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Abstract

The minimal-flavour-violating (MFV) hypothesis considers the Standard Model (SM) Yukawa

matrices as the only source of flavour violation. In this work, we promote their entries to

dynamical scalar spurion fields, using an effective field theory approach, such that the maximal

flavour symmetry (FS) of the SM gauge sector is formally restored at high energy scales. The

non-vanishing vacuum expectation values of the spurions induce a sequence of FS breaking

and generate the observed hierarchy in the SM quark masses and mixings. The fact that there

exists no explanation for it in the SM is known as the flavour puzzle. Gauging the non-abelian

subgroup of the spontaneously broken FS, we interpret the associated Goldstone bosons as

the longitudinal degrees of freedom of the corresponding massive gauge bosons. Integrating

out the heavy Higgs modes in the Yukawa spurions leads directly to flavour-changing neutral

currents (FCNCs) at tree level. The coefficients of the effective four-quark operators, resulting

from the exchange of heavy flavoured gauge bosons, strictly follow the MFV principle. On the

other hand, the Goldstone bosons associated with the global abelian symmetry group behave

as weakly coupled axions which can be used to solve the strong CP problem within a modified

Peccei–Quinn formalism.

Models with a warped fifth dimension contain five-dimensional (5D) fermion bulk mass

matrices in addition to their 5D Yukawa matrices, which thus represent an additional source

of flavour violation beyond MFV. They can address the flavour puzzle since their eigenvalues

allow for a different localisation of the fermion zero mode profiles along the extra dimension

which leads to a hierarchy in the effective four-dimensional (4D) Yukawa matrices. At the

same time, the fermion splitting introduces non-universal fermion couplings to Kaluza–Klein

(KK) gauge boson modes, inducing tree-level FCNCs. Within a Randall–Sundrum model with

custodial protection (RSc model) we carefully work out the flavour and electroweak (EW)

sector, including a derivation of Feynman rules. Moreover, we determine the contributions

to the effective Hamiltonian for meson-antimeson mixing due to KK gluon and KK photon

exchange.





Kurzfassung

Die Hypothese der minimalen Flavourverletzung (MFV) geht davon aus, dass die Yukawa-

Matrizen die einzige Quelle der Flavourverletzung darstellen. Im Rahmen einer effektiven The-

orie betrachten wir in dieser Arbeit die Einträge der Yukawa-Matrizen als dynamische skalare

Spurionfelder, so dass die maximale Flavoursymmetrie des Standardmodell-(SM)-Eichsektors

formal an einer hohen Skala wiederhergestellt wird. Die nicht verschwindenden Vakuumer-

wartungswerte der Spurionen bewirken eine Sequenz von Flavoursymmetriebrechungen und

erzeugen die beobachtbare Hierarchie der SM Quarkmassen und Mischungswinkel. Da es im

SM keine Erklärung für diese gibt, spricht man von einem Flavourpuzzle. Wir interpretieren

die Goldstonebosonen, die aus der geeichten nicht abelschen Untergruppe der spontan ge-

brochenen Flavoursymmetrie hervorgehen, als longitudinale Freiheitsgrade der zugehörigen

massiven Eichbosonen. Integriert man die schweren Higgsmoden in den Yukawa-Spurionen

aus, erhält man direkt flavour-ändernde neutrale Ströme (FCNCs) auf Baumgraphenniveau.

Die Koeffizienten der effektiven Vier-Quark-Operatoren, die von dem Austausch eines schweren

Flavoureichbosons herrühren, folgen dabei strikt dem MFV-Prinzip. Andererseits verhalten

sich die Goldstonebosonen der globalen abelschen Symmetriegruppe wie schwach wechsel-

wirkende Axionen, die benutzt werden können um das starke CP-Problem innerhalb eines

modifizierten Peccei–Quinn-Formalismus zu lösen.

Modelle mit einer gekrümmten fünften Raumdimension enthalten neben den fünf-dimen-

sionalen (5D) Yukawa-Matrizen auch 5D Fermionmassenmatrizen. Diese stellen eine weitere

Quelle der Flavourverletzung entgegen der MFV-Annahme dar und ermöglichen eine Erklä-

rung des Flavourpuzzles, da ihre Eigenwerte eine unterschliedliche Lokalisation der Fermion-

nullmoden zulassen, was wiederum zu einer Hierarchie in den effektiven vier-dimensionalen

(4D) Yukawa-Matrizen führt. Gleichzeitig bringt das Aufspalten der Fermionen nicht-uni-

verselle Fermionkopplungen zu Kaluza–Klein-(KK)-Eichbosonmoden mit sich, die FCNCs auf

Baumgraphenniveau verursachen. Wir arbeiten ausführlich den flavour- und elektroschwachen

Teil eines Randall–Sundrum-Modells aus, welches eine erweiterte Symmetriegruppe enthält um

den elektroschwachen Sektor zu schützen. Dabei leiten wir Feynmandiagramme ab und be-

stimmen die Beiträge zum effektiven Hamiltonian für Meson-Antimesonmischung, der durch

den Austausch von KK-Gluonen oder KK-Photonen zustande kommt.
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Chapter 1

Introduction and Motivation

Following Occam’s razor “entia non sunt multiplicanda praeter necessitatem” — the principle

that “entities must not be multiplied beyond necessity” and the conclusion thereof, that the

simplest explanation or strategy tends to be the best one — elementary particle physicists

created the Standard Model (SM) which describes in a satisfactory way the observed strong

and electroweak (EW) interactions of the smallest constituents of matter — the elementary

particles. The beauty and simplicity of the SM lies in the fact that the SM can be formulated

as a consistent quantum field theory based on the gauge group SU(3)c × SU(2)L × U(1)Y .

However, the SM becomes more sophisticated when one tries to explain the existence

of gauge boson and fermion masses. A scalar Higgs boson with non-trivial transformation

behaviour under the electroweak gauge group is introduced, whose non-vanishing vacuum

expectation value (VEV) breaks the symmetry spontaneously down to a residual U(1)Q sym-

metry. This so-called Higgs mechanism gives rise to gauge boson masses corresponding to

the broken symmetry generators and, being a doublet under SU(2)L, allows in addition for

gauge-invariant fermion mass terms via chiral Yukawa couplings. In order to obtain the phys-

ical masses belonging to the single fermion flavours, the Yukawa coupling matrices are diag-

onalised by means of biunitary transformations. The only observable relic of these rotation

matrices in the SM takes the form of a single unitary matrix known as Cabbibo–Kobayashi–

Maskawa matrix (CKM) matrix, which can be parameterised by three real angles and one

CP-violating phase.

Despite its success in providing particle masses, the Higgs sector is the origin of two

outstanding problems within the SM. The fermion mixings and masses have to be put in

by hand and, being hierarchical and not at all of O(1), they are neither in line with the

naturalness principle [1] nor with the aesthetic philosophy of Occam — causing the so-called

flavour puzzle. The second problem, the gauge hierarchy problem, is also related to a particle’s

mass, namely the Higgs mass itself. It receives radiative mass contributions from the SM

particles that are quadratically divergent such that the Higgs mass is sensitive to the ultimate

cutoff scale of the theory. Since the SM does not include a theory of gravity, the highest

1
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possible scale to which the SM is valid is the Planck scale. But assuming that the SM is valid

up to the Planck scale would relate the bare Higgs mass of order of the electroweak scale to

the Planck scale unless the electroweak scale is saved through an “unnatural” fine-tuning of

the bare mass and the quantum-loop corrections. Therefore, it is widely believed that there

is some kind of new physics (NP) phenomenon becoming relevant already near the EW scale,

and in consequence the SM should be interpreted as a low-energy effective field theory (EFT).

Interestingly, the Higgs boson is at the same time the only unobserved particle of the SM.

Thus, there is much activity in creating NP models concerning this segment of the SM to

overcome the above mentioned problems. This has led to the development of many kinds of

Higgs models like models with an extended Higgs sector as in two Higgs doublet models [2,3],

where an additional fundamental Higgs doublet is added to the particle spectrum. Another

possibility is to consider the Higgs as a pseudo-Goldstone boson arising in a spontaneous

breakdown of an approximate global symmetry [4,5] — for example in little Higgs models [6–

10]. One also tries to live without a fundamental Higgs particle and breaks the EW symmetry

dynamically through the VEV of a scalar condensate resulting from a strongly interacting

sector as for instance in technicolour models [11–17]. An interesting variation of the strong

symmetry breaking paradigm that interpolates between simple technicolour theories and the

standard Higgs model come to prominence: in composite Higgs models a light Higgs boson

could emerge as the bound state of a strongly interacting sector. Moreover, if the Higgs arises

as a pseudo-Goldstone boson of an enlarged global symmetry of the strong dynamics, it can

be naturally light [18–22].

However, as the SM is in extremely good accordance with the high-precision measurements

accessible at particle accelerators, the elaboration of NP models is limited. In this context

electroweak precision tests (EWPTs) [23–25] should be mentioned and high-precision tests

of the CKM matrix coming in particular from B meson and kaon observables (for recent

overviews, see for instance [26–29]). Since the SM agrees very well with the flavour observables,

NP at the TeV scale requires a highly non-generic flavour sector in order not to be in conflict

with present data on rare and CP-violating K and B decays. One efficient possibility to

constrain the flavour sector is to impose the concept of minimal flavour violation (MFV)

[30–34] on the NP models, where the sources of flavour and CP violation are entirely described

by the CKM matrix. Restoring the approximate maximal global U(3)3 flavour symmetry

(FS) present in the SM via promoting the Yukawa matrices to auxiliary spurion fields, the

low-energy EFT has to formally respect the flavour symmetry which completely determines

its flavour structure.

Flavour symmetries are widely used in various aspects of particle physics. For instance,

the QCD Lagrangian has an accidental global flavour symmetry in the limit of vanishing

quark masses which is known as the chiral limit. It should be approximately realised for

the quarks (mu, md, ms) since they are much lighter than the QCD scale. However, while

hadrons in SU(3)V representations are observed in the hadronic spectrum according to the



1 Introduction and Motivation 3

eightfold way [35, 36], the corresponding degenerate multiplets with opposite parity do not

exist. Moreover, the fact that the octet of pseudoscalar particles (π, K, η) is very light

compared to the other multiplets, suggests to consider them as the pseudo-Goldstone bosons

arising from the spontaneous symmetry breakdown SU(3)L × SU(3)R → SU(3)V . The mass

gap in the hadronic spectrum can be used to build an effective field theory which contains

only the Goldstone bosons as its dynamical degrees of freedom. Combining the effective

theory with the non-linearly realised QCD flavour symmetry [37,38], leads to a powerful tool of

studying the low-energy interactions of the pseudoscalar-meson octet called chiral perturbation

theory [39–45].

Furthermore, flavour or family symmetries, which act horizontally across the three SM

generations, provide one path to explain the flavour puzzle. The hierarchical structure of the

Yukawa couplings is generated after this new symmetry is spontaneously broken by the VEVs

of some set of scalar flavon fields, which transform non-trivially under the FS but are singlets

with respect to the SM gauge group. In supersymmetric (SUSY) theories [46–50], which

are perhaps the most famous candidates for solving the gauge hierarchy problem, they can

further be used to align the sfermion mass matrices with the mass matrices of their fermion

superpartners in order to ameliorate the problem of large flavour violation [51–53]. Since

SUSY enables gauge coupling unification, it goes mostly hand in hand with grand unified

theories (GUTs), where the SM gauge group is embedded into a larger gauge group with

one universal gauge coupling constant. In particular SO(10) models have become attractive,

since the 16 fermions of one generation, including right-handed singlet neutrinos, can be

embedded into a single spinor representation. Thereby, family symmetries offer an elegant

solution to point out the special role of the third generation with respect to the lighter two

generations [54, 55]. SUSY GUT models with implemented FS, such as the one proposed by

Dermisek and Raby [56–58], allow to give a satisfactory description of all quark and lepton

masses as well as of the lepton mixing matrix or Pontecorvo–Maki–Nakagawa–Sakata (PMNS)

matrix [59,60] and CKM matrix. However, at the same time, it can be challenging to fulfil all

constraints coming from flavour-changing neutral currents (FCNCs) simultaneously [61, 62].

Altogether, many different models incorporating some sort of FS to explain the fermion masses

and mixings exist in the literature, in particular in the context of supersymmetric and/or

unified scenarios [63]. While [64–68] also use a global abelian flavour symmetry U(1)F as in

the original Froggatt–Nielsen setup [69], there exist models using a non-abelian U(2)F flavour

symmetry [51,52,70–75] and SU(3)F flavour symmetries [76–81], but also models with discrete

flavour symmetry groups [82–87].

Inspired by the MFV ansatz, one can promote the Yukawa coupling matrices to dynamical

scalar spurion fields [88] that transform non-trivially under the maximal SM quark FS, present

in the limit of vanishing Yukawa couplings, and are singlets with respect to the SM gauge

group. In the following we will refer to this approach as the dynamical minimal flavour
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violation (dMFV) model in comparison to the original MFV, where the Yukawa spurion fields

are considered as auxiliary fields.

Due to the canonical mass dimension of the spurions, the Yukawa coupling terms have

to be interpreted as dimension-5 operators suppressed by a high-scale Λ, which indicates the

FS breaking scale of the EFT. The flavour puzzle can be traced back by giving appropriate

VEVs to the scalar spurion fields that break the FS spontaneously in a sequential fashion.

Goldstone bosons for every broken symmetry generator are introduced and the remaining

spurions transform under the residual unbroken part of the non-linearly realised FS [88]. The

special role of the top quark Yukawa coupling, being of O(1), is taken into account by giving

the associated spurion a VEV of O(Λ). Thus it is effectively created by a dimension-4 operator

whereas the other fermion Yukawa couplings are suppressed by the ratios of two distinct scales.

There is another reason for the dMFV model to be necessarily understood as an EFT. In-

troducing local flavour symmetries of chiral nature while keeping the SM fermion content, one

encounters chiral gauge anomalies. Within an effective theory framework one can formulate a

consistent and at least formally gauge-invariant theory, arguing that the existing underlying

fundamental is anomaly free [89].

In this work we leave the U(1) groups of the maximal flavour group as global symme-

tries [90]. First, the global U(1) factor corresponding to baryon number conservation is an

accidental global symmetry of the SM since it is respected by the Yukawa interactions. Second,

the global U(1)uR × U(1)dR symmetry can be used to resolve the strong CP problem [91,92]

by a modified Peccei–Quinn mechanism [93–96]. The almost massless Goldstone bosons can

then be identified as axions that are very weakly coupled to the SM fermions in the context of

invisible-axion scenarios [97,98]. Gauging the SU(3)QL
×SU(3)UR

×SU(3)DR
flavour symme-

try allows us to interpret the Goldstone bosons, arising after its breaking, as the longitudinal

modes of the massive gauge bosons in the unitary gauge. Integrating out the heavy scalar

fields and heavy gauge fields at tree level, generally gives rise to FCNCs. According to our

setup, the coefficients of the effective 4-quark operators follow the MFV principle. While the

dMFV model proposes an explanation for the flavour puzzle, it does not address the gauge

hierarchy problem.

An appealing solution to elucidate both of the two mentioned outstanding questions within

the SM is given in Randall–Sundrum (RS) models [99]. Augmenting the 3 + 1 space-time

coordinates of daily life by an additional warped spatial coordinate, they are also known as

warped extra dimension (WED) models. The non-factorisable metric of an anti-de-Sitter space

(AdS5) implies an exponential warp factor, which relates the mass scale of the fundamental

five-dimensional (5D) theory to the physical four-dimensional (4D) mass scale. Localising the

Higgs boson on or near the IR brane, the warp factor mediates quite naturally between the

Planck scale and the EW scale and thus supplies a geometrical solution to the gauge hierarchy

problem [99].
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Since we do not have any indication for the existence of extra dimensions (EDIMs) up

to now, we consider the extra dimension to be compactified via an orbifolding procedure in

order to make it finite and small. Denoting the single extra dimension by the coordinate y, the

fundamental domain can be represented by an interval y ∈ [0, L]. Its boundaries correspond to

4D subspaces or branes called ultraviolet (UV) brane (y = 0) and infrared (IR) brane (y = L)

respectively, while the 5D space in between is referred to as the bulk. Introducing Dirichlet or

Neumann boundary conditions (BCs) for the fields propagating in the 5D bulk, chirality can

be implemented in the original non-chiral 5D theory. In addition, compactification allows for

an expansion of the 5D fields into Fourier modes or Kaluza–Klein (KK) modes [100,101]. This

KK decomposition expresses the 5D fields as a sum of products of functions depending on the

4D coordinate and on the fifth coordinate, and thus enables us to derive an effective 4D theory

from the 5D fundamental theory by performing an integration over the extra dimension. To

first approximation, the zero KK modes correspond to the SM fields while the higher KK

modes represent new heavy fields with masses depending on the compactification scale.

New ingredients in the 5D theory are the 5D Dirac bulk mass matrices whose eigenvalues

determine the localisation of the fermion zero mode profiles along the extra dimension. Since

the SM quark masses arise from overlap integrals of the zero quark profiles with the Higgs

boson shape function after electroweak symmetry breaking (EWSB), they can account for the

observed hierarchy in the SM quark masses and mixing angles by inducing different quark

localisations [102,103] (split fermion mechanism [104, 105]). Furthermore, assuming anarchic

5D Yukawa couplings with O(1) entries, the flavour puzzle can be solved without fine-tuning

in the fundamental parameters as the quark profiles depend exponentially on the slightly

different but O(1) bulk mass parameters.

Despite this appealing picture, the 5D fermion bulk masses reintroduce a number of flavour

violating parameters that renders the WED models far from being minimal flavour violating.

The fermion splitting causes non-universal fermion couplings to the KK gauge bosons and

hence produces new effective operators, contributing to FCNCs already at tree level. While the

built-in RS–GIM mechanism [106,107] can at least curtail the excess of these FCNCs, the new

chirality flip operator QLR2 gives nevertheless sizeable contributions via KK gluon exchange

to the CP-violating parameter εK , the parameter which measures indirect CP violation in

the K0 − K0
mixing. Phenomenological analyses show that it is much more challenging for

WED models to fulfil the εK bound (RS flavour problem) than the experimental constraints

coming from EWPTs [108–115], in particular from the oblique parameter T and the well-

measured ZbLbL coupling [116,117]. In this work we consider a RS model, in which the latter

contributions are protected by a simultaneous enlargement of the bulk symmetry group to

Gbulk = SU(3)c × SU(2)L × SU(2)R × U(1)X × PLR (1.1)

and of the corresponding fermion symmetry multiplets (see also [118]). Since the protection

originates from an unbroken custodial symmetry [108, 119] in the Higgs sector, the model
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is denoted as custodially protected Randall–Sundrum (RSc) model. We work out the basic

features of the RSc model [120] in order to obtain its Feynman rules, which were used in two

detailed phenomenological analyses of ∆F = 2 FCNC processes in the quark sector [121] and

those rare K and B decays in which NP contributions enter at tree level [122]. Throughout

our analysis we concentrate on the quark sector and truncate the KK expansion already after

the first KK mode.

The remainder of the thesis is organised as follows. After having given a brief review of

the general aspects of gauge theories in Chapter 2, we adopt the methods in displaying the

gauge group and particle content of the SM in Chapter 3. In explaining the flavour puzzle

arising in the SM, we promote the Yukawa matrices to dynamical fields in Chapter 4 and

design an effective minimal flavour violating theory which includes a partly gauged flavour

symmetry in addition to the SM gauge group. Breaking the latter by the development of

Yukawa spurion VEVs, renders the corresponding scalars and gauge bosons massive. We

integrate out the heavy degrees of freedom and show that the coefficients of the effective

operators are in accordance with the MFV assumption. In Chapter 5 we examine the breaking

of the RSc gauge group and analytically diagonalise the corresponding gauge boson mass

matrices. Subsequently, we introduce the specific fermion content and construct the fermion

mass matrices after EWSB. Working out the gauge-fermion couplings, we comment on the two

different effects of flavour violation that are characteristic in this model. Finally, in Chapter 6

we give a short summary and outlook. The calculational details to Chapter 4 and Chapter 5

can be found in the two addenda, e.g. the diagonalisation procedure which includes a derivation

of the formulae of the Rayleigh–Schrödinger algorithm for the non-degenerate case.



Chapter 2

General Aspects of Gauge Theories

This chapter is dedicated to the general concepts of abelian and non-abelian gauge theo-

ries. Thereby, we emphasise the necessity of adding gauge-fixing terms in non-abelian gauge

theories in order to remove redundant degrees of freedom. We introduce the enlarged Becchi–

Rouet–Stora–Tyutin (BRST) transformation under which the new gauge-fixed Lagrangian is

invariant. With regard to the arising topic of chiral gauge anomalies in the course of Chapter

4, we introduce the formalism of chiral fields and give the relevant formulae.

2.1 Abelian Gauge Symmetry

The Lagrangian of a free fermion field, which is characterised by the Dirac spinor ψ(x),

L0 = ψ(x)(iγµ∂µ −m)ψ(x) , (2.1)

is invariant under the global U(1) symmetry with the corresponding transformation matrix

U(θ) = eiθ

ψ′(x) = Uψ(x) and ψ
′
(x) = ψ(x)U † . (2.2)

In promoting the global symmetry to a local one, θ is replaced by θ(x) and the transformation

matrix U(θ(x)) depends on x. Obviously, the derivative in (2.1) is the reason why L0 spoils

gauge invariance, as it produces an extra term proportional to ∂µθ(x). However, gauge invari-

ance can be restored, if one finds a gauge-covariant derivative Dµ, such that Dµψ transforms

as ψ itself, i.e.

(Dµψ(x))
′ !
= UDµψ(x) . (2.3)

This can be achieved by a minimal coupling with the U(1) coupling constant g of the spinor

to a new vector field Aµ(x), the so-called gauge field,

Dµψ(x) = (∂µ − igAµ(x))ψ(x)

A′
µ(x) = Aµ(x) +

1

g
∂µθ(x) . (2.4)

7
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In order to make the gauge field dynamical, we also add the following gauge-invariant and

renormalisable kinetic term to the Lagrangian

LA = −1

4
FµνF

µν , (2.5)

where the abelian field strength tensor is defined by

Fµν = ∂µAν − ∂νAµ . (2.6)

Putting these two parts L0 and LA together, the Lagrangian for a U(1) gauge-invariant La-

grangian can be summarised as

L = ψiγµ(∂µ − ig Aµ)ψ −mψψ −
1

4
FµνF

µν . (2.7)

In 1954, Yang and Mills extended the gauge principle to non-abelian symmetry groups [123],

which will be discussed in the following.

2.2 Non-Abelian Gauge Symmetry

The main features of a non-abelian gauge symmetry are encoded in its non-trivial generators.

In the case of the special unitary group SU(N), these generators can be represented by n2−1

traceless and hermitian matrices T a, which fulfil the group algebra

[T a, T b] = ifabc T c , (2.8)

with fabc denoting the totally antisymmetric structure constants. The normalisation condi-

tion, which involves the fundamental representation matrices, is specified by

Tr [T aT b] =
1

2
δab . (2.9)

In analogy to the abelian case, the covariant derivative

Dµψ(x) = (∂µ − igAaµT a)ψ(x) (2.10)

ensures the gauge invariance of the kinetic fermion term. However, in contrast to the abelian

case, the field strength tensor

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν (2.11)

contains a non-linear term, which is responsible for the self-interactions of the gauge fields.

While the spinor fields transform according to the fundamental representation,

ψ′(x) = U(θ(x))ψ(x) = eiθ
a(x)Ta

ψ(x) ≃ (1 + iθa(x)T a)ψ(x) ,

ψ
′
(x) = ψ(x)U †(θ(x)) = ψ(x) e−iθ

a(x)Ta ≃ ψ(x) (1− iθa(x)T a) ,
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the gauge fields show the transformation behaviour of the adjoint representation

T aA′a
µ (x) = U(θ(x))T aAaµ(x)U

†(θ(x)) +
i

g
U(θ(x))(∂µU

†(θ(x)))

≃ Aaµ(x)T
a +

1

g
(∂µδ

ac + gfabcAbµ(x)) θ
c(x)T a = (Aaµ(x) +

1

g
Dac
µ θ

c(x))T a . (2.12)

In the above equations, we also added the infinitesimal versions of the transformations. More-

over, we introduce the abbreviation Dac
µ in (2.12) for the covariant derivative, which acts on

a field transforming in the adjoint representation. With the above ingredients, the complete

Lagrangian

L = −1

4
F aµνF

aµν + ψ(iD/−m)ψ (2.13)

is by construction invariant under the considered non-abelian gauge transformation.

2.3 Gauge-Fixing Terms and BRST Transformation

In quantising gauge theories, one has to get rid of the redundant degrees of freedom, which

are present due to the condition of gauge invariance. To do so it is convenient to impose the

generalised Lorentz gauge-fixing condition within the path-integral quantisation formalism

Ga[A] = ∂µAaµ(x) + ωa(x) , (2.14)

where ωa(x) is an arbitrary scalar function which is independent of the gauge field. Following

Faddeev and Popov (FP) [124], we introduce this constraint by incorporating the identity

1 =

∫
Dθ(x) δ(Ga[A′]− ωa(x))Det

(
i
δG[A′]
δθ

)
(2.15)

into the generating functional

Z =

∫
DAµDet

(
i
δG[A′]
δθ

)
δ(Ga[A′]− ωa(x))eiS[A] . (2.16)

In (2.16), the gauge-transformed gauge field A′ is given by equation (2.4) for abelian gauge

theories, and by (2.12) for non-abelian gauge theories. By inserting a constant proportional to∫
Dω exp [−i/(2 ξ)

∫
d4xω2(x)], the generating functional (2.16) changes only by an immate-

rial normalisation factor, and effectively adds the gauge-fixing term Lgfix = −1/(2 ξ) (Ga[A])2

after having integrated over ωa(x).

The functional determinant can be represented as a functional integral over anticommuting

scalar fields belonging to the adjoint representation of the gauge group

Det

(
i
δG[A′]
δθ

)
=

∫
DvDv exp

[
−i
∫
d4x va

(
δGa[A′]
δθb

)
vb
]
, (2.17)

and contributes the term LFP = −va
(
δGa[A′]/δθb

)
vb to the Lagrangian. As the above re-

formulation was proposed by Faddeev and Popov, the new fields v = va(x)T a (v = va(x)T a)
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are called Faddeev–Popov (anti-)ghosts. In summary, the restriction of the functional inte-

gral to “physically different” gauge field configurations, i.e. those which are not connected by

gauge transformations, effectively adds a FP ghost term and a gauge-fixing contribution to

the Lagrangian:

Leff = L − 1

2 ξ
Ga[A]2 − va

(
δGa[A′]
δθb

)
vb = L+ Lgfix + LFP . (2.18)

For example, the effective Lagrangian for a non-abelian gauge theory with the Lorentz

gauge condition Ga = ∂µAaµ is explicitly given by

L = −1

4
F aµνF

aµν + ψ(iD/−m)ψ − 1

2 ξ

(
∂µAaµ

)2
+

1

g
va
(
−∂µDac

µ

)
vc . (2.19)

Obviously, gauge invariance of the total Lagrangian is lost due to the presence of the

gauge-fixing terms. However, Becchi, Rouet, Stora and Tyutin found a generalised gauge

transformation of the gauge-fixed Lagrangian — the BRST transformation [125,126] — which

involves also the ghost fields. For this purpose a ghost number (GN) is assigned to each field.

While the (anti-)ghost fields carry a GN of +1 (−1), all gauge and fermion fields have a GN

of 0. Additionally, a BRST operator δv is defined, which acts on the fields with zero GN

like the usual infinitesimal gauge transformation with gauge parameter v while it acts on the

fields with a non-zero GN such that δv is nilpotent, i.e. δ2v = 0. In summary, the BRST

transformations read

δvAµ =
1

g
Dµv =

1

g
∂µv − i [Aµ, v] ,

δvv =
1

2
i[v, v] = iv2 ,

δvψ = ivψ , (2.20)

where the BRST operator δv increases the GN by one unit. 1

One can easily verify that the above definitions are in accordance with the nilpotency of

the BRST operator,

δ2vAµ = δv

(1
g
∂µv − i [Aµ, v]

)
=
i

g
∂µv

2 −
[ i
g
∂µv, v

]
−
[
[Aµ, v], v

]
+
[
Aµ, v

2
]

= −(Aµv2 + vAµv − vAµv − v2Aµ) +Aµv
2 − v2Aµ = 0 ,

δ2vv = δv(iv
2) = i(iv2)v − iv(iv2) = 0 ,

δ2vψ = δv(ivψ) = i(iv2)ψ − iv(ivψ) = 0 , (2.21)

where we used the property of the BRST operator to anticommute with the ghost field. In

Appendix A.3, the formulae analogous to (2.20), using the language of differential forms, are

given.

1In analogy one can construct an anti-BRST operator δv which decreases the GN by one unit.
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2.4 Chiral Fields and Chiral Gauge Symmetry

In this section, we consider fermion couplings both to vector gauge fields Vµ = VaµT a and

to axial-vector gauge fields Aµ = AaµT a. Focussing on chiral non-abelian gauge theories, the

covariant derivative (2.10) of the Lagrangian (2.13) can then be generalised to

L = ψiγµ(∂µ − iVµ − iAµγ5)ψ , (2.22)

where the coupling constants have been set to unity.

To simplify the notation in the following, we will use the antihermitian group generators

T̃ a, which are related to the hermitian generators T a via the rescaling

T̃ a = −iT a . (2.23)

The group algebra and normalisation condition with respect to the new basis are then modified

to

[T̃ a, T̃ b] = fabcT̃ c and Tr [T̃ aT̃ b] = −1

2
δab . (2.24)

Defining Ṽµ = VaµT̃ a and Ãµ = AaµT̃ a, the factors i disappear in the rewritten Lagrangian

(2.22)

L = ψiγµ(∂µ + Ṽµ + Ãµγ5)ψ . (2.25)

As the gauge bosons couple chirally to the Dirac fermions, we introduce the left-handed (L-)

and right-handed (R-) projection operators PL,R,

PL,R =
1∓ γ5

2
, γ5PL,R = ∓PL,R , (2.26)

with the usual relations of idempotence, orthogonality and completeness:

P 2
L,R = PL,R , PLPR = PRPL = 0 , PL + PR = 1 . (2.27)

The chiral projectors allow to define chiral spinor fields according to

ψ = PL ψ + PR ψ = ψL + ψR =

(
χ

0

)
+

(
0

iσ2ξ∗

)
,

ψ = ψ†γ0 = (ψL + ψR)
† γ0 = ψL + ψR =

(
0 χ†

)
+
(
−iξTσ2 0

)
. (2.28)

Thereby, the two Weyl spinors (χ, ξ) correspond to two-dimensional building blocks of the

four-component Dirac spinor ψ = (χ, iσ2ξ∗)T . Using the projector properties (2.27) and the

usual commutator rules for gamma matrices, the Lagrangian (2.22) can finally be reformulated

as

LL,R = ψ i
(
∂/+ Ṽ/+ Ã/ γ5

)
(P 2

L + P 2
R)ψ = ψL i(∂/ + Ã/

L
)ψL + ψR i(∂/ + Ã/

R
)ψR , (2.29)
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where we used the following definitions of the R- and L-gauge fields

ÃRµ = Ṽµ + Ãµ , ÃLµ = Ṽµ − Ãµ ,

Ṽµ =
1

2
(ÃLµ + ÃRµ ) , Ãµ =

1

2
(ÃRµ − ÃLµ) . (2.30)

Having expressed the Lagrangian in terms of chiral fields (2.29), its invariance under a lo-

cal SU(N)L × SU(N)R symmetry transformation with associated transformation matrices

U(θL,R(x)) = exp [iθaL,R(x)T
a] = exp [−θaL,R(x) T̃ a] = U(−θ̃L,R(x)) can easily be observed.

2.5 Chiral Gauge Anomaly

Unless a specific fermion content is chosen, the chiral gauge symmetry SU(N)L × SU(N)R

at the level of the classical Lagrangian is spoilt by quantum effects which leads to the so-

called gauge anomaly. Consequently, the classical conservation laws for the non-abelian L-

and R-currents,

Dab
µ [ÃL,Rµ ] jµbL,R = Dab

µ [ÃL,Rµ ] (ψL,Rγ
µT̃ bψL,R ) = 0 , (2.31)

are no longer valid, but have to be replaced by anomalous conservation laws as given below.

The chiral gauge anomaly can be derived for example by using Fujikawa’s path integral

method [127,128] or by the algebraic approach of Zumino and Stora [129,130]. A comprehen-

sive discussion of anomalies in quantum field theories can also be found in [131]. The result

of the anomaly contribution to the L- and R-currents is calculated in [132,133] to be

Dab
µ [ÃL,Rµ ] jµbL,R = Ga[ÃL,Rµ (x)] = ∓ 1

24π2
ǫµνρσ Tr [T̃ a∂µ(Ã

L,R
ν ∂ρÃ

L,R
σ +

1

2
ÃL,Rν ÃL,Rρ ÃL,Rσ )],

(2.32)

where ǫ0123 = 1.

Since the fermion loop contributions to the anomaly arise from the effective action

Γ[ÃL,Rµ (x)], which is defined by the sourceless generating functional for one-particle irreducible

Green functions

Z[Ã] = eiΓ[Ã
L,R] =

∫
dψdψ exp

[
i

∫
d4xL(ψ,ψ, Ã)

]
=

∫
dψdψ exp

[
i

∫
d4xψi(∂/ + Ã/)ψ

]
,

(2.33)

the anomaly Ga[ÃL,Rµ (x)] originates from the gauge-transformed effective action

δvΓ[Ã
L,R
µ ] = −

∫
d4x va(x)Ga[ÃL,Rµ (x)] = −G(v, ÃL,R) . (2.34)

Applying the BRST operator to both sides of the above equation, yields the Wess–Zumino

consistency condition (WZCC) [134]

δvG(v, Ã
L,R) = −δv(δvΓ[ÃL,Rµ (x)]) = 0 , (2.35)

which is a direct consequence of the nilpotency of the BRST operator.
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The anomaly given in (2.32) represents a non-trivial solution to the WZCC, i.e. it cannot

be written as a gauge variation of some local function in the basic fields, for which reason it is

called consistent form. The freedom of adding trivial anomaly solutions reflects the ambiguity

in the regularisation prescriptions of the UV-divergent portion of the fermion loops [135,136].

The significance of the WZCC results from the non-linearity of the BRST operator. Know-

ing the first term of the anomaly (2.32), which can be calculated from the triangle diagrams,

the WZCC completely determines the second term of the anomaly as explicitly demonstrated

in Appendix A.3.

Anomaly Cancellation

In vector-like gauge theories with vanishing axial-vector gauge field Ã, the fermions couple

symmetrically to the chiral gauge fields ÃLµ = ÃRµ = Ãµ such that the L-gauge anomalies

exactly cancel the R-gauge ones.

Anomaly cancellation may also occur by a specific choice of the fermion content as the

trace in the anomaly contribution (2.32) has to be taken over the fermion representations. In

the search of an anomaly it is enough to consider only the first part of the anomaly, because

if the triangle result vanishes, the higher-loop contributions are automatically absent [137].

Thus the trace

Tr [T̃ a{T̃ b, T̃ c}] (2.36)

serves as an indicator to explore the bare existence of an anomaly. The anticommutator in the

above trace is a result of the summation of the two triangle diagrams in which the fermions

circle in opposite direction.

Another possibility to cancel an anomaly is to add local counterterms with additional fields

which transform under the gauge variation such that the anomaly contribution is cancelled.

This method will be of importance in Subsection 4.6.1.
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Chapter 3

Brief Review of the Standard Model

In the present chapter we recapitulate the basic concepts of the Standard Model (SM), which

successfully describes the electroweak and strong interactions of quarks and leptons at energies

up to a few hundred GeV. As it is in nearly perfect agreement with all existing experimental

data at the moment, every new physics (NP) model should feature a structure similar to the

SM in the low-energy limit.

We use the knowledge about abelian and non-abelian gauge theories of the last chapter

to construct the SM quantum field theory, which is based on the local gauge group SU(3)c ×
SU(2)L × U(1)Y . While the colour group SU(3)c remains unbroken in the SM, the non-

vanishing Higgs VEV breaks the electroweak gauge symmetry SU(2)L×U(1)Y spontaneously

down to the abelian subgroup U(1)Q. Simultaneously, the gauge bosons of the broken gauge

symmetry acquire masses through the Higgs mechanism, and fermion masses are generated

by their Yukawa couplings to the Higgs boson.

3.1 Quantum Chromodynamics

The SU(3)c gauge theory is able to describe the strong interactions between the quark fields

and the gauge fields called gluons [138–142]. Each quark has three different colour degrees of

freedom and is represented by a SU(3)c triplet. The Greek translation of colour — “chroma” —

of the internal quantum number gave the theory its name Quantum Chromodynamics (QCD).

It is straightforward to adapt the generic non-abelian Lagrangian (2.13) as well as the FP

ghost and gauge-fixing terms (2.19) to the case of QCD,

LQCD = −1

2
Tr [GµνG

µν ] + ψ iD/ψ + Lgfix + LFP . (3.1)

In the QCD Lagrangian (3.1), Gµν stands for GaµνT
a with the gluon field strength tensor

Gaµν = ∂µG
a
ν − ∂νGaµ + gsf

abcGbµG
c
ν , (3.2)

15
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which contains the strong coupling constant gs. The quadratic terms in the field strength

tensor lead to gluon self-interactions that are responsible for the asymptotic freedom in QCD

[143–145].

With the eight Gell-Mann matrices λa/2, representing the generators of the fundamental

representation, the covariant derivative, which contains interaction terms between gluons and

quarks, reads

Dµψ =
(
∂µ − igsGaµ

λa

2

)
ψ . (3.3)

We will argue later in Subsection 4.10 that the QCD Lagrangian should be augmented by

a CP-violating term which we also refer to as the θ-term,

LCP =
θ g2s
16π2

Tr [GµνG̃
µν ] =

θ g2s
32π2

GaµνG̃
a,µν . (3.4)

The kinetic term of the gluon in (3.4) is reformulated with the help of the normalisation

condition of the colour group generators T a, and the dual field strength tensor G̃µν is defined

by

G̃µν =
1

2
ǫµνρσ G

ρσ . (3.5)

Since the θ-term is neither forbidden by gauge invariance nor by renormalisability, it should be

mentioned already here. At first glance one may argue that the term has no physical impact,

as it can be written as a total derivative. However, it turns out that this statement is wrong

due to the non-trivial topology of the gauge field sector (see Section 4.10).

3.2 Electroweak Sector

The standard theory of the electroweak interactions [106,146,147] comprises the gauge group

SU(2)L×U(1)Y . To take into account the experimental observation that only the left-handed

components of the quark and lepton fields couple to the W boson, ψL and ψR are assigned

to different representations of the chiral SU(2)L gauge group. While the left-handed fields

transform as doublets under SU(2)L and couple to the three SU(2)L gauge bosons W a
L,µ, the

right-handed ones are singlets. Both types of fields have a non-trivial hypercharge quantum

number Y , and thus both couple to the U(1)Y gauge boson Bµ.

In summary, the complete SU(2)L × U(1)Y invariant Lagrangian takes the form

LEW =
∑

ψi
L

ψ
i
L γ

µi
(
∂µ − igL

σa

2
W a
L,µ − igY

Y

2
Bµ

)
ψiL +

∑

ψi
R

ψ
i
R γ

µi
(
∂µ − igY

Y

2
Bµ

)
ψiR

−1

4
LaµνL

a,µν − 1

4
BµνB

µν , (3.6)

with the corresponding field strength tensors

Laµν = ∂µW
a
L,ν − ∂νW a

L,µ + gL ǫ
abcW b

L,µW
c
L,ν ,

Bµν = ∂µBν − ∂νBµ . (3.7)
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Lepton T 3

L
Y Q Quark T 3

L
Y Q

νi

L

1
2 −1 0 U i

L

1
2

1
3

2
3

Ei

L
−1

2 −1 −1 Di

L
−1

2
1
3 −1

3

U i

R
0 4

3
2
3

Ei

R
0 −2 −1 Di

R
0 −2

3 −1
3

Table 3.1: EW quantum numbers of SM quarks and leptons

As usual, gL denotes the SU(2)L coupling constant and gY the U(1)Y coupling constant.

We also used the fact that the SU(2) generators of the fundamental representation are given

by the three Pauli matrices T a → τa = σa/2, a = 1, 2, 3, and the corresponding structure

constants are expressed by the Levi-Civita symbol or epsilon tensor ǫabc. The sum in (3.6)

includes all left-handed fermion doublets ψiL = QiL, L
i
L with QiL = (U i,Di)L, LiL = (νi, Ei)L

and all right-handed fermion fields ψiR = U iR,D
i
R, E

i
R. The generation index i takes into

account that the SM contains three generations of fermions which share the same gauge

quantum numbers. Taking into account the full replication of fermions, the SM fermion content

consists of neutrinos νi = (νe, νµ, ντ ), leptons Ei = (e, µ, τ), up-type quarks U i = (u, c, t) and

down-type quarks Di = (d, s, b). In Table 3.1, we display the quantum numbers of fermions

under SU(2)L and U(1)Y as well as the electric charge Q (3.20) of the electromagnetic U(1)Q

symmetry to which the EW gauge group is spontaneously broken.

Anomaly Cancellation within the Standard Model

According to our general remarks made in Section 2.5, the triangle diagram involving three

gluons is anomaly free with respect to the SM fermion content since the gluons couple identi-

cally to the left- and right-handed quarks.

Remembering that the trace (2.36) tests the presence of an anomaly, the analogue pure

SU(2)L contribution is also anomaly free because
{
σa, σb

}
= 2δab.

For possible mixed anomalies of the EW gauge group, we find that they vanish for each

generation separately

Tr [λaλbY ] = 2δabTr [Y ] = 0 , Tr [σaσbY ] = 2δabTr [Y ] = 0 , Tr [Y 3] = 0 , (3.8)

and conclude that the SM is free of gauge anomalies.
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3.3 Spontaneous Electroweak Symmetry Breaking

Experimentally we know that there are at least three massive gauge bosons Z, W±. However,

a bare gauge boson mass term m2
XX

a
µX

a,µ is forbidden by gauge invariance and one has to find

another possibility to render the gauge bosons massive. In the SM, the masses are generated by

the Higgs mechanism, which relies on the phenomenon of spontaneous electroweak symmetry

breaking (EWSB). For this purpose, an elementary scalar field — the Higgs field H(x) —

is introduced which transforms non-trivially under the EW gauge group. After the Higgs

field has received a non-vanishing VEV, the EW gauge symmetry is spontaneously broken

to the residual U(1)Q gauge symmetry of the vacuum state. Being a doublet under SU(2)L,

the Higgs doublet also allows for chiral couplings to the fermions fields. These are known as

Yukawa couplings and lead to fermion mass terms of the form mψψ = m
(
ψLψR + ψRψL

)

after EWSB (see Section 3.8).

