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Abstract

As decisions in cardiology increasingly rely on non-invasive methods, fast and precise
image analysis tools have become a crucial component of the clinical workflow. Especially
when dealing with complex cardiovascular disorders, such as valvular heart disease, ad-
vanced imaging techniques have the potential to significantly improve treatment outcome
as well as to reduce procedure risks and correlated costs.

This thesis concentrates on three aspects: physiological heart valve modeling, algo-
rithms for patient-specific parameter estimation from multimodal images and advanced
applications for clinical management of heart valve disease. In particular, a novel physi-
ological model of the complete valvular apparatus is introduced, which captures a large
spectrum of morphologic, dynamic and pathologic variations. A robust learning-based
framework is proposed to estimate the patient-specific model parameters from cardiac
medical scans, mainly transesophageal echocardiography, cardiac computed tomography
and cardiac magnetic resonance imaging.

This original model-driven approach enables a multitude of advanced clinical applica-
tions including quantitative valvular analysis, shape-based diagnosis and patient selection
as well as computational decision support for valve replacement and repair procedures.
In comparison to the gold standard methods, which manually process 2D images, the au-
tomatic 4D model-based concept provides fast, precise, reproducible and comprehensive
valve quantification. Moreover, in case of emerging percutaneous and minimal invasive
valve interventions, cardiac surgeons and interventional cardiologists can substantially
benefit from the automated patient selection and virtual valve implantation approaches
presented in this thesis. The algorithms proposed in this thesis are validated through ex-
tensive quantitative and clinical experiments involving over 476 patients treated in leading
medical centers around the world.





Zusammenfassung

Da Entscheidungen in der Kardiologie in zunehmendem Maße durch nicht-invasive Me-
thoden gestützt werden, sind schnelle und präzise Bildanalysewerkzeuge zu einem wich-
tigen Bestandteil klinischer Arbeitsabläufe geworden. Insbesondere im Umgang mit den
komplexen Erkrankungen des kardiovaskulären Systems, wie etwa Herzklappenerkrankun-
gen, bergen moderne bildgebende Verfahren das Potential sowohl Behandlungsergebnisse
bedeutsam zu verbessern als auch prozedurale Risken und verbundene Kosten zu senken.

Diese Arbeit konzentriert sich auf drei Aspekte: physiologische Modellierung von Herz-
klappen, Algorithmen zur Schätzung patientenspezifischer Parameter aus multimodalen
Bildern sowie weiterführende Anwendungen für das klinische Management von Herzklap-
penerkerankungen. Hierzu wird ein neues physiologisches Modell des gesamten Herklap-
penapparats vorgestellt, der ein umfangreiches Spektrum morphologischer, dynamischer
und pathologischer Variationen erfasst. Ein robustes lernbasiertes Framework zur Schät-
zung patientenspezifischer Modellparameter aus medizinischen Akquisitionen des Herzens
wurde erarbeitet, hauptsächlich Transesophageale Echokardiographie, Computertomogra-
phie sowie Magnetresonanztomographie.

Der originäre modellgetriebene Ansatz ermöglicht eine Vielzahl fortgeschrittener An-
wendungen wie etwa die quantitative Analyse von Herzklappen, formenbasierte Diagnose
und Patientenauswahl als auch rechnergestützte Entscheidungsunterstützung für Ersatz
und Reparatur von Herzklappen. Das automatische 4D modellbasierte Konzept bietet ei-
ne schnelle, genaue, reproduzierbare und umfassende Quantifikation von Herzklappen im
Gegensatz zum Gold Standard, der auf manuelle Verarbeitung von 2D Bildern basiert.
Besonders im Hinblick auf entstehende perkutane und minimal invasive Behandlungsme-
thoden können Herzchirurgen und interventionelle Kardiologen erheblich von den in dieser
Arbeit vorgestellten Verfahren zur Patientenauswahl und für den virtuellen Herklappen-
ersatz profitieren. Das vorgestellte Framework wird durch umfangreiche quantitative und
klinische Experimente validiert, welche über 476 Patienten einbeziehen, die in weltweit
führenden Kliniken behandelt wurden.
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CHAPTER 1

Introduction

The unprecedented increase in life expectancy over the current and past century unveiled
the most dangerous enemy of the humanity: today, Cardiovascular Disease (CVD) causes
approximately 30% of deaths worldwide, and nearly 40% in high-income regions. Besides
devastating social implications, CVD generated in 2009 $475.3 billions in health expenses
in the United States alone, compared to $228 billions for all cancer cases [96].

In response, medicine is continuously equipping itself with innovative technology to
provide the best possible treatment. Among many others, breakthroughs in surgical
and interventional therapy, as well as non-invasive investigation techniques, completely
revolutionized healthcare. This pioneering trend is going to be amplified in the future,
forcing the integration of interdisciplinary research into effective solutions to fight CVD.

1.1 Motivation
Valvular Heart Disease (VHD) which affects 2.5% of the global population and requires
yearly over 100,000 surgeries in the United States alone, is a representative instance for
the growing public health problem provoked by CVD. Yet, heart valve operations are the
most expensive and riskiest cardiac procedures, with an average cost of $141,120 and 4.9%
in-hospital death rate [96].

Decisions in valvular disease management increasingly rely on non-invasive imaging,
with echocardiography currently regarded as the key evaluation technique. Precise mor-
phological and functional knowledge about the valvular apparatus is highly esteemed
today and considered a prerequisite for the entire clinical workflow including diagno-
sis, therapy-planning, surgery or percutaneous intervention as well as patient monitor-
ing and follow-up. Nevertheless, most non-invasive investigations to date are based on
two-dimensional images, user-dependent processing and manually performed, potentially
inaccurate measurements [19].
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Paradoxically, the quality of acquired information, as well as the accessibility and
cost effectiveness of each medical imaging modality has radically improved over the past
decades. Techniques like Transesophageal Echocardiography (TEE), cardiac Computed
Tomography (CT) and Cardiovascular Magnetic Resonance (CMR) imaging, enable now
dynamic four dimensional scanning of the beating heart over the whole cardiac cycle. Such
volumetric time-resolved data encode comprehensive structural and dynamic information,
which however is barely exploited in clinical practice, due to its size and complexity as
well as the lack of appropriate medical systems.

The progress in medical imaging is matched by important advances in surgical tech-
niques, bioprosthetic valves, robotic surgery and percutaneous interventions, which have
led to a twofold increase in the number of valve procedures performed in the United
States since 1985 [1]. According to the Millennium Research Group, percutaneous heart
valve therapies will dominate the future and cover up to 41.1% of all valve procedures by
2012. Powerful computer-aided tools for extensive non-invasive assessment, planning and
guidance are mandatory to continuously decrease the level of invasiveness and maximize
effectiveness of valve therapy.

The sociological impact of CVD and VHD, along with recent disruptive innovations in
imaging and therapy, mobilized a tremendous scientific effort worldwide geared towards
multi-scale modeling and simulation of the human anatomy and physiology. Vast projects
such as the Virtual Physiological Human and the IUPS Physiome promote a technological
framework, which integrates anatomical, physical and biochemical models to enable a
holistic view on the human organism. The expected outcome of this global initiative is to
advance healthcare towards a more personalized preventive and predictive approach.

1.2 Aims
Given the major trends presented in the previous section 1.1, this dissertation is focused
on exploiting patient-specific models of the heart valve physiology estimated from multi-
modal images to progress the clinical management of VHD patients. The following aims
are pursued:

• Define a mathematical model of the aortic, mitral, tricuspid and pulmonary valves as
well as the ascending aorta and pulmonary artery, which captures complex anatom-
ical, dynamical and pathological variations.

• Develop learning-based methodologies for fast and robust patient-specific parameter
estimation from multi-modal cardiac images, including TEE, cardiac CT and CMR
techniques.

• Design a computational framework for advanced quantitative and qualitative analy-
sis of valvular morphology and function in isolation, and also combined with relevant
patient-population representations.

• Provide an experimental environment for therapeutical outcome prediction in inter-
ventional valvular procedures and support holistic computational modeling of the
integrated cardiovascular system.

2



1.3 Contributions

1.3 Contributions
The major contributions of this thesis along with the corresponding publications are
summarized in the following:

• As part of this dissertation, we incrementally develop a novel physiological model
of the valvular heart apparatus, which captures the complete morphology and dy-
namics as well as pathologic variations. The first representation of the aortic valve
was proposed in [72], followed by the mitral valve [180], the aortic-mitral coupling
[74], pulmonary trunk [178] and ascending aorta [62]. Subsequently, the complete
model of the cardiac valvular system was introduced in [61]. The focus was par-
ticularly on the derivation of an appropriate hierarchical parameterization along
with physiological constraints to handle the inherent complexity. Furthermore, an
anatomically-driven sampling scheme is employed to address the fundamental prob-
lem of point correspondence across time and individuals.

• To estimate patient-specific model parameters from cardiac images, a learning-based
framework was developed and applied to multi-modal data. We proposed a novel
trajectory spectrum learning algorithm and novel local-spatial-temporal features,
that support simultaneous extraction of location and motion of non-rigid objects
[76]. The journal publication [75], describes in detail a fully automatic pipeline for
complete model parameters estimation from cardiac CT and TEE volume sequences,
while [178] treats the estimation of the pulmonary valve from CMR. Robustness and
effectiveness were demonstrated in extensive experiments on 476 patients affected
by various valvular diseases.

• Based on the estimated patient-specific model, we introduced an automatic 4D
quantification method for clinical analysis of valvular morphology and function.
Automated measurements of the real three-dimensional anatomy and temporal vari-
ations, not existent before, support a new paradigm of model-driven cardiac evalu-
ation. The first clinical evaluation to prove the accuracy and time-effectiveness of
the approach compared model-based aortic valve area to manual planimetry from
cardiac CT [71, 55]. In [32] the automated quantification is validated for aortic root
assessment from volumetric 3D TEE and CT, while in [26] we focused on valve and
root dimensions in patient affected by aortic regurgitation.

• Onward research resulted in a number of techniques for therapeutical decision sup-
port of emerging percutaneous procedures related to shape-based diagnosis patient
selection and simulation of prosthetic valve implantation. In particular, we lever-
aged the patient-specific representations of individuals to learn discriminative dis-
tance functions across patient-populations and applied those for aortic and mitral
valve shape-based classification [73] and automated patient selection for percuta-
neous pulmonary valve implantation [181]. By combing the physiological models
with mechanical representations of devices, in [179] a computational framework for
transcatheter aortic valve implantation was proposed.

3
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Besides the above enumerated contributions, related research was conducted to extract
complete anatomical and dynamical information about the pulmonary trunk from sparse
CMR images [177]. Furthermore, the integration of the valvular models with repre-
sentations of the heart chambers previously developed in our group, resulted in the first
patient-specific model of the complete heart to incorporate anatomy, dynamics and hemo-
dynamics, which contains explicit valvular information. In [108] and [70] we described
hemodynamic simulations and blood flow analysis for left-side valvular pathologies, while
[107] presents results on the full heart.

Prototype systems based on the technology presented in this thesis are installed in
multiple leading cardiac centers around the world for clinical evaluation purposes. To
a large extent, the technology described here has been protected by various Siemens
divisions.

1.4 Outline of the Thesis
This thesis concentrates around three interrelated subjects, namely a unified mathemati-
cal representation of the heart valves, the estimation of patient-specific model parameters
from multimodal images and clinical applications for advance analysis and treatment of
valvular heart disease. A brief description of individual chapters included in this work is
presented in the following:

Chapter 2: Background
The first part of chapter 2 provides the reader with the necessary medical and clinical
background of the cardiac system, with emphasis on the heart valves. Brief descriptions
of physiological aspects, relevant for modeling, as well as valvular disease and existent
treatment options, define the domain specific concepts. The chapter concludes by pre-
senting relevant imaging modalities for cardiac scanning and the role of medical image
analysis in supporting advanced healthcare.

Chapter 3: Physiological Modeling and Parameterization
This chapter describes in detail the proposed physiological model of the heart valves
morphology and dynamics. A unified mathematical representation is incrementally intro-
duced, starting with a global location model and ending with a comprehensive model of
the complete valvular apparatus. In the last part of this chapter the focus moves from
models of individuals towards statistical models of patient-populations.

Chapter 4: Patient-specific Parameter Estimation
In this chapter, a novel algorithmic framework is introduced to estimate patient-specific
model parameters from cardiac images. After an overview on discriminative learning
methods, specific algorithms for detection of location, shape and motion of the heart
valves are described in detail. The chapter ends with experiments and performance eval-
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uation of the new algorithms.

Chapter 5: Clinical Applications
The technology described in the preceding chapters is directly applied in order to support
clinical management of patients with valvular heart disease. Three different applications
are introduced, including morphological and functional valve analysis, patient selection
for percutaneous valve treatment, and virtual implantation of prosthetic heart valves.

Chapter 6: Conclusions
Chapter 6 concludes the thesis with a summary of the presented methods, their benefits
and impact in the clinical environment, as well as future outlook.
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CHAPTER 2

Background

Throughout history, humans have discovered countless ways to analyze and describe the
fascinating organ, which is regarded as the foundation of life, the source of all action: the
heart. In this chapter the reader is provided with the elementary concepts on its morphol-
ogy, function and pathological implications. The content is specialized to accommodate
pathophysiological aspects of the heart valves, the main focus of this dissertation. State-
of-the-art cardiac imaging techniques and major advances in valves treatments, together
with medical image analysis technology, are introduced in the second part of the chapter.

2.1 The Human Heart
The human heart is a muscular organ located in the central thoracic cavity underneath
the sternum, which is pumping blood by repeated, rhythmic contractions. It is conically
shaped about the size of a fist, weights between 200-450 grams, and measures 12cm along
its major axis, and 7cm at its widest point. A double-layered membrane, the pericardium,
surrounds the heart like a sac and attaches it to the sternum and diaphragm. Electrical
impulses send from the sinoatrial node travel through the muscle fibers causing the heart
to contract on average 72 times per minute. As a result blood is pumped through the
cardiovascular system, transporting oxygen and nutrition to the entire body.

2.1.1 Morphology
The hollow heart muscle is divided along the main axis by the interatrial interventricular
septum into a cylindrical left and crescent shaped right side. Each side is further divided
into an upper and lower chamber, forming the atria and ventricles (see figure 2.1(a)).

• The Left Atrium (LA) is the smallest chamber with a capacity of approximately 45ml
at rest and accepts four pulmonary veins connected to the lungs. Its separation from
the left ventricle occurs through the bicuspid, mitral valve.
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(a) (b)

Figure 2.1: (a) Diagram of the human heart showing the chambers, valves and great
vessles - by Wapcaplet in Sodipodi. (b) Diagram of the systole and diastole showing the
opening and closing of the heart valves - by A.D.A.M. inc.

• The Right Atrium (RA) is connected to the entire venous system through the su-
perior and inferior caval veins and has a volume of about 63ml. Its junction with
the right ventricle is formed by the tricuspid valve.

• Extending from atrio-ventricular to the ventriculo-arterial junction, the Left Ventri-
cle (LV) has a capacity of 100ml. Its inner wall, called endocardium, is demarcated
by fine trabeculations and two prominent papillary muscles that support the two
leaflets of the mitral valve and its tendinous cords. The aorta emerges out of the
left ventricle passing through the semi-lunar aortic valve. From the ascending aorta,
above the level of the aortic valve, two ostia connect the left and right coronary ar-
teries to the coronary circulation.

• As with the left ventricle, the muscular of the Right Ventricle (RV) extends from
the right side atrio-ventricular to the ventriculo-arterial junction and holds up to
130ml. The inlet portion of the right ventricle is limited by the tricuspid valve,
while its outlet is connected to the pulmonary artery through the pulmonary valve.

2.1.2 Dynamics
The heart beats at an average frequency of 1.20Hz and passes two major phases to com-
plete a cardiac cycle, the systole and diastole (see figure 2.1(b)). During diastole the
ventricles relax until the inside pressure drops blow the atrial pressure, which opens the
atrioventricular, mitral and tricuspid valves. Blood flows from the atria to fill the ventri-
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(a)

Figure 2.2: Diagram of events in the left-side heart during the cardiac cycle - by DestinyQx
in Wikipedia

cles at an approximate velocity of 0.7m/sec. At the beginning of the systole, an electric
stimulus causes the muscles of the lower chambers to contract. The drastically pressure
increase to around 30mmHg and 130mmHg in the right and left ventricle, respectively,
closes the atrioventricular valves (see figure 2.2(a)). The semilunar, aortic and pulmonary
valves, open as ventricular surpasses the arterial pressure. Blood flows via the pulmonary
valve into the pulmonary artery and to the lungs as well as through the aortic valve
into the aorta and the body. After peak-ejection, ventricular pressure drops, closing the
semilunar valves. The cardiac cycle ends with the loading of the right and left atria by
the superior and inferior caval veins, and pulmonary veins respectively.

The heart pumps blood in parallel through the systemic and pulmonary circulation.
In the first circuit, oxygenated blood is transported towards the body due to the left
ventricle contraction and returns deoxygenated to the right atrium. The right ventricle
circulates the deoxygenated blood through the lungs, which returns oxygenated into the
left atrium.

The reader is referred to Hurst’s [121] and Braunwald’s [91] reference textbooks in
cardiology and Wilcox et al. [188] cardiac surgery book for a comprehensive compilation
of medical and clinical information about the heart.
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2.2 Physiology of the Heart Valves

Figure 2.3: The four cardiac valves cen-
tered on the aortic valve, which builds
the cornerstone of the fibrous extension.
Reproduced with permission of the au-
thor and the European Association for
Cardio-Thoracic Surgery from: Anderson
RH. The surgical anatomy of the aortic
root. Multimedia Man Cardiothorac Surg
doi:10.1510/mmcts.2006.002527.

Scientific knowledge about the heart valves
can be traced back to Leonardo da Vinci
in the 14th century, who described the
anatomy of the aortic and mitral valves in
great detail. Many discoveries followed, es-
pecially during the 20th century, when pre-
cise observation instruments like the elec-
trocardiogram, X-ray and other evaluation
methods lead to an in-depth understanding
of the pathophysiology of the heart valves.

Today it is well known that the fibrous
skeleton of the heart is formed by four car-
diac valves: the Aortic Valve (AV), Mi-
tral Valve (MV), Tricuspid Valve (TV) and
Pulmonary Valve (PV) (see figure 2.3).
The first two are semilunar shaped and
located at the interface of the heart with
the main arteries, while the latter separate
atria from ventricles and are referred to as
atrioventricular valves. Over an average
lifespan of 3×109 cardiac cycles, the valves
regulate the blood hemodynamics by en-
suring unidirectional flow within the heart
and towards the rest of organism.

2.2.1 Aortic Valve
Indeed, there is still no consensus on
the best way to describe the aortic valve
anatomy [7]. However, its central anatomic
structures are the aortic root and the three
valvular leaflets also called cusps. The root provides the supporting structures for the
leaflets and forms the bridge between the left ventricle and the ascending aorta (see figure
2.4(a)). It extends from the basal attachments of the leaflets within the left ventricle,
defined as the hinge points, to the sinutubular junction. The diameter at the hinge points
is normally about equal to that of the ascending aorta and the sinutubular junction (see
figure 2.4(b)). From a geometric perspective, the aortic root is a cylinder with three wall
dilatations referred to as sinuses of the valsava or valvular sinuses.

The three aortic leaflets are avascular and attached to the root on the semilunar
structures within the valvular sinuses (see figure 2.4(c)). They can be thought of as shirt
pockets with one edge stitched to the shirt and one free of attachment. These attachment
structures interlink at the level of the sinutubular junction forming the three commissures.
Each cusp presents a fibrous core, which is thickened at the center of the free edge denoted
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by the leaflet tip. The left and right coronary arteries arise from two of the three aortic
sinuses underneath the sinutubular junction. Thus, the leaflets are named accordingly as
being the left coronary leaflet, right coronary leaflet and none coronary leaflet. They are
similar sized, but truly equal in only approximately 10% of the hearts.

(a) (b) (c)

Figure 2.4: (a) Parasternal long axis section through the heart showing the aortic root at
the centerpiece of the heart. (b) Cartoon of a bisected aortic root illustrating its cylindrical
shape and the leaflets attachments. (c) Cartoon of an idealized aortic root presenting
the commissures and hinges as well as the semilunar attachments. Reproduced with
permission of the author and the European Association for Cardio-Thoracic Surgery from:
Anderson RH. The surgical anatomy of the aortic root. Multimedia Man Cardiothorac
Surg doi:10.1510/mmcts.2006.002527.

The AV function is to facilitate unidirectional blood flow, from the LV to the ascending
aorta. Under systolic contraction, the pressure in the left ventricular exceeds that of the
aorta forcing the leaflets to open parallel to the sinuses wall. In diastole, the aortic leaflets
collapse together with their coaptation being sustained by the hydrostatic pressure of the
supported column of blood.

2.2.2 Mitral Valve
The mitral valve is located between the left ventricle and left atrium and consists of four
central components: the anterior and posterior leaflet, the annulus and the subvalvular
apparatus (see figure 2.5(a)). The latter two connect the valve to the LV endocardium.
The annulus is a ring-like fibrous entity with a three-dimensional shape resembling a saddle
with the middle portions of the anterior annulus being elevated out of the annular plane
towards the LA and merging into the aortic mitral curtain. Unlike the other three valves,
the mitral valve contains only two leaflets. The anterior leaflet is larger and semicircular,
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and through the aortic mitral curtains, which end in the left and right fibrous trigone,
it partially separates the ventricular inflow and outflow tracts (see figure 2.5(b)). The
posterior leaflet is rectangular and divided through slits into several scallops. Multiple
nomenclatures exist, but most commonly the scallops are named P1 to P3 with opposing
segments A1 to A3 (see figure 2.5(c)) [8]. The anterior leaflet is normally twice the
height of the posterior but has half its annular length. The mitral commissures are the
points where both leaflet’s free edges join, not coinciding with the mitral annulus. The
subvalvular apparatus consists of the chordae tendineae arise from the papillary muscles
and extend in a fan-like array to insert into the free edge of both leaflets.

(a) (b) (c)

Figure 2.5: (a) Parasternal long axis section through the heart showing the complex
mitral valve structure. (b) Cartoon depicting the anterior and posterior leaflets viewed
from the left atrium. (c) Cartoon illustrating the mitral valve scallops. Reproduced with
permission of the author and the European Association for Cardio-Thoracic Surgery from:
Anderson RH. The surgical anatomy of the aortic root. Multimedia Man Cardiothorac
Surg doi:10.1510/mmcts.2006.002147 and [30]

The competent mitral valve function is complex and requires optimal interaction be-
tween all its components and associated chambers. Its function is to allow blood to flow
only one way, from the LA to the LV, separating them hemodynamically. It is opened
by the increasing pressure in the left atrium, which is pushing down the leaflets during
diastole, and remains closed due to the ventricular pressure during systole.

2.2.3 Tricuspid Valve
The right atrioventricular valve, the tricuspid valve, positioned between the right ventricle
and atrium, comprises the annulus, leaflets and subvalvular apparatus. A normal tricuspid
valve presents three sail-like leaflets: septal, anterior and posterior. Usually the largest
and most mobile is the anterior leaflet, which forms the intracavitary curtain that partially
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separates the inflow and outflow tract of the RV. While the anterior leaflet is stable, the
posterior and septal leaflets vary in size and position, with the former being the least
mobile due to its direct chordal attachments to the septum. The tricuspid annulus forms
the supporting structure of the leaflets. Similar to the mitral valve, the free leaflet edges
are anchored to the papillary muscles of the right ventricle by chordae tendineae. Tricuspid
chordae may also insert directly into the right-ventricle wall. The function of the tricuspid
valve is to regulate the blood flow from the right atrium to the right ventricle, staying
closed during systole and opened during diastole.

2.2.4 Pulmonary Valve
Anatomically identical in shape with the aortic valve, the pulmonary valve is attached
to the muscular infundibulum of the right ventricle. Unlike the left-side valves, which
are connected through the fibrous continuum, the pulmonary and tricuspid valves are
separated by infundibular muscle. As it is difficult to describe the leaflets directly, these
are named according to their relationship to the AV. Two of the aortic valve leaflets
attached to the septum always face two corresponding leaflets of the pulmonary valve,
which are referred to as left and right facing leaflets. The third is the none facing leaflet.
The valvular leaflets coapt in diastole and retract into the sinuses during ventricular
systole allowing unrestricted blood flow towards the pulmonary artery.

To date, most data on valvular morphology and function has been obtained by exper-
imental studies on explanted valves or using animal models [37], with small numbers of
cases across publications. Standard dimensions provided in the literature vary consider-
ably [87] and there is no consensus on the best way to describe the valvular physiology [7].
The methodology presented in this thesis enables for comprehensive, efficient and repro-
ducible analysis of the valvular apparatus through non-invasive and in-vivo experiments.
Thus, it can contribute to a better understanding of the physiology and pathological
changes of the heart valves, and potentially consolidate the existent medical knowledge.

2.3 Clinical Pathology of Valvular Heart Disease
While the heart valves regulate the blood flow during the cardiac cycle, two major prob-
lems may affect their proper function: stenosis or regurgitation. The condition in which
valves fail to open fully because of narrowing, stiffening, thickening fusion or blockage is
called stenosis. Conversely, a condition of defective closing, which causes ejected blood
to leak backwards, is referred to as insufficiency, incompetence or regurgitation. In some
cases both dysfunctions may coexist, but either symptom is sufficient to increases the
workload on the heart, which gradually becomes weaker and inefficient. Untreated valvu-
lar heard disease eventually results in heart failure and even sudden death. VHD is a
frequent symptom, with a prevalence of 2.5% among the global population [122].

13



Background

VHD may be congenital or acquired later in life such as rheumatic, endocarditis and
degenerative malfunctions. Abnormalities present from birth can affect all valves, but the
most common congenital malformation is the bicuspid aortic valve, in which the valve
possesses only two instead of three leaflets. The defect causes the valve to be more prone
to infection, or degenerative disorders.

In the ages before antibiotics were commonly available, VHD was mainly provoked by
rheumatic fever, a streptococcal bacterial infection, which often affects children between
5 and 15 years. Although, rheumatic heart disease drastically decreased in developed
regions, it still affects some 20 million Americans and remains a serious problem in de-
veloping countries. The damage caused by the autoimmune response to the bacteria
determines leaflets to stick together or become rigid and thickened.

Another inflammatory condition that progressively degenerates the valve tissue is in-
fective endocarditis. Usually originating from streptococci and staphylococci of untreated
infection elsewhere in the body, it forms warty nodules, produce holes and can completely
disrupt valve function. Although rare in normal and healthy individuals, patients with
artificial mechanical valves are at major risk.

The population aging phenomenon in developed countries made degenerative syn-
dromes the most common type of VHD. From a series of metabolic changes encountered
in elderly, valve tissue losses, becomes weak and in addition allows calcium deposits, which
decreases the hemodynamic performance of the affected anatomy.

2.3.1 Aortic Stenosis and Regurgitation
Aortic valve stenosis is identified as an obstruction to the left ventricular outflow tract,
supra-valvular or subvalvular that has three principal causes: congenital bicuspid valve,
degenerative calcification and rheumatic heart disease. Bicuspid aortic valve is the most
common congenital valve disease with a prevalence of 1.4% from the global population and
54,800 new cases yearly in the United States [96] (see figure 2.6(a) and 2.6(d)). Although
two or one leaflet valves can function normally, these are under increased risk for infections
and degenerative disease, as 75% of calcified aortic valves for the 15-65 age group are
bicuspid or unicuspid. Age related calcification is the most common form of aortic stenosis
associated with a 50% increased risk for cardiac mortality due the congestive heart failure
and sudden death (see figure 2.6(b) and 2.6(e)). Leaflet stiffening and commissural fusion
from rheumatic fever continues to be a major problem on a worldwide basis.

Aortic stenosis severity is determined from the degree of obstruction where symp-
tomatic and severe cases have an aortic valve area < 1.0cm2, moderate stenosis
1.0 − 1.5cm2, mild 1.5 − 2.0cm2 and normal between 3.0 and 4.0cm2. Severe obstruction
is characterized by an aortic jet velocity > 4m/sec and mean systolic gradient exceeding
40mmHg. Echocardiography is the standard approach to evaluate aortic stenosis with
Doppler jet velocity measurements considered the main predictors of severity.

Aortic regurgitation is primarily caused by aortic root dilatation and aortic leaflet
disease (see figure 2.6(c) and 2.6(f)). Enlargements of the aortic root and ascending aorta
may be age related, due to bicuspid anatomy or genetic disorders e.g. Marfan syndrome.
Those normally result in dilated aortic annuli with leaflet separation and ultimately insuf-
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(a) (b) (c)

(d) (e) (f)

Figure 2.6: Examples of aortic valve disease: bicuspid aortic valve from TEE (a) and CT
(d), stenotic aortic valve with calcification from TEE (b) and CT (e), and dilated aortic
root with valve regurgitation from TEE (c) and CT (f).

ficiency. Vegetation, endocarditis, rheumatic fever and calcified valves may also interfere
with the proper coaptation of the aortic cusps. To provide hemodynamic compensation to
the chronic blood leakage, the LV end-diastolic volume gradually increases. The breaking
point is reached when the mass augmentation and wall thickening fails to keep pace with
the additional workload, which provokes soaring end-systolic wall stress and fault ejection
fraction.

Echocardiography is indicated for assessment of structural changes, LV end-diastolic
and end-systolic dimensions, ejection fraction and ventricular mass. In addition, CMR
provides accurate quantification of the regurgitant orifice volume as well as antegrade and
retrograde flow volumes in the ascending aorta.

2.3.2 Mitral Stenosis and Regurgitation
The predominant origin of mitral stenosis is rheumatic fever, with a prevalence of 1
case per 100,000 in the US and Europe, and 35 per 100,000 in Africa. The dysfunction

15



Background

(a) (b) (c)

(d) (e) (f)

Figure 2.7: Examples of mitral valve disease: stenotic mitral valve from TEE (a) and CT
(d), mitral valve prolapse from TEE (b) and CT (e), and mitral valve regurgitation from
TEE (c) and CT (f).

is characterized through leaflet thickening, commissural fusion and chordal shortening
while calcification further accentuates the pathologic valve function (see figure 2.7(a) and
2.7(d)). The stenosis severity is expressed by the degree of valve opening obstruction,
quantified via the mitral valve orifice area in diastole. In normal adults the cross-sectional
area is 4− 6cm2, as for mild stenosis case 2cm2. To compensate for the reduced opening,
a gradient pressure is needed to propel blood from the LA to the LV. In severe cases with
an orifice of 1cm2, an atrioventricular pressure gradient of 20mmHg is required for normal
cardiac output, which raises atrial pressure and generates pulmonary artery hypertension
and other adverse hemodynamic effects. Echocardiography is the most accurate approach
to diagnose mitral stenosis, where mitral valve area is calculated by direct planimetry or
from Doppler pressure gradients.

Unlike stenosis, the etiology of mitral valve insufficiency is multiple. Mitral valve
prolapse due to lengthening or rupture of the chordae tendineae and papillary muscle
disease is the most common cause of mitral regurgitation (see figure 2.7(b) and 2.7(e)).
Second leading source is the result of ischemic LV dysfunction and cardiomyopathy, both
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provoking mitral annular dilatation with reduced systolic constriction and valve closing
(see figure 2.7(c) and 2.7(f)). Degenerative calcification and rheumatic fever are other
causes for mitral incompetence.

The volume of mitral backflow depends on the regurgitant orifice and pressure gradient
between LV and LA. The LV compensates by emptying more completely and increasing
preload. As a results its end-diastolic volume increases, which enlarges the mitral annulus
and therefore the regurgitant orifice, creating a vicious circle.

Echocardiography plays a central role in mitral regurgitation assessment and severity
quantification. It measures high velocity jets in the left atrium during systole characterized
by the jet width and atrium size. Another common indicator is the proximal isovelocity
surface area (PISA), which measures the flow at one moment in time and may not reflect
average performance.

2.3.3 Right-Side Valve Disease
Tricuspid valve stenosis is rather infrequent and never occurs in isolation. Tricuspid
regurgitation is mostly functional and not primarily related to leaflet pathology but rather
right ventricular dilatation, distortion of the subvalvular apparatus or tricuspid annular
dilatation. Severe cases are associated with adverse outcomes and important impact on
survival in patients with concomitant cardiovascular disease.

Pulmonary valve stenosis occurs to 80% in isolation, from which 90% of cases are re-
lated to congenital disease, such as Tetralogy of Fallot. Balloon valvuloplasty is the pro-
cedure of choice in children and adults in severe or symptomatic patients. Paradoxically,
adverse consequences of repair are the principal cause of pulmonary valve regurgitation,
which progressively provokes right ventricular dysfunction and congestive heart failure.

The reference textbook [122] provides complete information on the valvular heart
disease subject. Additionally, both the European Society of Cardiology [167] and the
American College or Cardiology [19] supply clinical guidelines for the management of
patients with valvular heart disease. In general, the evaluation workflow for VHD pa-
tients involves non-invasive imaging using a combination of Transthoracic Echocardiog-
raphy (TTE), TEE, cardiac CT and CMR techniques. However, most of the decisions
are currently based on two-dimensional reconstructed images, user-dependent processing
and manually performed, potentially inaccurate measurements. One major contribution
of this thesis, mainly covered in section 5.1, involves an automated model-based analy-
sis paradigm that can benefit the diagnosis and assessment of valvular pathologies with
precise 4D quantification.

2.4 Treatment of Valvular Disease
As no specific medication prevents the progression of VHD, invasive repair and replace-
ment of defected valves is currently the standard therapy. The first operation on the mitral
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(a) (b) (c)

Figure 2.8: (a) GeoForm Annuloplasty Ring, Edwards Lifescience, Irvine CA. (b) Hall
Easy-Fit Mechanical Prosthesis, Medtronic, Minneapolis MN. (c) Carpentier-Edwards
PERIMOUNT Pericardial Bioprosthesis, Edwards Lifescience, Irvine CA.

valve by Dr. Elliot Cutler was performed in 1923, but it wasn’t until the 1950s, when the
invention of the heart-lung machine marked the beginning of the modern era of cardiac
surgery. Progressive improvements in prosthetic valves, started by the Starr-Edwards
ball-in-cage prosthesis in 1961, and corresponding advancements in surgical repair tech-
niques over the past five decades have established open heart valve surgery as the most
popular treatment to date. According to the American Heart Association, in 2009, over
100,000 valve procedures were performed alone in the United States [96]. Section 2.4.1
presents an overview on existent surgical repair and replacement techniques.

Despite continuous advancements, valve surgery is the most expensive among all car-
diovascular procedures, with associated costs averaging $141,200 and having the highest
in-hospital death rate, 4.9%. Due to the high operative risk, estimated using the Eu-
roSCORE - European System for Cardiac Operative Risk Evaluation and STS- Society
of Thoracic Surgeons score, over 30% of the symptomatic patients are currently denied
traditional surgery [122]. A less invasive and potentially safer valve treatment has been
recently enabled trough intravascular procedures. Those, so called, percutaneous tech-
niques are rapidly evolving opening a new era in valvular therapy and are expected to
cover up to 41.1% of all procedures by 2012 (Millennium Research Group 2008). Section
2.4.2 introduces the most promising percutaneous treatment approaches to date.

