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Kurzfassung

Diese Arbeit untersucht das Mehrfachzugriffsproblem in drahtlosen Netzwerken wenn Net-

zkodierung verwendet wird. Es wird ein Algorithmus zur Ressourcenallokation hergeleitet,

der nicht einzelne Kanten aktiviert, sondern sogenannte Hyperkanten und der dadurch aus

den Vorzügen von zufälliger Netzkodierung Nutzen ziehenkann. Es wird sowohl durch theo-

retische Untersuchungen als auch durch Simulationen gezeigt, dass wenn Mehrfachzugriff und

Netzcodierung gemeinsam optimiert werden, ein deutlich h¨oherer Datendurchsatz zu erwarten

ist, als wenn beide Probleme separat betrachtet werden. Darauf aufbauend wird ein verteil-

ter heuristischer Algorithmus hergeleitet, der das zu Grunde liegende Optimierungsproblem

dezentralisiert löst. Weiterhin wird untersucht in welchem Umfang es nötig ist, das Netzwerk

zu synchronisieren, um eine korrekte Konvergenz von verteilten Algorithmen zu gewährleisten.

Es wird die Frage behandelt, in wie weit Netzkodierung Vorteile bringt, wenn man mehrere

Verbindungen betrachtet und dadurch Netzkodes nicht mehr zufällig sein können. Eine bes-

timmte Klasse von Kodes - die sogenannten sofort dekodierbaren Kodes - werden analytisch

untersucht und es wird durch Simulationen belegt, dass durch ihre Verwendung der Datendurch-

satz erhöht werden kann. Schließlich wird auf den Zusammenhang zwischen Datendurchsatz

und Verzögerung bei netzkodierterÜbertragung eingegangen und es werden Verfahren entwick-

elt zur Reduktion der Verzögerung.





Abstract

In this work, we address network coding for the multiple access layer in wireless networks.

We propose a scheduling technique that activates hyperarcsrather than arcs, as in classical

link-based scheduling, and therefore can harness the gainsof random network coding. We

encapsulate the constraints on valid network configurations in a conflict graph model and for-

mulate a joint optimization problem taking into account both the network coding subgraph and

the schedule. By means of simulations, we show that jointly optimizing the network coding

subgraph and the transmission schedule leads to a substantial performance improvement. Using

Lagrangian relaxation, we decompose the overall problem into two subproblems, a multiple

shortest path problem, and a maximum weighted stable set (MWSS) problem. We show that,

if we use a greedy heuristic for the MWSS part of the problem, the overall algorithm is com-

pletely distributed. We provide extensive simulation results for both the centralized optimal and

the decentralized algorithms.

Next, we look at relaxing the assumption of synchronizationin the network. We propose

an asynchronous algorithm for computing multicast subgraphs, in analogy to the well-known

distributed asynchronous Bellman-Ford algorithm for routing. It turns out that asynchronous

algorithms require a strictly convex problem formulation,which poses certain restrictions on the

network model, most importantly the schedule has to be assumed fixed. We provide extensive

simulation results showing fast convergence, despite the lack of any central clock in the network,

and robustness with respect to link or node failures.

We then extend network coding to take place across differentindependent sessions. We pro-

pose a framework for joint optimal scheduling of packet transmissions and network coding with

the restriction that packets have to be decoded after one hop. We compute the stability region of

this scheme and propose an online algorithm that stabilizesevery arrival rate vector therein. The
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online algorithm requires computation of stable sets in an appropriately defined conflict graph.

We show by means of simulations that this inherently hard problem is tractable for some in-

stances and that network coding extends the stability region over routing and leads, on average,

to a smaller backlog.

Finally, we look at the relationship between throughput anddelay for network coded transmis-

sions in erasure broadcast channels. We present a systematic framework for the minimization of

decoding delay under instantaneous decoding constraints.The underlying problem is NP-hard,

but we provide a customized and efficient algorithm for finding the optimal solution. We illus-

trate how this optimal algorithm can be converted to a heuristic with very small computational

complexity.







1
Introduction

The advent of network coding, in the early years of the new millennium, awoke the entire

community of computer networking from a dogmatic slumber. Ever since computers were

connected to exchange data, nobody had questioned the implicit assumption that the flow of

information satisfies the same rules as the flow of a liquid through a network of pipes. In a

sequence of works by Ahlswede et al. [2], Li et al. [4], and Koetter and Médard [5], it was

shown that this simple analogy falls short of characterizing the nature of information and of

capturing the rich set of operations within which we can manipulate it. It soon became clear

that the notion of network coding is not only of theoretical interest, but moreover can have a

profound impact on the design of communication networks andpromises significant gains - in

terms of performance as well as better and more robust architectures [6,7].

Network coding can be applied to wireline and wireless networks and shows gains in both

scenarios [1]. Our focus will be largely on wireless networks. The benefits of network coding

are particularly significant if the underlying medium transmits by broadcast, is unreliable, and
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operates in a regime where resources are scarce. Moreover, this is also precisely the setup,

where classical routing techniques cease to work reliably.Under such conditions, improving

network performance becomes critical to the overall operation.

In wireless networks, transmissions are often unreliable.In addition, neighbors often overhear

packets not intended for them. Network coding is especiallyeffective in broadcast media, where

each transmission is overheard by all neighbors rather thanonly the single neighbor for whom

the message was intended. The question that we shall be addressing from various perspectives

throughout this thesis is about the relationship between network coding and the other layers in

the network, especially the multiple access (MAC) layer. Itis possible to apply network coding

in place of routing and leave the other layers completely unaffected. We will argue that, where

possible, it is much more desirable to design the overall network with network coding in mind.

This allows us not only to capitalize on the increased throughput and robustness that network

coding supplies, but also to benefit from the structural gains that network coding offers.

To illustrate what we mean by increased throughput and structural gains, consider the follow-

ing simple example depicted in Fig. 1.1. There, two wirelessnodesA andB need to exchange a

pair of packets. They are not in mutual radio range, however the relayR is in radio range of both

and can facilitate the exchange. In traditional routing this would take four steps, as indicated

in Fig. 1.2(a). With network coding, as shown in Fig. 1.2(b),once the relay has received both

A’s andB’s packets, it can broadcast the binary XOR of the pair. ThenA andB can recover

the packets that they need by XOR-ing again the mixed packet with the ones they hold1. This

reduces the number of transmissions to three.

We see in this example how network coding improves performance - it reduces the required

bandwidth by25%, as well as the energy consumption by the same factor, if we assume that

1Interestingly, the “trick” that comes to our aid here has long been known under the nameXOR-swapin as-
sembly programming and has been used for a completely different purpose - to swap the contents of two variables
without the need of a temporary variable. Typically, swapping the contents of memory cellsA andB requires a
third cell C and the following instructions:C ← A; A ← B; B ← C. The XOR-swap needs no temporary
variable and can be implemented as follows:A← A⊕ B; B ← A⊕B; A← A⊕B.
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Figure 1.1Two wireless nodes wish to exchange a pair of packets; the respective radio ranges
are indicated by dotted lines.

A BR

all packet transmissions require the same amount of power. To understand the consequences

for the network architecture, consider the required relative bandwidths in the case of routing

and in the case of network coding. For routing we haveBWA = BWB = 0.25, andBWR =

0.5, where the total bandwidth is normalized to 1. For network coding, correspondingly, we

haveBWA = BWB = BWC = 1
3
; in this example, network coding equalizes the bandwidth

demands of neighboring nodes [8]. In practice, many MAC-protocols, and in particular 802.11,

are locally fair and assign equal shares of bandwidth to competing neighbors. Therefore, if

network coding equalizes bandwidth demands of neighbors, then a locally fair underlying MAC

is expected to perform better. The combination of these two effects, the throughput gain due

to coding and the structural gain due to the improved collaboration with the multiple access

mechanism, have been demonstrated to dramatically improvenetwork performance [7]. The

work [8] has contributed to our understanding of the structural gains of network coding in this

setup - in fact, the MAC gain is responsible for most of the observed throughput increase.

The previous example illustrates that when network coding and the underlying multiple ac-

cess mechanism are well-matched, good network performanceresults. Since optimal network

codes guarantee performance no worse than the best possiblerouting solution, it is tempting

to replace routing with coding in existing network solutions without much thought about the
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Figure 1.2Network coding versus routing.

A BR

1 2

34

(a) With routing, four steps are needed for
the exchange.

A BR

1 2

3

(b) With network coding, three steps are
sufficient.

broader network characteristics. We argue that network codes should be adapted to the net-

works in which they are employed and demonstrate the benefit of joint design with the other

layers of the network. Concretely, we look at the following problems:

• How can we schedule wireless broadcast transmissions to achieve the highest possible

network coding gain?

• To what extent can we relax the assumption of synchronous updates in the network?

• How can we use coding across different sessions in a practical and local way, but still

arrive at a rigorous performance analysis?

1.1 A Brief Survey of Relevant Work

In this section, we will provide a very brief survey of work relevant to the thesis. As the field

has grown very quickly, our survey cannot be complete. For a more comprehensive introduction

to network coding, see [9].

The notion of network coding was introduced in the seminal work of Ahlswede et al. [2], where

it was established that network coding is sufficient to achieve the min-cut bound in multicast

networks. This is in sharp contrast to routing, which even inwireline and lossless networks does

not achieve the min-cut in general. Li et al. [4] looked at linear network codes and showed that

the multicast capacity can always be achieved by linear codes. The work of Koetter and Médard
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[5], where the authors developed an algebraic formulation of the network coding problem and

used it to derive necessary and sufficient conditions for thefeasibility of both multicast and

multiple unicast connections. This work provided criticaltools later used in the immense body

of work on decentralized network coding and optimization.

Code construction algorithms for the multicast were proposed by Ho et al. [6] and Jaggi et

al. [10]. The algorithm in [6], referred to asrandom linear network coding, builds on the work

in [5]. In [6], nodes form linear combinations of the packetsthey have stored in memory;

coefficients are chosen independently and randomly, thus yielding a fully decentralized and

with high probability capacity achieving algorithm. The work in [10] describes polynomial-

time global code construction algorithms. The multicast network coding problem is largely

solved, though there is still room for advancement. For example, decoding complexity for

random linear network coding is high since it requires matrix inversion, which runs in time

O(n3).

Unfortunately, far less is known about code construction for multiple unicast sessions. For

example, the capacity region of several simultaneous and independent point-to-point sessions

is unknown. The difficulty is caused in part by the insufficiency of linear network coding to

achieve capacity [11]. Despite that, there are useful engineering applications. In Traskov et

al. [12], the authors present a centralized linear programming solution that searches for coding

opportunities in the network. Ho et al. [13] also provide a constructive approach to the multiple

unicast problem. These ideas were extended in Eryilmaz et al. [14], where the authors propose

dynamic and online stabilizing algorithms for the problem.

Since centralized design is infeasible for many applications, decentralized algorithms are re-

quired. The COPE protocol proposed by Katti et al. [7] opportunistically takes advantage of

local coding structures.

Here, packets are combined into a single transmission if theintended recipient either knows

or can overhear the packets necessary for decoding. Its basic idea is based on the example
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discussed in the previous section, where owing to overheardpackets, several transmissions can

be combined into one. It is interesting to note that the largereported gains cannot be explained

by the ability of network coding to reduce the number of transmissionsalone. Instead, the more

significant factor is the interaction between network coding, which tends to equalize bandwidth

demands of neighboring nodes, and the locally fair 802.11 multiple access mechanism [8].

This observation motivates our investigation of the interplay between multiple access and net-

work coding for wireless networks. Although, the literature on wireless network coding is

extensive, the papers looking explicitly at multiple access issues are few. Lun et al. [1] pro-

posed posing network coding as a problem of minimizing resources in a network, assuming

that all network transmissions are orthogonal and therefore interference-free. In Wu et al. [15],

the authors consider the impact of interference, focusing on minimizing power consumption. If

multiple access problems are explicitly considered, this is typically done by attempting to find

“good” transmission schedules according to heuristic rules. The most popular such technique

is to select valid network configurations that aremaximal, in the sense that no more transmis-

sions can be scheduled without causing a collision, as in e.g. Sagduyu et al. [16]. One of the

goals of this work is to to study channel access and wireless network coding jointly rather than

independently.

1.2 Outline of the Thesis

The remainder of thesis is organized as follows.

In Chapter 2, we introduce the network coding scheme and the network model, and we provide

an example to illustrate different possible approaches to the multiple access problem for coded

and uncoded networks.

In Chapter 3, we address the multiple access problem for coded networks and propose a

scheduling technique that activates hyperarcs rather thanarcs, as in classical scheduling ap-
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proaches. We encapsulate the constraints on valid network configurations in a conflict graph

model and formulate a joint optimization problem taking into account both the network coding

subgraph and the schedule. Using Lagrangian relaxation, wedecompose the overall problem

into two subproblems, a multiple shortest paths problem anda maximum weighted stable set

(MWSS) problem. We show that, if we use a greedy heuristic forthe MWSS part of the prob-

lem, the overall algorithm is completely distributed. Our simulation results indicate that the

optimal algorithm improves performance by up to a factor of two compared to widely used

techniques such as orthogonal or two-hop-constrained scheduling. The decentralized algorithm

is shown to buy its distributed operation with some throughput losses. Experimental results on

randomly generated networks suggest that these losses are not large. We also look at the power

consumption of our scheme and quantify the trade-off between power and bandwidth efficiency.

In Chapter 4, we propose an asynchronous algorithm for computing multicast subgraphs. The

algorithm is analogous to the well-known distributed asynchronous Bellman-Ford algorithm

for routing. Our central idea is to apply a block-coordinateascent algorithm to the dual of

the problem. The resulting algorithm is fully asynchronous. However, it leads to certain other

constraints on the formulation that we discuss. We provide extensive simulation results showing

fast convergence despite the lack of any central clock in thenetwork and robustness with respect

to link or node failures.

In Chapter 5, we look at network coding across different users with the restriction that packets

have to be decoded after one hop. We compute the stability region of this scheme and propose

an online algorithm that stabilizes every arrival rate vector within the stability region. The on-

line algorithm requires computation of stable sets in an appropriately defined conflict graph.

We show by means of simulations that this inherently hard problem is tractable for some in-

stances. We also show that network coding extends the stability region over routing and leads,

on average, to a smaller backlog.

In Chapter 6, we are concerned with designing feedback-based adaptive network coding
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schemes with the aim to minimize decoding delay in each transmission. As in Chapter 5,

we impose the instantaneous decoding constraint and propose efficient algorithms for finding

the optimal solution within this class of network codes. We verify the delay and computational

complexity of our techniques through simulations.

In Chapter 7, we conclude the thesis and provide a brief perspective on future work.

1.3 Publications Preceding this Thesis

Parts of the material presented in this thesis appear in published papers [17–23] and in as yet

unpublished paper [24].



2
Preliminaries

In this chapter, we review some necessary technical details, describe the network model and

motivate the joint approach to multiple access and network coding using a simple example. We

begin with discussing the network coding scheme.

2.1 Random Linear Network Coding

In Chapters 3 and 4, we apply the random linear network codingapproach, proposed by Ho

et al. [6, 25]. It is relatively easy to implement and can be included in existing protocol stacks

without the need for a complete redesign [26]. The coding scheme is summarized in Table

2.1. Appending the encoding coefficients in the header [26] incurs an overhead ofN log2 q

bits. This overhead is negligible if the payload of the packets is sufficiently large. Alternatively,

Koetter and Kschischang have proposed a method [27] that reduces the overhead associated

with headers. Motivated by non-coherent communications, their approach is considerably more

complex.
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Input:

• A source node, a set of multicast sinks, and intermediate nodes such that the
resulting network is connected.

• Packetsp1, . . . , pN that the source wants to transmit.

Multicast source:

• The source node forms linear combinationsqj =
∑N

i=1 αipi, where the coef-
ficientsαi are drawn uniformly at random from a finite fieldGF (q).

• The vector of encoding coefficients[α1, . . . , αN ] is appended to the packets
prior to their transmission.

Intermediate nodes:

• When an intermediate nodereceivesa packet, it stores it in its memory.

• To transmita packet, it forms a linear combination from the packets in its
memoryq1, . . . , qK , with (new) random coefficientsβi drawn fromGF (q).

• As all operations in the network are linear, any packet can berepresented as
a linear combination of packetsp1, . . . , pN . The vector of coefficients used in
this linear representation - called theglobal encoding vector- is appended to
the packet prior to its transmission.

Multicast sinks:

• Each sink stores received packets in its memory. When it has received at least
N packets, it attempts Gaussian elimination on the global encoding vectors
of the received packets. If it is successful, it recovers thepacketsp1, . . . , pN .

Table 2.1: Summary of random linear network coding.
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Random linear network coding is optimal in the sense that it achieves the min-cut bound from

the source toeverymulticast sink [6]; more precisely, if the field sizeq over which we code

is sufficiently high, the decoding error probability approaches zero. The maintenance of min-

cut conditions between the set of senders and every receiverindividually is always a necessary

condition for feasibility; under network coding it is alsosufficient. Network coding can be

applied with only minor modifications to wireline or wireless networks.

