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1.   Introduction   

1.1. Targeting oncogenic mutations in receptor tyrosine kinases – an 

overview  

Identification of oncogenic mutations in tyrosine kinases and demonstration of their role in 

cancer development led to testing of small molecule inhibitors that specifically target 

mutated kinases
1-4

. The first success was seen with the development of imatinib (Gleevec) 

which inhibits BCR-ABL tyrosine kinase activity for the treatment of chronic myeloid 

leukemia (CML)
5-8

. These findings were extended to the use of imatinib for targeting other 

mutated tyrosine kinases such as c-KIT (systemic mastocytosis and gastrointestinal stromal 

tumors) and PDGFRalpha (hyper eosinophilic syndrome)
9-13

. Eventually many kinases 

were found to be mutated in various cancers such as ALK (anaplastic large cell lymphoma 

and medulloblastoma), FLT-3 (acute myeloid leukemia), EGFR (non small cell lung 

cancer) or JAK2 (polycythemia vera)
14-17

. This led to the development of novel drugs in the 

last decade that inhibit specific mutated targets thus holding promise to treat cancer
18

.  

Development of a targeted drug involves several steps including identification of genetic 

lesions in cancer patients, establishment of appropriate in vitro and in vivo models to 

demonstrate the oncogenic nature of mutations, design and synthesis of drugs that 

specifically inhibit mutated protein, testing of inhibitors for their efficacy, and translating 

those findings to the treatment of cancer patients
19

. The search for novel mutations as 

oncogenic events continue so is the development of new inhibitors that target them
20

. Few 

examples include PKC412 (FLT-3), gefitinib (EGFR), erlotinib (EGFR), and lapatinib 

(EGFR and ERBB2)
21-24

. Additionally, multikinase inhibitors (sunitinib and sorafenib) that 

target more than one kinase showed significant promise in the treatment of some solid 

cancers
25, 26

. However, development of drug resistance is a frequent phenomenon mainly 

due to additional mutations acquired by the tumor cells
27, 28

. For example, CML patients 

display imatinib resistance in advanced stages of the disease due to secondary mutations in 

the kinase domain of BCR-ABL
29, 30

. This led to the development of new inhibitors that are 

able to overcome secondary drug resistance
31, 32

. Nilotinib, dasatinib and bosutinib are next 

generation ABL inhibitors which can inhibit most of the imatinib resistant kinase domain 

mutants of BCR-ABL
33-35

. Development of drug resistance due to acquisition of kinase 

domain mutations upon inhibitor treatment was shown with other kinase-inhibitor pairs as 
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well (EGFR-gefitinib, KIT-imatinib, PDGFRalpha-imatinib and FLT3-PKC412)
36-38

. Thus, 

the story of targeted inhibitor treatment continues to evolve with new findings offering 

significant challenges on the path towards superior cancer treatment. 

 

1.2. Receptor tyrosine kinases (RTKs)  

Receptor tyrosine kinases are membrane proteins constituted by an extracellular ligand 

binding domain, a transmembrane domain, an intracellular juxtamembrane domain and a 

kinase domain
39

. RTKs act as signal transmitters from extracellular region in to the cell 

thus influencing cellular physiology, in response to environmental conditions
40

. There are 

several families of RTKs and the classification is based on sequence homology (Figure 

1)
39

. As shown in figure 1, RTKs may differ significantly in the ligand binding region that 

determines the specificity towards particular ligands. Most RTK families have a single 

intact kinase domain whereas the kinases of the PDGFR and the Flt family of receptors 

possess a split-kinase domain. The signaling potency of RTKs stems primarily from their 

kinase activity and is thus tightly regulated under normal physiological conditions. 

 

 

 

 

 

 

 

 

 

Figure 1. Representation of RTK families. 

Several RTK families are represented based on the structural similarities within the members of a family. 

Respective domains in kinases are indicated. Representive kinases from each family is shown. Different RTK 

domains are illustrated (Figure adapted from Hubbard et al.
39

). 
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1.3. Regulation of RTK activity and cell signaling 

The kinase activity of RTKs is tightly regulated and is activated upon ligand binding to the 

extracellular domain (Figure 2)
41

. Ligand binding leading to the activation of RTKs is 

regulated by various mechanisms
42, 43

. For example, certain receptors dimerize upon ligand 

binding leading to the activation of kinase while other RTKs exist as preformed inactive 

dimers whose kinase is activated upon ligand binding
43

. Auto-inhibition mechanisms exist 

to keep intracellular kinase inactive in the absence of a stimulating ligand
41

. Upon ligand 

binding, autoinhibited kinase becomes active and phosphorylates itself 

(autophosphorylation) and it’s substrates (transphosphorylation) (Figure 2)
41, 44

. Activation 

of RTKs upon ligand stimulation leads to further activation of downstream pathways such 

as PI3K-AKT, JAK-STAT or RAS-RAF-MAPK 
43, 45

. 

 

 

 

 

 

 

 

 

Figure 2. Activation of receptor tyrosine kinase (RTK). 

Monomeric RTKs exist in inactive form (a). Upon ligand binding RTKs dimerize (b) leading to the activation 

of the kinase (c) resulting in auto- and trans-phosphorylation (Figure adapted from Hubbard et al.
41

). 

 

The conformation of an RTK kinase domain can vary between fully inactive (“off” state) 

and fully active (“on”) states
46

. The importance of tight regulation of RTK’s activity is 

evident from their implication in several cancers
27

. Multiple layers of regulatory 

mechanisms involving distinct domains of RTK’s exist to prevent kinase activation
46

. This 

is evident  from the constitutive activation due to mutations in the extracellular domain (eg. 

EGFR), juxtamembrane region (eg. FLT3) or kinase domain (eg. ERBB2).  
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1.3.1. Structural features of kinase domain 

The kinase domain of RTKs contains an amino-terminal (N-terminal) lobe and a carboxy-

terminal (C-terminal) lobe
46

. While the amino-terminal lobe is rich in -sheets, the 

carboxy-terminal lobe is primarily -helical. The N-terminal and the C-terminal lobes are 

connected by a hinge which binds the adenine of the ATP. A deep cleft (active site or 

catalytic cleft) between the two lobes is the site of ATP binding. The -helix of the N-lobe 

is called control- or C-helix. A conserved glutamic acid residue of the C-helix forms a salt 

bridge with the side chain of a buried lysine that is important for proper orientation of 

phosphates and facilitates phosphoryl transfer reactions. The glycine-rich phosphate-loop 

(P-loop) also contacts the phosphates of ATP. A bulky tyrosine or phenylalanine of the P-

loop shields the active site from solvent thus facilitating the kinase reaction. Upon 

phosphorylation, the A-loop (activation loop) transforms into an extended conformation 

aiding substrate binding. The highly conserved DFG motif coordinates the binding of ATP 

to the hinge region. A typical kinase reaction involving various regions of  the kinase 

domain is schematically shown in Figure 3
47

.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Schematic representation of a kinase domain with bound ATP (Figure adapted from Williams 

et al.)
47

. 

The catalytic domain of RTKs consists of an N-terminal lobe and a C-terminal lobe with an ATP-binding site 

situated between these domains. Both the N- and C-terminal lobes were connected by hinge region. 

Phosphorylation of the activation loop leads to stabilization of active kinase form. Gatekeeper residue within 

the ATP binding site controls the size of purine binding site and regulates the accessibility of substrate to the 

hydrophobic pocket. P-loop (phosphate-binding loop) forms the ceiling of kinase domain and interacts with 

the phosphate groups of the nucleotide and the Mg2+ ion.  
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Even though there is a great resemblance among active conformations of many kinases, 

their inactive conformations differ a lot depending on the kind of autoinhibitory 

mechanism
39, 46

.  

 

1.3.2.  Cellular signaling mediated by the activated RTKs 

Receptor oligomerization upon ligand binding increases the local concentration of kinases 

leading to transphosphorylation of tyrosines in the activation loop of the catalytic domain
40

. 

Upon tyrosine phosphorylation, the activation loop adopts an “open” configuration giving 

access to ATP and to substrates thus enabling phosphorylation of receptor itself 

(autophosphorylation) and of substrate proteins (transphosphorylation)
40

. A typical kinase 

reaction involves the transfer of a gamma ATP to reactive hydroxy group on a substrate 

(Figure 4)
43

. This is facilitated by the loss of autoinhibition imposed by different 

conformational constraints, and binding of ATP as well as proper orientation of the 

substrate
46

.  

 

                                  

 Figure 4. Mechanism of reversible protein phosphorylation (adapted from Bialy et al.)
48

. 

 

The autophosphorylated sites on RTK serve as binding sites for several signaling proteins 

with distinct modules such as SH2 and PTB domains
40, 43, 49-51

. These proteins also serve as 
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adaptors and recruit further downstream molecules resulting in a signaling complex
52

. One 

such adaptor is Grb2 which is complexed to Sos protein that serves as an activator of Ras
53

. 

Activated Ras recruits Raf kinase to the membrane which activates MEK1 and MEK2
53, 54

. 

MEK1 and MEK2 inturn activate ERK1 and ERK2 which then dimerize and translocate 

into the nucleus and phosphorylate transcription factors (Ras/Raf/MAP Kinase pathway) 

(Figure 5)
55

. Additionally, SH2 domain containing enzyme PLCgamma is also recruited to 

activated RTK which hydrolyzes PIP2 to PIP3 and diacylglycerol which in turn activates 

PKC family of kinases and Ca
2+

/calmodulin-dependent protein kinases (PLCgamma 

pathway)
40, 55

.  PI-3 kinase complex is also recruited to the activated RTK via its p85 

subunit thus phosphorylating PIP2 to PIP3
56

. PH-domain containing protein AKT binds to 

PIP3 and gets phosphorylated by another PH-domain containing protein PDK1
40

. Activated 

AKT phosphorylates various substrates that are part of several survival and anti-apoptotic 

signaling processes (PI-3K/AKT pathway) (Figure 5)
57

. RTKs also activate JAK family of 

kinases which phosphorylate STAT proteins (Figure 5)
40

. STAT family of proteins either 

homodimerize or heterodimerize upon phosphorylation and translocate into the nucleus 

where they regulate gene expression (JAK/STAT pathway) (Figure 5)
58

. Thus, a myriad of 

proliferative and survival pathways are activated by kinase active RTKs upon ligand 

stimulation (Figure 5)
59

. 

  

 

 

 

 

 

 

   

Figure 5. Schematic illustration of signaling pathways activated by RTKs
59

. 

Activation of various proliferation and anti-apoptic pathways by activated RTK dimers upon ligand binding. 

Activating mutations in the exons of KIT and PDGFRA were indicated. RTK = Receptor tyrosine kinase, Lig 

= ligand, JM = Juxtamembrane region, TK = Tyrosine kinase. 
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Attenuation of kinase activity and downstream signaling is also an important step and is 

achieved by the action of phosphatases, receptor endocytosis and lysosomal degradation, 

and by negative feedback mechanisms
40

. Negative regulators of RTK signaling involves 

inhibitory phosphorylation of MAPKs, upregulation of transcriptional repressors of 

MAPKs and targeting the proteins of JAK/STAT pathway for degradation by SOCS1
60

. 

 

1.4. Activating mutations in RTKs 

Enhanced activation of RTKs in the absence of stimulating ligands is possible either due to 

over expression of the proteins or due to genetic mutations
61

. Activating mutations disrupt 

autoinhibitory mechanisms thus conferring constitutive kinase activity even in the absence 

of stimulatory ligands
44, 62, 63

. This results in deregulated activation of key pro-survival and 

proliferation signaling pathways resulting in cancer
64

. It is reasonable to assume that the 

success of cancer treatment by targeting a particular mutated kinase depends on to which 

extent the cancer cell is dependent on the oncogene for survival (oncogene addiction)
65-67

. 

Eventhough tumors accumulate multiple genetic lesions, they may require a single 

activated gene or signaling pathway for maintenance. Thus, the phenomenon of oncogene 

addiction can be explained in a setting where oncogene inactivation results in the death of 

tumor cells but not of normal cells
68

. However, the mechanism by which the phenotypic 

outcome upon oncogene inactivation is achieved remains elusive
68

. 

Genetic mutations reported in RTKs include insertions, deletions and point mutations in the 

key regulatory regions of the kinase including extracellular domain, juxtamembrane 

domain and the intracellular kinase domain 
61

. For example, mutations in the extracellular 

domain that were reported in patients include a) deletions (EGFR in glioblastoma 

patients)
69

, b) in-frame insertions (c-KIT in GIST patients)
70

, and point mutations (EGFR in 

glioblastoma patients)
71

. In addition, mutations in the extra cellular domain were also 

reported in RET and TrkA kinases as well
72, 73

. Apart from extracellular domain, mutations 

in the juxtamembrane domain of FLT3, PDGFR alpha and KIT were shown to be 

activating
15, 74-76

. Another important class of activating RTK mutations were reported in the 

kinase domain of FLT3, KIT, PDGFR, EGFR and ERBB2
16, 77-82

. 
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1.4.1. Mutations in the FLT3 receptor are reported in AML patients 

FLT3 (FMS-like tyrosine kinase 3) (alternate names: fetal liver kinase-2, FLK-2 and stem 

cell kinase 1, STK-1) is a class III RTK (other members of the family include c-KIT, c-

FMS and PDGFR) with an extracellular Ig-like ligand binding domain, a juxtamembrane 

domain and an intracellular split kinase domain
83-85

. The human FLT3 gene is mapped to 

chromosome 13q12 and encodes 993 aminoacids
86

. Stimulation with FLT ligand (FL) 

induces dimerization resulting in FLT3 activation as evident by the autophosphorylation as 

well as the transphosphorylation of substrate proteins
87

. Phosphorylation of FLT3 followed 

by the internalization of FLT3L–FLT3-phosphate complex is rapid and degraded by-

products are seen as early as 20 minutes after stimulation
86

. FLT3 ligand levels are low in 

healthy individuals but are elevated in patients who have low white-blood-cell counts 

secondary to either haematopoietic disease or chemotherapy indicating that the systemic 

release of FLT3L may contribute to haematopoiesis
86

. Thus, availability of FLT3 ligand 

determines the kinase activity of FLT3 receptor
86

. It has been proposed that the regulated 

activation of FLT3 receptor by FLT3 ligand may involve both autocrine and paracrine 

mechanism
86

. Together with SCF (Stem Cell Factor) and IL-3 (interleukin-3), FL was 

shown to induce proliferation in multiple cell types of the hematopoietic lineage
88

. In the 

absence of other growth factors, FLT3 ligand induces monocytic differentiation of early 

hematopoietic progenitors
86

. In combination with growth factors FLT3 ligand activates the 

proliferation of primitive and more committed myeloid progenitor cells
86

. Together with 

IL-7 and IL-11, FLT3 ligand stimulates differentiation of uncommitted mouse 

hematopoietic progenitor cells
86

.  

The most common genetic alterations in AML were reported in the FLT3 receptor 
89

. FLT3 

receptor mutations are more prevalent in adult AML patients than in paediatric AML 

patients
86

. In-frame internal tandem duplications (FLT3-ITDs) of varying length in the 

juxta membrane region were reported in approximately one third of AML patients, while 

point mutations in the activation loop of the tyrosine kinase domain (FLT3-TKD or FLT3-

D835Y) were found in 8% to 12% of AML patients (Figure 6)
84, 89

. Additionally, point 

mutations in the FLT3 juxtamembrane region were also reported in AML patients
74

. A high 

mutant-to-wild–type ratio was shown to result in a decreased survival in FLT3-ITD 

positive patients
77, 90

.  
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Constitutive activation upon ligand independent dimerization of FLT3-ITD and 

downstream signaling pathways was shown in vitro
91-93

.  Both FLT3-ITD and FLT3-TKD 

were shown to be activating and can transform hematopoietic cell lines to cytokine 

independent growth (Figure 6)
77, 94, 95

. Interestingly, signaling differences between the two 

classes of FLT3 mutations were shown recently
96

. FLT3-ITD but not FLT3-TKD was 

shown to activate STAT5 signaling pathway in myeloid cells
96

.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Mechanism of activation of wild type and mutant FLT3 receptors. 

Diagrammatic representation of FLT3 mutations reported in AML (Figure adapted from Stirewalt et al.
86

). 

(A) Internal tandem duplication (ITD) in juxtamembrane (JM) region of FLT3 kinase is the most frequent 

FLT3 mutation reported in AML. Point mutation (PM) in the split kinase domain (K1 and K2) was also 

reported in AML patients. (B) Mechanism of activation of mutated FLT3 receptors is shown. Inactive wild 

type FLT3 monomers (a) dimerize upon ligand (L) binding to form kinase active dimers (b). Mutant FLT3 (c 

and d) kinases are constitutively active and don’t require stimulation by FLT3 ligand. 
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Activating FLT3 mutants also induce disease in murine bone marrow transplantation 

models
21

. However, FLT3-ITD and FLT3-D835Y were shown to induce distinct 

phenotypes upon transplantation of transduced bone marrow
97

. While FLT3-ITD induces a 

myeloproliferative disease in bone marrow transplantation model, FLT3-TKD induces an 

oligoclonal lymphoid disorder
97

. A knock-in mouse model for FLT3-ITD was recently 

reported to develop myeloproliferative disease resembling human CMML (Chronic 

Myelomonocytic Leukemia)
98

. Despite these models, so far there is no report where FLT3 

mutation alone causes AML suggesting that a second hit (additional oncogenic event) is 

needed for AML onset
86

. Given the high frequency of mutations in AML, FLT3 is an 

attractive therapeutic target. Several kinase inhibitors like herbimycin A, AG1295, 

AG1296, CEP-701 and PKC412 have shown significant activity against FLT3 mutants both 

in vitro and in murine bone marrow transplantation models
21, 95, 99-103

. Howover, TKI 

resistant mutations in the FLT3 kinase domain were recently reported in a cell based 

screen
104

. Thus, alternate inhibitors need to be developed for superior efficacy compared to 

the existing FLT3 inhibitors against TKI-resistant FLT3 mutations
105-109

. 

 

1.4.2. EGFR kinase domain mutations are reported in NSCLC patients 

EGFR/ERBB1/HER1 is a prototypical member of ERBB family of RTKs which include 

ERBB2/HER2, ERBB3/HER3 and ERBB4/HER4 kinases
110

. While ERBB2 has no known 

ligand, ERBB3 is kinase defective
110

. Several ligands were shown to activate one or more 

of the ERBB family members by inducing either homo- or heterodimerization resulting in 

activation of downstream signaling processes whose strength depends on the dimerization 

partners (Figure 7)
111, 112

. The signaling network involving ERBB receptors can be viewed 

as multilayered process with an input layer (comprising the ligands and their receptors), a 

signal-processing layer (includes adaptor proteins as well as intermediate kinases and 

activated transcription factors) and an output layer (physiological effects depending on 

cellular context and ligand-receptor pairs) (Figure 7)
111, 113

. Overexpression of either ERBB 

receptors or their ligands were implicated in various cancers
114-117

.  
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Figure 7. Multilayered signaling cascades in ERBB network (adapted from Citri A et al.
113

). 

The input layer involves the binding of ligands to the extracellular domain of the corresponding receptor(s). 

The signal processing layer involves multiple cellular processes ranging from signal amplification to feed 

back loops while the output layer involves the execution of cellular processes. 

 

 

Epidermal growth factor receptor (EGFR) is a 170 kD RTK with an extracellular ligand  

binding domain, a transmembrane domain and an intracellular kinase domain with distinct 

N- and C-lobes
118, 119

. Mice lacking EGFR show defective epithelial development and 

survive only for a short period after birth
120

. EGFR ligands (EGF and TGF alpha) are type I 

integral membrane proteins which are cleaved to mature growth factors
121

. Upon ligand 

binding, the extracellular domain shifts from dimer-incompatible conformation to a dimer-

compatible conformation
118

. This leads to the formation of stable dimers of EGF:EGFR 

complexes in the extracellular milieu
122

. This results in the relaxation of autoinhibition thus 

enhancing the autokinase activity leading to phosphorylation of several tyrosines in the 

carboxy terminal tail
122

. The critical role of the juxtamembrane region and the C-terminal 

tail in autoinhibition was also reported recently
123, 124

. Moreover, the kinase domains of 

EGFR form asymmetric dimers: C-lobe of one monomer (activator) docking on the N-lobe 
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of another monomer (activated)
125

.Thus, EGFR displays unique mechanisms of 

autoinhibition and kinase activation compared to other RTKs. Constitutive activation of 

EGFR (in the absence of ligand stimulation) due to gene/protein overexpression was shown 

to be an oncogenic event in several cancers making it an ideal target for EGFR inhibitor 

treatment
126

. Moreover, EGFR kinase domain mutations were recently reported in a subset 

of lung cancer. 

Lung cancer can be broadly classified into either small-cell lung cancer (SCLC, comprising 

20% of lung cancers), or non-small-cell lung cancer (NSCLC, comprising 80% of lung 

cancers)
127

. NSCLC includes adenocarcinoma, bronchioloalveolar carcinoma, squamous 

carcinoma, anaplastic carcinoma and large-cell carcinoma subtypes
127

. NSCLC is a 

relatively aggressive disease with a median survival, if left untreated, of approximately 4-5 

months after diagnosis. EGFR kinase domain mutations are predominantly reported in 

nearly 10% of NSCLC and rarely in SCLC, ovarian, colorectal, and pancreatic cancers. 

The majority of EGFR mutations reported in NSCLC patients are somatic even though 

germline mutations have been reported
16, 128, 129

. Moreover, the percentage of NSCLC 

patients with mutated EGFR varies depending on the population studied
130

. EGFR 

activating mutations are more common in female patients, of east asian descent, non 

smokers and with adenocarcinoma subtype
131

. 