2.4.1 Heart Valve Surgery
Heart valve surgery is an open heart operation executed under general anesthesia. Ster-
notomy is performed and the pericardium is pierced to secure access to the heart, while
the blood is routed through the cardiopulmonary bypass to maintain normal circulation.
Depending on the specific physiopathology, affected valves are either repaired or replaced
with a prosthetic substitute.

Aortic Valve Repair: An appreciation for the complex anatomy and understanding
of the benefits in preserving natural structures, led to an expansion of reconstructive
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surgery techniques over the past decades. The Ross operation originally described in 1967
is considered the apogee of true restoration, as it preserves the complete natural anatomy.
Experienced surgeons can replace diseased aortic valves with a pulmonary autografts and
restore optimal hemodynamics and physical activity. Due to the inherent complexity,
the Ross procedure is currently reserved for specialized centers and young patients that
justify a life expectancy greater than 25 years.

In the early 1990s Tirone Davis and Sir Magdi Yacoub proposed the reconstruction
of the aortic root with preservation of the native leaflets. The choice of the graft tube,
the leaflet resection or tailoring and their symmetrical re-suspension is acknowledge to be
as much art as it is science. A standardized quantitative approach to patient selection
and procedure planning could potentially improve therapy success and enable operation
beyond reference centers.

In moderate root disease cases, the valvular orifice can be narrowed by simple commis-
suroplasty. Knots are placed on the aorta outside on the left-noncoronary fibrous aspect
to reduce aortic valve regurgitation. More sophisticated approaches include leaflet short-
ening and bicuspid to three-leaflet valves conversions, with major application in pediatric
cardiology.

Mitral Valve Repair: Mitral repair became a clinical reality in 1983 due to the pio-
neering work of Dr. Carpentier. His landmark article the "French correction" [29] describes
mitral valve repair stabilized with a ring prosthesis. Today, mitral valve repair is consid-
ered a widespread and safe procedure recommended in symptomatic and asymptomatic
patients with positive post-operative prediction.

The majority of patients suffer from dysfunction of one ore more segments associ-
ated with ruptured or elongated prolapsing chords and annular dilatation. Quadrangular,
trapezoid or triangular resections are performed to reduce the amount of distortion. Arti-
ficial chords, e.g. Gore-Tex, are used to re-attach mitral leaflets to the papillary muscles.
Shortening of excessively elongated anterior or posterior leaflets is achieved through re-
section or simple plication. Commissuroplasty is used for patients with flails segments
adjacent to the commissures. The procedure is finished by annular remodeling usually
with the one of the various annuloplasty rings commercially available (see figure 2.8(a)).

The therapy outcome is decisively influenced by a set of crucial decision addressed
during planning and operation. Whether the valve can be repaired or needs replace-
ment is still an area under investigation. Measuring neo-chords and defining the proper
length to simultaneously avoid restriction and prolapse requires considerable judgment.
The specific reconstructive approach presents difficulties especially in ischemic or func-
tional mitral regurgitation cases. Advanced imaging in conjunction with patient-specific
modeling and accurate quantification can provide substantial support to clinicians and
potentially improve surgical success rates.

Robotic minimal invasive mitral repairs with port access, e.g. da Vinici system [117],
offer a series of benefits: improved patient acceptance, improved cosmetic results, safety
and effectiveness, shorter hospitalization and reduced postoperative disabilities. There
is no doubt that image analysis will complement robotic improvements to overcome cur-
rent limitation such as high rates of residual regurgitation and increased incidence of
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perioperative stroke.

Right-Side Valve Repair: Tricuspid regurgitation is a predictor for advanced valve
disease and is frequently found in patients with ventricular dysfunction. As tricuspid
regurgitation may progress after mitral repair, concomitant tricuspid annuloplasty is ad-
vised. However, decision varies considerable across centers and strictly relies on expert’s
opinion rather than on quantitative facts. Reconstructive surgical techniques include
suturing, repair with flexible rings and near complete remodeling rings.

Analogous to all other valves, whenever possible, the pulmonary valve is repaired to
preserve the natural tissue and avoid infections as well as blood-thinning medication. Re-
pair may include the separation of fused valve leaflets, sewing torn leaflets or reshaping
parts of the valve.

Valve Replacement: For a large spectrum of valve dysfunctions such as rheumatic
disease, endocarditis or calcification, repair methods including valvuloplasty, remodeling
or calcium removal are not effective and were excluded from clinical treatment guidelines.
Hence, valve replacement is imminent and a fundamental decision must be made about
whether to implant a mechanical or tissue prosthesis.

Mechanical valves evolved from the first Starr-Edwards ball-in-cage to modern single,
e.g. Medtronic Hall, or bi-leaflet, St. Jude Regent tiling disk prosthesis (see figure 2.8(b)).
Randomized trial demonstrated equivalent performance of commercial mechanical valve.
The average survival rate at 25 years lies at 24.9%, with significantly better results in
patients under 18 years out of which 88% have survived 20 years past the replacement.
Concomitant root and valve treatment, especially required in young patients with Marfan
syndrome, can be performed with a mechanical valve implanted in a Dacron tube graft.
Nevertheless, regardless of prosthesis and procedure type, the intrinsic mechanical dura-
bility is often outweighed by the associated side-effects of thromboembolic events, which
requires life-long administration of anticoagulant.

A cumulative risk for hemorrhage and thrombosis of about 4% per year specific to
mechanical valves motivated the development of bio-prostheses. Leaflets fabricated out
of animal tissue are attached to a support frame that has a cloth sewing ring to allow
surgical sutures (see figure 2.8(c)). Latest generations have an estimated durability of 15-
20 years, which unfortunately decreases inverse proportionally to patient’s age. Benefits
include low rates of thromboembolsim, lower complication rates, better survival, and
easiness of implantation. Homografts, have also been used for aortic valve replacement,
however with limited application due to lack of donors and cardiac surgeon experience.

2.4.2 Percutaneous Valve Therapy
Today, one third of the acute and symptomatic valve patients are not surgically op-
erable. Percutaneous therapy has the potential to revolutionize the treatment of valve
disease, offering a less invasive alternative to classic open-heart surgery. Prosthetic valves,
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(a) (b) (c) (d)

Figure 2.9: (a) SAPIEN, Edwards Lifescience, Irvine CA. (b) Melody Transcather Valve,
Medtronic, Minneapolis MN. (c) CoreValve, Medtronic, Minneapolis MN. (d) MitraClip,
Evalve, Menlo Park CA.

instruments and other devices are delivered through intravascular catheters using transve-
nous, transarterial or transapical entrance points. Interventions are performed in cardiac
catherization or hybrid operating rooms under general or local anesthesia and rapid phas-
ing techniques. Without direct view and access to the affected valves, procedure guidance
and critical decision are exclusively based on imaging techniques such as Fluoroscopy and
Transesophageal Echocardiography.

Semilunar Valve Replacement: Aortic and pulmonary valves are replaced by peri-
cardial implants mounted on balloon-expandable or self-expandable stents. Released in
2007 for commercialization in Europe, the SAPIEN, Edwards Lifescience, Irvine CA, is
the most popular percutaneous aortic valve implant (see figure 2.9(a)). It is available
in two sizes, 23 and 26mm, and has an in-vitro demonstrated durability of 200 million
cycles or approximately 5 years. The Melody Transcather Valve, Medtronic, Minneapolis
MN, received FDA approval in 2010 and is a similar device applicable in pulmonary valve
pediatric and adult patients with RVOT conduit ≥ 16mm (see figure 2.9(b)).

CoreValve, Medtronic, Minneapolis MN, is a device with pericardial leaflets attached
on a nitinol self-expandable frame, which exhibits three different radial forces at different
parts of its peripheral circumference (see figure 2.9(c)). Deployment is achieved under
rapid-pacing and fluoroscopic guidance after balloon valvuloplasty. The technique, which
is usually performed in 1 ½ hours, received the European CE mark in 2007. Despite high
success rates of over 95%, serious complications due to malpositioning occur in 3% of the
cases.

Procedure planning is usually performed using CT, Magnetic Resonance Imaging
(MRI) and Ultrasound images to assess annular and leaflet dimensions as well as vascular
access anatomies. Navigation is assisted by a combination of fluoroscopic, angiographic
and TEE imaging. Correct deployment coaxial to the native valve and at a specific
annular height is imperative. Implants exhibit better hemodynamics but more residual
regurgitation compared to surgically replaced valves, primarily due to paravalvular leak-
ages.
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Atrioventricular Valve Repair: Percutaneous therapies for atrioventricular valves
mimic corresponding surgical strategies. The MitraClip, Evalve, Menlo Park CA, is based
on the anterior-posterior surgical suturing, in which the mitral leaflets are clipped together
into a double orifice valve (see figure 2.9(d)). Under TEE guidance, the clip is deployed
via transseptal delivery catheters, where intra-operative assessment is performed using
Doppler and fluoroscopic imaging.

Several percutaneous solutions reproduce the effect of annuloplasty rings to reduce
the annular dimensions and consequently the regurgitation degree. The PTMA (Viacor,
Wilmington, MA), Carillon Mitral Contour Device (Cardiac Dimensions, Kirkland, WA)
and the MONARC device (Edwards Lifesciences, Irvine, CA) are examples of devices
successfully demonstrated to reduce mitral insufficiency in animal and early clinical trails.
These exploit the proximity of the coronary sinus relative to the posterior leaflet, which
runs from the lateral LV wall medially to the RA. Inserted into the coronary sinus, these
devices either cinch or compress the annulus to improve valve coaptation. Cardiac CT
based planning is invaluable for these procedures.

Another technique worth mentioning is the QuantumCor device which uses a heat
probe on the mitral annular collagen to short the strands and compress annular dimen-
sion. The iCoapsys device decreases the mitral annular septal-lateral dimensions, repo-
sitions and stabilizes the papillary muscles through two chord-connected pads placed on
the epicardial surface and passing across the LV.

The current lack of standardized routines and the technological deficit determines
the success of reconstructive surgery and percutaneous procedures to strongly rely on
the experience and skills of the operator. To advance the clinical workflow, section 5.2
introduces an automated and robust approach for patient-selection and risk stratification.
In Section 5.3 we propose a novel computation framework for preoperative planning,
intraoperative guidance and post-operative assessment of percutaneous valve procedures.
Our approach has the potential to advance replacement and repair operations as well as
to fuel research on mixed valvular treatment.

2.5 Imaging Modalities

Modern medicine would be impracticable without the multitude of medical scanners avail-
able today. The entire clinical workflow targeted for treatment of cardiovascular disease,
including assessment, planning, and therapy guidance, relies on qualitative and quantita-
tive analysis of various types of images. Dictated by the underlining physical properties,
each modality presents advantages as well as limitations in sensing specific morphological
and functional aspects of the heart. In the following, imaging modalities relevant for the
clinical management of valvular heart disease are briefly discussed.
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2.5 Imaging Modalities

2.5.1 X-Ray and Angiography

(a) (b) (c)

Figure 2.10: (a) C-arm X-ray - Artis zee Ceiling-mounted system, Siemens Healthcare,
Forchheim, Germany. (b) Fluoroscopic image of the heart with contrast concentrated in
the aorta. (c) Three-dimensional DynaCT reconstruction of the aorta.

X-ray photons of a specific energy are generated by a vacuum tube and emitted towards
a flat panel detector, which is located on the other side of the patient (see figure 2.10(a)).
The measured energy on the X-ray detector is attenuated by the material traversed along
the beam, and its difference to the emitted radiation is used to produce grayscale images.
Traditionally, X-ray has been applied to evaluate the skeleton and bony structures, as
attenuation differences between soft tissue and bones results in high contrast images.

Angiographic techniques combine X-ray Imaging (X-ray) with a radiopaque contrast
agent injected prior to the scanning, in order to visualize cardiovascular structures. These
together with fluoroscopy, in which low-dose X-ray images are acquired in real-time, are
essential imaging modalities in cardiac catherization laboratories (see figure 2.10(b)). Un-
der X-ray guidance, narrow tubes, called catheters, are inserted into the cardiovascular
system to perform diagnostic and therapeutical procedures such as percutaneous valve
repair or replacement. The most common indication for cardiac catherization is the in-
vestigation and severity assessment of coronary artery disease [91]. In patients with VHD,
cardiac catherization provides complementary data with non-invasive studies and is rec-
ommended in patients with complex multi-valve disease, uncertain or discordant diagnosis
or low-gradient aortic stenosis after dobutamine administration [122].

Modern C-arm X-ray methods, such as the syngo DynaCT, Siemens Healthcare, Forch-
heim, Germany, offer the capability to reconstruct 3D volumes from several hundred 2D
projection images acquired by rotating the C-arm about 180 degrees around the pa-
tient (see figure 2.10(c)). Recently, DynaCT was demonstrated to acquire optimal intra-
operative images of the aortic annulus under rapid biventricular pacing and aortic root
injected contrast, during off-pump transapical aortic valve implantation [82].

The inherent limitation of X-ray imaging is the ionizing radiation applied to the patient
and operating physician. Additional risk for kidney failure emerges from the injected
contrast dye, while cardiac catherization provokes serious complications in about 2% of
the patients or even death in 0.08% of the cases.
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2.5.2 Cardiac Computed Tomography

(a) (b) (c)

Figure 2.11: (a) CT - SOMATOM Definition Flash, Siemens Healthcare, Forchheim,
Germany. (b) Complete heart scan with contrast on the left side. (c) Volumetric recon-
struction of the aortic valve clipped at the valvular sinuses level.

Cardiac computed tomography (cardiac CT) is a procedure that uses a special X-ray
machine to generate detailed images of the heart. During the cardiac CT scan the X-
ray tube rotates around the body to acquire multiple images from different angles and
combines them to reconstruct three-dimensional volumes of the heart (see figure 2.11(a)).
A Computed Tomography Angiography (CTA) procedure uses Iodine-based contrast dye
injected into veins while scanning to highlight blood vessels and soft tissue areas. Each
portion of the heart can be imaged at several phases of the cardiac cycle. Retrospective
Electrocardiography (ECG) gating is used to correlate the CT data with the corresponding
phase and reconstruct a series of volumes which cover a complete cardiac cycle (Multiphase
CT or CTA). New scanners, as the SOMATOM Definition Flash CT, Siemens Healthcare,
Forchheim, Germany, achieve a temporal resolution of 75 milliseconds and require 0.6
seconds for a complete thorax scan at a radiation dose of 1 millisievert (mSv) (see figure
2.11(b)).

The main limitation of cardiac CT is the radiation caused by the X-ray machine, which
is harmful to the human body. The radiation dose of a regular exam is comparable to the
natural background radiation of 3-year period, 10 mSv. CT imaging of the heart is also
prone to artifacts primarily due to cardiac and respiratory motion. The resulting blur
contours or misalignments of adjacent slices reduce the diagnostic value of the images.
Nevertheless, due to its relatively high spatial resolution cardiac CT provides accurate
morphologic imaging of the heart, which is useful in various clinical scenarios such as:
calcium assessment and scoring, and the visualization of the coronary arteries.

While visualization of the right-side valves is rather inconsistent, cardiac CT is reliable
in depicting the aortic and mitral in contrast enhanced CTA procedures. It has been
reported that CT can quantify the mitral regurgitant orifice as well as the mitral valve
morphology [5]. Recent studies demonstrate the usage of CTA to measure the orifice area
in normal and stenotic aortic valves in close correlation with TEE [59] (see figure 2.11(c)).
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2.5 Imaging Modalities

2.5.3 Cardiovascular Magnetic Resonance

(a) (b) (c)

Figure 2.12: (a) MRI - Siemens Verio, Siemens Healthcare, Erlangen, Germany. (b) Heart
image including the left ventricle and aorta. (c) Volumetric reconstruction of the right
ventricular outflow tract and pulmonary arteries.

Cardiac magnetic resonance CMR imaging uses a high-strength magnetic field, most
common 1.5 Tesla, to excite hydrogen nuclei within a body region by a pulse of radio
waves, at a resonance frequency of 63MHz (see figure 2.12(a)). Images are built from
wave echoes emitted during excitation decay, while contrast arises from different particle
concentration of individual tissues. Discrimination between blood and myocardium tissue
is possible in arbitrary planes without contrast medium.

After growing considerably over the past years, CMR is now firmly established in
large centers and considered the most versatile non-invasive diagnostic modality. It en-
ables high-resolution static and moving images of cardiac structures when combined with
ECG synchronization (see figure 2.12(b)). Furthermore, phase-contrast protocols produce
velocity-encoded images of the blood flow. The nonionizing technology offers CMR a fun-
damental advantage compared to X-ray and gamma ray modalities. Nevertheless, relative
long examination times of 45-90min, compared to 15min for CT studies, obstruct CMR
application for full 4D imaging.

CMR offers invaluable information about the valvular anatomy and function. It is
the modality of choice for the analysis of dilated aorta with aortic regurgitation and
most accurate to evaluate ventricular function [122]. CMR is ideally suited in pediatric
cardiology to assess complex congenital heart disease of the valves and great vessels (see
figure 2.12(c)). Especially in abnormalities of the right side, CMR assessment of the right
ventricular outflow tract for RV - PV conduit insertion can be applied to define the timing
of repair and decide between surgical or percutaneous PV treatment [153].

2.5.4 Echocardiography
Echocardiography is the principal imaging modality to evaluate all cardiovascular disease
related to morphological, functional or hemodynamic dysfunctions [91]. Echocardiography
is based on ultrasound technology, which uses a transducer loaded with an array or matrix
of piezo-electric elements to generate ultrasound pulses, with a frequency between 1-
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(a) (b) (c)

Figure 2.13: (a) TTE four chambers image of the heart. (b) TEE volumetric reconstruc-
tion of the mitral and aortic valves. (c) Doppler blood flow quantification.

15MHz. These traverse the human body and produce echoes captured by the device to
assemble images. The result is a virtually risk-free, non-invasive imaging modality, which
in comparison with other techniques, such as CT or MRI, is cost-effective and widely
available in the majority of clinical units.

The downsides of ultrasound are low signal-to-noise ratio due to tissue frequency at-
tenuation, artifacts caused by echo dropouts and speckle noise as well as suboptimal
acoustic windows and insufficient depth penetration, which overall lead to limited im-
age quality. Nevertheless, a wide range of techniques were developed to overcome these
limitations and enable ultrasound technology not only for diagnosis, but also to guide in-
terventional procedures, such as valve replacement or repair, or apply therapy for example
in fragmentation of kidney and gall bladder stones .

Transthoracic Echocardiography In Transthoracic Echocardiography TTE the ul-
trasound transducer is coupled to the skin surface using a special gel and angulated to
obtain images from four standard positions: parasternal, apical, subcostal and supraster-
nal (see figure 2.13(a)). TTE is the standard diagnostic method for patients with valvular
heart disease, as it provides quantitative and qualitative information about the anatomy
and function of the valves, as well as the etiology and severity of valvular stenosis and
regurgitation [122]. Evaluation usually includes aortic and mitral valve area, LV volume,
mass and ejection fraction, aortic root anatomy and right heart structure and function.
Recent scanners such as the ACUSON SC2000, Siemens Healthcare, Mountain View, CA,
USA, enable a real-time acquisition of up to 80 volumes per second of the full heart.

Transesophageal Echocardiography To obtain images from the proximity of the
major cardiovascular structures, a special probe is introduced in the esophagus during
Transesophageal Echocardiography TEE exams. TEE provides high-resolution images
and is consider essential in a number of cases including studies in presence of prosthetic
valves or evaluation of mitral valve and aortic lesions and regurgitant severity (see figure
2.13(b)). Recently introduced real-time 3D scanners enable unique perspective and time-
resolved imaging of the valves, which advances visualization and quantification capabilities
and improves severity assessment and treatment planning [91].
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TEE is routinely used in operating rooms to assess the result of various valvular repair
and replacement procedures. As a harmless alternative to fluoroscopy, TEE imaging is
applied interventionally in minimal invasive procedures to guide placement and positioning
of catheters, needles, and surgical instruments. Recent works investigate real-time cardiac
3D TEE image guidance to facilitate percutaneous cardiac surgical procedures such as
transcatheter aortic valve replacement or mitral valve repairs [114, 93].

Doppler and Color Flow Imaging Doppler echocardiography quantifies blood flow
velocity based on the shift in frequency of the reflected ultrasound waves, a phenomenon
known as the Doppler Effect (see figure 2.13(c)). In color flow imaging, the measured
blood velocities are color coded and displayed superimposed to the anatomical echo im-
ages. Doppler provides essential measurement in VHD assessment, including regurgitant
volumes, valve areas and pressure gradients.

2.5.5 Nuclear Cardiology
Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomog-
raphy (PET) scans are the most common nuclear imaging techniques applied in cardiol-
ogy. Both modalities detect gamma rays emitted by injected radioactive tracers, which
accumulate in functional active regions. Although PET offers an increased temporal res-
olution, both modalities are adequate for tomographic reconstruction and measurements
of biological and physiological processes. However, their current spatial resolution does
not permit for the evaluation or delineation of discrete anatomical structures. Given the
passive nature of the heart valves, nuclear cardiology has no direct application in the
context of valvular heart disease.

2.6 Overview of Medical Image Analysis
Over the last five decades, the domain of medical image analysis has rapidly expanded as
countless non-invasive imaging methods have become largely available in clinical practice.
Significant advancements in medical image acquisition, including image digitalization in
the 1970’s, adoption of MRI harmless imaging in the 1980’s and movement from 2D scans
to full 3D imaging in the 1990’s have continuously fuelled the research and development of
image processing algorithms. Although not in the focus of this thesis, acquisition related
methods are a prerequisite and therefore briefly treated in section 2.6.1.

At the same time, a progressive adoption of sophisticated pattern recognition and
computer vision techniques since the 1970’s, has reshaped the focus of medical imaging
analysis from image enhancement, reconstruction or storage problems towards image reg-
istration and segmentation tasks. As presented in section 2.6.2, these techniques support
advanced quantitative and qualitative analysis essential for numerous clinical applications.

Machine learning in particular is regarded as one of the most promising research
directions in medical image analysis. Learning from examples has been proved to be an
effective approach in handling the inherent complexity and uncertainty encountered in
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most clinical problems. Related methods and applications are briefly reviewed in section
2.6.3.

Section 2.6.4 reflects on future activities focused on the development and integration
of computational models into physiological knowledge frameworks that enable prediction
and personalization in the medical practice.

2.6.1 Image Reconstruction and Enhancement
To facilitate subsequent visualization and analysis, images are pushed through a pro-
cessing pipeline immediately after acquisition. In general, images are reconstructed from
raw data and enhanced to highlight relevant anatomical structures while the noise is
suppressed.

Reconstruction: The image reconstruction process creates multidimensional raw im-
ages represented on rectilinear grids from measured signals provided by scanner detectors.
Reconstruction can be performed from lower to higher dimensional image representation,
as in 3D CT volumes reconstructed from 2D projection images [49], or 3D US volumes
reconstructed from a series of 2D oriented slices [133], or vice-versa in the case of non-
orthogonal 2D Multi Planar Reconstruction from 3D data sets. For temporal resolved
studies the ECG signal is stored during the image acquisition and used to synchronize 2D
slices to the cardiac cycle during reconstruction to produce 4D images.

Enhancement: Regardless of the modality, medical images are likely to be affected by
noise or other artifacts due to multiple sources of interferences related to physical phe-
nomena or acquisition systems. The traditional field of image acquisition is focused on
distortion reduction and sensor development with improved signal-to-noise ratio from a
hardware perspective. Image enhancement approaches apply mathematical techniques
to improve the quality of raw images for the human observer or subsequent computer
processing algorithms, mainly with respect to contrast, sharpness, noise or geometrical
transforms. Basic approaches include Gaussian smoothing, histogram manipulation, me-
dian filtering and edge enhancement [80]. Advance techniques define hybrid nonlinear
and adaptive filters to address noise suppression [12].

2.6.2 Computer Vision in Medical Imaging
Strong synergies between computer vision and medical imaging have significantly im-
pacted the medical image analysis landscape over the past 30 years. Duncan and Ayache
[45] divided the accelerated progress in this field into four stages: 2D image analysis era
(1980-1984), MRI era (1985-1991), 3D image analysis era (1992-1999) and computing
technologies, realistic visualization and procedure guidance for the future. To date major
developments were in the areas of image registration and matching, image segmentation
and shape modeling, and analysis of structure and motion, discussed in the reminder of
this section.
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Imager Registration and Matching: The integration of multiple forms of image-
based information into a common visualization and analysis framework is referred to as
registration. Fusion of structural and functional images often increases diagnosis potential
by combining for instance complementary information obtained from radiological and
nuclear exams. Surgical planning, radiation therapy and minimally invasive interventions,
benefit from registration of pre-, intra- and post-operative imaging data to assist procedure
navigation and guidance, as well as therapy assessment. The main challenges are due
to structural dissimilarities in images as well as registration in multi-modal acquisition
settings.

Various techniques proposed over the years can be classified in intensity vs. feature
based, mono vs. multi modal, rigid vs. deformable registration [102, 202]. In early
approaches to match 3D multi-modal images of the brain manually segmented cerebral
boundaries obtained from CT, MRI and PET were used to compute the transformation
[128]. Bookstein [20] proposed the thin-plate-splines to model non-linear deformations of
biological and medical images. A further key contribution was the introduction of mutual
information approaches for multi-modal registration [186]. Thirion, et al. [156] formulated
registration as a diffusion process that directly utilizes superimposed intensities to enabled
three-dimensional inter-patient registration of cardiac images.

Segmentation and Tracking: Segmentation algorithms originate in computer vision
and are applied in medical image analysis to isolate structures of interest such as various
organs, vessels, bones or tumors, from the original image. Tightly related, tracking ad-
dresses the extraction of information embedded in temporal sequences of images, especially
necessary in cardiac areas. Together these techniques enable a variety of applications, in-
cluding quantitative and qualitative evaluation of anatomies, lesion monitoring, therapy
planning and preprocessing for registration or shape extraction.

Bottom-up approaches, such as thresholding, region growing or clustering, perform
the separation based on image intensity without assuming knowledge about the object of
interest. Due to the limited image quality and anatomical complexity, higher-level infor-
mation usually leads to better results when applied to the medical field. Early techniques
for cardiac image analysis [44] already incorporate knowledge about the left ventricle wall
to segment it from echocardiography images. Shape priors became popular with the intro-
duction of deformable models, which formulate the problem as the optimal deformation
of elastic objects subject to internal and external forces [104, 81]. Subsequently, Cootes
et al. proposed Active Shape Models (ASM) [36] and Active Appearance Models (AAM)
[35] to effectively constrain the object delineation task by modeling domain specific vari-
ations from training sets of examples. Another model-based paradigm is given by the
level-set formulation in which deformation is represented as a wave propagation subject
to constraints [47].

2.6.3 Machine Learning in Medical Imaging
Machine learning plays an essential role in medical image analysis by successfully sup-
porting numerous applications, including computer-aided diagnosis, case retrieval, organ

29



Background

and lesion segmentation, and image analysis. In typical problems where accurate knowl-
edge is absent and analytical formulation prohibited, algorithms that learn from examples
are essential. Another strong argument for learning-based methods is the availability of
large databases of medical images in the recent years, as a result of the proliferation of
cost-effective non-invasive imaging techniques.

Computer-aided Diagnosis: Computer-aided diagnosis is a classic application, where
rule based expert systems are often limited by the availability of formal knowledge to
generate diagnostic hypothesis from patient data. For that reason, symbolic learning
algorithms are applied to model expert knowledge from clinical cases that act as exam-
ples [22]. Neural networks are widely used to handle incomplete and noisy data and
improve medical decision making [92]. Decision support system can be as well realized
by integrating machine learning algorithms with knowledge provided by ontologies [163].
Furthermore, discriminative learning based distance functions were proposed in [161] for
case retrieval and generation of neighborhood graphs for decision support.

Segmentation and Tracking: Image segmentation and tracking of organs or lesions
involve the extraction of high dimensional parameters subject to substantial variations,
which affects the robustness and efficiency of conventional techniques. Learning algo-
rithms provide an adequate alternative, in which expert knowledge is emulated from sets
of examples. In [57] the left ventricle endocardium is segmented from 2D echocardio-
graphy images by learning a discriminative classifier that separates target objects and
background from expert annotations. The data-based guided paradigm is extended in
[197] to automatically segment the four-chambers of the heart from 3D cardiac CT vol-
umes. The use of probabilistic approaches was also demonstrated for the segmentation
and measurement of follicles from 3D ultrasound data [31]. In order to perform fast and
accurate tracking of the left ventricle from 4D echocardiography data, the algorithm in
[191] learns a cardiac motion model using ISOMAP and K-means clustering. This is ex-
tended in [191] to automatically quantify the 3D myocardial motion from high frame rate
instantaneous ultrasound images using learning-based information fusion.

Analysis and Quantification: Given the large amount of variations in shape and
appearance of anatomical structures caused by diverse pathological conditions, image
analysis is a tedious task mostly performed manually by expert physicians. Recent devel-
opments in machine learning algorithms have the potential to produce a paradigm shift
by replacing user dependent processing with automatic quantification algorithms. An
automatic tracing of Doppler spectra envelopes was proposed in [125]. By learning from
a large database of expert annotated fetal anatomical structures, the algorithm in [28]
demonstrated a comprehensive quantification package, which robustly handles appear-
ance variation, speckle noise and signal drop-out specific to ultrasound imaging. In [187]
automatic measurement of brain structures from 3D MRI data is performed through a
combination of shape detection and shape inference.
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2.7 Conclusions

The field of machine learning for medical image analysis is rapidly expanding with the
abrupt advancement in imaging technology and continuous demand for complex clinical
applications. This work fully exploits the advantages of machine learning techniques to
extract patient-specific valvular models from multi-modal images. Chapter 4 exclusively
addresses this topic, including an overview of discriminative learning algorithms, novel
algorithms and corresponding results.

2.6.4 Computation Modeling and Simulation
There is a growing demand for detailed knowledge of physiological processes, which can
advance medical practice through effective disease prediction and personalized treatment
strategies. A tremendous worldwide scientific effort, including the Physiome Project by
the International Union of Physiological Science (IUPS), the Virtual Physiological Hu-
man (VPH) by the European Commission (EC), and various related initiatives in the
United States, Japan and Korea, is geared towards predictive multi-scale modeling and
simulation, which will promote personalized, preventive and predictive healthcare [69].

In the last decade, computational modeling of the human body, and in particular of
the cardio-vascular system has attracted increasing amounts of interest [11]. The models
developed in [143] integrate anatomical, electrophysiological and biomechanics knowledge
to represent the relation between measured kinematics and muscle contractility. Direct
Numerical Simulation (DNS) is applied to solve the Navier-Stokes equations, modeling
the dynamics of blood flow, in conjunction with deformable solid mechanics equations for
viscoelastic non-isotropic deformable materials [136].

The primary objective in the future is the systematic knowledge integration multi-
scale computational models into a unified and standardized framework. Personalized
computational models, that leverage patient-specific measured data, will eventually enable
comprehensive disease evolution and therapy outcome simulations that have the potential
to revolutionize the current medical practice.

2.7 Conclusions
The heart is a fascinating pump that supplies the entire organism with oxygen and nutri-
tion through rhythmic contractions. Its essential physiological function is facilitated by
four valves located at the center of the cardiac fibrous skeleton. The aortic, mitral, tricus-
pid and pulmonary valve regulate the blood hemodynamics by enforcing unidirectional
flow within the heart and towards the entire cardiovascular system. Valves guard the inlet
and outlet of ventricles, and form a complex anatomical apparatus composed out of two to
three leaflets and a supporting annulus. Their synchronized opening and closing activity
during the cardiac cycle can be affected by two major dysfunctions: stenosis and regur-
gitation. Multiple etiologies can provoke valves to leak or block blood transfer inducing
major physiological consequences and eventually heart failure and sudden death. No med-
ication can cure or prevent the progression of valvular heart disease leaving the invasive
repair or replacement procedures as the only treatment alternative. Despite continuous
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advancements, surgical or interventional valve therapy remains the most expensive and
riskiest among all cardiovascular operations.

To maximize the therapeutical outcome, modern medicine has heavily adopted med-
ical imaging techniques to support the entire clinical management including assessment,
planning and therapy guidance. Today, echocardiography followed by computed tomogra-
phy and magnet resonance imaging are routinely employed to diagnose and evaluate the
severity of valvular heart disease, and fluoroscopy is used to guide emerging percutaneous
procedures. Nevertheless, the extraction of morphological and functional quantities, crit-
ical for clinical decision making, is often based on imperfect data and achieved using
manual and potentially inaccurate methods leading to suboptimal results. The domain
of medical imaging analysis has rapidly expanded over the last decades to provide solu-
tions that effectively process raw medical images into relevant clinical information. The
progressive adoption of pattern recognition and computer vision techniques, including
image registration, segmentation and analysis, facilitates nowadays advanced clinical ap-
plications. Machine learning algorithms proved to be indispensable in dealing with the
inherent complexity and uncertainty which characterizes the clinical environment. In this
context, this thesis offers a novel modeling and analysis paradigm, which can potentially
consolidate medical knowledge about the valvular apparatus and substantially benefit the
entire clinical management of valvular heart disease patients.

The future challenges are focused on developing effective computational models and
systematic integration into comprehensive physiological frameworks that permit preven-
tive, predictive and personalized medicine.
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CHAPTER 3

Physiological Modeling and Parametrization

The term "Physiological Model" is defined by the neuroscience lexicon as "a mathematical
description of the complex physical and temporal dependencies between a set of related
biological entities and their immediate environment". Among the many fundamental
perspectives and scales that characterize physiological systems, this dissertation addresses
the modeling of morphological and functional aspects at the organ level. In particular the
mathematical description of the heart valve geometry and dynamics is presented.

This chapter introduces our novel physiological model of the aortic, mitral, tricus-
pid and pulmonary valves, capturing complex morphological, dynamical and pathological
variations. Following a condensed overview of existent cardiac models in section 3.1, and a
brief overview on the proposed valvular model in section 3.2, we address two essential top-
ics: the physiological modeling of individual valvular systems and the patient-population
models of valvular parameters.

Section 3.3, 3.4, 3.5 and 3.6 present the proposed model and its different abstrac-
tion levels centered on the following objectives: accurate representation of morphology
and dynamics, hierarchical description with incremental complexity, and spatio-temporal
consistency through physiological constraints.

Section 3.7 describes statistical models of patient population with respect to relevant
valvular parameters. Based on expert knowledge, these provide a compact representa-
tion for distributions of individuals to synthesize and explain the plausibility of domain
instances.

3.1 Models of Cardiac Structures
This section presents an overview of existent cardiac models reported in the literature.
Section 3.1.1 focuses on heart chambers models and other related cardiac structures, while
section 3.1.2 reviews models of the heart valves.

33



Physiological Modeling and Parametrization

3.1.1 Chamber and Related Models
Except for the past decade, cardiac modeling was almost exclusively focused on the left
ventricle (LV), initially characterized by simplified ellipsoidal representation used in func-
tional analysis [43]. However, as presented in the comprehensive review by Frangi et al.
[51], the field rapidly developed to include various modeling approaches, which can be
categorized in surface, volumetric and deformation models, parameterized by continuous,
discrete or implicitly defined representations.