It is not obvious how we can guarantee that enough linearly independent (orinnovative) pack-

ets reach the sinks such that the collection of global encoding vectors is non-singular. To ensure

this, we have to carefully choose which intermediate nodes inject coded packets in the network

and at what rates. That is, we have to select a subnetwork that, fully utilized, can support the

desired connection. Moreover, often the goal is to satisfy the connection and at the same time

to minimize resource consumption in the network. This is theproblem that we refer to assub-

graph optimization. It turns out that these problems, the subgraph optimization and the network

code construction, can be addressed separately without loss of optimality [1]. Therefore, from

now on, we focus entirely on the subgraph optimization problem.

2.2 Network Coding Subgraph

We consider wireless networks in slotted time; in any slot a node can either broadcast one

constant-length packet or stay idle. In what follows, all rates have the unit packets/slot. We

model a wireless network, and in particular broadcasting, by a hypergraph (a generalization of

a graph) which is defined as follows:

Definition 1 A hypergraphH = (N ,A) is a set of nodesN and a collection of hyperarcsA.

A hyperarc(i, J) ∈ A is a generalization of an edge, wherei ∈ N andJ ⊂ N .

If nodei injects a packet on hyperarcJ , it is received by some subsetK ⊆ J , possiblyK being

the empty set∅. Let AiJ(τ) be the counting process describing packet injections on hyperarc



12 Chapter 2 � Preliminaries

J andAiJK(τ) be the counting processes accounting for the packets receivedpreciselyby the

subsetsK. We have
∑

K⊆J AiJK(τ) = AiJ(τ). We assume that the injection processes we use

are stationary and ergodic and therefore their time averages limτ→∞
AiJ(τ)

τ
exist with probability

1 and are finite. We useziJ to denote this limit. Similarly, we definelimτ→∞
AiJK(τ)

τ
= ziJK .

With these assumptionsziJ =
∑

K⊆J ziJK is the average packet injection rate on hyperarcJ .

We shall assume that the underlying process is memoryless and

piJK =
ziJK

ziJ
, (2.1)

is the probability that a packet injected onJ is received precisely by the subsetK. This can take

into account that transmissions experience erasures, which may be due to distance attenuation,

shadowing, or fading. We call the vectorz = (ziJ)(i,J)∈A the network coding subgraph. In

wireless networks, the network coding subgraph is further constrained to lie in the multiple

access rate region of the network. This is - by a time sharing argument - a convex set, albeit

with a possibly high description complexity. We discuss themultiple access constraints, such

as half-duplex transceivers and interference, in detail inthe next section.

2.3 Interference and Half-Duplex Constraints

Consider a wireless network represented by a set of nodesN and for each nodei ∈ N a set of

neighborsN(i) ⊂ N . We assume that wheni transmits all nodes inN(i) are in radio range and

can potentially receive or experience interference1 from i.

From the neighborhood relation we construct a hypergraphH = (N ,A) with N correspond-

ing to the set of nodes in the network. For each nodei we introduce2|N(i)| − 1 hyperarcs,(i, J)

whereJ ranges over all subsets ofN(i) excluding the empty set.

1A popular and slightly more general model is to assume that a node can receive fromi if it is contained in a
setN1(i) but is subject to interference if it belongs to a supersetN2(i) ⊃ N1(i). Our framework can be extended
to take into account such a setup. However, for the sake of a simpler notation, we abide with the above model.
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Which sets of hyperarcs can transmit simultaneously without a conflict depends on the system

model of the network. In networks with primary interference, e.g. spread-spectrum systems,

we restrict each node to receive from at most one other node. In networks with secondary

interference, we have the additional constraint that a nodecan only successfully receive if all

other neighbors are silent. In addition, we assume half-duplex transceivers.

We shall call a set of conflict-free hyperarcs a transmissionset or valid configuration, formally

Definition 2 We say that hyperarcs(i1, J1) and(i2, J2), donot conflict if:

1) i1 6= i2,

2) i1 /∈ J2, i2 /∈ J1, and

for networks with primary interference

3a) J1 ∩ J2 = ∅, or

alternatively for networks with secondary interference

3b) J1 ∩N(i2) = ∅, andJ2 ∩N(i1) = ∅.

For both the primary and the secondary interference model, the definitions are symmetric

in their arguments and therefore give rise to an undirected graph representing the scheduling

conflicts between pairs of hyperarcs. We construct the conflict graph as follows.

Definition 3 The conflict graphG of a hypergraphH is an undirected graphG = (V, E), with

V corresponding to the set of all hyperarcs. Two hyperarcs areadjacent if they conflict.

We can define a valid configuration of hyperarcs as a set of nodes in the conflict graph without

any conflicting pair, i.e. a valid configuration is a stable set.
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Figure 2.1An example of a hypergraph. Here, the node set isN = {1, 2, 3, 4} and the hyperarc
set isA = {(1, 2), (1, 3), (1, {2, 3}), (2, 4), (3, 4)}.

1

2

3

4

Definition 4 A stable setS of an undirected graphG = (V, E) is a set of nodes any two of

which are nonadjacent. Its incidence vector is a column vector of length|V|, defined as

χS
v =







1 if v ∈ S,

0 otherwise.

(2.2)

A maximal stable set is one that is not contained in any other stable set. A maximum stable set

is a stable set of largest cardinality. The stability numberα(G) of a graph is the cardinality of

the maximum stable set. The stable set polytopePSTAB(G) is the convex hull of the incidence

vectors of all stable sets ofG.

Example To illustrate the notation, consider the hypergraph in Fig.2.1 and its corresponding

conflict graph in Fig. 2.2. In this particular network, both the primary and the secondary

interference models give rise to the same conflict graph. Theconflict graph has a node for

each hyperarc. ThusV = {(1, 2), (1, 3), (1, {2, 3}), (2, 4), (3, 4)}. The stable set polytope for

this example is the convex hull of the incidence vectors of the three stable sets{(1, 2), (3, 4)},

{(1, 3), (2, 4)}, and(1, {2, 3}), and the origin. �
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Figure 2.2The conflict graph corresponding to the hypergraph in Fig. 2.1

(1, 2)

(1, {2, 3})

(1, 3)

(2, 4)

(3, 4)

2.4 Example: Relay channel

The purpose of this example is to illustrate four possible approaches to the multiple access

problem and the subgraph optimization problem in wireless multi-hop networks. Consider the

network in Fig. 2.3, which was discussed in [28] in combination with random access and there-

fore called theslotted Aloha relay channel. This is reminiscent of the classical relay channel

from information theory [29], which deals with the physicallayer capacity of this three-terminal

network. In contrast, the problem we approach is the efficient transmission of already packe-

tized data, which is a problem of higher layers rather than a physical layer problem. We can

efficiently solve this problem with network coding. The goalis to establish a unicast connec-

tion of rateR from node 1 to node 3. According to the hypergraph model, we have two directed

hyperarcs(1, {2, 3}) and(2, 3). We assume half-duplex constraints, i.e. a node cannot transmit

and receive at the same time. Furthermore, owing to interference, when nodes 1 and 2 trans-

mit simultaneously, the packets collide andbothare lost. Even in the absence of interference,

packets can be lost due to erasures - this is modelled by the reception probabilitiespiJK .

We consider two strategies for multiple access control: scheduleding, which effectively elim-
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Figure 2.3The relay network.

1

2

3

inates interference, and random access, where nodes transmit randomly with some probability

in every slot. We also consider two strategies for the subgraph optimization problem: routing

and network coding. This leads to four different combinations, which we discuss next in detail.

2.4.1 Scheduling and Routing

Routing assumes that we fix a path and send all packets along this path2. In our example,

we can either use the direct path between node 1 and 3, or transmit via the relay node 2. If

we use the relay, it cannot transmit and listen at the same time. To find the better of the two

source-destination paths to route over, we compare the following alternatives

Path 1→ 2→ 3: We use link(1, 2), which has a success probability ofp1{23}2 + p1{23}{23},

in fraction α, α ∈ [0, 1], of the time slots and correspondingly link(2, 3), which has a

success probability ofp233, in fraction1− α of the time slots. Then, since we need both

link throughputs to be equal

α(p1{23}2 + p1{23}{23}) = (1− α)p233. (2.3)

We conclude that the optimal time sharing coefficient is

α∗ =
p233

p1{23}2 + p1{23}{23} + p233
, (2.4)

2It is also possible to usemulti-path routingand route along several paths. This can lead to better performance
in general, but this is not the case for the simple network that we consider.
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and the optimal throughput is

R∗ =
(p1{23}2 + p1{23}{23})p233

p1{23}2 + p1{23}{23} + p233

. (2.5)

Path 1→ 3: In this case, the throughput is simply

R∗ = p1{23}3 + p1{23}{23}. (2.6)

How we compensate for the erasures depends on whether the network has an ARQ-

mechanism; if it does not, then we have to use a forward-error-correction (FEC) code. Assume

we apply FEC and select the path via the relay. Then, we are forced to choose between two

alternatives, both undesirable: If we use an FEC-code end-to-end, we lose throughput, because

the end-to-end-FEC has to compensate the higher erasure rate of the pair of links. If we use the

FEC link-by-link, we do not lose throughput but incur the delay of decoding and re-encoding at

the relay [30]. Random linear netwok coding, in contrast, achieves the maximal path throughput

without decoding at intermediate nodes. Hence, it has advantages even when the “network” is

a simple pair of links.

2.4.2 Scheduling and Network Coding

Owing to the half-duplex and interference constraints, in an interference-free schedule for the

relay network, at most one hyperarc transmits in every slot.A schedule can therefore be pa-

rameterized by one parameter,α, the fraction of time slots in which a packet injection occurs

on (1, {2, 3}). Correspondingly,1 − α is the fraction of time slots in which a packet injection

occurs on(2, 3). We wish to determine the maximal rateR∗ that can be achieved. We do this

by solving a linear program; its formulation will be discussed in greater detail in Chapter 3.

maximize R
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subject to

R ≤ x12 + x13 (2.7)

x12 ≤ α
(
p1{23}2 + p1{23}{23}

)
(2.8)

x13 ≤ α
(
p1{23}3 + p1{23}{23}

)
(2.9)

x12 + x13 ≤ α
(
p1{23}2 + p1{23}3 + p1{23}{23}

)
(2.10)

x23 ≤ (1− α) p233 (2.11)

x12 = x23 (2.12)

0 ≤ α ≤ 1 (2.13)

x12, x13, x23 ≥ 0. (2.14)

In this formulation, a variablexij denotes the flow of innovative packets between nodesi and

j. We can solve this LP analytically, by applying Fourier-Motzkin elimination [31, Section 2.8].

The details are described in Appendix A.1. It turns out that we have to distinguish two cases.

Case 1: If p1{23}3 + p1{23}{23} < p233, then the maximal achievable rate is

R∗ =
p233(p1{23}2 + p1{23}3 + p1{23}{23})

p233 + p1{23}2
, (2.15)

with the sender transmitting in the fraction of slots

α∗ =
p233

p233 + p1{23}2
, (2.16)

and the relay in the remaining fraction of1− α∗ slots.

Case 2: If p1{23}3 + p1{23}{23} > p233, then the maximal achievable rate is

R∗ = p1{23}3 + p1{23}{23}. (2.17)
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In this case the relay is not used at all; the sender transmitsdirectly to the destination.

2.4.3 Random Access and Routing

We now turn our attention to the case where the underlying multiple access mechanism is ran-

dom access. In this case, we need to computetransmission attempt probabilitiesthat maximize

the end-to-end rate. If we assume that packets are routed along fixed paths, we again have to

distinguish between the two possible paths of the network. Using the direct path1 → 3, there

is no need for medium access control; the throughput is simply R∗ = p1{23}3 + p1{23}{23}, the

success probability of the link. On the other hand, routing via the relay requires us to compute

two transmission attempt probabilitiesz12 andz23, for links (1, 2) and(2, 3), respectively. The

throughput of the path is then the minimum of the effective link throughputs [32, Section 4.6]

R∗ = min
z12,z23∈[0,1]

{
(p1{23}2 + p1{23}{23})z12(1− z23), p233z23(1− z12)

}
, (2.18)

and we choose the better of the two path paths to route along.

2.4.4 Random Access and Network Coding

This problem (introduced and discussed in [28]) requires finding transmission attempt proba-

bilities z1{23} andz23 that maximize the rate of the connection; the notationz1{23} implies that

we are now using the hyperarc(1, {2, 3}), instead of the constituting links individually. The

optimization problem is as follows [28]:

maximize R
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subject to

R ≤ z1{23}(1− z23)(p1{23}2 + p1{23}3 + p1{23}{23}) (2.19)

R ≤ z1{23}(1− z23)(p1{23}3 + p1{23}{23}) + z23(1− z1{23})p233 (2.20)

0 ≤ z1{23}, z23 ≤ 1. (2.21)

This problem is not convex and as such very difficult to solve in general. Using a time sharing

argument, one can argue that, it is equivalent to optimizingover the convex hull of the constraint

set. Unfortunately, finding a parameterization of the convex hull is no easier than solving the

original non-convex problem. Nevertheless, Riemensberger et al. [33] have successfully applied

a specialized version of the branch-and-bound algorithm tofind the optimal solution for smaller

networks. In [34], a heuristic is considered for finding valid transmission attempt probabilities

that support a given throughput. If a certain fixed throughput is found to be feasible, one can

then incrementally increase it and check if the new higher throughput is feasible.

2.4.5 Discussion

To compare the four proposed schemes, consider the following fixed transmission success prob-

abilities

p1(23)2 = 9/16 (2.22)

p1(23)3 = 1/16 (2.23)

p1(23)23 = 3/16 (2.24)

p233 = 3/4. (2.25)

Table 2.2 shows the resulting maximal rates for the four different mechanisms that were dis-

cussed. The results confirm that scheduling always performsbetter than random access. Net-
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Maximal achievable rate Routing Network coding
Scheduling 0.375 0.464
Random access 0.25 0.25

Table 2.2: The maximal achievable rates (in packets/slot) under the different policies.

work coding subsumes routing and, therefore, performs at least as well.

Another meaningful comparison between the proposed schemes is to plot their power-

efficiency as a function of the rate. If we assume that each packet transmission requires the

same amount of energy, then the average number of transmissions needed to deliver a packet

end-to-end is a reasonable estimate of the power consumption. Our results are summarized in

Fig. 2.4, where we plot the minimal average number of transmissions per packet as a function

of the connection rate. For a fixed rate, scheduling always requires fewer transmissions than

random access, and network coding reduces the expected transmissions compared with routing.

In Fig. 2.4, the curve for routing and random access is definedpiecewise. This is the result

of a switch of paths as the load increases; for lighter loads,it is better to use the path via the

relay (1 → 2 → 3). For heavier loads, it is better to switch to the direct path(1 → 3). We

also observe that the maximal achievable rate does not tell the whole story about the merits of

a scheme. With random access, the maximal rates with networkcoding and with routing are

the same, but network coding results in a more efficient network operation with fewer packet

transmissions for any fixed rate.

For small rates, the difference in performance between random access and scheduling is cor-

respondingly small, since low attempt probabilities will result in fewer collisions and therefore

not many packet transmissions will be wasted. This is reflected in Fig. 2.5, which shows the op-

timal attempt probabilities for network coding with randomaccess. The objective is to minimize

the average number of transmissions per packetz1{23} + z23 for a fixed rateR. For light loads,

the transmission attempt probabilities increase almost linearly. As the load becomes heavier,

the increase is much more pronounced.
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Figure 2.4The minimum average number of transmissions per packet as a function of the rate
R.
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Figure 2.5 Optimal transmission attempt probabilities for network coding as a function of the
rateR.
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This confirms the well-known behavior and limitations of random access protocols; they are

inherently simple and they are easy to implement in a fully decentralized way. However, unless

the load is very light, they suffer from limitations in throughput and in efficiency. If the load in

the network is light, then the objective of supporting a certain set of connections can be captured

by classical routing and channelization schemes; network coding, while beneficial, might not

be needed. Under heavy network loads, which is the more relevant operation regime in practice,

a lot can be gained by capitalizing on the advantages of network coding regarding throughput

and robustness.

It turns out that a sizeable share of the throughput gains of network coding can be harnessed

only when transmission scheduling is done in a way that creates coding opportunities; this is the

focus of the next chapter. In principle, network coding can work with any underlying multiple

access mechanism. We show, however, that a joint approach toscheduling and network coding

subgraph optimization is needed if the load of the network ishigh and bandwidth is scarce. For
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the simple relay channel example, the underlying transmission schedule was parameterized by

just one coefficientα. How this generalizes to larger multi-hop networks is not obvious. In

the next chapter, we demonstrate that we can indeed extend the approach to general multi-hop

networks and evaluate the resulting gains.