Significant positive clinical responses were seen recently in NSCLC (non-small-cell lung 

cancer) patients treated with EGFR inhibitors like gefitinib or erlotinib
132, 133

. Interestingly, 

activating mutations in the EGFR kinase domain were shown to sensitize a subset of 

NSCLC patients to EGFR inhibitor treatment
16, 134, 135

. In addition, several recent studies 

demonstrate that NSCLC patients with EGFR mutations show significant increase in 

overall survival upon gefitinib/erlotinib treatment
136-139

. Moreover, patients
 
with K-ras 

mutations (nearly 20% of NSCLC) almost
 
never harbored EGFR mutations, and do not 

respond to erlotinib treatment
127

.  

Initial studies with the EGFR mutant NSCLC cell line (H3255) demonstrated that there is a 

significant difference in the biology between wildtype and EGFR mutant lung cancer cell 

lines. Gefitinib treatment caused cell cycle arrest in EGFR wildtype NSCLC cell lines and 

apoptosis in EGFR mutant NSCLC cell lines
140

. Moreover, mutant EGFR is more sensitive 

to phosphorylation inhibition by gefitinib treatment than the wildtype EGFR
134

. In contrast 

to these findings, no correlation between EGFR mutation status and overall survival was 
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shown in a study which also reported novel mutations in the EGFR kinase domain
141

. 

Subsequent studies also reported additional novel mutations in the EGFR kinase domain
142, 

143
. Interesitingly, distinct EGFR kinase domain mutations showed differential responses to 

inhibitor treatment
144

. Moreover, secondary gefitinib resistance due to an additional kinase 

domain mutation was also reported in NSCLC patients
145

. The concepts of differential drug 

response and  secondary drug resistance are not new and were previously shown with 

different RTKs
30, 95, 146

. Such studies indicate that it is important to functionally characterize 

every mutation and test them for their sensitivity towards EGFR kinase inhibitors. 

All the EGFR kinase domain mutations reported in NSCLC localize in exons 18, 19, 20 and 

21 and can be classified into three groups 
127, 147, 148

: A) In-frame exon 19 deletions 

(involving L747-A750 residues) constitute class I, B) point mutations constitute class II and 

C) in-frame insertions in exon 20 constitute class III mutations
148

. Of these, exon 19 

deletions and an exon 21 point mutation (L858R) are the most frequent genetic alterations 

accounting up to 85% of the reported EGFR mutations in NSCLC patients
127, 148

. Other 

mutations include in-frame duplications in exon 20 and point mutations affecting G719 and 

L861
127

. The activating nature and drug sensitivity towards EGFR inhibitors was 

established only for the most frequent mutations and the role of less frequent mutations is 

not yet known
149-151

. Thus, it is important to biochemically characterize and test the less 

frequent mutations for their sensitivity towards EGFR inhibitors. 

 

1.4.3. Mutations in the ERBB2 kinase are reported in solid cancers 

ERBB2/HER2 (185 kDa) is a RTK belonging to the EGFR family (ERBB family) and its 

amplification or overexpression was reported in nearly 30% of breast cancers
152, 153

. The 

rodent ortholog of ERBB2, Neu was identified as an oncoprotein from mutagen treated 

rats
154, 155

. ERBB2 lacks a known ligand (orphan receptor) but is a preferred dimerizing 

partner for other members of the ERBB family
156

. ERBB heterodimers containing ERBB2 

have enhanced signaling potency compared to ERBB homodimers due to reduced rate of 

ligand dissociation (Figure 8)
111, 157

.  
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Figure 8. ERBB2 will form potent signaling complex with other ERBB members (Figure adapted from 

Yarden Y et al.
111

). 

ERBB2 is the preferred dimerization parter for other members of the ERBB family leading to stronger 

signaling compared to homodimers. 

 

 

Constitutive activation of ERBB2 (in the absence of a ligand) induces cell transformation 

and tumor growth
158

. Additionally, transgenic mouse expressing Neu allele develops 

mammary tumor phenotype
159-164

. The role of ERBB2 gene amplification or protein 

overexpression is significant in breast cancer and a recent report showed its correlation with 

poor prognosis
165

. ERBB2 amplification was also associated with the resistance to both 

chemotherapy and hormonal therapy
166-168

. Re-replication, unequal exchange, episome 

excision, and the breakage-fusion-bridge (BFB) cycle are the proposed mechanisms to 

explain ERBB2 gene amplification in cancer
169-171

.  The expression of  ERBB2 is also 

transcriptionally regulated by several factors
172-176

. 

A genetic polymorphism resulting in the substitution of I655 by V655 of ERBB2 was 

shown to increase susceptibility to breast cancer
177

. Additionally, another polymorphism 

I654V in tandem with I655V was shown to be associated with increased risk of familial 

breast cancer
178

. On the contrary, several studies have shown that there is no correlation or 
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inverse correlation between ERBB2 polymorphism and the incidence of breast cancer 

risk
179, 180

. However, there is no experimental and biochemical basis (kinase activity and 

transformation ability) to explain the discrepancies between these different studies. 

Moreover, the role of ERBB2 polymorphisms in predicting the clinical response of breast 

cancer patients towards ERBB2 inhibitor treatment is unknown. More recently, mutations 

in the ERBB2 kinase domain were also reported in several cancers
181-186

. For example, the 

ERBB2 mutation ins774 (AYVM) identified in lung cancer confers drug resistance towards 

EGFR inhibitors
187, 188

. However, the properties of other ERBB2 mutations were not 

studied. Thus, it is important to study the role of genetic variants (both polymorphisms and 

mutations) in ERBB2 kinase activity, transformation ability and drug sensitivity. 

 

1.5. Targeted therapy of cancer and drug resistance 

Personalized cancer medicine is a clinical strategy in which a set of cancer patients are 

selected for appropriate therapy based on defined clinical features or biomarkers
28

.  It is 

based on the fact that the outcome of a drug treatment varies significantly within patient 

populations
28

. Thus, a detailed understanding of factors that influence treatment outcome is 

needed to select patient subsets for a particular therapeutic strategy. In the recent past, 

deregulated activity of kinases are shown to have significant role in several cancers making 

them attractive targets for personalized therapy. The development of ATP-competitive 

inhibitors to target oncogenic tyrosine kinases yielded significant success in treating certain 

cancer types
189

. The results achieved in treating such cancers arising due to mutated kinases 

with kinase inhibitors is significant
190

. The target specificity of these drugs is affected by 

the sequence/structural homology shared by most kinases
189

. Thus, several small molecule 

inhibitors have more than one target kinase
191

. For example, the Abl inhibitor imatinib that 

targets oncogenic BCR-ABL, also targets c-KIT and PDGFR kinases
189

. This resulted in 

testing of imatinib in c-KIT and PDGFR mutated cancers also with significant success
192

. 

On the other hand, ERBB inhibitors like gefitinib and lapatinib are highly selective with 

few or no known additional targets
193

. Most of the small molecule targeted drugs are ATP 

competitive reversible inhibitors although selective irreversible inhibitors were also 

reported
189

.  
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1.5.1. Small molecule kinase inhibitors – types and mechanism of action 

Most of the kinase inhibitors form one to three hydrogen bonds with the hinge region 

mimicking the binding of the adenine ring of ATP (structure-activity relationships, 

SARs)
27

. Based on their mechanism of action kinase inhibitors are classified as 1) type 1 

inhibitors, 2) type 2 inhibitors, 3) allosteric inhibitors and 4) covalent inhibitors.  

Type 1 inhibitors mimic ATP and thus bind to the active (DFG-in) conformation of the 

kinase
27

. The heterocyclic ring of the type 1 inhibitors occupy the adenine binding site of 

the kinase
27

. EGFR inhibitors like gefitinib and erlotinib fall into this category.   

Type 2 inhibitors bind to the inactive (DFG-out) conformation of the kinase; typically they 

bind to the hydrophobic binding site created by the movement of the activation loop
27

. 

Examples of this category include imatinib and sorafenib. Upon inhibitor binding the 

kinase can undergo several conformations. Crystal structures of imatinib bound to the 

kinase domain revealed that the ABL kinase adopts an autoinhibited conformation which is 

seen with many kinases in their inactive state.  

Allosteric inhibitors bind outside the active (ATP-binding site) site of the kinase and 

allosterically inhibits it’s activity
27

. For example, the rapamycin-FKBP complex binds to 

the N-terminal FRB domain of mTOR and inhibits it’s activitiy allosterically. Covalent 

inhibitors are irreversible inhibitors that form covalent bonds with the reactive amino acid 

residues in the kinase domain
27

.  

   

1.5.2. Factors underlying kinase inhibitor sensitivity 

Factors that influence the effectiveness of small-molecule kinase inhibitors include 

oncogene addiction (dependence of the tumor on a particular oncogene or associated 

pathway) and activation status of downstream signaling molecules. For example, targeting 

downstream RSK2 kinase is effective in myeloma cells that express oncogenic FGFR3
28

. 

Similarly, the PTEN status influences the outcome of EGFR inhibitor treatment in glioma 

and NSCLC
28

. Apart from the above tumor-specific factors, germline polymorphisms, host 

pharmacogenomics and tumor microenvironment influence the efficacy of inhibitor 

treatment. For example, gefitinib bioavailability is higher in patients who are heterozygous 

for AGCG2-Q141K compared to the patients with wildtype ABCG2
28

. Similarly, the shorter 

dinucleotide CA repeats in the intron 1 of EGFR is associated with increased gefitinib 
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sensitivity in cell lines with wild-type EGFR
28

. Inhibition of EGFR signaling by gefitinib in 

endothelial cells inhibited the growth of A375SM melanoma xenograft which lacks EGFR 

expression demonstrating the role of the tumor microenvironment for inhibitor sensitivity. 

Thus, the above factors serve as biomarkers to predict De novo sensitivity or resistance 

towards particular inhibitor treatment
28

.  

 

1.5.3. RTK inhibitors used in this study 

PKC412: PKC412 (Midostaurin) is a staurosporine analog (N-benzoyl-staurosporine) with 

high specificity towards both serine/threonine kinases (eg. Protein Kinase C) and tyrosine 

kinases (eg. FLT3, c-KIT and VEGFR2)
194

 . It belongs to indolocarbazole class of chemical 

compounds (Figure 9). PKC412 is currently in phase III trial (Randomized AML Trial In 

FLT3 in <60 Year Olds, RATIFY)  for the treatment of newly diagnosed FLT3-positive 

AML patients. Being able to inhibit multiple kinases, it is also being investigated in 

additional cancers. The exact mechanism of PKC412 action is still unclear due to the lack 

of experimentally verified structural studies. 

 

 

 

 

 

 

 

 

 

Figure 9. PKC412: N-[(9S,10R,11R,13R)-10-Methoxy-9-methyl-1-oxo-9,13-epoxy-2,3,10,11,12,13-

hexahydro-1H,9H-diindolo[1,2,3-gh:3',2',1'-lm]pyrrolo[3,4-j][1,7]benzodiazonin-11-yl]-N-methylbenzamide. 

 

 

Sunitinib: Sunitinib is an indolinone-based compound, and inhibits multiple kinases 

including FLT3, c-KIT, PDGFR, VEGFR1 and VEGFR2 (Figure 10). Owing to it’s effect 

on tumor angiogenesis, sunitinib has shown significant efficacy in both preclinical models 

and early trials (phase I and phase II) of renal cell carcinoma (RCC), gastrointestinal 

stromal tumors (GIST), non-small cell lung cancer (NSCLC), thyroid cancer and 
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melanoma
195

. Sunitinib is now approved for the treatment of advanced GIST and RCC. In a 

phase I study, sunitinib showed significant inhibition of mutated FLT3 kinase in AML 

patients
196

. Co-crystal structures of sunitinib in complex with c-KIT demonstrated that the 

inhibitor binds to the autoinhibited form of c-KIT similar to the binding of imatinib to 

ABL
197

. 

 

 

 

 

 

 

Figure 10. Sunitinib: N-[2-(diethylamino)ethyl]-5-[(Z)-(5-fluoro-1,2- dihydro-2-oxo-3H-indol-3-ylidine) 

methyl]-2,4- dimethyl-1H-pyrrole-3-carboxamide. 

 

 

Sorafenib: Sorafenib is a multikinase inhibitor targeting both the serine/threonine (Raf1) 

and tyrosine kinases (FLT3, c-KIT, VEGFR, PDGFR and FGFR1) (Figure 11).  Like 

sunitinib, sorafenib has superior efficacy due to it’s tumor-specific antiproliferative as well 

as antivascular effects. Sorafenib is currently investigated in advance clinical trials for the 

treatment of RCC, head and neck cancer, SCLC and mesothelioma
26

. A phase I/II study of 

sorafenib in combination with idarubicin and cytarabine showed significant benefit in 

FLT3-mutated AML patients (93% achieved complete remission)
198

. Structural studies of 

sorafenib in complex with B-RAF kinase showed that sorafenib binds to the inactive 

conformation of the kinase
199

. 

 

 

 

 

 

Figure 11. Sorafenib: 4-[4-[[4-chloro-3- (trifluoromethyl)phenyl]carbamoylamino] phenoxy]-N-methyl-

pyridine-2-carboxamide. 

 

 

Gefitinib and erlotinib: Gefitinib and erlotinib are ATP-competitive inhibitors sharing a 

common 4-anilinoquinazoline structure but differ in the substituents attached to the 
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quinazoline and anilino rings (Figure 12)
200

. Crystal structures revealed that the binding 

modes of gefitinib and erlotinib to EGFR kinase are similar
201, 202

. Both gefitinib and 

erlotinib are approved for the treatment of NSCLC patients. In a retrospective analysis, 

gefitinib and erlotinib were shown to have similar antitumor activity in patients with 

metastatic or recurrent NSCLC
203

. 

 

 

 

 

 

      Gefitinib     Erlotinib 

 

Figure 12. Gefitinib: N-(3-chloro-4-fluoro-phenyl)-7-methoxy-6-(3-morpholin-4-ylpropoxy)quinazolin-4-

amine; Erlotinib: N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy) quinazolin-4-amine. 

 

Lapatinib and AEE788: Lapatinib is a synthetic quinazoline with significant activity 

against both EGFR and ERBB2 kinases (Figure 13). Unlike gefitinib and erlotinib, 

lapatinib binds to the inactive conformation of the EGFR kinase
204

.  

 

 

 

 

 

 

 

   

                          Lapatinib     AEE 788 

Figure 13. Lapatinib: N-[3-chloro-4-[(3-fluorophenyl)methoxy]phenyl]-6-[5-[(2-methylsulfonylethylamino) 

methyl]-2-furyl] quinazolin-4-amine; AEE788: (R)-6-(4-((4-ethylpiperazin-1-yl)methyl)phenyl)-N-(1-

phenylethyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine. 

 

Lapatinib alone or in combination with chemotherapy is approved for the treatment of 

advance HER2-positive breast cancer patients. AEE788, like lapatinib, is a reversible dual 

EGFR/ERBB2 pyrrolopyrimidine inhibitor in early clinical trials (Figure 13). Unlike 
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lapatinib, AEE788 binds to the active conformation of EGFR kinase. In addition, AEE788 

also inhibits VEGFR2 kinase. 

 

CL-387,785 and WZ4002: Irreversible inhibitors CL-387,785 and WZ4002 forms a 

covalent bond with Cys 797 of EGFR kinase (Figure 14). Both these inhibitors are active 

against ERBB2 kinase. While CL-387,785 is an anilinoquinazoline, WZ4002 is a 

pyrimidine
205, 206

. CL-387,785 and WZ4002 are investigational compounds that 

demonstrated significant promise in pre-clinical studies. 

             

               CL-387,785                                            WZ-4002 

Figure 14. CL-387,785: N-[4-[(3-Bromophenyl)amino]-6-quinazolinyl]-2-butynamide; WZ-4002: N-(3-(5-

chloro-2-(2-methoxy-4-(4-methylpiperazin-1-yl)phenylamino)pyrimidin-4-yloxy)phenyl) acrylamide. 

 

1.5.4. Secondary drug resistance 

Secondary drug resistance is a phenomenon observed in advance stages of the disease due 

to several mechanisms such as oncoprotein (target) overexpression, kinase domain 

mutations and drug efflux
207

. Target overexpression results in insufficient inhibitor 

concentration and could be partly circumvented by increasing drug concentration. In 

addition, point mutations in the kinase domain abrogate inhibitor binding to the target. 

Different point mutations confer varied degree of resistance depending on the location and 

importance of that particular residue in drug binding. Testing of alternate inhibitors showed 

that the resistance due to point mutations could be overcome by second generation 

inhibitors
34

. For example, secondary imatinib resistance due to different mutations in the 

BCR-ABL kinase domain was shown to be overcome using novel ABL kinase inhibitors 

like nilotinib, dasatinib and bosutinib
33-35

. Additionally, cell based drug resistance in vitro 

screens have enabled to predict drug resistance mechanisms that might occur in patients 

thus speeding up the process of testing alternate treatment options to overcome inhibitor 

resistance
208

. 
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1.6. Aims and objectives 

1. To test the efficacy of the multikinase inhibitors sunitinib and sorafenib against 

activating FLT3 mutants reported in AML patients. 

2. To test if sunitinib and sorafenib can overcome PKC412 resistance in FLT3-ITD 

mutants. 

3. To study the effect of EGFR kinase domain mutations (reported in NSCLC patients) 

on autokinase activity and transformation ability. 

4. To establish drug sensitivity profiles for EGFR inhibitors using transduced Ba/F3 

cell lines stably expressing EGFR mutants. 

5. To study the effect of ERBB2 transmembrane domain polymorphisms on kinase 

activity and drug sensitivity. 

6. To identify ERBB2 kinase domain mutants that are resistant to lapatinib treatment. 

7. To test the efficacy of ERBB inhibitors against ERBB2 kinase domain mutants 

associated with cancer. 
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2. Materials and methods 

2.1. Materials 

2.1.1. Standard chemicals and reagents 

2-Mercaptoethanol     Sigma-Aldrich, Taufkirchen 

Beta-Mercaptoethanol    Gibco/Invitrogen, Karlsruhe 

Acrylamide/Bisacrylamide Gel 30   Carl Roth, Karlsruhe 

Agarose      Carl Roth, Karlsruhe 

Ammoniumpersulfate     Sigma-Aldrich, Taufkirchen 

Ampicillin      Sigma-Aldrich, Taufkirchen 

Aqua ad injectabilia, sterile    Braun, Melsungen 

Bacto Agar      BD Biosciences, Heidelberg 

Bacto Yeast extract     BD Biosciences, Heidelberg 

Bacto Tryptone     BD Biosciences, Heidelberg 

Bromophenol blue     Sigma-Aldrich, Taufkirchen 

BSA, Fraction V     Carl Roth, Karlsruhe 

Chloroform      Sigma-Aldrich, Taufkirchen 

Complete Mini Protease inhibitor tablets  Roche Diagnostics, Germany 

Dimethyl sulfoxide (DMSO)    Sigma-Aldrich, Taufkirchen 

dNTP mix      Fermentas, St. Leon-Rot 

Ethidium bromide     Carl Roth, Karlsruhe 

EDTA       Fluka, Taufkirchen 

Fugene HD reagent     Roche Diagnostics, Germany 

GeneRuler 1kb DNA Ladder    Fermentas, St. Leon-Rot 

Glycine      Merck, Darmstadt 

Glycerol-2-phosphate     Sigma-Aldrich, Taufkirchen 

Isopropanol      Merck, Darmstadt 

Lipofectamine 2000     Invitrogen GmbH, Karlsruhe 

Methanol      Merck, Darmstadt 

Penicillin/Streptomycin solution   PAA, Pasching 

Phosphate buffered saline (PBS)   Biochrom AG, Berlin 

Polybrene      Sigma-Aldrich, Taufkirchen 
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Propidium iodide     Sigma-Aldrich, Taufkirchen 

PVDF membrane (Immobilon P)   Millipore, Schwalbach/Ts 

QIAGEN Plasmid Maxi Kit    Qiagen, Hilden 

QIAGEN Spin Miniprep Kit    Qiagen, Hilden 

QIAquick Gel Extraction Kit    Qiagen, Hilden 

QIAquick Spin Purification Kit   Qiagen, Hilden 

Rapid DNA Ligation Kit    Roche Diagnostics, Penzberg 

Sodium azide      Sigma-Aldrich, Taufkirchen 

Sodium chloride     Carl Roth, Karlsruhe 

Sodium dodecyl sulphate (SDS)   Carl Roth, Karlsruhe 

Sodium fluoride     Fluka, Taufkirchen 

Sodium hydroxide     Merck, Darmstadt 

Sodium orthovanadate    Sigma-Aldrich, Taufkirchen 

Sodium pyrophosphate    Fluka, Taufkirchen 

Tetramethylethylenediamine (TEMED)  Fluka, Taufkirchen 

Tris (hydroxymethyl) aminomethane (TRIS) Carl Roth, Karlsruhe 

Triton X-100      Sigma-Aldrich, Taufkirchen 

TRIzol reagent     Invitrogen GmbH, Karlsruhe 

Tween 20      Fluka, Taufkirchen 

 