At first sight, one may suppose that two Higgs doublets are necessary to account for

the conservation of hypercharge quantum number, because the up-type quark mass terms

(Y (ULUR) = 1) require a Higgs with hypercharge Y (H) = −1, whereas the down-type quark

mass terms and electron mass terms (Y (DLDR) = −1, Y (ELER) = −1) call for a Higgs with

hypercharge Y (H) = 1. The reason for the fact that there is no need to double the scalar

sector relies on the property of the SU(2) group whose representations are real, i.e. there

exists a non-singular fixed matrix S for each representation with

ST aS−1 = −T ∗a . (3.9)

For the defining representation T a = σa/2, the above condition can be fulfilled for all a by

the choice S = σ2 and the relation (3.9) reads

σ2
σa

2
σ2 = −σ

∗a

2
. (3.10)

Using the infinitesimal transformation behaviour of the complex conjugated Higgs doublet

H ′∗(x) ≃ (1− iθaσ∗a/2)H∗(x), the object H̃(x) = iσ2H∗(x) with

H̃ ′(x) = iσ2
(
1− iθaσ

∗a

2

)
H∗(x)

(3.10)
=

(
iσ2 − θaσ

a

2
σ2
)
H∗(x) =

(
1 + iθa

σa

2

)
H̃ , (3.11)

has the same (infinitesimal) transformation behaviour as the Higgs doublet H(x) itself, but

with opposite hypercharge. Thus only one complex Higgs doublet with Y (H) = 1 has to be

added within the SM, whose four real components Hi, i = 1, 2, 3, 4, can be parametrised by

H(x) =

(
H+(x)

H0(x)

)
=

(
H1(x)+iH2(x)√

2
H3(x)+iH4(x)√

2

)
. (3.12)

As we will see later, the subscripts “+, 0” in (3.12) denote the electric charges after EWSB.



3.3 Spontaneous Electroweak Symmetry Breaking 19

Corresponding to the chosen quantum numbers under the SU(2)L×U(1)Y local symmetry

group, the Higgs is coupled to the EW gauge fields through the covariant derivative

DµH(x) =
(
∂µ − igL

σa

2
W a
L,µ − igY

Y

2
Bµ

)
H(x) , (3.13)

which enters the scalar Higgs Lagrangian

LHiggs = (DµH)†(DµH)− V (H) . (3.14)

The most general renormalisable potential V (H) for a complex scalar field with mass dimen-

sion [H] = 1 can be described by

V (H) = −µ2H†H + λ(H†H)2 = λ
(
H†H − µ2

2λ

)2
− µ4

4λ
. (3.15)

In the following we suppose that µ2 and λ are real and positive parameters, such that the

Higgs potential has the shape of a Mexican hat which allows for a stable, non-vanishing ground

state. Inserting the Higgs as parametrised by (3.12), the Higgs potential exhibits a whole set

of degenerate minima, when

H†H =
1

2

(
H2

1 +H2
2 +H2

3 +H2
4

)
=
µ2

2λ
. (3.16)

Without loss of generality, we can choose the minimum corresponding to the VEVs

〈Hi〉 = 0 , i = 1, 2, 4 , 〈H3〉 =
√
µ2/λ ≡ v . (3.17)

Inserting the VEVs of the various real Higgs components into the Higgs doublet (3.12), its

VEV is given by

〈H(x)〉 = 1√
2

(
0

v

)
. (3.18)

To explore the remaining symmetry of the vacuum, we impose the condition

〈H ′(x)〉 = eiθ
a(x)σ

a

2 eiβ(x)
Y
2 〈H〉 ≃ 〈H〉+ i

(
θa(x)

σa

2
+ β(x)

Y

2

)
〈H〉 !

= 〈H〉 . (3.19)

The fact that σa〈H〉 6= 0 and Y 〈H〉 6= 0 for the Higgs VEV given in (3.18) demonstrates

that SU(2)L and U(1)Y are indeed broken separately. Only a gauge transformation with

θ1(x) = θ2(x) = 0 and θ3(x) = β(x) leaves the vacuum invariant. This particular combination

of generators,

Q =
σ3

2
+
Y

2
= T 3

L +
Y

2
=

(
1 0

0 0

)
, (3.20)

corresponds to the generator of the unbroken residual electromagnetic U(1)Q symmetry.

Alternatively, the most general complex-valued two-component scalar field can be formu-

lated by

H(x) = ei
πa(x)σa

v

(
0

v+h(x)√
2

)
, H†(x) =

(
0 v+h(x)√

2

)
e−i

πa(x)σa

v . (3.21)
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This special form suggests to “gauge away” the three scalar fields πa(x) by means of a SU(2)L

gauge transformation with the specific choice of the gauge parameter αagfix(x) = πa(x)/v,

H ′(x) = Ugfix(x)H(x) = e−i
πa(x)

v
σaH(x) =

(
0

v+h(x)√
2

)
. (3.22)

Since they disappear from the Lagrangian, these scalar fields are called would-be-Goldstone

bosons. The gauge, in which those unphysical scalar degrees of freedom are absent and the

particle content of the theory is obvious, is called physical or unitary gauge. Actually, the

Goldstone degrees of freedom become the longitudinal polarisation states of the new massive

gauge bosons. In Section 3.6, we will discuss another class of gauge choices where the Goldstone

bosons are not eliminated explicitly. According to the Goldstone theorem [148], the number

of Goldstone bosons is equal to the number of symmetry generators that are spontaneously

broken. Thus, by extracting the broken symmetry generators in the parameterisation (3.21),

the effects of spontaneous symmetry breaking can be made more transparent. In the case of a

continuous global symmetry, such an elimination mechanism of the massless Goldstone bosons

is not possible.

The real fluctuation h(x) around the non-trivial vacuum v then represents the only physical

scalar degree of freedom — the famous scalar Higgs boson. In the unitary gauge, the scalar

potential takes the form

V (h(x)) = −µ2 (v + h(x))2

2
+ λ

(v + h(x))4

4
, (3.23)

which contains a mass term for the Higgs field

V (h(x)) ⊃ −µ
2

2
h(x)2

(3.17)
= λv2h(x)2 = −1

2
m2
hh

2 . (3.24)

In the next section, we show that three gauge bosons Z, W± become massive through the

Higgs mechanism, while one gauge boson A, corresponding to the unbroken U(1)Q symmetry,

remains massless.

3.4 Gauge Boson Masses

After the Higgs has received a non-vanishing VEV, the masses for the gauge bosons arise from

the Higgs kinetic term

(DµH)†(DµH) ⊃ 〈H〉†
(
− igL

σa

2
W a
L,µ − igY

Y

2
Bµ

)(
igL

σa

2
W a
L,µ + igY

Y

2
Bµ

)
〈H〉

=
1

8
v2
(
gLW

3
L,µ − gYBµ

)2
+

1

4
v2g2LW

+
µ W

−µ

= M2
WW

+
µ W

−µ +
1

2
M2
ZZ

2
µ +

1

2
M2
AA

2
µ , (3.25)
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where the electrically charged gauge bosons

W±
µ =

1√
2

(
W 1
L,µ ∓ iW 2

L,µ

)
(3.26)

are given with respect to the basis

σ± =
(σ1 ± iσ2)√

2
. (3.27)

The analytic diagonalisation of the real and symmetric mass matrix Mneutral for the neutral

states by means of the orthogonal transformation matrix GZ ,

GZM2
neutral GTZ =

v2

4
GZ
(

g2L −gLgY
−gLgY g2Y

)
GTZ = Diag (M2

Z ,M
2
A) , (3.28)

yields the mass eigenvalues

M2
Z =

v2(g2L + g2Y )

4
and M2

A = 0 . (3.29)

Introducing the usual definition of the weak mixing angle or Weinberg angle θW , the explicit

expression of the transformation matrix is found to be

GZ =
1√

g2L + g2Y

(
gL −gY
gY gL

)
=

(
cos θW − sin θW

sin θW cos θW

)
. (3.30)

It rotates the gauge bosons from the gauge eigenstate basis (W 3
L,µ, Bµ) into the normalised

neutral mass eigenstates (Zµ, Aµ),

Zµ = cos θWW
3
L,µ − sin θWBµ , Aµ = sin θWW

3
L,µ + cos θWBµ . (3.31)

In summary, the spectrum of EW gauge bosons contains three different mass eigenvalues

MW =
1

2
v gL , MZ =

1

2
v
(
g2L + g2Y

)1/2
, MA = 0 , (3.32)

where v = 246GeV, and only one gauge boson — the photon — remains massless due to the

residual U(1)Q symmetry. The other gauge bosons become massive with a mass relation that

is captured by the so-called ρ-parameter,

ρ ≡ M2
W

M2
Z cos2 θW

= 1 . (3.33)

The fact that the ρ-parameter is equal to one in the SM at tree level is a consequence of an

accidental global SO(4) symmetry of the Higgs sector, which is called the custodial symmetry

[119].
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3.5 Custodial Symmetry

As it can be seen from the expression of HH† given in (3.16), the Higgs potential has an

accidental global SO(4) symmetry, which is isomorphic to the simple product group SU(2)L×
SU(2)R. Besides the global symmetry SU(2)L, which is gauged in the SM, the global SU(2)R

symmetry can be interpreted as a symmetry that mixes H and H̃ = iσ2H∗ as the two doublets

are equivalent with respect to the SU(2)L transformation.

Intuitively, we may then represent the Higgs as a 2× 2 matrix

H = (iσ2H
∗ H) =

(
H∗

0 H+

−H∗
+ H0

)
, (3.34)

which transforms as a bidoublet under the global SU(2)L × SU(2)R symmetry

H → ULHU †
R . (3.35)

While the SU(2)L symmetry group acts vertically from the left, the global SU(2)R group acts

horizontally on this matrix from the right. The invariance of the Higgs potential under global

SU(2)L × SU(2)R transformations can again be made explicit by noting that

Tr [H†H]′ = Tr [URH†U †
LULHU

†
R] = Tr [H†H] = H†H Tr [1] = 2H†H . (3.36)

Rewriting the Higgs Lagrangian in terms of the Higgs matrix field (3.34),

LHiggs =
1

2
Tr [(DµH)†DµH]− µ2

2
Tr [H†H] + λ

4
(Tr [H†H])2 , (3.37)

one has to introduce the Pauli matrix σ3 in the hypercharge coupling,

DµH = ∂µH− igL
σa

2
W a
L,µH− igYBµH

σ3

2
, (3.38)

in order to ensure opposite hypercharges forH and iσ2H
∗. While Tr [(DµH)†DµH] is invariant

under a global SU(2)L, it is not under a global SU(2)R rotation. The SU(2)R symmetry is

only exact in the limit of a vanishing hypercharge coupling. During EWSB the Higgs VEV

〈H〉 = 1/
√
2Diag (v, v) breaks the global approximate SU(2)L × SU(2)R symmetry down to

the diagonal subgroup SU(2)V with transformation matrices UL = UR. This left-over SU(2)V

symmetry is called custodial symmetry [119] and is crucial for the understanding of the EW

sector.

Especially, the above global symmetry breaking pattern can also be formulated by a non-

linear σ-model, and thus the custodial symmetry can be considered in a more general — Higgs

independent — framework. Therefore, we replace the Higgs matrix field H by a Goldstone-

boson matrix field Σ,

H → v√
2
Σ , Σ = ei

πaσa

v , (3.39)
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which contains the three Goldstone bosons arising in the breakdown of the global symmetry

according to SU(2)L × SU(2)R → SU(2)V . In the unitary gauge, Σ = 1, the effective

operator v2/4Tr [(DµΣ)
†DµΣ] produces the masses for the gauged subgroup, analogous to

those in (3.25), and predicts the ρ-parameter to be one at tree level.

3.6 Rξ-Gauge Fixing Terms within the Standard Model

When not working in the unitary gauge, the Higgs kinetic term induces mixings between vector

bosons and scalar fields which makes the interpretation of the mass terms given in (3.32) less

clear. Hence in spontaneously broken gauge theories it is convenient to cancel these mixings,

which can be achieved by adding Rξ-gauge fixing terms [149], as discussed in the following.

Splitting the Higgs into its VEV and fluctuations around the VEV,

H(x) = 〈H(x)〉+ δH(x) , (3.40)

the following mixing terms of the SM EW gauge group arise:

(DµH)†(DµH) ⊃ −igLW a
L,µ∂

µ
(
(δH)†

σa

2
〈H〉 − h.c.

)
−igY

Bµ
2
∂µ
(
(δH)† 〈H〉 − h.c.

)
. (3.41)

Inserting the Higgs representation of (3.21), the mixing terms have the form

(DµH)†(DµH) ⊃ v
(
gYBµ ∂

µπ3 − gL
(
W 1
L,µ ∂

µπ1 +W 2
L,µ ∂

µπ2 +W 3
L,µ ∂

µπ3
))
, (3.42)

from which we can observe that the scalar fields that mix with the SM EW gauge bosons

correspond exactly to the three Goldstone bosons πa(x). Moreover, the Goldstone boson

π3(x) will become the longitudinal degree of freedom of the linear combination of neutral

gauge boson fields proportional to (gYBµ − gLW 3
L,µ). The latter corresponds to the Z boson

after normalisation which is massive after EWSB. Choosing the gauge-fixing function Ga1 for

SU(2)L,

Ga1 = ∂µW a
L,µ + igLξ

(
δH† σ

a

2
〈H〉 − h.c.

)
, (3.43)

and the gauge-fixing function G2 for U(1)Y ,

G2 = ∂µBµ + igY
ξ

2

(
δH†〈H〉 − h.c.

)
, (3.44)

the gauge-fixing terms

Lgfix = − 1

2ξ

(
∂µW a

L,µ + igLξ
(
δH† σ

a

2
〈H〉 − h.c.

))2
− 1

2ξ

(
∂µBµ + igY

ξ

2

(
δH†〈H〉 − h.c.

))2

(3.45)

cancel the mixing terms in (3.41) without transforming away the πa(x)s. Apart from the

ξ-independent mixing terms, the ξ-dependent term 1/ξ
(
∂µAaµ

)2
ensures a good high-energy

behaviour of the gauge boson propagator for finite ξ, and makes the renormalisability of the

theory more transparent [150, 151]. Moreover, Goldstone mass terms proportional to ξ arise.

The gauge parameter ξ can vary continuously from 0 to ∞. In the limit ξ → ∞ one obtains

the unitary gauge since the unphysical particles decouple from the theory.
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3.7 Neutral and Charged Currents

In order to make the residual unbroken U(1)Q gauge symmetry manifest, we restate the

covariant derivative (3.6) of the fermions in terms of the physical gauge boson fields W±, Z

and A:

DµψL =

(
∂µ − i

gL√
2

(σ+
2
W+
µ +

σ−

2
W−
µ

)
− i gL

cos θW

(σ3
2
− sin2 θWQ

)
Zµ − ieQAµ

)
ψL ,

DµψR =

(
∂µ + i

gL
cos θW

(
sin2 θWQ

)
Zµ − ieQAµ

)
ψR . (3.46)

In deriving the above result, we have identified the coefficient of the electromagnetic interaction

with the electron charge e

e =
gL gY√
g2L + g2Y

(3.30)
= gL sin θW = gY cos θW . (3.47)

Inserting the quantum numbers of the various fermions, as given in Table 3.1, we obtain the

EW Lagrangian

LEW =
∑

i

Q
i
L(i∂/ )Q

i
L + E

i
L(i∂/ )E

i
L + U

i
R(i∂/ )U

i
R +D

i
R(i∂/ )D

i
R + E

i
R(i∂/ )E

i
R

+gL

(
W+
µ J

µ+
W +W−

µ J
µ−
W + ZµJ

µ
Z

)
+ eAµJ

µ
Q −

1

4
LaµνL

a,µν − 1

4
BµνB

µν , (3.48)

where we have found for the weak currents

Jµ+W =
1√
2

(
U
i
Lγ

µDi
L + νiLγ

µEiL

)
,

Jµ−W =
1√
2

(
D
i
Lγ

µU iL + E
i
Lγ

µνiL

)
,

JµZ =
1

cos θW

(
U
i
Lγ

µ

(
1

2
− 2

3
sin2 θW

)
U iL + U

i
Rγ

µ

(
−2

3
sin2 θW

)
U iR

+D
i
Lγ

µ

(
−1

2
+

1

3
sin2 θW

)
Di
L +D

i
Rγ

µ

(
1

3
sin2 θW

)
Di
R

+νiLγ
µ

(
1

2

)
νiL + E

i
Lγ

µ

(
−1

2
+ sin2 θW

)
EiL + E

i
Rγ

µ
(
sin2 θW

)
EiR

)
,

JµQ = U
i
Lγ

µ

(
2

3

)
U iL + U

i
Rγ

µ

(
2

3

)
U iR +D

i
Lγ

µ

(
−1

3

)
Di
L +D

i
Rγ

µ

(
−1

3

)
Di
R

+E
i
Lγ

µ (−1)EiL + E
i
Rγ

µ (−1)EiR . (3.49)

The fermions are still given in their gauge eigenstate basis. The origin of their masses, as well

as the transformation from the gauge eigenstate basis into the mass eigenstate basis, will be

the subject of the next section.
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3.8 Yukawa Interactions — Fermion Mass Terms

We have indicated in Section 3.3 that the introduction of the Higgs boson allows for the

construction of fermion-Higgs coupling terms, which are known as Yukawa couplings. The

most general renormalisable and gauge-invariant Yukawa Lagrangian, coupling the quark fields

to the scalar doublets H, H̃ reads

−LYuk = Q
i
L H̃ Y ijU U jR +Q

i
LH Y ij

D Dj
R + h.c. . (3.50)

The SM Yukawa couplings YU and YD are generic complex 3×3 matrices and thus are described

by 18 real parameters (R) and 18 complex phases (P). After EWSB the VEV of the Higgs

boson gives rise to the fermion mass terms

Lmass = −
v√
2
U
i
LY

ij
U U

j
R −

v√
2
D
i
LY

ij
DD

j
R + h.c. , (3.51)

where M ij
U = v/

√
2Y ij

U contains the masses for the up-type quarks, and M ij
D = v/

√
2Y ij

D

supplies the masses for the down-type quarks.

By means of biunitary transformations the Yukawa matrices can be diagonalised,

Lmass = −
v√
2
ULVUL

Diag (YU )V
†
UR
UR −

v√
2
DLVDL

Diag (YD)V
†
DR
DR + h.c. , (3.52)

where the rotation matrices V †
UL,R

, V †
DL,R

transform the quark gauge eigenstates into their

mass eigenstates, which we indicate by a prime

U ′
L,R = V †

UL,R
UL,R , D′

L,R = V †
DL,R

DL,R . (3.53)

Rewriting the above Lagrangian (3.52) in terms of quark mass eigenstates, we obtain

Lmass = −U ′
LMUU

′
R −D

′
LMDD

′
R + h.c. , (3.54)

where MU = v/
√
2Diag (YU ) and MD = v/

√
2Diag (YD) are the diagonal quark mass matri-

ces.

Transforming the quarks into their mass eigenbases, we recognise that the rotation matrices

only occur in the charged weak currents Jµ±W , e.g.

Jµ+W ⊃ 1√
2
ULγ

µDL =
1√
2
U

′
LV

†
UL
γµVDL

D′
L . (3.55)

This is due to the mismatch of the left-handed rotation matrices VUL
and VDL

, which is

described by the unitary quark mixing matrix or Cabbibo–Kobayashi–Maskawa (CKM) matrix

[152,153],

VCKM ≡ V †
UL
VDL

. (3.56)
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Parameterisation of Unitary Matrices

A generic unitary 3 × 3 matrix can be expressed by three real parameters and six complex

phases. Amongst all mathematically equivalent parameterisation possibilities, it is convenient

to express the matrix by a product of a matrix R̃ (with 3 rotational angles and 3 complex

phases) and a diagonal phase matrix Fφ = Diag (eiφ1 , eiφ2 , eiφ3). The diagonal phase matrix

corresponds to an exponentiated linear combination of the diagonal Gell-Mann matrices λ3, λ8

with the unit matrix 1. The matrix R̃ originates from a product of three complex rotation

matrices R̃12, R̃13, R̃23, where R̃12 is specified by

R̃12 = eiθ̃12 = eiθ12(sin δλ
1+cos δλ2) =




cos θ12 sin θ12e
iδ 0

− sin θ12e
−iδ cos θ12 0

0 0 1


 = eiδ/2 λ

3
eiθ12 λ

2
e−iδ/2 λ

3
,

(3.57)

and the others are defined in full analogy. According to a possible classification of the param-

eterisation of the orthogonal 3× 3 matrices Rij in [154], which equal R̃ij with δ = 0, there are

six different forms of the type R = RijRklRij and another six of the type R = RijRklRmn.

Parameterisation of the CKM Matrix

By describing the unitary CKM matrix, not all of the 3R+6P parameters are physically

relevant. As one can see from (3.54), there is still the freedom to redefine the mass eigenstates

by a diagonal phase matrix according to U
′
L → U

′
LFφU and U ′

R → F−1
φU
U ′
R = F †

φU
U ′
R, and

analogously in the down sector with the phase matrix FφD . For the special case of FφU ≡
FφD and all the phases are identical, the diagonal phase matrices are proportional to the

unit matrix and thus commute with the CKM matrix in (3.55) (this case corresponds to an

accidental unbroken global baryon number symmetry U(1)B). Thus in summary, five of the

six phases in the CKM matrix can be removed by field redefinitions. Of the many possible

parameterisations, the following has become the “standard parameterisation” [155]

VCKM =




c12 c13 c13 s12 s13 e
−iδ

−c12 s23 s13 − c23 s12 e
−iδ −s23 s13 s12 + c23 c12 e

−iδ c13 s23

−c23 c12 s13 + s23 s12 e
−iδ −c23 s13 s12 − c12 s23 e−iδ c23 c13


 , (3.58)

where cij = cos θij, sij = sin θij. The phase δ is the only CP-violating source in the SM.

In terms of the rotation matrices introduced above, the standard parameterisation can be

presented by

Diag (1, eiδ , eiδ)R23 R̂31R12 Diag (1, 1, e−iδ) , (3.59)

where R̂31 equals R31 with the replacement 1→ e−iδ on the diagonal element.
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3.9 Global Flavour Symmetry of the Standard Model

While the Higgs sector itself incorporates a global custodial symmetry, the Higgs couplings to

the fermions via the Yukawa interactions destroy another global symmetry present in the SM

Lagrangian. The maximal global SM flavour symmetry group is the largest group of unitary

field transformations that commutes with the SM gauge group. It is given by

U(3)5 = U(3)QL
× U(3)UR

× U(3)DR
× U(3)LL

× U(3)ER
. (3.60)

Decomposing the unitary groups U(N) into a semidirect product of a special unitary group

SU(N) and an abelian group U(1), the chiral quark flavour symmetry group can be rewritten

as

Gmax
F = SU(3)QL

× SU(3)UR
× SU(3)DR

× U(1)QL
× U(1)UR

× U(1)DR
. (3.61)

The quark fields transform as fundamentals

QL ∼ (3, 1, 1) , UR ∼ (1, 3, 1) , DR ∼ (1, 1, 3) (3.62)

under the special unitary groups.

In the SM, the Higgs field is a singlet under the flavour group and the Yukawa coupling

matrices are constant parameters. It is then evident that the Yukawa Lagrangian (3.50) is in

general not invariant under the global quark transformations (3.62) with the exception of a

global U(1)B symmetry which corresponds to the limit of equal rotation matrices. It will be

useful to define the quark flavour group as exactly that part which is broken by the Yukawas

(see also [156,157])

GF = U(3)3/U(1)B = SU(3)QL
× SU(3)UR

× SU(3)DR
× U(1)UR

× U(1)DR
, (3.63)

where we chose to leave the abelian subgroup of the right-handed quark rotations as indepen-

dent linear combinations besides U(1)B .
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Chapter 4

Dynamical Minimal Flavour Violation

4.1 Basic Concepts of Minimal Flavour Violation

Although the SM is a very successful model, there are several open questions, which are

related to the — so far — undiscovered scalar Higgs particle. At higher energy scales, the

SM Higgs boson mass receives large UV-sensitive loop corrections from the SM particles,

especially from the top quark, and only a precise adjustment of parameters can keep the

Higgs VEV around the weak scale. This, however, is quite unnatural and is the origin of

the so-called fine-tuning problem. For this reason, it is widely believed that there exist new

physics contributions which stabilise the weak scale and resolve this hierarchy problem. In

consequence, the SM should be interpreted as a low-energy effective field theory with an

unspecified cutoff scale Λ, in which the NP particles with masses heavier than the EW scale

appear through higher-dimensional operators. Assuming that the new interactions/particles

arise already at the TeV scale, the flavour sector of the NP models is highly constrained and

non-generic, because all present data on rare and CP-violating K and B decays are in very

good accordance with the SM predictions [26–29]. In order to mimic the SM flavour sector

and its phenomenological outcomes, one may assume that the NP models follow the concept of

minimal flavour violation (MFV). It postulates that flavour transitions and CP violation are

solely induced by the Yukawa matrices in such a way that the low-scale effective field theory

(EFT) is completely determined by their structure [30–32]. Pushing the NP scale well above

the TeV scale, the hypothesis of MFV can be softened and more generic flavour transitions in

higher-dimensional NP operators are allowed to appear. Settled in between these two scenarios

lie the models that are referred to as models with next-to-minimal flavour violation [158,159].

Focusing on models incorporating the MFV assumption, one can further distinguish between

a linear representation of the FS [30, 32] and a non-linear one [88, 157, 160], as discussed in

more detail below. A nice overview of this topic can also be found in [161].

The common idea of all MFV models is to promote the Yukawa matrices to dimensionless

29
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auxiliary spurion fields,

YU ∼ (3, 3, 1) and YD ∼ (3, 1, 3) , (4.1)

which are bifundamentals under the maximal global quark FS group U(3)QL
×U(3)UR

×U(3)DR

present in the SM (3.61). Having a formally restored flavour symmetry at scales above Λ, it

is always possible to rotate the background values of the spurions to a basis, so that either

〈YU 〉 or 〈YD〉 is diagonal. Moreover, if there are no other fields transforming under the FS, the

background values of the Yukawa spurions are the only sources responsible for the breakdown

of the FS as shown in Figure 4.1.

Gmax
F = U(3)QL

× U(3)UR
× U(3)DR

YU ∼ (3, 3, 1) YD ∼ (3, 1, 3)

Figure 4.1: The breaking of the SM FS by the background values of the Yukawa matrices.

Linear Realisation of Minimal Flavour Violation

In the linear realisation of the MFV approach it is assumed that the full FS is broken at

a single scale Λ [30], where the Yukawa couplings are “frozen” to their background values.

Promoting the Yukawas to non-trivially transforming objects under the flavour group, the

counting of parameters can be based on symmetrical grounds rather than on redefining the

fields as done in Section 3.8. According to the number of broken flavour group generators,

3× 8 + 2 = 26 out of the 36 real spurion fields play the role of Goldstone fields. The residual

36 − 26 = 10 parameters are physically relevant, representing the six quark masses and the

four CKM parameters. Below the scale Λ, the effective MFV theory contains all higher-

dimensional operators, constructed from SM and Yukawa fields, which are invariant under CP

and formally under the global flavour symmetry [30]. There exist the trivial operators with

no spurion insertion

QLQL , URUR , DRDR , (4.2)

followed by the formally invariant left-right coupling operators with a single insertion of spu-

rions

QL YU UR + h.c. , QL YDDR + h.c. . (4.3)

At the level of two spurion insertions the possible operators

QLYUY
†
UQL + h.c. , QLYDY

†
DQL + h.c. (4.4)
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may arise, where the first one is dominant due to the enhancement of the top-quark Yukawa

coupling yt. Bringing the various MFV NP operators into the quark mass eigenbasis according

to (3.53), the list of operators is given by

ULUL = U
′
LU

′
L , DLDL = D

′
LD

′
L , (4.5)

ULDL = U
′
LVCKMD

′
L (4.6)

UL YU UR = U
′
LDiag (YU )U

′
R (4.7)

DL YU UR = D
′
LV

†
CKMDiag (YU )U

′
R (4.8)

UL YDDR = U
′
LVCKMDiag (YD)D

′
R (4.9)

DL YDDR = D
′
LDiag (YD)D

′
R (4.10)

ULYUY
†
UUL = U

′
L(Diag (YU ))

2U ′
L (4.11)

DLYUY
†
UDL = D

′
LV

†
CKM(Diag (YU ))

2VCKMD
′
L (4.12)

ULYDY
†
DUL = U

′
LVCKM(Diag (YD))

2V †
CKMU

′
L (4.13)

DLYDY
†
DDL = D

′
L(Diag (YD))

2D′
L , (4.14)

where the expressions for the corresponding hermitian conjugate operators can be obtained

analogously. Apart from the flavour diagonal operators ((4.5), (4.7), (4.10), (4.11), (4.14)),

we observe that the operators which involve at least one CKM element contain the flavour

structures which induce flavour transitions ((4.6), (4.8), (4.9), (4.12), (4.13)). By construction,

only the CKM matrix and the diagonal Yukawa coupling elements, which correspond to the

quark masses up to the proportionality factor v/
√
2, appear in the NP operators. To complete

the list of flavour changing operators with a minimal number of spurion insertions [158], we

use the replacements in Table 4.1 in order to be able to deduce the effective operators involving

right-handed quarks out of the purely left-handed basic bilinear operators.

D′
L → Diag (YD)D

′
R D

′
L → D

′
RDiag (YD)

U ′
L → Diag (YU )U

′
R U

′
L → U

′
RDiag (YU )

Table 4.1: Replacement rules for obtaining the corresponding right-handed effective operators.

Note that for left-handed FCNCs at least two spurion insertions are needed, while for right-

handed FCNCs even four have to be included due to the additional chiral mass suppression

factors given in Table 4.1. With the exception of the charged t → b transitions, involving

the O(1) CKM element |Vtb| and/or Diag (YD)33 = yt =
√
2mt/v, the coefficients of operators

arising from higher number of spurion insertions become smaller and allow for a systematic

power expansion.
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Non-Linear Realisation of Minimal Flavour Violation

As indicated, the large top quark mass makes the convenient power-counting argument less

transparent in the linear MFV formulation. An attempt to take the special role of the top

Yukawa coupling into account is to represent the breaking of the flavour group non-linearly

via giving it a large FS breaking VEV at the UV scale Λ [88]. The breakdown of the FS group

GF to the subgroup G
(1)
F can then be realised by a non-linear σ-model-like parameterisation

of the Yukawas [160]. The Goldstone fields, living in the coset space GF /G
(1)
F , are factored

out of the matrix which still contains the spurion fields transforming under the residual G
(1)
F

symmetry [37, 38]. After initialising the breaking of the FS through the top-quark Yukawa

coupling, one can proceed further and break the FS in a step-wise fashion until all Yukawa

coupling entries have been generated.

In Section 4.2 we will promote the auxiliary Yukawa spurions to dynamical scalar fields

and demonstrate in Section 4.3 that a sequential breaking of the FS via appropriate chosen

spurion VEVs can account for a hierarchy in the Yukawa matrices and thus for a hierarchy in

the quark masses and mixings. In Subsection 4.3.1 we will take the FS even more seriously

and consider a part of the FS as a local symmetry.

4.2 Towards Dynamical Minimal Flavour Violation

Besides the fact that the Yukawa matrices are objects transforming non-trivially under the

flavour symmetry, we want to “revive” them in supplying the auxiliary spurions with a mass

dimension and thus allow for kinetic terms.

This “Higgsing” of the Yukawa matrices resembles the model proposed in [162], where the

Yukawa couplings have a Higgs-dependent structure of the form

Y u,d
ij = cu,dij

(
H†H
M2

)nu,d
ij

, (4.15)

where i, j are generation indices. The hierarchy in fermion masses is generated by the integer

numbers nu,dij , which count the number of Higgs insertions H†H. The NP scale M is around

1−2 TeV — a scale which is also favoured by hierarchy problem considerations. The coefficients

cu,dij of O(1) cause a non-hermitian structure of the Yukawas.

In contrast to the above ansatz (4.15), where no additional scalar fields besides the SM

Higgs field are introduced, we follow [88, 157] and treat the Yukawa matrices as independent

new scalar degrees of freedom. Taking a multi-Higgs ansatz with an appropriate potential

that supplies non-vanishing VEVs for the spurion fields, the hierarchical masses and mixing

angles arise “naturally” according to the different breaking scales Λ ≫ Λ(1) ≫ Λ(2) ≫ ... of

the spontaneously broken flavour symmetry. The explicit form of the potential can be worked

out by constructing several invariants under the flavour group, which consist of monomials of

YU (x) and YD(x) with a definite canonical dimension (see [157] for further details).
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4.3 Sequential Breaking of the Flavour Symmetry

In our setup the canonical dimension of the Yukawa matrices requires that the SM Yukawa

couplings appear as dimension-five operators of an effective theory

−LYuk =
1

Λ
(QLH̃)YUUR +

1

Λ
(QLH)YDDR + h.c. . (4.16)

Only the spurion generating the top quark Yukawa coupling with yt ∼ O(1), which initialises

the breaking chain at the UV scale Λ, gets a VEV of the same order of magnitude:

〈YU 〉 ∼




0 0 0

0 0 0

0 0 ytΛ


 . (4.17)

Hence, the top quark Yukawa coupling effectively originates from a dimension-four operator.

The VEVs of the other spurion fields occur at scales Λ(n) ≪ Λ and thus, stemming effectively

from dimension-five operators in (4.16), can naturally reproduce the smallness of the residual

quark masses [88].

As we only have accessible information about the eigenvalues of the Yukawa matrices and

the CKM matrix elements, one has to make further assumptions to be able to implement a

hierarchical ranking of the Yukawa matrix entries. Since the right-handed rotation matrices

are unobservable, we choose a basis in which they are equal to the unit matrix. Knowing also

that there exists a basis in which the up-type Yukawa matrix is diagonal and one in which the

down-type Yukawa matrix is diagonal, the CKM matrix then rotates between these two bases.

Restricting ourselves to left-handed rotations matrices which scale in the same manner as the

standard power counting for the CKM matrix with the Wolfenstein parameter λ ∼ 0.2≪ 1,

VCKM ∼




1 λ λ3

λ 1 λ2

λ3 λ2 1


 , (4.18)

we obtain the following hierarchy in the Yukawa matrices,

〈YU 〉 ∼ VCKMDiag (YU )Λ ∼




λnu λ1+nc λ3

λ1+nu λnc λ2

λ3+nu λ2+nc 1


Λ ,

〈YD〉 ∼ VCKMDiag (YD)Λ ∼




λnd λ1+ns λ3+nb

λ1+nd λns λ2+nb

λ3+nd λ2+ns λnb


Λ . (4.19)

Thereby, the diagonal matrices Diag (YU,D) contain the quark masses expressed in powers of

the Wolfenstein parameter yq ∼ λnq . The scaling can be constrained from the phenomenolog-

ical information on the quark masses.
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4.3.1 Partly Gauged Flavour Symmetry

In the following, we will take the global FS group GF even more seriously and will consider a

specific scenario where the three SU(3) factors are promoted to local symmetries

GF = [SU(3)QL
× SU(3)UR

× SU(3)DR
]× U(1)UR

× U(1)DR
. (4.20)

To distinguish the global from the local parts of the flavour symmetry, we indicate the gauged

ones by squared brackets.

In the course of systematically breaking the gauged FS group, the gauge bosons will become

massive and the Goldstone modes of the broken symmetry generators can be identified as the

longitudinal modes of the gauge bosons in the unitary gauge. Our choice to leave the two

U(1) factors in GF as global symmetries is motivated two-fold. On the one hand, the U(1)B

symmetry which is respected by the Yukawa coupling terms is considered as global anyway.

On the other hand, as the U(1) Goldstone modes have anomalous couplings to the SM gauge

fields, we expect that they will contribute to the effective θ-parameter in QCD. Identifying

at least one linear combination of them as an axion with a finite mass, that is generated by

anomalous couplings to QCD instantons, a potential solution to the strong CP problem is

provided (see Section 4.10).

In the course of spontaneous FS breaking the scalar spurions contained in the Yukawa

matrices YU and YD acquire a VEV. Without loss of generality we work in the basis where

the VEV of the up-type Yukawa matrix is diagonal. In the following, we choose a possible

scenario of sequential flavour symmetry breaking, where nt = 0 < nb ≃ 2 < nc ≃ 3 < nb+2 ≃
4 < nb + 3 ≃ 5 < ns ≃ 6 < nu,d ≃ 8 as proposed in [157]. This implies an uniform separation

of the breaking scales Λ(n) = λ(n+1)Λ for n greater than one. Corresponding to the specific

sequence, the spurion VEVs arising in the (i)-th breaking step can be illustrated by

〈YU 〉 ∼




0 0 0

0 (3) 0

0 0 (1)


 , (4.21)

〈YD〉 ∼




0 0 (5)

0 (6) (4)

0 0 (2)


 =̂ exp


−i




0 0 (5)

0 0 (4)

(5) (4) 0





 ·




0 0 0

0 (6) 0

0 0 (2)


 . (4.22)

After the last breaking step (6), in which the strange quark Yukawa coupling is produced,

only the global flavour symmetry G
(6)
F = U(1)uR × U(1)dR is left. In the discussion below,

the VEVs of the Yukawa matrices 〈YU,D〉 have to be understood as the ones already produced

in the (i)-th breaking step of (4.21) and (4.22). We represent the breaking steps, which are

shown in Figure 4.2, in detail in the following because in contrast to [157], we are not allowed

to consider linear combinations with the remaining global symmetry generators.
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Energy Scale E

GF = [SU(3)QL
× SU(3)UR

× SU(3)DR
]× U(1)UR

× U(1)DR

ytΛ
G

(1)
F = [SU(2)QL

× SU(2)UR
× U(1)T × SU(3)DR

]× U(1)
U

(2)
R

× U(1)DR

ybΛ
G

(2)
F = [SU(2)QL

× SU(2)UR
× U(1)8 × SU(2)DR

]× U(1)
U

(2)
R

× U(1)
D

(2)
RycΛ

G
(3)
F = [SU(2)DR

× U(1)8 × U(1)3]× U(1)uR × U(1)
D

(2)
Ryb λ

2 Λ
G

(4)
F = [SU(2)DR

× U(1)X ]× U(1)uR × U(1)
D

(2)
Ryb λ

3 Λ
G

(5)
F = [SU(2)DR

]× U(1)uR × U(1)
D

(2)
RysΛ

G
(6)
F = U(1)uR × U(1)dRys λΛ

yu,dΛ FS completely broken

v

Figure 4.2: The considered FS breaking pattern.

First Breaking Step (1):

To determine the residual symmetry which is unbroken by the VEV (4.17), we consider the

infinitesimal transformation behaviour of the up-type Yukawa matrix concerning the local part

of GF ,

Y ′
U = eiα

a
L(x)T

a
L YU e

−iαa
UR

(x)Ta
UR ≃ YU + iαaL(x)T

a
L YU − iαaUR

(x)YU T
a
UR
. (4.23)

To simplify the notation we replace QL by L, as the quark flavour symmetry acting on the

left-handed fermion doublets does not differentiate between the up and the down sector. The

unbroken generators, that leave the VEV 〈YU 〉 invariant, can be derived from the condition

αaL(x)T
a
L 〈YU 〉 − αaUR

(x) 〈YU 〉T aUR

!
= 0 , (4.24)

which leads to two possibilities. First, if both terms vanish separately for the generators

a = 1, 2, 3, the first summand implies an unbroken SU(2)QL
symmetry while the second

summand corresponds to an unbroken SU(2)UR
symmetry. Second, for the special case of

α8
L(x) = α8

UR
(x) = αT (x), an extra abelian group U(1)T remains

U(1)T = e
iαT (x)(T 8

L+T
8
UR

)
. (4.25)

Further, the symmetry generator of a possible residual global symmetry follows from the

condition

αaL T
a
L 〈YU 〉 − αaUR

〈YU 〉T aUR
− 〈YU 〉 θUR

1 !
= 0 . (4.26)
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In addition to the global version of the local SU(2)QL
× SU(2)UR

symmetry, an appropriate

adjustment of the coefficients α8
L, α8

UR
with θUR

leads to a conservation of a global U(1)
U

(2)
R

symmetry. It acts on the two-dimensional flavour subspace, where the original right-handed

triplet UR = (uR, cR, tR) is restricted to the flavour doublet U
(2)
R = (uR, cR).

Finally, the flavour symmetry is broken by the first scalar spurion VEV to

G
(1)
F = [SU(2)QL

× SU(2)UR
× U(1)T × SU(3)DR

]× U(1)
U

(2)
R

× U(1)DR
, (4.27)

and the number of broken generators (16− 7 = 9) equals the number of Goldstone bosons.

Second Breaking Step (2):

The next spurion receiving a non-vanishing VEV is the one which generates the bottom quark

Yukawa coupling yb. Taking into account that the term αaL(x)T
a 〈YD〉 vanishes independently

for a = 1, 2, 3 with respect to the infinitesimal gauge transformation

〈YD〉′ ≃ 〈YD〉+ iαT (x)T
8
L〈YD〉+ iαaL(x)T

a
L〈YD〉 − i〈YD〉αcDR

(x)T cDR
, (4.28)

the SU(2)QL
symmetry is not affected and still remains intact after the breaking. Furthermore,

the SU(3)DR
symmetry is broken down to a SU(2)DR

symmetry and for αT (x) = α8
DR

(x) =

α8(x) the former U(1)T gauge symmetry changes into the new local abelian symmetry

U(1)8 = e
iα8(x)(T 8

L
+T 8

UR
+T 8

DR
)
. (4.29)

In analogy to the previous breaking step in the up-sector, the global U(1)DR
is reduced to a

U(1)
D

(2)
R

symmetry of the two-dimensional subspace.

In summary, the development of the bottom Yukawa coupling breaks the flavour symmetry

group G
(1)
F down to

G
(2)
F = [SU(2)QL

× SU(2)UR
× U(1)8 × SU(2)DR

]× U(1)
U

(2)
R

× U(1)
D

(2)
R

, (4.30)

corresponding to five new Goldstone fields.