3
Scheduling for Network Coded

Multicast

The problem we address in this chapter is to compute an optimal network coding subgraph and

a schedule that can support it. Wireless networks are often interference-limited, and efficient

operation requires a high frequency reuse within the network. This is achieved by means of

scheduling, which carefully allows simultaneous transmissions that do not interfere with each

other. Finding an optimal, or even good, subgraph is by no means a simple problem in the

presence of half-duplex transceivers and interference. When medium access control assigns

every node an orthogonal channel, it is possible to compute the optimal subgraph by solving a

linear or convex program [1]. The solution given is distributed. When bandwidth is plentiful,

it may be reasonable to orthogonalize the entire network. However, if bandwith is scarce, the

resulting throughput will be low.

Owing to the hardness of the general problem, the prevalent approach in the literature is to



26 Chapter 3 � Scheduling for Network Coded Multicast

heuristically construct an interference-free transmission schedule and then to compute an op-

timal subgraph over this essentially orthogonal network. As an example, in [35] the authors

propose a suboptimal collision-free strategy where two nodes cannot transmit simultaneously if

they are within two hops. This is a sensible practical solution, but the combination of a carefully

optimized network coding subgraph and a more or less ad-hoc medium access strategy may lead

to poor performance.

To address this challenge, we suggest a framework where the network coding subgraph and

channel access are optimized jointly. We construct a hypergraph that takes into account possi-

ble transmissions to every subset of neighbors of a node. Each such subset is represented by a

hyperarc. We consider subsets of hyperarcs that can be activated simultaneously without inter-

fering, as opposed to classical link-based scheduling. These constraints are transformed into a

conflict graph representation, where the hyperarcs are represented by nodes and the activation

constraints are given by edges. A set of hyperarcs can be activated simultaneously if they are not

connected by any edge in the conflict graph. This conflict graph encapsulates the combinatorial

difficulty of the problem. Finally, we exploit the polymatroid representation of the rate regions

associated with valid network configurations to derive a succinct expression for the entire rate

region.

Having derived the joint scheduling and network coding algorithm, we seek to distribute the

operation across the network, in a way similar to [1]. To thatend, we decompose the problem

into two subproblems using Lagrangian relaxation. The firstsubproblem is a multiple shortest

path problem, the second and considerably harder subproblem is a maximum weighted stable

set problem. Since the latter is NP-hard, we propose an approach that greedily choosesmaximal

stable sets according to appropriately defined weights. This can be done in a decentralized way,

giving a distributed algorithm. By means of simulations, wedemonstrate that the throughput

is close to the optimal performance. By optimal performance, we refer to solving the original

optimization problem and optimizing over the entire stableset polytope. We also study the
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power consumption of our scheduling algorithm and quantifythe power vs. bandwidth trade-

off. This quantifies, how much power is wasted by permitting collisions as in our approach.

Formulating scheduling as finding “stable” sets or “independent” sets is a common technique.

Prior examples include scheduling for routed traffic [36], scheduling in switches [37], net-

work code construction in a wireline setup [38], and scheduling for Banyan networks [39]. For

scheduling network coded transmissions in wireless networks, this approach gives rise to a num-

ber of novel and interesting observations. Here nodes broadcast coded packets to all neighbors

(the wireless broadcast advantage) and transmissions are subject to interference. By guarantee-

ing a node successful transmission to a subset of its neighbors and at the same time permitting

conflicts on the remaining neighbors, we are not seeking to minimize the number of collisions

per se. In fact, one can argue that we are scheduling conflictsfor the nodes not contained in the

activated hyperarc.

To relate our approach to previously published work, note that in contrast to [15], where the

authors focus on minimizing power consumption, we considera wireless network where inter-

ference is the limiting factor. Contention resolution by means of clustering has been studied

in [40] for networks with CDMA. The scheduling of broadcast transmissions is introduced

in [41] in a different context, namely in an attempt to analyze the opportunistic, local combina-

tion of packets belonging to multiple unicast connections.

3.1 The Multicast Rate Region with Scheduling Constraints

Multicasting is the transmission of information from a source nodes to a subset of network

nodesT .

Definition 5 A multicast connection is a triple(s, T , R), with s ∈ N , T ⊂ N , andR > 0

denoting the rate of the connection. All multicast sinks request the same information.
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Consider a hypergraphH = (N ,A) and a multicast connection of rateR with sources ∈ N

and sinksT ⊂ N . We can apply the following flow formulation from [1] to compute the

network coding subgraph. We consider the rate region (whichhere refers to supportable end-

to-end throughputs rather than an information theoretic bound) for a multicast connection1. It

is not an information theoretic bound because we do not look at the physical layer, but assume

packetized data. Furthermore, we assume that collisions lead to loosing the packets. Under

these assumptions, the rate region is then the set of ratesR subject to the following constraints

∑

j∈K

x
(t)
iJj ≤ ziJbiJK , ∀ (i, J) ∈ A, K ⊂ J, t ∈ T , (3.1)

∑

{J |(i,J)∈A}

∑

j∈J

x
(t)
iJj −

∑

{j|(j,I)∈A,i∈I}

x
(t)
jIi =







R i = s,

−R i = t,

0 else,

(3.2)

∀ i ∈ N , t ∈ T ,

x
(t)
iJj ≥ 0, ∀ (i, J) ∈ A, j ∈ J, t ∈ T , (3.3)

z = (ziJ) ∈ PSTAB(G), (3.4)

where we define

biJK =
∑

{S⊂J |S∩K 6=∅}

piJS. (3.5)

Example To illustrate constraint (3.1), consider a hyperarc(i, J) = (1, {2, 3, 4}) with the

1The extension to multiple multicast connections with intra-session coding is straightforward. We omitted it to
simplify exposition and notation.
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following reception probabilitiespiJS, for S ⊂ {2, 3, 4}

piJ{2} = 0.1, piJ{3} = 0.2, piJ{4} = 0.25,

piJ{2,3} = 0.2, piJ{2,4} = 0.15, piJ{3,4} = 0.05,

piJ{2,3,4} = 0.05, piJ{∅} = 0.

We can assign these probabilities arbitrarily, as long as they sum up to one. Therefore, any

dependence in the channel erasure probabilities can be accommodated. Let the injection rate be

z1{2,3,4} = 1. Then the rate region for the hyperarc is

0 ≤ x1J2, x1J3, x1J4 ≤ 0.5, (3.6)

x1J2 + x1J3 ≤ 0.75, (3.7)

x1J2 + x1J4 ≤ 0.8, (3.8)

x1J3 + x1J4 ≤ 0.9, (3.9)

x1J2 + x1J3 + x1J4 ≤ 1, (3.10)

and is plotted in Fig. 3.1. Note that as the joint erasure probabilitiespiJS are defined, every link

has a marginal erasure probability of0.5. Thus, if we do not use network coding and time-share

between the links, the achievable link rates have to satisfyx1J2 + x1J3 + x1J4 ≤ 0.5. This

illustrates the network coding gain due to the wireless broadcast advantage.�

The last constraint (3.4) explicitly accounts for interference by requiring the network coding

subgraphz to lie in the stable set polytope of the conflict graph. Any vector in the stable set

polytope can be written as a convex combination of schedules. Therefore, the demanded rate

can be transmitted if the granularity of time slots is sufficiently fine. This is analogous to the

Birkhoff-von Neumann decomposition of load matrices for scheduling in switches [37].
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Figure 3.1The rate region for the hyperarc(1, {2, 3, 4})
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We can rewrite the linear program to yield a formulation withsubstantially fewer variables.

For all i ∈ N andj ∈ N(i), let

x
(t)
ij =

∑

J⊂N(i)

x
(t)
iJj , (3.11)

with the understanding thatx(t)
iJj = 0 if j /∈ J . Note that on the RHS we sum over all hyperarcs

that leave nodei. The similar transformation proposed in [1] can only handlecollections of

hyperarcs with a subset-containment relation. A more general formulation is required in our

case, as scheduling depends on activating hyperarcs that are not constrained by a subset relation.

Consider the following formulation in terms of the new variablesx
(t)
ij . In the following LP,

we maximize the rate of a multicast session. Other objectives, such as minimizing energy

consumption subject to a fixed rate, can be easily accommodated.

maximize R
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subject to:

Capacity constraints:
∑

j∈K

x
(t)
ij ≤

∑

J⊂N(i)

ziJbiJK , (3.12)

∀ i ∈ N , K ⊂ N(i), t ∈ T ,

Flow constraintsPF :

∑

j∈N(i)

x
(t)
ij −

∑

{j|i∈N(j)}

x
(t)
ji =







R i = s,

−R i = t,

0 else,

(3.13)

∀ i ∈ N , t ∈ T ,

x
(t)
ij ≥ 0, ∀ i ∈ N , j ∈ N(i), t ∈ T , (3.14)

Scheduling constraints:

z ∈ PSTAB(G). (3.15)

Consistently with definition (3.5),biJK is well defined even ifK is not a subset ofJ .

A variable of the formx
(t)
ij denotes the flow ofinnovativepackets on link(i, j) for sink t,

whereas the variableziJ represents the packet injection rate on hyperarc(i, J). The linear equa-

tions in (3.13) establish flows at rateR from the source to all multicast sinks. Constraint (3.12)

relates packet injection ratesziJ to the flow of innovative packets. It also implies that the actual

link usage is the maximum value of the flows belonging to different multicast sinks traversing

it. This is where network coding enters the picture; with routing, the actual link usage would be

simply the sum of flows going across. Constraint (3.15) requires the network coding subgraph

to lie in the stable set polytope of the conflict graph. This guarantees that we can decompose the

subgraph into a convex combination of valid schedules. Thisis the main difference between our
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formulation and [1], where the authors have not considered scheduling. The stable set polytope

constraint dramatically changes the nature of the problem.Without (3.15) it is nothing but a

multi-commodity flow problem with side constraints. As a linear program it is solvable in poly-

nomial time [31]. With the scheduling constraint (3.15), the problem becomes NP-hard due to

the encapsulated stable set problem [42].

Lemma 1 The rate region described by (3.1)-(3.4) is equivalent to the rate region given by the

reduced formulation (3.12)-(3.15).

Proof The new flow conservation constraint (3.13) is just a reformulation in terms of the new

flow variables. What we have to show is the equivalence of the constraints (3.12) and (3.1). For

a fixed nodei, we have a number of outgoing hyperarcs. For each hyperarc(i, J), constraint

(3.1) gives us a rate region for the flowsx
(t)
iJj. The claim is that the rate region for the sum

of these flows, as defined in (3.11), is given by the sum of the inequalities defining their rate

regions. The converse is easy to show since

∑

j∈K

x
(t)
ij =

∑

j∈K

∑

J⊂N(i)

x
(t)
iJj ≤

∑

J⊂N(i)

ziJbiJK . (3.16)

The achievability of these bounds is more difficult to prove.In general, for convex polytopes

defined by linear inequalities, the polytope generated by their Minkowski sum is not equal to

the one defined by the sum of their individual constraints. Inthis case, however, we can exploit

the special structure of the polytopes in (3.1). They arepolymatroids, owing to the fact that

biJK , when viewed as a function ofK, is a submodular function. From definition (3.5), we can

verify that
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biJK + biJL =
∑

{S⊂J |S∩K 6=∅}

piJS +
∑

{S⊂J |S∩L6=∅}

piJS

≥
∑

{S⊂J |S∩(K∩L)6=∅}

piJS +

∑

{S⊂J |S∩(K∪L)6=∅}

piJS

= biJ(K∩L) + biJ(K∪L). (3.17)

The inequality is due to the fact that sets of the formS ⊂ J for which

S ∩K ∩ L = ∅, S ∩K 6= ∅, S ∩ L 6= ∅ (3.18)

show up twice on the LHS of (3.17) but only once one on the RHS.

Consider two polymatroids, given by submodular set functionsf1 andf2 respectively, i.e.

Pfi
:=

{

x ∈ R
|J |
+ :

∑

K⊂J

xj ≤ fi(K) ∀K ⊂ J

}

. (3.19)

SincePf1
andPf2

are polymatroids, the convex hull of their Minkowski sum is equivalent to the

sum of the inequalities defining them [42, Thm. 44.6, p. 781],i.e.

Pf1+f2
= Pf1

+ Pf2
. (3.20)

The result follows since we consider a finite sum of polymatroids. �

3.2 On the Complexity of the Scheduling Problem

Testing stable set polytope membership of the network coding subgraph (3.15) can be difficult.

In general, even the question of whether a point belongs to the stable set polytope - in our
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case whether a network coding subgraphz can be decomposed into a convex combination of

valid schedules - cannot be answered in polynomial time, except for certain special classes of

graphs [42]. By the equivalence between optimization and separation,2 these are the graphs for

which a maximum stable set can be computed in polynomial time. Therefore, we are particu-

larly interested in classes of graphs with polynomial stable set algorithms (see e.g. [42] for an

extensive survey), as in this case solving the overall problem (3.12)-(3.15) becomes tractable,

even for large networks.

A family of graphs with particularly good algorithmic properties is the family ofperfect

graphs. For perfect graphs, there is a polynomial time maximum stable set algorithm [42].

Furthermore, their stable set polytope can be described by clique inequalities, whereas for gen-

eral graphs these are necessary but not sufficient [42].

Definition 6 A graph is perfect if and only if for every induced subgraph the clique number

equals the chromatic number.

Proposition 1 The following characterizations of perfect graphs are equivalent [42]:

• The complement of a perfect graph is perfect.

• A graph is perfect if and only if it contains no odd holes (induced subgraphs that are

cycles of odd length) and antiholes (their complements).

• PSTAB(G) = PQSTAB(G),

where

PQSTAB(G) =

{

x ∈ R
|V|
+ :

∑

q∈Q

xq ≤ 1 ∀ cliquesQ ⊂ V

}

(3.21)

2The optimization problem is to maximize a linear function over a polytopeP . The corresponding separation
problem is to decide whether a point is inP and, if this is not the case, to display a violated constraint. As a
consequence of the ellipsoid method, the polynomial time solvability of one of the problems implies the polynomial
time solvability of the other [43].
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is called thefractional stable set polytope. These clique inequalities are often used, even in

non-perfect graphs, as upper bounds.

Next, we discuss a family of line networks for which the conflict graph turns out to be per-

fect. To that end, consider the network in Fig. 3.2. We can think of this example as a line

network, where transmitted packets can be heard by the nexttwo hops. The hypergraph has

nodes{1, . . . , n}, and hyperarcs

(i, i + 1) for i = 1, . . . , n− 1, (3.22)

(i, {i + 1, i + 2}) for i = 1, . . . , n− 2. (3.23)

The corresponding conflict graph is shown in Fig. 3.3. Note that we have omitted hyperarcs

of the form(i, i + 2), as they will never be activated. If a conflict-free transmission fromi to

i + 2 is scheduled, then nodesi + 1 andi + 2 necessarily have to be silent, and nodei− 1 can

not transmit either, owing to interference. That means thatscheduling a transmission fromi to

i + 2, is equivalent to activating hyperarc(i, {i + 1, i + 2}).

Lemma 2 The conflict graph for the family of line networks with two-hop overhearing (see Fig.

3.3) is perfect.

Proof A class of well-know perfect graphs are the so called interval graphs [44, Proposition

5.1.16]. Interval graphs are those graphs for which there exists a mapping from graph vertices

to intervals on the real line such that vertices are adjacentif and only if the corresponding

intervals intersect. LetI(i,J) denote the interval corresponding to the conflict graph node(i, J),

and consider the following mapping

I(i,i+1) = (i, i + 2), (3.24)

I(i,{i+1,i+2}) = (i, i + 3). (3.25)
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Note that interval I(i,i+1) intersects with I(i−1,i), I(i+1,i+2), I(i−2,{i−1,i}), I(i−1,{i,i+1}),

I(i,{i+1,i+2}), andI(i+1,{i+2,i+3}), and that those are also precisely the adjacency relationships

in the conflict graph. Similarly, we can verify that an interval I(i,i+1,i+2) also intersects preci-

cely with those intervals whose corresponding vertices areadjacent. �

Since the conflict graph is perfect, we can optimize over the stable set polytope in polynomial

time and as a consequence problem (3.12)-(3.15) is also solvable in polynomial time. Therefore,

the joint optimization of subgraph and underlying scheduleis efficiently tractable for this family

of networks.

The perfection of the conflict graph has a significant implication beyond the polynomial time

solvability of the associated optimization problem. It means that we have a succinct description

of the scheduling constraints in the form of the clique inequalities (3.21). Furthermore, these

constraints are local, in the sense that each node in the conflict graph only needs to know the

subgraph induced by its one-hop neighborhood in order to determine the cliques that it belongs

to. Such information is usually required anyway in mechanisms that use opportunistic listening,

such as [45].

Unfortunately, graph perfection is a rare property and for general networks it is not likely that

the resulting conflict graph is perfect. We cannot depend on graph perfection, unless we restrict

our attention to special topologies like the above family ofline networks. Our goals is to develop

algorithms that are relevant in practice. Therefore, we donot want to make assumptions on the

network structure - it is given to us resulting from some application. We propose an efficient

relaxation of the problem in the next section.