2.1.2. Antibodies 

pY20, mouse monoclonal anti-phosphotyrosine Transduction Laboratories, USA 

4G10, mouse monoclonal anti-phosphotyrosine Upstate Biotechnology, USA 

FLT3, rabbit polyclonal     Upstate Biotechnology, USA  

p-Akt (Ser473),      Cell Signaling, Germany 

AKT1/2, goat polyclonal    Santa Cruz Biotech., Germany 

p-EGFR (Tyr1068), mouse monoclonal  Cell Signaling, Germany 

EGFR, rabbit polyclonal    Santa Cruz Biotech., Germany 

p-Stat5 (Tyr694),      Cell Signaling (NEB) 

Stat5 (G-2),       Santa Cruz Biotech., Germany 

p44/42 MAPK (ERK1/2), rabbit polyclonal  Cell Signaling, Germany 

p-ERK1/2,       Cell Signaling, Germany 
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p-ERBB2 (Tyr 1248),     Millipore 

ERBB2,       Santa Cruz Biotech., Germany 

Actin, mouse      Sigma-Aldrich, Taufkirchen  

  

2.1.3. Enzymes 

BamHI (10U/ul)     Fermentas, St. Leon-Rot 

BglII (10U/ul)      Fermentas, St. Leon-Rot 

CIAP 20-30 U/ul, alkaline phosphatase  Invitrogen, Karlsruhe 

DpnI (10U/ul)      Fermentas, St. Leon-Rot 

EcoRV (10U/ul)     Fermentas, St. Leon-Rot 

Pfu-DNA polymerase     Fermentas, St. Leon-Rot 

SuperScript II Reverse Transcriptase  Invitrogen, Karlsruhe 

T4-DNA ligase     Fermentas, St. Leon-Rot 

XhoI (10U/ul)      Fermentas, St. Leon-Rot 

 

2.1.4. Vectors and cDNA constructs 

The vectors used for cloning cDNA constructs: pcDNA/Zeo 3.1(-), MigR1 (MSCV-IRES-

eGFP) and MIY (MSCV-IRES-YFP). Following cDNA constructs were cloned for the 

study:   

MSCV-eGFP-FLT3-ITD    Rebekka Grundler 

MSCV-eGFP-FLT3-D835Y    Rebekka Grundler 

MSCV-eGFP-FLT3-ITD + N676D   This work 

MSCV-eGFP-FLT3-ITD + F691I   This work 

MSCV-eGFP-FLT3-ITD + G697R   This work 

pcDNA3.1/Zeo-EGFR-WT    This work 

pcDNA3.1/Zeo-EGFR + L688P   This work 

pcDNA3.1/Zeo-EGFR + P694L   This work 

pcDNA3.1/Zeo-EGFR + P694S   This work 

pcDNA3.1/Zeo-EGFR + G719C   This work 

pcDNA3.1/Zeo-EGFR + G719S   This work 

pcDNA3.1/Zeo-EGFR + L730F   This work 
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pcDNA3.1/Zeo-EGFR + P733L   This work 

pcDNA3.1/Zeo-EGFR + G735S   This work 

pcDNA3.1/Zeo-EGFR + V742A   This work 

pcDNA3.1/Zeo-EGFR + E746K   This work 

pcDNA3.1/Zeo-EGFR + E749K   This work 

pcDNA3.1/Zeo-EGFR + Del 747-753 ins S  This work 

pcDNA3.1/Zeo-EGFR + S752Y   This work 

pcDNA3.1/Zeo-EGFR + D761N   This work 

pcDNA3.1/Zeo-EGFR + A767T   This work 

pcDNA3.1/Zeo-EGFR + S768I   This work 

pcDNA3.1/Zeo-EGFR + R776C   This work 

pcDNA3.1/Zeo-EGFR + S784F   This work 

pcDNA3.1/Zeo-EGFR + T790M   This work 

pcDNA3.1/Zeo-EGFR + G810S   This work 

pcDNA3.1/Zeo-EGFR + N826S   This work 

pcDNA3.1/Zeo-EGFR + L838V   This work 

pcDNA3.1/Zeo-EGFR + T847I   This work 

pcDNA3.1/Zeo-EGFR + V851A   This work 

pcDNA3.1/Zeo-EGFR + I853T   This work 

pcDNA3.1/Zeo-EGFR + L858R   This work 

pcDNA3.1/Zeo-EGFR + L861Q   This work 

pcDNA3.1/Zeo-EGFR + A864T   This work 

pcDNA3.1/Zeo-EGFR + E866K   This work 

pcDNA3.1/Zeo-EGFR + G873A   This work 

MSCV-eYFP-EGFR-WT    This work 

MSCV-eYFP-EGFR + L858R   This work 

MSCV-eYFP-EGFR + Del 747-753 ins S  This work 

MSCV-eYFP-EGFR + L688P   This work 

MSCV-eYFP-EGFR + G719C   This work 

MSCV-eYFP-EGFR + G719S   This work 

MSCV-eYFP-EGFR + V742A   This work 

MSCV-eYFP-EGFR + D761N   This work 
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MSCV-eYFP-EGFR + S768I    This work 

MSCV-eYFP-EGFR + R776C   This work 

MSCV-eYFP-EGFR + S784F   This work 

MSCV-eYFP-EGFR + T790M   This work 

MSCV-eYFP-EGFR + G810S   This work 

MSCV-eYFP-EGFR + N826S   This work 

MSCV-eYFP-EGFR + L838V   This work 

MSCV-eYFP-EGFR + V851A   This work 

MSCV-eYFP-EGFR + I853T   This work 

MSCV-eYFP-EGFR + L861Q   This work 

MSCV-eYFP-EGFR + A864T   This work 

MSCV-eYFP-EGFR + E866K   This work 

MSCV-eGFP-EGFRvIII    This work 

MSCV-eGFP-EGFRvIII + G719S   This work 

MSCV-eGFP-EGFRvIII + L688P   This work 

MSCV-eGFP-EGFRvIII + V851A   This work 

MSCV-eGFP-EGFRvIII + I853T   This work 

MSCV-eGFP-EGFRvIII + L858R   This work 

MSCV-eGFP-EGFRvIII + L861Q   This work 

MSCV-eGFP-ERBB2-WT    Heinke Conrad 

MSCV-eGFP-ERBB2-I655V    This work 

MSCV-eGFP-ERBB2-I654V,I655V   This work 

MSCV-eGFP-ERBB2 + L755S   This work 

MSCV-eGFP-ERBB2 + L755P   This work 

MSCV-eGFP-ERBB2 + V773A   This work 

MSCV-eGFP-ERBB2 + V777L   This work 

MSCV-eGFP-ERBB2 + T798M   This work 

MSCV-eGFP-ERBB2 + N857S   This work 

MSCV-eGFP-ERBB2 + T862A   This work 

MSCV-eGFP-ERBB2 + H878Y    This work 
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2.1.5. Standard instruments 

Agarose gel electrophoresis chamber  Biometra, Göttingen 

CO2 incubator     Heraeus Instruments 

ELISA Reader Sunrise    Tecan, Crailsheim 

Heat block 5436     Eppendorf, Hamburg 

Incubator shaker Innova 4000   New Brunswick Scientific, USA 

Cooling centrifuge J2-HS, Rotor JA-14  Beckman, USA 

Cooling centrifuge 5417R, 5810R   Eppendorf, Hamburg 

Light microscope, Axiovert 25   Zeiss, Jena, Germany 

LKB Ultraspec III, spectrophotometer  Pharmacia, Uppsala, Sweden 

Neubauer chamber     Reichert, USA 

PCR-Thermocycler Primus 96   Peqlab, Erlangen 

pH meter      Beckman, USA 

Transfer electrophoresis unit    Hoefer, USA 

 

2.1.6. Standard media and buffers 

Amidoblack stain     0.2% Naphtol Blau Schwarz 

       25% Isopropanol 

       10% Acetic acid 

 

Amidoblack destainer     25% Isopropanol 

       10% Acetic acid 

 

Blocking solution for western blot   5% BSA or Milk powder 

       0.1% Tween 20 in PBS 

 

Cell lysis buffer     10 mM Tris/HCl (pH 7.5) 

       130 mM NaCl 

       5 mM EDTA 

       0.5% Triton X-100 

       20 mM Na2HPO4/NaH2PO4 (pH 7.5) 
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       10 mM Sodiumpyrophosphate (pH 7.0) 

       1 mM Sodiumorthovanadate 

       20 mM Sodium fluoride 

       1 mM Glycerol-2-Phosphate 

       1 Protease-Inhibitor Cocktail tablet 

 

DNA loading buffer     60% Glycerol 

       0.2% Bromophenol blue 

       0.2 M EDTA in A.d. 

 

LB medium (for bacterial cell culture)  1% Bacto-Tryptone 

       0.5% Bacto-Yeast extract 

       1% Sodium chloride 

 

LB-Agar (for plates)     1% Bacto-Tryptone 

       0.5% Bacto-Yeast extract 

       1% Sodium chloride 

       1.5% Bacto-Agar 

 

Resolving gel buffer for SDS-PAGE (4X)  1.5 M Tris (pH 8.8) 

       0.4% SDS in A.d. 

 

SDS-PAGE running buffer     25 mM Tris 

       192 mM Glycine 

       0.1% SDS in A.d. 

SDS-PAGE loading buffer (2X)   1 M Tris/HCl (pH 6.8) 

       200 mM DTT 

       4% SDS 

       0.2% Bromophenol blue 

       20% Glycine in A.d. 
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Stacking gel buffer for SDS-PAGE (4X)  0.5 M Tris (pH 6.8 < 9) 

       0.4% SDS in A.d. 

 

TAE buffer (10X)     0.4 M Tris 

       1.1% Acetic acid 

       10 mM EDTA (pH 8.0) in A.d. 

 

Western transfer buffer    25 mM Tris 

       192 mM Glycine 

       20% Methanol 

       0.1% SDS in A.d. 

     

2.1.7. Cell lines 

Ba/F3       Murine Pro-B cell line 

NIH/3T3      Mouse embryonic fibroblast cells 

HEK293      Human embryonic kidney cells 

 

2.1.8. Media and reagents for mammalian cell culture 

DMEM, cell culture medium    PAA, Pasching 

FBS Gold      PAA, Pasching 

Human EGF      Chemicon  

L-Glutamine      Gibco/Invitrogen, Karlsruhe 

Mouse interleukin-3     R&D, Wiesbaden    

Opti-Mem      Gibco/Invitrogen, Karlsruhe 

PBS, 10X      PAA, Pasching 

RPMI 1640 medium     PAA, Pasching 

Trypan blue      Gibco/Invitrogen, Karlsruhe 

Trypsin-EDTA solution, 10X   PAA, Pasching 
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2.2. Methods 

2.2.1. Methods involving nucleic acids 

2.2.1.1. Isolation, purification and measurement of DNA 

DNA was isolated and purified as minipreps (from 5 ml of bacteria) and maxipreps (from 

200 ml of bacteria) using “QIAprep Spin Miniprep Kit” and “QIAGEN Plasmid Maxi Kit” 

respectively. DNA was extracted and purified from agarose gels using “QIAquick Gel 

Extraction Kit”.  

QIAGEN plasmid purification protocols are based on the principle of alkaline lysis, 

followed by binding of plasmid DNA to anion-exchange resin under low-salt and low pH 

conditions. All the contaminants are removed by a medium-salt wash. Plasmid DNA was 

then eluted in a high-salt buffer and then concentrated and desalted by isopropanol 

precipitation. The QIAquick gel extraction protocol involves a bind-wash-elute procedure 

in which gel slices are dissolved in a buffer that allows easy determination of the optimal 

pH for DNA binding, and the mixture is then applied to the QIAquick spin column. Nucleic 

acids adsorb to the silica membrane in the high-salt buffer. Impurities are washed away and 

DNA is eluted with a low-salt buffer. Yield (based on the absorbance at 260 nM) and purity 

(based on the ratio of absorbances at 260 nm and 280 nm) of the isolated DNA was 

measured by using a “Nanodrop”. 

 

2.2.1.2. Agarose gel electrophoresis 

 

TAE buffer: 0.4% Tris, 1.1% Acetic acid, 2% 0.5M EDTA in A.d. 

DNA gel loading buffer (6X): 30% Glycerine (v/v), 0.25% Bromophenol blue (w/v),  

0.25% Xylolcyanol, 50mM EDTA in A.d. 

 

Unmodified or modified DNA was separated according to their size by agarose gel 

electrophoresis. Agarose gel for this purpose was prepared by pouring warm 1% agarose 

solution (in TAE buffer mixed with ethidium bromide) into a clean gel caster and allowed 

to solidify. DNA samples were mixed with DNA gel loading buffer and loaded onto the 

gel. Electrophoresis was performed in a gel chamber at constant voltage until the DNA 

bands were resolved on the gel. Factors that affect the migration of DNA include the size 

and conformation. To overcome the role of DNA conformation on migration, linear DNA 

(cut with DNA restriction enzymes) were usually subjected to electrophoresis. Ethidium 
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bromide is used to stain DNA for visualization. Ethidium bromide intercalates with nucleic 

acids and fluoresces when illuminated with UV light. DNA bands were visualised using a 

UV transilluminator and photographs were taken for records. For further analysis target 

DNA bands were cut with a clean scalpel and frozen at -20
0
C. Future experiments were 

perfomed by isolating DNA from gel pieces using standard gel extraction protocol as 

described (2.2.1.1). 

 

2.2.1.3. Restriction digestion, modification and cloning of DNA 

Compatible DNA for cloning was prepared by digesting the vector and the insert with 

appropriate restriction enzyme(s) for 2 hours at 37
o
C. The typical reaction mixture consists 

of 2 μg of plasmid DNA, 3 μl of 10X enzyme buffer, 1 μl of appropriate restriction enzyme 

and water to make the final volume to 30 ul. To avoid re-ligation of vector DNA, treatment 

with alkaline phosphate was performed for 1 hour at 37
0
C. Digested DNA was then 

separated on agarose gel, analysed for the expected DNA bands on a UV transilluminator 

and DNA was extracted using standard gel extraction protocol. 

Cloning of vector and insert DNA was done using a DNA ligation kit (Fermentas). Vector 

and insert DNAs were mixed in appropriate ratios as recommended by the manufacturer. 

To this mixture, 4 μl of 5X ligation buffer was added along with 1 μl of T4 DNA ligase and 

sterile water to make the final volume to 20 μl. The mixture was gently mixed and left at 

room temperature for 1 hour before transforming into DH5alpha E.coli bacteria.  

EGFR-WT, EGFR-L858R and EGFR- 747-753insS were subcloned from pRK into the 

pcDNA3.1 after double digestion of both vectors with EcoRV and XhoI. Wild-type (WT) 

and mutant EGFR were cut with XhoI and EcoRV from pcDNA3.1 vector and subcloned 

into the MSCV-YFP (MIY) using XhoI and HpaI. EGFRvIII (a kind gift from Frank 

Furnari, Ludwig Institute for Cancer Research, San Diego, CA) was subcloned from 

pLERNL (digested with SalI) into the MSCV-eGFP (MigRI) that was digested with BglII.  

 

2.2.1.4. Site directed mutagenesis and DNA sequence analysis 

Point mutations were introduced into target cDNA using a site-directed mutagenesis 

method as shown (Figure 15). Primers were designed such that the mutation is present at 

the desired nucleotide location and a PCR was performed for 18 cycles. The resulting PCR 

product contains both the template DNA as well as the mutated product. To deplete 
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unmutated template from the PCR product, DpnI restriction digestion was performed. DpnI 

is a restriction enzyme which digests only methylated substrate DNA only when 

methylated
209

. Since template DNA is derived from a bacterial culture, it is methylated 

making it selectively susceptible to DpnI restriction digestion while the mutated PCR 

product is intact. The nicks left in the product DNA are sealed upon transformation into 

appropriate bacteria strain. Bacteria colonies were then picked, minipreps were made and 

confirmation of the presence of mutation was done by restriction analysis and DNA 

sequence analysis.  

All point mutations were introduced into pcDNA3.1/EGFR-WT, MigR1/EGFRvIII and 

MigR1/ERBB2-WT (a kind gift from Dr. Heinke Conrad) using the QuikChange Site-

Directed Mutagenesis kit (Fermentas) according to the manufacturer's instructions. All 

constructs were confirmed by sequencing. 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Schematic representation of site directed mutagenesis (Adapted from Smith C et al.
209

). 

Steps involving site directed mutagenesis were depicted in the diagram. Template DNA was shown as green 

and orange strands while mutated product was shown in blue and violet. 
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Following primers were used to clone point mutations by site-directed mutagenesis: 

MSCV-eGFP-FLT3-ITD + N676D 

Forward: 5’-CCACGAGAATATTGTGGACCTGCTGGGGGCGTG-3’ 

Reverse:  5’-CACGCCCCCAGCAGGTCCACAATATTCTCGTGG-3’ 

 

MSCV-eGFP-FLT3-ITD + F691I 

Forward: 5’-GGACCAATTTACTTGATTATTGAATATTGTTGCTATG-3’ 

Reverse: 5’-CATAGCAACAATATTCAATAATCAAGTAAATTGGTCC-3’ 

 

MSCV-eGFP-FLT3-ITD + G697R 

Forward: 5’-GAATATTGTTGCTATCGTGACCTCCTCAACTAC-3’ 

Reverse:  5’- GTAGTTGAGGAGGTCACGATAGCAACAATATTC-3’ 

 

pcDNA3.1/Zeo-EGFR + L688P and MSCV-eGFP-EGFRvIII + L688P 

Forward: 5’-GCTGCAGGAGAGGGAGCCTGTGGAGCCTCTTACAC-3’ 

Reverse:  5’-GTGTAAGAGGCTCCACAGGCTCCCTCTCCTGCAGC-3’ 

 

pcDNA3.1/Zeo-EGFR + P694L 

Forward: 5’-GGAGCCTCTTACACTCAGTGGAGAAGCTC-3’ 

Reverse:  5’-GAGCTTCTCCACTGAGTGTAAGAGGCTCC-3’ 

 

pcDNA3.1/Zeo-EGFR + P694S 

Forward: 5’-GTGGAGCCTCTTACATCCAGTGGAGAAGCTC-3’ 

Reverse:  5’-GAGCTTCTCCACTGGATGTAAGAGGCTCCAC-3’ 

 

pcDNA3.1/Zeo-EGFR + G719C 

Forward: 5’-CAAAAAGATCAAAGTGCTGTGCTCCGGTGCGTTCGGCAC-3’ 

Reverse:  5’-GTGCCGAACGCACCGGAGCACAGCACTTTGATCTTTTTG-3’ 

 

pcDNA3.1/Zeo-EGFR + G719S and MSCV-eGFP-EGFRvIII + G719S 

Forward: 5’- CAAAAAGATCAAAGTGCTGAGCTCCGGTGCGTTCGGCAC-3’ 

Reverse:  5’- GTGCCGAACGCACCGGAGCTCAGCACTTTGATCTTTTTG-3’ 
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pcDNA3.1/Zeo-EGFR + L730F 

Forward: 5’-CACGGTGTATAAGGGATTCTGGATCCCAGAAGG-3’ 

Reverse:  5’-CCTTCTGGGATCCAGAATCCCTTATACACCGTG-3’ 

 

pcDNA3.1/Zeo-EGFR + P733L 

Forward: 5’-GGGACTCTGGATCCTAGAAGGTGAGAAAG-3’ 

Reverse:  5’-CTTTCTCACCTTCTAGGATCCAGAGTCCC-3’ 

 

pcDNA3.1/Zeo-EGFR + G735S 

Forward: 5’-GGACTCTGGATCCCAGAAAGTGAGAAAGTTAAAATTC-3’ 

Reverse:  5’-GAATTTTAACTTTCTCACTTTCTGGGATCCAGAGTCC-3’ 

 

pcDNA3.1/Zeo-EGFR + V742A 

Forward: 5’-GTTAAAATTCCCATCGCTATCAAGG-3’ 

Reverse:  5’-CCTTGATAGCGATGGGAATTTTAAC-3’ 

 

pcDNA3.1/Zeo-EGFR + E746K 

Forward: 5’-CGTCGCTATCAAGAAATTAAGAGAAGC-3’ 

Reverse:  5’-GCTTCTCTTAATTTCTTGATAGCGACG-3’ 

 

pcDNA3.1/Zeo-EGFR + E749K 

Forward: 5’-CGCTATCAAGGAATTAAGAAAAGCAACATCTCCGAAAGC-3’ 

Reverse:  5’-GCTTTCGGAGATGTTGCTTTTCTTAATTCCTTGATAGCG-3’ 

 

pcDNA3.1/Zeo-EGFR + S752Y 

Forward: 5’-GAAGCAACATATCCGAAAGCC-3’ 

Reverse:  5’-GGCTTTCGGATATGTTGCTTC-3’ 

 

pcDNA3.1/Zeo-EGFR + D761N 

Forward: 5’-GCCAACAAGGAAATCCTCAATGAAGCCTACGTGATGG-3’ 

Reverse:  5’-CCATCACGTAGGCTTCATTGAGGATTTCCTTGTTGGC-3’ 

 



Materials and methods 

 

 - 36 -  

pcDNA3.1/Zeo-EGFR + A767T 

Forward: 5’-GAAGCCTACGTGAGGACCAGCGTGGACAACC-3’ 

Reverse:  5’-GGTTGTCCACGCTGGTCATCACGTAGGCTTC-3’ 

 

pcDNA3.1/Zeo-EGFR + S768I 

Forward: 5’-CTACGTGATGGCCATCGTGGACAACCCCC-3’ 

Reverse:  5’-GGGGGTTGTCCACGATGGCCATCACGTAG-3’ 

 

pcDNA3.1/Zeo-EGFR + R776C 

Forward: 5’-CCCCACGTGTGCTGCCTGCTGGGCA-3’ 