Third Breaking Step (3):

The third VEV produces the charm Yukawa coupling. Since diagonal matrices commute

with themselves (in this case T 8
L and T 8

UR
commute with 〈YU 〉), the U(1)8 symmetry remains

unbroken and the condition for the unbroken generators simplifies to

iαaL(x)T
a
L〈YU 〉 − i〈YU 〉αaUR

(x)T aUR
− i〈YU 〉θUR

1 !
= 0 . (4.31)

For α3
L(x) = α3

UR
(x) = α3(x) an additional local abelian group arises

U(1)3 = e
iα3(x)(T 3

L
+T 3

UR
)
, (4.32)
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which involves the diagonal generators T 3 of SU(3)QL
and SU(3)UR

.

The corresponding orthogonal component with α3
L(x) = −α3

UR
(x) is broken and produces a

new Goldstone boson φ3(x). The global residual symmetry of U(1)
U

(2)
R

is reduced to U(1)
U

(1)
R

=

U(1)uR . The FS valid at scales below ycΛ is found to be

G
(3)
F = [SU(2)DR

× U(1)8 × U(1)3]× U(1)uR × U(1)
D

(2)
R

, (4.33)

and altogether five Goldstone degrees of freedom are added to the theory. Thus there are 19

Goldstone and 14 spurion degrees of freedom, combining with the three real VEVs to the 36

degrees of freedom of the two Yukawa matrices.

Fourth Breaking Step (4):

The first non-diagonal spurion VEV arises at the energy scale E ∼ ybλ
2 Λ and produces the

CKM rotation angle θ23 ∼ λ2 (see the linear representation of the CKM matrix in (4.63)). The

physical scalar fluctuation η23(x) around the angle θ23 induces FCNCs at tree level through

effective 4-quark operators. Note that the VEV breaks the abelian product group U(1)8×U(1)3

down to one residual local U(1) group

U(1)X = e
iθX(x)

(

1√
3
(T 8

QL
+T 8

UR
+T 8

DR
)+(T 3

QL
+T 3

UR
)
)

, (4.34)

such that at the end of the day

G
(4)
F = [SU(2)DR

× U(1)X ]× U(1)uR × U(1)
D

(2)
R

, (4.35)

and only one additional Goldstone boson arises in the breaking G
(3)
F → G

(4)
F .

Fifth Breaking Step (5):

The spurion fluctuation η13(x) around the VEV of the second non-diagonal spurion field of

YD are related to fluctuations around the CKM angle θ13 ∼ λ3. In Subsection 4.7.1 we will

show explicitly that integrating out the heavy spurion η13(x) results in the effective 4-fermion

interactions (4.116). As the VEV spontaneously breaks the U(1)X symmetry, we have to deal

with one more Goldstone boson and

G
(5)
F = [SU(2)DR

]× U(1)uR × U(1)
D

(2)
R

(4.36)

represents the remaining flavour symmetry after the fourth breaking step.

Sixth Breaking Step (6):

Finally, with the creation of the strange-quark Yukawa coupling ys according to (4.22), also the

local flavour symmetry of the right-handed down-type quarks SU(2)DR
gets broken, creating

three more Goldstone bosons.
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In Section 4.10 we will use the residual global symmetry

G
(6)
F = U(1)uR × U(1)dR , (4.37)

acting on the right-handed up quark uR and down quark dR, to propose a possible solution

to the strong CP problem.

A counting of the Goldstone fields arising in the above discussed breaking steps yields

9 + 5 + 5 + 1 + 1 + 3 = 24, which is obviously in accordance with the number of generators

corresponding to the broken local flavour group SU(3)3.

It is important to notice that the last non-diagonal spurion field χ12 is a singlet under the

flavour symmetry. Its complex VEV generates the CKM angle θ12 and in addition the CP-

violating phase δ. Again the off-diagonal fluctuation η12(x) will supply a tree-level contribution

to FCNCs.

4.4 Parametrisation of the Yukawa Matrices and Unitary Gauge

The aim of this section is to parameterise the Yukawa matrices in such a way that the physical

scalar fluctuations are separated from the Goldstone degrees of freedom. The Goldstone

bosons, corresponding to the broken generators of the local FS group, become the longitudinal

modes of the massive gauge bosons and disappear in the unitary gauge. The discussion of the

Goldstone bosons of the global FS is postponed to Section 4.10.

According to the breaking scenario shown in (4.21) and (4.22), with the CP-violating phase

δ appearing in the mixing between the first and second generation, we will parameterise the

CKM matrix as

VCKM = e2iθ23 T
7
e2iθ13 T

5
eiδ T

3
e2iθ12 T

2
e−iδT

3
. (4.38)

Apart from a redefinition of the CP phase, this representation corresponds to the standard

parametrisation of the CKM matrix (see (3.57)–(3.59)) and the power counting of the CKM

angles is given by θ12 ∼ λ, θ23 ∼ λ2 and θ13 ∼ λ3.
Having fixed the Yukawa VEVs which are responsible for the spontaneous breakdown of

the local flavour symmetry

〈YU 〉 = Diag (yu e
−iπu , yc, yt) , 〈YD〉 = VCKMDiag (yd e

−iπd , ys, yb) , (4.39)

where we have made the phases related to the two remaining global symmetries explicit, the

next goal is to find a proper parameterisation of the Yukawa matrices. Generally for n quark

generations, the 3(n2−1) independent generators of the broken local flavour symmetry SU(n)3

are identified with the Goldstone bosons φaQL,UR,DR
(x), a = 1, ... n2 − 1. Apart from the two

explicit phases for the global U(1)uR × U(1)dR symmetry, the remaining degrees of freedom

of the 4n2 fluctuations of the two complex n× n Yukawa matrices correspond to the (n2 + 1)

fluctuations ηi(x) of the physical masses and mixing parameters.
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Inspired by a singular value decomposition of the Yukawa matrices

YU(x) = VUL
(x)DU (x)V

†
UR

(x) , YD(x) = VDL
(x)DD(x)V

†
DR

(x) , (4.40)

we make an ansatz which actually contains more parameters than scalar degrees of freedom:

YU (x) = ΣQL
(x) · ΞUL

(x)DU (x) Ξ
†
UR

(x) · ΣUR
(x) ,

YD(x) = ΣQL
(x) · VCKM · ΞDL

(x)DD(x) Ξ
†
DR

(x) · ΣDR
(x) . (4.41)

However, it is consistent with the standard parameterisation proposed in [37, 38] since the

broken symmetry generators, representing the Goldstone bosons of SU(3)3,

ΣX(x) = exp [i φaX(x)T
a] , (X = QL, UR,DR) , (4.42)

are “factored” out of the residual matrix products ΞUL
DU Ξ†

UR
and ΞDL

DD Ξ†
DR

which are

supposed to contain the physically relevant scalar fields or Higgs modes.

The fluctuations around the VEVs of the quark Yukawa couplings yq(x) = yq + ηq(x)/
√
2

are contained in the diagonal matrices

DU (x) = Diag (yu(x) e
−iπu(x), yc(x), yt(x)),

DD(x) = Diag (yd(x) e
−iπd(x), ys(x), yb(x)), (4.43)

where the normalisation factor is chosen such that the spurion kinetic terms of the ηqs will

come out canonically in (4.45). The non-diagonal physical scalar fluctuations around the

VEVs of the CKM angles and phases arise from the matrix field

ΞX(x) = exp [i ξaX(x)T
a] , (X = UL,DL, UR,DR; a 6= 3, 8) . (4.44)

We exclude the diagonal generators T 3 and T 8 in the CKM fluctuations (4.44), as they would

reintroduce a complex phase into the spurion fields yc(x), yt(x), ys(x), yb(x) in (4.43). Thus,

the fluctuations along their direction in group space have to be identified as Goldstone-like

degrees of freedom, which we have already parameterised by the matrix fields ΣX(x).

To further disentangle the degrees of freedom introduced in the ansatz (4.41), we search

for a guideline that tells us which fluctuations have to be assigned to the Goldstone matrix

field ΣX(x) and which ones to the matrix field of the physically fluctuations in ΞX(x) and

DU,D(x), respectively. As pointed out in Section 3.6, the scalar degrees of freedom that have

mixings with the gauge fields have to be interpreted as Goldstone fields which will disappear

when the physical or unitary gauge ΣX(x)→ 1 is chosen. Equivalently, the scalar fluctuations

which do not mix with the SU(3)3 flavour gauge fields AaX,µ(x) in the gauge-invariant kinetic

terms

Λ2 Tr [(DµY
†
U )(D

µYU )] + Λ2 Tr [(DµY
†
D)(D

µYD)], (4.45)
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where the covariant derivatives stand for

DµYU (x) = ∂µYU (x)− igQL
AaQL,µ(x)T

a YU(x) + igUR
AaUR,µ(x)YU (x)T

a ,

DµYD(x) = ∂µYD(x)− igQL
AaQL,µ

(x)T a YD(x) + igDR
AaDR,µ

(x)YD(x)T
a , (4.46)

are the physical ones. Thus, the ambiguity can be resolved by requiring that our ansatz does

not generate any mixing terms between scalar fields and gauge fields if we work in the unitary

gauge. Separating the Yukawa matrices into their VEVs and fluctuations around the latter

YU (x) = 〈YU 〉+ δYU (x) ,

YD(x) = 〈YD〉+ δYD(x) , (4.47)

the mixing terms with the SU(3)QL
gauge fields get contributions from the kinetic terms both

of the up-type Yukawa matrix and of the down-type Yukawa matrix

Lkin ⊃ Λ2igQL
AcQL,µ

∂µTr [T c(δYU (x)〈Y †
U 〉+ δYD(x)〈Y †

D〉 − h.c.)]. (4.48)

The mixing terms involving the SU(3)UR
gauge bosons are solely devoted to the up-Yukawa

matrix

Λ2igUR
AcUR,µ

∂µTr [T c (δY †
U (x)〈YU 〉 − 〈Y

†
U 〉δYU (x))], (4.49)

while the SU(3)DR
mixing terms only get contributions from the kinetic term of the down-

Yukawa matrix

Λ2igDR
AcDR,µ∂

µTr [T c(δY †
D(x)〈YD〉 − 〈Y

†
D〉δYD(x))]. (4.50)

Inserting our Yukawa parameterisation ansatz (4.41), we identify the fluctuations according

to (4.47),

δYU (x) = YU(x)− 〈YU 〉 = ΞUL
(x)DU (x) Ξ

†
UR

(x)− 〈DU 〉 ,
δYD(x) = YD(x)− 〈YD〉 = VCKM · ΞDL

(x)DD(x) Ξ
†
DR

(x)− VCKM〈DD〉 . (4.51)

In the following it is enough to concentrate only on the linear fluctuations which are given by

δYU (x) = (DU (x)− 〈DU 〉) + iξaUL
(x)T a〈DU 〉 − i〈DU 〉ξaUR

(x)T a ,

δYD(x) = VCKM(DD(x)− 〈DD〉) + VCKM(iξaDL
(x)T a〈DD〉 − i〈DD〉ξaDR

(x)T a) . (4.52)

Moreover, we can focus on the mixing terms between the scalar fluctuations ξi(x) and the

gauge fields, as the fluctuations around the quark Yukawa couplings

DU (x)− 〈DU 〉 =
1√
2
Diag (ηu(x), ηc(x), ηt(x)) ,

DD(x)− 〈DD〉 =
1√
2
Diag (ηd(x), ηs(x), ηb(x)) , (4.53)

do not mix with the SU(3)3 gauge bosons.
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In the linear approximation, the requirement that the mixing terms (4.48)–(4.50) should

vanish is implemented by imposing

AµUR
: Tr [T c(〈D†

U 〉ξaUL
T a〈DU 〉 − 〈|DU |2〉ξaUR

T a + h.c.)]
!
= 0 ,

AµDR
: Tr [T c(〈D†

D〉V
†
CKMξ

a
DL
T a〈DD〉 − 〈D†

D〉V
†
CKM〈DD〉ξaDR

T a + h.c.)]
!
= 0 ,

AµQL
: Tr [T c(ξaUL

T a〈|DU |2〉 − 〈DU 〉ξaUR
T a〈D†

U 〉+ h.c.)

+T c (ξaDL
T a〈|DD|2〉V †

CKM − 〈DD〉ξaDR
T a〈D†

D〉V
†
CKM + h.c.)]

!
= 0 . (4.54)

For demonstration, we will first give the solution to the above conditions (4.54) in the simpler

2-generation case, as there is only one physical spurion η̃12(x), which describes the fluctuation

around the Cabibbo angle. In the 3-generation case three physical spurions according to the

three CKM angles are involved, which will have kinetic mixings amongst themselves.

4.4.1 Solution of the 2-Generation Case

In the case of two generations, the above conditions (4.54) can be easily solved for the various

ξX-fields

ξ1UL
(x) → 0 , ξ2UL

(x)→ −F 2
12

y2u + y2c
(y2u − y2c )2

η̃12(x) ≃ −
F 2
12

y2c
η̃12(x) ,

ξ1DL
(x) → 0 , ξ2DL

(x)→ −F 2
12

y2d + y2s
(y2d − y2s)2

η̃12(x) ≃ −
F 2
12

y2s
η̃12(x) ,

ξ1UR
(x) → −F 2

12

2yuyc sinπu
(y2u − y2c )2

η̃12(x) ≃ 0 , ξ2UR
(x)→ −F 2

12

2yuyc cos πu
(y2u − y2c )2

η̃12(x) ≃ 0 ,

ξ1DR
(x) → F 2

12

2ydys sinπd
(y2d − y2s)2

η̃12(x) ≃ 0 , ξ2DR
(x)→ F 2

12

2ydys cos πd
(y2d − y2s)2

η̃12(x) ≃ 0 . (4.55)

To simplify the notation we have introduced the factor F 2
12,

F 2
12 =

2(y2u − y2c )2(y2d − y2s)2
(y2u − y2c )2(y2d + y2s) + (y2d − y2s)2(y2u + y2c )

, (4.56)

which enters the kinetic term of η̃12(x),

Lη̃12kin =
1

2
F 2
12 Λ

2 (∂µη̃12(x))
2 . (4.57)

The normalised spurion η12(x) is then given by η12(x) = F12 Λ η̃12(x). Note, that we use the

tilde to distinguish the unnormalised spurion fields from the normalised ones.

It is important to notice that the fluctuation η̃12(x) occurs symmetrically in the up- and

down-quark sector (4.55), despite the fact that our original ansatz assigned the CKM matrix

solely to the down-quark Yukawa matrix. Thus the naive replacement θ12 → θ12+
F 2
12 η̃12(x)√

2
in

the parameterisation of the CKM matrix (4.38) would have induced spurion couplings solely

to the down-type quarks (4.39), and would have led to an incorrect result. In particular this
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ansatz would have induced FCNCs only in the down-quark sector — and vice versa only in

the up-quark sector, if we had chosen a basis in which the down-type Yukawa is diagonal and

the up-type one contains the CKM matrix. Obviously a contradiction would have emerged

as the physical observables should not depend on an arbitrarily chosen parametrisation of the

Yukawa VEVs. Still, as one can see from the limit yu,d ≪ ys ≪ yc, which is added to the exact

solutions in (4.55), the coupling of η̃12(x) to dL and sR will dominate. One can further observe

that this limit would have also been obtained by making the rather minimalistic ansatz

YU (x) = e
iξ2

UL
(x)T 2

DU (x) ,

YD(x) = VCKM · eiξ
2
DL

T 2

(x)DD(x) . (4.58)

This corresponds to the case in which the matrices V †
UR

(x), V †
DR

(x) in the singular decompo-

sition ansatz (4.40) are identified — from the early beginning — with the Goldstone degrees

of freedom. These Goldstones can then be gauged away independently by the right-handed

flavour symmetry group SU(3)UR
× SU(3)DR

. Note again that, besides this “decoupling” of

the right-handed flavour symmetry, one cannot use the left-handed SU(3)QL
symmetry to

interpret either VUL
(x) or VDL

(x) as pure Goldstone fields, but has to carefully work out the

linear combinations that mix with the gauge fields.

Restricting ourselves to the linear order in the fluctuation η̃12(x) (and omitting the diagonal

fluctuations), the Yukawa couplings in the unitary gauge for the 2-generation case read

Y u.g.
U (x) = Diag (yue

iπu , yc) +

(
0 − yc

2(y2c−y2u)
− yueiπu

2(y2c−y2u)
0

)
F 2
12 η̃12(x) ,

Y u.g.
D (x) = VCKM ·



Diag (yde

iπd , ys) +


 0 ys

2(y2s−y2d)
yde

iπd

2(y2s−y2d)
0


F 2

12 η̃12(x)



 . (4.59)

The coupling matrices of the η̃12(x) field can be expressed entirely in terms of the VEVs of

the Yukawa matrices, e.g. for the up-type Yukawa,

δYU |η̃12 ≡ F 2
12

(
0 − yc

2(y2c−y2u)
− yueiπu

2(y2c−y2u)
0

)

=
F 2
12

y2c − y2u

{
−y

2
cy

2
s tan θ12 + y2cy

2
d cot θ12 − y2uy2s cot θ12 − y2uy2d tan θ12
2(y2c − y2u)(y2d − y2s)

〈YU 〉

+
cot 2θ12
y2c − y2u

〈YUY †
UYU 〉 −

csc 2θ12
y2s − y2d

〈YDY †
DYU〉

}

≃ y2s tan θ12
y2c

〈YU 〉+
2y2s cot 2θ12

y4c
〈YUY †

UYU 〉 −
2 csc 2θ12

y2c
〈YDY †

DYU 〉, (4.60)

and an analogous relation for δYD|η̃12 . Here, the first identity in (4.60) holds in the basis where

〈YU 〉 is diagonal and 〈YD〉 = VCKMDD, while the second and third line are basis independent.

Obviously, when inserted into QL ... UR, the three different structures 〈YU 〉, 〈YUY †
UYU 〉 and
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〈YDY †
DYU 〉 of spurion insertions correspond to gauge-invariant combinations of the flavour

symmetry group. We have already encountered the first operator with one spurion insertion

in (4.3). At the level of two spurion insertions there is no possible left-right coupling, so that

the three spurion operators in (4.60) are really the next-to-minimal ones. From the MFV

perspective, we thus expect the coefficients in front of the three individual flavour structures

to be of O(1) or smaller. Taking into account that η̃12(x) scales as θ12, we obtain in the

approximation yc ∼ O(1), yc ≫ ys ≫ yu,d

y2s tan θ12
y2c

η̃12 ∼ y2sθ212 ≪ 1 ,
2y2s cot 2θ12

y4c
η̃12 ∼ y2s ≪ 1 ,

2 csc 2θ12
y2c

η̃12 ∼ 1 , (4.61)

and find that the third coefficient in the above expansion is the dominant one. It is interesting

to note that

Tr [〈Y †
U 〉 δYU |η̃12 ] = Tr [〈Y †

UYUY
†
U〉 δYU |η̃12 ] = 0 , (4.62)

which shows that our construction for η̃12(x) indeed involves a variation that is orthogonal to

the VEV of YU . An analogous statement holds for δYD and 〈YD〉.

4.4.2 Solution of the 3-Generation Case

In the 3-family case, the situation is more complicated since the generators for the 3 CKM

rotations do not commute anymore, and the kinetic terms for the related spurion fields η̃12(x),

η̃13(x) and η̃23(x) will also mix. This mixing is controlled by the CKM matrix and the ratios

of quark Yukawa couplings. We can identify the leading effects by expanding (4.38) to first

order in the off-diagonal CKM elements Vi 6=j

VCKM =




1 θ12 θ13

−θ12 1 θ23

−θ13 −θ23 1


 . (4.63)

If we further set yu = yd = 0 and neglect the CP phase, the ansatz reduces to

ΞX(x) = exp [i ξaX(x)T
a] , a = 2, 5, 7 , X = UL,DL, UR,DR . (4.64)

With these approximations, the conditions (4.54) lead to the following fluctuations around

the CKM angles

δY u.g.
U (x) ⊃ 1

2




0 −y2s
yc

θ23y2s
yt

0 0 θ13y2syt
y2c−y2t

0 θ13ycy2s
y2c−y2t

0


 η̃12(x) +

1

2




0 − θ23y2b
yc

−y2
b

yt

0 0
θ12y2byt

(y2t−y2c)

0 − θ12y2byc

(y2c−y2t )
0


 η̃13(x)

+
1

2




0
θ13(y2b−y2s)

2

yc(y2b+y2s)
− θ12(y2b−y2s)

2

yt(y2b+y2s)

0 0
yt(y2b−y2s)

2

(y2b+y2s)(y2c−y2t )

0
yc(y2b−y2s)

2

(y2b+y2s)(y2c−y2t )
0



η̃23(x) , (4.65)
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and

V †
CKM δY u.g.

D (x) ⊃




0 ys
2 0

0 0 0

0 0 0


 η̃12(x) +




0 0 yb
2

0 0 0

0 0 0


 η̃13(x)

+




0 0 0

0 0
yb(y2b−y2s)
2(y2b+y2s)

0
ys(y2b−y2s)
2(y2b+y2s)

0


 η̃23(x) . (4.66)

For simplicity we again omit the diagonal spurion fluctuations and restrict ourselves to the

linear contributions. As already mentioned in the beginning, inserting the spurion fluctuations

(4.65)–(4.66) into the spurion kinetic terms (4.45) induces mixings in the kinetic terms of the

various spurions which will be the topic of the next subsection.

Diagonalisation of the Spurion Kinetic Terms

In order to obtain the usual field normalisation and basis, we will diagonalise and rescale the

fields such that they are canonically normalised afterwards and the full information about the

flavour structure is encoded in the Yukawa matrices [163].

As we do not specify the spurion potential, we can use the freedom to carry out a unitary

transformation U on an already normalised and diagonalised kinetic term

(
∂µη̃12 , ∂µη̃13 , ∂µη̃23

)1 ∂µη̃12

∂µη̃13

∂µη̃23


 ≡

(
∂µη̃12 , ∂µη̃13 , ∂µη̃23

)
U †U




∂µη̃12

∂µη̃13

∂µη̃23




(4.67)

to diagonalise Tr [(∂µYU )(∂
µY †

U)] and Tr [(∂µYD)(∂
µY †

D)] simultaneously.

Therefore, one can start with a diagonalisation of the spurion mixing terms stemming from

Tr [(∂µYU )(∂
µY †

U)], followed by an appropriate normalisation of the new states. The above

mentioned freedom then ensures that diagonalising the mixing terms from the down-Yukawa

spurion matrix Tr [(∂µYD)(∂
µY †

D)] will not reintroduce mixing terms in the up sector. The

calculational details about how to obtain the symmetric distribution of the kinetic terms from

the up- and down-quark sector,

Tr [(∂µYU )(∂
µY †

U )] =
1

y2c
(∂µη̃12(x))

2 +
1

y2t
(∂µη̃13(x))

2 +
(y2s − y2b )2
(y2s + y2b )

(∂µη̃23(x))
2 ,

Tr [(∂µYD)(∂
µY †

D)] =
1

y2s
(∂µη̃12(x))

2 +
1

y2b
(∂µη̃13(x))

2 +
(y2c − y2t )2
(y2c + y2t )

(∂µη̃23(x))
2 , (4.68)

can be found in the Appendix A.4. In (4.68) we reintroduced the tilde-notation after the

various field redefinitions as a reminder that the spurion kinetic terms are accompanied by
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the normalisation factors Fij , which are defined as before,

F 2
ij =

2(y2U i − y2Uj)
2(y2Di − y2Dj )

2

(y2
U i − y2Uj)2(y

2
Di + y2

Dj) + (y2
Di − y2Dj)2(y

2
U i + y2

Uj)
. (4.69)

Finally, the Yukawa matrices in the new basis change into

Y u.g.
U (x) ≃ Diag (0, yc, yt) +




0 1
yc

− θ23y2byt
y2
b
y2c−y2sy2t

0 0
θ13y2byt

y2
b
y2c−y2sy2t

0
θ13 y2byc

y2
b
y2c−y2sy2t

0




1

2
F 2
12 η̃12(x)

+




0
θ23y2byc

y2
b
y2c−y2sy2t

1
yt

0 0 θ12y2syt
y2
b
y2c−y2sy2t

0 0 0




1

2
F 2
13 η̃13(x) +




0 − θ13y2byc
y2
b
y2c−y2sy2t

− θ12y2syt
y2
b
y2c−y2sy2t

0 0 1
yt

0 0 0




1

2
F 2
23 η̃23(x) ,

(4.70)

and

V †
CKM Y u.g.

D (x) ≃ Diag (0, ys, yb) +




0 − 1
ys

θ23yby
2
t

y2
b
y2c−y2sy2t

0 0 − θ13yby
2
t

y2
b
y2c−y2sy2t

0 − θ13 ysy2t
y2
b
y2c−y2sy2t

0




1

2
F 2
12 η̃12(x)

+




0 − θ23ysy2t
y2
b
y2c−y2sy2t

− 1
yb

0 0 − θ12yby
2
c

y2
b
y2c−y2sy2t

0 0 0




1

2
F 2
13 η̃13(x) +




0
θ13ysy2t

y2
b
y2c−y2sy2t

θ12yby
2
c

y2
b
y2c−y2sy2t

0 0 − 1
yb

0 0 0




1

2
F 2
23 η̃23(x) ,

(4.71)

where we have assumed ys ≪ yb and yc ≪ yt, and have omitted the fluctuations around the

quark Yukawa couplings.

As in the 2-family case, in this special limit the same result can be obtained with the

minimalistic ansatz

YU(x) = e
iξ2

UL
(x)T 2

e
iξ5

UL
(x)T 5

e
iξ7

UL
(x)T 7

DU (x) ,

YD(x) = VCKM · eiξ
2
DL

T 2

(x)e
iξ5DL

(x)T 5

e
iξ7DL

(x)T 7

DD(x) , (4.72)

which implies that the linear combinations of the physical fluctuations consist only of left-

handed fields

ξ2UL
(x) →

−y2sξ2DL
(x)− θ23 y2b ξ5DL

(x) + θ13 y
2
b ξ

7
DL

(x)

y2c
,

ξ5UL
(x) →

−y2bξ5DL
(x) + θ23 y

2
s ξ

2
DL

(x)− θ12 y2b ξ7DL
(x)

y2t
,

ξ7UL
(x) →

−y2bξ7DL
(x)− θ13 y2s ξ2DL

(x) + θ12 y
2
b ξ

5
DL

(x)

y2t
. (4.73)
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With the identification

ξ2DL
(x) ≡ η̃12(x) , ξ5DL

(x) ≡ η̃13(x) , ξ7DL
(x) ≡ η̃23(x) , (4.74)

we are able to reproduce the “asymmetric result” given in (4.65)–(4.66) in the limit ys ≪ yb

and yc ≪ yt.

Again, the fluctuations are orthogonal to the Yukawa VEVs

Tr [〈Y †
U 〉 δYU ] = Tr [〈Y †

UYUY
†
U 〉 δYU ] = Tr [〈Y †

UYUY
†
UYUY

†
U 〉 δYU ] = 0 , (4.75)

and accordingly for the down Yukawa fields. Furthermore, the contributions to the invariants

Tr [(Y †
UYU )

n] as well as Tr [(Y †
DYD)

n], appearing in the spurion potential [157], are diagonal in

the spurion fields η̃ij(x).

In addition to the subleading terms in the kinetic mixing terms, further corrections would

be induced by radiative corrections involving the Yukawa couplings. By construction, we

expect these effects to follow the MFV principle, in a similar way as we have discussed for the

2-family example. A precise calculation of these terms is beyond the scope of this work.

4.5 Simplified Scenario

To keep the following discussion transparent, we will actually consider the smaller flavour

symmetry group which appears in the fourth intermediate breaking step in the sequence of

flavour symmetry breaking, already derived in Section 4.3

G
(4)
F = [SU(2)DR

× U(1)X ]× U(1)uR × U(1)
D

(2)
R

. (4.76)

Since the masses of the scalar and gauge fields are closely related to the breaking scale,

the higher-dimensional operators originating from the highest breaking scales will be more

suppressed as the ones arising from the lower breaking steps. Hence this approximation still

comprehends the most severe bounds to FCNCs for a future phenomenological analysis.

In G
(4)
F the two U(1) factors are global and while D

(2)
R = (dR, sR) is restricted to a right-

handed flavour doublet of down-type quarks, the U(1)uR symmetry acts solely on the right-

handed up-quark. At this stage, the VEVs of the Yukawa matrices contain the three eigen-

values yt, yb, yc and the mixing angle between the 2nd and 3rd generation

〈YU 〉 ∼



0 0 0

0 • 0

0 0 •


 , 〈YD〉 ∼



0 0 0

0 0 •
0 0 •


 =̂ exp


−i



0 0 0

0 0 •
0 • 0





 ·



0 0 0

0 0 0

0 0 •


 . (4.77)

Apart from an intact local SU(2)DR
symmetry, these vacua respect the local abelian U(1)X

symmetry (4.34), whose generator is closely related to the previous breaking cascade of the
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ψL : Q
(1)
L Q

(2)
L Q

(3)
L ucR ccR tcR Dc

R bcR

qX : +2
3 −1

3 −1
3 −2

3 +1
3 +1

3 −1
6 +1

3

Table 4.2: qX quantum numbers of quarks

flavour group — in detail it is given in terms of the diagonal symmetry generators of the

original FS group GF by

QX =
1√
3

(
T 8
QL

+ T 8
UR

+ T 8
DR

)
+
(
T 3
QL

+ T 3
UR

)
. (4.78)

In this context, we want to emphasise that the asymmetric treatment of the up- and down-

type quark sector in the definition of the charge operator QX is correlated with the particular

choice for the parameterisation of the Yukawa matrices, where 〈YU 〉 is diagonal, while 〈YD〉
contains the CKM rotations.

In the next section we will identify the gauge anomalies of the G
(4)
F FS group under the

SM fermion content in order to construct an effective theory in Section 4.6 that is at least

formally gauge invariant under the G
(4)
F FS group. We will proceed in Section 4.7 to derive the

effective theory ofG
(5)
F , and in Section 4.8 the corresponding one ofG

(6)
F = U(1)uR×U(1)dR , via

integrating out the spurions and gauge fields that receive masses from the Higgs mechanisms

at the breaking steps.

4.5.1 Anomalies of the Local Flavour Symmetry Group SU(2)DR
× U(1)X

In Section 2.5 we gave a short introduction into the comprehensive topic of chiral gauge anoma-

lies and showed in Section 3.2 that the SM fermion content is non-anomalous with respect

to the SM gauge group GSM. In our simplified setup we augment the SM gauge group with

a partly gauged flavour symmetry group, such that the total local gauge group corresponds

to the direct product group G
(4)
F |local ×GSM. Keeping in mind that all representations of the

SU(2) group are real and anomaly free, we thus have to check whether we encounter U(1)X

gauge anomalies or mixed anomalies with the hypercharge and colour group. To do so, we

summarise the various U(1)X charges qX in Table 4.2, which denote the eigenvalues of the

charge operator QX concerning the left-handed fermions ψL. Note that the fermions that

transform as irreducible representations of G
(4)
F ×GSM are the same as in the SM.

It turns out that the representation ψL of U(1)X is anomalous,

Tr [Q3
X ] =

3

4
6= 0 . (4.79)

Due to the fact that the generator QX is a linear combination of SU(3)3 generators, its

trace Tr [QX ] vanishes individually for every SM gauge multiplet, and therefore we will not
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encounter mixed anomalies with SU(N) generators, where

Tr [{T a, T b}QX ] ∝ δab Tr [QX ] = 0 . (4.80)

While the triangle diagram contributions involving two hypercharge gauge fields and one

U(1)X gauge field vanish as well, there is a mixed anomaly with the SM hypercharge group

from triangle diagrams involving two U(1)X gauge fields and one hypercharge gauge field,

Tr [Q2
X Y ] = −1 6= 0 . (4.81)

The assignment of hypercharge quantum numbers has already been given in Table 3.1, but for

the sake of completeness let us repeat that they are normalised according to Y (QL) = 1/3,

Y (UR) = 4/3 and Y (DR) = −2/3.

4.6 Effective Lagrangian of the Gauged Flavour Subgroup

In deriving a consistent formulation of an effective field theory including an anomalous gauge

symmetry, we will closely follow the formalism given in [89]. The usual requirement that

chiral gauge anomalies must cancel in order to avoid a breakdown of gauge invariance at the

quantum level, severely restricts the representation content of the fermions transforming under

the gauge group.

However, from an effective field theory point of view, it is legitimate to assume that

there exists an underlying fundamental theory which is anomaly free because it contains new

fermions that contribute to the anomaly coefficient. When the gauge symmetry is sponta-

neously broken by a Higgs mechanism, these fermions, as well as the Higgs boson that induces

the breaking, become heavy and thus are “integrated out” of the theory. It is then quite nat-

ural that they leave an uncancelled anomaly contribution of the remaining light fermions in

the effective theory. It is possible that the gauge bosons receive only small masses from the

Higgs mechanism, if the corresponding gauge coupling is weak. The fact that the gauge bosons

nevertheless acquire a small mass ensures unitarity and Lorentz invariance of the theory.

Thus we deal with a consistent non-renormalisable effective field theory of massive gauge

fields coupled to fermions in an anomalous representation. It is convenient to make the theory

at least formally gauge invariant by introducing so-called Wess–Zumino counterterms. They

couple pure-gauge dynamical scalar fields to the gauge fields in order to compensate the

fermion anomaly contributions.

4.6.1 Anomalous U(1)X Symmetry

The above mentioned procedure is now applied to the case of the anomalous U(1)X symmetry

whose generator QX (4.78) acts on the chiral SM fermion representations. We showed already

that there is also a mixed anomaly with the gauged U(1)Y symmetry. The classical part of
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the Lagrangian involving the U(1)X gauge field reads

LX = −1

4
Xµν(x)X

µν(x) ,

Lψ = ψL(x) iD/ψL(x) and Lspurion , (4.82)

where the covariant derivative Dµ = ∂µ− igXqXXµ+ . . . contains the couplings of the various

fermion species to the U(1)X gauge boson. While the classical Lagrangian is invariant under

the U(1)X gauge transformation

X ′
µ(x) = Xµ(x) +

1

gX
∂µωX(x) , ψ′

L(x) = eiωX(x) qX ψL(x) , (4.83)

the quantum effective action changes since the fermion representation is anomalous with the

non-vanishing anomaly coefficients (4.79) and (4.81) presented in the previous section.

The general formula of the abelian anomaly can be derived from the formula of the non-

abelian anomaly given in (2.32) by replacing the generator T̃ a → Q, and by taking into account

that the second contribution disappears due to the commutativity of the abelian gauge fields

∂µj
µ
L = G[ALµ(x)] = −

1

24π2
ǫµνρσTr [Q3∂µA

L
ν ∂ρA

L
σ ] = −

g2

48π2
Tr [Q3]Fµν F̃

µν . (4.84)

In the last step we made the coupling constants explicit and introduced the abelian dual

field-strength tensor

F̃µν =
1

2
ǫµνρσ Fρσ . (4.85)

Under the abelian gauge transformation

A′
µ(x) = Aµ(x) +

1

g
∂µθ(x) , ψ′

L(x) = eiθ(x)Q ψL(x) , (4.86)

the effective action Γ changes according to (2.34)

δvΓ[A
L
µ(x)] = −

∫
d4x v(x)G[ALµ (x)] =

g2

48π2
Tr [Q3]

∫
d4x v(x)Fµν F̃

µν . (4.87)

Adapting the above formula to local U(1)X and U(1)Y gauge transformations, implies the

following total change of the effective action

δωX
Γ = Tr [Q3

X ]
g2X
48π2

∫
d4xωX Xµν X̃

µν

+ c1 Tr [Q
2
X Y ]

gY gX
48π2

∫
d4xωX Xµν Ỹ

µν ,

δωY
Γ = (1− c1)Tr [Q2

X Y ]
g2X
48π2

∫
d4xωY Xµν X̃

µν . (4.88)

The coefficient c1 arises from the freedom to add an appropriate local counterterm [89],

Γc.t. = c1 Tr [Q
2
X Y ]

g2XgY
24π2

∫
d4x ǫµνλσ Y

µXν∂λXσ , (4.89)
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which will allow to attach the mixed anomaly completely to the U(1)X gauge transformation,

as discussed below. Using the infinitesimal form of the abelian gauge transformation (2.20),

δωX
Xµ =

1

gX
∂µωX , δωY

Yµ =
1

gY
∂µωY , (4.90)

the local counterterm changes according to

δωY
Γc.t. = c1 Tr [Q

2
X Y ]

g2X
48π2

∫
d4x ǫµνρσ (∂µωY )Xν ∂ρXσ

= −c1Tr [Q2
X Y ]

g2X
48π2

∫
d4xωY (x)XµνX̃

µν ,

δωX
Γc.t. = c1 Tr [Q

2
X Y ]

gX gY
48π2

∫
d4x ǫµνρσ Yµ (∂νωX) ∂ρXσ

(IBP, µ↔ν)
= c1 Tr [Q

2
X Y ]

gX gY
48π2

∫
d4xωX(x)Xµν Ỹ

µν . (4.91)

Choosing the renormalisation condition c1 = 1, one is able to obtain a manifestly non-

anomalous U(1)Y gauge symmetry with δωY
Γ = 0. Thus only the U(1)X gauge symmetry is

spoilt by anomalous contributions to the effective action

δωX
Γ =

1

48π2

∫
d4xωX

(
Tr [Q3

X ] g
2
XXµνX̃

µν + Tr [Q2
X Y ] gXgYXµν Ỹ

µν
)
. (4.92)

It is essential to keep the U(1)Y gauge symmetry exact until it is spontaneously broken by

the usual Higgs mechanism at the electroweak scale since otherwise the U(1)Y gauge boson

would get anomaly contributions to its mass and no light SM Z boson would emerge.

Still, the local gauge invariance of the anomalous U(1)X symmetry can be formally restored

by exploiting the behaviour of the Goldstone field πX(x) under a gauge transformation,

π′X(x) = πX(x) + ωX(x) . (4.93)

Adding the following term to the effective Lagrangian,

∆Lπ = − πX(x)

48π2

(
Tr [Q3

X ] g
2
XXµν(x)X̃

µν(x) + Tr [Q2
X Y ] gXgYXµν(x)Ỹ

µν(x)
)
, (4.94)

obviously compensates the change in Γ from the fermion measure in (4.92). On the quantum

level, loop corrections involving the anomalous couplings of the Goldstone mode πX to the

gauge fields in (4.94) will lead to a mass term for the U(1)X gauge boson. In addition, the

latter will also receive a mass contribution (4.107) from the spurion VEVs, originating from

the “Higgsing” of the Yukawa matrices. Defining the total mass of the U(1)X gauge boson as

MX ≡ gXFX , (4.95)

the diagrams from the anomaly contributions to the mass are quadratically divergent and

contribute to FX as

FX ⊃
g2X Tr [Q3

X ]

64π3
Λ , and

gY gX Tr [Y Q2
X ]

64π3
Λ , respectively. (4.96)
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FX is a dimensional constant such that (FXπX) in the quadratic term of the effective La-

grangian

Lπ =
F 2
X

2
(∂µπX(x)− gXXµ(x))

2 (4.97)

has canonical dimensions and a correctly normalised kinetic term.

Covariant gauges can be introduced via the gauge-fixing term

Lgfix = − 1

2ξX

(
∂µX

µ(x)− ξX gX F 2
X πX(x)

)2
, (4.98)

which removes the mixing term between Xµ(x) and πX(x) in Lπ.
In summary we are left with the quadratic terms

M2
X

2
(Xµ)

2 − 1

2ξX
(∂µX

µ)2 − ξX
M2
X

2
(FXπX)

2 +
1

2
(FX∂µπX)

2 . (4.99)

In the ’t Hooft-Landau gauge the gauge parameter ξX vanishes and the πX field is massless.

In unitary gauge, corresponding to ξX → ∞, the Goldstone field decouples and disappears

from the theory.

4.6.2 Local SU(2)DR
Flavour Symmetry

Up to now, we focused on the contributions to the effective Lagrangian due to the local abelian

anomalous U(1)X symmetry. Since the SU(2)DR
symmetry group is not anomalous, the

discussion is somewhat simpler than in the previous case. The effective Lagrangian contains

a kinetic term for the SU(2)DR
gauge fields

LADR
= −1

4
F aDR,µν(x)F

a,µν
DR

(x) , F aDR,µν(x) = ∂µA
a
DR,ν − ∂νA

a
DR,µ + gDR

ǫabcAbDR,µA
c
DR,ν ,

(4.100)

as well as couplings to the SM fermions

Lψ = ψL(x) iD/ψL(x) ⊃ gDR
AaDR,µ [DR γ

µT aDR ] ≡ gDR
AaDR,µ (J

µ
ADR

)a . (4.101)

In analogy to (4.95) we define the mass of the gauge bosons by

m2
ADR

≡ g2DR
F 2
DR

, (4.102)

where this time the value of FDR
is solely determined by the couplings of the gauge bosons

to the spurion Yukawas. As in the previous case, after spontaneous breaking of the flavour

symmetry, appropriate gauge-fixing terms for the SU(2)DR
gauge fields can be added to cancel

the arising mixing terms with the Goldstone fields.
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4.6.3 Yukawa Spurion Lagrangian

Apart from the new interactions to the flavour gauge bosons, the fermion couplings to the SM

gauge fields maintain their standard form. The SM Lagrangian remains unchanged except

for the Yukawa sector where the Yukawa coupling matrices have to be replaced by dynamical

fields. Starting from the general discussion in Section 4.4, we can drop all Goldstone modes

and spurion fields related to the breaking GF → G
(4)
F , and obtain

YU → YU (x) = eiπX(x)(T 3+T 8/
√
3) · Y u.g.

U (x) · e−iπX(x)(T 3+T 8/
√
3) ,

YD → YD(x) = eiπX(x)(T 3+T 8/
√
3) · Y u.g.

D (x) · e
−i

3
∑

a=1
πa
DR

(x)Ta

e−iπX(x)T 8/
√
3 , (4.103)

where Y u.g.
U,D (x) are given by (4.70) and (4.71) with η̃23(x) set to zero.