3.3 Decentralized Algorithm

We proceed to develop a distributed algorithm that works on arbitrary network topologies. The

optimization problem (3.12)-(3.15), as it stands, has to besolved in a centralized fashion. Even
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Figure 3.2A line network with two-hop overhearing.
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this is NP-hard in the general case, owing to the combinatorial difficulty encapsulated inPSTAB.

Our approach is, in short, to relax this constraint and use instead a greedy heuristic for finding

stable sets. This yields, as we show, a fully decentralized algorithm.

3.3.1 Subgradient Optimization on the Dual

Consider the Lagrangian dual of problem (3.12)-(3.15), where the capacity constraints (3.12)

have been assigned multipliersλ = (λ
(t)
iK) and moved to the objective function

q(λ) = max
R,x,z

L(R,x, z, λ)

subject to (R,x) ∈ PF , (3.26)

z ∈ PSTAB, , (3.27)
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wherex = (x
(t)
ij ), the flow polytopePF is defined by constraints (3.13) and (3.14), and the

Lagrangian is given by

L(R,x, z, λ) =

R +
∑

t∈T

∑

i∈N

∑

K⊂N(i)

λ
(t)
iK




∑

J⊂N(i)

ziJbiJK −
∑

j∈K

x
(t)
ij



 . (3.28)

The dual function decomposes into two subproblems, coupledby the Lagrangian multipliers

λ
(t)
iK , as follows

q(λ) = max
(R,x)∈PF

R≤1



R−
∑

t∈T

∑

i∈N

∑

K⊂N(i)

λ
(t)
iK

∑

j∈K

x
(t)
ij





︸ ︷︷ ︸

Subproblem 1: subgraph optimization

+

max
z∈PSTAB




∑

t∈T

∑

i∈N

∑

K⊂N(i)

λ
(t)
iK

∑

J⊂N(i)

ziJbiJK





︸ ︷︷ ︸

Subproblem 2: scheduling

. (3.29)

Note that in subproblem 1 we have added the constraintR ≤ 1, which is redundant in the

primal problem (3.12)-(3.15). To see this, consider the capacity constraints (3.12) on the flow

out of the sources. Since thebsJK are, by definition, less than or equal to one and thezsJ sum

up to at most one, the rateR cannot be larger than one. We have chosen to add this constraint, in

order to avoid dealing with possibly unbounded solutions tosubproblem 1. In [1], the authors

do not consider scheduling and therefore the scheduling subproblem collapses. In contrast, the

performance of our approach critically depends on finding efficient solutions to this subproblem.

To solve the dual problem

min q(λ)

subject to λ ≥ 0, (3.30)
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we apply the projected subgradient algorithm with update rule

λ[n + 1] = max (λ[n]− θ[n]ξ[n], 0) , (3.31)

whereθ[n] is a suitable stepsize andξ[n] = (ξ
(t)
iK [n]) is a subgradient at stepn, which we take

to be

ξ
(t)
iK [n] =

∑

J⊂N(i)

ẑiJ [n]biJK −
∑

j∈K

x̂
(t)
ij [n]. (3.32)

Here,x̂[n] andẑ[n] are the solutions of subproblems 1 and 2, respectively, at stepn. We discuss

in the next subsection how to obtain solutions to these subproblems in a decentralized way.

The subgradient computation (3.32) and the update step (3.31) can be carried out at each node

individually since each involves only variables that are associated with a single node.3

Subgradient optimization yields iteratesx̂[n] andẑ[n] that might not be optimal. A well-known

technique that yields the primal optimal solution is calledprimal recovery [46]. The approach

takes a weighted average over the sequence of primal solutions. The weights are nonnegative

and sum up to one. Constant weights are a simple choice, giving

R∗ =
1

N

N∑

n=1

R̂[n], (3.33)

x
∗ =

1

N

N∑

n=1

x̂[n], (3.34)

z
∗ =

1

N

N∑

n=1

ẑ[n]. (3.35)

A variety of alternatives appear in the literature. See, forexample [1].

If this averaging rule is combined with a subgradient stepsize of the formθ[n] = a
b+n

, with

a > 0, andb ≥ 0, primal recovery converges to the primal optimal solution [46]. Note that,

this recovery rule does not require any additional message exchange, owing to the fact that all

3If the step size is agreed upon in advance.
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intermediate optimizers are available at the node performing the averaging. (See [47] for a

similar approach.)

3.3.2 Solving Subproblems 1 and 2

Rearranging the first part of (3.29), we arrive at

max
(R,x)∈PF

R≤1



R−
∑

t∈T




∑

i∈N

∑

j∈N(i)

x
(t)
ij p

(t)
ij







 , (3.36)

where we definep(t)
ij =

∑

K⊂N(i),j∈K λ
(t)
iK . Note thatp(t)

ij is non-negative. Solving (3.36) is

equivalent to finding for each sinkt ∈ T , the shortest path with respect to the “lengths”p
(t)
ij

from the sources to sink t. To see this, assume that we have found these paths and have

computed the sum of their lengths. If this sum is less than 1, then we achieve the maximum in

problem (3.36) by sending flow of rate 1 along each of these paths. On the other hand, if the

sum of these lengths is greater than or equal to 1, then sending any flow with a positive rate

R leads to a negative cost in (3.36). We therefore achieve a maximal value of zero by setting

R andx to zero. To find these|T | shortest paths, we can use, for example, the asynchronous

distributed Bellman-Ford algorithm [32, Section 5].

We consider now subproblem 2, which can be rewritten as

max
z∈PSTAB

∑

i∈N

∑

J⊂N(i)

ziJwiJ (3.37)

with weightswiJ =
∑

K⊂N(i)

(

biJK

∑

t∈T λ
(t)
iK

)

for each node. This is a standard maximum

weight stable set (MWSS) problem, which is NP-hard [48]. We suggest relaxing themaximum-

WSS constraint and instead find amaximalstable set, i.e. a stable set to which no vertex can

be added. This problem is much simpler and can be solved in a distributed fashion using the

algorithm proposed in [49]. The number of steps needed to terminate the algorithm is twice the
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stability number of the conflict graph [49, Theorem 1].

The algorithm operates on the conflict graph and not on the actual network topology. This

has the consequence that two adjacent nodes in the conflict graph can represent hyperarcs that

are either co-located, or at distance of one or two hops. Thisis also the number of hops that

messages between them have to travel. In particular, if the conflict is due to simultaneous

activation constraints on arcs originating at the same node, the hyperarcs are co-located, if the

conflict is due to the half-duplex constraint, they are one hop apart and, where the conflict is

due to interference, they are at a distance of two hops.

3.4 Simulation Results

To evaluate the performance of our techniques we conduct simulations over random network

topologies. The setup remains the same throughout, the onlyparameter that changes is the

number of nodes in the network; when we add more nodes to the network, we keep the density

constant. For each random instance, we assume that a number of nodes are uniformly scattered

over a square region with unit node density. Two nodes are in radio range if their distance is

below a certain threshold, the radius of connectivity, which we take to be1.8. The number

of neighbors of a node is restricted to5. We consider the leftmost node to be the sender,

multicasting to two receivers, the two rightmost nodes. Transmissions are subject to erasures,

which may be due to distance attenuation or fading. When a node transmits, a neighbor at

distanced will receive the packet correctly ifΓd−2 ≥ β whereΓ is a unit mean exponential

variable andβ = 1
4

is our chosen SNR threshold. Otherwise the packet is lost completely. We

assume secondary interference constraints as well as half-duplex transceivers.

In Fig. 3.4(a), we compare the throughput of optimal scheduling, i.e. solving problem (3.12)-

(3.15) optimally, with two commonly used scheduling techniques. In the fully orthogonal

model [1], all nodes in the network are assigned orthogonal channels, making the network

interference-free. In the two-hop constraints model (see e.g. [35] for such a scheduling protocol)
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Figure 3.4Throughput and power consumption for different schedulingtechniques.
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transmissions are scheduled such that, if nodei transmits, all nodes in a two-hop neighborhood

are silent, eliminating the possibility of a node being in radio range of two simultaneous trans-

missions. Both the orthogonal and the two-hop constraint model eliminate interference at the

expense of suboptimal bandwidth reuse. We see that this is apparently a rather wasteful way of

operating an interference limited wireless network. Furthermore, for the networks of moderate

size that we consider, the two-hop constraint is almost as restrictive as full orthogonalization.

This can be seen in Fig. 3.4(a), where the corresponding curves almost match. Apparently, for

the networks that we consider very few nodes are more than twohops apart. Therefore, in most

cases only one node at a time can transmit under the two-hop constraint. On the other hand, a

significant increase in bandwidth efficiency is possible if we use optimal scheduling.

We investigate the trade-off between bandwidth and power efficiency in Fig. 3.4(b), where

we plot the average number of retransmissions per packet forboth orthogonal scheduling and

optimal scheduling. The number of retransmissions serves as an estimate for the total power

expenditure. Both curves show the maximal rate. More precisely, if Rmax is the maximal rate

for a fixed policy, andziJ are the injection rates computed for this rate, then the average num-

ber of retransmissions per packet is
P

iJ ziJ

Rmax
. It shows how much additional power expenditure

is required to obtain the throughput gains in Fig. 3.4(a). Since we permit some simultaneous

transmissions rather than eliminating all collisions, we obtain a substantial increase in through-

put and bandwidth efficiency. The price we pay is a higher power expenditure due to packets

that collide and are therefore lost. We see that optimal scheduling apparently does not lead to

an excessive number of collisions or retransmissions.

Fig. 3.5 shows the average number of network configurations comprising the solution of the

optimal scheduling algorithm. This is an important measure, as time-sharing over many network

configurations leads to higher delays as well as complexity of operation.

The throughput of the decentralized algorithm from Section3.3, which we call the “decen-

tralized greedy” algorithm, is shown in Fig. 3.6. For comparison, we have plotted orthogonal
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Figure 3.5The number of configurations which appear in the solution of the optimal scheduling
algorithm. We consider schedules with a time sharing coefficient equal to or greater than0.001.
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scheduling, two-hop constraint scheduling, and optimal scheduling, the latter for network sizes

that are still tractable. In addition, we consider a variation of the decentralized algorithm, which

we refer to as GWMIN [50], that differs in how the weights for the stable set computation are

chosen. In particular, GWMIN takes weightsw∗
v, which are derived from the original weights

wv as follows:

w∗
v =

wv

|N∗
G(v)|+ 1

, (3.38)

where|N∗
G(v)| is thecurrent number of neighbors of nodev in the conflict graph; as nodes

leave the conflict graph|N∗
G(v)| decreases. This heuristic was proposed in [50], and performs

somewhat better than the decentralized algorithm without weight adjustment. Note, however,

that it comes with a higher communication overhead. Every time a node leaves the conflict

graph, its adjacent edges are removed and, therefore, the degree of the neighbors changes.

After the neighbors have updated their weight, they have to communicate the new weight to
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Figure 3.6 Maximum throughput of the distributed algorithms as a function of the number of
nodes in the network.
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their neighbors before the algorithm can resume. Both algorithms, the decentralized greedy

algorithm as well as GWMIN, significantly outperform orthogonal or two-hop scheduling.

In Fig. 3.7 we illustrate the convergence of the subgradientoptimization for a network with

10 nodes when the stable set problem is computed optimally ineach step. Note that the scale is

logarithmic, and therefore the deviation from the optimum is not large after a moderate amount

of iterations.
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Figure 3.7 Convergence of subgradient optimization for a network with10 nodes. We report
the difference between the optimal throughputR∗, and the throughput after primal recovery at
stepn.

0 20 40 60 80 100 120 140 160 180

10
−3

10
−2

10
−1

10
0

Iterations [n]

R
el

at
iv

e 
er

ro
r 

|(
R

[n
] −

 R
* )/

R
* |

3.5 Competition for Resources under Interference Condi-

tions

Under network coding, the maintenance of min-cut conditions between the set of senders and

every receiver individually is a sufficient condition to support the connection. Thus, for a net-

work without interference such as a wireline network, different receivers in a network coded

multicast connection do not compete with each other for resources; each receiver with a suf-

ficiently large min-cut to the source can participate. In wireless networks, however, interfer-

ence from simultaneous transmissions has to be taken into account. Such interference in effect

changes the underlying network and thus can create interactions among receivers involved in a

single multicast session.

To consider the interaction among users, letT1 denote one group of receivers, andT2 another

set of receivers. First, consider orthogonal scheduling and the multicast connections(s, T1, R∗
1),

(s, T2, R∗
2), and(s, T1 ∪ T2, R∗

0), where for each connection the rate is taken to be the maximal

rate that can be supported by the network if this particular connection is present alone. We do

not consider coding across the two multicast sessions (alsoreferred to asinter-sessionnetwork
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Figure 3.8 A wireless network with 12 nodes, one source, and two multicast groups, each
consisting of two nodes.

coding). Inter-session coding may be required in the optimal solution, but we exclude it due

to the inherent hardness of the problem. We have plotted the rate points(R∗
1, 0), (0, R∗

2), and

(R∗
0, R

∗
0) in Fig. 3.9. Note, that at the point(R∗

0, R
∗
0), we transmitthe same informationto both

multicast groups at rateR0. The effect that users have on each other through interference is

captured by the fact thatR∗
0 is typically strictly lower than eitherR∗

1 or R∗
2. If the underlying

subgraph were not modified through the effect of interference, the minimum cut from the source

to the users inT1 ∪ T2 would bemin (R∗
1, R

∗
2).

Since the realization of the network depends on the schedule, we expect different choices of

scheduling to change the rate regions. Indeed, in Fig. 3.9, we show two different rate regions,

corresponding to different scheduling policies. For the rate region indexed by∗ the underlying

schedule is assumed to be orthogonal. Note that in Fig. 3.9, we have plotted the “time-sharing

region” between the points(R∗
1, 0), (0, R∗

2), and(R∗
0, R

∗
0), which is in general not the full rate

region, even without inter-session coding. We compare thiswith our optimal approach, i.e.

solving problem (3.12)-(3.15) optimally, (the region indexed by ′). The resulting rate region

significantly expands the rate region obtained by orthogonal scheduling. Another interesting

observation is that the rate regions are almost rectangular. That means that a 4-multicast with
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Figure 3.9 Maximal rate to two groups of multicast receivers and to their union. The average
is over 100 random wireless networks. The networks have 12 nodes and two groups, both
consisting of two receivers. An example of such a random network is shown in Fig. 3.8.

R
0

= 0.38

R
∗

0
= 0.21R

∗

2
=

R
∗

1
= 0.23

0.24

0.42R
2

=

R
1

= 0.40

R1

R2

random terminals can support almost the same rate as a 2-multicast and suggests that, in our

example networks, network coded multicasting scales well with the number of receivers.

3.6 Discussion

We have seen that addressing network coding subgraph optimization and scheduling jointly

results in significant performance gains. Scheduling to create network coding opportunities im-

proves the throughput by over a factor of two. Moreover, we have proposed a way to distribute

the computation across the network. To arrive at a distributed solution, we used a heuristic,

greedy stable set search in place of the full optimization over the stable set polytope. The

performance of distributed scheduling is empirically evaluated to be not far from the optimum.

Nevertheless, a central assumption is that in every time slot the updates at all nodes are carried

out simultaneously, as if triggered by a central clock signal. In the next chapter, we investi-

gate the consequences of relaxing this restriction and allowing the updates to be carried out

asynchronously. It turns out that this is possible, although it leads to other constraints on the

problem. Unfortunately, these constraints are fundamental and not merely a side effect of the
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particular formulation. In consequence, it is the network designer’s decision to either choose

asynchronous operation, or to ensure enough synchronization in the network.





4
Asynchronous Network Coded

Multicast

The distributed computation of network connections is highly desirable in practice, as otherwise

information about the entire network topology has to be collected at a special central instance

which carries out the computation. Once computed, the link and injection rates have to be

communicated across the network, leading to significant delays and overhead. If the network

changes over time, these rates may be outdated when they reach their destination nodes. Even

assuming distributed operation, one main assumption is that in every time slot the updates at all

nodes are carried out simultaneously, i.e. the algorithm iterates in synchronous rounds [1, 51].

The contribution of this chapter is to relax this assumptionand instead propose anasynchronous

algorithm for solving the problem. As we show, our approach requires very few restrictions on

the update schedule; even a random sequence of node updates will converge as long as each

node is chosen with non-zero probability.
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Distributed asynchronous algorithms have been proposed and used for routing. The most

prominent example is the distributed Bellman-Ford algorithm, which has both a synchronous

and an asynchronous variant [32, Section 5.2.4]. This is, tothe best of our knowledge, the

first asynchronous approach for network coded traffic and theparticular optimization problem

associated with it [1]. The asynchronous algorithm proposed in [52] addresses the problem of

network code design and is orthogonal to our approach, due tothe aforementioned separation

between coding and resource provision. We are concerned with providing and allocating a

minimal set of network resources that guarantees a certain min-cut to all receivers.

