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Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. sc. techn. Andreas Herkersdorf
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Abstract

Due to the use of advanced communication technology, closed-loop control systems be-
come more flexible, robust and easier to maintain. In such networked control systems
(NCSs), the conventional point-to-point connection between the controllers and the phys-
ical systems are replaced by a communication network. Typical examples can be found in
process control, robotics, and automotive industry.

However, the insertion of a communication network into a control loop gives rise new
challenges; the use of a communication network comes at the price of non-ideal signal
transmission. Random transmission delay and packet dropouts are known as a source of
instability and deteriorate the control performance. One of the major challenges is to
guarantee a desired control performance in the presence of communication uncertainties
at efficient utilization of the limited communication resources.

This dissertation provides a comprehensive development concept for NCSs, which brings
different perspectives of stability, control performance, and network resources into one joint
design process. In order to guarantee the desired control performance with efficient net-
work resource utilization, the existing approaches for sampled-data systems and stochastic
switched time-delay systems are extended. As a result, two novel control and commu-
nication system co-design approaches are proposed and systematically investigated. The
proposed approaches are analytically verified and experimentally validated in a networked
vision-based control system and three degree-of-freedom robotic manipulator control. Both
analytical and experimental results demonstrate superior performance benefits compared
to the conventional system design.

Zusammenfassung

Durch den Einsatz fortschrittlicher Kommunikationstechnologie können Regelungssys-
teme inzwischen flexibler, robuster und wartungsgünstiger gestaltet werden. Dies
gelingt durch den Einsatz vernetzter Regelungssysteme (Engl. Networked Control Sys-
tems/NCSs), in denen die Signale zwischen Prozess und Regler über ein Kommunikations-
netz übertragen werden. Wichtige Anwendungsgebiete finden sich unter anderem in der
Prozessautomatisierung, der Robotik und der Fahrzeugtechnik.

Die Einbindung eines Kommunikationsnetzwerks in einen Regelkreis ist jedoch mit
neuen Herausforderungen verbunden. Zum einen beeinträchtigen die durch den Datenaus-
tausch über das Kommunikationsnetz entstehenden Zeitverzögerungen und Paketverluste
die Stabilität und Regelgüte, zum anderen stehen nur beschränkte Netzwerkressourcen
zur Verfügung. Die Herausforderung besteht nun darin, eine gewünschte Regelgüte bei
möglichst geringer Nutzung der Kommunkationsressourcen und angesichts der Kommu-
nikationsunsicherheiten zu erreichen.

In dieser Dissertation wird ein umfassendes Entwurfskonzept für vernetzte Regelungssys-
teme vorgeschlagen, welches die gemeinsame Berücksichtigung der verschiedenen An-
forderungen an Stabilität, Regelgüte sowie Kommunikationsressourcen in einem Ent-
wurfprozess ermöglicht. In diesem Sinne werden zwei neuartige Co-Design-Ansätze
für Regelungssystem und Kommunikationsnetzwerk entwickelt und erforscht, welche die
gewünschte Regelgüte bei kostengünstigstem Datenverkehr garantiert. Zur Analyse und
Synthese derartiger Systeme werden existierende regelungstheoretische Methoden der Ab-
tastsysteme und der stochastisch schaltenden Systeme mit Zeitverzögerung erweitert. Die
Vorzüge der vorgeschlagenen Verfahren gegenüber einem konventionellen Systementwurf
konnten nicht nur analytisch sondern auch in Experimenten mit einer bildbasierten ver-
netzten Regelung und einer Manipulatorregelung überzeugend nachgewiesen werden.
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1 Introduction

1.1 Network control systems

Dynamical systems with spatially distributed sensors and actuators connected via a com-
mon network are called networked control systems (NCSs), see Fig. 1.1. Compared to
conventional point-to-point connections, applications of control over networks have con-
siderable advantages. To name a few, the sensors and controllers can be added or removed
without wiring efforts. The re-configurability of control systems is increased. Connecting
systems over a common network simplifies the diagnosis procedures at component failures
as well as maintenance. This helps to reduce the general cost of systems. Furthermore, the
use of common networks connects distributed physical spaces, which makes task execution
from a distance easily accessible. Networks allow data to be shared efficiently. This enables
an intelligent decision over a large physical space by the fusion of global information. In
summary, the most important advantages of NCSs are given in the following:

• reduced complexity, wiring and cost of systems,

• easy maintenance, diagnosis and reconfiguration,

• increased flexibility and autonomy.

As a result, NCS control concept has superior benefits in the practical applications and
installations over the actual control structures. Furthermore, with the recent advances in
wireless networking, a large variety low-cost sensing devices can be deployed throughout a
operating environment to reflect the physical phenomena with increasing fidelity. This is
infeasible with conventional control structures.

Communication Network

ADC DAC

Controller Node

Sensor Node Actuator Node

Physical Plant

Figure 1.1: The scheme of networked control systems. Conventional point-to-point connec-
tions are replaced by a shared network.
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1 Introduction

The first NCS example is introduced by automobile industries in 1970’s [100]. At that
time, the motivations was the reduced cost for cabling, modularization of systems, and
flexibility in car manufacturing. Nowadays, NCS technologies are widely applied in other
industrial control applications. Theses applications include manufacturing automation
[11, 111], automobile [30], aircraft [114], teleoperation [56], remote surgery [139], building
automations [98], automated highway systems, vision-based manipulation [112], coverage
control [27], environmental monitoring and surveillance [5].

Regarding the utilization of communication networks, the applications of NCSs can
be roughly categorized into shared-network control systems and remote control systems.
Using a shared-network for the sensor measurement and control commands transmission
can reduce the complexity of connections. This class of NCS has the widest applications
in the current industrial usages. On the other hand, a remote control system is referred
to a complete control system remotely operated by a control unit. Examples are remote
data acquisition systems and remote monitoring systems.

Challenges of control over networks

Despite of many potential advantages, the network solution for control systems introduces
several issues, which differ from conventional system analysis and design, should be ad-
dressed:

i. Delays and packet dropouts: Exchanging data over a communication network results
in non-ideal signal transmission. Delays and packet dropouts might appear dur-
ing the transmission [9, 53, 123, 130]. Particularly, the network transmission delays
are known as a source to jeopardize the stability and deteriorate the performance
of NCSs. The value of delays strongly relates to network configurations, number
of participators, routing transients, aggregate flows as well as network topologies.
Hence, the transmission delays may be non-deterministic for NCSs.

ii. Limited network resources: Having multi-sensors and systems in a shared network,
the consideration of network bandwidth becomes essential in the system design. With
the limited amount of bandwidth available, the emphasis is placed on how to utilize
a network more efficiently and optimally [31,55,94,96,122]. This causes the need of
priority decision and scheduling issues for the data transmission in NCSs.

iii. Synchronization: The fusion of sensor data or coordination of actuation over a net-
work require the synchronization of physical time for the local clocks of distributed
components [32,65,100,118]. Due to the inaccuracies in local clocks, the clock offset
may drift away from each other in time. Hence, the observed time or durations of
time intervals may differ for each component in the network. This might result in
improper sensing, or even worse, unexpected actuating of systems. Therefore, the
requirement of synchronization for NCSs is more essential than any other traditional
point-to-point cabling system.

To cope with these problems caused by inserting the networks into control loops, the
research of NCS is a multidisciplinary area affiliated with computer networking, informa-
tion theory and control theory. Concerning the computer networking, for instance, the
research focuses on designing network protocols so that the stability and performance of

2



1.2 Network protocols and communication uncertainties

underlying NCSs are guaranteed. Typical results are [120, 128, 129], where a maximum
allowable transfer interval (MATI) between two consecutive control inputs is determined
to ensure closed-loop stability.

From the perspective of information theory, the emphasis is on the determination of a
necessary data rate needed to stabilize a unstable plant. By using Shannon’s results, the
finite network-capacity stabilization problem is solved in [31,55,94,122] for linear systems
and [76,95] for nonlinear systems.

In this dissertation, the NCS is investigated from control theoretic perspective. Network-
induced random delays and packet dropouts are mainly considered in the control loop.
Analysis and design methods are developed to preserve the system stability and per-
formance under network unreliability. Regarding the limited network resources, control
methods involving systems and communication networks co-design are established to en-
able a performance trade-off from control and communication. The challenge of clock
synchronization is out of the scope of this dissertation and is not further discussed. Since
the network is considered as a design object, the most important network protocols used
in control systems and their associated attributes are briefly introduced in the following
section.

1.2 Network protocols and communication uncertainties

Generally speaking, communication networks can be categorized into two groups according
to their application areas [59]. Data networks are specified by large data packets and
high throughput. The transmission delays and packet dropouts in data networks often
appear in a non-deterministic manner. Hence, their applications, in general, do not have
hard real-time constraints. Control networks, on the contrary, shuttle small data packets
frequently among system components to meet the real-time requirements. As a result,
their transmission delays are deterministic or at least bounded. Furthermore, the data
transmission of each component happens in sequence such that packet collisions (resulted
in packet dropouts) are avoided.

In views of the transmission technology, both data and control networks can be further
classified into wired and wireless networks. The wired network possesses many advantages
like large bandwidth, high reliability and good security. However, due to the requirement
of the wired connection between devices, the wired network has limited flexibility and
mobility. Compared to the wired network, the wireless network has outstanding flexibility.
However, its bandwidth is limited and the transmission is less reliable for control systems.
For wired or wireless networks, the key element that distinguishes control networks from
data networks is their network protocols being capable of supporting real-time or time-
critical applications.

For the ease of development, the functionality of network protocols is conceptually ar-
ranged into different layers [145]. Each layer is a collection of similar functions which
provide services to the layer above it and receives service from the layer below it. In the
network protocols design, the OSI (Open System Interconnection) seven layer model de-
veloped by ISO (International Organization for Standardization) is mostly considered, see
Fig. 1.2. Among the seven layers, the second layer, or more precisely the medium access
control (MAC) sublayer of the second layer, controls the information transmission and
determines the characteristics of delays and packet dropouts of networks [59,74,79,89]. To
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Media
layers 1. Physical

2. Data link

3. Network

4. Transport

5. Session

6. Presentation

7. Application

Bit

Frame

Packet

Segment

Data
Host
layers

Data Layer

Figure 1.2: OSI seven layers of network protocols.

achieve the timing constraints and guarantee the performance of NCSs, the MAC protocols
must be conjointly analyzed during the controller design of NCSs.

In the following section, the functionalities of most popular control networks used in
NCSs are briefly introduced to clarify how the features of delays and packet dropouts af-
fected by the MAC protocols. A more detail discussion and comparison of control networks
can be bound in [74].

1.2.1 Wired control networks

Token-passing bus

The operation of Token-passing bus is shown in Fig. 1.3. A token is passed from node to
node in a virtual ring, whereby the holder of the token has the access to the network. This
ensures no data collisions and a maximal transmission delay. Furthermore, it provides
excellent throughput and works well under heavy traffic with high degree of determinacy
[68, 132]. During network operation, the token bus can dynamically add nodes to or
remove nodes from the network. However, when large number of nodes are connected,
a great percentage of the network time is used in passing the token. This increases the
overall transmission delay and leads to performance degradation [74].

The typical commercial control networks based on token-passing protocols are
PROFIBUS [132] and ControlNet [4].

Token

Figure 1.3: Token passing in Token Bus protocols
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1.2 Network protocols and communication uncertainties

Controller area network

Controller area network (CAN) is a serial communication protocol developed by Bosch
GmbH in 1983 for automotive industries [1]. The CAN protocol is designed for small data
and uses CSMA/AMP (Carrier Sense Multiple Access, Arbitration on Message Priority)
for collision avoidance. If simultaneous transmission occurs, the data collision is resolved
by a priority based arbitration scheme to decide which one will be granted permission
to continue transmitting. Hence, data with higher priority has guaranteed transmission
delay. However, a data with high priority and large data size can block out completely
the data with lower priority. The major disadvantage of CAN compared with the other
networks is the slower data rate (maximum of 500 Kb/s). Therefore, CAN is only suitable
for transmission of messages with small data sizes (less than 8 bytes) [3, 74].

Ethernet

Ethernet is known as the most popular communication networks and has the widest appli-
cation domains [59]. In general, Ethernet can be categorized into two types: (i) hub-based
Ethernet, which is commonly used for data exchange. It uses CSMA/CD (carrier sense
multiple access with collision detection) mechanism for resolving contention on the com-
munication medium, (ii) switched Ethernet with CSMA/CA (carrier sense multiple access
with collision avoidance) mechanism, which is implemented in manufacturing and control
environments.

Under CSMA/CD, a transmitting node first listens to the network to determine whether
any other node on the network is occupying the medium. If the network is busy, the
transmitting node waits until it becomes idle and continues the transmission. As soon as a
collision is detected, the transmitting node stops transmitting and waits a random length
of time, which is determined by the standard binary exponential backoff (BEB) algorithm,
to retry its transmission.

CSMA/CA is derived from CSMA/CD. Unlike CSMA/CD, which deals with trans-
missions after a collision has occurred, CSMA/CA acts to prevent collisions before they
happen. In CSMA/CA, before a transmitting node sends a packet, it checks the network
whether the network is clear, i.e. no other node is transmitting at the time. If the network
is clear, the packet is sent. Otherwise, the transmitting node waits for a randomly chosen
period of time, and then checks again to see if the network is clear. This period of time is
called the backoff factor, and is counted down by a backoff counter. The packet is trans-
mitted only if the network is free and backoff counter is zero. If the network is not clear
but the backoff counter expires, the backoff factor is set again, and the process is repeated.

Consequently, Ethernet is a non-deterministic protocol. Its network-introduced delay is
randomly and highly depends on the traffic condition. However, Ethernet is cost-effective
and has high bandwidth, popularity as well as versatility. This leads to a steady devel-
opment and improvement of Ethernet technology for the application of complex control
systems, see [30,101,121]. Furthermore, Ethernet supports the providing of different levels
of communication qualities to different applications, e.g. Quality-of-Service (QoS) mecha-
nism.

QoS mechanisms and functions are defined in MAC protocols to control data transmis-
sion. There are four types of MAC layer services characterized by QoS parameters such
as delay, jitter, throughput, packet dropouts. These services can be created, changed, or
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1 Introduction

deleted though the issue of Dynamic Service Addition (DSA), Dynamic Service Change
(DSC), and Dynamic Service Deletion (DSD) messages. Each of these actions can be ini-
tiated by the MAC protocols and are carried out through a two or three-way-handshake
mechanism in IP networks.

A number of architectures have been proposed to enable offering different levels of QoS in
IP networks including the integrated services (IntServ) architecture and the differentiated
service (DiffServ) architecture. In IntServ-based networks, network applications use the
Resource reservation protocol (RSVP) to request and reserve resources through a network.
With rapid growth of network applications, it is difficult to accept, maintain, and tear
down thousands of reservations. A more suitable architecture for large-scale networks is
the DiffServ architecture. In DiffServ-based networks, packets are marked according to
the type of service they need. In response to these markings, routers and switches use
various queuing strategies to tailor performance to their requirements. The IEEE 802.1
workgroups are typical examples supporting DiffServ-based QoS.

As mentioned later in this dissertation, by using the QoS concept, control systems and
communication networks can be conjointly design such that a desired performance of NCSs
can be easily achieved.

1.2.2 Wireless networks

Wireless Ethernet

Similar to CSMA/CA in wired Ethernet, the wireless Ethernet is implemented with colli-
sion avoidance mechanism. If a transmitting node wants a send a packet while the wireless
network is busy, it sets its backoff counter to a randomly chosen value. As soon as the
network is idle, the transmitting node waits first for an interframe space and a backoff time
before sending packets. Due to the random nature of backoff time, any two nodes might
have the same backoff time. The collisions cannot be entirely prevented. Thus, as soon
as a packet is successfully received by its destination, the receiver confirms the sender by
an acknowledgement packet (ACK). If the ACK is not received by the sender for a prede-
fined time interval, the transmission is considered as unsuccessful and a retransmission of
the packet is taken place. This results in non-deterministic network-induced transmission
delays. Furthermore, due to the limited spectrum, time-varying channel and interference,
setting up a wireless NCS is a challenging task.

In spite of above mentioned challenges, wireless networks present a number of unique
advantages. e.g. rapid deployment, flexible installation, fully mobile operation and pre-
venting cable wearing in the industrial automation. Therefore, a significant research ef-
fort has been devoted into the development and improvement of wireless technology for
real-time applications [25, 49, 79, 105]. Typical examples are Bluetooth, IEEE 802.11 and
IEEE 802.15.4 (Zigbee).

In conclusion, with increasing demands from real-time control applications, different
control network protocols have been proposed with guaranteed network characteristics,
e.g. deterministic transmission delay and dropouts. Based on these network specifications,
analysis and design approaches are sequentially developed for NCSs such that stability
and performance are preserved, see [9, 53, 96] for general overview. However, the main
drawbacks with the sequential design process are that the systems are designed by robust
control theories under the assumption of worst-case network-induced uncertainties. This
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might result in pool control performance if the worst-case network-induced uncertainties,
e.g. worst-case delay, appear only rarely. Good control performance can be guaranteed
by the sequential design process with the reservation of large network resources for each
network application. However, this is an inefficient design for NCSs with the limited
network resources and demanding performance. For NCSs, better performance can be
achieved if a co-design approach is adopted where the control system is designed by taking
the resource constraints into account and where the network specification is designed with
the control performance in mind.

As an example, consider an NCS with a CSMA/CA based network. Within the network,
the network applications are prioritized by a CSMA/CA algorithm generating waiting in-
tervals (delays) for collision avoidance. The applications with higher priority have higher
probability of shorter waiting delays and better performance, but need the provision of
large network resources. It is proposed to re-specify the probability distributions of wait-
ing delays under control performance and network capacity constraints so that the desired
performance can be achieved at affordable network cost. In the practical network imple-
mentation, the probability distributions of waiting delays can be realized by choosing the
backoff exponent and backoff period in the CSMA/CA algorithm. Control methods deter-
mining the probability distributions of waiting delays involves a concurrent consideration
from the control and communication aspects and are the main focus in this dissertation.

1.3 Related work

The co-design problem of control systems refers to the development concept, where different
perspectives of a system are brought into one design process. The first co-design example
can be traced back to the 1970s [6,48]. At that time, the limited word length, fixed-point
calculations, and limited CPU speed were well-known constraints among control engi-
neers. For the better use of computing resources, the conjoint designs of control algorithm
and control software have received a considerable amount of attentions [7, 33, 45, 99, 133].
Nowadays, the shared networks are increasingly adopted in the control loops. The co-
design problems towards control systems and network issues, such as limited bandwidth,
delays and dropouts are widely open and deserve to be explored.

Hybrid 
systems

Networking

Control
Real-time

Scheduling
Co-Design 
approaches

Figure 1.4: The integration of multidiscipline of control systems and communication co-design.

Aiming at performance at limited network resources, the concurrent design of control
systems and communication networks for NCSs requires an integration of several disci-
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plines, including hybrid systems, control, networking and real-time scheduling as shown
in Fig. 1.4. Different analysis methodologies are applied to different network transmission
characteristics. Generally, related works on the co-design of control systems and communi-
cation networks can be categorized into two categories: deterministic and stochastic design
approaches, see [9, 53, 77, 123, 138] for a general overview. Some of the important results
are summarized in the following.

In the framework of deterministic design approaches, the first work concerning control
systems and communication networks co-design for NCSs can be found in [19], where a
maximal allowable transmission interval (MATI) is determined to coordinate a set of time-
discrete linear systems such that the stability of each system is guaranteed. The MATI is
further extended for linear NCSs with lossy networks by using rate-monotonic scheduling
algorithm in [17, 18], and for nonlinear NCSs by using perturbation theories in [127, 129],
input-to-state stability in [97] and delay-impulsive systems in [93].

Similar deterministic co-design approaches can be found in [40, 75, 88, 124, 141, 144].
In [40], linear time-discrete NCSs over a limited bandwidth deterministic network are con-
sidered. The problem of optimal control and network scheduling is solved by using a mixed
integer quadratic programming algorithm. The derived results are applied to control and
schedule a car suspension system for validation. The design methodologies of guaran-
teeing acceptable control and communication performance for NCSs are studied in [75].
A dead-band controller and state estimator are proposed to dynamically adjust the the
communication rate based on the control and communication performance requirement.
In [88], a co-design of networked controllers and feedback scheduling policies is considered.
A adaptive technique for controllers is established to enable a dynamic management of
network though message scheduling. A gain scheduler middleware is proposed in [124], by
which the output of existing controllers is modified by a gain scheduling algorithm with
respect to the current network traffic conditions. As a result, conventional controllers de-
signed without network consideration can be still utilized for NCSs. In [141], an algorithm
to design a periodic sequence for the networking of sensors and actuators, under which the
exponential stability of the NCS is preserved, is proposed. A co-design of predictive con-
troller and network scheduling is studied in [144], where a scheduling algorithm is designed
with the guarantee of system stability by ensuring the communication periods of systems
within an analytical upper bound. The delayed control output is compensated by using
delayed sensing data and previous control information. However, to generate the control
prediction requires an exact knowledge of systems and delays. This approach is unsuitable
for systems with modeling uncertainties and non-deterministic networks.

The advantage of MATI-based co-design algorithms is that it results in deterministic net-
work scheduling protocols, which can be easily implemented into Token-ring, PROFIBUS
and CAN bus. However, these algorithms require the worst-case consideration of network-
induced delays and packet dropouts. This might lead to unnecessary conservative controller
design when the worst-case delays or dropouts rarely happen in the practical network trans-
mission.

To avoid the conservatism introduced by worst-case assumptions in the deterministic
co-design approaches, the probability distributions of network attributes are considered in
the system analysis. For this purpose, stochastic processes are introduced to accommodate
the abrupt variations of network uncertainties within an analytical framework. In NCS
applications, network-induced random delays and packet dropouts are modeled by Markov
processes [42,50,66,131]. The resulting NCS is a Markovian jump system [13,21,117,142].
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Its stability and stabilization conditions are derived by using stochastic Lyapunov functions
(or functionals) [71] and presented in terms of linear matrix inequality (LMI) [13,15].

Literature applying stochastic analysis methodologies to control systems and commu-
nication co-design can be found in [26, 62, 63, 79, 120, 136]. Issues concerning bandwidth
limitations of NCSs with ad hoc wireless networks are addressed in [26]. A static sam-
pling adaptation scheduling guaranteeing mean square stability is proposed for linear
time-discrete NCSs with wireless networks. In [62], the optimal control problem of lin-
ear time-invariant (LTI) systems over lossy communication networks are explored. The
control law is optimized by using stochastic dynamic programming and is derived in the
form of a Riccati equation. However, this approach cannot be applied to NCSs with random
delays. Stochastic optimal control and communication network co-design for NCSs with
delays are considered in [63]. However, the network-induced delay is assumed to be less
than one sampling interval. Therefore, this approach may be unsuitable for systems with
longer time delay. In [79], a complex design index incorporating the network throughput,
transmission delay and packet dropout probabilities is considered. A cross-layer frame-
work is proposed to conjointly design the network and remote controllers such that the
design index is optimized. Nonlinear NCSs employing Ethernet-like wireless and wireline
networks are studied in [120]. A stochastic protocol developed by input-output stability is
proposed for stabilizing a set of nonlinear NCSs with exogenous disturbances and random
packet dropouts. The resource allocation problem of a communication network with bit-
rate limitations is considered in [136]. An uniform quantization with white-noise errors is
applied to model the effect of bit-rate limited networks. An optimal control performance
is jointly achieved by allocating network resources and tuning controller parameters.

To sum up, stochastic design approaches removes the conservatism of their deterministic
counterpart by considering the probability distributions of network-induced uncertainties.
However, similar to deterministic design approaches, where research efforts are mainly
devoted to develop scheduling algorithms such that system stability and network capacity
constraints are jointly preserved. The stochastic analysis is applied either to stabilize
control systems with random uncertainties or to allocate network resources under stability
constraints. Until now, there are few works in the past literature, which jointly deal with
the stability analysis, network resources and control performance at the same time. To
the best knowledge of the author, the performance oriented conjoint design of NCS are
mentioned in [75,88] and [79,136]. However, the network uncertainties, such as delay and
packet dropouts, are excluded in [75, 136] and the network-indued delay is assumed to
be less than one sampling interval in [88]. Although the random transmission delay and
packet dropouts are considered in [79], no rigorous analysis is mentioned. The conjoint
design of control systems and communication networks for NCS related issues is still in its
infancy

This motivates an analytical exploration of co-design approaches jointly handling ran-
dom network-induced uncertainties, resource constraints and control performance. In this
dissertation, stochastic control methodologies are applied for the analysis of NCSs. A link
between the stability/performance requirements of control applications and quality restric-
tions on the communication networks is built through statistical specification of underlying
networks. Based on this, novel co-design approaches are developed for performance ori-
ented NCS control.
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1.4 Main Contribution and outlines of the dissertation

The presented dissertation focuses on the stochastic conjoint design of control system and
communication network for linear time-invariant (LTI) NCSs. An important issue is the
consideration of limited network capacity in the control design and the trade-off between
control performance and network resources. The main contributions of this dissertation are
three fold. First, stochastic control and analysis methodologies are taken into account and
result in less conservative co-design approaches than conventional worst-case assumptions.
Second, the proposed co-design approaches integrate the performance trade-off from control
and communication. It enables the development of more efficient and affordable NCSs
which can scale and adapt with limited network resources. Third, the application of the
proposed co-design approaches requires no exact values of network uncertainties, but their
distributions. This is simplifies the implementation in real systems and networks.

This dissertation is separated into two parts according to associated LTI systems. The
first part deals with LTI systems with periodic data transmission rate and random network
uncertainties, i.e. transmission delay and packet dropouts. The objective is to balance
a guaranteed control performance versus required network resources. The second part
concerns LTI systems with random sampling intervals and random network uncertainties.
It is aimed to adapt the system data transmission rate to achieve an efficient network
utilization. Results and primary work of this dissertation are published in [21–24, 57, 58,
134]. The structure of this work is give in Fig. 1.5. The associated outline of the presented
results are given in the following.

Chapter 5 Co-design approaches
performance

vs.
network cost

data transmission rate
vs.

network utilization

Chapter 3
NCS

periodic sampling

Chapter 4
NCS

aperiodic sampling

Stochastic Analysis

stability + stabilization + performance

Figure 1.5: Outline of the dissertation.

In Chapter 2, the theoretical background is presented. To accommodate the stochastic
variations as well as uncertainties1 of networks within the analytical framework, a Markov
process is introduced. The usefulness of Markov process in network uncertainty model-
ing is apparent since it enables to describe the random uncertainties by making use of
the knowledge of their occurrence and statistical patterns, which truly reflects network
attributes. Control systems containing Markovian parameters (or uncertainties modeled

1The network uncertainties are meant to network-induced delay and packet dropouts.
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by Markov process) are termed Markovian jump systems (MJSs). The theoretic properties
of MJSs are addressed and notions of stochastic stability are revisited. A stochastic Lya-
punov function is illustrated for the stability analysis. Finally, the linear matrix inequality
(LMI) and convex optimization are briefly introduced. Due to its numerical efficacy, all
the stability and stabilization conditions given in this dissertation are derived in terms of
LMIs.

Stochastic NCSs with periodic sampling interval and random network-induced uncer-
tainties are considered in Chapter 3. The random network-induced delay and packet
dropouts are modeled by a Markov process. In order to improve the performance, a
novel delay-dependent switching controller is introduced. An MJS with mode-dependent
delay is established in this chapter and the associated stability as well as stabilization con-
ditions are derived by using stochastic analysis methodologies. Different to deterministic
time-delay systems, the obtained stability as well as stabilization conditions are derived
depending not only on delays, but also on their associated statistical properties. An inno-
vative guaranteed control performance analysis is developed to maintain the stability and
desired performance of NCSs under pre-defined statistical properties of delays.

Due to external traffic and limitations on network capacities, a network can be more
efficiently utilized if the sampling rate of NCSs can be adapted according to network condi-
tions. In Chapter 4, stochastic NCSs with random sampling intervals are considered. The
random sampling interval together with random delays are reformulated into time-varying
delays by using the input-delay approach. A set of indicator functions having independent
identical distributions (i.i.d.) is introduced to describe the probabilistic occurrence of the
time-varying delays. The resulting NCSs are randomly switched time-delay systems. As-
sociated stability and stabilization conditions are obtained depending on the probabilistic
distributions of sampling intervals and delays. In this chapter, a novel performance guaran-
teed design, which correlates the performance upper bound with probability distributions
of sampling intervals, is proposed.