The Lagrangian is supplemented by spurion kinetic terms and a G
(4)
F -invariant potential

term V (YU , YD)

Lspurion = Λ2 Tr [(DµY †
U )(DµYU )] + Λ2 Tr [(DµY †

D)(DµYD)]− V (YU , YD) (4.104)

with the adopted covariant derivatives containing only the flavour gauge fields of the residual

flavour symmetry group G
(4)
F ,

DµYU(x) = ∂µYU (x)− igXXµ(x) [T
3 + T 8/

√
3, YU (x)] ,

DµYD(x) = ∂µYD(x) + igDR

3∑

a=1

AaDR,µ
(x)YD(x)T

a
DR

−igXXµ(x) (T
3 + T 8/

√
3)YD(x) + igXXµ(x)YD(x)T

8/
√
3 . (4.105)

Inserting the above expressions (4.103), expanding in the gauge and spurion fields, and using

again the approximations in terms of small Yukawa couplings and CKM angles, we identify

the kinetic terms of the spurion fields, as well as the mass terms of the SU(2)DR
× U(1)X

gauge bosons induced by the VEVs θ13, θ12 and ys as:

Lkin = Λ2 (∂µys(x))
2 +

Λ2

2
F 2
12 (∂µη̃12(x))

2 +
Λ2

2
F 2
13 (∂µη̃13(x))

2 , (4.106)

Lmass ≃ Λ2y2bθ
2
13 (∂µπX − gXXµ)

2

+
Λ2

4
(ys(x))

2 [2A+
µAµ− +

(
∂µπX − gXXµ −A3

µ

)2
] . (4.107)

Here we have introduced the gauge-invariant combinations

Aaµ = −2Tr
[
e−iπDR (i∂µ + gDR

ADR,µ) e
iπDR T a

]
≃ ∂µπaDR

− gDR
AaDR,µ

(4.108)

and

A±
µ =

1√
2

(
A1
µ ± iA2

µ

)
. (4.109)
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4.7 Effective Theories for the Energy Scales ybθ13Λ 6 E < ysΛ

In the standard scenario for the sequence of flavour symmetry breaking discussed in Section

4.3, the next spurion to get a VEV is η13(x) ≡ ΛF13η̃13(x) which is related to fluctuations

around the CKM angle θ13 ∼ λ3. The spurion VEV induces the spontaneous symmetry

breakdown of the FS group G
(4)
F to

G
(5)
F = [SU(2)DR

]× U(1)uR × U(1)
D

(2)
R

, (4.110)

and produces a U(1)X gauge boson mass via contributing to FX according to Lmass (4.107),

F 2
X ⊃ 2y2b θ

2
13Λ

2 . (4.111)

We assume that the spurion potential will generate a mass term for η13 with a generic size of

order

m2
13 ∼ y2bθ213Λ2 . (4.112)

Assuming further that the spurion contribution to FX in (4.111) is dominating over the

anomaly contributions (4.96), such that

M2
X ≡ g2XF 2

X ∼ 2g2Xy
2
bθ

2
13Λ

2 , (4.113)

the following relation of scales holds

Λ≫ m13 ∼ FX > MX . (4.114)

Otherwise we would have to integrate out the gauge boson Xµ before integrating out the scalar

field η13(x) (see Figure 4.3 for the order of integrating out the various particles).

Energy Scale E Integrated out Particle Flavour Symmetry Group

G
(4)
F = [SU(2)DR

× U(1)X ]× U(1)uR × U(1)
D

(2)
R

yb θ13Λ η13(x)

G
(5)
F = [SU(2)DR

]× U(1)uR × U(1)
D

(2)
R

Xµ(x)

ysΛ ηs(x)

G
(6)
F = U(1)uR × U(1)dR

AaDR,µ
(x)

ys θ12 Λ η12(x)

Figure 4.3: Particles that are integrated out at the different energy scales.
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4.7.1 Integrating out the Heavy Spurion Field η13

To obtain the higher-dimensional operators of the effective theory which is valid below the

energy scale of the order FX , we will restrict ourselves to the leading tree-level effects by solving

the equations of motion (EOM) for η13. Using the approximate form of the Yukawa spurion

couplings to the fermions in (4.70) and (4.71), the relevant effective Lagrangian involving η13

reads

L13 =
1

2
(∂µη13)

2 − 1

2
m2

13η
2
13 − (J13

U + J
13
U + J13

D + J
13
D ) η13 , (4.115)

with

J13
U ≃

F13

2
(U

′
L, D

′
LV

†
CKM)

H̃

Λ




0
θ23y2byc

y2
b
y2c−y2sy2t

1
yt

0 0 θ12y2syt
y2
b
y2c−y2sy2t

0 0 0


UR ,

J13
D ≃

F13

2
(U

′
LVCKM, D

′
L)
H

Λ




0 − θ23ysy2t
y2
b
y2c−y2sy2t

− 1
yb

0 0 − θ12yby
2
c

y2
b
y2c−y2sy2t

0 0 0


DR . (4.116)

In (4.116) we used a symbolic notation concerning the SM Higgs field. Its VEV selects

U
′
L in the current J13

U and D
′
L in J13

D , respectively, where the primed fields denote the mass

eigenstates of the quarks. In the limit m13 →∞, one obtains the effective 4-quark interactions

1

2m2
13

(
J13
U + J

13
U + J13

D + J
13
D

)2
(4.117)

that induce flavour transitions with an overall suppression factor v2/Λ2 when the SM Higgs

field H has developed its VEV. The individual coefficients of the specific flavour transitions

follow from the matrix structure in J13
U and J13

D . However, we observe that the η13 spurion

predominantly induces transitions between left-handed quarks from the first generation and

right-handed quarks from the second or third generation. Of course, more operators — which

may also include additional gauge fields — will be in general generated by radiative corrections

and higher-dimensional operators from Lspurion in (4.104).

4.7.2 Integrating out the U(1)X Gauge Field

Below the scale MX = gXFX , we may integrate out the heavy gauge boson of the U(1)X

flavour symmetry. Focusing on the leading terms in (4.107), and considering unitary gauge

(πX = 0), we may again solve the classical EOM following from

LX ≃ Lmass + gX Xµ J
µ
X , JµX ≡ [ψL γ

µQX ψL ] , (4.118)

in the limit FX →∞, where Lmass is defined in (4.107) and FX in (4.113). Again, this induces

effective 4-quark operators of the form

− 1

2F 2
X

[ψL γµQX ψL ] [ψL γ
µQX ψL ] , (4.119)
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where ψL denotes the set of left-handed fermion fields which are illustrated in Table 4.2

together with the corresponding U(1)X charges of the diagonal charge operator QX . As

the up-type Yukawa matrix is already diagonal, the above operator does not induce FCNCs

between up-type quarks. On the other hand, rotating the down-type quarks into the mass

eigenbasis, one obtains

JµX

∣∣∣
down

=
(
d
′
L, s

′
L, b

′
L

)
γµX ′

DL




d′L
s′L
b′L


 ,

X ′
DL

= V †
CKMDiag

(
2

3
,−1

3
,−1

3

)
VCKM ≃




2
3 θ12 θ13

θ12 −1
3 0

θ13 0 −1
3


+O(θ2ij) , (4.120)

containing FCNCs between dL and sL or bL, which are suppressed by the SM CKM angles.

The phenomenology induced by these subleading effects is qualitatively similar to Z ′ models

with non-universal flavour couplings [164], where interesting new flavour effects have been

identified in the context of present puzzles in flavour observables (see e.g. [165–169] for recent

applications). However, compared to the commonly favoured Z ′ scenarios, our case displays

a number of important modifications:

• Typical Z ′ scenarios are motivated by electroweak physics and consider Z ′ masses in

the TeV range. In this case, precision flavour observables in the kaon sector already

disfavour non-universal flavour couplings of the first and second generation. In our case,

the U(1)X gauge boson is naturally allowed to be much heavier. At the same time, the

non-universal effects are precisely between the first and second (or third) generation,

and therefore kaon observables essentially will provide a lower bound on the scale FX .

• The U(1)X gauge boson does not couple to leptons, and thus constraints from lepton-

flavour violating observables do not apply to our case.

Taking into account the subleading effects proportional to y2s in (4.107), the mixing between

the gauge boson Xµ with the SU(2)DR
gauge field A3

µ induces an additional effective operator,

such that finally

Lmass + gXXµ J
µ
X →

y2sΛ
2

4

[
2A+

µAµ− + (A3
µ)

2
]
− 1

2F 2
X

[
JµX
]2 − y2s

4θ213y
2
b

JµX A3
µ . (4.121)
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4.8 Effective Theories for the Energy Scales ysΛ 6 E < ysθ12Λ

Again, we assume that through an appropriate spurion potential, the spurion field ys(x) =

ys + ηs(x)/
√
2 obtains a non-vanishing VEV at a scale of the order of its mass mηs ∼ ysΛ.

According to Lmass in (4.107), the VEV supplies also a mass term for the SU(2)DR
gauge

bosons,

Lmass ⊃
1

2
m2
ADR

AaDR,µ
Aa,µDR

=
1

2
g2DR

F 2
DR
AaDR,µ

Aa,µDR

(4.107)
≃ Λ2

4
g2DR

y2sA
a
DR,µ

Aa,µDR
. (4.122)

We are now going to integrate out the heavy spurion and the gauge fields corresponding to the

symmetry breakdown G
(5)
F → G

(6)
F in order to extract the leading effective higher-dimensional

operators.

4.8.1 Integrating out the Spurion Field ηs

Integrating out the spurion fluctuation ηs(x), the Yukawa coupling to the down-type quarks

induces an effective 4-quark operator,

1

4m2
ηs

J2
s , Js =

1

Λ

[
(u′L Vus + c′L Vcs, s

′
L)H sR + h.c.

]
, (4.123)

where we have expressed the quarks in the mass eigenbasis. As expected, the fluctuation

ηs(x) around the Yukawa eigenvalue ys do not induce flavour transitions, once the SM Higgs

is replaced by its VEV.

4.8.2 Integrating out the Gauge Fields Aa
DR

Summarising the terms involving the SU(2)DR
gauge fields AaDR,µ

, i.e. the kinetic terms

(4.100), the couplings to the fermions (4.101), the mass terms as given in (4.122), and the

leading term from the mixing between Xµ and A3
µ (4.121) yields

−1

4
F aDR,µν

(x)F a,µνDR
(x) + gDR

AaDR,µ
(JµADR

)a +
1

2
g2DR

F 2
DR
AaDR,µ

Aa,µDR
+
gDR

y2s

4θ213y
2
b

JµX A
3
DR,µ

.

(4.124)

Using the EOMs, we integrate out the SU(2)DR
gauge fields AaDR,µ

and obtain the effective

4-quark operators

− 1

2F 2
DR

(
[(JµADR

)a]2 +
y2s

2θ213y
2
b

[(JµADR
)3 JX,µ]

)
. (4.125)

Inserting the Fierz identity for the Pauli matrices

σaijσ
a
kl = 2δilδjk − δijδkl , (4.126)

the operator [(JµADR
)a]2 can be rewritten as

1

4

(
2
[
(DR)l γ

µ (DR)k
] [

(DR)k γµ (DR)l
]
−
[
(DR)k γ

µ (DR)k
] [

(DR)l γµ (DR)l
] )
. (4.127)
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Utilising the Fierz identity (B.142) to rearrange the right-handed fermion bilinears, we finally

find that only flavour-diagonal currents (dRγµdR) and (sRγµsR), but with different colour

structure are involved

[(JµADR
)a]2 =

1

4

(
2 [(DR)

α
l γ

µ (DR)
β
l ] [(DR)

α
k γµ (DR)

β
k ]−[(DR)

α
k γ

µ (DR)
α
k ] [(DR)

β
l γµ (DR)

β
l ]
)
.

(4.128)

In the second term in (4.125), flavour transitions appear as before, as soon as the current JX

is written in the mass eigenbasis (4.120).

4.9 Effective Theory below the Energy Scale E 6 ysθ12Λ

We mentioned in Section 4.3.1 that the residual non-diagonal spurion χ12(x) is a singlet under

the residual FS group G
(6)
F = U(1)uR×U(1)dR such that its VEV accounts for the CP-violating

phase δ in addition to the creation of the CKM angle θ12. However, we will neglect the effects

coming from the fluctuations around δ in the following discussion, in accordance with our

derivation of the Yukawa matrix parameterisations in (4.70) and (4.71).

4.9.1 Integrating out the Spurion Field η12

Finally, we may integrate out the field η12 which we assume to have a generic mass of order

m2
12 ∼ y2sθ212Λ2 . (4.129)

Notice that the corresponding contributions to the SU(2)DR
gauge boson masses are sublead-

ing, and have been neglected in the above analysis. 1

In complete analogy to the case of η13 (4.117), we obtain the effective 4-quark operators

1

2m2
12

(
J12
U + J

12
U + J12

D + J
12
D

)2
, (4.130)

with the currents given by

J12
U ≃

F12

2
(U

′
L, D

′
LV

†
CKM)

H̃

Λ




0 1
yc

− θ23y2byt
y2
b
y2c−y2sy2t

0 0
θ13y2byt

y2
b
y2c−y2sy2t

0
θ13 y2byc

y2
b
y2c−y2sy2t

0


UR ,

J12
D ≃

F12

2
(U

′
LVCKM, D

′
L)
H

Λ




0 − 1
ys

θ23yby
2
t

y2
b
y2c−y2sy2t

0 0 − θ13yby
2
t

y2
b
y2c−y2sy2t

0 − θ13 ysy2t
y2
b
y2c−y2sy2t

0


DR . (4.131)

1They lead however to small mass splittings between A
±
µ and A

3
µ.
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4.9.2 Global U(1)uR × U(1)dR Flavour Symmetry

Having integrated out the spurion fluctuations and gauge fields according to the spontaneous

symmetry breaking GF → G
(6)
F = U(1)uR × U(1)dR , the Yukawa matrices

YU (x) =




yu(x) e
−iπu(x) 0 0

0 yc 0

0 0 yt


 , YD(x) = VCKM




yd(x) e
−iπd(x) 0 0

0 ys 0

0 0 yb


 ,

(4.132)

contain the two leftover complex spurion fields

Y
(1)
U (x) = yu(x) · e−iπu(x) , Y

(1)
D (x) = yd(x) · e−iπd(x) . (4.133)

Their VEVs will spontaneously break the U(1)uR × U(1)dR symmetry group at the scale

Λ(6) = yu,dΛ ∼ λ8Λ, and will give rise to the masses of the lightest quarks mu and md. The

global U(1)uR × U(1)dR flavour symmetry in the effective theory below the scale ysθ12Λ acts

on the right-handed quarks of the first generation,

uR → eiθu uR , dR → eiθd dR , (4.134)

and transforms the Goldstone fields in the exponentials of Y
(1)
U (x) and Y

(1)
D (x) as

π′u = πu + θu , π′d = πd + θd . (4.135)

Due to the above shift symmetry of the Goldstone modes, the (classical) scalar potential only

depends on yu(x) and yd(x),

V0 = V0(yu, yd) . (4.136)

4.10 The Strong CP Problem

Global Flavour Symmetry of the QCD Lagrangian

The QCD Lagrangian in the limit of vanishing quark masses, as given in (3.1), possesses a

large global symmetry. To display the full symmetry, we rewrite the Lagrangian in terms of

chiral quark fields

LQCD = qL iD/ qR + qR iD/ qL −
1

2
Tr [GµνG

µν ] + Lgfix , (4.137)

where qL,R = (uL,R, cL,R, tL,R, dL,R, sL,R, bL,R) contains all the six different quark flavours, i.e.

the number of flavours Nf = 6. Obviously, the above Lagrangian is invariant under the chiral

unitary group transformations

qL → ULqL , qR → URqR , (4.138)
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corresponding to two independent rotations of qL and qR in the 6-dimensional flavour space.

Thus, there exists a U(Nf )L×U(Nf )R global flavour symmetry in the chiral limit mq → 0 of

the QCD Lagrangian.

However, as the quarks are not massless, this symmetry can only be an approximate

symmetry for quark masses mq that are much lower than the hadronic mass scale ΛQCD.

Hence the symmetry is almost exact for the up and down quark and more approximate for

the strange quark. For this reason we will work with Nf = 3. Combining the corresponding

Noether currents of the approximate U(3)L × U(3)R chiral symmetry into vector- and axial-

vector currents, we obtain

SU(3)V × U(1)V : Jaµ = qγµ
λa

2
q , Jµ = qγµq , (4.139)

SU(3)A × U(1)A : Ja5µ = qγµγ5
λa

2
q , J5µ = qγµγ5q . (4.140)

This form of the currents is convenient, as the SU(3)V symmetry has its manifestion in the

hadronic spectrum, which contains flavour multiplets that are approximately degenerate in

mass, e.g. a baryon decuplet and baryon octet (see the eightfold way [35, 36]). The U(1)V

symmetry corresponds to the baryon number symmetry restricted to the Nf -flavour case. As

the axial symmetries have not a similar pendant in the particle spectrum, it is assumed that

they are not only broken explicitly by the non-zero quark masses, but also spontaneously

by the QCD vacuum. This breaking can be realised by qq scalar condensates which acquire

non-zero VEVs, 〈0|qq|0〉 6= 0. The existence of the light pseudoscalar octet further confirms

this assumption, as they can be interpreted as the Goldstone bosons corresponding to the

broken generators of the spontaneously broken SU(3)A. However, the absence of a light

ninth isoscalar, pseudoscalar Goldstone boson in the particle spectrum — the η′ seems to be

too heavy (m2
η′ ≫ m2

π) to be a suitable candidate — evokes the so-called U(1)A problem

(originally considered in [170] for the two-flavour symmetry case corresponding to the chiral

limit mu = md = 0) which will be discussed in the following subsection.

The Resolution to the U(1)A Problem

In Section 3.1 we argued that the colour group SU(3)c is free of chiral gauge anomalies,

as the vector gauge fields couple equally to left-handed and right-handed quarks and their

contributions to the triangle diagrams cancel properly.

However, there exists a second kind of anomaly, which is related to global chiral transfor-

mations [171]. The fermion path-integral measure changes under an axial transformation and

thus the corresponding axial U(1)A fermion current is not conserved. Its non-zero divergence

is given by the Adler–Bell–Jackiw (ABJ) anomaly [172,173], resulting from the triangle graphs

which connect the axial current J5µ to two gluon fields

∂µJ5µ = ∂µ(ψγµγ5ψ) = Nf
1

8π2
Tr [GµνG̃

µν ] = Nf
1

16π2
GaµνG̃

a,µν . (4.141)
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At first sight, the presence of the anomaly seems to solve the U(1)A problem as the chiral

anomaly affects the action δΓ ∼
∫
d4x ∂µJ5µ. However, the right-hand side of (4.141) can be

reformulated as a total divergence GaµνG̃
a,µν = ∂µK

µ [174] so that δΓ is proportional to a pure

surface integral
∫
dσµK

µ. Using the naive boundary condition that the gluon gauge fields Gaµ
vanish at spatial infinity, the integral vanishes and U(1)A appears again to be an unbroken

symmetry of QCD.

The final resolution of the U(1)A problem was given by ’t Hooft [175, 176], who realised

that the QCD vacuum has a non-trivial structure and the correct boundary condition is to

require that Gaµ are pure gauge fields at spatial infinity. Apart from setting Gaµ = 0, one has

to include also the gauge-transformed version of the condition Gaµ = 0, i.e.

G′a
µ = UGaµU

† +
i

g
U∂µU

†
∣∣∣
Ga

µ=0
=
i

g
U∂µU

† . (4.142)

It turns out that with the choice of these boundary conditions there is indeed an anomaly con-

tribution and U(1)A is not a true symmetry of QCD, even though it is an apparent symmetry

of the QCD Lagrangian in the limit of vanishing quark masses. The non-trivial topological

properties of the QCD gauge configurations imply a more complicated QCD vacuum state

beyond perturbation theory. The true vacuum or θ-vacuum consists of a suitable superposi-

tion of distinct degenerate QCD vacuum states that are labelled by their topological quantum

number or winding number n. Quantum tunnelling can occur between different vacua which

can be expressed by the vacuum-to-vacuum transition amplitude in the θ-vacuum

〈0|0〉θ =
∞∑

n=−∞

∫
(DAµ)n

∫
Dφ exp [i n θ] exp

[
i

∫
d4xL(A,φ)

]
, (4.143)

with φ denoting generic matter fields. For a given toplogical sector n, the functional integration

is restricted to the QCD gauge-potential2 configurations (DAµ)n which satisfy

n =
g2s

32π2

∫
d4xGaµνG̃

aµν . (4.144)

Thus the complicated structure of the QCD vacuum effectively adds the θ-term (see (3.4))

LQCD → Leff = LQCD + LCP = LQCD + θ
g2s

32π2
GaµνG̃

aµν (4.145)

to the QCD Lagrangian. However, while solving the U(1)A problem, this term violates CP for

non-vanishing θ. Since the strong interactions are found to respect CP to very high accuracy,

as required from the strong bound on the neutron electric dipole moment, the problem turns

into a new problem called strong CP problem. Formulated differently one can ask why is CP

not badly broken in QCD, or analogously, why is the angle θ so small? Unless there is a

symmetry that can explain why θ approximately vanishes, this outcome is in conflict with the

naturalness argument and produces a fine-tuning problem.

2In the following, we concentrate on the strong-interaction gauge sector, and suppress the weak-interaction

effects in the notation.
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The Resolution to the Strong CP Problem

Including also the weak interactions, the complex generic mass matrices of the up-type and

down-type quarks have to be diagonalised in order to transform the quarks into their mass

eigenbases. This is achieved by performing a global chiral transformation under the assumption

that the QCD Lagrangian is invariant except for the axial U(1) transformation which, owing

to the anomaly, changes the value of θ to

θ̃ = θ + θEW . (4.146)

From this point of view, the strong CP problem can be formulated as the question: why should

the values of those unrelated contributions to θ̃ be such tuned that they cancel so accurately?

An explanation has been proposed by Peccei and Quinn [91–93]. Clearly the mass term

in the Lagrangian of the form ψHψ is not invariant under axial rotations involving only the

fermion fields. However, invariance can be restored if the theory obeys an enlarged axial

symmetry U(1)PQ that includes also the Higgs field. While this transformation does not

influence the already diagonalised mass terms nor the other terms in the classical Lagrangian,

it has an effect on the QCD vacuum and can be used to rotate θ̃ to zero. In the standard

Peccei–Quinn (PQ) mechanism two different Higgs doublets are necessary to ensure U(1)PQ

invariance. The Goldstone boson of the spontaneously broken U(1)PQ symmetry is called

axion.

4.10.1 Peccei–Quinn Mechanism for U(1)uR × U(1)dR

In our setup, the two residual Yukawa spurions Y
(1)
U (x) and Y

(1)
D (x) ensure that the Yukawa

coupling terms

−LYuk = UL(x)H YU (x)UR(x) +DL(x)H YD(x)DR(x) + h.c. (4.147)

respect the global symmetry when transforming the fermions under the chiral global U(1)uR×
U(1)dR flavour symmetry, and thus they inherit the task of the two Higgs doublets within the

standard Peccei–Quinn mechanism. 3 Here we recall that the effective action (in the QCD

gauge sector) changes under chiral rotations as

Γ→ Γ + n (θu + θd) , (4.148)

which is equivalent to a change in the QCD θ-parameter,

θ̃ → θ̃ − θu − θd . (4.149)

3The connection between flavour symmetries and PQ symmetries has been discussed before, see e.g. [177–

179]
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Assuming 〈yq〉 > 0, the fermion mass terms get their canonical form, after a chiral transfor-

mation of uR and dR with the corresponding phases set by 〈πu(x)〉 and 〈πd(x)〉, respectively.

To avoid the strong CP problem, one thus has to require that

〈θeff〉 ≡ θ̃ − 〈πu(x) + πd(x)〉 !
= 0 . (4.150)

This can be achieved by examining the effective potential in the non-trivial QCD θ-vacuum

which can be obtained from an expansion in small Yukawa couplings, with the leading term

coming from the n = ±1 sectors (see appendices in [90] and [93]), leading to

Vθ = V0 −K v6 Re [DetYU DetYD e
iθ̃ ] + . . . , (4.151)

where K > 0 is a positive constant. Using the explicit form of the Yukawa matrices (4.132),

Det (YU ) = yu(x)ycyte
−iπu(x) , Det (YD) = yd(x)ysybe

−iπd(x) , (4.152)

the potential can then be rewritten as

Vθ = V0 −Kv6ycytysybyu(x)yd(x) cos [πu(x) + πd(x)− θ̃ ] + . . . . (4.153)

Thus the potential (4.153) breaks the original shift symmetry for the Goldstone fields. Its

minimum is given by 〈πu + πd〉 = θ̃, and therefore 〈θeff〉 ≡ 0, as required. Notice that the

potential only depends on the combination πu(x)+πd(x), such that we identify the PQ axion

field as the linear combination

a(x) ≡ fa (πu(x) + πd(x)) , (4.154)

where the dimensional normalisation constant fa ensures a canonical axion mass dimension.

The corresponding PQ symmetry is defined such that the axion transforms as

a(x)→ a(x) + fa θPQ , (4.155)

where

θPQ = θu + θd . (4.156)

In order to determine the normalisation constant fa and to find the linear combination of

πu(x) and πd(x) orthogonal to a(x), denoted by b(x), we consider the flavour-invariant kinetic

terms and require

Λ2 ∂µY
(1)
U ∂µY

(1)†
U + Λ2 ∂µY

(1)
D ∂µY

(1)†
D

∣∣∣∣∣
yu,d→〈yu,d〉

!
=

1

2
(∂µa(x))

2 +
1

2
(∂µb(x))

2 . (4.157)

Making the ansatz b(x) = b1πu(x)− b2πd(x), this condition reduces to

Λ2(〈yu〉2(∂µπu)2 + 〈yd〉2(∂µπd)2) !
=

1

2
(f2a + b21)(∂µπu)

2 +
1

2
(f2a + b22)(∂µπd)

2

+(f2a − b1b2)(∂µπu)(∂µπd) . (4.158)
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Comparing the coefficient of the third term yields f2a = b1b2, such that we obtain

Λ2(〈yu〉2(∂µπu)2 + 〈yd〉2(∂µπd)2) !
=

1

2
(b1b2 + b21)(∂µπu)

2 +
1

2
(b1b2 + b22)(∂µπd)

2 (4.159)

which can be finally solved by

b1 =

√
2Λ〈yu〉2√

〈yd〉2 + 〈yu〉2
, b2 =

√
2Λ〈yd〉2√

〈yd〉2 + 〈yu〉2
. (4.160)

Here we restrict ourselves to the positive solution (doing otherwise would only result in an

overall change of sign), as we also do in the case of fa

fa =
√
2Λ

〈
ydyu√
y2d + y2u

〉
, b(x) = fa

(〈
yu
yd

〉
πu(x)−

〈
yd
yu

〉
πd(x)

)
. (4.161)

We also define the corresponding linear combination of U(1) charge,

θdiff =

〈
yu
yd

〉
θu −

〈
yd
yu

〉
θd , (4.162)

such that the orthogonal combination of Goldstone bosons transforms as

b(x)→ b(x) + faθdiff . (4.163)

In terms of a(x) and b(x), the up- and down-quark Yukawa couplings can be expressed as

Y
(1)
U (x) = exp

[
−i
〈

y2d
y2u + y2d

〉
a(x)

fa

]
exp

[
−i
〈

yuyd
y2u + y2d

〉
b(x)

fa

]
yu(x) ,

Y
(1)
D (x) = exp

[
−i
〈

y2u
y2u + y2d

〉
a(x)

fa

]
exp

[
+i

〈
yuyd
y2u + y2d

〉
b(x)

fa

]
yd(x) . (4.164)

Note that b(x) remains massless, apart from anomalous contributions from the electroweak

vacuum. We may or may not remove b(x) by gauging the remaining U(1)diff symmetry and

subsequently integrating out the corresponding massive gauge boson.

The axion field a(x) remains in the physical spectrum of the theory. However, compared

to the original Peccei–Quinn axion, its couplings are now determined by the scale Λ of the

Yukawa fields and not by the electroweak VEV of the two Higgs fields. In particular, the scale

Λ has to be chosen well above the electroweak scale, in which case the axion couplings become

very small, since they scale as 1/fa. Thus the phenomenology of this model will be similar to

the phenomenology of invisible axion models [97, 98].
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4.11 Summary of Chapter 4

In this chapter, we have discussed a MFV scenario, where the entries of the Yukawa matrices

are promoted to scalar fields. They become dynamical at high scales and are subject to

an appropriately chosen scalar potential. Transforming as bifundamentals under the partly

gauged SM FS, which is broken by the fermion Yukawa couplings, a cascade of scalar VEVs

generates the hierarchy in the fermion masses and mixing angles in the SM. While the gauge

bosons, corresponding to the local part of the FS group, become massive by “eating” the

Goldstone bosons within the usual Higgs mechanism, the global chiral U(1) factors can serve

as a Peccei–Quinn symmetry for a possible resolution of the strong CP problem.4

Our scenario necessarily has to be understood in the context of an effective theory approx-

imation of a more fundamental underlying theory. The canonical dimension of the Yukawa

spurions implies that the Yukawa interactions are described by dimension-5 operators. More-

over, considering the usual SM fermion representations, we encounter gauge anomalies due to

the chiral nature of the SM FS group. Appropriate higher-dimensional operators involving

the Goldstone fields have to be added to formally restore the local symmetry. In this way,

we have constructed a consistent non-renormalisable effective theory of a smaller FS group,

which arises at an intermediate step in the sequential FS breaking.

According to the chosen breaking pattern, the masses of the new heavy gauge bosons

as well as of the new physical Higgs modes are hierarchically ordered. They determine the

sequence of integrating out the heavy degrees of freedom by using the equations of motion,

and thus specify the validity scales of the series of effective field theories.

Though we have not included a detailed phenomenological analysis, a few remarks about

the general structure of the obtained effective 4-quark operators could be made. In order to be

in line with the experimental constraints from precision measurements in the K and B sector,

the induced flavour transitions of the new states have to be suppressed by sufficiently large

masses. Thus the most stringent constraint will be set from the the spurion field η12(x) which

receives the lightest mass out of the spontaneous breakdown of the local flavour symmetry.

4If the concept of MFV is applied to discrete subgroups of the FS as discussed in [180], no Goldstone bosons

arise from its breaking.
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Warped Extra Dimensions

5.1 The Randall–Sundrum Model with Custodial Protection

As motivated in the introduction, we consider a Randall–Sundrum (RS) model in which the

usual infinite space-time coordinates xµ = x are augmented by a single warped extra dimension

restricted to an interval y ∈ [0, L]. At the same time we implement a custodial protection for

the RS model (RSc model) due to the choice of a SU(3)c×SU(2)L×SU(2)R×U(1)X ×PLR
symmetry group in the 5D bulk. The 5D bulk is limited by two four-dimensional branes that

are called UV brane (y = 0) and IR brane (y = L). While the SM gauge and fermion fields are

allowed to propagate in the bulk, we will show below that the Higgs field has to be localised

on or near the IR brane in order to solve the hierarchy problem.

The RS Metric

The basic ingredient of the model under consideration is the RS metric [99] defined by the

line element

ds2 = GNM (x, y)dxNdxM = e−2kyηµνdx
µdxν − dy2 , (5.1)

which corresponds to a slice of 5D anti-de-Sitter spacetime (AdS5) and preserves 4D Poincaré

invariance. Due to the AdS/CFT correspondence [181], the 5D AdS space is related to a 4D

conformal field theory (CFT). This dual description, linking a 5D weakly coupled theory with

a 4D strongly interacting one, offers the possibility to determine certain quantities, e.g. the

Higgs potential, in composite Higgs models [111,112,182].

The exponential factor, multiplying the 4D Minkowski metric tensor, indicates a non-

factorisable metric and is known as the warp factor. This factor depends explicitly on the

fifth-dimensional coordinate and on the parameter k, which is assumed to be of order of the

Planck scale MPl ≃ 1019 GeV. Using the following signature of the 5D Minkowski metric

tensor of the flat space

ηAB = Diag (1,−1,−1,−1,−1) , (5.2)

65



66 Chapter 5: Warped Extra Dimensions

the metric tensors of the warped metric GNM (x, y) and its inverse GNM (x, y) are specified by

GNM (x, y) =





−1 forN =M = 5 ,

e−2ky forN =M = µ ,

0 otherwise ,

GNM (x, y) =





−1 forN =M = 5 ,

e2ky forN =M = µ ,

0 otherwise .

(5.3)

Generally we are using A,B, ... for the indices of the tangent space and M,N, ... for the curved

space. The warped metric tensors fulfil the condition

GNMG
MP = δPN , (5.4)

such that GMNG
MN is equal to the dimensionality D = 5 of the space-time manifold. For

convenience we introduce abbreviations for the determinants

G = Det (GMN ) = e−8ky and G−1 = Det (GMN ) = e8ky. (5.5)

The Hierarchy Problem

In order to demonstrate that the non-factorisable metric supplies a solution to the hierarchy

problem [99], we consider a fundamental 5D Higgs field located at the IR brane which is

described by the action

SHiggs
IR =

∫
d4x
√
GIR

(
GµνIRDµH

†DνH − λ(H†H − v20)2
)
. (5.6)

Inserting the metric factors

GIR = G |y=L
(5.5)
= e−8kL and GµνIR = Gµν |y=L

(5.3)
= e2kLηµν , (5.7)

the action can be reformulated as

SHiggs
IR =

∫
d4x

(
e−2kLηµνDµH

†DνH − λe−4kL(H†H − v20)2
)
. (5.8)

To obtain a canonically normalised Higgs, the rescaling of the Higgs according to H → ekLH

SHiggs
IR ⊃

∫
d4x

(
ηµνDµH

†DνH − λ(H†H − e−2kLv20)
2
)
, (5.9)

induces the relation v ≡ e−kLv0 between the physically relevant 4D effective mass scale v and

the breaking scale v0 of the fundamental 5D theory. Assuming that the 5D fundamental scale

is of order of the Planck scale, the warp factor generates an effective energy scale MPl e
−kL on

the IR brane. In the following we will choose e−kL ≃ 10−16, which corresponds to kL ∼ 36,

such that the effective mass scale on the IR brane is of order of the TeV scale. Indicating

the two effective energy scales, the UV brane is also called Planck brane and the IR brane is

referred to as the TeV brane (see also Figure 5.1).
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Variation of the 5D Action

The aim of the next chapters will be to shed some light on the various components of the 5D

fundamental action

S =

∫
d4x

∫ L

0
dy L =

∫
d4x

∫ L

0
dy (Lgauge + Lfermion + LHiggs + LYuk) . (5.10)

Starting point for the derivation of the equations of motion for the fields Φ living in the bulk

is the variation principle of the five-dimensional action

δS =

∫
d4x

∫ L

0
dy

(
∂L
∂Φ

δΦ +
∂L

∂(∂MΦ)
δ(∂MΦ)

)
!
= 0 . (5.11)

Performing an integration by parts over the ordinary 4D coordinates, we require that the fields

vanish at infinity. Thus the boundary terms disappear and (5.11) can be rewritten as

δS =

∫
d4x

∫ L

0
dy

(
∂L
∂Φ

δΦ− ∂µ
∂L

∂(∂µΦ)
δΦ+

∂L
∂(∂5Φ)

δ(∂5Φ)

)
!
= 0 . (5.12)

However, in order to produce a generalised 5D version of the 4D equations of motion, we have

to perform an integration by parts with respect to the extra dimension as well. In this case

one has to keep the finite boundary terms and (5.12) splits into two pieces

δS =

∫
d4x

∫ L

0
dy

[
∂L
∂Φ
− ∂M

(
∂L

∂(∂MΦ)

)]
δΦ +

[∫
d4x

(
∂L

∂(∂5Φ)

)
δΦ

]L

0

!
= 0 . (5.13)

Thus, in addition to the equations of motions corresponding to the first term in (5.13), the

full action is only minimised if the second term, which is evaluated at the two boundaries, also

vanishes. From this requirement a set of consistent boundary conditions (BCs) results, which

can be of Neumann (∂5Φ|0,L = 0) or Dirichlet (Φ|0,L = 0) kind, or a mixture of both.

5.2 Gauge Sector of the RSc Model

To begin with, we focus on the gauge sector of the 5D action (5.10). We discuss the various

constituents of the bulk symmetry group

Gbulk = SU(3)c × SU(2)L × SU(2)R × U(1)X × PLR , (5.14)

and give a very brief overview of gauge-fixing terms in 5D theories. Furthermore, we illustrate

the breaking of the bulk gauge group on the UV brane through an appropriate choice of

BCs. In Section 5.3 we will continue with the discussion of the bulk gauge-group breaking via

EWSB.
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Gauge Boson Content of the RSc Model

Corresponding to the local part of the bulk symmetry group, the Lagrangian consists of four

different field strength tensors

Lgauge =
√
G
(
− 1

4
GAMNG

A,MN − 1

4
LaMNL

a,MN − 1

4
RαMNR

α,MN − 1

4
XMNX

MN
)
, (5.15)

where the factor of
√
G ensures an invariant integration measure. In detail, the SU(3)c field

strength tensor with 5D strong coupling constant gs reads

GAMN = ∂MG
A
N − ∂NGAM − gsfABCGBMGCN (A = 1, . . . , 8) , (5.16)

where the SU(3)c indices are denoted by capital Latin letters A,B, . . . , but are usually made

implicit in order to simplify the notation.1

The discrete symmetry PLR, joining the bulk gauge group, describes the interchange be-

tween the two SU(2) groups of the electroweak sector. It implies the equality of the 5D gauge

couplings (gL = gR = g), such that the SU(2)L and SU(2)R non-abelian field strength tensors

are given by

LaMN = ∂MW
a
L,N − ∂NW a

L,M − g εabcW b
L,MW

c
L,N (a, b, c = 1, 2, 3) ,

RαMN = ∂MW
α
R,N − ∂NWα

R,M − g εαβγW β
R,MW

γ
R,N (α, β, γ = 1, 2, 3) . (5.17)

In order to distinguish between the two SU(2) groups, we denote the SU(2)L indices by lower-

case Latin letters a, b, . . . and the SU(2)R indices by lower-case Greek letters α, β, . . . . The

abelian U(1)X gauge boson with the corresponding field strength tensor

XMN = ∂MXN − ∂NXM (5.18)

couples with the 5D coupling constant gX . Note that the sign of the 5D gauge coupling

constants throughout this chapter are opposite to the definition in (2.11). Moreover, the

coupling constants have mass dimension −1/2, reflecting the non-renormalisability of the 5D

theory.

As already mentioned in the introduction, the KK decomposition allows to separate the 5D

bulk fields into KK modes or KK excitations φ(n)(x), which depend only on the 4D coordinate

x, and the KK profiles or shape functions f (n)(y), depending only on the extra-dimensional

coordinate y

Φ(x, y) =
1√
L

∞∑

n=0

φ(n)(x)f (n)(y) . (5.19)

The KK decomposition is an essential ingredient in deriving an effective 4D theory from the

5D one, since it enables to perform the integration over the fifth dimension
∫ L
0 dyL → L4Deff .

1Without the colour indices, the distinction between the metric tensor and the field strength tensor has to

be derived from the context.
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Gauge-Fixing Terms

In general, a 5D gauge field consists of a 4D gauge field Vµ and a 4D scalar V5 which corresponds

to its fifth component. Thus, the 4D gauge field does not only mix with the usual scalar Higgs

modes, but also with V5 through the pure gauge kinetic terms. In order to eliminate those

mixing terms one has to add appropriate Rξ-gauge fixing terms. As indicated in [183], it is not

advantageous to add a covariant 5D gauge-fixing term of the form L5Dgfix = −1/(2ξ)(∂MVM )2,

which one would naively suggest in an SO(1, 4) invariant 5D theory. Instead — as compact-

ification in general breaks SO(1, 4) invariance anyway — one can choose a non-covariant 5D

generalised gauge-fixing condition of the form L5Dgfix = −1/(2ξ)(∂µV µ − ξ∂5V5)2. After per-

forming the KK decomposition, one obtains the usual propagators for the 4D gauge fields

within the covariant 4D Rξ-gauges. Following [184], additional boundary gauge-fixing terms

have to be introduced in order to eliminate the mixing terms arising at the boundaries as well.

However, one can follow a different strategy and carry out the KK expansion first, then

apply the integral over the fifth dimension and add the generalised 4D Rξ-gauge fixing La-

grangian L4Dgfix in the effective 4D theory [185]. The Goldstone bosons then correspond to linear

combinations of the KK modes from the former 5D scalar and the non-physical fluctuations

around the Higgs VEV. This method is convenient within the so-called perturbative approach

of EWSB, which is widely used in the literature [103, 183, 186–188]. It means that one first

ignores all effects from EWSB and then treats the Higgs coupling as a perturbation after the

KK expansion has been performed.2 As a consequence of the perturbative approach, the bulk

equations of motion as well as the boundary conditions follow from the free 5D action and are

not affected by the Higgs VEV. The approach is particularly convenient as the effects from

EWSB can be treated as small perturbations to the mass matrices arising from the EDIM

setup. We will also use this approach in the following, and choose to work in the gauge V5 = 0

together with the constraint ∂µV
µ = 0.

Gauge Symmetry Breaking on the UV brane

As already mentioned in Section 5.1, the variation of the full 5D action separates into two

pieces (5.13). From the first part the bulk equation of motions can be deduced while the

second one requires boundary conditions which are consistent with the action principle. The

natural BCs for pure gauge theories on an interval read

∂5W
a
L,µ

∣∣
0,L

= 0 (NeumannBC) and W a
L,5

∣∣
0,L

= 0 (DirichletBC) . (5.20)

However, the introduction of boundary scalar fields on both branes which develop an infinitely

large VEV allow for the opposite choice of BCs (see [184,193] for further details)

W a
L,µ

∣∣
0,L

= 0 (DirichletBC) and ∂5W
a
L,5

∣∣
0,L

= 0 (NeumannBC) . (5.21)

2The complementary approach, solving the equations of motion already in the presence of EWSB, has been

followed e.g. in [184,189–192].
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Analogously a mixture of the above BCs for the different boundaries may be obtained if the

decoupling scalar is added on only one boundary of the extra dimension. In the following we

use the abbreviations + (−) for a Neumann (Dirichlet) BC and assign them to the bracket

(UV IR).