Based on the superquadrics representation [63] and subsequent extension to incor-
porate longitudinal and radial contraction, Metaxas and Axel [124] proposed a detailed
model of the LV applied to motion analysis from tagged MRI images. Duncan et al. [149]
introduced a LV model parameterized by sinusoidal basis functions, in which the smooth-
ness of the geometries is controlled by the number of orthogonal harmonics in the Fourier
expansion. Recently, a subject-specific dynamical model based on Multi-linear Principal
Component Analysis (PCA) [201] was proposed, to simultaneously model variations in
left ventricular shape and motion patterns using real-time three-dimensional echocardio-
graphy. Rueckert and Burger [135], achieved a combined model of the two ventricles, LV
and RV, using geometrical deformable templates.

To enable clinical usage beyond the LV, the latest cardiac models evolved to include
all ventricles, atria and elements of the great vessels. The model proposed by Lorenz
and von Berg [99] comprises all four chambers, trunks of the connected vasculature,
coronary arteries and cardiac landmarks. A total number of 20 different surface meshes
are combined to construct the heart model from multi-slice computed tomography data.
Zheng et al. [197] introduced a cardiac representation constructed from multiple model
components, which considers the valve annuli, as well as the four chambers.

In a complementary research direction, geometrical information is enriched through
physical components, including biomechanics, electrophysiology and hemodynamics, to
construct computational cardiac models capable to predict physiological functions. To
study the effect of electrical heterogeneity on myocardial mechanics, Nickerson et al.
[116] used a strongly coupled electromechanical model mapped on a simplified LV ge-
ometry. Using a more realistic geometrical representation, Sermesant et al. [142, 143]
built a volumetric biomechanical model of the two cardiac ventricles, which represents
the myocardial contraction using by an electromechanical coupled constitutive law. The
resulting deformable model is applied to extract functional parameters from SPECT vol-
umetric sequences. The model is further personalized in [144] with measurements from
CMR images and electrical parameters reported in the literature. A hemodynamic model
of the LV applied for surgical ventricular reconstruction is proposed in [40]. The discrete
geometrical and dynamical information of the four chambers, aorta, venae cavae and pul-
monary artery are obtained from CMR acquisitions, and applied as boundary conditions
for estimation of the blood flow dynamics.

Despite continuous progress, none of the previously discussed methods include an
explicit model of the heart valves. If at all addressed, their geometric appearance and
dynamic behavior are approximated through planar structures or other geometrical prim-
itives.
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3.1.2 Valve Models
When compared to the extraction of chambers and vessels from medical images, heart
valve modeling is rather an uncharted territory. The majority of existent models presented
in the literature are generic and rough approximations of the true valvular anatomy. Their
primary application is the analysis of the blood-tissue interaction during the cardiac cycle
as well as mechanical and functional behavior of the valvular apparatus.

The first cardiac model to include the heart valves was proposed by McQueen and
Peskin [129]. Their approach is based on the anatomical and mechanical properties of
heart muscle fibers used to solve the fiber-fluid problem of cardiac dynamics applying the
immersed boundary method. Although geometrically simplified, the simulated blood flow
pattern and myocardial motion correctly demonstrated the opening and closing motion
of the valves.

De Hart et al. [39] introduced a refined computational model of the aortic valve, which
assumes more realistic geometry and material properties based on dimensions reported
in the literature. The fully coupled fluid-structure interaction is solved using Lagrange
multipliers to represent the no-slip condition along the domain interface. Recently, Conti
et al. [34] presented a realistic finite element model of the physiological aortic root from
medical imaging data. The geometrical information of the root is adjusted based on
quantitative observations from CMR images and combined with non-linear and anisotropic
leaflet models. The results show the effect of root sinus dimensions on stress and strain
patterns, which is notably higher in smaller anatomies.

Kunzelman et al. [86] introduced the first three-dimensional finite element model of
the mitral valve, recently extended to include fluid flow. Normal and pathological function
was assessed using the fluid-structure interaction model, with computed stress and strain
properties in agreement with reported in vivo and in vitro measurements. Votta et al.
[182] presented an extended mitral valve model based on in vivo data. The structural
representation includes the major valvular components and real geometrical and dynamic
information for the annuli and papillary muscles, reconstructed from four-dimensional
ultrasound data. Experiments yield qualitatively correct mitral closure and measurements
of annulus dynamics.

Black et al. [15] constructed a three-dimensional finite element model of a bicuspid
bioprosthetic heart valve in order to study stress patterns of the leaflets. The geometry
of the model is based on measurements from a real valve, which helped to conclude
that the bending stress in the leaflets makes a significant contribution to their functional
deformation. Motivated by the disappointing long-term performance of bioprosthetic
valves, Kruncinski et al. [85] investigate design alternatives in order to reduce the risk of
leaflets tearing at the points of their attachment. A finite element model demonstrated the
effect of the aortic root expansion on the leaflet stress, during systole. A reduction of 40%
in commissural stress was measured in bio-prosthetic valves mounted on expansible stents
with respect to rigid stents. Following the same direction, Cacciola et al. [25] studied the
leaflet stress for stentless prostheses with flexible leaflet attachment and aortic base. The
geometry of their finite element model is based on a three-leaflet prototype. The leaflets
have a uniform thickness of 0.2mm and show a cylindrical shape with a diameter of 22mm
in the open position. The diameter of the basal ring and the sinutubular junction are
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assumed to be equal to 24mm, while the distance between them is set to 16mm. The
finite element analysis of the stress distribution shows a 75% reduction for the stentless
models with respect to stented valves with the same type of reinforcement.

Watanabe et al. [184] introduced a geometrical model of the mitral valve, obtained
from real-time three-dimensional TTE, to quantify mitral valve tenting in ischemic pa-
tients. By manually delineating the mitral annulus and leaflets in 18 radial planes from
the mid-systole, they could demonstrate the deformity of the valve in ischemic regurgita-
tion with the maximum tenting located in the anterior leaflet. The study by Veronesi and
colleagues [173] also considers the aortic valve to investigate the functional dependency
between the two left-side valves. A model of the aortic and mitral valve annuli is detected
and tracked from TEE images to allow automated measurements of changes in aortic and
mitral valve morphology. In conclusion, reciprocal changes in shape and position were
observed, which underline the importance of joint evaluation and clinical management.
Based on CMR data, Schievano et al. [140] proposed an analysis protocol of the pul-
monary trunk based on rapid prototyping systems. The geometrical model is manually
constructed and subsequently applied for qualitative patient selection for percutaneous
pulmonary valve implantation.

The central conclusion drawn from the above presented literature review is that the
majority of existing approaches focus on the construction of generic valve models, with
high vertical complexity, primarily designed to reproduce and explain various physiological
processes. To accommodate physical complexity, these models compromise on accurate
anatomical information, are not patient-specific, and therefore of limited importance for
the clinical practice.

Recent advances in medical equipment stimulated a new research direction that aims to
extract precise patient-specific information from cardiac images. Despite the high clinical
relevance, current methods are restricted to simplified representations of the aortic-mitral
annuli and manual delineation of static mitral anatomies. In the remainder of this chapter
we present our novel comprehensive model of the entire valvular apparatus, designed to
accurately represent complex morphological, dynamical and pathological variations from
non-invasive four-dimensional data.

3.2 Hierarchical Valvular Model
Technological innovations in cardiac imaging techniques have enabled acquisitions of 4D
physiological data with continuously increasing spatial and temporal resolutions. Con-
sequently, there has been a proportionally increasing demand for effective methods to
process the large amount of data into clinically relevant information. The extraction of
anatomical and functional parameters in the form of spatio-temporal geometrical models
is invaluable for quantitative and qualitative cardiac analysis, and has generated signifi-
cant scientific interest over the past four decades.

As far as the heart valves are concerned, there is still no consensus in the medical and
clinical field on the best way to describe their anatomy. Valvular structures are complex
and vary significantly in appearance across individuals and pathological conditions. Until
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(a) (b) (c)

Figure 3.1: The proposed valvular model (including the ventricles from [197]) in systole
(a) and diastole (c). (b) Explanted specimen of the heart valves - Reproduced with
permission of the author and the European Association for Cardio-Thoracic Surgery from:
Anderson RH. The surgical anatomy of the aortic root. Multimedia Man Cardiothorac
Surg doi:10.1510/mmcts.2006.002527.

recently, non-invasive imaging of the heart valves was not practicable, and most data
was obtained from animal studies or explanted specimens. Thus, none of the cardiac
models described in the literature offers a comprehensive and physiologically accurate
characterization of the valvular apparatus.

The scope of this chapter is to provide an explicit mathematical representation of the
cardiac valves that parameterizes relevant clinical aspects observable through non-invasive
imaging modalities. We proposed a novel physiological model of the aortic, mitral, tricus-
pid and pulmonary valve to precisely capture morphological, dynamical and pathological
variations (see figure 3.1). To handle the inherent complexity, the representation is struc-
tured on three abstraction layers: global location and rigid motion, non-rigid landmark
motion model, and comprehensive valvular model. Each model abstraction naturally links
to anatomical and dynamical aspects at a specific level of detail, while the hierarchical
interconnection of the individual parameterizations is driven by the physiology of the
valves.

At first in section 3.3 we introduce a parameterization of the global location and rigid
motion of individual valves. This explains the translation, rotation and scale of a specific
valve as well as its temporal variation throughout the cardiac cycle with respect to a given
cardiac image sequence. Section 3.4 extends the model through a parameterization of
anatomical landmarks, which describe the rough valvular structure and motion. Besides
the well-defined anatomical meaning, the chosen landmarks serve as anchor points for
qualitative and quantitative clinical assessment, are robustly identifiable by doctors, and
possess a particular visual pattern. The proposed model is concluded in section 3.5 with
the complete four-dimensional representation of the valvular geometries and deformations.
In the following we summarize the advantages of our method:
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• Hierarchical - to handle the geometrical and dynamical complexity, the parame-
terization is defined hierarchically based on the natural level of detail of the under-
lining anatomies.

• Complete - the novel model includes all four cardiac valves and the associated
comprehensive representations of their geometrical and dynamical variation.

• Consistent - anatomically-driven constraints and point-correspondence across time
and individuals ensure a physiologically compliant and consistent parameterization.

• Modular - anatomical entities are loosely coupled to facilitate model extensions
and individual integration of observations from various image modalities

Sections 3.2.1, 3.2.2, 3.2.3, and 3.2.4 briefly introduce the proposed model for the
individual valves, while detailed description on parameterization and anatomical definition
of each abstraction level is provided later in this chapter.

3.2.1 Aortic Valve

The aortic valve model consists of the aortic root and the
attached L-Leaflet, R-Leaflet, and N-Leaflet, illustrated as
the blue and green surfaces, respectively. The model also in-
cludes 11 landmarks, which denote key anatomical locations:
3 commissures - LR-Comm, NL-Comm, and RN-Comm, 3
hinges - L-Hinge, R-Hinge, and N-Hinge, 3 leaflet tips -
L-Tip, R-Tip, and N-Tip, and 2 ostia - L-Ostium and R-
Ostrium.

3.2.2 Mitral Valve

The mitral valve includes two leaflets attached to the mitral
annulus: the posterior leaflet depicted in green and the an-
terior leaflet in blue. The considered anatomical landmarks
are: 2 trigones - L-Trigone and R-Trigone, the posteroannu-
lar midpoint, 2 commissures - Post-Comm and Ant-Comm,
and 2 leaflet tips - P-Tip and A-Tip.
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3.2.3 Tricuspid Valve

The tricuspid valve comprises of three leaflets attached to
the tricuspid annulus: A - anterior leaflet, P - posterior
leaflet, and S - septal leaflet. Additionally, there are 6 tri-
cuspid anatomical landmarks: 3 commissures - PA-Comm,
SP-Comm, and AS-Comm, and 3 leaflet tips - S-Tip, P-Tip,
and A-Tip.

3.2.4 Pulmonary Valve

The pulmonary valve is identically configured as the aor-
tic valve and consists of the pulmonary trunk illustrated in
blue, and the three leaflets in green. The model includes
12 landmarks: 3 commissures - LR-Comm, NL-Comm, and
RN-Comm, 3 hinges - L-Hinge, R-Hinge, and N-Hinge, 3
leaflet tips - L-Tip, R-Tip, and N-Tip, the trigone, the bi-
furcation, and the RVOT landmark.

3.3 Global Location and Rigid Motion
In section 3.3.1 we present a parameterization of the global location and rigid motion
of each valve. These explains the translation, rotation and scale along with temporal
variation throughout the cardiac cycle. Section 3.3.2 presents the anatomical definition
of the parameters for each individual valve.

3.3.1 Parameterization

The global location of the valves is parameterized through a similarity transformation in
the Euclidean three-dimensional space, which includes nine parameters. A time variable
t is augmenting the representation to capture the temporal variation during the cardiac
cycle and model the rigid valve motion:

θ(t)i = {(cx, cy, cz)i, (�αx, �αy, �αz)i, (sx, sy, sz)i, t} , i ∈ {aortic, mitral, tricuspid, pulmonary}
(3.1)

where (cx, cy, cz), (�αx, �αy, �αz), (sx, sy, sz) are the position, orientation and scale pa-
rameters. These define a bounding box around the corresponding anatomy as illustrated
in figure 3.2, 3.3, 3.4 and 3.5. The location and rigid motion of each valve is modeled
independently through its individual set of parameters θ(t), which results into a total of
36 × T parameters for a given volume sequence I(t) of length T .
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3.3.2 Anatomical Definition
This section describes the anatomically-driven definition of the similarity parametes θ for
all four valves. For a comprehensive anatomical description of the valvular apparatus the
reader is referred to section 2.2.

(a) (b) (c)

Figure 3.2: Similarity transform represented as a bounding box around the aortic valve
from cardiac CT. (a) Perspective view; (b) Long Axis; (c) Short Axis.

Aortic Valve: The aortic valve AV connects the left ventricular outflow tract to the as-
cending aorta and includes the aortic root and three leaflets/cusps (left (L) aortic leaflet,
right (R) aortic leaflet and none (N) aortic leaflet). The root extends from the basal ring
to the sinotubular junction and builds the supporting structure for the leaflets. These are
fixed to the root on a crown-like attachment and can be thought of as semi-lunar pock-
ets. The position parameter (cx, cy, cz)aortic is given by the valve’s barycenter, while the
corresponding scale (sx, sy, sz)aortic is chosen to comprise the entire underlying anatomy
(see figure 3.2(a)). The long axis �αz is defined by the normal vectors to the aortic com-
missural plane, which is the main axis of the aortic root (see figure 3.2(b)). The short
axis �αx is given by the normalized vector pointing from the barycenter (cx, cy, cz)aortic to
the interconnection point of the left and right leaflets, the none/right-commissure point
(see figure 3.2(c)). The �αy direction is constructed from the cross-product of �αx and �αz.

Mitral Valve: Located in between the LA and the LV, the mitral valve MV includes
the posterior leaflet, anterior leaflet, annulus and the subvalvular apparatus. The latter
consists of the chordae tendiane and papillary muscles, which are not explicitly treated
in this work. Hence, we compute the barycentric position (cx, cy, cz)mitral and scale pa-
rameters (sx, sy, sz)mitral from the mitral leaflets (see figure 3.3(a)). �αz is described by
the normal vector to the mitral annulus (see figure 3.3(b)), while �αx points from the
barycenter (cx, cy, cz)mitral toward the postero-annular midpoint (see figure 3.3(c)).
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(a) (b) (c)

Figure 3.3: Similarity transform represented as a bounding box around the mitral valve
from cardiac CT. (a) Perspective view; (b) Long Axis; (c) Short Axis.

(a) (b) (c)

Figure 3.4: Similarity transform represented as a bounding box around the tricuspid valve
from cardiac CT. (a) Perspective view; (b) Long Axis; (c) Short Axis.

Tricuspid Valve: The tricuspid valve TV, also called the right atrioventricular valve,
separates the RA from the RV. It mainly consists of the annulus and subvalvular apparatus
as well as three leaflets: septal, inferior and anterosuperior leaflet. As for the mitral, the
position (cx, cy, cz)tricuspid and scale (sx, sy, sz)tricuspid parameters are defined from the
three leaflets (see figure 3.4(a)). �αz is perpendicular to the annular plane (see figure
3.4(b)), while �αx points towards the interconnection of the septal-anterosuperior leaflets
(see figure 3.4(c)).
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(a) (b) (c)

Figure 3.5: Similarity transform represented as a bounding box around the pulmonary
valve from cardiac CT. (a) Perspective view; (b) Long Axis; (c) Short Axis.

Pulmonary Valve: The pulmonary trunk emerges out of the RV and branches into
the left and right pulmonary arteries, which connect to the corresponding lung. It sup-
ports a semilunar valve, geometrically and topologically similar to the aortic valve. The
three leaflets of the pulmonary valve PV are named according to their relationship with
respect to the AV as left and right facing leaflet, and none facing leaflet. The position
parameter (cx, cy, cz)pulmonary is given by the valve’s barycenter, while the corresponding
scale (sx, sy, sz)pulmonary comprises the pulmonary valve anatomy (see figure 3.5(a)). The
long axis �αz is perpendicular to the commissural plane, while the short axis �αx points
towards the interconnection of the left and right leaflets, the left/right-commissure point
(see figure 3.5(b)). The �αy direction is constructed from the cross-product of �αx and �αz

(see figure 3.5(c)).

3.4 Non-Rigid Landmark Motion Model
The definition of the valvular global position and motion from given images was introduced
in the previous section 3.3. This section extends the model by a parameterization of the
complex and synchronized opening-closing movements of the valves through an anatomical
landmark representation.

3.4.1 Parameterization
In this section, a model consisting of anatomically-defined landmarks, normalized by the
time-dependent similarity transformation, is introduced. The chosen landmarks serve as
anchor points for qualitative and quantitative clinical assessment, are robustly identifiable
by doctors, and possess a particular visual pattern. The motion of each anatomical land-
mark j can be parameterized by its corresponding trajectory �Lj over a full cardiac cycle.
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For a given volume sequence I(t), one trajectory �Lj is composed by the concatenation of
the spatial coordinates:

�Lj(θi) = [ �Lj(0), �Lj(1), · · · , �Lj(t), · · · , �Lj(T − 1)], j = 0, · · · , 35 (3.2)

where �Lj are spatial coordinates with �Lj(t) ∈ R
3 and t an equidistant discrete time

variable t = 0, · · · , T − 1. The total number of 36 landmarks includes 11 aortic, 7 mitral,
6 tricuspid and 12 pulmonary landmarks.

3.4.2 Anatomical Definition

(a) (b)

Figure 3.6: Anatomical landmark model of the aortic valve. (a) Landmarks relative to
the anatomical location illustrated in long and short axis from an example CT study. (b)
Perspective view including the bounding box.

Aortic Valve: Three aortic commissure points, LR-Comm, NL-Comm and RN-Comm,
describe the interconnection locations of the aortic leaflets, while three hinges, L-Hinge,
R-Hinge, and N-Hinge, are their lowest attachment points to the root. For each leaflet
of the valve, the center of the corresponding free-edge is marked by the leaflet tip point:
L/R/N-Tip. Finally, the interface between the aorta and coronary arteries is symbolized
using the L/R-Ostium, the two coronary ostia (see figure 3.6(a)).

The anatomical landmarks are also used to describe the global location and rigid
motion, defined in section 3.3, as follows (see figure 3.6(b)): (cx, cy, cz)aortic equals to the
gravity center of the aortic landmarks, except aortic leaflet tips. �αz is the normal vector
to the LR-Comm, NL-Comm, RN-Comm plane, �αx is the unit vector orthogonal to �αz

which points from (cx, cy, cz)aortic to LR-Comm, �αy is the cross-product of �αx and �αz.
(sx, sy, sz)aortic is given by the maximal distance between the center (cx, cy, cz)aortic and
the aortic landmarks, along each of the axes (�αx, �αy, �αz).
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(a) (b)

Figure 3.7: Anatomical landmark model of the mitral valve. (a) Landmarks relative to
the anatomical location illustrated in long and short axis from an example CT study. (b)
Perspective view including the bounding box.

Mitral Valve: The two interconnection points of the mitral leaflets at their free edges
are defined by the mitral Ant/Post-Comm, while the mitral annulus is fixed by the L/R-
Trigone and posteroannular midpoint (PostAnn MidPoint). The center of the two mitral
leaflets’ free-edge is marked by the leaflet point, the Ant and Post-Tip (anterior/posterior)
leaflet tips (see figure 3.7(a))

The barycentric position (cx, cy, cz)mitral is computed from the mitral landmarks, ex-
cept mitral leaflet tips (see figure 3.7(b)). �αz is the normal vector to the L/R-Trigone,
PostAnn MidPoint plane, �αx is orthogonal to �αz and points from (cx, cy, cz)mitral towards
the PostAnn MidPoint. The scale parameters (sx, sy, sz)mitral are defined as for the aortic
valve, to comprise the entire mitral anatomy.

Tricuspid Valve: The three leaflets of the tricuspid valve, septal-, anterior- and pos-
terior leaflet interconnect in three points marked by the AS Comm, PA Comm and SP
Comm landmarks. The tricuspid landmark model is completed by the Sept Tip, Ant
Tip and Post Tip landmarks, which mark the center of the leaflets’ free edge (see figure
3.8(a)).

The barycentric position (cx, cy, cz)tricuspid is computed from the tricuspid commissures,
AS Comm, PA Comm and SP Comm (see figure 3.8(b)). �αz is the normal vector to the
commissural plane, �αx is orthogonal to �αz and points towards the AS Comm. The scale
parameters (sx, sy, sz)tricuspid are defined to comprise the entire tricuspid valve anatomy.

Pulmonary Valve: Identical as for the aortic valve, three commissure points, LR-
Comm, NL-Comm and RN-Comm, describe the interconnection locations of the pul-
monary leaflets, while three hinges, L-Hinge, R-Hinge, and N-Hinge, are their lowest
attachment points to the pulmonary trunk. For each leaflet of the valve, the center of the
corresponding free-edge is marked by the leaflet tip point: L/R/N-Tip. The pulmonary
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(a) (b)

Figure 3.8: Anatomical landmark model of the tricuspid valve. (a) Landmarks relative
to the anatomical location illustrated in long and short axis from an example CT study.
(b) Perspective view including the bounding box.

(a) (b)

Figure 3.9: Anatomical landmark model of the pulmonary valve. (a) Landmarks relative
to the anatomical location illustrated in long and short axis from an example CT study.
(b) Perspective view including the bounding box.

trunk is bounded by two landmarks, the RVOT on the right ventricle sides and Bifur-
cation distal to the valve location. The model is completed by right ventricle Trigone
landmark (see figure 3.9(a)).

The location (cx, cy, cz)pulmonary equals to the gravity center of the commissures and
hinges landmarks (see figure 3.9(b)). �αz is the normal vector to the LR-Comm, NL-Comm,
RN-Comm plane, �αx is the unit vector orthogonal to �αz which points from (cx, cy, cz)aortic

to LR-Comm, �αy is the cross-product of �αx and �αz. (sx, sy, sz)aortic is given by the maximal
distance between the center (cx, cy, cz)aortic and the aortic landmarks, along each of the
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axes (�αx, �αy, �αz).

3.5 Comprehensive Valvular Model
The most complex abstraction level presented in the following section completes the mod-
els in section 3.3 and section 3.4 with the parameterization of valve surfaces and their
temporal variation.

3.5.1 Parameterization
The full geometry of the valves is modeled using surface meshes constructed along
rectangular grids of vertices. For each anatomic structure Ak, the underlying grid is
spanned along two physiologically aligned parametric directions, �u and �v. Each vertex
�pAk ∈ R

3 has four neighbors, except the edge and corner points with three and two neigh-
bors, respectively. Therefore, a rectangular grid with n × m vertices is represented by
(n − 1) × (m − 1) × 2 triangular faces. The model Mi of a certain valve i at a particular
time step t is uniquely defined by vertex collections of the anatomic structures Ak. The
time parameter t extends the representation to capture valve dynamics:

Mi( �Lj, θi) = [

first anatomy︷ ︸︸ ︷{
�pA1

0 , · · · , �pA1
N1

}
i
, · · · ,

n-th anatomy︷ ︸︸ ︷{
�pAn

0 , · · · , �pAn
Nn

}
i
, t], i ∈ {aortic, mitral, tricuspid, pulmonary}

(3.3)
where n is the number of represented anatomies equal to 4, 2, 3 and 4 for the aortic,

mitral, tricuspid and pulmonary valve, respectively. N1 . . . Nn are the numbers of vertices
for a particular anatomy given in the following section.

3.5.2 Anatomical Definition
Aortic Valve: Four surface structures represent the aortic valve: aortic root, left coro-
nary leaflet, right coronary leaflet and non coronary leaflet. The aortic root connects the
ascending aorta to the left ventricle outflow tract and is represented through a tubular
grid (see figure 3.10(a)). This is aligned with the aortic circumferential u and ascending
directions v and includes 36 × 20 vertices and 1368 faces. The root is constrained by
six anatomical landmarks, i.e. three commissures and three hinges, with a fixed corre-
spondence on the grid. The three aortic leaflets, the L-, R- and N-leaflet, are modeled
as paraboloids on a grid of 11 × 7 vertices and 120 faces (see figure 3.10(b)). They are
stitched to the root on a crown like attachment ring, which defines the parametric u di-
rection at the borders. The vertex correspondence between the root and leaflets along
the merging curve is symmetric and kept fixed. The leaflets are constrained by the corre-
sponding hinges, commissures and tip landmarks, where the v direction is the ascending
vector from the hinge to the tip (see figure 3.10(c)).
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(a) (b) (c)

(d) (e) (f)

Figure 3.10: Isolated surface components of the aortic and mitral models with paramet-
ric directions and spatial relations to anatomical landmarks: (a) aortic root, (b) aortic
leaflets, (c) aortic-mitral in end-systole, (d) anterior mitral leaflet, (e) posterior mitral
leaflet and (f) aortic-mitral in end-diastole.

Mitral Valve: The mitral leaflets separate the LA and LV hemodynamically and are
connected to the endocardial wall by the saddle shaped mitral annulus. Both are mod-
eled as paraboloids and their upper margins implicitly define the annulus. Their grids
are aligned with the circumferential annulus direction u and the orthogonal direction v
pointing from the annulus towards leaflet tips and commissures (see figures 3.10(d) and
3.10(e)). The anterior leaflet is constructed from 18 × 9 vertices and 272 faces while the
posterior leaflet is represented with 24 × 9 vertices and 368 faces. Both leaflets are fixed
by the mitral commissures and their corresponding leaflet tips. The left / right trigones
and the postero-annular midpoint further confine the anterior and posterior leaflets, re-
spectively (see figure 3.10(f)).

Tricuspid Valve: The function of the tricuspid valve is to regulate the blood flow from
the RA to the RV, staying closed during systole and open during diastole. The model is
constrained by three surfaces: septal-, anterior- and posterior leaflet (see figure 3.11(a)).
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(a) (b) (c)

(d) (e) (f)

Figure 3.11: Isolated surface components of the tricuspid and pulmonary models with
parametric directions and spatial relations to anatomical landmarks: (a) tricuspid leaflet,
(b) tricuspid annulus and leaflets, (c) tricuspid-pulmonary in end-diastole, (d) pulmonary
trunk, (e) pulmonary leaflets and (f) tricuspid-pulmonary in end-systole.

The tricuspid leaflets are modeled as hyperbolic paraboloids and implicitly describe the
tricuspid annulus. Their grids are spanning along the annulus circumferential direction u
and the perpendicular vector v pointing for the annulus towards the corresponding leaflet
tip, and consist out of 22 × 14 vertices and 546 faces (see figure 3.11(b)). Each leaflet is
constrained by the corresponding two commissures and one leaflet tip (see figure 3.11(c)).

Pulmonary Valve: The representation of the pulmonary valve is compounded out of
four structures: pulmonary trunk, left facing leaflet, none facing leaflet and right facing
leaflet. The pulmonary trunk emerges out of the right ventricular outflow tract, supports
the pulmonary valves and its three leaflets, and ends at the level of the pulmonary artery
bifurcation. The grid, which spans the pulmonary trunk surface, is aligned with the
circumferential u and longitudinal direction v of the valve (see figure 3.11(d)). It includes
50 × 40 vertices and 3822 faces confined through the pulmonary commissures, hinges
and the RV trigone. Additionally, the RVOT and Bifurcation landmarks determine its
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longitudinal span. The attached L-, R- and N- leaflets, are modeled as paraboloids along
the annulus circumferential direction u and vector v pointing from the corresponding
hinge to the leaflet tip (see figure 3.11(e)). Each includes 11 × 7 vertices and 120 faces
bounded by the associated two commissures, hinge and tip (see figure 3.11(f)).

3.6 Spatio-Temporal Consistency

(a) (b)

Figure 3.12: Complete heart valve model consisting of aortic valve (AV), mitral valve
(MV), pulmonary valve (PV) and tricuspid valve (TV). (a) Similarity transform illustrated
as a bounding box and anatomical landmarks. (b) Complete mesh surface model.

The complete model of the valvular system is shown in figure 3.12. An essential aspect
addressed in this section is the point correspondence between models from different cardiac
phases and across patients, which is required for building statistical shape models and, in
general, for any kind of statistical processing over a population of individuals.

Few methods build a statistical shape model automatically using pair-wise or group-
wise registration based approaches [52, 98], but these are complicated and time con-
suming. It is difficult to obtain and maintain a consistent parameterization for complex
three-dimensional shapes. However, cutting planes can be applied to intersect surfaces
and generate two-dimensional contours, which can be uniformly resampled using simple
methods. Hence, by defining a set of physiological-based cutting planes for each model
component, surfaces are consistently resampled to establish the desired point correspon-
dence. We develop two resampling schemes, a pseudo parallel slicing for tubular structures
and rotational slicing for parabola-like shapes.

For the aortic root and pulmonary trunk, a pseudo parallel slice-based method is
used. Cutting planes are equidistantly distributed along the centerline following the v
direction. To account for the bending of the arteries, at each location the plane normal is
aligned with the centerline’s tangent (see figure 3.13(b)). The two-dimensional contours,
which result from the shape intersection with the described planes (see figure 3.13(a)),
are independently and uniformly resampled to achieve point correspondence.
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The rotational slicing method, applied for all the valve leaflets, is illustrated for the
mitral valve. As mentioned, the mitral annulus is a saddle shaped curve and likewise the
free edges are non-planar too. Thus a rotation axis based resampling method is applied for
both mitral leaflets (see figure 3.13(c) and 3.13(d)). The intersection planes pass through
the annular midpoints of the opposite leaflet. They are rotated around the normal of the
plane spanned by the commissures and the respectively used annular midpoint.

(a) (b) (c) (d)

Figure 3.13: (a) Example of a two-dimensional contour and corresponding uniform sam-
ples, obtained from the intersection of a plane with the three-dimensional aortic root.
Resampling planes for the mitral leaflets (b,c) and aortic root (d). The planes at the
hinge and commissure levels of the aortic root in (d) are depicted in red and green respec-
tively. Note that for the purpose of clarity only a subset of resampling planes is visualized
in figs (b),(c) and (d).

The proposed method processes each shape independently and offers a fast and
anatomical-oriented solution to establish point correspondence.

3.7 Patient-Population Models
The first part of this chapter presented a novel physiologically-driven and hierarchical pa-
rameterization of the heart valves, which specifies the exact mathematical representation
and topological relations for a specific model instance. However, the shape of the valves
changes considerably through time, among particular patients and pathologies.

In accordance with the model-based paradigm, it is prerequisite for the extraction
of patient-specific model parameter from cardiac images, to confine the problem by in-
corporating prior knowledge. The following sections 3.7.1, 3.7.2, and 3.7.3 introduce
methodologies to construct statistical shape models, which reduce the number of model
parameters and constrain the variation to the specific domain.

3.7.1 Trajectory Models
A novel representation of landmark trajectory population is presented in this section. The
temporal variation of each anatomical landmark described in section 3.4 is modeled using
a clustering-based approach to satisfy the following properties:
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• exploit statistics from a representative set of examples

• orthogonal parameterization of the spatio-temporal variation

• compact and clustered representation of periodic motion

Representation of Landmark Trajectories: Considering the parameterization in
section 3.4, each anatomical landmark �Lj can be represented by the concatenation of its
spatial coordinates [ �Lj(0), �Lj(1), · · · , �Lj(t), · · · , �Lj(T − 1)], given a volume sequence I(t)
of length T . In the context of patient-specific estimation, the objective is to find the
trajectory �Lj, with the maximum posterior probability given a sequence I:

argmax �Lj p( �Lj|I) = argmax �Lj

p( �Lj(0), · · · , �Lj(T − 1)|I(0), · · · , I(T − 1))
(3.4)

Since it is difficult to solve Eq. 3.4 directly, various assumptions, such as the Markovian
property of the motion [120, 191], have been introduced to model the distribution over
�Lj. However, results are often not guaranteed to be smooth and may diverge over time,
due to error accumulation. These fundamental issues can be addressed effectively if both,
temporal and spatial appearance information is modeled over the whole sequence at once.

The original trajectory �Lj can be uniquely represented by the concatenation of its
Discrete Fourier Transform (DFT) coefficients:

�sj = [�sj(0), �sj(1), · · · , �sj(T − 1)] (3.5)
obtained from the DFT equation [106]:

�sj(f) =
T −1∑
t=0

�Lj(t)e
−j2πtf

T (3.6)

where �sj(f) ∈ C
3 is the frequency spectrum of the x, y, and z components of the

trajectory �Lj(t), and f = 0, 1, · · · , T − 1 (see figure 3.14). A trajectory �Lj can be recon-
structed from the spectral coefficients �sj applying the Inverse Discrete Fourier Transform
(IDFT):

�Lj(t) =
T −1∑
f=0

�sj(f)e
j2πtf

T (3.7)

The estimated trajectory is obtained using the magnitude of the IDFT. From the DFT
parameterization, the Eq.3.4 can be reformulated as finding the DFT spectrum �sj, with
maximal posterior probability:

argmax �sj p(�sj|I, θ) = argmax �sj p(�sj(0), · · · , �sj(T − 1)|
I(0), · · · , I(n − 1), θ(0), · · · , θ(T − 1)) (3.8)

Hence, a trajectory instance S of an anatomical landmark �Lj is represented by the
concatenation of its DFT components:
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Figure 3.14: Example trajectories of aortic leaflet tips. (a) The aligned trajectories in the
Cartesian space by removing the global similarity transformations. (b) Corresponding 3
trajectories highlighted in red, magenta and green, which demonstrates the compact spec-
trum representation. (c) Reconstructed trajectories of using 64, 10, and 3 components,
respectively, showing that a small number of components can be used to reconstruct
faithful motion trajectories.

S = [�sj(0), �sj(1), · · · , �sj(N − 1)] (3.9)
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where the fixed normalized length N of the orthogonal space is described in the fol-
lowing paragraph.

Temporal Alignment: To facilitate the frequency domain analysis, trajectories are
normalized to a constant length. In our implementation, the Fast Fourier Transform
(FFT) is used to achieve the speed performance, which requires the signal length to be
a power of two. In order to faithfully reconstruct the training sequence, the number
of discrete time instances in the normalized trajectory is chosen to satisfy the Nyquist
theorem. Thus, each trajectory spectrum in the training set S1, · · · , Sq is normalized in
the Euclidean space to a fixed length N = 64.

