
Factory Monitoring and Control with Mixed Hardware/Software,
Discrete/Continuous Models

Paul Maier, Martin Sachenbacher
Technische Universität München

Boltzmannstraße 3, 85748 Garching, Germany
{maierpa,sachenba}@in.tum.de

Abstract

Many complex systems today, such as robotic networks,
automobiles and automated factories, consist of hard-
ware components whose functionality is extended or con-
trolled by embedded software and which exhibit contin-
uous dynamics. We address the problem of monitoring
and control in such systems with a twofold contribution.
First, we extend Probabilistic Hierarchical Constraint Au-
tomata (PHCA), introduced in previous work as a means
to compactly describe uncertain hardware and complex
software behavior, to hybrid PHCA (HyPHCA). These al-
low to model continuous behavior in the form of differ-
ential equations. Continuous behavior can be conserva-
tively approximated with discrete Markov chains, and in
previous work we showed how to transform PHCA moni-
toring into a constraint optimization problem that can be
solved using off-the-shelf reasoners. Our second contri-
bution is to show how to combine these and additional
known methods to use a HyPHCA to monitor the internal
state and plan for contingencies in a rich class of mixed
hardware/software, discrete/continuous systems. Prelimi-
nary results of our approach for an industrial filling sta-
tion scenario demonstrate its feasibility.

Introduction

Many complex systems today, such as robotic networks,
automobiles, and automated factories consist of hardware
components whose functionality is extended or controlled
by embedded software. In such a system, the problem of
monitoring its internal state under partial observations and
planning for contingencies can be addressed by model-
based diagnosis and planning, utilizing a Hidden Markov
Model (HMM) of the system’s internal behavior. [10]
introduced Probabilistic Hierarchical Constraint Automa-
tons (PHCA) as compact HMM encoding, which allows
to model uncertain hardware behavior as well as com-
plex software behavior; in previous work [9], we intro-
duced an encoding of PHCAs as soft constraints and a
decomposition-based optimization algorithm to efficiently
compute best system trajectories over a window of N time

steps. However, many real-world components, like the
silo of a filling station shown in figure 1, involve not only
discrete behavior but also continuous dynamics. There-
fore, we are extending PHCAs to Hybrid PHCAs (Hy-
PHCAs) that allow modeling of continuous behavior as
Ordinary Differential Equations (ODEs). The main chal-
lenge is then to make trajectory estimation on HyPHCAs
tractable.

Our example is an industrial filling station [2] which
fills a granulate material in bottles. The bottles are trans-
ported to and from the station on a conveyor belt. A pneu-
matic arm puts bottles from the conveyor onto a swivel
and back when they are finished. The swivel positions
the bottles below a silo, where they are filled by a screw
mechanism powered by an electrical motor. A sensor (bi-
nary signaled) indicates when the silo is empty. We cre-
ated a simplified model of the station (shown in figure 1),
consisting only of the silo and the sensor model. The
silo fill level, during filling, is continuously modeled as
u̇lvl = −fR ∗ ulvl (where fR is the fill rate). This equa-
tion, while not realistic, demonstrates that our approach
can handle such equations.

We consider a scenario (shown in table 1) ranging over
10 time steps (4t = 2s). The silo, with initial fill level
of 50 units, receives commands to fill two bottles. Within
the first 7 time steps, the motor switch breaks such that
the motor continues running, emptying the silo (motor-
switch-fault). At t0 the sensor indicates an empty silo.
The monitoring problem is to choose among three pos-
sible hypotheses explaining the signal: (1) the silo emp-
tied nominally (2) the silo emptied too quickly due to the
motor-switch-fault or (3) the sensor is stuck-on. A model
which respects the continuous behavior allows a reasoner
to detect an inconsistency with the sensor signal: the silo
couldn’t have emptied nominally, without the motor run-
ning. Thus, hypothesis (1) is ruled out. Since the sensor
fault is much less likely than the motor fault1, the rea-
soner correctly assumes hypothesis (2) as most probable.
The control problem is to find suitable actions to deal with

1The (failure) probabilities of our model are chosen manually. The
vision is that models such as ours will be derived automatically from en-
gineering models, using domain knowledge to generate the probabilities.

