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Preface

Currently, the Global Navigation Satellite Systems (GNSS) GPS and GLONASS are mod-
ernized and new GNSS such as Galileo and Compass are developed. The modernization
of GPS includes an additional signal on L5 which lies in an aeronautical band. This
will enable a dual frequency positioning on board an aircraft and an elimination of the
dispersive ionospheric delay, which is one of the largest error sources for current single
frequency receivers. Dataless pilot signals will be introduced on all GPS frequencies which
will enable a longer integration time and faster signal acquisition. Moreover, the Multi-
plexed Binary Offset Carrier (MBOC) modulation will be used on L1. Galileo uses larger
signal bandwidths than GPS, which will substantially reduce the code tracking error and
improve the positioning accuracy. For example, the Alternate BOC modulated E5 signal
has a bandwidth of 92.07 MHz, which enables a five times lower code tracking error than
the BPSK(10) modulated GPS L5 signal. The additional frequencies and new signals will
improve the estimation and elimination of ionospheric delays, which is one of the major
error sources for positioning.

The GPS and Galileo satellites transmit spread spectrum signals that enable a position-
ing accuracy of 1 m. A significantly higher positioning accuracy can be achieved with
the carrier phase which can be tracked with millimeter accuracy. However, the carrier
phase is period and requires the resolution of an integer ambiguity for each satellite. The
reliability of this integer ambiguity resolution was so far limited by the small carrier wave-
length of 19.0 cm, receiver and satellite biases, multipath and a large number of unknown
atmospheric delays, which result in an ill-conditioned equation system and a probabil-
ity of wrong fixing of a few percent. This thesis provides new algorithms and methods
to reduce the failure rate by more than seven orders of magnitude. The key to reliable
integer ambiguity resolution are multi-frequency linear combinations that eliminate the
ionospheric delay, increase the wavelength to more than 3 m and keep the noise at a
centimeter level. There exist two further challenges for carrier phase positioning that are
addressed in this thesis: one is a continuous tracking of the carrier phases in environments
with strong multipath and/ or during ionospheric scintillations, and the second one is a
precise estimation of both receiver and satellite phase biases.

The first chapter gives an intuitive introduction to the suggested methods for reliable
integer ambiguity resolution. Moreover, the benefits of the Galileo system are described,
and a model for the code and carrier phase measurements is given.
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In the second chapter, different groups of new multi-frequency mixed code carrier linear
combinations are derived. The chapter starts with the derivation of phase-only linear com-
binations and then shows the benefit of including code measurements. The additional de-
grees of freedom are used to minimize the noise, to maximize the wavelength, to constrain
the worst-case bias amplification and/ or to maximize the ratio between the wavelength
and the combined noise. For the latter approach, geometry-preserving, ionosphere-free
linear code carrier combinations with a wavelength of more than 3 m and a noise of a
few centimeters were found. The large wavelength in relation to the geometry-preserving
property substantially improves the robustness of ambiguity resolution over orbital errors,
satellite clock offsets and tropospheric modeling errors. Therefore, this group of multi-
frequency linear combinations are an interesting candidate for both Wide-Area Real-Time
Kinematics and Precise Point Positioning applications. For dual frequency measurements,
these combinations show a substantial benefit over phase-only linear combinations, which
can not simultaneously increase the wavelength and eliminate the ionospheric delay. The
use of further frequencies enables an even larger ambiguity discrimination and a lower
probability of wrong fixing. This chapter also includes the derivation of a multi-frequency
carrier smoothing where the phase-only combination and the code carrier combination
are jointly optimized. Two further groups of new carrier smoothed multi-frequency code
carrier linear combinations are analyzed: the first one includes geometry-free, ionosphere-
preserving and the second one geometry-free, ionosphere-free linear combinations. The
latter ones provide a direct estimate of the integer ambiguities. Additionally, the ca-
pability of detecting erroneous fixings is maximized by a set of linear combinations that
minimizes the probability of the most likely undetectable uncombined integer error vector.
The chapter ends with code carrier linear combinations including next generation C-band
signals and with linear combinations for estimating second order ionospheric effects.

The third chapter contains several methods to improve the reliability of carrier phase
integer ambiguity resolution, and starts with a description of the currently used integer
ambiguity resolution techniques: rounding, sequential conditional rounding (bootstrap-
ping), integer least-squares estimation (including a search) and integer aperture estima-
tion. It is shown that the optimized multi-frequency code carrier linear combinations
enable a reduction of the probability of wrong fixing by several orders of magnitude, and
that a flat ambiguity spectrum and an extremely efficient search can be achieved with two
multi-frequency linear combinations even without an integer decorrelation. A sequential
conditional ambiguity fixing is proposed which outperforms the traditional bootstrapping
as it reduces the impact of erroneous fixings by slightly lower weights. A partial integer
decorrelation transformation is used to obtain an optimum trade-off between variance
reduction and worst-case bias amplification, a new cascaded ambiguity resolution scheme
with three carrier smoothed ionosphere-free code carrier combinations is provided, and
a partial ambiguity fixing is given where the optimal fixing order is obtained from a
combined forward-backward search while traditional approaches use only a pure forward
search. The optimal fixing order enables a significant increase in the number of reliably
fixable ambiguities for worst-case biases. Finally, the integrity risk due to an erroneous
fixing is evaluated for aircraft landings. The most stringent landing category CAT IIIc
with a vertical alarm limit of 5.3 m and a time to alert of only 2 s has been chosen. The
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integrity risk is substantially lower than the probability of wrong fixing as a large number
of erroneous fixings does not necessarily result in an integrity threat. It is shown that
the risk of an integrity threat is two orders of magnitude lower than the probability of
wrong fixing for the optimized dual frequency E1-E5a linear combinations. Moreover, the
large wavelength of the optimized dual frequency E1-E5a code carrier linear combination
ensures that the set of erroneous fixing vectors remains sufficiently small, and that the
probability of wrong fixing is significantly lower than for uncombined measurements.

The fourth chapter focuses on a new method for improving the reliability of carrier phase
tracking. A vector phase locked loop for joint tracking of carrier phases and Doppler shifts
is presented. Additionally, a method for correcting the signal distortion due to wideband
ionospheric effects is suggested. It is required for precise point positioning with Galileo
as the bandwidth of the E5 signal is so large that the ionospheric dispersion within the
E5 band can no longer be neglected.

In chapter 5, a method for estimating the receiver and satellite phase and code biases as
well as for estimating the vertical ionospheric grid based on measurements from a network
of reference stations is suggested. The method includes several parameter mappings and
a Kalman filter, and is validated with dual frequency GPS measurements from CORS and
SAPOS reference stations.

Chapter 6 includes a validation of the analyzed differential carrier phase positioning
algorithms with real data. GPS measurements from a stationary baseline on top of the
university’s building as well as kinematic measurements from a flight campaign of the
institute were used. Range residuals of less than 10 % of the wavelength were observed
which indicate a quite reliable integer ambiguity resolution. Finally, chapter 7 summarizes
this work.
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1
Introduction

Currently, there exist two operational global navigation satellite systems: GPS and
GLONASS. Europe is building its own global navigation satellite system Galileo which has
many common properties with GPS, e.g. the use of Medium Earth Orbit (MEO) satellites,
spreading codes, overlapping frequency bands and range based positioning. The joint use
of signals from both systems will roughly double the number of available satellites which
will substantially improve the positioning in environments where several satellites are not
visible, e.g. in street canyons. Although GPS and Galileo are rather similar, Galileo will
offer some additional innovations that GPS does currently not provide to the civilian user.
Tab. 1.1 summarizes the most important contributions.

Table 1.1: Innovations of Galileo

Orbits Altitude of 23200 km:
⇒ Groundtrack repetition period of 10 days (instead of 1 day)
⇒ Reduction in resonances due to periodic movement over areas

with irregular gravitational field ⇒ Less satellite maneuvers required.
Signals - Three frequency bands with larger signal bandwidths:

E1: 40.92 MHz, E5: 92.07 MHz and E6: 40.92 MHz.
⇒ Improved estimation and elimination of ionospheric delays

of first and second order
⇒ Increased reliability of carrier phase integer ambiguity resolution.

- Binary Offset Carrier (BOC) modulation:
Power shift to the edges of the spectrum
⇒ Lower Cramer Rao bound
⇒ Improved code delay tracking and stronger multipath suppression.
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Signals - Composite BOC on E1
Linear combination of BOC(1,1) and BOC(6,1) modulations:
⇒ Receivable signal for narrowband receivers
⇒ Low noise level and multipath for wideband receivers.

Satellites H2 maser as satellite clock: Improved stability over relevant time intervals
⇒ Improved estimation of satellite clock errors.

Zandbergen et al. have described the final Galileo orbit selection in [2]. Fig. 1.1
shows the nominal Galileo Walker constellation with 27 MEO satellites that are arranged
in three orbital planes with an inclination of 56◦ and an altitude of 23200 km. The
right ascension of the ascending node is Ω = l · 120◦ and the initial mean anomaly is
given by M0 = k · 40◦ + l · 40◦/3 with the satellite index k ∈ {0, . . . , 8} in the orbital
plane l ∈ {0, 1, 2}. Each satellite is transmitting the positions of all other satellites
in the almanac to simplify the acquisition of rising satellites. Fig. 1.1 also shows the
intersatellite links for one selected satellite. They are currently not foreseen for Galileo
although they would dramatically simplify the orbit determination due to a significantly
improved geometry and the absence of atmospheric errors.

Figure 1.1: Galileo Walker constellation: 27 satellites are arranged in three orbital
planes with an inclination of 56◦ and an altitude of 23200 km (MEO). Each satellite is
transmitting the positions of all other satellites in the almanac. Intersatellite links are
currently not foreseen although they would dramatically simplify the orbit determination
due to a significantly improved geometry and the absence of atmospheric errors.

Fig. 1.2 shows the groundtrack for one Galileo satellite which repeats after 10 days. This
repetition period is ten times longer than for GPS to avoid resonances due to a periodic
movement over areas with irregularities in the gravitational field of the earth. A more
stable orbit requires less maneuvers which turns into a higher availability of the satellites.
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Figure 1.2: Groundtracks for Galileo: The Walker constellation consists of three orbital
planes which are indicated by different colors. The groundtrack of each satellite repeats
after 10 days. This large period reduces the resonances due to a periodic movement over
areas with irregularities in the gravitational field of the earth. After 16.4 hours, a user
can see the same satellite constellation although different satellites are in the positions.
This is indicated by the two dotted lines. This short constellation period is helpful for
multipath detection at reference stations.

1.1 Carrier phase positioning

The Galileo satellites transmit spreading codes that are modulated onto three carriers.
Both the code and the carrier phase can be used for ranging. The first one is unambiguous
but can be measured only with a centimeter to decimeter accuracy. The carrier phase
can be measured with a millimeter accuracy but it is ambiguous as the carrier phase is
periodic. This means that the integer number of cycles between the satellite and the
receiver is unknown, i.e. only a fractional part can be measured.

Fig. 1.3 to 1.6 visualize the problem of integer ambiguity resolution and the approaches
of this thesis to improve its reliability. The wavefronts are shown, which can be considered
parallel with distances equal to the wavelength. The intersections of the wavefronts from
three satellites result in several possible receiver positions. The infinite search space can
be reduced by the unambiguous code solution which is indicated by the grey shaded area.
However, Fig. 1.3 shows that there exist still numerous ambiguity candidates. A reliable
decision requires a.) measurements from multiple epochs to reduce the search space given
by the float solution and b.) a continuous phase tracking to avoid cycle slips.

Fig. 1.4 shows our first approach to improve the reliability of integer ambiguity resolu-
tion: As the ambiguity resolution suffers from the small carrier wavelength, the received
carrier phases on multiple frequencies are linear combined to achieve a large artificial
wavelength. This results in a larger distance between the wavefronts and an unambiguous
position solution as any other candidate is shifted outside the search space.
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true position

λ = 19.0cm

Figure 1.3: Integer ambiguity grid: The wavefronts from three satellites intersect at
multiple points which results in an ambiguity. The float solution constrains the search
space to a certain area (shown in grey) but leaves some ambiguity (i.e. black circles).

true position

λ = 3.256m

Figure 1.4: Integer ambiguity grid: The carrier phases on two or more frequencies
can be combined to increase the wavelength by more than one order of magnitude. The
ambiguous solutions are moved out of the search space spanned by the pure code solution.
An unambiguous widelane solution remains, which is characterized by a noise level of a
few centimeters.
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Angle constraint

Length constraint
reference receiver

Figure 1.5: Integer ambiguity grid: The search space volume of the float solution is
substantially reduced by constraints on the baseline length and direction. As the length
and direction are not perfectly known in many applications, a certain variation is allowed.

phase bias

position bias

Figure 1.6: Integer ambiguity grid: The wavefront of one satellite signal is shifted by
a phase bias. The intersection point for the true solution disappears and also the other
intersection points change. The one closest to the true position is characterized by a
position bias which is substantially larger than the phase bias. This is a strong motivation
for bias estimation.
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Fig. 1.5 shows a second option to improve the reliability of ambiguity resolution: spatial
constraints on the search space due to an a priori knowledge about the receiver position.
This knowledge can be a distance or direction information w.r.t. a reference receiver. It
can be an exact or a soft constraint allowing some variations. These spatial constraints
can be ideally combined with the increase in wavelength by a multi-frequency linear com-
bination. Fig. 1.6 addresses another challenge of carrier phase positioning: the existence
of unknown phase biases due to delays in the receiver and satellite hardware. The phase
bias on a single satellite shifts the wavefronts, which results in new intersection points.
The true receiver position does no longer correspond to a candidate and the closest can-
didate suffers from a position bias which in general significantly exceeds the phase biases.
This indicates the need for precise bias estimation which is analyzed in Chapter 5.

1.2 Code and carrier phase measurements

The transmit signal of each satellite includes an inphase and a quadrature component on
M frequencies, i.e.

sk(t) =
M∑

m=1

(
skI,m(t) cos

(
ωc,m(t− τk0,m(t)) + φk

0,m(t)
)

+j · skQ,m(t) sin
(
ωc,m(t− τk0,m(t)) + φk

0,m(t)
))

, (1.1)

with the carrier frequencies ωc,m, the phase φ0,m and the time offset τk0,m between the
transmitter clock and an arbitrary reference. The in-phase and quadrature components
are modeled as

sk{I,Q},m(t) =
√

Pk
{I,Q},mb

k
{I,Q},m(t− τk0,m)c

k
{I,Q},m(t− τk0,m), (1.2)

where Pk
{I,Q},m denotes the transmit power, bk{I,Q},m is the navigation bit, and ck{I,Q},m is

the chip of a spreading code which is used to overcome the free space loss.

The received signal is attenuated by αk
m, delayed by the propagation time τkm − τk0,m,

shifted in frequency by the Doppler shift ωk
D,m due to the relative movement, and super-

imposed by white Gaussian noise nk
m(t), i.e.

r(t) =

K∑

k=1

M∑

m=1

(
αk
ms

k
I,m(t) cos

(
(ωc,m − ωk

D,m(t))(t− τkm(t)) + φk
m(t)

)

+j · αk
ms

k
Q,m(t) sin

(
(ωc,m − ωk

D,m(t))(t− τkm(t)) + φk
m(t)

)
+ nk

m(t)
)
. (1.3)

The propagation delay τkm−τk0,m times the speed of light c gives the pseudoranges ρkr,m(tn)
for the r-th user, which can be further decomposed into

ρkr,m(tn) = rkr (tn)− (ek
r(tn))

T δxk(t′n) + c
(
δτr(tn)− δτk(t′n)

)
+ T k

r (tn)

+q21mI
′k
1,r(tn) + q31mI

′′k
1,r(tn) + or,m(tn) + okm(t

′
n) + bm,r + bkm + ηkr,m(tn), (1.4)
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with

rkr (tn) true range between satellite and receiver
ek
r(tn) unit vector pointing from the satellite to the receiver

δxk(t′n) satellite position error at time of transmission t′n
δτr(tn) receiver clock offset
c speed of light
δτk(t′n) satellite clock offset at time of transmission t′n
T k
r (tn) tropospheric slant delay [1], [8]

I
′k(
1,r tn) ionospheric slant delay of first order on frequency L1 [1], [8]
I ′′k1,r(tn) ionospheric slant delay of second order on frequency L1 [1], [8]
q1m = f1/fm ratio of carrier frequencies
or,m(tn) receiver antenna code center variations
okm(t

′
n) satellite antenna code center variations

bm,r, b
k
m receiver and satellite code biases

ηkr,m(tn) receiver code noise including multipath.

The dispersive behaviour of the ionosphere with a 1/f 2 dependency enables the elim-
ination of this delay by multi-frequency linear combinations. The carrier phase can be
modeled similarly as the code phase, i.e.

λmφ
k
r,m(tn) = rkr (tn)− (ek

r(tn))
T δxk(t′n) + c

(
δτr(tn)− δτk(t′n)

)
+ T k

r (tn)

−q21mI
′k
1,r(tn)−

1

2
q31mI

′′k
1,r(tn)

+λmN
k
r,m + pr,m(tn) + pkm(t

′
n) + βm,r + βk

m + εkr,m(tn), (1.5)

with the following additional parameters:

λm wavelength of m-th carrier
Nk

r,m carrier phase integer ambiguity
pr,m(tn) receiver antenna phase center variations [1], [8]
pkm(t

′
n) satellite antenna phase center variations [1], [8]

βm,r, β
k
m receiver and satellite phase biases

εkr,m(tn) receiver phase noise including multipath.

The slant atmospheric delays can be factorized into a zenith delay and a mapping function:

T k
r (tn) = mT(E

k
r (tn)) · Tr,z(tn) (1.6)

I ′kr (tn) = mI(E
k
r (tn)) · I ′r,z(tn) (1.7)

I ′′kr (tn) = mI(E
k
r (tn)) · I ′′r,z(tn), (1.8)

where the mapping functions mT(·) andmI(·) depend on the elevation angle Ek
r . A variety

of mapping functions were proposed over the last decades which are described in details
by Günther in [1] and by Misra and Enge in [8].
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1.3 Accuracy of carrier phase measurements

The carrier phase is continuously tracked by a phase locked loop (PLL). The standard
deviation of the tracking error can be easily derived from the pre-detection result which
can be written in the general form

C(∆φ) = α · ej∆φ + nm, (1.9)

with amplitude α, phase tracking error ∆φ and noise nm. The Costa’s discriminator
extracts the phase by

DPLLc = 1/α2 · ℜ(C(∆φ)) · ℑ(C(∆φ)), (1.10)

which is independent of the sign of α, i.e. it does not require any knowledge of the
navigation bit. The discrimination result can be expanded into

DPLLC
=

1

2
sin(2∆φ) +

1

α
(cos(∆φ)ny + sin(∆φ)nx) +

1

α2
nxny, (1.11)

with the expectation value E{DPLLC
} = 1

2
sin(2∆φ) ≈ ∆φ. Assuming E{n2

x} = E{n2
y} =

TiN0 with integration time Ti, the variance of the discrimination result follows as

σ2
DPLLC

=
1

α2
(cos2(∆φ)E{n2

y}+ sin2(∆φ)E{n2
x}) +

1

α4
E{nxnynxny}

=
TiN0

α2
+

T 2
i N 2

0

α4
=

1

2Ei/N0

(

1 +
1

2Ei/N0

)

, (1.12)

where the latter term denotes the squaring loss. The variance of the tracked carrier phase
is obtained from the variance of the discriminator result and the transfer function of the
tracking loop:

σ2
φ = σ2

DPLLC
· 1

2π

∫ 2π

0

|H(ejφ)|2dφ, (1.13)

where H(·) denotes the transfer function of the tracking loop. For white Gaussian noise,
the transfer function is fully characterized by the one sided bandwidth of the loop filter
BL. Thus, the variance of the tracked carrier phases is given by

σ2
φ =

2BL

1/Ti

· 1

2Ei/N0

(

1 +
1

2Ei/N0

)

, (1.14)

in units of rad2. The standard deviation σφ is often written in units of meters and the
received energy Ei is commonly replaced by the product between received power C and
integration time Ti, i.e.

σφ =
λ

2π

√

BL

C/N0

(

1 +
1

2C/N0Ti

)

. (1.15)

Typical filter parameters are BL = 20Hz and Ti = 20ms, which results in a σφ of less than
1 millimeter for C/N0 = 45dB-Hz and λ = 19.0cm (L1).
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1.4 Accuracy of code phase measurements

The code phase is continuously tracked by a delay locked loop. The standard deviation
of its tracking error can be lower bounded by the Cramer Rao bound which was derived
by Betz in [3] as

σρm ≥
√
√
√
√

c2

C
N0

Ti ·
∫

(2πf)2|Sm(f)|2df
∫

|Sm(f)|2df
, (1.16)

with the power spectral density Sm(f). The Binary Offset Carrier modulation shifts
the power to higher frequencies which increases

∫
|S(f)|2(2πf)2df and, thus, results in a

lower CRB than for BPSK modulation. Tab. 1.2 and 1.3 show the CRBs for the Galileo
and GPS signals for a signal to noise power ratio of C/N0 = 45dB-Hz. Low cost GPS
receivers use only a bandwidth of 2 MHz which results in a CRB of 78.29 cm for the
BPSK(1) modulated L1 signal. A BOC(1,1) modulated signal with sine phasing and a
bandwidth of 20 MHz benefits from a CRB of 14.81 cm, and the MBOC modulation
further reduces the CRB to 11.13 cm. The lowest noise level of only 1.62 cm is achieved
by the AltBOC(15,10) modulated Galileo signal on E5 with a bandwidth of 90 · 1.023
MHz. This low code noise substantially improves the reliability of carrier phase integer
ambiguity resolution.

Table 1.2: Cramer Rao bounds for Galileo signals and C/N0 = 45dB-Hz
Signal Service BW [MHz] Γ [cm]

E1-A BOC(15,2.5), cosine phasing PRS 40 · 1.023 1.74
E1-B, E1-C (pilot) BOC(1,1), sine phasing OS/SoL 4 · 1.023 31.12
E1-B, E1-C (pilot) BOC(1,1), sine phasing OS/SoL 20 · 1.023 14.81
E1-B, E1-C (pilot) CBOC, sine phasing OS/SoL 20 · 1.023 11.13
E5 AltBOC(15,10) OS/SoL 90 · 1.023 1.62
E5 AltBOC(15,10) OS/SoL 50 · 1.023 1.95
E5a-I, E5a-Q (pilot) BPSK(10) OS 20 · 1.023 7.83
E5b-I, E5b-Q (pilot) BPSK(10) SoL 20 · 1.023 7.83
E6-A BOC(10,5), cosine phasing PRS 40 · 1.023 2.41
E6-B, E6-C (pilot) BPSK(5) CS 10 · 1.023 15.66
E6-B, E6-C (pilot) BPSK(5) CS 20 · 1.023 11.36

Table 1.3: Cramer Rao bounds for GPS signals and C/N0 = 45dB-Hz
Signal Service BW [MHz] Γ [cm]

L1-I BPSK(1) OS (C/A) 2 · 1.023 78.29
L1-I BPSK(1) OS (C/A) 20 · 1.023 25.92
new L1-C MBOC, sine phasing OS 20 · 1.023 11.13
new L2-C BPSK(1) OS 20 · 1.023 25.92
L5-I, L5-Q (pilot) BPSK(10) OS 20 · 1.023 7.83



2
Multi-frequency mixed code
carrier combinations

Linear combinations of GPS measurements are widely used to improve the reliability of
integer ambiguity resolution. One of the most simplest linear combinations is the single
difference between the measurements of two receivers which eliminates the clock offset,
phase and code biases of a satellite. Similarly, single differences can be computed between
the measurements of two satellites to remove the clock offset, phase and code biases of the
receiver. Double difference measurements additionally suppress the spatially correlated
atmospheric errors and are used for baseline estimation and orbit determination (e.g. in
the Bernese software [87]) in geodesy. Linear combinations between the measurements of
at least two frequencies are applied to remove the first order ionospheric delay. However,
the L1-L2 ionosphere-free linear combination suffers from a wavelength of only 6 mm which
prevents any reliable ambiguity resolution. The dual frequency Melbourne-Wübbena
combination includes both code and carrier phase measurements, and eliminates the range,
the clock offsets, the tropospheric and ionospheric delays. It only leaves the superposition
of phase and code biases and widelane ambiguities which are commonly estimated by
this linear combination. In this section, new linear combinations are derived for Galileo
and GPS. The use of carrier phase measurements on three frequencies (E1,E5a,E5b or
L1,L2,L5) enables linear combinations that increase the wavelength and simultaneously
suppress the ionospheric delay. Four frequency linear combinations benefit from an even
stronger suppression of the ionospheric error. The set of integer preserving phase-only
widelane combinations is discrete and finite. The properties of these linear combinations
can be significantly improved if code measurements are included with a small weight.
There exists an infinite set of ionosphere-free mixed code-carrier combinations of arbitrary
wavelength.
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2.1 Design of multi-frequency phase combinations

A multi-frequency linear combination weights the phase measurements of (1.4) by αm, i.e.

λφk
u(ti) =

M∑

m=1

αmλmφ
k
u,m(ti)

=

M∑

m=1

αm

(
rku(ti) + δrku(ti) + c

(
δτu(ti)− δτk(ti)

)
+ T k

u (ti)
)
−

M∑

m=1

(αmq
2
1m)I

k
u(ti)

+
M∑

m=1

(
αmλmN

k
u,m

)
+

M∑

m=1

(

αmb
k
φu,m

)

+
M∑

m=1

(

αmε
k
φu,m

(ti)
)

, (2.1)

with the wavelength λ, the frequency ratio q1m = f1/fm, and the combined phase φk
u(ti)

in units of cycles. The linear combination shall be geometry-preserving (GP), i.e.

M∑

m=1

αm = 1, (2.2)

which also leaves the orbital errors, the clock offsets and tropospheric delay invariant.
Moreover, the linear combination shall preserve the integer nature of ambiguities, i.e.

M∑

m=1

αmλmN
k
u,m

!
= λNk

u . (2.3)

with the integer ambiguity Nk
u . Solving (2.3) for λ yields

Nk
u =

M∑

m=1

αmλm

λ
Nk

u,m, (2.4)

which is integer valued for any arbitrary Nk
u,m if

jm =
αmλm

λ
∈ Z ∀m, (2.5)

with Z being the amount of integer numbers. Solving for αm yields

αm =
jmλ

λm
. (2.6)

Combining (2.2) and (2.6) yields the wavelength of the linear combination:

λ =
1

M∑

m=1

jm
λm

. (2.7)
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The Galileo and GPS carrier frequencies fm = c/λm can be expressed as an integer
multiple of f0 = 10.23 MHz which corresponds to a wavelength λ0 = 29.31m, i.e. (2.7) is
rewritten as

λ =
λ0

l
with l =

M∑

m=1

jmnm (2.8)

and n1 = 154 (E1), n2 = 125 (E6), n3 = 118 (E5b) and n4 = 115 (E5a). Cocard et
al. [39] have used the lane number l to split the integer preserving linear combinations
into three groups: For 0 < l ≤ 115, the group of widelane combinations is obtained which
are characterized by wavelengths larger than the largest wavelength of all carriers. The
intermediate-lane region is described by 115 < l ≤ 154, i.e. the resulting wavelengths
are between the smallest (E1) and the largest (E5a) wavelength. For l > 154, the group
of narrowlane combinations is obtained which are characterized by wavelengths smaller
than the smallest wavelength of all carriers.

Cocard and Geiger have performed a systematic search of all possible L1-L2 widelanes
in [40], and Collins has evaluated ionospheric, noise and multipath properties of these
linear combinations in [41]. This approach is generalized to three frequencies by Henkel
and Günther in [42] and to M frequencies here: A widelane combination satisfies the
inequality

1
M∑

m=1

jm
λm

> λM > 0, (2.9)

which is equivalent to

1 >

(

λM ·
M−1∑

m=1

jm
λm

)

+ jM > 0, (2.10)

and has the unique solution

jM =

⌈

−λM ·
M−1∑

m=1

jm
λm

⌉

. (2.11)

Replacing jM in (2.7) by (2.11) yields the wavelength of the linear combination

λ(j1, . . . , jM−1) =
1

(
M−1∑

m=1

jm
λm

)

+ 1
λM

·
⌈

−λM ·
M−1∑

m=1

jm
λm

⌉ . (2.12)

This wavelength is periodic w.r.t. jm, i.e.

λ(j1, . . . , js−1, js + Ps, js+1, . . . , jM−1)

=
1

(
M−1∑

m=1,m6=s

jm
λm

)

+ js+Ps

λs
+ 1

λM
·
⌈

−λM

(

js+Ps

λs
+

M−1∑

m=1,m6=s

jm
λm

)⌉ (2.13)
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=
1

(
M−1∑

m=1,m6=s

jm
λm

)

+ js
λs

+ 1
λM

·
⌈

−λM

(

js
λs

+
M−1∑

m=1,m6=s

jm
λm

)⌉ ∀s ∈ {1, . . . ,M − 1},

(2.14)

where the minimum period Ps is obtained from

λMPs

λs
=

nsPs

nM

!∈ Z (2.15)

as Ps = nM/gcd(ns, nM) with gcd(ns, nM) being the greatest common divisor between ns

and nM . The periodicity of the wavelength enables an exhaustive search of all integer-
preserving widelane combinations. The linear combination scales the ionospheric delay
on L1 to

Iku =

M∑

m=1

αmq
2
1m

︸ ︷︷ ︸

SI[m]

·Iku,1, (2.16)

where the index [m] denotes that the ionospheric delays are measured in units of me-
ters. The noise standard deviation of the linear combination is given for statistically
independent white Gaussian noise by

σk
u =

√
√
√
√

M∑

m=1

α2
mσ

2
φk
u,m

≈

√
√
√
√

M∑

m=1

α2
m

︸ ︷︷ ︸

Sn[m]

σφk
u
. (2.17)

Collins has suggested an evaluation of the ionospheric and noise figures in units of cycles
in [41] to remove the wavelength scaling. The linear combination in units of cycles is
obtained from (2.1) as

φk
u =

M∑

m=1

jmφ
k
u,m, (2.18)

with φk
u,m being the phase measurement in units of cycles. The scaling of the ionospheric

delay I1/λ1 on L1 follows as

Iku
λ

=

M∑

m=1

jmq1m

︸ ︷︷ ︸

SI[cyc]

·I
k
u,1

λ1
, (2.19)

and the noise standard deviation is written as

σk
u [cyc] =

√
√
√
√

M∑

m=1

j2m

︸ ︷︷ ︸

Sn[cyc]

·σφk
u[cyc]

. (2.20)
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Tab. 2.1 shows that several E1-E6-E5b-E5a widelane combinations of minimum noise
amplification significantly reduce the ionospheric delay in units of cycles. A phase noise of
σφ = 1 mm has been assumed for the computation of σn. In [43], Richert and El-Sheimy
point out that geometry-preserving combinations also scale the geometry-dependant errors
in units of cycles by λ1/λ, i.e. the tropospheric delay and clock offsets are effectively
reduced by widelane combinations and increased by narrowlane combinations.

λ [m] j1 j2 j3 j4 SI[cyc] dB SI[m] dB Sn[cyc] dB Sn[m] dB σn [cm]
29.310 0 1 -3 2 -23.0 -1.1 5.7 26.4 44.0
14.652 1 -4 1 2 -12.6 6.3 6.7 24.7 29.2
9.768 0 0 1 -1 -14.7 2.4 1.5 17.4 5.5
7.326 0 1 -2 1 -14.1 1.8 3.9 18.6 7.3
5.861 1 -4 2 1 -16.7 -1.8 6.7 20.7 11.7
4.884 1 -3 -1 3 -17.9 -3.8 6.5 19.6 9.1
4.187 0 1 -1 0 -11.4 2.1 1.5 13.9 2.5
3.663 1 -4 3 0 -18.9 -6.1 7.1 19.0 7.4
3.256 1 -3 0 2 -17.5 -5.2 5.7 17.1 5.2
2.931 0 1 0 -1 -9.7 2.2 1.5 12.3 1.7
2.664 0 2 -3 1 -9.5 2.0 5.7 16.1 4.1
2.442 1 -3 1 1 -12.9 -1.8 5.4 15.6 3.6
2.254 0 1 1 -2 -8.5 2.2 3.9 13.4 2.2
2.093 -3 1 2 1 3.4 13.8 5.9 15.9 3.9

Table 2.1: E1-E6-E5b-E5a widelane combinations of minimum noise amplification

Eq. (2.19) shows that the ionospheric delay is lowered in cycle domain if

∣
∣
∣
∣
∣

M∑

m=1

jmq1m

∣
∣
∣
∣
∣
< 1, (2.21)

which can be solved for jM :

1

q1M

(

−1−
M−1∑

m=1

jmq1m

)

< jM <
1

q1M

(

1−
M−1∑

m=1

jmq1m

)

. (2.22)

The number ν of integer solutions can be bounded from below and above, i.e.

⌊
2

q1M

⌋

< ν <

⌈
2

q1M

⌉

, (2.23)

which results in at least one solution and at most two solutions for the GPS and Galileo
frequencies. These integer solutions are given by

jM =

{⌈

1

q1M
· (−1−

M−1∑

m=1

jmq1m)

⌉

,

⌊

1

q1M
· (+1−

M−1∑

m=1

jmq1m)

⌋}

. (2.24)
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These two solutions converge to a single solution if

∣
∣
∣
∣
∣

1

q1M
·
M−1∑

m=1

jmq1m +

[

− 1

q1M
·
M−1∑

m=1

jmq1m

]∣
∣
∣
∣
∣
< 1− 1

q1M
. (2.25)

The two integer candidates of (2.24) correspond to the wavelengths

λ =







(
M−1∑

m=1

jm
λm

+ 1
λM

·
⌈

1
q1M

·
(

−1−
M−1∑

m=1

jmq1m

)⌉)−1

(
M−1∑

m=1

jm
λm

+ 1
λM

·
⌊

1
q1M

·
(

+1−
M−1∑

m=1

jmq1m

)⌋)−1







, (2.26)

which is periodic w.r.t. jm with periods Pm = nm/gcd(nm, nM). Fig. 2.1 shows the
ionospheric suppression SI[m] as a function of the wavelength for widelane combinations
with |jm| ≤ 20. A four frequency combination enables a suppression of up to 31.7 dB, a
three frequency combination of up to 16.4 dB and a dual frequency combination does not
allow any ionospheric suppression. The capability of ionospheric reduction also depends
on the maximum |jm|, i.e. the ionospheric reduction of 31.7 dB lowers to 12.1 dB if the
maximum value of |jm| is lowered from 20 to 5.
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Figure 2.1: Reduced ionosphere widelane combinations with |jν | ≤ 20 for Galileo

Table 2.2 shows the weighting coefficients and properties of widelane combinations of
maximum ionospheric suppression for |jm| ≤ 10. The linear combination with λ = 1.954
m benefits from an ionospheric suppression of 28.4 dB and a low noise level of a few cen-
timeters. For λ = 3.256 m, the three frequency E1-E5b-E5a linear combination achieves
a similar ionospheric suppression but suffers from a larger noise level.

The properties of the linear combinations can be further improved by including the phase
measurements on a fifth carrier, e.g. the wideband E5 signal. Wübbena found a widelane
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λ [m] j1 j2 j3 j4 SI[cyc] dB SI[m] dB Sn[cyc] dB Sn[m] dB σn [cm]
29.310 0 1 -3 2 -23.0 -1.1 5.7 26.4 44.0
14.653 0 -1 4 -3 -15.4 3.5 7.1 24.7 29.9
9.768 1 -6 8 -3 -15.0 2.1 10.2 26.2 42.1
7.326 1 -5 5 -1 -15.8 0.1 8.6 23.4 22.0
5.861 1 -4 2 1 -16.7 -1.8 6.7 20.7 11.7
4.884 1 -6 9 -4 -25.6 -11.5 10.6 23.6 23.1
4.187 1 -5 6 -2 -21.1 -7.7 9.1 21.5 14.1
3.663 1 -1 -7 7 -22.0 -9.1 10.0 21.7 14.6
3.256 1 0 -10 9 -28.8 -16.4 11.3 22.4 17.5
2.931 1 -2 -3 4 -16.4 -4.6 7.4 18.1 6.5
2.664 1 -1 -6 6 -15.6 -4.1 9.3 19.6 9.2
2.442 2 -9 8 -1 -18.7 -7.6 10.9 21.0 12.5
2.254 2 -8 5 1 -20.7 -9.9 9.9 19.7 9.3
2.093 2 -7 2 3 -24.5 -14.1 9.1 18.6 7.3
1.954 2 -6 -1 5 -28.4 -18.3 9.1 18.2 6.7

Table 2.2: E1-E6-E5b-E5a widelane combinations of maximum ionospheric suppression

combination with a wavelength of λ = 3.907m and an ionospheric suppression of almost
30 dB in [44].

Richert and El-Sheimy [43] and Cocard et al. [39] introduced a graphical representation
of the search of optimal three frequency linear combinations: The lane number, the iono-
spheric elimination and the removal of the tropospheric delay are three constraints that
can be described by three planes in the three-dimensional search space of j1, j2 and j3:
The planes of different lane numbers are parallel and their normal vector is obtained from
(2.8) as nl = [n1, n2, n3]

T . The plane of the ionospheric elimination crosses the origin and
its normal vector is obtained from (2.16) as nI = [q11, q12, q13]

T . The tropospheric delay
in units of cycles is eliminated for

∑M
m=1

jm
λm

= jmnm

λ0
= 0 which corresponds to a plane

with normal vector nT = [n1, n2, n3]
T . The angle between the ionosphere-free plane and

the troposphere-free plane is 14.6◦ for E1,E5b,E5a and 15.0◦ in the case of L1,L2,L5. An
optimum linear combination is on a plane of a lane number, close to the intersection of
the ionosphere-free and troposphere-free planes, and close to the origin to minimize noise
amplification. As the lane planes and the troposphere-free plane do not overlap and as
the group of integer preserving combinations is discrete and finite, the choice of the op-
timum linear combination is a trade-off between several criteria and also depends on the
baseline length. In [43], Richert and El-Sheimy have found only narrowlane combinations
as optimal combinations for baseline lengths of up to 60 km.

Table 2.3 contains a list of 4F narrowlane combinations of maximum ionospheric suppres-
sion with |jm| ≤ 10 and λ > 5 cm. The linear combination with λ = 11.19 cm suppresses
the ionospheric delay by 36.9 dB and benefits from a low noise level of σn = 3.2 cm, which
makes this combination preferable to an ionosphere-free combination. If E6 measurements
are not available, the linear combination with λ = 5.44 cm benefits from a noise level that
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is 10.4 dB lower than of the ionosphere-free combination of comparable wavelength.