Two novel approaches aiming at performance oriented control system and communica-
tion network co-design are addressed in Chapter 5. In the first co-design approach, the
Quality-of-Service (QoS) concept from the networking community is considered. Based
on the results from Chapter 3, performance requirements of a control system and restric-
tions of a communication network are linked through statistical properties of the underling
Markov process. QoS is then related to the ability of adjusting the probability transition
rate of such Markov process. A cost-performance trade-off is achieved by appropriately
parameterizing the Markov probability transition rate. According to the results from Chap-
ter 4, the second co-design approach incorporates control performance and network usage
in terms of probability distributions of associated data transmission rates. The goal is to
develop a network usage efficient NCS. The performance of both considered approaches
are explored in case studies. Benefits in terms of guaranteed control performance with
efficient network usage are shown in the simulation results.

Chapter 6 verifies the proposed methods experimentally. Two different experiments
are conducted. In the first experiment, a robotic manipulator is subjected to a QoS
network. The first co-design approach addressed in Chapter 5 is used to cope with a cost-
performance trade-off. The second experiment concerns a networked visual servo control
system (NVSCS) with variable image transmission rate. The second co-design approach
in Chapter 5 is applied to achieve a network usage-performance trade-off. In order to
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show the benefits of proposed approaches, benchmarks without co-design approaches are
performed for comparison within the experimental validations.

The dissertation is concluded in Chapter 7 with a summary and discussion about future
directions.
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2 Stochastic Control Systems

As mentioned in the previous chapter, the random transmission delays and packet dropouts
are the main issues in following chapters. The purpose of this chapter is to introduce the
essential tools for the modeling of network uncertainties and analysis of stochastic control
systems.

For the stochastic modeling, Markov processes are concerned. The Markov process,
named after Andrey A. Markov (1856-1922), is an important class of stochastic processes
with special feature called the Markov property. The Markov property allows the outcome
of a Markov process at any time instant to depend only on the outcome that precedes
it and none before that [103]. Markov processes are extensively used in the modeling of
many communication phenomena [10, 29, 50, 66] e.g. transmission delays, packet dropouts
and queuing mechanism, whenever probabilities are used to represent the unknown details
of the communication networks. Within the framework of this dissertation, the effect of
packet dropouts is formulated as an additional delay. The resulting random delay, which
means the sum of additional delay and transmission delay, is modeled by a Markov process
and termed Markovian delay.

A class of hybrid dynamical systems, whose discrete and continuous states are modeled
by a random process and corresponding differential equations is categorized as stochastic
jump systems. According to developed applications, two types of stochastic jump systems
are considered in this chapter, e.i. Markovian jump systems (MJSs) and randomly switched
time-delay systems. An MJS is a special class of stochastic jump systems whose switching
between sub-systems is governed by a Markov process. Furthermore, a set of MJSs subject
to a Markovian delay is classified as MJSs with mode-dependent delay. The theoretic prop-
erties of MJSs, MJSs with mode-dependent delay as well as randomly switched time-delay
systems are addressed and the notions of stochastic stability are revisited. A Stochastic
Lyapunov function is illustrated for stability analysis. The linear matrix inequality (LMI)
and convex optimization are introduced due to their numerical benefits in system analysis
and design.

2.1 Markov process

An independent stochastic process represents its outcome at any instant to depend only on
the outcome that precedes it and none before that is called a Markov process, {rt, t ≥ 0}.
In general, for a Markov process the time index t can be discrete or continuous. In addition,
starting from some initial time t = 0, the process rt changes its values in a finite (infinite)
set randomly as time goes on. Due to the requirement of this dissertation, a continuous-
time Markov process taking values in a finite set is considered. Within this work, a
continuous-time Markov process is simply termed Markov process for abbreviation.
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2.1.1 Continuous-time Markov process

Consider a continuous-time Markov process {rt, t ≥ 0} taking values in a finite set
S := {1, . . . , N}. Suppose the process rt is in state (mode) i at time t0, i.e. rt0 = i, i ∈ S.
The transition probability that the process rt jumps into the state j at time t0 + t is given
by

P{rt0+t = j|rt0 = i, ru, 0 ≤ u < t0}
= P{rt0+t = j|rt0 = i}. (2.1)

Equation (2.1) means that, for a Markov process, the conditional distribution of the future
mode at time t0 + t, given all past states during time 0 ≤ u ≤ t0 and the present state
at time t0, depends only on the present state. Furthermore, if the transition probability
P{rt0+t = j|rt0 = i} is independent of initial time t0 but only the elapsed time t, the Markov
process is said to be homogeneous. Therefore, the transition probability in (2.1) reduces
to

Pi,j(t) = P{rt0+t = j|rt0 = i} (2.2)

and satisfies

0 ≤ Pi,j(t) ≤ 1,
∑
j 6=i

Pi,j = 1.

The unconditional probability distribution of state rt = j is given by

Pj(t) = P{rt = j} =
∑
i

P{rt = j|rt0 = i}P{rt0 = i} =
∑
i

Pi(t0)Pi,j(t). (2.3)

Note that the occurrence probability of the transmission delay in a network at time t is
depending on the current traffic condition, i.e. the current transmission delay. Therefore,
the Markov processes concerned in this dissertation will be assumed to be homogeneous.
Their joint probability distributions of different states can be specified by a linear differ-
ential equation, named Chapman-Kolmogorov equation.

Theorem 2.1 (Chapman-Kolmogorov equation)
For a homogenous Markov process {rt, t ≥ 0} with i, j ∈ S and t, s ≥ 0, its transition
probabilities satisfy the Chapman-Kolmogorov equation given as

Pi,j(t+ s) =
∑
k

Pi,k(t)Pk,j(s). (2.4)

Proof :

Pi,j(t+ s) = P{rt+s = j|rt0 = i} =
∑
k

P{rt+s = j|rt = k, rt0 = i}P{rt = k|rt0 = i}

=
∑
k

P{rt = k|rt0 = i}P{rt+s = j|rt = k}

=
∑
k

Pi,k(t)Pk,j(s).
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Sojourn time and probability transition rate

The amount of time that a Markov process takes in one state for the change into next state
is called sojourn time. Let δi denote the sojourn time at state i. The probability density
function of {δi > t} can be derived as

Fδi(t) = P{δi > t}, t ≥ 0. (2.5)

According to (2.5), the probability of the event {δi > t+ s} given {δi > t} becomes

Fδi(t+ s) = P{δi > t+ s} = P{δi > t+ s|δi > s}P{δi > s}
= Fδi(t)Fδi(s)

or
logFδi(t+ s) = logFδi(t) + logFδi(s). (2.6)

Note that the only function satisfies (2.6) for arbitrary t and s is

logFδi(t) = −αit, Fδi(t) = P{δi > t} = e−αit.

This shows that the sojourn time of Markov processes has an exponential distribution [109].
The parameter αi representing the transition rate out of state i. Let αi,i denote the
transition rate from i to i and αi,j from i to j, respectively. A probability transition rate1

A = (αi,j), i, j ∈ S of the Markov process {rt, t ≥ 0} is derived and satisfies

αi,i = −αi,
∑
j 6=i

αi,j = −αi,i, ∀i, j ∈ S.

Given the probability transition rate of a Markov process, the following lemma and theorem
can be derived.

Lemma 2.1

(i) lim
∆t→0

1−Pi,i(∆t)

∆t
= αi,

(ii) lim
∆t→0

Pi,j(∆t)

∆t
= αi,j, i 6= j.

Proof : According to (2.5), the probability that the Markov process rt remains in i from
state i in a small time interval ∆t is

Pi,i(∆t) = P{δi > ∆t} = eαi∆t = 1− αi∆t+ o(∆t). (2.7)

Similarly, the probability of the Markov process rt undergoes a jump of state from i in a
small time interval ∆t is given by

Pi,j(∆t) = P{δi ≤ ∆t} = 1− eαi∆t = αi∆t+ o(∆t). (2.8)

where o(∆t) is the infinitesimal of higher order terms than ∆t. Divide (2.7) and (2.8) by
∆t. The term o(∆t)/∆ tends to zero. Lemma 2.1 is derived.

1In some works, the Markov probability transition rate is named as transition generator.
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Theorem 2.2 (Kolmogorov equation)
For all i, j ∈ S and t ≥ 0,

d

dt
Pi,j(t) = −Pi,j(t)αi +

N∑
k 6=j

Pi,kαk,j.

Proof : According to Definition 2.1, it has

Pi,j(t+ ∆t)−Pi,j(t) =
N∑
k=1

Pi,k(t)Pk,j(∆t)−Pi,j(t)

=
N∑
k 6=j

Pi,k(t)Pk,j(∆t)−
(
1−Pi,i(∆t)

)
Pi,j(t)

and becomes

lim
∆→0

Pi,j(t+ ∆t)−Pi,j(t)

∆t
= lim

∆→0

{ N∑
k 6=j

Pi,k(t)
Pk,j(∆t)

∆t
−
(
1−Pi,i(∆t)

)
∆t

Pi,j(t)

}
. (2.9)

Apply Lemma 2.1 to (2.9) and it completes the proof.
Let

A = (αi,j), T (t) = (Pi,j(t)), i, j ∈ S
represent the Markov probability transition rate and transition probability respectively.
The results of Lemma 2.1 and Theorem 2.2 imply

T (t) = eAt. (2.10)

Equilibrium behavior and limiting probabilities

Given any two two state i and j, the state j is said to be accessible from the state i, if
there exists a positive probability Pi,j(t) of reaching the state j in certain time t. If every
state of a Markov process is accessible, the Markov process is said to be irreducible. For
any irreducible Markov process, if the Markov process starting from i and returns to i at
irregular times, the Markov process is said to be aperiodic.

For any irreducible and aperiodic Markov process rt with finite states, its probability
distribution of each state, Pj(t), j ∈ S, will converge to a stationary distribution regardless
of the initial probability distribution. Such feature of Markov process is called equilibrium
behavior. The equilibrium behavior is governed by the limiting probabilities, which are
defined as

P̄j = lim
t→∞

Pi,j(t),
∑
j

P̄j = 1, (2.11)

and do not depend on the initial state i. The proof is essentially based on Theorem 2.1.
Taking the limit as t→∞ in (2.4) and considering (2.11), it has

P̄j =
∑
k

P̄kPk,j(t). (2.12)
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Differentiating both sides of (2.12), it results in

0 =
d

dt
P̄j =

∑
k

P̄k
d

dt
Pk,j(t) =

∑
k

P̄kαk,j, ∀j ∈ S.

This concludes the following Theorem.

Theorem 2.3 (Limiting probabilities)
Consider an irreducible, ergodic Markov process rt with a transition generator
A = (αi,j), i, j ∈ S. There exist limiting probabilities for each state satisfying

∑
i

P̄iαi,j = 0,
∑
i

P̄i = 1. (2.13)

Theorem 2.3 shows that the probability transition rate determines the limiting proba-
bilities of a Markov process.

2.1.2 Strong Markov process

The Markov property says that the probability of rt+s, the Markov process rt depends only
on rs (not on ru, 0 ≤ u < s). However, this is not the case for the trajectory of time delay
systems, since the trajectory of time delay systems dependent not only on the present
state but also the delayed interval [46]. To cast the problem into the framework of Markov
process, the definition of a strong Markov process is introduced.

Definition 2.1 (Strong Markov process)
Let {rt, t > 0} be a Markov process taking values in a finite set S. Define an (random)
optional time T with P(T =∞) = 0. Then rt is strongly Markovian at T if the following
condition holds

P(rt+T ∈ S|ru, 0 ≤ u ≤ T ) = P(rt+T ∈ S|rT ). (2.14)

for all t > 0.

Definition 2.1 has the representation that the probability of rt+T , conditioned upon the
history up to T , equals the probability of rt+T , conditioned on rT only. Since (2.14) holds
for any finite the optimal time T , any strong Markov process is also a Markov process.

As mentioned before, Markov processes with finite states have many applications in the
networking community. It is of interest to model the communication phenomena, e.g. the
transmission delays, of real networks by a Markov process. In this application, however,
the Markov probability transition rate is not given but only an observation of the process
is available. The coming section is devoted to determine a probability transition generator
of a Markov process relies on an observation of the process.
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2.1.3 Parameter identification of network-induced transmission delay

Suppose a network-induced transmission delay is observed equidistantly by a series of pack-
ets within a time interval 0 < t1 < . . . < tn = T , where h = tk+1 − tk. The corresponding
observed delay values are {τ1, . . . , τn} and their empirical regularities are described by a
Markov process rt, with finite state S := {1, . . . , N} and probability transition rate A.
Based on the observed data, the number of transitions from a state i to j within a time
step h, i.e. ci,j(h), i, j ∈ S, can be statistically determined. With the knowledge of ci,j(h),
the number of transitions from the state i can be calculated by

ci(h) =
N∑
j=1

ci,j(h).

The transition probability from a state i to j within a time step h can be obtained by

P̂i,j(h) =
ci,j(h)

ci(h)

and the associated transition matrix becomes T̂ (h) = (P̂i,j(h)). According to (2.10), it
implies

T̂ (h) = eAh.

As a result, the approximate probability transition rate A can be determined by

A =
1

h
ln
(
T̂ (h)

)
.

Consider the Taylor expansion of ln
(
T̂ (h)

)
and ignore the higher order terms, the above

formula reduces to

A ≈ 1

h

(
T̂ (h)− I

)
, (2.15)

where I is an identical matrix.
As a summary, the algorithm for determining the probability transition rate of a Markov

process based on discretely observed data is presented in Algorithm 2.1.

Algorithm 2.1 (Determination of probability transition rate)

Input: Observation series {τ1, . . . , τN}
Output: Probability transition rate - A

(1) Derive ci,j(h), ci(h) based on {τ1, . . . , τN}.
(2) Calculate T̂ (h) by P̂i,j(h) = ci,j(h)/ci(h).

(3) Determine A by A =
(
T̂ (h)− I

)
/h.

According to [12, 90, 91], the number of observation samples determines the accuracy
of probability transition rate. For more accurate estimation of A, the more observation
samples N are required.
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2.2 Stochastic jump systems

Stochastic jump systems are first introduced in the 1960’s by Krasovskii and Lidskii to
study the abrupt structure variations of dynamical systems, e.g. component failures, sud-
den environmental disturbances and changing subsystem interconnections [69,70]. In gen-
eral, stochastic jump systems are a class of hybrid systems, whose discrete and continuous
states are modeled by random process and corresponding differential equations.

Within this dissertation, two types of stochastic jump systems are studied according
to the applications. Stochastic NCSs with periodic sampling and Markovian transmission
delays are modeled as Markovian jump systems (MJSs) with mode-dependent delay. An
MJS contains a set of sub-systems and the switching (jump) between sub-systems is gov-
erned by a continuous-time Markov process with finite states. If the set of sub-systems are
subjected to Markovian delays, an MJS with mode-dependent delay is established.

The second type of stochastic jump systems concerns stochastic NCSs with aperiodic
sampling. By using the input-delay approach [38], the aperiodic sampling intervals are
reformulated into time-varying delays. Combing the time-varying delays cased by aperiodic
sampling with the network-induced delays, a randomly time-varying delay is derived. For
the ease of analysis, the compound delay is reformulated into N intervals, i.e. N different
time-varying delays. Associated with the delay intervals, appropriate sub-systems are
determined. A set of indicator functions is introduced to conduct the random switching
between sub-systems. The resulting system is a randomly switched time-delay system.

In the following section, the mathematical descriptions of MJSs, MJSs with mode-
dependent delay and randomly switched time-delay systems are introduced for later anal-
ysis.

2.2.1 Markovian jump systems

The mathematical representation of an MJS is given as following

ẋ(t) = A(rt)x(t) +B(rt)u(t), (2.16)

with the initial condition x(t = 0) = x0 and rt=0 = r0, where A(rt) ∈ Rn×n, B(rt) ∈ Rn×m,
x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input and {rt, t ≥ 0}, rt ∈ S, is a
homogeneous Markov process governing the abrupt switching between different modes.
According to Theorem 2.2, the switching of the MJLS is described by the probability
transitions

P{rt+∆t = j|rt = i} =

{
αi,j∆t+ o(∆) if i 6= j,

1 + αi,i∆t+ o(∆t) otherwises,

where αi,i = −∑i 6=j αi,j, for all i, j ∈ S and lim∆t→0
o(∆t)

∆t
= 0.

It is noted that if the Markov process {rt, t ≥ 0} has only one mode, the MJS in (2.16)
is reduced to a deterministic linear system.

MJS with mode-dependent delay

Assume the state x(t) and control input u(t) of the MJS in (2.16) are subjected to random
delays, which are also modeled by Markov process {rt, t ≥ 0}, rt ∈ S. This formulation
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results in MJSs with mode-dependent delay and has the mathematical presentation as

ẋ(t) = A(rt) + A1(rt)x(t− τ(rt)) +B(rt)u(t) +B1(rt)u(t− τ(rt)),

x(s) = φ(s), s ∈ [−τ̄ , 0],
(2.17)

where A(rt) ∈ Rn×n, A1(rt) ∈ Rn×n, B(rt) ∈ Rn×m , B1(rt) ∈ Rn×m, τ(rt) is the de-
lay and τ̄ = maxrt∈S{τ(rt)}. The initial condition of system (2.17) is specified as
x(s) = φ(s), s ∈ [−τ̄ , 0]. It means that the state evolution {(x(t), rt), t ≥ 0} depends on its
past history and contradicts the Markov property. However, the Markov property can be
recovered by using the strong Markov Definition 2.1. Let χ(t) be a process taking values

χs(t) = x(t+ s), t− τ̄ ≤ s ≤ t.

Then {(χs(t), rt), t ≥ 0} is a strong Markov process and contains the Markov property as
defined before.

2.2.2 Randomly switched time-delay systems

The second type of stochastic jump systems concerns a randomly switched time-delay
system. Define a switching signal d(t) := {1, . . . , N}. The mathematical representation of
a randomly switched time-delay system is given as

ẋ(t) = Ad(t)x(t) + A1d(t)x(t− τs(t)(t)) +Bd(t)u(t) +B1d(t)u(t− τd(t)(t)),

x(s) = φ(s), s ∈ [−τ̄ , 0],

where Ad(t) ∈ Rn×n, A1d(t) ∈ Rn×n, Bd(t) ∈ Rn×m, and B1d(t) ∈ Rn×m. The variable τd(t)(t)
denotes the delay and τ̄ = maxNi {τi(t)}. The initial condition of (2.18) is specified as
x(s) = φ(s), s ∈ [−τ̄ , 0].

The switching signal d(t) can be reformulated by a set of indicator functions

βi =

{
1, d(t) = i, i = 1, . . . , N,

0, otherwise.

As a result, the above system can be written as

ẋ(t) =
N∑
i=1

βi

(
Aix(t) + A1ix(t− τi(t)) +Biu(t) +B1s(t)u(t− τi(t))

)
,

x(s) = φ(s), s ∈ [−τ̄ , 0].

(2.18)

Note that the indicator function βi has binary values, i.e. one or zero. if it has Bernoulli
distribution, its probability becomes

P{βi = 1} = pi,

N∑
i=1

pi = 1.

Furthermore, if the indication function takes values independently of one another (mem-
oryless) and the sojourn time is exponentially distributed, the function βi recovers to a
Markov process with two states. In such case, the randomly switched time-delay system
(2.18) is identical to the MJS with mode-dependent delay in (2.17).
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2.3 Stochastic stability and controllability

Stability is one of the major concerns in the design and synthesis of a closed-loop control
system. Similar to the deterministic system settings, there are different definitions of
stability for stochastic systems. For the system in (2.17), the following definitions of four
stability notations are taken from [71].

Definition 2.2 (Stochastic stability [71])
Markovian jump linear system (2.17) with u(t) = 0 is said to be

(i) stochastically stable (SS) for any initial condition x(t0, rt0), if there exists a constant
ε(φ(·), r0) such that

E
{∫ ∞

0

||x(t)||2dt|x(t0, rt0)

}
≤ ε(φ(·), r0);

(ii) mean square stability (MSS) for any initial condition x(t0, rt0), if

lim
t→∞

E
{
||x(t)||2|x(t0, rt0)

}
= 0;

(iii) mean exponential stability (MES) for any initial condition x(t0, rt0), if there exist
positive constants b, and ρ such that for all t ≥ t0

E
{
||x(t)||2|x(t0, rt0)

}
≤ b||x(t0, rt0)||2e−ρ(t−t0).

It is clearly that MES implies MSS and SS. Another less conservative stability notion is
almost sure stability. The notation is given in the following definition.

Definition 2.3 (Almost sure stability [71])
Markovian jump linear system (2.17) with u(t) = 0 is said to be almost sure stable for any
initial condition x(t0, rt0), if

P

{
lim
t→∞

∣∣x(t)|x(t0, rt0)
∣∣ = 0

}
.

The stability concepts of Definition 2.2 imply almost sure stability, but almost sure stability
does not imply the stability concepts of Definition 2.2. Throughout this work, the notion
of MES is mainly considered in the stability analysis.

2.3.1 Stochastic Lyapunov-Krasovskii functional

The Lyapunov-Krasovskii functional is well-known as an efficient tool for determining the
stability of deterministic time-delay systems. In stochastic stability analysis, the stochastic
Lyapunov-Krasovskii functional plays the same role for stochastic systems with delay.
Roughly speaking, a Lyapunov-Krasovskii functional is an index measuring the values of
the state trajectory x(t) within the delay interval [t− τ, t], i.e. x(t+ s), s ∈ [−τ, 0]. The
stability is ensured if the derivative of the Lyapunov-Krasovskii functional with respect to
the time is non-positive.
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For stochastic Lyapunov-Krasovskii functionals, the idea of non-positive time derivative
has to be refined and the notion of supermartingale is recalled. More specifically, let
V (Ξ(t)) be a stochastic Lyapunov functional and L be an infinitesimal generator of Ξ(t),
where Ξ(t) = x(t+ s), s ∈ [−τ, 0]. The time derivative of V (Ξ(t)) is given in the following
definition.

Definition 2.4 [85] Let L be the weak infinitesimal operator and give a function V (Ξ(t)),
then the operator L acting on V (Ξ(t)) is defined as

LV (Ξ(t)) = lim
∆t→0+

1

∆t

{
E{V (Ξ(t+ ∆t)|Ξ(t))} − V (Ξ(t))

}
.

Non-positive LV (Ξ(t)) indicates that Ξ(t) is supermartingale and means that the
stochastic system is stochastically stable. The more precise statement is the following
theorem.

Theorem 2.4 (Stochastic Lyapunov-Krasovskii functional)
For a stochastic jump system with Ξ(t) = x(t+ s), s ∈ [−τ, 0] and infinitesimal generator
L, if there exists a stochastic Lyapunov-Krasovskii functional V (Ξ(t)) and continuous
non-decreasing functions u, v and w, where u(s) and v(s) are positive for s > 0, and
u(0) = v(0) = 0 such that

(i) V (0) = 0,

(ii) u(||Ξ(0)||) ≤ V (Ξ(t)) ≤ v(||Ξ(0)||c), where ||Ξ(0)||c = maxs∈[−τ,0] ||x(s)||,
(iii) LV (Ξ(t)) ≤ −w(||Ξ(0)||),

then the system is MES.

Note that Theorem 2.4 is limited to MES. The reason for focusing on this aspect of
stochastic stability is that MES implies SS, MSS and almost sure stability. The operator
L goes into the usual Lyapunov operator dV (Ξ(t))/dt, when the process Ξ(t) is determin-
istic and can be described by a system of differential equations. By using the stochastic
Lyapunov functional, it is possible to verify the qualitative properties of the trajectories
Ξ(t). Furthermore, the stochastic Lyapunov functional can also be used for designing
control laws with stabilizing conditions.

As in the deterministic case, however, a general difficulty is to find suitable stochas-
tic Lyapunov functionals. The most widely used Lyapunov candidate is the quadratic
stochastic Lyapunov-Krasovskii functional. Due to numerical efficiency, the stability and
controller design conditions obtained based on quadratic Lyapunov-Krasovskii functionals
are cast into the form of linear matrix inequalities (LMIs). In Section 2.4, features of
convex optimization and LMI are briefly presented.

2.3.2 Controllability

The controllability and observability introduced by Kalman in 1963, are known as a key
element in the development of system analysis. For deterministic systems, the notions of
controllability and observability concerning deterministic systems are given by differential
or difference equations. For stochastic jump systems, on the contrary, there are no similar
notations. Depending on the randomness of underlying stochastic processes, different
notions of controllability are proposed [64, 87, 115, 140] in the literature. The definition of
relative controllability is introduced in this dissertation.
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Definition 2.5 (ε-controllability)
An initial condition x(t0) = x0 of the system (2.17) and (2.18) is ε-controllable with
probability σ over the time interval [t0, tf ] if there exists a control law u(t, x(t)) such that

P{||x(tf )||2 ≥ ε|x(t0) = x0} ≤ 1− σ.
The name relative controllability is chosen to stress the difference with dichotomic con-

trollability classification in deterministic settings. The relative controllability measures a
relative degree of controllability, and can be used to rank candidate actuator configuration.
This is specially interesting for systems with flexible structures, such NCSs, where there
are many degrees of freedom in the choice of components location. The notion of relative
controllability is extended to global controllability in [64,87].

The algebraic test of ε-controllability for LTI MJLs is given in [64, 87], whereas the
algebraic test of global controllability for MJLs with constant delay is determined in [140].
The observability and simple rank-test conditions of ε-controllability for stochastic jump
system with time-varying or random delay are still open. Throughout this dissertation,
the stochastic jump systems are considered to be global controllable and observable.

2.4 Convex optimization and linear matrix inequality

Generally, a convex optimization is a subfield of optimization problems concerning the
minimization of convex functions. Given a real-valued function f(x), which is said to be
convex if the function lies below or on the straight line between any two points within
a interval, see Fig. 2.1. The most important feature of a convex function refers to the
uniqueness of extremum. That means, any minimum (or maximum) found in a convex
optimization problem is the best achievable solution. Convex optimization has applications
in a wide range of disciplines. One of typical examples in the control theory is the linear
matrix inequality (LMI).

x1 x2x(σ) x1 x2x(σ)

f(x) f(x)

Figure 2.1: Illustration of convex function (links) and non-convex function (right).

An LMI approach refers to a kind of convex optimization problems in which its con-
straints appear as LMIs. The LMI constraints on a vector y = [y1, . . . , ym] ∈ Rm have the
form

F (y) = F0 + y1F1 + . . .+ ynFm < 0, (2.19)

where Fi = F T
i ∈ Rn×n, i = 1, . . . ,m are known constant real matrices. The optimization

problem is

minimize cTy

s.t. F (y) < 0,
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where c ∈ Rn and F (z) < 0 means F (z) is negative definite. The simplest LMI arising in
the control theory is the so-called Lyapunov inequality [15]

ATY + Y A < 0,

where A ∈ Rn×n is known and Y = Y T ∈ Rn×n is the variable to be determined. Let
Y1, . . . , Ym be a basis for the symmetric matrix Y , where m = n(n+ 1)/2 due to Y = Y T .
Consider F0 = 0 and Fi = ATYi + YiA. The Lyapunov inequality can be reformulated into
(2.19) and yields

F (Y ) =
m∑
i=1

Fi < 0.

The formulation of an LMI is particularly attractive in the control community due to
the following reasons:

• Numerical efficiency: The LMI problem can be solved very efficiently by using
interior-point method. As a results, a numerical solution can be easily found even if
no analytical or closed-form solution is known.

• Optimality: Any feasible solution in LMI satisfied the inequality constraints and
minimizes the corresponding convex cost function.

• Multi-criteria: The LMI formulation cast many different specifications in the anal-
ysis and design processes into a single criterion. This enables the exploration of
trade-offs, e.g. performance and stability.

As shown in the later chapters, the stability and controller design conditions are derived
in form of LMIs. The delays and sampling intervals are expressed in a single LMI, which
allows a trade-off between delay length, sampling rate and stability.

2.5 Summary and discussion

In order to be able to follow the control approaches developed in this dissertation, the nec-
essary mathematical backgrounds concerning Markov processes, stochastic jump systems,
stochastic stability and linear matrix inequalities (LMIs) are illustrated in this chapter.