The motivations for seeking asynchronous solutions are two-fold. Firstly, in large networks the

assumption of having a clock that is available at all nodes isunrealistic or requires a significant

amount of communication overhead. The fundamental limits of clock synchronization across

a network are discussed in [53] and the references therein. Secondly, network transmissions

often have a non-negligible loss or error rate. When the algorithm requires synchronous rounds

of updates, such losses of messages can seriously impair convergence. An asynchronous algo-

rithm, such as the one we suggest, can easily deal with lost update messages due to the minimal

requirements it poses on the update schedule.

The main idea of our work is to apply ablock-coordinate ascent algorithmto the dual of

the optimization problem that describes the multicast connection. If we want a distributed and

asynchronous algorithm, this implies that we can only hope to update one variable block at

a time, similar to Gauss-Seidel-type algorithms for solving systems of linear equations [54,

Section 1.2]. For such a block-coordinate method to work, itis well-known that we need to

impose one major requirement on the function we wish maximize: it has to bedifferentiable[55,

Section 2.7]. For the dual objective function of a convex problem to be differentiable, we need

the primal to bestrictly convex [55, Section 6.2]. For this, in turn, we will have to make

a few modifications to the optimization problem that we formulated in the previous hapter.

There, we formed a linear program and applied the subgradient method - which can handle non-
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differentiable functions - to its Lagrangian dual. In this context, however, this is not possible,

as we need a strictly convex program to start with. Note that multicast problems with a convex

objective function were addressed in [1] and solved with aprimal-dual algorithm, which is

distributed but not asynchronous.

The algorithm we propose, as we show by means of simulations,exhibits fast convergence

compared to the primal-dual algorithm in [1] and is very robust with respect to randomly oc-

curring node updates. Even in the presence of link failures,the algorithm continues updating

and eventually converges without the need for a restart. It can, therefore, run continuously in

the background and automatically adapt to changes in the network.

4.1 Network Model and Optimization Problem

Our starting point is optimization problem (3.1)-(3.3). However, based on the previous discus-

sion we impose the following modifications:

• The objective is not to maximize the rate, but to minimize a strictly convex cost function

that penalizes high injection rates.

• We assume the schedule is fixed, i.e. a non-conflicting collection of hyperarcs is given to

us. This means dropping the stable set polytope constraint (3.4).

• To simplify notation, we will replace the polymatroidal constraints (3.1) with simple ca-

pacity constraints on the arcs, i.e. the flow on arc(i, j) has to lie between 0 and the

capacitycij . In Appendix A.3, we show that the entire analysis remains valid for polyma-

troidal constraints, the only drawback being a more complicated notation.

With the modification of replacing the polymatroidal constraints by capacity constraints, the

hypergraph essentially can be modelled as a simple directedgraphG = (N ,A), whereN is the
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set of vertices andA is the set of directed arcs. Consider the following linear progam for setting

up a multicast connection(s, T , R)

minimize
∑

(i,j)∈A

fij(zij)

subject to

∑

j:(i,j)∈A

x
(t)
ij −

∑

j:(j,i)∈A

x
(t)
ji = σ

(t)
i , ∀i ∈ N , t ∈ T , (4.1)

0 ≤ x
(t)
ij ≤ zij , ∀(i, j) ∈ A, t ∈ T , (4.2)

zij ≤ cij, ∀(i, j) ∈ A, (4.3)

where we define

σ
(t)
i =







R i = s

−R i = t

0 else.

(4.4)

We assume the cost functionsfij(·) to be monotonically increasing andstrictly convex through-

out. Also, letT = |T |.

An instance of the problem is described by the networkG = (N ,A), the link capacitiescij,

the link cost functionsfij , and the multicast session(s, T , R).
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4.2 Decentralized Asynchronous Algorithm

4.2.1 Block-Coordinate Ascent on the Dual

In this section, we apply a block-coordinate ascent algorithm to the dual of convex program

(4.1)-(4.3), resulting in decentralized and asynchronousoperation. As thefij are monotonically

increasing functions, constraint (4.2) essentially meansthatzij = maxt∈T x
(t)
ij . Themax func-

tion is not differentiable everywhere and thus poses a challenge for gradient-type optimization

algorithms. One approach is to replace this relation with asoft-maximum that is differentiable

and that approximates the maximum function. Two common approximations are thelog-sum-

expfunction [56] and thelp-norm [57], given by

z′ij = L log

(
∑

t∈T

exp
(

x
(t)
ij /L

)
)

(4.5)

and

z′′ij =

(
∑

t∈T

(

x
(t)
ij

)p
)1/p

, (4.6)

respectively. Both functions converge to the maximum function, for L → 0 and forp → ∞,

respectively. Although they are convex and differentiable, they are notstrictly convex. This

can be seen by settingx(t)
ij = x

(1)
ij , ∀t ∈ T . For the log-sum-expfunction, this leads to

z′ij = L log T + x
(1)
ij , which is linear and not strictly convex. Replacingzij with z′ij , we can

define a modified cost functionFij according to

Fij(xij) = fij

(

L log

(
∑

t∈T

exp
(

x
(t)
ij /L

)
))

, (4.7)

wherexij =
(

x
(1)
ij , ..., x

(T )
ij

)

. Here,Fij(xij) is (strictly) convex iffij is (strictly) convex and

monotonically increasing. With this transformation, the problem is reformulated as a standard



56 Chapter 4 � Asynchronous Network Coded Multicast

convex multi-commodity flow problem, where the flows are coupled only via the cost function

and the constraints are separable [58, Section 8.3]. The primal optimization problem takes the

form

minimize
∑

(i,j)∈A

Fij(xij)

subject to

∑

j:(i,j)∈A

x
(t)
ij −

∑

j:(j,i)∈A

x
(t)
ji = σ

(t)
i , ∀i ∈ N , t ∈ T , (4.8)

0 ≤ x
(t)
ij ≤ cij , ∀(i, j) ∈ A, t ∈ T . (4.9)

Introducing a Lagrange multiplierp(t)
i for every constraint in (4.8), we form the Lagrangian

L(x, p) =
∑

(i,j)∈A

Fij(xij) +
∑

t∈T

∑

i∈N

p
(t)
i




∑

j:(i,j)∈A

x
(t)
ij −

∑

j:(j,i)∈A

x
(t)
ji − σ

(t)
i



 (4.10)

=
∑

(i,j)∈A

(

Fij(xij) +
∑

t∈T

(

x
(t)
ij

(

p
(t)
i − p

(t)
j

))
)

−
∑

i∈N

∑

t∈T

p
(t)
i σ

(t)
i . (4.11)

Note that the capacity constraints (4.9) are not dualized but kept explicitly. The dual function

valueq(p) at a price vectorp is

q(p) =
∑

(i,j)∈A

gij(pi − pj)−
∑

i∈N

∑

t∈T

p
(t)
i σ

(t)
i ,

wheregij is defined as
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gij(pi − pj) = inf
0≤xij≤cij

{

Fij(xij) +
∑

t∈T

(

x
(t)
ij

(

p
(t)
i − p

(t)
j

))
}

, (4.12)

andpi =
(

p
(1)
i , ..., p

(T )
i

)

. The solution of the dual unconstrained optimization problem

maximize
p

q(p)

is equivalent to the solution of the primal problem as under our assumptions there is no duality

gap. We suggest solving the dual by a block-coordinate ascent method. To that end, consider

the|N | variable blockspi. At thek-th iteration, we select a blockpi and update it in an ascent

direction. We defer the discussion of how to select blocks inorder to achieve convergence to

the end of the section. We take as an ascent direction the gradient∇i with respect topi. For an

appropriately chosen step sizeθk, the update takes the form

pi[k + 1] := pi[k] + θk∇i[k]. (4.13)

4.2.2 Computing the Gradient

We can compute the gradient with the following Lemma

Lemma 3 [55, Proposition 6.1.1] Letx(p) be the unique minimizer of the Lagrangian at a

price vectorp, i.e.

x(p) = argmin
x

L(x, p). (4.14)

Then, the dual functionq(p) is everywhere continuously differentiable, and its derivative with

respect top(t)
i is given by the constraint function evaluated atx(p)
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∂q

∂p
(t)
i

=
∑

j:(i,j)∈A

x
(t)
ij (p)−

∑

j:(j,i)∈A

x
(t)
ji (p)− σ

(t)
i . (4.15)

Remark 1 In other words, the derivative is given by the flow divergenceout of nodei for each

sessiont.

Remark 2 Linear constraints and astrictly convex objective function (as we have assumed

throughout) imply the uniqueness of the Lagrangian minimizer and therefore the validity of the

lemma. Mere convexity is not sufficient, in general.

An update at nodei takes on the following form. With every edge adjacent toi we associate

a processor that solves problem (4.12) and computes the minimizer. For an edge(i, j) this

becomes

xij(pi − pj) = argmin
0≤xij≤cij

{

Fij(xij) +
∑

t∈T

(

x
(t)
ij

(

p
(t)
i − p

(t)
j

))
}

, (4.16)

and requires the price vectors of the neighboring nodes only. As this optimization is convex,

it can be solved with standard algorithms like SQP [59] or a Projected Gradient method [55].

Owing to the simple constraints onx(t)
ij , the orthogonal projection can be implemented easily.

Nodei gathers thex(t)
ij (p) from adjacent edges to compute the gradient with respect topi in the

following way

∇i =












∑

j:(i,j)∈A

x
(1)
ij (p)−

∑

j:(j,i)∈A

x
(1)
ji (p)− σ

(1)
i

...
∑

j:(i,j)∈A

x
(T )
ij (p)−

∑

j:(j,i)∈A

x
(T )
ji (p)− σ

(T )
i












. (4.17)

Note that calculating the gradient given the correspondingx
(t)
ij variables involves very little

computational effort. But thex(t)
ij variables are automatically computed as a byproduct when
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solving problem (4.12).

4.2.3 Convergence

Having seen how to compute a gradient at each step, we return to prove convergence of the

described algorithm. We need to specify the sequence in which the variable blocks are updated.

Consider the following definition [54]:

Definition 7 We speak of a partially asynchronous order if there exists a positive constantK

for which every coordinate is chosen at least once for relaxation between iterationsr andr +

K, r = 0, 1, .... Furthermore, at any iteration the variables used to compute the update are at

mostK steps old.

Remark 3 For the choice ofK = |N | this leads to a cyclical update rule, while forK large it

comes close to a random choice of the current block of variables.

Our algorithm converges by a result from [54] which proves

Proposition 2 [54, Proposition 5.2] Assume that the functionq(p) is continuously differen-

tiable, the gradient satisfies a Lipschitz-condition, and apartially asynchronous update order

is adopted. Then, block-coordinate ascent using the updaterule (4.13) converges for a stepsize

sufficiently small.

Remark 4 The algorithm converges under some more technical conditions even when an arbi-

trary ascent direction is used in place of the gradient. Whenusing the gradient, these technical

conditions are satisfied automatically [54, Section 7.5.3].

The stepsizeθk can be determined by standard line search algorithms like Backtracking [56]

or the Golden Section Method [55] . Note, that (4.16) is a verylow dimensional problem - its
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Figure 4.1A two sink multicast froms to t1 andt2.

 

 

x

s

t1 t2

dimension is the number of multicast sinksT - and can be solved readily a number of times.

The complexity of a node update scales proportionally to thecomplexity of (4.16), the number

of adjacent edges ofi and the number of steepest ascent iterations carried out.

From the algorithm description, we see that all steps, i.e. the computation of the resulting flow

for a fixed price vector (4.16), the computation of the gradient (4.17) and the price update (4.13)

require solely information that can be gathered in aone-hopneighborhood of the updating node.

This gives rise to the decentralized operation of the algorithm. Moreover, if combined with an

essentially cyclic update order, assuming a large constantK, we also conclude asynchronous

convergence.

4.3 Performance Evaluation

To assess empirically the performance of our approach, we conduct a series of experiments.

The link cost function is taken to be throughoutaij exp(z′ij), whereaij is a positive coefficient.

Firstly, we illustrate a case where, owing to asynchronous updates, the primal-dual algorithm of

[1] fails to converge. In contrast, our algorithm convergesas promised by the theory. Consider

Fig. 4.1, and the convergence curves in Fig. 4.2. The primal-dual algorithm converges correctly

if applied synchronously but fails to converge if updated asynchronously (the updates are carried
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Figure 4.2 Progress of the asynchronous algorithm (left), synchronous primal-dual algorithm
[1] (center) and asynchronous primal-dual algorithm [1] (right). We measure convergence of
the flowx, of which the optimal value is0.3.
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out in cyclical order, orK = 4). Another interesting observation is that coordinate ascent

and synchronous primal-dual converge after a similar number of iterations; in the primal-dual,

however, during an iterationeverynode in the network performs an update, as compared to just

one node in the network for the coordinate ascent algorithm.This has two implications: Firstly,

coordinate ascent needs less communication overhead, reducing control traffic in the network.

Secondly, if for larger networks some of the updates can be carried out in parallel, this would

lead to a significant speed-up.

Figures 4.3(a) - 4.3(e) illustrate the convergence of the block-coordinate ascent algorithm in

a larger randomly generated unit disc graph. We see the topology in Fig. 4.3(a) and the flows

after convergence in Fig. 4.3(b). In Fig. 4.3(c), we plot thevalue of the dual functionq(p)

(normalized to 1) for the coordinate ascent and a random selection of updating nodes. In com-

parison, we plot the value of the Lagrangian for the primal-dual algorithm of [1] when updated

in synchronous rounds. In Fig.s 4.3(d) and 4.3(e), we show the primal convergence for two

selected flows. Note that the dual optimum is approximated much faster (convergence after

about 500 iterations) than the primal (convergence after 2000-3000 iterations), a result consis-

tent with [1,51].

Finally, we investigate the behavior under dynamic conditions, when a link in the network
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Figure 4.3 (a) Network topology, and (b) corresponding optimal flows. The source is red, the
sinks are blue and green. The common flow to both sinks is cyan.Missing links specify a flow
of zero. (c) Convergence of the dual functionq(p) of coordinate ascent (asynchronously) and
primal-dual (synchronous rounds); the dual function is normalized to 1. The convergence of the
link flows (d)x1 and (e)x2.
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suddenly fails. Fig. 4.4 shows the reaction of the algorithmto the failure of one edge. Since

the price variablesp are unconstrained, every value can be used as a feasible starting point of

the algorithm. Consequently, the coordinate ascent algorithm can run continuously and without

needing a restart in the event of network changes. If the network topology does not change for

a sufficiently long time it will converge to the new optimal value.
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Figure 4.4 In the network (a), the edge carrying flowx1 fails after 150 iterations. In the graph
(b), the flowx2 first converges to the optimal value of 0.4. After the link failure, it converges to
the new optimal value of 1. Note that since the links have different convex cost functions, the
link flows are not zero or one as in [2].
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4.4 Discussion

We have proposed a fully decentralized and asynchronous algorithm for the minimum-cost

multicast problem. The main contribution lies in relaxing the need for synchronization in the

network. Moreover, simulations show fast convergence as compared to previously known ap-

proaches like the primal-dual algorithm [1] for convex problems. Since the algorithm requires

no assumption on network synchronization, it adjusts well to topology changes such as link

or node failures. However, in order to achieve this, we had toadopt a more restrictive network

model - assuming a strictly convex problem and the schedule fixed. Many network optimization

problems are inherently convex (see for instance [32] for a number of examples). If this is not

the case, an option is to consider a formulation that approximates the original problem, but is

strictly convex. This is very similar to what we already did -replacing themax function with

the lp norm. Of course, since we are now solving a similar but not exactly the same problem a

penalty is incurred. It is the discretion of the network designer to choose whether he prefers to

pay this penalty or, alternatively, to ensure network synchronization. In particular, if the cost of
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synchronizing the network is high an asynchronous mode may offer advantages.



5
Joint Scheduling and

Instantaneously Decodable

Network Coding

So far, the focus has been on coding within a multicast session, i.e. intra-session network

coding. In this chapter, we allow data of different users to mix, leading tointer-session network

coding. This is, in its full generality, a difficult problem [5], and in fact may even require

complicated non-linear processing [11]. On the other hand,approaches to inter-session network

coding that are not necessarily optimal yet are practical from an engineering point of view, have

demonstrated large performance gains [7]. In a wireless network, due to broadcasting, nodes

frequently overhear packets that are not intended for them.This additional “evidence” can be

used to combine several packets in one transmission.

Following prior work like [7], we investigate instantaneous binary XOR coding. Each broad-
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cast transmission from a given node is the binary sum of some number of incoming packets. A

collection ofL packets can be combined only if it isinstantaneously decodablefor all neigh-

bors. This is achieved when each neighbor knows all but one oftheL packets; either because

it overheard them from prior transmissions or because it previously received those packets di-

rectly. Each receiver can then cancel out all but the one packet that is new to him. As we show,

the instantaneous decodability condition can be formulated as aconflict graphmodel, where

valid packet combinations correspond tostable sets. This is, in general, an NP-hard combi-

natorial problem, which is inherent in the instantaneous decodability condition. However, our

simulations indicate that for moderate size networks the optimal solution can be within reach.

Note that although the problem we address is different from the one in Chapter 3, we again use

a conflict graph model for describing valid configurations. There, we have used conflict graphs

do describe conflicts on simultaneous transmissions. Here they encapsulate the constraints on

the network code.