λ [cm] j1 j2 j3 j4 SI[cyc] dB SI[m] dB Sn[cyc] dB Sn[m] dB σn [mm]
11.19 3 3 0 -5 -34.6 -36.9 8.2 5.0 3.2
10.93 4 0 -1 -2 -17.8 -20.2 6.6 4.0 2.5
10.81 4 3 -10 4 -27.8 -30.2 10.7 7.3 5.4
10.58 5 -3 -1 0 -29.6 -32.2 7.7 4.9 3.1
5.50 7 6 -10 -1 -26.9 -32.3 11.3 5.2 3.3
5.44 8 0 -1 -5 -31.3 -36.8 9.8 4.0 2.5
5.38 9 -6 8 -9 -24.6 -30.1 12.1 5.9 3.9
5.30 10 -7 1 -2 -25.5 -31.0 10.9 5.1 3.2
6.11 0 25 0 -23 −∞ −∞ 15.3 9.3 8.5
4.19 0 0 118 -115 −∞ −∞ 22.2 14.4 27.5

Table 2.3: 4F narrowlane combinations of maximum ionospheric suppression

Fig. 2.2 shows the ionospheric suppression SI[m] and wavelength λ of dual and triple
frequency narrowlane combinations. In the region around λ = 11 cm, the dual frequency
E1-E5a combination with j1 = 4, j2 = −3 achieves an ionospheric suppression of 20 dB
which is hardly improved by the third frequency or higher values of jm. For smaller λ,
the ionospheric delay can be reduced to a much larger extent, e.g. the linear combination
with j1 = 17, j2 = −12 and j3 = −1 suppresses the ionospheric delay by 46.8 dB.
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Figure 2.2: Reduced ionosphere narrowlane combinations with |jν | ≤ 20 for Galileo

Fig. 2.3 shows that the noise amplification Sn[m] exceeds the wavelength scaling by at
least 8 dB for the depicted widelane combinations. Among all linear combinations with
an ionospheric suppression of at least 15 dB, the linear combination with j1 = 2, j2 = −6,
j3 = −1 and j4 = 5 achieves the lowest noise level in units of cycles.
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Figure 2.3: Noise amplification of reduced ionosphere widelane combinations of E1, E5b,
E5a and E6 phase measurements with |jν | ≤ 20

Fig. 2.4 shows a comparison of triple frequency Galileo and triple frequency GPS re-
duced ionosphere widelane combinations. For both systems, a linear combination with a
wavelength of 3.256m exists that suppresses the ionospheric delay by at least 10 dB. The
Galileo combination benefits from a 5 dB stronger ionospheric suppression than the GPS
combination at the price of a slightly larger ambiguity discrimination which is defined as

D =
λ

2σ
(2.27)

It will be used in the next section to find an ionosphere-free mixed code-carrier combina-
tion which minimizes the probability of wrong fixing.
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Figure 2.4: Reduced ionosphere widelane combinations with |jν | ≤ 20
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2.2 Design of multi-frequency mixed code carrier

combinations

Multi-frequency phase-only combinations are sensitive to carrier phase multipath from
reflections of the ground and nearby obstacles. As different multipath errors can occur
on each carrier, the worst case multipath of a linear combination is obtained from (??) in
units of cycles by

µmax =
M∑

m=1

|jm| ·

∣
∣
∣
∣
∣
∣
∣
∣

1

2π
arctan







nr∑

i=1

αi,m sin(θi,m)

1 +
nr∑

i=1

αi,m cos(θi,m)







∣
∣
∣
∣
∣
∣
∣
∣

, (2.28)

where αi,m and θi,m denote the fading coefficient and the phase offset of the i-th reflected
signal on the m-th frequency. If there is only a single reflected signal with equal power
as the direct signal, the worst-case multipath induced phase error is 1/4 cycle on each
carrier. This explains the preference of linear combinations with small |jm|.
Linear combinations that comprise both code and carrier phase measurements enable
the use of smaller jm but are also advantageous with respect to ionospheric elimination
at large wavelengths. A mixed code-carrier combination weights the phase measurements
by αm and the code measurements by βm, i.e.

λφk
u(ti) =

M∑

m=1

αmλmφ
k
u,m(ti) + βmρ

k
u,m(ti)

=

M∑

m=1

(αm + βm) ·
(
rku(ti) + δrku(ti) + c

(
δτu(ti)− δτk(ti)

)
+ T k

u (ti)
)

−
M∑

m=1

(αm − βm)q
2
1m · Iku(ti)

+
M∑

m=1

(
αmλmN

k
u,m

)
+

M∑

m=1

(

αmb
k
φu,m

)

+
M∑

m=1

(

βmb
k
ρu,m

)

+

M∑

m=1

(

αmε
k
φu,m

(ti) + βmε
k
ρu,m(ti)

)

. (2.29)

The linear combination should be geometry-preserving (GP), i.e.

M∑

m=1

(αm + βm) = 1. (2.30)
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and scale the ionospheric delay by SI[m], i.e.

∣
∣
∣
∣
∣

M∑

m=1

(αm − βm)q
2
1m

∣
∣
∣
∣
∣
= SI[m], (2.31)

with SI[m] = 0 for ionosphere-free combinations. Moreover, the integer nature of ambi-
guities should be preserved (NP) which leads to the same constraints as for a phase-only
combination. The wavelength of the mixed code-carrier combination is obtained from
(2.3)-(2.6) and (2.30) as

λ = λ̃0 · wφ with λ̃0 =
1

M∑

m=1

jm
λm

and wφ = 1−
M∑

m=1

βm =

M∑

m=1

αm, (2.32)

where wφ is the weighting of phase measurements and 1 − wφ is the weighting of code
measurements in the linear combination. The selection of linear combinations consists of
two steps: a numerical search of j1, . . . , jM and an analytic computation of β1, . . . , βM

and wφ for each integer set j1, . . . , jM . The computation of the M +1 unknowns with the
GP and IF constraints leaves some additional degrees of freedom for further optimization.

First, a group of GP-NP mixed code-carrier combinations is analysed which fulfills

M∑

m=1

βm = 0, (2.33)

i.e. different code weights βm do not change the phase weighting wφ and the wavelength
λ of (2.32). Moreover, the noise amplification should be minimized, i.e.

min
βm

σ2
n = min

βm

M∑

m=1

α2
mσ

2
φm

+ β2
mσ

2
ρm . (2.34)

Fig. 2.5 shows σn as a function of SI[m] for a triple frequency Galileo combination with
λ = 3.256m. If only phase measurements are used, the ionospheric delay is suppressed
by 16.4 dB which is not enough to neglect the residual ionospheric delay for precise
positioning. However, the consideration of code measurements with a small weight allows
the complete elimination of the ionospheric delay while σn is increased by only 0.5 mm.

Eq. (2.33) is a stringent constraint on λ which prevents the computation of linear
combinations of maximum ambiguity discrimination D = λ

2σn
. It is therefore no longer

considered. Fig. 2.6 shows that D varies significantly with the phase weighting wφ and
that the maximum of D does in general not occur at wφ = 1. Note that the legend
only shows the base wavelength λ̃ which has to be scaled by wφ to obtain λ. The largest
discrimination of D = 13.32 is achieved by the linear combination with j1 = 1, j2 = −5
and j3 = 4 at λ = 2.89m.



2.2 Design of multi-frequency mixed code carrier combinations 21

−50 −40 −30 −20 −10
17.52

17.525

17.53

17.535

17.54

Ionospheric suppression [dB]

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 n

oi
se

  σ
n [c

m
]

Increase of code
weighting coefficients

Pure phase combination
[1,−10,9], λ=3.256 m

S
I
>0

S
I
<0

Convergence to
ionosphere−free
code−carrier combination

Figure 2.5: E1-E5b-E5a mixed code-carrier combinations with λ = 3.256 m, j1 = 1,
j2 = −10, j3 = 9: Elimination of ionospheric delay by a small code contribution

0 2 4 6 8 10
0

2

4

6

8

10

12

14

Weighting of phase measurements Σ
ν=1
3  α

ν

A
m

bi
gu

ity
 d

is
cr

im
in

at
io

n 
 λ

/(
2σ

n)

 

 

3.256m
2.442m
1.953m
1.628m
1.395m
1.221m
1.085m
0.976m
0.888m
0.814m
0.751m
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It is shown in the next chapter that this GP-IF-NP mixed code-carrier combination
minimizes the probability of wrong widelane fixing amongst all triple frequency GP-IF-NP
linear combinations if no multipath is present. Unlike GP-NP phase-only combinations,
there exist GP-NP mixed code carrier combinations for any arbitrary wavelength. Fig.
2.7 shows the impact of λ on the minimum noise standard deviation σn for j1 = 1, j2 = −5
and j3 = 4. A wavelength of 1 m is preferred when the ionospheric delay is accurately
known or sufficiently canceled by double differencing. A larger λ becomes optimal when
an ionospheric suppression is required, e.g. the lowest noise level of an ionosphere-free
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combination is achieved for λ = 3 m.
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Figure 2.7: Minimum noise standard deviation of E1-E5b-E5a mixed code-carrier com-
binations with j1 = 1, j2 = −5, j3 = 4, constant λ and variable ionospheric suppression

Henkel and Günther have computed triple frequency GP-IF-NP mixed code-carrier com-
binations of maximum ambiguity discrimination in [46]. The derivation of the weighting
coefficients is generalized to 4 frequencies in [45] and to M frequencies in [47]. It starts
with the optimization criterion, i.e.

max
α1, . . . , αM

β1, . . . , βM

D(α1, . . . , αM , β1, . . . , βM) = max
α1, . . . , αM

β1, . . . , βM

λ(α1, . . . , αM , β1, . . . , βM)

2σn1(α1, . . . , αM , β1, . . . , βM)
.

(2.35)
The constraint on the geometry term of the linear combination is generalized to

M∑

m=1

(αm + βm) = h1, (2.36)

where h1 = 0 corresponds to a geometry-free and h1 = 1 to a geometry-preserving linear
combination. Similarly, the combined ionospheric delay is constrained by

M∑

m=1

(αm − βm)q
2
1m = h2, (2.37)

where h2 = 0 corresponds to an ionosphere-free and h2 = 1 to an ionosphere-preserving
linear combination. Both constraints can be rewritten with the definition of the total
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phase weight of (2.32) as

Υ1

[
β1

β2

]

+Υ2








wφ

β3
...

βM







= h, (2.38)

with

Υ1 =

[
1 1

−1 −q212

]

, Υ2 =

[
1 1 · · · 1

λ̃0

∑M
m=1

jm
λm

q21m −q213 · · · −q21M

]

, and h =

[
h1

h2

]

.

(2.39)
Solving (2.38) for [β1, β2]

T yields

[
β1

β2

]

= Υ−1
1







h−Υ2








wφ

β3
...

βM















=







s1 + s2wφ +
M∑

m=3

smβm

t1 + t2wφ +
M∑

m=3

tmβm






, (2.40)

where sm and tm are implicitly defined by Υ1, Υ2 and h. Eq. (2.40) allows us to express
D as a function of wφ and βm, m ≥ 3:

D =
λ̃

2
· wφ ·



η̃2w2
φ +

(

s1 + s2wφ +

M∑

m=3

smβm

)2

σ2
ρ1

+

(

t1 + t2wφ +
M∑

m=3

tmβm

)2

σ2
ρ2
+

M∑

m=3

β2
mσ

2
ρm





−1/2

(2.41)

with

η̃2 = λ̃2 ·
M∑

m=1

j2m
λ2
m

σ2
φm

. (2.42)

The discrimination can be written in matrix-vector notation as

D =
λ̃

2
· wφ ·

(

η̃2w2
φ +

(
s1 + s2wφ + sTβ

)2
σ2
ρ1

+
(
t1 + t2wφ + tTβ

)2
σ2
ρ2
+ βTΣβ

)−1/2

, (2.43)

with s = [s3, . . . , sM ]T , t = [t3, . . . , tM ]T , β = [β3, . . . , βM ]T and the diagonal matrix Σ

that is given by

Σ =






σ2
ρ3

. . . σρ3ρM
...

. . .
...

σρ3ρM . . . σ2
ρM




 . (2.44)
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The maximum discrimination is given by

∂D

∂wφ
= 0 (2.45)

and
∂D

∂β
= 0. (2.46)

Eq. (2.46) is equivalent to

(s1 + s2wφ + sTβ)s · σ2
ρ1
+ (t1 + t2wφ + tTβ)t · σ2

ρ2
+Σβ

= σ2
ρ1
s(s1 + s2wφ + sTβ) + σ2

ρ2
t(t1 + t2wφ + tTβ) +Σβ

=
[
σ2
ρ1
ssT + σ2

ρ2
ttT +Σ

]

︸ ︷︷ ︸

A

β +
[
s2σ

2
ρ1
s+ t2σ

2
ρ2
t
]

︸ ︷︷ ︸

b

wφ +
[
s1σ

2
ρ1
s+ t1σ

2
ρ2
t
]

︸ ︷︷ ︸

c

= 0. (2.47)

Solving (2.47) for β yields
β = −A−1(c+ b · wφ). (2.48)

Constraint (2.45) is written in full terms as

(
s1 + s2wφ + sTβ

) (
s1 + sTβ

)
σ2
ρ1 +

(
t1 + t2wφ + tTβ

)

·
(
t1 + tTβ

)
σ2
ρ2 + βTΣβ = 0. (2.49)

Replacing β by (2.48) yields

(
s1 + s2wφ − sTA−1(c + bwφ)

)
·
(
s1 − sTA−1(c+ bwφ)

)
· σ2

ρ1

+
(
t1 + t2wφ − tTA−1(c+ bwφ)

)
·
(
t1 − tTA−1(c+ bwφ)

)
· σ2

ρ2

+ (c+ bwφ)
T (A−1)TΣA−1(c+ bwφ) = 0, (2.50)

Eq. (2.50) can be rewritten as a quadratic equation, i.e.

r0 + r1 · wφ + r2 · w2
φ = 0, (2.51)

with

r0 =
(
s1 − sTA−1c

)2
σ2
ρ1
+
(
t1 − tTA−1c

)2
σ2
ρ2
+ cT (A−1)TΣA−1c

r1 =
(
(s1 − sTA−1c)(−sTA−1b) + (s2 − sTA−1b)(s1 − sTA−1c)

)
· σ2

ρ1

+
(
(t1 − tTA−1c)(−tTA−1b) + (t2 − tTA−1b)(t1 − tTA−1c)

)
· σ2

ρ2

+
(
cT (A−1)TΣA−1b+ bT (A−1)TΣA−1c

)

r2 = (s2 − sTA−1b)(−sTA−1b) · σ2
ρ1

+(t2 − tTA−1b)(−tTA−1b) · σ2
ρ2 + bT (A−1)TΣA−1b.

The latter one can be further simplified by replacing A, b, s and t by their definitions of
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(2.47). In the case of 4 frequencies, one obtains (using Mathematica for simplification)

(s2 − sTA−1b)(−sTA−1b) · σ2
ρ1

=
−σ2

ρ1

(
s2σ

2
ρ1

(
(s4t3 − s3t4)

2σ2
ρ2 + s24σ

2
ρ3 + s23σ

2
ρ4

)
+ t2σ

2
ρ2(s4t4σ

2
ρ3 + s3t3σ

2
ρ4)
)
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rho3

σ2
ρ4
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(
(s4t3 − s3t4)2σ2

ρ2
+ s24σ

2
ρ3
+ s23σ

2
ρ4

)
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(
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2
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2
ρ4

))2

·
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2
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2
ρ4 + σ2
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(
t4(−s4t2 + s2t4)σ

2
ρ3 + t3(−s3t2 + s2t3)σ

2
ρ4

))
, (2.52)

and

(t2 − tTA−1b)(−tTA−1b) · σ2
ρ2

=
−σ2

ρ2

(
t2σ

2
ρ3
σ2
ρ4
+ σ2
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(
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2
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2
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2
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, (2.53)

and

bT (A−1)TΣA−1b

=
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4
ρ2
σ2
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2
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(2.54)

Adding up these three terms yields r2 = 0 and solving (2.51) for wφ gives the optimal
phase weight:

wφopt = −r0/r1, (2.55)

which is used in (2.48) and (2.40) to obtain the code weights. Eq. (2.32) provides the
optimum wavelength for the computation of the phase weights with (2.6).

Tab. 2.4 shows the weighting coefficients and properties of GP-IF-NP linear combina-
tions of maximum ambiguity discrimination based on code and carrier phase measure-
ments on up to five frequencies. The dual frequency E1-E5a combination is characterized
by a noise level of 31.4cm and a wavelength of 4.309m which allows reliable ambiguity
resolution within a few epochs. As only the E1 and E5 frequencies lie in aeronautical
bands, this linear combination might be useful for aviation.

Linear combinations that comprise the wideband E5 and E6 code measurements benefit
from a substantially lower noise level which turns into a larger ambiguity discrimination. It
increases to 25.1 for the E1-E5 combination, to 39.2 for the E1-E5-E6 combination, and to
41.2 for the E1-E5a-E5b-E5-E6 combination. The large wavelength of these combinations
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makes them robust to the non-dispersive orbital errors and satellite clock offsets. The
linear combination of measurements on 5 frequencies has the additional advantageous
property of |βm| < 1.26 and |jm| ≤ 2 for all m. A correlation of 50 % has been assumed
between the E5 signal and the E5a and E5b signals.

An even higher ambiguity discrimination can be achieved if the 10 MHz wide main lobe
between the E5a and E5b bands is used as an additional E5c signal. However, the benefit
is negligible as the power spectral density is 17 dB lower than for the E1 signal and, thus,
the Cramer Rao bound equals 54.8 cm.

Table 2.4: GP-IF-NP mixed code-carrier widelane combinations of max. discrimination
for σφ = 1mm, σρm = Γm

E1 E5a E5b E5 E6 λ σn D
jm 1.0000 −1.0000
αm 17.2629 −13.0593 3.285m 6.5cm 25.1
βm −0.0552 −3.1484
jm 1.0000 −1.0000
αm 22.6467 −16.9115 4.309m 31.4cm 6.9
βm −1.0227 −3.7125
jm 1.0000 4.0000 −5.0000
αm 18.5565 55.4284 −71.0930 3.531m 13.3cm 13.3
βm −0.2342 −0.8502 −0.8075
jm 1.0000 1.0000 −2.0000
αm 21.1223 15.9789 −34.2894 4.019m 5.1cm 39.2
βm −0.0200 −1.1422 −0.6495
jm 1.0000 1.0000 0.0000 −2.0000
αm 23.4845 17.5371 0.0000 −38.1242 4.469m 6.3cm 35.3
βm −0.0468 −0.1700 −0.1615 −1.5191
jm 1.0000 1.0000 0.0000 0.0000 −2.0000
αm 20.5896 15.3754 0.0000 0.0000 −33.4247 3.918m 4.7cm 41.3
βm −0.0147 0.1034 0.1060 −1.2584 −0.4766

Tab. 2.5 shows the weighting coefficients and properties of the optimum widelane and
narrowlane linear combinations for an increased noise level. The larger noise assumptions
result in lower code weights and a slightly larger E6 phase weight for the 4F E1-E5a-E5b-
E6 widelane combination. For all other frequency settings, the weighting coefficients are
the same as in Tab. 2.4. For narrowlane combinations, the use of additional frequencies
has only a negligible impact on λ and σn. The ambiguity discrimination varies between
10.1 and 11.2 which is larger than in the case of the first 3 combinations of Tab. 2.5 but
smaller than in the case of the remaining widelane combinations.

The maximization of the ambiguity discrimination in (2.35) does not consider residual
biases due to multipath or other un-modeled effects. Therefore, the maximization of D
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Table 2.5: GP-IF-NP mixed code-carrier widelane and narrowlane combinations of max-
imum ambiguity discrimination for σφ = 2mm, σρm = 3 · Γm

E1 E5a E5b E5 E6 λ σn D
jm 1.0000 −1.0000
αm 17.2629 −13.0593 3.285m 19.0cm 8.6
βm −0.0552 −3.1484
jm 1.0000 −1.0000
αm 22.6467 −16.9115 4.309m 93.8cm 2.3
βm −1.0227 −3.7125
jm 1.0000 4.0000 −5.0000
αm 18.5565 55.4284 −71.0930 3.531m 34.0cm 5.2
βm −0.2342 −0.8502 −0.8075
jm 1.0000 1.0000 −2.0000
αm 21.1223 15.9789 −34.2894 4.019m 11.9cm 16.9
βm −0.0200 −1.1422 −0.6495
jm 1.0000 1.0000 1.0000 −3.0000
αm 22.5147 16.8130 17.2516 −54.8249 4.284m 13.7cm 15.6
βm −0.0186 −0.0676 −0.0642 −0.6040
jm 1.0000 1.0000 0.0000 0.0000 −2.0000
αm 20.6978 15.4562 0.0000 0.0000 −33.6004 3.9387m 10.9cm 18.1
βm −0.0159 −0.0578 −0.0549 −0.9084 −0.5166

E1 E5a E5b E5 E6 λ σn D
jm 4.0000 −3.0000
αm 2.2853 −1.2966 10.87cm 5.3mm 10.3
βm 0.0002 0.0111
jm 4.0000 −3.0000
αm 2.2870 −1.2809 10.88cm 5.4mm 10.1
βm −0.0013 −0.0048
jm 4.0000 −2.0000 −1.0000
αm 2.2853 −0.8533 −0.4378 10.87cm 5.0mm 10.8
βm 0.0007 0.0026 0.0025
jm 4.0000 −3.0000 0.0000
αm 2.2841 −1.2959 0.0000 10.87cm 5.3mm 10.3
βm 0.0001 0.0075 0.0042
jm 4.0000 −2.0000 −1.0000 0.0000
αm 2.2844 −0.8529 −0.4376 0.0000 10.87cm 5.0mm 10.9
βm 0.0002 0.0006 0.0005 0.0049
jm 4.0000 −1.0000 −1.0000 −1.0000 0.0000
αm 2.2845 −0.4265 −0.4376 −0.4321 0.0000 10.87cm 4.8mm 11.2
βm 0.0002 0.0004 0.0004 0.0068 0.0039
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shall be constrained by bounding the combination bias bn to a predefined value, i.e.

bn =
M∑

m=1

αmλmbφm
+ βmbρm ≤

M∑

m=1

|αm| · bφmax + |βm| · bρmax = bmax, (2.56)

where bφm
and bρm denote the phase and code measurement biases, and bmax represents the

bound on the combination bias. The equality in (2.56) is fulfilled when all measurement
biases accumulate positively. Tab. 2.6 shows the weighting coefficients and properties
of widelane mixed code-carrier combinations of maximum ambiguity discrimination with
different constraints on the worst-case combination bias. Obviously, the bias constraint
prefers linear combinations with smaller absolute values of the weighting coefficients,
and tends to smaller wavelengths if the bias constraint becomes more strict. On the
other hand, less and less constrained biases lead to larger wavelengths and ambiguity
discriminations.

Table 2.6: GP-IF-NP mixed code-carrier widelane combinations of maximum ambiguity
discriminationD = λ

2σn
for σφ = 1mm, σρm = Γm with constrained worst-case combination

biases for bφmax = 1cm and bρmax = 5cm on all frequencies
E1 E5a E5b λ σn bn D

jm 0.0000 1.0000 −1.0000
αm 0.0000 3.8699 −3.9708 0.986m 26.9cm 25.0cm 1.84
βm 2.2890 −0.7957 0.0000
jm 0.0000 1.0000 −1.0000
αm 0.0000 −5.7874 5.9384 1.475m 27.4cm 30.0cm 2.69
βm 2.2519 −1.4029 0.0000
jm 0.0000 1.0000 −1.0000
αm 0.0000 9.1037 −9.3412 2.320m 26.6cm 35.0cm 4.35
βm 2.2743 −1.0368 0.0000
jm 1.0000 −1.0000 0.0000
αm 14.3260 −10.6980 0.0000 2.726m 22.2cm 40.0cm 6.15
βm 0.1836 −2.8116 0.0000

An alternative to the fixed bias constraint is the generalization of the ambiguity discrim-
ination to the ratio between the combination wavelength and the weighted sum of the
combination noise and combination bias, i.e.

D =
λ

κ1σn + κ2bn
, (2.57)

with the weights κ1 and κ2. The maximization of (2.57) tends to large wavelengths as
both σn and bn increase slower than λ. Tab. 2.7 shows the weighting coefficients and
properties of the optimized combinations for κ1 = 1 and κ2 = 1. The bias bounds have
been set to 1 cm for the phase and to 5 cm for the code measurements which results in
worst-case combination biases that exceed the combination noise. A wavelength of 5 m is
required to achieve a generalized ambiguity discrimination of more than 6.
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Table 2.7: GP-IF-NP mixed code-carrier widelane combinations of maximum discrim-
ination D = λ

σn+bn
for σφ = 1mm, σρm = Γm for bφmax = 1cm and bρmax = 5cm on all

frequencies
E1 E5a E5b λ σn bn D

jm 1.0000 0.0000 −1.0000
αm 4.2040 0.0000 −3.2213 0.80m 21.7cm 24.3cm 1.74
βm 1.6978 −1.3107 −0.3699
jm 1.0000 0.0000 −1.0000
αm 5.2550 0.0000 −4.0266 1.00m 20.6cm 26.0cm 2.15
βm 1.5554 −1.3366 −0.4472
jm 1.0000 0.0000 −1.0000
αm 10.5101 0.0000 −8.0532 2.00m 16.3cm 34.3cm 3.96
βm 0.8414 −1.4805 −0.8178
jm 1.0000 0.0000 −1.0000
αm 15.7651 0.0000 −12.0798 3.00m 16.0cm 42.5cm 5.13
βm 0.1229 −1.6604 −1.1478
jm 0.0000 1.0000 −1.0000
αm 0.0000 15.6969 −16.1063 4.00m 26.6cm 48.1cm 5.36
βm 2.3306 −0.5115 −0.4097
jm 0.0000 1.0000 −1.0000
αm 0.0000 19.6211 −20.1329 5.00m 26.5cm 55.5cm 6.10
βm 2.3310 −0.4579 −0.3613

2.3 Carrier smoothed multi-frequency linear combi-

nations

In the previous mixed code-carrier widelane combinations, the major noise contribution
arises from the code measurements. The code noise and code multipath can be efficiently
reduced by carrier smoothing which has been introduced by Hatch in [48]. Fig. 2.8 shows
the smoothing of a multi-frequency mixed code-carrier combination with a low noise
phase-only combination. The difference between both combinations is geometry free, i.e.
it eliminates the true range, the clock offsets and the tropospheric delay. The remaining
noise and multipath are suppressed by the low pass filter. The integer ambiguities are not
affected by the filtering so that the integer ambiguities of the smoothed combination equal
the integer ambiguities of the unsmoothed code-carrier combination. After filtering, the
phase-only combination is added to recover the range information. Note that the phase
only combination is considered twice with different signs such that its ambiguities do not
appear in the smoothed output.

Hatch has used no linear combinations to eliminate the ionospheric delay, i.e. he chose
the L1 C/A code measurement for the upper input and the L1 phase measurement for
the lower input. As the ionosphere affects the code and phase with opposite signs, the
doubled ionospheric delay enters the low pass filter. Thus, the smoothed output is affected
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− +
Low pass filter
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α′
mλmφm

Figure 2.8: Carrier smoothing of a multi-frequency code-carrier linear combination

by the ionospheric delay of the current and previous time instants. Hwang et al. [49] and
Mc Graw et al. [50] have suggested a dual-frequency divergence-free and a dual frequency
ionosphere-free carrier smoothing. The divergence-free smoothing removes the ionospheric
delay from the previous epochs and only leaves the ionospheric delay of the current epoch.
The dual-frequency ionosphere-free smoothing eliminates the ionospheric delay completely
but requires a certain smoothing period to overcome the noise amplification from the dual-
frequency combination. Therefore, Günther and Henkel have suggested a triple frequency
ionosphere-free carrier smoothing in [51] to achieve reduced noise, ionosphere-free carrier
smoothed code measurements. A first order low pass filter is typically used for smoothing
and implemented as

χ(tk) =

(

1− 1

τ

)

· χ(tk−1) +
1

τ
· χ(tk) (2.58)

with the smoothing constant τ . The recursive form of (2.58) can be solved for χ(tk) by
series expansion:

χ(tk) =
1

τ
·
k−2∑

n=0

(

1− 1

τ

)n

· χ(tk−n) +

(

1− 1

τ

)k−1

· χ(t1). (2.59)

Assuming independent measurements χ(tk), the variance of χ(tk) is given by

σ2
χ =

1

τ 2
· 1− (1− 1

τ
)2(k−1)

1− (1− 1
τ
)2

· σ2
χ +

(

1− 1

τ

)2(k−1)

· σ2
χ

=
1

2τ − 1
· σ2

χ +
2τ − 2

2τ − 1

(

1− 1

τ

)2(k−1)

· σ2
χ, (2.60)

which converges for large k to

lim
k→∞

σ2
χ =

1

2τ − 1
· σ2

χ. (2.61)

In the case of zero-mean white Gaussian noise, the ideal averaging would be

χ(tk) =
1

k
·
k−1∑

n=0

χ(tk−n), (2.62)
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with the variance σ2
χ = 1

k
· σ2

χ, which converges to 0 for large k. However, the low pass
filter of (2.58) has been preferred so far as it can better adapt to changing conditions, e.g.
code-multipath which is not perfectly stationary.

The multi-frequency GP-IF mixed code-carrier combination ΦA and the GP-IF phase-
only combination ΦB can be jointly optimized to maximize the ambiguity discrimination
of the smoothed combination ΦA, i.e.

max
α1, . . . , αM

β1, . . . , βM

α′

1, . . . , α
′

M

D =
λ

2σΦA

, (2.63)

with the smoothed variance

σ2
ΦA

= E{(ΦA(tk))
2} − (E{ΦA(tk)})2

= E{χ2(tk) + 2χ(tk)ΦB(tk) + Φ2
B(tk)} − (E{ΦA(tk)})2 . (2.64)

The covariance of χ(tk)ΦB(tk) is obtained from (2.59) as

E {χ(tk)ΦB(tk)} − E {χ(tk)}E {ΦB(tk)}

= E

{

1

τ
·
k−2∑

n=0

(

1− 1

τ

)n

(ΦA(tk−n)− ΦB(tk−n)) · ΦB(tk)

+

(

1− 1

τ

)k−1

(ΦA(t1)− ΦB(t1)) · ΦB(tk)

}

− E {χ(tk)}E {ΦB(tk)}

=
1

τ
·
(
σAB − σ2

B

)
, (2.65)

with the covariance σAB between ΦA and ΦB. Thus, (2.64) is rewritten as

σ2
ΦA

=
1

2τ − 1
· (σ2

A+σ2
B−2σAB)+

2

τ
·
(
σAB − σ2

B

)
+σ2

B = κ1 ·σ2
A+κ2 ·σ2

B+κ3 ·σAB, (2.66)

with

κ1 =
1

2τ − 1
, κ2 = 1 +

1

2τ − 1
− 2

τ
, κ3 =

2

τ
− 2

2τ − 1
. (2.67)

The phase-only combination ΦB is constrained w.r.t. the geometry similar to (2.36), i.e.

M∑

m=1

α′
m = h1, (2.68)

and the combined ionospheric delay is constrained to

M∑

m=1

α′
mq

2
1m = h2. (2.69)
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Both constraints can be written in matrix-vector notation as

[
1 1
1 q212

]

︸ ︷︷ ︸

Ψ
′
1

[
α′
1

α′
2

]

+

[
1 . . . 1
q213 . . . q21M

]

︸ ︷︷ ︸

Ψ
′
2






α′
3
...

α′
M






︸ ︷︷ ︸

α′

=

[
h1

h2

]

︸ ︷︷ ︸

h

, (2.70)

which can be solved for α′
1 and α′

2:

[
α′
1

α′
2

]

= (Ψ′
1)

−1 (h−Ψ′
2α

′) =

[
c0
d0

]

+

[
cT1
dT
1

]

α′, (2.71)

where c0, d0, c1 and d1 are implicitly defined by Ψ′
1, Ψ

′
2 and h. Thus, the variance of ΦB

can be expressed as a function of α′:

σ2
B =

(
c0 + cT1α

′)2 · σ2
φ +

(
d0 + dT

1α
′)2 · σ2

φ +α′Tα′ · σ2
φ. (2.72)

The covariance σAB is obtained from (2.6), (2.32) and (2.71), i.e.

σAB =

M∑

m=1

αmα
′
m · σ2

φ =

M∑

m=1

jmλ̃

λm
· wφ · α′

m · σ2
φ

=
j1λ̃

λ1

σ2
φ · (c0 + cT1α

′) · wφ +
j2λ̃

λ2

σ2
φ · (d0 + dT

1α
′) · wφ +

M∑

m=3

jmλ̃

λm

σ2
φ · α′

m · wφ

=
(
v0 + vT

1α
′) · wφ · σ2

φ. (2.73)

The integer ambiguity discrimination can be thus be written as

D =
λ̃wφ

2
√

κ1(τ)σ
2
A(wφ,β) + κ2(τ)σ

2
B(α

′) + κ3(τ)σAB(α′, wφ)
(2.74)

which is maximized if

∂D

∂wφ

!
= 0,

∂D

∂β
!
= 0, and

∂D

∂α′
!
= 0. (2.75)

The first constraint is rewritten using (2.64), (2.41), (2.72) and (2.73) as

∂D

∂wφ

= κ1(τ) ·
[(
s1 + s2wφ + sTβ

) (
s1 + sTβ

)
σ2
ρ1

+
(
t1 + t2wφ + tTβ

) (
t1 + tTβ

)
σ2
ρ2
+ βTΣβ

]

+κ2(τ) · σ2
φ ·
[(
c0 + cT1α

′)2 +
(
d0 + dT

1α
′)2 +α′Tα′

]

+κ3(τ) ·
(
v0 + vT

1α
′) · wφ · σ2

φ/2 = 0. (2.76)

The second constraint corresponds to the constraints of (2.48) as both σB and σAB do not
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depend on β, i.e.
β = −A−1(c+ b · wφ). (2.77)

The third constraint is equivalent to

κ2(τ) ·
(
2(c0 + cT1α

′)c1σ
2
φ + 2(d0 + dT

1α
′)d1σ

2
φ + 2α′σ2

φ

)
+ κ3(τ) · v1wφσ

2
φ = 0, (2.78)

and can also be written as
Xα′ + δwφ + ε = 0, (2.79)

with

X =
[
2κ2(τ)σ

2
φ

(
c1c

T
1 + d1d

T
1

)
+ 2σ2

φ1
]
, δ = κ3(τ)v1σ

2
φ, ε =

[
2κ2(τ)σ

2
φ(c0c1 + d0d1)

]
.

(2.80)
Solving for α′ yields

α′ = −X−1 (δ · wφ + ǫ) . (2.81)

Replacing the code and phase weights in (2.76) by (2.77) and (2.81) gives a constraint
that depends only on wφ, i.e.

κ1·
[(
s1 + s2wφ − sTA−1(c + bwφ)

) (
s1 − sTA−1(c+ bwφ)

)
· σ2

ρ1

+
(
t1 + t2wφ − tTA−1(c + bwφ)

) (
t1 − tTA−1(c+ bwφ)

)
· σ2

ρ2

+ (c+ bwφ)
T (A−1)TΣA−1 (c+ bwφ)

]

+ κ2 · σ2
φ ·
[(
c0 − cT1X

−1(δwφ + ǫ)
)2

+
(
d0 − dT

1X
−1(δwφ + ǫ)

)2
+ (δwφ + ǫ)T (X−1)TX−1 (δwφ + ǫ)

]

κ3·
[(
v0 − vT

1X
−1 (δwφ + ǫ)

)
wφσ

2
φ

]
/2 = 0, (2.82)

which is a quadratic function of wφ. It can be shown that the square terms cancel which
leaves a linear equation, i.e.

r0 + r1 · wφ = 0 (2.83)

with

r0 =κ1 ·
[(
s1 − sTA−1c

)2 · σ2
ρ1
+
(
t1 − tTA−1c

)2 · σ2
ρ2
+ cT (A−1)TΣA−1c

]

+ κ2σ
2
φ ·
[(
c0 − cT1X

−1ǫ
)2

+
(
d0 − dT

1X
−1ǫ
)2

+ ǫT (X−1)TX−1ǫ
]

(2.84)

and

r1 =κ1 ·
[(
(s1 − sTA−1c)(−sTA−1b) + (s2 − sTA−1b)(s1 − sTA−1c)

)
· σ2

ρ1

+
(
(t1 − tTA−1c)(−tTA−1b) + (t2 − tTA−1b)(t1 − tTA−1c)

)
· σ2

ρ2

+
(
cT (A−1)TΣA−1b+ bT (A−1)TΣA−1c

)]

+ κ2σ
2
φ ·
[
−2c0c

T
1X

−1δ + 2cT1X
−1ǫ · cT1X−1δ − 2d0d

T
1X

−1δ + 2dT
1X

−1ǫ · dT
1X

−1δ

+2ǫT (X−1)TX−1δ
]
+ κ3 ·

[(
v0 − vT

1X
−1ǫ
)
σ2
φ

]
/2. (2.85)
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Solving (2.83) for wφ yields the optimum phase weighting:

wφopt = −r0
r1
, (2.86)

which is then used in (2.77) and (2.81) to compute β and α′. Replacing α′ in (2.71) yields
the remaining coefficients of the phase-only combination. The code weights β1 and β2 are
determined from (2.40) and the wavelength from (2.32) which enables the computation
of αm from (2.6).

Tab. 2.8 and 2.9 show optimized multi-frequency GP-IF (h1 = 1, h2 = 0) carrier
smoothed code-carrier combinations of maximum ambiguity discrimination for different
smoothing periods τ . The weighting coefficients of the code-carrier combination only vary
slightly with τ while the coefficients of the phase-only combination strongly depend on τ .
A standard deviation of less than 5cm is achieved for τ = 20 s which makes the resolution
of the widelane ambiguities (λ = 3.401m) extremely reliable.

Table 2.8: Triple frequency (E1-E5b-E5a) GP-IF-NP carrier smoothed code-carrier wide-
lane combinations of maximum ambiguity discrimination for j1 = 1, j2 = −7, j3 = 6,
σφ = 2mm and σρm = 3 · Γm

τ α1, α
′
1 α2, α

′
2 α3, α

′
3 β1 β2 β3 λ [m] σA [cm] D

10 17.861 −95.798 80.025 −0.136 −0.464 −0.488 3.399 6.8 24.96
1.723 4.734 −5.457

20 17.875 −95.873 80.087 −0.138 −0.464 −0.487 3.401 4.8 35.35
2.035 1.992 −3.027

30 17.888 −95.947 80.149 −0.140 −0.464 −0.487 3.404 3.9 43.23
2.131 1.142 −2.273

60 17.930 −96.170 80.336 −0.146 −0.464 −0.486 3.412 2.8 60.72
2.224 0.320 −1.544

100 17.986 −96.468 80.584 −0.153 −0.465 −0.484 3.423 2.2 77.61
2.261 −0.002 −1.259

300 18.263 −97.955 81.827 −0.191 −0.467 −0.477 3.475 1.4 128.12
2.297 −0.318 −0.979

Table 2.9: 4-frequency (E1-E6-E5b-E5a) GP-IF-NP carrier smoothed code-carrier wide-
lane combinations of maximum ambiguity discrimination for j1 = 1, j2 = −3, j3 = 1,
j4 = 1, σφ = 2mm and σρm = 3 · Γm

τ α1, α
′
1, β1 α2, α

′
2, β2 α3, α

′
3, β3 α4, α

′
4, β4 λ [m] σA [cm] D

20 22.554 −54.921 17.282 16.843 4.292 2.2 96.0
1.807 1.646 −1.041 −1.412

−0.022 −0.608 −0.063 −0.065
60 22.637 −55.122 17.345 16.904 4.308 1.4 158.8

2.110 0.663 −0.706 −1.068
−0.028 −0.617 −0.059 −0.059
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The extension from three to four frequency combinations enables the reduction of the
smoothing period by a factor of more than 5 to achieve the same ambiguity discrimination
as of the triple frequency combination.