Another important pre-processing step is the temporal alignment, which establishes
temporal correspondences between different motion sequences. For the cardiac images
used in our experiments, the alignment is typically based on the cardiac phase obtained
from the ECG signal. In particular, the end-diastole and end-systole time instances are
used as the anchor points for the piecewise linear interpolation of the time-series.

Trajectory Shape Space: As clearly illustrated in figure 3.14, the variation of
the spectrum components decreases substantially as the frequency increases. Conse-
quently, trajectories can be adequately approximated by a few dominant components
ζ ⊆ {0, . . . , N − 1}, |ζ| << N , identified during training.

The obtained compact trajectory space can be divided in a set of subspaces. We
differentiate between two types of subspaces, individual component subspaces Σ(k) and
marginalized subspaces Σk defined as:

Σ(k) = {S(k)} (3.10)
Σk = Σk−1 × Σ(k) (3.11)
Σ0 ⊂ Σ1 ⊂ . . . ⊂ Σr−1, r = |ζ| (3.12)

The subspaces Σ(k) are efficiently represented by a set of corresponding hypotheses
H(k) learned from the training set. For each component k, the subspace Σ(k) is divided
uniformly into a set of bins with a certain resolution. We iteratively increase the resolution
until any two trajectories from the training set, Sa and Sb, fallen into the same bin satisfy:
d(IDFT (Sa), IDFT (Sb)) < dres, where

d(IDFT (Sa), IDFT (Sb)) = max d(IDFT (Sa), IDFT (Sb), t) (3.13)
d(IDFT (Sa), IDFT (Sb), t) = ‖IDFT (Sa(t)) − IDFT (Sb(t))‖ (3.14)

We typically use dres = 0.5mm, which reflects the image resolution. For each component
k, the populated bins form the corresponding hypothesis set H(k), which is at least one
magnitude less than the original discretized search space. The pruned trajectory space is
defined as:

Σr−1 = H(0) × H(1) × . . . × H(r−1), r = |ζ| (3.15)
The obtained representation is used to marginalize the parameter space for the tra-

jectory spectrum learning introduced in section 4.4.
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3.7.2 Active Shape Models
In this section we construct a statistical shape model of the comprehensive valve model
described in section 3.5, which models the variation of plausible instances from a training
population. Although a substantial number of approaches have been proposed in the
literature [148, 81, 104], the Active Shape Models ASM method by Cootes [36] is widely
used in similar problems and is particularly suitable in our context for several reasons:

• captures knowledge from already available expert annotated examples

• provides a general formulation applicable for all valvular structures

• captures variation using a compact parameterization

• limits the model to shapes similar to the training set

Representation of Valve Population: The population of shapes used to learn the
model consists of individual instance represented by a fixed number of points in an ar-
bitrary dimension. It is also mandatory that the points are corresponding across the
given population. The proposed comprehensive valve model fulfils both conditions, as
each anatomy is represented by a fixed number of vertices (see section 3.5) and corre-
spondence between vertices in maintained in time and between individual patients (see
section 3.6). Additionally, a large training set, which covers a representative spectrum
of normal and characteristic pathologies, is available as required for the discriminative
learning framework introduced in the next chapter 4.

Due to the large changes introduced by cardiac and valvular motion, each anatomical
structure Ak is processed separately since it incorporates less variation than the integrated
model. This also facilitates the Gaussian assumption characteristic for the employed
method. Hence, an instance of Ak, with Nk vertices �pAk ∈ R

3 is represented as 3 × Nk

element vector X:

X = (p1
x, . . . , pNk

x , p1
y, . . . , pNk

y , p1
z, . . . , pNk

z )T (3.16)

Alignment of Valve Population: According to Kendall [83], shapes are defined as:
"all the geometrical information that remains when location, scale and rotational effects
are filtered out from the object". Thus, geometries need to be considered invariant to
Euclidean similarity transformations within a reference coordinate system to which all
shapes are aligned. Although analytical solutions exists [68], the most popular approach
to shape alignment, also applied in our method, is the Generalized Procrustes Analysis
(GPA) [60]. The task is defined as optimization problem of each shape, relative to the
mean:

D =
∑ ∣∣∣Xi − X

∣∣∣2 (3.17)

where, Xi is a shape vector from a training set of S samples and X the mean shape
of this training set defined as:
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X = 1
S

S∑
i=1

Xi (3.18)

Two arbitrary shapes X1 and X2, with their center of gravity at the origin, are aligned
with respect to the scale s and rotation R parameters by minimizing the following equa-
tion:

argmins,RD(s, R) = |Ts,R(X1) − X2|2 (3.19)

where the optimal solution is provided by the sum of squared differences between the
points of X2 and transformed points of X1. The iterative solution to the GPA includes
four steps:

1. Choose an initial estimation of the mean shape, e.g. X1

2. Align all shapes X1, . . . , XS with the current mean shape using Eq. 3.19

3. Re-estimate mean from aligned shapes with Eq. 3.18

4. If estimated mean has changed re-iterate from step 2.

Convergence is assumed if the current mean does not change significantly with respect
to the previous estimation. Initially, all shapes X1, . . . , XS are translated into the origin
and scaled such that |X| = 1, which will cause their alignment on a hypersphere after scale
and rotation minimization. To avoid nonlinearities and simplify the shape distribution
description, the minimization is performed on the tangent space to the mean. A simple
approach to achieve this is to scale each shape with 1

Xi·X after step 2.
The initial shape space, which is the set of all shapes X1, . . . , XS, spans a space of

dimensionality k × n = 3× Nk. After adjusting for translation, scale and rotation, which
removes k, 1 and 1/2k(k − 1) dimensions respectively, the dimensionality of the aligned
subspace is equal to kn − k − 1 − k(k−1)

2 .

Shape Variation Model: Using the aligned training set of shapes X1, . . . , XS, a model
of their distribution enables generation of new plausible shapes and, vice-versa, exami-
nation of new shapes for plausibility. The goal is to model p(X) using a linear model
X = M(y), where the parameter vector y lies in a lower dimensional space. An effec-
tive approach to dimensionality reduction is the Principal Component Analysis PCA.
Assuming a Gaussian distribution of the population with the variance equal to:

ΣX = 1
S

S∑
i=1

(Xi − X)(Xi − X)T (3.20)

each shape can be approximated using the mean shape X and highest ranked eigen-
vectors φi, correspondent to largest eigenvalues λi of ΣX :

X ≈ X + Φy , y = ΦT (X − X) (3.21)
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where the vector y contains the model parameters, Φ is the matrix formed by the first
t column eigenvectors of the symmetric covariance matrix ΣX . To enforce plausible shape
generation with respect to the training set, yi is bound by ±3

√
λi. The dimensionality of

the model parameter vector y is equal to the number of eigenvectors retained.

Figure 3.15: Cumulated shape variation for (a) aortic and (b) mitral valves. The green
dot marks the threshold cumulated variance of 0.995.

According to Eq. 3.21, the number of retained modes t dictates the number of model
parameters. Thus, the decision is problem specific and must consider the model complex-
ity versus the desired specificity. The number of modes t can be determined by demanding
that the model explains a certain percentage of the total domain variance. In order to de-
fine the dimensionality of the subspace, the cumulated variation v(t) for the first t modes
can be computed from the eigenvalues λi as follows:

v(t) =
∑t

i=1 λi∑S
i=1 λi

(3.22)

Figure 3.15 depicts the fraction v(t) for the shapes of the aortic and mitral valve
respectively. By demanding the subspace to cover 99.5% of the shape variation we deter-
mined the number of necessary modes as 72 and 98, respectively. The obtained statistical
shape modal is applied in section 4.5 to constrain the estimation of the comprehensive
valvular model.

3.7.3 Conditioned Multi-linear Principal Component Analysis
We described the ASM framework in section 3.7.2, which uses PCA to represent the shape
variation of the valve model from a set of training shapes. However, ASM is a static
approach and supplies a prior only for the shape, which does not explicitly include the
motion variation. To address this problem, a subject specific dynamic model was proposed
in [201], which captures statistics of the LV shape by decomposing subject and motion
variability using multi-linear algebra. Multi-linear modeling enables the decomposition of
a shape space into a temporal and spatial component in contrast to the ASM where both
are coupled. Other approaches were proposed in [78, 150], however those describe generic
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dynamical models and are not adequate to capture the complex motion of the valvular
apparatus.

In this section we extend the Multi-linear Principal Component Analysis (MPCA) and
Multi-linear Independent Component Analysis (MICA) shape models to incorporate con-
ditions imposed by anatomical measurements. The obtained multi-linear model enables
the generation of motion priors learned from a training set of shape sequences, subject to
anatomical conditions.

Multi-linear Representation: Multi-linear algebra offers a generalization of matrices
to higher-order tensors, which defines multi-linear operators over a set of vector spaces. A
tensor, also known as multi-dimensional matrix, of order N is defined as A ∈ R

I1×I2×...×IN .
A generalization of the product of two matrices is the product of a tensor and a matrix.
The mode-n product of a tensor A ∈ R

I1×I2×...×In×...×IN by a matrix M ∈ R
Jn×In , deno-

tated by A ×n M , is a tensor B ∈ R
I1×...×In−1×Jn×In+1×...×IN with the entries:

(A ×n M)i1...in−1jnin+1 . . . iN =
∑
in

ai1...in−1inin+1...inmjnin (3.23)

A matrix M ∈ R
Jn×In has two associated vector spaces, which can be orthogonalized

using Singular Value Decomposition (SVD). Thus, M = U1ΣUT
2 is decomposed into the

product of an orthogonal column space matrix U1 ∈ R
Jn×Kn , a diagonal singular value

matrix Σ ∈ R
Kn×Km , and an orthogonal raw space matrix U2 ∈ R

In×Km . The equivalent
representation of the decomposition in mode-n product is M = Σ×1 U1 ×2 U2. Following
the generalization of SVD to N-mode SVD introduced in [170], the orthogonal vector
spaces can be extended for tensors of order N > 2:

A = Z ×1 U1 ×2 U2 . . . ×N UN (3.24)

where Z is the core tensor, analogous to the diagonal singular value matrix in the
classical SVD algorithm, which governs the interaction between the mode matrices Ui.

In case of order two tensors, PCA can be applied to reduce the dimensionality of a
linear model. This is basically realized by truncating the SVD such that the eigenvectors
associated with the smallest eigenvalues are discarded. A generalization for multi-linear
analysis, MPCA, was proposed in [171], which allows for the selective dimensionality
reduction of each mode matrix Ui. Analogous, a multi-linear version of the Independent
Component Analysis (ICA), MICA, was proposed in [172].

Similar as in [201], we represent the training set as a third-order tensor A ∈ R
S×N×P,

where S is the number of patients, N is the frame number inside a multi phase sequence
of valve models and P represents the number of shape points. Beforehand, all sequences
of shapes �X in the training set, which cover the motion variation over an entire cardiac
cycle, were normalized to a temporal length N (see section 3.7.1) and aligned by utilizing
the GPA (see section 3.7.2). Following the MPCA, we decompose the training tensor into:

A = Z ×1 Upatient ×2 Umotion ×3 Upoints
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where Z ∈ R
S×N×P is the core tensor, and Upatient , Umotion, and Upoints the patient,

motion and points subspaces, respectively. As the motion subspace is non-Gaussian, ICA
is applied to obtain a set of independent modes Cmotion in the motion subspace [201]:

A = Z ×1 Upatient ×2 UmotionW −1W ×3 Upoints

= (Z ×2 W ) ×1 Upatient ×2 UmotionW −1 ×3 Upoints

= S ×1 Upatient ×2 Cmotion ×3 Upoints

Conditioned Model Estimation: A set of anatomical measurements �M =
(m1, m2, . . . , mR) extracted from the non-linear valve model is used to condition the
static surface parameterization X = (p1

x, . . . , pNk
x , p1

y, . . . , pNk
y , p1

z, . . . , pNk
z ) [16]. Assuming

the joint multivariate distribution p(X| �M) follows a Gaussian distribution, a conditioned
shape X

�M containing the anatomical measurements �M can be estimated as follows:

X
�M = X + ΣX �M Σ−1

�M �M

(
�M − �M

)
where X is the mean surface parameterization from all training sets of the valve shapes

X (see equation 3.18), �M the mean of the measurements �M in the training set, and ΣX �M

the covariance matrix between X and �M .
By combing the static shape estimate X

�M with the multi-linear model A we can
construct a dynamic motion prior, �X

�M , for the entire cardiac cycle. Therefore we first
estimate the patient vector upatient associated with the conditioned shape estimate X

�M :

upatient = X
�M T−1

(1) T = S ×2 Cmotion ×3 Upoints

where T−1
(1) is the pseudo-inverse of the tensor T flattened along the first mode, and

Cmotion the one dimensional motion mode. The dynamic motion prior �X
�M can be then

reconstructed by a tensor multiplication:

�X
�M = S ×1 upatient ×2 Cmotion ×3 Upoints

The comprehensive surface model �X
�M of each anatomical structure is estimated by

adopting the conditioned multi-linear shape method using anatomical measurements �M
defined between the landmarks �L1 · · · �L36. For instance, in case of the aortic root we use
three measurements �M = (m1, m2, m3), where m1 is the inter-commissure distance, m2
the hinge-commissure plane distance, and m3 the hinge-commissure plane angle. The
obtained multi-linear model can be applied in section 4.5.2 to predict valvular dynamics
and constrain the estimation of the comprehensive valvular model.

3.8 Conclusions
Newest medical imaging equipments produce large amounts of raw cardiac data that
encode hidden information about the underlying physiological system. A multitude of

58



3.8 Conclusions

models, especially focused on the left ventricle, are proposed in the literature to ex-
tract anatomical and functional cardiac parameters from images. Following an opposing
approach, some cardiac models enhance geometrical information with biomechanical com-
ponents, to simulate physiological functions under various conditions. Regardless of the
specific methodology, existent models of the heart valves are generic, simplified and not
conceived to incorporate accurate morphological and functional information. Hence, their
clinical applicability is limited to the study of common biological processes.

We proposed a novel physiological model of the heart valves, aortic, mitral, tricus-
pid and pulmonary valve to precisely capture morphological, dynamical and pathological
variations. To handle the inherent complexity, the representation is structured on three
abstraction layers: global location and rigid motion, non-rigid landmark motion model
and comprehensive valve model. Each model abstraction naturally links to anatomical
and dynamical aspects at a specific level of detail, while the hierarchical interconnection
of the individual parameterizations is driven by the physiology of the valves.

In the last part of the chapter, we address models of patient population. The proposed
physiological model provides implicit point correspondence across time and individuals,
facilitating statistical modeling of relevant valvular parameters. Statistical representations
of shapes and trajectories effectively incorporate prior variation knowledge to facilitate
patient-specific parameter estimation.
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CHAPTER 4

Patient-specific Parameter Estimation

Data-driven healthcare is an unequivocal megatrend to which the plurality of medical
images available today has contributed extensively. The large amount of images routinely
produced has created an explicit demand for tools that efficiently process raw data into
precise clinical knowledge. In particular, the extraction of morphological and functional
parameters from cardiac images is a prerequisite for the management of cardiovascular
disease. From a technological standpoint, model-based approaches have been traditionally
applied in this context. A review of the most relevant methods is given in section 4.1.

In this chapter we introduce our novel methodology for patient-specific estimation of
valvular models from multi-modal images. The entire algorithmic framework is based on
robust discriminative learning approaches discussed in section 4.2. In concordance with
the hierarchical model representation presented in chapter 3, the estimation of patient-
specific valve parameters includes three stages: global location and rigid motion estima-
tion, non-rigid landmark motion estimation, and comprehensive aortic-mitral estimation.
Figure 4.1 illustrates the entire algorithm, which relies on novel techniques such as the
Trajectory Spectrum Learning (TSL) with Local-Spatio-Temporal (LST) features, and
extends recent machine learning methods. Initially we compute the location and rigid
motion of the valves from volumetric sequences of cardiac images as described in section
4.3. The non-rigid and complex motion of the valves is estimated in section 4.4. In sec-
tion 4.5, the obtained dynamic landmark model guides the fitting of the comprehensive
valvular model. Extensive experiments on heterogonous data sets presented in section 4.6
demonstrate the performance of the proposed approach.

4.1 Model-based Paradigm
In the medical field, images are usually ambiguous and of limited quality, while the objects
of interest, such as organs or lesions, are inherently complex and have large variations
in shape and appearance. To guarantee robust solutions for the parameter estimation
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Figure 4.1: Diagram depicting the hierarchical model estimation algorithm. Each block
describes the actual estimation stage, computed model parameters and underlying ap-
proach.

methods, prior knowledge about the expected results and image appearance must be
incorporated in the solution.

The heart valves regulate the blood flow and generate some of the most complex
and rapid motions in the human body. They open and close completely within 100ms,
following a synchronized movement pattern repeated at each cardiac cycle. Valvular
structures are small, present elaborate textures, and vary significantly in appearance
across patients and pathological conditions. Thus, the spatio-temporal information about
the valves, captured by cardiac images, is commonly limited and affected by noise and
artifacts. Nevertheless, the estimation of anatomical and dynamical parameters of the
valves from non-invasive images has a crucial importance for the clinical workflow.

Chapter 3 introduced our hierarchical representation of the valvular apparatus, which
defines the target parameters and the model of their variation. The objective of the
current chapter is to estimate patient-specific values for those parameters from a sequence
of multi-modal images. To tackle the above mentioned challenges, we proposed a novel
model-based framework illustrated in figure 4.1, which relies on discriminative learning
techniques.

The input data is a temporal sequence of volumetric scans represented in Cartesian
coordinates and acquired with one of the three modalities: CT, Ultrasound or MRI. The
natural first task is to recover the pose and corresponding motion parameters of the valves
from the input cardiac data. This problem is discussed in section 4.1.1, while our pro-
posed solution, based on the Probabilistic Boosting Tree, Marginal Space Learning and
RANSAC estimators is given in section 4.3. With the global parameters determined, the
next task is to estimate the complex configuration and motion of the valvular anatomical
landmarks. Section 4.1.2 addresses the motion estimation problem and section 4.4 intro-
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duces our novel Trajectory Spectrum Learning algorithm to efficiently learn and estimate
periodic motion in marginal trajectory spaces. The final stage tackles the boundary de-
lineation of the complete valvular surfaces over the entire cardiac cycle. This is discussed
in section 4.1.3 with our concrete method, based on motion manifold learning and robust
boundary detectors, presented in section 4.5.

The output data of the proposed estimation framework are the patient-specific param-
eters of the valvular model presented in chapter 3, namely: the global location and rigid
motion parameters, the location and motion parameters of the anatomical landmarks,
and the parameters of the dynamic valvular surfaces. In the following we summarize the
advantages of our method:

• Hierarchical - to handle the problem complexity, the estimation is following
a coarse-to-fine strategy based on the natural level of detail of the underlining
anatomies.

• Robust - learning-based approaches are ubiquitously applied to guarantee robust-
ness against image artifacts and to handle the shape and appearance variations.

• Fast - search space marginalization methods are employed to efficiently perform
optimization in multi-dimensional parameter domains.

• Consistent - the estimated motion is coherent and not affected by image disconti-
nuities due to the usage of novel motion manifold learning and trajectory spectrum
learning techniques.

• Multimodal - the same framework is applied to various image modalities without
algorithm modifications, as only modality-specific detectors need to be trained.

For clarity, we divide the problem into three interrelated tasks and discuss each of them
in the remainder of the section: object localization, motion estimation, and boundary
delineation.

4.1.1 Object Localization
In general, the performance of model-based segmentation algorithms is highly reliant on
adequate initialization, which is largely accomplished through manual or semi-automatic
approaches. Recently, discriminative learning methods proved to be efficient in 2D object
detection problems, offering an automatic and robust alternative to user-dependent ini-
tialization [175, 57]. Object detection is formulated as traditional classification, and solved
by testing and ranking location hypotheses in an input image using a trained detector.
Viola and Jones [175] introduced an effective image representation, which allows for effi-
cient computation of Haar-like features used for classification. The detector is organized
in a cascade of classifiers trained using AdaBoost to select critical visual features from a
large pool, subsequently applied for face detection in 2D images. Georgescu et al. [57]
applied discriminative learning algorithms to detect anatomical structures from medical
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images. The proposed database-guided segmentation directly exploits expert annotations
of the left ventricle from echocardiography.

Zheng et al. [197] extended the learning based approach to three-dimensional object
localization by introducing an efficient search method referred to as Marginal Space Learn-
ing (MSL). To handle the large number of possible pose parameters of a 3D object, an
exhaustive search of hypotheses is performed in sub-spaces with gradually increased di-
mensionality. Initially, MSL was successfully applied to localize the four-chamber of the
heart in cardiac CT volumes. Subsequently, the framework was applied to detect the 3D
location of various anatomical structures from multimodal images [31, 187, 191].To further
speedup the framework and handle the inherent drawback of Euler angles, Zheng et al.
[198] proposed to exploit significant correlation among parameters in the same marginal
space and apply quaternions to represent 3D object orientation.

We further advanced the learning-based approach by obtaining the location parame-
ters of objects from four-dimensional images. In section 4.3 a novel approach is proposed,
which combines space marginalization and RANdom SAmple Consensus (RANSAC) tech-
niques to extract the time-coherent location of the four cardiac valves from 4D data.

4.1.2 Motion Estimation
The quantification of motion and deformation from images is an essential area of growth
within the computer vision and medical image analysis community. Despite its difficulty,
great progress has been made in the last couple of decades [193]. However, the direct
application of traditional tracking algorithms to medical images produces unsatisfactory
results due to inherent pathophysiological complexity and image quality limitations.

To achieve robust motion estimation and minimize error accumulation, numerous ap-
proaches proposed to integrate the key frame detection into the tracking [50, 94]. In most
tracking-by-detection approaches, the detector is often loosely coupled with the tracker,
i.e., the trajectory is recovered by connecting the object detection result on each indi-
vidual frame. To achieve a more effective search, sophisticated statistical techniques are
introduced in the estimation process [145, 190]. Strong dynamical motion models are also
adopted in many approaches to improve the estimation robustness [2, 152].

Recently, trajectory-based features have also attracted more and more attentions in
motion analysis and recognition [115, 183]. It has been shown that the inherent repre-
sentative power of both shape and trajectory projections of non-rigid motion are equal,
but the representation in the trajectory space can significantly reduce the number of pa-
rameters to be optimized [4]. This duality has been exploited in motion reconstruction
and segmentation [10, 195] and structure from motion [4]. In particular, for periodic mo-
tions, such as the movement of a vehicle [132] and a human body [131], frequency domain
analysis shows promising results in motion estimation and recognition [95, 120, 113, 24].

In section 4.4, we propose a novel algorithm, Trajectory Spectrum Learning (TSL), to
simultaneously estimate location and motion of non-rigid objects using trajectory-based
features and strong trajectory spectrum classifiers. By decomposing the full trajectory
space into orthogonal subspaces defined by generic bases, such as the Discrete Fourier
Transform (DFT), the obtained representation is shown to be compact [4]. Consequently,
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this compact representation allows for efficient learning and optimization in its marginal
spectrum space.

4.1.3 Boundary Delineation
Given the complexity of anatomical structures and typical erroneous data sources, the
capacity of traditional bottom-up segmentation approaches to extract consistent object
boundaries is limited. Over the past two decades, numerous methods have been designed
to incorporate a priori domain knowledge and constrain the boundary delineation problem.

A prominent family of algorithms, reviewed in detail by McInerney and Terzopoulos
[104] are Deformable Models. Inspired from the physical theory of elasticity within a La-
grangian formulation, object boundaries are modeled as elastic bodies subject to applied
forces and constraints. The segmentation is typically performed by optimizing an objec-
tive function composed out of an internal energy term, which controls the smoothness or
symmetry of the model, and an external energy, which deforms the model to fit the under-
lying data. While first introduced in computer vision by Terzopouls [155], one of the most
popular forms, are the two-dimensional deformable contours, or snakes, proposed by Kass
et al. [81]. Following the same principle, Amini et al. [6] proposes a dynamic program-
ming framework to optimize the objective function by searching all possible solutions.
To speed up the algorithm, Geiger [56] applied multi-scale images within a non-iterative
method. Staib and Duncan [148] used Fourier parameterizations of 3D surfaces to extract
geometrical models controlled by a reduced number of variables. Their gradient ascent
optimization algorithm deforms the surfaces towards strong image gradients. Gerard et
al. [58] combined 3D deformable surface with statistical heart motion model to represent
the left ventricular function from 3D echocardiography. Using Boolean operations from
solid representations for the deformable model, Park et al. [126] extracted patient specific
heart shapes of the left and right ventricle from tagged MRI images.

Another research direction proposed by Cootes et al. [36] advocates the usage of point
distribution models to represent domain specific variability. Within the popular Active
Shape Models (ASM) framework, the variation of deformation is enforced to be consistent
with a representative training set, thereby increasing robustness during boundary delin-
eation. Duta and Sonka [46] applied the ASM method to segment MRI brain images. Von
Assen et al. [166] extended the framework to segment volumetric left ventricle models from
sparse CMR datasets, consisting of multiple planes with arbitrary orientation and sam-
pling rates. To address the specific lack of tolerance to grayscale variation, Cootes et al.
[35] introduced Active Appearance Models (AAM), which simultaneously consider shape
and texture information. Mitchell et al. [110] demonstrated the clinical potential of 3D
AAM in three-dimensional cardiac segmentation from short-axis CMR images and Echo
images. Andreopoulos and Tsotsos [9] proposed the integration temporal and structural
constraints to enhance AAM and analyze short axis CMR data.

Among other notorious approaches to model-based segmentation, level-sets were suc-
cessfully applied in various medical imaging problems. Level-set methods, which can be
thought of as Eulerian formulations of deformable models, represent deformation as wave
front propagation of an evolving function subject to intrinsic constraints [47].
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Section 4.5 introduces our model-based approach to delineate the boundary of the
valvular apparatus from 4D images. In the first step, the boundary is determined in
the end-diastole and end-systole phase, using robust learning-based boundary detectors
within a ASM framework. Subsequently, the estimation is performed in the entire cardiac
cycle using manifold based motion models and collaborative trackers.

4.2 Discriminative Learning Methods
The task of estimating the valvular model parameters θ, L and M from an image I is
extremely challenging due to the large number of model parameters, the complex shape
and motion variation, the different image aspects and the limited image quality. In
conclusion to section 2.6.3 and 4.1 we argue that machine learning techniques offer a
robust and efficient alternative to solve our estimation problems. They allow for the
implicit incorporation of prior knowledge through data annotation, avoiding elaborate and
rigid mathematical formulations. Thereby complex statistical models can be learned in
a robust and straightforward manner. Furthermore, an incremental estimation approach
can be addressed under a unified and consistent framework leveraging the same dataset
of expert annotations.

A common approach is to use a generative model with likelihood probability
p(I|θ, L, M). However, these models are often based on too simple assumptions of data
distributions to describe the true underlying complexity. Furthermore, generative ap-
proaches are exclusively focused on learning the target objects, rather than the discrimi-
nation between foreground and background. On the contrary, discriminative models have
a superior predictive performance in finding separation boundaries between classes than
generative models do[169]. Therefore, we formulate the estimation as a discriminative
problem and focus on learning the posteriori distribution p(θ, L, M |I) directly.

The classic approach to supervised learning includes two stages: training and test-
ing. In the first stage, a function D is learned from training data to model p(θ, L, M |I).
An established approach for the training of discriminative models, used throughout the
thesis is boosting. Section 4.2.1 presents the general idea and two prominent algorithms:
AdaBoost and Probabilistic Boosting Tree (PBT). To facilitate effective learning, statisti-
cally rich information is usually captured through image features. We use three different
classes of features introduced in section 4.2.2: Haar-like Features, Steerable Features and
Local-Spatio-Temporal (LST) Features. In the second stage, the learned function D is
applied to predict θ,L and M given an image I. The entire pipeline for training, test-
ing, as well as space marginalization relevant for all subsequent algorithms is discussed in
section 4.2.3.

4.2.1 Boosting Algorithms
According to machine learning approaches, parameter estimation is formulated as a classi-
fication problem. A trained classifier scans the search space and computes the probability
of the target parameters.
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However, it is very difficult to define a single robust predictor. It is much more
appropriate to find a set of weak predictors, which combined provide a strong classification
rule. In machine learning, this approach is referred to as boosting. According to Freund
& Schapire [53], boosting is a supervised machine learning method for improving the
accuracy of any given learning algorithm. The basic idea is to combine many rough rules
of thumb into a single classifier that will be much more accurate than any one of the weak
rules.

The input of boosting algorithms is a training set {(x1, y1), ..., (xN , yN)}, where xi

belongs to a certain domain X, and yi is in a certain label set Y (we assume Y = {−1, 1},
as multi-class is not relevant in our work). Given a set of weak learners {h1, ..., hl}, with
hi : X → Y , the boosting algorithm generates a strong classifier D(x).

There are two fundamental problems to be solved by a boosting algorithm: how to
choose a certain weak classifier hi (in each iteration) from a given set and how to combine
the weak classifiers into a strong predictor D(x)?

Two established algorithms, AdaBoost and Probabilistic Boosting Tree, presented in
the remainder of this section provide a concrete solution for the two fundamental ques-
tions. The former boosting method is used throughout the model estimation algorithms
presented in this chapter.

AdaBoost: Although there are many methods presented in the literature [105], the
most studied and perhaps the most popular boosting algorithm is AdaBoost, introduced
in 1995 by Freund and Schapire [53]. This algorithm presented in figure 4.2 provides very
attractive properties regarding training error and generalization performance.

The algorithm is called AdaBoost due to its capability to adjust adaptively to the errors
of the weak hypotheses. In each step t of its main loop it selects a week hypothesis ht

from a given set, which outputs the smallest error et given the current sample distribution
W . The weight vector �wt, which defines the sample distribution is updated each step
according to the current selected week hypothesis ht. The update rule reduces the weight
of the correctly predicted samples and increases the weight of the examples on which the
prediction is poor. This explains the adaptive property of AdaBoost, which during the
learning process concentrates on harder samples by increasing their weights.

The final hypothesis D(x) is generated by the weighted average of the selected weak
hypotheses. The weight of each hypothesis is determined by its error. Obviously, more
accurate hypotheses have more influence on the outcome of the final classifier.

AdaBoost provides very strong guarantees for the learning performance. It was proved
that the training error of the final classifier approaches zero exponentially with the number
of rounds T . More importantly, strong bounds on generalization performance were later
proved in [137]. Based on observations that AdaBoost often does not overfit the data, the
generalization error was proven to be bounded by the margins of the training set, which
are reduce with each boosting round.

Probabilistic Boosting Tree: The Probabilistic Boosting Tree (PBT) learns a com-
posite strong classifier by exploiting a divide-and-conquer strategy. Thereby it aims to
overcome an essential problem of AdaBoost where εt approaches 1

2 quickly, which slows
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Input

• set of N labeled samples {(x1, y1), ..., (xN , yN)}

• distribution W over the examples

• weak learning algorithm WeakLearn

• number of iterations T

Initialization

• set the weight vector wl
i = W (i) for i = 1, ..., N

Main Loop, for t=1,. . . ,T

• set �pt = �wt∑N

i=1 wt
i

(update the samples’ probability distribution)

• get ht = WeakLearn(�pt) (get back a hypothesis ht from WeakLearn by providing
it with the distribution �pt)

• set εt =
∑N

i=1 pt
i |ht(xi) − yi|

• set βt = epsilont

1−epsilont

• set wt+1
i = wt

iβ
1−|ht(xi)−yi|
t (update the samples’ weight)

Output:

• D(i) =
{
1 : ∑T

t=1(log 1
βt
)ht(i) ≥ 1

2
∑T

t=1 log 1
βt

0 : otherwise

Figure 4.2: The adaptive boosting (AdaBoost) algorithm introduced by Freund and
Schapire in [53].

down convergence. Instead of learning one strong classifier from a pool of weak learners,
PBT constructs multiple strong classifiers connected through a binary tree.

The algorithm summarized in figure 4.3 recursively learns a tree illustrated in figure
4.4. At each node, a standard boosting algorithm is applied to learn a strong classifier
with a relaxed exit condition, e.g. εt < 0.45. The training set is recursively divided into
two subsets by the trained strong classifier, and used to train the subsequent left and right
tree branches. This allows for a natural division of the positive and negative samples until
a given tree depth L is reached. A variable ε controls the subset division and allows hard
to classify samples to get passed in both sub-trees. In PBT, the tree depth L and ε, which
defines confusing samples, are the main parameters to control overfitting.

Figure 4.5 illustrates the computation of p(y|x) from a learned binary tree. Any tree
node aggregates information from its descendents, while the posteriori approximation at
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Input

• A traing set S = {(x1, y1, w1), ..., (xN , yN , wN)}; xi ∈ χ, yi ∈ {−1,+1} ,
∑

1 wi = 1

• Tree maximum depth L and confusion tolerance ε, e.g. ε = 0.1

• compute empirical distribution q̂(y) = ∑
i wiδ(yi = y)

Main Loop

• Exit if current tree depth is L

• From the training set S learn a strong classfier using a boosting algorithm with T
weak classfiers and early exit εt > θ, e.g. θ = 0.45

• Initalize empty sets Sleft and Sright

• For each (xi, yi) compute the probability q(+1|xi) and q(−1|xi) from the learned
strong classifier

• if q(+1|xi) − 1
2 > ε then (xi, yi, 1) → Sright

• else if q(−1|xi) − 1
2 > ε then (xi, yi, 1) → Sleft

• else (xi, yi, q(+1|xi)) → Sright and (xi, yi, q(−1|xi)) → Sleft

• Normalize all the sample weights in Sright and repeat procedure recusively

• Normalize all the sample weights in Sleft and repeat procedure recusively

Figure 4.3: The probabilistic boosting-tree training as introduced by Zhuowen Tu in [164]

the top node constitutes the final result.

4.2.2 Image Features

PBT is a powerful learning algorithm and very well suited to solve the parameter esti-
mation problem within our framework. Nevertheless, as any other boosting algorithm,
it does not make any statements about the weak rules, which are boosted during the
learning process. Thus, an appropriate set of weak predictors has to be defined, in order
to achieve a robust classifier.

In our context the weak predictors are constructed from a pool of image features, which
form an overcomplete representation of the original image. Depending on the estimation
problem, a specific class of features is chosen, considering both discriminative power
and computation efficiency. Three types of image features relevant to our algorithms
are introduced in the following: Haar-like features, Steerable features and Local-Spatio-
Temporal features.
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Figure 4.4: Illustration of the probabilistic model of the tree. The dark nodes are the leaf
nodes. Each level of the tree corresponds to an augmented variable. Each tree node is a
strong classifier. Figure from Tu et al. [164].

