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Kurzfassung

Diese Arbeit untersucht das Mehrfachzugriffsproblem iahtlosen Netzwerken wenn Net-
zkodierung verwendet wird. Es wird ein Algorithmus zur Ressenallokation hergeleitet,
der nicht einzelne Kanten aktiviert, sondern sogenanntgekkanten und der dadurch aus
den Vorzugen von zufalliger Netzkodierung Nutzen ziekann. Es wird sowohl durch theo-
retische Untersuchungen als auch durch Simulationengfe@iss wenn Mehrfachzugriff und
Netzcodierung gemeinsam optimiert werden, ein deutlaienér Datendurchsatz zu erwarten
ist, als wenn beide Probleme separat betrachtet werderaubaufbauend wird ein verteil-
ter heuristischer Algorithmus hergeleitet, der das zu Geullegende Optimierungsproblem
dezentralisiert l16st. Weiterhin wird untersucht in wedalh Umfang es notig ist, das Netzwerk
zu synchronisieren, um eine korrekte Konvergenz von ugteflgorithmen zu gewahrleisten.
Es wird die Frage behandelt, in wie weit Netzkodierung \itetbringt, wenn man mehrere
Verbindungen betrachtet und dadurch Netzkodes nicht mgfatlig sein konnen. Eine bes-
timmte Klasse von Kodes - die sogenannten sofort dekodiembidodes - werden analytisch
untersucht und es wird durch Simulationen belegt, das$dire Verwendung der Datendurch-
satz erhoht werden kann. Schlief3lich wird auf den Zusanmayeg zwischen Datendurchsatz
und Verzbgerung bei netzkodiertdbertragung eingegangen und es werden Verfahren entwick-

elt zur Reduktion der Verzogerung.






Abstract

In this work, we address network coding for the multiple asckayer in wireless networks.
We propose a scheduling technique that activates hyperattesr than arcs, as in classical
link-based scheduling, and therefore can harness the géirmhdom network coding. We

encapsulate the constraints on valid network configuratiora conflict graph model and for-
mulate a joint optimization problem taking into accounttbthte network coding subgraph and
the schedule. By means of simulations, we show that joinpiynaizing the network coding

subgraph and the transmission schedule leads to a substmrformance improvement. Using
Lagrangian relaxation, we decompose the overall probleémtino subproblems, a multiple
shortest path problem, and a maximum weighted stable set§BMgroblem. We show that,
if we use a greedy heuristic for the MWSS part of the probldma,dverall algorithm is com-

pletely distributed. We provide extensive simulation tesfor both the centralized optimal and

the decentralized algorithms.

Next, we look at relaxing the assumption of synchronizatiothe network. We propose
an asynchronous algorithm for computing multicast subdggam analogy to the well-known
distributed asynchronous Bellman-Ford algorithm for mogtt It turns out that asynchronous
algorithms require a strictly convex problem formulatiajch poses certain restrictions on the
network model, most importantly the schedule has to be asddixed. We provide extensive
simulation results showing fast convergence, despitesttiedf any central clock in the network,

and robustness with respect to link or node failures.

We then extend network coding to take place across diffengl@pendent sessions. We pro-
pose a framework for joint optimal scheduling of packet $raissions and network coding with
the restriction that packets have to be decoded after oneWlegompute the stability region of

this scheme and propose an online algorithm that stab#zesy arrival rate vector therein. The
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online algorithm requires computation of stable sets in@pr@priately defined conflict graph.
We show by means of simulations that this inherently hardblera is tractable for some in-
stances and that network coding extends the stability negier routing and leads, on average,

to a smaller backlog.

Finally, we look at the relationship between throughputdeldy for network coded transmis-
sions in erasure broadcast channels. We present a systéraatework for the minimization of
decoding delay under instantaneous decoding constrdinesunderlying problem is NP-hard,
but we provide a customized and efficient algorithm for firgdine optimal solution. We illus-
trate how this optimal algorithm can be converted to a héangth very small computational

complexity.









Introduction

The advent of network coding, in the early years of the newemilium, awoke the entire
community of computer networking from a dogmatic slumbewrelEsince computers were
connected to exchange data, nobody had questioned thecinggdsumption that the flow of
information satisfies the same rules as the flow of a liquidugh a network of pipes. In a
sequence of works by Ahlswede et al. [2], Li et al. [4], and #®&eand Médard [5], it was
shown that this simple analogy falls short of characteg#ime nature of information and of
capturing the rich set of operations within which we can rpatdte it. It soon became clear
that the notion of network coding is not only of theoretiaatieirest, but moreover can have a
profound impact on the design of communication networks@dises significant gains - in

terms of performance as well as better and more robust acothies [6, 7].

Network coding can be applied to wireline and wireless netw@nd shows gains in both
scenarios [1]. Our focus will be largely on wireless netvgorkhe benefits of network coding

are particularly significant if the underlying medium tremts by broadcast, is unreliable, and
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operates in a regime where resources are scarce. Morebigers talso precisely the setup,
where classical routing techniques cease to work reliablyder such conditions, improving

network performance becomes critical to the overall openat

In wireless networks, transmissions are often unrelidbladdition, neighbors often overhear
packets notintended for them. Network coding is especgfbctive in broadcast media, where
each transmission is overheard by all neighbors ratherahnthe single neighbor for whom
the message was intended. The question that we shall besaddydérom various perspectives
throughout this thesis is about the relationship betwedwar& coding and the other layers in
the network, especially the multiple access (MAC) layeis [iossible to apply network coding
in place of routing and leave the other layers completelyfanged. We will argue that, where
possible, it is much more desirable to design the overaltoid with network coding in mind.
This allows us not only to capitalize on the increased thhpug and robustness that network

coding supplies, but also to benefit from the structural g#at network coding offers.

To illustrate what we mean by increased throughput andtstraiogains, consider the follow-
ing simple example depicted in Fig. 1.1. There, two wirelessesA and B need to exchange a
pair of packets. They are not in mutual radio range, howdaeerdlayR is in radio range of both
and can facilitate the exchange. In traditional routing thiould take four steps, as indicated
in Fig. 1.2(a). With network coding, as shown in Fig. 1.2@mce the relay has received both
A’s and B’s packets, it can broadcast the binary XOR of the pair. TAeand B can recover
the packets that they need by XOR-ing again the mixed pacikbttiae ones they hold This

reduces the number of transmissions to three.

We see in this example how network coding improves perfooaant reduces the required

bandwidth by25%, as well as the energy consumption by the same factor, if wenas that

Lnterestingly, the “trick” that comes to our aid here hasgdieen known under the narX®©R-swagn as-
sembly programming and has been used for a completely eliff@urpose - to swap the contents of two variables
without the need of a temporary variable. Typically, swagpthe contents of memory cells and B requires a
third cell C and the following instructionsC' < A; A «— B; B « C. The XOR-swap needs no temporary
variable and can be implemented as follovlss« A¢ B; B+— A®B; A— A& B.



Figure 1.1 Two wireless nodes wish to exchange a pair of packets; tipecéige radio ranges
are indicated by dotted lines.

all packet transmissions require the same amount of poweunderstand the consequences
for the network architecture, consider the required retabiandwidths in the case of routing
and in the case of network coding. For routing we h&i&, = BWg = 0.25, andBWy =
0.5, where the total bandwidth is normalized to 1. For networgieg, correspondingly, we
haveBW, = BWg = BWy = %; in this example, network coding equalizes the bandwidth
demands of neighboring nodes [8]. In practice, many MACigmols, and in particular 802.11,
arelocally fair and assign equal shares of bandwidth to competing neighfdrerefore, if
network coding equalizes bandwidth demands of neighboes, & locally fair underlying MAC

is expected to perform better. The combination of these fifexts, the throughput gain due
to coding and the structural gain due to the improved coHatoan with the multiple access
mechanism, have been demonstrated to dramatically impretweork performance [7]. The
work [8] has contributed to our understanding of the striadtgains of network coding in this

setup - in fact, the MAC gain is responsible for most of thessbsd throughput increase.

The previous example illustrates that when network codimdy the underlying multiple ac-
cess mechanism are well-matched, good network performascéts. Since optimal network
codes guarantee performance no worse than the best possilbileg solution, it is tempting

to replace routing with coding in existing network soluowrithout much thought about the
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Figure 1.2 Network coding versus routing.
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(a) With routing, four steps are needed for (b) With network coding, three steps are
the exchange. sufficient.

broader network characteristics. We argue that networlkesathould be adapted to the net-
works in which they are employed and demonstrate the berfgbira design with the other

layers of the network. Concretely, we look at the followirrglgems:

e How can we schedule wireless broadcast transmissions tevacthe highest possible

network coding gain?
e To what extent can we relax the assumption of synchronouatapdh the network?

e How can we use coding across different sessions in a praetichlocal way, but still

arrive at a rigorous performance analysis?

1.1 A Brief Survey of Relevant Work

In this section, we will provide a very brief survey of worleeant to the thesis. As the field
has grown very quickly, our survey cannot be complete. Fooeeraoomprehensive introduction

to network coding, see [9].

The notion of network coding was introduced in the seminakvad Ahlswede et al. [2], where
it was established that network coding is sufficient to aghighe min-cut bound in multicast
networks. This is in sharp contrast to routing, which evenineline and lossless networks does
not achieve the min-cut in general. Li et al. [4] looked aehn network codes and showed that

the multicast capacity can always be achieved by linearsotiee work of Koetter and Médard
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[5], where the authors developed an algebraic formulatiche network coding problem and
used it to derive necessary and sufficient conditions forfélasibility of both multicast and
multiple unicast connections. This work provided crititadls later used in the immense body

of work on decentralized network coding and optimization.

Code construction algorithms for the multicast were pregosy Ho et al. [6] and Jaggi et
al. [10]. The algorithm in [6], referred to aandom linear network codinduilds on the work
in [5]. In [6], nodes form linear combinations of the pack#isy have stored in memory;
coefficients are chosen independently and randomly, theigligg a fully decentralized and
with high probability capacity achieving algorithm. The rkan [10] describes polynomial-
time global code construction algorithms. The multicagtimoek coding problem is largely
solved, though there is still room for advancement. For etamdecoding complexity for
random linear network coding is high since it requires maimersion, which runs in time

O(n?).

Unfortunately, far less is known about code constructianniailtiple unicast sessions. For
example, the capacity region of several simultaneous atepiendent point-to-point sessions
is unknown. The difficulty is caused in part by the insuffi@grf linear network coding to
achieve capacity [11]. Despite that, there are useful exgging applications. In Traskov et
al. [12], the authors present a centralized linear programgrsolution that searches for coding
opportunities in the network. Ho et al. [13] also provide astouctive approach to the multiple
unicast problem. These ideas were extended in Eryilmaz g4l where the authors propose

dynamic and online stabilizing algorithms for the problem.

Since centralized design is infeasible for many appliceti@ecentralized algorithms are re-
quired. The COPE protocol proposed by Katti et al. [7] oppoidtically takes advantage of

local coding structures.

Here, packets are combined into a single transmission iinemded recipient either knows

or can overhear the packets necessary for decoding. Ite lokesi is based on the example
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discussed in the previous section, where owing to overhgaklets, several transmissions can
be combined into one. It is interesting to note that the laep®rted gains cannot be explained
by the ability of network coding to reduce the number of trarssionsalone Instead, the more
significant factor is the interaction between network cgdimhich tends to equalize bandwidth

demands of neighboring nodes, and the locally fair 802.1Mtipheiaccess mechanism [8].

This observation motivates our investigation of the int@ygetween multiple access and net-
work coding for wireless networks. Although, the literawn wireless network coding is
extensive, the papers looking explicitly at multiple accessues are few. Lun et al. [1] pro-
posed posing network coding as a problem of minimizing resesiin a network, assuming
that all network transmissions are orthogonal and theegfderference-free. In Wu et al. [15],
the authors consider the impact of interference, focusmmmimizing power consumption. If
multiple access problems are explicitly considered, thiypically done by attempting to find
“good” transmission schedules according to heuristicsiulEhe most popular such technique
is to select valid network configurations that ameximal in the sense that no more transmis-
sions can be scheduled without causing a collision, as in®agduyu et al. [16]. One of the
goals of this work is to to study channel access and wirelesgark coding jointly rather than

independently.

1.2 Outline of the Thesis

The remainder of thesis is organized as follows.

In Chapter 2, we introduce the network coding scheme anddtveank model, and we provide
an example to illustrate different possible approachekeaanultiple access problem for coded

and uncoded networks.

In Chapter 3, we address the multiple access problem fordcoééwvorks and propose a

scheduling technique that activates hyperarcs rather dhas) as in classical scheduling ap-
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proaches. We encapsulate the constraints on valid netvaorkgeirations in a conflict graph

model and formulate a joint optimization problem takingpiatcount both the network coding
subgraph and the schedule. Using Lagrangian relaxatiordesempose the overall problem
into two subproblems, a multiple shortest paths problemanthximum weighted stable set
(MWSS) problem. We show that, if we use a greedy heuristitHerMWSS part of the prob-

lem, the overall algorithm is completely distributed. Ounslation results indicate that the
optimal algorithm improves performance by up to a factorved tompared to widely used

techniques such as orthogonal or two-hop-constrainedisting. The decentralized algorithm
is shown to buy its distributed operation with some throughpsses. Experimental results on
randomly generated networks suggest that these lossestdeege. We also look at the power

consumption of our scheme and quantify the trade-off betvpesver and bandwidth efficiency.

In Chapter 4, we propose an asynchronous algorithm for ctingpmulticast subgraphs. The
algorithm is analogous to the well-known distributed asynoous Bellman-Ford algorithm
for routing. Our central idea is to apply a block-coordinageent algorithm to the dual of
the problem. The resulting algorithm is fully asynchronodswever, it leads to certain other
constraints on the formulation that we discuss. We provitiensive simulation results showing
fast convergence despite the lack of any central clock iméteork and robustness with respect

to link or node failures.

In Chapter 5, we look at network coding across differentsigéth the restriction that packets
have to be decoded after one hop. We compute the stabilityrred this scheme and propose
an online algorithm that stabilizes every arrival rate gegtithin the stability region. The on-
line algorithm requires computation of stable sets in an@mpately defined conflict graph.
We show by means of simulations that this inherently hardblera is tractable for some in-
stances. We also show that network coding extends theigtakijion over routing and leads,

on average, to a smaller backlog.

In Chapter 6, we are concerned with designing feedbackdbadaptive network coding
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schemes with the aim to minimize decoding delay in each tn&son. As in Chapter 5,
we impose the instantaneous decoding constraint and pragdbisient algorithms for finding
the optimal solution within this class of network codes. Veeify the delay and computational

complexity of our techniques through simulations.

In Chapter 7, we conclude the thesis and provide a brief petsfe on future work.

1.3 Publications Preceding this Thesis

Parts of the material presented in this thesis appear inghea papers [17-23] and in as yet

unpublished paper [24].



Preliminaries

In this chapter, we review some necessary technical detilkscribe the network model and
motivate the joint approach to multiple access and netwodkgy using a simple example. We

begin with discussing the network coding scheme.

2.1 Random Linear Network Coding

In Chapters 3 and 4, we apply the random linear network codpmoach, proposed by Ho
et al. [6,25]. It is relatively easy to implement and can bauded in existing protocol stacks
without the need for a complete redesign [26]. The codingeswhis summarized in Table
2.1. Appending the encoding coefficients in the header [@6liis an overhead aV log, g
bits. This overhead is negligible if the payload of the paskesufficiently large. Alternatively,
Koetter and Kschischang have proposed a method [27] thatesdthe overhead associated
with headers. Motivated by non-coherent communicatidresr approach is considerably more

complex.
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Input:

e A source node, a set of multicast sinks, and intermediatesiedch that the
resulting network is connected.

e Packety, ..., py that the source wants to transmit.

D

Multicast source:

e The source node forms linear combinatigns= ZiNzl a;p;, Where the coef;
ficientsq; are drawn uniformly at random from a finite fielelF'(q).

e The vector of encoding coefficienfs, ..., ay| is appended to the packe
prior to their transmission.