2.4 Fault detection with multi-frequency linear com-

binations

The previous linear combinations are characterized by worst-case combination biases of
several decimeters even if the measurement biases can be constrained to 1 cm for the phase
and to 5 cm for the code measurements. However, a fault detection (e.g. Receiver Aut-
nomous Integrity Monitoring, RAIM) can be used to detect severe biases which reduces
the largest undetectable biases.

As the true position is unknown, a test statistic is computed for error detection. It can
be derived from the ionosphere-free code carrier combination which is modeled as

λφk
u =

M∑

m=1

αmλmφ
k
u,m+βmρ

k
u,m = ||xu −xk||+ c(δτu − δτk)+ T k

u + λNk
u + bk + εku, (2.87)

with the receiver position xu, the satellite position xk, the receiver and satellite clock
offsets cδτu and cδτk, the tropospheric delay T k

u , the integer ambiguity Nk
u , the combined

satellite bias bk and the noise εku ∼ N (0, σ2). The measurements are corrected for the
satellite positions and clock offsets, i.e. λφ̃k

u = λφk
u + ekxk + cδτk, as well as for the

estimated integer ambiguities which allows to write the combined measurements from K
satellites as

λ(φ̃− Ň) = Gξ + b+ ε with ε ∼ N (0,Σ) , (2.88)

with the extended geometry matrix G and the vector of unknowns ξ = [xT
u , cδτu, Tzu ]

T .
The least-squares estimate of ξ is given by

ξ̂ =
(
GTΣ−1G

)−1
GTΣ−1λ(φ̃− Ň), (2.89)

which is used for the computation of weighted range residuals that are given by

w = λ(φ̃− Ň)−Gξ̂ =
(
1−G(GTΣ−1G)−1GTΣ−1

)
λ(φ̃− Ň)

=
(
1−G(GTΣ−1G)−1GTΣ−1

)
λ(φ̃−N )

+
(
1−G(GTΣ−1G)−1GTΣ−1

)
λ(N − Ň), (2.90)

where the first component describes the residuals due to measurement noise and biases
for correct ambiguity fixing and the second component denotes the contribution of an
erroneous integer fixing. These weighted range residuals are combined to a weighted sum
of squared error (WSSE) test statistic that is defined as

WSSE = wTΣ−1w, (2.91)
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which can also be expressed as a function of the combined measurements φ̃, i.e.

WSSE = (λ(φ̃− Ň))TSλ(φ̃− Ň), (2.92)

with
S = Σ−1

(
1−G(GTΣ−1G)−1GTΣ−1

)
. (2.93)

The weighted sum of squared errors follows a central χ2 distribution if the ambiguities are
fixed correctly and a non-central χ2 distribution in the case of erroneous fixings. Thus,
the probability that the WSSE exceeds a certain threshold γ is given by

P (WSSE > γ) =

∫ ∞

γ

∞∑

n=1

p(WSSE > γ|Ňn) · p(Ňn) dWSSE

= P (Ňn0) ·
∫ ∞

γ

1

2d/2Γ(d/2)
· s(d/2)−1 · e− s

2ds

+

∞∑

n 6=n0

P (Ňn) ·
∫ ∞

γ

sd−1√µne
− s2+µn

2

2(µns2)d/4
I d

2
−1(

√
µns)ds, (2.94)

with the vector of correct ambiguities Ňn0 = N , the Gamma function Γ, the number of
degrees of freedom d = K − 5, the modified Bessel function of first kind Iν(z), and

µn = λ2 · (N − Ň)TS(N − Ň). (2.95)

Setting the probability of (2.94) to the probability of a false alert requirement PFA im-
plicitly defines the threshold γ, i.e.

P (WSSE > γ)
!
= PFA, (2.96)

The test statistic shall detect horizontal and vertical position biases that are related to
the measurement biases by

bH =

√

bTDHb and bV =

√

bTDVb, (2.97)

with

DH = Σ−1G
(
GTΣ−1G

)−1
HT

HHH

(
GTΣ−1G

)−1
GTΣ−1

DV = Σ−1G
(
GTΣ−1G

)−1
HT

VHV

(
GTΣ−1G

)−1
GTΣ−1, (2.98)

and

HH =

[
1 0 0 0 0
0 1 0 0 0

]

and HV = [0, 0, 1, 0, 0]. (2.99)

In [52], Angus has derived the most critical measurement biases that can not be detected
from the test statistics. The derivation is reviewed here for the vertical position bias
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which is determined from

max
b

bTDVb s. t. bTSb ≤ γ. (2.100)

It is in general assumed that only a subset of satellites is biased. If NF satellites are
containing biases, the bias vector b can be written as

b = Qb∗, (2.101)

where b∗ is an NF × 1 non-zero bias vector which is mapped by Q into the K × 1 vector
b. For K = 5 and NF = 2, a valid Q is

Q =









0 0
1 0
0 0
0 1
0 0









. (2.102)

There exist
(
K
NF

)
differentQmatrices that form the class QNF

. The optimization of (2.100)
is rewritten with (2.101) as

max
Q∈QNF

max
b∗

b∗TQTDVQb∗ s. t. b∗TQTSQb∗ ≤ γ. (2.103)

The notation is simplified by introducing A = QTDVQ and B = QTSQ:

max
Q∈QNF

max
b∗

b∗TAb∗ s. t. b∗TBb∗ ≤ γ, (2.104)

which can also be written as

max
Q∈QNF

max
b∗

γ · b
∗TAb∗

b∗TBb∗
s. t. b∗TBb∗ ≤ γ, (2.105)

and further expanded to

max
Q∈QNF

max
b∗

γ · b
∗TB1/2B−1/2AB−1/2B1/2b∗

b∗TB1/2B1/2b∗
s. t. b∗TBb∗ ≤ γ. (2.106)

Introducing u = B1/2b∗ simplifies the maximization to

max
Q∈QNF

max
u

γ · u
TB−1/2AB−1/2u

uTu
s. t. uTu ≤ γ. (2.107)

The solution of the inner maximization is the largest eigenvalue of B−1/2AB−1/2, i.e.

max
u

uTB−1/2AB−1/2u

uTu
= λmax, (2.108)



38 Chapter 2 � Multi-frequency mixed code carrier combinations

and the respective eigenvector umax is scaled by
√
γ to fulfill the constraint of the test

statistic. After back-transformation into the b∗ space, one obtains

b∗max =
√
γB−1/2umax, (2.109)

and the maximum undetectable vertical position bias is given by

bv,max = max
Q∈QNF

√

γ · λmax. (2.110)

The standard deviation of the vertical position estimate is obtained from (2.89) as

σv = Hv

(
GTΣ−1G

)−1
HT

v , (2.111)

and shown in Fig. 2.9a. The GP-IF E1-E5 mixed code-carrier WL combination of maxi-
mum discrimination (Tab. 2.5) benefits from a lower noise level than the GP-IF code-only
combination which results in a 3 to 4 times lower σv. If the ambiguities of the GP-IF
E1-E5 mixed code-carrier NL combination of maximum discrimination can be resolved
correctly, a σv of less than 1.5cm is achievable. Fig. 2.9b shows a similar gain for the
maximum undetectable vertical position bias for NF = 2 satellite failures. The reduction
of bv,max from 2.3 m to 0.7 m by the additional WL combination increases the availability
of RAIM as a lower number of geometries have to be excluded.
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(b) Maximum undetectable vertical position bias

Figure 2.9: Detection of two satellite failures: The mixed code-carrier combination of
maximum discrimination is used in addition to the code-only combination to reduce both
the standard deviation of the vertical position error and the largest undetectable vertical
bias by a factor 3− 4. All combinations include the wideband E1 and E5 signals, and are
smoothed over τ = 60s.

Fig. 2.10 shows the impact of the carrier smoothing time on the maximum undetectable
vertical position bias for up to 3 satellite failures and different triple frequency linear
combinations. For large smoothing periods, bv,max based on the WL and code-only com-
binations converges to the bv,max using the NL and code-only combinations. Thus, the
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smoothing period can be tuned to bound the maximum undetectable bias to a predefined
value. Obviously, increasing NF also increases bv,max.
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Figure 2.10: Benefit of triple frequency (E1-E5-E6) mixed code-carrier combinations for
the detection of multiple satellite failures: The smoothing period can be tuned to bound
the maximum undetectable vertical position bias to a predefined value.

2.5 Ionospheric delay estimation with multi-

frequency combinations

The ionosphere is one of the major error sources for single frequency differential positioning
over long baselines. The differential ionospheric delay is given by

Iu − Ir =
40.3

f 2

TECVu

cos(ζ ′u)
− 40.3

f 2

TECVr

cos(ζ ′r)

=
40.3

f 2

(

TECVr

(
1

cos(ζ ′u)
− 1

cos(ζ ′r)

)

+ (TECVu − TECVr)
1

cos(ζ ′u)

)

,

with the carrier frequency f , the vertical total electron contents TECVu and TECVr at
the ionospheric pierce points of the user and reference receiver, and the zenith angles ζ ′u
and ζ ′r at the ionospheric pierce points. The first term in (2.112) represents the error from
the differential geometry which is shown in Fig. 2.11. A tight upper bound on this term
has been derived by Günther in [1]. The second term describes the impact of the gradient
in TECV which varies between a few mm/km during nominal ionospheric conditions and
up to 425 mm/km during ionospheric storms [24].

The geometric part of the differential ionospheric error shall now be expressed as a
function of rE, h, rS, Er, TECVr and the length of the arc p between both receivers. Let
us start with the zenith angle ζ ′u that is obtained from the law of cosine in the triangle
C,u,IPPu, i.e.

ζ ′u = acos

(
(rE + h)2 + s2 − r2E

2(rE + h) · s

)

, (2.112)
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Figure 2.11: Differential ionospheric delay: The delay is given by the difference in slant
delays at both ionospheric pierce points. It depends on the vertical TECs at both IPPs,
the elevation Er and the length of the arc between both receivers. A TECV of 100 TECU
has been assumed in the right subfigure.

where the length s = u, IPPu is given by

s = rE cos(λ) +
√

r2E cos
2(λ)− (r2E − (rE + h)2), (2.113)

with λ = 2π − γ − µ and γ = π/2 − p/(2rE). The angle µ is obtained from the law of
cosine, i.e.

µ = acos

(
e2 + l2 − (d+ r′r)

2

2el

)

, (2.114)

where e = 2rE sin
(

p
2rE

)

and p denote the lengths of the cord and arc between both

receivers. The length l is given by

l =
√

(d+ r′r)
2 + e2 − (d+ r′r)e cos(ν), (2.115)

with ν = π
2
+ Er − γ and

r′r = −(rE + h) cos(ζ ′r) +
√

(rE + h)2 sin2(ζ ′r) + r2S. (2.116)

The zenith angle ζ ′r is obtained from the law of cosine in the triangle C,R,IPPr, i.e.

ζ ′r = acos

(
d2 + (rE + h)2 − r2E

2d(Re + h)

)

, (2.117)
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which depends on d = r, IPPr that is given by

d = rE cos(Er +
π

2
) +

√

(rE + h)2 − r2E sin
2(Er +

π

2
). (2.118)

Fig. 2.11 shows the geometric part of the differential ionospheric delay for a TECVr of 100
TECU and rS = 29600 km. The differential ionospheric delay exceeds 0.5m for baselines
larger than 22 km, 26 km and 44 km and satellite elevations of 5◦, 10◦ and 20◦.

The large differential ionospheric delays are a strong motivation for multi-frequency
linear combinations that enable an estimation and/ or an elimination of the ionospheric
delay. Therefore, an optimized code carrier combination shall be derived for ionospheric
delay estimation. It should be geometry-free (GF), i.e.

M∑

m=1

(αm + βm) = 0, (2.119)

and preserve the ionospheric delay on L1, i.e.

M∑

m=1

−(αm − βm)q
2
1m = 1. (2.120)

Moreover, the integer nature of ambiguities shall be preserved (NP), i.e.

M∑

m=1

αmλmN
k
u,m = λNk

u . (2.121)

An ionospheric delay estimate is obtained from these three constraints and (2.29), i.e.

Îku(ti) =

M∑

m=1

αmλmφ
k
u,m(ti) + βmρ

k
u,m(ti)

= Iku(ti) + λNk
u +

M∑

m=1

(

αmb
k
φu,m

+ βmb
k
ρu,m

)

+
M∑

m=1

(

αmε
k
φu,m

(ti) + βmε
k
φρu,m

(ti)
)

,

(2.122)

which requires the resolution of integer ambiguities. A high reliability can be achieved by
a linear combination that maximizes the ambiguity discrimination, i.e.

max
α1, . . . , αM , β1, . . . , βM

D = max
α1, . . . , αM , β1, . . . , βM

λ(α1, . . . , αM , β1, . . . , βM)

2σ(α1, . . . , αM , β1, . . . , βM)
. (2.123)

This constrained optimization problem is of the same type as the one for precise ranging
in Section 2.2. Therefore, the derivation of the optimized weighting coefficients follows the
approach described in (2.36)-(2.55). The only necessary change is to replace the geometry-
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preserving (GP) by a geometry-free (GF) constraint (h1 = 0), and the ionosphere-free (IF)
by an ionosphere-preserving (IP) constraint, i.e. h2 = −1.

Tab. 2.10 shows the weighting coefficients and properties of the optimized multi-
frequency mixed code carrier combinations for ionospheric delay estimation. The am-
biguity discrimination is slightly smaller than for the GP-IF combinations of Tab. 2.5.
However, the GF-IP combinations eliminate the clock offsets and tropospheric delay which
should compensate for the slightly lower ambiguity discrimination. Another difference be-
tween GP-IF and GF-IP combinations is that the latter ones tend to smaller wavelengths
and code coefficients if three or more frequencies are considered. The noise level of the 5
frequency combination is one order of magnitude lower than of the E1-E5a combination.

Table 2.10: GF-IP-NP mixed code carrier widelane combinations of maximum ambiguity
discrimination for σφ = 2mm, σρm = 3 · Γm

E1 E5a E5b E5 E6 λ σn D
jm 1.0000 −1.0000
αm 20.5845 −15.3715 3.917m 100.3cm 2.0
βm −1.7238 −3.4892
jm 1.0000 −1.0000
αm 10.1831 −7.7035 1.938m 14.5cm 6.7
βm −0.0737 −2.4059
jm 1.0000 2.0000 −3.0000
αm 13.1701 19.9263 −32.0702 2.506m 9.2cm 13.6
βm −0.0187 −0.6089 −0.3987
jm 1.0000 8.0000 −9.0000
αm 10.8744 64.9639 −74.9909 2.069m 23.6cm 4.4
βm −0.1678 −0.3398 −0.3398
jm 1.0000 2.0000 0.0000 −3.0000
αm 13.9115 20.7769 0.0000 −33.8753 2.647m 9.9cm 13.3
βm −0.0308 −0.0623 −0.0623 −0.6576
jm 1.0000 1.0000 0.0000 1.0000 −3.0000
αm 12.8805 9.6186 0.0000 9.7440 −31.3649 2.451m 8.2cm 14.9
βm −0.0149 −0.0301 −0.0301 −0.4854 −0.3178

The main noise contribution arises from the code measurements for dual frequency com-
binations and from the phase measurements for linear combinations with at least three
frequencies. The large noise variance can be further reduced by carrier smoothing as
shown by the optimized triple frequency combinations in Tab. 2.11.

Table 2.11: Triple frequency E1-E5b-E5a GF-IP-NP carrier smoothed code carrier wide-
lane combinations for integer ambiguity estimation with σφ = 2mm, σρm = 3 · Γm

τ j1, α1, α
′
1 j2, α2, α

′
2 j3, α3, α

′
3 β1 β2 β3 λ [m] σA [cm]

20 1 −9 8
11.102 −76.561 66.324 −0.198 −0.337 −0.328 2.112 3.84
−1.548 2.540 −0.991
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The multi-frequency narrowlane combinations of maximum ambiguity discrimination are
depicted in Tab. 2.12. The E1-E5a combination achieves a noise level of a few millimeters
which is already so low that it can be hardly improved by additional frequencies.

Table 2.12: GF-IP-NP mixed code-carrier narrowlane combinations of maximum ambi-
guity discrimination for σφ = 2mm, σρm = 3 · Γm

E1 E5a E5b E5 E6 λ σn D
jm −3.0000 4.0000
αm −1.2839 1.2783 8.14cm 3.8mm 10.8
βm 0.0018 0.0037
jm −3.0000 4.0000
αm −1.2862 1.2974 8.16cm 3.7mm 11.0
βm −0.0003 −0.0108
jm −3.000 3.0000 1.0000
αm −1.2869 0.9735 0.3482 8.16cm 3.7mm 11.2
βm −0.0006 −0.0207 −0.0135
jm −3.0000 3.0000 1.0000
αm −1.2860 0.9603 0.3285 8.16cm 3.3mm 12.3
βm −0.0006 −0.0011 −0.0011
jm −3.0000 2.0000 2.0000 0.0000
αm −1.2885 0.6415 0.6582 0.0000 8.17cm 3.2mm 12.6
βm −0.0004 −0.0009 −0.0009 −0.0090
jm −3.0000 2.0000 1.0000 1.0000 0.0000
αm −1.2864 0.6404 0.3286 0.3244 0.0000 8.16cm 3.0mm 13.4
βm −0.0001 −0.0002 −0.0002 −0.0038 −0.0025

2.6 Geometry-free ionosphere-free carrier-smoothed

ambiguity resolution

In the previous sections, two classes of mixed code-carrier linear combinations were ana-
lyzed: GP-IF-NP and GF-IP-NP linear combinations. A third class of linear combinations
exists that removes both geometry and ionosphere. These linear combinations can be used
in a cascaded approach, i.e. the ambiguities are first resolved with a GF combination and
then used for positioning with a GP combination. The noise and multipath of the GF
combinations can be reduced again by carrier smoothing. The derivation of the optimum
weighting coefficients only slightly differs from the approach of Section 2.3 as both the
upper and lower input of Fig. 2.8 have to be GF-IF linear combinations, i.e.

M∑

m=1

αm + βm = 0
M∑

m=1

(αm − βm)q
2
1m = 0

M∑

m=1

α′
m = 0

M∑

m=1

α′
mq

2
1m = 0, (2.124)



44 Chapter 2 � Multi-frequency mixed code carrier combinations

which can be solved only for M ≥ 3.

An integer ambiguity estimate is obtained from (2.29) using the GP, IF and NP con-
straints and the low pass filter solution of (2.59), i.e.

Ň(tk) =

[
1

λ
ΦA(tk)

]

=

[
1

λ
(χ(tk) + ΦB(tk))

]

=

[

1

λ

(

1

τ

k−2∑

n=0

(

1− 1

τ

)n

χ(tk−n) +

(

1− 1

τ

)k−1

χ(t1) + ΦB(tk)

)]

=

[

1

λ

(

1

τ

k−2∑

n=0

(

1− 1

τ

)

(ΦA(tk−n)− ΦB(tk−n))

+

(

1− 1

τ

)k−1

(ΦA(t1)− ΦB(t1)) + ΦB(tk)

)]

=

[

1

λ

(

1

τ

k−2∑

n=0

(

1− 1

τ

) M∑

m=1

((αm − α′
m)εφm

(tk−n) + βmερm(tk−n))

+

(

1− 1

τ

)k−1 M∑

m=1

((αm − α′
m)εφm

(t1) + βmερm(t1)) +
M∑

m=1

α′
mεφm

(tk)

)

+
1

λ

(
M∑

m=1

αmλmbφm
+ βmbρm

)]

, (2.125)

where [·] denotes the rounding to the nearest integer. Note that the estimate Ň(tk)
is not affected by the biases of the phase-only combination ΦB. It converges to N if
the combined biases of ΦA and the filtered noise are sufficiently small. Hatch already
suggested an ambiguity resolution with carrier smoothed geometry-free, ionosphere-free
three frequency linear combinations in [53]. However, there are three major differences
to our approach: First, he did not perform a search over jm and instead build his three
frequency combination as a combination of dual frequency [1,−1] widelane combinations.
Second, the variances of the code measurements have not been considered to minimize
the combination noise. Finally, he did not perform a joint optimization of the phase-
only and code-carrier combination. Hence, the smoothing period has not been taken into
account for the optimization which results in an increased noise level of the smoothed
linear combination and a lower reliability in ambiguity resolution.

The weighting coefficients of each GF-IF combination can be scaled by an arbitrary fac-
tor without violating the constraints of (2.124). The wavelength of the mixed code-carrier
combination can be considered as this factor which also scales the noise standard devia-
tion and, thus, does not affect the ambiguity discrimination. Therefore, the wavelength is
fixed to a certain value, and then the coefficients are chosen such that the variance of the
smoothed combination of (2.64) is minimized. As the phase weighting coefficients of the
code-carrier combination are fully determined by jm and λ and as only the upper com-
bination includes code measurements, the optimization of the weighting coefficients can
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be split into two steps. First, the code coefficients are determined such that the variance
σA of the code-carrier combination is minimized. In the second step, the coefficients of
the phase-only combination are computed such that the variance of the smoothed code-
carrier combination is minimized. This latter step takes the smoothing period τ and the
correlation between both combinations into account.

Tab. 2.13 shows the optimized weighting coefficients and properties of GF-IF-NP carrier
smoothed widelane combinations. The large ambiguity discrimination of 12.6 for τ = 20s
and the removal of the range, the clock offsets, the ionospheric and tropospheric errors
enables reliable ambiguity resolution.

Table 2.13: Triple frequency (E1-E5b-E5a) GF-IF-NP carrier smoothed code-carrier
widelane combinations for integer ambiguity estimation: The wavelength has been set to
λ = 1m; the noise assumptions are σφ = 2mm and σρm = 3 · Γm.

τ j1, α1, α
′
1 j2, α2, α

′
2 j3, α3, α

′
3 β1 β2 β3 σA [cm] D

20 1 −4 3
5.255 −16.106 11.773 −0.718 −0.183 −0.045 4.0 12.64

−0.045 0.397 −0.352
20 1 −5 4

5.255 −20.133 15.697 −0.717 −0.135 0.033 4.0 12.63
−0.058 0.507 −0.449

20 1 −6 5
5.255 −24.160 19.621 −0.717 −0.087 0.087 4.0 12.53

−0.070 0.617 −0.547
20 1 −7 6

5.255 −28.186 23.545 −0.716 −0.039 0.141 4.1 12.53
−0.082 0.726 −0.644

60 1 −4 3
5.255 −16.106 11.773 −0.718 −0.183 −0.045 2.3 22.07

−0.015 0.128 −0.113

Integer ambiguity resolution can also be performed with a geometry-free, ionosphere-
free combination without the lower input in Fig. 2.8. In this case, the variance of the
smoothed ambiguity estimates is only slightly larger than in Tab. 2.13 and given by

σ2
A
=

1

2τ − 1
· σ2

A. (2.126)

2.7 C-band aided integer ambiguity resolution

Irsigler et al. have analyzed the benefit of a C-band signal between 5010 and 5030 MHz
for next generation Galileo signals in [20]. Assuming an equal transmit power PT on the
L- and C-band, the received C-band signal is 10 dB weaker due to the three times larger
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carrier frequency, i.e.

PR = PT ·GSGR
(4π)2

λ2
, (2.127)

with the satellite gain GS, the receiver gain GR and the carrier wavelength λ. This power
loss of 10 dB can be overcome by a phased array antenna at the user receiver.

Tab. 2.14 shows the Cramer Rao bound for some C-band signal candidates at a carrier
to noise power ratio of 35 dB-Hz which is 10 dB lower than for the L-band signals in Tab.
1.2. A BOC(7.5,2.5) modulated signal in cosine phasing enables a Cramer Rao bound
of 10.89 cm which can be further reduced to 0.7 cm by a phased array antenna with a
beam spread angle of 10◦. This is an even lower noise level than the CBOC modulated
E1 signal with comparable bandwidth and a 10 dB larger Es/N0.

Table 2.14: Cramer Rao bounds for C-band signal candidates with 20 MHz bandwidth

Es/N0 Modulation CRB [cm] Phased array antenna
35 BOC(1,1), cosine phasing 35.90 no
35 BOC(7.5,2.5), cosine phasing 10.89 no
35 BOC(7.5,2.5), cosine phasing 0.67 10◦ beam spread angle.

The three times larger carrier frequency (491 · 10.23 MHz) of the C-band also results
in a 10 times lower ionospheric delay and a 3 times lower phase noise. This low phase
noise makes the C-band signal interesting for carrier smoothing, and precise positioning
including orbit determination and, thereby, satellite bias estimation.

The joint use of L- and C-band measurements in a linear combination [46] improves
the reliability of integer ambiguity resolution despite the small wavelength of 5.97 cm
for the C-band signal. Tab. 2.15 shows the benefit of an optimized carrier smoothed
geometry-free, ionosphere-free E1-E5a-C-band code carrier combination over a pure L-
band combination with wavelengths of 1 m. The low noise C-band signal as well as the
lower L-band code coefficients enable a 3.0 times lower noise level and, thereby, a 3.0
times higher ambiguity discrimination. The C-band signal performance was taken from
the last line of Tab. 2.14.

Table 2.15: Triple frequency (E1-E5a-C) GF-IF-NP carrier smoothed code-carrier wide-
lane combinations for ambiguity resolution: The wavelength has been set to λ = 1m; the
noise assumptions are σφm

= 2mm (L-band), σφm
= 0.6mm (C-band), and σρm = 3 · Γm.

τ j1, α1, α
′
1 j2, α2, α

′
2 j3, α3, α

′
3 β1 β2 β3 σA [cm] D

E1 E5a C-band E1 E5a C-band
20 7 −5 −1

36.785 −19.621 −16.755 −0.002 −0.004 −0.404 1.34 37.45
−0.968 0.515 0.453

E1 E5a E5b E1 E5a E5b
20 1 3 −4

5.255 11.773 −16.106 −0.718 −0.045 −0.183 3.96 12.64
−0.045 −0.352 0.397
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2.8 Estimation of second order ionospheric delays

Multi-frequency mixed code carrier combinations are also beneficial to estimate the second
order ionospheric delay. In this case, the linear combination shall be geometry-free, i.e.

M∑

m=1

(αm + βm) = 0. (2.128)

The ionospheric delay of first order shall also be eliminated while the second order delay
is preserved, i.e.

M∑

m=1

(αm − βm)q
2
1m = 0 and

M∑

m=1

(αm/2− βm)q
3
1m = 1. (2.129)

Moreover, the linear combination shall preserve the integer nature of ambiguities, which
leads to the combination wavelength given by (2.32):

λ = λ̃0 · wφ with λ̃0 =
1

M∑

m=1

jm
λm

and wφ = 1−
M∑

m=1

βm =

M∑

m=1

αm. (2.130)

The first three constraints can be rewritten in matrix-vector notation as

Ψ1





β1

β2

β3



+Ψ2








wφ

β4
...

βM







= h, (2.131)

with

Ψ1 =





1 1 1
−1 −q212 −q213
−1 −q312 −q313



 , Ψ2 =









1 1 . . . 1

λ̃
M∑

m=1

jm
λm

q21m −q214 . . . −q21M

1
2
λ̃

M∑

m=1

jm
λm

q31m −q314 . . . −q31M









, h =





0
0
1



 .

(2.132)
Eq. (2.131) can be solved for β1, . . . , β3:





β1

β2

β3



 = Ψ−1







h−Ψ2








wφ

β4
...

βM















=











s1 + s2wφ +
M∑

m=4

smβm

t1 + t2wφ +
M∑

m=4

tmβm

u1 + u2wφ +
M∑

m=4

umβm











. (2.133)
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The total phase weight wφ and the remaining code coefficients βm, m ≥ 4 are chosen such
that the ambiguity discrimination is maximized. It is given by

D(wφ,β) =
λ

2σ
=

λ̃wφ

2

(
M∑

m=1

α2
mσ

2
φm

+ β2
mσ

2
ρm

)−1/2

= λ̃wφ/2 ·
(
η̃2w2

φ + (s0 + s1wφ + sTβ)2σ2
ρ1
+ (t0 + t1wφ + tTβ)2σ2

ρ2

+(u0 + u1wφ + uTβ)2σ2
ρ3
+ βTΣβ

)−1/2
. (2.134)

Setting the derivatives with respect to wφ and β = [β4, . . . , βM ]T to zero, and solving for
wφ yields similar to Section 2.2:

wφopt = −r0/r1, (2.135)

with

r0 = (s0 − sTA−1c)2σ2
ρ1
+ (t0 − tTA−1c)2σ2

ρ2
+ (u0 − uTA−1c)2σ2

ρ3

+cT (A−1)TΣA−1c

r1 = (s0 − sTA−1c)(−sTA−1b)σ2
ρ1 + (s1 − sTA−1b)(s0 − sTA−1c)σ2

ρ1

+(t0 − tTA−1c)(−tTA−1b)σ2
ρ2 + (t1 − tTA−1b)(t0 − tTA−1c)σ2

ρ2

+(u0 − uTA−1c)(−uTA−1b)σ2
ρ3
+ (u1 − uTA−1b)(u0 − uTA−1c)σ2

ρ3

+cT (A−1)TΣA−1b+ bT (A−1)TΣA−1c, (2.136)

with the abbreviations

A = ssTσ2
ρ1 + ttTσ2

ρ2 + uuTσ2
ρ3 +Σ

b = s1sσ
2
ρ1 + t1tσ

2
ρ2 + u1uσ

2
ρ3

c = s0sσ
2
ρ1
+ t0tσ

2
ρ2
+ u0uσ

2
ρ3

and Σ =






σ2
ρ4 . . . σρ4M
...

. . .
...

σρ4M . . . σ2
ρM




 . (2.137)

Tab. 2.16 shows the weighting coefficients and properties of the optimized linear combi-
nations with 3 and 4 Galileo frequencies. The ambiguity discrimination is rather poor for
L-band only combinations but can be dramatically improved with C-band measurements.

Table 2.16: Multi-frequency mixed code carrier linear combinations for the estimation
of the second order ionospheric delay (assuming σφ = 1mm, σρm = Γm)

E1 E5a E5b C λ σn D
jm 10 -1 -10
αm 4.7753 -0.3566 -3.6590 9.0cm 15.0cm 0.3
βm 1.0055 -1.0581 -0.7071
jm -6 4 1
αm -5.5977 2.8231 2.9746 17.8cm 0.8cm 10.9
βm -0.0025 -0.2123 0.0149
jm -7 4 1 1
αm -6.8059 2.9042 0.7450 3.0999 18.5cm 0.9cm 10.6
βm 0.0026 -0.0106 -0.0088 0.0735



3
Multi-frequency integer
ambiguity resolution

This chapter starts with a description of the currently known integer ambiguity esti-
mation techniques: rounding, sequential conditional rounding (bootstrapping), integer
least-squares estimation and integer aperture estimation. These estimators are applied
to the linear combinations of the previous chapter for double difference, single difference
and undifferenced measurements. The large wavelength enables a substantial reduction
of the probability of wrong fixing for both Wide Area Real Time Kinematic and Precise
Point Positioning applications. This section also describes several suggestions to further
improve the success rate of ambiguity resolution, e.g. a modified bootstrapping where the
sequential corrections take the probability of an erroneous fixing into account, a partial
integer decorrelation for the optimum trade-off between variance reduction and worst-
case bias amplification, a new cascaded ambiguity resolution scheme with three carrier
smoothed multi-frequency code carrier combinations, and many others.

3.1 Estimation of carrier phase integer ambiguities

In this section, the measurement model of (1.4) is extended to

λmφ
k
u,m(ti) = ek,T

u (ti) ·
(
xu(ti)−

(
x̂k(ti) + εx̂k(ti)

))
+ c ·

(
δτu(ti)−

(
δτ̂k(ti) + εδτ̂k(ti)

))

+mw(E
k
u(ti)) ·

(

Tz,w,u(t0) + (ti − t0) · Ṫz,w,u

)

+ Td,u(ti) + pku,m(ti)

−q21m

(

Iku,1(t0) + (ti − t0)İ
k
u,1

)

+ λmN
k
u,m + λmbφu,m

+ λmb
k
φm

+ εkφu,m
(ti),

(3.1)



50 Chapter 3 � Multi-frequency integer ambiguity resolution

i.e. a linear increase of the ionospheric delays and of the tropospheric zenith delay is
assumed over time.

The estimated satellite position x̂k(ti) and satellite clock offset cδτ̂k(ti) are provided
by the navigation message. The dry component of the tropospheric delay can be accu-
rately modeled and the phase center variations pku,m(ti) are provided by the IGS. These
parameters can be brought to the left side, i.e.

λmφ̃
k
u,m(ti) = λmφ

k
u,m(ti) + ek,T

u (ti)x̂
k(ti) + cδτ̂k(ti)− Td,u(ti)− pku,m(ti)

= ek,T (ti) · (xu(ti)− εx̂k(ti)) + c · (δτu(ti)− εδτ̂k(ti))

+mw(E
k
u(ti)) ·

(

Tz,w,u(t0) + (ti − t0) · Ṫz,w,u

)

−q21m

(

Iku,1(t0) + (ti − t0) · İku,1
)

+λmN
k
u,m + λmbφu,m

+ λmb
k
φm

+ εkφu,m
(ti). (3.2)

A similar model is used for the code measurements, i.e.

ρ̃ku,m(ti) = ρku,m(ti) + ek,T
u (ti)δx

k(ti) + cδτ̂k(ti)− Td,u(ti)

= ek,T
u (ti) · (xu(ti)− εx̂k(ti)) + c · (δτu(ti)− εδτ̂k(ti))

+mw(E
k
u(ti)) ·

(

Tz,w,u(t0) + (ti − t0) · Ṫz,w,u

)

+q21m

(

Iku,1(t0) + (ti − t0) · İku,1
)

+ bρu,m + bkρm + εkρu,m(ti). (3.3)

Linear combinations can be computed between satellites (e.g. single or double differ-
ences), between epochs (e.g. carrier smoothing), between code and carrier phase, and
between frequencies as discussed in the previous chapter. In this chapter, three different
applications are considered for linear combinations over phase and code measurements
on multiple frequencies: Wide-Area Real-Time Kinematics (WA-RTK) and Precise Point
Positioning (PPP).

WA-RTK typically uses double difference measurements to eliminate the receiver and
satellite biases in Eq. (3.2) and (3.3). They are denoted by

∆φ̃ur,m(ti) =








(

φ̃1
u,m(ti)− φ̃K

u,m(ti)
)

−
(

φ̃1
r,m(ti)− φ̃K

r,m(ti)
)

...
(

φ̃K−1
u,m (ti)− φ̃K

u,m(ti)
)

−
(

φ̃K−1
r,m (ti)− φ̃K

r,m(ti)
)








∆ρ̃ur,m(ti) =






(
ρ̃1u,m(ti)− ρ̃Ku,m(ti)

)
−
(
ρ̃1r,m(ti)− ρ̃Kr,m(ti)

)

...
(
ρ̃K−1
u,m (ti)− ρ̃Ku,m(ti)

)
−
(
ρ̃K−1
r,m (ti)− ρ̃Kr,m(ti)

)




 (3.4)

As the orbital error εx̂k(ti) is significantly suppressed for baselines up to more than 100
km, the reliability of integer ambiguity resolution was so far mainly limited by the double
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difference ionospheric delay. The ionosphere-free linear combinations of the previous
chapter eliminate this error source and, therefore, significantly increase the maximum
baseline length for reliable integer ambiguity resolution. The code and carrier phase
measurements on at least two frequencies can be combined to two ionosphere-free linear
combinations for positioning: The first combination is typically a code carrier combination
to benefit from the low noise level of the phase measurements while the second combination
is a code-only combination to prevent the introduction of further integer ambiguities. Both
linear combinations are applied to all double differences, i.e.







M∑
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(

αmλm∆φ̃ur,m(ti) + βm∆ρ̃ur,m(ti)
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
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





(3.5)

with the unknown baseline xu(ti)− xr(ti), tropospheric zenith delay Tz,w,u(ti) and com-

bined integer ambiguities
M∑

m=1

jmN
kK
ur,m. Eq. (3.5) can also be written as

Ψ = Hξ +AN + n, ξ ∈ R
4, N ∈ Z

K−1, and n = N (0,Σ). (3.6)

The second application of linear combinations in this chapter is Precise Point Positioning.
Satellite-satellite single difference measurements are typically used to eliminate receiver
dependant biases and clock offsets. The satellite-satellite single difference biases are de-
termined from a network of reference stations over a longer timescale and then provided
to the mobile user for PPP. The time to reliable integer ambiguity resolution is so far in
the order of a few minutes. The large wavelength of the optimized multi-frequency code
carrier linear combinations enables a significantly shorter time to ambiguity resolution
also for PPP. Therefore, a code carrier combination and a code-only combination shall be
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again consider in this chapter for PPP, i.e.
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(K−1,K)
w,u (ti) 1

(∆e1K
u (ti))

T ∆m1K
w,u(ti) 1

...
...

...

(∆eK−1,K
u (ti))

T ∆m
(K−1,K)
w,u (ti) 1

















xu(ti)
Tz,w,u(ti)
cδτu(ti)





+
M∑

m=1

(αm + βm)












(e1
u)

Tεx̂1(ti)− (eK
u )

Tεx̂K (ti) + c(εδτ̂1 − εδτ̂K )
...

(eK−1
u )Tεx̂K−1(ti)− (eK

u )
Tεx̂K (ti) + c(εδτ̂K−1 − εδτ̂K )

(e1
u)

Tεx̂1(ti)− (eK
u )

Tεx̂K (ti) + c(εδτ̂1 − εδτ̂K )
...

(eK−1
u )Tεx̂K−1(ti)− (eK

u )
Tεx̂K (ti) + c(εδτ̂K−1 − εδτ̂K )












+












λ
. . .

λ
0 . . . 0
...

. . .
...

0 . . . 0












[
M∑

m=1

jm∆N u,m

]

+







M∑

m=1

(

αmλm∆εφ̃u,m
(ti) + βm∆ερ̃u,m(ti)

)

M∑

m=1

(
γm∆ερ̃u,m(ti)

)






,

(3.7)

with

ρ̃u,m(ti) =






ρ̃1u,m(ti)− ρ̃Ku,m(ti)
...

ρ̃K−1
u,m (ti)− ρ̃Ku,m(ti)






φ̃u,m(ti) =






φ̃1
u,m(ti)− ρ̃Ku,m(ti)

...

φ̃K−1
u,m (ti)− ρ̃Ku,m(ti)




 . (3.8)

This measurement model can be again written in a more compact form as

Ψ = Hξ +AN + n, ξ ∈ R
5, N ∈ Z

K−1, (3.9)

which can be easily extended to include measurements from further epochs. This chapter
also includes a section on bias estimation with a Kalman filter. No linear combinations



3.1 Estimation of carrier phase integer ambiguities 53

will be used so that the user can compute any linear combination.