Compute pN(y|x) the posterior distribution at a tree node N

• Compute qN(+1|x) and qN(−1|x) at level N from corresponding strong classifier

• pN(y|x) = q(+1|x)pright(y) + q(−1|x)pleft(y)

• If q(+1|x) − 1
2 > ε then pright(y) = pright(N)(x, y) and pleft(y) = qleft(N)(y)

• Else if q(y + 1|x) − 1
2 > ε then pright(y) = qright(N)(y) and pleft(y) = pleft(N)(x, y)

• Else pright(y) = pright(N)(x, y) and pleft(y) = pleft(N)(x, y)

Figure 4.5: The probabilistic boosting-tree testing as introduced by Zhuowen Tu in [164]

Haar-like Features: Haar wavelet features have been proven to be very efficient for
object detection problems. These have been first introduced by Papageorgiou et al. in
[123]. Similar rectangle-based features have been used by Viola for object detection in 2D
[176]. Zheng et al. used Haar wavelet features for object detection in 3D images [197].

The idea is to define a set of rectangular image regions and perform simple Haar-based
transformations over the selected pixels. For instance, in case of a two-rectangle feature,
the difference between the sums of the pixels within the two regions is computed. The
two rectangular regions are adjacent and have the same size. In the same way, features
with a larger number of rectangles can be defined. In concordance with the Haar wavelet
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(a) Haar Features (b) Integral Image

Figure 4.6: (a) Examples of rectangle (Haar) features. The sum of the pixels which lie
within the white rectangles are subtracted from the sum of pixels in the grey rectangles.
From left to right are shown: two-rectangle features, three-rectangle feature and four-
rectangle feature. (b) The integral image at point (x, y) is the sum of the pixels marked
by the black rectangle.

transformation, the regions are always adjacent and have the same size, while summation
and subtraction of the rectangles is alternating (see figure 4.6 (a)).

The scale of the features’ mask can vary. Also features may be applied vertically or
horizontally at any sampled location. Hence, a large set of features can be generated,
which provide an overcomplete representation of the original image. Empirically it was
shown that this rich representation supports an effective learning [176].

The integral image representation provides an elegant and efficient method to compute
rectangle features. The integral image is an intermediate representation defined as follows:

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′) (4.1)

where ii is the integral image and i is the original image. At location (x, y) the integral
image contains the sum of the pixel above and to the left of (x, y) (see figure 4.6 (b)).
The following recurrence rule allows the computation of the integral image in one pass
over the original image:

s(x, y) = s(x, y − 1) + i(x, y)
ii(x, y) = ii(x − 1, y) + s(x, y) (4.2)

The pre-computed integral image allows for the computation of any rectangular feature
in constant time. One rectangle can be computed by subtracting the bottom left and top
right corners from the sum of the remaining two. As the features defined above include
adjacent rectangles their computation is very efficient.
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Rectangle features are less complex when compared with alternatives such as steerable
filters. Although sensitive to edges, corners and other structures, they are quite impre-
cise. However, the extreme computational efficiency of rectangular features outweighs
their limitations. It is important to note that it is straightforward to extend the rect-
angle features, as well as the integral image representation of three-dimensional images.
Although the computation time increases with the dimensionality, Haar features are very
efficient for 3D images as well.

Steerable Features: Haar wavelet features are effective to capture statistics of global
model parameters from images. However, to capture orientation and scale information
either the feature template or the volume has to be rotated and scaled according to each
hypothesis in the search space. As the integral image technique, presented in the previous
paragraph, is not efficient under volume rotation or resampling, different features must
be defined to facilitate learning of orientation parameters.

Zheng et al. [197] proposed steerable features, which can capture orientation and scale
information in a computationally efficient fashion. The idea is to compute local features
from the original images at specific locations determined by a steerable sampling pattern.
Instead of aligning the input image with different hypotheses, which is computational
expensive, orientation or scale information can be embedded into the distribution of sam-
pling points.

(a) (b) (c)

Figure 4.7: Steerable sampling pattern aligned with an example hypothesis (x, y, �αx, sx, sy)
for a two-dimensional problem. Sampling location are defined as ’+’. (a) Pattern centered
at (x, y). (b) Pattern oriented with �αx. (c) Pattern scaled along the axes proportional to
(sx, sy).

Figure 4.7 illustrates an example of the steerable sampling pattern for two-dimensional
images. For a specific hypothesis {(cx, cy, cz), (�αx, �αy, �αz), (sx, sy, sz), t} of a possible valve
location (see section 3.3), the steerable pattern is centered in (cx, cy, cz). Also, its axes
are aligned with the orientation (�αx, �αy, �αz) and the distance along a specific axis is
proportional to the corresponding scale parameter (sx, sy, sz). Fast local features are
computed from sampling points selected with the resulting pattern.
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Figure 4.8: An example of a local-spatio-temporal feature, aligned with a certain position,
orientation and scale, at time t. The temporal context length of the illustrated LST feature
is T, spanned symmetrically relative to t.

A total of 24 distinct features based on image intensities and gradients are
proposed in [197] and also used in our algorithms: I,

√
I, 3

√
I,I2,I3,logI,||g||,√

||g||, 3
√

||g||,||g||2,||g||3,log||g||, α,
√

α, 3
√

α,α2,α3, logα, gx, gy, gz, nx · g,ny · g,nz · g. I

is the image intensity at location (x, y, z) and g = (gx, gy, gz) the corresponding gradient.
nx, ny, nz are the three axis of the local coordinate system and α = arcos(nz · g) the
angle between the gradient and the nz axis. The pool of features is given by computing
each local feature at each sampling location according to the aligned sampling pattern.

Local-Spatio-Temporal Features: Both classes of features introduced above are de-
fined for two- and three-dimensional images. To maximize both the robustness and ac-
curacy of motion estimation from noisy data, statistics obtained in a spatial context
should be enhanced with temporal information. We introduce a novel over-complete im-
age representation defined by the Local-Spatial-Temporal (LST) features, which extends
the steerable features to four-dimensional images and facilitates learning of motion pa-
rameters.

It has been shown that local orientation and scaling of image features reduce ambiguity
and significantly improve learning performance [165]. We extend the image representation
by aligning contextual spatial features in time, to capture four-dimensional information
and support motion learning from noisy data. The 4D location of the proposed f 4D()
features is parameterized by the similarity parameters θ = (x, y, z, �αx, �αy, �αz, sx, sy, sz)
plus time t:

f 4D(θ(t), T |I, s) = τ(f 3D(I, θ(t + i ∗ s)), i = −T, · · · , T ) (4.3)
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As presented in the previous paragraph, three-dimensional f 3D() features can be con-
structed to extract simple gradient and intensity information from steerable pattern spa-
tially align with θ(t). Please note that in our context, the similarity parameters θ are
defined separately for the four heart valves (see section 3.3). Knowing that the motion
is locally coherent in time, f 3D() is applied in a temporal neighborhood t − T to t + T
at discrete locations evenly distributed with respect to the current time t (see figure 4.8).
The final value of a Local-Spatial-Temporal (LST) feature is the result of time integration
using a set of linear kernels τ , which weight spatial features f 3D() according to their dis-
tance from the current frame t. A simple example of τ , also used in our implementation,
is the uniform kernel over the interval [−T, T ]:

τ = 1
2T + 1

T∑
i=−T

(f 3D(I, θ(t + i ∗ s)) (4.4)

For this choice of τ , each f 3D contributes equally to the f 4D. The parameter T steers
the size of the temporal context, while s is a time normalization factor derived from the
training set and the number of time steps of the volume sequence I. Values for T can
be selected by the probabilistic boosting tree (PBT) [164] in the training stage. Since
the time window size has an inverse relationship with the motion locality, the introduced
4D local features are in consensus with a coarse-to-fine search. Our experimental results
support this property by showing that the features with larger T values are selected to
capture the lower frequency motion, and the value of T decreases for higher frequency
motion components.

4.2.3 Training, Testing and Space Marginalization
The classic discriminative learning approach to parameter estimation involves searching
a domain Σ for the highest probable values using a learned detector D. Assuming an
abstract model parameterization x and an input image I, the task can be formulated as:

argmaxxp(x|I) = argmaxxD(x, I), x ∈ Σ (4.5)

The entire process involves two phase: training and testing. Firstly, the detector D
is constructed during an offline training phase. Subsequently, this is used to scan the
parameter search space and find the optimal solution in the online testing phase.

Training: The objective of the training stage is to learn a detector D from a given train-
ing set. This comprises out of pairs of labeled parameter instances (x, y), y ∈ {+1, −1}
and includes positive (x,+1) and negative (x, −1) samples. Positive and negative exam-
ples are obtained from a set of images associated with a ground truth annotation (I, x).
In general, positives are considered in a close vicinity to the ground truth, with respect
to a distance measure d and threshold value δs:

y =
{
1 if d(x, x) < δs

−1 otherwise
(4.6)
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Weak learners h are employed to model the target distribution. Those are constructed
from a pool of image features parameterized by the model:

h(x, f, p, δf ) =
{
1 if pf(x) < pδf

0 otherwise
(4.7)

Examples of feature f relevant for our work were presented in section 4.2.2. The
threshold δf and polarity p are chosen during learning such that the minimum number
of training samples are misclassified. In practice, single weak learners h cannot perform
the estimation task with low error. Therefore, as illustrated in section 4.2.1, boosting
algorithms are employed to select key weak learners and aggregate them to build a strong
classifier D.

Testing: The objective of the testing stage is to identify the highest probable parameter
values in a predefined search domain Σ. The search domain is usually discretized by a set
of hypotheses H. The learned detector D exhaustively tests and ranks each parameter
hypothesis, while the highest ranked is generally considered the final result. Exhaustive
search provides robustness against local minima and assuming that the true solution is
captured in H, it also provides the optimal parameter estimation.

However, the exhaustive search strategy can become computationally expensive as its
complexity increases exponentially with the number of target parameters, which prohibits
estimation of high-dimensional models. For instance, consider the problem of estimating
the similarity transformation of an object in a three-dimensional Euclidean space. The
model has nine parameters dim(x) = 9 and if each dimension of the search domain Σ is
discretized by only 10 values, the number of hypotheses to be tested is |H| = 109, which
is beyond the computation power of current computers.

To overcome this limitation, the next paragraph presents a space marginalization
framework, which drastically reduces the search domain.

Marginal Space Learning: In general, it is unnecessary to search the entire domain
Σ, as the target a posteriori is clustered in a small region of the high-dimensional space
spanned by the parameters in x. This observation is exploited within the Marginal Space
Learning (MSL) framework [197], which breaks the original domain Σ into subsets of
marginal spaces with increased dimensionality:

Σ1 ⊂ Σ2 ⊂ · · · ⊂ Σn = Σ (4.8)
where dim(Σ1) << dim(Σ) and dim(Σk) − dim(Σk−1) is small. A search in Σ1 with

a detector D1 learned in this marginal space finds a subspace C1 ⊂ Σ1, which contains
only the most probable parameter values and discards the rest of the space, such that
|C1| << |H1|. Another stage of training and testing is performed in the extended Ce

1 =
C1 × H2 ⊂ Σ2 to obtain a restricted marginal space C2 ⊂ Σ2. The procedure ends when
the final dimensionality of Σ is reached.

In practice, the optimal arrangement for MSL sorts the marginal spaces in a descending
order based on their variance. Learning parameters with low variance first will decrease
the overall precision of the detection.
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4.3 Object Localization and Rigid Motion Estima-
tion

The goal of object localization or detection is to identify regions in images which contain
a predefined object of interest. This is a natural first step when extracting high level
information from images. The majority of existent methods focus on specific objects such
as faces [192], pedestrians [146], or vehicles [151].

The task in our context is to determine the location of each specific valve from mul-
timodal cardiac images. In contrast to classic detection problems focused on the iden-
tification of multiple instances of the target object from input images, we assume the
singleton existence of the target valve, and we are rather interested in its location param-
eters. Thus, the location and motion parameters θ of each valve, defined in section 3.3,
are estimated from a sequence of volumes I:

argmaxθ p(θ|I) = argmaxθ

p(θ(0), · · · , θ(n − 1)|I(0), · · · , I(n − 1)) (4.9)

4.3.1 Location Estimation
To solve equation 4.9, we formulate the object localization as a classification prob-
lem and estimate θ(t) for each time step t independently from the corresponding vol-
umes I(t). The probability p(θ(t)|I(t)) can be modeled by a learned detector D,
which evaluates and scores a large number of hypotheses for θ(t). However, we recall
that θ = ((cx, cy, cz), (�αx, �αy, �αz), (sx, sy, sz)), and the exhaustive search along a nine-
dimensional space is computationally prohibited even for a sparse discretization.

To overcome this limitation, we apply the MSL framework and break the original
parameter space into a subset of increasing marginal spaces:

Σ1 ⊂ Σ2 ⊂ · · · ⊂ Σn = Σ

The nine-dimensional space described by the similarity transform in a three-dimensional
Euclidean space is decomposed as follows:

Σ1 = (cx, cy, cz)
Σ2 = (cx, cy, cz, �αx, �αy, �αz)
Σ3 = (cx, cy, cz, �αx, �αy, �αz, sx, sy, sz)

where Σ1 represents the position marginal space, Σ2 the position + orientation marginal
space and Σ3 the position + orientation + scale marginal space, which coincides with the
original domain. In practice, the optimal arrangement for MSL sorts the marginal spaces
in a descending order based on their variance. In our case, due to the CT, MRI and
TEE acquisition protocols and physiological variations of the heart, the highest variance
comes from translation followed by orientation and scale. This order is confirmed by our
experiments to output the best results.
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From the marginalization of the search domain, the target posterior probability can
be expressed as:

p(θ(t)|I(t)) = p(cx, cy, cz|I(t))
p(�αx, �αy, �αz|cx, cy, cz, I(t))
p(sx, sy, sz|�αx, �αy, �αz, cx, cy, cz, I(t))

Instead of using a single detector D, we train detectors for each marginal spaces D1, D2
and D3, and estimate θ(t) by gradually increasing the dimensionality. After each stage
only a limited number of high-probability candidates are kept to significantly reduce the
search space. Initially, D1 is trained to model the position posteriori p(cx, cy, cz|I(t))
using the Probabilistic Boosting Tree and 3D Haar wavelet image features as discussed
in section 4.2. During testing, D1 exhaustively searches the three-dimensional marginal
space Σ1 to rank all position hypotheses H1 = (cx, cy, cz) and preserve the most probable
candidates in C1. The second detector D2 models p(�αx, �αy, �αz|cx, cy, cz, I(t)) to jointly
estimate the position and orientation. The training samples are obtained by augmenting
the position candidates with orientation hypotheses (�αx, �αy, �αz), while the Probabilistic
Boosting Tree and 3D steerable features are applied to learn the posteriori. Analogous, D2
evaluates all potion + orientation hypotheses H2 = (cx, cy, cz, �αx, �αy, �αz) and retains the
best candidates in C2. The final detector D3 learns the actual similarity transformation
p(sx, sy, sz|�αx, �αy, �αz, cx, cy, cz, I(t)) by adding scale parameters to the search domain. D3
it is trained only on the pruned search space built by C2 × (sx, sy, sz) using the PBT and
steerable features. Experimentally determined as in [197], 100 highest score candidates
are retained in Σ1, 50 in Σ2 and 25 in Σ3, such that the smallest subgroup which is likely
to include the optimal solution is preserved.

For an unseen volume I(t), all position hypotheses H1 for a subject valve are tested
by D1 and the top 100 candidates are stored in C1. Each candidate is augmented with
the orientation hypotheses and D2 is used to estimate the most probable position +
orientation candidates C2. In the last stage D3 determines the most likely 25 candidates
of similarity transformer parameters. The procedure is repeated for each of the four valves
and each volume I(t) in the input series I(0), · · · , I(n − 1).

4.3.2 Robust Motion Aggregation
For a target valve, we obtained the candidates with the highest score estimated at each
time step t, t = 0, . . . n−1: [θ0(0) . . . θ25(0)] . . . [θ0(n − 1) . . . θ25(n − 1)]. A straightforward
approach to the final solution can be the frame-wise averaging of the candidates. However,
to obtain a temporally consistent global location and motion θ(t), a RANSAC estimator
is employed.

To suppress temporally inconsistencies, we assume a constant model for the cardiac
motion, which drives the global movement of the entire valvular apparatus. From ran-
domly sampled candidates, the one yielding the maximum number of inliers is picked as
the final motion. Inliers are considered within a distance of σ = 7mm from the current
candidate and extracted at each time step t. The distance measure d(θ(t)1, θ(t)2) is given
by the maximum L1 norm of the standard unit axis deformed by the parameters θ(t)1
and θ(t)2, respectively:
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L1(�a1, �a2) = max {|x1 − x2|, |y1 − y2|, |z1 − z2|}
d(θ(t)1, θ(t)2) = 1

4(L1(�c1, �c2) + L1( �X1sx1, �X2sx2) + L1(�Y1sy1,
�Y2sy2)

+L1(�Z1sz1, �Z2sz2))
(4.10)

where X,Y and Z are the unit axes obtained from the Euler angles (�αx, �αy, �αz), �c the
position vectors, and sx, sy, sz scale parameters. The procedure is applied for each valve
separately, in order to obtain the resulting time-coherent similarity transform θ(t)aortic,
θ(t)mitral, θ(t)tricuspid and θ(t)pulmonary, which describes the corresponding global location
and rigid motion over the entire cardiac cycle.

4.4 Trajectory Spectrum Learning for Non-Rigid
Motion Estimation

In this section we propose a novel Trajectory Spectrum Learning (TSL) algorithm to
localize and estimate the non-rigid motion of the anatomical landmarks defined in section
3.4. Most existing methods compute trajectories by evolving the object positions along the
time direction. To exploit the temporal information, a dynamic model of the object motion
is incorporated in many algorithms, such as condensation [77] and particle filtering [41].
Other methods are based on iterative optimization such as mean shift [33] and Kanade-
Lucas-Tomasi tracking [159]. Limited by the assumption of the local temporal constraint,
detecting the motion directly in the Euclidean space is often found difficult to guarantee a
smooth result and might be affected by drifting. These issues, however, can be addressed
effectively by considering the global characteristics of the motion.

We formulate the motion estimation problem as spectrum learning and detection in
the trajectory space. The object localization and motion estimation, referred traditionally
as detection and tracking, are solved simultaneously. Consequently, a robust and efficient
approach is proposed to estimate the motion of non-rigid objects with the following ad-
vantages:

• By decomposing the full trajectory space into orthogonal subspaces defined by
generic bases, such as the Discrete Fourier Transform (DFT), the obtained rep-
resentation is shown to be compact especially for the periodic motions, such as
the movements of the heart valves. This resulting compact representation allows
efficient learning and optimization in its marginal spaces.

• In the training stage, local features are extended in the temporal domain to inte-
grate the time coherence constraint. The Local-Spatial-Temporal (LST) features
are selected via boosting to form strong classifiers.

• In the testing stage, an incremental optimization is performed in sparse marginal
spaces learned from the training data. To maximize efficiency and robustness we
constrain the search based on clusters of hypotheses defined in each subspace.
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Please note that our proposed approach is not limited to any particular type of generic
bases. The Discrete Cosine Transform (DCT) or the Discrete Wavelet Transform (DWCT)
can be used without any major changes.

4.4.1 Problem Formulation
Based on the determined global location and rigid motion, in this section we introduce a
novel trajectory spectrum learning algorithm to estimate the non-linear valve movements
from volumetric sequences. Considering the representation in section 3.4 equation 3.2,
the objective is to find for each landmark j its trajectory �Lj, with the maximum posterior
probability from a series of volumes I(t), given the rigid motion θ(t):

argmax �Lj p( �Lj|I, θ) = argmax �Lj p( �Lj(0), · · · , �Lj(n − 1)|
I(0), · · · , I(n − 1), θ(0), · · · , θ(n − 1)) (4.11)

Note that Eq. 4.11 only models the non-rigid landmark motion, as the global location and
motion is removed from the trajectories by aligning �Lj(t), j = 0 . . . 10 with the aortic sim-
ilarity parameters θ(t)aortic, j = 11 . . . 17 with the mitral similarity parameters θ(t)mitral,
j = 18 . . . 22 with the tricuspid similarity parameters θ(t)tricuspid, and j = 23 . . . 35 with
the pulmonary similarity parameters θ(t)pulmonary estimated as described in section 4.3.

While it is difficult to solve Eq. 4.11 directly, various assumptions, such as the Marko-
vian property of the motion [191], have been proposed to the posterior distribution over

�Lj(t) given images up to time t. However, results are often not guaranteed to be smooth
and may diverge over time, due to error accumulation. These fundamental issues can be
addressed effectively if both, temporal and spatial appearance information is considered
over the whole sequence at once.

In section 3.7.1 we showed that the trajectory can be uniquely represented by the
concatenation of its Discrete Fourier Transform (DFT) coefficients,

�sj = [�sj(0), �sj(1), · · · , �sj(n − 1)] (4.12)

where �sj(f) ∈ C3 is the frequency spectrum of the x, y, and z components of the trajectory
�Lj(t), and f = 0, 1, · · · , n − 1. The magnitude of �sj(f) is used to describe the shift-
invariant motion according to the shift theorem of DFT, while the phase information is
used to handle temporal misalignment. From the DFT parameterization the equation
4.11 can be reformulated as finding the DFT spectrum �sj, with the maximal posterior
probability:

argmax �sj p(�sj|I, θ) = argmax �sj p(�sj(0), · · · , �sj(n − 1)|
I(0), · · · , I(n − 1), θ(0), · · · , θ(n − 1)) (4.13)

Instead of estimating the motion trajectory directly, we apply discriminative learning
to detect the spectrum �sj in the frequency domain by optimizing equation 4.13. The
proposed formulation benefits from three qualities:

• the DFT decomposes the trajectory space in orthogonal subspaces, which enables
the estimation of each component �sj(f) separately.
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• the DFT spectrum representation is compact, especially for periodic motion
allowing for efficient learning and optimization.

• the posterior distribution is clustered in small regions facilitating marginaliza-
tion and pruning of the higher dimensional parameter spaces.

We observed that in many real applications especially for the periodic motions, such
as the movements of heart valves, the posterior distribution is clustered in a small region
in the high dimensional trajectory space. Therefore, for each component �sj(f), we can
select a limited number of candidates from the previous components, �sj(0), · · · , �sj(f −1),
to reduce the search space. To prevent overfitting to the training image sequences, we use
a small set of local image features in the training stage and use cross-validation to select
the stable features.

4.4.2 Search Space Marginalization
Inspired by the MSL reviewed in section 4.2.3, we efficiently perform trajectory spec-
trum learning and detection in DFT subspaces with gradually increased dimensionality.
The intuition is to perform a spectral coarse-to-fine motion estimation, where the detec-
tion of coarse level motion (low frequency) is incrementally refined with high frequency
components representing fine deformations.

As described earlier, the motion trajectory is parameterized by the DFT spectrum
components �sj(f), f = 0, . . . , n − 1. In section 3.7.1 we introduced the search space
marginalization used for the learning 4.4.3 and estimation 4.4.4 of the trajectories. We
differentiate between two types of subspaces, individual component subspaces Σ(k) and
marginalized subspaces Σk defined as:

Σ(k) = {�s(k)} (4.14)
Σk = Σk−1 × Σ(k) (4.15)
Σ0 ⊂ Σ1 ⊂ . . . ⊂ Σr−1, r = |ζ| (4.16)

The subspaces Σ(k) are efficiently represented by a set of corresponding hypotheses
H(k) obtained from the training set. The pruned search space enables efficient learning
and optimization:

Σr−1 = H(0) × H(1) × . . . × H(r−1), r = |ζ|

4.4.3 Learning in Marginal Trajectory Spaces
The trajectory learning is performed in marginal spaces with increasing dimensionality
using the local-spatial-temporal features (see section 4.2.2). The training algorithm starts
by learning the posterior probability distribution in the DC marginal space Σ0. Subse-
quently, the learned detector D0 is applied to identify high probable candidates C0 from
the hypotheses H(0). In the following step, the dimensionality of the space is increased
by adding the next spectrum component (in this case the fundamental frequency, Σ(1)).
Learning is performed in the restricted space defined by the extracted high probability

80



4.4 Trajectory Spectrum Learning for Non-Rigid Motion Estimation

for each joint j ∈ 1, . . . , m − 1 in model
for each frequency k ∈ 1, . . . , r − 1 in spectrum

Generate positive and negative positions
Input: Detectors D0, . . . , Dk−1 and ground-truth spectrum S and clustered hypotheses H from
the training data
Output: Positive positions Posk and negative positions Negk

• compute the trimmed ground truth �sk spectrum:

�sk = [s(0), . . . , s(k), 0, . . . , 0]

• construct samples from the permutation of the candidates from Ck−1 with hypotheses
H(k), i.e., Ck−1 × H(k)

• positive positions are in a certain range distpos from the trimmed trajectory �Lk =
IFFT ( �sk) for the whole trajectory: ∀ �Ck ∈ Ck−1 × H(k), insert �Ck in Posk if
d(IFFT ( �Sk), IFFT ( �Ck)) < distpos, where d() is the distance function defined in
Eqn. 4.17. e.g. distpos = 1.5

• negative positions are further away than distneg from Xk: ∀ �Ck ∈ Ck−1 × H(k), insert �Ck

in Negk if d(IFFT ( �sk), IFFT ( �Ck)) > distneg, e.g. distneg = 3.5

Learn detector Dk for each component k
Input: Positive positions Posk and negative positions Negk

Output: Posterior distribution Dk

• extract 4D local-spatial-temporal features F 4D as described in section 4.2.2, based on the
positive positions Posk and negative positions Negk

• train the detector Dk using the probabilistic boosting tree based on the local-spatial-
temporal features

Figure 4.9: The outline of our marginal trajectory space learning algorithm.

regions and hypotheses set C0 × H(1) . The same operation is repeated until reaching the
genuine search space Σr−1.

For each marginal space Σk, corresponding discriminative classifiers Dk are trained on
sets of positives Posk and negatives Negk. We analyze samples constructed from high
probability candidates Ck−1 and hypotheses H(k). The sample set Ck−1 ×H(k) is separated
into positive and negative examples by comparing the corresponding trajectories to the
ground truth in the spatial domain using the following distance measure:

d( �Lj1, �Lj2) = max
t

‖ �Lj1(t) − �Lj2(t)‖ (4.17)

where �Lj1 and �Lj2 denote two trajectories for the j-th landmark. It is important
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for each joint j ∈ 1, . . . , m − 1 in model
for each frequency k ∈ 1, . . . , r − 1 in spectrum

Find candidates Ck for marginal spaces 0, . . . , k
Input: Candidates Ck−1, detector Dk, augmented hypothesis set H(k), and testing image se-
quence I
Output: Candidates Ck

• construct samples from the permutation of the candidates from Ck−1 with hypotheses
H(k), i.e., Ck−1 × H(k)

• evaluate the posterior probability on the testing image sequence I: ∀ Ck ∈ Ck−1 × H(k),
insert Ck in Ck if a high value is returned by the cost function defined in Eqn. 4.18

Figure 4.10: The outline of our parameter search algorithm.

to note that the ground truth spectrum is trimmed to the k − th component to match
the dimensionality of the current marginal space Σk. Positives are in a certain distance
distpos (e.g. 1.5mm) to the ground-truth over the whole trajectories. Negatives, however,
are selected individually for each time step, if the tested position in space and time is
larger than distneg (e.g. 3.5mm). Given the local-spatio-temporal features extracted from
positive and negative positions, the probabilistic boosting tree (PBT) is applied to train
a strong classifier Dk. The above procedure is illustrated in figure 4.9 and repeated by
increasing the search space dimensionality in each step, until detectors are trained for all
marginal spaces Σ0, . . . ,Σr−1.

4.4.4 Motion Trajectory Estimation

Figure 4.11: Diagram depicting the estimation of non-rigid landmark motion using tra-
jectory spectrum learning.

In this section we describe the detection procedure for object localization and motion
estimation of valve landmarks from unseen volumetric sequences. As discussed in sec-
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Figure 4.12: Diagram depicting the estimation of the comprehensive valve model. Esti-
mation in cardiac key phases, end-diastole and end-systole.

tion 4.4.1, the local non-rigid motion is parameterized by both magnitude and phase of
the trajectory spectrum �sj(f). The parameter estimation is conducted in the marginal-
ized search spaces Σ0, . . . ,Σr−1 using the trained spectrum detectors D0, . . . , Dr−1 as
illustrated in figure 4.11. Starting from an initial zero-spectrum, we incrementally esti-
mate the magnitude and phase of each frequency component �s(k). At the stage k, the
corresponding robust classifier Dk is exhaustively scanned over the potential candidates
Ck−1 ×H(k). The probability of a candidate �Ck ∈ Ck−1 ×H(k) is computed by the following
objective function:

p( �Ck) =
n−1∏
t=0

Dk(IDFT ( �Ck), I, t) (4.18)

where t = 0, . . . , n − 1 is the time instance (frame index). After each step k, the top
50 trajectory candidates Ck with high probability values are preserved for the next step
k + 1. The set of potential candidates Ck+1 is constructed from the permutation of the
candidates Ck × H(k+1) (see figure 4.10). The procedure is repeated until a final set of
trajectory candidates Cr−1, defined in the full space Σr−1, is computed. The final trajectory
is reported as the average of all elements in Cr−1 (see figure 4.10).

The procedures is applied for each anatomical landmark separately, to obtaine its
corresponding location and non-rigid motion �Lj(t), j = 0, · · · , 35 from an unseen sequence
of cardiac volumes I(t).

4.5 Comprehensive Model Estimation
The final stage in our hierarchical model estimation algorithm is the delineation of the
full morphology and dynamics of the heart valves:

argmaxM p(M |I, θ, �L) = argmaxM p(M(0), · · · , M(n − 1)|
I(0), · · · , I(n − 1), θ(0), · · · , θ(n − 1), �L(0), · · · .�L(n − 1))

(4.19)

The shape model is first estimated in the End-Diastole (ED) and End-Systole (ES)
phases of the cardiac cycle as presented in section 4.5.1. Then, in section 4.5.2 the non-
rigid deformation is propagated to the remaining phases using a learned motion prior.
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4.5.1 Estimation in Cardiac Key Phases
Using the previously estimated model parameters, a pre-computed mean shape of the
comprehensive valvular model is placed into the volumes I(tED) and I(tES) through a
thin-plate-spline (TPS) transform [20]. The initial estimate is then deformed to fit the
true valvular anatomy using learned object boundary detectors, regularized by statistical
shape models (see figure 4.12).

In section 3.7.2 we showed how a mean shape model X can be obtained from a train-
ing set of valvular models. The obtained mean shape is mapped into the image by a
TPS transformation estimated from the pair of corresponding landmarks. Given the set{
( �Lj, �Li), j = 0, · · · , 35

}
, where �Lj are the landmarks estimated in section 4.4 and �Lj the

corresponding anatomical location in the mean shape, the TPS transformation is defined
as follows:

TT P S( �Li) :=
[

A �b
0 1

] [
�Li

1

]
+

[ ∑n
i=1 �wiU(| �Li − �Li)

0

]
(4.20)

where A and b are the affine parameters, wi the non-affine parameters, and U the
TPS radial basis functions: U(r) = r2 log r2. The coefficients are chosen to minimize the
energy of a thin metal plate:

∫ ∫
R2

(
∂2TT P S

∂x2

)2

+ 2
(

∂2TT P S

∂x∂y

)2

+
(

∂2TT P S

∂y2

)2

dxdy (4.21)

Thus, the comprehensive model of each valve is initialized with the corresponding
mean shape transform TT P S(X).

The ASM framework [36] is commonly applied to shift boundary points of an initial
estimate towards locations with abrupt intensity variations under statistical shape con-
straints. Solely gradient-based detectors perform poorly in our case due to weak and noisy
edges, signal dropouts and low signal-to-noise ratio characteristic to cardiac images.

We have shown that learning based methods provide robust results [197, 191] when
utilizing both gradients and image intensities at different image resolutions and by incor-
porating the local context. Hence, the non-rigid deformation is guided by a boundary
detector Db learned using the probabilistic boosting-tree and steerable features. After
initialization, Db evaluates hypotheses for each discrete boundary point along its corre-
sponding normal direction. The new boundary points are set to the hypotheses with
maximal probability. To guarantee physiologically compliant results, the final model is
obtained after projecting the estimated points to the statistical shape space described in
section 4.4.

The above procedure is applied separately for the four valves in the end-diastolic
(ED) and end-systolic (ES) frames, I(tED) and I(tES), to estimate the comprehensive
valvular models Maortic(tED), Mmitral(tED), Mtricuspid(tED), Mpulmonary(tED), Maortic(tES),
Mmitral(tES), Mtricuspid(tES) and Mpulmonary(tES).
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Figure 4.13: Diagram depicting the estimation of the comprehensive valve model. Esti-
mation in the full cardiac cycle.

4.5.2 Motion Estimation
Starting from the detection results in the ED and ES phases, the model deformations are
propagated in both forward and backward directions using learned motion priors similar as
in [191] (see figure 4.13). The motion prior is estimated at the training stage using motion
manifold learning and hierarchical K-means clustering, from a pre-annotated database of
sequences containing one cardiac cycle each. First the temporal deformations are aligned
by 4D generalized procrustes analysis. Next a low-dimensional embedding is computed
from the aligned training sequences using the ISOMAP algorithm [154], to represent the
highly nonlinear motion of the heart valves. Finally, in order to extract the modes of
motion �Xm, the motion sequences are clustered with hierarchical K-means based on the
Euclidean distance in the lower dimensional manifold.

One-step forward prediction is used to select the correct motion mode for predicting
time step T . Therefore the previous shapes M(t) from time steps t = 1 · · · T − 1 and the
corresponding time steps in each of the motion modes �Xm are sub-sampled by a constant
factor k and the TPS transform TT P S computed. The mean error between the warped
shape and the corresponding shape on each motion mode is computed, and the motion
mode with minimum distance is selected for prediction:

ET P S( �Xm(t), M(t)) = k

N

N/k∑
j=1

|| �Xm

j

(t) − TT P S(M j(t))|| (4.22)

�X(T ) = argmin
m

1
T − 1

T −1∑
t=1

ET P S( �Xm(t), M(t)) (4.23)

where N denotes the number of points in M(t), �Xm

j

and M j are shape vertices, and
�X(T ) the selected motion mode. The shape prediction M(T )′ for the following frame
T is then computed by inverse TPS mapping M(T )′ = T −1

T P S( �X(T )) and the boundary
detector Db deforms the initialization to make it fit the data in the update step.

To ensure temporal consistency and smooth motion and to avoid drifting and outliers,
two collaborative trackers, an optical flow tracker and a boundary detection tracker Db, are
used in our method. The optical flow tracker directly computes the temporal displacement
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for each point from one frame to the next. Initialized by one-step forward prediction, the
detection tracker obtains the deformations in each frame with maximal probability. The
results are then fused into a single estimate by averaging the computed deformations and
the procedure is repeated until the full 4D model is estimated for the complete sequence.
In this way the collaborative trackers complement each other, as the optical flow tracker
provides temporally consistent results and its major issue of drifting is addressed by the
boundary detection along with the one-step forward prediction.

Thus, the entire patient-specific estimation of valvular models is concluded with the
determination of Maortic, Mmitral, Mtricuspid and Mpulmonary.

4.6 Results

Figure 4.14: Examples of the full heart estimation from cardiac CT.