Intermediate nodes:

¢ When an intermediate nodeceivesa packet, it stores it in its memory.

e To transmita packet, it forms a linear combination from the packetssn
memoryqs, . . ., gk, With (new) random coefficients; drawn fromGF'(q).

e As all operations in the network are linear, any packet carepeesented a
a linear combination of packets, . . ., px. The vector of coefficients used
this linear representation - called thbal encoding vectoris appended t¢
the packet prior to its transmission.

Multicast sinks:

e Each sink stores received packets in its memory. When itdw@sved at leas
N packets, it attempts Gaussian elimination on the globab@ing vectors
of the received packets. If it is successful, it recovergthekets,, . .., px.

Table 2.2 Summary of random linear network coding.
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Random linear network coding is optimal in the sense thathteves the min-cut bound from
the source teverymulticast sink [6]; more precisely, if the field sizeover which we code
is sufficiently high, the decoding error probability appebas zero. The maintenance of min-
cut conditions between the set of senders and every rededigidually is always a necessary
condition for feasibility; under network coding it is alsafficient Network coding can be

applied with only minor modifications to wireline or wirekesetworks.

It is not obvious how we can guarantee that enough lineadgpendent (cinnovative pack-
ets reach the sinks such that the collection of global emgpeiectors is non-singular. To ensure
this, we have to carefully choose which intermediate nodiegi coded packets in the network
and at what rates. That is, we have to select a subnetworkftitigtutilized, can support the
desired connection. Moreover, often the goal is to satiséydonnection and at the same time
to minimize resource consumption in the network. This isghablem that we refer to asub-
graph optimizationlt turns out that these problems, the subgraph optimiaatia the network
code construction, can be addressed separately withaubfagptimality [1]. Therefore, from

now on, we focus entirely on the subgraph optimization pobl

2.2 Network Coding Subgraph

We consider wireless networks in slotted time; in any slotodencan either broadcast one
constant-length packet or stay idle. In what follows, atesahave the unit packets/slot. We
model a wireless network, and in particular broadcastiggs hypergraph (a generalization of

a graph) which is defined as follows:

Definition 1 A hypergraphH = (N, A) is a set of noded/ and a collection of hyperarcgl.

A hyperarc(i, J) € A is a generalization of an edge, where A/ andJ C V.

If nodes injects a packet on hyperasg it is received by some subsgt C J, possiblyK being

the empty sef). Let A;;(7) be the counting process describing packet injections oerayp
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J and A, k(1) be the counting processes accounting for the packets ezbgigciselyby the
subsetsy. We haveZKg Ak (1) = Ay (7). We assume that the injection processes we use
are stationary and ergodic and therefore their time avetage . AZ+(T) exist with probability

1 and are finite. We usg; to denote this limit. Similarly, we defingm. ., A%(T) = ZiJK-
With these assumptions; = >_ xcyZisx 1S the average packet injection rate on hypetarc

We shall assume that the underlying process is memoryless an

Zq
Pisk = IR ) (2.1)
ZiJ

is the probability that a packet injected d@rnis received precisely by the subgét This can take
into account that transmissions experience erasureshwingy be due to distance attenuation,
shadowing, or fading. We call the vectar= (z;;);.)ca the network coding subgraphin
wireless networks, the network coding subgraph is furtlerstrained to lie in the multiple
access rate region of the network. This is - by a time shaniggraent - a convex set, albeit
with a possibly high description complexity. We discuss riindtiple access constraints, such

as half-duplex transceivers and interference, in detdliénext section.

2.3 Interference and Half-Duplex Constraints

Consider a wireless network represented by a set of nddard for each nodec N a set of
neighborsV (i) C A. We assume that wherransmits all nodes itV (i) are in radio range and

can potentially receive or experience interferérfoam i.

From the neighborhood relation we construct a hypergfdph (N, A) with A correspond-
ing to the set of nodes in the network. For each node introduceV®! — 1 hyperarcs(i, J)

whereJ ranges over all subsets 6f(i) excluding the empty set.

1A popular and slightly more general model is to assume thaid® an receive fromif it is contained in a
setVy (i) but is subject to interference if it belongs to a supefégti) O N, (i). Our framework can be extended
to take into account such a setup. However, for the sake ofiglsi notation, we abide with the above model.
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Which sets of hyperarcs can transmit simultaneously withaonflict depends on the system
model of the network. In networks with primary interfereneay. spread-spectrum systems,
we restrict each node to receive from at most one other nodenetworks with secondary
interference, we have the additional constraint that a maaeonly successfully receive if all

other neighbors are silent. In addition, we assume halfedupansceivers.

We shall call a set of conflict-free hyperarcs a transmissedror valid configuration, formally

Definition 2 We say that hyperards,, J;) and (i, J,), donotconflict if:

1) iy # i,

2) 2 ¢ Jo, 1o ¢ Ji, and

for networks with primary interference

Ba) JiNJdy = (Z), or

alternatively for networks with secondary interference

3b) JiN N(Zg) = (Z), andJ2 N N(Zl) = ().

For both the primary and the secondary interference moteldefinitions are symmetric
in their arguments and therefore give rise to an undirectaghgrepresenting the scheduling

conflicts between pairs of hyperarcs. We construct the abgftaph as follows.

Definition 3 The conflict graphy of a hypergrapt# is an undirected graply = (V, £), with

Y corresponding to the set of all hyperarcs. Two hyperarcsaajacent if they conflict.

We can define a valid configuration of hyperarcs as a set ofsiodée conflict graph without

any conflicting pair, i.e. a valid configuration is a stable se
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Figure 2.1An example of a hypergraph. Here, the node séfis- {1, 2, 3,4} and the hyperarc
setisA = {(1,2), (1,3), (1,{2,3}), (2,4), (3,9)}.

Definition 4 A stable setS of an undirected graply = (V,€) is a set of nodes any two of

which are nonadjacent. Its incidence vector is a columnoreat length|V|, defined as

< 1 ifoels,
Xy = (2.2)
0 otherwise.

A maximal stable set is one that is not contained in any ottaie set. A maximum stable set
is a stable set of largest cardinality. The stability numb&g) of a graph is the cardinality of
the maximum stable set. The stable set polytBge:z(G) is the convex hull of the incidence

vectors of all stable sets ¢f.

Example To illustrate the notation, consider the hypergraph in Bid.and its corresponding
conflict graph in Fig. 2.2. In this particular network, botretprimary and the secondary
interference models give rise to the same conflict graph. cdmdlict graph has a node for
each hyperarc. Thug = {(1,2),(1,3),(1,{2,3}),(2,4),(3,4)}. The stable set polytope for
this example is the convex hull of the incidence vectors efttiree stable sefg1,2), (3,4)},

{(1,3),(2,4)}, and(1, {2, 3}), and the origin. [
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Figure 2.2 The conflict graph corresponding to the hypergraph in Figj. 2.

2.4 Example: Relay channel

The purpose of this example is to illustrate four possiblprapaches to the multiple access
problem and the subgraph optimization problem in wireleaftichop networks. Consider the
network in Fig. 2.3, which was discussed in [28] in combioativith random access and there-
fore called theslotted Aloha relay channelThis is reminiscent of the classical relay channel
from information theory [29], which deals with the physitater capacity of this three-terminal
network. In contrast, the problem we approach is the effidimmsmission of already packe-
tized data, which is a problem of higher layers rather thahysigcal layer problem. We can
efficiently solve this problem with network coding. The gaato establish a unicast connec-
tion of rate R from node 1 to node 3. According to the hypergraph model, we h&o directed
hyperarcg1, {2,3}) and(2, 3). We assume half-duplex constraints, i.e. a node canndrtrén
and receive at the same time. Furthermore, owing to intemfe¥, when nodes 1 and 2 trans-
mit simultaneously, the packets collide anothare lost. Even in the absence of interference,

packets can be lost due to erasures - this is modelled by ¢kptien probabilitie®; ; .

We consider two strategies for multiple access controledalkeding, which effectively elim-
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Figure 2.3 The relay network.

© ;

inates interference, and random access, where nodes ttaasgdomly with some probability

in every slot. We also consider two strategies for the syigagptimization problem: routing

and network coding. This leads to four different combinasiovhich we discuss next in detail.

2.4.1 Scheduling and Routing

Routing assumes that we fix a path and send all packets alimgat?. In our example,
we can either use the direct path between node 1 and 3, ontitavia the relay node 2. If
we use the relay, it cannot transmit and listen at the same. tifo find the better of the two

source-destination paths to route over, we compare th@xoly alternatives

Path1 — 2 — 3: We use link(1, 2), which has a success probability @f2330 + p1g23} 1231
in fractiona, a € [0, 1], of the time slots and correspondingly ik, 3), which has a
success probability gf,33, in fraction1 — « of the time slots. Then, since we need both

link throughputs to be equal
a(p1{23}2 +p1{23}{23}) = (1 - Oé)p233- (2.3)
We conclude that the optimal time sharing coefficient is

o = P233 7 (2.4)
D1{23}2 + P1{23}{23} T D233

2tis also possible to usaulti-path routingand route along several paths. This can lead to better peafuze
in general, but this is not the case for the simple networkwleaconsider.
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and the optimal throughput is

+
R* — (P1{23}2 p1{23}{23})p233 . (2.5)
D1{23}2 + P1{23}{23} T D233

Path 1 — 3: In this case, the throughput is simply
R* = pigosys + Digesy{23)- (2.6)

How we compensate for the erasures depends on whether therkehas an ARQ-
mechanism; if it does not, then we have to use a forward-ewmection (FEC) code. Assume
we apply FEC and select the path via the relay. Then, we aoedaio choose between two
alternatives, both undesirable: If we use an FEC-code eraiti, we lose throughput, because
the end-to-end-FEC has to compensate the higher erasearef tae pair of links. If we use the
FEC link-by-link, we do not lose throughput but incur thealebf decoding and re-encoding at
the relay [30]. Random linear netwok coding, in contragtjees the maximal path throughput
without decoding at intermediate nodes. Hence, it has ddgas even when the “network” is

a simple pair of links.

2.4.2 Scheduling and Network Coding

Owing to the half-duplex and interference constraints,nnrderference-free schedule for the
relay network, at most one hyperarc transmits in every sloschedule can therefore be pa-
rameterized by one parametet, the fraction of time slots in which a packet injection occur
on(1,{2,3}). Correspondingly]l — « is the fraction of time slots in which a packet injection
occurs on(2, 3). We wish to determine the maximal ral® that can be achieved. We do this

by solving a linear program; its formulation will be discadsn greater detail in Chapter 3.

maximize R
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subject to

R < x5+ 113 (2.7)

T2 <« (p1{23}2 +p1{23}{23}) (2.8)

T3 <« (p1{23}3 + p1{23}{23}) (2.9)

T2t r13 <« (p1{23}2 + P1{2313 + p1{23}{23}) (2.10)
T3 < (1 — ) pass (2.11)

T2 = T23 (2.12)

0<a < 1 (2.13)
T12,T13, 223 = 0. (2.14)

In this formulation, a variable;; denotes the flow of innovative packets between nodexl
j. We can solve this LP analytically, by applying Fourier-lgkat elimination [31, Section 2.8].

The details are described in Appendix A.1. It turns out thathave to distinguish two cases.

Case 1:If pi(a3y3 + P1gasyasy < P2s3, then the maximal achievable rate is

D233 (P1{23}2 + Di{esys + p1{23}{23})

R* , (2.15)

D233 + Pi{23}2

with the sender transmitting in the fraction of slots
ot = P (2.16)

 pasz + Pif2sy2’

and the relay in the remaining fraction bf- o* slots.

Case 2: If pigasys + Pigasyi23) > P2s3, then the maximal achievable rate is

R = piy2313 + D1g23}{23}- (2.17)
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In this case the relay is not used at all; the sender translingstly to the destination.

2.4.3 Random Access and Routing

We now turn our attention to the case where the underlyindipt@laccess mechanism is ran-
dom access. In this case, we need to compatesmission attempt probabilitiésat maximize
the end-to-end rate. If we assume that packets are routed &ied paths, we again have to
distinguish between the two possible paths of the netwosdindJthe direct path — 3, there

is no need for medium access control; the throughput is $iIPI= pi(a333 + Pig23}{23}, the
success probability of the link. On the other hand, routiragtire relay requires us to compute
two transmission attempt probabilities, and z»3, for links (1,2) and(2, 3), respectively. The

throughput of the path is then the minimum of the effectimé khroughputs [32, Section 4.6]

R*— min ] {(prg23y2 + Prgesyiosy) 212(1 — 223),  paszzas(l — z12) } (2.18)

z12,223€[0,1

and we choose the better of the two path paths to route along.

2.4.4 Random Access and Network Coding

This problem (introduced and discussed in [28]) requireditiign transmission attempt proba-
bilities z1 (93, andz,3 that maximize the rate of the connection; the notatighs, implies that
we are now using the hyperaft, {2, 3}), instead of the constituting links individually. The

optimization problem is as follows [28]:

maximize R
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subject to
R < ziposy (1 — 203) (prqesy2 + Pig2sys + Pigasi{esy) (2.19)
R < zygo3y(1 — 203) (P1g2sys + Diqesyqesy) + 223(1 — 21q23)) 233 (2.20)
0 S 21{23}, 293 S 1. (221)

This problem is not convex and as such very difficult to sotvgeneral. Using a time sharing
argument, one can argue that, it is equivalent to optimiairegy the convex hull of the constraint
set. Unfortunately, finding a parameterization of the cariwall is no easier than solving the
original non-convex problem. Nevertheless, Riemenshetyd. [33] have successfully applied
a specialized version of the branch-and-bound algorithfimtbthe optimal solution for smaller
networks. In [34], a heuristic is considered for finding daliansmission attempt probabilities
that support a given throughput. If a certain fixed throudhpdiound to be feasible, one can

then incrementally increase it and check if the new highemutghput is feasible.

2.4.5 Discussion

To compare the four proposed schemes, consider the folipfiMed transmission success prob-

abilities

P23z = 9/16 (2.22)
P23 = 1/16 (2.23)
P23 = 3/16 (2.24)
pass = 3/4. (2.25)

Table 2.2 shows the resulting maximal rates for the fouedsit mechanisms that were dis-

cussed. The results confirm that scheduling always perfoetter than random access. Net-
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Maximal achievable rate Routing Network coding
Scheduling 0.375 0.464
Random access 0.25 0.25

Table 2.2 The maximal achievable rates (in packets/slot) under iffereint policies.

work coding subsumes routing and, therefore, performsaat ks well.

Another meaningful comparison between the proposed schaméo plot their power-
efficiency as a function of the rate. If we assume that eackgtacansmission requires the
same amount of energy, then the average number of transmssseeded to deliver a packet
end-to-end is a reasonable estimate of the power consumdior results are summarized in
Fig. 2.4, where we plot the minimal average number of traesions per packet as a function
of the connection rate. For a fixed rate, scheduling alwagaires fewer transmissions than
random access, and network coding reduces the expectsdiisaions compared with routing.
In Fig. 2.4, the curve for routing and random access is defpedewise. This is the result
of a switch of paths as the load increases; for lighter lodds,better to use the path via the
relay (1 — 2 — 3). For heavier loads, it is better to switch to the direct pdth— 3). We
also observe that the maximal achievable rate does noheeivhole story about the merits of
a scheme. With random access, the maximal rates with neteanting and with routing are
the same, but network coding results in a more efficient netwperation with fewer packet

transmissions for any fixed rate.

For small rates, the difference in performance betweenamnaccess and scheduling is cor-
respondingly small, since low attempt probabilities wésult in fewer collisions and therefore
not many packet transmissions will be wasted. This is reftént Fig. 2.5, which shows the op-
timal attempt probabilities for network coding with randaetess. The objective is to minimize
the average number of transmissions per paekef, + 2.3 for a fixed rateR. For light loads,
the transmission attempt probabilities increase almasilily. As the load becomes heavier,

the increase is much more pronounced.
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Figure 2.4 The minimum average number of transmissions per packetwascéidn of the rate
R.

1 1 1
Routing + Random MAC
NWC + Random MAC
Routing + Scheduling
NWC + Scheduling

35 : » ' .

Average number of transmissions per packet.

25 —
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Figure 2.5 Optimal transmission attempt probabilities for networkliog as a function of the
rate R.

0.4 ‘

2123

s L.

0.35 23

Transmission attempt probabilities for nodes 1 and 2.