The unknown ξ and N are obtained by the integer least-squares estimation, i.e.

min
ξ,N

‖Ψ−Hξ −AN‖2
Σ

−1, (3.10)

which has been decomposed by Teunissen in [62] into three terms using a partitioned
system of normal equations [29]. Introducing the orthogonal projection on H by

P⊥
H = I −PH with PH = H(HTΣ−1H)−1HTΣ−1, (3.11)

enables us to rewrite (3.10) as

min
ξ,N

‖Ψ−Hξ −AN‖2
Σ

−1 = min
ξ,N

‖PH (Ψ−Hξ −AN) + P⊥
H (Ψ−Hξ −AN) ‖2

Σ
−1

= min
N

(
‖P⊥

H (Ψ−AN) ‖2
Σ

−1

+min
ξ

‖PH (Ψ−AN)−Hξ‖2
Σ

−1

)
. (3.12)

The notation is simplified by defining an auxiliary matrix A as

A = P⊥
HA, (3.13)

which enables us to write the least-squares float ambiguity estimates as

N̂ =
(

A
T
Σ−1A

)−1

A
T
Σ−1P⊥

HΨ =
(

A
T
Σ−1A

)−1

A
T
Σ−1Ψ, (3.14)

with the transformed bias

bN̂ =
(

A
T
Σ−1A

)−1

A
T
Σ−1b. (3.15)

The orthogonal projection on A is given by

P⊥
A
= I −P A with P A = A(A

T
Σ−1A)−1A

T
Σ−1, (3.16)

and used to rewrite the second term of (3.12) as

‖P⊥
H (Ψ−AN ) ‖2

Σ
−1 = ‖PAP

⊥
H (Ψ−AN) ‖2

Σ
−1 + ‖P⊥

A
P⊥

H (Ψ−AN) ‖2
Σ

−1

= ‖AN̂ −AN‖2
Σ

−1 + ‖P⊥
A
P⊥

HΨ‖2
Σ

−1

= ‖N̂ −N‖2
Σ

−1

N̂

+ ‖P⊥
A
P⊥

HΨ‖2
Σ

−1, (3.17)

with

ΣN̂ =
(

A
T
Σ−1A

)−1

. (3.18)
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Combining (3.12) and (3.17) yields

min
ξ,N

‖Ψ−Hξ −AN‖2
Σ

−1 = min
ξ,N

(

‖PH (Ψ−AN)−Hξ‖2
Σ

−1 + ‖N̂ −N‖2
Σ

−1

N̂

+‖P⊥
A
P⊥

HΨ‖2
Σ

−1

)
, (3.19)

where the second term is independent of ξ, i.e. the ambiguity resolution can be separated
from the baseline estimation. The fixed baseline estimate ξ̌ is given by

ξ̌ =
(
HTΣ−1H

)−1
HTΣ−1 (Ψ−AN) , (3.20)

and used to rewrite the first term of (3.19) as

‖PH (Ψ−AN)−Hξ‖2
Σ

−1 = ‖H
(
HTΣ−1H

)−1
HTΣ−1 (Ψ−AN)−Hξ‖2

Σ
−1

= ‖Hξ̌(N)−Hξ‖2
Σ

−1 = ‖ξ̌(N)− ξ‖2
Σ

−1

ξ̂(N)

, (3.21)

which becomes 0 for ξ = ξ̌(N). The weighting is given by

Σξ̌(N) =
(
HTΣ−1H

)−1
. (3.22)

The last term in (3.19) denotes the irreducible error which does not depend on N and
ξ and, thus, is irrelevant for the minimization. It has been stated by Teunissen in [29]
that this irreducible error can be expressed also as a function of the float ambiguity and
baseline estimates:

‖P⊥
A
P⊥

HΨ‖2
Σ

−1 = ‖Ψ−AN̂ −Hξ̂‖2
Σ

−1 , (3.23)

This equivalence is proven by replacing the float baseline solution by

ξ̂ =
(

H
T
Σ−1H

)−1

H
T
Σ−1Ψ with H = P⊥

AH , (3.24)

and by using N̂ of (3.14), i.e.

‖Ψ−AN̂ −Hξ̂‖2
Σ

−1

= ‖Ψ−A
(

A
T
Σ−1A

)−1

A
T
Σ−1Ψ−H

(

H
T
Σ−1H

)−1

H
T
Σ−1Ψ‖2

Σ
−1

= ‖P⊥
HΨ + PHΨ−A

(

A
T
Σ−1A

)−1

A
T
Σ−1Ψ−H

(

H
T
Σ−1H

)−1

H
T
Σ−1Ψ‖2

Σ
−1

= ‖P⊥
A
P⊥

HΨ + PAP
⊥
HΨ+ PHΨ−A

(

A
T
Σ−1A

)−1

A
T
Σ−1Ψ

−H
(

H
T
Σ−1H

)−1

H
T
Σ−1Ψ‖2

Σ
−1 . (3.25)



3.1 Estimation of carrier phase integer ambiguities 55

Replacing Ψ by (3.6) in the third and fourth term gives

PHΨ−A
(

A
T
Σ−1A

)−1

A
T
Σ−1Ψ

= PHAN +Hξ + PHη −AN −A
(

A
T
Σ−1A

)−1

A
T
Σ−1η

= −AN +Hξ + PHη −A
(

A
T
Σ−1A

)−1

A
T
Σ−1η. (3.26)

Similarly, the second and fifth term are expanded into

P AP
⊥
HΨ−H

(

H
T
Σ−1H

)−1

H
T
Σ−1Ψ

= AN + P AP
⊥
Hη −Hξ −H

(

H
T
Σ−1H

)−1

H
T
Σ−1η (3.27)

Combining (3.25)-(3.27) yields

‖Ψ−AN̂ −Hξ̂‖2
Σ

−1 = ‖P⊥
A
P⊥

HΨ+ PHη −A
(

A
T
Σ−1A

)−1

A
T
Σ−1η + P AP

⊥
Hη

−H
(

H
T
Σ−1H

)−1

H
T
Σ−1η‖2

Σ
−1 . (3.28)

Replacing the projections by their definitions results in

‖Ψ−AN̂ −Hξ̂‖2
Σ

−1 = ‖P⊥
A
P⊥

HΨ+H(HTΣ−1H)−1HTΣ−1η

−A
(
ATΣ−1A−ATΣ−1H(HTΣ−1H)−1HTΣ−1A

)−1

· (AT −ATΣ−1H(HTΣ−1H)−1HT )Σ−1η

+ (A−H(HTΣ−1H)−1HTΣ−1A)
(
ATΣ−1A−ATΣ−1H(HTΣ−1H)−1HTΣ−1A

)−1

· (AT −ATΣ−1H(HTΣ−1H)−1HT )Σ−1(1−H(HTΣ−1H)−1HTΣ−1)η

−H
(
HTΣ−1H −HTΣ−1A(ATΣ−1A)−1ATΣ−1H

)−1

· (HT −HTΣ−1A(ATΣ−1A)−1AT )Σ−1η‖2
Σ

−1 . (3.29)

The inversion of a sum of matrices is performed with the Sherman-Morrison-Woodbury
equation that is derived by Henderson and Searle in [54]. Let G, U be invertible n × n
matrices, and let Y , Z be n× s matrices with n ≥ s, then

(U + Y GZT )−1 = U−1 −U−1Y (G−1 +ZTU−1Y )−1ZTU−1. (3.30)

The application of this theorem gives

(
HTΣ−1H −HTΣ−1A(ATΣ−1A)−1ATΣ−1H

)−1

= (HTΣ−1H)−1 + (HTΣ−1H)−1HTΣ−1A

·
(
ATΣ−1A−ATΣ−1H(HTΣ−1H)−1HTΣ−1A

)−1
ATΣ−1(HTΣ−1H)−1,

(3.31)
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which requires the same matrix inversion as the remaining terms of (3.29). The notation
is simplified by introducing

J =
(
ATΣ−1A−ATΣ−1H(HTΣ−1H)−1HTΣ−1A

)−1
, (3.32)

to rewrite (3.29) as

‖Ψ−AN̂ −Hξ̂‖2
Σ

−1 = ‖P⊥
A
P⊥

HΨ +H(HTΣ−1H)−1HTΣ−1η

−AJ(AT −ATΣ−1H(HTΣ−1H)−1HT )Σ−1η

+ (A−H(HTΣ−1H)−1HTΣ−1A)J

(AT −ATΣ−1H(HTΣ−1H)−1HT )Σ−1(1−H(HTΣ−1H)−1HTΣ−1)η

−HJ(HT −HTΣ−1A(ATΣ−1A)−1AT )Σ−1η‖2
Σ

−1, (3.33)

which can be further simplified to

‖Ψ−AN̂ −Hξ̂‖2
Σ

−1 = ‖P⊥
A
P⊥

HΨ−H(HTΣ−1H)−1HTΣ−1AJATΣ−1η

+H(HTΣ−1H)−1HTΣ−1A(ATΣ−1A)−1ATΣ−1η

+H(HTΣ−1H)−1HTΣ−1AJATΣ−1H(HTΣ−1H)−1HT

Σ−1A(ATΣ−1A)−1ATΣ−1η‖2
Σ

−1

= ‖P⊥
A
P⊥

HΨ+H(HTΣ−1H)−1HTΣ−1A(ATΣ−1A)−1ATΣ−1η

−H(HTΣ−1H)−1HTΣ−1AJ
(
ATΣ−1 −ATΣ−1H(HTΣ−1H)−1HT

Σ−1A(ATΣ−1A)−1ATΣ−1
)
η‖2

Σ
−1 (3.34)

The last component can be multiplied by the projection P A without changing its value,
i.e.

J
(
ATΣ−1 −ATΣ−1H(HTΣ−1H)−1HTΣ−1A(ATΣ−1A)−1ATΣ−1

)

= J
(
ATΣ−1 −ATΣ−1H(HTΣ−1H)−1HTΣ−1A(ATΣ−1A)−1ATΣ−1

)

A(ATΣ−1A)−1ATΣ−1 = JJ−1 = 1, (3.35)

which simplifies (3.34) to

‖Ψ−AN̂ −Hξ̂‖2
Σ

−1 = ‖P⊥
A
P⊥

HΨ‖2
Σ

−1 , (3.36)

and concludes our proof and enables us to rewrite the minimization problem of (3.10) as

min
ξ,N

‖Ψ−Hξ −AN‖2
Σ

−1 = min
N

(

‖N̂ −N‖2
Σ

−1

N̂

+min
ξ

‖ξ̌(N)− ξ‖2
Σ

−1

ξ̂(N)

)

+‖Ψ−AN̂ −Hξ̂‖2
Σ

−1 . (3.37)
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3.1.1 Rounding

The most simple integer ambiguity estimator is the rounding of the float solution N̂ . Its
success rate is given by the multivariate cumulative Gaussian distribution

Ps =
1

√

|ΣN̂ |(2π)K
·
∫ N1+0.5

N1−0.5

. . .

∫ NK+0.5

NK−0.5

e−
1
2
(N̂−N−b

N̂
)TΣ

−1

N̂
(N̂−N−b

N̂
)dN̂1 . . . dN̂K , (3.38)

with N̂ ∼ N (N + bN̂ ,ΣN̂ ). Substituting N̂ −N − bN̂ by εN̂ yields

Ps =
1

√
|ΣN̂ |(2π)K

·
∫ +0.5−b1

−0.5−b1

. . .

∫ +0.5−bK

−0.5−bK

e−
1
2
εT
N̂
Σ

−1

N̂
ε
N̂ dεN̂1

. . . dεN̂K
. (3.39)

Genz suggested three sequential transformations in [55] to transform this integral into an
integral over a unit hyper-cube which can then be evaluated by standard multidimen-
sional numerical integration. First, the Cholesky decomposition ΣN̂ = CCT is used to
diagonalize the noise vector, i.e. eN̂ = C−1εN̂ . The integration limits

−0.5 − bk ≤ εN̂k
=

k∑

j=1

CkjeN̂j
≤ +0.5− bk, (3.40)

are transformed using the lower triangular structure of C, i.e.

lk =
−0.5− bk −

∑k−1
j=1 CkjeN̂j

Ckk
≤ eN̂k

≤ uk =
+0.5− bk −

∑k−1
j=1 CkjeN̂j

Ckk
. (3.41)

Thus, the multivariate integral becomes

Ps =
1

√

(2π)K

∫ u1

l1

e−
e2
N̂1
2

∫ u2(eN̂1
)

l2(eN̂1
)

e−
e2
N̂2
2 . . .

∫ uK(e
N̂1

,...,e
N̂K−1

)

lK(e
N̂1

,...,e
N̂K−1

)

e−
e2
N̂K
2 deN̂1

deN̂2
. . . deN̂K−1

.

(3.42)
Genz‘s second transformation is given by

zk = Φ(eN̂k
) (3.43)

with the normalized cumulative normal distribution

Φ(ν) =
1√
2π

∫ ν

−∞
e−

1
2
θ2dθ. (3.44)

The transformation can be applied separately to each eN̂k
in (3.42), i.e.

Ps =

∫ u′
1

l′1

∫ u′
2(z1)

l′2(z1)

. . .

∫ u′
K(z1,...,zK−1)

l′
K
(z1,...,zK−1)

dz1dz2 . . . dzK , (3.45)
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with the integration limits

l′k = Φ

((

−0.5− bk −
k−1∑

j=1

CkjΦ
−1(zj)

)

/Ckk

)

u′
k = Φ

((

+0.5− bk −
k−1∑

j=1

CkjΦ
−1(zj)

)

/Ckk

)

. (3.46)

Finally, the transformation

wk =
zk − l′k
u′
k − l′k

(3.47)

puts the integral into a constant limit form, i.e.

Ps = (u′
1 − l′1)

∫ 1

0

(u′
2 − l′2)

∫ 1

0

. . . (u′
K − l′K)

∫ 1

0

dw1dw2 . . . dwK . (3.48)

with

l′k = Φ

((

−0.5− bk −
k−1∑

j=1

CkjΦ
−1(l′j + wk(u

′
j − l′j))

)

/Ckk

)

u′
k = Φ

((

+0.5− bk −
k−1∑

j=1

CkjΦ
−1(l′j + wk(u

′
j − l′j))

)

/Ckk

)

. (3.49)

Eq. (3.48) can be rewritten by regarding wk as a uniformly distributed random variable
between 0 and 1, i.e.

Ps = (u′
1−l′1)

∫ 1

0

(u′
2−l′2)f(w1)

∫ 1

0

. . . (u′
K−l′K)f(wK−1)

∫ 1

0

f(wK)dw1dw2 . . . dwK , (3.50)

which is equivalent to

Ps = Ew1,...,wK

{
K∏

k=1

(u′
k(w1, . . . , wK)− l′k(w1, . . . , wK))

}

with wk ∼ U(0, 1). (3.51)

The success rate of (3.51) can be efficiently computed using Monte-Carlo simulation or
more advanced numerical integration techniques, e.g. the subregion adaptive method as
discussed by Genz in [55].

An analytic lower bound on the success rate has been suggested by Teunissen in [57]: It
neglects the correlation between float ambiguities and is given by

Ps ≥
K∏

k=1

P k
s with P k

s =

∫ +0.5

−0.5

1
√

2πσ2
N̂k

e
− (N̂k−Nk−bk)

2

2σ2
N̂k dN̂k. (3.52)
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It can be proven from the cumulative bivariate normal distribution that can be lower
bounded by another cumulative bivariate normal distribution with equal variances but a
different cross-correlation coefficient ρ between εN̂1

and εN̂2
, i.e.

1
√

2π|ΣN̂ |

+0.5∫

−0.5

+0.5∫

−0.5

e−
1
2
εT
N̂
Σ

−1

N̂
ε
N̂dεN̂1

dεN̂2

≥ min
ρ




1

√
2π|ΣN̂(ρ)|

+0.5∫

−0.5

+0.5∫

−0.5

e−
1
2
εT
N̂
Σ

−1

N̂
(ρ)ε

N̂dεN̂1
dεN̂2



 . (3.53)

As the total integral over a bivariate normal distribution is always equal to 1 and as the
Gaussian distribution is monotonously decreasing from the center in all directions, the
minimization of (3.53) is equivalent to a min-max-optimization of the variance of ε̃N̂1

:

min
ρ




1

√

2π|ΣN̂(ρ)|

+0.5∫

−0.5

+0.5∫

−0.5

e−
1
2
εT
N̂
Σ

−1

N̂
(ρ)ε

N̂dεN̂1
dεN̂2



 = max
ρ

min
R

(

σ2
ε̃
N̂1

)

, (3.54)

where ε̃N̂1
is obtained through the coordinate transformation

[
ε̃N̂1

ε̃N̂2

]

= R

[
εN̂1

εN̂2

]

with R =

[
µ11 µ12

µ21 µ22

]

. (3.55)

As only µ = [µ11, µ12]
T affects ε̃N̂1

, the minimization over R simplifies to

min
µ

(

σ2
ε̃
N̂1

)

= min
µ

(
µTΣN̂µ

)
s. t. µTµ = 1, (3.56)

where the constraint is a property of R. Eq. (3.56) can be rewritten as a Lagrange
optimization:

min
µ

(
µTΣN̂µ− λ

(
µTµ− 1

))
, (3.57)

with the Lagrange multiplier λ. Setting the derivative w.r.t. µ equal to zero yields

ΣN̂µ = λµ ⇒ σ2
ε̃
N̂1

= λ = µTΣN̂µ (3.58)

which is the classical eigenvalue problem. The lower eigenvalue of ΣN̂ is given by

λ =
1

2
(σ2

N̂1
+ σ2

N̂2
)− 1

2

√
(

σ2
N̂1

+ σ2
N̂2

)2

− 4
(

σ2
N̂1
σ2
N̂2

− ρ2σ2
N̂1
σ2
N̂2

)

, (3.59)

which has its minimum for ρ = 0 and, thus, concludes the proof. Note that this equivalent
to minimizing the probability density at the coordinate center:

∂/∂ρ
(
P
(
εN̂1

= 0, εN̂2
= 0
))

= 0. (3.60)
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3.1.2 Sequential ambiguity fixing

Blewitt suggested a sequential ambiguity fixing (also called bootstrapping) in [58]. This
conditional fixing corrects for the difference between float and fixed ambiguities, i.e. the
second conditional ambiguity is given by

N̂2|1 = N̂2 − γ · (N̂1 − [N̂1]), (3.61)

where [·] denotes the rounding and γ is chosen such that the uncertainty about N̂2|1 is
minimized (e.g. Teunissen [59]):

min
γ

σN̂2|1
. (3.62)

All currently known sequential fixing methods assume a correct rounding of N̂1 for the
computation of γ. However, this is not always fulfilled. Therefore, the rounding has to
be evaluated which is computationally also feasible. The solution of (3.62) is given by

γopt =
σN̂1N̂2

− σ[N̂1]N̂2

σ2
N̂1

− 2σN̂1[N̂1]
+ σ2

[N̂1]

, (3.63)

which requires the evaluation of the pseudo-covariances σ[N̂1][N̂1]
, σ[N̂1]N̂1

and σ[N̂1]N̂2
. Let

us introduce εN̂1
= N̂1−N1 and εN̂2

= N̂2−N2 with the Gaussian probability distributions
f(εN̂1

), f(εN̂2
) and f(εN̂1

, εN̂2
), then the three pseudo-covariances are given by

σN̂1[N̂1]
=

∫ ∞

−∞
εN̂1

[εN̂1
]f(εN̂1

)dεN̂1

=
∞∑

k=−∞
k

∫ k+0.5

k−0.5

εN̂1
f(εN̂1

)dεN̂1
=

1√
2π

∞∑

k=−∞
kσN̂1

(

e
− (k−0.5)2

2σ2
N̂1 − e

− (k+0.5)2

2σ2
N̂1

)

σ2
[N̂1]

=

∫ ∞

−∞

(
[εN̂1

]
)2

f(εN̂1
)dεN̂1

=
∞∑

k=−∞
k2 ·

∫ k+0.5

k−0.5

f(εN̂1
)dεN̂1

=

∞∑

k=−∞
k2 ·

(

Φ

(
k + 0.5

σN̂1

)

− Φ

(
k − 0.5

σN̂1

))

(3.64)

σ[N̂1]N̂2
=

∫ ∞

−∞

∫ ∞

−∞
[εN̂1

]εN̂2
f(εN̂1

, εN̂2
)dεN̂1

dεN̂2

=

∞∑

k=−∞
k ·
∫ k+0.5

k−0.5

∫ ∞

−∞
εN̂2

f(εN̂1
, εN̂2

)dεN̂1
dεN̂2

. (3.65)

The inner integration with the joint probability density f(εN̂1
, εN̂2

) is given by

∫ ∞

−∞
εN̂2

f(εN̂1
, εN̂2

)dεN̂2
=

∫ ∞

−∞
εN̂2

1

2π
√

|Σ|
exp

(

−1

2

[
εN̂1

εN̂2

]T

Σ−1

[
εN̂1

εN̂2

])

dεN̂2
,

(3.66)
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with

Σ =

[

σ2
N̂1

σN̂1N̂2

σN̂1N̂2
σ2
N̂2

]

. (3.67)

Expanding the exponent and rearranging yields

∫ ∞

−∞
εN̂2

f(εN̂1
, εN̂2

)dεN̂2
=

∫ ∞

−∞
εN̂2

1

2π
√

|Σ|
e
− 1

2|Σ|

(

ε2
N̂1

σ2
N̂2

−2σ
N̂1N̂2

ε
N̂1

ε
N̂2

+ε2
N̂2

σ2
N̂1

)

dεN̂2

=

∫ ∞

−∞
εN̂2

1

2π
√

|Σ|
e
−

σ2
N̂1

2|Σ|

(

ε
N̂2

−
σ
N̂1N̂2
σ2
N̂1

ε
N̂1

)2

+
σ2
N̂1

2|Σ|
·
σ2
N̂1N̂2
σ4
N̂1

ε2
N̂1

−
σ2
N̂1

2|Σ|
·
σ2
N̂2

σ2
N̂1

ε2
N̂1
dεN̂2

= e
−

ε2
N̂1

2σ2
N̂1 ·

∫ ∞

−∞
εN̂2

1

2π
√

|Σ|
e
−

σ2
N̂1

2|Σ|

(

ε
N̂2

−
σ
N̂1N̂2
σ2
N̂1

ε
N̂1

)2

dεN̂2

=
1

2π
√

|Σ|
e
−

ε2
N̂1

2σ2
N̂1

∫ ∞

−∞

(

εN̂2
− σN̂1N̂2

σ2
N̂1

εN̂1

)

e
−

σ2
N̂1

2|Σ|

(

ε
N̂2

−
σ
N̂1N̂2
σ2
N̂1

ε
N̂1

)2

dεN̂2

+
1

2π
√

|Σ|
e
−

ε2
N̂1

2σ2
N̂1

∫ ∞

−∞

σN̂1N̂2

σ2
N̂1

εN̂1
e
−

σ2
N̂1

2|Σ|

(

ε
N̂2

−
σ
N̂1N̂2
σ2
N̂1

ε
N̂1

)2

dεN̂2
(3.68)

The first component vanishes and the second one can be simplified by substitution, i.e.

∫ ∞

−∞
εN̂2

f(εN̂1
, εN̂2

)dεN̂1
=

1

2π
√

|Σ|
e
−

ε2
N̂1

2σ2
N̂1

∫ ∞

−∞

σN̂1N̂2

σ2
N̂1

εN̂1

√

2π
|Σ|
σ2
N̂1

1
√

2π |Σ|
σ2
N̂1

e
− t2

2|Σ|
σ2
N̂1dt

=
1

2π
√

|Σ|
e
−

ε2
N̂1

2σ2
N̂1

σN̂1N̂2

σ2
N̂1

εN̂1

√

2π
|Σ|
σ2
N̂1

. (3.69)

Thus, σ[N̂1]N̂2
of Eq. (3.65) can be rewritten as

σ[N̂1]N̂2
=

1

2π
√

|Σ|

+∞∑

k=−∞
k

∫ k+0.5

k−0.5

e
− 1

2σ2
N̂1

ε2
N̂1

σN̂1N̂2

σ2
N̂1

εN̂1

√

2π
|Σ|
σ2
N̂1

dεN̂1

=
1

2π
√

|Σ|
σN̂1N̂2

σ2
N̂1

√

2π
|Σ|
σ2
N̂1

+∞∑

k=−∞
k

∫ k+0.5

k−0.5

e
− 1

2σ2
N̂1

ε2
N̂1
εN̂1

dεN̂1

=
1

2π
√

|Σ|
σN̂1N̂2

σ2
N̂1

√

2π
|Σ|
σ2
N̂1

+∞∑

k=−∞
k · (−σ2

N̂1
)

(

e
− (k+0.5)2

2σ2
N̂1 − e

− (k−0.5)2

2σ2
N̂1

)

= − 1
√

2πσ2
N̂1

σN̂1N̂2

+∞∑

k=−∞
k

(

e
− (k+0.5)2

2σ2
N̂1 − e

− (k−0.5)2

2σ2
N̂1

)

, (3.70)
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which depends on σ2
N̂1

and σN̂1N̂2
but is independent of σ2

N̂2
. Clearly, the infinite sum can

be well approximated by a finite sum over |k| ≤ 10.

Fig. 3.1 shows the optimal weighting γopt of (3.63) as a function of the correlation

coefficient ρ =
σ
N̂1N̂2

σ
N̂1

·σ
N̂2

. The additional consideration of the fixing errors in (3.61) results

in a smaller weight than the traditional γ = σN̂2N̂1
σ−2

N̂1
= ρ. A lower weight γ turns into

a smaller conditional variance σ2
N̂2|1

and, thus, a lower probability of wrong fixing.
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Figure 3.1: Optimal weighting γopt for bootstrapping: The additional consideration of

the fixing errors in [N̂1] result in a smaller weight than the traditional γ = σN̂2N̂1
σ−2

N̂1
= ρ.

The traditional derivation of the bootstrapped estimator neglects the terms σε
N̂1

[ε
N̂1

],

σ2
[ε

N̂1
] and σ[ε

N̂1
]ε

N̂2
of (3.64). In this case, the optimum γ simplifies to

γ = σN̂2N̂1
σ−2

N̂1
. (3.71)

Replacing γ in (3.61) by (3.71) yields in accordance with Teunissen [60]

N̂2|1 = N̂2 − σN̂2N̂1
σ−2

N̂1
· (N̂1 − [N̂1]), (3.72)

which is uncorrelated to N̂1 if [N̂1] is deterministic, i.e.

σN̂1N̂2|1
= 0. (3.73)

The variance of N̂2|1 is obtained from (3.72) under the assumption of correct rounding as

σ2
N̂2|1

= σ2
N̂2

− σ2
N̂2N̂1

σ−2

N̂1
, (3.74)
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which is lower than σ2
N̂2
. Once the second ambiguity is fixed, the third one can be

corrected, i.e.

N̂3|2,1 = N̂3 − σN̂3N̂1
σ−2

N̂1
· (N̂1 − [N̂1])− σN̂3N̂2|1

σ−2

N̂2|1
· (N̂2|1 − [N̂2|1]) (3.75)

with the conditional variance

σ2
N̂3|2,1

= σ2
N̂3

− σ2
N̂3N̂1

σ−2

N̂1
− σ2

N̂3N̂2|1
σ−2

N̂2|1
, (3.76)

and the covariance between N̂3 and N̂3|2,1 that is obtained from (3.75) as

σN̂3N̂2|1
= σN̂3N̂2

− σN̂2N̂1
σ−2

N̂1
σN̂1N̂3

. (3.77)

The sequential adjustment is repeated for the remaining ambiguities, i.e. the k-th condi-
tional ambiguity is given by

N̂k|1,...,k−1 = N̂k −
k−1∑

j=1

σN̂kN̂j|1,...,j−1
σ−2

N̂j|1,...,j−1
(N̂j|1,...,j−1 − [N̂j|1,...,j−1]), (3.78)

with the conditional variance

σ2
N̂k|1,...,k−1

= σ2
N̂k

−
k−1∑

j=1

σ2
N̂kN̂j|1,...,j−1

σ−2

N̂j|1,...,j−1
, (3.79)

and the covariance between the unconditional and conditional float ambiguities

σN̂kN̂j|1,...,j−1
= σN̂kN̂j

−
j−1
∑

i=1

σN̂jN̂i|1,...,i−1
σ−2

N̂i|1,...,i−1
σN̂kN̂i|1,...,i−1

. (3.80)

Clearly, both the conditional variances and the covariances depend on the order of fixings.
It can be shown from (3.78) that the conditional ambiguity estimates are uncorrelated,
i.e.

σN̂k|1,...,k−1,N̂l|1,...,l−1
= 0 ∀ k 6= l (3.81)

The k-th fixed (bootstrapped) ambiguity is denoted by

ŇBk
=
[

N̂k|1,...,k−1

]

, (3.82)

which enables us to write (3.78) in matrix-vector notation, i.e.








N̂1 − ŇB1

N̂2 − ŇB2

...

N̂K − ŇBK







=








1 0 · · · 0
σN̂2N̂1

σ−2

N̂1
1

...
. . .

...
σN̂K N̂1

σ−2

N̂1
σN̂KN̂2|1

σ−2

N̂2|1
· · · 1







·








N̂1 − ŇB1

N̂2|1 − ŇB2

...

N̂K|1,...,K−1 − ŇBK







. (3.83)



64 Chapter 3 � Multi-frequency integer ambiguity resolution

For fixed ŇBk
, the covariance matrix ΣN̂ can be derived from (3.83) as

ΣN̂ = LDLT (3.84)

with

Li,j =







σN̂iN̂j|1,...,j−1
σ−2

N̂j|1,...,j−1

1
0






for







i > j
i = j
i < j






(3.85)

and the diagonal matrix D with Dj,j = σ2
N̂j|1,...,j−1

. For correct ŇBk
, Teunissen computed

the biases in the conditional ambiguities N̂j|1,...,j−1 from the biases in the float ambiguities
[56], i.e.








bN̂1

bN̂2|1

...
bN̂K|1,...,K−1







= L−1








bN̂1

bN̂2
...

bN̂K







. (3.86)

As the conditional variances are uncorrelated, the success rate of sequential ambiguity
resolution can be efficiently computed (e.g. Teunissen [61]) as

Ps =

K∏

k=1

∫ +0.5

−0.5

1
√

2πσ2
N̂k|1,...,k−1

· exp
(

−
(N̂k|1,...,k−1 − bN̂k|1,...,k−1

)2

2σ2
N̂k|1,...,k−1

)

dN̂k|1,...,k−1. (3.87)

The ambiguity resolution can also be described graphically by pull-in regions SŇk
that

are defined as the set of float ambiguities which are mapped to Ňk, i.e.

SŇk
=
{

N̂ ∈ R
K |Ň k = S(N̂)

}

, Ň k ∈ Z
K . (3.88)

For bootstrapping, the map S is obtained from (3.83) which can be rewritten as








εN̂1

εN̂2|1

...
εN̂K|1,...,K−1







= L−1








εN̂1

εN̂2
...

εN̂K







. (3.89)

The conditional errors εN̂k|1,...,k−1
shall be bounded by ±1/2 which enables us to write the

bootstrapped pull-in regions as

SB,Ňk
=

{

N̂ ∈ R
K

∣
∣
∣
∣

∣
∣
∣cTi L

−1
(

N̂ − Ň k

)∣
∣
∣ ≤ 1

2
, i ∈ {1, . . . , K}

}

, Ň k ∈ Z
K , (3.90)

where ci is a column vector with a 1 at the i-th entry and 0 elsewhere. Eq. (3.90)
represents a parallelepiped which is shown for an exemplary two- and three-dimensional
covariance matrix in Fig. 3.2. The optimal fixing order is achieved if the orientation of
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the ellipsoid corresponds to the orientation of the parallelepiped.
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Figure 3.2: Two- and three-dimensional pull-in regions for bootstrapping: The corre-
lation between the float ambiguity estimates results in parallelepiped pull-in regions for
an ellipsoidal search space. The optimal fixing order is achieved if the orientation of the
parallelepiped corresponds to the orientation of the ellipsoid.

3.1.3 Integer least-squares estimation

The integer least-squares estimate is given by

Ň = arg min
N∈ZK

(

N̂ −N
)T

Σ−1

N̂

(

N̂ −N
)

, (3.91)

and efficiently computed by the Least-squares Ambiguity Decorrelation Adjustment
(LAMBDA) method of Teunissen in [62] and [63]. The implementation aspects are de-
scribed by de Jonge and Tiberius in [64]. The LAMBDA method consists of two steps:
a grid-preserving ambiguity transformation Z and a search S. Thus, the integer least-
squares estimate can be written as

Ň = Z−1S
(

ZN̂
)

, (3.92)

where the back-transformationZ−1 has to be integer valued to keep the integer property of
the fixed ambiguities. This is the case if det(Z) = 1 and all entries of Z are integer valued.
This ambiguity transformation has been introduced by Teunissen for two objectives: the
search space shall be decorrelated to improve the efficiency of the search, and, the variance
of the first ambiguity shall be minimized as all other conditional ambiguity estimates
depend on it. The ambiguity transformation is built from an alternating sequence of
integer decorrelations and permutations.

In the first step, the first and second ambiguities are integer decorrelated by

N̂
′
1 = Z1N̂ , (3.93)
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with

Z1 =








1 0 0 · · ·
−µ 1 0
0 0 1
...

. . .







, (3.94)

where µ = [L2,1] is computed from the triangular decomposition of (3.84). The covariance
matrix becomes

Σ
N̂

′
1
= Z1ΣN̂ZT

1 = Z1LDLTZT
1 = L̃

′
1DL̃

′T
1 . (3.95)

Note that the integer decorrelation matrix has the same lower triangular structure as L
and, thus, does not change the conditional variances σN̂j|1,...,j−1

=
√

Dj,j. In the second

step, a permutation of the first and second ambiguity is performed if the variance of the
first one can be lowered. The permutation matrix is given by

P 1 =








0 1 0 · · ·
1 0 0
0 0 1
...

. . .







, (3.96)

and used to permute N̂
′
1, i.e.

N̂ 1 = P 1N̂
′
1 = P 1Z1N̂ . (3.97)

The covariance matrix of the permuted ambiguities is given by

ΣN̂1
= P 1ΣN̂

′
1
P T

1 = P 1L̃
′
1DL̃

′T
1 P T

1 = L̃1D̃1L̃
T

1 , (3.98)

i.e. the permutation changes both L̃
′
1 and D as P 1 is not a lower triangular matrix.

If the reordering was successful (i.e. it reduces the variance of the first ambiguity), the
permuted ambiguities are again decorrelated. Otherwise, the second and third ambiguity
are decorrelated and swapped if the conditional variance of the second one can be lowered.

These alternating decorrelations and permutations are repeated until no further permu-
tation is possible. The transformed ambiguities are given by

N̂Θit
= ZN̂ =

(
Θit∏

θit=1

PΘit−(θit−1)ZΘit−(θit−1)

)

N̂ , (3.99)

where Θit denotes the number of iterations. Note that in each iteration, admissible per-
mutations are only swaps between ambiguities i and i+1. This constraint might prevent
an order which minimizes the variance of the first ambiguity or minimizes the correla-
tion. However, the degradation is small and there is the benefit of a substantially reduced
computational burden.
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Once the ambiguities are decorrelated, a search of N is performed, i.e.

(

N̂Θit
−N

)T

Σ−1

N̂Θit

(

N̂Θit
−N

)

≤ χ2, (3.100)

where χ denotes a threshold on the quadratic error. The further analysis of the search is
always based on decorrelated measurements such that the notation can be simplified by
omitting the index Θit. The inverse covariance matrix Σ−1

N̂
is decomposed into

Σ−1

N̂
= LTDL (3.101)

to rewrite (3.100) as

K∑

i=1

Di,i

(
(

N̂i −Ni

)

+
i−1∑

j=1

Li,j

(

N̂j −Nj

)
)2

≤ χ2. (3.102)

Inversion of (3.101) yields

ΣN̂ = L̃D̃L̃
T

with L̃ = L−1 and D̃ = D−1, (3.103)

where D−1
i,i = σ2

N̂i|1,...,i−1
can be interpreted with (3.83) and (3.84) as conditional variance.

Solving (3.83) for N̂i|1,...,i−1 gives








N̂1

N̂2|1
...

N̂K|1,...,K−1







= L−1








N̂1 − ŇB1

N̂2 − ŇB2

...

N̂K − ŇBK







+








ŇB1

ŇB2

...
ŇBK







. (3.104)

Thus, the search of (3.102) can be rewritten as sequential conditional adjustment:

K∑

i=1

(

Ni − N̂i|1,...,i−1

)2

σ2
N̂i|1,...,i−1

≤ χ2. (3.105)

Rearranging this inequality gives

(

Ni − N̂i|1,...,i−1

)2

σ2
N̂i|1,...,i−1

≤ χ2 −
i−1∑

l=1

(

Nl − N̂l|1,...,l−1

)2

σ2
N̂l|1,...,l−1

−
K∑

l=i+1

(

Nl − N̂l|1,...,l−1

)2

σ2
N̂l|1,...,l−1

≤ χ2 −
i−1∑

l=1

(

Nl − N̂l|1,...,l−1

)2

σ2
N̂l|1,...,l−1

, (3.106)

which depends only on the fixed ambiguities N1, . . . Ni−1 and enables a sequential search.
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Thus, the candidates of Ni are given by

|Ni − N̂i|1,...,i−1| ≤ σN̂i|1,...,i−1

√
√
√
√
√χ2 −

i−1∑

l=1

(

Nl − N̂l|1,...,l−1

)2

σ2
N̂l|1,...,l−1

. (3.107)

An efficient way to determine χ is to round the decorrelated ambiguities to their closest
integers, compute the error norm (N̂−Ň)TΣ−1

N̂
(N̂−Ň ), and use it as χ. This will ensure

that the search space includes at least one integer vector. Rounding all ambiguities but
one to their closest integers and one to the next nearest integer will ensure that the search
space includes at least two candidates. Obviously, the search criterion minN ‖N̂−N‖2

Σ
−1

N̂

becomes sub-optimal in the presence of biases. It should be extended to

min
N

max
b
N̂

‖N̂ −N − bN̂‖2Σ−1

N̂

s. t. |bN̂k | < bmax ∀ k, (3.108)

where bmax is an upper bound on the ambiguity bias. The efficiency of the search depends
on the shape of the search space. The eigenvalue decomposition of the covariance matrix
of the integer decorrelated ambiguities is given by

QΛQT = ΣN̂ , (3.109)

and used to determine the elongation of the search space. It is defined as the ratio between
the largest eigenvalue λmax and the smallest eigenvalue λmin, i.e.

e =
λmax

λmin
, (3.110)

which is reduced by several orders of magnitude by the integer decorrelation transforma-
tion. Another parameter of the ellipsoidal search space is its volume which depends on
the threshold χ and has been derived by Apostel in [65] as

E = χK ·
√

|ZΣN̂ZT | · VK = χK ·
(

K∏

i=1

σN̂i|1,...,i−1

)

· VK , (3.111)

with the volume VK of the K-dimensional unit sphere given by

VK =
2

K
· π

K
2

Γ(K
2
)
, (3.112)

and the gamma function Γ(x) =
∫∞
0

e−ttx−1dt for x > 0.