Reverse:  5’-TGCCCAGCAGGCAGCACACGTGGGG-3’ 

 

pcDNA3.1/Zeo-EGFR + S784F 

Forward: 5’-GGCATCTGCCTCACCTTCACCGTGCAGCTCATC-3’ 

Reverse:  5’-GATGAGCTGCACGGTGAAGGTGAGGCAGATGCC-3’ 

 

pcDNA3.1/Zeo-EGFR + T790M 

Forward: 5’-GCAGCTCATCATGCAGCTCATGC-3’ 

Reverse:  5’-GCATGAGCTGCATGATGAGCTGC-3’ 

 

pcDNA3.1/Zeo-EGFR + G810S 

Forward: 5’-CACAAAGACAATATTAGCTCCCAGTACCTGC-3’ 

Reverse:  5’-GCAGGTACTGGGAGCTAATATTGTCTTTGTG-3’ 

 

pcDNA3.1/Zeo-EGFR + N826S 

Forward: 5’-GCAAAGGGCATGAGCTACTTGGAGGAC-3’ 

Reverse:  5’-GTCCTCCAAGTAGCTCATGCCCTTTGC-3’ 

 

pcDNA3.1/Zeo-EGFR + L838V 

Forward: 5’-GGTGCACCGCGACGTGGCAGCCAGGAACG-3’ 

Reverse:  5’-CGTTCCTGGCTGCCACGTCGCGGTGCACC-3’ 
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pcDNA3.1/Zeo-EGFR + T847I 

Forward: 5’-GTACTGGTGAAAATACCGCAGCATGTC-3’ 

Reverse:  5’-GACATGCTGCGGTATTTTCACCAGTAC-3’ 

 

pcDNA3.1/Zeo-EGFR + V851A and MSCV-eGFP-EGFRvIII + V851A 

Forward: 5’-GAAAACACCGCAGCATGCCAAGATCACAGATTTTG-3’ 

Reverse:  5’-CAAAATCTGTGATCTTGGCATGCTGCGGTGTTTTC-3’ 

 

pcDNA3.1/Zeo-EGFR + I853T and MSCV-eGFP-EGFRvIII + I853T 

Forward: 5’-CCGCAGCATGTCAAGACCACAGATTTTGGGCTG-3’ 

Reverse:  5’-CAGCCCAAAATCTGTGGTCTTGACATGCTGCGG-3’ 

 

pcDNA3.1/Zeo-EGFR + L861Q and MSCV-eGFP-EGFRvIII + L861Q 

Forward: 5’-GCTGGCCAAACAGCTGGGTGCGG-3’ 

Reverse:  5’-CCGCACCCAGCTGTTTGGCCAGC-3’ 

 

MSCV-eGFP-EGFRvIII + L858R 

Forward: 5’-GATCACAGATTTTGGGCGGGCCAAACTGCTGGGTG-3’ 

Reverse:  5’-CACCCAGCAGTTTGGCCCGCCCAAAATCTGTGATC-3’ 

 

pcDNA3.1/Zeo-EGFR + A864T 

Forward: 5’-CTGGCCAAACTGCTGGGTACGGAAGAGAAAGAATACC-3’ 

Reverse:  5’-GGTATTCTTTCTCTTCCGTACCCAGCAGTTTGGCCAG-3’ 

 

pcDNA3.1/Zeo-EGFR + E866K 

Forward: 5’-CTGCTGGGTGCGGAAAAGAAAGAATACCATG-3’ 

Reverse:  5’-CATGGTATTCTTTCTTTTCCGCACCCAGCAG-3’ 

 

pcDNA3.1/Zeo-EGFR + G873A 

Forward: 5’-GAATACCATGCAGAAGAAGGCAAAGTGCCTATC-3’ 

Reverse:  5’-GATAGGCACTTTGCCTTCTTCTGCATGGTATTC-3’ 
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MSCV-eGFP-ERBB2-I655V 

Forward: 5’-CAGCCCTCTGACGTCCATCGTCTCTGCGGTGG-3’ 

Reverse:  5’-CCACCGCAGAGACGATGGACGTCAGAGGGCTG-3’ 

 

MSCV-eGFP-ERBB2-I654V 

Forward: 5’-CAGCCCTCTGACGTCCGTCGTCTCTGCGGTGGTTG-3’ 

Reverse:  5’-CAACCACCGCAGAGACGACGGACGTCAGAGGGCTG-3’ 

 

MSCV-eGFP-ERBB2 + L755S 

Forward: 5’-CAGTGGCCATCAAAGTGCCGAGGGAAAACACATCCCC-3’ 

Reverse:  5’-GGGGATGTGTTTTCCCTCGGCACTTTGATGGCCACTG-3’ 

 

MSCV-eGFP-ERBB2 + L755P 

Forward: 5’-CCAGTGGCCATCAAAGTGCCGAGGGAAAACACATCCCC-3’ 

Reverse:  5’-GGGGATGTGTTTTCCCTCGGCACTTTGATGGCCACTGG-3’ 

 

MSCV-eGFP-ERBB2 + V773A 

Forward: 5’-GACGAAGCATACGCGATGGCTGGTGTG-3’ 

Reverse:  5’-CACACCAGCCATCGCGTATGCTTCGTC-3’ 

 

MSCV-eGFP-ERBB2 + V777L 

Forward: 5’-CATACGTGATGGCTGGTCTGGGCTCCCCATATGTC-3’ 

Reverse:  5’-GACATATGGGGAGCCCAGACCAGCCATCACGTATG-3’ 

 

MSCV-eGFP-ERBB2 + T798M 

Forward: 5’-ACGGTGCAGCTGGTGATGCAGCTTATGCCCTATG-3’ 

Reverse:  5’-CATAGGGCATAAGCTGCATCACCAGCTGCACCGT-3’ 

 

MSCV-eGFP-ERBB2 + N857S 

Forward: 5’-GCTGGTCAAGAGTCCCAGCCATGTCAAAATTACAG-3’ 

Reverse:  5’-CTGTAATTTTGACATGGCTGGGACTCTTGACCAGC-3’ 
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MSCV-eGFP-ERBB2 + T862A 

Forward: 5’-CCCAACCATGTCAAAATTGCAGACTTCGGGCTGGCTC-3’ 

Reverse:  5’-GAGCCAGCCCGAAGTCTGCAATTTTGACATGGTTGGG-3’ 

 

MSCV-eGFP-ERBB2 + H878Y 

Forward: 5’-CGAGACAGAGTACTATGCAGATGGGGG-3’ 

Reverse:  5’-CCCCCATCTGCATAGTACTCTGTCTCG-3’ 

 

Following primers were used to amplify or sequence the kinase domain: 

FLT3-KD 

Forward: 5’-GCAACAATTGGTGTTTGTCTCCTC -3’ 

Reverse:  5’-GGTCTCTGTGGACACACGACTTGAAC -3’ 

 

EGFR-KD 

Forward: 5’-CGGCCTCTTCATGCGAAGGCGCC-3’ 

Reverse:  5’-CCAGACATCACTCTGGTGGGTATAG-3’ 

 

ERBB2-KD 

Forward: 5’-GAAAACGGAGCTGGTGGAGCCGC -3’ 

Reverse:  5’-GCCACTCCTGGTAGATGAGCTGCGGTGCCTGTGGT -3’ 

 

2.2.1.5. Transformation of E.Coli and inoculation of culture for DNA isolation 

 

LB-Medium: 1% Bacto-Tryptone, 1% NaCl, 0.5% Bacto-Yeast extract in A.d.; autoclaved; 

pH 7.0 

LB-Agar plates: 1.5% Bactoagar in LB-Medium; autoclaved 

Ampicillin: 50 mg/ml 

 

DNA was transformed in to the competent DH5 alpha strain of E.Coli. Competent cells 

were thawed on ice before mixing with appropriate amount of DNA or reaction mixture 

that contains DNA. Cells were incubated with DNA on ice for 30 minutes followed by a 

brief heat shock at 37
0
C for 42 seconds. Cells were then kept on ice for 2 minutes and then 

incubated in LB medium for 45 minutes for recovery. Part of the culture was then plated on 
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to LB plates that contains ampicillin as antibiotic. Plates were incubated overnight at 37
0
C 

and single clones were picked for inoculation on the following day. 

For analysis of transformed DNA, single clones were inoculated into 5 ml of LB medium 

(with added ampicillin) for minipreps. For maxiprep, single clones were inoculated into 200 

ml culture. Cells were then cultured overnight at 37
0
C incubator with rotating platform. 

Following day, cells were centrifuged to make bacterial pellet that was used for DNA 

isolation after discarding residual medium. 

 

2.2.1.6. RNA isolation, measurement and cDNA synthesis 

RNA isolation was performed in highly sterile conditions using TRIzol based method. 5 x 

10
6 

Ba/F3 cells were pelleted at 1300 rpm for 5 minutes. Cell pellet was then resuspended 

in 1 ml of TRIzol reagent at room temperature and vortexed briefly. 0.2 ml of chloroform 

was then added to the lysate and samples were vortexed vigorously for 15 seconds. 

Centrifugation of samples was then performed at 14000 rpm at 4
0
C for 15 minutes. 

Colourless upper aqueous layer was then collected in a sterile tube without disturbing the 

lower organic phase. RNA from the aqueous phase was separated by adding 0.5 ml of 

isopropanol, incubated for 15 minutes at room temperature and centrifuged at 14000 rpm 

(at 4
0
C) for 10 minutes. RNA pellet was then washed with 1 ml of 70% ethanol and air 

dried for 10 minutes. RNA was  dissolved in sterile water and measured for purity and 

concentration using “Nanodrop” machine.  

cDNA synthesis was performed using one step reverse-transcription PCR according to 

manufacturer instructions. Primers were designed to amplify kinase domain of the ERBB2. 

A one-step PCR was performed according to the manufacturer’s (Promega) instructions and 

the cDNA was analyzed on the gel for correct size of the DNA bands. The correct DNA 

band corresponding ERBB2 kinase was then cut out of the gel, purified using QIAquick gel 

extraction kit and sequenced. Resulting DNA sequence was then analyzed for the presence 

of kinase domain mutations in ERBB2 kinase using BLAST program. 
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2.2.2. Methods involving proteins 

2.2.2.1. Isolation of proteins 

 

Cell lysis buffer: 10 mM Tris/HCl (pH 7.5), 130 mM NaCl, 5 mM EDTA, 0.5% Triton X-

100, 20 mM Na2HPO4/NaH2PO4 (pH 7.5), 10 mM Sodiumpyrophosphate (pH 7.0), 1 mM 

Sodiumorthovanadate, 20 mM Sodium fluoride, 1 mM Glycerol-2-Phosphate, 1 Protease-

Inhibitor Cocktail tablet 

 

Cells were first pelleted for protein isolation. 5x10
6
 Ba/F3 cells in suspension were 

subjected to centrifugation at 1300 rpm for 3 minutes. NIH/3T3 cells and HEK293 cells 

were dislodged from the plates by trypsinization and spun at 1300 rpm for 3 minutes. 

Medium was drained and cell pellets were frozen in liquid nitrogen before lysis. Cell lysis 

was performed using standard cell lysis buffer on ice for 30 minutes. Cell lysates were 

centrifuged at 13000 rpm for 20 minutes and supernatant was separated into fresh tubes. 

Protein concentration was determined using Bradford method. SDS loading buffer was then 

added to protein sample and heated at 95
0
C for 5 minutes. Samples were briefly spun 

before performing SDS-PAGE. Remaining protein samples were frozen at -20
0
C for future 

use. 

 

2.2.2.2. SDS gel electrophoresis and gel staining 

 

Stacking gel: 5% Polyacrylamide solution, 12.5mM Tris/HCl (pH 6.8), 0.1%SDS, 0.3% 

APS, 0.1% TEMED 

Resolving gel: 8% Polyacrylamide solution, 375mM Tris/HCl (pH 8.8), 0.1%SDS, 0.3% 

APS, 0.1% TEMED 

SDS-PAGE running buffer: 25 mM Tris, 192 mM Glycine, 0.1% SDS in A.d. 

SDS-PAGE loading buffer (2X): 1 M Tris/HCl (pH 6.8), 200 mM DTT, 4% SDS, 0.2% 

Bromophenol blue, 20% Glycine in A.d. 

Coomassie stain: 0.25% Brilliant Blue, 45% Methanol, 10% Acetic acid in A.d. 

Comassie destaining solution: 45% Methanol, 10% acetic acid in A.d. 

 

Polyacrylamide gels were used to separate proteins according to their size. Gel casting 

apparatus were used to cast gels of appropriate size and percentage of 

acrylamide/bisacrylamide. Protein samples in loading buffer were then loaded in defined 

order and proteins were fractionated according to their size under applied electric field. 

Following SDS gel electrophoresis, gels were either stained with Coomassie stain or used 
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for western transfer on to the membrane for blotting. For staining, gels were kept in 

coomassie stain for 30 minutes followed by repeated washes with coomassie destaining 

solution. 

 

2.2.2.3. Western blotting and assay for activated proteins 

 

Transfer buffer: 25mM Tris, 192mM Glycine, 0.1% SDS, 20% Methanol in A.d. 

Amidoblack solution: 0.2% Naphtol Blue Black, 25% Isopropanol, 10% Acetic acid in 

A.d. 

Amidoblack destainer: 25% Isopropanol, 10% Acetic acid A.d. 

PBS-Tween buffer: 0.1% Tween 20 in PBS 

Blocking solution: 5% skimmed milk powder or BSA in PBS-Tween buffer 
 

Transfer of proteins from gels onto a PVDF membrane was performed in western transfer 

apparatus that utilized transfer buffer. After western transfer, PVDF membranes were then 

incubated with 5% of BSA or milk to block non specific binding of antibody to the 

membrane. PVDF membranes were then incubated in diluted primary antibody at 4
0
C 

overnight. Primary antibodies were diluted in 5% milk or BSA according to manufacturer’s 

recommendation. Following day, PVDF membrane was washed thrice with PBS (+Tween) 

solution for 10 minutes before incubating with secondary antibody (conjugated to HRP 

enzyme) for 30 minutes. The membrane was then washed thoroughly and a 

chemiluminiscence substrate was added to the membrane. Target protein bands were 

visualized by capturing the signals on a photographic film. Quantification of the bands was 

done using ImageJ software. 

Autokinase activity of receptor tyrosine kinases was measured using the antibodies that 

specifically recognize phosphorylated proteins. To test the effect of kinase inhibitors, cells 

were treated with different concentrations of inhibitors for 2 hours and then lysed for 

analysis. Reduction of phospho protein levels compared to total protein levels was analyzed 

on western blots. Activation of signaling pathways was tested using antibodies that  

recognize key activated downstream targets of the kinase. 

 

2.2.2.4. Analysis of EGFR cell surface expression 

HEK293 cells were transfected with wildtype and kinase dead EGFR mutants (in pcDNA 

3.1 vector) using Lipofectamine 2000 reagent. 48 hours after transfection, cells were 
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washed twice with PBS and 10
5
 cells were resuspended in FACS buffer (0.1% BSA in 

PBS). 1 μg of cetuximab was added to each sample for 30 minutes at 4
0
C. Cells were then 

washed twice with FACS buffer before staining with a Alexa Fluor 488 goat anti-human 

IgG (H+L) for 30 minutes at 4
0
C. Cells were washed and analyzed by FACS. Empty vector 

(pcDNA 3.1) transfected cells were taken as a negative control. Wildtype EGFR expressing 

cells were taken as a positive control. 

 

2.2.3. Mammalian cell culture and transfection 

2.2.3.1. Cell culture 

Ba/F3 cells (murine pro-B cell line) were cultured as suspension in RPMI-1640 medium 

supplemented with 10% fetal calf serum (FCS), 2 mM glutamine, 1% 

penicillin/streptomycin solution and 0.2 ng/mL of interleukin-3 (IL-3). Ba/F3 cells that 

were transformed by stable expression of oncogenes were cultured in the medium devoid of 

IL-3.  

NIH/3T3 (mouse fibroblast cell line) and HEK293 (human embryonic kidney cell line) 

cells were cultured in DMEM medium supplemented with 10% FCS and glutamine.  

 

2.2.3.2. Transfection 

FugeneHD reagent was used for the transient expression of human cDNA constructs in 

NIH/3T3 cells was achieved by mixing DNA (2 μg) with 6 μl of Fugene HD reagent for 30 

minutes in 100 μl  serum-free OPTI-MEM medium. The mixture was then added to the cell 

culture in a 6-well plate. Transfection medium was replaced with fresh medium after 24 

hours. HEK293 cells were transfected with Lipofectamine 2000 reagent. 10 μg of DNA and 

20 μl of Lipofectamine 2000 reagent were separately mixed with 0.5 ml of serum-free 

OPTI-MEM medium for 5 minutes. DNA and lipofectamine mixtures were mixed, 

incubated for 20 minutes and then added to HEK293 cell culture on a 60 mm plate. 

Transfection medium was replaced by fresh medium after 24 hours of transfection. 

 

2.2.4. Retroviral infection and establishment of stable cell lines 

Retrovirus was produced using retroviral vectors and then infected mammalian cells for 

stable expression of desired proteins. The procedure involved the transfection of PhoenixE 
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cells (a packaging cell line) with appropriate retroviral cDNA construct, collection of virus 

and  the infection of target cells by spin infection. PhoenixE is a 293T-based cell line 

designed to produce gag-pol and env proteins for replication-incompetent ecotropic 

retrovirus (Moloney Murine Leukemia Virus, MMULV) production. Gag-pol (along with 

the hygromycin resistance marker) is expressed under CMV promoter while env (along 

with the diptheria resistance marker) is expressed from RSV promoter thus avoiding 

recombination between the two constructs. 

 

2.2.4.1. Infection of cell lines with retrovirus 

Retroviral vector (MiGR1 or MIY) with target cDNA (FLT3 or EGFR or ERBB2) was 

transfected into the PhoenixE cells (retroviral packaging cell line). For transfection, 10 μg 

of MSCV-based vector was mixed with 20 μl of Lipofectamine 2000 in 1 ml of serum-free 

OPTI-MEM for 20 minutes and then added to the PhoenixE cells. 24 hours post 

transfection, fresh medium was added to the transfected cells (refer to 2.2.3.2 detailed 

protocol). Cell culture medium which contains retrovirus was collected at 36h and 48h after 

transfection.  This was then purified using a 0.45 μM filter.  

For retroviral infection, 1 x 10
5
 Ba/F3 cells per well were then taken in a 12 well plate and 

incubated with 2 ml of collected retrovirus. To increase the efficacy of infection, polybrene  

(4 μg/ml) was added to the medium along with IL-3 for Ba/F3 cell survival. 12-well plates 

were then subjected to centrifugation at 2400 rpm for 90 minutes at 32
o
C. The entire 

procedure of spin infection was repeated at 12 hours after first infection. 

 

2.2.4.2. Assay to test transformation ability of oncogenic mutants 

48h after spin infection, cells were subjected to IL-3 withdrawal. Retroviral MiGR1 vector 

coexpresses eGFP along with target protein. Cells expressing eGFP can be tracked as green 

cells in flow cytometer. Since the fraction of infected cell population expressing 

oncoprotein are green, the outgrowth of such green cells compared to parental Ba/F3 cells 

(uninfected cells which are not green) can be measured as a percentage in the mixed 

population by FACS analysis. Ba/F3 cells stably expressing oncogene were said to be 

transformed if the infected cell population becomes 100% GFP- or YFP-positive (Figure 

16). This happens because parental (uninfected) Ba/F3 cells die quickly due to lack of IL-3. 

On the contrary, oncogenes provide the required survival and proliferative signals in the 
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infected cells. If the infected cDNA lacks oncogenic properties, Ba/F3 cells won’t be 

transformed. The stronger the oncogene, the faster the Ba/F3 cells become cytokine 

independent. 

 

 

 

Figure 16. Transformation of Ba/F3 cells by MSCV-YFP-EGFR. 

Ba/F3 cells were infected with retrovirus expressing MSCV-YFP-EGFR mutant construct and subjected to 

IL-3 withdrawal. Before cytokine withdrawal, freshly transduced Ba/F3 cells were 30% positive (left) for 

YFP. FACS analysis of transformed Ba/F3 cells expressing oncogenic EGFR mutant showed 100% YFP 

positivity (right). 

 

2.2.5. Drug treatment and identification of drug resistant mutations 

The effect of various inhibitors on target cells was measured in a cell proliferation assay 

using 96-well plates. All inhibitor stock solutions were prepared in DMSO and diluted in 

RPMI 1640 medium to make appropriate concentrations of inhibitor solutions. 

 

2.2.5.1. Cell proliferation and cell death assay 

Cell proliferation analysis was performed using exponentially growing fresh cell cultures. 

Ba/F3 cells transformed by oncogenic mutant receptor tyrosine kinases were used for the 

purpose. 1 x 10
4  

Ba/F3 cells were plated in 100 μl in each well of a 96-well plate along 

with the required concentration of the drug. Medium and DMSO controls were taken for all 

the experiments. Parental Ba/F3 cells in IL-3 were used as control to measure non specific 

toxicity. Cell proliferation was measured after 48 hours using the CellTiter96 Proliferation 

Assay (Promega) according to the manufacturer’s instructions. 
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To measure cell death induction by inhibitor treatment, 1 x 10
6
 Ba/F3 cells were taken in 

4ml of RPMI1640 medium in each well of a 12-well plate. 48 hours after inhibitor 

treatment, propidium iodide (5 μg/mL) was added to 300 μl of cells and analysed for cell 

death by FACS. Propidium iodide (PI) binds to DNA by intercalating between the bases 

with little or no sequence preference. PI is membrane impermeant and generally excluded 

from viable cells. Thus, only the DNA of dead cells are stained which is the basis for 

identifying the fraction of dead cells in a population.   