This confirms the well-known behavior and limitations of dam access protocols; they are
inherently simple and they are easy to implement in a fullsetiralized way. However, unless
the load is very light, they suffer from limitations in thrglput and in efficiency. If the load in
the network is light, then the objective of supporting a@erset of connections can be captured
by classical routing and channelization schemes; netwoding, while beneficial, might not
be needed. Under heavy network loads, which is the moreaiel®peration regime in practice,
a lot can be gained by capitalizing on the advantages of nkteading regarding throughput

and robustness.

It turns out that a sizeable share of the throughput gaingtfaork coding can be harnessed
only when transmission scheduling is done in a way that essatding opportunities; this is the
focus of the next chapter. In principle, network coding camkwvith any underlying multiple
access mechanism. We show, however, that a joint approadhéaluling and network coding

subgraph optimization is needed if the load of the netwohigs and bandwidth is scarce. For
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the simple relay channel example, the underlying transorisschedule was parameterized by
just one coefficientv. How this generalizes to larger multi-hop networks is notiobs. In
the next chapter, we demonstrate that we can indeed exterapfiroach to general multi-hop

networks and evaluate the resulting gains.



Scheduling for Network Coded
Multicast

The problem we address in this chapter is to compute an ojtietaork coding subgraph and
a schedule that can support it. Wireless networks are oftieenference-limited, and efficient
operation requires a high frequency reuse within the n&kwadhis is achieved by means of
scheduling, which carefully allows simultaneous transioiss that do not interfere with each
other. Finding an optimal, or even good, subgraph is by nonsi@asimple problem in the
presence of half-duplex transceivers and interference enNthedium access control assigns
every node an orthogonal channel, it is possible to comp@®ptimal subgraph by solving a
linear or convex program [1]. The solution given is disttdall When bandwidth is plentiful,
it may be reasonable to orthogonalize the entire networkwvever, if bandwith is scarce, the

resulting throughput will be low.

Owing to the hardness of the general problem, the prevajgmbach in the literature is to
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heuristically construct an interference-free transmissichedule and then to compute an op-
timal subgraph over this essentially orthogonal networls. ah example, in [35] the authors
propose a suboptimal collision-free strategy where twasahnnot transmit simultaneously if
they are within two hops. This is a sensible practical sohytbut the combination of a carefully
optimized network coding subgraph and a more or less ad-lealcum access strategy may lead

to poor performance.

To address this challenge, we suggest a framework whereetierk coding subgraph and
channel access are optimized jointly. We construct a hypplgthat takes into account possi-
ble transmissions to every subset of neighbors of a nodeh &ath subset is represented by a
hyperarc. We consider subsets of hyperarcs that can bawdigimultaneously without inter-
fering, as opposed to classical link-based schedulings@lenstraints are transformed into a
conflict graph representation, where the hyperarcs aresepted by nodes and the activation
constraints are given by edges. A set of hyperarcs can hatedisimultaneously if they are not
connected by any edge in the conflict graph. This conflictlyexpapsulates the combinatorial
difficulty of the problem. Finally, we exploit the polymatdorepresentation of the rate regions
associated with valid network configurations to derive aBwt expression for the entire rate

region.

Having derived the joint scheduling and network coding gthm, we seek to distribute the
operation across the network, in a way similar to [1]. To #vwad, we decompose the problem
into two subproblems using Lagrangian relaxation. The $iuktproblem is a multiple shortest
path problem, the second and considerably harder subpndbla maximum weighted stable
set problem. Since the latter is NP-hard, we propose an appithat greedily choosesaximal
stable sets according to appropriately defined weightss ddm be done in a decentralized way,
giving a distributed algorithm. By means of simulations, demonstrate that the throughput
is close to the optimal performance. By optimal performanee refer to solving the original

optimization problem and optimizing over the entire statd¢ polytope. We also study the
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power consumption of our scheduling algorithm and quarnhtig/power vs. bandwidth trade-

off. This quantifies, how much power is wasted by permittiotjisions as in our approach.

Formulating scheduling as finding “stable” sets or “indegemt” sets is a common technique.
Prior examples include scheduling for routed traffic [3GJhexduling in switches [37], net-
work code construction in a wireline setup [38], and schiedufior Banyan networks [39]. For
scheduling network coded transmissions in wireless nédsydinis approach gives rise to a num-
ber of novel and interesting observations. Here nodes bestdoded packets to all neighbors
(the wireless broadcast advantage) and transmissionslgjexsto interference. By guarantee-
ing a node successful transmission to a subset of its neiglamal at the same time permitting
conflicts on the remaining neighbors, we are not seeking tomize the number of collisions
per se. In fact, one can argue that we are scheduling corftiictise nodes not contained in the

activated hyperarc.

To relate our approach to previously published work, no& ith contrast to [15], where the
authors focus on minimizing power consumption, we consedeireless network where inter-
ference is the limiting factor. Contention resolution byang of clustering has been studied
in [40] for networks with CDMA. The scheduling of broadcastrtsmissions is introduced
in [41] in a different context, namely in an attempt to analytze opportunistic, local combina-

tion of packets belonging to multiple unicast connections.

3.1 The Multicast Rate Region with Scheduling Constraints

Multicasting is the transmission of information from a sminodes to a subset of network

nodes7 .

Definition 5 A multicast connection is a triplés, 7, R), withs € N, 7 c N, andR > 0

denoting the rate of the connection. All multicast sinksuesy the same information.
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Consider a hypergrapi = (N, .A) and a multicast connection of ratewith sources € N/
and sinks7 c N. We can apply the following flow formulation from [1] to comiguthe
network coding subgraph. We consider the rate region (whéle refers to supportable end-
to-end throughputs rather than an information theoretimioly for a multicast connectién|t
is not an information theoretic bound because we do not lotkeaphysical layer, but assume
packetized data. Furthermore, we assume that collisi@ts tie loosing the packets. Under

these assumptions, the rate region is then the set of Raseibject to the following constraints

ng?j < zigbigk, V(i,J)eAKCJteT, (3.1)
JEK
R i=s,
oY ah- Y =R =y, (3.2)
{J|(5,J)eA} jeJ {jl(4,1)eA,icl}
0 else
VieN,teT,
2}, >0, V(i,J)eAjeteT, (3.3)
z = (ziy) € Psrap(9), (3.4)
where we define
bijk = Z DiJs- (3.5)

{SCJ|SNK#0}

Example To illustrate constraint (3.1), consider a hyperéic/) = (1,{2,3,4}) with the

1The extension to multiple multicast connections with irgesssion coding is straightforward. We omitted it to
simplify exposition and notation.
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following reception probabilitiep; s, for S C {2, 3,4}

Pij{2y = 0.1, Pij{3}y = 0.2, Pij{ay = 0.25,
pisi23y = 0.2, pigpeay = 0.15, pisz4y = 0.05,

Pij{2,3,4y = 0.05, Pig{oy = 0.

We can assign these probabilities arbitrarily, as long ag sum up to one. Therefore, any
dependence in the channel erasure probabilities can benawodated. Let the injection rate be

242,343 = 1. Then the rate region for the hyperarc is

0 < 212, T173, 174 < 0.5, (3.6)
Tig2 +x13 < 0.75, (3.7)
Tig2 + 1194 < 0.8, (3.8)
Tigz + o190 < 0.9, (3.9)
Tig2 + T1g3 + T1ga < 1, (3.10)

and is plotted in Fig. 3.1. Note that as the joint erasure giodliesp; ;s are defined, every link
has a marginal erasure probability®$. Thus, if we do not use network coding and time-share
between the links, the achievable link rates have to satisfy + x5 + x154 < 0.5. This

illustrates the network coding gain due to the wireless thcaat advantage.[]

The last constraint (3.4) explicitly accounts for inteeflece by requiring the network coding
subgraple to lie in the stable set polytope of the conflict graph. Anyteedn the stable set
polytope can be written as a convex combination of schedudlbsrefore, the demanded rate
can be transmitted if the granularity of time slots is sudintly fine. This is analogous to the

Birkhoff-von Neumann decomposition of load matrices fdnestuling in switches [37].
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Figure 3.1 The rate region for the hyperaft, {2, 3,4})

L1174

X1J3

We can rewrite the linear program to yield a formulation wstibstantially fewer variables.

Forall: € N andj € N(i), let

v = 3" 4l (3.11)

JCN(i)
with the understanding thaﬁt}j = 0if 7 ¢ J. Note that on the RHS we sum over all hyperarcs
that leave node. The similar transformation proposed in [1] can only handiélections of
hyperarcs with a subset-containment relation. A more geriermulation is required in our

case, as scheduling depends on activating hyperarcs ghavbconstrained by a subset relation.

Consider the following formulation in terms of the new vai'fmxg.). In the following LP,
we maximize the rate of a multicast session. Other objextisach as minimizing energy

consumption subject to a fixed rate, can be easily accommaddat

maximize R
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subject to:

Capacity constraints

jeEK JCN(i

Zd? < Zigbik, (3.12)
(4)
Vie N,KCN(i),teT,

Flow constraints°x:

R 1=,
DT R S - (3.13)
1] Jt —R 1= t, .
JEN(3) {jlieN ()}
0 else
\
VieN,teT,
2 >0, VieN,jeN@),teT, (3.14)
Scheduling constraints
Z < PSTAB(Q)- (315)

Consistently with definition (3.5}, x is well defined even if is not a subset of.

A variable of the formmg.) denotes the flow oinnovativepackets on link(i, 7) for sink ¢,
whereas the variable ; represents the packet injection rate on hypefarg). The linear equa-
tions in (3.13) establish flows at ratefrom the source to all multicast sinks. Constraint (3.12)
relates packet injection rateg to the flow of innovative packets. It also implies that theuatt
link usage is the maximum value of the flows belonging to ddifé multicast sinks traversing
it. This is where network coding enters the picture; withtiog, the actual link usage would be
simply the sum of flows going across. Constraint (3.15) nexguihe network coding subgraph
to lie in the stable set polytope of the conflict graph. Thiargimtees that we can decompose the

subgraph into a convex combination of valid schedules. iBhise main difference between our
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formulation and [1], where the authors have not considecbdduling. The stable set polytope
constraint dramatically changes the nature of the probMfithout (3.15) it is nothing but a
multi-commodity flow problem with side constraints. As agar program it is solvable in poly-
nomial time [31]. With the scheduling constraint (3.15k ttroblem becomes NP-hard due to

the encapsulated stable set problem [42].

Lemma 1 The rate region described by (3.1)-(3.4) is equivalent tortte region given by the
reduced formulation (3.12)-(3.15).

Proof The new flow conservation constraint (3.13) is just a refdation in terms of the new
flow variables. What we have to show is the equivalence of timstraints (3.12) and (3.1). For
a fixed node, we have a number of outgoing hyperarcs. For each hypéiafg, constraint
(3.1) gives us a rate region for the flowg,)j. The claim is that the rate region for the sum
of these flows, as defined in (3.11), is given by the sum of tkqualities defining their rate

regions. The converse is easy to show since

le( Z Z ‘TZJ] S Z ZZJszK (316)

jeEK JEK JCN(i JCN (i

The achievability of these bounds is more difficult to prokegeneral, for convex polytopes
defined by linear inequalities, the polytope generated by tinkowski sum is not equal to
the one defined by the sum of their individual constraintghis case, however, we can exploit
the special structure of the polytopes in (3.1). They @olymatroids owing to the fact that
b; i, when viewed as a function d@f, is a submodular function. From definition (3.5), we can

verify that
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bijk +bigr, = Z Pigs + Z DiJs
(SCJI|ISNK 40} (SCJ|ISNLA0}

Z PiJs +

{SCJ|SN(KNL)#0}

Z Pijs

{SCJ|SN(KUL)#0}
= bisknr) + biscor)- (3.17)

A%

The inequality is due to the fact that sets of the fa&fnt J for which

SNKNL=0, SNK#0, SNL# (3.18)
show up twice on the LHS of (3.17) but only once one on the RHS.

Consider two polymatroids, given by submodular set fumsiy and f> respectively, i.e.

Py = {x eR Yz < fi(K) VK C J} . (3.19)

KcJ

SinceP;, and Py, are polymatroids, the convex hull of their Minkowski sumagivalent to the

sum of the inequalities defining them [42, Thm. 44.6, p. 7B&],

Ppigy = Py + P, (3.20)
The result follows since we consider a finite sum of polymidso [J

3.2 On the Complexity of the Scheduling Problem

Testing stable set polytope membership of the network gpslithgraph (3.15) can be difficult.

In general, even the question of whether a point belongsdcostable set polytope - in our
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case whether a network coding subgraptan be decomposed into a convex combination of
valid schedules - cannot be answered in polynomial timeg@xior certain special classes of
graphs [42]. By the equivalence between optimization apdisgion? these are the graphs for
which a maximum stable set can be computed in polynomial.tiferefore, we are particu-

larly interested in classes of graphs with polynomial stadgt algorithms (see e.g. [42] for an
extensive survey), as in this case solving the overall grob(3.12)-(3.15) becomes tractable,

even for large networks.

A family of graphs with particularly good algorithmic prapies is the family ofperfect
graphs For perfect graphs, there is a polynomial time maximumlstabt algorithm [42].
Furthermore, their stable set polytope can be describedidiyednequalities, whereas for gen-

eral graphs these are necessary but not sufficient [42].

Definition 6 A graph is perfect if and only if for every induced subgrapé thque number

equals the chromatic number.

Proposition 1 The following characterizations of perfect graphs are eglént [42]:

e The complement of a perfect graph is perfect.

e A graph is perfect if and only if it contains no odd holes (ined subgraphs that are

cycles of odd length) and antiholes (their complements).
i PSTAB(Q) = PQSTAB(g).

where

Postas(G) = {x eRY':Y "z, < 1V cliquesQ ¢ V} (3.21)
q€@

°The optimization problem is to maximize a linear functioreoa polytopeP. The corresponding separation
problem is to decide whether a point is ihand, if this is not the case, to display a violated constraig a
consequence of the ellipsoid method, the polynomial tinheakdlity of one of the problems implies the polynomial
time solvability of the other [43].
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is called thefractional stable set polytope. These clique inequalities are oftea,usven in

non-perfect graphs, as upper bounds.

Next, we discuss a family of line networks for which the cartfljraph turns out to be per-
fect. To that end, consider the network in Fig. 3.2. We canktfuf this example as a line
network, where transmitted packets can be heard by thetwextops. The hypergraph has

nodes{1,...,n}, and hyperarcs

(,i4+1) for i=1,...,n—1, (3.22)

(i,{i+1,i+2}) for i=1,...,n—2. (3.23)

The corresponding conflict graph is shown in Fig. 3.3. Not the have omitted hyperarcs
of the form (i, i + 2), as they will never be activated. If a conflict-free transsiga fromi to
1 + 2 is scheduled, then nodés- 1 and: + 2 necessarily have to be silent, and nade1 can
not transmit either, owing to interference. That meanssbheduling a transmission froimo

i+ 2, is equivalent to activating hyperaft {i + 1,i + 2}).

Lemma 2 The conflict graph for the family of line networks with twoplaverhearing (see Fig.

3.3) is perfect.

Proof A class of well-know perfect graphs are the so called integvaphs [44, Proposition
5.1.16]. Interval graphs are those graphs for which theig®a mapping from graph vertices
to intervals on the real line such that vertices are adjadesmid only if the corresponding
intervals intersect. Lek; ;) denote the interval corresponding to the conflict graph riedg),

and consider the following mapping

Lty = (i,1+2), (3.24)

Ligivrivey = (5,i+3). (3.25)
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Note that interval I;; ;) intersects with I;_i ), Jui1i42), La-2(i—14)) Li—1,gii41))
L riv1i42y), and ;41 40443y, and that those are also precisely the adjacency relafjgssh
in the conflict graph. Similarly, we can verify that an intahV; ;, ;1) also intersects preci-

cely with those intervals whose corresponding verticesadjacent. [J

Since the conflict graph is perfect, we can optimize over thbls set polytope in polynomial
time and as a consequence problem (3.12)-(3.15) is alsalslelin polynomial time. Therefore,
the joint optimization of subgraph and underlying schedsgdficiently tractable for this family

of networks.