Fig. 3.3 visualizes the benefit of the integer decorrelation transformation for a three-
dimensional ambiguity search space. If no decorrelation is applied, the strong correla-
tions in the float solution result in a largely elongated search space and, thus, an ineffi-
cient search. This elongation is reduced stepwise by integer approximated decorrelation
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transforms which preserve the integer grid and decorrelate the search space. An almost
spherical search space is achieved within a few iterations.
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Figure 3.3: Integer ambiguity search space: The strong correlations in the float solution
result in a largely elongated search space and, thus, an inefficient search. This elongation
is reduced by an integer decorrelation transform which preserves the integer grid and
decorrelates the search space.

3.1.4 Integer Aperture estimation

The traditional integer least-squares estimation (e.g. LAMBDA) can be visualized graph-
ically as a mapping of float ambiguities to integer ambiguities according to a map S.
The amount of float solutions that are mapped to a common integer vector Ň k form the
subset SŇk

, i.e.

SŇk
= {N̂ ∈ R

K |Ň k = S(N̂)}, Ň k ∈ Z
K , (3.113)

where the subset is also called pull-in region. An integer estimator fulfills the three
properties

(1)
⋃

Ňk∈ZK

SŇk
= R

K

(2) SŇ1

⋂

SŇ2
= ∅ ∀ {Ň 1, Ň 2} ∈ Z

K , Ň1 6= Ň 2

(3) SŇk
= Ň k + S0, (3.114)

where the first constraint ensures that each float vector is mapped to an integer one,
the second constraint prevents an overlapping of the pull-in regions, and the third con-
straint is referred as integer remove-restore technique and enables us to consider only
the fractional part. In [66], Teunissen gave up the first constraint to introduce a new
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class of integer estimators called Integer Aperture (IA) estimation. It includes integer
least-squares estimation as a special case and is defined by the mapping

Ň(N̂) = N̂ +
∑

Ň∈ZK

(Ň − N̂)ωŇ (N̂), (3.115)

where ωŇ (N̂) is an indicator function which is 1 if N̂ lies in the aperture pull-in region
of Ň and 0 otherwise.

There are three possible outcomes of an IA estimation: the correct integer solution, a
wrong integer solution, and a float solution. The latter one is chosen if a fixing can not
be performed reliably enough. The ellipsoidal IA (EIA) estimator of Verhagen [67] uses
ellipsoidal pull-in regions that are given by

SŇk
= {N̂ ∈ R

K | ‖N̂ − Ň k‖2Σ−1

N̂

≤ µ2}, ∀ Ň k ∈ Z
K , (3.116)

where µ denotes the threshold used for hypothesis testing. As the squared norm of
Gaussian distributed errors is χ2 distributed, the EIA probabilities of failure, success and
undecided fixing can be efficiently computed [67]:

Pw =
∑

Ňk∈ZK\{N}

P
(

‖N̂ − Ň k‖2Σ−1

N̂

≤ µ2
)

=
∑

Ňk∈ZK\{N}

∫ µ2

0

Pχ2(K,λ
Ňk

)(x)dx (3.117)

and

Ps =

∫ µ2

0

Pχ2(K,0)(x)dx

Pu = 1− Ps − Pw, (3.118)

where Pχ2(K,λ
Ňk

)(x) denotes the non-central χ2 distribution with K degrees of freedom

and non-centrality parameter λŇk
= ‖Ň k −N‖2

Σ
−1

N̂

.

Fig. 3.4 shows the pull-in regions for the integer least-squares and ellipsoidal IA esti-
mators. The additional hypothesis of undecided ambiguities reduces the probability of
wrong fixing at the price of a lower probability of correct fixing. The failure rate can
be controlled by the choice of µ. The hexagonal shape of the pull in region for the ILS
estimation can be obtained by equating the norm of two neighbored pull-in regions, i.e.

[
N̂1 −N1

N̂2 −N2

]2

Σ
−1

N̂

=

[
N̂1 − (N1 + k)

N̂2 − (N2 + l)

]2

Σ
−1

N̂

, (3.119)

which can be simplified to

(N̂1−N1)(kσ
2
N̂2
−lσN̂12

)+(N̂2−N2)(lσ
2
N̂1
−kσN̂12

)−1

2
(k2σ2

N̂2
−2klσN̂12

+l2σ2
N̂1
) = 0, (3.120)
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and represents a linear equation.
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Figure 3.4: Integer Aperture Estimation: A float solution is mapped either to the correct
integer vector, to a wrong integer vector, or it is kept as float solution if a decision is not
reliably enough. Therefore, the aperture pull-in regions do not cover the complete search
space. A mapping to an integer solution is performed only if ‖N̂ − Ň‖2

Σ
N̂

−1
≤ µ2. The

probability of wrong fixing is lower than for integer least-squares estimation.

3.1.5 Baseline constrained ambiguity resolution

The reliability of ambiguity resolution can be further improved by some a priori informa-
tion, e.g. the baseline length l = ‖ξ‖I3. The constrained integer least-squares problem
has been formulated by Teunissen in [68] as

min
ξ,N

‖Ψ−Hξ −AN‖2
Σ

−1 , ξ ∈ R
3, N ∈ Z

K , s. t. ‖ξ‖I3 = l. (3.121)

The baseline is reparametrized in spherical coordinates, i.e.

ξ(γ) = l





cos(α) cos(β)
cos(α) sin(β)

sin(α)



 with γ =

[
α
β

]

, (3.122)

which allows to transform the constrained integer least-squares problem in an uncon-
strained one, i.e.

min
γ,N

‖Ψ−Hξ(γ)−AN‖2
Σ

−1 , γ ∈ R
2, N ∈ Z

K , (3.123)
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which is nonlinear in γ. A linearization of the baseline vector with respect to some
approximate angles γ0 = [α0, β0]

T gives

ξ(γ) = ξ(γ0) +C(γ0)∆γ, (3.124)

with

C(γ0) = l ·





− sin(α0) cos(β0) − cos(α0) sin(β0)
− sin(α0) sin(β0) cos(α0) cos(β0)

cos(α0) 0



 , (3.125)

and ∆γ = γ − γ0. Substituting ξ(γ) in (3.123) by (3.124) gives an unconstrained,
linearized integer least-squares problem:

min
∆γ,N

‖∆Ψ−HC(γ0)∆γ −AN‖2
Σ

−1 , ∆γ ∈ R
2, N ∈ Z

K , (3.126)

with ∆Ψ = Ψ −Hξ(γ0). The minimization problem of (3.126) has the same structure
as the integer least-squares problem without the baseline a priori information and, thus,
can be solved with the Least-squares Ambiguity Decorrelation Adjustment method. The
approximate angles γ0 can be obtained from an external attitude determination method
(IMU) or from the float solution. However, in the latter case, the estimation of γ0 requires
a large number of epochs for very small baselines.

Alternatively, the constrained integer least-squares problem of (3.121) is rewritten as

min
N

(

‖N̂ −N‖2
Σ

−1

N̂

+ min
ξ̌(N),‖ξ̌(N)‖=l

‖ξ̂(N)− ξ̌(N)‖2
Σ

−1

ξ̂(N)

)

, (3.127)

where the second term can no longer be made to zero due to the baseline constraint.
However, it can be rewritten as a Lagrange optimization problem, i.e.

f(λ) =
(

ξ̂(N)− ξ̌(N)
)T

Σ−1

ξ̂(N)

(

ξ̂(N)− ξ̌(N)
)

+ λ · (ξ̌(N)T ξ̌(N)− l2), (3.128)

with the Lagrange multiplier λ. Computing the derivative with respect to ξ gives

ξ̌(N) =
(

Σ−1

ξ̂(N)
− λ1

)−1

Σ−1

ξ̂(N)
ξ̂(N), (3.129)

and setting it into the constraint ‖ξ̌(N)‖2 = l2 gives

ξ̂
T
(N)Σ−1

ξ̂(N)

(

Σ−1

ξ̂(N )
− λ1

)−1 (

Σ−1

ξ̂(N)
− λ1

)−1

Σ−1

ξ̂(N)
ξ̂(N)− l2 = 0. (3.130)

As there does not exist an analytical solution for λ, a line (one-dimensional) search is
required. The iterative bisection method is used as it efficiently finds the root of a function
without requiring its gradient. The method starts with two candidate solutions with
functional values of opposite signs and then converges to a solution by halving the interval
in each iteration (Fig. 3.5). The obtained estimate is then used in (3.129) to compute
the baseline vector.
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right bound (in all 3 steps)

3rd step (left bound)

2nd step (left bound)

1st step (left bound)

Figure 3.5: Integer least-squares estimation with constrained baseline length: The La-
grange optimization requires the root finding of a nonlinear function. It can be found
efficiently by the iterative bisection method which only requires the evaluation of the
function. The method starts with two candidate solutions and then converges to a solu-
tion by halving the interval in each iteration.

The baseline constrained ambiguity resolution is validated with a Septentrio PolaRx3G
receiver that is connected to the institute’s Nav NCS Galileo signal simulator of IFEN.
Fig. 3.6 shows the measurement equipment, i.e. a notebook on the left side for setting
the parameters of receiver location and movement, atmospheric errors, satellite clocks and
orbits, etc. The notebook is connected to the signal constellation simulator which provides
a high frequency signal that is fed into the Septentrio receiver. The receiver settings and
the data logging are done from the small remote PC. In the following analysis, a stationary
baseline with a length of 30.583 m was simulated with a standard atmospheric setting, i.e.
the Klobuchar model for the ionosphere and the WAAS MOPS model for the troposphere.

Figure 3.6: Measurement equipment for baseline constrained ambiguity resolution: The
NavX NCS Galileo signal simulator of IFEN is connected to the dual frequency PolaRx3G
receiver of Septentrio which tracks six Galileo satellites on E1 and E5a. Two different
receiver locations are simulated to verify differential integer ambiguity resolution.
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Fig. 3.7 shows the achievable accuracy for the estimation of E1-E5a widelane float
ambiguities on a single epoch basis. All float ambiguity estimates are close to integers
with a noise level varying between one tenth and one third of a cycle. This enables
extremely reliable integer ambiguity resolution.
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Figure 3.7: Analysis of float ambiguity solution: The baseline and the widelane double
difference ambiguities are estimated on a single epoch basis. The E1 and E5a double
difference measurements were combined into an ionosphere-free code-only combination
and the traditional phase-only widelane combination with a wavelength of 75.1cm. The
measurements were generated with the NavX-NCS Galileo signal simulator of IFEN.

Fig. 3.8 shows a comparison of the code-only, the float and the fixed solution of the
unconstrained baseline estimation. The large code noise is substantially reduced by the
widelane float solution, and further reduced to the millimeter level by the fixed solution.
The small bias in the unconstrained fixed solution will be eliminated in the baseline
constrained estimation. Fig. 3.9 shows that the ambiguity fixing reduces the range
residuals by more than one order of magnitude.

The search of the integer ambiguities is also affected by the baseline constraint, i.e. the
integer search space is given by

Ω(χ2) = {N ∈ Z
K | ‖N̂ −N‖2

Σ
−1

N̂

+ ‖ξ̂(N)− ξ̌(N)‖2
Σ

−1

ξ̂(N)

≤ χ2}, (3.131)

where ξ̂(N) denotes the unconstrained fixed baseline estimate and ξ̌(N) is the solution of
the Lagrange optimization (3.129). Giorgi et al. have extended this baseline constrained
integer least-squares estimation to multiple baselines in [69], and observed an additional
reduction in the probability of wrong fixing.

It is suggested to perform the search in two steps, i.e. first to search the Ξ integer
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Figure 3.8: Error in length of unconstrained baseline estimation: The code-only solution
suffers from the large code noise which is substantially reduced by the widelane float
solution. The fixed solution keeps the noise at the millimeter level. The small bias in the
unconstrained fixed solution is eliminated in the baseline constrained solution.
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Figure 3.9: Range residuals: The ambiguity fixing reduces the range residuals by more
than one order of magnitude.

candidates of lowest ‖N̂ − N‖2
Σ

−1

N̂

and then to select the candidate which minimizes

(3.131). The number Ξ of candidates required for the search of the global minimum is
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given by the inequality

‖N̂ −NΞ‖2Σ−1

N̂

≥ min
i∈{1,...,Ξ−1}

(

‖N̂ −N i‖2Σ−1

N̂

+ ‖ξ̂(N i)− ξ̌(N i)‖2Σ−1

ξ̂(N)

)

, (3.132)

where the set of integer candidates minimizing the unconstrained error norm is given by
SΣ

N̂
∈ {N 1, . . . ,NΞ}, with N 1 having the lowest and NΞ the largest error norm.

In many applications, the length of the baseline is not known exactly. For example,
turbulence can change the distance between two receivers on the wings of an aircraft.
Therefore, the tightly constrained integer ambiguity resolution shall be replaced by a soft
constrained ambiguity resolution for reliable attitude determination. The baseline and
integer ambiguities are again determined jointly by minimizing the cost function

C(N , ξ) = ‖Ψ−Hξ −AN‖2
Σ

−1 + µ · (‖ξ‖ − l)2, (3.133)

where the first term denotes the weighted range residuals and the second term describes
the difference between the length of the estimated baseline and its a priori knowledge l. A
certain weighting µ was introduced to control the confidence in the a priori knowledge, i.e.
a small µ is chosen if one can trust less in l and vice versa. Fig. 3.10 shows a comparison
of unconstrained, loosely constrained and tight constrained ambiguity resolution as a
function of the a priori information. If it is correct, the tight constraint outperforms the
unconstrained fixing by two orders of magnitude. If the a priori information is biased by
more than 1 m, the tight constraint results in a poorer performance than the unconstrained
fixing but the soft constrained still outperforms it by more than one order of magnitude.
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Figure 3.10: Comparison of probability of wrong fixing between unconstrained, loosely
and tightly constrained integer least-squares estimation: The tight constraint reduces the
unconstrained failure rate by two orders of magnitude if the a priori knowledge is correct.
The loose constraint is especially beneficial if the a priori information is erroneous, e.g. it
lowers the unconstrained failure rate by one order of magnitude for a 1 m length bias.
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3.2 Ambiguity spectrum for multi-frequency combi-

nations

Teunissen showed in [62], [63] and [70] that the conditional standard deviations of the first
and last ambiguity differ by several orders of magnitude due to a discontinuity between the
third and fourth ambiguity. The spectrum of ambiguities is the graphical representation
of the conditional standard deviations σN̂k|1,...,k−1

as a function of the ambiguity index

k. The discontinuity in the spectrum can be easily explained: Once three ambiguities
are fixed, the unknown baseline can be determined with an accuracy that is comparable
to the one of carrier phase measurements. This allows us to determine the remaining
ambiguities with such a high precision, i.e. the order of magnitude of the remaining
conditional standard deviations has to be equal to the one of the carrier phase noise.

In [72], Teunissen et al. analyzed the impact of satellite redundancy, two frequencies,
multiple epochs and additional code measurements on the spectrum of ambiguities. The
first two extensions do not change the spectrum significantly as each satellite or frequency
adds a new ambiguity. A similar observation has been made for the use of additional
measurements that have been taken one minute after the first ones: The small change
in satellite geometry does not provide sufficient redundancy to improve the spectrum
significantly.
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Figure 3.11: Spectrum of ambiguities for precise point positioning: A flat spectrum
is achieved by full integer decorrelation. The use of two optimized linear combinations
enables an almost flat spectrum even without integer decorrelation. An E1-E5 GP-IF
code-carrier combination of maximum discrimination and a code-only combination are
computed from satellite-satellite SD measurements of 10 s to estimate the position (once
per epoch), ambiguities and tropospheric zenith delay (once per epoch).

Finally, the fourth source of redundancy arises from the code measurements which are
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much noisier than the carrier phase measurements. Teunissen et al. assumed a phase
noise standard deviation of 3 mm and a code noise standard deviation of 60 cm. This
results in an ill-conditioned system of equations which motivated Teunissen to introduce
the integer decorrelation transformation to flatten the ambiguity spectrum.

Fig. 3.11 shows a discontinuity by more than two orders of magnitude if no integer
decorrelation is used. The GP-IF E1-E5 mixed code-carrier combination of Tab. 2.5
is applied to satellite-satellite SD measurements for precise point positioning [71]. The
discontinuity occurs between the 4-th and 5-th ambiguity as the tropospheric zenith delay
is estimated in addition to the position. The ambiguity transformation of (3.99) flattens
the spectrum within 210 iterations. The use of an additional GP-IF code-only combination
enables an almost flat spectrum even without integer decorrelation [45]. Moreover, the
code-only combination also reduces the conditional standard deviations by one order of
magnitude. This is due to the low code noise of Galileo and the zero-correlation between
both combinations which improves the conditioning of the system of equations.
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Figure 3.12: Number of halted searches for precise point positioning: The first four
ambiguities can be fixed easily due to the four degrees of freedom for position and tropo-
spheric wet zenith delay. The extremely low conditional variances of the fifth and further
ambiguities result in frequent halted searches. The flattening of the ambiguity spectrum
by integer decorrelation or two linear combinations improves the efficiency dramatically.
An E1-E5 GP-IF code-carrier combination of maximum discrimination and a code-only
combination of satellite-satellite SD meas. have been considered over 10 s to estimate the
position (once per epoch), ambiguities and tropospheric zenith delay (once per epoch).

The discontinuity in the spectrum causes a large elongation of the search space and a
large number of halted searches. Fig. 3.12 shows that frequent halts can be avoided either
by an integer decorrelation with 210 iterations or a second code-only combination.
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3.3 Benefit of multi-frequency linear combinations

for ambiguity fixing

The optimized mixed code-carrier widelane combinations of Chapter 2 eliminate the iono-
sphere and maximize the ambiguity discrimination. The large wavelength of several me-
ters increases the robustness to orbital and clock errors but also results in an increased
noise level. If the ambiguities can be resolved without linear combinations, the noise
amplification is avoided and a higher positioning accuracy can be expected. However, the
estimation of the ionospheric delay is required for each satellite and the small wavelength
prevents reliable ambiguity resolution. Moreover, the ambiguity fixing of uncombined
measurements is rather sensitive to orbital and clock errors.

Linear combinations enable a trade-off between a higher reliability of ambiguity resolu-
tion and a lower positioning accuracy than uncombined carrier phase measurements. Fig.
3.13 shows a comparison of the probability of wrong fixing with and without combina-
tions. The use of two GP-IF E1-E5 combinations (mixed code-carrier comb. of Tab. 2.4
and code-only comb.) results in a probability of wrong fixing of less than 10−9 which is
more than 9 orders of magnitude lower than in the case of uncombined measurements.
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Figure 3.13: Benefit of geometry-preserving, ionosphere-free linear combinations for
ambiguity resolution: Double difference measurements on E1 and E5 are considered on 3
consecutive epochs (rate 1 Hz) for Wide-Area RTK. The following parameters are esti-
mated: the baseline (once per epoch), the integer ambiguities (using bootstrapping with
integer decorrelation), the tropospheric wet zenith delay (of first epoch), the temporal
gradient of the tropospheric wet zenith delay, the ionospheric delays for all satellites (of
first epoch), the temporal gradient of ionospheric delays for all satellites. The latter two
parameters do not have to be estimated in the case of IF linear combinations.



80 Chapter 3 � Multi-frequency integer ambiguity resolution

Double difference measurements have been considered for Wide-Area RTK to eliminate
the clock offsets, receiver and satellite biases. The float solution is determined by least-
squares estimation of the baseline (once per epoch), the ambiguities, the tropospheric
wet zenith delay (of first epoch), the temporal gradient of the tropospheric wet zenith
delay, the ionospheric delays for all satellites (of first epoch) and the temporal gradient
of ionospheric delays for all satellites. The ambiguities are resolved in both cases with
bootstrapping after integer decorrelation.

Fig. 3.14 shows the pull-in regions for the previous RTK scenario at a good satellite
geometry. Subfigure (a) refers to the estimation of the E1 integers and subfigure (b) to
the widelane ambiguities. Obviously, the increase in wavelength from 19 cm to 3.285 m
substantially increases the size of the pull-in regions. Both figures also the include the
error ellipse given by ‖N̂−N‖2

Σ
−1

N̂

= 3. Its size is larger than the size of the pull-in region

for uncombined ambiguities but significantly smaller than the size of the widelane pull-in
regions. This is another indication for extremely reliable ambiguity resolution with our
linear combinations.

Fig. 3.15 shows the benefit of geometry-free, ionosphere-free (GF-IF) E1-E5b-E5a linear
combinations (j1 = 1, j2 = −5, j3 = 4) over no linear combinations for kinematic differen-
tial ambiguity resolution. Receiver-receiver single difference measurements are considered
for a baseline of 20 km to suppress the ephemeris errors and to eliminate the satellite
clock offsets. The elimination of the range, clock offsets, ionospheric and tropospheric
delays improves the robustness over modeling errors. However, the GF-IF condition also
means that the satellite redundancy is not taken into account and that the noise level is
increased. Ambiguity resolution without linear combinations benefits from the satellite
redundancy and the low noise level of the phase measurements but suffers from the small
wavelengths and the large number of unknown parameters including the clock offset, iono-
spheric delays, ionospheric gradients, tropospheric zenith delay and tropospheric zenith
delay gradient. The probability of wrong fixing using GF-IF combinations shows negligible
temporal variations as it depends only on the number of satellites and the assumed noise
statistics. The lowest error rate is achieved for the minimum number of visible satellites.
If no linear combinations are used, an opposite behavior can be observed: The probability
of wrong fixing (using bootstrapping with integer decorrelation) varies by more than 10
orders of magnitude with the highest values for a poor satellite geometry.

For precise point positioning, multipath, orbital errors and especially satellite clock off-
sets limit the reliability of ambiguity resolution. The biases in the conditional decorrelated
ambiguity estimates are obtained from (3.15), (3.99) and (3.86) as








bN̂1

bN̂2|1

...
bN̂K|1,...,K−1







= L−1Z(A

T
Σ−1A)−1A

T
Σ−1

[
b(1)

b(2)

]

, (3.134)

where b(1) denotes the biases for the code-carrier combinations and b(2) the biases for the
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Figure 3.14: Increase of pull-in regions with multi-frequency linear combinations

code-only combinations. Both bias vectors can be split into orbital errors, satellite clock
offsets and satellite hardware biases, i.e.

b(1) =






(e1,T δx1 − e2,T δx2)− c∆δτ 12
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, (3.135)
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Figure 3.15: Benefit of geometry-free, ionosphere-free linear combinations over no linear
combinations for ambiguity resolution: The combinations increase the wavelength to 1 m
and eliminate the range, clock offsets, tropospheric and ionospheric delays. The respective
success rate depends only on the number of visible satellites, i.e. the combinations are
particulary useful for poor satellite geometries. Ambiguity resolution of the uncombined
carrier phases is advantageous for geometries with a large number of visible satellites, i.e.
the redundancy is sufficiently high to estimate the additional parameters.

where ∆ denotes the single difference between satellites 1 and k = {2, . . . , K}. After
simplification of the notation by introducing

S = L−1Z(A
T
Σ−1A)−1A

T
Σ−1, (3.136)

we can rewrite the k-th conditional bias bN̂k|k
as

bN̂k|k
=
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j=1

(
Skj + Sk,j+(K−1)

)
·
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ρm |

)

.

(3.137)
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This worst-case accumulation of biases has to be considered for Safety-of-Life critical
applications. The latter two components are frequency dependant and include multipath.
As low elevation satellites are more affected by ground reflections than satellites at high
elevation, an elevation-dependant exponential delay profile [73] is used for phase and code
biases, i.e.

∆b1,1+j
φm,max

(E1+j) = ∆bφm,max(E = 0◦) · e−E(1+j)/ζφm

∆b1,1+j
ρm,max

(E1+j) = ∆bρm,max(E = 0◦) · e−E(1+j)/ζρm , (3.138)

with the elevation angle E and the decay constants ζφm
and ζρm . Fig. 3.16 shows the

probability of wrong fixing for PPP with the combinations of Tab. 3.1. The first one is
geometry-preserving and benefits from a larger ambiguity discrimination. The ambiguity
resolution additionally benefits from the satellite redundancy but it also suffers from the
clock offsets and orbital errors. The latter combination in Tab. 3.1 is geometry-free so
that the fixing benefits from the elimination of clock offsets and orbital errors.
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Figure 3.16: Integer ambiguity resolution for Precise Point Positioning: A geometry-
preserving and a geometry-free approach are compared for worst-case superposition of
orbital and satellite clock errors. The GP approach benefits from a larger discrimination
and the satellite redundancy but suffers from the orbital and satellite clock errors while
the GF approach behaves vice versa.

{α1, α2, α3}, {α′
1, α

′
2, α

′
3} {β1, β2, β3} λ σsm (τ = 10 s) D

GP 18.57,−71.15, 55.47 −0.24,−0.81,−0.85 3.53m 11.0cm 16.1
1.89, 3.30,−4.19

GF 5.26,−20.13, 15.70 −0.72,−0.14, 0.03 1.00m 8.0cm 6.2
−0.12, 1.07,−0.95

Table 3.1: Carrier smoothed IF combinations with j1 = 1, j2 = −5 and j3 = 4.
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In this case, the reliability of ambiguity resolution depends only on the number of visible
satellites and the combination properties. The ambiguity resolution is adapted to the
kind of combination: For GP combinations, bootstrapping is performed based on the least-
squares solution of the position, float ambiguities and tropospheric wet zenith delay. In the
case of GF combinations, the ambiguities are directly provided by the smoothing. For the
currently available ultra-rapid (half predicted) IGS orbits with an accuracy of 5 cm for the
orbits and of 2 ns for the satellite clocks, the worst-case bias accumulation over all satellites
results in a probability of wrong fixing which is close to 1 if the geometry-preserving
combination is used. Note that the accuracy of the satellite clocks is about one order of
magnitude lower than for the orbits. The GF-IF combination is strongly recommended as
it achieves a probability of wrong fixing of less than 10−8 for any geometry. The standard
deviations of the undifferenced code measurements were set to 3Γ to include multipath.
The differential biases ∆b1,1+j

φm
and ∆b1,1+j

ρm are neglected. A higher accuracy of the orbits
and satellite clock offsets will reduce the probability of wrong fixing based on the GP-IF
linear combinations. If the standard deviation of the orbits is reduced to 1 cm and of the
satellite clocks to 0.1 ns in the future, the GP-IF linear combination will achieve a lower
probability of wrong fixing than the GF-IF linear combination as the satellite redundancy
more than compensates for the degradation due to orbital errors and clock offsets.

3.4 Comparison of integer ambiguity estimation

methods

In this section, the probability of wrong fixing of rounding, bootstrapping and integer
least-squares estimation is compared for both unbiased and biased measurements with
worst-case bias accumulation [74]. Rounding achieves the lowest success rate for unbiased
measurements as it does not consider the correlation between ambiguities.

Fig. 3.17 shows that sequential fixing reduces the probability of wrong fixing of rounding
by one order of magnitude for a smoothing period of 10 s and the assumption of unbiased-
ness. Bootstrapping with integer decorrelation benefits from an even lower probability of
wrong fixing as the ambiguity transformation optimizes both the order of fixings and the
integer decorrelation. The integer-least squares (ILS) estimation includes a search which
results in an even higher success rate. The two orders of magnitude between the probabili-
ties of wrong fixing of rounding and ILS estimation are quite substantial as the chosen two
E1-E5 carrier smoothed GP-IF linear combinations (code-only and code-carrier of maxi-
mum discrimination) already flatten the ambiguity spectrum significantly. Note that the
probability of wrong fixing of ILS estimation can be reduced to an arbitrary value by
ellipsoidal integer aperture (EIA) estimation with sufficiently small pull-in regions.

For WA-RTK with double difference measurements, multipath is one of the most critical
error sources. The introduction of an elevation-dependant exponential bias profile with
worst-case bias accumulation obviously increases the probability of wrong fixing for all
estimators. However, the sorting of the fixing methods w.r.t. their failure rates becomes
inverse, i.e. rounding achieves the lowest error rate and ILS the largest one. The integer
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decorrelation is no longer beneficial as it amplifies the worst-case biases. The param-
eters of the considered exponential bias profile are ∆bρm,max(E) = {1, . . . , 10} cm and
∆bφm,max(E) = {0.01, . . . , 0.1} cycles for E ∈ {0, . . . , 90◦}. The signs of the measurement
biases were chosen such the degradation in the success rate becomes maximal, i.e. the
bias of the sequential decorrelated ambiguity estimates was maximized for bootstrapping.
For ILS, the biases in the decorrelated float ambiguity estimates were maximized as they
are the basis for the integer search of (3.100). The poor performance of ILS estimation
is caused by the ambiguity transformation Z of (3.99) which amplifies the measurement
biases as well as by the suboptimal search criterion of (3.100). However, an improved bias
bounding can be found by considering the sequential form of the search as described in
(3.107). In this case, the worst-case biases are kept at the same level as for sequential
fixing and the degradation is only caused by the suboptimal search criterion. Fig. 3.17
shows a significant reduction of the error rate in this case. The success rate of bootstrap-
ping lies between the success rates of rounding and ILS estimation for both unbiased and
biased measurements, and has the advantage that it can be expressed in closed form.
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Figure 3.17: Comparison of different ambiguity resolution methods for WA-RTK with
unbiased and biased measurements: The sequential conditioning, the integer decorrelation
and the search reduce the error rate for unbiased measurements but also increase the
sensitivity w.r.t. biases.

There exist several approaches to reduce the probability of wrong fixing in the presence
of biases: One of them is RAIM which enables the detection and exclusion of worst-
case combination biases. It is shown later that the minimum undetectable conditional
ambiguity biases result in a substantially lower probability of wrong fixing. Another
option is partial ambiguity fixing to remove the low elevation satellites with the largest
bias contributions.
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3.5 Partial integer decorrelation for biased carrier

phase positioning

The integer decorrelation transformation substantially increases the magnitude of the ele-
ments of S of (3.136), and thus, amplifies the conditional ambiguity biases for worst-case
bias accumulation. Ambiguity resolution techniques that include an integer decorrela-
tion and/or a search process are more sensitive to biases than simple rounding. The bias
amplification due to integer decorrelation compensates for the gain obtained from the vari-
ance reduction. Therefore, Henkel et al. have suggested a partial integer decorrelation to
achieve the optimum trade-off between variance reduction and bias amplification in [45]
and [74]. The partial integer decorrelation is obtained from (3.99) by a reduced number
of permutation and decorrelation steps Nit. Note that the worst-case bias accumulation
becomes less likely but especially severe with a large number of visible satellites.

Fig. 3.18 shows the benefit of partial integer decorrelation for sequential bootstrapping
in the presence of biases. If no phase biases are present, a complete integer decorrelation
with Θit = 248 iterations achieves the lowest error rate. However, for SD phase biases
of only 0.05 cycles, a partial integer decorrelation with a single step Θit = 1 achieves a
probability of wrong fixing that is more than 15 orders of magnitude smaller than in the
case of a complete integer decorrelation.
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Figure 3.18: Benefit of partial integer decorrelation for sequential bootstrapping in
the presence of biases: An exponential bias profile with {∆bρ1,max(E),∆bρ2,max(E)} =
{1, . . . 10} cm and {∆bφ1,max(E),∆bφ2,max(E)} = {0.01, . . . 0.1} cycles has been assumed for
the satellite-satellite SD measurements. The probabilities of wrong fixing are computed
for a positive accumulation of all measurement biases, i.e. a worst-case scenario. A
reduced number of decorrelation steps improves the reliability of precise point positioning
with smoothed (τ = 30 s) E1-E5 code-carrier and code-only combinations.
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The probabilities in Fig. 3.18 are upper bounds on the probability of wrong fixing
that are only fulfilled in the case of worst-case bias accumulation. An exponential bias
profile with {∆bρ1,max(E),∆bρ2,max(E)} = {1, . . . 10} cm and {∆bφ1,max(E),∆bφ2,max(E)} =
{0.01, . . . 0.1} cycles has been assumed for the satellite-satellite SD measurements. The
non-dispersive ephemeris errors and satellite clock offsets of (3.137) have been mapped to
the frequency dependant SD biases.

3.6 Cascaded ambiguity resolution with mixed code-

carrier combinations

The large ratio between chip and carrier frequencies prevents a direct resolution of carrier
phase ambiguities with code measurements. Therefore, Hatch has proposed a Cascaded
integer resolution (CIR) in [75] for triple frequency measurements. It is also called Three
Carrier Ambiguity Resolution (TCAR) and has been applied to double difference mea-
surements with a short baseline by Forssell et al. [76], Jung [77] and Jung et al. [78].

In the first step, the L2-L5 extra-widelane (EWL) ambiguities with a wavelength of
λ = 5.86m are estimated with the help of the L5 code measurements, i.e.

ŇEWL =

[

φEWL −
ρL5
λEWL

]

, (3.139)

with φEWL = φL2 − φL5. Eq. (3.139) can also be regarded as a geometry-free linear
combination of L5 code measurements and L1 and L5 carrier phase measurements, i.e.
the ambiguity estimation is not affected by the differential tropospheric delay. In a second
step, the L1-L2 widelane (WL) ambiguities with a wavelength of λ = 86.2cm are fixed:

ŇWL =

[

φWL − λEWL

λWL

(φEWL − ŇEWL)

]

, (3.140)

with φWL = φL1 − φL2. In a third step, the L1-L5 mediumlane (ML) ambiguities are
determined from the sum of the L1-L2 WL and L2-L5 EWL ambiguities. Finally, an L1
ambiguity estimate is given by

ŇL1 =

[

φL1 −
λML

λL1
(φML − ŇML)

]

. (3.141)

This traditional TCAR (or CIR) scheme uses only geometry-free combinations that weight
the phase measurements either by −1 or +1. Henkel and Günther have suggested a full-
geometry approach in [79] that benefits from the satellite redundancy and combines triple
frequency combinations with integer least-squares ambiguity resolution. The weighting
of linear phase combinations has been generalized to non-binary values which enables a
substantial reduction of the probability of wrong fixing.

The previously mentioned CIR approaches have in common that the pure carrier phase
combinations slightly amplify the differential ionospheric delay, e.g. the L1-L5 widelane
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combination with λ = 75.1cm scales differential ionospheric delay by a factor of 1.34.
Jung et al. have shown in [78] that instantaneous widelane ambiguity resolution with a
probability of wrong fixing of less than 10−8 is only possible for a baseline of 6.9 km if
the carrier phase multipath and receiver errors are within 1% of the wavelength, and the
ionospheric delay gradient can be bounded by 2mm/km. In ionospheric storms, gradients
of up to 425mm/km have been observed by Pullen et al. in [24] which reduces the
maximum service coverage to a few tens of meters.

Therefore, an alternative cascaded ambiguity resolution scheme with geometry-
preserving, ionosphere-free (GP-IF) code-carrier linear combinations shall be suggested
here. Tab. 3.2 shows the optimized CIR scheme for dual frequency E1-E5 measurements.
Three types of linear combinations are considered: a code-only combination, a mixed
code-carrier widelane combination of maximum discrimination (first row of Tab. 2.5),
and a mixed code-carrier narrowlane combination of minimum noise. A search over all in-
teger coefficients jm revealed that there is no GP-IF linear combination with a reasonable
noise level and wavelength between the selected widelane and narrowlane combinations.
Therefore, a τ = 60s smoothing is applied to the first two combinations to overcome the
”wavelength gap“. A noise level of σφ = 2mm and σρm = 3 · Γm has been assumed to
include multipath.

Table 3.2: Cascaded ambiguity resolution with GP-IF E1-E5 linear combinations: A
τ = 60s smoothing is applied to the first two combinations to overcome the ”wavelength
gap“ between widelane and narrowlane combinations. A noise level of σφ = 2mm and
σρm = 3 · Γm has been assumed.

Step GP-IF combination type j1 j2 λ [m] σn [cm] σn,sm [cm]
1 code-only 78.5 7.2
2 widelane code-carrier of max. discr. +1 −1 3.285 19.0 1.8
3 narrowlane code-carrier of min. noise +4 −3 0.108 0.5

For precise point positioning, the three linear combinations of satellite-satellite SD mea-
surements are processed jointly, i.e.





ρ

λWLφWL

λNLφNL



 = Hξ +AN + η, (3.142)

with the unknowns ξ = [xT , Tz]
T and N = [NT

WL,N
T
NL]

T , and

H = 13×1 ⊗H0, H0 =






∆e12,T mw(E
1)−mw(E

2)
...

...
∆e1K,T mw(E

1)−mw(E
K)




 andA =





0 0

λWL1 0

0 λNL1



 .

(3.143)
Fig. 3.19 shows the temporal evolution of the number of fixable ambiguities with Pw ≤
10−7 and of the positioning accuracy. Bootstrapping with integer decorrelation has been
used for fixing. Fig. 3.20 refers to the steady state performance of the smoothing filter.
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Figure 3.19: Cascaded ambiguity resolution for precise point positioning: The carrier
smoothing requires a certain time since filter initialization to enable reliable ambiguity
fixing with an overall probability of wrong fixing of less than 10−7. The fixing of widelane
ambiguities reduces the position errors by a factor of 4. The fixing of both widelane
and narrowlane ambiguities (Tab. 3.2) results in position errors that are one order of
magnitude lower than of the non-fixed float solution. The fixing has been performed with
sequential bootstrapping after integer decorrelation.
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Figure 3.20: Cascaded ambiguity resolution for precise point positioning: The widelane
ambiguities can be fixed extremely reliable. All except one narrowlane ambiguities can be
fixed with an overall probability of wrong fixing of less than 10−7. The fixing reduces the
standard deviation of both horizontal and vertical position by one order of magnitude.
The integer ambiguities of both code-carrier combinations of Tab. 3.2 have been fixed
with sequential bootstrapping after integer decorrelation.
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3.7 Partial ambiguity fixing in the presence of biases

In a severe multipath environment, instantaneous fixing of all ambiguities becomes chal-
lenging. However, a subset of ambiguities can still be fixed reliably.

Teunissen et al. have suggested a geometry-free partial ambiguity fixing in [80]. In their
notation ”geometry-free“ means that the satellite redundancy is not taken into account
which does not necessarily mean that the range is eliminated by a linear combination.
The geometry-free model of single epoch double difference measurements is given by
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, (3.144)

where the DD range ∆r also includes the differential tropospheric delay. In [80], Teunissen
computed a float solution of the DD range, ionospheric delay and ambiguities, and applied
an integer decorrelation to the float ambiguities, i.e.

∆N̂
′
= Z∆N̂ with Σ

∆N̂
′ = ZΣ∆N̂Z

T . (3.145)

He has then chosen the decorrelated ambiguity of lowest variance. It can be rewritten as
a linear combination, i.e.

∆N̂ ′ =
M∑

m=1

jm ·∆N̂m, (3.146)

where jm = Zl,m and l is the row in ∆N̂
′
that corresponds to the ambiguity of minimum

variance. Tab. 3.3 shows that this method results in widelane combinations with binary
weighting.

Table 3.3: Linear combinations of ambiguities: The combinations are determined with
the LAMBDA ambiguity transformation for a geometry-free model. The smallest uncer-
tainty is achieved by the traditional widelane combinations. A noise level of σφ = 2mm
and σρm = 3 · Γm has been assumed.