An independent stochastic process whose future state depending only on the present
state and ignoring its past is called Markov process. Markov processes are applied to
a wide variety of problems involving random uncertainties, such as telephone traffic, in-
ventory control, machine breakdown and repair, air-traffic control, and communication
networks. In the modeling of communication phenomena, e.g. transmission delays, packet
dropouts and queuing mechanism, the Markov processes and Markovian properties are
extensively used in the past literature [10, 29, 50, 66]. Particularly for the transmission
delays, the main focus of this dissertation, their probabilistic appearance is characterized
by a Markov probability probability transition rate, which can be determined by Algo-
rithm 2.1 and demonstrates a good agreement with real networks [131]. According to
Markovian properties, the limiting probabilities of delays are determined by probability
transition rates. This enables a stochastic conjoint design of systems as well as networks
as illustrated in Chapter 5.
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Hybrid dynamical systems subjected to random switching signal are categorized as
stochastic jump systems. Stochastic jump systems have the major merits due to their
capability of maintaining an acceptable behavior and meeting some performance require-
ments even in the presence of abrupt changes in the systems [28]. These changes, within
the framework of this dissertation, refer to the network uncertainties, i.e. transmission
delays. Based on the later applications, two types of stochastic jump systems are consid-
ered in this chapter. NCSs with aperiodic sampling rate and Markovian delays is modeled
as Markovian jump systems (MJSs) with mode-dependent delay, whereas NCSs with ape-
riodic sampling is formulated as a randomly switched time-delay systems. Towards the
analysis of stochastic jump systems, the definitions of stochastic stability are revisited.
The notion of mean exponential stability (MES) is mainly considered in following chapters
since MES implies stochastic stability (SS) and mean square stability (MES). Moreover,
a quadratic stochastic Lyapunov-Krasovskii method is considered for examining MES of
stochastic jump systems with delay.

MES of a stochastic jump system can be guaranteed by a negative definite Lyapunov
inequality. Due to the numerical efficiency, the related Lyapunov inequality is reformulated
into an LMI. As shown later, the stability and controller design conditions are derived by
means of different specifications, e.g. delays and sampling intervals, in a single criterion,
which allows a trade-off between performance and stability.

This chapter is mainly based on [14, 103] and [71]. For more details on Markov process
theories and stochastic jump systems, the reader is encouraged to look into [67, 108] and
[20, 87]. A very good introduction of LMI and convex optimization is further presented
in [15,16].
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3 Stochastic NCS with Periodic Sampling and
Random Delay

The use of communication networks in the automation technologies has many advantages
such as low cost, high flexibility, easy installation and maintenance. However, the use of a
communication network comes at the price of non-ideal signal transmission: the sampled
data sent through the network, e.g. Ethernet, experience random transmission delays and
random packet dropouts as discussed in [9, 53]. The random delays, particularly, are well
known as a source of instability and deteriorates the control performance [44, 84, 107]. It
would be desirable to have a analysis and design approach, which can ensure the stability
and guarantee the control performance in the presence of random delays.

Traditionally, random delays are treated as constant by considering their worst case.
Based on this simplification, various approaches from the literature [38, 72, 78, 82, 89, 104,
106, 143], refer to Section 1.3 for a detailed discussion, have been proposed to cope with
delays. However, these analysis and design results are derived for the worst-case delay,
and discard the probabilistic distribution of delays. This might result in conservative
controller design for systems with random delays. Studies with random delays are available
in [92, 100, 117, 135, 137, 142]1, where Markovian processes are used for the modeling of
delays. However, the associated stability and design conditions are determined by ignoring
the impact of data sampling rate. Furthermore, these results require the exact knowledge
of Markov probability transition rates. Any perturbation on it could lead to instability or
affect the control performance.

Aiming at these shortcomings in the existing literature, the major innovation in this
chapter is to develop an analysis and design approach, which involves random delays,
packet dropouts and sampling rate in a single criterion. According to this criterion, guar-
anteed bounds on stability regions are determined and expected control performance are
guaranteed in the presence of uncertain Markovian delay models. As a result, the stabil-
ity restrictions and performance requirements of NCSs with periodic sampling are linked
through network specifications (or statistical features of delays). This correlation motivates
a novel co-design approach of control systems and communication networks as discussed
in Chapter 5.

The reminder of this chapter is organized as follows. First, the network-induced trans-
mission delay and packet dropouts are modeled by a Markov process and a MJLS with
mode-dependent delay is introduced in Section 3.1. The stability analysis and controller
design algorithms are presented in Section3.2 for NCSs with state-feedback controller, and
in Section 3.3 for NCSs with output-feedback controller. Towards the uncertainties in
the delay modeling, the guaranteed control performance is addressed in Section 3.4. Fi-
nally, the chapter is closed with summary and discussion in Section 3.5. The introductions
of software tool for the controller design algorithms derived in chapter are given in the
Appendix A.1.1.

1The detailed discussion is given in Section 1.3.
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3.1 MJLS with random delay

Consider an LTI system as the physical plant{
ẋ(t) = Ax(t) +Bū(t),

y(t) = Cx(t),
(3.1)

where x ∈ Rn is the state, ū ∈ Rm is the control input and y ∈ Rq is the measured output.
A, B and C are constant matrices with appropriate dimensions, (A,B) is controllable and
(A,C) is observable. The plant is interconnected by a controller over a communication
network, see Fig. 3.1. The sensor is periodically sampled with the sampling interval h1,
whereas the controller is an event-based digital controller. The actuator is fed by the
control input held constant by a Zero-Order-Hold (ZOH).

The sensor-to-controller (SC) and controller-to-actuator (CA) transmission delays are
modeled by Markovian delays τsc(rt) and τca(rt). The switching of Markovian delays is
governed by a Markov process rt ∈ S taking values from the finite set S := {1, . . . , N}.
The switching rate from mode i to mode j is defined by αi,j, where i, j ∈ S.

According to (3.1) and Fig. 3.1, the piecewise constant measurement from SC at the
sampled time tk is given by

ȳ(t) = y(tk − τsc(rt)) = y(t− τh1(t)− τsc(rt))

= Cx(t− τh1(t)− τ(rsc
t )),

τh1(t) = t− tk, tk ≤ t < tk+1.

(3.2)

u(t)

ȳ(t)

ū(t)

tky(t)

h1

K(rt)

Physical 
Plant

Controller

ZOH

Communication 
Network

feedback gain

τsc(rt)

τca(rt)

y(tk)

Figure 3.1: Illustration of a sampled-data NCS with sensor-to-controller (SC) delay τsc(rt) and
controller-to-actuator (CA) τca(rt). The sensor output, ȳ(t) = y(tk − τsc(rt)), is periodi-
cally sampled a sampling interval by h1 and the control input, ū(t) = K(rt)ȳ(t− τca(rt)),
is derived by an event-based digital controller and held by a Zero-Order-Hold (ZOH).

Delay-dependent switching controller

Assume a remote controller being able to monitor the SC delay τsc(rt), e.g. using time-
stamping, and synchronously switches the control laws with it. The control commands
are fed back to the plant with CA delay τca(rt). Consider a state-feedback controller, i.e.
ȳ(t) = x(t− τh1(t)− τsc(rt)), and the control law yields

ū(t) = K(rt)x(t− τh1(t)− τsc(rt)− τca(rt)) (3.3)
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τ(t, rt)

τtx(tk+1)

τ(t, rt) dropout

(b)

(a)

τtx(tk)

τ̇h1(t) = 1
eA(t+k )

tk tk+1 tk+2 tk+3

tk tk+1 tk+2 tk+3

Figure 3.2: The evolution of time delay τ(t, rt) for certain sample path of τtx(rt) (a); and the
evolution of time delay τ(t, rt) with packet dropouts (b).

Substitute (3.3) into system (3.1), the closed-loop system becomes

ẋ(t) = Ax(t) +BK(rt)x(t− τ(t, rt)),

τ(t, rt) = τh1(t) + τsc(rt) + τca(rt).
(3.4)

System (3.4) is an MJLS with piecewise random delay τ(t, rt).

Piecewise Random delay

The resulting delay τ(t, rt) in system (3.4) contains a periodically time-varying component
τh1(t) = t− tk generated by the inter-sampling effect, and a piecewise random component

τtx(rt) = τsc(rt) + τca(rt)

generated by the transmission delay as shown in Fig. 3.2.
The periodically time-varying component is bounded by a sampling interval, i.e.

τh1(t) ≤ h1, and has the derivative τ̇h1(t) = 1. As shown in Fig. 3.2 (b), the packet dropout
can be viewed as a delay τh1(t) which grows by accumulating sampling interval h1. For
an NCS with maximal d1 consecutive dropouts, the time-varying delay is bounded by
τh1(t) ≤ (1 + d1)h1. For stability analysis, the upper bound of the time-varying compo-
nent is taken into account. As a result, the delay τ(t, rt) recovers to

τ(rt) = (1 + d1)h1 + τsc(rt) + τca(rt) (3.5)

with associated upper and lower bounds defined as

τ̄ = (1 + d1)h1 + max
i∈S

{
τsc(i) + τca(i)

}
,

τ = (1 + d1)h1 + min
i∈S

{
τsc(i) + τca(i)

}
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in the later analysis.
Although the stability result derived in Section 3.2 is developed by the upper bound

of the time-varying component, it robustly ensures the stability for the time-varying de-
lay satisfying τh1(t) ≤ (1 + d1)h1. As the time-varying component has τ̇h1(t) = 1 within
sampling intervals, considering its the upper bound does not impose conservatism into the
stability analysis as discussed in [38,51].

Remark 3.1 The computation delay required by the controller is short and ignorable.
Due to the utilization of a common network, the SC and CA transmission suffers the same
network traffic. As a result, the SC and CA delays can be approximately modeled by a
Markov process rt.

Remark 3.2 The switching of transmission delays may result in sampled sequence disor-
der. In this dissertation, the disordering in the sampled sequence is excluded, i.e. with the
following assumption

A1: P(|τ(rtk+1+d1
)− τ(rtk)| ≥ h1) = 0,

where d1 ≥ 0 is maximal number of consecutive dropouts. The assumption A1 restricts
that the switching difference of consecutive delays is less than one sampling interval. This
assumption can be made as the current transmission delay in the real communication
networks is usually correlated to the previous delay. In single-path networks the assumption
is fulfilled.

3.2 Stability and stabilization with delay-dependent
state-feedback controller

It is useful to design a controller with a given performance. For this purpose, before
the stability and stabilization conditions for delay-dependent state-feedback controller are
introduced, a new variable z(t) satisfying

z(t) = eγtx(t) (3.6)

with γ ≥ 0 is introduced. Substitute (3.5) and (3.6) into (3.4), the closed-loop system in
(3.4) becomes

ż(t) = (A+ γI)z(t) + eγτ(rt)BK(rt)z(t− τ(rt)). (3.7)

Note that

z(t)− z(t− τ(rt)) =

∫ t

t−τ(rt)

ż(s)ds.

The associated system NCS (3.7) has the equivalent form

ż(t) =
(
A+ γI + eγτ(rt)BK(rt)

)
z(t)− eγτ(rt)BK(rt)

∫ t

t−τ(rt)

ż(s)ds, (3.8)

Let ξT (t) = [zT (t) żT (t)]T , the closed-loop system (3.8) has an equivalent form

Eξ̇(t) = Â(rt)ξ(t)− Â1(rt)

∫ t

t−τ(rt)

ξ(s)ds, (3.9)
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where

E =

[
I 0
0 0

]
, Â(rt) =

[
0 I

A+ γI + eγτ(rt)BK(rt) −I

]
, Â1(rt) =

[
0 0
0 eγτ(rt)BK(rt)

]
.

The system described by (3.8) is reformulated into an equivalent system (3.9) by means of
the descriptor transformation [37]. The descriptor transformation reduces the conservatism
in the delay-dependent stability analysis as the transformation introduces no additional
dynamics to the original system [36, 39]. The stability of the system represented by (3.9)
implies the stability of the system in (3.8). The transformed system in (3.9) is considered
in the following stability analysis.

Remark 3.3 The state {ξ(t), rt, t ≥ 0} depends on the history ξ(t+ θ), θ ∈ [−2τ(rt), 0],
which implies {ξ(t), rt, t ≥ 0} is not a Markov process. According to Definition 2.1, a
strong Markov process {Ξ(t), rt, t ≥ 0} can be formulated by the following transformation

Ξ(t) = ξ(s+ t), s ∈
[
t− 2τ(rt), t

]
.

3.2.1 Stability analysis

In this subsection, delay-dependent stability for state-feedback NCSs with piecewise ran-
dom delay is derived by using the Lyapunov-Krasovskii functional approach. The random
delay τ(rt) contains the transmission delay and accumulating sampling intervals caused
by packet dropouts, see (3.5). Accordingly, the transmission delay, consecutive dropouts
as well as the sampling interval are conjointly treated in the derived stability condition.
The solution of stability condition indicates the trade-off between transmission delays
τsc(rt) + τca(rt), maximal consecutive packet dropouts d1 and the sampling interval h1 for
which the stochastic exponential mean square stability can be guaranteed. The details of
stability condition are given in Theorem 3.1.

Theorem 3.1 For the closed-loop system (3.9) with Markovian delay τ(rt), rt ∈ S and
a given γ ≥ 0, if there exist matrices Q > 0, W > 0 and X(i) > 0, i ∈ S such that the
following LMI’s hold [

Q ÂT1 (i)
∗ W

]
≥ 0, (3.10)Ψ1(i) Ψ2(i) Ψ3(i)

∗ −(τ(i) + τ̂αi)Q
−1 0

∗ ∗ −Γ(i)

 < 0, (3.11)

where

τ̂ =
1

2
(τ̄ 2 − τ 2), αi = −αi,i,

Ψ1(i) = Â(i)X(i) +XT (i)ÂT (i) + τ(i)W + αi,iEX
T (i), Ψ2(i) = (τ(i) + τ̂)XT (i),

Ψ3(i) =
[√
αi,1EX

T (i) · · · √αi,NEXT (i)
]
, Γ(i) = diag

{
X(1), . . . , X(N)

}
,

then the system is MES.

Proof : Define a set of positive definite matrices P (rt) = X−1(rt) and consider a Lyapunov
candidate as follows

V (Ξ(t), rt) = V1(Ξ(t), rt) + V2(Ξ(t), rt) + V3(Ξ(t), rt), (3.12)

31
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where

V1(Ξ(t), rt) = ξT (t)EP (rt)ξ(t), V2(Ξ(t), rt) =

∫ 0

−τ(rt)

∫ t

t+θ

ξT (s)Qξ(s)dsdθ,

V3(Ξ(t), rt) = αi

∫ −τ
−τ̄

∫ t

t+θ

ξT (s)Qξ(s)(s− t− θ)dsdθ.

Suppose rt = i ∈ S, then

LV1(Ξ(t), rt) = ξ̇T (t)EP (rt)ξ(t) + ξT (t)P T (rt)Eξ̇(t)

= ξT (t)

[
ÂT (rt)P (rt) + P T (rt)Â(rt) +

N∑
j=1

αi,jEP (j)

]
ξ(t)

− 2ξT (t)P T (rt)Â1(rt)

∫ t

t−τ(rt)

ξ(s)ds.

According to Lemma A.1, LV1(Ξ(t), rt) becomes

LV1(Ξ(t), rt) ≤ ξT (t)

[
ÂT (rt)P (rt) + P T (rt)Â(rt) +

N∑
j=1

αi,jEP (j)

]
ξ(t)

+ τ(rt)ξ
T (t)P T (rt)WP (rt)ξ(t)

+

∫ t

t−τ(rt)

ξT (s)Â1(rt)W
−1ÂT1 (rt)ξ(s)ds.

Set

Q ≥ ÂT1 (rt)W
−1Â1(rt), (3.13)

then LV1(Ξ(t), rt) yields

LV1(Ξ(t), rt) ≤ ξT (t)

[
ÂT (rt)P (rt) + P T (rt)Â(rt) +

N∑
j=1

αi,jEP (j)

]
ξ(t)

+ τ(rt)ξ
T (t)P T (rt)WP (rt)ξ(t)

+

∫ t

t−τ(rt)

ξT (s)Qξ(s)ds.

(3.14)

According to Lemma A.4,

LV2(Ξ(t), rt) ≤ τ(rt)ξ
T (t)Qξ(t)−

∫ t

t−τ(rt)

ξT (s)Qξ(s)ds

+ αi

∫ −τ
−τ̄

∫ t

t+θ

ξT (s)Qξ(s)dsdθ.

(3.15)

LV3(Ξ(t), rt) =
1

2
αi(τ̄

2 − τ 2)ξT (t)Qξ(t)− αi
∫ −τ
−τ̄

∫ t

t+θ

ξT (s)Qξ(s)dsdθ, (3.16)
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3.2 Stability and stabilization with delay-dependent state-feedback controller

Combining (3.14)-(3.16) results in

LV (Ξ(t), rt) ≤ ξT (t)

[
ÂT (rt)P (rt) + P T (rt)Â(rt) +

N∑
j=1

αi,jEP (j)

]
ξ(t)

+ τ(rt)ξ
T (t)P T (rt)WP (rt)ξ(t)

+
(
τ(rt) +

1

2
αi(τ̄

2 − τ 2)
)
ξT (t)Qξ(t)

= ξT (t)Θ(rt)ξ(t).

(3.17)

Pre- and post-multiple Θ(rt) by XT (rt) and X(rt), it gives

Â(rt)X(rt) +XT (rt)Â
T (rt) + τ(rt)W + αi,iX

T (i)E

+
N∑
j 6=i

αi,jX
T (rt)EX

−1(j)X(rt)

+
(
τ(rt) +

1

2
αi(τ̄

2 − τ 2)
)
XT (rt)QX(rt) < 0.

(3.18)

Applying Schur complement to (3.13) and (3.18) results in (3.10) and (3.11).
Since maxθ∈[−2τ̄ ,0]{||ξ(t+ θ)||} ≤ ϕ||ξ(t)|| for some ϕ > 0 [83], the following can be es-

tablished

V (Ξ(t), rt) ≤
[
λmax(EP (rt)) + ςλmax(Q)

]
||ξ(t)||2

≤ Λmax(rt)||ξ(t)||2,
(3.19)

where

ς =
1

2
τ̄ 2ϕ+

1

6
(τ̄ 3 − τ 3)ᾱϕ, ᾱ = max

i∈S
{αi}.

Λmax(rt) = λmax(EP (rt)) + ςλmax(Q).

Combining (3.17) and (3.19) yields

LV (Ξ(t), rt)

V (Ξ(t), rt)
≤ −min

rt∈S

{
λmin(−Θ(rt))

Λmax(rt)

}
, −ρ0

and
E{LV (Ξ(t), rt)} ≤ −ρ0E{V (Ξ(t), rt)}. (3.20)

By applying Dynkin’s formula into (4.15) it becomes

E{V (Ξ(t), rt)} − E{V (Ξ(0), r0)} = E
[ ∫ t

0

LV (Ξ(s), rs)ds
∣∣Ξ(0), r0

]
≤ −ρ0

∫ t

0

E{LV (Ξ(s), rs)}ds.
(3.21)

Using the Gronwall-Bellman lemma, (4.16) results in

E{V (Ξ(t), rt)} ≤ e−ρ0tE{V (Ξ(0), r0)}.
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3 Stochastic NCS with Periodic Sampling and Random Delay

Since

V (Ξ(t), rt) ≥
[
λmin(EP (rt)) + ςλmin(Q)

]
||ξ(t)||2 = Λmin(rt)||ξ(t)||2,

it is established that

E{||ξ(t)||2} ≤ e−ρ0t
E{V (Ξ(0), r0)}

minrt∈S
{

Λmin(rt)
} . (3.22)

Equation (4.17) provides the proof for stochastic exponential mean square stability.

Remark 3.4 It is noted that E{||ξ(t)||2} ≥ E{||z(t)||2}, and z(t) = eγtx(t). Therefore,
the inequality (4.17) can be rewritten as

E{||x(t)||2} ≤ e−(ρ0+2γ)t E{V (Ξ(0), r0)}
minrt∈S

{
Λmin(rt)

} . (3.23)

As shown in (3.23) , the given γ in Theorem 3.1 ensures the decay rate of trajectory
E{||x(t)||2} and determines the control performance of the closed-loop system (3.4).

The Lyapunov candidates V2(Ξ(t), rt) and V3(Ξ(t), rt) are chosen to compensate the inte-
gral terms caused by the derivative of V1(Ξ(t), rt). The stability condition in Theorem 3.1
contains the transmission delays as well as their statistical properties, consecutive dropouts
and sampling intervals in a single LMI condition. This allows the exploration of trade-offs
between different parameters for the controller design discussed in the following section.
The stability analysis method proposed in Theorem 3.1 can be applied to nonlinear NCSs
by linearizing the system at equilibrium states or by the input-output linearization [126].

To illustrate the influence of random delays and transition generator on system stability,
the following example is given.

Example 3.1 Consider an NCS governed by the two-state Markovian jump delay differ-
ential equation as

ẋ(t) = −x(t)− 0.164x(t− τ(1))

ẋ(t) = −x(t)− 0.082x(t− τ(2)).
(3.24)

According to Theorem 3.1 and setting γ = 0, the maximal Markovian delay2 of system
(3.24) has the values

τ(1) = 20 ms, τ(2) = 40 ms (3.25)

and transition generator

A =

[
−1 1
1 −1

]
. (3.26)

As mentioned before, the Markovian delay combines the sampling intervals, transmission
delay and maximal consecutive dropouts of NCSs. With known sampling interval and max-
imal number of consecutive dropouts of system (3.24), the maximal allowable transmission
delay can be easily derived.

2The maximal Markovian delay is determined by the feasible solutions of Theorem 3.1.
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3.2 Stability and stabilization with delay-dependent state-feedback controller

The transition generator of a Markovian delay determines the equilibrium behavior of
its states. The transition generator in (3.26) indicates the Markovian delay τ(1) = 20 ms
in (3.25) has stationary probability 50%. However, the stability condition can be still
guaranteed by the stationary probability distribution of the short delay, i.e. τ(1) = 20 ms,
at 39% or

A =

[
−1.3 1.3
0.9 −0.9

]
.

The relationship of the stability condition and Markovian transition generators will be
analytically explored in Section 3.4.

The parameter γ determines how fast the trajectory of an NCS converge to the origin.
Given the Markovian delay and transition generator as above, the variation of γ and the
corresponding feedback gains of system (3.24) are given in Table 3.1. The trend shows the
bigger γ is, the more aggressive the feedback gains are.

Table 3.1: The values of γ and corresponding state-feedback gains.

γ 0 0.2 0.4 0.6 0.8

K(1) -0.164 -0.164 -0.171 -0.188 -0.191
K(2) -0.082 -0.084 -0.092 -0.112 -0.120

3.2.2 State-feedback stabilization

The difficulty in solving switching feedback gain K(i) in the matrix inequality (3.11) in-
volves nonlinear terms, i.e. Â(i)X(i) in Ψ1(i) and cannot be considered as an LMI problem.
However, by introducing special settings of X(i) the nonlinear terms can be eliminated and
the LMI problem is recovered.

Theorem 3.2 For given scalars n1(i) ≥ 0, n2(i) ≥ 0, ε(i) ≥ 1 and γ ≥ 0, if there exist
matrices Y (i), W > 0 and X1(i) = XT

1 (i) > 0, i ∈ S satisfying

X(i) =

[
X1(i) 0

−n1(i)X1(i) n2(i)X1(i)

]
(3.27)

such that Ψ̂1(i) Ψ̂2(i) Ψ̂3(i)
∗ −ε(i)(τ(i) + τ̂αi)W 0
∗ ∗ −Γ(i)

 < 0, (3.28)

where

τ̂ =
1

2
(τ̄ 2 − τ 2), αi = −αi,i,
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Ψ̂1(i) =

[
−n1(i)X1(i) n2(i)X1(i)

AX1(i) + γX1(i) + eγτ(i)BY (i) + n1(i)X1(i) −n2(i)X1(i)

]
+

[
−n1(i)X1(i) n2(i)X1(i)

AX1(i) + γX1(i) + eγτ(i)BY (i) + n1(i)X1(i) −n2(i)X1(i)

]T
+ τ(i)W + αi,iEX

T (i),

Ψ̂2(i) = ε(i)
(
τ(i) + τ̂αi

) [0 −n1(i)eγτ(i)Y T (i)BT

0 n2(i)eγτ(i)Y T (i)BT

]
,

Ψ̂3(i) =
[√
αi,1EX

T (i) · · · √αi,NEXT (i)
]
,

Γ(i) = diag
{
X(1), . . . , X(N)

}
holds, the closed-loop system (3.9) is MES with the feedback gain

K(i) = Y (i)X−1
1 (i). (3.29)

Proof : According to Theorem 3.1, the switching controller (3.3) stabilizes the closed-
loop system (3.4) if the inequalities (3.13) and (3.18) are satisfied. Choose a set of ε(i) ≥ 1
and let Q = ε(i)ÂT1 (i)W−1Â1(i), (3.13) becomes

ε(i)ÂT1 (i)W−1Â1(i) ≥ ÂT1 (i)W−1Â1(i). (3.30)

Substitute (3.30) and (3.27) into (3.18) and let Y (i) = K(i)X1(i). The nonlinear terms in
(3.11) are eliminated and the LMI (3.28) is derived.

Remark 3.5 The structure of X(i) in Theorem 3.2 is made due to the requirement
P (i) = X−1(i), in the Lyapunov candidate satisfying EP (i) = P T (i)E > 0. Therefore,
X(i) is determined as follows

X(i) =

[
X1(i) 0
X2(i) X3(i)

]
, X1(i) = X1(i)T > 0. (3.31)

However, by expanding Ψ̂2(i) and Ψ̂3(i) it results in terms, e.g. eγτ(i)BK(i)X2(i) and
eγτ(i)BK(i)X3(i), which make deriving an LMI formulation not possible. In order to obtain
an LMI formulation, one possibility is to set X2(i) and X3(i) in (3.31) as −n1(i)X1(i) and
n2(i)X1(i), where n1(i) and n2(i) are positive real numbers.

Although the LMI algorithm can be efficiently solved by the LMI toolbox, the restriction
on matrix X(i) introduces conservatism in the controller design. The design algorithms
(3.27)-(3.29) in Theorem 3.2 might not provide a feasible solution, even if there exists one.

A less conservative approach is to set X(i) back to (3.31) and solve the BMI (bilinear
matrix inequality) directly. However, solving an BMI has the drawback that the feasible
feedback gains can only be found strongly depending on the initial conditions. A brute-
force numerical search regarding any possible initial conditions is unavoidable, e.g. using
the V-K iteration [135] or cone complementary linearization [142]. The solution of the
LMI algorithm in Theorem 3.2 can be used as an initial condition for solving the BMI.
In this case, less conservative feedback gains can be derived. To illustrate the results of
Theorem 3.2, the following numerical example is considered.

36



3.2 Stability and stabilization with delay-dependent state-feedback controller

Example 3.2 Consider an NCS with dynamics described by (3.1) and assume the system
has Markovian delays τ(rt) = [20 40] ms. The switching of Markovian delays is governed
by the generator A given by

A =

[
−3 3
1 −1

]
.

The system parameters are

A =

[
0 1
1 −50

]
, B =

[
0.5
1

]
.

Set γ = 1.2, n1(1) = 8.100× 104, n2(1) = 1.327× 105, n1(2) = 7.290× 105,
n2(2) = 9.677× 105, ε(1) = 3.051 and ε(2) = 1.332. Solving Theorem 3.2, the feasi-
ble stabilizing state-feedback gains are derived as

K(1) = [−4.567 − 1.983], K(2) = [−2.000 − 1.357].

With the initial condition xT (θ) = [1 2], θ ∈ [−τ̄ , 0], the simulation is performed 500
times with different sample paths of transmission delays for a time horizon of T = 3 s. One
sample path of the Markovian delay and associated probability distributions are shown in
Fig. 3.3 (a). Note that the stationary probability distribution of τ(2) = 40 ms is 75% and
τ(1) = 20 ms is 25%. For comparison, two controller design approaches are investigated.
In the proposed delay-dependent switching controller design, the delay is monitored using
the time-stamping technique and the feedback gain is synchronously switched with the
Markovian delays. The second approach holds the random delay constant by using the
buffering technique at the controller side, i.e. the controller is designed with the worst-case
delay τ(2) = 40 ms. The evolution of mean trajectory

||x̄(t)|| =
√
x̄2

1(t) + x̄2
2(t)

is shown in Fig. 3.3. For the NCS with delay-depend switching controller, the mean
trajectory converges exponentially towards a ball around the origin of radius ||x̄(t)|| = 0.05
after t0.05 = 1.575 s. The performance is 78.7% improved than the NCS with worst-case
design controller t0.05 = 2.814 s.

