uses the machining sta-
tion zero to four times. The time window size N ac-
cordingly ranges from 2 to 6, problem sizes range from
240 to 640 variables and 240 to 670 constraints. Figure
6 shows the success probabilities for different Pprod and
k. Table 2 shows the runtime in seconds and the peak
memory consumption in megabytes for computing suc-
cess probabilities in the planning scenarios, additionally
ranging over different values for the mini-bucket param-
eter i. As expected, with increasing use of the machin-
ing stationing station, P ∗(SUCCESS∗|Obs,Pprod) de-
creases. Also, runtime increases for larger time win-
dows. The effect of approximation (choosing lower k) is
that P ∗(SUCCESS∗|Obs,Pprod) increasingly deviates
from the exact solution. In our example, the approxima-
tion tends to be optimistic. In general, however, we think
that P ∗(SUCCESS∗|Obs,Pprod) can be pessimistic,
if success trajectories are pruned first when decreasing
k. Increasing k hardly seems to affect the runtime, espe-
cially if the mini-bucket search heuristic is strong (bigger
i-values). For weaker heuristics the influence increases
slightly. Memory consumption is affected much stronger
by k. Here also, a weaker search heuristic means stronger
influence of k.

6 Related Work

In probabilistic verification of model-based programs
[7], the problem is to determine the most likely circum-
stances under which a high-level control program drives
the system towards a goal violating state. A plan can
be understood as such a high level control program; so

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4

P
∗ (
S
U
C
C
E
S
S
∗ |O

bs
,P

p
ro
d
)

No. times machining used in Pprod

exact
k = 10
k = 3
k = 2
k = 1

Figure 6. Approximate success probability
(y-axis) of plan Pprod against varying us-
age of the machining station (x-axis) after
the observation of an abrasion at t = 2.

in general, this problem is similar to the plan assessment
problem. However, our problem differs in that we are in-
terested in the set of all goal achieving system trajectories,
from which we derive the plan’s success probability, while
for the verification problem, only the single most proba-
ble goal violating trajectories are interesting. Therefore
we have to go one step further, not only enumerating the
trajectories, but also summing over them to compute the
success probability.

McDermott [8] and Beetz’s [1] Reactive Plan Lan-
guage (RPL) chooses a different approach to deal with
system failures and uncertainty. It uses a hierarchical task
decomposition, breaking down top level goals to a finer
granularity recursively. The plan itself is not a sequence
of actions but executable code. The language allows rea-
soning on and transformation of the plans. Heuristic rou-
tines attain the subgoals and cope with failures and un-
expected events during the execution. A goal for finding
a cup could e.g. look in the dishwasher after seeing that
no cups are left in the cupboard. This approach is par-
ticularly promising in domains of high uncertainty, where
classical planning fails. However, the RPL approach cur-
rently neglects explicit diagnosis techniques and relies on
the observability of relevant environment states.

7 Conclusion and Future Work

We presented a model-based method that combines di-
agnosis of past execution steps with prognosis of future
execution steps of production plans, in order to allow the
production system to autonomously react to failures and
other unforeseen events. The method makes use of prob-
abilistic constraint optimization to efficiently solve this
combined diagnosis/prognosis problem. Preliminary re-

6

No. times machining used in Pprod (window size N , #Variables, #Constraints)
k i 0 (2, 239, 242) 1 (3, 340, 349) 2 (4, 441, 456) 3 (5, 542, 563) 4 (6, 643, 670)

1 10 < 0.1 / 1.8 0.1 / 6.8 0.1 / 19.0 (mem) (mem)
15 0.1 / 1.9 0.3 / 4.2 0.5 / 7.8 0.5 / 16.6 0.8 / 32.0
20 0.1 / 1.9 0.5 / 5.2 3.7 / 20.1 6.5 / 34.5 9.5 / 50.7

2 10 < 0.1 / 2.1 0.1 / 11.9 0.2 / 38.5 (mem) (mem)
15 0.1 / 2.2 0.3 / 5.4 0.5 / 9.7 0.6 / 28.0 0.8 / 52.0
20 0.1 / 2.2 0.5 / 6.4 3.7 / 21.8 6.5 / 37.2 9.5 / 55.8