E1 E5 E5b E5a
j1 j2 j3 j4
1 −1
0 1 −1

The computation of decorrelated ambiguities of minimum variance is repeated for the
remaining double differences. The Np most accurate ambiguity combinations are then
selected for partial fixing. Cao et al. [81] have considered a full-geometry approach for
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partial ambiguity fixing. A Kalman filter is used to estimate the float solution for a
short baseline, i.e. atmospheric errors are neglected. The traditional widelane combina-
tions with binary weighting have been computed and the fixing has been performed with
bootstrapping after integer decorrelation. The results of Cao et al. show the temporal
evolution of the probability of incorrect fixes, the number of fixed ambiguities and the
achievable positioning accuracy for unbiased measurements.

In [74], Henkel and Günther have analyzed partial ambiguity fixing in the presence of
biases. As the integer decorrelation transformation results in a poor performance for
biased measurements with worst-case bias accumulation, it is omitted and the optimal
fixing order is determined by a search. The traditional sequential fixing of Blewitt [58]
performs a pure forward search: First, the ambiguity of largest P k

s is fixed. Then, the
float solution is updated and the most reliable ambiguity is selected among the remaining
ones. This process is repeated until the probability of wrong fixing exceeds a certain
threshold or all ambiguities are fixed. This efficient search requires the testing of at most
K + (K − 1) + . . .+ 1 = K(K+1)

2
candidates.

However, the maximization of the reliability of the first ambiguity does not necessarily
maximize the number of fixable ambiguities. An exhaustive search of this order would
require the evaluation of K! search branches. It has been shown by Henkel et al. in [45]
that the number of search branches can be reduced to a few hundreds if a constraint on
the probability of wrong fixing is evaluated at each step. Moreover, a constraint on the
geometry of fixings further reduces the search effort without much affecting the number
of fixable ambiguities. Fig. 3.21 shows a search tree for the fixing order that maximizes
the number of fixable ambiguities. The search includes both forward and backward steps.

probability of wrong fixing

geometry
constraint on

constraint on

Figure 3.21: Search of the optimal fixing order in the presence of biases: An exhaus-
tive search with constraints on the maximum probability of wrong fixing and the fixing
geometry is used to find the order which maximizes the number of fixable ambiguities.
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Fig. 3.22 shows that the maximization of Np enables the reliable fixing of 6 ambiguities
compared to 3 ambiguities for the order that maximizes the reliability of the first fix. Two
GP-IF E1-E5 linear combinations (a code-only and a code-carrier of max. discrimination)
of sat.-sat. SD measurements have been smoothed over 20 s. An exponential bias profile
(code biases: 10 cm for E = 0◦, 1 cm for E = 90◦; phase biases: 0.1 cycles for E = 0◦,
0.01 cycles for E = 90◦) with worst-case bias accumulation has been assumed. Note that
the optimization depends on the threshold probability which has been set to 10−9. Fig.
3.23 shows the temporal evolution of Np for both fixing orders.
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Figure 3.22: Skyplot for two sequential fixing orders: The maximization of the reliability
of the first fix results in a fixing order with three ambiguities below the threshold of
10−9. The allowance of larger error rates for the first fixes enables a larger number of
reliably fixable ambiguities. In both cases, an exponential bias profile with worst-case
bias accumulation has been assumed.
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Figure 3.23: Comparison of two sequential ambiguity fixing schemes in the presence of
biases: The right graph is the result of a minmax-optimization, i.e. it shows the benefit
of maximizing Np for the most critical time instant.
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Fig. 3.17 showed that sequential fixing is more sensitive to biases than rounding. How-
ever, sequential fixing enables a larger number of fixable ambiguities even in the presence
of biases with worst-case bias accumulation if an optimized order is used. It can be
searched exhaustively based on the bias profile and correlation between float ambigui-
ties. Fig. 3.24 and 3.25 show the optimized order of fixings, the probabilities of wrong
fixing and the temporal evolution of the number of fixable ambiguities for rounding and
sequential fixing.
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Figure 3.24: Comparison between instantaneous fixing (rounding) and sequential fixing
with an order of maximum Np for a given geometry: The combined forward-backward
search based on the bias profile and correlation between float ambiguities enable the fixing
of 6 instead of 3 ambiguities.

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

10

11

N
um

be
r 

of
 fi

xa
bl

e 
am

bi
gu

iti
es

Time [h]

 

 

Number of SD ambiguities
Inst. fixing (rounding)
Seq. fixing with order of max. N

p

(a) Receiver location: 48.1507◦ N, 11.5690◦ E

−20 −10 0 10 20 30 40
30

35

40

45

50

55

60

65

70

Longitude [deg]

La
tit

ud
e 

[d
eg

]

0

1

2

3

∆ N
p

(b) Time of minimum Np

Figure 3.25: Benefit of sequential fixing with order of maximum Np over instantaneous
rounding for an exponential bias profile: (a) shows the temporal evolution of the numbers
of fixable ambiguities for a fixed location and (b) shows the difference in the numbers of
fixable ambiguities between both methods for the worst-case time instant.
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3.8 Fault detection with multiple mixed code-carrier

combinations

Several multi-frequency combinations are required to determine the measurement ambi-
guities from the combination ambiguities. The mapping of measurement into combination
ambiguities can be described by a matrixM which has to be of full rank and integer valued
to enable fixing in the transformed domain. The inverse mapping from the decorrelated
combined into the measurement ambiguities is given by






Ň1
...

ŇM




 = M−1Z−1






Ň ′
1
...

Ň ′
M






!∈ Z
M×1, (3.147)

where M−1 does not have to be integer valued. The mapping matrix M can be chosen
such that the most likely integer errors are mapped to real-valued ambiguities by M−1

and, thus, can be detected as failures. In [82] and [83], M is determined such that the
probability of the most likely undetectable ambiguity error is minimized, i.e.

PMLUO = min
M

max
∆Ň

′|(M−1Z−1∆Ň
′)∈Z

P (∆Ň
′
), (3.148)

where the probability of an integer error vector ∆Ň
′
is given by

P (∆Ň
′
) =

M∏

m=1

∫ ∆Ň ′
m+0.5

∆Ň ′
m−0.5

p(m)(x)dx, (3.149)

with p(m)(x) ∼ N (0, σ2
N̂m|1,...,m−1

). The optimization in (3.148) is constrained by the

requirements on the rank, the geometry and the ionospheric delay of the combinations.

In the following analysis, the search of M is split into two steps: First, an exhaustive
search of GF-IP E1-E5a-E5b code-carrier combinations of minimum noise is performed. In
a second step, the subset of three combinations with minimum PMLUO and full rank M is
searched. The complexity of the second step is reduced by considering only combinations
with a discrimination of at least two. Fig. 3.26 shows the integer ambiguity grid and
error ellipsoid that is given by

P

(
M∑

m=1

ε2
N̂m|1,...,m−1

σ2
N̂m|1,...,m−1

≤ µ

)

=

∫ µ

0

pχ2
M
(x)dx

!
= 10−7 (3.150)

where pχ2
M
(x) denotes the χ2 distribution with M degrees of freedom. The integer errors

that can be detected by the back-transformation are marked with an ’x’ and the remaining
one with an ’o’. All integer errors in the ellipsoid are detectable; the most likely unde-
tectable offset is [0, 1,−1] and occurs with a probability of 1.2 · 10−14. The optimization
has been constraint to a maximum integer weight of jmax = 10.
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Figure 3.26: Integer ambiguity grid and error ellipsoid for P (
M∑

m=1

ε2
N̂m|1,...,m−1

σ2
N̂m|1,...,m−1

≤ µ) =

10−7: A set of triple frequency geometry-free, ionosphere-preserving code-carrier combi-
nations has been chosen such that the fault detection capacity is maximized, i.e. the
probability of the most likely undetectable offset is minimized. All integer errors in the
ellipsoid are detectable; the most likely undetectable offset is [0, 1,−1] and occurs with a
probability of 1.2·10−14. The optimization has been constraint to a max. integer weight of
jmax = 10. Measurements were simulated for 7 epochs with σρm = 3 · Γm and σφ = 2mm.
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Figure 3.27: Comparison of two criteria for the design of combination sets: a.) Min-
imization of the maximum conditional standard deviation, and b.) minimization of the
probability of the most likely undetectable integer offset. The latter approach results in a
real-valued M−1 which enables the detection of integer estimation errors. The fault de-
tection capacity further improves for larger values of jmax. In both criteria, bootstrapping
with integer decorrelation has been used for ambiguity resolution.
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Traditionally, the set of combinations has been chosen such that the maximum condi-
tional standard deviation is minimized over all combinations, i.e.

min
M

max
m

σN̂m|1,...,m−1
, (3.151)

with the same constraints on the rank, geometry and ionosphere as in the optimization
of (3.148). Fig. 3.27 shows that the fault detection optimization of (3.148) enables a
substantially lower PMLUO than the minimization of the maximum conditional standard
deviation of (3.151). The fault detection capability depends on the maximum allowed
integer values jmax of M , i.e. a larger jmax means more prime numbers in M , and thus
a better fault detection by M−1. On the contrary, the min-max-optimization of (3.151)
does not benefit of an increased jmax.

3.9 Integrity risk of carrier phase positioning

Traditionally, the reliability of carrier phase positioning is measured by the probability of
wrong fixing. However, a large number of wrong fixings results in position errors that are
acceptable for many applications and do not violate integrity. For example, the RTCA
has defined horizontal and vertical alert limits of 17 m (56 ft) and 10 m (33 ft) for GBAS
Service Level F (CAT IIIb) in [97]. The most stringent vertical alert limit in aviation is
5.3 m for CAT IIIc [1].

Therefore, Khanafseh and Pervan have considered the impact of erroneous fixings on the
positioning accuracy in [98]. The integrity risk is substantially reduced by omitting the
conservative assumption that each wrong fixing results in an integrity risk. The derivation
is briefly introduced here and starts with the rules of Bayes, i.e.

IH0 = P (|x̂v − xv| > VAL)

= P (|x̂v − xv| > VAL|CF) · PCF + P (|x̂v − xv| > VAL|IF) · PIF, (3.152)

where x̂v and xv are the estimated and the true vertical position, VAL denotes the Vertical
Alarm Limit and PCF and PIF denote the probabilities of correct and incorrect fixing of
the ambiguities. The latter term in (3.152) is rewritten to consider all integer error vectors
individually, and to group these error vectors into a set of more likely errors and a set of
less likely ones, i.e.

P (|x̂v − xv| > VAL|IF) · PIF =
r∑

n=1

P (|x̂v − xv| > VAL|IFn
) · PIFn

+
∞∑

n=r+1

P (|x̂v − xv| > VAL|IFn
)

︸ ︷︷ ︸

≈1

·PIFn
, (3.153)

where r is number of integer error vectors with probabilities larger than Pth, i.e. PIFn
>

Pth. For the less likely error vectors, the conditional probability of an integrity risk is
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bounded by 1 so that the second sum simplifies to

∞∑

n=r+1

PIFn
= 1− PCF −

r∑

n=1

PIFn
. (3.154)

Combining (3.152)-(3.154) yields

IH0 = 1− (1− P (|x̂v − xv| > VAL|CF)) · PCF

−
r∑

n=1

((1− P (|x̂v − xv| > VAL|IFn
)) · PIFn

. (3.155)

Traditionally, the probability P (|x̂v − xv| > VAL|IFn
) is bounded by 1 so that the latter

term drops out. However, the negative sign of this term motivates the evaluation of the
position errors due to each fixing error especially for large r.

The four probability terms in (3.155) can be determined efficiently for sequential boot-
strapping. Teunissen has computed the probability of the n-th incorrect fix in [56], i.e.

PIFn
=

K∏

k=1

(

Φ

(
1− 2 · lTk∆Nn

2 · σk|1,...,k−1

)

+ Φ

(
1 + 2 · lTk∆Nn

2 · σk|1,...,k−1

)

− 1

)

, (3.156)

where lTk represents the k-th row of L−1 that results from the LDLT decomposition of the
decorrelated ambiguity covariance matrix. ∆Nn denotes the n-th integer error vector in
the decorrelated search space. The conditional probability for the vertical position error
is obtained similarly as

P (|x̂v − xv| > VAL|IFn
) = Φ

(−VAL− bv,n
σv

)

+ Φ

(−VAL + bv,n
σv

)

, (3.157)

where the vertical position bias bv,n due to the n-th integer estimation error is given by
Khanafseh and Pervan in [98] as

bv,n = sT
(
XTΣ−1X

)−1
XTΣ−1AZ−1∆Nn, (3.158)

with s = [0, 0, 1, 0]T .

The integer error vectors ∆Nn with PIFn
> Pth can be computed iteratively for boot-

strapping. Khanafseh and Pervan have suggested an efficient method for the computation
of a candidate matrixC whose columns represent the integer error vectors with PIFn

> Pth:
First, C is initialized by the row vector C1 = [−d,−d+1, . . . ,−1,+1, . . . , d− 1, d] which
includes all possible fixing errors for the first ambiguity up to an arbitrary integer bound
d. Then, the matrix C is sequentially updated for the ambiguities k ∈ {2, . . . , K}, i.e.

Ck =

[
Ck−1 . . . Ck−1 . . . Ck−1 0 . . . 0 0 . . . 0
−dT . . . 0T . . . dT −d . . . −1 1 . . . d

]

, (3.159)
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where d is a column vector with all of its elements equal to d. As this unconstrained
computation would result in (2d + 1)K − 1 integer error vectors, PIFn

is computed in
each update step for each error vector, and only the relevant candidates with PIFn

> Pth

are kept. As the large computational burden remains the main limitation even with this
constraint, Kanafseh and Pervan have used an integer decorrelation transformation to
reduce the search space and number of integer error candidates. The use of a code carrier
linear combination with a large wavelength further reduces the search space such that
d = 1 becomes sufficient for most geometries.

Fig. 3.28 shows the integrity risk and the number of integer error candidates as a
function of the threshold probability Pth. Removing the worst-case assumption (a wrong
fixing results in a positioning error above the alert limit) reduces the integrity risk by
more than two orders of magnitude if Pth < 10−12. A vertical alert limit of 5.3 m has been
assumed. A code carrier combination of maximum discrimination (Tab. 2.5, λ = 4.309m)
and a code-only combination of satellite-satellite single difference measurements on E1 and
E5a have been smoothed over τ = 5 s. Both linear combinations are used for sequential
least-squares estimation of position, tropospheric delay and ambiguities.
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Figure 3.28: Integrity risk of carrier phase positioning: A conservative assumption is that
each erroneous fixing is an integrity threat. The computation of the position errors due
to the most likely integer error vectors reduces the integrity risk by more than two orders
of magnitude. Satellite-satellite single differences on E1 and E5a have been used for a
code carrier combination of maximum discrimination and a code-only combination. Both
combinations are smoothed over τ = 5s. The position, tropospheric delay and ambiguities
are estimated by sequential least-squares with integer decorrelation. A vertical alert limit
of 5.3 m has been assumed.



4
Multi-frequency, multi-satellite
Vector Phase Locked Loop

Current GNSS receivers use independent Phase Locked Loops (PLLs) for each satellite
and frequency. The introduction of new GPS signals on L5 and the development of
new satellite constellations (Galileo, Compass) will increase the number of PLLs in each
receiver and, thus, the probability of a loss of lock of one PLL. This probability becomes
critical especially during ionospheric scintillations with frequent deep amplitude fades
of more than 20 dB. Another threat are jammers with random frequency hopping that
continuously interfere at least one frequency. The outage of a PLL on one frequency
prevents the computation of an ionosphere-free combination at this instant and, thus,
degrades the positioning accuracy. The joint tracking of multiple satellites has attracted a
lot of attention over the last years as it enables a substantial improvement in both accuracy
and robustness of code and carrier tracking. This section summarizes our developments
for joint carrier phase tracking and then discusses a method for mitigating wideband
ionospheric effects for both code and carrier phase measurements.

For traditional GPS receivers with a bandwidth of 2 MHz, the ionospheric dispersion
within the L1 band can be neglected. However, the Galileo E5 band has a bandwidth
of 90 MHz, which results in a substantial difference between the ionospheric delay at the
upper and lower edges of the frequency band. This delay corresponds to a phase shift in
frequency domain. Therefore, the received signal model of (1.3) shall be further expanded
with the help of the Fourier transform:

r̃(t) =

K∑

k=1

M∑

m=1

F−1{F{rkm(t)} · e−j2πfτkI,m(f)}, (4.1)
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where τkI,m(f) denotes the frequency dependant ionospheric delay (in units of seconds)
and F(·) is the Fourier transform. As the carriers are sinusoidal signals, the ionospheric
dispersion is limited to the inphase and quadrature components, i.e.

r̃(t) =
K∑

k=1

M∑

m=1

(
αk
ms̃

k
I,m(t) cos

(
(ωc,m − ωk

D,m(t))(t− τkm(t)) + φk
m(t)

)

+j · αk
ms̃

k
Q,m(t) sin

(
(ωc,m − ωk

D,m(t))(t− τkm(t)) + φk
m(t)

)
+ ñk

m(t)
)
. (4.2)

with
s̃k{I,Q},m(t) = F−1{F{sk{I,Q},m(t)} · e−j2πfτkI,m(f)}. (4.3)

The navigation bit can be assumed constant during the integration time such that the
ionospheric dispersion is limited to the code chips of the inphase and quadrature compo-
nents, i.e.

s̃k{I,Q},m(t) =
√

Pk
{I,Q},mb

k
{I,Q},m(t− τk0,m)F−1{F{ck{I,Q},m(t− τk0,m)} · e−j2πfτkI,m(f)}. (4.4)

The inphase and quadrature components of r̃(t) are multiplied by the receiver generated
signal cos

(
ωk′

r,m′(t− τk
′

r,m′) + φk′

r,m′

)
, i.e.

K∑

k=1

M∑

m=1

r̃kI,m(t) · cos
(

ωk′

r,m′(t− τk
′

r,m′) + φk′

r,m′

)

=
1

2
αk′

m′ s̃k
′

I,m′(t) cos(∆ωk′

m′(t− τk
′

r,m′)− ωk′

m′∆τk
′

m′ +∆φk′

m′) + ñk′

I,m′(t)

+
1

2

K∑

k=1,k 6=k′

M∑

m=1,m6=m′

r̃kI,m(t) · cos
(

ωk′

r,m′(t− τk
′

r,m′) + φk′

r,m′

)

+O(ωk
m + ωk

r,m)

K∑

k=1

M∑

m=1

r̃kQ,m(t) · cos
(

ωk′

r,m′(t− τk
′

r,m′) + φk′

r,m′

)

=
1

2
αk′

m′ s̃k
′

Q,m′(t) sin(∆ωk′

m′(t− τk
′

r,m′)− ωk′

m′∆τk
′

m′ +∆φk′

m′) + ñk′

Q,m′(t)

+
1

2

K∑

k=1,k 6=k′

M∑

m=1,m6=m′

r̃kQ,m(t) · cos
(

ωk′

r,m′(t− τk
′

r,m′) + φk′

r,m′

)

+O(ωk
m + ωk

r,m) (4.5)

with ωk′

m′ = ωc,m′ − ωk′

D,m′ and the following unknown offsets in frequency, code delay and
phase:

∆ωk′

m′ = ωk′

m′ − ωk′

r,m′ , ∆τk
′

m′ = τk
′

m′ − τk
′

r,m′, and ∆φk′

m′ = φk′

m′ − φk′

r,m′. (4.6)

The result of (4.5) is lowpass filtered, then multiplied (4.5) by the locally generated code
ck

′

{I,Q},m′(t− τk
′

r,m′) and integrated over the interval [nTi + τr, (n+ 1)Ti + τk
′

r,m′ ] of duration
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Ti = νNTc:

C̃k
I,m =

1

2

∫ (n+1)Ti+τkr,m

nTi+τkr,m

αk
ms̃

k
I,m(t)c

k
I,m(t− τkr,m)

· cos(∆ωk
m(t− τkr,m)− ωk

m∆τkm +∆φk
m) + ñk

I,m(t)dt

C̃k
Q,m =

1

2

∫ (n+1)Ti+τkr,m

nTi+τkr,m

αk
ms̃

k
Q,m(t)c

k
Q,m(t− τkr,m)

· sin(∆ωk
m(t− τkr,m)− ωk

m∆τkm +∆φk
m) + ñk

Q,m(t)dt, (4.7)

where k′ and m′ were replaced by k and m as the signals from satellites k 6= k′ are
eliminated by the de-spreading. It is shown by Günther in [1] that the complex correlation
result C̃k

m = C̃k
I,m + jC̃k

Q,m can be well approximated by

C̃k
m ≈

√

Pk
m · Ti ·R(∆τkm) · sinc

(
∆ωk

mTi

2

)

· ej((n+ 1
2
)∆ωk

mTi−ωk
m∆τkm+∆φk

m) + ñk
m, (4.8)

where R(∆τkm) denotes the distorted code autocorrelation function which is given by

R(∆τkm) =
1

Tc

∫ Tc

0

F−1{F{ck{I,Q},m(t)} · e−j2πfτkI,m(f)} · ck{I,Q},m(t+∆τkm)dt, (4.9)

which simplifies for rectangular pulses and negligible ionospheric intra-band dispersion to

R(∆τkm) =

{

1− |∆τkm|
Tc

if |∆τkm| ≤ Tc

0 otherwise.
. (4.10)

Obviously, increasing the integration time Ti improves the correlation result C̃k
m as long

as the frequency error ∆ωk
mTi remains sufficiently small. A phase discriminator extracts

the phase from the correlation result. It is generally assumed that both the Delay Locked
Loop (DLL) and the Frequency Locked Loop (FLL) are in lock, i.e. ∆τkm ≪ 1, ∆ωk

m ≪ 1
and, thus, R(∆τkm) ≈ 1. In this case, the correlation result simplifies to

C̃k
m ≈

√

Pk
m · Ti · ej∆φk

m + ñk
m. (4.11)

A widely used phase discriminator is the classical Costas’ product discriminator which is
independent of the data bit and described by Kaplan and Hegarty in [28] as

∆φk
prod,m(ti) =

1

(
√

Pk
m · Ti)2

· C̃k
I,m(ti)C̃

k
Q,m(ti) = ∆φk

m(ti) + ηφk
prod,m

(ti), (4.12)

For high and low SNR, the maximum likelihood phase estimator is the four-quadrant
arctangent discriminator [28], i.e.

∆φatan(ti) = atan2(C̃Q,m(ti), C̃I,m(ti)) = ∆φk
m(ti) + ηφk

atan,m
(ti). (4.13)
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4.1 Vector phase locked loops

The joint tracking of all satellites goes back to Sennott and Senfer [10] and Spilker [11]
who have developed the Vector Delay Locked Loop (DLL) of Fig. 4.1. The tracking errors
are transformed into position domain by weighted least-squares estimation. The position
errors and receiver clock offset errors are then individually filtered, back-transformed to
range domain and integrated. The main benefit of this VDLL is the adaptive weighting
of satellites, i.e. the stronger signals help to track the weaker signals. The filtered least-
squares position corrections can also be directly integrated to obtain an estimate of the
receiver position.

 −

Delay

Least−squares
estimation Loop filter

+

Delay

+

Integrator

G

ρ(t)
∆ρ̂(t)

G†

Fξ1(z)

Fξ2(z)

Fξk(z)

x̂(t)

ρ̂(t)

∆ξ̂1

∆ξ̂2

∆ξ̂k

∆ξ̂filt,1

∆ξ̂filt,2

∆ξ̂filt,k

...

...

Figure 4.1: Vector Delay Locked Loop as proposed by Spilker in [11]: The pseudor-
ange errors ∆ρ̂(t) from K satellites are transformed into position domain, then filtered,
inverse-transformed into range domain, and integrated. The filtered least-squares position
corrections can also be directly integrated to obtain an estimate of the receiver position.

Note that the estimation of atmospheric errors was not included in the least-squares es-
timation of [10] and [11]. A possible reason might be that the authors worried about the
noise amplification due to the estimation of additional parameters. However, these atmo-
spheric errors are projected by the least-squares estimation and the back-transformation
into

∆Ĩ = H(HTΣ−1H)−1HTΣ−1∆I

∆T̃ = H(HTΣ−1H)−1HTΣ−1∆T . (4.14)

The estimation of ∆I and ∆T after the tracking loop becomes much more difficult as a
separation into a mapping function and a zenith delay is no longer feasible. Therefore,
Henkel et al. have suggested the inclusion of atmospheric delays in the least-squares
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estimation in the tracking loop in [16] and [23]. The vector tracking of carrier phase
is more challenging due to its higher precision and the existence of an unknown integer
ambiguity for each satellite and frequency. It is described in the next section.

4.1.1 Co-Op tracking

Zhodzishsky, Yudanov, Veitsel and Ashjaee have first applied vector tracking to carrier
phase in [21]. The phase offsets provided by the discriminators were transformed into
position and receiver clock offsets by least-squares estimation. The estimates were then
filtered and transformed back to range domain. As ambiguities, atmospheric delays and
biases were neglected in the least-squares estimation, Zhodzishsky et al. also used indi-
vidual loop filters, and combined the filtered ranges of individual and joint filters in the
oscillators. This “Co-Op tracking” led to a substantial reduction of the tracking errors in
Javad receivers [21].

Fig. 4.2 shows an extended version of Zhodzishsky’s vector tracking [22]. The upper
part includes the vector tracking of the carrier phases and the lower one refers to the
joint tracking of the Doppler shifts. The incoming signal is first multiplied with the
NCO generated signal, then correlated with the receiver generated code, and fed into a
discriminator for extracting the phase (Costa’s discriminator, (1.10)) or Doppler shift.
The extracted phases are the basis for the joint tracking of the carrier phases on multiple
frequencies. The following model is used for the discriminator outputs:






λ1∆φk
1(ti)
...

λM∆φk
M(ti)




 =






1 q211
...

...
1 q21M






︸ ︷︷ ︸

X

[
∆r̃k(ti)

∆Ĩk(ti)

]

+






∆εk1(ti)
...

∆εkM(ti)




 , (4.15)

where ∆r̃k(ti) includes the time-difference in the true range and all non-dispersive error
sources (clock offsets, troposphere offset) and ∆Ĩk(ti) describes the time-difference in the
ionospheric slant delay. The least-squares estimates of ∆r̃k(ti) and ∆Ĩk(ti) are given by

[

∆ˆ̃rk(ti)

∆ˆ̃Ik(ti)

]

= (XTΣ−1(ti)X)−1XTΣ−1(ti)






λ1∆φk
1(ti)
...

λM∆φk
M(ti)




 , (4.16)

with the weighting matrix Σi(ti). It is in general diagonal and adapted with time ac-
cording to the noise characteristics. For the Costa’s discriminator, the variances of the
discriminator outputs were derived in (1.12). Note that the least-squares estimation does
not require any knowledge about the satellite geometry and, thus, is not affected by orbital
errors and satellite clock offsets. The multi-carrier VPLL is initialized by independent
PLLs to avoid the estimation of integer ambiguities, atmospheric delays, and biases. Once
at least two individual PLLs are in lock, the joint tracking is switched on.
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Figure 4.2: Functional diagram of Multicarrier Vector Phase and Frequency Locked Loop
(MC-VPLL/FLL): The complex correlation results are the basis for the joint tracking
of the carrier phases and Doppler shifts. The phase discriminators provide the phase
tracking errors, which are transformed into range and ionospheric errors, then filtered,
transformed back, and integrated. The Doppler shifts are determined similarly from the
frequency discriminators. The obtained phases and Doppler shifts are then used to steer
the NCOs. The joint tracking is initialized by independent PLLs to avoid the estimation
of integer ambiguities and biases. Once at least two PLLs are in lock, the joint tracking
is switched on.
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Fig. 4.3 shows the carrier phase range residuals for time-differenced Galileo measure-
ments on E1, E5a and E5b. The small magnitude confirms the validity of our model. Note
that the residuals on E5a and E5b are larger than the ones on E1, which is a consequence
of the small distance between the E5a and E5b frequencies. The small variations on E5a
and E5b are caused by carrier phase multipath.
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Figure 4.3: Carrier phase range residuals for time-differenced measurements: The small
magnitude of the range residuals confirms the validity of our measurement model. The
variations in the residuals of the E5a and E5b carrier phases indicate some multipath.

The joint tracking has been further expanded to include measurements from multiple
satellites by Giger et al. in [12] and [13]. The spectral and spatial correlation between
the carrier phases is exploited in a Kalman filter and a linear controller.

4.1.2 Multi-Carrier VPLL performance during ionospheric scin-

tillations

This subsection shows the benefit of the VPLL during ionospheric scintillations that arise
from random fluctuations of electron density in the E and F regions of the ionosphere.
These scintillations result in frequent deep fades in amplitude and a substantial increase in
phase noise. The VPLL suppresses the peaks in tracking errors as deep fades in amplitude
do not occur at all satellites simultaneously.

Let us consider the following model for the received signal:

s(t) = A(t)ejφ(t) = A0(t)δA(t)e
j(φ0(t)+δφ(t)), (4.17)

with the nominal amplitude A0(t) and phase φ(t) (without scintillation) and its variations
δA(t), δφ(t) due to scintillations. Pullen et al. modeled the intensity variations δI(t) =
δA(t)2 by a Nakagami distribution in [31], i.e.

p(δI) =
m(mδI)m−1

(m− 1)!
e−mδI , (4.18)
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with m = 1/S2
4 and the scintillation intensity index S4 = σ(δI)/E{δI}. Scintillation

samples δA[i] and δφ[i] are generated according to the wideband model described by
Pullen et al. in [31] and by Hegarty et al. in [30]. First, two statistically independent
sequences δĨ ∼ N (0, σ2

I ) and δφ̃ ∼ N (0, 1) of white Gaussian noise are computed. Then, a
linear transformation is performed to introduce correlation between amplitude and phase
scintillations, i.e.

[
δI
δφ

]

=

[
1 0

ρδφδIσδφ/σδI σδφ

√

1− σ2
δφδI

] [
δĨ

δφ̃

]

, (4.19)

where σδφδI denotes the correlation coefficient between intensity and phase scintillations.
A set of cascaded band-pass, low-pass and high-pass Butterworth filters is then applied
to introduce time correlation and the desired power spectral density of the form Pφ(f) =
K · f−p with a unitless slope of p = {2, . . . , 5.5}. The transfer function of the cascaded
filters is given by Pullen et al. in [31] as

|H(f)|2 = K · f 2mh

f 2mh + c2mh
· d2ml

f 2ml + d2ml
· f

2 + a20
f 2 + b20

· f
2 + a21

f 2 + b21
· . . . · f

2 + a2n
f 2 + b2n

, (4.20)

where the filter orders mh, ml and the corner frequencies c, d, a0, . . . , an and b0, . . . , bn
are chosen to best fit the strong scintillation data of Basu [32]. Note that the integral
∫∞
0

|H(f)|2df = 1 is normalized by the gain K and that different filters are used for
intensity and phase scintillations. After spectral shaping, the scintillation samples are
transformed from a Gaussian to the Gamma/Nakagami distribution of (4.18). The carrier
to noise power ratio Cm/N0(ti) is linear proportional to the scintillation intensity δI which
is generated for each satellite independently.

Fig. 4.4 shows the achievable tracking performance of the multicarrier, multisatellite
VPLL compared to independent PLLs for moderate ionospheric scintillations [23].
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(a) Tracking of moderate elevation satellite
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(b) Tracking of high elevation satellite

Figure 4.4: Benefit of multicarrier, multisatellite VPLL over independent tracking of
eight Galileo satellites on three frequencies for moderate ionospheric scintillations (S4 =
0.7 on all satellites) and BL = 10Hz. Two of the eight tracked satellites are shown.
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A weighted least-squares estimation was used to transform the carrier tracking errors
of the discriminators into range, clock offset, ionospheric and tropospheric errors. The
dashed lines refer to the carrier to noise power ratios that vary substantially due to
scintillations. The skyplots indicate the Galileo geometry (as seen from TUM) and the
scintillation intensity, i.e. signals from 8 satellites that are affected by moderate scintil-
lations (S4 = 0.7) with deep fades up to 15 dB. The same scintillation intensity has been
assumed for all frequencies (E1, E5a, E5b) which corresponds to a worst-case assumption.
A filter bandwidth of BL = 10 Hz, a pre-detection integration time of Ti = 20 ms and
an average carrier to noise power ratio of C/N0 = 45 dB-Hz has been chosen. The joint
tracking of all satellites reduces the peaks in tracking errors by up to 4 dB.

4.2 Compensation of ionospheric wideband effects

The main lobe and the first two side lobes of the Galileo E5 signal have together a
bandwidth of 51 MHz which is more than 25 times the bandwidth of the GPS C/A code
and results in a substantial reduction of the noise level. Gao et al. have shown in [34]
that the ionospheric dispersion within the wideband Galileo signals is not negligible. It
causes ripples in the code signal that result in a power shift in correlation result from the
real part to the imaginary part. If no wideband correction is applied, the phase tracked
by an independent PLL is biased by 14◦/100TECU, and this bias can not be mapped
to the ionospheric delay. Therefore, an efficient method for the suppression of wideband
ionospheric effects is described in this section.

4.2.1 Introduction to ionospheric wideband effects

The derivation of the code correlation result C̃k
m in (4.1)-(4.8) includes the distortion due

to a dispersive delay. For the ionosphere, the dispersive delay is given by

τkI,m(f) =
40.3 · TECk

f 2
m · c , (4.21)

where TECk represents the total electron content. The distortion of C̃k
m is caused by the

distortion of the chip, that can be determined from

c̃k{I,Q},m(t) = F−1{F{ck{I,Q},m(t)} · e−j2πfτkI,m(f)}. (4.22)

As the transmit signals are bandlimited, the Fourier transform has to be evaluated only
for |f | ≤ BW.

Fig. 4.5 and 4.6 show the impact of the receiver bandwidth on the signal deformation
of a BPSK modulated signal (E5a). The signal that is not affected by the ionosphere is
depicted as a reference in blue. The dispersive ionosphere delays the signal (100 TECU)
and shifts some power from the real part (shown in red) to the imaginary part (shown in
green). For BW = 20 MHz, the ripples due to the Gibb’s phenomenon are dominating
over the ripples due the ionospheric dispersion within the E5a band.
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(a) E5a BPSK signal with 20 MHz bandwidth

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

Time [chips]

S
ig

na
l w

ith
 d

is
pe

rs
iv

e 
io

no
sp

he
re

(b) E5a BPSK signal with 50 MHz bandwidth

Figure 4.5: Signal distortion by wideband iono. effects (100 TEC) and band limitation
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(a) E5a BPSK signal with 75 MHz bandwidth
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(b) E5a BPSK signal with 100 MHz bandwidth

Figure 4.6: Signal distortion by wideband iono. effects (100 TEC) and band limitation

The degradation of correlation and tracking results remains negligible for this modulation
and bandwidth. Increasing the bandwidth reduces the Gibb’s phenomenon but increases
the ionospheric dispersion. For the real part of the signal, the smallest ripples can be
observed for a bandwidth of 75 MHz. For the imaginary part of the signal, the amplitude
of the ripples increases monotonously with the bandwidth.

Fig. 4.7 shows that the ionospheric dispersion is much more critical for the AltBOC E5
signal as a significant part of the power is allocated at the edges of the E5 band with a
bandwidth of 50 MHz. The Gibb’s phenomenon is also more pronounced due to the use
of a subcarrier which increases the number of chip transitions. Thus, the chips can no
longer be recognized from the degraded signal shape.

Fig. 4.8 shows the correlation result. A reduced real-valued correlation peak can be
observed for the AltBOC E5 signal as some part of the power is shifted from the real part
to the imaginary part. Moreover, the correlation function is smoother compared to a non-
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dispersive ionospheric delay. The temporal shift of the correlation function corresponds
to the ionospheric delay on the carrier frequency, i.e. the dispersion within the E5 band
does not cause any additional delay for the code measurements.
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(a) E5 AltBOC signal: real part
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(b) E5 AltBOC signal: imaginary part

Figure 4.7: Signal distortion by wideband ionospheric effects for 100 TECU
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Figure 4.8: Impact of wideband ionospheric effects on correlation and carrier tracking

The complex correlation function R
(
∆τkm

)
results in a PLL tracking error given by

∆φk
m(∆τkm,max) = atan

(

ℑ
(
R(∆τkm,max)

)

ℜ
(
R(∆τkm,max)

)

)

with ∆τkm,max = argmax
∆τkm

|R(∆τkm)|,

(4.23)
It is shown for different TECk and filter bandwidths in Fig. 4.8b. The PLL tracking
error ∆φk

m increases linear with TEC but remains less than 0.5◦ for the E5a/E5b signals
even during an active ionosphere. However, a phase offset of 15◦ can be observed for
AltBOC(15,10) tracking during normal ionospheric conditions and of up to 70◦ during
ionospheric storms.
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4.2.2 Ionospheric wideband correction for carrier tracking

The wideband ionospheric effects can be equalized in frequency domain by multiplication
with the conjugate complex of e−j2πfτkI,mτ(f), i.e.

r̂k(t) = F−1{F{r̃k(t)}e+j2πfτ̂kI,m(f)}, (4.24)

which requires some knowledge about the ionospheric delay Ikm = τkI,m at carrier frequency
fm. As the intra-band ionospheric dispersion does not change the code delay, an estimate
Îkm can be obtained by combining code measurements on two frequencies in a geometry-
free, ionosphere-preserving linear combination. Replacing r̃k(t) by (4.1) in (4.24) yields

r̂k(t) = F−1{F{rk(t)}e−j2πf(τkI,m(f)−τ̂kI,m(f))}, (4.25)

i.e. the remaining distortion equals the one corresponding to τkI,m − τ̂kI,m. Fig. 4.8 shows
that an accuracy of 10 TECU is sufficient to suppress the phase bias due to wideband
ionospheric effects to less than 1◦.

This method requires an FFT of the downconverted signal and an IFFT after the appli-
cation of the wideband correction. Alternatively, a phase correction can be determined
from a look-up table (e.g. Fig. 4.8b) and applied directly to the tracked carrier phases.
The equalization in frequency domain is omitted, which improves the efficiency of this
method as it does not require the FFT and IFFT.



5
Estimation of phase and code
biases

5.1 Estimation of phase and code biases

Ambiguity resolution for precise point positioning requires the precise knowledge of satel-
lite phase and code biases on each frequency. These biases can be determined by a network
of reference stations. The following model shall be used for undifferenced phase and code
measurements of satellite k, receiver r and epoch tn:

λ1φ
k
1,r(tn) = gkr (tn)− Ik1,r(tn) + λ1N

k
1,r + β1,r + βk

1 + pk1(tn) + εk1,r(tn)

λ2φ
k
2,r(tn) = gkr (tn)− q212I

k
1,r(tn) + λ2N

k
2,r + β2,r + βk

2 + pk2(tn) + εk2,r(tn)

ρk1,r(tn) = gkr (tn) + Ik1,r(tn) + b1,r + bk1 + ηk1,r(tn)

ρk2,r(tn) = gkr (tn) + q212I
k
1,r(tn) + b2,r + bk2 + ηk2,r(tn), (5.1)

where gr denotes the range including clock errors and tropospheric delay, βm,r is the
receiver phase bias, βk

m is the satellite phase bias, bm,r is the receiver code bias, bkm is
the satellite code bias, pkm is the satellite antenna phase center variation, ηkm,r is the code
noise, and εkm,r is the phase noise on frequency m = {1, 2}. Multipath errors are included
in the phase and code noise.