With the general KK decomposition ansatz (5.19), we explicitly solved the EOM in the

Appendix B, and found that the gauge KK profiles are given by

f (0)gauge(y) = 1 and

f (n)gauge(y) =
eky

Nn

[
J1

(mn

k
eky
)
+ b1(mn)Y1

(mn

k
eky
)]
, (n = 1, 2, . . . ) . (5.22)

A zero mode profile f
(0)
gauge(y) exists only for (++) BCs, J1(x) (Y1(x)) denote the Bessel

functions of first (second) kind, and the normalisation factor Nn (B.52) follows from the

normalisation condition. While the zero mode profile is flat, the specific form of f
(n)
gauge(y) in

(5.22) implies that the excited gauge KK profiles are localised near the IR brane. The explicit

expressions for b1(mn) and the massmn of the n-th KK mode, defined by (∂µ∂
µ+m2

n)φ
(n) = 0,

depend on the specific choice of BCs on the branes.

For fields with (++) boundary conditions, the profiles have to fulfil

∂yf
(n)
gauge(y)

∣∣∣
y=0,L

= 0 (5.23)

and one obtains the relation [103]

b1(mn) = −
J1(mn/k) +mn/k J

′
1(mn/k)

Y1(mn/k) +mn/k Y ′
1(mn/k)

= b1(mne
kL) . (5.24)

This can only be solved numerically with the following solution

mgauge
1 (++) ≃ 2.45f ≡M++ , (5.25)

where we have introduced the effective new physics scale f = ke−kL ∼ O(1TeV).

Similarly for (−+) fields, which have to fulfil

f (n)gauge(y)
∣∣∣
y=0

= ∂yf
(n)
gauge(y)

∣∣∣
y=L

= 0 , (5.26)

one finds

b1(mn) = −
J1(mn/k)

Y1(mn/k)
= −J1(mne

kL/k) +mne
kL/k J ′

1(mne
kL/k)

Y1(mnekL/k) +mnekL/k Y ′
1(mnekL/k)

, (5.27)

with the numerical result

mgauge
1 (−+) ≃ 2.40f ≡M−+ . (5.28)

Thus, the ∼ 2% suppression of the numerical solution in the latter case is a direct consequence

of the different BCs on the UV brane [186]. Note that the KK masses for the gauge bosons
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neither depend on the gauge group nor on the size of the gauge coupling, but are universal

for all gauge bosons with the same BCs. Whereas fields with (++) BCs have zero modes in

addition to their massive KK modes, fields with mixed BCs only contain massive KK modes.

In order to avoid non-observed light gauge bosons apart from the SM content, we require the

following set of BCs

W a
L,µ(++) , Bµ(++) ,

W b
R,µ(−+) , ZX,µ(−+) , (5.29)

where a = 1, 2, 3, and b = 1, 2. Remember that the BCs for the 4D gauge field automatically

imply opposite BCs for its fifth component (5.20)–(5.21). The fact that the RSc gauge content

does not include any 4D gauge fields with Dirichlet BC on the IR brane (5.29) then confirms

our choice of the V5 = 0 gauge.

The above given BCs (5.29) can be realised by adding a scalar on the UV brane which

transforms as a doublet under SU(2)R and carries a non-trivial U(1)X charge QX = 1/2.

In developing an infinite VEV, the scalar decouples from the theory. The BCs induce the

symmetry breakdown

SU(2)L × SU(2)R × PLR × U(1)X
UV brane−−−−−−→ SU(2)L × U(1)Y (5.30)

on the UV brane, where the quantum numbers are related by

Y

2
= T 3

R +QX . (5.31)

The new linear combinations of the fields are given by

ZX,µ = cosφW 3
R,µ − sinφXµ , Bµ = sinφW 3

R,µ + cosφXµ , (5.32)

where

cosφ =
g√

g2 + g2X

, sinφ =
gX√
g2 + g2X

. (5.33)

At this stage, the zero modes of the gauge bosons W a
L,µ and Bµ are massless, but in the course

of EWSB they will receive small mass contributions of O(v2). After the diagonalisation of

the mass matrices, the zero modes get small admixtures of higher KK modes and lead to the

gauge mass eigenstates which can be identified with the SM gauge bosons W±
µ , Zµ and Aµ.

Anticipating the effects of EWSB, it will be useful to follow [186] and define the fields

W±
L,µ =

W 1
L,µ ∓ iW 2

L,µ√
2

, W±
R,µ =

W 1
R,µ ∓ iW 2

R,µ√
2

, (5.34)

as well as the electrically neutral linear combinations

Zµ = cosψW 3
L,µ − sinψBµ , Aµ = sinψW 3

L,µ + cosψBµ , (5.35)
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where again sinψ is given in terms of the gauge couplings (see (5.33) for the definition of φ)

cosψ =
1√

1 + sin2 φ
, sinψ =

sinφ√
1 + sin2 φ

= sinφ cosψ . (5.36)

Due to the above mentioned mixing between the gauge boson zero and KK modes, sinψ differs

from sin θW (3.30) by corrections of O(v2/f2).

5.3 Higgs Sector and Electroweak Symmetry Breaking

In the previous section, we discussed the breaking of the EW bulk gauge symmetry to the

SM gauge group through an appropriate choice of boundary conditions of the gauge bosons

on the UV brane. To mimic the standard EWSB, SU(2)L × U(1)Y → U(1)Q, we introduce a

Higgs field which transforms as a singlet under the U(1)X bulk symmetry (QX(H) = 0) and

as a bidoublet under SU(2)L × SU(2)R. In contrast to the global transformation behaviour

of the Higgs bidoublet in (3.35), we choose UTR (x) instead of U †
R(x) as transformation matrix,

H ′ = UL(x)H UTR (x) = eiα
a
L
(x)Ta

L H eiα
b
R
(x)(T b

R
)T = eiα

a
L
(x)Ta

L H eiα
b
R
(x)(T b

R
)∗ , (5.37)

such that the various components of the Higgs bidoublet have the following assignments of

SU(2)L,R isospin quantum numbers (T 3
L, T

3
R)

H =

(
H11 H12

H21 H22

)
∼
(
(+1

2 ,+
1
2) (+1

2 ,−1
2)

(−1
2 ,+

1
2) (−1

2 ,−1
2)

)
. (5.38)

Since the conjugated Higgs H̃ = σ2H∗σ2 has the same transformation behaviour as H one

can impose the self-duality condition H
!
= H̃. This requirement implies the two independent

conditions

H11 = H∗
22 and H12 = −H∗

21 , (5.39)

such that the degrees of freedom are reduced from eight to four real parameters and H can

be represented by

H =

(
H11 H12

−H∗
12 H∗

11

)
:= Haα . (5.40)

By construction, the Higgs Lagrangian

LHiggs =
√
G
(
(DMH)†aα(D

MH)aα − V (H)
)
, (5.41)

with the covariant derivative

(DMH)aα = ∂MHaα + ig(τ c)abW
c
L,MHbα + ig(τγ)αβW

γ
R,MHaβ (5.42)

is gauge invariant under local SU(2)L × SU(2)R transformations. Thus, if the Higgs VEV

induces the breaking

SU(2)L × SU(2)R × PLR → SU(2)V × PLR , (5.43)
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an unbroken custodial SU(2)V symmetry is preserved, which protects the ρ-parameter from

radiative corrections as discussed in Section 3.5. However, here the custodial symmetry needs

to be gauged to protect the Higgs sector since a global symmetry in the CFT corresponds to

a gauge symmetry in the 5D theory [194].

As the scalar KK modes turn out to be much heavier than the gauge and fermionic res-

onances [103], we neglect them in what follows and truncate the KK expansion already after

the zero mode according to

H(x, y) =
1√
L

∞∑

n=0

H(n)(x)f
(n)
H (y) =

1√
L
H(0)(x)f

(0)
H (y) + ... ≡ 1√

L
H(x)h(y) + ... , (5.44)

where the Higgs potential V (H) generates a non-vanishing VEV only for the Higgs zero

mode. As we do not specify the Higgs potential, we cannot solve the bulk equations of motion

explicitly, but merely assume the zero mode profile

h(y) =
√

2kL(β − 1) ekL eβk(y−L) . (5.45)

This form corresponds to the general solution for a zero mode in the limit β ≫ 1 for a Higgs

field localised near the IR brane (B.66), and fulfils the normalisation condition (B.51)

1

L

∫ L

0
dy e−2kyh(y)2 = 1 . (5.46)

The VEV of the Higgs zero mode respects a residual SU(2)V symmetry (see Section 3.5),

if and only if it is invariant under the (infinitesimal) transformation of (5.37) with αbR(x) =

αaL(x) = αa(x) and T bR = T aL

〈H(x)〉′ = 〈H(x)〉 + iαa(x)T aL 〈H(x)〉 + 〈H(x)〉 iαa(x)T a∗L
!
= 〈H(x)〉 . (5.47)

For the self-dual Higgs field (5.40) this condition is fulfilled for

〈H(x)〉 =
(

0 −v/2
v/2 0

)
, (5.48)

where v denotes the 4D VEV with the value v = 246GeV. Parameterising the Higgs bidoublet

in a linear manner

H(x) =

(
π+/
√
2 −(h0 − iπ0)/2

(h0 + iπ0)/2 π−/
√
2

)
, (5.49)

h0(x) represents the neutral real scalar Higgs field that develops the non-vanishing VEV v,

and π+, π−, π0 are the Goldstone fluctuations according to the three broken generators. In

(5.49), the upper index indicates the electric charges of the fields and the factors of two are

chosen such that all scalar fields are canonically normalised.

Combining the two symmetry breaking steps, we see that the low-energy effective theory

is described by the spontaneous breaking

SU(2)L × U(1)Y → U(1)Q , (5.50)
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Figure 5.1: EW symmetry breaking pattern of the RSc model.

as required by phenomenology. Moreover, the hypercharge operator Y/2 = T 3
R+QX is modified

to

Q = T 3
L +

Y

2

(5.31)
= T 3

L + T 3
R +QX . (5.51)

The EW symmetry breaking pattern of the model is displayed in Figure 5.1.

5.4 Gauge Boson Masses

In this chapter we determine the contribution to the gauge boson masses originating from the

Higgs mechanism, where we concentrate only on the zeroth and first KK gauge boson modes.

Including the KK masses from the extra-dimensional setup, we collect the mass contributions

for the neutral and charged gauge bosons and place them in 3× 3 mass matrices. The explicit

diagonalisation of the latter will be subject of the following section.

QED and QCD Gauge Boson Masses

Due to the unbroken gauge invariance of QED and QCD, the gluon and photon fields including

their KK modes do not couple to the Higgs boson at leading order in perturbation theory.

Their masses are solely given by the extra-dimensional setup

MA(0) = 0 , MA(1) = mgauge
1 (++) =M++ ,

MG(0) = 0 , MG(1) = mgauge
1 (++) =M++ , (5.52)
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and neither mixings with each other nor with the neutral EW gauge bosons Z and ZX arise.

EW Gauge Boson Masses

The EW gauge bosons (W
(0,1)±
L , W

(1)±
R , Z(0,1), Z

(1)
X ) get O(v2) masses from their couplings

to the Higgs boson, which are contained in the Higgs kinetic term

LHiggs ⊃
g2

L
e−2ky

[
(τ cW c

L,µ)ab 〈H(x)〉bα + 〈H(x)〉aβ (τγW
γ
R,µ)

T
βα

]†

[
(τ cW c,µ

L )ab 〈H(x)〉bα + 〈H(x)〉aβ (τγW
γ,µ
R )Tβα

]
h(y)2dy , (5.53)

where we used the explicit expressions for the RS metric. Inserting the Higgs VEV (5.48) and

switching into the basis of W±
L,R,

W 1
L,R =

W+
L,R +W−

L,R√
2

, W 2
L,R = i

W+
L,R −W−

L,R√
2

, (5.54)

we obtain the mass contributions to the charged EW gauge bosons

LHiggs ⊃
g2v2

4L
e−2kyh(y)2

(
W+
LW

−
L +W+

RW
−
R −W+

LW
−
R −W+

RW
−
L

)
, (5.55)

and the neutral EW gauge bosons

LHiggs ⊃
g2v2

8L
e−2kyh(y)2

(
W 3
LW

3
L +W 3

RW
3
R − 2W 3

RW
3
L

)
. (5.56)

Charged EW Gauge Boson Masses

Expanding also the gauge boson fields in (5.55) up to their first KK modes, the Lagrangian

can be reformulated by

LHiggs ⊃
g2v2

4L2
e−2ky h(y)2

[
W

(0)+
L W

(0)−
L

+ g(y)(W
(0)+
L W

(1)−
L +W

(1)+
L W

(0)−
L )− g̃(y) (W (0)+

L W
(1)−
R +W

(1)+
R W

(0)−
L )

+ g(y)2W
(1)+
L W

(1)−
L + g̃2(y)W

(1)+
R W

(1)−
R − g(y)g̃(y)(W (1)+

L W
(1)−
R +W

(1)+
R W

(1)−
L )

]
,

(5.57)

where we have introduced the short-hand notation

g(y) = f (1)gauge(y, (++)) (5.58)

for the bulk shape function of Z(1), W
(1)±
L , and

g̃(y) = f (1)gauge(y, (−+)) (5.59)

for the bulk shape function of Z
(1)
X , W

(1)±
R . In order to obtain the masses in the effective 4D

theory, we perform the integral over the extra dimension. The first term in (5.57) with the
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two left-handed flat zero mode profiles simplifies due to the normalisation condition of the

Higgs zero mode profile (5.46). For the other terms, we define the overlap integrals containing

one KK mode

I+1 =
1

L

∫ L

0
dy e−2kyg(y)h(y)2 , I−1 =

1

L

∫ L

0
dy e−2kyg̃(y)h(y)2 , (5.60)

corresponding to integrals arising from the second line in (5.57), or two KK modes

I++
2 =

1

L

∫ L

0
dy e−2kyg(y)2h(y)2 , I−−

2 =
1

L

∫ L

0
dy e−2kyg̃(y)2h(y)2 ,

I−+
2 =

1

L

∫ L

0
dy e−2kyg(y)g̃(y)h(y)2 , (5.61)

from the third line. Including the heavy KK masses for the gauge fields according to (5.25)

and (5.28) in addition to the Higgs-induced mass terms, one finds that the complete mass

matrix for the charged gauge bosons contained in

Lchargedmass =
(
W

(0)+
L W

(1)+
L W

(1)+
R

)
M2

charged



W

(0)−
L

W
(1)−
L

W
(1)−
R


 , (5.62)

reads explicitly

M2
charged =




g2v2

4L
g2v2

4L I
+
1 − g2v2

4L I
−
1

g2v2

4L I
+
1 M2

++ + g2v2

4L I
++
2 − g2v2

4L I
−+
2

− g2v2

4L I
−
1 − g2v2

4L I
−+
2 M2

−+ + g2v2

4L I
−−
2


 . (5.63)

As the mass dimension of g2/L is zero, the entries of the squared 4D mass matrix indeed have

the right dimension. The off-diagonal elements in (5.63) induce mixings between the various

modes which will be determined in the next section.

Neutral EW Gauge Boson Masses

The same procedure leads to the Higgs contribution for the neutral EW gauge boson masses.

Expressing W 3
L,R in terms of the physical fields Z, ZX , A with the help of

W 3
L = cosψZ + sinψA ,

W 3
R = ZX cosφ− sin2 ψ

cosψ
Z + sinψA , (5.64)

the terms in (5.56) lead to the following mass terms of Z and ZX

LHiggs ⊃
g2v2

8L
e−2kyh(y)2

(
−2 cosφ

cosψ
ZZX +

1

cos2 ψ
Z2 + cos2 φZ2

X

)
. (5.65)
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Applying the KK expansion and integrating over the extra dimension, the masses of the neutral

electroweak gauge bosons, including the heavy KK masses, reads

Lneutralmass =
1

2

(
Z(0) Z(1) Z

(1)
X

)
M2

neutral



Z(0)

Z(1)

Z
(1)
X


 , (5.66)

where

M2
neutral =




g2v2

4L cos2 ψ
g2v2 I+

1
4L cos2 ψ

− g2v2 cos φI−
1

4L cosψ
g2v2 I+

1
4L cos2 ψ M2

++ +
g2v2 I++

2
4L cos2 ψ − g2v2 cosφ I−+

2
4L cosψ

− g2v2 cosφ I+
1

4L cosψ − g2v2 cosφ I−+
2

4L cosψ M2
−+ +

g2v2 cos2 φ I−−
2

4L


 . (5.67)

Again, mixing of the modes with same electric charge are induced by EWSB.

5.5 Analytic Diagonalisation of the EW Gauge Boson Mass Ma-

trices

In order to find the physical mass eigenstates, the mass matrices M2
charged andM2

neutral have

to be diagonalised. Being real and symmetric, this can be achieved by a rotation with the

orthogonal transformation matrices GW and GZ . The gauge eigenstates are then related to

the mass eigenstates (W±, W±
H , W ′±) and (Z, ZH , Z ′) according to



W

(0)±
L

W
(1)±
L

W
(1)±
R


 = GTW



W±

W±
H

W ′±


 ,



Z(0)

Z(1)

Z
(1)
X


 = GTZ



Z

ZH

Z ′


 . (5.68)

The hierarchy between the O(v2) mass contributions from EWSB and the heavy KK masses

M2
++ ∼ M2

−+ ∼ M2 ∼ f2 from the extra-dimensional setup, allows for a perturbative diago-

nalisation with respect to the expansion parameter

ǫ =
g2v2

4LM2
∼ O

(
v2

f2

)
. (5.69)

As the two EW gauge boson mass matrices (5.63) and (5.67) have the same hierarchical

structure, we can conduct the diagonalisation procedure for both cases simultaneously by

considering the symmetric matrix

A =M2




A11 ǫ A12 ǫ A13 ǫ

A12 ǫ 1 +A22 ǫ A23 ǫ

A13 ǫ A23 ǫ 1 +A33 ǫ


 . (5.70)

The coefficients Aij (i, j = 1, 2, 3) are arbitrary, but of O(1) in order not to spoil the hierarchy.

In the Appendix B.6, we calculate the corresponding eigenvalues up to O(ǫ2) and the eigen-

vectors up to O(ǫ), with the help of two different approaches. In the “direct” one, in which
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we have in principle the exact formulae for determining the eigenvalues and eigenvectors at

hand and we use the ǫ expansion to avoid the increasing complexity order by order. The

second method is based on the algorithm of Rayleigh–Schrödinger, where, due to the nature

of a perturbation theory, the expansion is implemented from the early beginning. The three

real eigenvalues of the matrix A in terms of the general elements Aij in both approaches are

found to be

λ1 = A11M
2ǫ− (A2

12 +A2
13)M

2ǫ2 (5.71)

λ2,3 = M2 +
M2

2
(A22 +A33 ±B) ǫ

+
M2

2B

(
±4A12A13A23 +A2

12(B ± F ) +A2
13(B ∓ F )

)
ǫ2 . (5.72)

The auxiliary quantities B and F used in (5.72) stand for

F = A22 −A33 , B =
√

4A2
23 + F 2 , with B2 > F 2 , (5.73)

from which we receive the relation

A23 = sgn [A23]
1

2

√
B2 − F 2 . (5.74)

Obviously, the eigenvalues λ2,3 are degenerate at zeroth order in perturbation theory. However,

if B 6= 0, the degeneracy is lifted at O(ǫ). The corresponding normalised eigenvectors to O(ǫ)
accuracy are summarised by

vTλ1,norm =
(
1, −A12 ǫ, −A13 ǫ

)
,

vTλ2,norm =

(
(2A12A23 + (B − F )A13) ǫ, 2A23 − (B−F )X

B2 ǫ, (B − F ) + 2A23X
B2 ǫ

)

√
2B(B − F )

,

vTλ3,norm =

(
(−2A13A23 + (B − F )A12) ǫ, (B − F ) + 2A23X

B2 ǫ, −2A23 +
(B−F )X

B2 ǫ
)

√
2B(B − F )

, (5.75)

where we have introduced the short-hand notation

X = FA12A13 +A23(A
2
13 −A2

12) . (5.76)

To zeroth order in perturbation theory, the eigenvectors vλ2,norm and vλ3,norm span the 2-

dimensional degenerate subspace. Since its columns represent an orthogonal rotation matrix,

we define the corresponding rotation angle ξ by

sin ξ :=
2 |A23|√
2B(B − F )

(5.74)
=

√
1

2
+

F

2B
, cos ξ :=

(B − F )√
2B(B − F )

=

√
1

2
− F

2B
. (5.77)

Introducing in addition the definitions

sinχ := −sgn [A23] sin ξ +
X

B2
cos ξ ǫ , cosχ := cos ξ +

X

B2
sgn [A23] sin ξ ǫ , (5.78)
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and utilising sgn [A23] sin ξ = sin [±ξ] for A23 ≷ 0, (5.75) can be brought into the compact

form

vTλ1,norm =
(

1, −A12ǫ, −A13ǫ
)
,

vTλ2,norm =
(

(A12 sin [±ξ] +A13 cos ξ) ǫ, − sinχ, cosχ
)
,

vTλ3,norm =
(

(−A13 sin [±ξ] +A12 cos ξ) ǫ, cosχ, sinχ
)
. (5.79)

Explicit Expressions for Charged EW Gauge Bosons

Being equipped with the formulae of the previous subsection, it is straightforward to give the

explicit expressions for the charged and neutral gauge boson mass eigenvalues as well as the

corresponding mass eigenstates. Introducing the parametrisation we used in [120],

M2
++ =M2 + av2 , M2

−+ =M2 − av2 , (5.80)

one can identify the elements of the charged gauge boson mass matrix with

A11 = 1 , A22 =
4La
g2

+ I++
2 , A33 = −4La

g2
+ I−−

2 ,

A12 = I+1 , A13 = −I−1 , A23 = −I−+
2 ,

(5.81)

where sgn [A23] = −1 and numerically the parameter a ∼ O(1) for f ∼ O(1TeV).

Instead of putting the entries into the general formulae, we will give for simplicity only the

expressions in the limit we took in [120]. According to the approximation to calculate O(v2/f2)
corrections to the couplings of W± and Z but to include only O(1) couplings involving heavy

gauge boson mass eigenstates, we set the coefficients δij in the ansatz

I−−
2 = I2, I−+

2 = I2
(
1 + δ−+ v

2

f2

)
, I++

2 = I2
(
1 + δ++ v

2

f2

)
, (5.82)

to zero and thus a universal I2 will show up in the expressions. To this approximation, we

receive the auxiliary quantities for the charged gauge boson masses

F ∼ 8La

g2
, B ∼ 2

g2

√
g4I22 + 16L2a2 , (5.83)

which enter the expressions for the mass eigenvalues

M2
W =

g2v2

4L
− g4v4

16L2M2
((I+1 )2 + (I−1 )2) ,

M2
W ′,WH

= M2 +
v2

4L

(
g2 I2 ±

√
g4 I22 + 16L2a2

)
. (5.84)

The corresponding eigenvectors span the orthogonal transformation matrix

GTW =




1 ǫ
(
I+1 cos ξ − I−1 sin ξ

)
−ǫ
(
I+1 sin ξ + I−1 cos ξ

)

−ǫ I+1 cos ξ − sin ξ

ǫ I−1 sin ξ cos ξ


 , (5.85)
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where

sin ξ ∼
√

1

2
+

2La√
g4I22 + 16L2a2

, cos ξ ∼
√

1

2
− 2La√

g4I22 + 16L2a2
. (5.86)

According to equation (5.68), GTW relates the mass eigenstates (W±, W±
H , W ′±) to the gauge

eigenstates (W
(0)±
L , W

(1)±
L , W

(1)±
R ).

Explicit Expressions for Neutral EW Gauge Bosons

For the neutral EW gauge bosons, we identify the following elements corresponding to the

neutral gauge boson mass matrix in (5.67)

A11 =
1

cos2 ψ
, A22 =

4La
g2

+
I++
2

cos2 ψ
, A33 = −4La

g2
+ I−−

2 cos2 φ ,

A12 =
I+
1

cos2 ψ
, A13 = −I−

1 cosφ
cosψ , A23 = −I−+

2 cosφ
cosψ .

(5.87)

Using the above mentioned approximation and the relation (5.36) of the angle φ, the auxiliary

quantities can be expressed as ψ-dependent functions with a universal I2 integral:

F ∼ 8La

g2
+

2I2 sin2 ψ

cos2 ψ
, B ∼ 2

g2 cosψ

√
(g4 I22 + 16L2a2) cos2 ψ + 8Lag2 I2 sin2 ψ . (5.88)

Again we omit the O(ǫ2) corrections to the mass eigenvalues of the neutral EW gauge bosons,

which are then given by

M2
Z =

g2v2

4L cos2 ψ
− g4v4

16L2M2 cos2 ψ

(
(I+1 )2
cos2 ψ

+ (I−1 )2 cos2 φ

)
,

M2
Z′,ZH

= M2 +
v2

4L


g2 I2 ±

√
(g4 I22 + 16L2a2) cos2 ψ + 8Lag2 I2 sin2 ψ

cosψ


 . (5.89)

The eigenvectors vλ1,norm, vλ3,norm, vλ2,norm correspond to the columns of GTZ

GTZ =




1
(
− I−

1 cosφ
cosψ sin ξ +

I+
1

cos2 ψ
cos ξ

)
ǫ −

(
I+
1

cos2 ψ
sin ξ +

I−
1 cosφ
cosψ cos ξ

)
ǫ

− I+
1

cos2 ψ
ǫ cos ξ − sin ξ

I−
1 cos φ
cosψ ǫ sin ξ cos ξ


 ,

(5.90)

with the explicit expressions for sin ξ and cos ξ

sin ξ ∼


1

2
+

4La cos2 ψ + g2 I2 sin2 ψ

2 cosψ
√

(g4 I22 + 16L2a2) cos2 ψ + 8Lag2 I2 sin2 ψ




1/2

,

cos ξ ∼


1

2
− 4La cos2 ψ + g2 I2 sin2 ψ

2 cosψ
√

(g4 I22 + 16L2a2) cos2 ψ + 8Lag2 I2 sin2 ψ




1/2

. (5.91)

As can be guessed from the assignment of the entries in (5.81) and (5.87), the results for the

neutral gauge bosons reduce to the ones for the charged gauge bosons in the limit ψ = φ→ 0.
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5.6 Fermions in Warped Extra Dimensions

This section is devoted to fermions living in warped extra dimensions. After a short summary

of basic concepts, e.g. the construction of the fermionic action, we focus on the specific particle

content of the RSc model. For simplicity, we restrict ourselves to the quark sector.

As is well known, fermions are described by spinor fields belonging to the spin-1/2 repre-

sentation of the Lorentz group. In extending the Lorentz group to the special orthogonal group

SO(1, n − 1) for theories with n − 4 extra dimensions, a problem arises for odd-dimensional

space-times. In those, the generalised chirality operator is one of the Lorentz generators itself

and does not commute with the other Lorentz generators any more. Thus, the spinor represen-

tation is in an irreducible representation of the Lorentz group and an analogue decomposition

into two chiral Weyl spinors does not exist. However, chirality can be reintroduced through

compactification, i.e. in our setup by imposing certain BCs within the interval approach.

Since the BCs allow either for a right- or left-handed fermion zero mode, one has to double

the fermion spectrum in order to obtain a chiral 4D effective theory that contains the SM

fermion content.

5.6.1 Construction of the Warped Fermionic Action

The fermionic action has to be invariant under local frame rotations (Lorentz transformations

SO(1, n − 1)) as well as under general coordinate transformations (diffeomorphism group

GL(n,R)). Due to the equivalence principle we can find at every point x0 a set of coordinates

ξAx0 , which are locally inertial at x0. Then the metric in any non-inertial system is given by

GMN (x, y) = ηAB e
A
M (x, y) eBN (x, y) , (5.92)

with the vielbein eAM (x, y) = ∂Mξ
A
x0(x, y). The vielbein relates the tangent frame, where

the metric and the Dirac matrices are constants in space-time and which is the appropriate

framework for the spinor formalism, with the coordinate space, in which the metric and Dirac

matrices explicitly depend on the space-time coordinates. The vielbein in five dimensions can

be represented for the RS metric (5.1) by

eAM (x, y) =





1 forA =M = 5 ,

e−ky forA =M = µ .

0 otherwise .

(5.93)

For the inverse vielbein defined through

EMA (x, y) = ηAB G
MN (x, y) eBN (x, y) , (5.94)
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an analogous expression exists

EMA (x, y) =





1 forA =M = 5 ,

eky forA =M = µ ,

0 otherwise .

(5.95)

The relation between the coordinate-dependent gamma matrices ΓM(x, y) in curved space and

the space-time independent gamma matrices γA of the tangent space is given by

ΓM (x, y) = EMA (x, y) γA . (5.96)

With the above definitions, the usual Clifford algebra in flat space

{
γA, γB

}
= 2 ηAB (5.97)

can easily be translated into the curved space, where the gamma matrices fulfil

{
ΓM (x, y),ΓN (x, y)

}
= 2GMN (x, y) . (5.98)

Taking into account that the Clifford algebra (5.97) implies (γ55D)
2 = −1 in contrast to the

usual 4D definition of γ54D = iγ0γ1γ2γ3 with (γ54D)
2 = +1, we include a factor of i into the

definition, such that the 5D gamma matrices are related to the 4D gamma matrices as follows

γA5D =
{
γµ,−iγ54D

}
=
{
γµ, γ0γ1γ2γ3

}
. (5.99)

In order to construct a covariant derivative that ensures the invariance of the Lagrangian

under Lorentz and general coordinate transformation, the so-called spin connection ωM has

to be added to the gauge-covariant derivative DM according to

∇M = DM + ωM . (5.100)

With the help of the Christoffel symbols

ΓNMP =
1

2
GNR (∂PGMR + ∂MGPR − ∂RGMP ) , (5.101)

the explicit expression for the spin connection can be written as

ωM = eAN
(
∂ME

N
B + ΓNMPE

P
B

) σAB
2

, (5.102)

where we introduced also the definition σAB := 1
4 [γA, γB ]. For the RS metric (5.1) a straight-

forward calculation, which can be found in the Appendix B.1, yields

ωM =





i
2ke

−kyγµγ54D forM = µ ,

0 forM = 5 .
(5.103)
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Starting with the requirement that the action should be real, or equivalently, that the

corresponding Hamiltonian should be hermitian, one would make the following ansatz for the

fermionic 4D Lagrangian coupled to the non-abelian gauge fields V a
µ

S4D =

∫
d4x

i

2

(
Ψγµ

(
∂µ − igV a

µ T
a
)
Ψ+ h.c.

)
. (5.104)

In 4D one usually performs an integration by parts in the hermitian conjugate part. Neglecting

the arising boundary terms due to the assumptions of vanishing field configurations in the limit

x→ ±∞, the Lagrangian coincides with the one given in (2.13).

Remember that this approximation is not justified if an extra dimension of finite size

is involved. Thus, we proceed as proposed in [195] and take the symmetric and hermitian

Hamiltonian as a convenient starting point for the construction of the 5D fermionic Lagrangian

S =

∫
d5x
√
G
( 1

2
Ψ
(
iΓM∇M − ck

)
Ψ+ h.c.

)
, (5.105)

with c denoting the 5D bulk Dirac mass of the fermion field in units of k. We will focus on this

mass parameter c in the next subsection as it determines the localisation of the fermion zero

mode profile along the extra dimension. As shown in the Appendix B.1, the action (5.105)

can be brought into the form

S =

∫
d5x
√
G
(
EMA

i

2
Ψ γA

(
DM −

←−
D†
M

)
Ψ+ EMA

i

2
Ψ
{
γA, ωM

}
Ψ− ckΨΨ

)
, (5.106)

whereupon the spin connection term drops out for the specific case of the RS metric. By

convention, the derivatives in (5.106) act only on spinor fields, but not on metric factors like

EMA (x, y) or γA(x, y).

5.6.2 KK Decomposition and Localisation of Fermionic Modes

In the first main part of this thesis, we already encountered the possibility to explain the wide

range of quark masses through a dynamical spurion potential, which gives rise to a flavour

symmetry breaking cascade via generating non-zero VEVs of the various spurion components

within the Yukawa matrices. Also extra-dimensional models provide an explanation for the

vast differences in quark masses, especially the hierarchy between the heavy third generation

and the lighter first and second generation. The key point is the localisation freedom of the

fermionic zero mode profiles f
(0)
L,R(y) which arise in the KK decomposition

ΨL,R(x, y) =
e2ky√
L

∞∑

n=0

ψ
(n)
L,R(x)f

(n)
L,R(y) . (5.107)

Under the assumption that the 5D Yukawa matrices are anarchic with complex O(1) entries,

the hierarchy in the SM flavour parameters is directly related to the different localisation of

the zero mode profiles [102,103]. The reason is, that the effective 4D Yukawa couplings emerge
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from overlap integrals of the Higgs shape function with the fermionic zero mode profiles along

the extra dimension. In Subsection 5.7.2 we will explicitly demonstrate this statement via

deriving the effective 4D Yukawa coupling matrices for the specific fermion content of the RSc

model (see equation (5.125)). The larger the overlap of the fermion profiles with the IR brane

localised Higgs, the larger the generated coupling and mass after EWSB will be. The method

of solving the flavour hierarchy problem solely through geometry in EDIM models is known

as split fermion mechanism [104, 105].

Localisation of Fermion Zero Mode Profiles — Solution to the Flavour Puzzle

In order to make the localisation feature more transparent, we absorb the factor of eky, oc-

curring in the orthonormality condition for the fermion zero mode profiles,

1

L

∫ L

0
dy ekyf

(0)
L,R(y)f

(0)
L,R(y) = 1 , (5.108)

into the shape functions along the extra dimension. Thus, with respect to the flat metric,

their profiles change into

f
(0)
L,R(y, c) =

√
(1∓ 2c)kL

e(1∓2c)kL − 1
e∓cky −→ f̂

(0)
L,R(y, c) =

√
(1∓ 2c)kL

e(1∓2c)kL − 1
e(

1
2
∓c)ky . (5.109)

The specific form of f̂
(0)
L,R(y, c) suggests to differentiate between the two cases with c > 1/2

and c < 1/2, respectively.

• For c > 1/2 the normalisation factor in (5.109) is O(1) and f̂
(0)
L (y, c) is peaked around

y = 0, i.e. the UV brane. As the overlap with the Higgs boson profile on or near the IR

brane is small, so are the masses of the fermionic zero modes ψ
(0)
L,R(x) which correspond

to the SM fermions up to small admixtures with higher KK modes of O(v2/f2). This is

the appropriate scenario for the lighter first two generations of quarks.

• For c < 1/2 the second term in the denominator of (5.109) can be neglected and the

shape function

f̂
(0)
L,R(y, c) ≃

√
(1∓ 2c)kL e(

1
2
∓c)k(y−L) (5.110)

is strongly peaked towards y = L, i.e. the IR brane. The overlap with the Higgs profile

is enormous and after EWSB a heavy mass is produced. Thus, this setup is favoured for

the description of the third quark generation and especially for the heavy top quark.

The localisation of the fermionic zero mode profiles corresponding to the above two cases,

as well as that of the flat fermion profile with c = 1/2, is visualised in Figure 5.2. Note

that the chosen BCs (see Appendix B.4) determine whether there exists a left-handed or a

right-handed zero mode for a specific 5D fermion representation. Correspondingly, the mass

parameters cL,R can generally differ from each other. This freedom can help to satisfy certain
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Figure 5.2: Localisation of fermion zero mode profiles for c = 0.6, 0.5, 0.4.

features in EW precision studies [112–114, 117] as well as in flavour physics [107, 188], while

keeping the fermion masses of their natural size. This is in particular relevant for the third

quark generation.

Localisation of Fermion KK Modes

The shape functions of the fermionic KK modes are given in (B.49) with s = 1,

f
(n)
L,R(y, c,BC) =

e
ky
2

Nn

(
Jν

(mn

k
eky
)
+ bν(mn)Yν

(mn

k
eky
))

, (5.111)

where ν = |c±1/2| for left- (right-)handed modes, and explicit expressions for Nn and bν(mn)

can be found in [103]. The form of (5.111) implies that all KK modes are localised near the

IR brane and there is no localisation freedom as it was the case for the zero mode profiles.

In summary [103,196], the bulk mass parameter c is universal for all KK modes of a given

fermion field, including the zero mode if one exists. The value of c controls the localisation of

the zero mode along the extra dimension, which in turn can lead to a mass hierarchy of the

SM quarks after EWSB. Despite the fact that the split fermion mechanism supplies a solution

to the flavour puzzle, it gives rise to a flavour problem (see discussion in Subsection 5.8.6).

5.6.3 Fermion Content of the RSc Model

The specific fermion content of the RSc model has been motivated by the introduction of

a custodial protection symmetry of the T parameter and the measured value of the ZbLbL

coupling which is in nearly perfect agreement with the SM prediction [108,110,112–114,116,

117, 197]. To this end, the left-handed bottom quark with T 3
L = −1/2 has to satisfy the

condition T 3
R = T 3

L. This can be achieved by placing it in the lower right corner of a bidoublet
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(2,2)2/3 under the SU(2)L × SU(2)R symmetry. Being in the same doublet of SU(2)L, the

quantum number assignment of the left-handed top quark, (1/2,−1/2), follows immediately.

In order not to break explicitly the global U(3)3 bulk flavour symmetry of the quarks for

vanishing Yukawa matrices and bulk mass matrices, we also embed the residual two left-handed

quark doublets into bidoublets. To reproduce the proper hypercharge Y/2 = T 3
R +QX (5.31)

of the quarks, one then needs to set QX = 2/3. In consequence, the right-handed quarks must

have the same U(1)X quantum number in order to allow for non-vanishing Yukawa couplings

that will produce SM masses of O(v2) after EWSB. Using again the above relation, the SM

hypercharges of the up-type quarks U iR (down-type quarks Di
R) can be created by choosing

T 3
R = 0 (T 3

R = −1). Hence, we need three O(4) multiplets per generation (i = 1, 2, 3) to

reproduce the SM quark content. According to the relation Q = T 3
L + T 3

R + QX (5.51), we

indicate the electric charge Q as a subscript of each field

(2,2)2/3 : (ξi1L)aα := ξi1L =

(
χuiL (−+)5/3 quiL (++)2/3

χdiL (−+)2/3 qdiL (++)−1/3

)
,

(1,1)2/3 : ξi2R = U iR(++) ,

(3,1)2/3 ⊕ (1,3)2/3 : ξi3R = T̃ i3R ⊕ T̃ i4R =



ψ′i
R(−+)5/3

U ′i
R(−+)2/3

D′i
R(−+)−1/3


⊕



ψ′′i
R (−+)5/3

U ′′i
R (−+)2/3

Di
R(++)−1/3


 . (5.112)

Obviously, the triplets with total isospin (T 3
L + T 3

R = +1, 0,−1) are given in the basis (τ± =

(τ1 ± iτ2)/
√
2, τ3). With respect to the usual Pauli matrix basis, which we will use later on,

the components read

(T i3R)
a :=




1√
2
(ψ′i

R +D′i
R)

i√
2
(ψ′i

R −D′i
R)

U ′i
R


 , (T i4R)

α :=




1√
2
(ψ′′i

R +Di
R)

i√
2
(ψ′′i

R −Di
R)

U ′′i
R


 , (5.113)

such that

(T i3R)ab = (T i3R)
c(τ c)ab := T i3R =

(
U ′i
R/2 ψ′i

R/
√
2

D′i
R/
√
2 −U ′i

R/2

)
,

(T i4R)αβ = (T i4R)
γ(τγ)αβ := T i4R =

(
U ′′i
R /2 ψ′′i

R /
√
2

Di
R/
√
2 −U ′′i

R /2

)
, (5.114)

where we introduced a matrix notation as also done in (5.112). Reversing the BCs in (5.112),

one obtains the corresponding states of opposite chirality. Remember that this doubling of the

fermion spectrum is needed for the construction of a chiral 4D theory. The fields with (++)

BCs have massless zero modes and correspond to the SM quarks after EWSB. The remaining

fields only have massive KK modes and thus we have to deal with the following additional
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heavy fermionic states in this model

Q = 5/3 : χui(n), ψ′i(n), ψ′′i(n) ,

Q = 2/3 : qui(n), U i(n), U ′i(n), U ′′i(n), χdi(n) ,

Q = −1/3 : qdi(n),Di(n),D′i(n) , (5.115)

where n = 1, 2, ... . Remember that the bulk mass parameter is equal for all components

of a given fermion representation ξim, where m = 1, 2, 3 indicates the three different O(4)

multiplets and i stands for the flavour index. In general, cm are arbitrary hermitian 3 × 3

matrices in flavour space, but in the following we choose to work in the “special basis” in which

they are real and diagonal. 3 To this end, we parameterise them by three real parameters

cim ≡ Diag (c1m, c
2
m, c

3
m) for each multiplet m.

Fermion Lagrangian of the RSc Model

Adapting the covariant derivatives of the RSc model, contained in the general 5D action

(5.105), to the gauge transformation behaviour of the various quark fields, we are able to

formulate the fermionic Lagrangian

Lfermion =
1

2

√
G

3∑

i=1

[
(ξ
i
1)αaiΓ

M (D1
M )ab,αβ(ξ

i
1)bβ + (ξ

i
1)αa(iΓ

MωM − ci1k)(ξi1)aα

+ξ
i
2(iΓ

MD2
M + iΓMωM − ci2k)ξi2

+(T
i
3)aiΓ

M (D3
M )ab(T

i
3)b + (T

i
3)a(iΓ

MωM − ci3k)(T i3)a
+(T

i
4)αiΓ

M (D4
M )αβ(T

i
4)β + (T

i
4)α(iΓ

MωM − ci3k)(T i4)α
]
+ h.c. , (5.116)

where summation over repeated indices is understood. Explicitly, the covariant derivatives

Di
M are given by

(D1
M )ab,αβ =

(
∂M +

i

2
gs λ

AGAM + i gX QXXM

)
δab δαβ

+i g (τ c)abW
c
L,M δαβ + i g (τγ)αβW

γ
R,M δab ,

D2
M = ∂M +

i

2
gs λ

AGAM + i gX QXXM ,

(D3
M )ab =

(
∂M +

i

2
gs λ

AGAM + i gX QXXM

)
δab + g εabcW c

L,M ,

(D4
M )αβ =

(
∂M +

i

2
gs λ

AGAM + i gX QXXM

)
δαβ + g εαβγW γ

R,M , (5.117)

with the generators −iεabc and −iεαβγ of the adjoint triplet representations of SU(2)L and

SU(2)R, respectively. Recall that despite having the same matrix structure, the SU(2)L and

SU(2)R generators act on different internal spaces. Writing out the “+h.c.” term in (5.116)

3This can always be achieved by appropriate field redefinitions of the ξi multiplets.
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explicitly, the two terms including the spin connection ωM cancel each other in a general RS

setup. Under the hermitian conjugation we understand to transpose the whole matrix, e.g.

the bidoublet in (5.112), first, and then apply the usual hermitian conjugation (Ψ = Ψ†γ0)

separately to each entry that represents a four-dimensional Dirac vector.