3 10 < 0.1 / 2.3 (e) 0.1 / 11.9 0.2 / 40.1 (mem) (mem)
15 0.1 / 2.4 (e) 0.3 / 5.4 0.5 / 11.4 0.6 / 29.9 0.9 / 55.5
20 0.1 / 2.4 (e) 0.5 / 6.4 3.7 / 23.5 6.6 / 38.3 9.5 / 57.4

4 10 (e) 0.1 12.5 0.2 / 40.1 (mem) (mem)
15 (e) 0.3 / 5.9 0.5 / 11.4 0.6 / 30.9 0.9 / 57.2
20 (e) 0.5 / 6.9 3.7 / 23.5 6.6 / 39.3 9.5 / 59.1

5 10 (e) 0.1 / 13.1 0.2 / 40.7 (mem) (mem)
15 (e) 0.3 / 6.6 0.5 / 12.0 0.6 / 33.6 0.9 / 59.5
20 (e) 0.5 / 7.6 3.7 / 24.0 6.6 / 42.8 9.5 / 63.9

10 10 (e) 0.1 / 14.0 (e) 0.2 / 43.4 (e) (mem) (mem)
15 (e) 0.3 / 6.7 (e) 0.5 / 14.7 (e) 0.6 / 36.2 0.9 / 64.8
20 (e) 0.6 / 7.7 (e) 3.8 / 26.6 (e) 6.6 / 45.8 9.6 / 68.9

Table 2. Runtime in seconds / peak memory consumption in megabytes. (e) indicates that the
exact success probability P (SUCCESS|Obs,Pprod) could be computed with this configuration.
(mem) indicates that A* ran out of memory (artificial cutoff at > 1 GB, experiments were run on a
Linux computer with a recent dual core 2.2 Ghz CPU with 2 GB RAM).

sults for a real-world machining scenario show it can in-
deed be used to guide the system away from plans that
rely on suspect system components. Future work will con-
cern the integration of the method into our overall plan-
ning/execution architecture, and its extension to multiple,
simultaneously executed plans. We are also interested in
exploiting the plan diagnosis/prognosis results in order to
update the underlying system model, for instance, to auto-
matically adapt to parameter drifts or wear of components.

References

[1] M. Beetz. Concurrent Reactive Plans: Anticipating and
Forestalling Execution Failures, volume 1772 of Lecture
Notes in Artificial Intelligence. Springer Publishers, 2000.

[2] M. Beetz, M. Buss, and D. Wollherr. Cognitive technical
systems — what is the role of artificial intelligence? In
Proc. KI-2007, pages 19–42, 2007.

[3] S. Bouveret, F. Heras, S. Givry, J. Larrosa, M. Sanchez,
and T. Schiex. Toolbar: a state-of-the-art platform for
wcsp. www.inra.fr/mia/T/degivry/ToolBar.pdf, 2004.

[4] K. Kask and R. Dechter. Mini-bucket heuristics for im-
proved search. In Proc. UAI-1999, pages 314–32, 1999.

[5] L. Kuhn, B. Price, J. d. Kleer, M. B. Do, and R. Zhou.
Pervasive diagnosis: The integration of diagnostic goals
into production plans. In Proc. AAAI-2008, 2008.

[6] J. Kurien and P. P. Nayak. Back to the future for
consistency-based trajectory tracking. In Proc. AAAI-
2000, pages 370–377, 2000.

[7] T. Mahtab, G. Sullivan, and C. B. Williams. Automated
Verification of Model-based Programs Under Uncertainty.
In Proceedings 4th International Conference on Intelligent
Systems Design and Application, 2004.

[8] D. McDermott. A reactive plan language. Technical re-
port, Yale University, Computer Science Dept., 1993.

[9] T. Mikaelian, B. C. Williams, and M. Sachenbacher.
Model-based Monitoring and Diagnosis of Systems with
Software-Extended Behavior. In Proc. AAAI-05, 2005.

[10] T. Schiex, H. Fargier, and G. Verfaillie. Valued constraint
satisfaction problems: hard and easy problems. In Proc.
IJCAI-1995, 1995.

[11] B. C. Williams, S. Chung, and V. Gupta. Mode estima-
tion of model-based programs: monitoring systems with
complex behavior. In Proc. IJCAI-2001, pages 579–590,
2001.

7