A dynamical model is used for the geometry term gkr (tn) which can be split into the
range rkr , the clock offsets cδτr and cδτk and tropospheric delays T k

r , i.e.

gkr (tn) = gkr (tn−1) + ∆t · ġkr (tn−1) + wgkr
(tn) = rkr (tn) + c · (δτr(tn)− δτk) + T k

r (tn),
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where wgkr
(tn) ∼ N (0, σ2

w
gkr

) denotes the process noise to model accelerations. The slant

ionospheric delay Ik1,r is modeled as Ik1,r(tn) = mI(E
k
r (tn)) · Iv(tn) with the vertical iono-

spheric delay Iv at the ionospheric pierce point (IPP) and the mapping function mI that
is given by

mI(E
k
r (tn)) =

1
√

1− cos2(Ek
r (tn))

(1+h/Re)2

, (5.2)

with the elevation angle Ek
r (tn) and the height h of the ionospheric shell above the ground.

The carrier phase measurements are also affected by time-variant antenna phase center
variations pkm(tn) which are caused by a shift of (∆x,∆y) between the actual and original
phase center of the satellite antenna pattern. Fig. 5.1 shows the relationship between
pkm, ∆xm and ∆ym as suggested by Schmid et al. in [85]. The latter two are extremely
stable in time if a coordinate system is chosen where the z-axis points towards the center
of the earth, the y-axis corresponds to the rotation axis of the solar panels and the x-
axis completes the right-hand system. The time dependency of pkm is introduced by the
azimuth α and the nadir angle z′.
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phase center

phase center
Shifted .

.

Original
phase center
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α α∆m
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∆ym
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∆
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m
(α
)

x

y

z′ z′

pm = ∆xym(α) · sin(z′)

Figure 5.1: Relationship between horizontal offset, azimuth direction and nadir angle:
The coordinate system is chosen such the y-axis corresponds to the rotation axis of the
solar panels, the z-axis points towards the earth and the x-axis completes the coordinate
system.

Receiver measurements in azimuth direction α are affected by

∆xym(α) =
√

∆x2
m +∆y2m · cos(α∆m

− α), (5.3)

which reaches its maximum for α = α∆m
. The right subfigure shows the impact of the

nadir angle z′ which causes a maximum phase bias for z′ = 14◦. The combined effect of
azimuth and nadir-dependent phase center variations is given by

pkm(z
′(tn), α(tn)) =

√

∆x2
m +∆y2m · sin(z′(tn)) · cos

(

atan

(
∆xm

∆ym

)

− α(tn)

)

. (5.4)

Schmid et al. have suggested a fitting of these phase center variations pkm for a fixed nadir
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angle z′0 to the cosine function

f(α) = Am · cos(α∆m
− α), (5.5)

with the amplitude Am and the phase shift α∆m
. The horizontal offsets ∆xm and ∆ym to

be compensated for are then obtained from

∆xm =
A

sin(z′0)
· sin(α∆m

) and ∆ym =
A

sin(z′0)
· cos(α∆m

). (5.6)

Schmid et al. [85] and Schmid and Rothacher [86] processed double difference measure-
ments from more than 150 IGS stations with the BERNESE software [87] to determine
the ionosphere-free combination of these biases together with station coordinates, tropo-
spheric parameters, orbit parameters and Earth rotation parameters. The PCVs were
estimated with a 1 mm accuracy as a function of azimuth and nadir angles and con-
firmed the derived harmonic behaviour. They also observed an impressive day to day
repeatability for the azimuthal PCV of block IIR satellites.

The phase and code noise is assumed to follow a zero mean white Gaussian distribution.
The standard deviation σρkm,r

of the code tracking error has been set to the Cramer Rao
bound which is given by

Γm =
c

√
Es

N0
·
∫

(2πf)2|Sm(f)|2df
∫

|Sm(f)|2df

, (5.7)

with the speed of light c, the signal to noise power ratio Es

N0
, and the power spectral density

Sm(f) that has been derived by Betz in [3] for binary offset carrier (BOC) modulated
signals. Table 5.1 shows the Cramer Rao bound for the wideband Galileo signals at a
signal to noise power ratio of 45dB [45]. The phase noise standard deviations σφk

m,r
have

been assumed to be 1 mm.

Table 5.1: Cramer Rao Bounds for Es/N0 = 45dB
Signal BW [MHz] Γ [cm]

E1 MBOC 20 11.14
E5 AltBOC(15,10) 51 1.95
E5a BPSK(10) 20 7.83
E5b BPSK(10) 20 7.83

Ge et al. [89], Gabor and Nerem [88] and Laurichesse and Mercier [90] have tried to
estimate L1 and L2 satellite-satellite single difference (SD) phase biases. The derivation
is briefly introduced here and starts with the geometry-free, ionosphere-free Melbourne-
Wübbena combination [91]. It combines the SD phase measurements ∆φkl

1,r, ∆φkl
2,r and

the SD code measurements ∆ρkl1,r, ∆ρkl2,r on the frequencies f1 and f2 as

(
f1

f1 − f2
λ1∆φkl

1,r −
f2

f1 − f2
λ2∆φkl

2,r

)

−
(

f1
f1 + f2

∆ρkl1,r +
f2

f1 + f2
∆ρkl2,r

)

= λw∆bklw,r+∆εklw,r,

(5.8)
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with the widelane wavelength

λw =
1

1
λ1

− 1
λ2

, (5.9)

the combined ambiguity/ bias term

∆bklw,r = ∆Nkl
1,r −∆Nkl

2,r +∆βkl
1 −∆βkl

2 − f1 − f2
f1 + f2

· ∆bkl1
λ1

− f1 − f2
f1 + f2

· ∆bkl2
λ2

, (5.10)

with the SD ambiguities ∆Nkl
m , the SD phase biases ∆βkl

m in units of cycles, the SD code
biases ∆bklm in units of meters, and the combined phase and code noise ∆εklw,r.

In a second step, the geometry-preserving, ionosphere-free phase only combination is
computed, i.e.

f 2
1

f 2
1 − f 2

2

λ1∆φkl
1,r −

f 2
2

f 2
1 − f 2

2

λ2∆φkl
2,r = ∆gklr +∆bklc,r +∆εklc,r, (5.11)

with the geometry term ∆gklr including the range and some non-dispersive errors that are
introduced in the next section, and the combined ambiguity/ bias term

∆bklc,r =
f 2
1

f 2
1 − f 2

2

· λ1(∆Nkl
1,r +∆βkl

1 )− f 2
2

f 2
1 − f 2

2

· λ2(∆Nkl
2,r +∆βkl

2 ). (5.12)

The biases of the Melbourne-Wübbena combination and of the ionosphere-free combina-
tion are combined into

f1 + f2
c

·∆bklc,r −
f2

f1 − f2
·∆bklw,r = ∆Nkl

1,r +∆β̃kl
1 , (5.13)

with

∆β̃kl
1 = ∆βkl

1 +
f2

f1 + f2
· ∆bkl1

λ1
+

f2
f1 + f2

· ∆bkl2
λ2

. (5.14)

Similarly, an estimate of the phase bias on the second frequency can be obtained as

∆β̃kl
2 = ∆βkl

2 +
f1

f1 + f2
· ∆bkl1

λ1
+

f1
f1 + f2

· ∆bkl2
λ2

. (5.15)

The transmission of ∆β̃kl
1 and ∆b̃kl2 enables an unbiased estimation of L1 and L2 integer

ambiguities at the mobile receiver. However, these pseudo-phase biases can only be applied
to linear combinations of the form

α1·
(

λ1∆φkl
1 +

f2
f1 + f2

∆ρkl1 +
f2λ1

f1 + f2

∆ρkl2
λ2

)

+α2·
(

λ2∆φkl
2 +

f1λ2

f1 + f2

∆ρkl1
λ1

+
f1

f1 + f2
∆ρkl2

)

,

which is an ionosphere-free combination for any α1 and α2. It is also geometry-preserving
if

α1
f1 + f2

f1
+ α2

f1 + f2
f2

= 1, (5.16)
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and integer-preserving if

α1 =
j1λ

λ1
and α2 =

j2λ

λ2
with {j1, j2}

!∈ Z. (5.17)

Combining (5.16) and (5.17) yields the wavelength of the combination:

λ =
1

j1 + j2

c

f1 + f2
≤ f1

f1 + f2
λ1, (5.18)

which means that the bias estimates of (5.14) and (5.14) are only applicable to ionosphere-
free narrowlane combinations with a wavelength of at most 10.7 cm.

The next subsections describe an alternative approach for the estimation of undifferenced
receiver and satellite phase biases which has been suggested in [92] and [93] to overcome
the previous shortcomings.

5.1.1 Parameter mapping

The estimation of all biases in Eq. (5.1) is not feasible but also not required as some biases
can not be separated from the remaining parameters. Additionally, the integer ambiguity
resolution is simplified if the code biases are mapped to the ranges and ionospheric delays,
i.e.

ρk1,r(tn) = gkr (tn) + q211I
k
r (tn) + b1,r + bk1 + ηk1,r(tn)

=
(
gkr (tn) + bgr + bgk

)

︸ ︷︷ ︸

g̃kr (tn)

+q211
(
Ikr (tn) + bIr + bIk

)

︸ ︷︷ ︸

Ĩkr (tn)

+ηk1,r(tn) (5.19)

and

ρk2,r(tn) = gkr (tn) + q212I
k
r (tn) + b2,r + bk2 + ηk2,r(tn)

=
(
gkr (tn) + bgr + bgk

)

︸ ︷︷ ︸

g̃kr (tn)

+q212
(
Ikr (tn) + bIr + bIk

)

︸ ︷︷ ︸

Ĩkr (tn)

+ηk2,r(tn). (5.20)

Equations (5.19) and (5.20) can be solved for the receiver dependant biases bgr and bIr
which can be expressed as a function of b1,r and b2,r, i.e.

bgr =
b2,r − q212b1,r

1− q212
, bIr =

b1,r − b2,r
1− q212

. (5.21)

Similarly, the satellite dependant biases bkg and bkI are given by

bgk =
bk2 − q212b

k
1

1− q212
, bIk =

bk1 − bk2
1− q212

. (5.22)



116 Chapter 5 � Estimation of phase and code biases

The mapping of code biases to ranges and ionospheric delays also effects the phase mea-
surements which are rewritten as

λ1φ
k
1,r(tn) = g̃kr (tn)− q211Ĩ

k
1,r(tn) + λ1N

k
1,r + β̃1,r + β̃k

1 + pk1(tn) + εk1,r(tn)

λ2φ
k
2,r(tn) = g̃kr (tn)− q212Ĩ

k
1,r(tn) + λ2N

k
2,r + β̃2,r + β̃k

2 + pk2(tn) + εk2,r(tn), (5.23)

with

β̃1,r = β1,r − bgr + q211bIr , β̃k
1 = βk

1 − bgk + q211bIk

β̃2,r = β2,r − bgr + q212bIr , β̃k
2 = βk

2 − bgk + q212bIk . (5.24)

Moreover, the satellite phase biases of one satellite can be absorbed by the receiver phase
biases, i.e.

˜̃
β1,r = β̃1,r + β̃1

1 ,
˜̃
βk
1 = β̃k

1 − β̃1
1

˜̃β2,r = β̃2,r + β̃1
2 ,

˜̃βk
2 = β̃k

2 − β̃1
2 , (5.25)

which results in R+K − 1 remaining phase biases
˜̃
βm,r and

˜̃
βk
m on each frequency. These

phase biases are estimated from a global network of reference stations, e.g. the 37 Galileo
Sensor Stations (GSS) that are shown in Fig. 5.2.
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Figure 5.2: Bias estimation with global network of 37 Galileo Sensor Stations, the two
control centers at Oberpfaffenhofen and Fucino, and the projection of 27 Galileo satellite
positions for a single snapshot.

The phase biases of (5.25) can not be separated from the integer ambiguities and, thus,
are mapped to a subset of R+K − 1 ambiguities. Let H ˜̃

βm,r
, H ˜̃

βk
m

and HN describe the
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mapping of receiver/ satellite phase biases and integer ambiguities to the measurements.
Applying a Gaussian elimination to the combined coefficent matrices gives

(
N∏

i=1

P i

)
[

H ˜̃βm,r
, H ˜̃βk

m

, HN

]






˜̃
βm,r
˜̃
βk

m

N




 = C






˜̃
βm,r
˜̃
βk

m

N




 , (5.26)

where each P i represents a step of the Gaussian elimination and C is the coefficient
matrix in row canonical form.

Example for R = 3 receivers, K = 3 satellites and s =
∑R

r=1Kr = 9 ambiguities:






˜̃
βm,r

˜̃
βk

m

N




 =

[
˜̃βm,1,

˜̃βm,2,
˜̃βm,3,

˜̃β2
m,

˜̃β3
m, N

1
m,1, N

2
m,1, N

3
m,1, . . . , N

1
m,3, N

2
m,3, N

3
m,3

]T

[

H ˜̃
βm,r

, H ˜̃
βk
m

, HN

]

=
















1 0 0 0 0 λm 0 0 0 0 0 0 0 0
1 0 0 1 0 0 λm 0 0 0 0 0 0 0
1 0 0 0 1 0 0 λm 0 0 0 0 0 0
0 1 0 0 0 0 0 0 λm 0 0 0 0 0
0 1 0 1 0 0 0 0 0 λm 0 0 0 0
0 1 0 0 1 0 0 0 0 0 λm 0 0 0
0 0 1 0 0 0 0 0 0 0 0 λm 0 0
0 0 1 1 0 0 0 0 0 0 0 0 λm 0
0 0 1 0 1 0 0 0 0 0 0 0 0 λm

















and after Gaussian elimination

C =

















1 0 0 0 0 0 0 * 0 0 * * * *
0 1 0 0 0 0 0 * 0 0 * * * *
0 0 1 0 0 0 0 * 0 0 * * * *
0 0 0 1 0 0 0 * 0 0 * * * *
0 0 0 0 1 0 0 * 0 0 * * * *
0 0 0 0 0 1 0 * 0 0 * * * *
0 0 0 0 0 0 1 * 0 0 * * * *
0 0 0 0 0 0 0 0 1 0 * * * *
0 0 0 0 0 0 0 0 0 1 * * * *

















(5.27)

where the columns marked by (∗) are linear dependent on the other columns. The mapping
of ambiguities to biases is given by

˜̃̃
βm,r =

˜̃
βm,r +

R∑

r′=1

Kr′∑

k=1

C
r,R+K−1+(

∑r′−1
r′′=1

Kr′′)+k
·Nk

m,r′ ∀ r ∈ {1, . . . , R}, (5.28)



118 Chapter 5 � Estimation of phase and code biases

˜̃̃
βk
m = ˜̃βk

m +
R∑

r=1

Kr∑

k′=1

CR+k,R+K−1+(
∑r−1

r′=1
Kr′)+k′ ·Nk′

m,r ∀ k ∈ {1, . . . , K}. (5.29)

and the mapping of ambiguities to ambiguities is given by the lower part of C. The
pivot element in the R +K − 1 + l-th row with l ∈ {1, . . . , s− (K + R − 1)} represents
the ambiguity of receiver rµ(l) and satellite kµ(l). Thus, the mapping of ambiguities to
ambiguities is given by

Ñ
k(l)
m,r(l) = N

kµ(l)

m,r(l) +
R∑

r=rµ(l)

Kr∑

k=k(l)+1

CR+K−1+l,R+K−1+(
∑r−1

r′=1
Kr′)+k ·Nk

m,r. (5.30)

Fig. 5.3 shows the set of Kr visible satellites for each of the 37 GSS at a certain epoch.
As the number of all ambiguities s exceeds the number of biases, the ambiguities are
subdivided into two subsets: One subset which includes float valued ambiguities due to
the absorption of biases, and one which includes integer valued ambiguities. The latter
one is in general much larger than the first one. The choice of the subset of integer
ambiguities offers some additional degrees of freedom. This subset is chosen such that the
error in the bias estimation is minimized.
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Figure 5.3: Integer ambiguities for the network of 37 Galileo Sensor Stations and the
two control centers for a snapshot of 27 Galileo satellites: Each column shows the visible
satellites for a particular reference station. The blue dots refer to ambiguities that have
to be estimated while the green ones are absorbed in the biases. The green dots include
the ambiguities with the largest satellite index for each reference station as well as the
largest reference station index for each satellite. As 5 ambiguities fulfill both criteria si-
multaneously, four additional ambiguities have to be removed for a full rank measurement
sensitivity matrix.
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5.1.2 Estimation of code and carrier phase biases

The precise estimation of receiver and satellite biases requires a network of reference
stations and measurements from a few hundred epochs which motivates a recursive state
estimation, e.g. by a Kalman filter [95]. The state vector includes the ranges, range rates,
range accelerations, ionospheric delays, receiver and satellite phase biases and ambiguities,
i.e.

xn =
[

g̃T (tn), ġ
T (tn), g̈

T (tn), Ĩ
T
(tn), β̃

T

R, β̃
T

S ,N
]T

, (5.31)

with

g̃(tn) =










g̃11(tn)
...

g̃K1
1 (tn)
...

g̃KR

R (tn)










, ġ(tn) =










ġ11(tn)
...

ġK1
1 (tn)
...

ġKR

R (tn)










, g̈(tn) =










g̈11(tn)
...

g̈K1
1 (tn)
...

g̈KR

R (tn)










(5.32)

and

Ĩ(tn) =











Ĩ11 (tn)
...

ĨK1
1 (tn)
...

ĨKR

R (tn)











, β̃R =













β̃1,1
...

β̃1,R

β̃2,1
...

β̃2,R













, β̃S =













β̃2
1
...

β̃K
1

β̃2
2
...

β̃K
2













(5.33)

and the subset of integer valued ambiguities N . The phase and code measurements of
Eq. (5.1) are written in matrix-vector notation as

zn =
[
φ1
1,1(tn), . . . , φ

KR

1,R(tn), . . . , φ
KR

2,R(tn), ρ
1
1,1(tn), . . . , ρ

KR

1,R(tn), . . . , ρ
KR

2,R(tn)
]T

,

= H(1)
n xn + vn, (5.34)

where H(1)
n is implicitly given by Eq. (5.1), (5.2), (5.19), (5.20), (5.25), (5.31) and (5.32)

and depends only on λ1 and λ2. The measurement noise is assumed to be uncorrelated
between satellites and zero-mean white Gaussian distributed, i.e. vn ∼ N (0,Σv) with
the variances σ2

φk
m,r

and σ2
ρkm,r

. The state space model for xn is given by

xn = Φxn−1 +wn, (5.35)

with the process noise wn and the state transition matrix Φ that is obtained from the
dynamic model of (5.2):

Φ =







1s×s ∆t · 1s×s 1
2
∆t2 · 1s×s 0

0 1s×s ∆t · 1s×s 0

0 0 1s×s 0

0 0 0 13s×3s






, (5.36)
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where ∆t represents the interval between two measurement epochs. A random walk
process is assumed for the ranges: The third derivatives of the ranges are assumed to be
zero mean white Gaussian noise with variance Sp. The range accelerations, range rates
and ranges are then obtained through integration. The variances and covariances of the
ranges and their derivatives are obtained as (see e.g. Brown and Hwang in [95])

E {ẍ(∆t)ẍ(∆t)} = E

{∫ ∆t

0

n(u)du ·
∫ ∆t

0

n(v)dv

}

= E

{∫ ∆t

0

∫ ∆t

0

n2(u)δ(u− v)dudv

}

=

∫ ∆t

0

∫ ∆t

0

Sp · 1 · 1 · δ(u− v)dudv = Sp ·∆t

E{ẋ(∆t)ẍ(∆t)} =

∫ ∆t

0

∫ ∆t

0

Sp · u · 1 · δ(u− v)dudv =
1

2
Sp ·∆t2

E{x(∆t)ẍ(∆t)} =

∫ ∆t

0

∫ ∆t

0

Sp ·
1

2
u2 · 1 · δ(u− v)dudv =

1

6
Sp ·∆t3

E{ẋ(∆t)ẋ(∆t)} =

∫ ∆t

0

∫ ∆t

0

Sp · u · v · δ(u− v)dudv =
1

3
Sp ·∆t3

E{x(∆t)ẋ(∆t)} =

∫ ∆t

0

∫ ∆t

0

Sp ·
1

2
u2 · v · δ(u− v)dudv =

1

8
Sp ·∆t4

E{x(∆t)x(∆t)} =

∫ ∆t

0

∫ ∆t

0

Sp ·
1

2
u2 · 1

2
v2 · δ(u− v)dudv =

1

20
Sp ·∆t5, (5.37)

which gives the state covariance matrix of range, range-rate and range-acceleration related
errors:

Σw,g̃ ˙̃g ¨̃g = Sp∆t ·





1
20

·∆t4 1
8
·∆t3 1

6
·∆t2

1
8
·∆t3 1

3
·∆t2 1

2
·∆t

1
6
·∆t2 1

2
·∆t 1



⊗ 1s×s, (5.38)

which is used to model the covariance matrix of the whole state vector as

Σw =





Σw,g̃ ˙̃g ¨̃g

Σw,I

Σw,b



 , (5.39)

with
Σw,I = σ2

I · 1s×s and Σw,b = 02s×2s, (5.40)

i.e. no process noise is assumed for the biases and integer ambiguities. In the simulations,
the third derivatives of the ranges are modeled as white Gaussian noise with variance
Sp = 1 (mm/s2)

2 1
s
m and σI = 1 cm.

The Kalman filter based estimation of xn includes a prediction and an update step. The
current state estimate x̂+

n is extrapolated with the state space model of (5.35), i.e.

x̂−
n+1 = Φx̂+

n . (5.41)
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The covariance matrix of the predicted (a priori) state estimate follows as

P x̂−
n+1

= ΦP x̂+
n
ΦT +Σw. (5.42)

The predicted state is updated once the measurements of the next epoch are available,
i.e. the a posteriori state estimate is given by

x̂+
n = x̂−

n +Kn

(

zn −H(1)
n x̂−

n

)

, (5.43)

where zn−H(1)
n x̂−

n denotes the innovation or measurement residual andKn is the Kalman
gain. It is chosen such that

min
Kn

E{‖x̂+
n − xn‖2} = min

Kn

tr(P x̂+
n
), (5.44)

where P x̂+
n
denotes the a posteriori state covariance matrix that is obtained from (5.43):

P x̂+
n
= P x̂−

n
−P x̂−

n
H(1),T

n KT
n −KnH

(1)
n P x̂−

n
+Kn(H

(1)
n P x̂−

n
HT

n +Σv)K
T
n . (5.45)

Setting the matrix derivation ∂tr(P+
n )/∂Kn = 0 and solving for Kn yields the optimal

Kalman gain

Kn = P x̂−
n
H(1),T

n

(

H(1)
n P x̂−

n
H(1),T

n +Σv

)−1

, (5.46)

which is used in (5.43) to obtain an a posteriori MMSE estimator. Equation (5.45) can
be simplified by replacing the Kalman gain by (5.46), i.e.

P x̂+
n
=
(

1−KnH
(1)
n

)

P x̂−
n
. (5.47)

Note that the estimation of integer ambiguities can be separated from the estimation
of the real-valued ranges, range rates, ionospheric delays and biases by an orthogonal
projection, i.e.

z̃n = P⊥
H̃

(1)zn = P⊥
H̃

(1) (AN + vn) , (5.48)

with

P⊥
H̃(1) = 1− H̃

(1)
(

H̃
(1),T

Σ−1
v H̃

(1)
)−1

H̃
(1)
Σ−1

v , (5.49)

where H̃
(1)

is obtained from H(1) by removing the columns referring to the ambigui-
ties. The Kalman filter based state estimation of (5.41)-(5.47) is then applied to the
projected measurements. The obtained a posteriori float ambiguity estimates are then in-
teger decorrelated and resolved by bootstrapping as described in (3.78) and (3.99). Once
the ambiguities are resolved, the projection is omitted and the transformed receiver and
satellite phase biases of (5.25) are estimated with a higher accuracy.
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Benefit of ambiguity resolution

Fig. 5.4 shows the achievable accuracies for the receiver and satellite phase bias estimates
using a network of R = 20 reference stations: Ranges, range rates, ionospheric delays,
ambiguities, receiver and satellite phase biases are estimated by a Kalman filter. It is
initialized by a least-squares solution from measurements of two epochs [93]. The float
ambiguities are decorrelated and sequentially fixed after 200 epochs with an error rate
of less than 10−9. The fixing reduces the uncertainty in the bias estimates by a factor
between 3 and 5. Dual frequency E1 and E5 code and carrier phase measurements from
Kr = 10 satellites at R receivers have been simulated. As the bias estimation is performed
on range domain, the achievable accuracy does not depend on the satellite geometry.
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Figure 5.4: Achievable accuracies of receiver and satellite phase bias estimation with a
Kalman filter: A network of R = 20 reference stations with Kr = 10 satellites has been
simulated: The float ambiguities are decorrelated and sequentially fixed after 200 epochs
with an error rate of less than 10−9. The fixing reduces the standard deviations of the
bias estimates by a factor between 3 and 5.

Benefit of a third frequency

Fig. 5.5 shows the benefit of measurements on a third frequency for bias estimation: If
no ambiguities are fixed, the benefit of the third frequency for bias estimation remains
negligible. However, the redundancy given by the third frequency enables an almost three
times earlier ambiguity fixing, and, thus a higher accuracy of the bias estimates. Dual
frequency E1-E5a and triple frequency E1-E5a-E5b measurements of R = 20 receivers and
Kr = 10 satellites were simulated for the estimation of ranges, range rates, ionospheric
delays, ambiguities, receiver and satellite phase biases.

Note that the code biases on the third frequency have to be estimated, as the ranges
and ionospheric delays can absorb the code biases on only two frequencies. However,
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Figure 5.5: Bias estimation with dual frequency E1-E5a and triple frequency E1-E5a-
E5b measurements: The redundancy given by the third frequency enables an almost
three times earlier ambiguity fixing, and, thus a higher accuracy of the receiver phase
bias estimates. The achievable accuracies are also shown for the code biases on the third
frequency which have to be estimated as the ranges and ionospheric delays can absorb
the code biases on only two frequencies.
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Figure 5.6: Benefit of measurements on a third frequency for bias estimation: The
achievable accuracies refer to the satellite biases. The same scenario as in Fig. 5.5 has
been assumed. The redundancy given by the third frequency results in an almost three
times earlier ambiguity fixing with Pw = 10−9.

the absence of both ambiguities and biases on the other two code measurements (due to
absorption by the range and ionospheric delay) enable a higher accuracy for the code bias
estimates despite the increased code noise level.

Fig. 5.6 shows the achievable accuracies for the satellite phase and code bias estimates
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for the same scenario. The satellite biases can be estimated with a slightly higher accuracy
than the receiver biases once the ambiguities are fixed due to R > Kr. If no ambiguities
are fixed, the receiver bias estimation benefits from the absorption of one satellite bias by
the receiver biases.

Fig. 5.7 shows the impact of the network size R on the achievable bias accuracies. As
long as no ambiguities are fixed, the bias estimation does not benefit from a large R
as the number of ambiguities plus biases increases with KR. However, the gain in the
bias estimation due to fixing depends on R and increases for larger networks due to the
additional redundancy. The estimation of E5 satellite biases with σβ̂k

2
= 1 cm requires

325 epochs for R = 20, 750 epochs for R = 8 and several thousand epochs for R = 2.
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Figure 5.7: Benefit of large network for bias estimation: The fixing of ambiguities
(Kr = 10) improves the satellite bias accuracy by a factor 4 for R = 20. The float
ambiguity estimates are fixed sequentially with bootstrapping after integer decorrelation.
The process noise is characterized by Sp = 1m and σI = 1cm.

The estimation of receiver and satellite phase biases is validated with L1/ L2 GPS code
and carrier phase measurements of the 37 geodetic SAPOS stations of the Landesamt für
Vermessung u. Geoinformation in the next chapter. A sequential ambiguity fixing with
integer decorrelation has been performed, i.e. the a posteriori float ambiguities of the
Kalman filter were decorrelated into

N̂
′+

= ZN̂
+
, (5.50)

and the ambiguity to fix was chosen in each step by a minimization of the cost function

min
N̂

′,k,+
m,r

w1 · |N̂
′,k,+
m,r − [N̂

′k,+
m,r ]|+ w2 · σN̂

′,k,+
m,r

, (5.51)
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which uses both the a posteriori statistical information σ
N̂

′,k,+
m,r

of the Kalman filter and the

actual deviation between the a posteriori estimate N̂
′,k,+
m,r and its rounded value [N̂

′,k,+
m,r ].

The coefficients w1 and w2 enable a certain weighting and where set in this work to 1.

As only a subset of ambiguities is fixed in each epoch, the decorrelated and partially
fixed ambiguities are transformed back to the correlated search space in each epoch, i.e.

N̂ = Z−1 ˆ̌N ′ = [Λ1, Λ2]

[

N̂
′
A[

N̂
′
B

]

]

, (5.52)

which simplifies the system of equations Ψ = Hξ +AN + ε to

Ψ−AΛ2 [N
′
B] = Hξ +AΛ1N

′
A + ε. (5.53)

Fig. ?? shows that the sequential fixing of L1 and L2 integer ambiguities substantially
improves the phase bias estimates. The slight variations over time are caused by multipath
of the reference stations. The second derivative of the ranges was additionally estimated
to improve the stability of the satellite phase biases, i.e. the state vector of the Kalman
filter includes the ranges, range rates, range accelerations, ionospheric delays, integer
ambiguities, receiver and satellite phase biases.

Precise point positioning with integer ambiguity resolution requires precise estimates of

the satellite phase biases
˜̃
βk
m and of the code biases bgk . As the latter one can not be

separated from the clock offsets, the geometry term g̃kr (tn) of (5.19) is rewritten as

g̃kr (tn) =
(
ek
r

)T ·
(
rr − rk(tn)

)
+ c ·

(
δτ̃r(tn)− δτ̃k(tn)

)
+mw(E

k
r (tn)) · T k

z,r(tn), (5.54)

with

cδτ̃r(tn) = cδτr(tn) + bgr
cδτ̃k(tn) = cδτk(tn)− bkg . (5.55)

The station coordinates rr shall be assumed known. A second Kalman filter is used
to estimate the satellite positions rk, the satellite velocities ṙk, the tropospheric zenith
delays Tz,r and the combined clock/bias terms cδτ̃r and cδτ̃k as states, i.e.

xn =
[
r1,T, . . . , rK,T, ṙ1,T, . . . , ṙK,T, Tz,1, . . . , Tz,R, cδτ̃1, . . . , cδτ̃R, cδτ̃

2, . . . , cδτ̃K
]T

,
(5.56)

As the ek
r depend on the unknown satellite positions, the iterative Newton algorithm is

integrated into the Kalman filter. Its a posteriori state estimates x̂+
n are computed from
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the measurement vector zn =
[
g̃11(tn), . . . , g̃

K
R (tn)

]T
, i.e.

x̂+
n = x̂−

n +K(2)
n

(

zn −H(2)
n x̂−

n

)

=
(

1−K(2)
n H(2)

n

)

x̂−
n +K(2)

n zn

=
(

1−K(2)
n H(2)

n

)

Φx̂+
n−1 +K(2)

n zn

=
(

1−K(2)
n H(2)

n

)

Φ
(

1−K
(2)
n−1H

(2)
n−1

)

x̂−
n−1

+
(

1−K(2)
n H(2)

n

)

ΦK
(2)
n−1zn−1 +K(2)

n zn, (5.57)

with the Kalman gain K(2)
n , the state transition matrix Φ and the extended geometry

matrix H(2)
n which includes the unit vectors from the satellites to the receivers and a map-

ping function for transforming the tropospheric zenith delay into slant delays. Equation
(5.57) can also be written in non-recursive form as

x̂+
n =

[
n∏

l=1

(1−Kn−l+1Hn−l+1)Φ

]

Φ−1x̂−
1 +

n∑

l=1

(
n−l−1∏

m=0

(1−Kn−mHn−m)Φ

)

K lzl,

(5.58)

where the first term represents the impact of the state initialization and the second term
describes the impact of the measurements on x̂+

n .

5.1.3 Estimation of code biases and ionospheric grid

The code biases and the Grid Ionospheric Vertical Delays (GIVD) can be estimated also
without integer ambiguity resolution. In this case, it is suggested to use the code mea-
surements on at least two frequencies and two linear combinations of time-differenced
carrier phase measurements: A geometry-preserving, ionosphere-free combination which
makes the range rates observable, and a geometry-free, ionosphere-preserving combina-
tion which makes the ionospheric rates observable. The measurement model is written in
matrix vector as

zn =











ρ1(tn)
ρ2(tn)

M∑

m=1

αmλm (φm(tn+1)− φm(tn))

M∑

m=1

γmλm (φm(tn+1)− φm(tn))











=







1 0 1 0
1 0 q212 0
0 ∆t 0 0
0 0 0 ∆t







︸ ︷︷ ︸

H
(2)
n

·








g̃(tn)
˙̃g(tn)

Ĩ(tn)
˙̃I(tn)








︸ ︷︷ ︸

xn

+vn,

(5.59)
where αm denote the weighing coefficients of the geometry-preserving, ionosphere-free
combination and γm represent the weighting coefficients of the geometry-free, ionosphere-
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preserving combination. Fig. 5.8 shows a 5◦ × 5◦ grid over Europe with the EGNOS
RIMS stations (red circles) [96].
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Figure 5.8: Ionospheric grid: Map of Europe with EGNOS RIMS stations (red circles),
ionospheric pierce points (green circles) and ionospheric grid points (blue squares) of a
5◦ × 5◦ grid. The grid points for which the ionospheric delay can be estimated most and
least accurately are also indicated.

The vertical ionospheric delays at the grid points (blue squares) shall be determined
from the slant ionospheric delays at the pierce points (green circles). The latter ones are
provided by a Kalman filter using the measurements of Eq. (5.59).

Let the vertical ionospheric delay at the ionospheric grid point (IGP) (λ(l), φ(l)) be de-

noted by i
(l)
0 , the latitudinal gradient by i

(l)
φ , the longitudinal gradient by i

(l)
λ and its

temporal gradients by i̇
(l)
0 , i̇

(l)
φ and i̇

(l)
λ . Then, the slant ionospheric delays in the surround-

ing of the IGP are modeled as
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
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+ η, (5.60)
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with the mapping matrix

M =






mI(E
1
1)

. . .

mI(E
KR

R )




 , (5.61)

the interpolation matrix

HI = 12×2 ⊗






1 φ1
1 − φ(l) λ1

1 − λ(l)

...
...

...

1 φKR

R − φ(l) λKR

R − λ(l)




 , (5.62)

where φk
r and λk

r denote the latitude and longitude of the ionospheric pierce point with
slant delay Ĩkr . The receiver code bias coefficient matrix is given by

HbIr
=






1K1×1

. . .

1KR×1




 , (5.63)

and the satellite code bias coefficient matrix is written as

Hbk

[
r−1∑

r′=1

Kr′ + k, j

]

=

{
1, if j = µ(k,Sr).
0, elsewhere.

, (5.64)

where µ(k,Sr) describes the position of the k-th satellite of subset

Sr , {k1
Sr
, . . . , kKr

Sr
} (5.65)

within the union set S = {S1 ∪ S2 ∪ . . . ∪ SR} containing all satellites that are visible
from at least one reference station.

The ionospheric vertical delay i
(l)
0 at the l-th grid point is computed by a weighted

least-squares fit of the slant ionospheric delays from the surrounding pierce points, i.e.
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with the weighting matrix

Σ =









sin(E1
1 )

‖x
IPP1

1
−x

IGP(l)‖
. . .

sin(E
KR
R

)

‖x
IPP

KR
R

−x
IGP(l)‖









, (5.67)

where xIPPk
r
is the position of the ionospheric pierce point IPPk

r and xIGP(l) is the position

of the ionospheric grid point IGP(l).

Note that the least-squares fitting of ionospheric slant delays in Eq. (5.66) should not use
the measurements from all pierce points due to the irregular structure of the ionosphere.
Typically, a bounding circle is drawn around each grid point to exclude farer points from
the least-squares fitting. In this work, it has been set to 2000 km in the simulations and
to 400 km in the analysis of real measurements.

Fig. 5.9 shows the achievable accuracy for the GIVDs. Obviously, this accuracy depends
on the distribution of pierce points around the grid point. The most and least accurately
computable vertical grid ionospheric delays are also indicated in Fig. 5.8.
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Figure 5.9: Achievable accuracies for GIVD: The code measurements on E1 and E5 and
two combinations of time-differenced carrier phase measurements are used in a Kalman
filter to estimate the GIVD and the code biases: The first combination is geometry-
preserving and ionosphere-free, and the second one is geometry-free and ionosphere-
preserving which make the range rates and ionospheric rates observable respectively. A
least-squares fit has been used to estimate the vertical ionospheric delay for each grid
point from the slant delays of the surrounding pierce points.

Fig. 5.10 and 5.11 show that the error in the bias estimates bIr and bIk drop below 1
cm within 300 epochs. Galileo code and carrier phase measurements on E1 and E5 were
simulated for the 37 EGNOS RIMS stations.
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Figure 5.10: Error in receiver bias estimates based on simulated E1 and E5 Galileo
measurements of the network of 37 EGNOS reference stations. The boundary circle for
each grid point is set to 2000 km. After 300 epochs the errors in receiver bias estimates
are reduced to less than 1 cm.
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Figure 5.11: Error in satellite bias estimates using the same scenario as in Fig. 5.10.
The errors are reduced to less than 1 cm within 300 epochs.
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The slant ionospheric delay estimates are affected by both satellite and receiver biases.
As these biases occur in the estimation of several ionospheric grid point delays, a joint
estimation of the ionospheric grid point delays shall now be considered. Fig. 5.12 shows
some ionospheric pierce points of which a few are included in the bounding circles of
multiple ionospheric grid points.
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Figure 5.12: Illustration of overlapping ionospheric grid planes: Several satellites are
visible from multiple receivers which motivates the joint estimation of multiple grid point
delays.

The vertical ionospheric delay at the pierce point xIPPk
r
is represented by a linear com-

bination of several grid point delays, i.e.

Iv(xIPPk
r
) =

∑

l∈Sk
r

αk,(l)
r · (i(l)0 + i

(l)
φ (φk

r − φ(l)) + i
(l)
λ (λk

r − λ(l))), (5.68)

where Sk
r denotes the subset of ionospheric grid points that is given by

Sk
r = {l | ‖xIGP(l) − xIPPk

r
‖ < rbound}, (5.69)

with the radius of the boundary circle rbound around the IPP. The weighting coefficients
α
k,(l)
r are chosen such that

min
α
k,(l)
r

∑

l∈Sk
r

(α
k,(l)
r )2

sinEk
r

‖x
IPPk

r
−x

IGP(l)‖
s. t.