Consider the positive definite matrix X as in (3.31) and take the feasible solution of
Theorem 3.2 as an initial condition for BMI. The less conservative stabilizing state-feedback
gains are

K(1) = [−30.368 − 27.041], K(2) = [−20.650 − 5.032],

with

X1(1) =

[
0.318 −0.143
−0.143 0.125

]
, X1(2) =

[
0.424 −0.170
−0.170 0.183

]
,

W = 102 ×


0.353 −0.068 0.018 0.006
−0.068 0.387 −0.059 0.001
−0.018 −0.059 0.522 −0.021
0.006 0.001 −0.021 0.575

 .
The same comparison is also executed for the NCS with the less conservative delay-
dependent switching controller. The NCS converges towards ||x̄(t)|| = 0.05 after
t0.05 = 0.068 s, up to 23 times faster than the delay-dependent controller derived by the
LMI algorithm. Furthermore, the delay-dependent switching controller derived by BMI
algorithm is 79.4% faster than the worst-case deign controller derived by BMI algorithm.
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Figure 3.3: One sample path of the Markovian delay and associated probability distributions
(a) and the mean state trajectory of NCS with delay-dependent switching controller (solid
line) and NCS with worst-case design controller (dashed line) (b).

By and large, the delay-dependent switching controller design algorithm in Theorem 3.2
has superior control performance than the conventional worst-case design. It is very promis-
ing for NCSs with non-constant delay.

3.3 Stability and stabilization with delay-dependent
output-feedback controller

In this section, the stability of NCSs with delay-dependent dynamical output-feedback
controller is studied. As shown in Fig. 3.4, the actuator is event driven, as while the sensor
and the the dynamical output-feedback controller are periodically sampled by h1 and h2,
respectively. The switching output-feedback controller has the form

ẋc(t) = Ac(rt)xc(t) +Bc(rt)ȳ(t),

ū(t) = Cc(rt)xc(t),
(3.32)

where xc ∈ Rn is the controller state with xc = 0 for t ≤ 0, Ac(rt), Bc(rt) and Cc(rt) are de-
signed parameters with appropriate dimensions. According to (3.2), the piecewise constant
sensor measurement at sampled time tk is

ȳ(t) = Cx(t− τh1(t)− τsc(rt)),

τh1(t) = t− tk, tk ≤ t < tk+d1+1,

where d1 is the maximal number of consecutive dropouts in SC channel. Similarly, the
piecewise constant control output at sampled time tl becomes

ū(t) = Cc(rt)xc(t− τh2(t)− τca(rt))

τh2(t) = t− tl, tl ≤ t < tl+d2+1,
(3.33)
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Figure 3.4: Illustration of a sampled-data NCS with SC delay τsc(rt) and CA delay τca(rt).
The sensor output, ȳ(t) = Cx(t− τh1(t)− τsc(rt)), is periodically sampled by h1 and held
by a ZOH. The output-feedback controller output, ū(t) = Cc(rt)xc(t− τh2(t)− τca(rt)),
is periodically sampled by h2 and held by a ZOH.

where d2 is the maximal number of consecutive dropouts in CA channel. For any γ ≥ 0,
consider z(t) = eγtx(t) and zc(t) = eγtxc(t). Define χT (t) = [zT (t) zTc (t)]. Combining (3.1),
(3.32) and (3.33), the closed-loop system in Fig. 3.4 becomes

χ̇(t) = Ā0(rt)χ(t) + Ā1(rt)χ(t− τ1(t, rt)) + Ā2(rt)χ(t− τ2(t, rt)), (3.34)

where

Ā0(rt) =

[
A+ γI 0

0 Ac(rt) + γI

]
, Ā1(rt) =

[
0 0

eγτ1(t,rt)Bc(rt)C 0

]
,

Ā2(rt) =

[
0 eγτ2(t,rt)BCc(rt)
0 0

]
.

The resulting closed-loop system (3.34) is an MJLS with multiple piecewise random delays,
τ1(t, rt) = t− tk + τsc(rt) and τ2(t, rt) = t− tl + τca(rt). Consider the upper bound of time-
varying delays in SC and CA channels in the stability analysis. Hence, the delays in the
closed-loop system (3.34) become

τ1(rt) = (1 + d1)h1 + τsc(rt), τ2(rt) = (1 + d2)h2 + τca(rt) (3.35)

Apply the descriptor transformation to the system (3.34) and let ξT (t) = [χT (t) χ̇T (t)] , it
becomes

Eξ̇(t) = Â(rt)ξ(t)− Â1(rt)

∫ t

t−τ1(rt)

ξ(s)ds− Â2(rt)

∫ t

t−τ2(rt)

ξ(s)ds, (3.36)

where

E =

[
I 0
0 0

]
, Â(rt) =

[
0 I

Ā0(rt) + Ā1(rt) + Ā2(rt) −I

]
,

Â1(rt) =

[
0 0
0 Ā1(rt)

]
, Â2(rt) =

[
0 0
0 Ā2(rt)

]
.

As mentioned before, the system described by (3.34) is equivalent to the transformed
system in (3.36). Therefore, the system represented by (3.36) is considered for the stability
analysis in the subsequent section.
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Remark 3.6 The state {ξ(t), rt, t ≥ 0} depends on the history ξ(t+ θ), θ ∈ [−2τ̃(rt), 0],
where τ̃(rt) = max{τ1(rt), τ2(rt)}. It implies {ξ(t), rt, t ≥ 0} is not a Markov process. Ac-
cording to Definition 2.1, a strong Markov process {Ξ(t), rt, t ≥ 0} can be formulated by
the following transformation

Ξ(t) = ξ(s+ t), s ∈
[
t− 2τ̃(rt), t

]
,

where τ̃(rt) = max{τ1(rt), τ2(rt)}.

3.3.1 Stability analysis

Similar to Section 3.2.1, a delay-dependent stability for output-feedback NCSs is derived
by using the Lyapunov-Krasovskii functional approach. The resulting NCSs in (3.34) have
multiple random delays τ1(rt) and τ2(rt). The derived stability condition deals with both
random delays. Any feasible solution of the stability condition indicates the trade-off
between transmission delay: τsc(rt) and τca(rt), consecutive dropouts: d1 and d2, and the
sampling intervals: h1 and h2, such that the stochastic exponential mean square stability
can be guaranteed. The details are given in the following Theorem 3.3.

Theorem 3.3 For the closed-loop system (3.36) with a given γ ≥ 0, if there exist matrices
Q1 > 0, Q2 > 0, P (i) > 0, i ∈ S such that the following LMI’s holdΨ1(i) τ1(i)P T (i)Â1(i) τ2(i)P T (i)Â2(i)

∗ −τ1(i)Q1 0
∗ ∗ −τ2(i)Q2

 < 0, (3.37)

where αi = −αi,i,

τ̄1 = max
i∈S

{
τ1(i)

}
, τ 1 = min

i∈S

{
τ1(i)

}
, τ̂1 =

1

2
(τ̄ 2

1 − τ 2
1),

τ̄2 = max
i∈S

{
τ2(i)

}
, τ 2 = min

i∈S

{
τ2(i)

}
, τ̂2 =

1

2
(τ̄ 2

2 − τ 2
2),

Ψ1(i) = ÂT (rt)P (i) + P T (i)Â(rt) +
N∑
j=1

αi,jEP (j)

+
(
τ1(i) + τ̂1αi

)
Q1 +

(
τ2(i) + τ̂2αi

)
Q2,

then the system is MES.

Proof : Consider a Lyapunov candidate as follows

V (Ξ(t), rt) = V1(Ξ(t), rt) + V2(Ξ(t), rt) + V3(Ξ(t), rt), (3.38)

where

V1(Ξ(t), rt) = ξT (t)EP (rt)ξ(t),

V2(Ξ(t), rt) =

∫ 0

−τ1(rt)

∫ t

t+θ

ξT (s)Q1ξ(s)dsdθ +

∫ 0

−τ2(rt)

∫ t

t+θ

ξT (s)Q2ξ(s)dsdθ,

V3(Ξ(t), rt) = αi

∫ −τ1

−τ̄1

∫ t

t+θ

ξT (s)Q1ξ(s)(s− t− θ)dsdθ

+ αi

∫ −τ2

−τ̄2

∫ t

t+θ

ξT (s)Q2ξ(s)(s− t− θ)dsdθ.
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3.3 Stability and stabilization with delay-dependent output-feedback controller

Suppose rt = i ∈ S. According to Lemma A.1, it has

LV1(Ξ(t), rt) ≤ ξT (t)

[
ÂT (rt)P (rt) + P T (rt)Â(rt) +

N∑
j=1

αi,jEP (j)

]
ξ(t)

+ ξT (t)

[
τ1(rt)P

T (rt)Â1(rt)Q
−1
1 ÂT1 (rt)P (rt)

+ τ2(rt)P
T (rt)Â2(rt)Q

−1
2 ÂT2 (rt)P (rt)

]
ξ(t)

+

∫ t

t−τ1(rt)

ξT (s)Q1ξ(s)ds+

∫ t

t−τ2
ξT (s)Q2ξ(s)ds.

(3.39)

LV2(Ξ(t), rt) ≤ τ1(rt)ξ
T (t)Q1ξ(t) + τ2(rt)ξ

T (t)Q2ξ(t)

−
∫ t

t−τ1(rt)

ξT (s)Q1ξ(s)ds−
∫ t

t−τ2(rt)

ξT (s)Q2ξ(s)ds

+ αi

∫ −τ1

−τ̄1

∫ t

t+θ

ξT (s)Q1ξ(s)dsdθ + αi

∫ −τ2

−τ̄2

∫ t

t+θ

ξT (s)Q2ξ(s)dsdθ.

(3.40)

LV3(Ξ(t), rt) =
1

2
αi(τ̄

2
1 − τ 2

1)ξT (t)Q1ξ(t)− αi
∫ −τ1

−τ̄1

∫ t

t+θ

ξT (s)Q1ξ(s)dsdθ

+
1

2
αi(τ̄

2
2 − τ 2

2)ξT (t)Q2ξ(t)− αi
∫ −τ2

−τ̄2

∫ t

t+θ

ξT (s)Q2ξ(s)dsdθ.

(3.41)

Combining (3.39)-(3.41) results in

LV (Ξ(t), rt) ≤ ξT (t)

[
ÂT (rt)P (rt) + P T (rt)Â(rt) +

N∑
j=1

αi,jEP (j)

]
ξ(t)

+ ξT (t)

[
τ1(rt)P

T (rt)Â1(rt)Q
−1
1 ÂT1 (rt)P (rt)

+ τ2(rt)P
T (rt)Â1(rt)Q

−1
2 ÂT1 (rt)P (rt)

]
ξ(t)

+
(
τ1(rt) +

1

2
αi(τ̄

2
1 − τ 2

1)
)
ξT (t)Q1ξ(t)

+
(
τ2(rt) +

1

2
αi(τ̄

2
2 − τ 2

2)
)
ξT (t)Q2ξ(t)

= ξT (t)Θ(rt)ξ(t).

(3.42)

Applying the Schur complement to Θ(rt), it results in (3.37).
Due to the fact maxθ∈[−2τ,0]{||ξ(t+ θ)||} ≤ ϕ||ξ(t)|| for some ϕ > 0 [83], the Lyapunov

candidate in (3.38) satisfies

V (Ξ(t), rt) ≤
[
λmax(EP (rt)) + ς1λmax(Q1) + ς2λmax(Q2)

]
||ξ(t)||2

≤ Λmax(rt)||ξ(t)||2,
(3.43)

where ᾱ = maxi∈S{αi},

ς1 =
1

2
τ̄ 2

1ϕ+
1

6
(τ̄ 3

1 − τ 3
1)ᾱϕ, ς2 =

1

2
τ̄ 2

2ϕ+
1

6
(τ̄ 3

2 − τ 3
2)ᾱϕ,
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3 Stochastic NCS with Periodic Sampling and Random Delay

Λmax(rt) = λmax(EP (rt)) + ς1λmax(Q1) + ς2λmax(Q2).

Apply the Dynkin’s formula and use the Gronwall-Bellman lemma, it has

E{||ξ(t)||2} ≤ e−ρ0t
E{V (Ξ(0), r0)}

minrt∈S
{

Λmin(rt)
} , (3.44)

where

ρ0 = min
rt∈S

{
Λmin(−Θ(rt))

Λmax(rt)

}
.

Equation (3.44) provides the proof for stochastic exponential mean square stability.

Remark 3.7 In Theorem 3.3, the control performance of system (3.4) with output-
feedback controller (3.32) can be pre-specified by γ ≥ 0. The decay rate of trajectory
E{||x(t)||2} is determined in (3.23).

The Lyapunov candidates are chosen to compensate the integrals caused by the delays
τ1(rt) and τ2(rt). Theorem 3.3 can be also applied to NCSs with nonlinear plants by
using linearization techniques. The relationship between Markovian delays and stability is
discussed in the following example.

Example 3.3 Consider an NCS

ẋ(t) = −x(t) + ū(t)

with a set of dynamical output-feedback controllers{
ẋc(t) = −10xc(t)− 3x(t− τ1(1)),

ū(t) = −0.5xc(t− τ2(1)),
(3.45)

and {
ẋc(t) = −6xc(t)− 2x(t− τ1(2)),

ū(t) = −2.5xc(t− τ2(2)).
(3.46)

According the stability condition in Theorem 3.3 and setting γ = 0, the maximal feasible
Markovian delays of the NCS are

τ1(1) = 20 ms, τ1(2) = 40 ms,

τ2(1) = 10 ms, τ2(2) = 20 ms,

with transition generator

A =

[
−1 1
2 −2

]
.

As shown in (3.32)-(3.33), the Markovian delays τ1(rt) and τ2(rt) contain the sampling
intervals and networked-induced delays3 in SC and CA channels. With the knowledge of
network-induced delays, the sampling intervals in both channels can be easily determined
and vice versa.

3The network-induced delay is defined as the composition of the delays caused by transmission and packet
dropouts.
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3.3 Stability and stabilization with delay-dependent output-feedback controller

The Markov transition generator indicates that the Markovian delays τ1(1) and τ2(1)
have the stationary probability distribution 66.7%. The stability condition is still valid by
the stationary probability distribution of τ1(1) and τ2(1) at 33.3% or

A =

[
−1 1
0.5 −0.5

]
,

refer to Section 3.4 for details.
The parameter γ ensures the decay rate of system trajectories. The bigger γ is chosen,

the more aggressive the output-feedback controllers will be, see Table 3.2.

Table 3.2: The values of γ and corresponding output-feedback controllers.

γ 0 0.2 0.4

Ac(1), Bc(1), Cc(1) -10, -3, -0.5 -12, -3, -0.4 -16, -3, -0.1
Ac(2), Bc(2), Cc(2) -6, -2, -2.5 -7, -2, -1.8 -5, -2.1, -1.3

3.3.2 Output-feedback stabilization

Solving the switching output-feedback controller parameters Ac(rt), Bc(rt) and Cc(rt) con-
cerns the nonlinear terms in matrix inequality (3.37), i.e. P T (rt)Â(rt), P

T (rt)Â1(rt) and
P T (rt)Â2(rt). However, the LMI condition can be recovered by the diagonal requirement
of P (rt). The details are shown in the following Theorem 3.4.

Theorem 3.4 For given scalars n1(i) ≥ 0, n2(i) ≥ 0 and γ ≥ 0, if there exist matrices
F (i), G(i), H(i), Q1 > 0, Q2 > 0, P1(i) = P T

1 (i) > 0, i ∈ S satisfying

P1(i) =

[
P11(i) 0

0 P12(i)

]
,

P (i) =

[
P1(i) 0

−n1(i)P1(i) n2(i)P1(i)

]
, (3.47)

such that Ψ1(i) Ψ2(i) Ψ3(i)
∗ −τ1(i)Q1 0
∗ ∗ −τ2(i)Q2

 < 0, (3.48)

where αi = −αi,i

τ̄1 = max
i∈S

{
τ1(i)

}
, τ 1 = min

i∈S

{
τ1(i)

}
, τ̂1 =

1

2
(τ̄ 2

1 − τ 2
1),

τ̄2 = max
i∈S

{
τ2(i)

}
, τ 2 = min

i∈S

{
τ2(i)

}
, τ̂2 =

1

2
(τ̄ 2

2 − τ 2
2),

Ψ1(i) =

[
Π1(i) Π2(i)

(1− n1(i))P1(i) n2(i)P1(i)

]T
+

[
Π1(i) Π2(i)

(1− n1(i))P1(i) n2(i)P1(i)

]
+ τ1(i)Q1 + τ2(i)Q2 +

N∑
j=1

αi,jEP (j),
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3 Stochastic NCS with Periodic Sampling and Random Delay

Π1(i) = n1(i)

[
P11(i)A+ γP11(i) eγτ2(i)H(i)

eγτ1(i)G(i) F (i) + γP12(i)

]
,

Π2(i) = n2(i)

[
P11(i)A+ γP11(i) eγτ2(i)H(i)

eγτ1(i)G(i) F (i) + γP12(i)

]
,

Ψ2(i) = τ1(i)

0 −n1(i)

[
0 0

eγτ1(i)G(i) 0

]
0 n2(i)

[
0 0

eγτ1(i)G(i) 0

]
 , Ψ3(i) = τ2(i)

0 −n1(i)

[
0 eγτ2(i)H(i)
0 0

]
0 n2(i)

[
0 eγτ2(i)H(i)
0 0

]
 ,

holds, the closed-loop system (3.36) is MES under the output-feedback controller of the
form

Ac(i) = P−1
11 (i)F (i), Bc(i) = P−1

12 (i)G(i)(i)C+, Cc(i) = B+P−1
11 (i)H(i). (3.49)

Proof : Substitute (3.47) into (3.42) and let

F (i) = P11(i)Ac(i), G(i) = P12(i)Bc(i)C, H(i) = P11(i)BCc(i). (3.50)

The nonlinear terms are eliminated and the LMI in (3.48) is derived.

Remark 3.8 The structure of P (i) in Theorem 3.4 is made due to the condition
EP (i) = P T (i)E > 0 in the Lyapunov candidate. Generally, the positive definite matrix
P (i) has the form as

P (i) =

[
P1(i) 0
P2(i) P3(i)

]
, P1(i) = P T

1 (i) > 0. (3.51)

However, in order to avoid the nonlinear terms ĀT1 (i)P2(i), ĀT2 (i)P2(i), ĀT1 (i)P3(i) and
ĀT2 (i)X3(i), the matrices P2(i) and P3(i) are replaced by −n1(i)P1(i) and n2(i)P1(i). In
addition, P1(i) is determined as a diagonal matrix, i.e.

P1(i) =

[
P11(i) 0

0 P12(i)

]
,

so as to make the products of ĀT2 (i)P1(i) and ĀT3 (i)P1(i) resulting in F (i) = P11(i)Ac(i),
G(i) = P12(i)Bc(i)C and H(i) = P11(i)BCc(i).

The LMI algorithm is derived by the structure requirement of matrices P1(i). These
requirements, however, introduce certain conservatism in the output-feedback controller
design. In order to reduce the conservatism, matrices X(i) and X1(i) are set back to
(3.51) and solve the resulting BMI directly. The numerical efficiency of solving BMI can
be increased by taking the solution of the LMI in Theorem 3.4 as an initial condition.
Therefore, a less conservative output-feedback controller can be derived as shown in the
numerical example.

Example 3.4 Consider an NCS with an output-feedback controller as described by (3.34).
Assume the Markovian delays τ1(rt) = [20 25] ms and τ2(rt) = [10 40] ms. The switching
of Markovian delays is governed by the generator A given by

A =

[
−1 1
3 −3

]
.
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3.3 Stability and stabilization with delay-dependent output-feedback controller

The system parameters are as follows

A = −0.7, B = 1, C = 1.

Consider the positive definite matrices P (i) and P1(i) as defined in (3.51). Set γ = 0.4 and
solve the BMI in (3.48), the output-feedback controllers are derived as

Ac(1) = −16.000, Bc(1) = −3.000, Cc(1) = −0.100,

Ac(2) = −4.992, Bc(2) = −2.099, Cc(2) = −1.373,

with

P1(1) =

[
0.691 0.136
0.136 0.759

]
, P1(2) =

[
0.901 0.006
0.006 0.635

]
,

Q1 =


0.181 0.004 −0.001 0.008
0.004 0.191 −0.005 −0.001
−0.001 −0.005 0.197 0.020
0.008 −0.001 0.020 0.171

 , Q2 =


0.372 0.009 −0.002 0.014
0.009 0.395 −0.007 −0.003
−0.002 −0.007 0.406 0.038
0.014 −0.003 0.038 0.354

 .
With the initial condition xT (θ) = 1, θ ∈ [−θ̄, 0], the simulation is ran 500 times with
different sample paths of transmission delays for a time horizon of T = 5 s. One sample
path of Markovian delays and their probability distributions are shown in Fig. 3.5 (a).
The stationary probability distribution of τ1(2) and τ2(1) is 75%, τ1(2) and τ2(2) is 25%.
The mean trajectory of the NCS with delay-dependent switching controller exponentially
converges towards a ball around the origin of radius ||x̄(t)|| = 0.05 after t0.05 = 2.222 s.
The performance is 30.2% improved than the counterpart NCS, i.e. NCS with worst-case
design controller, t0.05 = 3.182 s.
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||x̄(t)||

(a) (b)

Figure 3.5: One sample path of the Markovian delays and associated probability distributions
(a) and the mean state trajectory of NCS with delay-dependent switching controller (solid
line) and NCS with worst-case design controller (dashed line) (b).

In summary, the proposed delay-dependent output-feedback controller design algorithm
has superior control performance and is promising for NCS with random delays.
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3 Stochastic NCS with Periodic Sampling and Random Delay

3.4 Guaranteed control performance for NCS with
random delay

Section 3.2-3.2.2 concern the controller design ensuring the mean exponential stability for
NCSs if the probability transition rates of delays, i.e. A = (αi,j), i, j ∈ S, are exactly
known. However, for the real communication networks, the probability transition rates of
delays are usually subjected to exogenous disturbance. The probability transition rate of
delays might affect system stability and the control performance. It is useful to design
an NCS, whose desired control performance is guaranteed despite the uncertainties in
probability transition rate. The guaranteed control problem is therefore developed to
maintain the stability and desired control performance of NCSs.

Let R(rt) be a set of symmetric, positive definite matrices. A cost function can be
defined as

Jper(rt) = E
{∫ ∞

0

zT (t)R(rt)z(t)dt
∣∣z0, r0

}
. (3.52)

Associated to the cost function (3.52), the guaranteed control performance is defined as
follows.

Definition 3.1 (Guaranteed control performance)
Consider a set of MJLSs. If there exists a positive scalar J̄per such that the cost function

(3.52) satisfies Jper(rt) ≤ J̄per, then J̄per is said to be a guaranteed cost on the control
performance of NCSs.

3.4.1 State-feedback guaranteed control performance analysis

In this subsection, the guaranteed performance for a class of NCSs with state-feedback con-
troller is studied. Consider the probability transition rate is perturbed by ∆αi,j, i, j ∈ S.
According to properties of Markov probability transition rates, the uncertainty ∆αi,j has
the properties:

(i)
∑N

j=1 ∆αi,j = 0,

(ii) ∆αi,j > −αi,j, i 6= j,

(iii) ∆αi,i < −αi,i, otherwise.

As a result,the perturbed probability transition rate becomes A = (αi,j + ∆αi,j).
Consider a state-feedback controller, K(i), of an NCS is determined by Theorem 3.2

with a probability transition rate A = (αi,j), i, j ∈ S. The following theorem determines
an upper bound on the uncertainties ∆αi,j under which the mean exponential stability is
ensured and the control performance is guaranteed.

Theorem 3.5 Consider an NCS in (3.4) with state-feedback controller (3.3) satisfying the
matrix inequality (3.28) in Theorem 3.2. Let the Markov process transition generator be
perturbed by ∆αi,j, i, j ∈ S. For given scalars γ ≥ 0 and matrices R(i) > 0, if there exist
matrices Q > 0 and P1(i) = P T

1 (i) > 0, i ∈ S satisfying

P (i) =

[
P1(i) 0
P2(i) P3(i)

]
,
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3.4 Guaranteed control performance for NCS with random delay

such that

Θ̄(i) =

[
Ψ1(i) τ(i)P T (i)Â1(i)
∗ −τ(i)Q

]
< 0, (3.53)

where

τ̂ =
1

2
(τ̄ 2 − τ 2), αi = −αi,i,

Ψ1(i) = ÂT (i)P (i) + P T (i)Â(i) +
N∑
j=1

αi,jEP (j) +
(
τ(i) + αiτ̂

)
Q+

[
I
0

]
R(i)[I 0]

holds and the perturbations of probability transition rate are bounded by

∆αi ≤ ∆ᾱi =
λmin

(
− Θ̄(i)

)
λmax

(
τ̂Q
)

+ λmax

(
P̄ (i)

) , (3.54)

where P̄ (i) =
∑N

j 6=iEP (j)− EP (i), then the NCS is MES and the cost function defined
in (3.52) is bounded by

Jper(rt) ≤ J̄per(r0, ᾱr0 + ∆αr0) = ξT (0)EP (r0)ξ(0) +

∫ 0

−τ(r0)

∫ 0

θ

ξT (s)Qξ(s)dsdθ

+ (αr0 + ∆αr0)

∫ −τ
−τ̄

∫ 0

θ

ξT (s)Qξ(s)(s− θ)dsdθ.
(3.55)

Proof : Consider the same Lyapunov candidate as in Theorem 3.2 with non-perturbed
probability transition rate A = (αi,j). Based on Lemma A.1, the infinitesimal generator of
the Lyapunov candidate is known as

LV (Ξ(t), rt) ≤ ξT (t)

[
ÂT (rt)P (rt) + P T (rt)Â(rt) +

N∑
j=1

αi,jEP (j)

]
ξ(t)

+ τ(rt)ξ
T (t)P T (rt)Â1(rt)Q

−1ÂT1 (rt)P (rt)ξ(t)

+
(
τ(rt) +

1

2
αi(τ̄

2 − τ 2)
)
ξT (t)Qξ(t)

= ξT (t)Θ(rt)ξ(t),

The mean exponential stability is ensured by Θ(i) < 0. According to Dynkin’s formula, it
has

E
{∫ T

0

LV (Ξ(t), rt)dt
∣∣Ξ(0), r0

}
= E{V (Ξ(T )), rT} − E{V (Ξ(0), r0)}.

Note that z(t) = [I 0]ξ(t). The cost function in (3.52) becomes

Jper(rt) = E
{∫ T

0

[
ξT (t)

[
I
0

]
R(rt)[I 0]ξ(t) + LV (Ξ(t), rt)

]
dt|Ξ(0), r0

}
− E{V (Ξ(T ), rT )}+ E{V (Ξ(0), r0)}

≤ E
{∫ T

0

ξT (t)Θ̄(rt)ξ(t)dt+ V (Ξ(0), r0)

}
,
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where Θ̄(rt) = Θ(rt) +

[
I
0

]
R(rt)[I 0]. By the requirement of Θ̄(rt) < 0, it yields

Jper(rt) = E
{∫ ∞

0

zT (t)R(rt)z(t)dt
∣∣z0, r0

}
≤ E{V (Ξ(0), r0)} = J̄per(r0, ᾱr0 + ∆αr0).

Apply Schur complement to Θ̄(rt), it results in (3.53).
Assume the transition generator of Markov process rt is perturbed by ∆αi,j, i.e.
A = (αi,j + ∆αi,j), i, j ∈ S. Take αi,j + ∆αi,j into Θ̄(i), it requires

τ̂∆αiQ+

j=1∑
N

∆αi,jEP (j) + Θ̄(i) < 0 (3.56)

such that the mean exponential stability is ensured and the guaranteed control performance
is guaranteed. Note that ∆αi = −∆αi,i =

∑N
i 6=j ∆αi,j, it has

j=1∑
N

∆αi,jEP (j) ≤ ∆αi

( N∑
j 6=i

EP (j)− EP (i)

)
.

Choose a ∆αi in (3.56) such that the following inequality is satisfied

∆αiλmax(τ̂Q) + ∆αiλmax

( N∑
j 6=i

EP (j)− EP (i)

)
≤ λmax(−Θ̄(i)).

As a result, the perturbation upper bound ∆ᾱi can be determined by

∆ᾱi =
λmin

(
− Θ̄(i)

)
λmax

(
τ̂Q
)

+ λmax

(
P̄ (i)

) , (3.57)

where P̄ (i) =
∑N

j 6=iEP (j)− EP (i).
Based on (3.56), the perturbations on the probability transition rate is bounded by

(3.57) and the cost function in (3.52) is bounded by (3.55).