5.7 Flavour Structure

5.7.1 Constructing Gauge-Invariant Yukawa Couplings

This section is dedicated to the construction of the 5D Yukawa couplings of the fermions to the

Higgs boson and the determination of the quark mass matrices after EWSB. Corresponding

to the specific bulk symmetry group, the Yukawa coupling terms have to preserve the full

O(4) ∼ SU(2)L × SU(2)R × PLR symmetry. Utilising the transformation behaviour of the

Higgs bidoublet and the fermion multiplets

H ′ = ULH UTR , (ξi1)
′ = UL(ξ

i
1)U

T
R , (T i3)

′ = UL (T
i
3)U

†
L , (T i4)

′ = UR (T i4)U
†
R , (5.118)

the most general Yukawa Lagrangian is given by

LYuk = −
√
2
√
G

3∑

i,j=1

(−λuijTr [ξ
i
1L ·H]ξj2R+

√
2λdij(Tr [ξ

i
1L ·T j3R ·H]+Tr [ξ

i
1L ·H ·T j4R])+h.c.).

(5.119)

While the first coupling proportional to λuij contributes, after EWSB, only to the mass matrix

of the +2/3 charge quarks, the second term proportional to λdij contributes to all +5/3,

+2/3 and −1/3 mass matrices. This is a direct consequence of T j3 and T j4 being placed in the

adjoint representations of SU(2)L and SU(2)R, respectively. The two factors of
√
2 in equation

(5.119) are chosen such that the zero mode fermions, which can identified after EWSB — up

to O(v2/f2) mixings — with the SM fermions, have Yukawa couplings with the same scaling

factor v/
√
2 as in the SM. To see this explicitly, we first insert the KK decomposition of the

Higgs field and project out the neutral Higgs component h0(x) which develops a 4D effective

VEV
〈
h0(x)

〉
= v after EWSB,

L4DYuk ⊃
1√
L

∫ L

0
dy

3∑

i,j=1

√
G
(
− 1√

2
χuiL λ

d
ijψ

′j
R +

1√
2
χuiL λ

d
ijψ

′′j
R −

1√
2
qdiL λ

d
ijD

j
R +

1√
2
qdiL λ

d
ijD

′j
R

+
1

2
χdiL λ

d
ijU

′j
R +

1

2
quiL λ

d
ijU

′j
R −

1

2
χdiL λ

d
ijU

′′j
R −

1

2
quiL λ

d
ijU

′′j
R

+
1√
2
χdiL λ

u
ijU

j
R −

1√
2
quiL λ

u
ijU

j
R + h.c.

)
h0(x)h(y) . (5.120)

While the first
√
2-factor in (5.119) determines the scaling factor of the up-quark mass terms,

the second one is responsible for the factor of the down-quark mass terms. Note that there is

also the correct overall minus sign for the SM fermion mass terms (to compare with (3.51)).
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5.7.2 4D Effective Yukawa Coupling Matrices

In order to obtain the 4D effective Yukawa couplings, we have to KK expand also the fermion

modes in (5.120) to be able to apply the integration over the extra dimension. Again we

restrict ourselves to the zero modes and first-excited KK modes. We assign a superscript (0)

to the zero modes in order to distinguish them from the excited KK modes, for which we will

make the index n = 1 implicit. According to their electric charges Q = +5/3, +2/3 and −1/3,
we will group the fermion modes into the following vectors.

The +5/3 charge vectors have only excited KK states

Ψ
5/3
L =

(
χuiL (−+), ψ′i

L(+−), ψ′′i
L (+−)

)T
,

Ψ
5/3
R =

(
χuiR (+−), ψ′i

R(−+), ψ′′i
R (−+)

)T
, (5.121)

where the flavour index i = 1, 2, 3 runs over the three quark generations. Thus we deal with

9-dimensional vectors.

The 18-dimensional vectors, corresponding to the charge +2/3 mass matrix, contain zero

modes in their first components

Ψ
2/3
L =

(
q
ui(0)
L (++), quiL (++), U ′i

L(+−), U ′′i
L (+−), χdiL (−+), U iL(−−)

)T
,

Ψ
2/3
R =

(
U
i(0)
R (++), quiR (−−), U ′i

R(−+), U ′′i
R (−+), χdiR (+−), U iR(++)

)T
. (5.122)

Equivalently, this is the case for the 12-dimensional charge −1/3 vectors

Ψ
−1/3
L =

(
q
di(0)
L (++), qdiL (++),D′i

L(+−),Di
L(−−)

)T
,

Ψ
−1/3
R =

(
D
i(0)
R (++), qdiR (−−),D′i

R(−+),Di
R(++)

)T
. (5.123)

The shape functions, corresponding to the r-th and s-th component of ΨQ
L and ΨQ

R in (5.121)–

(5.123), are denoted by fQL,r(y, c
i
m) and fQR,s(y, c

i
m), respectively.

Inserting the KK decomposition of the fermions (5.107) into the Yukawa Lagrangian

(5.120), the factor e4ky/L combines with
√
G/L to an overall prefactor 1/L3/2. Absorb-

ing this factor together with the prefactors of 2 and
√
2 into the definition of the 4D effective

Yukawa matrices, here schematically shown for
[
Y

(5/3)
ij

]
rs

L5/3mass = v
∑3

i,j=1

[
1√

2L3/2

∫ L

0
dy λdijf

5/3
L,r (y)f

5/3
R,s (y)h(y)

]

︸ ︷︷ ︸
Ψ

5/3
L,r(x)Ψ

5/3
R,s(x) + h.c. ,

[
Y

(5/3)
ij

]
rs

(5.124)

one obtains the whole set of relations between the 4D effective Yukawa matrices and the
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original 5D Yukawa matrices

[
Y

(5/3)
ij

]
rs

=
1√

2L3/2

∫ L

0
dy λdijf

5/3
L,r (y)f

5/3
R,s (y)h(y) ,

[
Y

(2/3)
ij

]
rs

=
1

2L3/2

∫ L

0
dy λdijf

2/3
L,r (y)f

2/3
R,s (y)h(y) ,

[
Ỹ

(2/3)
ij

]
rs

=
1√

2L3/2

∫ L

0
dy λuijf

2/3
L,r (y)f

2/3
R,s (y)h(y) ,

[
Y

(−1/3)
ij

]
rs

=
1√

2L3/2

∫ L

0
dy λdijf

−1/3
L,r (y)f

−1/3
R,s (y)h(y) . (5.125)

The goal is now to construct and diagonalise the quark mass matrices. Thereby, an analytic

diagonalisation is impossible due to the large dimension of the mass matrices. Hence we will

only sketch the notation for the rotation matrices, whose actual values have to be determined

numerically.

5.7.3 Quark Mass Matrices

In addition to the mass contributions resulting from the 4D effective Yukawa couplings after

EWSB, fermionic KK masses from the extra-dimensional setup contribute to the fermion mass

matrices. They can be obtained from solving the bulk equations of motion. In what follows

we will use the 3× 3 KK fermion mass matrices MKK
m (BC-L), where m = 1, 2, 3 again labels

the different multiplet representations in (5.112), and (BC-L) are the BCs for the left-handed

modes. Actually, these matrices depend on the bulk mass parameter and on the BCs. In

terms of the mode vectors (5.121)–(5.123), the mass matrices are contained in

Lmass = −Ψ5/3
L M5/3 Ψ

5/3
R + h.c.

−Ψ2/3
L M2/3 Ψ

2/3
R + h.c.

−Ψ−1/3
L M−1/3 Ψ

−1/3
R + h.c. . (5.126)

The quark mass matrix for the +5/3 charge fermions

M5/3 =




MKK
1 (−+) v

[
Y

(5/3)
ij

]
12
−v
[
Y

(5/3)
ij

]
13

v
[
Y

(5/3)
ij

]†
21

MKK
3 (+−) 0

−v
[
Y

(5/3)
ij

]†
31

0 MKK
3 (+−)


 (5.127)

is diagonalised by a biunitary transformation, which defines the rotation into the mass eigen-

state basis

L5/3mass = −Ψ
5/3
L XL︸ ︷︷ ︸ X

†
LM5/3 XR︸ ︷︷ ︸ X

†
RΨ

5/3
R︸ ︷︷ ︸+h.c. .

Ψ
5/3
L,mass M5/3

diag Ψ
5/3
R,mass

(5.128)

Obviously, the mass eigenstates of charge 5/3 are all heavy.



5.7 Flavour Structure 91

The mass matrix of the charge +2/3 fermions reads

M2/3 = (5.129)



v
[
Ỹ

(2/3)
ij

]
00

0 −v
[
Y

(2/3)
ij

]
02

v
[
Y

(2/3)
ij

]
03

0 v
[
Ỹ

(2/3)
ij

]
05

v
[
Ỹ

(2/3)
ij

]
10

MKK
1 (++) −v

[
Y

(2/3)
ij

]
12

v
[
Y

(2/3)
ij

]
13

0 v
[
Ỹ

(2/3)
ij

]
15

0 −v
[
Y

(2/3)
ij

]†
21

MKK
3 (+−) 0 −v

[
Y

(2/3)
ij

]†
24

0

0 v
[
Y

(2/3)
ij

]†
31

0 MKK
3 (+−) v

[
Y

(2/3)
ij

]†
34

0

−v
[
Ỹ

(2/3)
ij

]
40

0 −v
[
Y

(2/3)
ij

]
42

v
[
Y

(2/3)
ij

]
43

MKK
1 (−+) −v

[
Ỹ

(2/3)
ij

]
45

0 v
[
Ỹ

(2/3)
ij

]†
51

0 0 −v
[
Ỹ

(2/3)
ij

]†
54

MKK
2 (−−)




,

where the index 0 reminds us that a zero mode fermion is involved. Again, the diagonalisation,

involving the unitary 18× 18 matrices UL,R

M2/3
diag = U†

LM2/3 UR , (5.130)

has to be performed numerically and thus we do not give the explicit expressions. Nevertheless

one can imagine that the off-diagonal entries in the first column and row mix the light zero

modes with the heavy KK modes. However, due to the hierarchy between the KK masses and

the relatively small masses from EWSB effects, this mixing will be suppressed by O(v2/f2).
The same argument holds for the mass matrix of the fermions with charge −1/3

M−1/3 =




v
[
Y

(−1/3)
ij

]
00

0 −v
[
Y

(−1/3)
ij

]
02

v
[
Y

(−1/3)
ij

]
03

v
[
Y

(−1/3)
ij

]
10

MKK
1 (++) −v

[
Y

(−1/3)
ij

]
12

v
[
Y

(−1/3)
ij

]
13

0 −v
[
Y

(−1/3)
ij

]†
21

MKK
3 (+−) 0

0 v
[
Y

(−1/3)
ij

]†
31

0 MKK
3 (−−)




,

(5.131)

which is diagonalised by 12× 12 unitary matrices according to

M−1/3
diag = D†

LM−1/3DR , (5.132)

with the corresponding rotation of the Ψ
−1/3
L,R vector

Ψ
−1/3
L,R,mass = D

†
L,RΨ

−1/3
L,R . (5.133)

As the quark mass matrices cannot be diagonalised analytically, we present the following

expressions with the fermions still given in their flavour eigenstate basis.
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5.8 Flavour Violation within the RSc Model

In this section we elucidate the origin of flavour violation (FV) in the RSc model and consider

some implications coming from phenomenology. As already mentioned previously, the model

contains two different sources of flavour violation — the 5D Yukawa matrices and the 5D

fermion bulk mass matrices.4

Counting of Parameters

Besides the 18 real parameters (R) and 18 complex phases (P) of the two 5D Yukawa matrices

λu,dij , the three hermitian bulk mass matrices ci1,2,3 of each quark representation add 18R and

9P to the theory. In the limit of vanishing λu,dij and ci1,2,3, the maximal quark flavour symmetry

of the 5D theory U(3)3 is identical to the SM one. As the non-vanishing matrices still leave

an unbroken U(1)B baryon number symmetry, 3 × 9 − 1 = 26 parameters can be eliminated

corresponding to the generators of the broken flavour symmetry U(3)3/U(1)B . Subtracting

the 9R and 17P, we are left with 27R and 10P. Thus, compared to the 9R and 1P in the SM, the

theory contains 18 additional real parameters and 9 new complex phases, which can evidently

be identified with the parameters of the three bulk mass matrices. As we will illustrate in

the following, these new parameters represent an additional source of flavour violation with

respect to models incorporating the MFV assumption. In particular, corresponding to the

above counting of parameters, new CP-violating phases are present. Moreover, new flavour

changing effective 4-quark operators arise at tree level that are either absent or strongly

suppressed within the SM. Fortunately, the built-in RS–GIM mechanism [106] can suppress

the FCNC interactions and prevent this NP model from leading to disastrous phenomenological

predictions.

5.8.1 Fermion-Gauge Boson Interactions

The 5D interactions between fermions and gauge bosons stem from the covariant derivatives

(5.117), which are contained in the kinetic terms of the fermion Lagrangian (5.116). Similar

to the derivation of the 4D effective Yukawa couplings, we start with the fundamental 5D

interactions and perform the KK decomposition up to the first KK modes. The effective 4D

couplings result from the overlap integrals of the gauge boson profiles with the fermion shape

functions

g4Dnkl(i,m) =
g

L3/2

∫ L

0
dy ekyf (n)(y, cim)f

(k)(y, cim)f
(l)
gauge(y) , (5.134)

where (n, k, l = 0, 1, . . . ) denote the different KK levels. Note that the covariant derivatives

only couple fermions within the same gauge multiplet, so that their bulk mass parameters are

necessarily equal.

4We do not include kinetic mixing terms on the branes which would represent another source of FV.
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Couplings to Gauge Boson Zero Modes

Following the perturbative approach of EWSB, we first neglect the effects coming from EWSB

and consider a flat gauge boson zero mode profile f
(0)
gauge(y) = 1. In this case, the overlap

integral in (5.134) simplifies due to the orthonormality condition of the fermion fields (5.108).

As only couplings between equal fermion KK levels n = k are allowed, (5.134) reduces to the

simple tree-level matching condition of the 5D coupling constant with the flavour universal

4D effective gauge coupling

g4Dkk0 =
g√
L
. (5.135)

Couplings to Higher Gauge Boson Modes

Since the integration over the extra dimension cannot be carried out explicitly, the couplings

to excited KK gauge boson modes do not simplify significantly and the right-hand side of

(5.134) retains its form. Note that the bulk mass parameter is the same for all fermions of

one gauge multiplet (ξi1, ξ
i
2, ξ

i
3), but depends on the flavour index i = 1, 2, 3. This property

was already used in Subsection 5.6.2 to locate the fermion zero modes profiles of different

flavours at different positions along the extra dimension and thus provides an explanation

for the hierarchies of the quark masses and mixings. Here, in an analogue manner they are

responsible for the fact that the effective 4D couplings of fermionic zero modes to KK gauge

bosons are non-universal in flavour space. Since the KK gauge profiles are localised towards

the IR brane, their overlap intervals with the light quarks are similar in magnitude and much

smaller than the overlap integral with the heavy third generation.

According to the perturbative approach, we then treat the Higgs VEV as a small pertur-

bation that induces mixings among the various modes. Rotating the gauge bosons as well as

the fermions into their physical mass eigenstates, causes the following two different effects of

flavour violation:

• As can be seen from the rotation matrices (5.85) and (5.90), the SM gauge bosons cor-

respond to the gauge boson zero modes up to a small admixture of higher-excited KK

modes with identical electric charge. According to the above discussion, the SM weak

gauge bosons have non-universal couplings to the fermion zero modes. As the diagonal

but non-universal coupling matrix does not commute with the rotation matrices, which

transform the fermions to their mass eigenstate basis, flavour violation arises already

at tree level (FV1). However, the strength of these flavour-violating contributions are

controlled by the RS–GIM mechanism: While the non-universality of the first and sec-

ond generation is small due to the small splitting along the extra dimension, the third

generation is protected from large flavour transitions due to very small mixing angles

with the first two generations.
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• The previous source of FV has its origin in the gauge boson mixing and is also present in

the limit of vanishing heavy fermion KK modes, which are given in (5.115). There is a

second FV source (FV2) which is based on the mixings of the SM-like zero modes with the

heavy KK quarks of same electric charge that are induced by the diagonalisation of the

quark mass matrices. The impact of these KK fermions on the SM fermion couplings

in the RSc model has been considered in [198] within an effective theory framework,

where the heavy fermions have been integrated out at tree level by using their EOMs.

In general, the contribution from KK fermions tends to be numerically smaller than the

one from gauge boson mixing [190,198].

5.8.2 Neutral Currents

To illustrate the above general statements, we consider the neutral current involving the SM

neutral gauge boson Z with the quarks being still in their flavour eigenstate basis

Jµ(Z) = Ψ
5/3
L γµA

5/3
L (Z)Ψ

5/3
L +Ψ

5/3
R γµA

5/3
R (Z)Ψ

5/3
R

+Ψ
2/3
L γµA

2/3
L (Z)Ψ

2/3
L +Ψ

2/3
R γµA

2/3
R (Z)Ψ

2/3
R (5.136)

+Ψ
−1/3
L γµA

−1/3
L (Z)Ψ

−1/3
L +Ψ

−1/3
R γµA

−1/3
R (Z)Ψ

−1/3
R .

The matrices AQL,R(Z) with Q = 2/3, −1/3, 5/3 have the dimensions 18×18, 12×12 and 9×9,
respectively. They are flavour-diagonal, i.e. all 3×3 submatrices [AQL,R(Z)]rs, consisting of the

elements [AQL,R; ij(Z)]rs, i, j = 1, 2, 3, are diagonal in the flavour space ([AQL,R; ij(Z)]rs = 0 for

i 6= j). We denote the position of the submatrices corresponding to the entries of the mode

vectors with r, s. For instance r, s = 0, ..., 5 in the case of [A
2/3
L,R(Z)]rs, which is in full analogy

to the subscripts of the Yukawa matrices used in the mass matrix M2/3.

The small admixtures of higher KK modes, forming the SM Z boson,

Z = Z(0) − ǫ I
+
1

cos2 ψ
Z(1) + ǫ

I−1 cosφ

cosψ
Z

(1)
X , (5.137)

make the diagonal 3 × 3 coupling submatrices to quark zero modes flavour non-universal at

order O(ǫ). In the Appendix B.8, we give a detailed derivation of the Feynman rule for the

vertex q
ui(0)
L q

ui(0)
L Z, which corresponds to the coupling submatrix i[A

2/3
L (Z)]00. Together with

the other quark zero mode couplings to the Z boson, we display the results in Table 5.1.

The non-universality effects of O(ǫ) are caused by the flavour dependence of the overlap

integrals Ri1
00

and Pi1
00

, which involve a higher KK gauge mode as follows. While we define

Rim
nk

(BC)L,R =
1

L

∫ L

0
dy ekyf

(n)
L,R(y, c

i
m,BC)f

(k)
L,R(y, c

i
m,BC) g(y) (5.138)

for the overlap integrals including the KK mode Z(1) or W
(1)±
L , we use the short-hand notation

for the ones involving the Z
(1)
X KK mode

Pim
nk

(BC)L,R =
1

L

∫ L

0
dy ekyf

(n)
L,R(y, c

i
m,BC)f

(k)
L,R(y, c

i
m,BC) g̃(y) . (5.139)
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Zero mode couplings to the Z boson

Q = 2/3 quarks

q
ui(0)
L q

ui(0)
L Z −iγµ

[
gZ(q

ui)− ǫgZ(qui) 1
cos2 ψ

I+1 Ri1
00

(++)L + ǫ cosφcosψI
−
1 κ1Pi1

00
(++)L

]
(0,0)

U
i(0)
R U

i(0)
R Z −iγµ

[
gZ(U

i)− ǫgZ(U i) 1
cos2 ψ

I+1 Ri2
00

(++)R + ǫ cosφcosψI
−
1 κ3Pi2

00
(++)R

]
(0,0)

Q = −1/3 quarks

q
di(0)
L q

di(0)
L Z −iγµ

[
gZ(q

di)− ǫgZ(qdi) 1
cos2 ψ

I+1 Ri1
00

(++)L + ǫ cos φcosψI
−
1 κ1Pi1

00
(++)L

]
(0,0)

D
i(0)
R D

i(0)
R Z −iγµ

[
gZ(D

i)− ǫgZ(Di) 1
cos2 ψ

I+1 Ri3
00

(++)R + ǫ cosφcosψI
−
1 κ5Pi3

00
(++)R

]
(0,0)

Table 5.1: Couplings involving zero modes and the Z boson. These zero modes correspond to

the SM quark fields when the rotation to fermion mass eigenstates is performed.

The shape functions g̃(y) 6= g(y) were defined in (5.58) and (5.59), and depend weakly on

their respective BCs. After the rotation into the quark mass eigenstate basis, the small non-

universality in the couplings induce FCNC transitions already at tree level (FV1).

Due to the presence of heavy KK fermions, the coupling matrices A
2/3
L,R(Z) and A

−1/3
L,R (Z)

contain off-diagonal submatrices in their first row and column ([AQL,R(Z)]rs, Q = 2
3 ,−1

3 , r 6= s,

r = 0 or s = 0) corresponding to couplings between the SM-like zero modes with their

KK partners (e.g. q
ui(0)
L quiL Z in Table 5.2). In addition there are 3 × 3 building blocks on

the diagonal axis of AQL,R(Z), devoted to the submatrices [AQL,R(Z)]rs, r = s 6= 0, which

induce couplings of the heavy KK fermions to the Z boson (e.g. U
′i
LU

′i
LZ in Table 5.3). While

the coupling matrices AQL,R(Z) are diagonal in the limit of vanishing gauge boson mixing

(Z → Z(0)), they are nevertheless not proportional to a 18×18, 12×12 and 9×9 unit matrix.

Rotating the fermions to their mass eigenstates, non-diagonal mixings in flavour space occur

and FCNC transitions are mediated (FV2).

The explicit expression for the A
2/3
L (Z) matrix can be read off from the Feynman rules

given in the Tables 5.1–5.3. Thereby, the brackets in the right column denote the placements

rs of the submatrices within the 18 × 18 matrix. The ones for the other coupling matrices

follow from the Feynman rules we have given in the appendix of [61].

The current given in the gauge and quark mass eigenstate basis

Jµ(Z) = Ψ
5/3
L,mass γµB

5/3
L (Z)Ψ

5/3
L,mass +Ψ

5/3
R,mass γµB

5/3
R (Z)Ψ

5/3
R,mass

+Ψ
2/3
L,mass γµB

2/3
L (Z)Ψ

2/3
L,mass +Ψ

2/3
R,mass γµB

2/3
R (Z)Ψ

2/3
R,mass

+Ψ
−1/3
L,mass γµB

−1/3
L (Z)Ψ

−1/3
L,mass +Ψ

−1/3
R,mass γµB

−1/3
R (Z)Ψ

−1/3
R,mass , (5.140)
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Off-diagonal couplings to the Z boson

Q = 2/3 quarks

q
ui(0)
L quiL Z −iγµ

[
− ǫgZ(qui) 1

cos2 ψ
I+1 Ri1

01
(++)L + ǫ cosφcosψI

−
1 κ1Pi1

01
(++)L

]
(0,1)

quiL q
ui(0)
L Z −iγµ

[
− ǫgZ(qui) 1

cos2 ψ
I+1 Ri1

10
(++)L + ǫ cosφcosψI

−
1 κ1Pi1

10
(++)L

]
(1,0)

Table 5.2: Couplings involving the Z boson and a single left-handed zero mode of electric

charge Q = 2/3.

Heavy fermion couplings to the Z boson

Q = 2/3 quarks

quiL q
ui
L Z −iγµ

[
gZ(q

ui)− ǫgZ(qui) 1
cos2 ψ

I+1 Ri1
11

(++)L + ǫ cosφcosψI
−
1 κ1Pi1

11
(++)L

]
(1,1)

U
′i
LU

′i
LZ −iγµ

[
gZ(U

′i)− ǫgZ(U ′i) 1
cos2 ψ

I+1 Ri3
11

(+−)L + ǫ cosφcosψI
−
1 κ3Pi3

11
(+−)L

]
(2,2)

U
′′i
LU

′′i
L Z −iγµ

[
gZ(U

′′i)− ǫgZ(U ′′i) 1
cos2 ψI

+
1 Ri3

11
(+−)L + ǫ cos φcosψI

−
1 κ3Pi3

11
(+−)L

]
(3,3)

χdiL χ
di
L Z −iγµ

[
gZ(χ

di)− ǫgZ(χdi) 1
cos2 ψI

+
1 Ri1

11
(−+)L + ǫ cos φcosψI

−
1 κ2Pi1

11
(−+)L

]
(4,4)

U
i
LU

i
LZ −iγµ

[
gZ(U

i)− ǫgZ(U i) 1
cos2 ψI

+
1 Ri2

11
(−−)L + ǫ cosφcosψI

−
1 κ3Pi2

11
(−−)L

]
(5,5)

Table 5.3: Couplings involving the Z boson and the heavy left-handed fermions of electric

charge Q = 2/3.



5.8 Flavour Violation within the RSc Model 97

defines the new coupling matrices

B
5/3
L,R(Z) = X †

L,RA
5/3
L,R(Z)XL,R , B

2/3
L,R(Z) = U

†
L,RA

2/3
L,R(Z)UL,R ,

B
−1/3
L,R (Z) = D†

L,RA
−1/3
L,R (Z)DL,R . (5.141)

Similar expressions for the currents Jµ(ZH), Jµ(Z
′) follow for the gauge boson mass eigenstates

ZH and Z ′. Note that flavour-violating couplings of Z and Z ′ to left-handed down quarks are

protected by the custodial symmetry of the model (see [121,122,198] for further details).

5.8.3 Charged Currents

After rotating the gauge eigenstates W
(0)±
L , W

(1)±
L , W

(1)±
R into their mass eigenstates W±,

W±
H , W ′±, the charged current for the SM gauge bosons W± has the following structure

Jµ(W
±) = Ψ

2/3
L γµGL(W

+)Ψ
−1/3
L +Ψ

2/3
R γµGR(W

+)Ψ
−1/3
R

+Ψ
5/3
L γµG̃L(W

+)Ψ
2/3
L +Ψ

5/3
R γµG̃R(W

+)Ψ
2/3
R + h.c. . (5.142)

Corresponding to the size of the vectors Ψ
2/3
L,R, Ψ

−1/3
L,R , Ψ

5/3
L,R, the matrix GL,R (G̃L,R) is a

18 × 12 (9× 18) matrix in the model under consideration. Explicit expressions can again be

obtained from the Feynman rules in the appendix of [61]. The line of argument is the same as

in the neutral case: There are two effects of flavour violation — one from KK fermion mixing

and the other from gauge boson mixing. Schematically, the charged current in the fermion

mass eigenstate basis can be noted as

Jµ(W
±) = Ψ

2/3
L,mass γµHL(W

+)Ψ
−1/3
L,mass +Ψ

2/3
R,mass γµHR(W

+)Ψ
−1/3
R,mass

+Ψ
5/3
L,mass γµH̃L(W

+)Ψ
2/3
L,mass +Ψ

5/3
R,mass γµH̃R(W

+)Ψ
2/3
R,mass + h.c. , (5.143)

where the currents Jµ(W
±
H ) and Jµ(W

′±) can be derived analogously, and where

HL,R(W
+) = U†

L,RGL,R(W
+)DL,R and H̃L,R(W

+) = X †
L,R G̃L,R(W

+)UL,R . (5.144)

In analogy to the SM, we define the CKM matrix to be the 3×3 submatrix placed in the upper

left corner of the final mixing matrix [HL(W
+)]00. The matrix GL(W

+) deviates from the

unit matrix due to the two different flavour-violating effects and thus does not commute with

the rotation matrices which implies a non-unitary CKM matrix. However, the non-unitarity

effects are small, as both contributions are of O(ǫ). With respect to the SM and all other MFV

models, where the CKM matrix is the only relic of the rotation matrices, the latter explicitly

appear in this model in the charged and neutral currents (5.140)–(5.141) and (5.143)–(5.144).

As flavour violation in charged currents in the SM arises also at tree level, the additional

contributions seem, at first glance, not to be so restricting as the constraints coming from the

FCNCs. Nevertheless, the W boson mediates right-handed weak interactions such that there

are new operators compared to the SM contribution. In addition the new heavy gauge bosons

W ′± and W±
H may give sizeable contributions as well.
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5.8.4 Photonic and Gluonic Currents

Due to the unbroken gauge invariance of QCD and QED, the various photonic and gluonic

modes do not mix with each other. Thus, according to our general remarks in Subsection

5.8.1, only the flavour non-universal couplings to massive KK modes induce FCNC processes.

Restricting ourselves to the first KK mode, the coupling matrices of the massive photonic

current

Jµ(A
(1)) = Ψ

Q
L,R γµA

Q
L,R(A

(1))ΨQ
L,R , (5.145)

and the one occurring in the massive gluonic current

Jaµ(G
(1)) = Ψ

Q
L,R γµ T

aAQL,R(G
(1))ΨQ

L,R , (5.146)

are related by

AQL,R(G
(1))

gs
=
AQL,R(A

(1))

Qe
. (5.147)

As can be seen from the generic coupling overlap integral in (5.134), from which the coupling

matrices are constructed, AQL,R(G
(1)) and AQL,R(A

(1)) depend on the flavour index i and on

the fermion chirality L,R. Explicit expressions for the AQL,R(G
(1)) and AQL,R(A

(1)) matrices

can be obtained from the Feynman rules given in the appendix of [61]. After rotation into the

fermion mass eigenbasis, the currents are given by

Jµ(A
(1)) = Ψ

Q
L,R,mass γµB

Q
L,R(A

(1))ΨQ
L,R,mass , (5.148)

and

Jaµ(G
(1)) = Ψ

Q
L,R,mass γµ T

aBQ
L,R(G

(1))ΨQ
L,R,mass , (5.149)

where the proportionality of AQL,R(A
(1)), AQL,R(G

(1)) in (5.147) remains valid for the matrices

BQ
L,R(A

(1)) and BQ
L,R(G

(1)). The BQ
L,R are non-diagonal in flavour space and mediate tree-level

FCNC processes, which we will focus on in the next subsections.

5.8.5 Tree-Level Contribution of KK Gluons to ∆F = 2 Transitions

In this subsection, we will discuss the main new features of tree-level KK gluon contributions

to the particle-antiparticle mixings K0−K0
and B0

s,d−B
0
s,d [199]. In the SM the off-diagonal

element Mp
12 in the neutral K (p = K) and Bs,d (p = s, d) meson mass matrices has its origin

from one-loop box diagrams. The contributions stem from the single operator

(sd)V −A(sd)V−A = [sγµ(1− γ5)d] [sγµ(1− γ5)d] , (5.150)

in case of K0 −K0
mixing, and

(bq)V−A(bq)V−A =
[
bγµ(1− γ5)q

] [
bγµ(1− γ5)q

]
, with q = s, d , (5.151)
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correspondingly for the B0
s,d − B

0
s,d mixing. Detailed formulae for (Mp

12)SM may be found

in [121]. The relevant piece of the Lagrangian which contains the coupling of the lightest KK

gluons G
(1)a
µ (a = 1, ..., 8) to the down-type quarks (Di, i = 1, 2, 3) can be read off from the

gluonic current (5.149)

LQCD = −
∑

i

D
i
γµT a (εL(i)PL + εR(i)PR)D

iG(1)a
µ . (5.152)

With εL,R(i) we denote the diagonal elements of the 3× 3 matrices

ε̂L,R = Diag (εL,R(1), εL,R(2), εL,R(3)) , (5.153)

which correspond to the flavour submatrices in the upper left corner of the left- and right-

handed coupling matrices [A
−1/3
L,R (G(1))]00. Identifying g(y) with the shape function of the first

KK gluon modes G
(1)a
µ , the explicit expressions for εL,R(i) follow from the overlap integral

(5.134)

εL,R(i) =
gs

L3/2

∫ L

0
dy eky

(
f
(0)
L,R(y, c

i
D)
)2
g(y)

(5.135)
=

g4Ds
L

∫ L

0
dy eky

(
f
(0)
L,R(y, c

i
D)
)2
g(y) ,

(5.154)

where we used the tree-level matching relation for the strong coupling constant in the ab-

sence of brane kinetic terms. Furthermore f
(0)
L,R(y, c

i
D) has to be taken from (5.109) and g(y)

from (5.22). Since the bulk mass parameters and in consequence also the shape functions

f
(0)
L,R(y, c

i
D) are chirality dependent, εL(i) is not equal to εR(i) and parity is broken by QCD-

like interactions in this model. Remember that the couplings εL,R(i) are in addition flavour

non-universal and a rotation into the fermion mass eigenstates through the rotation matrices

DL,R produces the non-diagonal matrices

∆L,R = D†
L,R ε̂L,RDL,R . (5.155)

Their non-diagonal complex elements ∆ij
L,R, i 6= j, introduce new flavour and CP-violating

interactions with respect to the SM. Rewriting the Lagrangian (5.152) into the fermion mass

eigenstate basis yields

LQCD ≡ −
[
LQCD
L + LQCD

R

]
, (5.156)

where

LQCD
L =

(
∆sd
L (sLγ

µT adL) + ∆bd
L (bLγ

µT adL) + ∆bs
L (bLγ

µT asL)
)
G(1)a
µ ,

LQCD
R =

(
∆sd
R (sRγ

µT adR) + ∆bd
R (bRγ

µT adR) + ∆bs
R (bRγ

µT asR)
)
G(1)a
µ . (5.157)

The KK gluon contributions to K0 − K0
mixing in Figure 5.3 arise at second-order in the

S-matrix expansion, keeping the following relevant terms in the interaction Lagrangian

Lint(x) = −
(
∆sd
L (sL(x)γ

µT adL(x))G
(1)a
µ +∆sd

R (sR(x)γ
µT adR(x))G

(1)a
µ

)
. (5.158)
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d

sd

s

G
(1)
µ

+

d

s d

s

G
(1)
µ

Figure 5.3: Tree-level contribution of KK gluons to K0 −K0
mixing.

Due to the heavy KK mass of the gluon, we take the approximation p2gluon ≪M
(1)
KK such that

the gluon propagator shrinks to a pointlike four-quark coupling, known as effective vertex.

The corresponding effective Hamiltonian for this ∆S = 2 transition is then given by

H∆S=2
eff =

1

2
(
M

(1)
KK

)2
((

∆sd
L

)2
(sLγµT

adL) (sLγ
µT adL) +

(
∆sd
R

)2
(sRγµT

adR) (sRγ
µT adR)

+ 2∆sd
L ∆sd

R (sLγµT
adL) (sRγ

µT adR)
)
, (5.159)

with analogous expressions for the B0
d,s − B

0
d,s effective Hamiltonians. In Appendix B.7 we

carry out the transformation of the operator basis in (5.159) into the one used in [200]:

QV LL1 = (sγµPLd) (sγ
µPLd) , QV RR1 = (sγµPRd) (sγ

µPRd) ,

QLR1 = (sγµPLd) (sγ
µPRd) , QLR2 = (sPLd) (sPRd) . (5.160)

We also calculate the Wilson coefficients at the scale µ ∼ O(MKK) for the effective Hamilto-

nian, depending on the new basis

H∆S=2
eff =

1

4
(
M

(1)
KK

)2
(
CV LL1 QV LL1 + CV RR1 QV RR1 + CLR1 QLR1 + CLR2 QLR2

)
, (5.161)

which are found to be

CV LL1 (MKK) =
2

3

(
∆sd
L

)2
, CV RR1 (MKK) =

2

3

(
∆sd
R

)2

CLR1 (MKK) = −2

3
∆sd
L ∆sd

R , CLR2 (MKK) = −4∆sd
L ∆sd

R . (5.162)

The result (5.162) is valid for three colour degrees of freedom and confirms the results of [201].

Note that we suppressed all colour indices in the above expressions, however, they are given

in full detail in Appendix B.7. In the new basis one can directly take the formulae for the

anomalous dimension matrices from [200], which state the renormalisation group evolution of

the Hamiltonian valid at the KK scale down to low energies. The above example illustrates that

in the RSc model the new operators QV RR1 ,QLR1 and QLR2 are involved in FCNC transitions

— with respect to the single operator QV LL1 present in the SM.
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5.8.6 Tree-Level Contribution of the KK Photon to ∆F = 2 Transitions

The KK photon contribution follows from the formulae of the KK gluon contributions through

the replacements G(1) → A(1), g4Ds → e4D and T a → 1. Thus, the sum of the left- and right-

handed components of LQED

LQED ≡ −
[
LQED
L + LQED

R

]
, (5.163)

are given by

LQED
L =

(
∆sd
L (A(1))(sLγ

µdL) + ∆bd
L (A(1))(bLγ

µdL) + ∆bs
L (A

(1))(bLγ
µsL)

)
A(1)
µ ,

LQED
R =

(
∆sd
R (A(1))(sRγ

µdR) + ∆bd
R (A(1))(bRγ

µdR) + ∆bs
R (A

(1))(bRγ
µsR)

)
A(1)
µ . (5.164)

Since this result is already given in the basis of (5.160), the corrections to the Wilson coeffi-

cients in (5.162) from the KK photon follow immediately

(
∆CV LL1 (MKK)

)QED
= 2

(
∆sd
L (A(1))

)2
,

(
∆CV RR1 (MKK)

)QED
= 2

(
∆sd
R (A(1))

)2
,

(
∆CLR1 (MKK)

)QED
= 4

(
∆sd
L (A(1))

)(
∆sd
R (A(1))

)
,

(
∆CLR2 (MKK)

)QED
= 0 . (5.165)

Implications from Numerical Studies

As has been found in various numerical studies, the fully anarchic approach in which the

hierarchy of fermion masses and weak mixings is assumed to originate solely from geometry is

challenging. Particularly, in case of an IR-brane localised Higgs, the excessive contribution of

the chirality flip operators QLR2 , QLR1 to the CP-violating parameter εK in theK meson system

implies a lower bound on the lightest KK gluon mass around 20TeV [121, 201]. However, as

was also demonstrated in [121], if a modest hierarchy and some fine-tuning is reintroduced

into the fundamental 5D Yukawa matrices, regions in parameter space exist in which the

constraints coming from εK , the off-diagonal mixing amplitudes ∆MK
12 , ∆M

d
12, ∆M

s
12 and the

mixing-induced CP asymmetry SψKS
can be fulfilled simultaneously for KK masses as low as

MKK ≃ (2 − 3) TeV. Moreover, as was also stated there, the KK gluons give the dominant

contribution to εK and ∆MK
12 while the EW tree-level contributions of ZH , Z ′ can compete

with the KK gluons in the case of Bd,s physics observables. The contribution of the KK photon

can be safely neglected in both cases. Also the one from the Z boson, which is controlled by

the custodial symmetry, is found to be negligible. Within the same framework also rare K and

B meson decays were studied [122] as well as contributions to εK from Higgs FCNCs [202,203].

Recent reviews can also be found in [204] and [205].

Instead of deviating from the fully anarchic approach, the KK scale can be lowered down

to O(5) TeV if the Higgs is in the bulk and one-loop matching of the strong gauge coupling is
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included [206]. Important ingredient in this analysis is the ability to raise the overall size of the

5D down-type Yukawa coupling that suppresses the contributions to εK but simultaneously

let the contribution to B → Xsγ grow. Incorporating also the bound on ǫ′/ǫ, the flavour

problem becomes even more serious and the KK scale is again pushed up to O(8) TeV [207],

beyond the LHC reach [186,208].

To prevent the theory from large FCNCs, [209] introduces bulk and brane flavour sym-

metries. Flavour violation occurs via kinetic mixing terms of the right-handed fields on the

UV brane. It is shown that this approach incorporates the GIM mechanism [106] and the SM

CKM picture can be reproduced. However, the natural explanation of the flavour puzzle has

to be abandoned in this setup.

Keeping this feature, another alternative for suppressing dangerous down-type FCNCs in

WED models was proposed in [210] and [211], where the MFV paradigm is transferred to the

5D bulk. In the so-called “5D MFV” model, the 5D anarchic Yukawa matrices are assumed

to be the only sources which break the 5D bulk FS U(3)3. In consequence, the 5D vector-like

3× 3 mass matrices are expressed in terms of YU,D according to

cQ = αQ · 1+ ruβQYUY
†
U + rdγQYDY

†
D

cU = αU · 1+ γuY
†
UYU

cD = αD · 1+ βdY
†
DYD . (5.166)

In the limit of vanishing ru, the down sector is completely aligned and one can choose a basis

in which YD and the bulk mass matrices cQ and cD are simultaneously diagonal. Thus the 4D

down-quark mass matrix is diagonal in the basis where the couplings to the bulk gauge fields

are diagonal (but non-universal) and hence there are no tree-level FCNCs involving down-type

quarks. This special limit can be realised for example with the requirement that there is a

bulk FS SU(3)QL
×SU(3)DR

which is broken only by the VEV of a bifundamental down-type

scalar field 〈yd〉 ∼ YD. It was pointed out in [211] that the alignment assumption allows for a

KK mass scale as low as 2− 3 TeV.
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Summary and Outlook

In this work we presented two possible answers to the question: “Why are the quark masses

and mixing angles in the SM so much different?” This quark flavour puzzle is connected to

the “obscure” part of the SM — the so far unobserved Higgs boson, which is supposed to be

an elementary field of scalar nature.

We gave a brief summary of the basic features of gauge theories, including the formalism

of chiral gauge anomalies, and continued having a closer look at the SM where we focused on

the Higgs sector. Being a doublet under SU(2)L, the Higgs also allows for gauge-invariant

fermion mass terms via chiral Yukawa couplings. The only relic of the two 3× 3 complex SM

Yukawa matrices after the diagonalisation are six real quark masses and four CKM parameters

that are physically observable.