 

2.2.5.2. Cell based screen to identify inhibitor resistant mutations 

Ba/F3 cells stably expressing wild type ErbB2 were treated twice with 100 μg/mL of a 

chemical mutagen, N-ethyl-N-nitrosourea (ENU) for 12 hours. Cells were thoroughly 

washed to remove residual ENU. Mutated cells were then cultured in 96-well plates at a 

density of 4 x 105 cells per well in the presence of 2 μM lapatinib, an EGFR/ERBB2 dual 

inhibitor. Lapatinib resistant cell colonies were isolated later. Total RNA was extracted using 

TRIzol reagent (Invitrogen). ErbB2 kinase domain cDNA was amplified by one step reverse-

transcription PCR (Promega) and sequenced using the primers described.
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3. Results 

 

3.1 Differential sensitivity of FLT3 receptor mutants towards kinase 

inhibitors  

Most common mutations in AML were reported in the FLT3 receptor
89, 90

. Approximately 

one third of AML patients have an internal tandem duplication (ITD) in the juxtamembrane 

region of FLT3 receptor. The FLT3-ITD mutation is associated with a decreased survival
89, 

90, 210
. Additionally 8-12% of AML patients have a point mutation (D835Y) in the tyrosine 

kinase domain and FLT3-D835Y is not associated with bad prognosis
89, 90

. Both mutations 

cause constitutive kinase activity due to loss of autoinhibition leading to the upregulation of 

promitogenic and prosurvival pathways 
86

. The oncogenic potential of both FLT3-ITD and 

FLT3-D835Y were well studied in hematopoietic cell lines and in murine bone marrow 

transplantation models
95, 97

. The goal of the present study is to establish sensitivity profiles 

of FLT3 activating mutants against novel inhibitors that will be useful to select patients 

based on mutation for specific drug treatment. 

 

3.1.1 Activating FLT3 receptor mutants vary in sensitivity against 

different inhibitors 

FLT3-ITD and FLT3-TKD mutants were previously shown to be in principle sensitive to 

kinase inhibitors
95

. For example, PKC412 (Midostaurin/Benzoylstaurosporine/CGP41251) 

is a staurosporine analog and its efficacy against FLT3 mutants was demonstrated 

previously
194, 211

. In this study, we tested two novel inhibitors sunitinib and sorafenib for 

their efficacy against activating FLT3 mutants. Sunitinib and sorafenib are multikinase 

inhibitors with multiple targets: PDGFR alpha, PDGFR beta, VEGFR1, VEGFR2, 

VEGFR3, FLT3, c-KIT and CSFR for sunitinib, and Raf, VEGFR1, VEGFR2, VEGFR3, 

PDGFR beta, FLT3, c-KIT and RET for sorafenib
26, 212-214

. Both sunitinib and sorafenib are 

approved for their use in clinic for the treatment of solid cancers
25, 215

. 

We first examined the cellular IC50 values of sorafenib (Nexavar/Bay 43-9006) against 

FLT3-ITD and D835Y. Cell proliferation–based assays showed that the sensitivity toward 

sorafenib differed significantly between FLT3 D835Y (IC50 100 nM) and ITD (IC50 < 5 

nM) (Figure 17, upper panel). This is in clear contrast to the sensitivity profiles of PKC412 
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and sunitinib (Sutent/SU11248) against FLT3-ITD and D835Y, which showed similar IC50 

values for both mutants (Figure 18). Next, we wanted to determine whether the observed 

differences in growth inhibition by sorafenib correlated with the phosphorylation status of 

FLT3 and its downstream target AKT. For this purpose, mutant FLT3-expressing Ba/F3 

cells were incubated with increasing concentrations of sorafenib prior to cell lysis. The 

level of FLT3 and AKT activation was determined by Western blot analysis.  

 

 

 

 

 

 

 

 

 

 

Figure 17. FLT3-ITD is more sensitive to sorafenib than FLT3-D835Y. 

Cell proliferation of FLT3-ITD and FLT3-D835Y expressing Ba/F3 cells in the presence of sorafenib was 

measured after 48 hours and plotted. Parental Ba/F3 cells in the presence of IL3 were totally resistant to 

sorafenib induced toxicity at concentrations up to 2 μM. Cell lysates of Ba/F3-FLT3-ITD and Ba/F3-FLT3-

D835Y treated with indicated concentrations of  sorafenib along with untreated control were probed with 

phospho tyrosine (pY), Flt3, pAkt and Akt antibodies. 

 

Sorafenib

0

20

40

60

80

100

120

140

u
n
tr
e
a
te

d

D
M

S
O

5
n
M

2
5
n
M

5
0
n
M

1
0
0
n
M

2
5
0
n
M

5
0
0
n
M

1
0
0
0
n
M

2
0
0
0
n
M

concentration

%
 P

r
o

li
f
e
r
a
t
io

n

Parental

Flt3-ITD

Flt3-D835Y

                 Flt3-ITD                                     Flt3-D835Y 

        UT     0.1     0.5     1.0               UT     0.1     0.5     1.0     Sorafenib ( M)   

              pY 

 

              Flt 3  

 

              pAKT 

 

             AKT 

 



   Results   

- 49 - 

Consistent with proliferation data, inhibition of the phosphorylation of FLT3-ITD was 

more pronounced compared to D835Y mutation (Figure 17, lower panel). Inhibition of 

AKT phosphorylation correlated with drug response, indicating that inhibitory effects of 

sorafenib regarding the proliferation were due to specific inhibition of FLT3. Together, 

these results indicate that patients with FLT3-ITD may be more responsive to sorafenib 

than patients with the FLT3-D835Y mutation. PKC412 inhibited both FLT3-ITD and 

FLT3-D835Y at low nanomolar concentrations (Figure 18).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. FLT3-ITD and FLT3-D835Y displayed similar sensitivity towards PKC412 and sunitinib. 

Ba/F3 cells stably expressing FLT3 mutants were treated with PKC412 and sunitinib at indicated 

concentrations for 48 hours. Parental Ba/F3 cells stimulated with IL3 were taken as negative control to 

measure non specific toxicity of the drugs tested. 
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The IC50 values observed were consistent with a previous report
95

. Parental Ba/F3 cells 

were taken as control to test non specific toxicity. In the presence of IL-3, PKC412 was 

toxic to parental Ba/F3 cells at concentrations above 100 nM (Figure 18). Sunitinib 

displayed similar inhibitory activity against the two FLT3 mutated forms without any 

toxicity in patental Ba/F3 cells up to 2 μM (Figure 18). 

 

3.1.2 Sunitinib and sorafenib are effective against PKC412 resistant FLT3 

mutants 

Drug resistance due to secondary point mutations in the kinase domain was reported in 

several kinases. For example, mutations in the kinase domain of BCR-ABL, c-KIT and 

PDGFR alpha were shown to confer imatinib resistance in CML and GIST patients at the 

time of relapse
30, 37

. Similarly, the point mutation N676K within the kinase domain in the 

background of FLT3-ITD was identified in a patient at relapse upon PKC412 treatment. 

Additionally, several screening strategies were established to predict drug resistance 

mutations in vitro
208

. One such cell based screen has reported FLT3 kinase domain 

mutations (FLT3-ITD/N676D, FLT3-ITD/F691I and FLT3-ITD/G697R) that confer 

resistance (IC50 > 100 nM)  to PKC412 treatment
104

. Thus, we tested whether sorafenib and 

sunitinib are able to overcome PKC412 resistance induced by secondary mutations in the 

FLT3-ITD backbone. Upon treatment, FLT3-ITD + N676D was inhibited by both sunitinib 

and PKC412, with an approximate IC50 value of 100 nM (Figure 19). Because PKC412 

inhibits the unmutated FLT3-ITD with an IC50 value of approximately 5 nM, this represents 

a large shift in the IC50 value. Taking into account the maximal plasma level of PKC412 

achievable in patients, this shift seems to be sufficient to explain the PKC412 resistance 

observed in patients. Also, in vitro PKC412 is toxic above the concentration of 100 nM in 

parental Ba/F3 cells, whereas sunitinib shows no unspecific toxicity at this concentration. 

Sorafenib was able to inhibit FLT3-ITD + N676D with an IC50 value of approximately 50 

nM (Figure 19). 
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Figure 19. PKC412 resistant FLT3-ITD/N676D is sensitive to sunitinib and sorafenib. 

Ba/F3-FLT3-ITD+N676D cells were treated with increasing concentrations of indicated drugs for 48 hours 

and inhibitory effects on cell proliferation was measured by MTT assay. 

 

F691 is a gatekeeper residue and its mutation to isoleucine is comparable to imatinib-

resistant T315I mutation in the Bcr-Abl kinase. Inhibition of T315I of Bcr-Abl or similar 

mutations in other kinases is a challenge met with less success. Interestingly, FLT3-ITD + 

F691I can be inhibited by both sunitinib and sorafenib at concentrations not affecting 

parental cells (Figure 20). Here sunitinib was more effective in inhibiting FLT3-ITD + 

F691I (IC50 0.5 μM) than sorafenib (IC50 1.0 μM) (Figure 20).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. PKC412 resistant FLT3-ITD/F691I is more sensitive to sunitinib than sorafenib. 

Stable Ba/F3 cell lines transformed by FLT3-ITD+F691I were tested with 48 hour treatment with indicated 

concentrations of PKC412, sunitinib and sorafenib. 
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Finally, the effect of sunitinib and sorafenib on the PKC412-resistant (IC50 > 100 nM) 

FLT3-ITD + G697R was studied. Interestingly, sunitinib had little effect even at 

concentrations up to 2 μM (Figure 21). In contrast, sorafenib very effectively inhibited 

FLT3-ITD + G697R with an IC50 value of approximately 100 nM, similar or even below 

the IC50 values determined for the other FLT3-ITD–resistant mutants (Figure 21).  

 

 

 

 

 

 

 

 

 
 

 

 

Figure 21. FLT3-ITD/G697R is resistant to both PKC412 and sunitinib but sensitive to sorafenib. 

Ba/F3-FLT3-ITD+G697R cells were tested for their sensitivity against increasing concentrations of PKC412, 

sunitinib and sorafenib in a cell proliferation inhibition assay. 

 

Thus, sorafenib inhibited all the PKC412-resistant FLT3-ITD mutations with IC50 values 

(Table 1) within clinically achievable concentrations while sunitinib is ineffective against 

FLT3-ITD/G697R mutant. 

 

 

 

 

 

 

 

Table 1 . Approximate IC50 values of FLT3 mutants against kinase inhibitors. 

Approximate IC50 values of FLT3 mutants against indicated kinase inhibitors were calculated from the figures 

17 to 21. 

~ 100 nM > 2 μM  ~ 100 nM FLT3-ITD/G697R 

~ 1.0 μM ~ 0.5 μM ~ 100 nM FLT3-ITD/ F691I 

~ 50 nM ~ 100 nM ~ 100 nM FLT3-ITD/ N676D 

~ 100nM ~ 5 nM ~ 10 nM FLT3-D835Y 

< 5nM ~ 5 nM ~ 5 nM FLT3-ITD 

Sorafenib Sunitinib PKC 412 Mutation 
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3.1.3 Sorafenib potently induces cell death in Ba/F3 cells expressing FLT3 

mutations 

We then studied the potency of sorafenib to induce cell death in cells expressing the 

different FLT3 mutations. Sorafenib efficiently induced cell death in a dose-dependent 

manner in all the mutations tested (Figure 22). Consistent with cell-proliferation inhibition 

data, D835Y and FLT3-ITD + F691I mutations were relatively less sensitive to cell death 

upon sorafenib treatment than FLT3-ITD, FLT3-ITD + N676D, and FLT3-ITD + G697R 

(Figure 22). No cell death was observed in parental Ba/F3 cells upon sorafenib treatment 

ruling out non-specific toxicity (Figure 22). Thus, sorafenib exhibited both cytostatic as 

well as cytotoxic activities against activating and PKC412 resistant FLT3 mutants offering 

a significant promise for the treatment of FLT3 mutant AML patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Sorafenib induced cell death in Ba/F3 cells expressing FLT3 mutations. 

Parental Ba/F3 and Ba/F3 cells stably expressing FLT3 activating and PKC412-resistant mutations were 

treated with indicated concentrations of sorafenib for 48 hours and tested for cell death as measured by 

propidium iodide positivity. Cells were analyzed by FACS. 

 

Since different mutants respond differently against inhibitor treatment, establishing drug 

sensitivity profiles will give insights in to the role of genetic factors on treatment outcome. 

In this study, the drug sensitivity profiles of various primary activating and secondary 

PKC412 resistant mutations were established. Furthermore, induction of cell death in Ba/F3 

cells expressing both activating and drug resistant FLT3 mutations was demonstrated with 

sorafenib at concentrations achievable in patients. 
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3.2. Functional analysis and drug sensitivity profiles of EGFR kinase 

domain mutations reported in NSCLC patients 

EGFR overexpression or mutation is a frequent genetic abnormality leading to the 

activation of pro mitogenic and pro survival signaling in several cancers
127, 216

. Recently, 

activating mutations in the kinase domain of EGFR were shown to sensitize a subset of 

NSCLC patients to EGFR kinase inhibitor treatment
16

. Several reports followed reporting 

additional mutations in the EGFR kinase domain
127, 141

. However most mutations were not 

characterized and their role in cancer progression and drug sensitivity is not known. 

Correlation between treatment response and EGFR mutation status also varied between 

clinical studies
141, 142, 217

. Thus we aimed to biochemically characterize individual EGFR 

kinase domain mutations that were reported in NSCLC patients. We further examined the 

effect of EGFR inhibitors and established drug sensitivity profiles for individual mutants. 

 

3.2.1. Biochemical characterization of clinically-relevant EGFR mutants 

A panel of 30 EGFR kinase domain mutations that were recently reported in NSCLC 

patients was cloned and expressed for analysis of kinase activity, transforming potential, 

and drug sensitivity. These mutations affect the N-lobe (exons 18-20) and the C-lobe (exon 

21) of the EGFR kinase domain as depicted in Figure 23. 

 

 

 

 

 

Figure 23. Schematic representation of EGFR kinase domain mutations selected for the study. 

EGFR kinase domain mutations reported in NSCLC patients that were selected for the analysis. Mutations in 

specific exons of EGFR kinase domain were indicated (not drawn to scale). Mutations selected from each 

study are indicated in different colours: red
16

, black
141

, orange
134

, green
218

, pink
135

, brown
143

, light green
142

 

and blue
145

.  

 

 

NIH/3T3 cells are devoid of endogenous EGFR and were therefore used for the analysis of 

autokinase activity of over expressed mutant EGFR proteins. Autophosphorylation of over 

expressed WT EGFR upon EGF stimulation was taken as a positive control. Most of the 
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EGFR mutations analyzed showed little or no autophosphorylation without EGF ligand 

after serum starvation (Figure 24). Addition of EGF resulted in autophosphorylation in the 

majority of EGFR mutants, except EGFR-L688P, EGFR-V851A, EGFR-I853T, and 

EGFR-E866K (Figure 24).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Autophosphorlyation analysis identifies kinase dead EGFR mutants. 

Wild type and mutant EGFR in pcDNA3.1 were transfected into NIH/3T3 cells. Cells were serum starved for 

12 hours and then stimulated with human EGF for five minutes before lysed for analysis. Autokinase activity 

was measured using a pEGFR (Tyr 1068) antibody. Untransfected NIH/3T3 cells were taken as a negative 

control to demonstrated the absence of endogenous EGFR. 

 

Normal cell surface expression of these mutants was detectable and comparable with that of 

WT EGFR (Figure 25). This indicated that the amino acid changes in these mutations 
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abrogated the kinase activity of EGFR. These data suggested that some EGFR mutants 

reported in NSCLC patients lack kinase activity and thus may neither contribute to tumor 

growth nor serve as a rational target for EGFR kinase inhibitors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. Surface expression of EGFR kinase dead mutations. 

Wild type and kinase defective EGFR mutants (in pcDNA 3.1 vector) were transiently overexpressed in 

HEK293 cells using Lipofectamine 2000 transfection reagent. 48 hours after transfection cells were washed 

twice with PBS and 10
5
 cells were resuspended in FACS buffer (0.1% BSA inn PBS). Cells were then stained 

with 1 μg of cetuximab and surface expression of EGFR was measured by FACS analysis. Untransfected 

HEK293 cells were taken as negative control and indicated as shaded peak. Wild type EGFR (black), EGFR-

L688P (green), EGFR-V851A (orange), EGFR-I853T (red) and EGFR-E866K (blue) were shown. 

 

 

3.2.2. Functional characterization of kinase defective EGFR mutations 

To test more directly whether the mutations EGFR-L688P, EGFR-V851A, and EGFR-

I853T interfere with the kinase activity of EGFR, we cloned these mutations into the 

background of a constitutively active EGFR mutation (EGFRvIII) and expressed the 

resulting constructs in HEK293 cells that do not express endogenous EGFR
219

. As a 

positive control, we introduced the well-characterized activating mutation G719S in the 

EGFRvIII backbone
201

. Phosphorylation of WT EGFR and its downstream target Stat5 was 

seen on EGF ligand stimulation (Figure 26). EGFRvIII and EGFRvIII-G719S showed 

constitutive autophosphorylation and phosphorylation of Stat5 (Figure 26). In contrast, 

mutations at L688P, V851A, and I853T largely reduced (L688P) or abrogated (V851A and 
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I853T) the kinase activity of constitutively activated EGFRvIII as evidenced by 

phosphorylated EGFR and phosphorylated Stat5 levels (Figure 26).  

 

 

 

 

 

 

 

  

 

 

 
Figure 26. Kinase dead mutations abrogate autokinase activitiy and Stat5 phosphorylation of 

EGFRvIII. 

Kinase defective mutations were cloned into EGFRvIII backbone and transiently expressed in HEK293 cells. 

Wild type EGFRvIII was taken as a control. EGFRvIII-G719S was taken as positive control. HEK293 cells 

were transiently transfected with the full length EGFR (unstimulated and stimulated with human EGF) were 

taken as additional controls. Untransfected cells were taken as a negative control. 

 

 

We then tested if the observed kinase-dead mutations would have any effect on the 

oncogenic potency of the constitutively active EGFRvIII. EGFRvIII and EGFRvIII-G719S 

induced IL-3–independent growth of Ba/F3 cells. In contrast, EGFRvIII-L688P, EGFRvIII-

V851A, and EGFRvIII-I853T failed to induce growth factor–independent proliferation of 

Ba/F3 cells, suggesting that these point mutations indeed result in the loss of the oncogenic 

potential of EGFRvIII (Table 2).  
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Table 2. Transforming potential of EGFRvIII mutants.  

Ba/F3 cells were transduced with wild type and mutated EGFRvIII. Transformation of transduced cells 

(positive for both EGFRvIII and eGFP) to cytokine independence was measured by FACS analysis. 

 

V851 and I853 are conserved among several receptor tyrosine kinases as shown in Figure 

27 and located in the near vicinity of the DFG motif, which is indispensable for kinase 

activity. It is interesting to note that these residues are conserved in all kinase-active 

receptors such as EGFR, Her2, and Her4 but absent in the kinase-defective receptor Her3 

(Figure 27). Thus, mutations in these conserved residues probably destroy the catalytic core 

of the EGFR. Identification of EGFR mutations in NSCLC patients that abrogate kinase 

activity indicates that EGFR mutants in these cases do not serve as a molecular target for 

EGFR kinase inhibitors. The importance of EGFR-L688 and the aminoacids surrounding 

the EGFR-V851 and EGFR-I853 in kinase activity was recently reported
124, 220

. 

 

 

 

 

 

Figure 27. Alignment of receptor tyrosine kinases. 

Amino acid sequuences of several kinases surrounding DFG motif were aligned using clustalw program. DFG 

motif was colored blue and conserved amino acids that were mutated in EGFR kinase were represented in red. 

 

 EGFR            LAARNVLVKTPQHVKITDFGLAKLL  

 ErbB2            LAARNVLVKSPNHVKITDFGLARLL  

 ErbB3     LAARNVLLKSPSQVQVADFGVADL 

 ErbB4     LAARNVLVKSPNHVKITDFGLARLL 

 PDGFRA LAARNVLLAQGKIVKICDFGLARD  

 PDGFRB LAARNVLICEGKLVKICDFGLARD  

 Flt3            LAARNVLVTHGKVVKICDFGLARD  

No EGFR vIII+I853T 

No EGFR vIII+V851A 

No EGFR vIII+L688P 

Yes EGFR vIII+G719S 

Yes EGFR vIII 

Transforms Ba/F3 Mutation 
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Only a few activating mutations in the kinase domain of EGFR were tested for their 

potential to confer a growth advantage in vitro thus far
221

. Therefore, a panel of kinase 

domain mutations of EGFR was introduced into Ba/F3 cells and tested whether they are 

able to induce IL-3–independent growth (Table 3).  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. EGFR-G719C and EGFR-E866K didn’t confer growth advantage upon EGF stimulation. 

Fraction of Ba/F3 cells transduced with wild type or mutatnt EGFR (YFP-positive cells) were analyzed for 

their growth upon stimulation with murine IL3 or human EGF. Outgrowth of YFP-positive cells was 

measured by FACS analysis for every 24 hours. 