Remark 3.9 The guaranteed control performance is an upper bound on the control per-
formance obtained by a stochastic Lyapunov functional. It is an useful evaluation method
to measure the expected value of performance index for systems with probabilistic uncer-
tainties.

For a given NCS with Markovian random delay and delay-dependent state-feedback
controller, the perturbation upper bound on the probability transition rate and guaranteed
cost of the control performance can be determined by above theorem. The following
numerical example shows the usefulness of previous results.

Example 3.5 Consider an NCS with an state-feedback controller as described by (3.3).
Assume the Markovian delays having values τ(rt) = [20 50] ms with probability transition
rate

A =

[
−1 1
1 −1

]
.
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3.4 Guaranteed control performance for NCS with random delay

the system parameters and feedback gains are

A =

[
−1 1
0 0.5

]
, B =

[
0.5
1

]
,

and
K(1) = [−6.3 − 5.5], K(2) = [−2.6 − 2.2].

Set γ = 0 and

R(1) = R(2) = 10−4

[
1 0
0 1

]
.

Solving Theorem 3.5, the positive definite matrices are

P1(1) = 10−3 ×
[
0.154 0.017
0.017 0.064

]
, P1(2) = 10−3 ×

[
0.152 −0.002
−0.002 0.073

]
,

Q = 10−3 ×


0.782 0.087 0.002 0.154
0.087 0.661 −0.173 0.016
0.002 −0.173 0.794 −0.022
0.154 0.016 −0.022 0.336

 .
The upper bounds on the perturbation of Markov process probability transition rate, ∆ᾱ1

and ∆ᾱ2, are determined by (3.54) and have the values

∆α1 = 0.207, ∆α2 = 0.559.

The variations of the probability transition rate become[
−1.207 1.207
0.441 −0.441

]
≤ A ≤

[
−0.739 0.739
1.559 −1.559

]
.

This implies the stationary probability distributions of τ(1) = 20 ms ranging from 26.8%
to 66.3% (or from 33.7% to 73.2% for τ(2) = 50 ms). In the multi-hop wireless LAN,
e.g. IEEE 802.15.4, the Markov probability transition rate well defines the probability
distribution of waiting delays generated for collision avoidance. For NCS applications, the
probability of waiting delays are meant to be adapted. The perturbation bounds on the
Markov probability rate determines the feasible adaptable ranges of waiting delays where
the stability and performance of underlying control systems are ensured.

3.4.2 Output-feedback guaranteed control performance analysis

The guaranteed cost on the performance of the output-feedback controller (3.32) can be
established in the similar way as shown in Theorem 3.5. Define the cost function in (3.52)
as

Jper(rt) = E
{∫ ∞

0

χT (t)R(rt)χ(t)dt
∣∣z0, r0

}
, (3.58)

where R(t) >. Assume an output-feedback controller is determined by Theorem 3.3 with
a probability transition rate, A = αi,j, i, j ∈ S. Assume the probability transition rate is
perturbed by ∆αi,j satisfying the conditions (i), (ii) and (iii) in the previous section. An
upper bound of ∆αi,j will be determined in the following theorem such that the mean
exponential stability is still ensured and the control performance (3.58) is guaranteed.
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3 Stochastic NCS with Periodic Sampling and Random Delay

Theorem 3.6 Consider an NCS in (3.4) with output-feedback controller (3.32) satisfying
the matrix inequality (3.48) in Theorem 3.4. Let the Markov process transition rate be
perturbed by ∆αi,j, for i, j ∈ S. For given scalars γ ≥ 0 and matrices R(i) > 0, if there
exist matrices Q1 > 0, Q2 > 0 and P1(i) = P T

1 (i) > 0, i ∈ S satisfying

P (i) =

[
P1(i) 0
P2(i) P3(i)

]
,

such that

Θ̄(i) =

Ψ1(i) τ1(i)P T (i)Â1(i) τ2(i)P T (i)Â2(i)
∗ −τ1(i)Q1 0
∗ ∗ −τ2(i)Q2

 < 0, (3.59)

where αi = −αi,i

τ̄1 = max
i∈S
{τ1(i)}, τ 1 = min

i∈S
{τ1(i)}, τ̂1 =

1

2
(τ̄ 2

1 − τ 2
1),

τ̄2 = max
i∈S
{τ2(i)}, τ 2 = min

i∈S
{τ2(i)}, τ̂2 =

1

2
(τ̄ 2

2 − τ 2
2),

Ψ1(i) = ÂT (i)P (i) + P T (i)Â(i) +
N∑
j=1

αi,jEP (j) +
(
τ1(i) + αiτ̂1

)
Q1

+
(
τ2(i) + αiτ̂2

)
Q2 +

[
I
0

]
R(i)[I 0]

holds and the perturbations on probability transition generator are bounded by

∆αi ≤ ∆ᾱi =
λmin(−Θ̄(i))

λmax(τ̂1Q1) + λmax(τ̂2Q2) + λmax(P̄ (i))
, (3.60)

where P̄ (i) =
∑N

j 6=iEP (j)− EP (i), then the system is also MES and the cost function in
(3.58) is still bounded by

Jper(rt) ≤ J̄per(r0, ᾱr0 + ∆αr0)

= ξT (0)EP (r0)ξ(0) +

∫ 0

−τ1(r0)

∫ 0

θ

ξT (s)Q1ξ(s)dsdθ

+

∫ 0

−τ2(r0)

∫ 0

θ

ξT (s)Q2ξ(s)dsdθ

+ (αr0 + ∆αr0)

∫ −τ1

−τ̄1

∫ 0

θ

ξT (s)Q1ξ(s)(s− θ)dsdθ

+ (αr0 + ∆αr0)

∫ −τ2

−τ̄2

∫ 0

θ

ξT (s)Q2ξ(s)(s− θ)dsdθ.

(3.61)
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3.4 Guaranteed control performance for NCS with random delay

Proof : Consider the Lyapunov candidate in Theorem 3.4 with non-perturbed proba-
bility transition rate A = (αi,j). The infinitesimal generator of the Lyapunov candidate,
LV (Ξ(t), rt), is given as

LV (Ξ(t), rt) ≤ ξT (t)

[
ÂT (rt)P (rt) + P T (rt)Â(rt) +

N∑
j=1

αi,jEP (j)

]
ξ(t)

+ ξT (t)

[
τ1(rt)P

T (rt)Â1(rt)Q
−1
1 ÂT1 (rt)P (rt)

+ τ2(rt)P
T (rt)Â1(rt)Q

−1
2 ÂT1 (rt)P (rt)

]
ξ(t)

+
(
τ1(rt) +

1

2
αi(τ̄

2
1 − τ 2

1)
)
ξT (t)Q1ξ(t)

+
(
τ2(rt) +

1

2
αi(τ̄

2
2 − τ 2

2)
)
ξT (t)Q2ξ(t)

= ξT (t)Θ(rt)ξ(t).

The mean exponential stability is ensured by Θ(rt) < 0. Similar to the proof of Theo-
rem 3.5, the cost function in (3.52) is bounded if the following inequality

Θ̄(i) = Θ(i) +

[
I
0

]
R(rt)

[
I 0

]
is satisfied. Applying Schur complement to Θ̄(rt), the LMI in (3.59) is derived.

Consider the perturbed probability transition rate as A = (αi,j + ∆αi,j), i, j ∈ S. Take
αi,j + ∆αi,j into Θ̄(i), it needs

τ̂1∆αiQ1 + τ̂2∆αiQ2 +

j=1∑
N

∆αi,jEP (j) + Θ̄(i) < 0 (3.62)

such that the mean exponential stability is ensured and the guaranteed control perfor-
mance is guaranteed. Let P̄ (i) =

∑N
j 6=iEP (j)− EP (i). The same as in Theorem 3.5, the

perturbation upper bound ∆̄αi is determined as

∆ᾱi =
λmin

(
− Θ̄(i)

)
λmax

(
τ̂1Q1

)
+ λmax

(
τ̂2Q2

)
+ λmax

(
P̄ (i)

) . (3.63)

According to (3.62), the perturbations on the probability transition rate is bounded by
(3.63) and the cost function in (3.52) is bounded by (3.61).

The results for NCSs with output-feedback controller are demonstrated by the following
numerical example.

Example 3.6 Consider an NCS with an output-feedback controller as described by (3.34).
Assume the Markovian delays having values τ1(rt) = [15 32] ms and τ2(rt) = [15 28] ms. Set
the Markov process probability transition rate as

A =

[
−1 1
1 −1

]
.
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3 Stochastic NCS with Periodic Sampling and Random Delay

The system parameters are defined

A = −1.3, B = 1, C = 1.

with output-feedback controllers

Ac(1) = −16.578, Bc(1) = −1.348, Cc(1) = −0.186;

Ac(2) = −2.690, Bc(2) = −2.099, Cc(2) = −1.267.

Set γ = 0.4 and

R(1) = R(2) = 10−4

[
1 0
0 1

]
.

Solving Theorem 3.6, the positive definite matrices are

P1(1) = 10−3 ×
[
0.434 0.009
0.009 0.314

]
, P1(2) = 10−3 ×

[
0.902 −0.261
−0.261 0.389

]
,

Q1 = 10−3 ×


1.363 0.622 −0.112 0.131
0.622 1.640 0.049 −0.056
−0.112 0.049 2.235 0.082
0.131 −0.056 0.082 0.397

 ,

Q2 = 10−3 ×


1.967 0.066 −0.007 0.010
0.066 1.999 0.020 −0.007
−0.007 0.020 2.037 0.001
0.010 −0.007 0.001 1.791

 .
The upper bounds on the perturbation of Markov process probability transition rate, ∆ᾱ1

and ∆ᾱ2, are determined by (3.60) and have the values

∆α1 = 0.006, ∆α2 = 0.447.

According to (2.13) in Chapter 2, the perturbation bounds allow the stationary probability
distribution of delays τ1(1) = τ2(1) = 15 ms to be varied between 35.5% and 59.3%.

Consider τ1(rt) and τ2(rt) as waiting delays of CSMA/CA network in SC and CA chan-
nels, respectively. Varying of probability distributions of waiting delays means adjusting
the transmission priority within a CSMA/CA (Carrier Sensing Multiple Access/Collision
Avoidance) network. For applications with higher transmission priority, the probability
of short waiting delay is increased. Hence, the application performance is guaranteed.
Increasing transmission priority of network applications requires the provision of large net-
work resources, e.g. bandwidth. Due to the limited network capacities, it is desirable to
design an NCS which consumes only as much network resources as required to guaranteed
a certain performance level. Theorem 3.5 and Theorem 3.6 proposed in this section enables
a trade-off design of control systems and their networks. Based on the two theorems, a
novel Quality-of-Service (QoS) co-design approach will be explored in Chapter 5.
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3.5 Summary and discussion

3.5 Summary and discussion

It is well-known that data sampling rates and communication qualities, e.g. random delays
and packet dropouts, of NCSs have strong impact on their stability and control perfor-
mance. Stochastic design approaches handling different specifications in a single criterion,
and balancing control performance and system stability are, however, not available in
the known literature. The goal here is to develop analysis and design tools for NCSs, in
which the system and network specifications are conjointly considered. Targeted at the
uncertainties caused by the network, guaranteed bounds on stability regions and control
performance are required.

In this chapter, continuous-time LTI NCSs with periodic sampling are mainly consid-
ered. By applying the sampled-data system approach, the effects of periodic sampling
and random packet dropouts are reformulated into delays. In order to accommodate the
randomness of transmission delays within the analytical framework, a Markov process is in-
troduced. LTI systems with Markovian delay are classified as MJSs with mode-dependent
delay. Based on stochastic analysis methodologies, stability and stabilization conditions
are determined for NCSs with delay-dependent state-feedback as well as output-feedback
controllers. The switching controller design algorithms are derived in terms of multi-criteria
LMIs depending on transmission delays, packet dropouts, sampling rate, and associated
statistical properties of delays. This correlation allows an arbitration between transmis-
sion delays as well as sampling rate, and enables the exploration of stability (feasibility)
versus statistical properties of delays in the analysis (or design) process. Furthermore,
the robustness of stabilization conditions is analyzed towards uncertain Markovian delay
models. The bounds on the stability region are determined for uncertain Markov proba-
bility transition rates of delays. The expected performance is shown to be limited by a
guaranteed cost, which is derived by Markov probability transition rates of delays.

With known delay lengths and their probability transition rates, the stabilizing state-
feedback (or output-feedback) controllers can be easily determined for continuous LTI
systems by solving the proposed LMIs. The design algorithms can be also applied to
nonlinear systems by using the standard linearization techniques. Although the LMI algo-
rithms can be efficiently solved by existing LMI tools, the restrictions on LMIs introduce
conservatism in the design. The LMIs might not find a feasible solution, even if there
exists one. A less conservative algorithm involving BMI is also discussed in this chapter.
An iterative method, which concerns the solutions of LMI as initial conditions, to tackle
the numerical complicities of BMIs.

Numerical examples are considered for validations. The numerical results demonstrate
the superior performance benefit of the proposed stochastic controller design algorithms
over the worst-case design counterpart. This confirms the proposed control design algo-
rithms are promising for NCS applications.

By referring the probability transition rates of delays to network specifications, it de-
fines the probability distribution of waiting delays generated for collision avoidance in
CSMA/CA networks. In the consideration of network capacity constraints, it is desirable
to design an NCS and its underlying network conjointly such that the network resources
are efficiently used and the control performance is guaranteed. The approaches presented
in this chapter form an important basis for the control system and communication network
co-design discussed in Chapter 5.
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4 NCS with Aperiodic Sampling

In general, systems with higher sampling rate result in better control performance [35].
In views of NCSs with limited network capacities, however, higher sampling rate incurs
higher traffic load, which might lead to data traffic congestion on a shared network. In
order to alleviate data congestion, it could be advantageous if the sampling rate of an NCS
can be adapted to network traffic conditions [75, 102, 110, 119]. This results in NCSs with
aperiodic data sampling.

In order to keep the non-deterministic network attributes within the analytical frame-
work, in Chapter 3, Markov processes are introduced to describe the random network-
induced delays1 by making use of the knowledge of their probability transition rates. How-
ever, the Markovian modeling requires the assumption of Markov properties. Namely, the
outcome of the next sample depends only upon the current sample and independent of the
past; the sojourn times (time between jumps) are random variables with exponential dis-
tribution. According to Chapter 3, the Markovian delay model contains the transmission
delays, packet dropouts and sampling intervals. For NCSs with random sampling intervals,
the sojourn time is equal to sampling intervals and has the same stochastic properties. If
the sampling interval is not exponential distributed, the Markovian modeling is no more
applicable.

The innovation of this chapter is to remove the Markovian restrictions posed on the
aperiodic sampling modeling. To facilitate this, a set of indication functions is intro-
duced for the modeling of aperiodic sampling intervals. Unlike approaches proposed
in [60, 102, 110, 116, 119], where classical robust control methodologies are modified for
systems with uncertain sampling intervals, the focus is to develop stochastic analysis and
synthesis methods for NCSs, which are relevant to network usage. As a result, the proposed
stability and stabilization conditions are determined in terms of probabilistic distributions
of aperiodic sampling intervals. Different from the existing stochastic control approaches
addressed in [41, 47, 54], innovative performance design algorithms are developed. These
design algorithms relate the performance bound to the probability distributions of sam-
pling intervals. This correlation enables a trade-off design between control performance
and sampled-data flow. The analysis and design methods proposed in this chapter pro-
vides an important basis for the second co-design approach in Chapter 5, where a optimal
probabilistic sampling is targeted.

The remainder of this chapter is organized as follows. In Section 4.1, the problem
statement of an NCS with aperiodic sampling is formulated and a randomly switched time-
varying system is introduced. The stability analysis and state-feedback controller design
algorithm for NCSs with aperiodic sampling are presented in Section 4.2, whereas the
output-feedback stability conditions and associated controller design algorithm are derived
in Section 4.3. Concerning the network constraints, the guaranteed control performance
design is studied in Section 4.4. The chapter is closed with discussion in Section 4.5. The

1The network-induced delays are composite of transmission delay and fictitious delays caused by dropouts.
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4 NCS with Aperiodic Sampling

introductions of software tool for the controller design algorithms derived in chapter are
given in the Appendix A.1.2.

4.1 Random delays and aperiodic sampling intervals

Reconsider the LTI plant in Chapter 3{
ẋ(t) = Ax(t) +Bū(t),

y(t) = Cx(t).
(4.1)

In order to alleviate data congestion of the underlying communication network, the plant
is aperiodically sampled. At the sampling instant tk, k ∈ N, the SC/CA delays are
τsc(k)/τca(k) and the aperiodic sampling interval is h(k), see Figure 4.1.

u(t)

ȳ(t)

ū(t)

y(t)

Physical 
Plant

Controller

ZOH

Communication 
Network

feedback gain

h(k)
tk τsc(k)

τca(k)

K(k)

Figure 4.1: Illustration of a sampled-data NCS over communication network with random
sampling interval h(k) and random SC/CA delays τsc(k)/τca(k).

Assume the system (4.1) has a state-feedback controller, i.e. y(t) = x(t). The control
command ū(t) becomes

ū(t) = Kx(tk), t ∈ [tk + τtx(k), tk+1 + τtx(k + 1)), (4.2)

where τtx(k) = τsc(k) + τca(k). Rewrite the piecewise constant x(tk) as

x(tk) = x(t− (t− tk)) = x(t− τ(t)), t ∈ [tk + τtx(k), tk+1 + τtx(k + 1)).

Substitute x(t− τ(t)) into (4.2), the closed-loop system becomes

ẋ(t) = Ax(t) +BKx(t− τ(t)), t ∈ [tk + τtx(k), tk+1 + τtx(k + 1)). (4.3)

System (4.3) is derived by embedding the transmission delay into a sampling interval.
The non-equidistant sampling interval is reformulated as a time-varying delay by applying
the input-delay approach [8, 38]. The resulting system (4.3) becomes a continuous-time
system with time-varying delay. The stochastic time-varying delay τ(t) has the sojourn
time correlated to the sampling intervals. Therefore, the Markovian modeling is no more
applicable. In order to analyze system (4.3) within the framework of stochastic control, a
set of independent identical distributed (i.i.d.) processes is used for delay modeling. As
a consequence, a randomly switched time-delay system will be introduced in the following
section.
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Remark 4.1 If the packet containing x(tk+1) is dropped during the transmission, the
previous data x(tk) is utilized by the closed-loop system (4.3) due to the zero-order hold
(ZOH). As a result, the effect of dropouts can be viewed as additional delay which grows
by accumulating sampling periods. Assume the maximal number of consecutive dropouts
as m. The closed-loop system in (4.3) has maximal and minimal delays are given in the
following

τ̄ = max
k∈N
{tk+m+1 − tk + τtx(k +m+ 1)}, τ = min

k∈N
{τtx(k)}.

4.1.1 Randomly switched time-delay system

The delay τ(t) in system (4.3) is classified into N ≥ 2 intervals, which are assigned by
the most significant maximal values of τ(t) between two consecutive sampling intervals
as shown in Fig. 4.2. The n intervals are defined by si > 0, i = 1, . . . , N − 1, satisfying
si < si+1, s0 = τ and sN = τ̄ . The n interval delays are defined as

τ1 = {τ(t)|s0 ≤ τ(t) < s1},
τ2 = {τ(t)|s1 ≤ τ(t) < s2},

...

τN = {τ(t)|sN−1 ≤ τ(t) < sN}.

(4.4)

The occurrence of τi, i = 1, . . . , n, is described by a set of indicator functions

βi =

{
1, si−1 ≤ τ(t) < si, i = 1, . . . , N,

0, otherwise.
(4.5)

The indicator functions have the occurrence probabilities

P{βi = 1} = pi,
N∑
i=1

pi = 1.

τ(t)

τk
τk+1

τk+2

τ̇(t) = 1

tk + τk tk+1 + τk+1 tk+2 + τk+2

si

si−1

si+1

Figure 4.2: The evolution of time-varying delay τ(t).

Due to the i.i.d. assumption on the delays, the occurrence of τi is also i.i.d. [43]. This
implies the indicator function βi has Bernoulli distribution (i.i.d. process with binary
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random variables). As a result, the occurrence probability of τi(t) becomes

E{βi} = pi, E{(βi − pi)2} = pi(1− pi).

Assume the state-feedback controller being able to switch its feedback gain according to
delay intervals. For the ease of stability analysis, the upper bound si of each delay interval
τi is considered in the controller design. As a result, the control input of the system in
(4.1) becomes

ū(t) =
N∑
i=1

βiKix(t− si), i = 1, . . . , N. (4.6)

According to (4.6)-(4.5), the closed-loop system (4.1) can be rewritten as

ẋ(t) = Ax(t) +
N∑
i=1

βiBKix(t− si). (4.7)

Remark 4.2 Note that the feedback gain Ki of system (4.7) is switched according to
delays si and results in a randomly switched time-delay system. It is assumed that each
switching of (4.7) is separated by a finite time interval. Therefore, the Zeno solutions are
excluded in this dissertation.

4.2 Stability and stabilization with delay-dependent
state-feedback controller

In order to derive a delay-dependent condition, the descriptor transformation used in
Chapter 3 is considered. Set a new variable

z(t) = eγtx(t),

where γ ≥ 0. The closed-loop system in (4.7) becomes

ż(t) = (A+ γ)z(t) +
N∑
i=1

eγsiβiKiz(t− si). (4.8)

Let ξT (t) = [zT (t) żT (t)], the closed-loop system in (4.8) becomes

Eξ̇(t) = Âξ(t)−
N∑
i=1

Âi

∫ t

t−si

ξ(s)ds, (4.9)

where

E =

[
I 0
0 0

]
, Â =

[
0 I

A+ γI +
∑N

i=1 e
γsiβiBKi −I

]
, Âi =

[
0 0
0 eγsiβiBKi

]
.

The stability of the system represented by (4.9) implies the stability of the origin system
in (4.8). Therefore, in the following section, the transformed system (4.9) is considered for
the analysis.
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4.2.1 Stability analysis

The objective of this section is to derive a mean exponential stability condition for the sys-
tem in (4.9). As system (4.9) contains stochastic variables and time-delays, the Lyapunov-
Krasovskii approach proposed in Chapter 3 is applied for the stability analysis. The stabil-
ity results derived in Chapter 3 are conditioned by the transition generator of Markovian
delays, while the stability results in this section are determined by the occurrence proba-
bilities of random delays. The details are given in Theorem 4.1.

Theorem 4.1 For the closed-loop system in (4.9) with a given γ ≥ 0, if there exist sym-
metric matrices, Qi > 0, i = 1, . . . , N , P1 > 0 and real matrices P2 and P3 with

P =

[
P1 0
P2 P3

]
,

such that the following LMI satisfies
Ψ s1P

T · · · sNP
T

∗ −s1Q1 0
...

... 0
. . . ∗

∗ · · · ∗ −sNQN

 < 0, (4.10)

where

Ψ =

[
Ξ1 Ξ2

P1 − P2 −P3

]
+

[
Ξ1 Ξ2

P1 − P2 −P3

]T
+

N∑
i=1

si

[
0 0
0 eγsipiBKi

]T
Qi

[
0 0
0 eγsipiBKi

]
,

Ξ1 = ATP2 +
N∑
i=1

eγsipi(BKi)
TP2, Ξ2 = ATP3 +

N∑
i=1

eγsipi(BKi)
TP3,

then the system MES.

Proof : Consider a Lyapunov candidate

V (ξ(t)) = V0(ξ(t)) +
N∑
i=1

Vi(ξ(t)),

where

V0(ξ(t)) = ξT (t)EPξ(t), Vi(ξ(t)) =

∫ 0

−si

∫ t

t+θ

ξT (s)ÂTi QiÂiξ(s) ds dθ.

It has

LV0(ξ(t)) = ξ̇T (t)EPξ(t) + ξT (t)P TEξ̇(t)

= ξT (t)
[
ÂTP + P T Â

]
ξ(t)− 2

N∑
i=1

ξT (t)P T Âi

∫ t

t−si

ξ(s) ds.
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4 NCS with Aperiodic Sampling

According to Lemma A.1, LV0(ξ(t)) becomes

LV0(ξ(t)) ≤ ξT (t)
[
ÂTP + P T Â

]
ξ(t) +

N∑
i=1

siξ
T (t)P TQ−1

i Pξ(t)

+
N∑
i=1

∫ t

t−si

ξT (s)ÂTi QiÂiξ(s) ds.

(4.11)

Likewise, it has

N∑
i=1

LVi(ξ(t)) =
N∑
i=1

siξ
T (t)ÂTi QiÂiξ(t)−

N∑
i=1

∫ t

t−si

ξT (s)ÂTi QiÂiξ(s) ds. (4.12)

Combine (4.11) and (4.12), it yields

LV (ξ(t)) ≤ ξT (t)[ÂTP + P T Â+
N∑
i=1

siÂ
T
i QiÂi +

N∑
i=1

siP
TQ−1

i P ]ξ(t)

= ξT (t)Θξ(t).

(4.13)

Apply Schur complement to (4.13), it results in (4.10).
Note that maxθ∈[−τ̄ ,0]{||ξ(t+ θ)||} ≤ φ||ξ(t)|| for some ϕ > 0 [83], the following inequality

can be established

V (ξ(t)) ≤
[
λmax(EP ) +

N∑
i=1

s2
i

2
λmax(ÂTi QiÂi)

]
||ξ(t)||2

≤ Λmax||ξ(t)||2.
(4.14)

Combining (4.13) and (4.14) yields

LV (ξ(t))

V (ξ(t))
≤ −λmin(−Θ)

Λmax

, −ρ0

and
E{LV (ξ(t))} ≤ −ρ0E{V (ξ(t))}. (4.15)

By applying Dynkin’s formula into (4.15) it becomes

E{V (ξ(t))} − E{V (ξ(0))} = E
{∫ t

0

LV (ξ(s))ds

}
≤ −ρ0

∫ t

0

E{V (ξ(s))} ds. (4.16)

Using the Gronwall-Bellman lemma, (4.16) results in

E{V (ξ(t))} ≤ e−ρ0tE{V (ξ(0))}.

Since

V (ξ(t)) ≥
[
λmin(EP ) +

N∑
i=1

s2
i

2
λmin(Qi)

]
||ξ(t)||2 = Λmin||ξ(t)||2,

it is established that

E{||ξ(t)||2} ≤ e−ρ0t
E{V (ξ(0))}

Λmin

. (4.17)

Equation (4.17) provides the proof for exponential mean square stability.
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4.2 Stability and stabilization with delay-dependent state-feedback controller

Remark 4.3 Note that E{||ξ(t)||2} ≥ E{||z(t)||2}, and z(t) = eγtx(t). Therefore, it has

E{||x(t)||2} ≤ e−(ρ0+2γ)tE{V (ξ(0))}
Λmin

. (4.18)

The given γ ≥ 0 in Theorem 4.1 ensures the decay rate of trajectory E{||x(t)||2} and
determines the control performance of the closed-loop system (4.7).

The stochastic Lyapunov functional V (ξ(t)) is derived based on its quadratic form
V1(ξ(t)). The Lyapunov candidate V2(ξ(t)) is chosen to compensate the integral terms
caused by the derivative of V1(ξ(t)). The main difference of stability results derived in
Theorem 4.1 and Theorem 3.1 in Chapter 3 is that Theorem 4.1 is conditioned by oc-
currence probabilities of random delays, while Theorem 3.1 is determined by probability
transition rates of Markovian delays. Furthermore, Theorem 4.1 allows the probabilistic
sampling intervals of LTI systems. It can be used to determine a proper probability dis-
tribution of sampling intervals for LTI systems under the stability constraint; meanwhile,
the data flow on the shared network can be reduced. This results in a data congestion
control as discussed in Section 5.3.

For nonlinear NCSs, Theorem 4.1 can be applied by using standard linearizing tech-
niques.

4.2.2 State-feedback stabilization

Solving feedback gains Ki, i = 1, . . . , N in Theorem 4.1 involves nonlinear terms, e.g.
P T

2 BKi and P T
3 BKi in (4.10). These nonlinear terms render the inequality in (4.10)

into a bilinear matrix inequality (BMI) problem, whose solutions are difficult to find as it
is non-convex and NP-hard. However, the nonlinear terms can be eliminated by choosing
a special matrix X = P−1 and an LMI formulation is recovered. The controller design
algorithm is given in the following theorem.