In the dMFV model we tried to “revive” the static SM Yukawa coupling matrices, in

promoting them to dynamical scalar spurion fields. While retaining the SM fermion content,

we dealt with new flavour gauge bosons since we augmented the SM gauge group with the local

flavour symmetry group SU(3)QL
× SU(3)UR

× SU(3)DR
. The Yukawa matrices transform

as bifundamental objects to restore the FS in the Yukawa interactions. Hence there is less

arbitrariness than in the SM where they have been introduced to ensure the most generic

renormalisable and gauge-invariant Yukawa Lagrangian. To account for the observed hierarchy

in the quark masses and mixing angles, the FS was broken in a sequential fashion by the VEVs

of the two Yukawa matrix spurion fields [157]. Being a singlet under the flavour gauge group,

the SM Higgs boson did not participate in this breaking and its VEV did not contribute to

the masses of the new scalars and flavour gauge bosons either. Corresponding to the different

breaking scales the masses of the new heavy gauge bosons and Higgs modes are hierarchically

ordered, which becomes relevant when integrating out the new heavy degrees of freedom to

obtain an effective theory.

Before doing so, we had to find an appropriate parameterisation of the Yukawa spurions

in which the physically relevant scalar fluctuations around the physical masses and mixing

parameters are disentangled from the Goldstone modes [90]. The Goldstone bosons, corre-

103
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sponding to the broken symmetry generators of the local part of the FS, disappear from the

particle spectrum in the unitary gauge. Requiring that there are no linear mixing terms of

scalar fields with gauge boson fields in the spurion kinetic terms when working in the unitary

gauge, we were able to give the parameterisation for the two- and three-family case. We

pointed out that the physical scalar fluctuations around the CKM angles, that directly lead

to FCNCs in the effective low-energy theory, appear in both Yukawa matrices regardless to

the choice of basis of the Yukawa VEVs. In the three-family case kinetic mixings between the

spurion fluctuations around the three CKM angles occurred which we diagonalised in order

to assign the non-trivial flavour structure solely to the Yukawa sector.

As already mentioned in the introduction, our setup necessarily has to be understood

in the context of an effective field theory framework for two reasons. First, the Yukawa

interactions are described by dimension-5 operators due to the canonical dimension of the

Yukawa matrices. Second, a quantum theory involving anomalies of the chiral FS itself or

mixed anomalies with the SM gauge group can be consistently formulated only if the theory

originates from a more fundamental anomaly-free theory [89]. We restricted ourselves to

construct the effective Lagrangian for a subgroup of the local symmetry, which arises as an

intermediate step in the breaking sequence. By adding higher-dimensional operators involving

the Goldstone fields, we showed that they can cancel the anomalous fermion contributions and

thus can formally restore the gauge invariance. While the mixed anomalies are removed by

choosing the counterterms appropriately, the effect of the anomalies can be absorbed into the

masses of the heavy gauge bosons of the broken flavour symmetry.

Integrating out the heavy gauge bosons and scalar fields at tree level by means of the

equations of motion, we derived the 4-quark operators that share — according to our ansatz

— the basic features of MFV. While the heavy SU(2)DR
gauge bosons involve only flavour-

diagonal currents with non-trivial colour structure, the U(1)X gauge boson has non-universal

flavour couplings to left-handed down quarks, leading to FCNCs after rotation into their mass

eigenbases. The scalar fluctuations around the CKM angles directly lead to FCNCs in the

effective low-energy theory, which may be checked experimentally. The lightest scalar particle

— and therefore the last to be integrated out in the sequence — corresponds to the fluctuation

around the Cabibbo angle. Its mass has to be sufficiently large in order to guarantee that

the induced flavour-changing transitions are in line with the experimental constraints from

precision measurements in the K and B meson system and thus will set a lower bound on

the FS breaking scale Λ. The smallness of the first-generation Yukawa couplings implies that

the global chiral U(1)uR × U(1)dR symmetry is broken at the very last step of the breaking

sequence. We motivated to leave the chiral U(1) factors as global symmetries in order to

allow for a modified Peccei–Quinn mechanism in which the Goldstone modes dynamically

lead to a vanishing effective θ-parameter in QCD and thus resolve the strong CP problem.

The couplings of physical axion fields in such a scenario are strongly suppressed by the UV

scale of the effective theory. The phenomenological implications of this scenario for flavour
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observables accessible by future experiments at the LHC or at Super-B factories has still to

be worked out. Moreover, this picture could also be adopted in the lepton sector, where a

non-linear representation of the lepton flavour symmetry group was already presented in [212].

The second main part of this thesis is devoted to the RSc model with fermions allowed to

propagate in the 5D bulk and a Higgs boson localised on or near the IR brane [99]. Originally

motivated by a resolution of the gauge hierarchy problem, RS models can simultaneously

address the flavour puzzle.

We presented the gauge boson content of the RSc model with its enlarged electroweak bulk

gauge group SU(2)L×SU(2)R×U(1)X and discussed its breakdown by an appropriate choice

of BCs on the UV brane as well as by the usual Higgs mechanism. The hierarchy between

the gauge boson mass contributions coming from the extra-dimensional setup and from the

Higgs mechanism offered us the possibility of an analytic perturbative diagonalisation of the

mass matrices and is reflected in the expansion parameter ǫ = g2v2/(4LM2) ∼ O(v2/f2). For

this purpose, we introduced the general formalism of the Rayleigh–Schrödinger perturbation

theory for the degenerate case. We consistently determined the gauge boson mass eigenvalues

up to O(ǫ2) and the mass eigenstates up to O(ǫ), which poses a higher accuracy than we

displayed in [120].

Having summarised the general aspects about fermions living in EDIMs like the localisation

freedom of their zero mode profiles, we introduced a specific fermion content which ensures —

together with the enlarged gauge group — a custodial protection of the T parameter and the

ZbLbL coupling. Restricting ourselves to the zero and first-excited KK modes, we constructed

the 4D effective Yukawa matrices that arise from the most general gauge-invariant 5D Yukawa

Lagrangian and thereby observed that the hierarchical structure can emerge from an overlap

integral over non-uniform localised zero mode quark profiles along the extra dimension. Since

the quark mass matrices after EWSB have to be diagonalised numerically, we derived the 4D

effective Feynman rules involving gauge boson mass eigenstates while the fermions are still

given in their gauge eigenstates [120].

Due to the new flavour-violating source in form of the 5D bulk masses, the RSc model has

a rich flavour structure far beyond models with MFV. While the distortion of the quark zero

profiles allows for a solution to the flavour puzzle, it also implies flavour-dependent couplings

to the KK gauge bosons which induce tree-level FCNCs after the rotation to the fermion mass

eigenbasis. A further contribution, even if negligible with regard to the gauge boson mixing,

comes from the mixing of the SM quarks with the heavy KK fermions. After having studied

the structure of the neutral and charged weak currents, we introduced the quark couplings

to the massive KK gluon and KK photon. This is followed by a discussion of tree-level KK

gluon and KK photon contributions to the particle-antiparticle mixings in the K and B meson

sector, where we demonstrated that new operators are present in the effective Hamiltonian —

in particular the dangerous flavour-changing LR-4-fermion operators.

We commented that RSc models which satisfy all existing ∆F = 2 and electroweak pre-
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cision constraints with KK masses MKK ≃ 2− 3TeV reachable at the LHC exist if a modest

hierarchy in the 5D Yukawas [121,122] is reintroduced or some sort of alignment in the down-

type sector [210,211] is assumed. As also mentioned in [211], it would be interesting to consider

a 5D MFV model with fully gauged SU(3)3 bulk FS group without alignment and to care-

fully work out its dynamics. Having in mind the 4D dMFV model, one may argue that it is

then quite “natural” to allow for a hierarchy in the 5D Yukawa matrices resulting from the

breakdown of the 5D bulk symmetry group.

Anyway, the very different approaches in solving the flavour puzzle have in common that

the hierarchy in the 4D Yukawa matrices is generated dynamically. While in the RSc model

the latter is generated by an overlap integral over “dynamical” fermion wave functions, the

hierarchy in the dMFV is generated by dynamical scalar fields that obtain non-vanishing VEVs

through an appropriately chosen spurion potential.

Which road to take in building models beyond the SM will hopefully be shown by the

upcoming experiments at the LHC and/or in the interplay of a future linear collider [213].

The extensive LHC program [214,215] covers EW, flavour and QCD precision measurements

which allow a deeper understanding of the SM and of possible deviations indicating new

physics. In particular a more accurate determination of the W boson and the top quark mass

can be performed, as well as a precise measurement of the strong coupling constant, parton

distribution functions, a detailed study of rare decays, CKM elements and CP violation —

especially in the B meson sector.

A highlight would be the direct detection of supersymmetric particles which provide the

proper framework for grand unified theories and a deeper insight of space-time symmetries.

Furthermore, the LHC allows for the approval of additional spatial dimensions by the ex-

ploration of heavy KK modes or of theories containing heavy gauge bosons like Z ′ models.

However, of utmost importance for the LHC is to proof the (non-)existence of the last miss-

ing particle of the SM, the famous Higgs boson, and with it to test the very mechanism of

spontaneous electroweak symmetry breaking.



Appendix A

Addendum to Chapter 4

In this appendix we demonstrate that the coefficient of the second term in the anomaly

contribution follows from the first one by the usage of the Wess–Zumino consistency condition

(see Section 2.5). The first term can be obtained via a direct calculation of the triangle

diagrams. To simplify the notation, we begin with a summary of the formalism of differential

forms, as given in [131].

A.1 Differential Forms

A general p-form is constructed from an antisymmetric tensor with p indices via

Φp = Φµ1...µp(x)

(
1

p!
dxµ1 ∧ dxµ2 ∧ ... ∧ dxµp

)
, (A.1)

where the wedge product is defined as

dxµ ∧ dxν := dxµ ⊗ dxν − dxν ⊗ dxµ = −dxν ∧ dxµ . (A.2)

In the following the wedge-product symbol is omitted and dxµ is treated as an anticommuting

Grassmann object. If the rank p exceeds the dimension m of the manifold M the wedge

product vanishes. The commutation law for a p-form with a q-form is given by

αpβq = (−1)pqβqαp , (A.3)

as each dxµqi (qi = 1, ..., q) has to be commuted p times with dxµpi (pi = 1, ..., p), giving in

total q factors of (−1)p. In particular, odd forms with odd ranks always anticommute.

An exterior derivative d = ∂
∂xν dx

ν acting on a p-form like

dΦp = ∂νΦµ1...µp(x)

(
1

p!
dxνdxµ1dxµ2 ...dxµp

)
, (A.4)

transforms it into a (p + 1)-form. The fact that the derivatives are symmetric while the

wedge product is antisymmetric leads to the important property that the exterior derivative

107
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is nilpotent

d2Φp = 0 . (A.5)

The exterior derivative further obeys the antiderivation rule

d(αpβq) = (dαp)βq + (−)pαp(dβq) . (A.6)

The dual p-form is defined by the so-called Hodge ∗ operation which transforms p-forms into

(m− p)-forms,

∗Φp = Φµ1...µp
1

p!
∗(dxµ1 ...dxµp) = Φµ1...µp

1

p!

(
ǫ
µ1...µp

µp+1...µm
1

(m− p)!dx
µp+1 ...dxµm

)
. (A.7)

In Minkowski space the following relations hold

1

m!
εµ1...µmdx

µ1 ...dxµm = dx0...dxm−1 , (A.8)

dxµ1 ...dxµm = −εµ1...µmdx0...dxm−1 , (A.9)

where the second follows from the first one with the identity

εµ1...µmε
µ1...µm = −m! . (A.10)

Non-Abelian Gauge Anomaly within Differential Form

We now give a few examples for the usage of differential forms. In Yang-Mills theory, the

gauge field can be described by the 1-form

Ã = Ãµdx
µ with Ãµ = AaµT̃

a = −iAaµT a . (A.11)

The field strength tensor

Fµν = F aµν T̃
a = ∂µÃν − ∂νÃµ + [Ãµ, Ãν ] , (A.12)

can be rewritten as a 2-form:

F =
1

2
Fµνdx

µdxν =
1

2
(∂µÃν − ∂νÃµ + [Ãµ, Ãν ]) dx

µdxν = dÃ+
1

2
[Ã, Ã] = dÃ+ Ã2 . (A.13)

With the introduction of the covariant derivative

D = Dµdx
µ = (Da

µT̃
a) dxµ = (∂µ + [Ãµ, ]) dxµ = d + [Ã, ], (A.14)

the field strength tensor can be reformulated by the compact form F = DÃ.

Finally, we want to rewrite the non-abelian anomaly for L- and R-fields

Ga[ÃL,Rµ (x)] = Dab
µ [ÃL,Rµ ]jµbL,R = ∓ 1

24π2
ǫµνρσTr [T̃ a∂µ(Ã

L,R
ν ∂ρÃ

L,R
σ +

1

2
ÃL,Rν ÃL,Rρ ÃL,Rσ )].

(A.15)
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Therefore we use the definition of the non-abelian L- and R-currents as a 1-form

jL,R = jaL,RT̃
a = jaL,R,µT̃

adxµ , (A.16)

to define the corresponding dual currents (3-forms)

∗jL,R =
1

1!(m− 1)!
jµL,R εµνρσdx

νdxρdxσ . (A.17)

The anomaly arises from the exterior derivative acting on the dual L- and R-currents:

(D ∗ jL,R)a =
1

(m− 1)!
Dab
α j

µb
L,Rεµνρσ dx

αdxνdxρdxσ

(A.9)
=

1

(m− 1)!
Dab
α j

µb
L,Rεµνρσ(−εανρσ) dx0...dx3

=
1

(m− 1)!
Dab
α j

µb
L,R((m− 1)!δαµ )dx

0...dx3

= Dab
α j

αb
L,R dx

0dx1dx2dx3

= ∓ 1

24π2
ǫµνρσTr [T̃ a∂µ(Ã

L,R
ν ∂ρÃ

L,R
σ +

1

2
ÃL,Rν ÃL,Rρ ÃL,Rσ )] dx0dx1dx2dx3

= ± 1

24π2
Tr [T̃ a∂µ(Ã

L,R
ν ∂ρÃ

L,R
σ +

1

2
ÃL,Rν ÃL,Rρ ÃL,Rσ )] dxµdxνdxρdxσ

= ± 1

24π2
Tr [T̃ ad(ÃL,RdÃL,R +

1

2
ÃL,RÃL,RÃL,R)] . (A.18)

Hence, the non-abelian gauge anomaly within differential forms reads

Ga[ÃL,R] = (D ∗ jL,R)a = ±
1

24π2
Tr [T̃ ad(ÃL,RdÃL,R +

1

2
(ÃL,R)3)] , (A.19)

and correspondingly

G(v, ÃL,R) =

∫
dx va(x)Ga[ÃL,R](x) = ± 1

24π2

∫
dxTr [vd(ÃL,RdÃL,R +

1

2
(ÃL,R)3)] .

(A.20)

A.2 Graded Algebra

We have seen in Section 2.3 that the BRST operator δv increases the ghost number by one

unit and in the previous Section A.1 that the exterior differential d raises the form degree

by one unit. Combining the form and ghost degree through a sum of both degrees to a total

degree,

Degtotal(X) = Degform(X) + Degghost(X) , (A.21)

defines the graded algebra [131]. Both operators act as antiderivations (δ2v = d2 = 0) on this

algebra and they are required to satisfy

δvd + dδv = 0 . (A.22)
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For the graded algebra the commutator is defined by

[P,Q] = PQ− (−1)Degtotal(P )×Degtotal(Q)QP , (A.23)

for example,

[Ã, v] = Ãv + vÃ , [v, v] = 2v2 . (A.24)

Using differential forms, the first two BRST transformations in (2.20) can be rewritten as

δvÃ = −Dv = −dv − [Ã, v]
(A.24)
= −dv − Ãv − vÃ , δvv = −v2 , (A.25)

which is constructed in such a way that the nilpotency of the BRST operator is fulfilled, e.g.

δ2vÃ = δv(−Dv) = δv(−dv − [Ã, v]) = +d(δvv)− δv(Ãv + vÃ)

= −d(v2)− (−Dv)v + Ã(−v2) + v2Ã+ v(−Dv)
= −(dv)v + v(dv) + (dv)v + Ãv2 + vÃv − Ãv2 + v2Ã− v(dv)− vÃv − v2Ã = 0 .

(A.26)

A.3 Usage of the Wess–Zumino Consistency Condition

The aim of this section is to show that the WZCC δvG(v, Ã) = 0 introduced in (2.35) uniquely

determines the constants c1, ..., c4 of the most general form of the left-handed anomaly

G(v, Ã) =
1

24π2

∫

M
Tr [v dÃdÃ+ c1 v(dÃ)Ã

2 + c2 vÃ(dÃ)Ã+ c3 vÃ
2(dÃ) + c4 vÃ

4] . (A.27)

In the following we let the generalised gauge operator act on the different terms in the above

sum, where all expressions have to be understood as arguments of the trace:

• δv(vdÃdÃ) = vÃdvdÃ− vdÃdÃv − vdvÃdÃ+ v(dÃ)Ãdv − vdÃdvÃ ,
• δv(v(dÃ)Ã

2) = vdÃ(dv)Ã− v(dÃ)Ãdv + vÃ(dv)Ã2 − v(dv)Ã3 − v(dÃ)Ã2v ,

• δv(vÃ(dÃ)Ã) = vdv(dÃ)Ã− vÃ(dÃ)dv − vÃ2(dv)Ã+ vÃ(dv)Ã2 − vÃ(dÃ)Ãv ,
• δv(vÃ

2(dÃ)) = v(dv)Ã(dÃ)− vÃ(dv)(dÃ)− vÃ2(dÃ)v + vÃ3dv − vÃ2(dv)Ã ,

• δv(vÃ
4) = v2Ã4 − vÃ(dv)Ã2 + vÃ2(dv)Ã− vÃ3dv . (A.28)

Since there are no other terms proportional to Ã4 that could probably cancel the term arising

in the last line of (A.28), we conclude that the coefficient c4 has to be zero. Actually we do not

need to require that the various terms all add up to zero, but only that they can be written

as a derivative of some local function, so that its integral over the manifold vanishes. Having

started with the single term containing no derivative, we continue with a proper rearrangement

of the contributions which contain exactly one derivative, namely

• (c1 + c2)(dv)Ã
2vÃ− (c2 + c3)vÃ

2(dv)Ã (A.29)

• c3 (dv)vÃ
3 − c1 v(dv)Ã3 + c1 v

2(dÃ)Ã2 + c2 v
2Ã(dÃ)Ã+ c3 v

2Ã2(dÃ) . (A.30)
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As the ghost fields do not simply commute with the gauge fields, we differentiate between the

terms with ghosts alternating with the gauge fields in (A.29) from the ones in which they are

separated from each other as in (A.30). The terms of the first line could probably form a total

derivative d(vÃ2vÃ), but, as a term involving a derivative acting on a gauge field is missing,

the coefficients have to be chosen such that all terms vanish. Thus, we impose the condition

c1 = −c2 = c3 = c, which in turn implies that the remaining terms in (A.30) add up to the

total derivative

cd(v2Ã3) . (A.31)

For the terms containing two derivatives we proceed in the same manner. First, we collect all

terms in which the gauge fields are sandwiched between two ghost fields

(1− c)vÃ(dv)(dÃ) + (1− c)Ãv(dÃ)(dv). (A.32)

Realising that the “missing” third term, needed for a completion of the total derivative, would

vanish under the trace anyway

v(dÃ)v(dÃ) = −(dÃ)v(dÃ)v = −v(dÃ)v(dÃ) = 0 , (A.33)

we can summarise the above two terms according to

(1− c)d(vÃvdÃ) . (A.34)

The remaining terms in (A.28), where the gauge fields and ghosts are not mixed up, contain

at least one derivative acting on the gauge field

v2(dÃ)(dÃ)+(c−1)v(dv)Ã(dÃ)+(1−c)(dv)v(dÃ)Ã−cv(dv)(dÃ)Ã+c(dv)vÃ(dÃ) . (A.35)

As in addition a term with two dv’s is missing, one may guess that these terms arise from a

total derivative of the following structure

d(v2ÃdÃ+ v2(dÃ)Ã) = (dv)vÃdÃ− v(dv)ÃdÃ+ 2v2dÃdÃ+ (dv)v(dÃ)Ã− v(dv)(dÃ)Ã .
(A.36)

Indeed, if one imposes c
!
= 1/2, the terms in (A.35) can be brought into the form

1

2
d(v2Ã(dÃ) + v2(dÃ)Ã) . (A.37)

Thus, we have shown that the WZCC uniquely fixes the coefficients to

c1 = −c2 = c3 = c =
1

2
. (A.38)

Using this condition, the anomaly can be reformulated as

G(v, Ã) =
1

24π2

∫

M
Tr [v dÃdÃ+

1

2
v(dÃ)Ã2 − 1

2
vÃ(dÃ)Ã+

1

2
vÃ2(dÃ)]

=
1

24π2

∫

M
Tr [v d(ÃdÃ+

1

2
Ã3)] , (A.39)

which confirms the result given in (2.32) and in (A.20).
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A.4 Diagonalisation of the Spurion Kinetic Terms

As mentioned in Subsection 4.4.2, one has the freedom to diagonalise the spurion kinetic terms

contained in the kinetic term of the up-type Yukawa matrix Tr [(∂µYU )(∂
µY †

U )] separately from

that in the down-type one, and vice versa. Actually, we will proceed with the diagonalisation

and normalisation of Tr [(∂µYD)(∂
µY †

D)], because it accidentally does not contain any mixings.

Thus we can leave out the first step and normalise the terms in

Tr [(∂µYD)(∂
µY †

D)] =
1

4
ys

2(∂µη̃12(x))
2+

1

4
yb

2(∂µη̃13(x))
2+

1

4

(
yb

2 − ys2
)2

yb2 + ys2
(∂µη̃23(x))

2 , (A.40)

by using the following redefinitions

η̃12(x)→
2

ys
η̆12(x) , η̃13(x)→

2

yb
η̆13(x) , η̃23(x)→

2
√
y2b + y2s

y2b − y2s
η̆23(x) . (A.41)

The next step is to diagonalise the kinetic mixing terms induced by Tr [(∂µYU)(∂
µY †

U )]. To

this end we introduce the matrix notation

(
∂µη̆12(x), ∂µη̆13(x), ∂µη̆23(x)

)
A




∂µη̆12(x)

∂µη̆13(x)

∂µη̆23(x)


 . (A.42)

Observing that the off-diagonal elements of the real matrix A are small compared to the

diagonal entries, we are going to use this hierarchy to diagonalise the matrix perturbatively.

As motivated in the description of the Rayleigh–Schrödinger method in the Appendix B.5, we

divide A into an “unperturbed” matrix A0 and a “perturbed” matrix A1

A = A0 + ǫA1 =




A11 0 0

0 A22 0

0 0 A33


+ ǫ




0 A12 A13

A12 0 A23

A13 A23 0


 , (A.43)

where we made the smallness of the off-diagonal CKM matrix elements (as given in the linear

representation in (4.63)) more transparent by redefining θij → ǫ θij, i, j = 1, 2, 3.

The explicit values of the diagonal elements of A0 are given by

A11 =
y2s
y2c
, A22 =

y2b
y2t
, A33 =

(y2b − y2s)2(y2c + y2t )

(y2b + y2s)(y
2
c − y2t )2

. (A.44)

Obviously, an appropriate orthonormal basis of zeroth eigenvectors of the unperturbed matrix

A0 is represented by

| 10〉T =
(

1 , 0 , 0
)
, | 20〉T =

(
0 , 1 , 0

)
, | 30〉T =

(
0 , 0 , 1

)
, (A.45)

with corresponding zeroth-order eigenvalues E0
1 = A11, E

0
2 = A22 and E0

3 = A33. As A33

equals A22 in the limit ys ≪ yb and yc ≪ yt, we will not use this approximation already at
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this stage to avoid having to deal with the formulae for the degenerate case (see also Appendix

B.5). There are no first-order corrections to these eigenvalues due to the fact that A1 has no

diagonal entries, which implies that 〈k0|A1|k0〉 = 0 for the above basis with k = 1, 2, 3 (see

also formula (B.96)).

However, the explicit expressions for the off-diagonal elements of A1,

A12 = −θ23 yb ys
y2c − y2t
y2cy

2
t

∼ θ23
yb ys
y2c

,

A13 = θ13
ysy

2
t (−y2b + y2s)(−3y2c + y2t )

y2c

√
y2b + y2s (y

2
c − y2t )2

∼ −θ13
yb ys
y2c

,

A23 = θ12
yb y

2
c (y

2
b − y2s)(y2c − 3y2t )

y2t

√
y2b + y2s (y

2
c − y2t )2

∼ −3 θ12
y2b y

2
c

y4t
, (A.46)

enter the formula given in (B.100) for the calculation of the first-order corrections to the

eigenvectors. In the case of non-degeneracy the formula simplifies to

|k1〉 =
3∑

k′ 6=k , k′=1

〈k′0|A1|k0〉
(E0

k −E0
k′)
|k′0〉 , (A.47)

with the explicit first-order corrections to the eigenvectors given by

| 11〉T =

(
0 ,

ybys(y
2
c−y2t )θ23

y2
b
y2c−y2sy2t

,
ysy2t (y

2
b
−y2s)
√
y2
b
+y2s(−3y2c+y

2
t )θ13

(y2
b
y2c−y2sy2t )(y2s (−3y2c+y

2
t )+y

2
b
(y2c+y

2
t ))

)
,

| 21〉T =

(
−ybys(y

2
c−y2t )θ23

y2
b
y2c−y2sy2t

, 0 ,
yby

2
c (y

2
b
−y2s)
√
y2
b
+y2s(y

2
c−3y2t )θ12

(y2
b
y2c−y2sy2t )(y2b (y2c−3y2t )+y

2
s(y

2
c+y

2
t ))

)
,

| 31〉T =

(
− ysy2t (y

2
b
−y2s)
√
y2
b
+y2s(−3y2c+y

2
t )θ13

(y2
b
y2c−y2sy2t )(y2s (−3y2c+y

2
t )+y

2
b
(y2c+y

2
t ))
, − yby

2
c(y

2
b
−y2s)
√
y2
b
+y2s(y

2
c−3y2t )θ12

(y2
b
y2c−y2sy2t )(y2b (y2c−3y2t )+y

2
s(y

2
c+y

2
t ))
, 0

)
. (A.48)

Together with the zeroth eigenvectors they form the orthogonal transformation matrix

G =



| 10〉T + ǫ | 11〉T
| 20〉T + ǫ | 21〉T
| 30〉T + ǫ | 31〉T


 , (A.49)

which diagonalises A up to O(ǫ2) corrections

G(A0 + ǫA1)G
T = Diag(A) = Diag (A11 , A22 , A33) +O(ǫ2) . (A.50)

Simultaneously, the spurion fields are transformed into the new basis

(
η̂12 , η̂13 , η̂23

)T
= G

(
η̆12 , η̆13 , η̆23

)T
, (A.51)

in which then also the spurion kinetic terms arising from the up-type Yukawas are diagonal,

Tr [(∂µYU )(∂
µY †

U )] =
y2s
y2c

(∂µη̂12(x))
2 +

y2b
y2t

(∂µη̂13(x))
2 +

(y2b − y2s)2(y2c + y2t )

(y2b + y2s)(y
2
c − y2t )2

(∂µη̂23(x))
2 .

(A.52)
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Remember that the latter unitary transformation does not influence the form of the normalised

contributions from the kinetic term of the down-type Yukawa spurion matrix

Tr [(∂µYD)(∂
µY †

D)] = (∂µη̂12(x))
2 + (∂µη̂13(x))

2 + (∂µη̂23(x))
2 . (A.53)

Without loss of generality, we choose to rescale the fields according to

η̂12(x)→ −
1

ys
η̃12(x) , η̂13(x)→ −

1

yb
η̃13(x) , η̂23(x)→ −

√
y2b + y2s

(y2b − y2s)
η̃23(x) , (A.54)

which leads to the symmetric form of the spurion kinetic terms presented in (4.68).



Appendix B

Addendum to Chapter 5

B.1 Fermionic Action and RS Spin Connection Term

In this section we show that the action given in (5.105)

S =

∫
d5x
√
G
(1
2
Ψ
(
iΓM ∇M − ck

)
Ψ+ h.c.

)
, (B.1)

with ∇M = DM + ωM , can be brought into the shape

S =

∫
d5x
√
G
(
EMA

i

2
Ψ γA

(
DM −

←−
D †
M

)
Ψ+ EMA

i

2
Ψ
{
γA, ωM

}
Ψ− ckΨΨ

)
. (B.2)

←−
D†
M =

←−
∂M + igV a

MT
a denotes the hermitian conjugate covariant derivative for the specific

case of the non-abelian gauge fields V a
M , whereas the partial derivative acts again solely on the

spinor fields. With the definition γ55D = −iγ54D (see (5.99)), the hermicity conditions, which

are usually imposed on the 4D gamma matrices,

(γα)† = −γα , α = 1, 2, 3 , (γ5)† = γ5 , γ0(γα)†γ0 = γα , (B.3)

can be combined into

(γA)† = −γA , γ0γA†γ0 = γA , A = 1, 2, 3, 5 , (B.4)

where (γ0)† = γ0 and (γ0)2 = 1. These relations are needed for the calculation of the various

hermitian conjugate terms in (B.1), e.g.

( i
2
EMA ΨγA∂MΨ

)†
= − i

2
EMA (Ψ†←−∂M )γ0γ0γA†γ0Ψ

(B.4)
= − i

2
(Ψ
←−
∂M )ΓMΨ , (B.5)

and of the term which contains the coupling to the non-abelian gauge fields

( i
2
EMA ΨγA(−igV a

MT
a)Ψ

)† (B.4)
= − i

2
Ψ(igV a

MT
a)ΓMΨ . (B.6)
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For the calculation of the term involving the spin connection

( i
2
EMA ΨγAωMΨ

)†
= − i

2
EMA Ψ†γ0γ0ω†

Mγ
0γ0γA†γ0Ψ = − i

2
EMA Ψγ0ω†

Mγ
0γAΨ , (B.7)

we need to know γ0ω†
Mγ

0. Concentrating on the Dirac algebra and neglecting all metric factors

of the spin connection, it follows independently of the chosen metric:

γ0ω†
Mγ

0 (5.102)∼ γ0
[
γA, γB

]†
γ0

(B.4)
= γ0

(
γBγA − γAγB

)
γ0 = −

[
γA, γB

]
∼ −ωM . (B.8)

Thus, (B.7) can be rewritten according to

( i
2
EMA ΨγAωMΨ

)†
=
i

2
ΨωMΓMΨ . (B.9)

Inserting (−1/2Ψ ckΨ)† = −1/2Ψ ckΨ into (B.1) and using the above results, yields

S =

∫
d5x
√
G
( i
2
ΨΓM (DM −

←−
D †
M )Ψ +

i

2
Ψ
{
ΓM , ωM

}
Ψ− ckΨΨ

)
, (B.10)

which is equivalent to (B.2) (with EMA γ
A = ΓM ).

The next aim of this section is to confirm the result of the RS spin connection given in

(5.103),

ωM = eAN (∂ME
N
B + ΓNMPE

P
B )
σA

B

2

RS
=





i
2ke

−kyγµγ54D forM = µ ,

0 forM = 5 .
(B.11)

To this end, we have to evaluate all metric factors for the specific case of the RS metric.

According to formula (5.95) the derivative ∂5E
N
B contained in the fifth component of the spin

connection

ω5 = eAN (∂5E
N
B + ΓN5PE

P
B )
σA

B

2
, (B.12)

is non-zero only for the case of B = N 6= 5. Moreover, (5.93) implies that A = N for eAN 6= 0

and thus the whole first term of (B.12) vanishes because σN
N = 0.

Concerning the second term of (B.12), the Christoffel symbol simplifies to

ΓN5P =
1

2
GNR (∂PG5R + ∂5GPR − ∂RG5P ) =

1

2
GNR∂5GPR , (B.13)

as G5R = G5P = 1 for R = 5, P = 5, and G5R = G5P = 0 otherwise. We finally obtain

ω5 =
1

2
eANG

NR(∂5GPR)E
P
B

σA
B

2
= eANG

Nν(∂5e
−2kyηµν)E

µ
B

σA
B

4

= eAγ e
2kyηγν(∂5e

−2kyηµν)e
ky σA

µ

4
= (∂5e

−2ky)
σν

ν

4
= 0 . (B.14)

Recognising that the first term of ωµ in (B.11) gives no contribution

eAN (∂µE
N
B )
σA

B

2
= 0 , (B.15)



B.2 Bulk Equations of Motion 117

we are left with the calculation of the following term

ωµ = eAN ΓNµP E
P
B

σA
B

2
= eAN

1

2
GNR(∂PGµR + ∂µGPR − ∂RGµP )EPB

σA
B

2
. (B.16)

As the metric tensors are x-independent, only derivatives involving the fifth component are

relevant for the calculation, which then yields

ωµ =
1

2
eANG

NR(∂5GµR)E
5
B

σA
B

2
− 1

2
eANG

N5(∂5GµP )E
P
B

σA
B

2

= −keANGNν(e−2kyηµν)
σA

5

2
− k(e−2kyηµν)E

ν
B

σ5
B

2

= −keAγ ηγνηµν
σA

5

2
− k(e−2kyηµν)e

ky σ5
ν

2

= −ke−ky σµ
5

2
+ ke−ky

σ5µ
2

= −k
2
e−kyγµγ

5 =
i

2
ke−kyγµγ

5
4D . (B.17)

Finally we demonstrate that the spin connection term cancels in the fermionic Lagrangian

(B.10) for the special case of a RS metric

EMA
{
γA, ωM

}
= eky

{
γµ,

i

2
ke−kyγµγ

5
4D

}
=
i

2
k (4 γ54D + γµγ

5
4Dγ

µ)
γµγµ=4
= 0 . (B.18)

B.2 Bulk Equations of Motion

Bulk Equations of Motion — Fermions

Setting all gauge interaction terms in (B.10) to zero, the fermionic action is given by

Sfermion =

∫
d5x
√
G
( i
2
(ΨΓM (∂MΨ))− i

2
(Ψ
←−
∂M )ΓMΨ− ckΨΨ

)
. (B.19)

Performing an integration by parts over the 4D space in the second term, then leads to

Sfermion =

∫
d5xe−4ky

(
iekyΨγµ(∂µΨ) +

1

2
Ψγ54D∂5Ψ−

1

2
Ψ
←−
∂5γ

5
4DΨ− ckΨΨ

)
, (B.20)

where we used the relation (5.99) to transfer the 5D gamma matrices into the 4D ones.

With γ54D = −γ4D5 and the introduction of the projection operators (2.26), the action can be

reexpressed through

Sfermion =

∫
d5xe−4ky

(
iekyΨLγ

µ(∂µΨL) + iekyΨRγ
µ(∂µΨR)−

1

2
(ΨL∂5ΨR −ΨR∂5ΨL)

+
1

2
(ΨL
←−
∂5ΨR −ΨR

←−
∂5ΨL)− ck(ΨLΨR +ΨRΨL)

)
. (B.21)

In Section 5.1 we derived the 5D analogue of the 4D equations of motion (following from the

first term of equation (5.13)). Applying it to the right-handed fermion fields, the EOM is

given by [
∂L
∂ΨR

− ∂M
(

∂L
∂(∂MΨR)

)]
δΨR

!
= 0 . (B.22)
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Inserting the various components

∂L
∂ΨR

= e−4ky

(
iekyγµ∂µΨR −

1

2
∂5ΨL − ckΨL

)
, ∂µ

∂L
∂(∂µΨR)

= 0 ,

∂5
∂L

∂(∂5ΨR)
= ∂5

(
e−4ky 1

2
ΨL

)
= −2ke−4kyΨL + e−4ky 1

2
∂5ΨL , (B.23)

into the EOM, we receive the condition

e−3kyiγµ∂µΨR − e−4ky∂5ΨL + 2ke−4kyΨL − cke−4kyΨL
!
= 0. (B.24)

Multiplying the equation with e2ky and then using the identity

∂5(e
−2kyΨL) = −2ke−2kyΨL + e−2ky∂5ΨL , (B.25)

the above equation (B.24) simplifies to

iekyγµ∂µΨ̂R − ∂5Ψ̂L − ckΨ̂L = 0 , (B.26)

where we have rescaled the fermions according to Ψ̂L,R = e−2kyΨL,R .

In full analogy, the EOM of the left-handed fermion fields can be obtained:

iekyγµ∂µΨ̂L + ∂5Ψ̂R − ckΨ̂R = 0 . (B.27)

In order to decouple the two first-order differential equations, we first multiply (B.26) with

(iekyγν∂ν) and then insert (B.27):

(−e2ky∂µ∂µ + eky∂5(e
−ky∂5)− c(c− 1)k2)Ψ̂R = 0 . (B.28)

Analogously, we derive the second-order differential equation for the left-handed fields

(−e2ky∂µ∂µ + eky∂5(e
−ky∂5)− c(c+ 1)k2)Ψ̂L = 0 . (B.29)

Obviously, both results can be combined into the final result
[
e2kyηµν∂µ∂ν − eky∂5(e−ky∂5) +

(
c(c ± 1)k2

)]
Ψ̂L,R = 0 . (B.30)

Bulk Equations of Motion — Scalars

Based on the scalar action of the form

Sscalar =

∫
d5x
√
G
[
(DM φ)†(DM φ)−m2

φφ
†φ
]
, (B.31)

the following terms

∂L
∂(∂Mφ)

=
√
G
(
GMN∂Nφ+GPM∂Pφ

)
=
√
GGMN∂Nφ ,

∂L
∂φ

= −2
√
Gm2

φ φ , (B.32)

contribute to the equations of motion

1√
G
∂M (
√
GGMN∂Nφ) +m2

φ φ = 0 . (B.33)

Inserting the RS metric factors, finally yields

(e2kyηµν∂µ∂ν − e4ky∂5(e−4ky∂5) +m2
φ)φ = 0 . (B.34)



B.3 KK Decomposition — Bulk Profiles of Wave Functions 119

Bulk Equations of Motion — Gauge Bosons

For the gauge fields the free action is given by

Sgauge = −
∫
d5x
√
G

1

4
FMNF

MN = −
∫
d5x
√
G

1

4
FMNFLSG

LMGSN , (B.35)

where the interaction term in the field strength tensor is neglected so that

FMN = ∂MVN − ∂NVM . (B.36)

Varying the action Sgauge with respect to VR, we obtain the EOM for the gauge fields:

∂P
∂L

∂(∂PVR)
= −∂P

(√
GFLSG

LPGSR
)
= 0 . (B.37)

In the special case of a RS metric, the EOM can be reformulated as

∂P

(
e−4ky(ELA E

P
B η

AB)(ESC E
R
D η

CD)FLS

)

= ∂P

(
e−4ky(e2kyδLµδPνη

µν + δL5δP5η
55)(e2kyδSγδRκη

γκ + δS5δR5η
55)
)
FLS

= ∂ν(η
µνδRκη

γκ)∂µVγ − ∂5(e−2kyδRκη
γκ)∂5Vγ , (B.38)

where we used the gauge-fixing condition V5 = 0 and ∂µV
µ = 0 in the last step. Finally, we

multiply the last equation by e2ky and obtain

[
e2kyηµν∂µ∂ν − e2ky∂5(e−2ky∂5)

]
V γ = 0 . (B.39)

B.3 KK Decomposition — Bulk Profiles of Wave Functions

The EOM of all fields can be combined into a single second-order differential equation

[
e2kyηµν∂µ∂ν − esky∂5(e−sky∂5) +M2

Φ

]
Φ(xµ, y) = 0 , (B.40)

where

Φ = {e−2kyΨL,R , φ , V
γ} , s = {1 , 4 , 2} , M2

Φ = {c(c ± 1)k2 , m2
φ , 0} . (B.41)

The different sign of the first term in (B.40) with respect to the result given in equation (11)

of [103] is due to the different sign convention of the metric tensor. Substituting z = eky in

the general EOM (B.40) gives

[
− z2ηµν∂µ∂ν + (1− s)zk2∂z + z2k2∂2z −M2

Φ

]
Φ = 0 . (B.42)

After expanding Φ into its KK modes φ(n) and profiles f (n)(y)

Φ(x, y) =
1√
L

∞∑

n=0

φ(n)(x)f (n)(y) (B.43)
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and introducing the masses mn (n = 1, · · · ) of the KK excitation φ(n), corresponding to

(∂µ∂
µ +m2

n)φ
(n) = 0, the above differential equation reads

[
z2m2

n + (1− s)k2z∂z + k2z2∂2z −M2
Φ

]
f (n)(y) = 0 . (B.44)

Dividing by k2 and using the short-hand notation ∂zf
(n)(y) = f ′(n), ∂2zf

(n)(y) = f ′′(n), the

equation can be rewritten according to

z2f ′′(n) + (1− s)zf ′(n) + 1

k2

(
z2m2

n −M2
Φ

)
f (n) = 0 . (B.45)

The general differential equation of type x2y′′ + axy′ + (bxm + c)y = 0 with m 6= 0 and b 6= 0

is solved by [216]

y = x
1−a
2

[
C1Jν

( 2

m

√
bx

m
2

)
+ C2Yν

( 2

m

√
bx

m
2

)]
, (B.46)

where J1(x) (Y1(x)) denote the Bessel functions of first (second) kind and

ν :=
1

m

√
(1− a)2 − 4c . (B.47)

Together with the identifications

x = z ; y = f (n) ; a = (1− s) ; b =
m2
n

k2
; m = 2 ; c = −M

2
Φ

k2
, (B.48)

we thus get the result

f (n)(y) = e
sky
2

[
C1Jν

(mn

k
eky
)
+ C2Yν

(mn

k
eky
)]

=
e

sky
2

Nn

[
Jν

(mn

k
eky
)
+ bν(mn)Yν

(mn

k
eky
)]
,

(B.49)

with

ν =

√(s
2

)2
+
M2

Φ

k2
. (B.50)

Requiring f (n)(y) in (B.49) to fulfil the orthonormality condition,

1

L

∫ L

0
dy e(2−s)kyf (n)(y)f (m)(y) = δnm , (B.51)

determines the normalisation constant Nn

N2
n =

1

L

∫ L

0
dy e2ky

[
Jν

(mn

k
eky
)
+ bν(mn)Yν

(mn

k
eky
)]2

. (B.52)

The coefficient bν(mn) as well as the KK masses mn are specified by the chosen boundary

conditions and have to be solved numerically.
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B.4 Zero Mode Profiles

Fermionic Zero Mode Profile

The most obvious solution to enforce the vanishing of the boundary terms in (5.13), arising

from the variation of the action (B.21)

δSbound =
1

2

∫
d4x

[
e−4ky

(
ΨL δΨR −ΨR δΨL +ΨR δΨL −ΨL δΨR

)]L
0
, (B.53)

is to set one of the two spinors to zero on the endpoints, for example the right-handed one:

ΨR |0,L= 0 . (B.54)

With this condition also δΨR|0,L = 0 is valid and the full boundary variation term vanishes.