The perfection of the conflict graph has a significant impiaabeyond the polynomial time
solvability of the associated optimization problem. It mgéhat we have a succinct description
of the scheduling constraints in the form of the clique ireddies (3.21). Furthermore, these
constraints are local, in the sense that each node in thaatayrthph only needs to know the
subgraph induced by its one-hop neighborhood in order rafghe the cliques that it belongs
to. Such information is usually required anyway in mechausithat use opportunistic listening,

such as [45].

Unfortunately, graph perfection is a rare property and farayal networks it is not likely that
the resulting conflict graph is perfect. We cannot dependraplgperfection, unless we restrict
our attention to special topologies like the above famillyred networks. Our goals is to develop
algorithms that are relevant in practice. Therefore, waakwant to make assumptions on the
network structure - it is given to us resulting from some agion. We propose an efficient

relaxation of the problem in the next section.

3.3 Decentralized Algorithm

We proceed to develop a distributed algorithm that worksrbitrary network topologies. The

optimization problem (3.12)-(3.15), as it stands, has tedieed in a centralized fashion. Even
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Figure 3.2 A line network with two-hop overhearing.

2 4 6 n
O O f
3 5 n—1
Figure 3.3 The conflict graph of the network in Fig. 3.2.
(1,2) (2,3) (3,4) (4,5) (5,6) (n—1,n)
(17{273}) (37{47 5}) (57{677}) (n_ 2,{71— 17n})

(2,{3,4}) (4,{5,6})

this is NP-hard in the general case, owing to the combiratdifficulty encapsulated iRsr 4.
Our approach is, in short, to relax this constraint and ustead a greedy heuristic for finding

stable sets. This yields, as we show, a fully decentralifgorisghm.

3.3.1 Subgradient Optimization on the Dual

Consider the Lagrangian dual of problem (3.12)-(3.15), tibe capacity constraints (3.12)

have been assigned multipliexs= (A(Q) and moved to the objective function

2

g(A) =maxL(R,x,z,A)

R,x,z

subjectto  (R,x) € Pr, (3.26)

Z € PSTAB” (327)
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wherex = (9:%)), the flow polytopePr is defined by constraints (3.13) and (3.14), and the

Lagrangian is given by

L(R,x,z,\) =
R+ 3320 Y zubux = > ) | (3.28)
teT ieN KCN(3) JCN(4) JjEK

The dual function decomposes into two subproblems, coupjetthe Lagrangian multipliers

t
/\5,2 as follows

a) = max (R=3 > > AR @

R<1 teT ieN KCN(i) JjeEK

Subproblem 1: subgraph optimization

max [ > ) Y A > bk | - (3.29)

z€EPsTAB
teT ieN KCN(i) JCN (1)

- -

Subproblem 2: scheduling

Note that in subproblem 1 we have added the constrairt 1, which is redundant in the
primal problem (3.12)-(3.15). To see this, consider theacdp constraints (3.12) on the flow
out of the source. Since the, ;x are, by definition, less than or equal to one and:thesum
up to at most one, the rafécannot be larger than one. We have chosen to add this caorisinai
order to avoid dealing with possibly unbounded solutionsubproblem 1. In [1], the authors
do not consider scheduling and therefore the schedulingreblem collapses. In contrast, the

performance of our approach critically depends on findifigieht solutions to this subproblem.

To solve the dual problem

min g(\)

subject to A >0, (3.30)
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we apply the projected subgradient algorithm with updale ru
Aln + 1] = max (A[n] — 0[n]€[n], 0), (3.31)

wheref|n| is a suitable stepsize aigdlh| = (5.(2 [n]) is a subgradient at step which we take

2

to be

gl = > zulnlbigx =Y @), (3.32)

JCN (i) jekK

Here,x[n] andz[n| are the solutions of subproblems 1 and 2, respectivelyept:stWe discuss
in the next subsection how to obtain solutions to these siidms in a decentralized way.
The subgradient computation (3.32) and the update step)(8a® be carried out at each node

individually since each involves only variables that argcasated with a single node.

Subgradient optimization yields iterates:| andz[n] that might not be optimal. A well-known
technique that yields the primal optimal solution is calpeomal recovery [46]. The approach
takes a weighted average over the sequence of primal swdutithe weights are nonnegative
and sum up to one. Constant weights are a simple choice ggivin

R = R[n], (3.33)

=] =
] =

S
I
—

N*

Il
=]~
E

b4

=

(3.34)
n=1
1 N
z* :fﬁggﬂﬂ (3.35)
A variety of alternatives appear in the literature. Seegf@mmple [1].
If this averaging rule is combined with a subgradient stapsif the formd[n| = 7o With

a > 0, andb > 0, primal recovery converges to the primal optimal solutid6][ Note that,

this recovery rule does not require any additional messageamge, owing to the fact that all

3If the step size is agreed upon in advance.
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intermediate optimizers are available at the node perfogntihe averaging. (See [47] for a

similar approach.)

3.3.2 Solving Subproblems 1 and 2

Rearranging the first part of (3.29), we arrive at

t t
(Rr’lgie?F R — teZT ;jg;(i) xl(j)pl(j))) 7 (3.36)
where we definq)g) = ZKcN(i)’jeK )\f?( Note thatpf.j.) is non-negative. Solving (3.36) is
equivalent to finding for each sinke 7, the shortest path with respect to the “Iengtiag*

from the sources to sinkt. To see this, assume that we have found these paths and have
computed the sum of their lengths. If this sum is less thahdn tve achieve the maximum in
problem (3.36) by sending flow of rate 1 along each of theskespa®n the other hand, if the
sum of these lengths is greater than or equal to 1, then sgadiy flow with a positive rate

R leads to a negative cost in (3.36). We therefore achieve amadxalue of zero by setting

R andx to zero. To find theséZ | shortest paths, we can use, for example, the asynchronous

distributed Bellman-Ford algorithm [32, Section 5].

We consider now subproblem 2, which can be rewritten as

max Z Z 2;JWi g (3.37)

zEPsT A
TAB jeN JCN(3)

with weightsw;; = 3 <b2-JK S er Afj%) for each node. This is a standard maximum
weight stable set (MWSS) problem, which is NP-hard [48]. \Wggest relaxing thenaximum
WSS constraint and instead findr@aximalstable set, i.e. a stable set to which no vertex can
be added. This problem is much simpler and can be solved istakdited fashion using the

algorithm proposed in [49]. The number of steps needed toitate the algorithm is twice the
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stability number of the conflict graph [49, Theorem 1].

The algorithm operates on the conflict graph and not on theaboetwork topology. This
has the consequence that two adjacent nodes in the conéjgh gan represent hyperarcs that
are either co-located, or at distance of one or two hops. ihagso the number of hops that
messages between them have to travel. In particular, if eimlict is due to simultaneous
activation constraints on arcs originating at the same ntb@ehyperarcs are co-located, if the
conflict is due to the half-duplex constraint, they are onp apart and, where the conflict is

due to interference, they are at a distance of two hops.

3.4 Simulation Results

To evaluate the performance of our techniques we conduatlaiians over random network
topologies. The setup remains the same throughout, thepargmeter that changes is the
number of nodes in the network; when we add more nodes to thrie we keep the density
constant. For each random instance, we assume that a nufizetes are uniformly scattered
over a square region with unit node density. Two nodes aradiorrange if their distance is
below a certain threshold, the radius of connectivity, whige take to bel.8. The number

of neighbors of a node is restricted 1o We consider the leftmost node to be the sender,
multicasting to two receivers, the two rightmost nodes.n$raissions are subject to erasures,
which may be due to distance attenuation or fading. When @& mi@hsmits, a neighbor at
distanced will receive the packet correctly ifd=2 > 3 wherel is a unit mean exponential

variable and? = = is our chosen SNR threshold. Otherwise the packet is losptaialy. We

i
assume secondary interference constraints as well aslialiéx transceivers.

In Fig. 3.4(a), we compare the throughput of optimal schedul.e. solving problem (3.12)-
(3.15) optimally, with two commonly used scheduling tecjugs. In the fully orthogonal
model [1], all nodes in the network are assigned orthogohahnels, making the network

interference-free. In the two-hop constraints model (sgg&5] for such a scheduling protocol)
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Figure 3.4 Throughput and power consumption for different schedul@adniques.
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transmissions are scheduled such that, if nam@nsmits, all nodes in a two-hop neighborhood
are silent, eliminating the possibility of a node being idicarange of two simultaneous trans-
missions. Both the orthogonal and the two-hop constrairdeheliminate interference at the
expense of suboptimal bandwidth reuse. We see that thiperaptly a rather wasteful way of
operating an interference limited wireless network. Femfore, for the networks of moderate
size that we consider, the two-hop constraint is almost stsicgve as full orthogonalization.
This can be seen in Fig. 3.4(a), where the correspondingswaimost match. Apparently, for
the networks that we consider very few nodes are more thahops apart. Therefore, in most
cases only one node at a time can transmit under the two-hwgirant. On the other hand, a

significant increase in bandwidth efficiency is possibledfuge optimal scheduling.

We investigate the trade-off between bandwidth and powenexicy in Fig. 3.4(b), where
we plot the average number of retransmissions per packdiofibrorthogonal scheduling and
optimal scheduling. The number of retransmissions sersemaestimate for the total power
expenditure. Both curves show the maximal rate. More pedgif R,.., is the maximal rate
for a fixed policy, and:;; are the injection rates computed for this rate, then theagesnum-
ber of retransmissions per packe%. It shows how much additional power expenditure
is required to obtain the throughput gains in Fig. 3.4(apc8iwe permit some simultaneous
transmissions rather than eliminating all collisions, aéain a substantial increase in through-
put and bandwidth efficiency. The price we pay is a higher paxpenditure due to packets
that collide and are therefore lost. We see that optimaldwdivey apparently does not lead to

an excessive number of collisions or retransmissions.

Fig. 3.5 shows the average number of network configurationgpcising the solution of the
optimal scheduling algorithm. This is an important measasdime-sharing over many network

configurations leads to higher delays as well as complexipperation.

The throughput of the decentralized algorithm from Sec8d) which we call the “decen-

tralized greedy” algorithm, is shown in Fig. 3.6. For comgan, we have plotted orthogonal
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Figure 3.5The number of configurations which appear in the solutiohefptimal scheduling
algorithm. We consider schedules with a time sharing caoeffiequal to or greater than001.
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scheduling, two-hop constraint scheduling, and optimia¢daling, the latter for network sizes
that are still tractable. In addition, we consider a vapiatof the decentralized algorithm, which
we refer to as GWMIN [50], that differs in how the weights fbetstable set computation are
chosen. In particular, GWMIN takes weightg, which are derived from the original weights

w, as follows:
* wv

v = W’ (3.38)

w

where|Ng(v)| is the current number of neighbors of node in the conflict graph; as nodes
leave the conflict graphV;(v)| decreases. This heuristic was proposed in [50], and pesform
somewhat better than the decentralized algorithm withaigit adjustment. Note, however,
that it comes with a higher communication overhead. Eveneta node leaves the conflict
graph, its adjacent edges are removed and, therefore, tireedef the neighbors changes.

After the neighbors have updated their weight, they haveotomunicate the new weight to
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Figure 3.6 Maximum throughput of the distributed algorithms as a fiorcbf the number of
nodes in the network.
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their neighbors before the algorithm can resume. Both dlguos, the decentralized greedy

algorithm as well as GWMIN, significantly outperform orttwwal or two-hop scheduling.

In Fig. 3.7 we illustrate the convergence of the subgradiptitmization for a network with
10 nodes when the stable set problem is computed optimadigch step. Note that the scale is
logarithmic, and therefore the deviation from the optimsmat large after a moderate amount

of iterations.
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Figure 3.7 Convergence of subgradient optimization for a network Withnodes. We report
the difference between the optimal through@it and the throughput after primal recovery at
stepn.
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3.5 Competition for Resources under Interference Condi-
tions

Under network coding, the maintenance of min-cut cond#ibatween the set of senders and
every receiver individually is a sufficient condition to gapt the connection. Thus, for a net-
work without interference such as a wireline network, d#f@ receivers in a network coded
multicast connection do not compete with each other foruess; each receiver with a suf-
ficiently large min-cut to the source can participate. Ineldss networks, however, interfer-
ence from simultaneous transmissions has to be taken intmat Such interference in effect
changes the underlying network and thus can create int@naa@mong receivers involved in a

single multicast session.

To consider the interaction among users,/Zletienote one group of receivers, afdanother
set of receivers. First, consider orthogonal schedulimithe multicast connectioris, 77, R;),
(s, T3, R3), and(s, 7; U Ty, R§), where for each connection the rate is taken to be the maximal
rate that can be supported by the network if this particubeanection is present alone. We do

not consider coding across the two multicast sessions fefsored to agnter-sessiometwork
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Figure 3.8 A wireless network with 12 nodes, one source, and two mugtigaoups, each
consisting of two nodes.

7

coding). Inter-session coding may be required in the optsuoklution, but we exclude it due
to the inherent hardness of the problem. We have plottedatteepoints k7, 0), (0, R3), and
(R§, R§) in Fig. 3.9. Note, that at the poiifz;, ), we transmithe same informatioto both
multicast groups at rat&,. The effect that users have on each other through intexeren
captured by the fact thak;; is typically strictly lower than eitheR} or R;. If the underlying
subgraph were not modified through the effect of interfegetite minimum cut from the source

to the users ir¥; U 7; would bemin (R}, ;).

Since the realization of the network depends on the schedelexpect different choices of
scheduling to change the rate regions. Indeed, in Fig. 3&%hew two different rate regions,
corresponding to different scheduling policies. For tihe ragion indexed by the underlying
schedule is assumed to be orthogonal. Note that in Fig. %ave plotted the “time-sharing
region” between the pointgz;, 0), (0, R;), and(R§, i), which is in general not the full rate
region, even without inter-session coding. We compare Wlitis our optimal approach, i.e.
solving problem (3.12)-(3.15) optimally, (the region iméd by’). The resulting rate region
significantly expands the rate region obtained by orthobsdaeduling. Another interesting

observation is that the rate regions are almost rectangtlat means that a 4-multicast with
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Figure 3.9 Maximal rate to two groups of multicast receivers and tortbeion. The average
is over 100 random wireless networks. The networks have H2siand two groups, both
consisting of two receivers. An example of such a random okdvg shown in Fig. 3.8.

A R,
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random terminals can support almost the same rate as a zastiland suggests that, in our

example networks, network coded multicasting scales wigtl tie number of receivers.

3.6 Discussion

We have seen that addressing network coding subgraph agtionn and scheduling jointly
results in significant performance gains. Scheduling tateraetwork coding opportunities im-
proves the throughput by over a factor of two. Moreover, weeh@oposed a way to distribute
the computation across the network. To arrive at a diseisolution, we used a heuristic,
greedy stable set search in place of the full optimizatioerdtie stable set polytope. The

performance of distributed scheduling is empirically eedd to be not far from the optimum.

Nevertheless, a central assumption is that in every timdtstaupdates at all nodes are carried
out simultaneously, as if triggered by a central clock sigha the next chapter, we investi-
gate the consequences of relaxing this restriction andvedfpthe updates to be carried out
asynchronously|t turns out that this is possible, although it leads to ottenstraints on the

problem. Unfortunately, these constraints are fundanhanid not merely a side effect of the
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particular formulation. In consequence, it is the netwoekigner’s decision to either choose

asynchronous operation, or to ensure enough synchramzatihe network.






Asynchronous Network Coded

Multicast

The distributed computation of network connections is hyiglesirable in practice, as otherwise
information about the entire network topology has to beeméld at a special central instance
which carries out the computation. Once computed, the limdk iajection rates have to be
communicated across the network, leading to significardydednd overhead. If the network
changes over time, these rates may be outdated when théytheacdestination nodes. Even
assuming distributed operation, one main assumption igrilevery time slot the updates at all
nodes are carried out simultaneously, i.e. the algoritlenaies in synchronous rounds [1, 51].
The contribution of this chapter is to relax this assumpénd instead propose asynchronous
algorithm for solving the problem. As we show, our approaduires very few restrictions on
the update schedule; even a random sequence of node updiitesnwerge as long as each

node is chosen with non-zero probability.
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Distributed asynchronous algorithms have been proposdduaed for routing. The most
prominent example is the distributed Bellman-Ford aldponit which has both a synchronous
and an asynchronous variant [32, Section 5.2.4]. This ishéobest of our knowledge, the
first asynchronous approach for network coded traffic angbéngcular optimization problem
associated with it [1]. The asynchronous algorithm prodaed52] addresses the problem of
network code design and is orthogonal to our approach, dtleetaforementioned separation
between coding and resource provision. We are concernddpadlviding and allocating a

minimal set of network resources that guarantees a certaituat to all receivers.