Theorem 4.2 For given positive scalars r1 > 0, r2 > 0 and γ ≥ 0, if there exist symmetric
matrices Ui > 0, i = 1, . . . , N , and X1 = XT

1 > 0 satisfying

X =

[
X1 0
−r1X1 r2X1

]
,

such that 
Ψ̂ Ψ̂T

1 · · · Ψ̂T
N

∗ −s1U1 0
...

... 0
. . . ∗

∗ · · · ∗ −sNUN

 < 0, (4.19)

where

Ψ̂ =

[
−r1X1 r2X1

Ξ3 −r2X1

]
+

[
−r1X1 r2X1

Ξ3 −r2X1

]T
+

N∑
i=1

siUi,

Ξ3 = AX1 + γX1 +
N∑
i=1

eγsipiBYi + r1X1,
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4 NCS with Aperiodic Sampling

Ψ̂1 = s1Â1X = s1

[
0 0

−r1e
γs1p1BY1 r2e

γs1p1BY1

]
,

...

Ψ̂N = sN ÂNX = sN

[
0 0

−r1e
γsNpNBYN r2e

γsNpNBYN

]
,

holds, then the closed-loop system (4.8) is MES with the feedback gain

Ki = YiX
−1
1 , i = 1, . . . , N. (4.20)

Proof : Define

X = P−1 =

[
X1 0
−r1X1 r2X1

]
.

Pre- and post-multiply Θ in (4.13) by XT and X, it becomes

ÂX +XT ÂT +
N∑
i=1

siQ
−1
i +

N∑
i=1

siX
T ÂTi QiÂiX < 0. (4.21)

Let Ui = Q−1
i and Yi = KiX1, i = 1, . . . , N . Applying Schur complement to (4.21) results

in (4.19).

If no feasible solutions can be found by LMI (4.19), a less conservative approach is to
set X as

X =

[
X1 0
X2 X3

]
, X1 = XT

1 > 0 (4.22)

and solve the BMI (bilinear matrix inequality). This is shown in the following numerical
example.

Example 4.1 Consider an NCS with dynamics described by (4.1), which is i.i.d. sam-
pled between 5 ms to 45 ms. The used network has i.i.d. transmission delay with the
value of 30 ms to 40 ms depending on the network traffic. Set the parameters γ = 1.3 and
N = 2. Choose s1 = 45 ms, p1 = 60%, s2 = 65 ms, p2 = 30% and s3 = 85 ms, p3 = 10%.
The system parameters are

A =

[
0 1
1 −50

]
, B =

[
1

0.5

]
.

Set the positive definite matrix X as in (4.22). The stabilizing state-feedback gains are
derived as

K1 = [−11.956 − 23.876], K2 = [−6.193 − 12.171], K3 = [−2.832 − 5.542]

with

X1 =

[
169.956 −10.193
−10.193 6.588

]
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4.2 Stability and stabilization with delay-dependent state-feedback controller

U1 = 104 ×


0.250 −0.001 −0.101 −0.063
−0.001 0.200 −0.219 −0.136
−0.101 −0.219 1.007 0.514
−0.063 −0.136 0.514 0.336

 ,

U2 = 103 ×


2.124 −0.254 −0.325 −0.192
−0.254 1.308 −0.503 −0.369
−0.325 −0.503 3.915 0.803
−0.192 −0.369 0.803 1.134

 ,

U3 = 103 ×


1.877 −0.328 −0.091 −0.011
−0.328 0.974 0.027 −0.111
−0.091 0.027 2.055 −0.611
−0.011 −0.111 −0.611 0.556

 .
With the initial condition xT (θ) = [2 − 2], θ ∈ [−τ̄ , 0], the simulation is performed 500
times with different sample paths of delays for a time horizon of T = 1.5 s. The proposed
switching controller design and worst-case design approaches are investigated. The mean
trajectory of the switching controller design converges towards a ball around ||x̄(t)|| = 0.05
after t0.05 = 0.472 s, 48.7% faster than the worst-case design t0.05 = 0.914 s, see Fig. 4.3 (a).

0 0.5 1 1.5 [s]
0

1

2

3

 

 
random samling
high sampling

0 0.5 1 1.5 [s]
0

1

2

3

 

 
switching controller
worst case design

||x̄(t)|| ||x̄(t)||

(a) (b)

Figure 4.3: The mean state trajectory of NCS with delay-dependent switching controller (solid
line) and NCS with worst-case design controller (dashed line) (a) and the mean state
trajectory of NCS with random sampling (solid line) and NCS with high sampling (dashed
line) (b).

In order to illustrate the benefits of random sampling for NCSs, consider the same
NCS sampled by three i.i.d. sampling intervals 5 ms, 25 ms and 45 ms with probability
distributions 60%, 30% and 10%, respectively. Assume the used network has constant
transmission delay 40 ms. Hence, the NCS is subjected to three delay intervals s1 = 45 ms,
p1 = 60%, s2 = 65 ms, p2 = 30% and s3 = 85 ms, p3 = 10%. Set γ = 1.3 and N = 2,
the NCS has the same state-feedback controllers as described above. With the initial
condition xT (θ) = [2 − 2], θ ∈ [−τ̄ , 0], another simulation is performed 500 times for NCS
with random sampling intervals for a time horizon of T = 1.5 s. The evolution of mean
trajectory is shown in Fig. 4.3 (b). The mean trajectory of the NCS with random sampling
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4 NCS with Aperiodic Sampling

converges towards a ball around ||x̄(t)|| = 0.05 after t0.05 = 0.472 s, close to the NCS with
high sampling rate t0.05 = 0.368 s (+28.3%). However, the data flow is only 33.3% of the
NCS with high sampling.

As a summary, the switching controller design algorithm proposed in this Chapter
demonstrates a superior performance over the traditional worst-case design. In views of
data flow reduction, it is shown that the NCS with random sampling achieves acceptable
performance at low data flow.

4.3 Stability and stabilization with delay-dependent
output-feedback controller

The stability of NCSs with aperiodic sampling and delay-dependent output-feedback con-
troller is studied in this section. Consider the LTI plant in (4.1) with an output-feedback
controller

ẋc(t) = Acx(t) +Bcȳ(t),

ū(t) = Ccxc(t),
(4.23)

where xc(t) ∈ R is the controller state with xc(t) = 0 for t ≤ 0, Ac, Bc and Cc are designed
parameters with appropriate dimensions.

ȳ(t)

u(t)

ū(t)

y(t)

Physical 
Plant

ControllerZOH

Communication 
Network

outputfeedbackZOH

h(k)
tk

h(k)
tk

τsc(k)

τca(k)

ẋc(t) = Ac(k)xc(t)
+ Bc(k)ȳ(t)

Figure 4.4: Illustration of a sampled-data NCS over communication network with random
sampling interval h(k) and random and random SC/CA delays τsc(k)/τca(k).

As shown in Figure 4.4, the sensor and output-feedback controller are aperiodically
sampled by h(k) at the sampling instant tk, k ∈ K. Assume the SC and CA delays having
the same value at the sampling instant tk. It implies τsc(k) = τca(k) = τ(k). Therefore,
the sampled measurement at t ∈ [tk + τ(k), tk+1 + τ(k + 1)) becomes

ȳ(t) = Cx(tk) = Cx(t− τ(t)),

ū(t) = Ccxc(tk) = Ccxc(t− τ(t)).

Assume the maximal consecutive dropouts as m. The time-varying delay τ(t) is upper and
lower bounded by

τ̄ = max
k∈N
{tk+m+1 − tk + τ(k +m+ 1)}, τ = min

k∈N
{τ(k)}.
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4.3 Stability and stabilization with delay-dependent output-feedback controller

Categorize τ(t) into N ≥ 2 intervals. The delay-dependent output-feedback controller in
(4.23) becomes

ẋc(t) =
N∑
i=1

βi

(
Acixc(t) +BciCx(t− si)

)
,

ū(t) =
N∑
i=1

βiCcixc(t− si).
(4.24)

Combining (4.1) and (4.24), the closed-loop system becomes[
ẋ(t)
ẋc(t)

]
=

[
A 0

0
∑N

i=1 βiAci

] [
x(t)
xc(t)

]
+

N∑
i=1

[
0 βiBCci

βiBciC 0

] [
x(t− si)
xc(t− si)

]
(4.25)

Remark 4.4 Note that the parameters of the output-feedback controller Aci, Bci and
Cci are switched according to delays si. The same as in section 4.1.1, system (4.25) is
randomly switched time-delay system. The Zeno solutions of system (4.25) are excluded
by the assumption that each consecutive switching is separated by a finite time interval.

For any γ ≥ 0, consider z(t) = eγtx(t) and zc(t) = eγtxc(t). Define χT (t) = [zT (t) zTc (t)].
The closed-loop system in (4.25) yields

χ̇(t) = Ā0χ(t) +
N∑
i=1

Āiχ(t− si), (4.26)

where

Ā0 =

[
A+ γI 0

0
∑N

i=1 βiAci + γI

]
, Āi =

[
0 βie

γsiBCci
βie

γsiBciC 0

]
.

Apply the system transformation and let ξT (t) = [χT (t) χ̇T (t)], it becomes

Eξ̇(t) = Âξ(t)−
N∑
i=1

Âi

∫ t

t−si

ξ(s)ds. (4.27)

E =

[
I 0
0 0

]
, Â =

[
0 I

Ā0 +
∑N

i=1 Āi −I

]
, Âi =

[
0 0
0 Āi

]
.

As mentioned in the previous section, the transformed system in (4.27) is equivalent to
the original system in (4.26). The system in (4.27) is considered in the following section
for the stability analysis.

4.3.1 Stability analysis

The delay-dependent stability for output-feedback controller is derived by using the
Lyapunov-Krasovskii functional approach. Since the transformed system in (4.27) has
similar form as the system with state-feedback controller in (4.9), the same Lyapunov can-
didate as used in Theorem 4.1 is considered. The stability results are conditioned by the
occurrence probabilities of random delays. Details of the stability results are summarized
in Theorem 4.3.
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4 NCS with Aperiodic Sampling

Theorem 4.3 For the closed-loop system in (4.26) with a given γ ≥ 0, if there exist
symmetric matrices, Qi > 0, i = 1, . . . , N , P1 > 0 and real matrices P2 and P3 with

P =

[
P1 0
P2 P3

]
,

such that the following LMI satisfies
Ψ s1P

T · · · sNP
T

∗ −s1Q1 0
...

... 0
. . . ∗

∗ · · · ∗ −sNQN

 < 0, (4.28)

where

Ψ =

[
Ξ1 Ξ2

P1 − P2 −P3

]
+

[
Ξ1 Ξ2

P1 − P2 −P3

]T

+
N∑
i=1

si

0 0

0

[
0 eγsipiBCci

eγsipiBciC 0

]T Qi

0 0

0

[
0 eγsipiBCci

eγsipiBciC 0

] ,
Ξ1 =

[
A+ γI 0

0
∑N

i=1 piAci + γI

]T
P2 +

N∑
i=1

[
0 eγsipiBCci

eγsipiBciC 0

]T
P2,

Ξ2 =

[
A+ γI 0

0
∑N

i=1 piAci + γI

]T
P3 +

N∑
i=1

[
0 eγsipiBCci

eγsipiBciC 0

]T
P3,

then the system is MES.

Proof : see the proof of Theorem 4.1.

Remark 4.5 In Theorem 4.3, the control performance of system (4.25) can be pre-defined
by γ ≥ 0. The decay rate of trajectory E{||x(t)||2} is determined in (4.18).

4.3.2 Output-feedback stabilization

Solving the output-feedback controller parameters Aci, Bci and Cci, i = 1, . . . , N in The-
orem 4.3 involves nonlinear terms, e.g. Ψ in (4.28). These nonlinear terms render the
inequality in (4.28) into a bilinear matrix inequality (BMI) problem. However, there non-
linear terms can be eliminated by a special structure requirement of X = P−1. The details
about output-feedback parameters designed are summarized in Theorem 4.6.

Theorem 4.4 For given positive scalars r1 > 0, r2 > 0 and γ ≥ 0, if there exist symmetric
matrices Ui > 0, i = 1, . . . , N , and X1 = XT

1 > 0 satisfying

X1 =

[
X11 0
0 X12

]
,

X =

[
X1 0
−r1X1 r2X1

]
,
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such that 
Ψ̂ Ψ̂T

1 · · · Ψ̂T
N

∗ −s1U1 0
...

... 0
. . . ∗

∗ · · · ∗ −sNUN

 < 0, (4.29)

where

Ψ̂ =

[
−r1X1 r2X1

Ξ3 −r2X1

]
+

[
−r1X1 r2X1

Ξ3 −r2X1

]T
+

N∑
i=1

siUi,

Ξ3 =

[
AX11 + γX11 0

0
∑N

i=1 piFi + γX12

]
+ r1X1,

Ψ̂1 = s1Â1X = s1

 0 0

−r1e
γs1p1

[
0 H1

G1 0

]
r2e

γs1

[
0 H1

G1 0

] ,
...

Ψ̂N = sN ÂNX = sN

 0 0

−r1e
γsNpN

[
0 HN

GN 0

]
r2e

γsN

[
0 HN

GN 0

] ,
holds, then the closed-loop system (4.26) is MES under the output-feedback controller of
the form

Aci = FiX
−1
12 , Bci = GiX

−1
11 C

+, Cci = B+HiX
−1
12 . (4.30)

Proof : Define

X =

[
X1 0
−r1X1 r2X2

]
, X1 =

[
X11 0
0 X12

]
.

Pre- and post-multiply Θ in (4.13) by XT and X, it results in (4.21). Let
Ui = Q−1

i , Fi = AciX12, Gi = BciCX11 and Hi = BCciX12, where i = 1, . . . , N . Applying
Schur complement to (4.21) results in (4.29).

Remark 4.6 The structure of X in Theorem 4.6 is made due to the conditions X−1 = P
and EP = P TE in the Lyapunov candidate. Generally, the positive definite matrix X has
the form given in (4.22). However, in order to avoid the nonlinear terms ĀiX2 and ĀiX3,
the matrices X2 and X3 are replaced by −r1X1 and r2X1. Furthermore, X1 is determined
as a diagonal matrix, i.e.

X1 =

[
X11 0
0 X12

]
,

so as to make the products of ĀiX1 resulting in Fi = AciX12, Gi = BciCX11 and
Hi = BCciX12.

The LMI algorithm is recovered by structure restrictions of matrices X and X1. This
restriction, however, introduce certain conservatism in the output-feedback controller de-
sign. A less conservative design approach is to set matrices X and X1 as described in
(4.22). The resulting BMI can be easily solved by using the solution of Theorem 4.6 as an
initial condition. This approach is demonstrated and discussed in the following numerical
example.
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4 NCS with Aperiodic Sampling

Example 4.2 Consider an NCS with an output-feedback controller as described in (4.23).
It is assumed the plant and controller are i.i.d. sampled by two sampling intervals 5 ms
and 30 ms with corresponding probability distributions 60% and 40%, respectively. The
NCS is connected by a network with constant delay 30 ms. Hence, the considered NCS
is subjected to delay intervals s1 = 35 ms, p1 = 60% and s2 = 60 ms, p2 = 40%. Set the
parameters γ = 0.4 and the system parameters as

A =

[
−2.1 −0.1
−0.2 0.3

]
, B =

[
1
−0.5

]
, C =

[
1 1

]
.

Consider the positive definite matrix X as in (4.22) and consider the solutions of Theo-
rem 4.6 as an initial condition for solving BMI. The stabilizing output-feedback controller
are derived as

Ac1 =

[
−70.453 −67.677
−67.677 −70.453

]
, Bc1 =

[
−15.914
−15.914

]
, Cc1 =

[
−4.947 −4.947

]
,

Ac2 =

[
−40.550 −39.590
−39.590 −40.550

]
, Bc2 =

[
−6.025
−6.025

]
, Cc2 =

[
−4.281 −4.281

]
,

with

X1 =


0.108 0.055 −0.017 −0.017
0.055 0.124 −0.019 −0.019
−0.017 −0.019 0.135 −0.126
−0.017 −0.019 −0.126 0.135

 ,

U1 =



0.483 0.034 −0.022 −0.022 −0.292 −0.136 0.078 0.078
0.034 0.329 −0.001 −0.001 −0.044 −0.296 −0.042 −0.042
−0.022 −0.001 0.589 0.034 0.015 0.008 −0.240 −0.242
−0.022 −0.001 0.034 0.589 0.015 0.008 −0.242 −0.240
−0.292 −0.044 0.015 0.015 0.334 0.049 0.026 0.026
−0.136 −0.296 0.008 0.008 0.049 0.488 −0.027 −0.029
0.078 −0.042 −0.240 −0.242 0.026 −0.029 1.144 0.589
0.078 −0.042 −0.242 −0.240 0.026 −0.029 0.589 1.144


,

U2 =



0.310 −0.013 −0.009 −0.009 −0.252 0.031 0.050 0.050
−0.013 0.303 −0.004 −0.004 −0.030 −0.257 −0.025 −0.025
−0.009 −0.004 0.529 −0.016 0.016 −0.001 −0.149 −0.152
−0.009 −0.004 −0.016 0.529 0.016 −0.001 −0.152 −0.150
−0.252 −0.030 0.016 0.016 0.304 −0.006 0.017 0.017
0.031 −0.257 −0.001 −0.001 −0.006 0.305 −0.020 −0.020
0.050 −0.025 −0.150 −0.152 0.017 −0.020 0.828 0.283
0.050 −0.025 −0.152 −0.150 0.017 −0.020 0.283 0.828


.

With the initial condition xT (θ) = [2 − 2], θ ∈ [−τ̄ , 0], the simulation is performed 500
times with different sample paths of delays for a time horizon of T = 20 s. For NCS
with delay-dependent switching output-feedback controller, its mean trajectory converges
towards a ball around ||x̄(t)|| = 0.05 after t0.05 = 8.081 s, superior to the mean trajectory
of the NCS with worst-case design t0.05 = 15.354 s (−47.4%), as shown in Fig. 4.5 (a).
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Figure 4.5: The mean state trajectory of NCS with delay-dependent switching controller (solid
line) and NCS with worst-case design controller (dashed line) (a) and the mean state
trajectory of NCS with random sampling (solid line) and NCS with high sampling (dashed
line) (b).

In addition, a benchmark numerical experiment of NCS with constant sampling interval,
i.e. 5 ms, is executed for comparison as shown in Fig. 4.5 (b). It is observed that the mean
trajectory of NCS with high sampling converges within ||x̄(t)|| = 0.05 after t0.05 = 7.677 s,
close to NCS with random sampling t0.05 = 8.081 s (+5.26%). However, the data flow of
NCS with random sampling rate is 66.7% less than the data flow of the NCS with high
sampling.

The numerical results show that the delay-dependent switching controller design al-
gorithm enables a good control performance compared to worst-case design. With the
consideration of network capacity constraints, the NCS with random sampling efficiently
reduces the data flow and meanwhile preserves the control performance. This gives rise
to an interesting question like how much data flow can be reduced without affecting per-
formance? In the flowing section, a performance design approach will be studied, which
provides a performance upper bound for admissible random sampling intervals.

4.4 Guaranteed control performance for NCS with
random sampling and delay

Due to the external traffic and limitations on network resources [22,128], a network can be
more efficiently utilized if the sampling rate of control systems can be varied according to
network conditions. However, improper sampling rate (or sampling intervals) of systems
might result in performance degradation. In this section, a sampling distribution related
performance index will be proposed. Based on the index, a admissible distribution of
sampling intervals for an NCS can be determined, so that the control performance is
guaranteed by certain sampling distributions.
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4 NCS with Aperiodic Sampling

For this purpose, define a cost function as

Jper = E
{∫ T

0

zT (t)Rz(t)dt

}
, (4.31)

where R is a symmetric, positive definite matrix. Associated to the control function (4.31),
the guaranteed control performance defined in Definition 3.1 is recalled.

4.4.1 Guaranteed cost state-feedback controller

Consider the delay-dependent state-feedback controller

ū(t) =
N∑
i=1

βiBKix(t− si), i = 1, . . . , N,

where si satisfies (4.4). The objective in this section is to design a set of Ki so that the
resulting closed-loop system in (4.8) is MES and the cost function in (4.31) is bounded by
some specified scalar.

Theorem 4.5 For given positive scalars r1 > 0, r2 > 0, γ ≥ 0 and matrix R > 0, if there
exist symmetric matrices Ui > 0, i = 1, . . . , N + 1, and X1 = XT

1 > 0 satisfying

X =

[
X1 0
−r1X1 r2X1

]
,

such that 
Ψ̂ Ψ̂T

1 · · · Ψ̂T
N Ψ̂T

N+1

∗ −s1U1 0 · · · 0
... ∗ . . . 0

...
∗ · · · ∗ −sNUN 0
∗ ∗ · · · ∗ −UN+1

 < 0, (4.32)

where

Ψ̂ =

[
−r1X1 r2X1

Ξ3 −r2X1

]
+

[
−r1X1 r2X1

Ξ3 −r2X1

]T
+

N∑
i=1

siUi,

Ξ3 = AX1 + γX1 +
N∑
i=1

eγsipiBYi + r1X1,

Ψ̂1 = s1Â1X = s1

[
0 0

−r1e
γs1p1BY1 r2e

γs1p1BY1

]
,

...

Ψ̂N = sN ÂNX = sN

[
0 0

−r1e
γsNpNBYN r2e

γsNpNBYN

]
,

Ψ̂N+1 =

[
X1 0
0 0

]
, UN+1 =

[
R−1 0

0 R−1

]
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holds, then the closed-loop system (4.8) is MES with the feedback gain

Ki = YiX
−1
1 , i = 1, . . . , N (4.33)

and the cost function in (4.31) is bounded by

Jper ≤ J̄per(p1, . . . , pN) = ξT (0)EPξ(0) +
N∑
i=1

∫ 0

−si

∫ 0

θ

ξT (s)ÂTi QiÂiξ(s) ds dθ. (4.34)

Proof : Consider the same Lyapunov candidate in Theorem 4.1, the closed-loop system
is MES if the following inequality

LV (ξ(t)) ≤ ξT (t)[ÂTP + P T Â+
N∑
i=1

siÂ
T
i QiÂi +

N∑
i=1

siP
TQ−1

i P ]ξ(t)

= ξT (t)Θξ(t) < 0

is satisfied. Define z(t) = [I 0]ξ(t). According to Dynkin’s formula, the cost function in
(4.31) becomes

Jper(rt) = E
{∫ T

0

ξT (t)

[
I
0

]
R[I 0]ξ(t) + LV (ξ(t))

]
dt

}
− E{V (ξ(T ))}+ E{V (ξ(0))}

≤ E
{∫ T

0

ξT (t)Θ̄ξ(t)dt+ V (ξ(0))

}
,

where Θ̄ = Θ +

[
I
0

]
R[I 0]. It is clear that if Θ̄ < 0, the cost function (4.31) is bounded by

Jper = E
{∫ ∞

0

zT (t)Rz(t)dt

}
≤ E{V (ξ(0))} = J̄per(s1, . . . , sN).

Pre- and post-multiply Θ̄ by XT and X and let Ui = Q−1
i , Yi = KiX, i = 1, . . . , N and

UN+1 = diag{R−1, R−1}. Applying Schur complement, it results in (4.32).

Remark 4.7 Based on Theorem 4.5, the upper bound of the cost index obtained in
above theorem depends on the initial condition ξ(0). Consider P = X−1 and Qi = U−1

i ,
i = 1, . . . , N . The guaranteed cost bound can be optimized by solving the linear optimiza-
tion problem

min
X1>0,Ui>0

ξT (0)EPξ(0) +
N∑
i=1

∫ 0

−si

∫ 0

θ

ξT (s)ÂTi QiÂiξ(s) ds dθ.

s.t. (4.32)

(4.35)

As mentioned in Theorem 4.2, the conservatism in controller design is introduced by
the special structure requirement of X. The conservatism can be reduced by considering
X in original form, see (4.22), and using the BMI solver for controller design. The BMI
design approach can be more efficiently solved by using the solutions of Theorem 4.5 as
initial conditions. The illustration and discussion of the derived theorem are given in the
following example.
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4 NCS with Aperiodic Sampling

Example 4.3 Consider the NCS in Example 4.1 with the same parameter settings and
initial conditions. Set the weighting matrix R in (4.31) as

R =

[
10 0
0 10

]
.

Solving Theorem4.5, the stabilizing feedback gains are

K1 = [−12.572 − 21.933], K2 = [−6.368 − 11.218], K3 = [−2.903 − 5.108],

with

X1 =

[
0.738 −0.010
−0.010 0.050

]
,

U1 = 103 ×


1.191 −0.602 −1.195 0.583
−0.602 0.413 0.608 −0.386
−1.195 0.608 1.210 −0.586
0.583 −0.386 −0.586 0.383

 ,

U2 =


171.554 −54.703 −164.390 69.083
−54.703 50.094 55.655 −42.568
−164.390 55.655 164.471 −67.208

69.083 −42.568 −67.208 52.106

 ,

U3 =


375.054 −187.750 −367.166 203.450
−187.750 111.353 187.803 −107.545
−367.166 187.803 364.810 −201.510
203.450 −107.545 −201.510 116.336


at Jper = 7.067× 104.

As shown in (4.34), the performance bound is a function of probability distribution of
sampling intervals (or delay intervals). The feasible probability distributions of sampling
intervals and associated cost index are shown in Table 4.1.

Table 4.1: The feasible probability distributions of sampling intervals and associated cost
indices.

p1, p2, p3 70%, 20%, 10% 60%, 30%, 10% 40%, 30%, 30% 20%, 30%, 50%
Jper 6.552× 104 7.067× 104 9.378× 104 2.157× 105

According to Table 4.1, it is obviously that higher probability of fast sampling has less
bounds on its performance. However, it requires the provision of larger network bandwidth.
Considering the performance bounds and data flow in one cost index, a novel design ap-
proach can be developed for NCSs by minimizing the cost index. In Chapter 5, the data
flow will be represented in forms of normalized network cost. By applying Theorem 4.5,
an NCS can be designed so that its performance is guaranteed by most economic network
resource consumption.
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4.4 Guaranteed control performance for NCS with random sampling and delay

4.4.2 Guaranteed cost output-feedback controller

Consider the delay-dependent output-feedback controller

ẋc(t) =
N∑
i=1

βi

(
Acixc(t) +BciCx(t− si)

)
,

ū(t) =
N∑
i=1

βiCcixc(t− si),

where si satisfies (4.4) and i = 1, . . . , N . Consider the cost function as

Jper = E
{∫ T

0

χT (t)Rχ(t)dt

}
, (4.36)

where R > 0 and Definition 3.1. It is aimed to find a set of Aci, Bci, Cci such that the
closed-loop system in (4.26) is MES and the cost function (4.36) is bounded by a certain
value.

Theorem 4.6 For given positive scalars r1 > 0, r2 > 0, γ ≥ 0 and matrix R > 0, if there
exist symmetric matrices Ui > 0, i = 1, . . . , N + 1, and X1 = XT

1 > 0 satisfying

X1 =

[
X11 0
0 X12

]
,

X =

[
X1 0
−r1X1 r2X1

]
,

such that 
Ψ̂ Ψ̂T

1 · · · Ψ̂T
N Ψ̂T

N+1

∗ −s1U1 0 · · · 0
... ∗ . . . ∗ ...
∗ · · · ∗ −sNUN 0
∗ ∗ · · · ∗ −UN+1

 < 0, (4.37)

where

Ψ̂ =

[
−r1X1 r2X1

Ξ3 −r2X1

]
+

[
−r1X1 r2X1

Ξ3 −r2X1

]T
+

N∑
i=1

siUi,

Ξ3 =

[
AX11 + γX11 0

0
∑N

i=1 piFi + γX12

]
+ r1X1,

Ψ̂1 = s1Â1X = s1

 0 0

−r1e
γs1p1

[
0 H1

G1 0

]
r2e

γs1

[
0 H1

G1 0

] ,
...

Ψ̂N = sN ÂNX = sN

 0 0

−r1e
γsNpN

[
0 HN

GN 0

]
r2e

γsN

[
0 HN

GN 0

] ,
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4 NCS with Aperiodic Sampling

Ψ̂N+1 =

[
X1 0
0 0

]
, UN+1 =

[
R−1 0

0 R−1

]
holds, then the closed-loop system (4.26) is MES under the output-feedback controller of
the form

Aci = FiX
−1
12 , Bci = GiX

−1
11 C

+, Cci = B+HiX
−1
12 . (4.38)

and the cost function in (4.36) is bounded by

Jper ≤ J̄per(p1, . . . , pN) = ξT (0)EPξ(0) +
N∑
i=1

∫ 0

−si

∫ 0

θ

ξT (s)ÂTi QiÂiξ(s) ds dθ. (4.39)

Proof : According to the proof the Theorem 4.5, it is shown known that the closed-loop
system is MES and the cost function in (4.36) is bonded if

Θ̄ = Θ +

[
I
0

]
R
[
I 0

]
< 0.