1

; 0.05; 0.05 ; 0.05

wait
u̇lvl = 0

fill
u̇lvl = −fR ∗ ulvl

empty
u̇lvl = 0

sensor.in = ON

waitRefill
u̇lvl = refR
ulvl 6= max

motor-switch-fault

notEmpty
u̇lvl = −fR ∗ ulvl

empty
u̇lvl = 0

motor=OFF; 0.95

motor=ON; 0.95

ulvl =0; 0.95
waitRefill=ON ∧

refill=ON; 0.95

waitRefill=ON; 1.0
waitRefill=OFF; 1.0

ulvl =0; 1.0

repair=ON; 1.0 repair=ON; 1.0

silo

nominal
in = out

stuck-on
out = ON

stuck-off
out = OFF

unknown

0.9979

0.001

0.001

0.0001

sensor

Figure 1. HyPHCA modeling the silo and the silo empty sensor of a filling station (photo upper
right). The bolt indicates failure states (e.g., silo.motor-switch-fault, sensor.stuck-on). All vari-
ables may be used for inter-component communication, see e.g. sensor.in in location silo.empty.

the fault and reach a control program goal. In this case the
goal is that at t3 in the future, the silo must have a fill level
between 5 and 10 and be in its initial location wait.

In the following, we describe an approach, combining
several well known methods, which allows to deduce the
correct fault hypothesis as well as which actions when to
take to reach the goal. In contrast to existing work [6, 7]
we do not develop a specific algorithm tailored to our
modeling formalism, but instead transform the monitoring
and control problems to a constraint optimization prob-
lem, which can be solved by off-the-shelf reasoners. The
main advantage is that a large body of existing, well re-
fined constraint optimization algorithms can be exploited,
and new developments can be incorporated easier.

From Hybrid to Abstracted Discrete Models

A Probabilistic Hierarchical Constraint Automaton
(PHCA) [10] is defined as a tuple A = 〈Σ, PΘ,Π, C, PT 〉.
Σ = Σc∪Σp is a set of primitive and composite locations,
where the latter denote sub-PHCAs. A location may be
marked or unmarked; marked locations represent active
execution branches. Π is a set of dependent, observable
and commandable variables with finite domains and C[Π]
denotes the set of finite domain constraints over Π. PΘ

is a probability distribution over sets of start locations
Θi ∈ Σ and PT (li), for each li ∈ Σp, is a probability
distribution over a set of transition functions T (li) : Σ

(t)
p

× C[Π](t) → 2Σ(t+1). Each transition function maps a
marked location into a set of locations to be marked at
the next time point, provided that the transition’s guard
constraint is entailed. T denotes the set of all transitions.
A PHCA State at time t is a set of marked locations called
a marking m(t) ⊂ Σ. A series of N + 1 PHCA states

is a system trajectory, representing its evolution over
the course of N time steps. We refer to [10] for a more
detailed description.

The PHCA formalism does not support a time model
other than discrete, ordered time points. Therefore we de-
fine a clocked PHCA A4t, which is simply a PHCA A
where all execution steps take an equal amount of time
4t. Its time semantics are such that the state of time
point ti is held within [ti, ti+4t), and all transitions with
entailed guards for this execution step are taken instanta-
neously at ti +4t.

Systems with mixed discrete/continuous behavior
can be modeled using the well known Hybrid Automata
[4], capturing continuous system evolution with ODEs.
They however don’t support hierarchical structure and
probabilistic behavior. Therefore we define a hybrid
extension to PHCAs called HyPHCAs.

Definition (HyPHCA)
A Hybrid PHCA, or HyPHCA, is a tuple
HA = 〈Σ, PΘ,Π,U , C,flow, PT 〉. U = U ∪ U̇ ∪ U ′

is a set of real-valued variables U = {u1, . . . , un},
their first derivatives U̇ = {u̇1, . . . , u̇n} and a set
U ′ = {u′

1, . . . , u
′
n} representing values of U at the end

of discrete change. C : Σ → C[Π ∪ U ∪ U ′] is a function
associating locations with constraints over discrete and/or
real-valued variables. C[Π ∪ U ∪ U ′] is the set of
constraints over Π ∪ U ∪ U ′. flow : Σ → flow[U ∪ U̇]
is a function associating locations with constraints over
real-valued variables and their derivatives in the form of
linear ODEs. flow[U ∪ U̇] is the set of these differential
equations. Σ, PΘ, Π and PT are defined as for a PHCA.

Our abstraction-based approach to hybrid system mon-

2

Time step
Past Present Future

Variable t−7 t−6 t−5 t−4 t−3 t−2 t−1 t0 t1 t2 t3

sensor.out OFF OFF OFF OFF OFF OFF OFF ON - - -
silo.motor ON OFF ON OFF OFF OFF OFF OFF - - -
silo.repair OFF OFF OFF OFF OFF OFF OFF ON OFF OFF OFF

silo.waitRefill OFF OFF OFF OFF OFF OFF OFF OFF ON OFF OFF
silo.refill OFF OFF OFF OFF OFF OFF OFF OFF ON OFF OFF

silo location wait fill wait m-s-f m-s-f m-s-f m-s-f m-s-f.e empty waitRefill wait (goal)
sensor location nom. nom. nom. nom. nom. nom. nom. nom. nom. nom. nom.