In this section we demonstrate the performance of the proposed patient-specific pa-
rameter estimation framework of the cardiac valvular apparatus from multi-modal images.
Experiments are performed on a large and heterogeneous data set described in section
4.6.1. Ground-truth parameters are obtained by following a standardized process dis-
cussed in section 4.6.2. The performance of the object localization and rigid motion
estimation is presented in section 4.6.3. Subsequently, results of the trajectory spectrum
learning algorithm and comprehensive model estimation are given in section 4.6.4 and
4.6.5, respectively. Section 4.6.6 demonstrates the estimation robustness with respect to
multiple image modalities and inter-user variability. The overall performance is summa-
rized in section 4.6.7, while preliminary results for the full heart estimation (chamber
modeling from [197]) are illustrated in figure 4.14.

4.6.1 Data Set
Cardiac studies were acquired using CT, Ultrasound and MRI scanners from 476 patients
affected by a large spectrum of cardiovascular and valvular heart diseases. Among the
included pathologies are: regurgitation, stenosis, prolapse, aortic root dilation, bicuspid
aortic valve and Tetralogy of Fallot. The imaging data set includes 1330 cardiac CT, 5061
TEE and 83 CMR volumes, which were collected from medical centers around the world
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over a period of three years. Using heterogeneous imaging protocols, cardiac CT exams
were performed with Siemens Somatom Sensation or Definition scanners, TEE images
were acquired with Siemens Acuson Sequoia, Mountain View CA, USA and Philips IE33
ultrasound machines, and CMR data was captured with Siemens MAGNETOM Avanto
devices.

The ECG gated cardiac CT sequences include 10 volumes per cardiac cycle, where each
volume contains 80-350 slices with 153 × 153 to 512 × 512 pixels. The in-slice resolution
is isotropic and varies between 0.28 to 1.00mm with a slice thickness from 0.4 to 2.0mm.
TEE data includes an equal amount of rotational (3 to 5 degrees) and matrix array
acquisitions. A complete cardiac cycle is captured in a series of 7 to 39 volumes, depending
on the patient’s heart beat rate and scanning protocol. Image resolution and size varies
for the TEE data set from 0.60 to 1.00mm and 136× 128× 112 to 160× 160× 120 voxels,
respectively. CMR studies include isotropic, end-diastolic volumetric acquisitions, with
contrast agent in the right side of the heart. Capture ranges vary between 144× 256× 80
to 176× 256× 122 and resolution from 1.20 to 1.56mm. Figure 4.15 illustrates examples
of input cardiac data.

Please note that while cardiac CT acquisitions cover all valves, it is not the case
for the TEE exams, which usually focus either on the aortic or mitral valve. Similarly,
the CMR data is specifically acquired for the Right Ventricular Outflow Tract (RVOT)
and pulmonary valve analysis. Due to lack of annotation, results for the tricuspid valve
estimation are not reported.

(a) (b) (c)

Figure 4.15: Examples of cardiac data: (a) TEE study, (b) cardiac CT study. and (c)
CMR study.

4.6.2 Ground Truth
Considering the machine learning approaches adopted throughout this thesis, the ground
truth is a crucial component for our framework, equally important for the training and
testing of the proposed algorithms. Therefore, each volume in our data set is associated
with an annotation obtained through an expert-guided process that includes the following
steps:

• the non-rigid landmark motion model is manually determined by placing each
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anatomical landmark (see section 3.4) at the correct location in the entire cardiac
cycle of a given study.

• the comprehensive valve model is initialized through its mean model placed at the
correct image location, expressed by the thin-plate-spline transform estimated from
the previously annotated non-rigid landmark motion model (see section 4.5).

• the annotation of the comprehensive valve model is manually adjusted to delineate
the true valves boundaries over the entire cardiac cycle (see section 3.5).

• from the annotated non-rigid landmark motion model, the global location and rigid
motion model is determined as described in section 3.4.

The model parameters θ, L and M obtained from the annotation are considered the
ground truth values. Independent of the acquisition modality, the process is equally
performed for each valve contained in a given cardiac study. Three-fold cross validation
was performed for all experiments and reported results reflect performance on unseen,
test data.

Ten TEE cases were annotated by four distinct users for the purpose of conducting
inter-user variability study. Further, for a group of ten patients we obtained both, cardiac
CT and CMR studies and used that for an inter-modality study. The same experiment
was performed on four patients, which underwent both TEE and cardiac CT imaging.

(a) (b) (c)

(d) (e) (f)

Figure 4.16: Examples of global location and rigid motion estimation: (a) aortic valve in
TEE, (b) mitral valve in TEE, (c) pulmonary valve in CMR, (d) aortic valve in cardiac
CT, (e) mitral valve in cardiac CT, and (f) pulmonary valve in cardiac CT.
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4.6.3 Performance of the Object Localization and Rigid Motion
Estimation

The performance of the global location and rigid motion estimation, θ, described in section
4.3, is evaluated in three distinct experiments. First, the overall detection precision is
quantified at the box corners of the detected time-depenedent similarity transformation.
The average Euclidean distance between the eight bounding box points, defined by the
similarity transform parameters {(cx, cy, cz)i, (�αx, �αy, �αz)i, (sx, sy, sz)i, t} and the ground-
truth box is reported. Table 4.1 illustrates the mean errors and corresponding standard
deviations distributed over the four valves and employed image modalities. Examples of
estimation results are given in figure 4.16.

Mean / STD (mm) Aortic Valve Mitral Valve Pulmonary Valve Tricuspid Valve
TEE 4.78±3.26 5.00±2.02 - -

Cardiac CT 4.40±1.98 6.94±2.19 7.72±10.03 -
CMR - - 7.19±3.50 -

Table 4.1: Accuracy of the global location and rigid motion estimation, quantified from
the box corners and reported using the mean error and standard deviation distribution
over each valve and employed modality.

In a second experiment, the accuracy of the individual detection stages is investigated.
Absolute differences between estimated and ground truth parameters of the position,
orientation, and scale are reported in table 4.2. The 80% column represents the 80th
percentile of the error values. Please note that in order to speed up the algorithm,
estimation of global location and rigid motion is always performed on downsampled data
with an isotropic resolution of 3mm.

Mean / STD Median 80% t-Var
Position (mm) 3.09±3.02 2.33 3.23 0.016

Orientation (deg) 9.72±5.98 7.93 10.73 2e-05
Scale (mm) 6.50±4.19 5.09 7.81 0.02

Table 4.2: Accuracy of the global location and rigid motion estimation reported separately
for position, orientation and scale.

Finally, performance is analyzed with respect to the time-consistency of the similarity
transform parameters over the entire cardiac cycle. The robust clustering is demonstrated
by measuring the variation of the error in time, t − V ar, the last column in table 4.2.
Overall, the conclusion is that the global location and rigid motion detection is robust
and accurate enough to be performed prior to the non-rigid trajectory estimation.
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(a) (b) (c)

(d) (e) (f)

Figure 4.17: Examples of non-rigid landmark motion estimation: (a) aortic valve in TEE,
(b) mitral valve in TEE, (c) pulmonary valve in CMR, (d) aortic valve in cardiac CT, (e)
mitral valve in cardiac CT, and (f) pulmonary valve in cardiac CT.

4.6.4 Performance of the Non-Rigid-Landmark Motion Estima-
tion

This section evaluates the performance of the proposed Trajectory Spectrum Learning
algorithm (see section 4.4), which estimate the non-rigid landmark motion model, L,
presented in section 3.4. The accuracy is measured using the Euclidean distance between
detected and corresponding ground truth landmark trajectories. Table 4.3 demonstrates
the precision expressed in mean errors and standard deviations, distributed over the four
valves and three data sources. Note that reported values are obtained by averaging the
performance of individual landmarks with respect to the corresponding valve. Examples
of estimation results are given in figure 4.17.

Mean / STD (mm) Aortic Valve Mitral Valve Pulmonary Valve Tricuspid Valve
TEE 2.79±1.26 3.60±1.56 - -

Cardiac CT 2.72±1.52 2.79±1.20 3.50±2.70 -
CMR - - 4.30±3.00 -

Table 4.3: Accuracy of the non-rigid landmark motion estimation, quantified by the
Euclidean distance and reported using the mean error and standard deviation distribution
over each valve and employed modality.
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(mm) Mean / STD Median 80% Max
Optical Flow 4.06±1.2 3.89 5.09 8.19

Track by Detection 2.93±0.9 2.83 3.73 6.40
Trajectory Spectrum 1.81±0.7 1.73 2.91 5.31

Table 4.4: Performance comparison of three algorithms for the aortic and mitral valve
model from TEE.

(a) (b)

Figure 4.18: Error comparison between the optical flow, tracking-by-detection and our
trajectory-spectrum approach distributed over (a) time and (b) detected anatomical land-
marks. The curve in black shows the performance of our approach, which has the lowest
error among all three methods.

Quantitative values are compared to tracking by optical flow [42] and tracking by
detection [196]. For this experiments only aortic and mitral landmarks are considered,
which are estimated from a subset of 65 TEE studies. As presented in table 4.4 our
method yields the best results. We also analyzed the error distribution of our approach
and compared it to optical flow and tracking by detection. Figure 4.18(a) presents the
error distribution over the entire cardiac cycle, where the end-diastolic phase is at t = 0.
It can be seen that, although performed forward and backward, the optical flow approach
is affected by drifting. At the same time, the tracking-by-detection error is unevenly
distributed, which reflects in temporal inconsistent and noisy results. Figure 4.18(b) shows
the error distribution over the 18 landmarks of the aortic and mitral valves. Both tracking-
by-detection and optical flow perform significantly worse on highly mobile landmarks as
the aortic leaflet tips (landmarks 9, 10 and 11) and mitral leaflet tips (landmarks 15
and 16). The proposed trajectory spectrum learning demonstrates a time consistent and
model-independent precision, superior in both cases to the reference methods.
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Mean / STD (mm) Aortic Valve Mitral Valve Pulmonary Valve Tricuspid Valve
TEE 1.35±0.54 2.29±0.64 - -

Cardiac CT 1.22±0.38 2.02±0.57 1.60±0.20 -
CMR - - 1.90±0.20 -

Table 4.5: Accuracy of the comprehensive valve model estimation, quantified by the Point-
to-Mesh distance and reported using the mean error and standard deviation distribution
over each valve and employed modality.

4.6.5 Performance of the Comprehensive Valve Model Estima-
tion

The accuracy of the algorithm in section 4.5 to estimate the comprehensive valvular
model, M , (see section 3.5) is evaluated by utilizing the point-to-mesh distance. For each
point on a surface �p, we search for the closest point (not necessarily one of the vertices)
on the other surface to calculate the Euclidean distance. To guarantee a symmetric
measurement, the point-to-mesh distance is calculated in two directions, from detected
to ground truth surfaces and vice versa. Tabel 4.5 contains the mean error and standard
deviation distributed over the four valves and image types. Examples of estimation results
are given in figure 4.19

(a) (b) (c)

(d) (e) (f)

Figure 4.19: Examples of comprehensive valves model estimation: (a) aortic valve in TEE,
(b) mitral valve in TEE, (c) pulmonary valve in CMR, (d) aortic valve in cardiac CT, (e)
mitral valve in cardiac CT, and (f) pulmonary valve in cardiac CT.
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4.6.6 Inter-modality and Inter-user Variability Analysis
The inter-modality consistency of the model is demonstrated in two experiments. The
first experiment is based on a subgroup of four patients, which underwent both cardiac
CT and TEE. To demonstrate the inter-modal consistency of the proposed approach, we
estimated the aortic valve model and selected clinical measurements from both CT and
TEE scans, and compared the results. The included measurements are: aortic valve area,
inter-commissural distances, ventriculoarterial junction, valsava sinuses and sinotubular
junction diameters (see section 5.1). The experiment demonstrated a strong correlation
r = 0.98, p < 0.0001 and 0.97 − 0.99 confidence interval.

The second experiment is based on a subset of ten patients, which underwent both,
cardiac CT and CMR. Ground-truth and detected pulmonary trunk models from each
modality were compared using the abstract point-to-mesh measurement and clinical rel-
evant diameter measurements: RVOT, hinges and commissures. Results are summarized
in table 4.6 and illustrated in figure 4.20. A strong inter-modality correlation, r = 0.992,
p < 0.0001 and confidence of 98% was obtained for CT and CMR based on the pulmonary
trunk model.

Figure 4.20: Illustration of the inter-modality consistency; from left to right, pulmonary
trunk model in end-diastole from cardiac CT, CMR and CMR model projection (yellow
points) into the corresponding CT image.

Table 4.6: Model based intra-modality comparison between CT and MRI
(mm) Ground truth Estimation
RVOT 0.7 ± 0.5 3.8 ± 1.5
Hinges 1.2 ± 1.4 2.6 ± 4.7

Commissures 1.5 ± 1.2 3.2 ± 1.7
Point-to-mesh 1.4 ± 0.1 2.5 ± 0.7

Furthermore, an inter-user experiment was conducted on a randomly selected subset of
ten studies, which had their corresponding patient-specific valve models manually fitted by
four experienced users. The inter-user variability and automated model-based estimation
was computed on four measurements derived from the aortic and mitral valve models.
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These are the interannular angle and interannular centroid distance performed in end-
diastolic (ED) and end-systolic (ES) phases. The inter-user variability was determined by
computing the standard deviation for each of the four different user measurements and
subsequently averaging those to obtain the total variability. To quantify the error of the
model-based estimation, we compare the automatic measurement result to the mean of the
different users. Figure 4.21 shows the system error for the selected sequences with respect
to the inter-user variability. Note that except for 3% of the cases, the estimation error lies
within 90% of the inter-user confidence interval. Thus the variability of measurements
obtained by different users on the same data reveals feasible confidence intervals and
desired precision of the automated patient-specific modeling algorithm.

Figure 4.21: System error compared to the inter-user variability. The sorted automated
estimation error (blue bars) and the 80% (light blue area) and 90% (yellow) confidence
intervals of the user variability determined from the standard deviation.

4.6.7 Overall Performance Results
The performance evaluation experiments presented above were conducted using three-fold
cross-validation by dividing the entire dataset into three equally sized subsets, and sequen-
tially using two sets for training and one for testing. Overall, the estimation accuracy of
the patient-specific valvular parameters from multi-modal images is 1.73mm. On a stan-
dard PC with a quad-core 3.2GHz processor and 2.0GB memory, the total computation
time for the all three estimation stages is 4.8 seconds per volume (approx 120sec for aver-
age length volume sequences), from which the global location and rigid motion estimation
requires 15% of the computation time (approx 0.7sec), non-rigid landmark motion 54%
(approx 2.6sec), and comprehensive valvular estimation 31% (approx 1.5sec).

Figure 4.22 shows estimation results at different phases of the cardiac cyle and on
various aortic and mitral valve pathologies from different image modalities.

4.7 Conclusions
Decisions in the current healthcare practice rely to a large extend on data coming from
a multitude of non-invasive investigation techniques. In particular, morphological and
functional parameters captured from cardiac images are prerequisite for the management
of complex cardiovascular pathologies, such as diseases of the heart valves. From an image
analysis perspective, algorithms that incorporate domain specific prior knowledge have
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proven to be most adequate in dealing with the inherent complexity and limited image
quality specific to the medical image field.

We proposed a novel estimation framework, based on discriminative learning algo-
rithms, to extract patient-specific parameters of the valvular apparatus from multi-modal
cardiac images. In agreement with the hierarchical valvular modeling, introduced in chap-
ter 3, the parameter estimation includes three stages: object localization and rigid motion
estimation, trajectory spectrum learning for non-rigid motion estimation, and comprehen-
sive model estimation. Initially, the location and time-coherent rigid motion of each valve
is robustly determined from a series of cardiac volumes by a novel algorithm, which com-
bines efficient subspace searching with a RANSAC approach. The non-rigid landmark
model is estimated using another new method: Trajectory Spectrum Learning (TSL) in
combination with Local-Spatial-Temporal (LST) features. This algorithm estimates loca-
tion and motion simultaneously through a spectrum learning and detection formulation,
which operates in marginal trajectory spaces. In the final stage, the margins of the com-
plete valvular model are delineated by applying robust boundary detectors and motion
manifold learning.

The performance of the proposed approach was demonstrated on a large and het-
erogonous database, which contains 476 patients affected by various cardiovascular and
valvular diseases. Overall, the precision of the patient-specific estimation is 1.73mm at a
speed of 4.8 seconds per volume. Furthermore, the method was demonstrated to be robust
with respect to the three image modalities investigated (CT, Ultrasound and MRI), and
to inter-user variability computed from clinical parameters.
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(a)

(b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 4.22: Examples of estimated patient-specific models from TEE and CT data:
healthy valves from three different cardiac phases in (a) TEE from atrial aspect and (b)
CT data in four chamber view. Pathologic valves with (c) bicuspid aortic valve, (d) aortic
root dilation and regurgitation, (e) moderate aortic stenosis, (f) mitral stenosis, (g) mitral
prolapse, (h) bicuspid aortic valve with prolapsing leaflets, (i) aortic stenosis with severe
calcification and (j) dilated aortic root.
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CHAPTER 5

Clinical Applications

The methodology proposed in the previous chapters lies at the cornerstone of advanced
clinical applications for treatment support of patient with valvular heart disease. The
patient-specific model obtained from multiple image modalities enables a variety of non-
invasive analysis procedures, which can lead to reduced therapeutical costs and complica-
tion risks, as well as improved treatment outcome. To demonstrate the practical benefit
of the proposed technology, this chapter introduces three novel applications in the context
of valvular heart disease management.

Initially, a new paradigm for the clinical quantitative and qualitative evaluation of the
valvular apparatus is proposed in section 5.1, which intends to replace manual analysis
from 2D images with automated model-based quantification from 4D data. Subsequently,
a novel approach to learn discriminative distance functions from anatomical geometri-
cal data is presented in section 5.2. This is applied to provide robust and automated
shape-based diagnosis of valvular diseases and patient selection for percutaneous valve
implantations. Finally, a computational decision support framework for percutaneous
valve procedures is introduced in section 5.3. By combining patient-specific models with
physical models of devices, we demonstrate and validate in-silicio valve implantation with
the scope of predicting the success of percutaneous treatments under various conditions.

5.1 Quantitative and Qualitative Analysis
It is axiomatic that precise quantification of the anatomy and function is fundamental in
the medical management of valvular heart disease. Both, the American College of Car-
diology (ACC) and European Society of Cardiology (ESC) have published guidelines for
the management of patients with valvular heart disease, which describe in detail decision
schemes and key parameters. Anatomical, functional and hemodynamical valve measure-
ments are important throughout the clinical workflow for diagnosis, severity assessment,
patient and treatment selection, surgery planning and risk stratification.
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Valvular dimensions, such as the aortic valve area, mitral valve area and mitral an-
nulus area are routinely used to evaluate the overall structural and functional condition.
Further, advanced analysis through independent aortic sinus volumes or mitral prolapse
distribution is required for the patients that are candidates for surgical treatment. Dimen-
sions of the aortic root at the ventriculoarterial junction, valsalva sinuses and sinotubular
junction as well as the inter-commissural distance and inter-ostia angle are crucial in plan-
ning for aortic valve replacement and repair surgery [38]. Analogous, mitral valve repair
procedures require measurements of the mitral annulus and leaflets, such as the mitral
annular circumference and anterolateral-posteromedial diameter.

Due to the strong anatomical, functional and hemodynamic inter-dependency of the
heart valves, VHD does not affect only one valve, but rather several valves are impaired.
Recent studies demonstrate strong influence of pulmonary artery systolic pressure on the
tricuspid regurgitation severity [112]. In [88, 158] the simultaneous evaluation of aortic
and mitral valves is encouraged, given the fibrous aortic-mitral continuity, which anchors
the left side valves and facilitates the reciprocal opening and closing motion during the
cardiac cycle. Thus, measurements such as the centroid distances and angles between the
aortic-mitral and pulmonary-tricuspid valves can provide additional pathophysiological
information.

Emerging percutaneous and minimally invasive valve interventions require exten-
sive non-invasive assessment, as clinicians have restricted direct access to the sensitive
anatomies [3, 130]. For instance, precise knowledge of the coronary ostia position pre-
vents hazardous ischemic complications by avoiding the potential misplacement of aortic
valve implants. Data about the integral three-dimensional configuration of critical struc-
tures (ostia, commissures, hinges, etc.) and their relative location over the entire cardiac
cycle is mandatory.

5.1.1 Model-based Valvular Quantification
We proposed a paradigm shift in the clinical evaluation of the valvular apparatus, which
aims to replace manual analysis based on 2D images with automated model-based quan-
tification from 4D data. At the center of the proposed approach is the dynamic valvular
model introduced in chapter 3, which captures comprehensive patient specific informa-
tion of the morphology and functions from multi-modal images following the methods
described in chapter 4. The explicit mathematical model is exploited to express a wide-
ranging collection of quantitative parameters that support the overall clinical decision
making process. In comparison with the gold standard, which processes 2D images and
performs manual measurements, the benefits of the proposed model-based analysis are:

• Precision - increased by robust modeling and measuring the natural three-
dimensional valve anatomy.

• Efficiency - by automated quantification that outperforms manual measuring in
terms of required analysis time.

• Reproducibility - through robust learning-based technology and avoidance of user-
dependent manipulation.
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Table 5.1: Valvular Measurements automatically computed from the patient-specific
model over the entire cardiac cycle

Aortic Root
Ventriculoarterial Junct. �,

∫
,∨ [174]

Valsava Sinuses �,
∫
,∨ [174]

Sinotubular Junct. �,
∫
,∨ [174]

Commissure-Hinge Plane ∠
Sinus Volumes

Aortic Landmarks
Commissure-Hinge Distance [174]
Hinge-Ostium Distance [3]
Ostium-Commissure Distance
Inter-Commissural ∨,∠ [174]
Inter-Ostia ∠

Aortic Leaflets
Aortic Valve

∫
[3]

Coaptation Height [174]
Leaflet Height [3]
Effective Cusp Height [3]
Leaflet Free Edge ∨ [3]
Leaflet-Ostium Distance

Mitral Annulus
Annular

∫
,∨ [19, 174]

Annular Deviation Ratio[90]
Annular Non-Planarity ∠ [101]
Sphericity Index

Mitral Landmarks
Inter-Commissural Distance[19]
Inter-Trigonal Distance[19]
Annular-Posterior �[19]
Anterolateral-Posteromedial �[19]
Annular-Commissural Ratio[157]

Mitral Leaflets
Anterior/Posterior Surface

∫
,∨

Valve Opening
∫
[19]

Valve to Area Ratio
Tenting Height and Volume[19, 147]

Aortic-Mitral
Centroid Distances [174]
Inter-Annular ∠ [174]

Pulmonary Valve
RVOT �[139]
Min/Max Trunk �[139]
Bifurcation �[139]

Tricuspid Valve
Valve

∫
Pulmonary-Tricuspid
Centroid Distances

� - diameter,
∫
- area, ∨ - circumferential length, ∠ - angle.

• Functional - assessment from dynamic measurements performed over the entire
cardiac-cycle.

• Comprehensive - analysis including complex parameters such as shape curvatures,
deformation fields and volumetric variations.

• Integrated - evaluation of inter-valvular morphological and functional coupling
from the complete valvular model.

A compilation of measurements rendered together with collaborating cardiologists, car-
diac surgeons radiologists and anesthesiologists is presented in table 5.1. The integrated
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(a)

(b)

Figure 5.1: Examples of aortic-mitral morphological and functional measurements. (a)
From left to right: aortic valve model with measurement traces, aortic valve area, aortic
root diameters and ostia to leaflets distances. (b) Mitral valve with measurement traces,
mitral valve and annulus area, mitral annular deviation in ED and ES and aortic-mitral
angle and centroid distance.

analysis capabilities simultaneously serve for diagnosis, severity assessment, patient se-
lection, surgery planning for valve replacement or repair and planning for percutaneous
interventions. Figure 5.1 illustrates model-based quantification examples for the aortic-
mitral complex.

It is important to notice that the quantification potential of the proposed method is
not limited to the above mentioned measurements. Through the consistent and compre-
hensive spatial and temporal representation, the introduced system offers unique analysis
features, which facilitate decisions during the whole clinical workflow. For the first time,
functional and morphological measurements can be efficiently performed for individual
valve patients and potentially improve their clinical management in terms of procedure
costs, complication risks and treatment outcome.

In the following we present a series of clinical validation experiments performed jointly
with various clinical collaborators and published in several medical articles [26, 55, 71, 32].
Currently, prototype systems based on the technology presented in this thesis are installed
in multiple leading cardiac centers around the world for clinical evaluation purposes.

5.1.2 Results on Left-Side Valve Measurements
Aortic Valve Opening Area Analysis from cardiac CT: The usefulness of cardiac
CT to assess the aortic valve opening area (AVA) has been exhaustively documented [66].
However, manual valve planimetry is cumbersome and time-consuming. In the following
experiment we evaluated the accuracy and time-effectiveness of automated model-based
AVA computation compared to manual planimetry. Retrospectively ECG-gated cardiac
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(a) (b) (c) (d)

Figure 5.2: Aortic Valve Area measured manually from 2D images versus the automatic
3D model-based quantification: (a), (b) and (c) show the manual measurement from three
different 2D TEE images of the same patient, which demonstrate the sensitivity of the
current gold standard approach to the position of the 2D-dimensional section. (d) shows
the proposed precise and reproducible 3D model-based measurement.

CT data of 32 patients scanned with dual-source CT (n=21) or 64-slice CT (n=11) were
included. Data were reconstructed at 10% increments across the cardiac cycle with 1.5mm
section thickness and 1mm increment. Two independent observers performed manual
planimetric measurements by tracing the maximal systolic orifice on double oblique short
axis multiplanar reconstructions. The same data were then analyzed using an automatic
model-based method. The leaflets’ geometries during maximal opening define the course
of the free margins. The encompassed AVA can be computed as a surface integral.

Data was analyzed using linear regression and Bland Altman plots. Interobserver and
intermethod variances were calculated. Analysis times for both methods were recorded.
Mean AVA by CT planimetry was 3.62 ± 1.21cm2. Mean AVA derived from the model
was 3.74± 1.34cm2. Excellent correlation was found between planimetric and automated
quantification (r=0.963, p<0.0001). Bland Altman plots revealed a systematic bias of
0.12 ± 0.38cm2. Intermethod variance did not differ significantly from interobserver
variance (0.28 vs 0.25cm2, p>0.05), placing 82% of model measurements between user
measurements. Mean analysis time was significantly (p<0.05) reduced for model-based
measurements (mean 125sec), compared with manual planimetry (mean 230sec). The
proposed model-based method allows automated, patient specific morphologic and dy-
namic quantification of AVA. Measurement results are within the interobserver variance
of manual planimetry. Quantification of AVA derived from an aortic valve model enables
fast, accurate assessment in excellent agreement with manual planimetry and has the
potential to improve cardiac imaging workflow.

Aortic Valve and Root Analysis from cardiac CT and 3D TEE: Accurate
anatomical and functional assessment of AV and aortic root is crucial for understanding
the pathophysiology of abnormalities and for managemening decision-making in patient
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with aortic valve disease and aortic aneurysm. The aim of this study was to evaluate the
feasibility of the modal-based method to assess the aortic valve and aortic root from vol-
umetric 3-D Echo compared to CT. Volume-rendered 3-D TEE data were obtained using
V5M transducer, Siemens Sequoia. Volumetric CT images were acquired using 64-Slice
CT(Avanto, Siemens). We dynamically measured the AVA(cm2), diameter of sinotubular
junction(d-STJ, mm), sinus of Valsalva(d-SV, mm) and basal ring(d-BR, mm). 364 CT
volumes from 41 patients and 23, 3-D TEE volumes from 15 patients with normal to mild
AR were acquired. 3-D TEE data about AV and root showed strong correlation with CT
data, as illustrated in table 5.2. This novel automated model-based approach provides
accurate dimensions of the AV and the aortic root and may aid in valve and root repair
procedures (see figure 5.2).

Table 5.2: Comparison of AVA and aortic diameter between cardiac CT and 3D TEE
3D TEE cardiac CT r-value p-value

AVA (cm2) 3.09 ± 0.85 4.33 ± 1.36 0.707 0.013
Max. Ventriculoarterial Junct. � (mm) 2.42 ± 0.27 2.74 ± 0.36 0.982 0.018
Max. Valsava Sinuses � (mm) 3.16 ± 0.32 3.92 ± 0.46 0.993 0.007
Max.Sinotubular Junct. � (mm) 2.69 ± 0.26 3.19 ± 0.21 0.775 0.042

Aortic Valve and Root in Aortic Regurgitation from 3D TEE: In this study
we applied the model-based analysis approach to automatically quantify the aortic valve
and the root from 3-D TEE data in patients with aortic regurgitation (AR). Volumetric
3-D TEE of the AV and proximal root from 15 patients with AR was analyzed. The
conventional measures were compared to 2-D, and the non-conventional measures were
compared to known normal database. Conventional measures- 2-D and the model-based
measures of AV area (r=0.98), STJ diameter (r=0.73) and SV diameter (r=0.79) showed
good correlation; annular diameter was discordant (r=0.58) consistent with its complex
geometry in AR. Nonconventional measures (abnormal vs. normal, mm) by the model-
based method - Inter-commissural distance (mm) was increased (Left: 25.9+3 Vs. 25,
Right: 27.1+3 Vs. 25.9 and Non: 27.2+3 Vs. 25.5 ), Annulus to coronary ostia distance
(mm) was increased (Right: 19.3+3 Vs. 17.2+3 and Left 16.9+3 Vs. 14.4+3); also, leaflet
tip to ostia minimum distance was 5+1.6 (R) and 8+1.2 (L). The directly measured
3-D ERO in mild AR was 10 − 20mm2 and moderate AR was 30mm2. Automated
quantification of the aortic and the root yields vital and incremental measures which may
be valuable to guide surgical and percutaneous interventions to improve outcomes.

Left Valve Analysis: Table 5.3 shows the accuracy for the Ventriculoarterial Junction,
Valsava Sinuses and Sinotubular Junction aortic root diameters as well as for Annular
Circumference, Annular-Posterior Diameter and Anterolateral-Posteromedial Diameter
of the mitral valve. The Bland-Altman plots [17] in figure 5.3 demonstrate a strong
agreement between manual and model-based measurements for aortic valve areas and
mitral annular areas.
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(a) (b) (c) (d)

Figure 5.3: Examples of model-based aortic valve measurements: (a) aortic annular di-
ameter (ventriculoarterial junction), (b) sinus width, (c) inter-commissural distances, and
(d) coronary ostia to leaflet tip distances.

Moreover, from a subset of 19 TEE patients, we computed measurements of the aortic-
mitral complex and compared those to literature reported values [174]. Distances be-
tween the centroids of the aortic and mitral annulae as well as interannular angles were
computed. The latter is the angle between the vectors, which point from the highest
point of the anterior mitral annulus to the aortic and mitral annular centroids respec-
tively. The mean interannular angle and interannular centroid distance were 137.0±12.2
and 26.5±4.2, respectively compared to 136.2±12.6 and 25.0±3.2 reported in the litera-
ture [174].

Table 5.3: Precision for various dimensions of the aortic-mitral coupling along with Bland-
Altman plots for the aortic valve area and mitral annular area. The aortic valve experi-
ments were performed on CT data from 36 patients, while the mitral valve was evaluated
on TEE data from 10 patients, based on the input of a expert cardiologists.

cm Mean STD
Ventriculoarterial Junct. � 0.137 0.017

Valsava Sinuses � 0.166 0.043
Sinotubular Junct. � 0.098 0.029

Annular ∨ 0.846 0.3
Annular-Posterior � 0.325 0.219

Anterolateral-Posteromedial � 0.509 0.37

� - diameter, ∨ - circumferential length.

Case Study: We studied our quantification performance on a patient who underwent
a mitral annuloplasty procedure, intended to reduce mitral regurgitation. Pre- and post-
TEE exams were performed before and after the successful mitral valve repair. The
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measurements of the mitral valve area in figure 5.4(a) demonstrates the regurgitant mitral
valve to be cured after procedure. Although not explicitly targeted, the intervention had
an indirect effect on the aortic valve, also illustrated in figure 5.4(b) by the annular and
valvular areas. The observation concurs with clinical findings reported in [88, 158, 174]
and shows the converse effect to the one reported by [168], where an intervention on the
aortic affected the mitral valve.

(a) (b)

Figure 5.4: Measurements obtained before (dotted lines) and after (solid lines) mitral
annuloplasty: (a) Aortic (blue) and Mitral (red) valvular area, (b) Aortic (blue) and
Mitral (red) annular area.

5.1.3 Results on Right-Side Valve Measurements
Percutaneous Pulmonary Valve Implantation: The reliable assessment of the
three-dimensional geometry of the right ventricular outflow tract and pulmonary trunk
is essential for preprocedural assessment and patient selection in potential PPVI patients
[140]. Thus, Schievano et al. [139] proposed a set of measurements to characterize the
safe anchoring location, size and shape of the valve implant [18]. These include diameters
at the RVOT and bifurcation levels as well as MIN/MAX values of the pulmonary trunk.
PPVI intervention is avoided for patients with RVOT diameter > 22mm due to device
limitations [21, 140, 139, 84].

To demonstrate the applicability and precision of the proposed quantification for the
management of PPVI patients, in table 5.4 we compared measurements derived from the
modal to expert measurements and literature reported values [119].

(mm) Observed Literature
Bifu. Diam. 30.2 ±1.6 30.7 ±3.6

(mm) Mean Err. Std. Dev.
Min Diam. 1.99 0.64
Max Diam. 4.06 2.09
Bifu. Diam. 1.04 0.65

Table 5.4: Model-based quantification error with respect to literature(upper table) and
expert measurements(lower table).
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Right Valves Analysis: Important clinical parameters are extracted from the person-
alized model in the right heart. These include the evaluation of the tricuspid function
quantified by the valve opening area and pulmonary-tricuspid coupling through the dis-
tance of the valvular centers. Quantitative comparison is shown in figure 5.5 by comparing
ground truth and model-based measurements, demonstrating a strong correlation.

Figure 5.5: Bland altman plots for a) right ventricle output tract diameter, b) pulmonary
valve bifurcation diameter, c) tricuspid valve area and d) distance between pulmonary
and tricuspid valve

Case Study: We show quantitative comparison between a healthy patient and a post-
operative patient who underwent a Ross operation. Several clinical measurements ex-
tracted from the personalized aortic and pulmonary valve model, demonstrated in figure
5.6), confirm a successful outcome since no regurgitation is observed at the aortic valve.

Figure 5.6: Aortic (AV) and pulmonary valve (PV) area,mean commissure-hinge plane
height and mean leaflet height obtained from a normal patient (solid lines) and a post
Ross operation patient (dotted line). The red graph is representing the aortic valve and
the blue the pulmonary.

5.1.4 Discussion
We proposed a novel paradigm for the clinical analysis of the valvular apparatus, which
replaces manual measurements from 2D images with model-based quantification from
4D data. The approach is based on patient-specific parameters extracted from multi-
modal cardiac images. In comparison with the gold standard, our method provides, fast,
precise, reproducible, functional and comprehensive measurements of the heart valves.
The modal-based morphological and functional quantification can potentially reduce costs
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and complication risks as well as improved therapeutical outcome in the context of valvular
heart disease management.