Define

X =

[
X1 0
−r1X1 r2X2

]
, X1 =

[
X11 0
0 X12

]
.

Pre- and post-multiply Θ̄ by XT and X and let Ui = Q−1
i ,

Fi = AciX12, Gi = BciCX11, Hi = BCciX12,

where i = 1, . . . , N and UN+1 = diag{R−1, R−1}. Applying Schur complement, it results
in (4.37).

Remark 4.8 The upper bound of the cost function (4.36) depends on the initial condition
ξ(0). Note the fact P = X−1 and Qi = U−1

i , i = 1, . . . , N . The optimal guaranteed cost
bound can be derived by solving the linear optimization problem

min
X1>0,Ui>0

ξT (0)EPξ(0) +
N∑
i=1

∫ 0

−si

∫ 0

θ

ξT (s)ÂTi QiÂiξ(s) ds dθ.

s.t. (4.37)

(4.40)

The structure restrictions of matrices X and X1 results in LMI algorithm (4.37) and
introduces conservatism in controller design. A less conservative design approach is to set
matrices X and X1 as described in (4.22). The resulting BMI can be easily solved by using
the solution of Theorem 4.6 as an initial condition. This approach is demonstrated and
discussed in the following numerical example.

Example 4.4 Consider the NCS in Example 4.2 with the same sampling, delay and initial
conditions. Set the parameter γ = 0 and N = 2. Choose s1 = 35 ms, p1 = 60%, s2 = 60 ms,
p2 = 40% and

R =


10 0 0 0
0 10 0 0
0 0 10 0
0 0 0 10

 .
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4.4 Guaranteed control performance for NCS with random sampling and delay

Solving Theorem 4.6, the stabilizing output-feedback controller are

Ac1 =

[
−31.741 −30.628
−30.628 −45.777

]
, Bc1 =

[
−7.112
−6.308

]
, Cc1 =

[
−4.356 −8.750

]
,

Ac2 =

[
−13.294 −12.286
−12.286 −18.010

]
, Bc2 =

[
−6.042
−7.956

]
, Cc2 =

[
−4.065 −5.456

]
,

with

X1 =


0.015 0.002 −0.006 0.001
0.002 0.015 −0.004 −0.001
−0.006 −0.004 0.008 −0.004
0.001 −0.001 −0.004 0.004

 ,

U1 =



0.248 −0.077 −0.018 −0.004 −0.167 0.092 −0.047 0.065
−0.077 0.276 0.021 −0.011 −0.001 −0.236 0.006 −0.018
−0.018 0.021 0.589 −0.205 −0.047 −0.030 −0.204 0.081
−0.004 −0.011 −0.205 0.535 0.094 −0.021 0.047 −0.289
−0.167 −0.001 −0.047 0.094 0.244 −0.059 −0.019 0.006
0.092 −0.236 −0.030 −0.021 −0.059 0.288 0.004 −0.001
−0.047 0.006 −0.204 0.047 −0.019 0.004 0.515 −0.206
0.065 −0.018 0.081 −0.289 0.006 −0.001 −0.206 0.499


,

U2 =



0.148 −0.042 −0.011 0.008 −0.097 0.047 −0.026 0.028
−0.042 0.161 0.017 −0.015 −0.001 −0.139 0.001 0
−0.011 0.017 0.422 −0.094 −0.026 −0.024 −0.195 0.029
0.008 −0.015 −0.094 0.224 0.047 −0.003 0.006 −0.076
−0.097 −0.001 −0.026 0.047 0.141 −0.033 −0.013 0.010
0.047 −0.139 −0.024 −0.003 −0.033 0.173 0.006 −0.012
−0.026 0.001 −0.195 0.006 −0.013 0.006 0.374 −0.106
0.028 0 0.029 −0.076 0.010 −0.012 −0.106 0.193


at Jper = 2.307× 103.

According to the setting in Example 4.2, the ratio of high to low sampling has the
factor of six. Heuristically, it can be assumed that the low sampling rate has data flow of
C2 = 0.6 × 103, whereas the high sampling rate has C1 = 3.6 × 103. In oder to highlight
the trade-off between performance and data flow, the required data flow

Jnet = p1C1 + p2C2

and performance bounds are established in Table 4.2

Table 4.2: The feasible probability distributions of sampling intervals, associated performance
bounds and data flow indices.

p1, p2 80%, 20% 60%, 40% 40%, 60% 20%, 80%
Jper 1.747× 104 2.307× 104 3.598× 104 9.367× 105

Jnet 3× 103 2.4× 103 1.8× 103 1.2× 103

Jper + Jnet 4.747× 104 4.707× 104 5.398× 104 9.379× 105

From Table 4.2, it is obvious that higher probability of sampling is not suitable if the
network capacity is taken into account. As shown in above examples, the NCS design
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4 NCS with Aperiodic Sampling

algorithms proposed in this chapter delicately formulate guaranteed performance bounds
in terms of probability distribution of sampling intervals. This enables a conjoint conjoint
consideration of control performance and network usage in the NCS design. In Chapter 5,
a novel cost function will be developed, which facilitates a performance and network usage
trade-off and results in a control system and communication network co-design approach.

4.5 Summary and discussion

Nowadays, control systems are getting more complex and intelligent due to a large number
deployment of sensors and actuators. To manage these sensors and actuators in an efficient
way, communication networks, such as ControlNet, DeriveNet, Ethernet, Profibus etc., are
increasingly being used in control systems. Facing the increasing probability of sensor data
congestion in a control network, it is desirable to develop an NCS, whose data sampling
rate can be varied according to network traffic.

In this chapter, NCSs with random sampling are systematically investigated. Main focus
is to derive network usage relevant methods for NCS analysis and synthesis. The analysis
approach is different from Chapter 3, where the periodic sampling intervals are embedded
into random delays. In this chapter, on the contrary, the delays are combined into random
sampling intervals and reformulated into a time-varying delay by using the input-delay ap-
proach. The time-varying delay is classified into N number of intervals, whose probabilistic
occurrence is described by associated indicator functions. In order to provide a framework
for NCS analysis and synthesis relevant to the network usage, the obtained stability and
stabilization conditions are presented in terms of probabilistic distributions of aperiodic
sampling intervals. Based on this framework, an innovative performance guaranteed algo-
rithm is developed to correlate the performance bound with probability distributions of
sampling intervals. For network applications, this allows an arbitration between control
performance and sensor data flow. For the underlying network, the algorithm enables
controlling traffic entry into the network, so as to avoid data congestion and guarantees
communication qualities.

The proposed approaches are numerically validated by different NCSs. It is shown
that the prosed approaches can efficiently stabilized unstable plants with probabilistic
sampling. The simulation results demonstrate superior performance over traditional worst-
case design. Furthermore, the proposed design algorithm achieves acceptable performance
at considerably less data loads.

Compared to the results derived in Chapter 3, the Markovian requirements in the delay
modeling are successfully removed in Chapter 4. The stability and stabilization results
in chapter contains only the static probability distributions of probabilistic samplings,
whereas the results in Chapter 3 enclose the information of statistical network dynamics,
i.e. Markov probability transition rates. In views of design functionality, the results of
Chapter 4 provide the basis for optimal network scheduling and Chapter 3 is aimed at
QoS network control. The details will be given in the following chapter.
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5 Control Systems and Communication
Networks Co-Design

It is well-know that the stability and performance of an NCS strongly depend on the com-
munication quality, e.g. the transmission delay. Guaranteed short transmission delay leads
to good control performance but needs the provision of large network resources, such as
bandwidth. Considering the finite resources of a network, it is desirable that every system
consumes only as much network resources as required to guarantee a certain level of per-
formance, i.e. a cost-performance trade-off is required. Furthermore, inefficient utilization
of network resources might result in higher possibility of longer delay and cause control
performance degradation. For example, the data transmission rate (sampling rate) of a
system gets higher, the network traffic becomes heavier. The possibility of longer trans-
mission delay or more packet dropouts increases. Hence, it is beneficial to design a data
transmission scheduling for a system so that the network resources is more efficiently used;
meanwhile, the control performance of connected systems is ensured, i.e. a network usage-
performance trade-off is required. Motivated by these requirements, two novel approaches
dealing with networks and systems co-design are proposed in this chapter.

In the first co-design approach, the Quality-of-Service (QoS) concept from the network-
ing community is considered. QoS refers to the capability of a network to provide different
levels of communication quality to different applications. Within the first approach, perfor-
mance requirements of systems and restrictions of networks are linked through statistical
properties of the Markovian transmission delays. QoS is then related to the ability of ad-
justing the probability transition rate of such Markov process. A cost-performance trade-off
is achieved by appropriately parameterizing the Markov probability transition rate. This
approach can be implemented for multihop wireless LAN IEEE 802.15.4 with the MAC
protocol CSMA/CA (Carrier Sensing Multiple Access/Collision Avoidance), where QoS
is considered to re-specify the probability distribution of the waiting delay upon the pri-
ority of packets. Re-specifying the probability distribution for the waiting delay in real
network implementation can be realized by choosing the backoff exponent and backoff pe-
riod in CSMA/CA algorithm. As a result, a communication network and control system
co-design problem reduces to the parameterizing of Markov process transition generator.

In the second co-design approach, the sampling interval is considered as random with
certain probability distributions. A cost function incorporating the control performance
and network usage is formulated by means of the probability distributions of associated
sampling intervals. In oder to balance the performance and network usage, the probability
distribution of sampling intervals is optimized by minimizing the cost function under per-
formance constraint, so as good performance is achieved at economic network consumption.
Different from the existing MATI-based data scheduling, which precisely regulate sensor
data by an maximal allowable interval, the second approach manages the traffic entry in
percentage. This eases the implementation and increases the performance as shown in this
chapter.
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5 Control Systems and Communication Networks Co-Design

Compared to the existing literature, the major innovation of the proposed two co-design
approaches are three fold. First, the proposed approaches take stochastic control and
random delays into account. This stochastic consideration results in less conservative
controller design than related co-design approaches in [58, 79, 136, 141], where the results
are derived by worst-case assumptions. Second, the proposed approaches integrate the
performance trade-off from control and communication. They enable the development
of more efficient and affordable NCSs which can scale and adapt with available network
resources. Third, unlike [58], where deterministic piecewise constant transmission delays
are needed. The application of the proposed approaches requires no exact values of delays
or sampling intervals, but their distributions. This simplifies the implementation in real
networks.

The remainder of this chapter is organized as follows. First, the quality-of-service (QoS)
network is briefly presented in the next section. Based on the QoS concept, a networks
and systems co-design approach incorporating the cost-performance trade-off is introduced
in Section 5.2. In views of efficient network utilization, a networks and systems co-design
approach concerning optimal sampling interval distributions is given in Section 5.3. Dis-
cussions and conclusions are summarized in Section 5.4.

5.1 Quality-of-Service network

“Quality-of-Service” (QoS) is a popular and overlapped term which is taken from different
perspectives by the networking and application-development communities. In the network-
ing, QoS refers to the capability of a network to provide different treatment to different
classes of network traffic. The primary goal of QoS mechanism is to increase the overall
utility of the network by granting priorities to higher-value or more performance-sensitive
data flows. The priority indicates for example, the desired bit rate, delay and packet
dropping probability of data flows. In the networking, it should be noted that QoS does
not prevent network congestion. However, QoS adds an intelligent transmission interface
allowing the network to make informed decisions about how to transmit the data flows.

In the application-development community, the view of QoS focuses on the relationship
between application performance and network utility. It is known that real-time network
applications are sensitive to the network traffic. Higher application performance requires
more network resources (e.g. larger bandwidth and shorter transmission delay) and results
in higher network cost. Due to the limited network resources, it is desirable to allocate
the network resources to each application to achieve certain level of performance. QoS
is considered as a key to meet the application performance and network utility in a cost-
effective manner.

There are two popular networking architectures developed to engineer preferential treat-
ment of applications within QoS networks. In the small-scale networks, the IntServ (or
integrated services) architecture is used to reserve network resources. In this architecture,
network applications use the Resource reservation protocol (RSVP) to request and reserve
resources through a network. For large-scale IP networks, the DiffServ (or Differentiated
Services) architecture marks the network applications according to the type of service they
need. In response to these markings, routers and switches use various queueing strategies
to tailor performance to requirements.
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5.2 Networks and control systems co-design: a cost-performance trade-off

Generally, QoS of a communication network is affected by four factors; delay, packet
dropout, packet error and jitter. The jitter concerns the variation of delays. The packet
error happens when packets are misdirected or corrupted during en route and can be
treated as packet dropout. As mentioned in Chapter 3, the effect of packet dropouts is
considered as a fictitious delay. In this dissertation, QoS of a communication network
is characterized by the features of random transmission delays. The typical exampled of
IEEE 802.15.4 wireless LAN will be depicted in the following section.

5.2 Networks and control systems co-design: a
cost-performance trade-off

Consider a control system connected by a multi-hop wireless LAN IEEE 802.15.4 with the
MAC protocol CSMA/CA (Carrier Sensing Multiple Access/Collision Avoidance). The
CSMA/CA algorithm for IEEE 802.15.4 uses the randomly generated waiting delay1 for
the collision avoidance. For applications with higher priority, the probability of shorter
waiting delay is increased. This results in better control performance but leads to higher
network cost. According to [50,66], the random waiting delay in CSMA/CA network can be
modeled by a Markov process. Based on Markov properties, re-specifying the probability
distribution of a Markovian (waiting) delay means adjusting its associated probability
transition rate. Consider the probability distribution of CSMA/CA waiting delay as a
QoS parameter. An optimal cost-performance trade-off can be achieved by optimizing the
Markov probability transition rate. In real network implementation, this is realized by
choosing the back-off exponent and back-off period in CSMA/CA algorithm.
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Figure 5.1: Scheme of NCS with QoS network and state-feedback controller (a) and output-
feedback controller (b).

The control structure is illustrated in Fig. 5.1. The sensor is periodically sampled by h1

(output-feedback controller is periodically sampled by h2). The random SC and CA delays
are modeled by Markovian delays. The resulting system is an MJLS with mode-dependent
delay. The results from Chapter 3, i.e. guaranteed control performance for NCS with
random delay, are considered. The performance requirements of systems and restrictions
of networks are linked through statistical properties of the Markovian transmission delays.

1The random waiting delay is represented by the sensor-to-controller delay τsc(rt) in Chapter 3.

79



5 Control Systems and Communication Networks Co-Design

As a result, the network and system co-design problem reduces to the parameterizing
of Markov probability transition rate. The remote controller (RC) is designed with pre-
defined the communication quality, i.e. the probability distribution of transmission delays,
such that an optimal the cost-performance trade-off is achieved as shown in the following.

5.2.1 Optimal cost-performance trade-off

The conjoint design of QoS network and control system is to optimize the resources alloca-
tion such that the control performance versus network cost is balanced. For this purpose,
the network cost C(rt), which represents the cost of the reservation of network resources
and is associated with the delay τ(rt), can be introduced into the cost function in (3.52).
As a result, a new cost function incorporating the trade-off between network resources and
control performance can be formulated in the following

J(rt) = lim
T→∞

E
{∫ T

0

zT (t)R(rt)z(t)dt+
1

T

∫ T

0

C(rt)dt

}
. (5.1)

The first term in (5.1) refers to the control performance and the second term refers to the
network cost associated with the communication quality, i.e. transmission delay.

The control performance is shown to be bounded by (3.53) in Theorem 3.5. With known
initial distribution of Markov process r0, the expected values of control performance is
guaranteed by

lim
T→∞

E
{∫ T

0

xT (t)R(rt)x(t)dt

}
≤ J̄per(r0, ᾱr0 + ∆αr0) =

∑
i=1

Pj(0)V (Ξ(0), r0 = i), (5.2)

where Pi(0) = P{r0 = i}.
The expected values of the normalized network cost over the runtime T are considered

in the second term of (5.1). According to the Markov properties, each ergodic and irre-
ducible Markov process has a stationary probability distribution P̄ = [P̄1 . . . P̄N ], see [103].
With the known transition generator A = (αi,j), the stationary probability distribution is
determined as

N∑
i

P̄iαi,j = 0,
N∑
i

P̄i = 1.

Therefore, the expected values of the normalized network cost in (5.1) can be determined
by

lim
T→∞

E
{

1

T

∫ T

0

C(rt)dt

}
=
∑
i

P̄iCi (5.3)

Combining (5.2) and (5.3) into (5.1), the stochastic cost function (5.1) recovers to a deter-
ministic function

J(A) = J̄per(r0, ᾱr0 + ∆αr0) +
∑
i

P̄iCi (5.4)

depending on the Markov process transition generator. Hence, the performance-cost trade-
off results in minimizing (5.4) by appropriate choice of the transition generator within
the stability constraints, i.e. the perturbation upper bound on the transition generator
determined in Theorem 2. The details of the optimization problem is formulated as follows.

80
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Proposition 5.1 Let ∆ᾱi be the perturbation upper bound of Markov process transition
generator determined by (3.53) Theorem 3.5. An optimal cost-performance is given by

min
AQoS∈A

J(AQoS), (5.5)

where A = {νi,j, i, j ∈ S} is the set of admissible transition generators satisfying

νi = −νi,i =
∑N

j 6=i νi,j and

αi −∆ᾱi ≤ νi ≤ αi + ∆ᾱi.

For NCSs with output-feedback controllers, a similar optimization problem can be de-
termined. Assume the NCS in Fig. 5.1 having an output-feedback controller. The cost
function in (5.1) becomes

J(rt) = lim
T→∞

E
{∫ T

0

χT (t)R(rt)χ(t)dt+
1

T

∫ T

0

C(rt)dt

}
. (5.6)

The first term in (5.6) is bounded by (3.61) in Theorem 4.6 and the second term is deter-
mined by (5.3). As a result, the optimization problem is summarized in Proposition 5.2.

Proposition 5.2 Let ∆ᾱi be the perturbation upper bound of Markov process transition
generator determined by (3.59) in Theorem 3.6. An optimal cost-performance is given by

min
AQoS∈A

J(AQoS), (5.7)

where A = {νi,j, i, j ∈ S} is the set of admissible transition generators satisfying

νi = −νi,i =
∑N

j 6=i νi,j and

αi −∆ᾱi ≤ νi ≤ αi + ∆ᾱi.

Proposition 5.1 and Proposition 5.2 are static optimization problem with linear inequal-
ity and equality constraints. A local minimum can be easily found by any commercial
optimization algorithm, e.g. fmincon in Matlab. The QoS co-design approach is based
on the analysis and synthesis methods proposed in Chapter 3, and aims at linear2 time-
invariant NCSs with constant sampling rate. The transmission delays are mainly caused
by the waiting delays used for collision avoidance in CSMA/CA networks. Furthermore,
the design approach can be easily extended for a CSMA/CA network with multiple control
systems by considering these control systems as subsystems of an NCS.

The benefit of QoS control is studied in the following example. A comparison between
the NCS with QoS network co-design and NCS without QoS network co-design is performed
with respect to control performance and network cost.

2Nonlinear NCSs can be linearized by standard linearization methods.
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5.2.2 Case study: NCS with QoS network

Case A: NCS with State-feedback controller

Consider an QoS communication network having Markovian transmission delays, i.e.
τ(1) = 20 ms and τ(2) = 50 ms. The associated network cost is given by C(1) = 4× 10−3

and C(2) = 2× 10−3, meaning higher cost for shorter transmission delay. The probabil-
ity transition rate, i.e. A = (αi,j), i, j ∈ S = {1, 2}, is considered as a QoS parameter of
network and conjointly designed with the controller under cost-performance constraint.

Reconsider the LTI plant in Example 3.5 as

ẋ(t) =

[
−1 1
0 0.5

]
x(t) +

[
0.5
1

]
u(t) (5.8)

with feedback gains

K(1) = [−6.3 − 5.5], K(2) = [−2.6 − 2.2].

Set γ = 0 and the probability transition rate as

A =

[
−1 1
1 −1

]
.

The associated stationary probability for τ(1) is P̄1 = 50% and P̄2 = 50% for τ(2). Solv-
ing the (3.54) in Theorem 3.5, the upper bounds on the perturbation of Markov process
transition generator, ∆ᾱ1 and ∆ᾱ2, are determined as (other associated positive definite
matrices are given in Example 3.5)

∆ᾱ1 = 0.207, ∆ᾱ2 = 0.559.

The optimization problem in Proposition 5.1 is numerically solved by the fmincon

algorithm from the Matlab optimization toolbox. With the initial condition
xT (t0 + θ) = [1 2], θ ∈ [−τ̄ , 0] and the initial probability distribution of Markov process
P(t0) = [80% 20%], the cost-performance trade-off in (5.7) is minimized by the probability
transition rate

A∗QoS =

[
−1.207 1.207
0.441 −0.441

]
with J̄(r0) = 4.016× 10−3 and associated limiting probabilities are P̄ = [26.8% 73.2%].

The simulation is performance 500 times with different sample paths of transmission
delay for a time horizon of T = 3 ms. A sample path of transmission delay is shown in
Fig 5.3. For comparison, two communication networks are investigated. In the proposed
QoS communication network, the transition generator, i.e. the probability distribution of
transmission delays, is designated such that the control performance and network cost are
optimized. Furthermore, the controller is synchronously switched with the transmission
delays. The benchmark communication network considers the worst-case delay τ(2) and
the system is designed with associated feedback gain K(2). The evolution of mean tra-
jectory x̄T (t) = [x̄T1 (t) x̄T2 (t)] is shown in Fig. 5.4 (a) and (b) for comparison. The mean
trajectories converge exponentially towards a ball around the origin of radius ||x̄(t)|| = 0.05
after t0.05 = 0.60 s, faster than the worst-case design with transmission delay (−42.3%), see
Table 5.1. However, the network cost is only 27% more than the worst-case design. Clearly,
the proposed approach has superior performance the trade-off between control performance
and network cost is achieved.
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Figure 5.4: The mean trajectories of system with QoS co-design (solid line) and worst-case
design with delay τ(2) (dashed line).
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Table 5.1: Control performance and network cost.

t0.05 [s] Network cost [unit]

QoS network 0.60 2.54× 10−3

K(2) with delay τ(2) 1.04 2× 10−3

Case B: NCS with Output-feedback controller

To illustrate the network and control system co-design approach for NCSs with output-
feedback controller, the LTI system in Example 3.6 is reconsidered. Assume the Marko-
vian transmission delays having the values τ1(rt) = [15 32] ms and τ2(rt) = [15 28] ms. Set
γ = 0.4, the Markov process probability transition rate as

A =

[
−1 −1
1 −1

]
,

and

R(1) = R(2) = 10−4

[
1 0
0 1

]
.

The perturbation upper bounds of the probability transition rate are (other associated
positive definite matrices are given in Example 3.6)

∆ᾱ1 = 0.006, ∆ᾱ2 = 0.447.

With the initial condition x(t0 + θ) = 1, θ ∈ [−τ̄ , 0], the initial probability dis-
tribution P(t0) = [65% 35%] and corresponding network cost C(1) = 4.5× 10−4 and
C(2) = 3.7× 10−4, the optimal performance-cost trade-off is achieved by the optimal tran-
sition generator

A∗QoS =

[
−0.994 0.994
1.447 −1.447

]
with J̄(r0) = 1.135× 10−3 and associated limiting probabilities P̄ = [59.3% 40.7%].

The simulation is performed 500 times with different sample paths of delays for a time
horizon T = 5 s. The mean trajectory is shown in Fig. 5.6. The trajectory converges
exponentially towards a ball around the origin of radius ||x̄(t)|| = 0.05 after t0.05 = 1.67 s,
faster than worst-case design with longer transmission delay (−37.2%). However, the
network cost is only increased by +12.7%, see Table 5.7. As a result, the trade-off between
control performance and network cost is achieved for output-feedback NCS.

The communication network and control system co-design are targeted by parameteriz-
ing the transition generator within the perturbation upper bound. The benefits of the co-
design approach include i) the guaranteed control performance is achieved by the efficient
usage of network resources; ii) the cost-performance optimization results in re-specifying
the probability distribution of random delays. This can be easily implemented e.g. for
the CSMA/CA algorithm in IEEE 802.15.4 wireless networks, where the random waiting
delay is generated for collision avoidance.

According to the case studies, it is shown that the QoS co-design approach results in
superior performance and requires relatively low network resources compared to the worst-
case design. For groups of dynamical systems closed via a shared network (or multiple
NCSs), each dynamical systems can be viewed as a sub-system of an aggregate NCS.
Therefore, the same analysis and design approach can be applied.
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Figure 5.7: Control performance and network cost.

t0.05 [s] Network cost [unit]

QoS network 1.62 4.17× 10−3

K(2) with delay τ1(2) and τ2(2) 2.58 3.7× 10−4
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5.3 Networks and systems co-design: optimal random
sampling

For traditional sampled-data systems, the sensor measurement and control commands are
point-to-point connected. In this case, the transmission uncertainties are neglected. A
smaller sampling interval implies better control performance, see Fig. 5.8. For NCSs, how-
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Figure 5.8: Performance comparison of continuous-time system, sampled-data system, and
networked control system [73].

ever, commercial control networks, such as ControlNet, DeviceNet, Ethernet, Profibus,
Flexrate, etc., are implemented into the feedback loop. Due to external traffic and band-
width limitations, a smaller sampling interval can lead to unnecessary traffic load on these
networks [73,128]. Heavy traffic of networks might result in higher possibility of longer de-
lay and cause control performance degradation (see point C in Fig. 5.8). In this section, a
random sampling approach is proposed for NCSs. In oder to balance the performance and
network usage, a cost function incorporating the control performance and network usage
is formulated in terms of the probability distributions of associated sampling intervals. By
minimizing the cost function under performance constraint, an optimal random sampling
can be targeted by optimizing the probability distributions of sampling intervals, so as
good control performance is achieved at economic network consumption. This approach
is different from the existing MATI-based data scheduling, which precisely regulate sensor
data by an maximal allowable intervals. It manages the traffic entry in percentage. This
eases the implementation and increases the performance as shown in later case studies.

The control structure is illustrated in Fig. 5.9. The sensor is aperiodically sampled by
h(k) (The output-feedback controller is aperiodically by h(k) as well). The aperiodic sam-
pling intervals as well as transmission delays are described by a set of indication functions
with certain probability distributions. The resulting system is a randomly switched time-
varying delay system. The guaranteed control performance derived for NCS with random
sampling in Chapter 4 is re-considered. A static network scheduling and remote controller
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Figure 5.9: Scheme of NCS with optimal probabilistic sampling and state-feedback controller
(a) and output-feedback controller (b).

are conjointly derived by arbitrating the control performance and network usage in terms
of probability distributions of sampling intervals in a cost function.

5.3.1 Optimal sampling distribution

Assume an NCS with state-feedback controller in Fig. 5.9 is aperiodically sampled by a
sampling interval h(k), k ∈ K, where

h = min
k∈K
{h(k)}, h̄ = max

k∈K
{h(k)}.

For further technical development, the sampling interval h(k) is categorized into q ≥ 2 in-
tervals by shj > 0, j = 1, . . . , q − 1, satisfying shj < shj+1, sh0 = h and shq = h̄. Each sampling
interval shj has occurrence probability

P{shj } = phj ,

q∑
j=1

phj = 1.

Recall the cost function in (4.31) and let Cj(t) represent the network usage factor of
associated sampling interval shj , where

Cj(t) =

{
Cj, shj−1 ≤ h(k) < shj , j = 1, . . . , q, k ∈ K,
0, otherwise.

The cost function toward the trade-off between network usage and control performance
can be formulated as

J = lim
T→∞

E
{∫ T

0

zT (t)Rz(t)dt+
1

T

q∑
j=1

∫ T

0

Cj(t)dt

}
. (5.9)

The first term in above cost function concerns the control performance and the second
term concerns the network usage associated with sampling intervals.

Remark 5.1 Consider the transmission delay in Fig. 5.9 as τtx(k), where

τ tx = min
k∈K
{τtx(k)}, τ̄tx = max

k∈K
{τtx(k)}.
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Categorize the transmission delay τtx(k) into l ≥ 2 intervals by stx
l > 0, l = 1, . . . , r − 1,

satisfying stx
l < stx

l+1, stx
0 = τ tx and stx

l = τ̄tx. The occurrence probability of each delay
interval stx

l becomes

P{stx
l } = ptx

l ,

r∑
l=1

ptx
l = 1.