The motivations for seeking asynchronous solutions areftieb Firstly, in large networks the
assumption of having a clock that is available at all nodesmrgalistic or requires a significant
amount of communication overhead. The fundamental linfitdack synchronization across
a network are discussed in [53] and the references therednorfally, network transmissions
often have a non-negligible loss or error rate. When therdlgo requires synchronous rounds
of updates, such losses of messages can seriously impagrgemce. An asynchronous algo-
rithm, such as the one we suggest, can easily deal with lasttapnessages due to the minimal

requirements it poses on the update schedule.

The main idea of our work is to apply l@lock-coordinate ascent algorithmo the dual of
the optimization problem that describes the multicast ection. If we want a distributed and
asynchronous algorithm, this implies that we can only hapapdate one variable block at
a time, similar to Gauss-Seidel-type algorithms for sajvgystems of linear equations [54,
Section 1.2]. For such a block-coordinate method to worls well-known that we need to
impose one major requirement on the function we wish maxamithas to belifferentiable55,
Section 2.7]. For the dual objective function of a convexgtem to be differentiable, we need
the primal to bestrictly convex [55, Section 6.2]. For this, in turn, we will have to kea
a few modifications to the optimization problem that we foltated in the previous hapter.

There, we formed a linear program and applied the subgradiiethod - which can handle non-
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differentiable functions - to its Lagrangian dual. In themtext, however, this is not possible,
as we need a strictly convex program to start with. Note thatioast problems with a convex
objective function were addressed in [1] and solved witbrianal-dual algorithm which is

distributed but not asynchronous.

The algorithm we propose, as we show by means of simulatexigbits fast convergence
compared to the primal-dual algorithm in [1] and is very rstowith respect to randomly oc-
curring node updates. Even in the presence of link failutes algorithm continues updating
and eventually converges without the need for a restartarit therefore, run continuously in

the background and automatically adapt to changes in theonlet

4.1 Network Model and Optimization Problem

Our starting point is optimization problem (3.1)-(3.3). wiver, based on the previous discus-

sion we impose the following modifications:

e The objective is not to maximize the rate, but to minimizeregy convex cost function

that penalizes high injection rates.

e We assume the schedule is fixed, i.e. a non-conflicting dadleof hyperarcs is given to

us. This means dropping the stable set polytope const@&iix (

e To simplify notation, we will replace the polymatroidal araints (3.1) with simple ca-
pacity constraints on the arcs, i.e. the flow on @rg) has to lie between 0 and the
capacityc;;. In Appendix A.3, we show that the entire analysis remaittisl far polyma-

troidal constraints, the only drawback being a more corapdid notation.

With the modification of replacing the polymatroidal coastts by capacity constraints, the

hypergraph essentially can be modelled as a simple dirgeggihG = (N, A), where\ is the
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set of vertices andl is the set of directed arcs. Consider the following lineagam for setting

up a multicast connectiofs, 7, R)

minimize Z fij(zij)

(i,)€A
subject to
Z xg) - xﬁ) = O'i(t), Vie N;teT, (4.2)
j:(i,)EA j:(j,i)EA
0<al) <z  V(i,j)eAteT, (4.2)
Zij S Cija V(l,]) € "47 (43)
where we define )
R 1=235
o) =S _R i—1t (4.4)
0 else

We assume the cost functiofis(-) to be monotonically increasing asttictly convex through-

out. Also, letT" = |7|.

An instance of the problem is described by the netw@rk (N, A), the link capacities;;,

the link cost functiong;;, and the multicast sessi¢n, 7, R).
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4.2 Decentralized Asynchronous Algorithm

4.2.1 Block-Coordinate Ascent on the Dual

In this section, we apply a block-coordinate ascent algorito the dual of convex program
(4.1)-(4.3), resulting in decentralized and asynchrorapesation. As the;; are monotonically
increasing functions, constraint (4.2) essentially mehatz;; = max;cr xg) Themax func-
tion is not differentiable everywhere and thus poses a ehgé for gradient-type optimization
algorithms. One approach is to replace this relation wisof@maximum that is differentiable
and that approximates the maximum function. Two common@pmrations are théog-sum-

expfunction [56] and thé,-norm [57], given by

z;; = Llog (Z exp <x$)/L)> (4.5)

teT
and

2y = (Z (g;(?)p) 1/p | (4.6)

teT

respectively. Both functions converge to the maximum fiamgtfor . — 0 and forp — oo,
respectively. Although they are convex and differentiakiey are nostrictly convex. This

can be seen by settindj.) = xgj.), vVt € 7. For thelog-sum-expgfunction, this leads to

zi; = LlogT + xﬁjl) which is linear and not strictly convex. Replacing with z;;, we can

define a modified cost functiolj; according to

Fyj() = 1 (L log (Z exp (xEj-’/L)) ) , (4.7

teT

wherex;; = <x§;>, ,xﬁf)) Here, F};(x;;) is (strictly) convex iff;; is (strictly) convex and

monotonically increasing. With this transformation, threlgem is reformulated as a standard
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convex multi-commodity flow problem, where the flows are dednly via the cost function

and the constraints are separable [58, Section 8.3]. Theapadptimization problem takes the

form
minimize Z Fj(xij)
(i.5)€A
subject to
> oa) - W =o  VieNjteT, (4.8)
Ji(i,j)eA j:(Gi)eA
0<a¥ <ey  V(ij)eAteT. 4.9)

Introducing a Lagrange muItipIi@rﬁt) for every constraint in (4.8), we form the Lagrangian

Lix,p)= Y. Fylzg)+y.> p’ )~ 20 —6" | (4.10)
(i,5)eA teT ieN j:(i,5)EA j:(ji)EA
- Z ( ij(xag) + Z ( ( ' (t))>> - Zngt)az‘(t). (4.11)
(i,5)eA teT 1EN teT

Note that the capacity constraints (4.9) are not dualizeddyot explicitly. The dual function

valueq(p) at a price vectop is

= Y gilpi—pj) - ZZPEt)UZ(t),

(i,5)eA 1EN teT

whereg;; is defined as
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9ij(Pi — Pj) = o<£n-f<c-,, {E-j(:cij) + Z <x§;) <p§t) —pg»t)>)} ) (4.12)

teT

andp; = (pz(.l), ...,pET)). The solution of the dual unconstrained optimization peail

maximize ¢(p)
P

is equivalent to the solution of the primal problem as underassumptions there is no duality
gap. We suggest solving the dual by a block-coordinate ascethod. To that end, consider
the || variable blockg;. At the k-th iteration, we select a blogl; and update it in an ascent
direction. We defer the discussion of how to select blocksraer to achieve convergence to
the end of the section. We take as an ascent direction theegtad; with respect tg;. For an

appropriately chosen step sizg the update takes the form

pilk + 1] := ps[k] + 0, V;[k]. (4.13)

4.2.2 Computing the Gradient

We can compute the gradient with the following Lemma

Lemma 3 [55, Proposition 6.1.1] Letz(p) be the unique minimizer of the Lagrangian at a

price vectorp, i.e.

x(p) = argmin L(x, p). (4.14)

T

Then, the dual functioq(p) is everywhere continuously differentiable, and its detixeawith

respect thEt) is given by the constraint function evaluatedrdp)
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Jq
= z) (p) — =) (p) — ol (4.15)
pi i:(3,5 ..

Remark 1 In other words, the derivative is given by the flow divergemaieof node for each

sessiort.

Remark 2 Linear constraints and atrictly convex objective function (as we have assumed
throughout) imply the uniqueness of the Lagrangian miremand therefore the validity of the

lemma. Mere convexity is not sufficient, in general.

An update at node takes on the following form. With every edge adjacent tee associate
a processor that solves problem (4.12) and computes thenmgn For an edgéi, j) this

becomes

x;j(p; — pj) = argmin {FZJ(.’BU) + Z (xz(? <p2(t) _ §t))> } 7 (4.16)
teT

0<@;; <cij
and requires the price vectors of the neighboring nodes dkdythis optimization is convex,
it can be solved with standard algorithms like SQP [59] or @jddted Gradient method [55].
Owing to the simple constraints onﬁ;) the orthogonal projection can be implemented easily.
Nodei gathers th@f.;) (p) from adjacent edges to compute the gradient with respasiitothe

following way

>l (p) - 2 (p) — oV
J:(4,5)eA J:(ji)eA
V= : . (4.17)
T T T
2\ (p) — 27 (p) — o
j:(i,5)eA j:(4i)eA

Note that calculating the gradient given the correspond:érjt.?gvariables involves very little

computational effort. But thef.j.) variables are automatically computed as a byproduct when
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solving problem (4.12).

4.2.3 Convergence

Having seen how to compute a gradient at each step, we reiysrove convergence of the
described algorithm. We need to specify the sequence inhithivariable blocks are updated.

Consider the following definition [54]:

Definition 7 We speak of a partially asynchronous order if there existesitiye constants
for which every coordinate is chosen at least once for refiaxabetween iterations andr +
K, r=0,1,.... Furthermore, at any iteration the variables used to coreghe update are at

mostK steps old.

Remark 3 For the choice ofX” = | V] this leads to a cyclical update rule, while féf large it

comes close to a random choice of the current block of vaembl

Our algorithm converges by a result from [54] which proves

Proposition 2 [54, Proposition 5.2] Assume that the functigfp) is continuously differen-
tiable, the gradient satisfies a Lipschitz-condition, anpaatially asynchronous update order
is adopted. Then, block-coordinate ascent using the updiétg4.13) converges for a stepsize

sufficiently small.

Remark 4 The algorithm converges under some more technical comdigven when an arbi-
trary ascent direction is used in place of the gradient. Wiasing the gradient, these technical

conditions are satisfied automatically [54, Section 7.5.3]

The stepsizé@, can be determined by standard line search algorithms lik&tBacking [56]

or the Golden Section Method [55] . Note, that (4.16) is a Vewy dimensional problem - its
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Figure 4.1 A two sink multicast froms to ¢; andts.

dimension is the number of multicast sinks- and can be solved readily a number of times.
The complexity of a node update scales proportionally tactiraplexity of (4.16), the number

of adjacent edges afand the number of steepest ascent iterations carried out.

From the algorithm description, we see that all steps, hecbomputation of the resulting flow
for a fixed price vector (4.16), the computation of the grati{é.17) and the price update (4.13)
require solely information that can be gathered ana-homeighborhood of the updating node.
This gives rise to the decentralized operation of the allgori Moreover, if combined with an
essentially cyclic update order, assuming a large congtante also conclude asynchronous

convergence.

4.3 Performance Evaluation

To assess empirically the performance of our approach, wedumi a series of experiments.
The link cost function is taken to be throughautexp(z;;), wherea;; is a positive coefficient.

Firstly, we illustrate a case where, owing to asynchronqaates, the primal-dual algorithm of
[1] fails to converge. In contrast, our algorithm convergegpromised by the theory. Consider
Fig. 4.1, and the convergence curves in Fig. 4.2. The pranal-algorithm converges correctly

if applied synchronously but fails to converge if updateghafironously (the updates are carried



4.3 Performance Evaluation 61

Figure 4.2 Progress of the asynchronous algorithm (left), synchremimal-dual algorithm
[1] (center) and asynchronous primal-dual algorithm [ig{t). We measure convergence of
the flowx, of which the optimal value i8.3.

00 600 800 1000 1200 1400 1600 1800

iterations iterations iterations

@) (b) ()

out in cyclical order, orK = 4). Another interesting observation is that coordinate aisce
and synchronous primal-dual converge after a similar nurabgerations; in the primal-dual,
however, during an iteratioeverynode in the network performs an update, as compared to just
one node in the network for the coordinate ascent algoriffims has two implications: Firstly,
coordinate ascent needs less communication overheadimgdrontrol traffic in the network.
Secondly, if for larger networks some of the updates can béedaout in parallel, this would

lead to a significant speed-up.

Figures 4.3(a) - 4.3(e) illustrate the convergence of tleekskoordinate ascent algorithm in
a larger randomly generated unit disc graph. We see thedgpah Fig. 4.3(a) and the flows
after convergence in Fig. 4.3(b). In Fig. 4.3(c), we plot adue of the dual function(p)
(normalized to 1) for the coordinate ascent and a randonetsaheof updating nodes. In com-
parison, we plot the value of the Lagrangian for the primadldalgorithm of [1] when updated
in synchronous rounds. In Fig.s 4.3(d) and 4.3(e), we sh@aptimal convergence for two
selected flows. Note that the dual optimum is approximatedhriaster (convergence after
about 500 iterations) than the primal (convergence afte028000 iterations), a result consis-

tent with [1,51].

Finally, we investigate the behavior under dynamic cood#j when a link in the network
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Figure 4.3 (a) Network topology, and (b) corresponding optimal flowseBource is red, the
sinks are blue and green. The common flow to both sinks is dyi&sing links specify a flow
of zero. (c) Convergence of the dual functigip) of coordinate ascent (asynchronously) and
primal-dual (synchronous rounds); the dual function ismalized to 1. The convergence of the
link flows (d) z; and (€)xs.

(@) (b)
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suddenly fails. Fig. 4.4 shows the reaction of the algoritbrthe failure of one edge. Since
the price variableg are unconstrained, every value can be used as a feasililagtawint of

the algorithm. Consequently, the coordinate ascent dlgorcan run continuously and without
needing a restart in the event of network changes. If theorittopology does not change for

a sufficiently long time it will converge to the new optimalwe.
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Figure 4.41n the network (a), the edge carrying flaw fails after 150 iterations. In the graph
(b), the flowz, first converges to the optimal value of 0.4. After the linKdee, it converges to
the new optimal value of 1. Note that since the links haveedsfit convex cost functions, the
link flows are not zero or one as in [2].

€ T2

I I I I I I I I
0 50 100 150 200 250 300 350 400 450
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4.4 Discussion

We have proposed a fully decentralized and asynchronowsithign for the minimum-cost
multicast problem. The main contribution lies in relaximg iheed for synchronization in the
network. Moreover, simulations show fast convergence agpeoed to previously known ap-
proaches like the primal-dual algorithm [1] for convex peohs. Since the algorithm requires
no assumption on network synchronization, it adjusts weliopology changes such as link
or node failures. However, in order to achieve this, we haaldimpt a more restrictive network
model - assuming a strictly convex problem and the schedidd fiMany network optimization
problems are inherently convex (see for instance [32] fouralmer of examples). If this is not
the case, an option is to consider a formulation that apprates the original problem, but is
strictly convex. This is very similar to what we already diteplacing thenax function with
thel, norm. Of course, since we are now solving a similar but nottshe same problem a
penalty is incurred. It is the discretion of the network desir to choose whether he prefers to

pay this penalty or, alternatively, to ensure network syaotzation. In particular, if the cost of
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synchronizing the network is high an asynchronous mode rfiay advantages.



Joint Scheduling and
Instantaneously Decodable
Network Coding

So far, the focus has been on coding within a multicast sess®. intra-session network
coding. In this chapter, we allow data of different users i, leading tointer-session network
coding. This is, in its full generality, a difficult problend]} and in fact may even require
complicated non-linear processing [11]. On the other hapgdroaches to inter-session network
coding that are not necessarily optimal yet are practicahfan engineering point of view, have
demonstrated large performance gains [7]. In a wirelessorkt due to broadcasting, nodes
frequently overhear packets that are not intended for thEms additional “evidence” can be

used to combine several packets in one transmission.

Following prior work like [7], we investigate instantanesobinary XOR coding. Each broad-
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cast transmission from a given node is the binary sum of samer of incoming packets. A
collection of L packets can be combined only if itiisstantaneously decodabler all neigh-
bors. This is achieved when each neighbor knows all but orleeaf packets; either because
it overheard them from prior transmissions or because itipusly received those packets di-
rectly. Each receiver can then cancel out all but the onegidbkt is new to him. As we show,
the instantaneous decodability condition can be formdlate aconflict graphmodel, where
valid packet combinations corresponddiable sets This is, in general, an NP-hard combi-
natorial problem, which is inherent in the instantaneousodability condition. However, our
simulations indicate that for moderate size networks thér@d solution can be within reach.
Note that although the problem we address is different fioeone in Chapter 3, we again use
a conflict graph model for describing valid configurationkefle, we have used conflict graphs
do describe conflicts on simultaneous transmissions. Hhenedncapsulate the constraints on

the network code.