We formulate a linear program that optimizes over both the schedule and network coding

decision. With this problem formulation, we are able to compute the achievable rate region

of our technique and to quantify the gains over routing. However, in most practical mobile

networks a low-complexity, decentralized and online algorithm is preferable. We formulate

such an algorithm based on ideas from [60], where the authorsderive a widely applicable class

of online scheduling algorithms achieving optimal throughput. To include network coding, we

introduce a system ofvirtual queuesthat can be served jointly subject to the constraints arising

from the conflict graph model.

There are two lines of work that are related to our approach. In [7], the authors introduce

COPE, an 802.11-based protocol that uses network coding to enhance the performance of the

MAC-layer. There, the idea of combining packets locally, opportunistically and heuristically

was developed and shown to yield significant performance gains. The decision regarding which

packets to combine is made by means of a sequential (essentially greedy) search heuristic. Our
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goal is to optimize over the set of network coding decisions and over the schedule. In [41], the

authors analyze theoretically the performance of COPE-type network coding by formulating a

linear program that captures the network coding, routing and scheduling constraints. In con-

trast to their work, our approach optimizes over a larger setof network coding decisions and

furthermore we present an online algorithm that stabilizesevery point within the rate region.

The other line of work starts with [12] (see also [13]), wherethe authors consider a fixed

network and relax the instantaneous decodability assumption to allow the mixing of packets

only subject to being decodable eventually. The benefit of this approach is a larger family of

allowed operations and therefore the potential for improvement in the network throughput. The

price is an increased complexity, which is handled by allowing at most two packets to mix. As

a result, the throughput implications are unclear. The achievable region of this technique was

later shown in [14] to be stabilizable with an online backpressure algorithm.

In the previous chapters, we dealt with average rates and throughputs. Our algorithms have not

operated at the level of stochastic packet arrivals, exceptin the assumption that the stochastic

processes describing the arrivals are ergodic and, therefore, that their average rates summarize

most of their meaningful properties. This was also a consequence of random linear network

coding, where all nodes always perform the same operation - taking a linear combination of all

the packets in their memory - and therefore a flow formulationwith side constraints captures

the problem. The inter-session coding scheme that we propose in this chapter is quite different

from random linear network coding, in that the coding decisions of a node depend not only on

which packets that node has in its memory, but also on the memory of the neighbors. We there-

fore adopt a model that addresses stochastic packet arrivals, the corresponding queue lengths

evolution, and dynamic online scheduling and network coding decisions.
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Figure 5.1The topology graphGt of a network withn = 3 standard nodes and a relay node0.
Each link represents two directed links, going in opposite directions.

1

23

0

5.1 Network Model

5.1.1 General Model and Assumptions

Consider a wireless network, thetopologyof which is represented as a directed graphGt =

(Nt,At) with node setNt = {0, 1, . . . , n} and arc setAt = {(i, j) : 0 ≤ i, j ≤ n, i 6= j}. The

case wheren = 3 is depicted in Fig. 5.1. From the definition, the network is fully connected

and therefore symmetric. However, we assume that node 0 is a specialrelaynode with extended

capabilities. This model is appropriate, for example, whenthe network consists of a number of

ground nodes1, . . . , n and one unmanned aerial vehicle (UAV), node0, with extended range

and power and a larger set of coding and modulation schemes. The network operates with

constant-length packets and in slotted time, where the slotindex t is an integer corresponding

to the time interval[t, t + 1).

We assume, for the sake of simplicity, that the relay serves solely the purpose of enhancing

communication between the other nodes and does not inject individual packets. Exogenous

packet arrivals at nodei with destinationj (resulting from processes at the application layer
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of nodei) occur according toadmissiblestochastic processesA(t) = (Aj
i (t)), for 1 ≤ i, j ≤

n, i 6= j, with average ratesλj
i = E[Aj

i ]. We use the same definition of admissible as the authors

in [61, Definition 3.4]

Definition 8 A processA(t) is admissible with rateλ if

• The time average expected arrival rate satisfies:

lim
t→∞

1

t

t−1∑

τ=0

E {A(τ)} = λ. (5.1)

• For all time slotst, we haveE{A(t)2|H(t)} ≤ A2
max, whereAmax is a positive constant

andH(t) represents the history up to timet, i.e. all events in slotsτ ∈ {0, . . . , t− 1}.

• For anyδ > 0, there exists an interval sizeT such that for any initial timet0 the following

condition holds:

E

{

1

T

T−1∑

k=0

A(t0 + k)|H(t0)

}

≤ λ + δ. (5.2)

Since the network is fully connected, owing to interferenceat most one node in the network

can transmit per slot. Assume that transmissions from and tothe relay are always successful.

Any other link can be either ON, in which case it can support the transmission of one packet

per slot or OFF, in which case no packet can be transmitted over this link. The topology state

at timet is thus given by a binary vectorS(t) = (Sij(t)), for i, j ∈ {1, . . . , n}, i 6= j, with

Sij(t) = 1 indicating that the corresponding link is ON. Assume that the stateS(t) is known

at all nodes and that it evolves according to a finite state, irreducible Markov chain with state

spaceS. Let πs denote the average fraction of time that the process spends in stateS(t) = s.

For such chains the time averagesπs are well defined and with probability 1 we have

πs = lim
t→∞

1

t

t−1∑

τ=0

1[S(τ)=s], for all s ∈ S, (5.3)
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where1[·] is the indicator function.

If nodei transmits a packet designated for nodej, andj receives it successfully, it is removed

from the system. Otherwise, the following sequence of actions is carried out

• nodei removes it from its queue,

• the relay (which by assumption receives every packet successfully) assumes responsibility

for the packet and stores it for further transmission,

• all nodes that have overheard the packet store it until it hasreached its destination for the

purpose of possibly using it at a later stage for network coding.

This scheme requires a certain amount of perfect feedback inthe following form: After any

packet transmission from a non-relay node, every other nodehas to acknowledge (or negatively

acknowledge) the reception to the relay. Periodically, butnot necessarily in every slot, the non-

relay nodes also need feedback from the relay indicating that they may discard the overheard

packets that were delivered in the interim and are no longer needed. Note that feedback between

non-relay nodes is not required, which is consistent with our assumption that these nodes have

more limited capabilities than the relay. For our analysis we will use three different graphs, each

of them describing a different aspect of the system. In addition to the topology graphGt, we will

introduce the queuing network (directed) graphGq and the network coding conflict (undirected)

graphGc, both to be precisely defined later.

5.1.2 Queuing Model

In our model, each nodei ∈ {1, . . . , n} has queuesRj
i , j ∈ {1, . . . , n}\ i, one for each possible

packet destination. The relay, on the other hand, has a system of virtual queuesin which it stores

received packets (that failed to reach their designated destination) for the purpose of performing

network coding. More precisely, the relay partitions all overheard packets inn · (2n−1 − 1)
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equivalence classes, according to their next-hopj and the set of nodesQ ⊂ {1, ..., n} \ j,

Q 6= ∅ that have knowledge of them. The setQ is never empty as there is always one node,

the original senderi, that has the packet. The relay keeps track of a virtual queuefor each such

class of packets. LetX(t) = (Xj
Q(t)) denote the queue length vector of all packet classes at

time t.

Consider the two-stagequeuing networkGq in Fig. 5.2 consisting of the queues(Rj
i ) and the

virtual queues at the relay(Xj
Q). Here we explicitly model the dynamic behavior of the queues

used to accommodate scheduling and network coding. Packetsthat leave the system (the arrows

with solid tips) are directed to an artificial nodeE, thesystem exit. This queuing network, in

particular its stability region and an online stabilizing algorithm, is the focus of our analysis.

In the original network of Fig. 5.1, a packet broadcasted from nodei can, depending on the

states, either reach its destination or be overheard by the relay and possibly a subset of its

neighbors. In the queuing model, correspondingly, it is either transferred to the system exitE

or to one of the virtual queues at the relay. As a result, for a given topology states, each queue

Rj
i will have exactly one state-dependent outgoing link denoted by(Rj

i , d
j
i (s)), where we define

dj
i (s) =







E if sij = 1,

Xj

Q
′ if sij = 0,

(5.4)

whereQ
′

= {k|k 6= j, sik = 1} ∪ i.

A queue with backlogX(t) evolves according to the discrete-time dynamicsX(t + 1) =

max(X(t)−µ(t), 0)+A(t), whereA(t) is the arrival process, andµ(t) the service process. For

queue stability, we use the following definition [61, Definition 3.1]

Definition 9 A queue is called (strongly) stable if

lim
t→∞

sup
1

t

t−1∑

τ=0

E{X(τ)} <∞. (5.5)
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Figure 5.2The corresponding queuing network graphGq for the network in Fig. 5.1. Directed
links indicate possible packet transitions; packets that leave the system (the arrows with solid
tips) are directed to an artificial nodeE, thesystem exit. A subset of the virtual queuesXj

Q can
be served jointly in one time slot if they correspond to a stable set in the conflict graphGc
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A network of queues is strongly stable if all queues comprising the network are strongly stable.

5.1.3 Network Coding

We can represent valid network coding combinations resulting from the instantaneous decoding

condition by a graphic model. In thisconflict graphapproach, we construct an undirected

graph with vertices corresponding to the queues. Two queuesare connected with a link if they

cannotbe served jointly, i.e. packets from the two queues cannot beXORed together, because

they violate the instantaneous decodability condition. This is made precise in the following

definition.

Definition 10 For the system of queues(Xj
Q), the conflict graphGc = (V, E) is an undirected

graph with a one-to-one correspondence between verticesV and queues. Two verticesX i
Q1

and

Xj
Q2

arenot connected if

• i 6= j,

• i ∈ Q2, andj ∈ Q1,

otherwise they are connected with an undirected link.

The first condition guarantees that the packets in the two queues have different destinations and

the second condition means that each destination has overheard the packet meant for the other

destination node. We define a valid configuration of queues asa set of nodes in the conflict

graph without any conflicting pair, i.e. a valid configuration is a stable set.

For the network in Fig. 5.1, the corresponding conflict graphis depicted in Fig. 5.3.

5.1.4 Joint Scheduling and Network Coding

We return to the queuing model (see Fig. 5.2) and give a precise definition
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Figure 5.3The conflict graphGc corresponding to the virtual queues at the relay in Fig. 5.2.
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Definition 11 The queuing networkGq = (Nq,Aq) is a directed graph, with node set

Nq =
{
(Rj

i ) ∪ (Xj
Q) ∪E

}
(5.6)

and arc set

Aq =
{
(Rj

i , E)
}
∀Rj

i ∈ Nq (5.7)

∪
{
(Rj

i , X
j
Q)
}

if i ∈ Q (5.8)

∪
{
(Xj

Q, E)
}
∀Xj

Q ∈ Nq. (5.9)

Owing to the interference constraints, the control action in each time slot is to serve either

one of the links(Rj
i , d(s)) or a valid subset of the(Xj

Q, E) links subject to the network coding

constraints. Acontrol input I(t) = (Iab(t)) for the queuing network is a binary vector with

Iab(t) = 1 if link (a, b) ∈ Aq is activated in slott.
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The control spaceIs for a states thus consists of

Is = I ′s ∪ I (5.10)

=
{(

Rj
i , d(s)

)
: i, j ∈ {1, . . . , n}, i 6= j

}

∪
{(

Xjl

Ql
, E
)

:
(
Xjl

Ql

)
is a stable set inGc

}
,

whereI ′s denotes the state-dependent part, andI the state-independent part of the control.

Let c(I(t), S(t)) = (cab(I(t), S(t))) denote the link capacity vector under controlI(t) ∈ IS(t)

and stateS(t) ∈ S. Based on the previous discussion, the capacity of link(a, b), measured in

packets/slot is

cab(I(t), S(t)) =







1 if Iab(t) = 1,

0 otherwise.

(5.11)

Consider the region defined by

Γ =
∑

s∈S

πsCH{c(I, s) : I ∈ Is} , (5.12)

where CH(·) denotes the convex hull and the different convex hulls are added using the usual set

summation. Using the decomposition from Eqn. (5.10), we canrewrite the regionΓ as follows,

isolating the contribution of the stable set polytope of theconflict graph

Γ =

{
∑

s∈S

πsµsCH{c(I, s) : I ∈ I ′s}+

[
∑

s∈S

πs(1− µs)

]

PSTAB(Gc) : µs ∈ [0, 1], ∀s ∈ S

}

.(5.13)

The significance of this region is that every vector(gab) of long-term link transmission rates

that can be supported by the network has to lie inΓ [61]. For the introduced constrained queuing
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system, two questions naturally arise and we will address them next: The optimal service policy

and its associated stability region.

5.2 Stability Region

We begin by studying the stability region (or network layer capacity region, as opposed to the

information theoretic notion of capacity) which is defined as follows [61]

Definition 12 The stability regionΛ is the closure of the set of all arrival rate matrices
(
λj

i

)
that

can be stably supported by the network considering all possible policies for routing, scheduling

and restricted network coding (i.e. instantaneous decodability and network coding only at the

relay).

The characterization of the stability region is given in thefollowing theorem.

Theorem 1 The stability region for the constrained queuing system in Fig. 5.2 is the set of

all arrival rate vectors
(
λj

i

)
such that for all links(a, b) ∈ Aq there exists a non-negative

flow vector(f(a, b)) and a transmission rate vector(g(a, b)) ∈ Cl(Γ) satisfying1 the flow

conservation constraints

λj
i ≤ f(Rj

i , E) +
∑

Q

f(Rj
i , X

j
Q), ∀λj

i , (5.14)

∑

i

f(Rj
i , X

j
Q) ≤ f(Xj

Q, E), ∀Xj
Q, (5.15)

and the capacity constraints

f(a, b) ≤ g(a, b), ∀(a, b) ∈ Aq. (5.16)

1Cl(·) denotes the closure of a set.
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Proof This is a straightforward application of [61, Theorem 3.8] to the queuing networkGq.

5.3 Online Algorithm

The stability region tells us that if the average arrival rates were fixed and known a priori, there

exists a policy that stabilizes the network. However, it might not be causal, i.e. the decision

at time t might depend on events occurring after timet. An online algorithm on the other

hand, decides at timet solely based on the history up to this time and the current state of

the network. As the authors have shown in [60, 61], there exists a class of online algorithms,

so calleddifferential backpressurealgorithms that stabilize every point in the interior of the

stability region.

Consider the following three-step algorithm.

1. Computation of backpressure weights:In each time slott, first observe the topology state

variableS(t). Then compute for all links(Rj
i , d(s)) the differential backlogswj

i (t) as follows

wj
i (t) =







Rj
i (t) if d(s) = E,

Rj
i (t)−Xj

Q
′ (t) if d(s) = Xj

Q
′ .

Compute the maximum weighted stable set ofGc with weightsXj
Q(t)

c
∗ = arg max

c∈STAB(Gc)

{
X

T (t)c
}

,

and denote the corresponding weightw∗(t) = X
T (t)c∗.

2. Scheduling:Select the maximum weight among
{
w∗(t), wj

i (t)
}

, for i, j = 1, . . . , n. The

queue scheduled for service is the relay if the maximum isw∗(t), or otherwise the queueRj
i

corresponding to the maximum backpressure weightwj
i (t).

3. Network coding:If the relay is scheduled for transmission, identify the queues which are
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members of the stable setc
∗ computed in the previous step, and serve them jointly. To that end,

take the packets at the head of each queue, combine them with binary XOR and transmit the

resulting combination.

The described algorithm stabilizes every arrival rate vector within the stability region. This is

established by the following result, originally due to [60].

Theorem 2 [61, Theorem 4.5] The backpressure algorithm stabilizes the network for an ar-

rival rate vectorλ if there exist a scalarǫ > 0 such thatλ+ ǫ1 ∈ Λ, where1 denotes the vector

with all entries equal to 1.

A remarkable consequence is that the algorithm stabilizes the system for all points in the interior

of the stability region without even requiring knowledge ofthe stability region.

5.4 Performance Evaluation

We illustrate the performance of our scheme in three ways. Firstly, we illustrate the network

coding gains by computing the volume of the stable set polytopePSTAB(Gc) and comparing with

the volume of the constraint polytope when no network codingis allowed. This approach has

been pursued in [37] in the context of network coding for switches with multicast capabilities.

Secondly, we compute the stability region for network coding and for routing, and thirdly, we

simulate the online scheduling and network coding algorithm.

5.4.1 Polytope Volume Computation

Consider the casen = 3 nodes and the 9 virtual queues which can be scheduled for joint service

according to the conflict graph in Fig. 5.3. By inspection, the conflict graph contains one

maximum stable set of cardinality 3, namely{X2
1,3, X

1
2,3, X

3
1,2}, similarly nine maximal stable

sets of cardinality 2 and nine stable sets corresponding to the individual vertices, so it can be
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written as the convex hull of these 19 points and the origin. Using the Multi-Parametric Toolbox

for MATLAB [62], we have used this representation to computeits volume, which turns out to

be 2.8660 · 10−4. Without network coding, only one virtual queue can be served at a time,

so the “conflict graph” when only routing is allowed is the complete graphK9. The volume

of the resulting stable set polytope, which is a 9-dimensional standard simplex, is(9!)−1 =

2.7557 · 10−6. The ratio of the two volumes isV ol(PSTAB(Gc))/(9!)−1 = 104.