5.2 Computer Aided Diagnosis, Patient Selection
and Case Retrieval

Valvular heart diseases (VHD) represent an important public-hearth problem notably
common in elderly population [118]. Among all cardiovascular diseases, treatment of VHD
is most expensive and has the highest in-hospital death rate [134] due to elaborate, time
consuming and potentially inaccurate diagnostic procedures and complex interventions
into one of the most essential physiological systems of the human body. Furthermore, in-
formation on the morphology of the heart valves has been mainly obtained from explanted
specimens or animal models [37] and reported standard dimensions vary considerably. To
date, quantitative and qualitative assessment of the valves is mainly based on manually
processed 2D imaging and aggregation of isolated measurements subject to potential in-
accuracies [167]. Inconclusive or discordant clinical finding enforce invasive investigation
methods, significantly increasing procedures’ risks and costs.

Recent advances in scanner technology enable for 4D imaging of the heart with CT,
MRI and Ultrasound equipment. These modalities are well suited for the non-invasive
assessment of valve morphology and dynamics. However, due to the lack of efficient and
convenient tools, clinical decisions still rely on manual measurements in 2D image planes,
derived from volumetric acquisitions, which is error prone and time consuming. These
significantly influence the quality of diagnosis and treatment as well as interventional
planning and follow up evaluation.

We propose a generic method on how to automatically derive high-level clinical infor-
mation from geometric valve models using learning based discriminative distance func-
tions. The inference is performed in a comprehensive feature space, which incorporates
the complex morphologic and functional information of the valves by applying robust sta-
tistical methods. The method described in section 5.2.1 is generic and flexible and enables
for arbitrarily learning of similarities among shapes based on any meaningful concept. In
our context the patient-specific valve models extracted from 4D cardiac CT, 4D trans-
esophageal Ultrasound and 3D isotropic MRI are leveraged to provide advanced clinical
decision support. Shape-based diagnosis and treatment guidance are demonstrated in
section 5.2.2 for the aortic valve. Section 5.2.3 introduces shape-based patient selection
for percutaneous pulmonary valve implantation (PPVI). Results and discussions are given
in section 5.2.4 and section 5.2.5, respectively.

5.2.1 Learning Discriminative Distance Functions
Generally we address two tasks: retrieval of similar cases using a learned distance function,
which measures the similarity of two particular shapes, and a binary classification problem,
based on geometric valve models and derived features. The second task can actually be
formulated using the first[162, 160]. Therefore, instead of learning a classifier directly,
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we choose to divide the learning process into two sequential steps, i.e. distance learning
followed by classification or clustering.

Given the geometric information provided by the valvular models introduced in chapter
3 and estimate from patient-specific cardiac images in chapter 4, the problem can be
formulated as follows:

ŷ = argmax︸ ︷︷ ︸
y∈{−1,+1}

(p(y|C)) C = (�p0, · · · , �pN , F0, · · · , FQ) (5.1)

where y ∈ {−1,+1} are the application specific labels and each model instance is
represented by a parameter vector C, composed out of N surface vertices �pi ∈ M (see
Section 3.5) and Q application dependent features Fi derived from the model.

Instead of learning directly the posterior probability, a distance learning followed by
the actual classification is performed, where each step requires search in a less complex
functional space than in the immediate learning [160]. Learning a distance function helps
to combine the power of strong learners with the transparency of nearest neighbor clas-
sification [13]. Moreover, learning a proper distance function was shown to be especially
helpful for high dimensional data with many correlated, weakly relevant and irrelevant
features, where most traditional techniques would fail. Also, it is easy to show that
choosing an optimal distance function makes classifier learning redundant.

Currently, in distance based classification, canonical distance functions are used most
commonly. Today in many areas including computer vision the Euclidean distance is one
of the most widely used, though it is well known that its use is justified only when the
data distribution is Gaussian. During the last three decades, the importance of learning
a proper distance function in machine learning has been gradually acknowledged [13].
Different imaging applications have been considered, including image retrieval, object
detection [100], motion estimation and image registration [199].

Equivalence constraints: Historically, the research on distance function learning has
started from supervised learning of distance functions for k-nearest neighbor learning in
the original feature space C representation. Today the most commonly used represen-
tation, especially in computer vision, is the one based on equivalence constraints [67].
Interestingly, the distance learnt from labels is almost always metric, while learning from
weak representations such as equivalence constraints usually provides more flexibility for
learning arbitrary functions.

Equivalence constraints are represented using triplets (C1, C2, y), where C1 and C2

are feature vectors (see Equation. 5.1) and y ∈ {+1, −1} is a label indicating whether
the two instances are similar or dissimilar [67].

Learning from these triplets is often called learning in the product space [67, 13, 199].
Another common alternative is to learn in the difference space, the space of feature vector
differences [194]. While both representations demonstrate promising empirical results in
different contexts, there is no understanding which representation is better and when.

Commonly a binary distance function is the output from learning from equivalence
constraints, predicting only whether the two instances are similar or dissimilar. However,
this can be combined with the signed margin of margin-based classifiers such as SVM
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and boosting as the required distance function. The most popular learning algorithm in
the area of distance function learning from weak representations is boosting [53]. Ran-
dom Forests also demonstrated promising results on public benchmark datasets and are
normally faster than boosting. Both product and difference spaces were implemented in
our framework. The signed margin of models constructed using AdaBoost and Random
Forests is used as the required distance function for our experiments with equivalence
constraints.

The intrinsic Random Forest distance function: For a Random Forest (RF)
learned for a certain classification problem, the proportion of the trees where two in-
stances appear together in the same leaves can be used as a measure of similarity between
them [23, 160]. For a given forest f the similarity between two instances C1 and C2 is
calculated as follows: 1) the instances are propagated down all K trees within f and their
terminal positions z in each of the trees (z1 = (z11, · · · , z1K) for C1, similarly z2 for C2)
are recorded, and 2) the similarity between the two instances then equals to (I is the
indicator function):

S(C1, C2) = 1
K

K∑
i=1

I(z1i = z2i) (5.2)

Neighborhood graphs for patient similarity visualization: Neighborhood graphs
provide an intuitive way of patient similarity visualization with an entity-relationship
representation [162]. In a relative neighborhood graph (RNG), two vertices corresponding
to two instances C1 and C2 in a data set are connected with an edge, if there is no other
instance C3 which is closer to both C1 and C2 with respect to a certain distance function
d [79]:

∀C3 : d(C1, C2) ≤ max{d(C1, C3), d(C2, C3)} (5.3)

An important advantage of the RNG visualization is that graphs are always planar or
close to planar and connected, while nodes have a reasonable small degree in contrast to
related concepts like directed nearest neighbor or distance threshold graphs. In compari-
son to the well known heatmaps, they are easier to read with the more intuitive node-link
representation, they allow visualizing additional features or even image thumbnails at
nodes, and they have a flexible layout allowing to naturally visualize clusters, enlarge
nodes, and filter out a set of nodes and edges [162].

5.2.2 Diagnosis and Severity Assessment of Aortic Valves
The accurate assessment of the disease severity is crucial for clinical decision making in
patients with aortic valve disease. Several indices have been used for this purpose, mostly
based on echocardiography imaging, including aortic valve area, transvalvular velocity
and gradient, left ventricular ejection fraction, vena contract width and regurgitant orifice
area. Unfortunately, these indices are all potentially affected by the haemodynamic state
of the patient and other inaccuracies, which makes assessment especially for difficult cases
as severe asymptomatic or moderate symptomatic patients, difficult [167].
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(a) (b) (c)

Figure 5.7: (a) Pathological aortic valves in CT: dilated aortic root and stenotic and
calcified aortic valve. (b) Pathological aortic valves in TEE: bicuspid aortic valve and
moderate stenotic valve. (c) Relative neighborhood graph with health (blue) and diseased
(red) entries.

Using the method presented in section 5.2.1, we formulate a robust and reproducible
shape-based diagnosis solution, which aggregates the complete morphological information
of patient-specific aortic valves. From the model parameters Maortic (see section 3.5),
we learn a distance based function and apply in conjunction with a clustered RNG to
discriminate between two groups of patients: 1) normal - mild and 2) moderate - severe
aortic valve dysfunction. A severity score can be inferred from the similarity score between
the subject case and the available training population. Figure 5.7 illustrates representative
aortic valve pathology along with the obtained shape-based classification.

Furthermore, the coupling of the aortic and mitral valvular annuli through fibrous
tissue is evident and leads to strong functional and morphological interdependency. Recent
studies emphasize their correlation given by the anatomy [88, 158]. We propose to exploit
this mutual morphological correlation among the different valves, for retrieval of similar
healthy valves for a diseased case, in order to define precise and personalized targets of
an intervention.

The following example illustrates the proposed use case: in case of a patient with a
diseased mitral valve (MV), affected by annular dilation, and a healthy aortic valve (AV),
we retrieve a case with a similar healthy AV and a healthy MV. The latter can then be
used to determine the annular dimensions of the formerly healthy MV for mitral annu-
loplasty, i.e. the system provides a suggestion to the surgeon, which dimension of the
prosthesis would actually be the best fit, such that the surgeon has an additional statisti-
cally based decision support, rather than having to rely on generic indication from clinical
guidelines, publications and personal experience only. Moreover another interesting use
case would be the design of personalized prostheses instead of selecting an optimal generic
one, which would fit and reflect the formerly healthy valve’s morphology and performance
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(a) (b) (c) (d) (e) (f)

Figure 5.8: Types of pulmonary trunk morphologies: (a) pyramidal shape, (b) constant
diameter, (c) inverted pyramidal shape, (d) narrowed centrally but wide proximally and
distally, (e) wide centrally but narrowed proximally and distally [139]. (f) Relative neigh-
borhood graph with unsuitable (blue cluster) and suitable (red cluster) individuals.

even better.

5.2.3 Patient Selection in PPVI

Until recently, pulmonary valve replacement has been exclusively performed trough open
heart surgery [21], with all associated risks: high morbidity, incidence of neurological
damage, stroke and repeated valve replacement [127]. Novel percutaneous pulmonary
valve implantation (PPVI) techniques [140], offer a less traumatic and safer treatment of
the pulmonary valve [27].

The selection of patient for PPVI treatment is largely based on the morphology of
the pulmonary trunk [18]. Intervention in unsuitable anatomies exposes patients to un-
necessary invasive catherization, for which the implanted device has a high probability of
proximal device dislodgment. In an effort to standardize the selection process, Schievano
et al. [139] proposed a classification of various morphologies, based on geometric measures
and appearance of the right-ventricular outflow tract and the pulmonary trunk, into five
groups: pyramidal shape (type I), constant diameter (type II), inverted pyramidal shape
(type III), wide centrally but narrowed proximally and distally (type IV), and narrowed
centrally but wide proximally and distally (type V) (see figure 5.8). Patients from type I
are considered to be unsuitable for PPVI due to the narrow artery and high probability of
device migration. Therefore the main challenge lies in discriminating anatomies of type I
from other four classes.

The methodology from section 5.2.1 is applied to shape features extracted from the
pulmonary trunk model Mpulmonary (see section 3.5), estimated for specific individuals
from cardiac images. To provide automated patient selection, a discriminative distance
function learned using Random Forest in the product space is applied to classify subjects
into two classes: PPVI suitable and PPVI unsuitable (see figure 5.8(f)).
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Figure 5.9: Classification accuracy for the different learning techniques applied to Aortic
Valve Disease classification and PPVI suitability selection.

5.2.4 Results

The performance of the proposed method was evaluated on 4D cardiac CT and trans-
esophageal echocardiographic data from 288 patients for the aortic valve diagnosis appli-
cation (section 5.2.2) and 4D cardiac CT and 3D isotropic MRI data from 102 patients
for the pulmonary trunk suitability selection for PPVI (section 5.2.3), with significant
variation in image resolution and capture ranges.

For the aortic valve diagnosis experiment the evaluation set includes 234 healthy and
54 diseased valves, where one ore multiple attributes of the following could be observed:
regurgitation, stenosis, bicuspid malformation, dilation. In total 288 volumes associated
with manual annotations where processed. For the PPVI suitability selection experiment
the evaluation set includes 50 patients with pulmonary trunk geometry of type I (i.e.
unsuitable for PPVI) and 52 patients with suitable geometries, totaling in 102 volumes
and associated manual annotations. The population in both datasets covers a great range
of ages, many different disease and appearance patterns, such as calcified aortic valves
(typically a condition in elderly patients), but also bicuspid aortic valves, which is a
congenital malformation (see figure 5.7). Each type of pulmonary trunk geometry (see
figure 5.8) is represented, where many diseased cases are children, while a large portion
of healthy valves was modeled from mature patients. Therefore besides pathology and
individual variation yet another important factor, which increases the data heterogeneity
is patient’s age, influencing the valve morphology and complicating the task of learning
from such data.

The accuracy of the model based classification presented in figure 5.9 is validated by
10-fold cross-validation. The figure demonstrates the classification accuracy of k-Nearest
Neighbors (kNN), AdaBoost (AB) and Random Forests (RF) in the canonical space, as
well as AdaBoost and Random Forests[23] in the product and difference spaces (AB-pr,
RF-pr, AB-di and RF-di) and intrinsic RF distance (RF-dist). Prior to learning the valve
shapes were normalized by their individual size and aligned with procrustes analysis,
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(a) (b) (c)

Figure 5.10: Discriminant anatomical regions for (a,b) aortic valve disease and (c) pul-
monary trunk morphology: blue - less discriminate, red - more discriminate.

to cancel out translation, orientation and scale and minimize the effects of age. Each
cross-validation run was performed on 200 (aortic) and 600 (PPVI) pre-selected features
respectively, which were determined using the Gain-Ratio feature filter.

Learning from equivalence constraints improves the accuracy in comparison with learn-
ing in the canonical space. For this task the product space leads to the best accuracy in
both experiments. While for the aortic valve experiment RF showed best performance
in the product space with a classification rate of 88.9%, AdaBoost in the product space
showed higher performance for the PPVI suitability selection with 85.9%. Learning dis-
tance functions from equivalence constraints helps to combine the power of boosting and
random forests with the transparency of case retrieval.

For our experiments in the setting of the aortic valve disease classification we investi-
gated the computed Gain-Ratio values for each coordinate of the geometrical model, in
order to better understand the correlation between morphology and pathology. The most
relevant regions for diseased valves are the free parts of the leaflets (see figure 5.10(a)),
around the tips, as well as the right coronary ostium region and the upper part of the
aortic valve towards the aorta (see figure 5.10(b)). This demonstrates, in concordance
with the current pathological knowledge, the significantly higher sensibility of the aortic
leaflets and ascending aorta.

A similar investigation conducted on the pulmonary trunk data set (see figure 5.10(c))
showed that the discriminant regions are around pulmonary valve sinuses and at the right
ventricular outflow tract. This clearly reflects the morphologic differences between the
types of pulmonary trunks. Moreover this shows, that the relevant regions are much larger
compared to the aortic valve, which also necessitates the use of larger numbers of features
compared to the experiments with the aortic valves. Therefore the use of shape models
and manifolds as subspace representations will be part of our future work, in order to find
more representative local shape descriptors as features.
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5.2.5 Discussion
We propose a framework for retrieval and decision support in the management of VHD,
which uses learning based discriminative distance functions. Various learning distance
functions were evaluated including learning from equivalence constraints and the intrinsic
Random forest distance. The generality and accuracy was shown by applying the method
to different problems and large datasets from the domain of cardiology. Our method
integrates the entire 3D geometrical expression of subject patient in an automatic classi-
fication framework offering a reliable and reproducible solution for diagnosis and decision
support, which has the potential to advance the clinical management of valvular heart
diseases.

5.3 Computational Decision Support for Percuta-
neous Valve Procedures

Valve replacement is the most common therapy for diseased aortic valves. Percutaneous
approaches are becoming increasingly popular, due to reduced procedural complications
and lower follow-up rates. Still there is a lack of efficient tools for valve quantification
and preoperative simulation of replacement and repair procedures. Thus, the success
of the intervention relies to a large portion on experience and skills of the operating
surgeon or interventional cardiologist. We propose a novel computational framework for
percutaneous aortic valve replacement procedures with stent mounted devices, which aims
to provide advanced decision support for preoperative planning, intraoperative guidance
and post-operative assessment.

5.3.1 Clinical Scope
Percutaneous aortic valve implantation (PAVI) has the potential to revolutionize the
treatment of aortic valve disease, offering a less invasive alternative to open heart surgery.
PAVI is already emerging as a feasible treatment for patients with high-surgical risk [65],
over 30% of the symptomatic cases, and will account for 41.1% of the procedures by
2012 (Millennium Research Group 2008). The prosthetic implants are delivered through
catheters using transvenous, transarterial or transapical techniques, while clinicians do
not have direct view and access to the affected valve and surrounding anatomies.

Hence, critical decisions such as, type of procedure, implant type and sizing, deploy-
ment location and timing, and treatment assessment, are exclusively based on imaging
techniques [122]. A misplaced implant can block the coronary ostia inducing a life threat-
ening ischemic condition. Suboptimal deployment location can result in poor hemody-
namic performance with severe paravalvular leakages and/or high gradients and subop-
timal effective orifice. Wrong implant sizing may require re-operation or can damage the
vessel tissue and cause catastrophic events as arterial dissection or rupture. Therefore
advanced image analysis and computational models for precise planning, procedure guid-
ance, and outcome assessment, may significantly improve percutaneous valve implantation
techniques.
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Figure 5.11: Schematic description of the proposed PAVI computational decision support
workflow.

We propose a computational framework for percutaneous aortic valve implantation,
which supports decisions throughout the clinical workflow, which is summarized in section
5.3.2. Modeling of the aortic valve and ascending aorta and patient-specific estimation
from pre- and post- operative cardiac CT images is described in section 5.3.3. Section
5.3.4 presents the computational environment, which allows for in-silico valve implanta-
tion for evaluation and prediction of procedure success under various treatment scenarios.
Comprehensive validation and performance evaluation is given in section 5.3.5 by com-
paring the simulation results from preoperative data with the real device imaged in the
postoperative data.

5.3.2 Workflow Overview
The proposed PAVI computational decision support workflow is illustrated in figure 5.11:

Pre-operative workflow: 1) Pre-operative cardiac CT volume acquisition for proce-
dure planning purposes 2) Patient-Specific anatomical model estimation and automatic
quantification for valve assessment and patient selection 3) In-silico valve implantation
under various interventional procedure conditions for identification of optimal device type,
size and deployment location as well as treatment outcome prediction until optimal pre-
dicted performance is observed.

Post-operative workflow: 4) Post-operative cardiac CT volume acquisition for treat-
ment evaluation 5) Patient-Specific anatomical model estimation for quantitative anatom-
ical assessment 6) Patient-Specific deployed device estimation for quantitative implant
assessment.

5.3.3 Patient-Specific Anatomical Modeling and Estimation
This section reviews the anatomical model of the aortic valve and ascending aorta as well
as the patient-specific estimation of its parameters from imaging data as in presented in
chapter 3 and 4 (see figure 5.12).
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(a) (b) (c) (d) (e)

Figure 5.12: Aortic valve and ascending aortic root model. (a) generic model of the aortic
valve including nine anatomical landmarks. (b) point distribution model of the aortic
root. (c) aorta leaflet model - the N leaflet is depicted. (d) ascending aortic root model.
(e) full model with the corresponding anatomical parameterization.

Figure 5.13: A survey of our hierarchical model estimation schema.

Anatomical Landmarks: Represented by three-dimensional points in the Euclidean
space; the considered anatomical landmarks are: L / R / N Hinges, LR / RN / NL
commissures, L / R / N leaflet tips, and L / R coronary ostia.

Aortic valve root and leaflets: The aortic valve root is constrained by the commis-
sures, hinges and ostia and represented as a tubular surface mesh. The mesh is aligned
with the aortic circumferential u and ascending directions v and includes 36×10 vertices.
The left / right / none aortic leaflets, are modeled as hyperbolic paraboloids on a grid of
11× 7 vertices. Each leaflet is defined by one hinge, two commissures and one leaflet tip.

Ascending aortic root: The ascending aorta emerges from the aortic root and incor-
porates a variable length. The anatomy is composed of a fixed number of circumferential
coordinates u = 36 and a variable number of coordinates along the ascending direction v.
The first ring starts at from the commissures.

Patient-Specific Model Estimation The patient-specific parameters of the aortic
valve and ascending aorta model are estimated from volumetric images using a robust
learning-based algorithm as in chapter 4. The a posteriori probability p(M |I) of the
model M given the image data I, is hierarchically estimated within the Marginal Space
Learning (MSL) framework. Detectors are successively trained using the Probabilistic
Boosting Tree (PBT) [164] with Haar and Steerable features, and consequently applied to
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estimate the anatomical landmarks and structures from cardiac CT volumes as illustrated
in figure 5.13.

5.3.4 Device Modeling and In-Silico Deployment
Stent Model: A library of virtual devices/implants was created based on manufactur-
ers’ description to incorporate realistic geometrical properties. In this work two models
of the CoreValve Revalving System by Medtronic (Minneapolis, MN, USA) are treated,
namely the models CRS-P3-640 and CRS-P3-943 (see figure 5.14(a)). The implant con-
sists of 165 cells formed by the struts. The two models have length of 53 and 55 mm and
diameters at the inflow, middle and outflow levels of 26, 22, 40 and 29, 24, 43 mm respec-
tively. The Xenograft artificial valve consist of porcine pericardial tissue, out of which the
leaflets are manufactured and mounted to the implant’s stent. The library can be easily
extended with future devices using the methods described in the following. The device is
modeled out of two parts: a geometric representation, which precisely mimics the exact
geometry of the device, the so-called stent mesh, and a second superimposed 2-simplex
mesh, named in the following computational mesh, which is used for computation and to
guide the expaning deformation [89, 111]. Figure 5.14(b) depicts the topological relation-
ship between the computational mesh and the stent mesh, which is composed of struts
connecting a subset of points of the computational mesh. In order to infer the geometrical
properties of the stent model various dimension were measured from stereolithographic
scans of the modeled implants. These are the strut lengths, the characteristic angles in
each cell and the device’s circumferences at each level, where each level is defined by the
strut joints.

(a) (b) (c)

Figure 5.14: (a) CoreValve implant, (b) long axis cross section of stent mesh (orange)
with superimposed computational mesh (blue) and (c) CoreValve implant with sketch of
target anatomy (Sources a & c: http://www.medtronic.com).

Virtual Stent Deployment: To simulate valve replacement under various conditions,
different devices are chosen from the library and virtually deployed under different pa-
rameters, into the previously extracted patient-specific model of the affected valve. The
expansion of the device is modeled by balancing external and internal forces as encoun-
tered in the actual procedure, using iterative optimization methods. Following the works
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of Larrabide et. al. and Montagnat et. al. [89, 111], the expansion is described by a finite
difference discretization of a second order differential equation:

�pn+1
i = �pn

i + (1 − γ)( �pn
i + �pn−1

i ) + fint( �pn
i ) + fext( �pn

i ) + freg( �pn
i ) (5.4)

where �pi is a point on the computational mesh, n is the iteration number, fext, fint and
freg external, internal and regularizing forces and the weighting parameter γ. Figure 5.15
shows a visual description of each of the forces. An outline of the algorithm is given in
figure 5.16. The internal forces fint( �pn

i ) = flength( �pn
i ) + fangle( �pn

i ) + fcirc( �pn
i ) model the

intrinsic properties of the stent and enforce deformation along it’s surface normals and
long axis as the device is self-expandable. Hence they are parameterized by strut lengths,
characteristic angles and device circumferences, which were measured from the expanded
template. Accordingly, these forces are adapted, such that the implant attempts to achieve
the targeted dimensions, and they induce different expanding pressures at different levels.
Particularly fcirc( �pn

i ) = �ni(ck − ∑
∀j∈Nk

|| �pn
j − �pn

j+1||)/2π pushes the points �pn
i ∈ Nk along

the surface normal �ni to satisfy the reference circumference ck of the stent shape, where
Nk is the set of strut joints at a level k. It is important to note, that fcirc does not
enforce the stent diameter directly but the stent circumference instead to account for
expansion into arbitrary shaped vesel geometries, which have typically non-circular cross
sections. flength and fangle enforce the strut lengths and characteristic angles observed in
the expanded shape [89]. The external forces fext(�pi) model the interaction of stent and
aortic valve and aorta tissue, and guide the implant deformation by balancing the internal
device forces: fext(�pi) = −�ni(�ni ·fint(�pi))(|| �pn

i −�ck||/||�v−�ck||) with stent centroid �ck at level
k and the intersection point �v of normal and vessel surface. The regularizing forces freg

are solely defined on the computational mesh to provide smoothness as described in [111].
As mentioned above the method focusses on self-expanding implants, which inherently
exercise forces of minor amplitudes onto the surrounding vessel tissue. Therefore we argue,
that the resulting minor deformations can be neglected.

(a) (b) (c)

Figure 5.15: Forces acting on the model on deployment to converge to the observed
geometric properties: (a) fangle enforces the charateristic angles at the strut joints (green),
(b) flength maintains the strut lengths. (c) fcirc enforces the circumference (green), while
fext dampens and eliminates the all forces acting along the stent mesh normal wheighted
by the fraction of distances of strut joint and vessel wall (red) to the stent centroid
(magenta/yellow). Please note that (c) shows a short axis cross section of the stent mesh.
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Input:

• Patient-specific model of aortic valve and aorta ascendens

• implant placement position and orientation

Output: Deployed Implant
Execute:

• create computational mesh and stent mesh with constant radius of 1 mm at manually
selected placement position, oriented along the aortic root centerline

• repeat:

– for each point �pn
i on the computational mesh, calculate freg( �pn

i ), fangle( �pn
i ),

flength( �pn
i ), fcirc( �pn

i ) and fext( �pn
i )

– for each �pn
i , compute �pn+1

i according to Eq. 5.4
– if mean point displacement on the stent mesh < ε, convergence achieved; stop exe-

cution

Figure 5.16: The outline of our virtual stent deployment algorithm.

5.3.5 Experimental Results
The validation of the proposed framework is divided in two experiments. First we
present results on the performance of the automatic patient-specific model estimation
from pre- and post- cardiac CT data, as well as the quantitative variation between pre
and post anatomies. Second we validate the proposed in-silico implantation, by com-
paring predicted valve deployment, using pre-operative data, with real deployment from
post-operative data.

Validation of Patient-Specific Model Estimation: The data set used for patient-
specific model estimation consists of 63 multi-phase (10 frames per cycle) cardiac CT and
21 single-phase cardiac CT acquisitions, which sums up to 651 CT volumes. Scans are
acquired from different patients with various cardiovascular diseases (including ascending
aortic root aneurysm, regugitation, calcific stenosis and bicuspid aortic valves), using
different protocols, resulting in volumes with 80 to 350 slices and 153x153 up to 512x512
voxel grid resolution and 0.28mm to 2.0mm spatial resolution. Each data set is associated
with an expert annotation used as ground-truth.

A combined accuracy for the patient-specific model estimation of 1.45mm is obtained
in 30sec on a standard desktop machine (Intel Xeon 2.66Ghz, 2GB RAM) for both pre-
and post-operative volumes. Performance is reported on test data, which represents ran-
domized 20% of the complete dataset, while the remaining 80% were used for training.

Due to different factors, a bias between the pre- and post-operative anatomical models
can be expected. These are cardiac phase shifts and image noise but also deformation
of the aortic vessel wall due to stent deployment, where the latter was assumed to be
sufficiently small to be neglected in the deployment algorithm (see section 5.3.4). There-
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fore we quantified the differences for a subset for each pair of corresponding anatomical
models obtained from a subset of 20 patients with pre- and postoperative image data.
Quantitative results in table 5.5 support the validity of our assumption, showing a mean
relative deviation of up to 6.46% between pre- and post-operative anatomies.

Table 5.5: Deviation of pre- and postoperative anatomies: Differences in diameter at
sinutublar junction, valsava sinuses and aortic annulus are given in absolute values as well
as relative to the postoperative measurement. Values of Mean and standard deviation are
provided as well as 80-percentile and maximum.

absolute (mm) relative (%)
measurement mean (std) 80% max mean (std) 80% max

sinutublar junction 2.3 (1.7) 3.7 5.7 6.46 (4.6) 10.5 14.9
valsava sinuses 1.1 (0.9) 1.7 4.1 3.49 (2.6) 5.2 9.98

annulus 1.5 (1.2) 2.5 5.2 5.06 (3.2) 7.7 14.3
point-to-mesh distance 1.6 (0.98) 2.4 2.8 - - -

Validation of In-Silico Valve Deployment: The validation of the in-silico valve
deployment is performed on 20 patients with pre- and post-operative cardiac CT images.
It is important to note, that for this purpose the preoperative prediction result is compared
with the real device imaged in the postoperative data.

From the pre-operative volume, we automatically estimated the aortic valve and as-
cending aorta model, and virtually deploy the implant using the proposed computational
method and constraints from the patient-specific anatomical model. Please note that
in order to perform a fair comparison, only the deployment location and orientation is
inferred from the post-operative data. From the post-operative volume, we automati-
cally estimated the aortic valve and ascending aorta model. The real implant is manually
placed and fit to the imaged stent, which is well visible in the post-operative volume, using
a semi-automatic method based on the thin-plate-spline transformation. A selection of
deployed and corresponding manually placed stents is depicted in figure 5.17. The perfor-
mance is reported in table 5.6 in terms of internal precision, by comparing only the virtual
and real implants shape in isolation via symmetric point-to-point distance, and external
precision. The latter means to compare the virtual and real implants position relative
to clinically relevant locations, in order to account for the potentially critical conditions
due to wrong implant sizing and placement such as blockage of coronary ostia and more
importantly paravalvular leakages at the annular level as mentioned in section 5.3.1. This
is done by computing the differences of the pre- and postoperatively measured distances
from annulus ring and coronary ostia to the closest stent point respectively.

In the clinical context, the required accuracy is proportional to the tolerance between
therapeutical alternatives. Considering the diameter differences of 3mm (at the annular
level) of the Medtronic CoreValve implants (see Section 5.3.4), the system provides a suf-
ficient approximation in at least 80% of the cases for prevention of paravalvular leakages,
with an external accuracy of up to 1.4mm at the annular level. The algorithm performed
at an average speed of 55sec on a standard desktop machine (Intel Xeon 2.66Ghz, 2GB
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Table 5.6: Accuracy of in-silico valve deployment measured in mm: besides point-to-point
distance between pre- and postop stent, accuracy relative to the anatomies was estimated
from the differences in distances between aortic valve annulus and coronary ostia and
implant. Values of mean and standard deviation are provided as well as 80-percentile and
maximum.

mean (std) 80% max
stent point-to-point 2.18 (1.77) 2.4 8.45

annulus 0.7 (0.73) 1.4 2.14
L coronary ostium 1.42 (1.51) 2.16 4.75
R coronary ostium 1.55 (1.24) 2.02 4.27

RAM). Thus our framework enables for fast and efficient preoperative planning and risk
minimization by finding the best implant type, size and deployment location and ori-
entation via varying these parameters until optimal predicted performance is observed.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.17: Example results of preoperative virtual stent deployment (a-d) vs. post op-
erative stent models (e-h) overlayed with with the anatomical models. Note the deviation
of the virtually deployed stent around the sinutubular junction (upper end) in contrast
to the close approximation at sinus and annular level, which is to due to the fact, that
internal stiffness of the stent configuration is not modeled yet.
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5.3.6 Discussion
A novel framework for computational decision support for percutaneous aortic valve im-
plantation was presented. A fast and robust estimation of an anatomical model enables
for precise modeling of the patient-specific morphology and is consequently used for in-
silico implant deployment. The approach was validated with pre- and post-operative data
sets from 20 patients and shows reasonable accuracy within the variation in appearance
given by image and motion artifacts. To the best of our knowledge, this is the first time
a computational framework is validated using real pre- and postoperative patient data.
The framework is targeted for fast and efficient preoperative planning with a library of
different implants, intraoperative guidance and postoperative assessment of interventional
outcome. It may have impact on the cardiology of the future and improve the OR towards
increased transparency.
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CHAPTER 6

Conclusions

6.1 Summary
The main subject addressed in this thesis is the patient-specific estimation of physiolog-
ical valvular models from multi-modal cardiac images. Based on the extracted explicit
mathematical representation of real morphological and functional parameters, a series of
clinical applications are proposed, which may advance the treatment of patients suffering
from valvular heart disease.

Dysfunctions of the heart valves affect 2.5% of the global population and require yearly
over 100,000 surgeries in the United States alone. Despite continuous progress in surgical
and interventional therapy, with an average cost of $141,200 and 4.9% in-hospital death
rate, valve treatment remains the most expensive and also the most precarious among
all cardiovascular procedures. Chapter 2 discussed relevant clinical and medical aspects
as well as the role of non-invasive imaging and medical imaging analysis technologies
in upgrading the contemporary healthcare delivery. In section 2.6.3 we advocated for
the essential role of machine learning in future clinical applications, given the ability of
this approach to deal with the inherent complexity and uncertainty of the medical field.
Another strong argument for algorithms that learn from examples is the availability of
large databases of medical images in the recent years, as a result of the proliferation of
cost-effective non-invasive imaging techniques.

The first contribution of this thesis is introduced in chapter 3, where we proposed
a novel physiological model of the heart valves to precisely capture their anatomical,
dynamical and pathological variations. Previous cardiac models were proposed in the lit-
erature and proven to be beneficial in the clinical setting, however none of those explicitly
treat the valvular apparatus. Our model is hierarchically defined and comprehensively
represents the location and rigid motion, anatomical landmarks and the comprehensive
shape and dynamics of all four cardiac valves: aortic, mitral, tricuspid and pulmonary
valves. Based on the proposed mathematical formulation, we as well addressed statistical
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models of patient populations in section 3.7. Those effectively describe parameter varia-
tion across the cardiac cycle and individuals, and incorporate prior knowledge critical for
the patient-specific estimation from cardiac images.

Our next core contribution is the development of discriminative learning-based algo-
rithms that permit the estimation of patient-specific model parameters from cardiac im-
ages. Chapter 4 presented a course-to-fine methodology, which is aligned with the three
abstraction levels of the valvular model. In the first step we combine two established al-
gorithms, Marginal Space Learning (MSL) and RANdom SAmple Consensus (RANSAC)
to build a new approach for the time-coherent detection of the valvular location and
motion from an arbitrary four-dimensional cardiac scan. Subsequently, in section 4.4
we introduced a novel learning algorithm, Trajectory Spectrum Learning (TSL), which
coupled with Local-Spatial-Temporal (LST) features facilitates the estimation of periodic
motion. TSL handles location and motion simultaneously, through a spectrum learning
and optimization formulation that operates in marginal trajectory spaces. In our con-
text, it is used to robustly estimate the parameters of the anatomical landmarks from
four-dimensional image sequences. The last method described in section 4.5 is applied for
the object delineation of dynamic models, using boundary detectors and motion manifold
learning techniques. In section 4.6 the performance of the proposed estimation frame-
work is demonstrated through extensive experiments on 476 patients, which results into
an average precisions of 1.73mm and speed of 4.8 seconds per volume.