We formulate a linear program that optimizes over both theedale and network coding
decision. With this problem formulation, we are able to comepthe achievable rate region
of our technique and to quantify the gains over routing. Ha@vein most practical mobile
networks a low-complexity, decentralized and online atgam is preferable. We formulate
such an algorithm based on ideas from [60], where the autleirge a widely applicable class
of online scheduling algorithms achieving optimal thropgh To include network coding, we
introduce a system ofirtual queueghat can be served jointly subject to the constraints ajisin

from the conflict graph model.

There are two lines of work that are related to our approach[7], the authors introduce
COPE, an 802.11-based protocol that uses network codinghanee the performance of the
MAC-layer. There, the idea of combining packets locallyporiunistically and heuristically
was developed and shown to yield significant performanaesgdihe decision regarding which

packets to combine is made by means of a sequential (edsegteedy) search heuristic. Our
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goal is to optimize over the set of network coding decisiams$ @aver the schedule. In [41], the
authors analyze theoretically the performance of COPE-tgiwork coding by formulating a
linear program that captures the network coding, routing) scheduling constraints. In con-
trast to their work, our approach optimizes over a largero$etetwork coding decisions and

furthermore we present an online algorithm that stabileesy point within the rate region.

The other line of work starts with [12] (see also [13]), whéne authors consider a fixed
network and relax the instantaneous decodability assompti allow the mixing of packets
only subject to being decodable eventually. The benefit isfdpproach is a larger family of
allowed operations and therefore the potential for impnoset in the network throughput. The
price is an increased complexity, which is handled by allgnat most two packets to mix. As
a result, the throughput implications are unclear. Theethle region of this technique was

later shown in [14] to be stabilizable with an online baclgstge algorithm.

In the previous chapters, we dealt with average rates andghputs. Our algorithms have not
operated at the level of stochastic packet arrivals, exicefite assumption that the stochastic
processes describing the arrivals are ergodic and, threrdfat their average rates summarize
most of their meaningful properties. This was also a consecgl of random linear network
coding, where all nodes always perform the same operat@king a linear combination of all
the packets in their memory - and therefore a flow formulatiath side constraints captures
the problem. The inter-session coding scheme that we pedpdkis chapter is quite different
from random linear network coding, in that the coding dexisiof a node depend not only on
which packets that node has in its memory, but also on the meaithe neighbors. We there-
fore adopt a model that addresses stochastic packet arrita@l corresponding queue lengths

evolution, and dynamic online scheduling and network cgdiecisions.
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Figure 5.1 The topology graply; of a network withn = 3 standard nodes and a relay nade
Each link represents two directed links, going in oppositeations.

1

5.1 Network Model

5.1.1 General Model and Assumptions

Consider a wireless network, thepologyof which is represented as a directed graph=
(N, A;) with node setV; = {0,1,...,n} and arc sefd; = {(4,7) : 0 <i,5 < n,i # j}. The
case wherer, = 3 is depicted in Fig. 5.1. From the definition, the network ibyfgonnected
and therefore symmetric. However, we assume that node (pescéedrelay node with extended
capabilities. This model is appropriate, for example, winennetwork consists of a number of
ground noded, ..., n and one unmanned aerial vehicle (UAV), ndgevith extended range
and power and a larger set of coding and modulation schembs. n&twork operates with
constant-length packets and in slotted time, where thersiieix¢ is an integer corresponding

to the time intervalt, ¢ + 1).

We assume, for the sake of simplicity, that the relay sereésysthe purpose of enhancing
communication between the other nodes and does not injdstidnal packets. Exogenous

packet arrivals at nodewith destination; (resulting from processes at the application layer
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of noded) occur according tadmissiblestochastic processes(t) = (A/(t)), for1 < i,j <
n,i # j, with average rates) = E[A’]. We use the same definition of admissible as the authors

in [61, Definition 3.4]

Definition 8 A processA(t) is admissible with rate\ if

e The time average expected arrival rate satisfies:

t—1
o1
Jim — Z@ E{A(T)} = X (5.1)
e For all time slotst, we haveE{ A(¢)*|H(t)} < A2, whereA,,,, is a positive constant

andH(t) represents the history up to timgi.e. all events in slots € {0,...,¢t — 1}.

e Foranyé > 0, there exists an interval sizeésuch that for any initial time, the following

condition holds: .
{ > A t0+k:)|H(t0)} <A+0. (5.2)
k=0
Since the network is fully connected, owing to interfereatenost one node in the network
can transmit per slot. Assume that transmissions from anletoelay are always successful.
Any other link can be either ON, in which case it can suppogtttansmission of one packet
per slot or OFF, in which case no packet can be transmittedtbigelink. The topology state
at timet is thus given by a binary vectdf(t) = (S5;;(¢)), fori,j € {1,...,n},i # j, with
Si;(t) = 1 indicating that the corresponding link is ON. Assume that stateS(¢) is known
at all nodes and that it evolves according to a finite stategucible Markov chain with state
spaceS. Letr, denote the average fraction of time that the process spearstateS(t) = s.

For such chains the time averagesare well defined and with probability 1 we have

= lim - 21% ,foralls € S, (5.3)

t—oo t
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wherel; is the indicator function.

If node: transmits a packet designated for nggdand; receives it successfully, it is removed

from the system. Otherwise, the following sequence of astie carried out

e node: removes it from its queue,

o the relay (which by assumption receives every packet safidgg assumes responsibility

for the packet and stores it for further transmission,

¢ all nodes that have overheard the packet store it until irbashed its destination for the

purpose of possibly using it at a later stage for network rogdi

This scheme requires a certain amount of perfect feedbatheifiollowing form: After any
packet transmission from a non-relay node, every other hadéo acknowledge (or negatively
acknowledge) the reception to the relay. Periodicallymitnecessarily in every slot, the non-
relay nodes also need feedback from the relay indicatinigtttey may discard the overheard
packets that were delivered in the interim and are no longeded. Note that feedback between
non-relay nodes is not required, which is consistent withassumption that these nodes have
more limited capabilities than the relay. For our analysswill use three different graphs, each
of them describing a different aspect of the system. In aidib the topology grap§;, we will
introduce the queuing network (directed) grgphand the network coding conflict (undirected)

graphg,, both to be precisely defined later.

5.1.2 Queuing Model

In our model, each nodiec {1,...,n} has queueB{,j € {1,...,n}\ 1, one for each possible
packet destination. The relay, on the other hand, has asydté@rtual queuesn which it stores
received packets (that failed to reach their designatetinddi®n) for the purpose of performing

network coding. More precisely, the relay partitions aledward packets in - (277! — 1)
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equivalence classes, according to their next-h@md the set of node® < {1,....n}\ J,

Q +# () that have knowledge of them. The s@tis never empty as there is always one node,
the original sender, that has the packet. The relay keeps track of a virtual gtaesach such
class of packets. LeX(t) = (Xé(t)) denote the queue length vector of all packet classes at

timet.

Consider the two-staggueuing networkj, in Fig. 5.2 consisting of the queu(eE{) and the
virtual queues at the rele()Ké). Here we explicitly model the dynamic behavior of the queues
used to accommodate scheduling and network coding. Pableisave the system (the arrows
with solid tips) are directed to an artificial nod& the system exit This queuing network, in

particular its stability region and an online stabilizingaithm, is the focus of our analysis.

In the original network of Fig. 5.1, a packet broadcastedhfrtode; can, depending on the
states, either reach its destination or be overheard by the relaypassibly a subset of its
neighbors. In the queuing model, correspondingly, it ieegitransferred to the system exit
or to one of the virtual queues at the relay. As a result, favargtopology state, each queue

R! will have exactly one state-dependent outgoing link dethbte( R/, ¢ (s)), where we define

177

. E if Sij = ]_,
d(s) = (5.4)
Xé/ if Sij = 0,

whereQ" = {k|k # j, sq = 1} Ui,

A queue with backlogX (¢) evolves according to the discrete-time dynamic& + 1) =
max(X (t) —u(t),0)+ A(t), whereA(t) is the arrival process, andt) the service process. For

gueue stability, we use the following definition [61, Defioit 3.1]

Definition 9 A queue is called (strongly) stable if

t—1

lim sup % > E{X(1)} < . (5.5)

7=0
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Figure 5.2 The corresponding queuing network graghfor the network in Fig. 5.1. Directed
links indicate possible packet transitions; packets thateé the system (the arrows with solid
tips) are directed to an artificial nodg thesystem exitA subset of the virtual queue’éé can
be served jointly in one time slot if they correspond to alstakt in the conflict grapé.
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A network of queues is strongly stable if all queues compgshe network are strongly stable.

5.1.3 Network Coding

We can represent valid network coding combinations resyftom the instantaneous decoding
condition by a graphic model. In thisonflict graphapproach, we construct an undirected
graph with vertices corresponding to the queues. Two quatgesonnected with a link if they
cannotbe served jointly, i.e. packets from the two queues cannt®RBed together, because
they violate the instantaneous decodability conditionisTi® made precise in the following

definition.

Definition 10 For the system of queuéxé), the conflict graptg,. = (V, £) is an undirected
graph with a one-to-one correspondence between vertiaasd queues. Two verticé§, and

X}, arenot connected if

® iFj,
o ic Oy andjc 9y,

otherwise they are connected with an undirected link.

The first condition guarantees that the packets in the twoegibave different destinations and
the second condition means that each destination has @ardrtiee packet meant for the other
destination node. We define a valid configuration of queues st of nodes in the conflict

graph without any conflicting pair, i.e. a valid configuratis a stable set.

For the network in Fig. 5.1, the corresponding conflict gregpthepicted in Fig. 5.3.

5.1.4 Joint Scheduling and Network Coding

We return to the queuing model (see Fig. 5.2) and give a pre@énition
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Figure 5.3 The conflict graplg. corresponding to the virtual queues at the relay in Fig. 5.2.
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Definition 11 The queuing networ§, = (N, A,) is a directed graph, with node set

N, ={(R)) U (XL)UE} (5.6)
and arc set
A, = {(R,E)} VRl eN, (5.7)
U {(RLXL)} ifieQ (5.8)
U {(X),BE)} VXL EeN, (5.9)

Owing to the interference constraints, the control actioeach time slot is to serve either
one of the linkg R/, d(s)) or a valid subset of th(aXé, E) links subject to the network coding
constraints. Acontrol inputI(t) = (I,(t)) for the queuing network is a binary vector with

I,(t) = 1iflink (a,b) € A, is activated in slot.
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The control spacg, for a states thus consists of

T, = T'UT (5.10)

— {(R,d(s)): i,je{l,...,n}i#j}
U{(X}, E):(X})isastable setig.}

whereZ! denotes the state-dependent part, Anlde state-independent part of the control.

Letc(I(t), S(t)) = (ca(L(t), S(t))) denote the link capacity vector under contfdl) € Zg)
and stateS(t) € S. Based on the previous discussion, the capacity of (ink), measured in

packets/slot is

1 if I(t) =1,
can(1(t), S(t)) = (5.11)
0 otherwise
Consider the region defined by
I'=> mCH{c(l,s): I € L.}, (5.12)

seS
where CH-) denotes the convex hull and the different convex hulls adeddising the usual set
summation. Using the decomposition from Eqgn. (5.10), wereamite the regior’ as follows,

isolating the contribution of the stable set polytope ofc¢baflict graph

Z 7Ts(1 - ,us)

seS

r- {Zwsuscmcu, 11T+

seS

Psrap(Ge) : ps € 10,1],Vs € S}(5.13)

The significance of this region is that every vectgy,) of long-term link transmission rates

that can be supported by the network has to li [61]. For the introduced constrained queuing



76 Chapter 5 m Joint Scheduling and Instantaneously Decodable Network Giing

system, two questions naturally arise and we will addressithext: The optimal service policy

and its associated stability region.

5.2 Stability Region

We begin by studying the stability region (or network layapacity region, as opposed to the

information theoretic notion of capacity) which is definedfallows [61]

Definition 12 The stability region\ is the closure of the set of all arrival rate matricé&f) that
can be stably supported by the network considering all pdsgiolicies for routing, scheduling
and restricted network coding (i.e. instantaneous decdiylnd network coding only at the

relay).
The characterization of the stability region is given in tbikowing theorem.

Theorem 1 The stability region for the constrained queuing systemim 5.2 is the set of
all arrival rate vectors (/) such that for all links(a,b) € A, there exists a non-negative
flow vector(f(a,b)) and a transmission rate vectdy(a,b)) € CI(T') satisfying the flow

conservation constraints

N < f(RLE)+> (R XD), WA, (5.14)
Q

Z f(RL X)) < f(X), E), VX, (5.15)

and the capacity constraints

f(a,b) < g(a,b), V(a,b) € A,. (5.16)

1C1(-) denotes the closure of a set.
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Proof This is a straightforward application of [61, Theorem 3itie queuing networg,.

5.3 Online Algorithm

The stability region tells us that if the average arrivaésatvere fixed and known a priori, there
exists a policy that stabilizes the network. However, it Imigot be causal, i.e. the decision
at timet might depend on events occurring after timeAn online algorithm on the other
hand, decides at time solely based on the history up to this time and the currerté sih
the network. As the authors have shown in [60, 61], theret®d<lass of online algorithms,
so calleddifferential backpressuralgorithms that stabilize every point in the interior of the

stability region.
Consider the following three-step algorithm.

1. Computation of backpressure weights:each time slot, first observe the topology state

variableS(t). Then compute for all link§R, d(s)) the differential backlogs’’ (¢) as follows

RI(t) if d(s) = E,
J(4) _ o ; _ I
RI(t) = X2,(8) if d(s) = X),.
Compute the maximum weighted stable segofvith WeightsXé(t)

" =ar X7 (¢
' =arg _max {X'(t)c},

and denote the corresponding weight() = X% (¢)c*.

2. SchedulingSelect the maximum weight amorgy* (), w!(t)}, fori,j = 1,...,n. The
queue scheduled for service is the relay if the maximum®ig), or otherwise the queus’

corresponding to the maximum backpressure weiglit).

3. Network codingif the relay is scheduled for transmission, identify the wpgwhich are
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members of the stable s&tcomputed in the previous step, and serve them jointly. Toethd,
take the packets at the head of each queue, combine them inaty IXOR and transmit the

resulting combination.

The described algorithm stabilizes every arrival rate megithin the stability region. This is

established by the following result, originally due to [60]

Theorem 2 [61, Theorem 4.5] The backpressure algorithm stabilizesrtatwork for an ar-
rival rate vector) if there exist a scalat > 0 such that\ + 1 € A, wherel denotes the vector

with all entries equal to 1.

A remarkable consequence is that the algorithm stabilieesystem for all points in the interior

of the stability region without even requiring knowledgetloé stability region.

5.4 Performance Evaluation

We illustrate the performance of our scheme in three waysstlfzi we illustrate the network
coding gains by computing the volume of the stable set ppl/it 4 5(G.) and comparing with

the volume of the constraint polytope when no network codsrgllowed. This approach has
been pursued in [37] in the context of network coding for shts with multicast capabilities.
Secondly, we compute the stability region for network cgdamd for routing, and thirdly, we

simulate the online scheduling and network coding algorith

5.4.1 Polytope Volume Computation

Consider the case = 3 nodes and the 9 virtual queues which can be scheduled fais@inice
according to the conflict graph in Fig. 5.3. By inspectiorg ttonflict graph contains one
maximum stable set of cardinality 3, namél¥? ;, X, 5, X7, }, similarly nine maximal stable

sets of cardinality 2 and nine stable sets correspondingetanidividual vertices, so it can be



5.4 Performance Evaluation 79

written as the convex hull of these 19 points and the origsintJthe Multi-Parametric Toolbox
for MATLAB [62], we have used this representation to compgtgezolume, which turns out to
be 2.8660 - 10~*. Without network coding, only one virtual queue can be sgraka time,
so the “conflict graph” when only routing is allowed is the qaete graphk,. The volume
of the resulting stable set polytope, which is a 9-dimerai@tandard simplex, i§9!)~! =
2.7557 - 107°. The ratio of the two volumes 8 ol(Psrap(G.))/(9) ™! = 104.