However, as the bulk EOM (B.26) has to be satisfied on the endpoints of the interval as well,

ΨL does not remain arbitrary [195]. With ΨR |0,L= 0, the condition from the bulk EOM

simplifies to:

(∂5 + ck) Ψ̂L|0,L = 0 . (B.55)

Analogously, if we choose the left-handed spinor to vanish at the boundaries

ΨL |0,L= 0 , (B.56)

the condition for the right-handed field reads

(∂5 − ck) Ψ̂R|0,L = 0 . (B.57)

Separating the variables with the help of the KK decomposition

Ψ̂L,R(x, y) =
1√
L

∞∑

n=0

ψ
(n)
L,R(x)f

(n)(y) =
1√
L
ψ
(0)
L,R(x)f

(0)(y) + ... = Ψ̂0
L,R(x, y) + ... (B.58)

and using iηµνγµ∂νψ
(n)
L,R(x) = mnψ

(n)
L,R(x) with m0 = 0 for the zero mode ψ

(0)
L,R(x), the bulk

EOMs (B.26) and (B.27) also decouple:

(∂5 ± ck) Ψ̂0
L,R(x, y) =

1√
L
ψ
(0)
L,R(x) (∂5 ± ck) f (0)(y) = 0 . (B.59)

Moreover, there will always exist a zero mode since the boundary conditions (B.55) and (B.57)

are trivially the same as the EOMs (B.59). The general solution is given by

f
(0)
L,R(y) =

e∓cky

N0
L,R

, (B.60)

with the normalisation constant following from the orthonormal condition

(N0
L,R)

2 =
1

L

∫ L

0
e(1∓2c)kydy =

1

(1∓ 2c)kL

(
e(1∓2c)kL − 1

)
. (B.61)

Thus the left- and right-handed fermion zero mode profiles are given by

f
(0)
L,R(y) =

√
(1∓ 2c)kL

e(1∓2c)kL − 1
e∓cky . (B.62)
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Scalar Zero Mode Profile:

Assuming a bulk scalar mass m2
φ = ak2, the bulk EOM of the scalar field (B.40) with s = 4

is specified by

(∂25 − 4k∂5 − ak2)φ = 0 . (B.63)

Using the KK decomposition φ(x, y) = 1√
L

∑∞
n=0 φ

(n)(x)f
(n)
scalar(y), this equation is solved by

the zero mode profile (m0 = 0)

f
(0)
scalar(y) = C1 e

(2−
√
4+a)ky + C2 e

(2+
√
4+a)ky . (B.64)

A non-vanishing solution (C1 6= 0, C2 6= 0) only exists if a boundary mass term mφ =

2βk (δ(y) − δ(y − L)) with β = 2 ±
√
4 + a is introduced [196], which implies the modified

Neumann condition (
∂5φ

(0) − βk φ(0)
)∣∣∣

0,L
= 0 . (B.65)

For β = 2 −
√
4 + a the coefficient C2 vanishes while for β = 2 +

√
4 + a this is the case for

C1. Consequently, the two solutions can be summarised by

f
(0)
scalar(y) =

√
2kL(β − 1)

e2kL(β−1) − 1
eβky . (B.66)

Gauge Boson Zero Mode Profile

After KK decomposition, the EOM of the gauge boson zero mode (B.39) can be written as

(∂25 − 2k∂5) f
(0)
gauge(y) = 0 , (B.67)

which has the general solution

f (0)gauge(y) = C1
e2ky

2k
+ C2 . (B.68)

It is easy to see that zero modes only exist for Neumann boundary conditions on both bound-

aries. In this case it turns out that C1 = 0 and the correctly normalised zero mode for the

gauge boson is flat:

f (0)gauge(y) = 1 . (B.69)

B.5 Derivation of the Rayleigh–Schrödinger Formulae

The formulae for the non-degenerate Rayleigh–Schrödinger perturbation theory can be found

in many textbooks about quantum mechanics, e.g. [217, 218]. In deriving the formulae for

the Rayleigh–Schrödinger perturbation theory in the degenerate case, we follow closely [219]

wherein the general case of a hermitian operator is considered. For our specific problem, we
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restrict ourselves to a symmetric D × D matrix A, which is linear in ǫ. Thus, it can be

decomposed into the sum of an unperturbed matrix A0 and a small perturbation matrix A1:

A = A0 + ǫA1 . (B.70)

Expanding the exact eigenvectors |nl〉 and exact eigenvalues Enl
of the eigenvalue problem

(A0 + ǫA1)|nl〉 = Enl
|nl〉 (B.71)

in powers of the expansion parameter ǫ, we obtain

|nl〉 = |n0l 〉+ ǫ|n1l 〉+ . . . , Enl
= E0

nl
+∆nl

= E0
nl

+ ǫ∆1
nl

+ . . . . (B.72)

While the index n denotes different eigenvalues, l counts the number of eigenvectors sharing

the same eigenvalue in the case of degeneracy. Inserting the ansatz (B.72) into (B.71), and

comparing the coefficients of m-th order in ǫ, one gets the result

(E0
nl
−A0)|nml 〉 = (A1 −∆1

nl
)|nm−1

l 〉 −
m∑

i=2

∆i
nl
|nm−i
l 〉 . (B.73)

We suppose that the unperturbed eigenvalue problem

A0|n0l 〉 = E0
nl
|n0l 〉 (B.74)

has only one degenerate subspace L0 of dimension x. Then the index n takes the values

n = 1, ...,D−x+1, where the x-fold eigenvalue belongs to the fixed index n = p according to

E0
nl
∋ E0

pl
= E0

p , l = 1, ..., x . (B.75)

The corresponding eigenvectors |p0l 〉 of E0
p , which fulfil the equation

A0|p0l 〉 = E0
p |p0l 〉 , l = 1, ..., x , (B.76)

span the x-dimensional subspace L0. We define a projector onto this subspace by

P0 =
x∑

r=1

|p0r〉〈p0r | . (B.77)

The complementary non-degenerate subspace L′0 incorporates the D− x different eigenvalues

E0
nl
∋ E0

k , k 6= p , k = 1, ...,D − x . (B.78)

Due to the non-degeneracy we will omit the additional index l, so that the eigenvectors are

given by the relation

A0|k0〉 = E0
k|k0〉 , (B.79)

and the analogue projector reads

P ′
0 =

D−x∑

k′=1

|k′0〉〈k′0| . (B.80)

The projectors P0, P
′
0 fulfil the usual relations as given in (2.27) for the chiral projectors PL,R.
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Normalisation of the Eigenvectors

The eigenvectors of a symmetric matrix are orthogonal for different eigenvalues. Supposing

that the degeneracy of L0 is lifted at some order in perturbation theory, the following equation

holds

〈n′l′ |nl〉 = 0 , for n 6= n′ and/or l 6= l′ . (B.81)

Expanding the eigenvectors into powers of ǫ and taking the limit ǫ → 0, we require that the

orthogonality has to remain

〈n′0l′ |n0l 〉 = 0 , for n 6= n′ and/or l 6= l′ . (B.82)

For convenience, we normalise the unperturbed eigenvectors |n0l 〉 according to

〈n′0l′ |n0l 〉 = δn′nδl′l . (B.83)

Furthermore, we impose the condition 〈n0l |nl〉
!
= 1

〈n0l |nl〉
(B.72)
= 〈n0l |

(
|n0l 〉+ ǫ|n1l 〉+ ǫ2|n2l 〉+ ...

)
= 1 + ǫ〈n0l |n1l 〉+ ǫ2〈n0l |n2l 〉+ ... , (B.84)

from which we conclude that

〈n0l |nil〉 = δ0i . (B.85)

This means that the higher-order corrections are orthogonal to the associated unperturbed

eigenvector. The normalisation conditions (B.83) and (B.85), involving the eigenvectors of the

non-degenerate subspace, can be rewritten as

〈k′0|k0〉 = δk′k , 〈k0|ki〉 = δ0i . (B.86)

The corresponding relations for the eigenvectors spanning the degenerate subspace read

〈p0r |p0l 〉 = δrl , 〈p0l |pil〉 = δ0i . (B.87)

∆1
k′ and Contributions to |k1〉 and |p1l 〉 within the Non-Degenerate Subspace

Applying the projector P ′
0 onto (B.73), we receive the following eigenvalue equation to the

first-order in perturbation theory (m = 1)

P ′
0(E

0
nl
−E0

k′)|n1l 〉 = P ′
0(A1 −∆1

nl
)|n0l 〉 . (B.88)

For the case of E0
nl

= E0
k′ (nl = k′), the first-order corrections ∆1

k′ to the eigenvalues E0
k′ can

then be calculated as

∆1
k′ = 〈k′0|A1|k′0〉 . (B.89)

For the inequality E0
nl
6= E0

k′ , there are two different possibilities for the equation

D−x∑

k′=1

(E0
nl
− E0

k′)|k′0〉〈k′0|n1l 〉 =
D−x∑

k′=1

|k′0〉〈k′0|(A1 −∆1
nl
)|n0l 〉 (B.90)
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to be true. Either E0
nl

= E0
k 6= E0

k′ is an eigenvalue of the non-degenerate subspace or

E0
nl

= E0
pl
6= E0

k′ is an eigenvalue of the degenerate subspace.

For the first case E0
nl

= E0
k 6= E0

k′ it follows the contribution to the first-order correction

of the eigenvector k0 within the non-degenerate subspace

D−x∑

k′ 6=k , k′=1

|k′0〉〈k′0|k1〉 (B.86)=

D−x∑

k′=1

|k′0〉〈k′0|k1〉 =
D−x∑

k′ 6=k ,k′=1

|k′0〉〈k
′0|A1|k0〉

(E0
k − E0

k′)
. (B.91)

For E0
nl

= E0
pl

one obtains the first-order correction to the eigenvector p0l with respect to

the non-degenerate subspace

D−x∑

k′=1

|k′0〉〈k′0|p1l 〉 =
D−x∑

k′=1

|k′0〉 〈k
′0|A1|p0l 〉

(E0
pl
− E0

k′)
. (B.92)

∆1
pr and Contributions to |k1〉 and |p1l 〉 within the Degenerate Subspace

Applying in an analogous manner the projector P0 onto (B.73), the corresponding equation

for m = 1 reads

P0(E
0
nl
− E0

pr)|n1l 〉 = P0(A1 −∆1
nl
)|n0l 〉 . (B.93)

Assuming E0
nl

= E0
pl
(= E0

pr) and using the normalisation condition (B.87), one can conclude

that
x∑

r=1

|p0r〉〈p0r |(E0
pl
− E0

pr)|p1l 〉 = 0 =
x∑

r=1

|p0r〉〈p0r |A1|p0l 〉 −
x∑

r=1

|p0r〉∆1
pl
δrl . (B.94)

Comparing the above coefficients, the following equation has to hold

∆1
pl
δrl = 〈p0r |A1|p0l 〉 . (B.95)

The Kronecker-Delta on the left-hand side of (B.95) indicates that one has to find a basis

of eigenvectors spanning the degenerate subspace, in which the elements of A1 are diagonal.

Within this new basis, whereby we make the change of the notation implicit, the first-order

corrections are given by the diagonal elements of A1:

∆1
pr = 〈p0r |A1|p0r〉 . (B.96)

For E0
nl

= E0
k(6= E0

pr) equation (B.93) reads

x∑

r=1

|p0r〉〈p0r |(E0
k − E0

pr)|k1〉 =
x∑

r=1

|p0r〉〈p0r |(A1 −∆1
k)|k0〉 =

x∑

r=1

|p0r〉〈p0r |A1|k0〉 , (B.97)

which yields the first-order contributions to |k1〉 from the degenerate subspace

x∑

r=1

|p0r〉〈p0r |k1〉 =
x∑

r=1

|p0r〉
〈p0r |A1|k0〉
E0
k − E0

pr

. (B.98)
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As the unperturbed eigenvectors |k′0〉, |p0r〉 span a complete orthonormal system of the D-

dimensional space, we can interpret |k̃1〉 as the basis-transformed vector

|k̃1〉 =
D−x∑

k=1

|k′0〉〈k′0|k1〉+
x∑

r=1

|p0r〉〈p0r|k1〉 , (B.99)

where we will again make the change of notation implicit and neglect the tilde in the following.

With the help of the latter formula we can summarise the two contributions to |k1〉 obtained

in (B.91) and (B.98):

|k1〉 =
D−x∑

k′ 6=k , k′=1

〈k′0|A1|k0〉
(E0

k − E0
k′)
|k′0〉+

x∑

r=1

〈p0r |A1|k0〉
(E0

k − E0
pr)
|p0r〉 . (B.100)

In (B.94) we have seen that the operator (E0
pl
−A0) acting on the degenerate subspace 〈p0r |

is singular. Thus, we cannot invert it in order to get the contributions to |p1l 〉 from the

eigenvectors which span the degenerate subspace |p0r〉, r 6= l. However, one can define a

“pseudo”-projector according to

P̃ ′
0 =

P ′
0

E0
pr − E0

k′
=
∑

k′

|k′0〉〈k′0|
E0
pr − E0

k′
(B.101)

and apply it onto (B.73) for m = 1:

P ′
0

E0
nl
− E0

k′

E0
pr − E0

k′
|n1l 〉 = P̃ ′

0(A1 −∆1
nl
)|n0l 〉 = P̃ ′

0A1|n0l 〉 . (B.102)

For E0
nl

= E0
pl
(= E0

p = E0
pr) and using P ′

0 = 1−∑x
r=1 |p0r〉〈p0r | , it follows

|p1l 〉 =
∑x

r=1 |p0r〉 〈p0r |p1l 〉︸ ︷︷ ︸+P̃
′
0A1|p0l 〉 .

unknown coefficients
(B.103)

These unknown coefficients will appear in the calculation of the second-order corrections to

the eigenvalues as we will see in the next subsection.

∆2
k′ and ∆2

pr

The second-order corrections to the eigenvalues of the non-degenerate subspace follow from

(B.73) with m = 2,

(E0
nl
−A0)|n2l 〉 = (A1 −∆1

nl
)|n1l 〉 −∆2

nl
|n0l 〉 , (B.104)

by applying the projector P ′
0 on both sides for the case E0

nl
= E0

k′ :

∆2
k′ = 〈k′0|A1|k′1〉 . (B.105)
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Inserting the contribution to |k1〉, which was derived for the eigenvalues of the non-degenerate

subspace E0
nl

= E0
k , yields for k = k′

∆2
k′ =

x∑

r=1

〈k′0|A1|p0r〉〈p0r |A1|k′0〉
E0
k′ − E0

pr

=
〈k′0|A1P0A1|k′0〉

E0
k′ − E0

pr

. (B.106)

Analogously, applying the projector P0 on (B.104) leads to

P0(E
0
nl
− E0

pr)|n2l 〉 = P0(A1 −∆1
nl
)|n1l 〉 − P0∆

2
nl
|n0l 〉 . (B.107)

For the degenerate eigenvalues E0
nl

= E0
pl

it follows, that

∆1
pl

x∑

r=1

|p0r〉〈p0r |p1l 〉+∆2
pl

x∑

r=1

|p0r〉〈p0r|p0l 〉 =
x∑

r=1

|p0r〉〈p0r |A1|p1l 〉 . (B.108)

Using the normalisation conditions, the coefficients of |p0r〉 for each r have to fulfil

∆1
pl
〈p0r|p1l 〉+∆2

pl
δrl = 〈p0r|A1|p1l 〉

(B.103)
=

x∑

r′=1

〈p0r |A1|p0r′〉〈p0r′ |p1l 〉+ 〈p0r |A1P̃
′
0A1|p0l 〉

(B.95)
=

x∑

r′=1

∆1
pr′
δr′r〈p0r′ |p1l 〉+ 〈p0r |A1P̃

′
0A1|p0l 〉

= ∆1
pr〈p0r|p1l 〉+ 〈p0r |A1P̃

′
0A1|p0l 〉 . (B.109)

Concerning (B.109), we distinguish between the following three cases

l = r : ∆2
pl
= 〈p0l |A1P̃

′
0A1|p0l 〉 =

〈p0l |A1P
′
0A1|p0l 〉

E0
pl
− E0

k′
, (B.110)

l 6= r, ∆1
pl
= ∆1

pr : ∆2
pl
δrl = 〈p0r|A1P̃

′
0A1|p0l 〉 , (B.111)

l 6= r, ∆1
pl
6= ∆1

pr : 〈p0r |p1l 〉 =
〈p0r|A1P̃

′
0A1|p0l 〉

∆1
pl
−∆1

pr

. (B.112)

(B.110) gives us the second-order corrections to the eigenvalues. In (B.111) the degeneracy

is not lifted at first-order perturbation theory and A1P̃
′
0A1 has to be diagonalised in the

degenerate subspace according to the argument given above for the first-order correction of the

eigenvectors. The unknown coefficients drop out of the last equation (B.112), corresponding

to the case in which the degeneracy has removed. Thus we finally receive the first-order

corrections to the eigenvectors of the degenerate subspace:

|p1l 〉 =
x∑

r 6=l, r=1

|p0r〉
〈p0r |A1P̃

′
0A1|p0l 〉

∆1
pl
−∆1

pr

+
∑

k′

|k′0〉〈k
′0|A1|p0l 〉

E0
pr − E0

k′
. (B.113)

We will give an explicit example of the usage of the above formulae in the next section.
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B.6 Analytic Diagonalisation of the Hierarchical Matrix

The aim of this section is to diagonalise the symmetric matrix given in (5.70) by taking

advantage of its hierarchical structure. We discuss two different perturbative approaches and

demonstrate that both supply the same result.

Analytic Diagonalisation I: “Direct” Calculation

The characteristic polynomial P (λ), following from the characteristic equation

P (λ) = Det (A− λ1) = 0 , (B.114)

can be solved analytically up to the fourth power, e.g. with the solutions proposed by Cardano

[220]. In particular, for a 3 × 3 matrix A, the characteristic equation is given by the cubic

form

P (λ) = λ3 + c2λ
2 + c1λ+ c0 = 0 . (B.115)

As we are only interested in the solution with real eigenvalues, we follow the procedure pro-

posed in [221] and give a short summary of the relevant formulae therein.

The solutions of (B.115), which correspond to the eigenvalues of A, can be calculated by

λi =

√
p

3
xi −

1

3
c2 , i = 1, 2, 3 with p = c22 − 3c1 , (B.116)

where the explicit expressions xi depend on the sign of the parameter q = −27
2 c0− c32+ 9

2c2c1.

In our case, with the entries (5.81) and (5.87), q is negative (q = −1 +O(ǫ)) and

x1 = −2 cosφ , x2 = cosφ−
√
3 sinφ , x3 = cosφ+

√
3 sinφ , (B.117)

with

φ =
1

3
arctan

[
1

q

√
27

(
1

4
c21(p− c1) + c0(q +

27

4
c0)

)]
. (B.118)

Inserting the entries of A and expanding up to O(ǫ2), the eigenvalues are found to be

λ1 = A11M
2ǫ− (A2

12 +A2
13)M

2ǫ2 ,

λ2,3 = M2 +
M2

2
(A22 +A33 ±B) ǫ

+
M2

2B

(
±4A12A13A23 +A2

12(B ± F ) +A2
13(B ∓ F )

)
ǫ2 . (B.119)

The abbreviations introduced in (B.119) stand for

F = A22 −A33 , B =
√

4A2
23 + F 2 , with B2 > F 2 , (B.120)

which implies

A23 = sgn [A23]
1

2

√
B2 − F 2 . (B.121)
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In the 3-dimensional space, the associated eigenvectors vλi can be calculated efficiently by

using cross products [221]. With Aj denoting the j-th column of A and ej the j-th unit

vector, the real eigenvectors result from the formula

vλi = (A1 − λi e1)× (A2 − λi e2) . (B.122)

In order to build up the orthogonal transformation matrix GTA = (vλ1,norm, vλ2,norm, vλ3,norm),

the eigenvectors in (B.122) still have to be normalised (vλi,norm = Nλivλi). For the con-

crete matrix A, all normalisation factors Nλi are proportional to 1/ǫ and thus, knowing the

eigenvectors vλi,norm up to O(ǫ), requires to calculate the eigenvalues up to O(ǫ2).
Finally, the normalised eigenvectors can be summarised by

vTλ1,norm =
(
−1, A12 ǫ, A13 ǫ

)
,

vTλ2,norm =

(
(2A12A23 + (B − F )A13) ǫ, 2A23 − (B−F )X

B2 ǫ, (B − F ) + 2A23X
B2 ǫ

)

√
2B(B − F )

,

vTλ3,norm =

(
(−2A13A23 + (B − F )A12) ǫ, (B − F ) + 2A23X

B2 ǫ, −2A23 +
(B−F )X

B2 ǫ
)

√
2B(B − F )

,

(B.123)

where we have used the short-hand notation

X = FA12A13 +A23(A
2
13 −A2

12) . (B.124)

Analytic Diagonalisation II: Rayleigh–Schrödinger Perturbation Theory

Due to the implemented hierarchy between the various entries, we may also use the algorithm

of Rayleigh–Schrödinger, introduced in Section B.5, to calculate the eigenvalues and eigenvec-

tors. As discussed there, the first step is to define the basis of the unperturbed eigenvectors

corresponding to the unperturbed eigenvalue problem

A0|n0l 〉 = E0
nl
|n0l 〉 . (B.125)

In our example A0 is already diagonal and the eigenvalues can be read off. One can identify

a two-fold (x = 2) degeneracy at zeroth order in perturbation theory, i.e. the two different

eigenvalues E0
1 = 0 and E0

21 = E0
22 = E0

2 = M2 belong to three different eigenvectors |10〉,
|201〉 and |202〉. While the eigenvector, corresponding to the projector onto the non-degenerate

subspace (see (B.80) with k′ = 1)

P ′
0 = |10〉〈10| , (B.126)

is given by |10〉 = (1, 0, 0)T , the basis of eigenvectors, which define the projector onto the

two-dimensional degenerate subspace (see (B.77) with p = 2 and r = 1, 2 )

P0 = |201〉〈201|+ |202〉〈202| , (B.127)
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has to be found by diagonalising the 2-dimensional submatrix of A1 (see also [219] for details).

Normalising the set of unperturbed eigenvectors

|10〉T =
(

1, 0, 0
)
,

|201〉T =

(
0, 2A23, (B − F )

)

√
2B(B − F )

,

|202〉T =

(
0, (B − F ), −2A23

)

√
2B(B − F )

, (B.128)

according to

〈n′0l′ |n0l 〉 = δnn′δll′ , (B.129)

implies that all higher-order corrections |nil〉 with i = 1, 2, ... are orthogonal to the unperturbed

eigenvectors (〈n0l |nil〉 = 0). As the eigenvectors |201〉, |202〉 form the columns of an orthogonal

rotation matrix in the 2-dimensional subspace, it is convenient to define the corresponding

rotation angle ξ

sin ξ :=
2 |A23|√
2B(B − F )

(B.121)
=

√
1

2
+

F

2B
, cos ξ :=

(B − F )√
2B(B − F )

=

√
1

2
− F

2B
, (B.130)

where ξ lies in the first quadrant as |B| > |F |. Using the basis of zeroth-order eigenvectors

(B.128), the O(ǫ) contributions to the eigenvalues (B.89), (B.96) are given by

∆1
1 = 〈10|A1|10〉 =M2A11 ,

∆1
21,22 = 〈201,2|A1|201,2〉 =

1

2
M2(A22 +A33 ±B) . (B.131)

Obviously, if B 6= 0 the degeneracy of the eigenvalues is removed at first-order perturbation

theory. As mentioned in the previous subsection as well as in the Section B.5, one has to

know the eigenvalues up to second order to be able to calculate the first-order corrections to

the unperturbed eigenvectors consistently. Including the second-order corrections

∆2
1

(B.106)
= −M2

(
A2

12 +A2
13

)
,

∆2
21,22

(B.110)
=

M2

2B

(
±4A23A12A13 + (B ± F )A2

12 + (B ∓ F )A2
13

)
, (B.132)

the eigenvalues up to O(ǫ2) are equal to the formulae given in (B.119). Using the expression

for A23 in terms of B and F (B.121), the second-order contributions ∆2
21,22

to the eigenvalues

can then be rewritten as

∆2
21,22 =

M2

2B
(
√
B ± FA12 sgn [A23]±

√
B ∓ FA13)

2 . (B.133)

The first-order correction to the eigenvector |10〉 can be calculated via the formula

|11〉T (B.100)
=

2∑

r=1

〈20r |A1|10〉
(E0

1 − E0
2r
)
|20r〉T =

(
0, −A12, −A13

)
. (B.134)
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Note that there is no further contribution within the non-degenerate subspace itself, as it is

only 1-dimensional. However, there are two different contributions to the first-order corrections

of the unperturbed eigenvectors belonging to the degenerate subspace. One comes from the

complementary space spanned by |10〉 according to

|211〉T ⊃
〈10|A1|201〉
E0

21
− E0

1

|10〉T =
(2A12A23 +A13(B − F ))√

2B(B − F )

(
1, 0, 0

)
,

|212〉T ⊃
〈10|A1|202〉
E0

22
− E0

1

|10〉T =
(−2A13A23 +A12(B − F ))√

2B(B − F )

(
1, 0, 0

)
, (B.135)

which is naturally orthogonal with respect to the unperturbed eigenvector. The second con-

tribution stems from corrections within the degenerate subspace

|211〉T ⊃ | 202〉
〈202 | A1 | 10〉〈10 | A1 | 201〉
(∆1

21
−∆1

22
)(E0

22
− E0

1)
=

(
0, −(B − F )X, 2A23X

)

B2
√

2B(B − F )
,

|212〉T ⊃ | 201〉
〈201 | A1 | 10〉〈10 | A1 | 202〉
(∆1

22
−∆1

21
)(E0

21
− E0

1)
=

(
0, 2A23X, (B − F )X

)

B2
√

2B(B − F )
. (B.136)

Note that the above contributions are indeed orthogonal to the corresponding unperturbed

eigenvectors |201,2〉, as they should due to the normalisation condition (B.129).

Summarising all contributions within the Rayleigh–Schrödinger perturbation theory, the

eigenvectors up to O(ǫ) are represented by

|1〉T =
(
1, −A12ǫ, −A13ǫ

)
, (B.137)

|21〉T =

(
(2A12A23 +A13(B − F )) ǫ, 2A23 − (B−F )X

B2 ǫ, (B − F ) + 2A23X
B2 ǫ

)

√
2B(B − F )

,

|22〉T =

(
(−2A13A23 +A12(B − F )) ǫ, (B − F ) + 2A23X

B2 ǫ, −2A23 +
(B−F )X

B2 ǫ
)

√
2B(B − F )

,

which coincide with (B.123). Introducing the definitions

sinχ := −sgn [A23] sin ξ +
X

B2
cos ξ ǫ , cosχ := cos ξ +

X

B2
sgn [A23] sin ξ ǫ , (B.138)

and sgn [A23] sin ξ = sin [±ξ] for A23 ≷ 0, (B.137) can be brought into the compact form

|1〉T =
(

1, −A12ǫ, −A13ǫ
)
,

|21〉T =
(

(A12 sin [±ξ] +A13 cos ξ) ǫ, − sinχ, cosχ
)
,

|22〉T =
(

(−A13 sin [±ξ] +A12 cos ξ) ǫ, cosχ, sinχ
)
. (B.139)

We showed that both methods provide the same results up to the given order in the ǫ expansion.

However, as the second one uses the expansion in the small parameter already from the

beginning, the calculation is much more transparent.
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B.7 Basis Transformation of the Effective Hamiltonian H∆S=2
eff

In this section we bring the effective Hamiltonian H∆S=2
eff (5.159) into the basis where the

operators are diagonal in colour space. Writing out the colour indices explicitly, H∆S=2
eff reads

H∆S=2
eff =

1

2
(
M

(1)
KK

)2
[ (

∆sd
L

)2 (
sL,αγµT

a
αβdL,β

) (
sL,ργ

µT aρσdL,σ
)

+
(
∆sd
R

)2 (
sR,αγµT

a
αβdR,β

) (
sR,ργ

µT aρσdR,σ
)

+ 2∆sd
L ∆sd

R

(
sL,αγµT

a
αβdL,β

) (
sR,ργ

µT aρσdR,σ
) ]
. (B.140)

Using the Fierz identities for the Gell-Mann matrices, which are given in terms of the SU(3)c

generators T aαβ = λaαβ/2

T aαβ T
a
ρσ =

1

2

(
δασδβρ −

1

N
δαβδρσ

)
, (B.141)

as well as the Fierz identities for rearranging products of fermion bilinears [222]

• (sαγµPLdβ) (sβγ
µPLdα) = (sαγµPLdα) (sβγ

µPLdβ) = (sγµPLd) (sγ
µPLd) ,

• (sαγµPRdβ) (sβγ
µPRdα) = (sαγµPRdα) (sβγ

µPRdβ) = (sγµPRd) (sγ
µPRd) ,

• (sαγµPLdβ) (sβγ
µPRdα) = −2 (sαPLdα) (sβPRdβ) = −2 (sPLd) (sPRd) , (B.142)

the various terms in (B.140) can be reformulated:

• (sαγµT
a
αβPLdβ)(sργ

µT aρσPLdσ) =
N − 1

2N
(sγµPLd)(sγ

µPLd) ,

• (sαγµT
a
αβPRdβ)(sργ

µT aρσPRdσ) =
N − 1

2N
(sγµPRd)(sγ

µPRd) ,

• (sαγµT
a
αβPLdβ)(sργ

µT aρσPRdσ) = −(sγµPRd)(sγµPLd)−
1

2N
(sγµPLd)(sγ

µPRd) .

(B.143)

Inserting (B.143) into (B.140), the effective Hamiltonian in the new basis is given by

H∆S=2
eff =

1

2
(
M

(1)
KK

)2
[ (

∆sd
L

)2 N − 1

2N
(sγµPLd) (sγ

µPLd)

+
(
∆sd
R

)2 N − 1

2N
(sγµPRd) (sγ

µPRd)

+2∆sd
L ∆sd

R

(
− (sPLd) (sPRd)−

1

2N
(sγµPLd) (sγ

µPRd)
)]
.

(B.144)

Using the abbreviations already introduced in (5.160),

QV LL1 = (sγµPLd) (sγ
µPLd) , QV RR1 = (sγµPRd) (sγ

µPRd) ,

QLR1 = (sγµPLd) (sγ
µPRd) , QLR2 = (sPLd) (sPRd) , (B.145)
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the effective Hamiltonian (B.144) is reexpressed by

H∆S=2
eff =

1

4
(
M

(1)
KK

)2
[
(∆sd

L )2
N − 1

N
QV LL1 + (∆sd

R )2
N − 1

N
QV RR1

−4∆sd
L ∆sd

RQLR2 − 2

N
∆sd
L ∆sd

RQLR1
]
. (B.146)

Thus, the Wilson coefficients of

H∆S=2
eff =

1

4
(
M

(1)
KK

)2
[
CV LL1 QV LL1 + CV RR1 QV RR1 + CLR1 QLR1 +CLR2 QLR2

]
(B.147)

with respect to the new basis are specified by

CV LL1 (MKK) =
N − 1

N

(
∆sd
L

)2 (N=3)
=

2

3

(
∆sd
L

)2

CV RR1 (MKK) =
N − 1

N

(
∆sd
R

)2 (N=3)
=

2

3

(
∆sd
R

)2

CLR1 (MKK) =
2

N
∆sd
L ∆sd

R
(N=3)
= −2

3
∆sd
L ∆sd

R

CLR2 (MKK) = −4∆sd
L ∆sd

R , (B.148)

where we also give the results for three colour degrees of freedom (N = 3).

B.8 Effective 4D Feynman Rules: Two Examples

For demonstration we will calculate the 4D Feynman rules for the couplings of the fermion

zero modes to the Z boson as well as the triple-gauge vertices involving the Z boson. After

expanding the S-matrix, decomposing the field operators into Fourier series, carrying out all

possible Wick contractions, the Feynman amplitude for the vertex is equal to the prefactor of

the interaction Lagrangian of the involved particles up to a factor of i. The KK decomposition

allows to obtain a 4D effective theory from the 5-dimensional full theory.

Zero Mode Fermion Couplings to the Z Boson

We begin with the calculation of the 3-dimensional diagonal coupling submatrix [A
2/3
L (Z)]00

(upper left corner of A
2/3
L (Z)), which determines the coupling of the SM Z gauge boson to the

SM up-type quarks corresponding to the vertex q
ui(0)
L q

ui(0)
L Z. Being aware that the Z boson

appears in X, W 3
L, W 3

R and that quiL is embedded in the bidoublet ξi1L, the relevant terms in

Lfermion stemming from the covariant derivative D1
M look like

L4Dint ⊃ −
∫ L

0
dy
√
Geky

(
quiL γ

µ(gXQXXµ)q
ui
L + quiL γ

µ(gT 3
LW

3
L,µ)q

ui
L + quiL γ

µ(gT 3
RW

3
R,µ)q

ui
L

)
.

(B.149)
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With the help of the formulae in (5.64) which give W 3
L,R in terms of the physical fields, and

the analogue relation for X

X = cosφ cosψA− cosφ sinψZ − sinφZX , (B.150)

we can rewrite the equation (B.149), where we omit the terms including couplings to the

photon:

L4Dint ⊃
∫ L

0
dy e−3ky quiL γµ

(
gX QX (cosφ sinψZµ + sinφZµX)

)
quiL

−e−3ky quiL γµ
(
g T 3

L cosψZµ
)
quiL − e−3ky quiL γµ

(
g T 3

R cosφZµX −
sin2 ψ

cosψ
Zµ
)
quiL .

(B.151)

As discussed in Subsection 5.8.1, the integration over the extra dimension after the KK de-

composition can be carried out explicitly for the couplings to gauge boson zero mode profiles.

Thus, the couplings to the Z(0) mode in (B.151) simplify to the flavour-universal 4D effective

couplings:
( gX√

L
QX cosφ sinψ − g√

L
T 3
L cosψ +

g√
L cosψ

T 3
R sin2 ψ

)
q
ui(0)
L γµZ(0)

µ q
ui(0)
L . (B.152)

Reexpressing QX by means of equation (5.51), the contributions can be summarised as

− g√
L cosψ

(
T 3
L − sin2 ψQ

)
q
ui(0)
L γµZµq

ui(0)
L , (B.153)

where we also used the fact that Z(0) corresponds to the SM Z boson up to small admixtures

with ZH and Z ′ after EWSB.

The couplings to the first KK mode Z(1) can be derived analogously by remembering

that the appropriate overlap integral Rim
nk

, which involves the shape function g(y) of (5.58), is

defined in (5.138):

− g√
L cosψ

Ri1
00

(++)L
(
T 3
L − sin2 ψQ

)
q
ui(0)
L γµZ(1)

µ q
ui(0)
L . (B.154)

After EWSB, the KK mode Z(1) is rotated into its mass eigenstate and given as a linear

combination of physical fields. Concentrating on the contribution Z(1) ∋ −ǫI+1 / cos2 ψZ,

(B.154) contains the following couplings to the SM Z boson

ǫ
g√

L cosψ

1

cos2 ψ
I+1 Ri1(++)

00 L

(
T 3
L − sin2 ψQ

)
q
ui(0)
L γµZµq

ui(0)
L . (B.155)

Finally, the two contributions involving Z
(1)
X , which contains the SM Z boson according to

Z
(1)
X ∋ I−1 cos φ

cosψ ǫZ after EWSB, lead to

−ǫ cosφ
cosψ

I−1 Pi1
00
(++)L

(
g T 3

R cosφ− gX QX sinφ
)
q
ui(0)
L γµZµq

ui(0)
L , (B.156)
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where the corresponding overlap integral Pim
nk

was introduced in (5.139) with the shape function

g̃(y) of Z
(1)
X given in (5.59). Utilising gX = g sinφ

cos φ , the equation can be rewritten by

−ǫ cosφ
cosψ

g

cosφ

(
T 3
R − (T 3

R +QX) sin
2 φ
)
I−1 Pi1

00
(++)L q

ui(0)
L γµZµq

ui(0)
L . (B.157)

In summary, the couplings of the left-handed up-type zero mode quarks to the SM Z boson

(corresponding to i[A
2/3
L (Z)]00) read

−iγα
[
gZ(q

ui)− ǫgZ(qui)
1

cos2 ψ
I+1 Ri1

00
(++)L + ǫ

cosφ

cosψ
I−1 gZX

(qui)Pi1
00
(++)L

]
, (B.158)

where the coupling constants are given by

gZ(q
ui) =

g√
L cosψ

(
T 3
L(q

ui)− sin2 ψQ(qui)
)
,

gZX
(qui) =

g√
L cosφ

(
T 3
R(q

ui)−
(
T 3
R(q

ui) +QX(q
ui)
)
sin2 φ

)
, (B.159)

and the quantum numbers of qui can be taken from (5.112). Adapting the formula (B.158)

to the quantum numbers and representation index m of the other quarks, we reproduce the

expressions as given in Table 5.1.

Effective 4D Feynman Rules for Triple-Gauge Vertices

In non-abelian gauge theories the presence of the gauge boson self-interaction term gfabcV b
µV

c
ν

generates vertices with three gauge bosons — called triple-gauge vertices. For instance, the

relevant terms for the SU(2)L gauge bosons are contained in the gauge kinetic term

L4Dgauge ∋ −
∫ L

0
dy

1

4
LaµνL

a,µν ⊃ −
∫ L

0
dy

1

2
(∂µW

a
L,ν − ∂νW a

L,µ)(−gǫabcW b,µ
L W c,ν

L ) , (B.160)

where ǫ123 = 1. Using the formulae (5.54) and (5.64), the Lagrangian (B.160) can be rewritten

in terms of W±
L,R, Z and A:

ig

∫ L

0
dy
[(
−(∂µW+

L,ν − ∂νW+
L,µ)W

−,µ
L + (∂µW

−
L,ν − ∂νW−

L,µ)W
+,µ
L

)
(cosψ Zν + sinψAν)

+ cosψ(∂µZν − ∂νZµ)W+,ν
L W−,µ

L + sinψ(∂µAν − ∂νAµ)W+,ν
L W−,µ

L

]
. (B.161)

Inserting the relations ∂µW
+
L,ν = −ikµW+

L,ν , ∂µW
−
L,ν = −ipµW−

L,ν and ∂µZν = −iqµZν , where

k, p, q denote the incoming momenta of W+
L , W−

L , Z, the contribution involving the Z boson

is given by

• g cosψ
∫ L

0
dy [ηµν(k − p)ρ + ηνρ(p− q)µ + ηρµ(q − k)ν ]W+,µ

L W−,ν
L Zρ , (B.162)
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and the analogue coupling to the photon by

• g sinψ
∫ L

0
dy [ηµν(k − p)ρ + ηνρ(p− q)µ + ηρµ(q − k)ν ]W+,µ

L W−,ν
L Aρ . (B.163)

Hence, the Dirac structure (DS) of all effective 4D Feynman diagrams, obtained after KK

decomposition and integration over the fifth dimension, will be the same so that we introduce

the following abbreviation

[DS]µνρ = [ηµν(k − p)ρ + ηνρ(p− q)µ + ηρµ(q − k)ν ] . (B.164)

For illustration, we only deduce the triple vertex involving the SM Z boson. Furthermore,

we will neglect all O(ǫ) contributions. In this limit, the SM Z boson equals the zero mode

Z(0) and the 5D overlap integral reduces to the orthonormality condition of the gauge boson

profiles ((B.51) for s = 2)

g cosψ√
L

[DS]µνρ

(
W

(0)+,µ
L W

(0)−,ν
L Zρ +W

(1)+,µ
L W

(1)−,ν
L Zρ

)
. (B.165)

According to our chosen approximation, the follwing relations hold

W
(0)±
L ≃W± , W

(1)±
L ≃ cosχW±

H − sinχW ′± . (B.166)

Inserting them into (B.165), yields

g cosψ√
L

[DS]µνρ

(
W+,µW−,νZρ + cos2 χW+,µ

H W−,ν
H Zρ + sin2 χW ′+,µW ′−,νZρ

− cosχ sinχW+,µ
H W ′−,νZρ − cosχ sinχW ′+,µW−,ν

H Zρ
)
. (B.167)

In addition, the SU(2)R gauge bosons have the following couplings to the Z boson:

ig

∫ L

0
dy
[(
−(∂µW+

R,ν − ∂νW+
R,µ)W

−,µ
R + (∂µW

−
R,ν − ∂νW−

R,µ)W
+,µ
R

)
(− sinψ sinφZρ)

− sinψ sinφ (∂µZν − ∂νZµ)W+,ν
R W−,µ

R

]

= −g sinψ sinφ

∫ L

0
dy [DS]µνρW

+,µ
R W−,ν

R Zρ . (B.168)

With W
(1)±
R ≃ sinχW±

H +cosχW ′±, the above contribution, after performing the integration

over the extra dimension, is given by

−g sinψ sinφ√
L

[DS]µνρ

(
sin2 χW+,µ

H W−,ν
H Zρ + cos2 χW ′+,µW ′−,νZρ (B.169)

+sinχ cosχW+,µ
H W ′−,νZρ + sinχ cosχW ′+,µW−,ν

H Zρ
)
. (B.170)

Summarising all terms contributing to a given vertex, we collect the respective couplings

involving the Z boson in Table B.1 and illustrate the Feynman diagrams for the various

triple-gauge vertices with Dirac structure [DS]µνρ by
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V −
ν

V +
µ

V 0
ρ

k p

q

, where V +
µ =W+

µ ,W
+
H,µ,W

′+
µ , V −

ν =W−
ν ,W

−
H,ν ,W

′−
ν , V 0

ρ = Zρ and k, p, q are their incoming

momenta.

Couplings to the Z boson

W+W−Z i g√
L
cosψ +O(ǫ2)

W+
HW

−Z O(ǫ)

W ′+W−Z O(ǫ)

W+
HW

−
HZ i g√

L

(
cosψ cos2 χ− sinφ sinψ sin2 χ

)

W ′+W−
HZ −i g√

L
sinχ cosχ (cosψ + sinφ sinψ)

Table B.1: Triple-gauge boson couplings to the Z boson. The coupling of W+W−
HZ is equal

to W+
HW

−Z, the same is valid for W+W ′−Z and W ′+W−Z as well as W+
HW

′−Z and

W ′+W−
HZ.
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