5.4.2 Stability Region

We compute the stability region as characterized in Theorem1 for the special case when all

injection rates are equal. Though this computation is not easier than the general case, it has the

useful property that the network throughput is parameterized by a scalarλ = λj
i . We consider

n = 3 and the state process is assumed to be i.i.d. across time and across links with each link

being ON with probability0.2 and OFF with probability0.8. Routing, i.e. serving one virtual

queue at a time, leads to a maximum symmetric rateλr and network coding to a rateλn which,

due to the fact that network coding includes routing as a special case, is at least as large asλr.

The maximum symmetric rates,λr = 0.1448 for routing andλn = 0.1521 for network coding,

are shown in Fig. 5.4.

5.4.3 Online Algorithm

To illustrate the performance of the online algorithm, we simulate its behavior for symmetric

input rates which are close to the breaking points for routing and network coding, respectively.

Considerλ1, . . . , λ4 as indicated in Fig. 5.4 and the corresponding sample paths in Fig. 5.5.

For λ1, which is in the stability region of both policies, we see that routing leads on average

to significantly more packets in the system. When we slightlyincrease the rate toλ2 routing

breaks down, while network coding is largely unaffected. Going further toλ3 network coding

is still stable, though at a higher average backlog. Finally, at λ4 both systems operate beyond
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Figure 5.4 Routing stabilizes the network for all rates smaller thanλr = 0.1448, network
coding extends the stability region toλn = 0.1521, which is an increase of about5%. In Fig.
5.5 we simulate sample paths of the online backpressure algorithm for the points{λ1, λ2} =
λr ± 0.0003, and{λ3, λ4} = λn ± 0.0003.

function

λr = 0.1448

λn = 0.1521

λ1 λ2 λ3 λ4

stability but network coding “degrades” more gracefully.

5.5 Discussion

We investigated the stability region as well as online stabilizing algorithms for instantaneously

decodable network coding. In contrast to the previous chapters, we adopted a model that deals

with the queue length evolution of the system and captures the system dynamics. We showed

that network coding can extend the stable operation regime of the network and, on average,

reduce the backlog in the system. The networks we consideredhad, in contrast to the previous

chapters, certain structural constraints; we assumed thatjust one node in the network is capable

of performing network coding operations and can reach all its neighbors in one hop.

As an extension, it is promising to look at allowing more nodes to do network coding. Nev-

ertheless, the results are interesting in their own right asin many cases, owing to structural

constraints or when networks are highly heterogenous, one may choose to use local network

coding methods. Moreover, there is evidence that in many cases only a small subset of the

network nodes need to do network coding in order to get the throughput benefits. For example,

in [63] the authors consider a genetic algorithm to minimizethe number of coding nodes in
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Figure 5.5 The total number of queued packets in the system for different injection rates. In
particular, forλ1 both routing and network coding stabilize the system, forλ2 and λ3 only
network coding stabilizes the system, while forλ4 both policies result in an unstable system.
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the network. It turns out that in most cases only a very small fraction of the nodes need to do

network coding.



6
Delay Control in Network

Coded Broadcasting

In this chapter1, we explore the issue of delay in network coding, when applied to broadcast

erasure channels. Random linear network coding generally improves the throughput but can

lead to higher delay, as receivers need to collect several coded packets before being able to de-

code them and thus recover the original information. Thus, there is a tension between increased

throughput and decoding delay in the network [3,64] and thisis the focus of this chapter.

Depending on the system and application, and particularly depending on the transport protocol,

different notions of decoding delay may be used. In [65], delay is defined as the time between

the (stochastic) arrival of a packet at the source and its decoding by a receiver. In contrast, we

use the notion of delay as suggested by the authors in [3]. There, a receiver experiences a unit of

delay every time it successfully receives a packet, that is either a redundant linear combination

1This chapter is joint work with P. Sadeghi and R. Shams.
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of previously received (coded) packets or that is not instantaneously decodable for all receivers.

Note that under this definition the order in which packets aretransmitted and arrive does not

matter.

Out-of-order packet delivery may be a reasonable assumption if the underlying transport pro-

tocol is unreliable. In such a situation, if we wish to transmit, e.g., video, we can use amultiple

descriptioncode [66], where each packet brings new information to the receiver regardless of

the order. On the other hand, if the transport protocol ensures highly reliable in-order transmis-

sion, it is reasonable to use asuccessive refinementsource code, where each subsequent packet

improves the quality, but only if all previous packets are received.

Typically, onlinenetwork coding algorithms for broadcast erasure channels [3,65,67,68] use

feedback from the receivers to the source to optimize the selection of packets to be combined

and transmitted. The goal is to minimize decoding delay, possibly subject to constraints on the

throughput. In particular, in [3], a number of such algorithms were proposed and compared in

terms of performance.

In our approach, we allow for network coding subject to instantaneous decoding, thus we adopt

the same strategy as in Chapter 5. The difference is that now we wish to broadcast a number of

packets to all receivers, whereas in Chapter 5 each packet had a designated next-hop. We next

present a systematic framework for the minimization of decoding delay based on combinato-

rial optimization. We show that this problem can be cast intoan integer linear programming

(ILP) framework, where an instantaneously decodable packet transmission corresponds to aset

packingproblem [69] on an appropriately defined set structure. Furthermore, we provide a cus-

tomized and efficient method for finding the optimal solutionto the set packing problem, which

is in general NP-hard. Our numerical results show that for a moderate number of receivers, the

optimal solution can be computed efficiently. Finally, we illustrate how our optimal algorithm

can be converted to a heuristic with very small computational complexity. The performance of

the heuristic is evaluated by means of simulations and shownto perform well compared to the
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optimal solution.

6.1 Network Model and Definitions

Consider a single source that broadcasts toN receivers, denoted byRi for i = 1, . . . , N . The

data is divided intoK packets, denoted bymj for j = 1, . . . , K. Each receiver is interested

in all of the packets. Time is slotted, and the source can transmit one (possibly coded) packet

per slot. A linkLi connects the source to receiverRi. Link Li experiences an erasure with

probability ofpe,i in each slot. We assume that the erasure random processes areindependent

and stationary. Before transmission of the next packet, thesource collects error-free and delay-

free 1-bit feedback from each destination indicating if thepacket was successfully received or

not.

Definition 13 At the end of transmission roundℓ, the knowledge of receiverRi is the set con-

sisting of all packets that the receiver has decoded so far.

Definition 14 A coded packet is instantaneously decodable for receiverRi if it is a linear com-

bination containing exactly one packet not in the knowledgespace ofRi.

A coded packet is called non-innovative for receiverRi if it only contains source packets that

the receiver has decoded so far. Otherwise, the packet is innovative.

Definition 15 A scheme is called throughput optimal if all transmissions are innovative for the

entire set of receivers.

Definition 16 In time slotℓ, receiverRi experiences one unit of delay if it successfully receives

a packet that is either non-innovative or not instantaneously decodable.

The source only applies coding when all receivers will be able to decode immediately, then a

delay atRi can only occur if the received packet atRi is not innovative. Note that in the last
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definition, we do not count channel inflicted delays due to erasures. The delay only counts ‘al-

gorithmic’ delay, i.e when we are not able to provide innovative and instantaneously decodable

packets to a receiver [3]. This definition captures the part of the delay that is due to algorithm

design, as opposed to the part of the delay that is due to unfavorable erasure patterns.

A zero-delay scheme would require all packets to be both innovative and instantaneously de-

codable to all receivers. Thus zero-delay implies throughput optimality, but not vice versa.

Achieving zero delay is difficult since which packets are innovative and instantaneously decod-

able depends on the random packet erasures experienced by each receiver. An offline algorithm

is one that knows all future realizations of erasures; it is non-causal. In contrast, anonlinealgo-

rithm decides on what to send in any given slot solely based onthe information received in past

slots. The authors in [3, Theorem 1] show that for the case ofN = 2 andN = 3 receivers, there

exists anofflinealgorithm that has zero-delay. The authors then prove that not even an offline

zero-delay algorithm exists forN ≥ 4.

In this chapter, we focus on designing online algorithms.

6.2 Optimization Framework

We assume that packets are transmitted in two phases. In the first phase, lastingK slots, each

packet is transmitted uncoded. After this first phase, in every slot that follows, we form instan-

taneously decodable packets according to the algorithm we describe next.

Assume, we are in slotℓ, ℓ ≥ K. Recall that the source knows all prior packet losses at

all receivers due to the feedback. This information can be summarized in anN × K binary

receiver-packet incidencematrixA with elements

aij =







1 if Ri needsmj ,

0 otherwise.

(6.1)
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The columns of matrixA are denoted bya1, . . . , aK . We assume that packets received by all

receivers are removed from the receiver-packet incidence matrix. Hence,A does not contain

any all-zero columns.

Example ConsiderN = 2 receivers andK = 3 packets. Before the transmission begins, the

receiver-packet incidence matrixA is a2×3 matrix of ones. If we send packetm1 in slotℓ = 1

and only receiverR2 successfully receives it,A becomes

A =






1 1 1

0 1 1




 .

If we send packetm2 in slot ℓ = 2 and only receiverR1 successfully receives it,A will then be

A =






1 0 1

0 1 1




 .

As we do not know the future realizations of the link erasures, we seek to maximize myopi-

cally for the next slot the number of receivers that experience no delay. Letx denote a binary

decision vector of lengthK that describes which packets are being coded together. Under in-

stantaneous decoding, going to higher field sizes does not lead to further gains. The transmitted

packet consists of the binary XOR of the source packets for which xj = 1. Consider sets

M1, . . . , MK ⊂ {R1, . . . , RN}, whereMj is the set of receivers that stillneedsource packet

mj . Let wT = (|M1|, . . . , |MK |), and let1N be the all-one column vector of dimensionN .

Then, maximizing the number of receivers for which a transmission is innovative subject to

the constraint of instantaneous decodability can be posed as a zero-one integer linear program

(ILP). The column vectorx of lengthK contains the decision variables; they are integers with

values zero or one.
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maxw
T
x (6.2)

subject to Ax ≤ 1N

x ∈ {0, 1}K

This is a standard problem in combinatorial optimization, usually calledset packing[69].

Here the universe is the set of all receivers and we need to finddisjoint (due to instantaneous

decodability condition) subsetsMj with the largest total size. In the (most desirable) case when

equality holds in every row ofAx ≤ 1N (that is, the transmitted packet is innovative for every

receiver) this becomes aset partitionproblem. This is equivalent to a zero-delay transmission.

6.3 Algorithms for Solving (6.2)

Unfortunately, the set packing problem is NP-hard [69]. In this section, we present an efficient

algorithm designed to take advantage of the specific problemstructure. Since the underlying

combinatorial problem is NP-hard, its worst case executiontime is exponential in the size of

the problem instance. However, for many practical situations of interest, our method performs

well empirically.

Consider the following definitions.

Definition 17 Two binary-valued variables are said to be constrained if they cannot be simul-

taneously1 in a solution. Formally,xi andxj are constrained if for anyx satisfyingAx ≤ 1N ,

xi + xj ≤ 1. We also say thatxj is constrained toxi and vice versa.

Note thatxi andxj are constrained if and only if there exists at least one row indexp in A for

whichapi = apj = 1.
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Definition 18 The set of all variables constrained toxi is called the constrained set ofxi and

is denoted byCi. That is,

Ci = {xj |j 6= i, Ax ≤ 1N ⇒ xi + xj ≤ 1}. (6.3)

If xi andxj are not constrained to each other (xi /∈ Cj andxj /∈ Ci), then columnsai andaj

in A cannot have non-zero elements in the same row position. Thatis, for each row indexp,

api = 1⇒ apj = 0 andapj = 1⇒ api = 0.

Definition 19 A variablexi is said to be unconstrained ifCi = ∅. The set of all unconstrained

variables is denoted byU and is referred to as the unconstrained set.

If xi is an unconstrained variable, then for each row indexp, api = 1 ⇒ apj = 0 for all j 6= i

(otherwise,xi andxj would become constrained).

Example Consider the following receiver-packet incidence matrixA

A =






















1 0 1 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

0 0 1 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1






















.
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Variablesx1 andx3 are constrained because forp = 1, ap1 = ap3 = 1. Variablesx1 andx4

are not constrained to each other because columnsa1 anda4 do not have a non-zero element in

the same row position. Variablex6 is unconstrained because its non-zero elements are in rows 6

and 7 and no other column has a non-zero element in rows 6 or 7. In summary,C1 = {x2, x3},

C2 = {x1}, C3 = {x1, x4}, C4 = {x3} andC5 = C6 = ∅.

6.3.1 Exhaustive Search

The algorithm that we propose is essentially a divide-and-conquer type of algorithm that takes

advantage of the problem structure to efficiently prune the search space. We make the following

observations for pruning the parameter space:

1. Unconstrained variables must be set to 1. IfCi = ∅, thenxi = 1 since settingxi = 1

results in a strictly higher value ofwT
x than settingxi = 0 and in no way constrains the

values ofxj for j 6= i. In the above example,x5 = x6 = 1 because no other variable is

constrained to them.

2. If a constrained variable is set to 1, then all members of its constrained set must be set to

0. In the above example, settingx1 = 1 forcesx2 andx3 to zero.

With these observations, we can proceed to discuss the suggested algorithm. LetPk denote

a problem instance of sizek whose input is anN × k receiver-packet incidence matrixAk

and whose output is a set of solutions vectorsx of lengthk which satisfy the instantaneous

decodability conditionAkx ≤ 1N . Consider Algorithm 1 and its corresponding flow chart in

Fig. 6.1.

Remark 5 The algorithm is recursive. In line 12,ku unconstrained variables are set to one,

xs = 1 and thereforeks variables constrained byxs are set to zero, hence a total ofks + ku + 1

variables are resolved. Similarly, in line 16,ku unconstrained variables are set to one and

xs = 0, hence a total ofku + 1 variables are resolved.
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Figure 6.1A schematic of Algorithm 1 for finding the optimal network coding solution of (6.2).
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Algorithm 1 Exhaustive Recursive Search for the Optimal Solution(s) of(6.2)
1: Start with the original problem of sizek = K.
2: Solve(Pk):
3: if k=1 then
4: Returnx1 = 1 (since the variable is not constrained).
5: else
6: Determine the constrained set for all variablesx1 to xk.
7: Denote the index of the variable with the largest constrained set bys and the cardinality

of its constrained set byks.
8: Denote the cardinality of the unconstrained setU by ku.
9: Set all the unconstrained variables to 1.

10: Setxs = 1 and the variables in its corresponding constrained setCs to 0.
11: Reduce the problem by removing resolved variables. ReduceAk accordingly.
12: Solve(Pk−ku−ks−1).
13: Combine the solution with previously resolved variables. Save solution.
14: Setxs = 0.
15: Reduce the problem by removing resolved variables. ReduceAk accordingly.
16: Solve(Pk−ku−1).
17: Combine the solution with previously resolved variables. Return solution(s).
18: end if

Remark 6 In line 7 of Algorithm 1, we have chosen to resolve the variable with the largest

constraint set first. As the search is exhaustive, the order in which variables are resolved does

not matter, in principle. Our choice is motivated by empirical observations, after trying many

different rules.

It is straightforward to see that Algorithm 1 corresponds toan exhaustive search and therefore

is guaranteed to return all optimal solutions of (6.2). A formal proof of that can be found in [23].

However, we note that not every solution returned by Algorithm 1 is optimal. The non-optimal

solutions can be easily discarded by testing against the objective function (6.2) at the end of the

algorithm. We also note that in Algorithm 1, we can simply remove those packets received by

every receiver from the problem. If there areK0 such variables, we can start step 1) above from

k = K −K0 instead ofK.
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6.3.2 Fast Search

There are situations where one would like to obtain a (possibly suboptimal) solution quickly.

This may be the case, for example, when the total number of packets to be transmitted is very

large. Therefore, consider the following heuristic.

Weight Sorted Heuristic Algorithm - As in Algorithm 1, we start with the original problem

of sizek = K. We rearrange the columns of the matrixA in descending order ofwj . We

set the head variablex1 = 1 and given its corresponding constrained setC1 resolvek1 = |C1|

variables that are to be set to zero. We then solve the smallerproblem of sizePk−k1
and continue

until the problem cannot be further reduced. One main difference between this heuristic and

Algorithm 1 is that at each recursion, the head variable is only set to one; the other possibility

of x1 = 0 is not explored. In a sense, this heuristic algorithm findsgreedysolutions to the

problem at each recursion by serving the highest priority packet. In this heuristic algorithm,

all ku unconstrained variables are automatically set to 1 in the course of the algorithm. The

computational complexity of this method is at worst proportional toK, which can happen when

there is no constraint between packets.