5.4.2 Stability Region

We compute the stability region as characterized in Thedtdor the special case when all
injection rates are equal. Though this computation is nsieeshan the general case, it has the
useful property that the network throughput is parameterizy a scalah = Af We consider

n = 3 and the state process is assumed to be i.i.d. across timeceygs dinks with each link
being ON with probability0.2 and OFF with probability).8. Routing, i.e. serving one virtual
gueue at a time, leads to a maximum symmetric katend network coding to a rate, which,
due to the fact that network coding includes routing as aiapease, is at least as large ®s
The maximum symmetric rates, = 0.1448 for routing and),, = 0.1521 for network coding,

are shown in Fig. 5.4.

5.4.3 Online Algorithm

To illustrate the performance of the online algorithm, wadate its behavior for symmetric
input rates which are close to the breaking points for rauéind network coding, respectively.
ConsiderAq, ..., A4 as indicated in Fig. 5.4 and the corresponding sample patkgi 5.5.
For A1, which is in the stability region of both policies, we seetth@auting leads on average
to significantly more packets in the system. When we sligimtyease the rate t&, routing
breaks down, while network coding is largely unaffectedingdurther to\; network coding

is still stable, though at a higher average backlog. Finaliy, both systems operate beyond
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Figure 5.4 Routing stabilizes the network for all rates smaller than= 0.1448, network
coding extends the stability region &g = 0.1521, which is an increase of abobis. In Fig.
5.5 we simulate sample paths of the online backpressureithligofor the points{ A, Ao} =
A £0.0003, and{ A3, \s} = A, £ 0.0003.

A, = 0.1521
—
A = 0.1448
—H —H =
)\1 /\2 )\3 )\4

stability but network coding “degrades” more gracefully.

5.5 Discussion

We investigated the stability region as well as online diehg algorithms for instantaneously
decodable network coding. In contrast to the previous @raptve adopted a model that deals
with the queue length evolution of the system and capturesystem dynamics. We showed
that network coding can extend the stable operation regihtbeonetwork and, on average,
reduce the backlog in the system. The networks we considereédin contrast to the previous
chapters, certain structural constraints; we assumegu$tatne node in the network is capable

of performing network coding operations and can reachahdéighbors in one hop.

As an extension, it is promising to look at allowing more netle do network coding. Nev-
ertheless, the results are interesting in their own righhasany cases, owing to structural
constraints or when networks are highly heterogenous, aneahoose to use local network
coding methods. Moreover, there is evidence that in mangscasly a small subset of the
network nodes need to do network coding in order to get thmutitrput benefits. For example,

in [63] the authors consider a genetic algorithm to minintize number of coding nodes in
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Figure 5.5 The total number of queued packets in the system for diffargection rates. In
particular, for\; both routing and network coding stabilize the system, Xprand A3 only
network coding stabilizes the system, while fqrboth policies result in an unstable system.
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the network. It turns out that in most cases only a very snnatitfon of the nodes need to do

network coding.



Delay Control in Network
Coded Broadcasting

In this chaptet, we explore the issue of delay in network coding, when appiebroadcast
erasure channels. Random linear network coding generalpyaves the throughput but can
lead to higher delay, as receivers need to collect sevedactcpackets before being able to de-
code them and thus recover the original information. Thesg is a tension between increased

throughput and decoding delay in the network [3, 64] andithike focus of this chapter.

Depending on the system and application, and particulahedding on the transport protocol,
different notions of decoding delay may be used. In [65]adé$ defined as the time between
the (stochastic) arrival of a packet at the source and itedleg by a receiver. In contrast, we
use the notion of delay as suggested by the authors in [3}eTheeceiver experiences a unit of

delay every time it successfully receives a packet, thatheea redundant linear combination

1This chapter is joint work with P. Sadeghi and R. Shams.
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of previously received (coded) packets or that is not instaously decodable for all receivers.
Note that under this definition the order in which packetsteaasmitted and arrive does not

matter.

Out-of-order packet delivery may be a reasonable assumibtibe underlying transport pro-
tocol is unreliable. In such a situation, if we wish to transeng., video, we can usemaultiple
descriptioncode [66], where each packet brings new information to tleiver regardless of
the order. On the other hand, if the transport protocol essshighly reliable in-order transmis-
sion, it is reasonable to usesaccessive refinemesburce code, where each subsequent packet

improves the quality, but only if all previous packets areereed.

Typically, online network coding algorithms for broadcast erasure chanri&I85] 67, 68] use
feedback from the receivers to the source to optimize thecteh of packets to be combined
and transmitted. The goal is to minimize decoding delaysitbdg subject to constraints on the
throughput. In particular, in [3], a number of such alganghwere proposed and compared in

terms of performance.

In our approach, we allow for network coding subject to insdaeous decoding, thus we adopt
the same strategy as in Chapter 5. The difference is that reowish to broadcast a number of
packets to all receivers, whereas in Chapter 5 each paclet Hasignated next-hop. We next
present a systematic framework for the minimization of digeg delay based on combinato-
rial optimization. We show that this problem can be cast amanteger linear programming
(ILP) framework, where an instantaneously decodable gackesmission corresponds teet
packingproblem [69] on an appropriately defined set structure.lifeurhore, we provide a cus-
tomized and efficient method for finding the optimal solutiothe set packing problem, which
is in general NP-hard. Our numerical results show that foodenate number of receivers, the
optimal solution can be computed efficiently. Finally, wlestrate how our optimal algorithm
can be converted to a heuristic with very small computatioamplexity. The performance of

the heuristic is evaluated by means of simulations and showwerform well compared to the
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optimal solution.

6.1 Network Model and Definitions

Consider a single source that broadcastd'toeceivers, denoted bi; fori = 1,..., N. The
data is divided intaX’ packets, denoted by:; for j = 1,..., K. Each receiver is interested
in all of the packets. Time is slotted, and the source carstrétrone (possibly coded) packet
per slot. A link L; connects the source to receivgy. Link L; experiences an erasure with
probability ofp. ; in each slot. We assume that the erasure random processas@pendent
and stationary. Before transmission of the next packetsdlece collects error-free and delay-
free 1-bit feedback from each destination indicating if plaeket was successfully received or

not.

Definition 13 At the end of transmission rouridthe knowledge of receivek; is the set con-

sisting of all packets that the receiver has decoded so far.

Definition 14 A coded packet is instantaneously decodable for receiydrit is a linear com-

bination containing exactly one packet not in the knowlesjgpgce ofRz;.

A coded packet is called non-innovative for receifiif it only contains source packets that

the receiver has decoded so far. Otherwise, the packetosatine.

Definition 15 A scheme is called throughput optimal if all transmissioresianovative for the

entire set of receivers.

Definition 16 In time slot/, receiverRR; experiences one unit of delay if it successfully receives

a packet that is either non-innovative or not instantanépdscodable.

The source only applies coding when all receivers will beedbldecode immediately, then a

delay atR; can only occur if the received packet/af is not innovative. Note that in the last
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definition, we do not count channel inflicted delays due ts@ms. The delay only counts ‘al-
gorithmic’ delay, i.e when we are not able to provide innoxaand instantaneously decodable
packets to a receiver [3]. This definition captures the paith@ delay that is due to algorithm

design, as opposed to the part of the delay that is due to araflale erasure patterns.

A zero-delay scheme would require all packets to be bothvative and instantaneously de-
codable to all receivers. Thus zero-delay implies througlgptimality, but not vice versa.
Achieving zero delay is difficult since which packets areavattive and instantaneously decod-
able depends on the random packet erasures experiencedrseeaiver. An offline algorithm
is one that knows all future realizations of erasures; ibis-nausal. In contrast, amlinealgo-
rithm decides on what to send in any given slot solely baseéti®@mformation received in past
slots. The authors in [3, Theorem 1] show that for the case€ ef 2 and /N = 3 receivers, there
exists anoffline algorithm that has zero-delay. The authors then prove thiagven an offline

zero-delay algorithm exists fay¥ > 4.

In this chapter, we focus on designing online algorithms.

6.2 Optimization Framework

We assume that packets are transmitted in two phases. IirghpHase, lasting slots, each
packet is transmitted uncoded. After this first phase, imeskt that follows, we form instan-

taneously decodable packets according to the algorithmeseribe next.

Assume, we are in slat, ¢ > K. Recall that the source knows all prior packet losses at
all receivers due to the feedback. This information can ersarized in anV x K binary

receiver-packet incidenamatrix A with elements

1 if R; needsm;,
aij = (6.1)

0 otherwise
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The columns of matriXd are denoted by, ..., ax. We assume that packets received by all
receivers are removed from the receiver-packet inciderateixn Hence,A does not contain

any all-zero columns.

Example ConsiderN = 2 receivers andy = 3 packets. Before the transmission begins, the
receiver-packet incidence matrikis a2 x 3 matrix of ones. If we send packet; in slot/ = 1

and only receiver?, successfully receives it} becomes

As we do not know the future realizations of the link erasuves seek to maximize myopi-
cally for the next slot the number of receivers that expesemo delay. Lek denote a binary
decision vector of lengtli that describes which packets are being coded together. riimde
stantaneous decoding, going to higher field sizes does abtdefurther gains. The transmitted
packet consists of the binary XOR of the source packets faclwh; = 1. Consider sets
M,...,Mxg C {Ry,...,Rn}, where)M; is the set of receivers that stileedsource packet

m;. Letw! = (|]\41|7 RN |MK

), and letl y be the all-one column vector of dimensidh

Then, maximizing the number of receivers for which a trarssmn is innovative subject to
the constraint of instantaneous decodability can be posedzaro-one integer linear program
(ILP). The column vectok of length K contains the decision variables; they are integers with

values zero or one.
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max w’ x (6.2)
subject to Ax < 1y

x € {0,1}*

This is a standard problem in combinatorial optimizatiosyally calledset packing69].
Here the universe is the set of all receivers and we need talfgjdint (due to instantaneous
decodability condition) subsefd; with the largest total size. In the (most desirable) casewhe
equality holds in every row ofix < 1y (that is, the transmitted packet is innovative for every

receiver) this becomessat partitionproblem. This is equivalent to a zero-delay transmission.

6.3 Algorithms for Solving (6.2)

Unfortunately, the set packing problem is NP-hard [69].His section, we present an efficient
algorithm designed to take advantage of the specific prolskencture. Since the underlying
combinatorial problem is NP-hard, its worst case execuiioie is exponential in the size of
the problem instance. However, for many practical situegiof interest, our method performs

well empirically.

Consider the following definitions.

Definition 17 Two binary-valued variables are said to be constrainedéfytbannot be simul-
taneouslyl in a solution. Formallyy; andx; are constrained if for any satisfyingAx < 1,

x; +z; < 1. We also say that; is constrained ta; and vice versa.

Note thatr; andz; are constrained if and only if there exists at least one ralexmp in A for

which Ap; = Apj = 1.
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Definition 18 The set of all variables constrained 19 is called the constrained set of and

is denoted by;. That s,

Ci={x;lj #1,Ax <1y = z;+z; < 1}. (6.3)

If z; andx; are not constrained to each othey ¢ C; andz; ¢ C;), then columns; anda;
in A cannot have non-zero elements in the same row position. i$hiir each row indey,

am:1:>apj:0andapj:1:>am-:0.

Definition 19 A variablez; is said to be unconstrainedd@ = (). The set of all unconstrained

variables is denoted ky and is referred to as the unconstrained set.

If z; is an unconstrained variable, then for each row inglex,, = 1 = a,; = 0 forall j # i

(otherwisex; andx; would become constrained).

Example Consider the following receiver-packet incidence mattix

o o o o
o o o o @ =
(@)

o O O

o o o O

o o o o o
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Variablesz; andz; are constrained because for= 1, a,; = a,3 = 1. Variablesz; andx,
are not constrained to each other because columaada, do not have a non-zero element in
the same row position. Variablg is unconstrained because its non-zero elements are in rows 6
and 7 and no other column has a non-zero element in rows 6 arsunhmary(C; = {zy, x3},

CQ = {1'1}, Cg = {1'1,1'4}, C4 = {[L’g} andC5 = C6 = @

6.3.1 Exhaustive Search

The algorithm that we propose is essentially a divide-amajaer type of algorithm that takes
advantage of the problem structure to efficiently prune dagch space. We make the following

observations for pruning the parameter space:

1. Unconstrained variables must be set to 1C;I= (), thenz; = 1 since settingr; = 1
results in a strictly higher value of”'x than settingr;; = 0 and in no way constrains the
values ofz; for j # . In the above example;; = x4 = 1 because no other variable is

constrained to them.

2. If a constrained variable is set to 1, then all memberssafanstrained set must be set to

0. In the above example, setting = 1 forcesz, andx; to zero.

With these observations, we can proceed to discuss the stegigalgorithm. Le®, denote
a problem instance of size whose input is anV x k receiver-packet incidence matri;
and whose output is a set of solutions vectarsf length £ which satisfy the instantaneous
decodability conditiord,x < 1. Consider Algorithm 1 and its corresponding flow chart in

Fig. 6.1.

Remark 5 The algorithm is recursive. In line 12,, unconstrained variables are set to one,
x5 = 1 and therefore:, variables constrained by, are set to zero, hence a totalbf+ £, + 1
variables are resolved. Similarly, in line 16, unconstrained variables are set to one and

x, = 0, hence a total ok, + 1 variables are resolved.
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Figure 6.1A schematic of Algorithm 1 for finding the optimal network éod solution of (6.2).
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Algorithm 1 Exhaustive Recursive Search for the Optimal Solution($p &)

1. Start with the original problem of size= K.

2. Solve(Py):

3. if k=1then

4: Returnz; = 1 (since the variable is not constrained).

5. else
6: Determine the constrained set for all variablggo z;..
7. Denote the index of the variable with the largest constihset bys and the cardinality

of its constrained set by,.
. Denote the cardinality of the unconstrainedigdiy k.,.

9:  Set all the unconstrained variables to 1.
10: Setz, = 1 and the variables in its corresponding constrained st 0.
11:  Reduce the problem by removing resolved variables. Redyaecordingly.
12: SOIVeODk—ku—ks—l)-
13:  Combine the solution with previously resolved variablesveSsolution.
14: Setz, = 0.
15:  Reduce the problem by removing resolved variables. Redya@ecordingly.
16:  SolvePr_, 1)
17:  Combine the solution with previously resolved variablestuRn solution(s).
18: end if

Remark 6 In line 7 of Algorithm 1, we have chosen to resolve the vadahkith the largest
constraint set first. As the search is exhaustive, the oml&rhich variables are resolved does
not matter, in principle. Our choice is motivated by empfiobservations, after trying many

different rules.

It is straightforward to see that Algorithm 1 correspondarnaexhaustive search and therefore
is guaranteed to return all optimal solutions of (6.2). Aiat proof of that can be found in [23].
However, we note that not every solution returned by Aldwnitl is optimal. The non-optimal
solutions can be easily discarded by testing against trectig function (6.2) at the end of the
algorithm. We also note that in Algorithm 1, we can simply o those packets received by
every receiver from the problem. If there dg such variables, we can start step 1) above from

k= K — K, instead ofK.
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6.3.2 Fast Search

There are situations where one would like to obtain a (ptssilboptimal) solution quickly.
This may be the case, for example, when the total number ddgpsto be transmitted is very

large. Therefore, consider the following heuristic.

Weight Sorted Heuristic Algorithm - As in Algorithm 1, we start with the original problem
of sizek = K. We rearrange the columns of the matrixin descending order of,;. We
set the head variable, = 1 and given its corresponding constrained Getesolvek,; = |C|
variables that are to be set to zero. We then solve the srpatiblem of sizeP;,_,, and continue
until the problem cannot be further reduced. One main diffee between this heuristic and
Algorithm 1 is that at each recursion, the head variable Ig set to one; the other possibility
of z; = 0 is not explored. In a sense, this heuristic algorithm figd=edysolutions to the
problem at each recursion by serving the highest priorigkpt In this heuristic algorithm,
all k£, unconstrained variables are automatically set to 1 in thessoof the algorithm. The
computational complexity of this method is at worst projmoral to &K', which can happen when

there is no constraint between packets.