ulvl [45, 50) [45, 50) [25, 30) [25, 30) [10, 15) [5, 10) [0, 5) [0, 5) [0, 5) [0, 5) [10, 15) (goal)

Table 1. The table shows the monitoring/control results for our example scenario (discretization
with 10 partition elements of ulvl). The rows show: Known sensor values (1 row), known com-
mands (4 rows), marked locations for sensor and silo (2 rows) and finally the fill level (1 row).
Table entries are variable values; bold values are derived automatically by our method. Legend:
nom. → nominal; m-s-f→ motor-switch-fault.notEmpty; m-s-f.e→ motor-switch-fault.empty

itoring relies on converting a HyPHCA HA to a clocked
PHCA A4t. The evolution of continuous variables u ∈ U
in between two time points ti and ti+1 (where ti+1 =
ti + 4t) is mapped onto discrete, unguarded transitions
between locations of a special clocked PHCA AMarkov

4t .
It has only primitive locations, corresponding to cells
of a quantization of the continuous state space, and en-
codes a Markov chain that conservatively approximates
the continuous evolution. Given a location LA4t

of a
clocked PHCA A4t which captures the discrete part of a
location LHA of HA (omitting real-valued variables and
ODEs), a PHCA AMarkov

4t abstracting the continuous be-
havior flow(LHA) is embedded as a composite location
into LA4t

. We quantize the continuous state space (in-
cluding time) with equally sized grid cells, but in our ap-
proach this method can be easily replaced with more so-
phisticated ones (e.g., [5]).

[45, 50)

[20, 25)

[25, 30)

[30, 35)

ulvl

ti

ti+1

0.41

0.57

0.03

Figure 2. Reachable set Rstart for u̇lvl = −fR∗
ulvl starting from the marked grid cell Qstart.
Above: the derived PHCA AMarkov

4t .

To conservatively estimate transition probabilities of
AMarkov

4t we use a well known method which employs
reachability analysis [7], illustrated in figure 2. We re-
cap this method shortly. The quantized state space is di-
vided in time slices corresponding to partition elements of
the time interval [ti, ti+1]. Start locations of transitions of
AMarkov

4t are associated with quantization cells within the
first time slice in [ti, ti+1] and destination locations with
the last time slice. Let now Qstart be the quantization cell
of start location Lstart and Qx,ti+1

the cells of all possi-
ble destination locations Lx. The approximation Rstart is
computed, a set which is as small as possible yet guaran-
teed to include all continuous states reachable from Qstart

within [ti, ti+1]. Now the probabilities for the transitions
Lstart to destination locations Lx are computed as

P (Lx|ti+1, Lstart) =
V (Qx,ti+1

∩Rstart)

V (
⋃
x
Qx,ti+1

∩Rstart)
,

where V () measures the volume of the given set. Cur-
rently we use PHAVer [3] for reachability analysis, but
different approaches can be employed (e.g., [8]).

Best System Trajectories for Monitoring and Control

Given a clocked PHCA A4t, partial observations, known
commands and a goal state m(ti+n), we combine the prob-
lems of system monitoring and finding goal achieving
commands into a single problem of finding the most prob-
able system trajectory over N time steps which is consis-
tent with the observations and contains m(ti+n). From this
trajectory the goal achieving commands can be easily de-
rived. We frame this problem as a discrete constraint opti-
mization problem (COP)R = (X,D,C) with transition
probabilities as preferences by translating A4t to soft-
constraints following our framework in [9]. This unfolds
A4t over N time steps as follows: X = {X1, ..., Xn} is
a set of variables with corresponding set of finite domains
D = {D1, . . . , Dn}. For all time points t = 0..N , it
consists of Π(t) ⊆ X encoding PHCA variables, auxiliary

3

variables (needed to, e.g., encode hierarchical structure)
and a set of binary variables Y = {X(ti)

L1
, X

(ti)
L2

, . . .} ⊆ X
representing location markings of A4t. Y is the set of so-
lution variables of R. C = {C1, . . . , Cn} is a set of con-
straints (Si, Fi) with scope Si = {Xi1, . . . , Xik} ⊆ X
and a constraint function Fi : Di1 × · · · × Dik → [0, 1]
mapping partial assignments of variables in Si to a prob-
ability value in [0, 1]. For all time steps t = 0..N ,
hard constraints in C (Fi evaluates to {0, 1} only) en-
code hierarchical structure as well as consistency of ob-
servations and commands with locations and transitions,
while soft constraints in C encode probabilistic choice
of initial locations at t = 0 and probabilistic transitions.
R then consists of O(N(|T | + |Σ| + |Π|)) variables
and O(N(|Σ| + |T |)) constraints. The k-best solutions
to R are assignments to Y which, extended to all vari-
ables X , maximize the global probability value in terms
of the functions Fi. These assignments correspond to the
most probable PHCA system trajectories and their exten-
sion to X provides assignments to, e.g., goal achieving
commands. All described steps up to now — discretiz-
ing, generating Markov chains, COP encoding — can be
done offline. Online, we iteratively add observations and
known commands to R and solve it, yielding the k most
likely system trajectories.