 

 

 

As previously reported, EGFR-L858R and EGFR-G719S induced IL-3–independent 

growth in Ba/F3 cells
221

. This was also observed for the majority of other EGFR mutations 

tested, indicating that these additional EGFR mutations lead to a growth advantage in vitro. 

In contrast, EGFR-L688P, EGFR-V851A, EGFR-I853T, and EGFR-E866K again failed to 

induce IL-3–independent growth, presumably due to the absent catalytic activity (Table 3). 
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In addition, EGFR-G719C also failed to induce IL-3–independent growth (Table 3). We 

then tested if selected EGFR mutations confer growth in the presence of EGF ligand. As 

expected, cells expressing EGFR-WT and the constitutive activated EGFR-G719S grew in 

the presence of EGF, whereas cells expressing kinase-dead EGFR-E866K failed to grow 

(Figure 28). Interestingly, also cells expressing EGFR-G719C did not grow in the presence 

of EGF (Figure 28). This mutant is kinase active as shown before and the reason for its 

lacking growth potential is unclear at the moment. 

Biochemical analysis of the transformed cell lines showed constitutive autophosphorylation 

of the EGFR mutants and revealed activation of key prosurvival and proliferation 

pathways, such as ERK, Stat5, and AKT, in all cell lines tested (Figure 29). Ba/F3-EGFR-

WT showed activation of EGFR and downstream key signaling molecules only on 

stimulation with EGF ligand (Figure 29). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Differential activation of signaling pathways by EGFR mutants. 

Ba/F3 cell lines stably expressing EGFR mutants were analysed for the activation of various downstream  

proteins in EGFR signaling pathway. Unstimulated or IL3 stimulated parental Ba/F3 cells were taken as 

control for EGFR expression as well as activation of signaling pathways. As a positive control, Ba/F3 cells 

expressing wild type EGFR were serum starved and stimulated with human EGF. 
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3.2.3. Analysis of drug sensitivity of EGFR mutants against EGFR 

inhibitors 

The small-molecule EGFR kinase inhibitors gefitinib and erlotinib were shown to be 

effective in inhibiting the most frequent activating mutations EGFR-L858R and EGFR-

747-753insS
16

. However, there is growing experimental and clinical evidence that 

erlotinib and gefitinib may show differential activity toward specific EGFR activating and 

resistance mutations
222

. We therefore tested the sensitivity of a comprehensive panel of 

transforming EGFR mutations toward the EGFR inhibitors gefitinib, erlotinib, and AEE788 

(Figure 30). Again, we used Ba/F3 cells as readout because these cells do not express 

endogenous EGFR and none of the drugs showed toxicity against these cells at 

concentrations of up to 2 μmol/L (Figure 30). 

EGFR-L858R and EGFR-Del 747-753insS were extremely sensitive to all three kinase 

inhibitors with IC50 values in the low nanomolar range with no significant differences in 

IC50 values between gefitinib (Iressa, ZD1839), erlotinib (Tarceva, OSI-774), and AEE788 

(Figure 30 A-C). In contrast, EGFR-T790M was completely resistant to all drugs tested 

with IC50 values >2 μmol/L (Figure 30 A-C). This mutation is already known to be 

associated with kinase inhibitor resistance
145

. In addition, EGFR-N826S required high 

concentrations of all three EGFR kinase inhibitors of 500 nmol/L for complete inhibition 

(Figure 30 A-C). Interestingly, EGFR-N826S was detected in a NSCLC patient who did not 

respond to gefitinib treatment and this lack of response might be explained by the high IC50 

value
142

. All other EGFR mutations showed IC50 values for the kinase inhibitors tested in 

the range of 10 to 300 nmol/L (Table 3). Several EGFR mutations displayed varying IC50 

values depending on the kinase inhibitor. EGFR-G719S was relatively more resistant to 

gefitinib (IC50 = 68 nmol/L) than EGFR-L858R (IC50 = 12 nmol/L) and this finding is in 

line with a recent report
201

. However, EGFR-G719S was very sensitive to erlotinib (IC50 = 

16 nmol/L) and AEE788 (IC50 = 13 nmol/L), comparable with EGFR-L858R (IC50 for 

erlotinib and AEE788 = 6 nmol/L) (Table 3). Another frequent mutation EGFR-L861Q was 

quite insensitive to both gefitinib and erlotinib with IC50 values above 100 nmol/L but with 

a lower IC50 value for AEE788 (IC50 = 51 nmol/L) (Table 3). Similarly, mutations EGFR-

V742A, EGFR-R776C, and EGFR-S784F were more sensitive to erlotinib than gefitinib, 

with at least two times lower IC50 values (Table 3). EGFR mutations EGFR-D761N, 
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EGFR-S768I, EGFR-S784F, and EGFR-L838V were more sensitive to AEE788 compared 

with both gefitinib and erlotinib (Table 4).  
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Figure 30. Varied response of EGFR kinase domain mutants towards inhibitor treatment. 

Ba/F3 cells transformed by activating EGFR kinase domain mutants were treated with indicated 

concentrations of gefitinib (A), erlotinib (B) or AEE788 (C) for 48 hours and analysed for cell proliferation 

inhibition. Experiment was done in triplicates and standard deviation calculated for each point. Parental Ba/F3 

cells in the presence of IL3 was taken as a control. 

 

 

Based on the drug sensitivity profiles, EGFR kinase domain mutations were classified into 

four sets: 

1) Mutations that were highly sensitive to gefitinib, erlotinib and AEE788 with very 

low nanomolar IC50 values : EGFR-Del 747-753insS and EGFR-L858R.  

2) Mutations that were relatively less sensitive to gefitinib with IC50 greater than 100 

nM but sensitive to erlotinib and AEE788 (IC50 < 100 nM): EGFR-G719S, EGFR-

V742A and EGFR-R776C. 

3) Mutations that were less sensitive to both gefitinib and erlotinib but sensitive to 

AEE788: EGFR-D761N, EGFR-S768I, EGFR-S784F, EGFR-L838V and EGFR-

L861Q. 

4) Mutations that were resistant to gefitinib, erlotinib and AEE788: EGFR-T790M and 

EGFR-N826S. 
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Table 3. Summary of IC50 values of EGFR kinase mutants against gefitinib, erlotinib and AEE788.  

Cell proliferation inhibition IC50 values for Ba/F3-EGFR mutants cell lines against gefitinib, erlotinib and 

AEE788 were calculated from the figure 30. EGFR mutants that did not transform Ba/F3 cell lines were 

indicated in blue. Drug resistant  EGFR mutants were indicated in red. EGFR mutants that were relatively 

more sensitive to erlotinib compared to gefitinib were indicated in green. EGFR mutants that were sensitive to 

AEE788 compared to both gefitinib and erlotinib were shown in brown. NA = Not Applicable; x = Not tested 

for drug sensitivity 

 

Gefitinib and erlotinib are anilinoquinazolines, whereas AEE788 is a pyrrolopyrimidine 

compound. These differences in the chemical structures may account for the distinct 

responses observed with all three drugs. Thus, the sensitivity of activating EGFR mutations 

toward different EGFR kinase inhibitors varies significantly and this may have implications 

x x x No 21 E866K 

40 49 75 Yes 21 A864T 

51 103 170 Yes 21 L861Q 

6 6 12 Yes 21 L858R 

x x x No 21 I853T 

x x x No 21 V851A 

70 160 187 Yes 21 L838V 

348 505 505 Yes 21 N826S 

30 57 96 Yes 20 G810S 

NA NA NA Yes 20 T790M 

43 95 193 Yes 20 S784F 

36 47 110 Yes 20 R776C 

125 250 315 Yes 20 S768I 

37 75 104 Yes 19 D761N 

5 5 7 Yes 19 Deletion 

37 21 65 Yes 19 V742A 

13 16 68 Yes 18 G719S 

x x x No 18 G719C 

x x x No 18 L688P 

AEE 788 Erlotinib Gefitinib 

IC50 value (nM) Transforms 

Ba/F3 

Exon Mutation 
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for the sequential and potential combinational use of this compound in EGFR-mutated 

NSCLC patients.  

 

3.2.4. Hyperactivation of EGFR kinase and transformation ability by 

L861Q mutation 

We have shown that mutations L858R and G719S are very sensitive to all the drugs tested 

while another common mutation L861Q, is relatively insensitive towards inhibitor 

treatment. This is in agreement with a previous report
71

. So far, it was not possible to 

compare the drug sensitivity of ligand independent mutant EGFR to that of EGF-dependent 

wild type EGFR in a ligand independent cellular assay
221

. Thus, we aimed to establish a 

cell-based system to compare the drug sensitivities of wild type and mutant receptor kinase 

domains. The most common point mutations reported in NSCLC patients, EGFR-L858R, 

EGFR-G719S and EGFR-L861Q were selected for this study.  

Our aim was to determine kinase activity and transforming potential of these mutants 

compared to the wt-EGFR kinase domain. Using the wt-EGFR as reference has several 

limitations: Ligand stimulation and the required serum starvation of cells may alter cellular 

responses. In addition, the wt-receptor cannot be used as comparison for the transforming 

potential of certain EGFR mutants. The use of EGFRvIII as reference abrogates several of 

these limitations. EGFRvIII contains a wt-kinase domain and thus can be used to study the 

impact of mutations on the kinase activity in an unaltered cellular setting. Therefore, we 

first cloned all three point mutations into the EGFRvIII backbone. For analysis of kinase 

activity and signaling we chose HEK293 cells which lack endogenous EGFR 
219, 223

. 

EGFRvIII-G719S and EGFRvIII-L858R both showed a 2-4 fold increased 

autophosphorylation compared to EGFRvIII containing a wt-kinase domain (Figure 31). 

EGFRvIII-L861Q showed the strongest autophosphorylation, which was more than 10-fold 

higher than EGFRvIII (Figure 31). This data is in agreement with studies using the wt-

EGFR receptor with ligand stimulation 
224

. EGFRvIII-L861Q was also the strongest 

activator of Stat5 indicating that not only autophosphorylation but also substrate 

phosphorylation is enhanced by this mutation. None of the EGFRvIII constructs increased 

Akt activity above levels observed under normal serum conditions (Figure 31). 
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Figure 31. EGFR-L861Q is a hyperactive kinase. 

EGFRvIII with wild type or mutant kinase domain were transfected into HEK293 cells and autokinase 

activity and downstream signaling was measured using phospho specific antibodies. Untransfected cells were 

P-EGFR 
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P-Akt 

Akt 

P-Stat5 

Stat5 
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taken as negative control. Quantification of blots was done by ImageJ software and activity of EGFRvIII 

mutants was compared as a ration of pEGFR:EGFR and pSTAT5:STAT5. Calculated p values were indicated 

to show the significant differences observed.   

 

To compare the transforming abilities of these mutants we performed a competitive growth 

assay, in which the outgrowth of oncogene-transduced cells under growth factor withdrawal 

in a mixed population is measured. To this end newly transduced (transduction efficiency 

approx. 20%), unselected stable Ba/F3 cell lines expressing EGFRvIII mutants together 

with eGFP were deprived of IL-3. Outgrowth of eGFP positive cells was measured by 

FACS analysis over time. EGFRvIII-L861Q expressing cells showed the strongest 

proliferation advantage in this competition assay (Figure 32). EGFRvIII-G719S and 

EGFRvIII-L858R expressing cells were also selected more efficiently than cells expressing 

unmutated EGFRvIII (Figure 32). After prolonged IL-3 deprivation however, all EGFRvIII 

constructs finally conferred IL-3 independent growth. Thus, mutation at L861Q leads to the 

strongest gain in kinase activity and most rapid induction of cytokine independent growth 

compared to the wt-kinase domain. 

 

Figure 32. EGFR-L861Q confers strongest transformation potential on Ba/F3 cells. 

Ba/F3 cells transduced with either wild type or mutant EGFRvIII were deprived of IL3 and their preferential 

outgrowth compared to parental Ba/F3 cells was measured by FACS analysis over regular intervals.  
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3.2.5 EGFR-L861Q is not a drug sensitizing mutation towards EGFR inhibitors 

We then wished to determine the effect of oncogenic EGFR kinase domain mutations on 

drug sensitivity. We used stably transduced Ba/F3 cell lines expressing wild type or mutant 

EGFRvIII and the EGFR kinase inhibitors gefitinib, erlotinib and AEE788. Gefitinib and 

erlotinib are selective EGFR inhibitors already approved in the clinic. AEE788 is a 

compound in development inhibiting both EGFR and Her2. EGFRvIII-L858R expressing 

cells were very sensitive to all drugs tested with an IC50 value of less than 50nM (Figure 

33). EGFRvIII-G719S expressing cells displayed an intermediate sensitivity. Both 

mutations led to lower IC50 values compared to wild type EGFRvIII thus sensitizing cells 

to EGFR kinase inhibitors. In contrast, EGFRvIII-L861Q expressing cells displayed IC50 

values identical to wt-EGFRvIII (Figure 33). Western blot analysis after treatment of Ba/F3 

cells expressing EGFRvIII constructs with gefitinib or erlotinib showed that EGFRvIII-

G719S and EGFRvIII-L858R but not EGFRvIII-L861Q displayed enhanced inhibition of 

EGFR and downstream signaling compared to wild type EGFRvIII (Figure 34). Thus, in 

this common EGFR mutation activation of the kinase domain seems to be uncoupled from 

sensitizing effects towards kinase inhibitors. These results suggest, that NSCLC patients 

with the EGFR-L861Q mutation may not benefit as much from EGFR inhibitor treatment 

with gefitinib or erlotinib as patients with the EGFR-L858R, EGFR-G719S or EGFR exon 

19 deletions.  
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Figure 33. Effect of gefitinib, erlotinib and AEE788 on wild type and mutant EGFRvIII. 

Ba/F3 cells transformed by EGFRvIII mutants (WT, G719S, L858R and L861Q) were treated with gefitinib, 

erlotinib and AEE788 for 48 hours and cell proliferation inhibition was measured by MTT assay. 
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Figure 34. Hyperactivity of EGFRvIII-L861Q is uncoupled from drug sensitizing effect. 

Ba/F3 cells expressing wild type or mutant EGFRvIII were treated with increasing concentrations (50nm, 100 

nM, 250 nM, 500 nM or 1000 nM) of gefitinib or erlotinib for 30 minutes and analyzed for the inhibition of 

EGFR autophosphorylation as well as Stat5 and ERK1/2 phosphorylation. 

 

 

 

Although L861Q mutation induced the strongest proliferation advantage and highest 

increase in kinase activity among all mutations tested it did not lead to enhanced kinase 

inhibitor sensitivity (Table 4). 

 

 

 

 

 

Table 4. Hyperactivity of EGFRvIII-L861Q is uncoupled from drug sensitizing effect. 

Effect of kinase domain mutations on the properties of EGFRvIII were summarized based on the figures 32, 

33 and 34. 

 

Variation in drug response towards different activating mutations in oncogenic tyrosine 

kinases have been reported in various cancers and accumulating evidence indicates that this 

may have impact on the clinical outcome upon inhibitor treatment
34, 225, 226

. Therefore it 

may be beneficial to test alternative EGFR inhibitors towards less sensitive activating 

EGFR mutations such as EGFR-L861Q. Irreversible EGFR inhibitor was previously shown 

+ +++ ++ + Drug sensitivity 

+++ ++ ++ + Transforming ability 

+++ ++ ++ + Autokinase activity 

EGFR vIII + 

L861Q 

EGFR vIII + 

L858R 

EGFR vIII + 

G719S 

EGFR vIII  
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to overcome gefitinib resistance due to kinase domain mutation
227

. Thus, we tested if a 

novel irreversible inhibitor WZ-4002 shows sensitizing effect on EGFR-L861Q. Both 

EGFRvIII-L858R and EGFRvIII-G719S showed lower IC50 values towards WZ-4002 

treatment compared to wild type EGFRvIII (Figure 35, upper panel). Interestingly, 

EGFRvIII-L861Q also showed significantly more sensitivity against WZ-4002 compared to 

the wild type EGFRvIII (Figure 35, upper panel).  

 

 

 

Figure 35. Hyperactivity of EGFRvIII-L861Q is uncoupled from drug sensitizing effect. 

Upper panel: EGFRvIII mutant Ba/F3 cells were treated with WZ4002 at indicated concentrations and 

analyzed for cell proliferation inhibition. Lower panel: Ba/F3 cells expressing wild type or mutant EGFRvIII 
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were treated with increasing concentrations (50nm, 100 nM, 250 nM, 500 nM or 1000 nM) of WZ4002 for 30 

minutes and analyzed for the inhibition of EGFR autophosphorylation as well as Stat5 and ERK1/2 

phosphorylation. 

 

Biochemical analysis upon inhibitor treatment correlated with the observed cell 

proliferation data (Figure 35, lower panel). Therefore, WZ-4002 offers potent alternative to 

selectively inhibit EGFR-L861Q thus avoiding toxicity due to inhibition of wild type 

EGFR. Another promising EGFR inhibitor in this regard was reported recently and was 

shown to efficiently inhibit EGFR-L861Q compared to wt-EGFR
228

.Thus, the Ba/F3-

EGFRvIII-based system described in this study will be a valuable tool to test novel 

compounds and strategies. 
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3.3. Irreversible EGFR/ERBB2 inhibitors overcome lapatinib resistance 

due to ERBB2 kinase domain mutations 

ERBB2 belongs to the EGFR family of receptor tyrosine kinases
153

. Activation of ERBB2 

kinase due to overexpression was reported in breast cancers thus making it an attractive 

target for treatment
229

. Polymorphisms in the juxtamembrane region of ERBB2 kinase were 

reported to cause increased susceptibility to breast cancer
177

.  However the role of ERBB2 

polymorphisms  on biochemical properties as well as drug sensitivity of the receptor is not 

known. Additionally, mutations in the ERBB2 kinase domain were also reported in solid 

cancers but the functional significance of these ERBB2 mutants remains unknown.  

Tyrosine kinase inhibitors that target both EGFR and ERBB2 are already approved or are 

already tested within clinical trials. For example, lapatinib (Tykerb/Tyverb, GW572016) is 

a dual inhibitor of both EGFR and ERBB2 kinases and is approved for the treatment of 

ERBB2 positive breast cancer
230, 231

. In addition, a monoclonal antibody, trastuzumab 

(Herceptin) that targets  the extracellular region of ERBB2 was approved for the treatment 

of ERBB2 positive breast cancer
232

. Experimental in vitro systems to study the biochemical 

properties of ERBB2 mutants and to study the effect of ERBB2 specific drugs on these 

mutants were not described so far. Thus, we aimed to establish a cell-based system to study 

biochemical properties, transformation abilities and drug sensitivities of these ERBB2 

variants in vitro. 

 

3.3.1. ERBB2 polymorphisms have no effect on functional properties  

A frequent polymorphism ERBB2-I654V was reported in one study to increase the risk of 

breast cancer incidence and progression
177

. However, several studies found ‘no correlation’ 

and even ‘inverse correlation’ between breast cancer risk and ERBB2-I654V
179, 180, 233

. 

Another study showed that ERBB2-I655V in tandem with the ERBB2-I654V 

polymorphism was shown to increase the risk of familial breast cancer risk
178

. The role of 

different polymorphisms on the biochemical properties of the ERBB2 kinase is not clear. 

To test the role of ERBB2 polymorphisms on functional properties, wild type and 

polymorphic MiGR1-ERBB2 were transfected into HEK293 cells. Autokinase activity was 

measured using an antibody specific for ERBB2 that is phosphorylated upon activation. 

pERBB2:ERBB2 levels were calculated and compared between the wild type and 
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polymorphic ERBB2 variants (Figure 36). Both the wild type and polymorphic ERBB2 

variants exhibited similar levels of autokinase activity (Figure 36A). To test if the 

polymorphisms affect the transformation potential of ERBB2, Ba/F3 cells were transduced 

with MiGR1-ERBB2 constructs. Oncogenic potential was measured as the increase of 

eGFP positive cell fraction upon IL-3 withdrawal. Analysis of preferential outgrowth of 

ERBB2 expressing cells (GFP-positive) showed that both the wild type and polymorphic 

variants have similar oncogenic potential (Figure 36B).  

 

 

 

 

 

 

 

 

Figure 36. ERBB2 polymorphisms don’t alter ERBB2 kinase activity and transforming poteintial. 

HEK293 cells were transiently transfected with either wild type or polymorphic ERBB2 and tested for 

autokinase activity using ERBB2-Tyr1248 specific antibody. Relative activation of ERBB2 kinase variants 

was plotted as a ratio of pERBB2:ERBB2. Ba/F3 cells were infected with wild type and polymorphic ERBB2 

retrovirus and preferential outgrowth of transduced cells was measured by FACS analysis. 
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We then tested the effect of the EGFR/ERBB2 dual inhibitors lapatinib and AEE788 on 

Ba/F3 cells that are transformed by ERBB2 variants. Lapatinib is already approved for the 

treatment of ERBB2 positive breast cancer and we intended to test if the ERBB2 

polymorphisms affect lapatinib sensitivity (Figure 37). Gefitinib and erlotinib were used as 

negative controls. 

Cell proliferation inhibition analysis upon drug treatment of Ba/F3 cells stably expressing 

wild type and polymorphic variants showed similar drug sensitivity profiles against 

gefitinib, erlotinib, lapatinib and AEE788 (Figure 37). The IC50 values of all the variants 

against tested drugs were comparable to that of wild type ERBB2 (Figure 37). Thus, 

ERBB2 polymorphisms have no effect of kinase activity, transformation ability and drug 

sensitivity towards EGFR/ERBB2 inhibitors. 
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Figure 37. Drug sensitivitiy profiles of wild type and polymorphic ERBB2 variants. 