6.4 Performance Evaluation

We compare our optimal algorithm and the proposed heurigtit the random opportunistic
algorithm proposed in [3]. In Fig. 6.2, we have plotted thatdelay (the sum of the delays
experienced by the different receivers) for the transmaissif X' = 100 packets. Both the
optimal algorithm as well as the heuristic outperform thed@m opportunistic algorithm of
[3] - in certain regimes substantially. Also note that, foe tscenario in this experiment, the
performance of our heuristic is much closer to the optimgbathm than to the algorithm in
[3]. This illustrates that precisely defining the optimditisg) and then seeking approximations

within this framework is a promising approach.
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Figure 6.2 Median of decoding delay for the transmissionfof= 100 packets toN = 3 to
N = 100 receivers. Channel erasures are memoryless and occur witibability ofp = 0.5
independently in every link. We compare Algorithm 1, our h&tic, and the random oppor-
tunistic algorithm in [3].
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Figure 6.3 The effect of increasing the number of packets on the contiput complexity of
Algorithm 1. Our measure for computational complexity is tumber of recursions.
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In Fig. 6.3, we show the computational complexity of the wyati algorithm as a function of
the number of packets” and number of receiver. For a wide range of meaningful problem
sizes the algorithm is very efficient. This is somewhat daipg as the underlying problem is
NP-hard. Another interesting observation is that in thigfggmore receivers require fewer iter-
ations. This is consistent with the theory and practice tgar programming. It is well-known
that if in an integer program the number of variables is kegptstant but more constraints (in
our case each receiver corresponds to a new constraintjideel ahe computational efficiency
improves [69, Section 1.2]. This is in sharp contrast witleéir programming, where the com-

putational complexity increases with the number of vagabhdthe number of constraints.
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6.5 Discussion

We have defined delay in an “order-oblivious” fashion andweetran optimal algorithm to min-

imize the delay for one transmission at a time. Applying #igorithm successively, leads to
reductions in delay as compared to the approach in [3]. Euribre, although the underly-
ing combinatorial problem is NP-hard, our algorithm candiarproblems of reasonable size

efficiently.



Conclusion

We have looked at possibilities to apply network coding toelgss multi-hop networks in a
way that is well-matched with the other layers of the netwaspecially the multiple access
layer. We addressed optimal transmission scheduling fiovork coded multicast traffic, asyn-
chronous algorithms for computing multicast subgraphd,iater-session network coding with

instantaneous decoding.

Many of the problems we addressed, such as optimal schgdulimetwork coding subject to
instantaneous decoding, are inherently hard. At the cbey, tequire solving NP-hard stable
set problems. This means that, in practice, it is likely tha¢ would have to resort to ap-
proximations and heuristics. How practical, then, is oyrapch, and why did we not choose
heuristics to begin with? Our contribution is a better usthrding of the problem structure
and an encapsulation of the inherent combinatorial diffjc®nce the combinatorial problem
is clearly formulated, we can capitalize on the rich set giragimation algorithms for NP-hard

problems. This is at the same time a safeguard from applyeéngstics, where unnecessary.
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The mathematical tools we used in our work - multi commodiwfproblems with side con-
straints, graphical models for conflicts, and techniquemfoptimization decomposition, to
name a few - date back a long time. In the context of networfop@ance optimization, their
application has been well-known for at least two decadedpasmented in the seminal work
of Bertsekas and Gallager [32]. When network coding entexgptcture, however, these tech-
niques have to be adapted and modified to take into accoussptwal properties of network
coding. For instance, we have seen that when schedulingorietwoded transmissions, we
want to activate hyperarcs, instead of arcs. We have alserstiat, we can use conflict graph
models to express conflicts on the schedule, as well as orottee Sometimes major changes
are called for, sometimes just subtle twists are requiredanly case, it is imperative to take
the peculiarities that network coding introduces into actavhen designing coded networks.

Otherwise performance will certainly fall short of the pibés.

The goal of our work has been to analyze the performance wfanktcoding in wireless net-
works and provide algorithms that can guide the more praicsue of protocol design. Our
models are in the language of mathematical programmingre@senetwork protocols are hard-
ware and software solutions. Thus, there is still a gap tdderi When designing theoretical
abstractions for practical problems, one can not inclubiprattically relevant constraints into
the formulation. Without simplification, it is impossible get to the crux of a problem and to
get useful insight. There is a great deal of work to be donéherimhplementation of network
coding in wireless networks, and it is likely that it will becessary to incorporate more con-
straints and practical considerations into our modelsti¢egarly, in the rapidly growing field

of heterogeneous networking it is likely that new modelihgltenges will arise.

In this work, we have addressed delay in Chapter 6. Howevest of our focus was on
throughput. If network traffic has to satisfy streaming altiene guarantees, then delay be-
comes at least as important as throughput. Network codigginiag in order packet delivery

- and therefore meeting more stringent delay constrainigs-tdeen addressed, for instance
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in [65]. However, the throughput-delay tradeoff in codedeldss networks remains a largely
open problem. One promising approach is to adapt the fotionlan Chapter 6 to accom-

modate packets with service deadlines, thus relaxing ttamtaneous decoding condition. A
possible approach could be to combine in order delivery withrestriction that packets are

decodable after a fixed (small) number of slots, rather thatantaneously.

Another open problem is to understand the practical limitsiter-session network coding.
We have seen that by imposing instantaneous decoding, olept becomes tractable. When
instantaneous decoding is relaxed, the problem becomesothalledindex coding with side
informationproblem [70], which is a very difficult combinatorial probe even when restrict-
ing attention to linear codes. The setup in [70] is staticafTik, the goal is to minimize the
number of transmissions for a fixed batch of packets. In m@chowever, new packets arrive
and receive service continuously. Therefore, even if weccampute the “optimal” solution for
a fixed batch of packets, it becomes outdated as soon as n&etpacrive. The challenge is
thus to design algorithms that generalize instantaneonsditeg, assume dynamic arrivals and

departures, and are useful from an engineering perspective

To illustrate how the framework proposed in this thesis caidg network coding implemen-
tation in practice, we discuss three projects addressimgntbplementation of network coding.
They were student research projects carried out under ngngigpn at the Institute for Com-

munications Engineering at Technical University Munich.

7.1 Implementation of Network Coding: Case Studies

7.1.1 Case 1: Wireless Video Transmission using Network Caty

In this project, the goal was to implement a wireless tragsimn protocol for streaming net-
work coded video. The implementation is in the framework e tiscrete event simulator

NS-2 [71], a free network simulation platform that is widelsed in academia. For a survey on
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network coding for video applications see [72].

The underlying transport protocol is the connectionlessriDatagram Protocol (UDP) [73].
UDP does not feature an acknowledgment mechanism, as forped CP. The packets of the
MPEG-4 video stream are partitioned in blocks (generajiand the generations are transmit-
ted using standard random network coding o&df(2%). Network coding requires acknowl-
edgments only after each generation; this small additifaelback can be easily implemented

without having to redesign the transport protocol.

The evaluation of the video quality takes into account tlo@®ponents: average packet loss
rate, average packet delay, and the perceived video qudlityinteresting result was that,
in practice, short generation sizes (6 to 8 packets) withesowerlap performed best [74]. Of
course, when the focus is solely on increasing the throughapme generation sizes are required.
However, in video streaming delay is often more criticahttl@oughput and a moderate packet

loss rate can be tolerated. The results are summarizedjin [74

7.1.2 Case 2: Network Coding for Heterogeneous Networks

In this research project, we look at implementing networtlicg across different networks.
Modern user equipments can connect to both wireless loealrsetworks (WiFi) via the 802.11
protocol and at the same time to 3G or 4G wireless systems audhMTS, LTE, or LTE-
Advanced. The cellular network usually provides relialid@erage but incurs a high cost per
packet, whereas LANs provide cheaper access but are notsateitable. To ensure a satisfac-
tory quality of experience for an application like streagiindeo, the best engineering solution
may be to use both networks simultaneously. In such a se@emaiwork coding can help im-
prove reliability, reduce the cost for achieving a certairalify of experience, and reduce the

coordination requirements between the different netwodess points.

Concretely, we investigate how we can use network codingmobine information sent over

the two different connections and simulate and comparerdifit schemes with the OPNET



7.1 Implementation of Network Coding: Case Studies 101

modeler [75]. OPNET is, as opposed to NS-2, a commerciathablis widely used in industry.
Many protocols can be specified by means of state transitagrains and additional C or C++

code, e.g. for the finite field arithmetics, can be integrated

From a theretical perspective, the work [76] looks at stiegnmedia and the trade-off be-
tween the probability of interruption and the buffering &inAs a concrete application of the re-
sults in [76], we consider a file download using network cod€® [77]. The novelty over [77]
is that we consider network coded TCP over heterogeneouwsriet and investigate various
association policies and their quality of experience ad a&ltheir cost. A detailed project

description can be found in [78].

7.1.3 Case 3: Network Coding for Relaying in LTE-A

Relaying is a promising way to increase coverage in celllegless networks and to improve
connections to cell-edge users. Consequently, relayiadpban incorporated into recent wire-

less communication standards like LTE-Advanced [79].

The full information theoretic characterization of theayelchannel is still an open problem
and physical layer techniques (see e.g. [80] or [81] for dnadmplementation) are not only
difficult to implement but also may be inadequate if the neknvand the channel conditions
change quickly. However, as we have seen in the example git€h2, relaying can be easily
implemented on higher layers using network coding. Netveading allows us to cooperate at

higher layers, thus giving us much more flexibility to exptbie time variations of the network.

In particular, in this project we consider a TCP connectiamf the base station to a mobile
user equipment via a relay. Network coding for TCP has baetiest in [77], where the authors
use a sliding window for selecting the packets to be encodi&é. relay can be either used to
extend the coverage of the base station or to enhance the woication if both relay and end
user are covered by the base station. Questions that wesadal® how we can use network

coding to optimize the throughput and delay charactessiidche TCP session, and if we as-
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sume a streaming media application to what extent netwadingacan reduce the completion

time of the download. A detailed project description candaenfd in [82].



Appendix

A.1 Analytical Solution of the Linear Program (2.7)-(2.14)

Consider the abbreviations:

S QO & »

(p1{23}2 + Di{2sys + p1{23}{23})
(p1{23}3 + p1{23}{23})
(p1{23}2 + p1{23}{23})

P233-

(A.1)
(A.2)
(A.3)

(A.4)

Note that the variable,; is redundant, we can simply replace it with,. We proceed to

eliminatex,, according to the Fourier-Motzkin procedure [31, Sectid].2To that end, we

rewrite the constraints involving;, in the following way (and keep the ones not involving):
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r12 > 0 (A.5)

Ti2 > R—uxi3 (A.6)

aC > w9 (A.7)
aA—x13 > T30 (A.8)
(I—a)D > (A.9)
0<mz3 < aB (A.10)
0<a < 1 (A.11)

After eliminatingz,2, removing redundant constraints, and arranging for thaieétion of

13, We are left with:

r13 > R—aC (A.12)
r13 > R—(1—-a)D (A.13)
T3 > 0 (A.14)
aB > w3 (A.15)
aA > R (A.16)
0<a < 1 (A.17)

After eliminatingx3, removing redundant constraints, and arranging for theieétion of,

we are left with:

a > R/A (A.18)
a(B-D) > R-D (A.19)
1 > « (A.20)
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Now, if B > D, Eqn. (A.19) becomes

a>(R—-D)/(B—-D), (A.21)
and after eliminatingy, we ultimately get

R < B, (A.22)
and the maximal rate iR* = B; this corresponds to not using the relay.
On the other hand, iB < D, Eqn. (A.19) becomes

(R—D)/(B—=D)=a, (A.23)
and after eliminatingy, we ultimately get

R<AD/(A— B+ D), (A.24)

and the maximal rate iB* = AD/(A— B + D).

To determine the coefficieat*, we plug inR* in constraints (A.18) and (A.19), and get

T A-B+D

(A.25)
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A.2 Distributed Maximal Stable Set Algorithm

Consider the following algorithm, due to [49]. The input Isetweighted conflict graph
G = (V,€&) with weights as defined in Eqn. (3.37). Let denote the weight of vertex
v € V. The algorithm is executed at each nade V as described in the pseudo-code for
Algorithm 2 below. Algorithm 2 calls two subroutines, alseen below. We uséVg(v) to de-
note the neighborhood of noden the conflict graply;. Boolean variabless(u) andjoin(u, t),

u € {v}UNg(v) andt € V are initialized toF'alse. Settingss(u) to True means that belongs
to the stable set. Settingin(u,t) to True means that node is not a stable set member but a
neighbor of stable set memberSetting either one of these variables/toue is communicated
to the neighbors by means of messag§8¢u), andJoi n(u,t), respectively. After the initial-
ization phase, node performs updates upon receiving messages from its neighlddter it
has permanently decided whether to be a stable set membet, ot exits the algorithm (this

happens in one of the two subroutines).

Algorithm 2 Decentralized weighted maximal stable set [49]
1: initialize:
ss(u) <« False
join(u,t) < False
if for eachu € Ng(v) we havew, > w, then
ss(v) « True
sendSS(v)
exit
end if
loop
on receivingSS(u) :
executesubroutinel
on receivingJoi n(u,t) :
executesubroutine2
. end loop

e e =
A NRO

The following proposition shows the correctness of the @lgon and bounds the number of

iterations needed for convergence,
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Algorithm 3 Subroutine 1.
1: ss(u) « True

2: if for eachz € Ng(v) : w, > w, there exists a € V such thatjoin(z, z) is truethen

3:  sendJoi n(v,u)

4:  exit

5. end if

Algorithm 4 Subroutine 2.
1: join(u,t) < True
2: if for eachz € Ng(v) : w, > w, is join(z, x) for somex € V then

3:  sendSS(v)

4:  ss(v) < True

5. exit

6: else iffor atleast & € Ng(v) is ss(z) and for eachu € Ng(v) : w, > w, is join(u, x) for

somex € V then
7:  sendJoi n(v, max,,_ {z : ss(z)})
8: exit
9: end if

Proposition 3 [49, Theorem 1] All nodes in the network exit the algorithnmigeassigned ei-
ther membership or non-membership to a stable set. Theessablcomputed is maximal. Fur-
thermore, the number of steps needed for a node to termihataltjorithm is upper bounded

by 2a/(G), i.e. twice the stability number of the conflict gragh
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A.3 The Asynchronous Algorithm with Polymatroidal Con-

straints

With polymatroidal constraints, and assuming one hypefarf) for each node, the problem

is
minimize Z fis(zig)
(3, J)eA

subject to:

>l < bk, V(i,J)€EAKCILET, (A.26)

jeEK

Yooall - Y AV =06, vieNteT, (A.27)

Ji(i,5)eA j:(ji)eA
2 >0, V(@i,j)eA teT. (A.28)

Here, as usuald denotes the set of hyperarcs, wheretiss the set of induced arcs, i.e.

A ={(i,j):i eN,je J}

Since we assume that thfg; are monotonically increasing, constraint (A.26) implieatt

0
Ziy = max {M} . (A.29)

KCJteT biJK

This can be the replaced with the soft-maximum

zé(,leog( Z exp (ll,/ZJGK ”)). (A.30)

b
KCJteT WK

Thus, the optimization problem becomes
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()
minimize Z fis (Llog( Z exp (%M)))

b;
(i,J)eA KCJteT WK

subject to

Z 2V — 2V = O'<(t), Vie N,teT, (A.31)

V(i,j) e At eT, (A.32)

which is again a multicommodity flow problem, and moreovdydwocally coupled through the

objective function. Therefore, the analysis in Chapter @liap.






Abbreviations

List of Abbreviations

CDMA code division multiple access
FEC forward error correction

GF Galois field

ILP integer linear program
LAN local area network

LP linear program

LTE long term evolution

LTE-A long term evolution - advanced

MAC multiple access



112 Appendix B m Abbreviations

MPEG moving picture experts group

MWSS maximum weighted stable set

SNR signal-to-noise ratio

SQP sequential quadratic programming

TCP transmission control protocol

UAV unmanned aerial vehicle

UDP user datagram protocol

UMTS universal mobile telecommunication system

XOR exclusive or
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