6.4 Performance Evaluation

We compare our optimal algorithm and the proposed heuristicwith the random opportunistic

algorithm proposed in [3]. In Fig. 6.2, we have plotted the total delay (the sum of the delays

experienced by the different receivers) for the transmission of K = 100 packets. Both the

optimal algorithm as well as the heuristic outperform the random opportunistic algorithm of

[3] - in certain regimes substantially. Also note that, for the scenario in this experiment, the

performance of our heuristic is much closer to the optimal algorithm than to the algorithm in

[3]. This illustrates that precisely defining the optimal setting and then seeking approximations

within this framework is a promising approach.



94 Chapter 6 � Delay Control in Network Coded Broadcasting

Figure 6.2 Median of decoding delay for the transmission ofK = 100 packets toN = 3 to
N = 100 receivers. Channel erasures are memoryless and occur with aprobability ofp = 0.5
independently in every link. We compare Algorithm 1, our heuristic, and the random oppor-
tunistic algorithm in [3].
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Figure 6.3The effect of increasing the number of packets on the computational complexity of
Algorithm 1. Our measure for computational complexity is the number of recursions.
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In Fig. 6.3, we show the computational complexity of the optimal algorithm as a function of

the number of packetsK and number of receiversN . For a wide range of meaningful problem

sizes the algorithm is very efficient. This is somewhat surprising as the underlying problem is

NP-hard. Another interesting observation is that in this figure more receivers require fewer iter-

ations. This is consistent with the theory and practice of integer programming. It is well-known

that if in an integer program the number of variables is kept constant but more constraints (in

our case each receiver corresponds to a new constraint) are added, the computational efficiency

improves [69, Section 1.2]. This is in sharp contrast with linear programming, where the com-

putational complexity increases with the number of variablesand the number of constraints.
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6.5 Discussion

We have defined delay in an “order-oblivious” fashion and derived an optimal algorithm to min-

imize the delay for one transmission at a time. Applying thisalgorithm successively, leads to

reductions in delay as compared to the approach in [3]. Furthermore, although the underly-

ing combinatorial problem is NP-hard, our algorithm can handle problems of reasonable size

efficiently.



7
Conclusion

We have looked at possibilities to apply network coding to wireless multi-hop networks in a

way that is well-matched with the other layers of the network, especially the multiple access

layer. We addressed optimal transmission scheduling for network coded multicast traffic, asyn-

chronous algorithms for computing multicast subgraphs, and inter-session network coding with

instantaneous decoding.

Many of the problems we addressed, such as optimal scheduling or network coding subject to

instantaneous decoding, are inherently hard. At the core, they require solving NP-hard stable

set problems. This means that, in practice, it is likely thatone would have to resort to ap-

proximations and heuristics. How practical, then, is our approach, and why did we not choose

heuristics to begin with? Our contribution is a better understanding of the problem structure

and an encapsulation of the inherent combinatorial difficulty. Once the combinatorial problem

is clearly formulated, we can capitalize on the rich set of approximation algorithms for NP-hard

problems. This is at the same time a safeguard from applying heuristics, where unnecessary.
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The mathematical tools we used in our work - multi commodity flow problems with side con-

straints, graphical models for conflicts, and techniques from optimization decomposition, to

name a few - date back a long time. In the context of network performance optimization, their

application has been well-known for at least two decades, asdocumented in the seminal work

of Bertsekas and Gallager [32]. When network coding enters the picture, however, these tech-

niques have to be adapted and modified to take into account thespecial properties of network

coding. For instance, we have seen that when scheduling network coded transmissions, we

want to activate hyperarcs, instead of arcs. We have also shown that, we can use conflict graph

models to express conflicts on the schedule, as well as on the code. Sometimes major changes

are called for, sometimes just subtle twists are required. In any case, it is imperative to take

the peculiarities that network coding introduces into account when designing coded networks.

Otherwise performance will certainly fall short of the possible.

The goal of our work has been to analyze the performance of network coding in wireless net-

works and provide algorithms that can guide the more practical issue of protocol design. Our

models are in the language of mathematical programming, whereas network protocols are hard-

ware and software solutions. Thus, there is still a gap to bridge. When designing theoretical

abstractions for practical problems, one can not include all practically relevant constraints into

the formulation. Without simplification, it is impossible to get to the crux of a problem and to

get useful insight. There is a great deal of work to be done on the implementation of network

coding in wireless networks, and it is likely that it will be necessary to incorporate more con-

straints and practical considerations into our models. Particularly, in the rapidly growing field

of heterogeneous networking it is likely that new modeling challenges will arise.

In this work, we have addressed delay in Chapter 6. However, most of our focus was on

throughput. If network traffic has to satisfy streaming or realtime guarantees, then delay be-

comes at least as important as throughput. Network coding requiring in order packet delivery

- and therefore meeting more stringent delay constraints - has been addressed, for instance
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in [65]. However, the throughput-delay tradeoff in coded wireless networks remains a largely

open problem. One promising approach is to adapt the formulation in Chapter 6 to accom-

modate packets with service deadlines, thus relaxing the instantaneous decoding condition. A

possible approach could be to combine in order delivery withthe restriction that packets are

decodable after a fixed (small) number of slots, rather than instantaneously.

Another open problem is to understand the practical limits of inter-session network coding.

We have seen that by imposing instantaneous decoding, the problem becomes tractable. When

instantaneous decoding is relaxed, the problem becomes theso calledindex coding with side

informationproblem [70], which is a very difficult combinatorial problem, even when restrict-

ing attention to linear codes. The setup in [70] is static. That is, the goal is to minimize the

number of transmissions for a fixed batch of packets. In practice, however, new packets arrive

and receive service continuously. Therefore, even if we cancompute the “optimal” solution for

a fixed batch of packets, it becomes outdated as soon as new packets arrive. The challenge is

thus to design algorithms that generalize instantaneous decoding, assume dynamic arrivals and

departures, and are useful from an engineering perspective.

To illustrate how the framework proposed in this thesis can guide network coding implemen-

tation in practice, we discuss three projects addressing the implementation of network coding.

They were student research projects carried out under my supervision at the Institute for Com-

munications Engineering at Technical University Munich.

7.1 Implementation of Network Coding: Case Studies

7.1.1 Case 1: Wireless Video Transmission using Network Coding

In this project, the goal was to implement a wireless transmission protocol for streaming net-

work coded video. The implementation is in the framework of the discrete event simulator

NS-2 [71], a free network simulation platform that is widelyused in academia. For a survey on
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network coding for video applications see [72].

The underlying transport protocol is the connectionless User Datagram Protocol (UDP) [73].

UDP does not feature an acknowledgment mechanism, as for example TCP. The packets of the

MPEG-4 video stream are partitioned in blocks (generations) and the generations are transmit-

ted using standard random network coding overGF (28). Network coding requires acknowl-

edgments only after each generation; this small additionalfeedback can be easily implemented

without having to redesign the transport protocol.

The evaluation of the video quality takes into account threecomponents: average packet loss

rate, average packet delay, and the perceived video quality. An interesting result was that,

in practice, short generation sizes (6 to 8 packets) with some overlap performed best [74]. Of

course, when the focus is solely on increasing the throughput large generation sizes are required.

However, in video streaming delay is often more critical than throughput and a moderate packet

loss rate can be tolerated. The results are summarized in [74].

7.1.2 Case 2: Network Coding for Heterogeneous Networks

In this research project, we look at implementing network coding across different networks.

Modern user equipments can connect to both wireless local area networks (WiFi) via the 802.11

protocol and at the same time to 3G or 4G wireless systems suchas UMTS, LTE, or LTE-

Advanced. The cellular network usually provides reliable coverage but incurs a high cost per

packet, whereas LANs provide cheaper access but are not always reliable. To ensure a satisfac-

tory quality of experience for an application like streaming video, the best engineering solution

may be to use both networks simultaneously. In such a scenario, network coding can help im-

prove reliability, reduce the cost for achieving a certain quality of experience, and reduce the

coordination requirements between the different network access points.

Concretely, we investigate how we can use network coding to combine information sent over

the two different connections and simulate and compare different schemes with the OPNET
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modeler [75]. OPNET is, as opposed to NS-2, a commercial toolthat is widely used in industry.

Many protocols can be specified by means of state transition diagrams and additional C or C++

code, e.g. for the finite field arithmetics, can be integrated.

From a theretical perspective, the work [76] looks at streaming media and the trade-off be-

tween the probability of interruption and the buffering time. As a concrete application of the re-

sults in [76], we consider a file download using network codedTCP [77]. The novelty over [77]

is that we consider network coded TCP over heterogeneous networks and investigate various

association policies and their quality of experience as well as their cost. A detailed project

description can be found in [78].

7.1.3 Case 3: Network Coding for Relaying in LTE-A

Relaying is a promising way to increase coverage in cellularwireless networks and to improve

connections to cell-edge users. Consequently, relaying has been incorporated into recent wire-

less communication standards like LTE-Advanced [79].

The full information theoretic characterization of the relay channel is still an open problem

and physical layer techniques (see e.g. [80] or [81] for an actual implementation) are not only

difficult to implement but also may be inadequate if the network and the channel conditions

change quickly. However, as we have seen in the example of Chapter 2, relaying can be easily

implemented on higher layers using network coding. Networkcoding allows us to cooperate at

higher layers, thus giving us much more flexibility to exploit the time variations of the network.

In particular, in this project we consider a TCP connection from the base station to a mobile

user equipment via a relay. Network coding for TCP has been studied in [77], where the authors

use a sliding window for selecting the packets to be encoded.The relay can be either used to

extend the coverage of the base station or to enhance the communication if both relay and end

user are covered by the base station. Questions that we address are how we can use network

coding to optimize the throughput and delay characteristics of the TCP session, and if we as-
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sume a streaming media application to what extent network coding can reduce the completion

time of the download. A detailed project description can be found in [82].



A
Appendix

A.1 Analytical Solution of the Linear Program (2.7)-(2.14)

Consider the abbreviations:

A =
(
p1{23}2 + p1{23}3 + p1{23}{23}

)
(A.1)

B =
(
p1{23}3 + p1{23}{23}

)
(A.2)

C =
(
p1{23}2 + p1{23}{23}

)
(A.3)

D = p233. (A.4)

Note that the variablex23 is redundant, we can simply replace it withx12. We proceed to

eliminatex12, according to the Fourier-Motzkin procedure [31, Section 2.8]. To that end, we

rewrite the constraints involvingx12 in the following way (and keep the ones not involvingx12):
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x12 ≥ 0 (A.5)

x12 ≥ R− x13 (A.6)

αC ≥ x12 (A.7)

αA− x13 ≥ x12 (A.8)

(1− α)D ≥ x12 (A.9)

0 ≤ x13 ≤ αB (A.10)

0 ≤ α ≤ 1. (A.11)

After eliminatingx12, removing redundant constraints, and arranging for the elimination of

x13, we are left with:

x13 ≥ R − αC (A.12)

x13 ≥ R − (1− α)D (A.13)

x13 ≥ 0 (A.14)

αB ≥ x13 (A.15)

αA ≥ R (A.16)

0 ≤ α ≤ 1. (A.17)

After eliminatingx13, removing redundant constraints, and arranging for the elimination ofα,

we are left with:

α ≥ R/A (A.18)

α(B −D) ≥ R −D (A.19)

1 ≥ α. (A.20)



A.1 Analytical Solution of the Linear Program (2.7)-(2.14) 105

Now, if B > D, Eqn. (A.19) becomes

α ≥ (R−D)/(B −D), (A.21)

and after eliminatingα, we ultimately get

R ≤ B, (A.22)

and the maximal rate isR∗ = B; this corresponds to not using the relay.

On the other hand, ifB < D, Eqn. (A.19) becomes

(R−D)/(B −D) ≥ α, (A.23)

and after eliminatingα, we ultimately get

R ≤ AD/(A−B + D), (A.24)

and the maximal rate isR∗ = AD/(A−B + D).

To determine the coefficientα∗, we plug inR∗ in constraints (A.18) and (A.19), and get

α∗ =
D

A−B + D
. (A.25)
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A.2 Distributed Maximal Stable Set Algorithm

Consider the following algorithm, due to [49]. The input is the weighted conflict graph

G = (V, E) with weights as defined in Eqn. (3.37). Letwv denote the weight of vertex

v ∈ V. The algorithm is executed at each nodev ∈ V as described in the pseudo-code for

Algorithm 2 below. Algorithm 2 calls two subroutines, also given below. We useNG(v) to de-

note the neighborhood of nodev in the conflict graphG. Boolean variablesss(u) andjoin(u, t),

u ∈ {v}∪NG(v) andt ∈ V are initialized toFalse. Settingss(u) to True means thatu belongs

to the stable set. Settingjoin(u, t) to True means that nodeu is not a stable set member but a

neighbor of stable set membert. Setting either one of these variables toTrue is communicated

to the neighbors by means of messagesSS(u), andJoin(u, t), respectively. After the initial-

ization phase, nodev performs updates upon receiving messages from its neighbors. After it

has permanently decided whether to be a stable set member or not, it exits the algorithm (this

happens in one of the two subroutines).

Algorithm 2 Decentralized weighted maximal stable set [49]
1: initialize:
2: ss(u)← False
3: join(u, t)← False
4: if for eachu ∈ NG(v) we havewv > wu then
5: ss(v)← True
6: sendSS(v)
7: exit
8: end if
9: loop

10: on receivingSS(u) :
11: executesubroutine1
12: on receivingJoin(u, t) :
13: executesubroutine2
14: end loop

The following proposition shows the correctness of the algorithm and bounds the number of

iterations needed for convergence,
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Algorithm 3 Subroutine 1.
1: ss(u)← True
2: if for eachz ∈ NG(v) : wz > wu there exists ax ∈ V such thatjoin(z, x) is truethen
3: sendJoin(v, u)
4: exit
5: end if

Algorithm 4 Subroutine 2.
1: join(u, t)← True
2: if for eachz ∈ NG(v) : wz > wv is join(z, x) for somex ∈ V then
3: sendSS(v)
4: ss(v)← True
5: exit
6: else iffor at least az ∈ NG(v) is ss(z) and for eachu ∈ NG(v) : wu > wz is join(u, x) for

somex ∈ V then
7: sendJoin(v, maxwz

{z : ss(z)})
8: exit
9: end if

Proposition 3 [49, Theorem 1] All nodes in the network exit the algorithm being assigned ei-

ther membership or non-membership to a stable set. The stable set computed is maximal. Fur-

thermore, the number of steps needed for a node to terminate the algorithm is upper bounded

by2α(G), i.e. twice the stability number of the conflict graphG.
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A.3 The Asynchronous Algorithm with Polymatroidal Con-

straints

With polymatroidal constraints, and assuming one hyperarc(i, J) for each nodei, the problem

is

minimize
∑

(i,J)∈A

fiJ(ziJ)

subject to:
∑

j∈K

x
(t)
ij ≤ ziJbiJK , ∀ (i, J) ∈ A, K ⊂ J, t ∈ T, (A.26)

∑

j:(i,j)∈A′

x
(t)
ij −

∑

j:(j,i)∈A′

x
(t)
ji = σ

(t)
i , ∀ i ∈ N , t ∈ T, (A.27)

x
(t)
ij ≥ 0, ∀ (i, j) ∈ A′, t ∈ T. (A.28)

Here, as usual,A denotes the set of hyperarcs, whereasA′ is the set of induced arcs, i.e.

A′ = {(i, j) : i ∈ N , j ∈ J}.

Since we assume that thefiJ are monotonically increasing, constraint (A.26) implies that

ziJ = max
K⊂J,t∈T

{∑

j∈K x
(t)
ij

biJK

}

. (A.29)

This can be the replaced with the soft-maximum

z′iJ = L log

(
∑

K⊂J,t∈T

exp

(

1

L

∑

j∈K x
(t)
ij

biJK

))

. (A.30)

Thus, the optimization problem becomes
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minimize
∑

(i,J)∈A

fiJ

(

L log

(
∑

K⊂J,t∈T

exp

(

1

L

∑

j∈K x
(t)
ij

biJK

)))

subject to

∑

j:(i,j)∈A′

x
(t)
ij −

∑

j:(j,i)∈A′

x
(t)
ji = σ

(t)
i , ∀i ∈ N , t ∈ T , (A.31)

x
(t)
ij ≥ 0, ∀(i, j) ∈ A′, t ∈ T , (A.32)

which is again a multicommodity flow problem, and moreover only locally coupled through the

objective function. Therefore, the analysis in Chapter 4 applies.





B
Abbreviations

List of Abbreviations

CDMA code division multiple access

FEC forward error correction

GF Galois field

ILP integer linear program

LAN local area network

LP linear program

LTE long term evolution

LTE-A long term evolution - advanced

MAC multiple access



112 Appendix B � Abbreviations

MPEG moving picture experts group

MWSS maximum weighted stable set

SNR signal-to-noise ratio

SQP sequential quadratic programming

TCP transmission control protocol

UAV unmanned aerial vehicle

UDP user datagram protocol

UMTS universal mobile telecommunication system

XOR exclusive or
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