Stable Ba/F3 cells lines expressing wild type and polymorphic ERBB2 kinases were treated with either EGFR 

inhibitors (gefitinib and erlotinib) or EGFR/ERBB2 dual inhibitors (lapatinib and AEE788) at indicated 

concentrations for 48 hours and analysed for cell proliferation inhibition by MTT assay. 

 

 

3.3.2. A cell-based screen identifies lapatinib resistant ERBB2 mutations 

Tyrosine kinase inhibitors have revolutionized the treatment of cancers with oncogenic 

mutations. However secondary drug resistance due to the kinase domain mutations 

represents a big challenge. This prompted the development of new classes of inhibitors that 

may overcome the drug resistance. Identification of possible drug resistant mutations in 

vitro is useful to predict possible drug resistant mutations in patients. An in vitro cell-based 

screening method was previously described to identify inhibitor-resistant kinase domain 

mutations
208

. In this method, cells expressing wild type kinase were treated with a chemical 

mutagen to induce random mutations. Mutated cells are then cultured in high inhibitor 

concentrations to select for kinase domain mutations that confer drug resistance. To 

identify lapatinib resistant mutations, Ba/F3-ERBB2-WT cells were treated with the 

chemical mutagen ENU and then selected for clones that grow in the presence of lapatinib 

(Figure 38).  
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Ba/F3-ERBB2-WT + ENU (24 hours) 

 

Cell culture in 2 μM lapatinib 

 

Isolation and expansion of single clones 

 

Sequencing of ERBB2 kinase domain 

 

 

Figure 38. Schematic representation of screen to identify lapatinib resistant ERBB2  mutations. 

Ba/F3-ERBB2-WT cells were treated twice with ethyl nitroso urea for 12 hours and then cultured for 5 days 

for the cells to recover. Cells were then cultured in 96-well plates in the presence of 2 μM of lapatinib and 

drug resistant cell clones were isolated. cDNA for ERBB2 kinase domain was sequenced for the identification 

of lapatinib resistant mutations. 

 

 

Sequencing of lapatinib-resistant clones showed that about 50% of the clones contained 

mutated ERBB2 kinase domain (Figure 39). Interestingly, only two mutations ERBB2-

L755S and ERBB2-T862A could be identified in the lapatinib resistance screen indicating 

that the spectrum of lapatinib resistance mutations maybe limited (Figure 39).  

ERBB2-T862A was the predominant mutation identified in nearly 80% of the clones 

(Figure 39). Interestingly, an analogous mutation was identified in the EGFR (T854A) in 

NSCLC patients and was shown to cause resistance to gefitinib treatment
234

. Thus, ERBB2-

T862 and EGFR-T854 are critical residues for inhibitor binding in both EGFR and ERBB2 

kinases. 

ERBB2-L755S that was identified in the screen was previously reported in breast cancer 

patients and analogous EGFR-L747S was reported in NSCLC patients indicating the 

activating nature of the mutation
183, 235

.  
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Figure 39. Frequency of identified mutations in lapatinib resistance screen. 

Graphical representation of relative percentages of wild type and mutated ERBB2 clones. Number of clones 

with ERBB2-L755S versus ERBB2-T862A were also shown. 

 

 

In addition to the mutations identified in the screen, we cloned ERBB2-T798M to test the 

activity of lapatinib. T798 is a gate keeper residue in ERBB2 kinase and analogous EGFR-

T790M was reported in gefitinib resistant NSCLC patients
145

. All these ERBB2 mutants 

readily transformed Ba/F3 cells to cytokine independence. Stable Ba/F3 cell lines 

expressing ERBB2-T862A showed a four-fold increase in IC50 value compared to wild type 

ERBB2 but was completely inhibited by lapatinib at concentrations that can be achieved in 

patients indicating that this mutation causes moderate resistance to lapatinib treatment 

(Figure 40). ERBB2-L755S was very resistant to lapatinib treatment with IC50 value greater 

than 1 μM (Figure 40). ERBB2-T798M was totally resistant to lapatinib treatment (Figure 

40). 



   Results   

- 79 - 

 

 

Figure 40. Effect of lapatinib on ERBB2-T862A, ERBB2-L755S and ERBB2-T798M.  

Ba/F3 cells stably expressing ERBB2 mutants identified in lapatinib resistance screen were treated with 

increasing concentrations of lapatinib and AEE 788 for 48 hours and tested for inhibition of cell proliferation. 

Ba/F3-ERBB2-WT cells were taken as a control for comparison (dotted line). 
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AEE788 is a dual reversible EGFR/ERBB2 inhibitor and we tested if it can overcome 

lapatinib resistance due to kinase domain mutations. Wild type ERBB2 kinase showed 

higher IC50 value with AEE788 compared to lapatinib (Figure 40). Interestingly, lapatinib 

resistant ERBB2-T862A remained sensitive to AEE788 with IC50 value comparable to that 

of wild type ERBB2 (Figure 40). However, ERBB2-L755S and ERBB2-T798M remained 

resistant to AEE788 treatment (Figure 40). 

 

3.3.3. Drug sensitivity of ERBB2 kinase mutants reported in other solid 

cancers 

Mutations in the ERBB2 kinase were reported in some solid tumors and the role of these 

mutations in lapatinib sensitivity is not known
181, 182, 186

. To test this, mutations were 

introduced into MiGR1-ERBB2 construct and stable cell lines expressing mutated ERBB2 

mutants were generated. Ba/F3 cells stably expressing ERBB2 mutants were then tested for 

the efficacy of lapatinib. All the ERBB2 mutants were totally inhibited by lapatinib except 

ERBB2-L755P which has an IC50 value greater than 1 μM (Figure 41). Interestingly, 

another substitution at the same amino acid (ERBB2-L755S) was detected in the lapatinib 

resistant screen (Figure 38 and Figure 39). This points to the fact that L755 is a critical 

residue for lapatinib binding and mutation at this position causes drug resistance. Thus, 

patients with ERBB2-L755P may not respond to lapatinib treatment suggesting that 

alternative ERBB2 inhibitors need to be tested that overcome lapatinib resistance. 

Importantly, ERBB2-H878Y which was reported in 11% of hepatoma patients, showed 

enhanced sensitivity to lapatinib treatment with an IC50 value nearly half that of the wild 

type ERBB2 (Figure 41). Thus this mutation can be considered as lapatinib sensitizing 

mutation similar to EGFR-L858R which is a gefitinib sensitizing mutation reported in 

NSCLC
16

. This may be significant since hepatoma patients with ERBB2-H878Y may 

benefit from lapatinib treatment. ERBB2-V777L showed similar IC50 value to that of wild 

type ERBB2 towards lapatinib treatment (Figure 41). ERBB2-V773A and ERBB2-N857S 

showed higher IC50 values compared to wild type ERBB2 but their IC90 values were well 

within 0.5 μM (Figure 41).  

We then tested the role of ERBB2 kinase domain mutations on AEE788 sensitivity. All 

mutants except ERBB2-L755P were sensitive to AEE788 with IC50 values similar to that 
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of wild type ERBB2 (Figure 41). ERBB2-L755P showed cross resistance to both lapatinib 

and AEE788 (Figure 41). Structural position of ERBB2 mutants analysed and their IC50 

values against lapatinib and AEE788 were summarized in the Table 5. Thus, ERBB2-

L755S, ERBB2-L755P and ERBB2-T798M were shown to be resistant to both the 

reversible inhinitors (lapatinib and AEE788) tested.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41. ERBB2-L755P is a lapatinib resistant mutation. 

Ba/F3 cells stably expressing ERBB2 mutations that were reported in various cancers were treated with 

indicated concentrations of lapatinib and AEE 788 and cell proliferation inhibition was measured after 48 

hours by MTT assay. 
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Table 5. Summary of drug sensitivity profiles and transformation ability of ERBB2 mutants.  

IC50 values of wild type and ERBB2 mutants were calculated from the figures 40 and 41 were shown along 

with the position of mutation in ERBB2 gene. The cancer types in which the respective mutations are 

identified were shown. 

 

 

3.3.4. Lapatinib-resistant ERBB2 mutants are sensitive towards irreversible inhibitors 

It was previously shown for EGFR mutants that irreversible inhibitors can overcome 

gefitinib/erlotinib resistance
227

. To test if irreversible EGFR/ERBB2 inhibitors overcome 

lapatinib resistance, CL-387,785 and WZ-4002 were chosen for the study. Upon treatment, 

Ba/F3 cells lines stably expressing lapatinib resistant ERBB2 mutants (L755S, L755P and 

T798M) were shown to be sensitive to both the irreversible inhibitors CL-387,785 and WZ-

4002 (Figure 42). When compared to wildtype ERBB2 kinase, all lapatinib-resistant 

ERBB2 mutants showed only 2-4 fold increase in IC50 values towards CL-387,785 and 

WZ4002 (Figure 42). This increase in IC50 values towards the irreversible inhibitors is 

significantly lower compared to lapatinib where the IC50 values for ERBB2 mutants were 

more than 50 fold higher than that of wildtype ERBB2.  
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Figure 42. Irreversible inhibitors overcome lapatinib resitance due to ERBB2 kinase domain mutations. 

Ba/F3-ERBB2 mutant cell lines (L755S, L755P and T798M) were tested for their sensitivity towards CL-

387,785 and WZ-4002 at the indicated concentrations. Ba/F3-ERBB2-WT is shown for comparison (red line). 

 

To test if the cell proliferation inhibition is reflected at the biochemical level, mutant 

ERBB2 Ba/F3 cell lines were treated with CL-387,785 and WZ-4002 and analysed. 

Inhibition of autophosphorylation (demonstrated by two different phopho-ERBB2 

antibodies) as well as activation of downstream signaling molecules (STAT5 and ERK1/2) 

correlated well with the cell proliferation inhibiton data (Figure 43). 
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Figure 43. Inhibition of autokinase activity and downstream signaling by CL-387,785 and WZ-4002. 

Wild type and mutant Ba/F3 cell lines (L755S, L755P, T798M and T862A) were treated with increasing 

concentrations (50 nM, 100 nM, 250 nM, 500 nM and 1000 nM) of indicated drugs for 30 minutes and 

analysed for the inhibition of ERBB2 activation as well as the activation of downstream signaling molecules. 
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Thus, lapatinib resistance due to certain ERBB2 kinase domain mutations can be overcome 

by irreversible inhibitors. This may offer potent treatment alternatives in the future for 

lapatinib-resistant ERBB2-positive breast cancer. 
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4. Discussion 

 

4.1. Drug sensitivity profiles of activating and drug resistant FLT3 

mutants 

4.1.1. FLT3-D835Y is less sensitive than FLT3-ITD towards sorafenib treatment  

Internal tandem duplication (ITD) in the juxtamembrane domain and a point mutation in 

the activation loop of the kinase domain are the most common activating mutations 

reported in the FLT3 receptor. Our aim was to test the effect of multikinase inhibitors 

sunitinib and sorafenib against activating FLT3 mutants. To this end we first established 

Ba/F3 cell lines that stably express and were transformed by the FLT3 kinase mutants. 

Analysis of Ba/F3 cells transformed by the FLT3 mutants revealed that FLT3-D835Y was 

relatively resistant towards sorafenib treatment (cellular IC50 approximately 100 nM). 

Ba/F3-FLT3-ITD remained sensitive to sorafenib treatment with a cellular IC50 value of 5 

nM. Recently, Auclair et al. showed similar biochemical IC50 values for these activating 

FLT3 mutants against sorafenib
236

. On the contrary, no significant differences in cellular 

IC50 values was observed between activating mutants against PKC412 and sunitinib 

treatment. These results indicate that the patients with FLT3-D835Y may not respond well 

to sorafenib treatment as compared to the FLT3-ITD positive patients. Thus, AML patients 

with FLT3-D835Y may respond better to sunitinib treatment than sorafenib treatment. 

However, there are both advantages and drawbacks with this model to test the efficacy of 

FLT3 kinase inhibitors.  

The primary advantage of using the Ba/F3 cell line-based assay is that it is relatively rapid 

to establish stable cell lines and testing of inhibitors can be done using simple assays. On 

the other hand, Ba/F3 cells expressing mutant FLT3 receptors is an artificial system and the 

results should be carefully extrapolated to predict the clinical outcome. However, the added 

advantage is that the Ba/F3 cells lack any other known oncogenic mutations as evidenced 

by it’s cytokine dependence of cell proliferation and survival. This is important to evaluate 

the effects of inhibitors on the mutated FLT3 kinase alone in the background of non-

transformed cell line. Thus, studies using both the Ba/F3 cells and AML cell lines need to 

be complemented with each other in order to test the feasibility of findings for clinical 

application as well as to understand the oncogenic signaling leading to AML pathogenesis. 
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4.1.2. Sorafenib overcomes PKC412 resistance due to FLT3 kinase domain mutations 

Recently, a cell based resistance screen identified that certain kinase domain mutations in 

the FLT3-ITD background cause PCK412 resistance
104

. Thus, we tested if the multikinase 

inhibitors sunitinib and sorafenib can overcome PKC412 resistance due to these mutations 

(N676D, F691I and G697R) in the FLT3-ITD background. All these PKC412-resistant 

FLT3-ITD mutants (N676D, F691I and G697R) transformed Ba/F3 cells. As shown 

before
104

, these mutants were resistant to PKC412 treatment. Importantly, both sunitinib 

and sorafenib inhibited FLT3-ITD + N676D with a cellular IC50 value within the 

concentrations that do not have nonspecific toxicity against parental Ba/F3 cells.  

Gatekeeper residue mutations were reported to confer very strong inhibitor resistance in 

several kinases (BCR-ABL-T315I, EGFR-T790M, c-KIT-T670I and PDGFRalpha-

T674I)
30, 37, 145, 237

. Similarly, FLT3-ITD + F691I (gatekeeper mutation) is also resistant to 

all the drugs tested so far
104

. Analysis of cell proliferation inhibition showed that the IC50 

value for FLT3-ITD + F691I was beyond the PKC412 concentrations that can be achieved 

in patients. Interestingly, sorafenib inhibited FLT3-ITD + F691I with and IC50 value of 

approximately 1 μM. Eventhough the IC50 value for FLT3-ITD + F691I against sorafenib is 

nearly 200 times higher than that of FLT3-ITD alone, this concentration can be achieved in 

patients
238

. Importantly, sunitinib was more potent against FLT3-ITD + F691I with an IC50 

value half to that of sorafenib. We then tested the efficacy of sunitinib and sorafenib on the 

PKC412 resistant G697R mutation. FLT3-ITD + G697R was totally resistant to sunitinib 

even at higher concentrations upto 2 μM. On the contrary, sorafenib was very effective 

against FLT3-ITD + G697R making it an alternate treatment option for FLT3-ITD positive 

patients who may develop this mutation at the time of relapse. Thus, sorafenib effectively 

inhibited all the three PKC-412 resistant FLT3-ITD mutations tested. We then examined if 

sorafenib also induces cell death in these cell lines. Sorafenib potently induced cell death in 

both the activating and PKC412 resistant FLT3 mutants in a dose dependent manner. The 

extent of sorafenib induced cell death is in agreement with cell proliferation data observed 

for all the mutants; FLT3-D835Y and FLT3-ITD + F691I were relatively less sensitive to 

cell death compared to other FLT3 mutants tested.  

PKC412, sunitinib and sorafenib are multikinase inhibitors that are currently in use for 

AML treatment. Since the effective inhibitor concentrations of sunitinib and sorafenib 

against FLT3 mutants were well within the range that can be achieved in patients
238, 239

, 
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these drugs offer potent alternatives for treating AML patients who are positive for 

activating or PKC412 resistant mutations in the FLT3 kinase. Using a mouse model, it was 

demonstrated that treatment with sorafenib reduced the leukemia burden and prolonged 

survival
240

. Importantly, in a phase I trial,  sorafenib treatment resulted in the decrease of 

leukemia blasts in FLT3-ITD positive patients but not in patients without this mutation
240

. 

Moreover, in a recent study, compassionate use of sorafenib before or after allogenic stem 

cell transplantation showed significant activity in AML patients with FLT3-ITD 

mutation
241

.  Thus, these results suggest that sorafenib monotherapy might offer superior 

clinical outcome in FLT3-ITD positive AML patients. Another important feature of 

sorafenib is it’s ability to inhibit Raf kinase whose role has been shown previously in 

AML
236

. Thus, the differential drug responses of different FLT3 mutants observed against 

tested multikinase inhibitors is an important step towards selecting AML patients for the 

most suitable drug treatment.  
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4.2. Functional properties and drug sensitivity profiles of EGFR mutants 

4.2.1. Identification of kinase defective EGFR mutations reported in NSCLC patients 

Identification of activating mutations in the kinase domain of EGFR in NSCLC patients 

that sensitize the receptor to small-molecule kinase inhibitors led to a retrospective analysis 

of several clinical trials to confirm a correlation between EGFR mutational status and 

treatment response to kinase inhibitors such as erlotinib and gefitinib. One of the largest 

studies conducted identified several novel EGFR mutations but failed to find a correlation 

of mutational status and treatment response and thus concluded that the mutational status of 

EGFR in NSCLC patients is not a predictive factor for erlotinib response
141

. Hence, 

molecular analysis to predict treatment response was not recommended. Numerous 

additional studies conducted with both gefitinib and erlotinib produced conflicting results 

about the mutational status as a predictive factor of drug responsiveness
141, 142, 217, 242

. It is 

important to note that most of the less frequent mutations reported were not functionally 

characterized thus far, making it difficult to draw meaningful conclusions from correlative 

studies comprising only the mutational status but not the type of mutation. Moreover, 

additional EGFR mutations were reported that do not sensitize but cause resistance toward 

EGFR inhibitors, making correlative studies even more complicated
36, 222, 227, 243, 244

. 

Differences in sequencing techniques, interpretation of the results, and probably potential 

differences in the sensitivity of EGFR mutations toward different EGFR inhibitors sparked 

a controversy about whether EGFR sequencing analysis has an important role in guiding 

clinical use of EGFR inhibitors in NSCLC patients
245, 246

. 

Therefore, we aimed to perform comprehensive analysis of a large panel of published 

EGFR mutations with respect to kinase activity, transforming potential, and sensitivity 

toward different EGFR kinase inhibitors. Surprisingly, 4 of 30 EGFR mutations studied 

were defective in kinase activity even after EGF stimulation. Because EGFR kinase activity 

is indispensable for the activation of oncogenic signaling pathways, it seems unlikely that 

these kinase-dead mutations contribute to tumor development. However, a recent study has 

reported that inhibition of EGFR kinase activity alone does not result in cytotoxicity in 

tumor cells
247

. Kinase-defective EGFR expression was sufficient to maintain basal glucose 

levels and tumor cell survival. Thus, kinase-dead mutations identified in patient samples 

may have a role in tumor maintenance. In any case, however, usage of EGFR inhibitors will 
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have no effect. The kinase-dead mutation EGFR-V851A was identified in a large 

retrospective study, which concluded that there is no correlation between EGFR mutation 

status and response to erlotinib treatment
141

. Interestingly, an EGFR mutation with a 

different exchange at the same position (EGFR-V851I) has been reported in two patients 

who were not responsive to gefitinib
139, 248

. Because V851 is critical for the catalytic 

activity of EGFR, this mutation may not contribute to tumor growth and survival in these 

cases. It was suggested that the identification of novel EGFR mutations in NSCLC patients 

may result from PCR artifacts due to the use of formalin-embedded tissue in some cases
245

. 

Such artifacts include C T/G A and A G/T C transitions
246

, which are present in the 

kinase-dead mutations identified in this study
141

. On the other hand, EGFR-V851A was 

independently reported in patients by different investigators
139, 248

. The reason for the 

detection of kinase-dead EGFR mutation in NSCLC is unclear at the moment and these 

mutations may also present so-called passenger or bystander mutations as reported 

previously in lung cancer
249, 250

. Recently, crystal studies of the kinase domain in tandem 

with juxtamembrane domain showed that the regions around the observed kinase defective 

mutants were important for the intact intrinsic kinase activity of EGFR
124, 220, 251

. Thus, the 

residues that are mutated to kinase defective EGFR may be involved in juxtamembrane 

regulation of EGFR kinase activity. Nevertheless, the variability of kinase activity and 

sensitivity to EGFR kinase inhibitors may in part be responsible for the discrepancies 

between clinical studies aiming to correlate mutational status and drug response. 

 

4.2.2. Drug sensitivity profiles of EGFR kinase domain mutants 

Sensitivity toward different kinase inhibitors can vary significantly between individual 

activating and resistance mutations, as it has been shown for Bcr-Abl, c-Kit, or Flt-3
207, 225

. 