Chapter 5 introduced three-clinical applications based on the modeling and estima-
tion techniques described in this thesis. A novel paradigm for the clinical analysis of
the valvular apparatus is presented in section 5.1. This has the potential to replace
current manually performed measurements on 2D images with automated model-based
quantification from 4D data, which offer an accurate, efficient and comprehensive valvu-
lar evaluation solution. In section 5.2 we proposed a novel methodology to automatically
derive high-level clinical information from anatomical models using learning-based dis-
criminative distance functions. The feasibility of the introduced concept is exemplified in
the context of automated shape-based diagnosis and patient selection for percutaneous
treatment. Finally, a computational decision support framework is presented in section
5.3, which combines models of devices with patient-specific anatomical information to
simulate and predict the outcome of percutaneous procedures under various treatment
scenarios.

The technology described in this thesis can potentially advance the management of
patients affected by valvular heart disease by reducing clinical investigation costs, risks
for complications during procedures, and ultimately by improving the overall outcome of
valvular treatment.

6.2 Discussion and Future Work
Valvular Modeling and Estimation: Future work will continue to focus on the ad-
vancement of the parameter estimation framework and the direct extensions of the valvu-
lar model. With the scope of constraining the estimation problem, multilinear statistical
modeling was demonstrated to decompose shape spaces in temporal and spatial com-
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ponents, in contrast to Active Shape Models in which both are coupled [201]. Section
3.7.3 presented a model of complex spatio-temporal variation that can be exploited in
learning-based approaches to parameter estimation. In fact, our tensor formulation ad-
vances the state-of-the-art by conditioning the shape parameterization with additional
physiologically-driven measurements. Such surrogate variables were proven to increase
performance for PCA models of anatomical structures [16]. Other promising directions
that may lead to improved estimation results include manifold learning techniques [191]
and simultaneous detection of multiple objects [189].

On the modeling side, one important extension for the future will be the inclusion of
the subvalvular apparatus of the mitral and tricuspid valves [122]. Although critical in
the clinical context, these structures are not included in standard TEE scans and difficult
to distinguish in cardiac CT or CMR. Thus, patient-specific parameters must be inferred
from statistical models or by fusing additional imaging information. The extension to a
volumetric representation, which models the tissue thickness of the valves is also of high
clinical importance. Such parameters could be estimated within the same discriminative-
learning framework, while the ground-truth for training and validation could come from
in-vivo measurements of resected tissue, post repair or replacement procedures.

Integration and Computation: One pivotal direction for future developments is the
horizontal and vertical integration of the valvular model into a comprehensive, multi-
physics, multi-scale model of the full heart. While realistic patient-specific computational
modeling of the cardiac system is unfeasible without a precise model of the valvular appa-
ratus, existent approaches [138] are lacking this essential component. Initial integration
efforts presented in appendix A, demonstrated the capabilities of joint chamber-valve mod-
els to simulate hemodynamics within a computational fluid dynamic formulation. Future
horizontal extension actions will include the addition of right-side chambers and valves,
pulmonary veins, superior and inferior vena cava as well as the right and left pulmonary
arteries.

Biomechanical models, which have attracted increasing amounts of interest over the
last decade [11], are indispensable for the development of advanced treatments of cardio-
vascular disease. Ayache and collaborators demonstrated a electromechanical model of
the left and right ventricles capable to simulate propagation of the electrical front and
myocardial contraction [143, 142]. Additionally, their recent work focuses on the personal-
ization of simulations in various cardiovascular contexts [144, 141, 14]. Future horizontal
and vertical integration of cardiac models is in perfect agreement with the worldwide
scientific effort under the Virtual Human Physiome projects and will promote a more
personalized, preventive and predictive healthcare.

Treatment Simulation and Prediction: From an application stand point, simula-
tion of surgical and interventional procedures would advance valvular treatment to become
safer and with improved post-operative results. In section 5.3, we proposed a novel com-
putation framework to simulate percutaneous aortic valve implantations. An important
extension to be considered in the future research is the modeling of material properties
of the valvular and cardiac tissue. Fully coupled fluid-structure interaction formulations

125



Conclusions

were proven to be affective for the computation of material properties [39, 182]. In con-
trast to existent solutions, our approach will be based on patient-specific geometrical and
dynamical constraints obtained from multi-modal cardiac images. The collateral benefit
of adding material properties is the enrichment of the valve analysis capabilities to include
quantification of stress and strain parameters. Recently, models were proposed to pre-
dict the outcome of cardiac remodeling procedures [103]. Such techniques can be directly
adopted to simulate valvular repair procedures and potentially mainstream reconstructive
treatment beyond specialized cardiac centers.

Model-based Information Fusion: Parameters contained by the estimated patient-
specific model are also beneficial in the context of image registration and reconstruction.
In the appendix B, we demonstrated a model-based approach to recover full dynamic
information of the pulmonary trunk within and cross-modality CT-CMR formulation. A
novel regression based reconstruction method is proposed, which learns the anatomical
and dynamical correlation from 4D cardiac CT estimated models and infers the incom-
plete temporal information based on sparse CMR images. Following the same principle,
model parameters estimated from multi-modal images of the same patient can be directly
used to compute a focused deformation field and perform image registration. This will
enable the combination of complementary information acquired with various techniques
into a comprehensive patient-specific physiological model. A practical example would be
the model-based fusion of highly resolved anatomical information from cardiac CT, with
Doppler velocity data from Ultrasound and highly resolved dynamic parameters from
CMR. Among other advantages, future progress in model-based information fusion will
enable the augmentation of real-time intra-operative (fluoroscopy, TEE and intravascular
ultrasound) images with detailed preoperative data, to guide complicated cardiovascular
interventions [185].
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APPENDIX A

Patient-Specific Modeling of Left Heart Anatomy, Dynamics and
Hemodynamics from High Resolution 4D CT

Abstract - There is a growing need for patient-specific cardiac models for intervention
planning, outcome prediction or assessment of cardiac disease progression. However, most
of the recent work in cardiovascular simulation relies on generic heart models built from
at most one cardiac phase with simplified motion, driven by fluid dynamics equations. We
propose to advance the state-of-the-art by exploiting a comprehensive, patient-specific left
heart model extracted from 4D Computed Tomography (CT) data. Explicit physiological
constrains are captured in the modeling of the left ventricle (including outflow tract), left
atrium (including pulmonary veins), mitral valve, and aortic valve (including ascending
aorta). By using this patient-specific model as an input to a 3D Navier-Stokes solver
we derive realistic hemodynamics, constrained by the local anatomy, along the entire
heart cycle. We present a differential assessment of the flow dynamics corresponding to
specific heart conditions. The simulation results shed light upon the functional differences
between one normal and two diseased hearts - one with a dilated aortic root and one with
a bicuspid aortic valve.

Introduction
Patient-specific cardiac models are a longstanding medical goal that is close to becoming
reality. Advances in cardiovascular imaging, automatic data parsing and model extrac-
tion, and computational fluid dynamics contribute to more and more refined models of
a patient‘s heart. Such models will allow in the near future to assess cardiac disease
progression or predict intervention and treatment outcome [48].

Machine learning methods recently demonstrated robust performance in recovering
the anatomy and dynamics of the heart chambers and heart valves from 4D CT data.

This work was presented at ISBI in 2010, Rotterdam, The Netherlands.
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High Resolution 4D CT

Figure A.1: Visualizations of patient-specific truncated velocity (left) and vorticity fields (right).
Normal heart in early diastolic stage (top) and early systolic stage (bottom).

The parametric models of the left atrium, left ventricle, right atrium and right ventricle
are estimated in [197] for the entire the heart cycle. The physiological modeling of the
aortic and mitral valves along with estimation methods of patient-specific geometry and
dynamics are presented in [74]. As the heart valves regulate the blood flow inside the heart
and towards the human body, morphological and functional parameters are essential for
accurate hemodynamic simulations of the cardiac system. However, valves alone cannot
explain the complex variation in flow patterns, thus these must be considered in connection
with the heart chambers, main arteries and veins for a truthful and comprehensive cardiac
flow analysis.

Earlier work in blood flow simulation simplified computations by using generic cardiac
models or reduced dynamics assumptions for the blood flow. Generic cardiac flow models
(e.g. [64]) were important pioneering steps in blood flow simulation. The usual criticism
of this work that it does not rely on patient-specific data. Models of the left side of
the heart, with smooth ventricular walls, and imposed boundary conditions in the valve
regions are used in [97] and [136]. Blood flow simulations based on a hybrid model of
the left side of the heart have been recently presented in [109], with the geometry derived
from the Visible Human Project and dynamics transferred to the chamber models from
MRI data.

This work advances the state-of-the-art by exploiting for the first time full 4D CT data
sets to compute patient-specific anatomy, dynamics and hemodynamics (see figure A.1).
We derive explicit dynamic physiological models for the left ventricle, left atrium and
pulmonary veins, aortic valve, aortic root, ascending aorta, and mitral valve. We use the
recovered motion of the chambers and valves to provide geometric and velocity boundary
conditions to the blood flow at every step in the cardiac cycle. Namely, we use normal
and diseased left heart models, imposed as boundary conditions in a 3D Navier-Stokes
simulator. In the results we show that the computed blood flow is quite different for each
of the patients involved in this study and we analyze the hemodynamic differences.
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In the following we make a presentation of the cardiac geometry and dynamics recovery
(section A) and of the fluid simulation system used in this work (section A), and go at
length into the blood flow computational results in section A. We end with a conclusion
and plans for future work.

Patient-specific cardiac geometry and dynamics
The four-dimensional left heart model applied is physiologically defined to capture com-
plex morphological, dynamical and pathological variations [197], [74]. The model in-
cludes the following anatomic structures (see figure A.2): left atrium (LA), left ventricle
(LV), right atrium (RA), right ventricle (RV), aortic valve (AV), mitral valve (MV), as-
cending aorta (Ao), and pulmonary veins (Pv). Each of the structures is parameterized
along an anatomical defined regular grid of vertices, which implicitly guarantees point-
correspondences of the geometric meshes, mandatory in patient-specific computational
modeling. Anatomical landmarks govern the interconnection of the cardiac components,
which result into a comprehensive model of the heart. In addition, we enhanced the
model introduced in [197] to include the ascending aorta and a more detailed left atrium
structure that includes the pulmonary veins (see figure A.2). Note that the hemodynamic
simulations are performed on the left components of the heart.

From 4D cardiac CT images, we automatically estimate patient-specific left heart
models by applying a hierarchical learning-based framework. Robust anatomy detectors
D are trained using the Probabilistic Boosting Tree based on over-complete image rep-
resentations given by Harr-like, steerable and local-spatial-temporal image features. The
detectors estimate the posterior probability of the model fitting given the input images
p(M |I) and are applied in effective optimization algorithms to determine the patient-
specific parameters.

Detectors Dpos, Dori and Dsiz, for position, orientation and size, are used within the
Marginal Space Learing (MSL) algorithm [197] to solve for the object localization of each
anatomy. The complex opening and closing motion of the aortic and mitral valves is
estimated by trajectory detectors Dtraj within the Trajectory Spectrum Learning (TSL)
framework [74]. A statistical model of the left heart, learned form the training data is
projected with the estimated location and motion parameters to initialize the patient-
specific geometry and dynamics. The estimation is concluded with a local non-rigid
deformation, guided by boundary detectors Dbou, to accurately delineate the true object
boundary from images. Complete details of the learning framework for automatic model
fitting can be found in [197], [74].

Training and verification of the patient-specific estimation is performed on a large
database of expert annotated 4D cardiac CT images that includes 69 valve patients and
137 studies for the two chambers, aorta and pulmonary veins. Included data was collected
in multiple medical centers around the world, from patients affected by various cardiac
diseases with images aquired using heterogeneous scanning protocols. Each study is ECG
gated and includes 10 volumes per cardiac cycle, with 80-350 image slices per volume,
512x512 pixels per slices, 0.28 to 0.74mm isotropic in plane resolution and slice tickness
of 0.4 to 2mm.
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Figure A.2: Patient specific cardiac model fitted to 4D CT data with chambers and valve
details.

The performace for the recovery of cardiac geometry and dynamics from 4D CT im-
ages was evaluated using cross-validation. Comparison of the automatic estimation with
ground-truth annotation using the point to mesh error function resulted in the following
average accuracy values: left atrium and pulmonary veins 1.32mm, left ventricle 1.13mm,
ascending aorta, aortic and mitral valves 1.36mm. Inter-user variability experiments were
conducted with five experts which compared the estimation precision of the proposed
method to the variation of manual modeling between different users, demonstrated the
system-error to lie within 90% of the inter-user confidence interval.

Cardiac Hemodynamics Simulation Given the Heart
Geometry and Dynamics
The framework used for simulating blood flow in the left heart follows the setting in-
troduced in [109]. Namely, the heart mesh is immersed in a computational box fitted
with a regular grid, and the Navier-Stokes equations are solved inside the box using finite
differences. The liquid inside the box and "outside" the left heart plays the role of the
body circulatory system connected to the left heart, and imposing slip or no slip boundary
conditions on the sides of the box simulates the flow resistance of the circulatory system.

The heart mesh is allowed to have small gaps that are not recognized by the grid
(namely the width of the gap should be less that the grid spacing dx), which makes the
code quite robust to initial mesh quality. This is achieved by using in the simulation a
level set corresponding to the heart mesh, defined as ψ(x) = dist(x, mesh) − dx. All the
visualizations presented show the zero level isosurface of this level set function.

Inside the computational box we solve the 3D Navier-Stokes equation for incompress-
ible flow with viscous terms which are described for example in [109]. The physical param-
eters are set to the blood density ρliquid = 1050kg/m3 and dynamic viscosity μ = 4mPa·s.
The velocity of the mesh walls is extrapolated in space (and interpolated in time between
two consecutive mesh positions) to the grid nodes, and used to enforce no-slip conditions
to the Navier-Stokes solver during the computation. One difference between our solver
and the one presented in [109] is the treatment of the isovolumic stages. In [109], the
closed regions (e.g. the ventricular chamber) that possibly may have a variable volume
during isovolumic stages, were treated robustly by relaxing the incompressibility condi-
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Figure A.3: Comparison of diseased hearts. Top: normal heart; Middle: heart with dilated
aorta; Bottom: heart with bicuspid valve. First column: early systole; Second column: late
systole; Third column: early diastole; Fourth column: late diastolic filling.

tion. We use a more physically meaningful approach by enforcing the incompressibility
requirement in each connected component.

The flow parameter visualizations are done in Paraview. We visualize in 3D the heart
walls, as they are used in the simulations, the truncated velocity, its magnitude, and also
the associated vorticity magnitude. Typical visualizations of these fields are presented in
figure A.1.

Comparison of Diseased Hearts
In our experiments we include 4D cardiac CT studies acquired from three patients: healthy
subject, dilated aortic root and bicuspid aortic valve. The patient-specific geometry and
kinematics of their left heart was obtained applying the method in section A. Hemo-
dynamic parameters were obtained using the simulation framework in section A. The
obtained results confirmed the validity of the proposed approach producing flow patterns
and values similar to the ones reported in the literature. It also revealed flow irregularities
for the two pathology cases (dilated root and bicuspid aortic valve).
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General comparison
The first two datasets had heart cycles of 65 bpm, while the bicuspid one of 60bpm. The
diseased hearts featured reflux phenomena in both the valves and the pulmonary vein
regions. The only reflux for the normal one was the small pulmonary venous flow reflux
during the late mitral filling, which is a normal phenomenon. We should underline that
the magnitudes of the reflux flows (and actually all the flows) presented, are likely to
be somewhat larger than the reality, due to the framework which models the walls as
"hard", rather than soft tissue. In future work this will be addressed, by including more
realistic geometry recovery for the walls (papillary muscles and trabeculae carnae), soft
tissue models for the walls and also elastic properties for the valves.

The systole was almost twice shorter for the normal heart compared to the diseased
ones. This is a well known phenomenon in which diseased hearts developed longer systolic
cycles in order to counteract the anatomic faults, which led to regurgitations and inefficient
blood pumping.

Normal heart
The normal heart (see figure A.3, top row) had a fairly short systole (190ms) in a cardiac
cycle of 923ms. During the systole the aortic flux was strong, as was the flow into the
LA. The diastole started with a strong flow though the mitral valve, during which a main
rotating vortex formed in the center of the LV, and a smaller vortex formed at the entrance
of the aortic valve. The late mitral filling happened concurrently with a small pulmonary
vein reflux, which is normal.

Heart with dilated aorta
This heart (figure A.3, middle row) featured a heavily enlarged aorta. As a consequence,
the aortic valve never closed completely for this particular heart, leading to massive aortic
regurgitation during diastole. There was some small but abnormal regurgitation also at
the level of the pulmonary veins and mitral region. One interesting fact was that, during
systole, the flow was directed straight toward the abnormally enlarged region of the aorta,
which raises the question which one contributed to the creation of the other? Was it weak
aortic valves that directed the flow obliquely, enlarging the aorta, or was it the aortic
weakening that pulled the aortic valves and redirected the flow?

Heart with bicuspid aortic valve
For the bicuspid subject (see figure A.3, bottom row) we can observe the deflection of
the output jet towards the aortic wall which can explain the fact that the patients with
bi-leaflet aortic valve develop aortic root dilation. In addition, the bicuspid aortic valve is
also insufficient, which results into a regurgitant jet towards the left ventricle, observed at
the beginning of the diastole (see figure A.3 second column). Simulation results indicated
that the aortic and mitral valves were not synchronously opening and closing, which
contributes to atrial regurgitation from the ventricle.
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Conclusion
We presented a novel framework for patient-specific hemodynamics analysis of the left
heart. Geometric and kinematic parameters of the left ventricle, left atrium, pulmonary
veins, mitral valve, aortic valve and ascending aorta are automatically estimated from 4D
cardiac CT scans using a robust learning-based algorithm. A 3D Navier-Stokes solver,
constrained by the patient-specific dynamic model, is applied to simulate the blood flow
in the left heart over the whole cardiac cycle. We demonstrate the results of the proposed
method on a group of three subjects, which includes one healthy heart, a dilated aortic
root and a bicuspid aortic valve patient. To the best of our knowledge, this is the first
framework which allows for simultaneous and integrated analysis of morphology, dynamics
and hemodynamics of patient-specific left hearts.
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APPENDIX B

Cross-modality Assessment and Planning for Pulmonary Trunk
Treatment using CT and MRI imaging

Abstract - Congenital heart defect (CHD) is the primary cause of death in newborns,
due to typical complex malformation of the cardiac system. The pulmonary valve and
trunk are often affected and require complex clinical management and in most of the cases
surgical or interventional treatment. While minimal invasive methods are emerging, non-
invasive imaging-based assessment tools become crucial components in clinical settings.
For advanced evaluation and therapy planning purposes, cardiac computed tomography
(CT) and cardiac magnetic resonance (CMR) are important non-invasive investigation
technique with complementary properties. Although, characterized by high-temporal res-
olution, CMR does not cover the full motion of the pulmonary trunk. The sparse CMR
data acquired in this context include only one 3D scan of the whole heart in the end-
diastolic phase and two 2D planes (long and short axes) over the whole cardiac cycle.
We present a cross-modality framework for the evaluation of the pulmonary trunk, which
combines the advantages of both, cardiac CT and CMR. A patient-specific model is esti-
mated from both modalities using hierarchical learning-based techniques. The pulmonary
trunk model is exploited within a novel dynamic regression-based reconstruction to in-
fer the incomplete CMR temporal information. Extensive experiments performed on 72
cardiac CT and 74 MR sequences demonstrated the average speed of 110 seconds and
accuracy of 1.4mm for the proposed approach. To the best of our knowledge this is the
first dynamic model of the pulmonary trunk and right ventricle outflow track estimated
from sparse 4D MRI data.

This work was presented at MICCAI in 2010, Beijing, China.
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and MRI imaging

Introduction

Congenital heart defect (CHD) is the primary cause of death in newborns characterized
by complex malformations of the heart and great vessels. Often, the right side of the
heart is affected and especially the pulmonary trunk, as in Tertalogy of Fallot (TOF)
and pulmonary artesia or stenosis. The clinical management of such conditions is con-
fronted with complex treatment decisions, which include pulmonary valve procedures in
the majority of the cases.

Percutaneous interventions for pulmonary valve replacement are emerging as feasible
treatment alternatives to classic cardiac surgery with important benefits: less invasive,
reduced risks associated with cardiopulmonary bypass, bleeding, infections and reduced
expenses for postoperative intensive care [18]. Nevertheless, comprehensive investigation,
based on non-invasive imagine techniques, is mandatory for clinical decision making and
treatment success.

For therapy planning purposes, the pulmonary trunk is increasingly imaged using
either cardiac computer tomography (CT) or cardiac magnetic resonance (CMR) [153].
While CT has a high spatial resolution, fast acquisition times without anesthesia, it has
the disadvantages of poor temporal resolution and ionizing radiation. Contrary, MRI has
high temporal resolution without X-ray radiation, but long acquisition times and usually
does not cover the full 4D information. The regular protocol, so called sparse 4D CMR,
involves an end-diastolic (ED) 3D heart image and two orthogonal cine projections 2D+t,
short axis (SA) and long axis (LA). LA passes through the main pulmonary artery and
the descending aorta, while SA is aligned with pulmonary valve, perpendicular to the
LA (see figure B). Ideally, clinicians would be provided with accurate morphological and
functional quantification of the pulmonary trunk, independent of the employed imaging
technique.

We present a cross-modality framework for the evaluation of the pulmonary trunk,
which combines the advantages of both, cardiac CT and CMR, non-invasive imaging
techniques. A physiological model, which captures complex morphological, dynamical
and pathologic variations of the pulmonary trunk is presented in Sec. B. In Sec. B, the
patient-specific model parameters are estimated from both modalities within hierarchical
learning-based framework, which involves three-stages: landmark detection, center line
detection and dynamics estimation. A novel dynamic regression-based reconstruction is
proposed to infer the incomplete temporal information characteristic to the sparse MRI
protocols.

Extensive experiments are performed on 72 cardiac 4D CT (720 volumes) and 74
sparse MRI (74 3D ED volumes associated with 4736 2D slides over the cardiac cycle)
data, from which 10 patients underwent both imaging interventions, CT and sparse MRI.
Mean reconstruction error of 1.44 mm within 110 seconds demonstrates the strength of
our proposed regression based reconstruction method.
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Figure B.1: 3D MRI scan of the whole heart in the ED phase (a). 2D long axis (LA)
plane (b) and short axis (SA) plane (c) of the pulmonary artery over the cardiac cycle

Physiological Pulmonary Trunk Modelling
In this section we introduce our physiological model of the RVOT and pulmonary trunk,
which represents both morphological and dynamical variations. Similar as in [178], the
anatomical complexity is reduced by employing a coarse to fine parameterization which in-
cludes: anatomical landmarks, pulmonary artery center line and full surface model of the
pulmonary trunk. As illustrated in figure B(a), the considered anatomical landmarks in-
clude, Trigone (Lt), RVOT (Lrvot) and Main-Bifucation (Lmb), each represented in the Eu-
clidean 3D space, Lx ∈ R3. The centre line CL passes through the pulmonary artery center
and is parameterized by 12 points, CL = CL0 . . . CL11. The surface model S is repre-
sented by a structured grid, spanned along two anatomical directions, u−circumferential
and v−longitudinal, using 50×40 vertices (see figure B(c)). Point correspondence in time
and across patients is enforced by intrinsic re-sampling of S, using a set of anatomical-
driven cutting-planes, described by center line points CLx and corresponding tangential
directions. Given the different modalities supported and characteristic imaging protocols,
we differentiate among two dynamic extensions of the proposed physiological model. The
definition of a full 4D model, which can be directly estimated from 4D cardiac CT data,
is rather straightforward and realized by concatenating a time variable t:

Modelfull4D = {Lt, Lrvot, Lmb, CL, S}t (B.1)

However, given the sparse 4D acquisition, common to MRI exams, the extension to a
temporal model includes two additional representations: LA and SA. LA - describes the
contour of S intersected with the plane with the origin in Lrvot and the normal obtained
from the cross-product between the Ltrigone and Lrvot, and the center line tangent at CL0 -
these represents a specific 2D+time long axis acquisition (see figure B(a)). SA - describes
the contour of S intersected with the plane center in CLmiddle and the corresponding
tangent as normal (see figure B(b)). Hence, the sparse dynamic model is parameterized
as follows:
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Modelsparse4D = {Lt, Lrvot, Lmb, CL, S}ED + {LA, SA}t (B.2)

Dynamic Regression Based 4D Model Reconstruction
As describe above, the dynamic information in case of MRI 4D is incomplete but rather
available only in two orthogonal projections, as opposed to 4D cardiac CT, which provides
full dynamics over the cardiac cycle. In this section we propose a novel dynamic regression
method to learn the pulmonary trunk spatial-temporal variation from a heterogonous
training population and apply it to predict a full dynamic model from partial 4D usually
provide by MRI.

In regression a solution to the following optimization problem is normally sought [200]:

ˆR̂(x) = argminR∈�
N∑

n=1
L (y(xn), R(xn)) /N (B.3)

where � is the set of possible regression functions, L(◦, ◦) is a loss function that
penalizes the deviation of the regressor output R(xn) from the true output, and N is the
number of available training examples. In our case the reconstruction task is defined as
a regression problem between the full dynamic model of the pulmonary trunk extracted
from 4D CT data and the sparse one extracted from the sparse MRI data:

Y (Modelfull4D) = R̂ (X(Modelsparse4D)) + ε (B.4)
In our regression problem we focus on shape information and completely neglect vol-

ume data. As descriptors both for the input X(Modelsparse4D) and output elements
Y (Modelfull4D) of the models we choose coordinates of mesh vertices normalized with
the generalized procrustes analysis. This representation has been already used before,
with the purpose of model classification into diseased and healthy, and has a uniform
representation of the input and the output data. The training set T used to generate the
regression model includes feature vectors Ti as follows:

Ti =< (SED
i , LAt

i, SAt
i)MRI , (St

i )CT >, (B.5)

where t is the time step within the cardiac cycle, SED
i is a set of 3D coordinates repre-

senting each point of the end-diastolic model (2000 3D points), LAt
i and SAt

i are point
sets (80 and 50 3D points respectively) representing the model curves extracted from the
MRI’s long axis stack and short axis stack respectively, for the current time step t, and
(Si

t)CT are the corresponding point coordinates for the point set to be reconstructed (238
3D points). Due to the dense representation of our model (2000 3D points) we reconstruct
only the most significant 238 3D points from the associated CT model. The rest of the
points are interpolated and projected onto the PCA shape space from which the complete
final model is then obtained.

The formulated regression problem is solved by learning the regression function R
with two different methods: boosting-based additive regression [54] and random forest
[23]. Two main reasons motivate our choice. First, these techniques were shown to
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be robust to high-dimensional data with many irrelevant, redundant and noisy features,
without the need for additional data pre-processing and feature selection. This was shown
both for classification [175],[164] and regression [200] tasks. Second, both boosting-based
and random forest-based models are relatively fast to train and to evaluate comparing
for example with Support Vector Regression. In the spirit of [175],[200], we use simple
1D linear regression as the base learner for boosting-based regression. At each boosting
iteration, a feature which results in the smallest squared loss with linear regression is
added to the pool of already selected features. Each weak learner is thus a simple linear
regressor of the form:

y = β0x + β1 (B.6)

where x is the selected scalar input coordinate and y is a scalar output coordinate. Us-
ing more sophisticated weak learners such as CART decision trees and multiple linear
regression with greedy forward feature inclusion, has proven to always result in a worse
or no better performance while the resulting model gets significantly more complicated.
Using simple 1D binary decision stumps as in [200] has also proven to lead to suboptimal
accuracy; the reason for this is perhaps the nature of the data, as it is rather impossible
to generate as many candidate decision stumps with the coordinate - based features as it
is possible with the Haar-like features. For each boosting-based model, we generate 200
weak learners. The accuracy plateaus with this number of component models, and the
further accuracy increase is always insignificant with this data.

For random forests, we always generate 25 component trees. The accuracy usually
remains same or even decreases with the addition of more trees to the model. The
minimum leaf size is set to 1; the trees are thus generated to the full with no pruning.
The number of features considered at each node is set to the value recommended by
Breiman [23], which is one third of the total number of features for regression. Using other
parameter settings was shown to lead to worse or no better accuracy in our preliminary
experiments.

In boosting-based regression the output function is assumed to take a linear form as
follows [200]:

ˆR̂(x) =
T∑

t=1
αtht(x) ∈ H (B.7)

where ht(x) is a base (weak) learner and T is the number of boosting iterations. Having a
linear base learner (simple linear regression), a linear final solution is thus also found. In
contrast to this, random forests seek for a non-linear function approximation, recursively
splitting the feature space in the nodes of component decision trees.

In contrast to [200], we use naive decoupling of the regression problem into a number of
single output problems. While multi-output regression solutions do exist both for boosting
[200], for our task multi-output optimization was not shown to lead to error decrease and
time savings were rather insignificant.
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Estimating Patient-Specific Model Parameters
The patient-specific model parameters described in Section B are estimated from cardiac
acquisition using a learning-based algorithm. Detectors are learned separately for both
modalities, CT and MRI, and applied to estimate model parameters in a hierarchical
three-stage approach: Anatomical Landmarks Estimation, Center Line Estimation and
Full Surface Model Estimation.

Anatomical Landmarks Estimation By defining the localization as a classification
problem, the anatomical landmarks, Lt, Lrvot, Lmb, are estimated within the Marginal
Space Learning (MSL) framework [197]. Separate detectors DL

t , DL
rvot, DL

mb, are learned
using the Probabilistic Boosting Tree (PBT) [164] in combination with Haar-like feature
from a training dataset annotated by experts.

p(Lx|x, y, z) = DL
x (x, y, z), (x, y, z) ∈ σx (B.8)

the trained detectors DL
x models the target posteriori distribution p(Lx|x, y, z) for a spe-

cific search space σx given by the training set. MSL is applied to exhaustively search the
parameter space using the learned detectors and obtained the location of the anatomical
landmarks. Note that in case of 4D cardiac CT anatomical landmark are detected in each
volume to obtain the dynamic parameters {Lt, Lrvot, Lmb}t, while in sparse cardiac MR
only a static detection in the end-diastolic volume is performed {Lt, Lrvot, Lmb}ED,

Center Line Estimation CL passes through the centre of the pulmonary trunk and
is initialized by the previously detected landmarks Lt and Lrvot. A robust detector DCL

is learned using the same MSL framework to detect circular structures, parameterized by
center line points CLx, corresponding tangent and fixed radius r = 20mm obtained from
the average value in the training set. An incremental approach is used to search circles on
a series of successively updating planes. Please note, as for the Anatomical Landmarks
Estimation, a temporal center-line model CLt is detected in CT and a static CL in MR.

Full Surface Model Estimation The full model of the pulmonary trunk S is initialized
in the end-diastolic frame using the estimated landmarks and centerlines, using a piecewise
affine transformation along the center line [178]. Robust boundary detectors Ds, trained
using the PBT and steerable feature [197] are applied to locally refine the surface by
moving it along normal directions towards the position with highest boundary probability.
To obtain spatially smooth delineation, the final results is obtained by projecting S to a
previously learned shape space model.

In case of CT, the above describe algorithm is applied in each time step to obtain the
full temporal model {Lt, Lrvot, Lmb, CL, S}t. In case of MR, the estimated surface in the
end-diastolic frame SED is used to initialize the contours LA and SA. These are refined
using a trained Dc contour detector as described above. A full dynamic 4D model is
then estimated by using a learned regression model (see Eq. B.4) to predict the missing
temporal information.
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Results
Results on Patient-Specific Model Parameters Estimation
The proposed framework for detecting a personalized pulmonary trunk model in 4D CT
and sparse MRI data was evaluated on 50 4D CT(500 volumes) and 74 sparse MRI (74
ED Volumes associated with 4736 LA/SA planes) studies from patients with different
CHD. Each volume in the data set is associated with annotation, manually generated
by experts, which is considered as ground truth. Three-fold cross validation was used to
divide the data set into training and test data.

Table B.1 summarizes the detection performance on both modalities (CT and sparse
MRI), from the test data. Point-to-mesh measurement error was used to evaluate the
detection accuracy between the ground-truth and detected model for both modalities.
Average speed of 10sec per frame was achieved for both modalities on a standard 2.0GHz
Dual Core PC.

Table B.1: Detection accuracy
CT/MRI Mean Error(mm) Median(mm) Std.Dev(mm)
Landmarks 3.5/4.3 5.1/6.4 2.7/3.0
Center Line 3.0/3.3 2.3/2.3 1.7/2.0

Full Surface 1.6/1.9 1.2/1.3 0.2/0.2

Intra-modality comparison between CT and MRI
The inter-modality consistency of the model was demonstrated on a subset of 10 pa-
tients which underwent both imaging investigations, 4D CT and sparse MRI (see figure
B.2). Ground-truth and detected pulmonary trunk models from both modalities were
compared using the abstract point-to-mesh measurement and clinical relevant diameter
measurements: RVOT, hinges and commissures. Results are summarized in Table B.2.
A strong inter-modality correlation, r = 0.992, p < 0.0001 and confidence of 98%, was
obtained for CT and CMR based on the pulmonary trunk model.

Table B.2: Model based intra-modality comparison between CT and MRI
(mm) Ground truth Estimation
RVOT 0.7 ± 0.5 3.8 ± 1.5
Hinges 1.2 ± 1.4 2.6 ± 4.7

Commissures 1.5 ± 1.2 3.2 ± 1.7
Point-to-mesh 1.4 ± 0.1 2.5 ± 0.7

Results on Regression Based Dynamic Model Reconstruction
As described in Section B the sparse MRI protocol is able to capture the full anatomy
of the pulmonary trunk only in the ED phase (3D volume) of the heart and parts of
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Figure B.2: Pulmonary trunk model in CT (left) and MRI (middle) data for the ED
phase. Inter-modality consistency by projecting the MRI model(yellow points) into the
CT data (right).

the pulmonary trunk in 2D planes (LA and SA) over the cardiac cycle. However, a full
4D model of the pulmonary trunk can be still computed from the available sparse data
by learning the full motion from 4D CT data. For this purpose we learned a regression
model as presented in Section B on a training data set of 72 4D CT (720 Volumes) studies.
Two different machine-learning techniques (boosting and random forest) are used to train
the regression model and to evaluate the reconstruction error. Table B.3 presents values
obtained by applying the regression method on sparse CMR images and evaluate it on
full 4D CT, for a set of 10 patients, which underwent both imaging modalities. Figure
B.3 illustrates the reconstruction error distributed over the cardiac cycle.

Table B.3: Reconstruction error for Random Forest and Boosting

Boosting Random Forest
Mean Err. 1.44(mm) 3.2(mm)
Std. Dev 0.21(mm) 0.23(mm)
Speed 3.07 (ms) 6.21 ms

Conclusion
We proposed a cross-modality detection framework for estimating a dynamic personalized
model of the pulmonary trunk from the available data, 4D CT and sparse MRI. A novel
regression based reconstruction method is presented and used to infer the incomplete
temporal information characteristic to the sparse MRI protocols. The estimated model
from both modalities can be utilized to extract morphological and functional information
of the pulmonary trunk and dynamics over the cardiac cycle. Extensive experiments
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performed on a large heterogeneous data set demonstrated a precision of 1.44mm data at
a speed of 11 seconds per volume. The proposed method has the potential to significantly
advance the pulmonary trunk treatment.
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