Experimental Results

We created COP instances with different discretizations
for ulvl (2, 10 and 25 partition elements) for our example
scenario and two small variations, and solved them using
Toulbar22. We tried its default and a second, decompo-
sition based configuration. The problem size was for all
instances (unfolded over 10 time steps) 843 variables and
920 constraints. For 10 partition elements of ulvl table 1
shows the variable assignments the solver deduced from
the given observations and goals in bold face. The gen-
erated solution correctly identifies the motor-switch-fault
and provides the necessary commands to reach the goal:
repair = ON for t0, refill = ON and waitRefill = ON
for t1 and waitRefill = OFF for t2. Table 2 shows the
average runtime. The columns show results for the exam-
ple scenario (1) and the two variations: diagnose motor-
switch-fault only (2) and nominal behavior (3). As one
would expect, a slight increase in runtime can be seen for
the more fine grained discretization (25). The variations
take roughly the same time as the main scenario. Small
differences are probably due to the fact that the variations
are the same COP with some constraints omitted. E.g.,
when diagnosing the motor-switch-fault only, the goal is
omitted. This makes the problem slightly harder because
more future evolutions are possible. We expected the of-
fline decomposition of the problem to lower online com-
putation effort, but surprisingly, it had a negative effect in
our scenario, with yet unknown cause.

2https://mulcyber.toulouse.inra.fr/projects/
toulbar2/

Toulbar2 Discreti- Scenarios
config. zation 1 2 3
default 2 0.016s 0.026s 0.028s
params 10 0.014s 0.026s 0.016s

25 0.030s 0.054s 0.032s
with 2 0.126s 0.172s 0.200s
tree 10 0.122s 0.156s 0.164s

decomp. 25 0.138s 0.178s 0.178s

Table 2. Runtime results (mean time in sec.)
for the example scenario and its variations.

Conclusion

We introduced HyPHCAs, an extension to PHCAs, as a
modeling framework for mixed discrete/continuous sys-
tems and showed how to combine several existing meth-
ods to offline abstract the differential equations of the Hy-
PHCA to Markov chains encoded as PHCAs, embed them
in the discrete part of the HyPHCA, encode the discrete
abstraction with soft-constraints and online monitor and
control the system by solving a constraint optimization
problem. Our experimental results demonstrate the fea-
sibility of the approach. Our next step is to develop an es-
timator module which iteratively shifts the time window
([9]) to monitor systems over long time periods and ver-
ify our results on larger factory settings such as [1]. In
this and in other settings, accurate model-based monitor-
ing and control can only be achieved by considering both
hybrid hardware and software behavior.

References

[1] M. Buss, M. Beetz, and D. Wollherr. CoTeSys - Cognition
for Technical Systems. In Proc. HAM, 2007.

[2] S. Dominka. Hybride Inbetriebnahme von Produktionsan-
lagen — Von der Virtuellen zur Realen Inbetriebnahme (in
German). PhD thesis, TUM, 2007.

[3] G. Frehse. Phaver: Algorithmic Verification of Hybrid
Systems Past Hytech. In Proc. HSCC, pages 258–273,
2005.

[4] T. Henzinger. The Theory of Hybrid Automata. In Proc.
LICS, pages 278–292, New Brunswick, New Jersey, 1996.

[5] M. W. Hofbaur and T. Rienmüller. Qualitative Abstraction
of Piecewise Affine Systems. In Proc. QR, 2008.

[6] M. W. Hofbaur and B. C. Williams. Mode Estimation of
Probabilistic Hybrid Systems. In HSCC, pages 253–266,
Stanford, California, USA, 2002. Springer.

[7] J. Lunze and B. Nixdorf. Representation of Hybrid Sys-
tems by Means of Stochastic Automata. Mathem. and
Comp. Modelling of Dyn. Sys., 7:383–422, Dec. 2001.

[8] M. Althoff, O. Stursberg, and M. Buss. Online Verification
of Cognitive Car Decisions. In Proc. IEEE IV, 2007.

[9] T. Mikaelian, B. C. Williams, and M. Sachenbacher.
Model-based Monitoring and Diagnosis of Systems with
Software-Extended Behavior. In Proc. AAAI, 2005.

[10] B. C. Williams, S. Chung, and V. Gupta. Mode Estima-
tion of Model-Based Programs: Monitoring Systems with
Complex behavior. In Proc. IJCAI, pages 579–590, 2001.

4