This prompted us to establish drug sensitivity profiles for a comprehensive panel of EGFR 

mutations toward three EGFR kinase inhibitors. From these studies, we have identified four 

sets of mutations based on their drug sensitivity profiles: (a) mutations that are very 

sensitive to all three drugs tested with IC50 values in the low nanomolar range (L858R and 

Del 747-753insS), (b) mutations that are less sensitive to gefitinib (IC50 > 100 nmol/L) but 

sensitive to both erlotinib and AEE788 (G719S, V742A, and R776C; IC50 < 100 nmol/L), 

(c) mutations that are less sensitive to both gefitinib and erlotinib but sensitive to AEE788 

(D761N, S768I, S784F, L838V, and L861Q), and (d) mutations that are resistant to all 
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three drugs tested (N826S and T790M). Interestingly, EGFR-V742A was also reported in 

the stroma of two breast cancer patients
252

. Thus in these patients with gefitinib resistant 

EGFR-V742A, treatment with erlotinib may result in positive outcome. Does such a dose-

response profile for EGFR mutations have any effect on the clinical management of 

NSCLC and do differences of IC50 values below or above 100 nmol/L constitute a 

clinically significant difference? With both gefitinib and erlotinib, mean plasma 

concentrations well above 1 μmol/L can be achieved, and this is well above the in vitro 

concentrations at which most of the EGFR mutants can effectively be inhibited. However, 

mean plasma concentrations do not provide information about drug concentration within a 

tumor cell and whether the EGFR target is efficiently inhibited. Two recent articles 

describe secondary EGFR mutations in gefitinib- and erlotinib-resistant patients. In one 

article, it was shown that erlotinib treatment could overcome gefitinib resistance in a 

NSCLC patient caused by a EGFR-L858R+L747S mutation
243

. In vitro IC50 values for this 

mutant were 200 and 80 nmol/L for gefitinib and erlotinib, respectively. Similarly, in a 

second article, erlotinib resistance caused due to an EGFR-L858R+E884K mutation could 

be overcome by gefitinib treatment. Again, in vitro data suggested IC50 differences in the 

100 nmol/L range
253

. This indicates that in a clinical setting, IC50 values for a particular 

EGFR mutant above and below 100 nmol/L might well be important for whether a patient 

responds to EGFR kinase inhibitor treatment and that in vitro sensitivity profiles could be 

used to improve treatment strategies. In summary, our results suggest that not all EGFR 

mutations reported to date are of pathophysiologic relevance for NSCLC development and 

maintenance and underscore the need of functional characterization of every new EGFR 

mutation discovered in NSCLC patients as it has been done in other malignancies such as 

chronic myelogenous leukemia. 

Identification of comprehensive drug resistance profiles opens the opportunity to test 

alternative EGFR inhibitors in vitro such as AEE788. Other recent studies have shown that 

irreversible inhibitors of EGFR kinase were effective to overcome the resistance caused by 

reversible inhibitors such as gefitinib and erlotinib
227

. Such preclinical investigations will 

undoubtedly accelerate the development of second-generation EGFR kinase inhibitors. 

However, as it is the case for chronic myelogenous leukemia, several resistance 
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mechanisms, including the switch to alternate oncogenic pathways, will add complexity to 

the resistance issue
254

. 

 

4.2.3. EGFR-L861Q is a hyperactive kinase but not drug sensitizing mutation 

EGFR-L861Q is one of the frequent mutations reported in NSCLC patients but cell 

proliferation analysis showed that this mutation has a higher IC50 value compared to other 

common EGFR mutants such as L858R and G719S against the EGFR inhibitors gefitinib 

and erlotinib. The higher cellular IC50 value for EGFR-L861Q against erlotinib was also 

reported previously
71

. In the absence of EGF ligand, all these mutants can transform cell 

lines while the wild type EGFR cannot
221

. Thus, it is not possible to compare drug 

responses of ligand-independent EGFR mutants to that of the ligand dependent wild type 

EGFR
221

. To overcome this obstacle, EGFRvIII was used as a test backbone to compare 

biochemical properties and drug sensitivities of EGFR mutants to that of the wildtype 

kinase domain. EGFRvIII is an oncogenic receptor reported in glioblastoma patients and 

contains a large deletion in extra cellular ligand binding domain but contains an intact 

kinase domain
255

. Because EGFRvIII retains the wildtype kinase and can transform cell 

lines in the absence of EGF ligand, it was chosen for the study of the role of kinase domain 

mutations on intrinsic properties of the EGFR. Using this strategy, EGFR-L861Q showed 

enhanced autokinase activity as well as  transformation ability compared to both wild type 

(EGFRvIII) as well as the most common mutants EGFRvIII-L858R and EGFRvIII-G719S. 

Upon cell proliferation inhibition analysis, the most common EGFR mutants reported in 

NSCLC patients, L858R and G719S in the EGFRvIII background showed significant 

decrease in cellular IC50 values compared to EGFRvIII. Interestingly, EGFRvIII-L861Q 

did not confer enhanced drug sensitivity towards EGFR inhibitor (gefitinib, erlotinib and 

AEE788) treatment compared to EGFRvIII. These results demonstrated that unlike 

mutations L858R and G719S, EGFR-L861Q is not a drug sensitizing mutation. A mutation 

can be considered as drug sensitizing if its IC50 value against a particular drug is less than 

that of the wild type kinase. Thus, NSCLC patients with EGFR-L861Q may not have 

significant benefit upon EGFR inhibitor treatment compared to those with either EGFR-

L858R or EGFR-G719S. Thus, alternate EGFR inhibitors need to be tested that might 

confer enhanced sensitivity on EGFR-L861Q compared to the EGFR-WT kinase.  
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WZ-4002 is a novel irreversible inhibitor of EGFR kinase that was recently shown to have 

significant activity both in vitro and in vivo
205

. Both EGFRvIII-L858R and EGFRvIII-

G719S showed lower IC50 values towards WZ-4002 treatment compared to wild type 

EGFRvIII. Interestingly, EGFRvIII-L861Q also showed significantly more sensitivity 

against WZ-4002 compared to the wild type EGFRvIII. Therefore, second-generation 

kinase inhibitors such as WZ-4002 may offer more potent alternative to treat patients with 

EGFR-L861Q mutation
228

. The Ba/F3-EGFRvIII-based system described in this report will 

be a valuable tool to test novel compounds and strategies. 
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4.3. Effect of cancer associated ERBB2 variants on kinase activity and 

drug sensitivity   

4.3.1. Genetic polymorphisms in ERBB2 kinase do not effect drug sensitivity 

The importance of the role of genetic factors in determining drug sensitivity towards 

inhibitor treatment is evident in CML, AML and NSCLC
127, 256

. Polymorphisms and 

mutations in the ERBB2 kinase were reported mostly in breast cancer and less frequently in 

other cancers. ERBB2 polymorphism I655V either alone or in tandem with another 

polymorphism I654V has been postulated to increase the risk of breast cancer incidence
177, 

178
. Methods to test ERBB2 polymorphisms were also described

179, 257
. But, contradicting 

reports exist questioning the role of ERBB2 polymorphisms in breast cancer risk
179, 180, 233

. 

However, the functional role of ERBB2 polymorphisms is not known making it difficult to 

assess their role in breast cancer pathogenesis. Functional analysis revealed that these 

ERBB2 polymorphisms do not enhance kinase activity, transformation potential and drug 

sensitivity suggesting that there is no need to test for  ERBB2 polymorphism for lapatinib 

treatment. Thus, ERBB2 polymorphisms has no role in predicting outcome upon lapatinib 

treatment. 

 

4.3.2. Identification of lapatinib resistant ERBB2 kinase domain mutations 

Development of secondary drug resistance upon inhibitor treatment is a major problem in 

advanced diseases
30, 145

. In vitro screens which identify kinase domain mutations that 

abrogate inhibitor binding were shown to be useful in predicting the mechanisms of 

secondary drug resistance
208

. Lapatinib is approved for the treatment of ERBB2 positive 

breast cancer and it is important to identify lapatinib resistant ERBB2 kinase domain 

mutations. Thus, we performed an in vitro screen to identify ERBB2 kinase domain 

mutations that cause resistance to lapatinib treatment. Using ENU mutagenesis screen, 

ERBB2-L755S, ERBB2-T862A and ERBB2-T798M were identified as lapatinib resistant 

kinase domain mutations. Importantly, ERBB2-L755S was also reported previously in an 

independent lapatinib resistance screen
258

. Moreover, ERBB2-L755S was previously 

identified in breast cancer as well as in gastric cancer patients
183

. Thus patients with 

ERBB2-L755S may not respond to lapatinib treatment (primary resistance). Interestingly,  

similar mutation at the homologous position in EGFR (L747S) was identified in a lapatinib 
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resistance screen indicating a common mechanism of lapatinib activity against both EGFR 

and ERBB2
259

. Recently, EGFR-L747S was reported in lung cancer and as a gefitinib 

resistant mutation
235, 260

. 

Lapatinib resistant ERBB2-T862A (identified in the screen) is an activation loop mutant 

and was recently reported in primary gastric cancer
261

. Moreover, EGFR-T854A is 

homologous to ERBB2-T862A and was reported as a gefitinib-resistant mutation in a lung 

adenocarcinoma patient
234

. EGFR-T854A was also identified as an erlotinib resistant kinase 

domain mutant in an in vitro screen indicating that this mutation is cross-resistant to 

different inhibitors
259

. Eventhough identified in lapatinib resistance screen, ERBB2-T862A 

was totally inhibited at higher lapatinib concentrations suggesting that dose escalation may 

overcome the intermediate resistance caused by this mutation. 

Gatekeeper residue in the kinase domain is critical for inhibitor binding and its mutation in 

several kinases was shown to cause secondary resistance against various kinase inhibitors
30, 

145
. T798M is the gatekeeper residue mutation in ERBB2 kinase and conferred lapatinib 

resistance. Interestingly, similar mutation in EGFR kinase (T790M) was shown to cause 

lapatinib resistance in in vitro resistance screen suggesting a common role of this residue in 

lapatinib activity against both EGFR and ERBB2
259

.    

 

4.3.3. Drug sensitivity profiles of ERBB2 mutations reported in cancer patients 

Kinase domain mutations in ERBB2 were reported in various cancers and these mutants are 

not characterized functionally. A panel of selected ERBB2 mutants transformed Ba/F3 cells 

to cytokine independence which were then used to test inhibitor sensitivity. The locations 

of the kinase domain mutants considered in this study are depicted in Figure 44 (A and B). 

Of the four mutations in the N-lobe of the kinase, L755S/P emerges from a loop adjacent to 

helix C, V773 and V777 are at or near the C-terminal portion of helix C, and T798 is at the 

gatekeeper position in the ATP binding site (Figure 44A and B). Of the remainder, N857 

emerges from helix D, T862A forms the base of the ATP binding site, and H878 is in the 

activation loop.   
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Figure 44. Structural analysis of lapatinib resistant ERBB2 kinase domain mutants.  

The side chains of mutants considered in this study are plotted (red sticks) together with a schematic 

representation of the protein fold using the crystal structure of EGFR kinase in complex with erlotinib (green 

sticks). B) is a view roughly orthogonal to A) and shows additional inhibitors gefitinib (yellow sticks) and 

lapatinib (blue sticks) superimposed at the ATP binding site (performed in collaboration with Prof. Richard A. 

Engh (NORSTRUCT, Department of Chemistry, University of Tromsø, Norway). 

 

 

ERBB2-H878Y was identified as the most sensitive mutant towards lapatinib treatment 

with IC50 value less than that of the wild type ERBB2 receptor. Similar sensitizing effect of 

ERBB2-H878Y was reported recently in an autophosphorylation assay
262

. ERBB2-H878Y 

was reported in  11% of hepatoma patients and thus these patients may benefit from 

lapatinib treatment
185

.  

ERBB2-V777L was reported in gastric and colon cancer and showed significant sensitivity 

to lapatinib treatment
183

. Mutations ERBB2-V773A and ERBB2-N857S showed higher 

IC50 values compared to wild type ERBB2 kinase, but were totally inhibited within 

clinically achievable concentrations of lapatinib. Interestingly, ERBB2-L755P was very 

resistant to lapatinib treatment. Another mutation affecting the same residue (ERBB2-

L755S)  also caused lapatinib resistance. Thus, the position L755 is critical for lapatinib 

activity and its mutation may confer drug resistance in patients treated with lapatinib.  

Previously, treatment with alternative inhibitors was shown to overcome inhibitor 

resistance due to kinase domain mutatins in BCR-ABL, FLT3 and EGFR
34, 225, 227, 263

. Thus, 



Discussion 

 - 98 -  

we tested another reversible EGFR/ERBB2 inhibitor AEE788 against Ba/F3-ERBB2 

mutant cell lines. Upon analysis, AEE788 retained activity against lapatinib resistant 

ERBB2-L755S but not towards ERBB2-L755P and ERBB2-T798M prompting the need to 

test new inhibitors. Previously, lack of preclinical models was postulated to hamper the 

understanding mechanisms leading to lapatinib resistance
264, 265

. Thus, the models presented 

in this study would be useful to study drug sensitivity profiles of ERBB mutants as well as 

lapatinib resistance. Furthermore, these cell lines are useful tools to test novel inhibitors 

that might overcome lapatinib resistance. 

 

4.3.4. Structural basis of lapatinib resistance 

To elucidate the mechanism underlying, structural studies were performed in collaboration 

with Prof. Richard A. Engh (NORSTRUCT, Department of Chemistry, University of 

Tromsø, Norway).  

To date, no structural data is available for ERBB2 kinase. Thus, the high degree of identity 

between EGFR and ERBB2 was exploited to perform homology modeling by simple 

replacement of side chains. The ligand binding surfaces at and near the ATP-binding site 

for EGFR and ERBB2 are nearly identical. The following lapatinib-resistant ERBB2 kinase 

domain mutations are analysed: 

L755S/P: Figure 45A shows contacts between L755 and helix C that are seen in the active 

EGFR structures. While mutations at L755 will not affect inhibitor binding directly, they do 

affect the packing interactions with helix C, and thus will influence the structure of the 

active state and the transition between active and inactive forms. In the active form (Figure 

45A), L755 packs against the helix with hydrophobic interactions. In inactive forms (Figure 

45B), the C-helix is translated away from the active site, the activation loop may adopt a 

helical turn, and L755 does not make ordered contact with helix C. Because the mutations 

are transforming in the absence of inhibitor, the L755 mutations either stabilize the active 

state relative to the inactive state or lower a barrier to activation. L755P may do this by 

reducing disorder of the inactive state and stabilizing the loop favorable for an active 

conformation. L755S likely destabilizes the interactions in the inactive state, observed to be 

hydrophobic. It is also possible that L755S introduces stabilizing polar interactions of a 

structurally altered active form. 
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T798M: Threonine 798 is the ERBB2 “gatekeeper”, the ATP site residue long known as a 

primary selectivity determinant among protein kinases. The gatekeeper is also known as the 

most prominent site of drug resistant mutations of Abl kinase against imatinib and other 

CML drugs
30

. The mutation of the gatekeeper to methionine is the principle mechanism for 

drug resistance in EGFR kinase (T790M)
145

. It is known to enhance the affinity of 

oncogenic forms of EGFR kinase to ATP, explaining its drug resistant properties despite 

retention of tight binding to inhibitors. Figure 45C shows how the binding mode of 

AEE788 remains unaffected by the mutation. Unlike AEE788, lapatinib binds the inactive 

conformation preferentially. Figure 45D shows different binding modes for lapatinib in 

EGFR kinase and ERBB4, which share high identity with ERBB2.  

 

 

Figure 45. Structural analysis of lapatinib resistant ERBB2 kinase domain mutants.  

(A) L755 packs against helix C, closest to residues Ala763 and Ile767, and makes no contacts with the 

inhibitors (structure 1M17 with inhibitor erlotinib is depicted lower left). (B) Comparing the active structure 

of 1M17 (green) to an inactive representative 1XKK bound to lapatinib shows the loss of L755 interactions 

(cyan). (C) Overlay of AEE788 bound structures of EGFR (2J6M, active, blue) and EGFR T790M (2JIU, 

inactive, yellow). The existence of the salt bridge linking the active site lysine K753 with the helix C E770 is 

a marker for the active state. The T798M (ERBB2 numbering) mutation does not significantly alter binding, 



Discussion 

 - 100 -  

although a rotation of the inhibitor aromat is apparent. (D) Superposition of two binding modes of lapatinib 

onto the overlay of figure C) and display of the T798M atoms as Van der Waals spheres shows how the 

binding mode seen in 1XKK (cyan) obviously clashes with the mutation, but the binding mode of 3BBT (pale 

blue, ERBB4, which also has threonine as gatekeeper) does not (performed in collaboration with Prof. 

Richard A. Engh (NORSTRUCT, Department of Chemistry, University of Tromsø, Norway). 

 

4.3.4. Irreversible EGFR/ERBB2 inhibitors overcome lapatinib resistance 

Treatment with an irreversible inhibitor was previously shown to overcome gefitinib 

reistance due to EGFR kinase domain mutation
227

. We then tested if irreversible dual 

EGFR/ERBB2 can overcome lapatinib resistance due to ERBB2 kinase domain mutations. 

Cell proliferation analysis showed that both the irreversible inhibitors (CL-387,785 and 

WZ-4002) tested inhibited lapatinib resistant ERBB2 mutant Ba/F3 cell lines. Western blot 

analysis showed that autokinase activity of ERBB2 as well as phosphorylation of 

downstream signaling molecules was inhibited in a dose dependent manner. Thus, 

irreversible inhibitors offer a potent alternative to treat lapatinib resistant cancer due to 

ERBB2 kinase domain mutations.  

In conclusion, our findings suggest that only a subset of patients with select ERBB2 kinase 

mutations may benefit from lapatinib treatment. Thus, a careful molecular diagnosis is 

needed to treat patients with ERBB2 kinase inhibitors. 
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5. Summary  

 

The identification of mutations in druggable kinases as oncogenic events is a major 

advancement in molecular medicine. These mutations include gene fusions, point 

mutations, insertions and deletions that result in constitutive kinase activity and can confer 

a transformed phenotype. Prime example is the BCR-ABL oncogene in chronic myeloid 

leukemia patients, which can be efficiently targeted by small molecule kinase inhibitors 

such as imatinib. Recently several oncogenic mutations were reported in tyrosine kinases in 

hematological malignancies as well as in solid tumors that can be targeted by kinase 

inhibitors. Even though treatment with kinase inhibitors shows promising success in several 

neoplasias, development of secondary drug resistance due to mutations that abrogate 

inhibitor binding has emerged as a major problem. The aim of this study is to establish 

cellular systems for studying biochemical and signaling aspects of oncogenic tyrosine 

kinases, and to use these systems to test the effectiveness of small molecule inhibitors that 

target them. Further objectives include the establishment of cell based screening system to 

identify drug resistant mutations that will be useful in the future to predict resistance 

towards kinase inhibitors in patients. 

We have successfully established cell models to study the biochemical properties and drug 

sensitivity of oncogenic mutations in EGFR, HER2 and FLT3. Interesting findings include 

1) overcoming PKC412 resistant FLT3 mutants using sunitinib and sorafenib 2) the 

identification of EGFR kinase dead mutations that were reported in NSCLC patients, 3) 

differential sensitivity of EGFR mutations towards reversible inhibitors gefitinib, erlotinib 

and AEE788, 4) differential sensitivity of ERBB2 mutants towards AEE788 and lapatinib, 

5) the identification of drug resistant mutations in EGFR and ERBB2 kinase domains and 

6) overcoming lapatinib resistance due to ERBB2 kinase domain mutations by WZ-4002 

treatment.  
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6. Zusammenfassung (Summary in German) 

 

Ein großer Fortschritt der Molekularmedizin war die Entdeckung von Kinasemutationen als 

Ursache zahlreicher Neoplasien. Diese durch Genfusionen, Punktmutationen, Insertionen 

oder Deletionen konstitutiv aktivierten Kinasen führen zu zellulärer Transformation und 

tragen so zur Entstehung von Neoplasien bei. Eine medikamentöse Inhibition der 

deregulierten Kinasen kann somit zur Behandlung dieser Neoplasien eingesetzt werden.  

Als bestes Beispiel dient die chronische myeloische Leukämie, die auf molekularer Ebene 

durch das Fusionsgen BCR-ABL definiert ist und effektiv mit Kinaseinhibitoren wie 

Imatinib behandelt wird. 

Heutzutage sind zahlreiche Tyrosinkinasemutationen in hämatologischen Erkrankungen 

sowie soliden Tumoren beschrieben, die gezielt mit Kinaseinhibitoren behandelt werden 

können. Obwohl die Behandlung verschiedener Neoplasien mit Kinaseinhibitoren Erfolge 

zeigt, stellen Resistenzmechanismen aufgrund von zusätzlichen Mutationen ein Problem 

dar. 

Ziel dieser Arbeit war es, in Zellsystemen die Aktivität von Tyrosinkinasen auf 

biochemischer sowie signaltransduktionaler Ebene und ihre Sensitivität gegenüber 

niedermolekularen Inhibitoren zu untersuchen. Darüber hinaus wurde ein in-vitro screening 

System entwickelt, mit dem Resistenzmutationen identifiziert werden können. Mit den 

dabei gewonnenen Erkenntnissen lassen sich Vorhersagen bei der Behandlung von 

Patienten mit auftretenden Sekundärmutationen treffen. Im Rahmen dieser Arbeit wurde 

mit den oben beschriebenen Modellsystemen die Sensitivität von onkogenen Mutationen in 

EGFR, HER2 und FLT3 gegenüber verschiedenen Inhibitoren bestimmt. Die Ergebnisse 

beinhalten den Nachweis 1) der Inhibition PKC412-resistenter FLT3-Mutanten durch 

Sunitinib und Sorafenib; 2) kinasedefekter EGFR Mutationen, welche in NSCLC-Patienten 

beschrieben wurden; 3) der unterschiedlichen Sensitivität von Mutationen des EGFR 

gegenüber Gefitinib, Erlotinib und AEE-788 und 4) der verschiedenen Sensitivitäten von 

ERBB2 Mutanten gegenüber AEE-788 und Lapatinib. Des Weiteren 5) die Identifikation 

von Resistenzmutationen in den Kinasedomänen von EGFR und ERBB2 und 6) die 

erfolgreiche Behandlung Lapatinib resistenter ERBB2 Klone mit dem WZ-4002 Inhibitor.
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