∑

l∈Sk
r

αk,(l)
r = 1. (5.70)
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The ionospheric slant delays and their rates are modeled as
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with the combined ionospheric mapping and interpolation matrix
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the linear combination matrix
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the ionospheric slant and grid point delays with their spatial and temporal gradients
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ĨKR

R
















, ˙̃
I =

















˙̃I11
...
˙̃IK1
1
...
˙̃I1R
...
˙̃IKR

R

















, i(l) =






i
(l)
0

i
(l)
φ

i
(l)
λ




 , i̇

(l)
=






i̇
(l)
0

i̇
(l)
φ

i̇
(l)
λ




 , (5.74)

and the receiver and satellite biases

bIr = [bI1 , . . . , bIR]
T , bIk = [bI2 , . . . , bIK ]

T . (5.75)

The ionospheric vertical delays i
(l)
0 at the l-th grid points are computed by a weighted

least-squares fit of the slant ionospheric delays from the surrounding pierce points, i.e.
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Estimation of ionospheric grid with measurements

from CORS network

The method for joint estimation of code biases and grid ionospheric vertical delays is
validated with real data from 7 CORS stations in Vermont, USA: (1) Middlebury: λ =
−73.15◦, φ = 44.00◦, (2) Montpelier: λ = −72.58◦, φ = 44.26◦, (3) Randolph Center: λ =
−72.60◦, φ = 43.94◦, (4) Danby: λ = −73.00◦, φ = 43.35◦, (5) Bradford: λ = −72.11◦,
φ = 44.01◦. (6) Derby: λ = −72.09◦, φ = 44.57◦. (7) Brighton: λ = −71.53◦, φ = 44.49◦.
The maximum distance between these 7 stations is 140 km. The GPS L1/ L2 code and
carrier phase measurements of February 7, 2010 have been chosen. The ionospheric grid
point at λ = −71◦, φ = 43◦ is considered. Fig. 5.13 shows the residuals of the ionospheric
slant delays which are obtained from the grid estimation of Eq. (5.66), i.e.
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î
(l)

ˆ̇i(l)

]

−Hb













b̂I1
...

b̂IR
b̂I2
...

b̂IK













. (5.77)

Smaller residuals refer to the ionospheric pierce points that are closer to the grid point,
and larger residuals can be observed for the ionospheric pierce points that are farer away.
Consequently, these ionospheric residuals also indicate irregularities in the ionosphere.

(a) Map of CORS stations in Vermont
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(b) Residuals of vertical ionospheric delays

Figure 5.13: Residuals of slant ionospheric delays: A least-squares fit has been used to
estimate the vertical ionospheric delay for each grid point from the slant delays of the
surrounding pierce points.

It is recommended that a satellite based augmentation system transmits the bias esti-
mates b̂Ik in addition to the grid ionospheric vertical delays î

(l)
0 . A more detailed analysis

of measurements from a larger network of 21 CORS stations is given in the next chapter.
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5.1.4 Estimation of phase biases with SAPOS stations

The receiver and satellite phase biases shall now be estimated with real GPS measurements
from 9 SAPOS stations (equipped with Leicca receivers) in northern Bavaria. The Kalman
filter based approach with the modified cost function of (5.51) for sequential ambiguity
resolution are reused. Fig. 5.14 and 5.14 shows a high temporal stability for the geometry-
dependant part of the receiver and satellite phase biases. The drift varies between less
than 1 cm and at most 5 cm within one hour.
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Figure 5.14: Estimation of satellite phase biases with a network of SAPOS stations:
The geometry-dependant part of these biases is extremely stable over time.
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Figure 5.15: Estimation of receiver phase biases with a network of SAPOS stations: The
geometry-dependant part of these biases is extremely stable over time.



6
Measurement analysis

In this chapter, some of the analyzed methods for differential carrier phase positioning
are validated with real data.

First, a dual frequency carrier smoothing is analyzed for ionospheric delay estimation
with geometry-free, ionosphere-preserving code and carrier phase linear combinations. A
spectral analysis is performed to show the impact of multipath on the ionospheric delay
estimates.

Secondly, the carrier phase integer ambiguities are resolved for both stationary and
kinematic GPS L1/ L2 measurements from Javad receivers. An integer least-squares
estimation with integer decorrelation (LAMBDA) is used to increase the efficiency of the
search. The obtained baseline estimates are validated with laser ranging and agree up to
9 mm. A high reliability of the kinematic ambiguity resolution is observed as the range
residuals were more than one order of magnitude lower than the widelane wavelength. The
measurements were performed on a Beechcraft King Air 350 during a flight campaign of
the institute.

Finally, the estimation of satellite biases is analyzed with GPS measurements from the
SAPOS and CORS stations. A Kalman filter is used to compute a network solution. The
integer ambiguities are sequentially fixed using a new cost function which includes both
the a posteriori standard deviation of the Kalman filter and the actual deviation of the
float ambiguities and their nearest integer numbers.
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6.1 Smoothing algorithms

This section shows the benefit of carrier smoothing for ionospheric delay estimation. The
measurements have been collected by the institute’s Genesis-112 GPS/GLONASS L1/L2
receiver of Javad which has been mounted on top of the FCS building at Braunschweig
on December 15, 2008.

Fig. 6.1 shows the instantaneous ionospheric delay estimates for a low elevation satellite
which rises over the southern horizon at the beginning of the measurements. The code
noise as well as the strong code multipath with a 100 s periodic structure are substan-
tially reduced by the ionosphere-free smoothing. The benefit of the smoothing obviously
increases for larger smoothing time constants. Moreover, one can observe a reduction in
code multipath over time (especially after 30 min) due to the increase in satellite elevation.
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Figure 6.1: Ionospheric delay estimation from dual frequency measurements: The noise
is substantially reduced by dual frequency ionosphere-free carrier smoothing. The some-
what regular variations in the beginning indicate multipath and are reduced as the ele-
vation increases. The measurements have been collected by the institute’s Genesis-112
GPS/GLONASS L1/L2 receiver of Javad at Braunschweig.

Fig. 6.2 includes a spectral analysis of the ionospheric delay estimates. A white Gaussian
noise signal would result in a constant in the spectrum. As the measurements were
collected during solar minimum and the ionosphere was in particular calm on the chosen
day, a 10 min smoothing results almost in a constant delay estimate which turns into
a peak for f = 0 Hz and negligible power at other frequencies. A comparison of the
spectral density between a 10 min smoothing and no smoothing enables a separation of
code multipath from noise. The side lobes at ±0.01 Hz and ±0.025 Hz are caused by
multipath, and the spectral density for |f | > 0.03 Hz indicates the smoothed noise level.
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Figure 6.2: Spectral analysis of ionospheric delay estimation: The side lobes at 0.01
Hz are caused by multipath. The smoothing reduces both the multipath and the white
Gaussian noise that corresponds to a constant in the spectrum. The measurements have
been collected by the institute’s Genesis-112 GPS/GLONASS L1/L2 receiver of Javad at
Braunschweig.

6.2 Ambiguity resolution

In this section, the benefit of integer ambiguity resolution is analyzed for relative posi-
tioning. In a first part, a set of measurements from two stationary receivers are used and,
in a second part, measurements from a flight campaign are considered.

6.2.1 Measurements from stationary receivers

A Leica and a Javad receiver have been positioned on top of the IAPG building at TUM
with a fixed baseline of 133.541 m on August 28, 2008. The baseline estimation has
been performed iteratively based on double difference measurements. The integer ambi-
guities have been resolved with the Least Squares Ambiguity Decorrelation Adjustment
(LAMBDA) method. Fig. 6.3 shows an average deviation of 9 mm between the GPS
based baseline estimation and the estimate obtained from laser ranging.

Fig. 6.4 shows the double difference range residuals after ambiguity resolution. Both
the standard deviations and the biases of all 6 residuals are only a few millimeters which
indicates a correct integer ambiguity resolution. The skyplot shows the satellite geometry
with the satellite of highest elevation being chosen as reference satellite. Note that the
range residuals require a certain number of iterations, i.e. the geometry matrix has to
converge.
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Figure 6.3: Baseline estimation with carrier phase ambiguity resolution: A Leica and
Javad receiver have been positioned on top of the building of the IAPG at TUM on August
28, 2008. The iterative baseline estimation is based on double difference measurements
and includes an integer search for ambiguity resolution. The baseline length has been
verified by laser ranging. An error of 9 mm can be observed in the estimate of the 133.541
m long baseline which indicates a correct integer ambiguity resolution.
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Figure 6.4: Range residuals of baseline estimation: The residuals have been obtained
after 20 iterations and indicate a correct carrier phase ambiguity resolution. The skyplot
shows the movement of the satellites including the reference satellite of highest elevation.
The integer ambiguities have been determined by a search. The measurements have been
collected with a Leica and Javad receiver positioned on top of the building of the IAPG
at TUM on August 28, 2008.
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Fig. 6.5 shows the convergence behaviour of the range residuals after ambiguity resolu-
tion: Residuals of less than 4 mm are obtained for all double differences after at least 13
iterations. Lower range residuals for a reduced number of iterations occur if the baseline
estimate results in an overfitting of one or a few double differences.
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Figure 6.5: Convergence behaviour of range residuals after ambiguity resolution: Resid-
uals of less than 4 mm are obtained for all double differences after at least 13 iterations.
Lower range residuals for a reduced number of iterations occur if the baseline estimate
results in an overfitting of one or a few double differences. The measurements have been
collected with a Leica and Javad receiver positioned on top of the building of the IAPG
at TUM on August 28, 2008.

Fig. 6.6 shows the convergence of the float ambiguity estimates to integer values. For
single frequency measurements without integer decorrelation, the convergence is rather
slow. Obviously, the ambiguity referring to the pair of satellites with highest elevation
can be fixed correctly much earlier than of the low elevation satellites (violet, turquoise).
A correlation can also be observed between the range residual convergence in Fig. 6.5 and
the float ambiguity errors of Fig. 6.6: The two range residuals with fastest convergence
correspond to two ambiguity estimates whose absolute errors converge fastest to less than
±1/2 cycle.

Fig. 6.7 shows the benefit of a priori knowledge for integer ambiguity fixing. In this case,
the ambiguity of the highest elevation satellite is assumed to be known which results in one
unambiguous carrier phase measurement. This a priori knowledge reduces the uncertainty
in the float solution of all other ambiguities, and is especially beneficial for the resolution
of a low elevation satellite ambiguity. This sequential fixing is done by a variety of integer
estimators including bootstrapping and integer least-squares estimation.
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Figure 6.6: Errors in float ambiguity estimates before integer decorrelation: These errors
are reduced to less than ±0.5 cycle within a few hundred epochs. The ambiguities of
the high elevation satellites converge faster than of the low elevation satellites. The
measurements have been collected with a Leica and Javad receiver positioned on top of
the building of the IAPG at TUM on August 28, 2008.
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Figure 6.7: Impact of a priori integer knowledge on ambiguity resolution: The same
measurements as in Fig. 6.6 are considered but the ambiguity of the double difference
between the two satellites of highest elevation (red, black) is assumed to be known. The
a priori knowledge reduces the errors in the most critical ambiguities that are referring to
low elevation satellites (turquoise, violet).
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6.2.2 Measurements from flight campaign

The first flight with kinematic carrier phase positioning based on both GPS L1/L2 and
GIOVE E1/E5a signals was performed by the institute on December 15, 2008. The
capability of reliable widelane ambiguity resolution for combined GPS and Galileo signals,
and a new vector phase locked loop for joint satellite tracking were validated.

The flight was conducted with a Beechcraft King Air 350 of Flight Calibration Ser-
vices, Braunschweig (Fig. 6.8). Two multi-frequency Galileo capable 42GO1116A2-XT-1
antennas of Antcom (with 743 ARINC configuration) were mounted on the aircraft.

Figure 6.8: Beechcraft King Air of Flight Calibration Services at runway of Braunschweig

The flight started with an en-route flight from Braunschweig to Innsbruck, followed by
several touchdowns, low approaches and banking maneuvers in Alpine valleys. The flight
path is shown in Fig. 6.9 and 6.10.

Figure 6.9: Overview of flight path through the Inn-, Leutasch-, Wipp-, Stubai- and
Zillertal in the Austrian Alps: Several banking manoeuvres and steep circles have been
flown with low approaches/ touch-downs at the airport of Innsbruck.
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Figure 6.10: Flight path through the Austrian Alps: The path follows the valley of the
Inn from Innsbruck to Imst. A steep bend of 270 degrees is then flown to approach the
Marienbergjoch, and the basin of Ehrwald. The flight path then turns into the valley of
the Leutasch between the Zugspitze in the north and the Mieminger Kette in the south.

Fig. 6.11 shows the onboard measurement equipment: Two multi-frequency, multi-
constellation GNSS Triumph receivers of Javad, the Nordnav L1 frontend, and an antenna
splitter were arranged in a rack. The commands for the receivers were sent from a remote
PC which also stores the measurement data.

Figure 6.11: Measurement equipment for flight campaign: Two multi-frequency, multi-
constellation GNSS Triumph receivers of Javad, the Nordnav L1 frontend, and an antenna
splitter have been arranged in a rack. The commands for the receivers were sent from a
remote PC which also stores the measurement data.
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Fig. 6.12 shows the benefit of ambiguity resolution for the estimation of the 98.66 cm
baseline between both Javad receivers. The fixing of the L1-L2 widelane ambiguities with
a wavelength of λ = 86.2cm reduces the estimation error in the baseline height component
by one to two orders of magnitude compared to the float solution. Note that the float
solution has been computed on an epoch by epoch basis.
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Figure 6.12: Error in height estimation between the antenna on the aircraft and the
antenna of the reference station on top of the FCS building: The fixing of L1-L2 widelane
ambiguities (λ = 86.2cm) reduces the variations in the height estimate by one to two
orders of magnitude compared to the float solution.

Fig. 6.13 shows the range residuals of double difference widelane measurements after
widelane ambiguity fixing. The range residuals are more than one order of magnitude
smaller than the wavelength which indicates a correct integer ambiguity fixing.
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Figure 6.13: Range residuals after widelane ambiguity resolution: The range residuals
are more than one order of magnitude smaller than the wavelength which indicates a
correct integer ambiguity fixing.



7
Conclusion

In this work, the reliability of carrier phase positioning with multiple frequencies was
substantially improved. This is especially important for safety of life critical applications
(aviation) as well as for the positioning of reference stations in a local, continental or
global network where a fixing of all ambiguities has been feasible only with a probability
of wrong fixing of a few percent so far. It was even impossible during ionospheric storms
in the past. The proposed integer ambiguity resolution is benefiting from the wideband
Galileo signals with their large bandwidths and Binary Offset Carrier modulation which
result in a code noise of only a few centimeters.

The carrier tracking has been improved by a vector phase locked loop which jointly
tracks all signals and benefits from both the spectral and spatial correlation. For the
Galileo wideband signals, the ionosphere causes not only a delay but also a distortion of
the code correlation function which results in a phase bias of a few centimeters. Therefore,
a method for equalizing the signal in spectral domain has been suggested.

New groups of multi-frequency mixed code carrier linear combinations were derived to
improve the reliability of integer ambiguity resolution. The linear combination of code and
carrier phase measurements has several advantages: It enables dual frequency widelane
combinations that eliminate the ionospheric delay which is not possible with phase-only
combinations. The inclusion of code measurements relaxes the integer constraint which
enables larger wavelengths while the ionosphere is still eliminated. The large wavelength
in relation to the geometry-preserving property substantially improves the robustness over
orbital errors, satellite clock offsets and tropospheric modeling errors. The combination
of code and carrier phase measurements also offers some additional degrees of freedom
for the combination design: The geometry is either preserved or eliminated, the iono-
spheric delay of first order and/ or of second order are either preserved or eliminated, the
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noise level is minimized, the wavelength is maximized, or the ambiguity discrimination
is maximized. For example, a geometry-preserving, ionosphere-free dual frequency linear
combination of Galileo E1 and E5 measurements with a wavelength of 3.285 m and a noise
level of only a few centimeters has been found. The noise level of the code carrier combi-
nation was further reduced by carrier smoothing, and optimal combination design is based
on a joint optimization of the phase-only combination and the code carrier combination.
Moreover, constraints on biases were integrated into the combination computation, an
ambiguity resolution based on geometry-free, ionosphere-free, carrier smoothed combina-
tions was discussed, and linear combinations including next generation C-band signals
were evaluated.

Integer ambiguity resolution can be performed either by direct rounding, by sequential
conditional rounding (bootstrapping), by integer least-squares estimation (including a
search), or by integer aperture estimation. In this work, these estimators were applied to
both uncombined and combined double differenced, single differenced and undifferenced
measurements. The optimal combinations with their large wavelength substantially im-
prove the reliability of ambiguity resolution for both Wide Area Real Time Kinematics
(RTK) and Precise Point Positioning (PPP) applications. Several contributions were
made to further improve the success rate, e.g. a modified bootstrapping that uses slightly
lower weights than the traditional bootstrapping to take the erroneous fixings into ac-
count. A partial integer decorrelation was suggested to find the optimum trade-off be-
tween variance reduction and worst-case bias amplification. The first cascaded ambiguity
resolution scheme with three multi-frequency geometry-preserving, ionosphere-free code
carrier combinations was derived. A new partial ambiguity fixing was obtained from a
forward-backward search while current methods are using only a pure forward search.
The optimal fixing order lead to a substantial increase in the number of reliably fixable
ambiguities in the case of worst-case biases. The detection of erroneous fixings was im-
proved by selecting a set of linear combinations where the most likely integer errors in the
combined ambiguities result in non-integer valued errors for the uncombined ambiguities.
Moreover, receiver and satellite code and phase biases and the vertical ionospheric grid
were estimated with a Kalman filter and a network of reference station. The method was
validated with simulated measurements from the global network of Galileo Sensor Stations
and with real data from a few CORS stations as well as from the Bavarian network of
SAPOS stations. The integrity risk is in general substantially lower than the probability
of wrong fixing as a large number of erroneous fixings does not necessarily result in an
integrity threat. It was evaluated for the CAT IIIc vertical alarm limit of 5.3 m using the
optimized linear combinations of satellite-satellite single difference measurements on E1
and E5a.

The integer ambiguity resolution methods were validated with GPS measurements from a
stationary baseline on top of the IAPG building of the Technische Universität München as
well as with kinematic measurements from a flight campaign. Range residuals of less than
10 % of the wavelength were observed which indicate a quite reliable integer ambiguity
resolution. This reliability will further improve with the next Galileo satellites.
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A1. Power spectral density of Binary Offset Carrier

Modulated Signals

Betz has introduced the BOC spreading symbol as a sequence of alternating ±1 in [3],
i.e. the spreading symbol for sine phasing is written as

q(m,n)(t) =
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The Fourier transformation of a linear combination is equal to the linear combination of
Fourier transforms, i.e. F(q(m,n)(t)) can be rewritten as
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For k even, pairing terms in the summation yields
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The geometric series
∑k

l=0 x
l = xk+1−1

x−1
is used to obtain
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which can be further simplified using trigonometric identities, i.e.
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Substituting (7.6) in (7.2) and using the definition of the power spectral density results
in

Psinb(m,n)
(f) =

1

k Ts

2

|F(q(m,n)(t))|2 =
1

k Ts

2

·
(

sin(πf Ts

2
) sin(πkf Ts

2
)

πf cos(πf Ts

2
)

)2

=
1

fc
·




sin
(

πf
2fs

)

sin
(

πf
fc

)

πf
fc

cos
(

πf
2fs

)





2

(k even). (7.7)

If k is an odd number, one additional term remains after the pairing in (7.4), i.e.
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The common terms are factored out, and real and imaginary components are grouped:
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Factoring out the common terms and further simplifying yields
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which enables us to write the power spectral density of a sine phased BOC symbol with
odd k as
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For a cosine phased subcarrier, the derivation of the power spectral density is based on a
Ts/4 shifted version of (7.1) which results in
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A2. Cramer Rao Bound of Galileo and GPS Signals

The Cramer Rao bound (CRB) is a lower bound on the estimation error of a real-valued
parameter. It shall be derived according to Kay [9], Spilker [11] and Günther [1] and
evaluated in this section for the Galileo and GPS code signals. Let τ be the unknown
code delay and r be the received signal, then an unbiased estimator of τ is characterized
by

E{τ̂(r)} =

∫

τ̂(r)p(r|τ)dr = τ. (7.15)

The CRB only exists if
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i.e. the integration w.r.t. r and the differentiation w.r.t. τ have to be interchangeable.
The derivation starts with
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Applying the Cauchy-Schwarz inequality yields
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which gives the Cramer Rao bound as

σ2
τ̂(r) ≥
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log(p(r|τ))|2} , (7.19)

which only depends on the conditional probability distribution of the received signal. For
an AWGN-delay channel, r(t) is given by

r(t) =
√
Ps(t− τ) + n(t), (7.20)

with the transmit power P , the delay τ of the transmitted signal s(t), and AWG noise
n(t) ∼ N (0, σ2 = 2FN0). As s(t) has a limited bandwidth F , it is sufficient to sample
the signal at times tn = n∆ with ∆ = 1/(2F ) (Nyquist theorem), i.e.

rn = r(n∆) =
√
Ps(n∆− τ). (7.21)



150 Chapter 7 � Conclusion

A signal bandwidth of F = 10 MHz requires a sampling interval of at most 0.05µs which
is short compared to the temporal variations in the code delay τ . Therefore, τ can
be assumed constant over a certain number of samples N . The conditional probability
distribution of r = [r1, . . . , rN ]

T for given τ is given by

p(r|τ) = 1
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Computing the derivative with respect to τ yields
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which enables us to determine the denominator of (7.19), i.e.
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The term ∂/∂τ(s(i∆ − τ)) can also be expressed by the Fourier transform of s(t), i.e.
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and the Parseval’s theorem yields
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The Parseval’s theorem is also used to compute the symbol energy from N samples as

Es = P∆

N∑

i=1
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∫ F

−F
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Combining (7.19), (7.26) and (7.27) gives the Cramer Rao bound (CRB) as a function of
the power spectral density S(f) and of the signal to noise ratio:

σ2
τ̂ ≥

∫
|S(f)|2df

Es

N0

∫
|S(f)|2(2πf)2df . (7.28)

The Binary Offset Carrier modulation shifts the power to higher frequencies which in-
creases

∫
|S(f)|2(2πf)2df and, thus, results in a lower CRB. Tab. 1.2 and 1.3 show the

CRBs for the Galileo and GPS signals for a signal to noise ratio of Es/N0 = 45dB. Low
cost GPS receivers use only a bandwidth of 2 MHz which results in a CRB of 78.29 cm for
the BPSK(1) modulated L1 signal. A BOC(1,1) modulated signal with sine phasing and
a bandwidth of 20 MHz benefits from a CRB of 14.81 cm, and the MBOC modulation
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further reduces the CRB to 11.13 cm. The lowest noise level of only 1.62 cm is achieved
by the AltBOC(15,10) modulated Galileo signal on E5 with a bandwidth of 90 · 1.023
MHz. This low code noise substantially improves the reliability of carrier phase integer
ambiguity resolution.

The further analysis is restricted to the signals of the Open Service (OS), the Safety of
Life (SoL) service and the Commercial Service (CS). Note that the E1, E5a, E5b and E6
channels also include dataless pilot signals which can be integrated over a longer time. A
longer integration time turns into a larger Es/N0 and, thus, a lower CRB.

A3. Float solution of baseline and ambiguities

The baseline and double difference ambiguities are first estimated as real-valued parame-
ters by disregarding the integer nature of ambiguities. The code measurements of receiver
r, satellite k and frequency m are modeled as

ρkm,r(tn) = ‖rr(tn)− rk(t′n)‖+ c
(
δτr(tn)− δτk(t′n)

)
+ Ikm,r(tn) + T k

r (tn)

+bm,r + bkm + ηkm,r(tn), (7.29)

where tn is the time of reception and t′n is the unknown time of transmission respectively.
Similarly, the phase measurements are written as

λ1φ
k
m,r(tn) = ‖rr(tn)− rk(t′n)‖+ c

(
δτr(tn)− δτk(t′n)

)
+ Ikm,r(tn) + T k

r (tn)

+λmN
k
m,r + βm,r + βk

m + ǫkm,r(tn). (7.30)

Both (7.29) and (7.30) represent a nonlinear relationship between the receiver position
and the measurement and, thus, require an iterative solution.

The satellite position rk(t′n) and the satellite clock offset cδτk(t′n) are computed from the
ephemeris data of the navigation message, the time of reception tn, and the pseudorange
measurements ρkr(tn) to correct for the traveltime between the satellite and receiver. The
time of transmission t′n is estimated as

t′n = tn −
ρkr(tn)

c
− δτ̂k

(

tn −
ρkr(tn)

c

)

, (7.31)

where the satellite clock correction is given by

δτ̂k(t) = af0 + af1 · (t− toe) + af2 · (t− toe)
2 − tgd + drel, (7.32)

with the satellite clock offset af0 , the satellite clock drift af1 , the satellite clock acceleration
af2 , the time of ephemeris toe, the group delay correction tgd and the relativistic correction
drel. The satellite clock correction is then re-estimated with (7.32) using the corrected
time of transmission t′n of (7.31). The satellite position in an elliptical orbit (Fig. 7.1) is
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given by

r(t′n) =
a(1− e2)

1 + e cos(ν(t′n))





cos(ν(t′n))
sin(ν(t′n))

0



 , (7.33)

with the semi-major axis a, the eccentricity e and the true anomaly ν. Alternatively, r
can be expressed as a function of the eccentric anomaly E, i.e.

r(t′n) =





a cos(E(t′n))− ae

a
√
1− e2 sin(E(t′n))

0



 . (7.34)

The magnitude of this vector is the orbital radius

r(t′n) = a(1− e cos(E(t′n))). (7.35)

Combining (7.33) and (7.33) yields the true anomaly ν:

ν(t′n) = atan

(√
1− e2 · sin(E(t′n))

cos(E(t′n))− e

)

. (7.36)

The velocity vector is obtained from (7.34) as

ṙ(t′n) =





−a sin(E(t′n))Ė(t′n)
a
√
1− e2 cos(E(t′n))Ė(t′n)

0



 . (7.37)
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Figure 7.1: Position and velocity of a satellite in Keplerian orbit. An artifical circular
orbit has been added for the derivation of the true anomaly.

The angular momentum is derived from (7.34) and (7.37) as

L = m(r × ṙ) = L · ez = mab · Ė(t)′n (1− e cos(E(t′n))) · ez (7.38)

with the mass m of the satellite and the semi-minor axis b . Eq. (7.38) can be rearranged
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as

Ė(t′n) (1− e cos(E(t′n))) =
L

mab
, (7.39)

which can be rewritten with Kepler’s second law as

L

mab
=

2π

T
= n, (7.40)

with the orbital period T and the mean motion n. The latter one is easily obtained from
Kepler’s third law, i.e.

n =
√

GM/a3. (7.41)

Integrating (7.39) yields

E(t′n)− e sin(E(t′n)) = n(t′n − toe) +M0(toe) = M(t′n), (7.42)

where M is called the mean anomaly that increases linear with time. Eq. (7.42) can be
solved only iteratively, e.g. by the Gauss-Newton method:

Êi+1(t
′
n) = Êi(t

′
n)−

f(Êi(t
′
n))

f ′(Êi(t′n))
, (7.43)

which converges within a few iterations with the initialization Ê1(t
′
n) = M .

The receiver computes the satellite positions from the Keplerian parameters and their
linear and harmonic corrections as follows: First, the mean motion n =

√

GM/a3 + δn
is determined, followed by the mean anomaly M of (7.42), the eccentric anomaly of E
(7.43), the orbital radius r of (7.35) and the true anomaly ν of (7.36). The argument of
perigee ω and ν are then combined to the argument of latitude which is given by

φ(t′n) = ω + ν(t′n). (7.44)

In the next step, the second harmonic corrections are applied to the argument of latitude,
the orbital radius and the inclination i, i.e.

φ̃k(t
′
n) = φk(t

′
n) + Cuc cos(2φ(t

′
n)) + Cus sin(2φ(t

′
n))

r̃(t′n) = r(t′n) + Crc cos(2φ(t
′
n)) + Crs sin(2φ(t

′
n))

i(t′n) = i0(toe) + i̇(t′n − toe) + Cic cos(2φ(t
′
n)) + Cis sin(2φ(t

′
n)), (7.45)

and linear correction is used for the right ascension of the ascending node Ω:

Ω(t′n) = Ω0 + (Ω̇− Ω̇e)(t
′
n − toe)− Ω̇etoe, (7.46)

where Ω̇e = 7.2921151467 · 10−5 rad/s denotes the angular velocity of the earth rotation.
Finally, the satellite position is transformed from the orbital into the earth-centered, earth
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fixed coordinate (ECEF) frame by rotations about the x and z axes:
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
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0
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Both cδ̂k(t′n) and rk(t′n) are used for the estimation of the float baseline solution, which is
determined iteratively with the Gauss-Newton method. The measurements are processed
as double differences to eliminate biases, i.e.

∆ρ1ko,12(tn) =
(
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)
−
(
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1
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)
−
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k
2(tn)− λ1φ

1
2(tn)

)
, (7.48)

where an additional index has been introduced to distinguish between computed (c) and
observed (o) ranges. The Gauss-Newton method is initialized by a guess of the receiver
position r̂2(tn) (which results in b̂(tn) = r1(tn)− r̂2(tn)) and float ambiguities N̂1k

12 .

Each iteration starts with the computation of the traveltime correction that is given by

δtkr(tn) =
1

c
· ‖rk(t′n)− r̂r(tn)‖. (7.49)

It is used to transform the satellite position in ECEF coordinates due to the earth rotation
during the traveltime, i.e.

r′k(t′n) = Rz

(

Ω̇eδt
k
r(tn)

)

rk(t′n), (7.50)

which enables the computation of the range from the satellite and receiver positions:

ρkc,r(tn) = ‖r′k(t′n)− r̂r(tn)‖. (7.51)

Assuming a short baseline, the differential geometry matrix is given by

H =












H(t1) λ11
. . .

. . .

H(tN) λ11

H(t1)
. . . 0

H(tN)












(7.52)

with

H(tn) =






(e2(tn))
T − (e1(tn))

T

...
(eK(tn))

T − (e1(tn))
T




 and ek(tn) =

r̂2(tn)− r′k(t′n)

‖r̂2(tn)− r′k(t′n)‖
. (7.53)
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The double difference computed ranges are obtained from (7.51) as

∆ρ1kc,12(tn) =
(
ρkc,1(tn)− ρ1c,1(tn)

)
−
(
ρkc,2(tn)− ρ1c,2(tn)

)
. (7.54)

The float ambiguity corrections from the previous iteration are then applied to the double
difference observed ranges, i.e.

λ1∆φ1k
o,12(tn) := λ1∆φ1k

o,12(tn)− λ1∆N̂1k
12 . (7.55)

The residuals between the double difference computed and observed ranges are calculated
from (7.54), (7.48) and (7.55):

∆ρ1komc,12(tn) = ∆ρ1ko,12(tn)−∆ρ1kc,12(tn)

λ1∆φ1k
omc,12(tn) = λ1∆φ1k

o,12(tn)− λ1∆φ1k
c,12(tn). (7.56)

A least-squares estimation provides new baseline and ambiguity corrections, i.e.








∆b̂(t1)
...

∆b̂(tN )

∆N̂







=
(
HTΣ−1H

)−1
HTΣ−1

[
λ1∆φomc

∆ρomc

]

, (7.57)

which are used to update the float ambiguities and position estimates:

N̂ := N̂ +∆N̂

r̂2(tn) := r̂2(tn)−∆b̂(tn). (7.58)

Eq. (7.49)-(7.58) are repeated until the residuals have converged to an irreducible error.
The float baseline estimate is obtained from the known reference station position r1(tn)
and r̂2(tn), i.e. b̂(tn) = r1(tn)− r̂2(tn).
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[44] G. Wübbena, New GNSS Signals and Ambiguity Resolution, Proc. of EGU Gen.
Ass., Vienna, Austria, 2007.

[45] P. Henkel, V. Gomez and C. Günther, Modified LAMBDA for absolute carrier phase
positioning in the presence of biases, Proc. of Int. Techn. Meet. (ITM), Anaheim,
USA, pp. 642-651, 2009.

[46] P. Henkel and C. Günther, Joint L-/C-Band Code and Carrier Phase Lin-
ear Combinations for Galileo, Int. J. of Nav. and Obs., vol. 2008, pp. 1-8,
doi:10.1155/2008/651437, 2008.

[47] P. Henkel, Bootstrapping with Multi-Frequency Mixed Code Carrier Linear Com-
binations and Partial Integer Decorrelation in the Presence of Biases, Proc. of Int.
Assoc. of Geod. Scient. Ass., Buenos Aires, Argentina, 2009.

[48] R. Hatch, The Synergism of GPS Code and Carrier Measurements, Proc. Third Int.
Geod. Symp. on Sat. Doppl. Pos., vol. II, New Mexico, USA, pp. 1213-1232, 1982.

[49] P. Hwang, G. Mc Graw, and J. Bader, Enhanced Differential GPS Carrier-Smoothed
Code Processing Using Dual-Frequency Measurements, J. of Navigation, vol. 46, no.
2, pp. 127-137, Summer 1999.

[50] G. Mc Graw and P. Young, Dual Frequency Smooting DGPS Performance Evaluation
Studies, Proc. of ION Nat. Techn. Meet. (NTM), San Diego (CA), USA, pp. 16-24,
2005.

[51] C. Günther and P. Henkel, Reduced noise, ionosphere-free carrier smoothed code,
IEEE Trans. on Aerosp. and Elec. Systems, 2008.

[52] J. Angus, RAIM with multiple faults, Navigation, 53(4), pp. 249-257, 2006.

[53] R. Hatch, A new three-frequency, geometry-free technique for ambiguity resolution,
Proc. of ION GNSS 19th Int. Techn. Meet. (ITM), Fort Worth, USA, pp. 309-319,
2006.

[54] H. Henderson and S. Searle, On Deriving the Inverse of a Sum of Matrices, J. of the
Soc. for Ind. and Appl. Math. (SIAM), vol. 23, no. 1, pp. 53-60, 1981.

[55] A. Genz, Numerical Computation of Multivariate Normal Probabilities, J. of Comp.
and Graph. Stat., pp. 141-149, 1992.



160 Bibliography

[56] P. Teunissen, Integer estimation in the presence of biases, J. of Geodesy, vol. 75, pp.
399-407, Springer, 2001.

[57] P. Teunissen, Success Probability of Integer GPS Ambiguity Rounding and Boot-
strapping, J. of Geodesy, vol. 72, pp. 606-612, Springer, 1998.

[58] G. Blewitt, Carrier-phase ambiguity resolution for the Global Positioning System
applied to geodetic baselines up to 2000 km, J. Geophys. Res., vol. 94, pp. 10187-
10203, 1989.

[59] P. Teunissen, A new method for fast carrier phase ambiguity estimation, Proc. of
IEEE Pos., Loc. and Nav. Symp. (PLANS), Las Vegas, USA, pp. 562-573, 1994.

[60] P. Teunissen, GNSS Ambiguity Bootstrapping: Theory and Application, Proc. of
Int. Symp. on Kin. Syst. in Geod., Geomat. and Nav., Banff, Canada, pp. 246-254,
2001.

[61] P. Teunissen, Statistical GNSS carrier phase ambiguity resolution: A review, Proc.
of the 11-th IEEE Worksh. on Stat. Sign. Proc. (SSP), pp. 4-12, 2001.

[62] P. Teunissen, Least-Squares Estimation of the Integer GPS Ambiguities, Invited
lecture, Section IV “Theory and Methodology”, Proc. of Gen. Meet. of the Int. Assoc.
of Geodesy, Beijing, China, pp. 1-16, 1993.

[63] P. Teunissen, The least-squares ambiguity decorrelation adjustment: a method for
fast GPS ambiguity estimation, J. of Geodesy, vol. 70, pp. 65-82, 1995.

[64] P. de Jonge and C. Tiberius, The LAMBDAmethod for integer ambiguity estimation:
implementation aspects, LGR-Series, Publ. of the Delft Geod. Comp. Centre, no. 12,
pp. 1-59, 1996.

[65] T. Apostol, Multi-variable calculus and linear algebra, with applications to differ-
ential equations and probability, Calculus, vol. 2, Second edition, Wiley, New York,
1969.

[66] P. Teunissen, Integer Aperture GNSS Ambiguity Resolution, Art. Satellites, vol. 38,
Nr. 3, pp. 79-88, 2003.

[67] S. Verhagen, The GNSS integer ambiguities: estimation and validation, PhD thesis,
Delft University of Technology, 2004.

[68] P. Teunissen, The LAMBDA method for the GNSS Compass, Art. Satellites, vol. 41,
nr. 3, 2006.

[69] G. Giorgi, P. Teunissen, S. Verhagen and P. Buist, Improving the GNSS Attitude
Ambiguity Success Rate with the Multivariate Constrained LAMBDA Method, Proc.
of IAG Int. Assoc. of Geod. Scient. Ass., Buenos Aires, Argentina, 2009.

[70] P. Teunissen and A. Kleusberg (Eds.), GPS for Geodesy, Springer, 2nd edition, Hei-
delberg, Germany, 1998.



Bibliography 161

[71] J. Zumberge, M. Heflin, D. Jefferson, M. Watkins and F. Webb, Precise point po-
sitioning for the efficient and robust analysis of GPS data from large networks, J. of
Geophys. Res., vol. 102, no. B3, pp. 5005-5017, 1997.

[72] P. Teunissen, P. de Jonge and C. Tiberius, The least-squares ambiguity decorrelation
adjustment: its performance on short GPS baselines and short observation spans, J.
of Geodesy, vol. 71, pp. 589-602, 1997.

[73] G. McGraw, T. Murphy, M. Brenner, S. Pullen and AJ Van Dierendonck, Devel-
opment of the LAAS Accuracy Models, Proc. of ION GPS, Salt Lake City, USA,
2000.

[74] P. Henkel and C. Günther, Partial integer decorrelation for optimum trade-off be-
tween variance reduction and bias amplification, J. of Geodesy, pp. 1-13, 2009.

[75] R. Hatch, The promise of a third frequency, GPS World, vol. 7, no. 5, pp. 55-58,
1996.

[76] B. Forssell, M. Martin-Neira and R. Harris, Carrier Phase Ambiguity Resolution in
GNSS-2, Proc. of ION-GPS, Kansas City, USA, pp. 1727-1736, 1997.

[77] J. Jung, High integrity carrier phase navigation using multiple civil GPS signals,
PhD thesis, Stanford University, 2000.

[78] J. Jung, P. Enge and B. Pervan, Optimization of Cascade Integer Ambiguity Reso-
lution with Three Civil GPS Frequencies, Proc. of ION GPS, 2000.

[79] P. Henkel and C. Günther, Integrity Analysis of Cascaded Integer Resolution with
Decorrelation Transformations, Proc. of ION Nat. Techn. Meet. (ITM), San Diego,
USA, pp. 903-910, 2007.

[80] P. Teunissen, P. Joosten and C. Tiberius, Geometry-free Ambiguity Success Rates
in case of Partial Fixing, Proc. of ION Nat. Tech. Meet. (ITM), San Diego, USA, 7
pages, 1999.

[81] W. Cao, K. O’Keefe and M. Cannon, Partial Ambiguity Fixing within Multiple
Frequencies and Systems, Proc. of ION GNSS, Fort Worth, USA, pp. 312-323, 2007.

[82] P. Henkel, Geometry-free linear combinations for Galileo, Proc. of 58-th Int. Astron.
Congr. (IAC), Hyderabad, India, pp. 1-14, 2007.

[83] P. Henkel, Geometry-free linear combinations for Galileo, Acta Astron., vol. 65, pp.
1487-1499, doi:10.1016/j.actaastro.2009.03.076, 2009.
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