The delay interval n delay intervals defined by (4.4) in Chapter 4 can be reformulated as

si =
r∑
l=1

q∑
j=1

stx
l + shj , pi =

r∑
l=1

q∑
j=1

ptx
l p

h
j . (5.10)

Therefore, the results derived in Chapter 4 can be applied to the NCSs discussed in this
section.

The control performance is bounded by (4.34) in Theorem 4.5. Given the probabil-
ity distribution pi of each delay intervals si, i = 1, . . . , n, the expected values of control
performance becomes

lim
T→∞

E
{∫ T

0

zT (t)Rz(t)dt

}
≤ J̄per(s1, . . . , sn) = V0(ξ(0)) +

n∑
i=1

piVi(ξ(0)). (5.11)

With known probability distribution of Cj, the expected values of the normalized network
usage index over the runtime T can be estimated as

lim
T→∞

E
{

1

T

q∑
j=1

∫ T

0

Cj(t)dt

}
=

q∑
j=1

phjCj. (5.12)

Combine (5.11) and (5.12) into (5.9), the stochastic cost function (5.9) becomes a deter-
ministic function

J(ph1 , . . . , p
h
q ) = J̄per(s1, . . . , sn) +

q∑
j=1

phjCj (5.13)

depending on probability distributions of delays and sampling intervals. Therefore, an opti-
mal network utilization results in minimizing (5.13) by an appropriate choose of probability
distributions of sampling intervals phj , j = 1, . . . , q. Changing the probability distribution
of sampling intervals phj results in variations of pi. However, any variation of pi might
change the validity of the stability condition derived by Theorem 4.5. In oder to ensure
the stability, the LMI (4.32) in Theorem 4.5 has to be considered during the optimization.
The details of the optimal network utilization problem is formulated as follows.

Proposition 5.3 An optimal random sampling is given by

min
ph

1 ,...,p
h
n

J(ph1 , . . . , p
h
q ),

s.t.(4.32)
(5.14)

where ph1 , . . . , p
h
q satisfying

∑q
j=1 p

h
j = 1 is the set of admissible probability distribution of

sampling intervals.
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Note that the above optimization problem is derived for NCSs with state-feedback con-
trollers. For NCSs with output-feedback controllers, a similar result can be also obtained.
Consider the NCS in Fig. 5.9 having an output-feedback controller. The cost function in
(5.9) becomes

J = lim
T→∞

E
{∫ T

0

χT (t)Rχ(t)dt+
1

T

q∑
j=1

∫ T

0

Cj(t)dt

}
. (5.15)

Assume the sensor and output-feedback controller are aperiodically sampled by h(k), which
is categorized into q ≥ 2 intervals. According to Theorem 4.6 and (5.12), the stochastic cost
function in (5.15) reduces to deterministic function having the same form as in (5.13). As
a result, the optimal network utilization problem for NCSs with output-feedback controller
is given as follows.

Proposition 5.4 An optimal random sampling is given by

min
ph

1 ,...,p
h
n

J(ph1 , . . . , p
h
q ),

s.t.(4.37)
(5.16)

where ph1 , . . . , p
h
q satisfying

∑q
j=1 p

h
j = 1 is the set of admissible probability distribution of

sampling intervals.

Proposition 5.3 and Proposition 5.4 are static optimization problems with linear matrix
inequality constraints. A local minimum can be found easily by the optimization toolbox
fmincon in Matlab. The proposed optimal random sampling approach can be envisioned
as a static scheduling network protocols. Different from the existing static scheduling
protocols, such as token ring or token bus, which can provide constant delay as in [129,143],
the proposed approach considers random delay and can be applied to modern control
networks like wireless LAN, switched Ethernet or Ethernet (see Chapter 6). The benefit
of optimal network utilization is studied in the following examples.

5.3.2 Case study: NCS with efficient network utilization

Case A: Optimal random sampling for NCS with state-feedback controller

Assume an NCS

ẋ(t) =

[
0 1
1 −50

]
x(t) +

[
1

0.5

]
u(t) (5.17)

subjected to a network with probabilistic delay distributions: stx
1 = 25 ms, ptx

1 = 60% and
stx

2 = 40 ms, ptx
2 = 40%. Consider the NCS is sampled by two sampling intervals: sh1 = 5 ms

and sh2 = 20 ms. Associated to different sampling interval, the network usage factor are
heuristically set as C1 = 4× 104 and C2 = 1× 104, meaning higher network usage for
shorter sampling interval. According to (5.10), the delay intervals become

s1 = sh1 + stx
1 = 30, p1 = 0.6ph1 ,

s2 = sh2 + stx
2 = 45, p1 = 0.4ph1 + 0.6ph2 ,

s3 = sh3 + stx
3 = 60, p1 = 0.4ph2 .
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The probability distributions of sampling intervals ph1 and ph2 are designed such that optimal
network utilization is achieved.

Set the parameters γ = 1.3 and

R =

[
10 0
0 10

]
.

The optimization problem in Proposition 5.3 is numerically solved by the optimiza-
tion fmincon as well as Yalmip toolbox [80] in Matlab. With the initial condition
xT (t0 + θ) = [−2 2], θ ∈ [−s3, 0], the cost function (5.15) in Proposition 5.3 is optimize by
[ph1 p

h
2 ] = [36.25% 63.75%] for J = 3.099× 104. The associated stabilizing state-feedback

gains are

K1 = [−35.317 − 61.632], K2 = [−9.051 − 15.781], K3 = [−3.5751 − 6.2144],

where

X1 =

[
0.993 −0.012
−0.012 0.087

]
,

U1 = 103 ×


4.259 −2.362 −4.277 2.299
−2.362 1.549 2.386 −1.456
−4.277 2.386 4.324 −2.306
2.299 −1.456 −2.306 1.429

 ,

U2 = 103 ×


1.629 −0.778 −1.609 0.821
−0.778 0.508 0.774 −0.498
−1.609 0.774 1.609 −0.807
0.820 −0.498 −0.807 0.529

 ,

U3 =


834.718 −397.468 −808.276 442.465
−397.468 242.407 394.827 −236.252
−808.276 394.827 796.051 −432.471
442.465 −236.252 −432.471 260.926,

 .
The simulation is performed 500 times with different sample paths of delays for a time

horizon T = 1 s. The mean trajectory of the considered NCS is shown in Fig. 5.10. The
trajectory of the NCS with optimal random sampling converges exponentially towards a
ball around the origin of radius ||x̄(t)|| = 0.05 after t0.05 = 0.355 s, faster than the coun-
terpart NCS with low sampling rate (-27.2%), see Table 5.2. However, the network usage
is 47.8% less than NCS with high sampling rate, see Table 5.2. The results demonstrate
that good control performance at less (economic) network utilization is achieved by the
optimal random sampling approach.

Table 5.2: Control performance and network usage.

t0.05 [s] Network usage [unit]

optimal sampling rate 0.355 2.088× 104

high sampling rate 0.253 4× 104

low sampling rate 0.483 1× 104
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Figure 5.10: The mean norm of trajectories of NCS with optimal sampling rate (solid line),
lower sampling rate (dashed line) and high sampling rate (dash-dot line).

It should be pointed out that the network usage factors are chosen to represent the
data flow of associated sampling rate. In order to have a fair arbitration between different
sampling rates, the ratio of network usage factors is parameterized equal to the ratio of
sampling rates, i.e. C1/C2 = h1/h2.

Case B: Optimal network utilization for NCS with output-feedback controller

To present the optimal network utilization for NCSs with output-feedback controller, the
system in Example 4.4 is recalled. Assume the sensor and output-feedback controller are
sampled by two sampling intervals, i.e. sh1 = 5 ms and sh2 = 20 ms accompanied with net-
work usage factor C1 = 4× 103 and C2 = 1× 103, respectively. Note that C1/C2 = h1/h2.
The sensor measurement as well as control commands are transferred via a communication
network with constant delay stx

1 = 25 ms. Based on (5.10), the delay intervals become

s1 = sh1 + stx
1 = 30, p1 = ph1 ,

s2 = sh2 + stx
2 = 45, p2 = ph2 .

A set of distributions of sampling intervals ph1 and ph1 is determined such that the underlying
network can be optimally utilized.

Set the parameters γ = 0 and

R =


10 0 0 0
0 10 0 0
0 0 10 0
0 0 0 10

 .
The optimization problem in Proposition 5.4 is numerically solved by the optimization
fmincon and Yalmip toolbox in Matlab. With initial condition xT (t0 + θ) = [2 − 2 0 0],
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θ ∈ [−s2, 0], the cost function (5.16) in Proposition 5.4 is minimized at J = 3.269× 103 by
[ph1 p

h
2 ] = [24.46% 77.54%]. The associated stabilizing output-feedback controllers are

Ac1 =

[
−29.675 −33.862
−33.862 −43.738

]
, Bc1 =

[
−6.100
−6.490

]
, Cc1 =

[
−5.000 −7.750

]
,

Ac2 =

[
−10.225 −11.668
−11.668 −15.070

]
, Bc2 =

[
−5.900
−6.490

]
, Cc2 =

[
−3.333 −5.000

]
,

with

X1 =


0.022 0.005 −0.015 0.005
0.005 0.019 −0.009 0.001
−0.015 −0.009 0.023 −0.012
0.005 0.001 −0.012 0.009

 ,

U1 =



0.387 −0.094 0.098 −0.065 −0.314 0.146 −0.063 0.068
−0.095 0.526 0.007 −0.020 −0.062 −0.460 0.061 −0.026
0.098 0.007 0.634 −0.143 −0.128 −0.049 −0.443 0.204
−0.065 −0.020 −0.143 0.550 0.177 −0.016 0.182 −0.321
−0.314 −0.062 −0.126 0.177 0.469 −0.024 0.026 −0.021
0.146 −0.460 −0.049 −0.016 −0.024 0.535 −0.060 0.011
−0.063 0.061 −0.443 0.182 0.026 −0.060 0.638 −0.254
0.068 −0.026 0.204 −0.321 −0.021 0.011 −0.254 0.488


,

U2 =



0.280 −0.045 0.058 −0.050 −0.219 0.065 −0.038 0.055
−0.045 0.365 0.005 −0.012 −0.049 −0.335 0.036 −0.018
0.058 0.005 0.453 −0.062 −0.084 −0.029 −0.334 0.089
−0.050 −0.012 −0.062 0.401 0.116 −0.009 0.076 −0.267
−0.219 −0.049 −0.084 0.116 0.317 −0.001 0.020 −0.013
0.065 −0.335 −0.029 −0.009 −0.001 0.406 −0.037 0.003
−0.038 0.036 −0.334 0.076 0.020 −0.037 0.475 −0.106
0.055 −0.018 0.089 −0.267 −0.013 0.003 −0.106 0.404


.

Table 5.3: Control performance and network usage.

t0.05 [s] Network usage [unit]

optimal sampling rate 9.495 1.674× 103

high sampling rate 8.485 4× 103

low sampling rate 17.172 1× 103

The simulation is performed 500 times with different sample paths of delays for a time
horizon T = 20 s. The mean trajectory is shown in Fig. 5.11. The trajectory of NCS
with optimal random sampling converges exponentially towards a ball around the origin of
radius ||x̄(t)|| = 0.05 after t0.05 = 9.495 s, closed to the counterpart NCS with high sampling
rate (+17.21%). However, the network usage is 58.15% less than NCS with high sampling
rate, see Table 5.3. Clearly, the NCS with random sampling efficiently reduces the data
flow and preserves the control performance by the proposed approach.
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Figure 5.11: The mean norm of trajectories of NCS with optimal sampling rate (solid line),
lower sampling rate (dashed line) and high sampling rate (dash-dot line).

The optimal random sampling approach concerns the static sampling interval scheduling
of NCSs with performance and network capacity constraints. A stochastic cost function
is employed to describe the guaranteed performance versus the probability distribution
of random sampling intervals. The probability distribution of random sampling intervals
are scheduled to obtain the optimal guaranteed performance based on the stabilization
theorems derived Chapter 4. In this way, the control systems and shared networks can be
conjointly designed to meet the requirements of control performance and network resources.
Different from the existing static scheduling algorithms [129, 143], the optimal random
sampling co-design approach allows random delay in the network and can be applied to
broadband networks such as switched Ethernet, Ethernet and wireless LAN. Furthermore,
the optimal random sampling co-design approach requires no accurate regulation of sensor
data by an maximal allowable interval, which eases the implementation.

5.4 Summary and discussion

Practical NCSs are usually subjected to communication networks with limited resources. In
views of network bandwidth constraint, efficient use of networks becomes an essential issue
in the NCS design. Aiming at this requirement, in this chapter, two novel approaches are
developed to deal with a conjoint design of control systems and communication networks.

In the first approach, the Quality-of-Service (QoS) concept from networking community
is considered. Based on the results derived in Chapter 3, performance requirements of
systems and restrictions of networks are related in terms of Markov probability transition
rates of delays. A cost-performance trade-off is then achieved by appropriately parameter-
izing the Markov probability transition rate. This approach can be implemented for the
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MAC protocol, where QoS is considered to re-specify the probability distribution of the
waiting delay upon the priority of packets

In the second approach, a probabilistic network scheduling is addressed. According to the
results derived in Chapter 4, the control performance and network usage are embodied in a
cost index containing the probability distributions of different data transmission rates. An
optimal network scheduling is targeted by minimizing the cost function under performance
and network capacity constraints. This approach allows random transmission delay and
are suitable for broadband networks like switched Ethernet, Ethernet and wireless LAN.

The performance of both considered approaches are studied in numerical examples. All
results demonstrate an impressive control performance at reduced network consumption.
The benefits of the proposed two co-design approaches include

• guaranteed control performance is achieved by the efficient usage of network re-
sources.

• design parameters of networks, e.g. delays or data sampling data, require no exact
values but their distributions. This simplifies the implementation in real networks.

This chapter concludes the theoretical stability and performance analysis of Chapter 3
and Chapter 4 in two control systems and communication networks co-design approaches.
Experimental validation of the proposed approaches follows in the next chapter.
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In this chapter, the two control system and communication network co-design approaches
proposed in Chapter 5 are validated by two different experiments. In the first experiment,
a three degrees-of-freedom (DoF) robotic manipulator with periodic sampling and QoS
network are considered. The desired QoS communication characteristics is provided by
a network emulator. The stochastic analysis and controller design approaches described
in Chapter 3 are applied and a set of delay-dependent switching controllers in joint-space
is accordingly determined. Within the first co-design approach, the system performance
requirements and network restrictions are linked through the probability transition rates
of waiting delays in CSMA/CA network by a stochastic cost function. QoS is related to
the ability of adjusting the probability transition rates of waiting delays. By solving the
cost function, a cost-performance trade-off is achieved by appropriately choosing the QoS
parameters.

In the second experiment, the image stream is considered in the feedback loop and a
so-called networked visual servo control system (NVSCS) is developed for experimental
validation. In order to relieve the burden on the UDP-based Ethernet, the probability
distributions of image transmission rate are considered as variables in the experiment.
The delay-dependent switching controllers for the NVSCS are determined by the stochas-
tic design approaches from addressed in Chapter 4. Within the second experiment, a
cost function incorporating the control performance and network usage is formulated by
means of the probability distributions of associated image transmission rate. A network
usage-performance trade-off is targeted by minimizing the cost function under performance
constraint, so as good performance is achieved at economic network consumption.

The innovation of the two experiments concerns designing NCSs by cost-performance
trade-off approaches, which delicately incorporate the stability requirement, guaranteed
performance constraint and random delay properties in one condition. In both experi-
ments, benchmarks without co-design approaches are implemented for comparison. Both
experimental results demonstrate significant performance improvements by the proposed
co-design approaches.

6.1 Networked robotic manipulator control

6.1.1 Experimental setup

The experimental setup is composed of a 3 DoF robotic manipulator system ViSHaRD3
[125], two PCs running real-time (RT) Linux, and a network emulator. As shown in Fig. 6.1,
the ViSHaRD3 device is connected to a remote controller through a network emulated by
Netem [2]. The communication between the remote controller and ViSHaRD3 is done
based on a QoS network with UDP/IP protocol. In order to increase the performance,
the control law of the remote controller is switched according to the sensor-to-controller
transmission delay by using the time-stamp technique.
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Figure 6.1: Experimental 3 DoF ViSHaRD3 system.

The control for ViSHaRD3 relies on the measurement and amendment of joint displace-
ment. The control commands as well as sensor measurement are provided and read though
a Sensoray S626 I/O card. The I/O card is connected to the host PC, and serves as an
A/D and D/A converters for the incoming and outgoing signals. Each joint is actuated
by a DC motor coupled with a harmonic drive gear. The DC-motor torque is modulated
by the PWM amplifier operated under current control. The reference signal is given in
voltage from the I/O card and is considered approximately proportional to the DC-motor
torque.

The control-loop is implemented in Matlab/Simulink blocksets. Standalone real-time
code is generated directly from the Simulink models. The sampling interval is h = 5 ms.
Before demonstrating the experimental results, a detailed description of ViSHaRD3 device,
network-induced delay and control structure is presented.

6.1.2 ViSHaRD3

Figure 6.2: The robotic manipulator system ViSHaRD3.

The hardware and the kinematic design of the ViSHaRD3 can be seen in Fig. 6.2 and
Fig. 6.3 respectively. ViSHaRD3 is designed as a general purpose haptic interface in order
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Figure 6.3: The kinematic design of ViSHaRD3 system.

to be used in a variety of application domains. The ViSHaRD3 robotic manipulator has
three revolute joints. The first two joints are arranged in SCARA-configuration with
vertical axes, avoiding the need for gravitational compensation. All the links have equal
lengths of 0.3 m. The end effector is a gimbal mounted thimble with three passive, freely
rotating DOF. The rectangular workspace is 0.6× 0.25× 0.4 m in width, depth and height.
The mass of the moving parts is around 5.5 kg, resulting in an apparent inertia of the
end-effector between 1.9 to 18 kg. The torque capability is provided by 150 W Maxon DC
motors coupled with harmonic drive gears. The angles of the joints are measured by optical
incremental encoders with a resolution of 2000 counts per revolution. Multiplied by the
gear ratio 1:100 it results in a resolution of π10−5 rad. For a more detailed description of
ViSHaRD3 as well as issues concerning control aspects, friction compensation etc. see [125].

6.1.3 QoS scheduler: Netem

The QoS network used in the experiment is provided by a Linux kernel based network
emulator Netem [2, 52]. Netem is an enhancement of the traffic control function in Linux
and built by using differentiated services (diffserv) facilities in Linux kernel. It incorporates
a variety of network attributes, including round-trip delay, packet dropouts, jitter and
other scenarios. Netem works as a classful queuing discipline (qdisc) implemented between
Transport and Network layer of the OSI reference model. Its basic architecture is shown
in Fig. 6.4. The qdisc decides which packets from which task will be putted into the
sending buffer according to current netem settings with priority First-In-First-Out (pFIFO)
mechanism. The highest priority traffic is placed into priority 0 and is always serviced first.
Similarly, priority 1 is always emptied of pending packets before priority 2 is dequeued.
Based on the qdisc, the random delays of the considered QoS network is configured.

As default, the qdisc settings are configured by command line via the Netlink socket
interface. In the ViSHaRD3 experimental testbed, a Matlab/Simulink interface is devel-
oped by the S-function and Netlink socket such that parameters could be easily changed
within Simulink. As pointed out in [52], the accuracy of emulated transmission delay is
limited by the system tick rate. In the ViSHaRD3 setup, Linux kernel version 2.6.31 with
system tick rate 1000 Hz is used, the precision of the transmission delay is 1 ms. Within
the experimental validation, the random delay with exponential distributions is measured
up to 2 ms. Exact settings of delays and associated probability transition rate are given in
the next section.
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Figure 6.4: Netem basic architecture.

6.1.4 Controller design

Due to the requirement of the proposed approach, the ViSHaRD3 device is linearized by
computed torque feedforward approach [113]. Combined with friction compensation, the
linearized ViSHaRD3 system is decoupled into three systems

d

dt

[
qi(t)
q̇i(t)

]
=

[
0 1
−1 −150

] [
qi(t)
q̇i(t)

]
+

[
0
1

]
ui(t), (6.1)

where i = 1, 2, 3 for joint 1, 2 and 3. The ViSHaRD3 system is equipped with a set of PD
controllers, which are synchronously switched with the SC delay.

The joint vector q of ViSHaRD3 is fed to the remote controller through a communication
network having the SC delay τsc(rt) ∈ {5, 7, 8}ms, CA delay τca(rt) ∈ {2, 4, 5}ms. With the
sampling interval h = 5 ms, the resulting delay1 has the values τ(1) = 12 ms, τ(2) = 16 ms,
τ(3) = 18 ms. The network cost with associated delays are given in Table 6.1. The Markov

Table 6.1: The network cost and associated delays.

SC delay [ms] CA delay [ms] Round-trip delay [ms] Network cost [unit]

τsc(1) = 5 τca(1) = 2 τ(1) = 12 6× 10−3

τsc(2) = 7 τca(2) = 4 τ(2) = 16 4× 10−3

τsc(3) = 8 τca(3) = 5 τ(3) = 18 3× 10−3

probability transition rate is set to

A =

−4 1 3
1 −3 2
1 1 −2

 .
1The resulting delay is determined by (3.5) in Chapter 3 as τ(rt) = h+ τsc(rt) + τca(rt).
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Meaning the stationary probability for [τ(1) τ(2) τ(3)] are [P̄1 P̄2 P̄3] = [20% 25% 55%].
The ViSHaRD3 system is equipped with a set of PD controllers, which are synchronously

switched with the SC delay. Combine the switching PD controller into (6.1), it yields

d

dt

[
qi(t)
q̇i(t)

]
= Ai

[
qi(t)
q̇i(t)

]
+ K̄(rt)

[
qi(t− τ(rt))
q̇i(t− τ(rt))

]
, (6.2)

where i = 1, 2, 3 and

A1 = A2 = A3 =

[
0 1
−1 −150

]
, K̄(rt) =

[
0 0

−KP (rt) −KD(rt)

]
.

The PD gains in (6.2) are computed by (3.28)-(3.29) in Theorem 3.5 in Chapter 3 using
the Yalmip toolbox in MATLAB. The LMI (3.53) in Theorem 3.5 is solved for the decay
rate of γ = 0 and

R(1) = R(2) = R(3) = 10−4 ×
[
1 0
0 1

]
.

The feasible PD gains and perturbation upper bonds are summarized in Table 6.2. Consider
the initial joint vector of ViSHaRD3 as qT (t0) = [q1(t0) q1(t0) q3(t3)] = [0 0 − 0.5π] rad,
q̇T (t0) = [0 0 0] rad/s and the initial probability distribution of Markovian delay
P(t0) = [20% 40% 40%]. The optimization problem in Proposition 5.1 is optimized by
the probability transition rate

A∗QoS =

−4.000 1.000 3.000
0.998 −2.997 1.999
0.997 0.997 −1.994


with J̄(r0) = 1.712× 10−3.

Table 6.2: The feasible switching PD controller for ViSHaRD3 device.

Markovian delay [ms] Joint 1, 2 and 3 Perturbation bounds

τ(1) = 12 KP (1) = 70.65, KD(1) = 5.50 ∆ᾱ1 = 8.14× 10−5

τ(2) = 14 KP (2) = 26.54, KD(2) = 2.20 ∆ᾱ2 = 2.90× 10−3

τ(3) = 18 KP (3) = 15.21, KD(3) = 1.55 ∆ᾱ3 = 5.10× 10−3

6.1.5 Experimental results

A sinusoidal function, which has the amplitude 0.2 and frequency 0.5 rad/s, serves as
position reference qr to the system. The experiments are run 10 times with different
sample paths of the delay. A sample path of the transmission delay is shown in Fig 6.5.
For comparison, the random delays are rendered as constant by buffering and the NCS
with worst-case design is investigated. The evolutions of normalized mean control error

ē(t) =
q(t)− qr(t− τ(rt)

max{||qr(t)||}
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Figure 6.5: The sample path of Markovian delay for the experiment.
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Figure 6.6: The normalized mean control error evolutions with QoS co-design approach (solid
line) and worst-case design (dashed line).
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are shown in Fig. 6.6. It is observed that the normalized mean control errors of the pro-
posed QoS co-design approach (solid line) are smaller than the worst-case design approach
(dashed line). The L2 norm of normalized mean control error over the experimental time
horizon [0 tf ], tf = 10 s, i.e.

||ē(tf )||2 =

√∫ t0

0

ē(t)ēT (t) dt,

is measured to be ||ē(tf )||2 = 1.42 for the proposed approach and ||ē(tf )||2 = 3.92 for worst-
case design. The QoS co-design approach has 63.8% less control error than the worst-case
design. However, the network cost is only 26.7% more.

Table 6.3: The feasible switching PD controller for ViSHaRD3 device.

||ē(tf )||2 Network cost [unit]

NCS with QoS co-design 1.42 0.38
NCS with worst-case design 3.92 0.3

As a result, the QoS co-design approach has superior performance benefits over the
counterpart even when the total switching difference of delay is small, as in this case of
only 6 ms. In case of larger switching delay differences, the performance benefit is likely to
be more obvious.

6.2 Networked visual servo control

6.2.1 Experimental setup

The second experiment concerns a networked visual servo control system (NVSCS). Visual
servo control refers to the use of visual-data in the feedback control loop, see [61] for an
overview for its advantages and challenges. With recent advances in communication and
computing technologies, video grabbing, image processing and control can be implemented
on different platforms across a common communication network. This kind of setup results
in NVSCSs. The benefits of an NVSCS include: an NVSCS employs different cameras
over a network; it provides wide-range visual feedback and increases system autonomy.
An NVSCS has distributed computation for image processing; it enables high-speed vision
feedback and is more robust to occlusions, see [112] for details.

The considered NVSCS is composed of two commercial linear motors from Copley Con-
trol Corp, two PCs running RT-Linux and a camera (Mikrotron EoSens MC1363). The
experiment refers to the synchronization of the two linear motor modules by using the
camera as a position sensor. As shown in Fig. 6.7, an object is mounted on a reference
linear motor module; and a controlled linear motor module is equipped with a camera. The
two linear motor modules are connected to host PCs running RT Linux via a Sensory S626
I/O card. To enable a high-speed vision feedback in the control loop, the image frames
captured by the camera with resolution of 648× 480 pixels are processed by distributed
standalone PCs (X86-64 AMD Phenom II ×4 810 processor) implemented with pose esti-
mation algorithms over the network. In order to relieve the burden on the network, the
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camera framerate is considered as variable and the main objective to be determined in the
following section.

camera
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Figure 6.7: Experimental setup of networked visual servo control.

The control functions are implemented in Matlab/Simulink blocksets. Standalone real-
time code is generated directly from Simulink models. The sampling period of the control
function is h = 1 ms.

6.2.2 Pose estimation and distributed computation

Computation delay

The position of the controlled module, x(t), is estimated by using pose estimation. By
given matched feature pairs, the problem of pose estimation could be considered as dual
problem of 2D visual servoing proposed in [86]. A virtual camera is applied and is moved
by using a visual servoing law to minimize the position errors between current observed
image features and previous ones.

In order to increase the accuracy of position measurement, a scale invariant feature
transform (SIFT) algorithm [81], which is known for its robust character, is applied for
feature extraction. To improve the performance, the SIFT algorithm is implemented on a
GPU (Graphics Processing Units) by exploiting its massive parallel processing capability.
Matched feature pairs contain outliers, which lead to errors of the pose estimation. There-
fore, a RANSAC (RANdom Sample Consensus) algorithm [34] is used for the rejection of
outliers.

The number of matched feature pairs has impact on the time required for pose esti-
mation. Moreover, image features vary from frame to frame due to different view angles,
illumination conditions and noise. As a result, the image processing delay is random as
shown in Fig. 6.8. The image processing delay has mean value τ̄cp = 20.33 ms and standard
deviation 2.98 ms. The whole image processing time ranges from τcp = [14 40] ms (NVIDIA
GeForce 8800) in the experiment.

Transmission delay

For computing efficiency, a distributed computation over the network is considered in the
experiment. As shown in Fig. 6.7, image frames captured by the camera are transmitted
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Figure 6.8: Random image processing delay with mean value 20.33 ms.
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Figure 6.9: Random image transmission delay with mean value 13.83 ms.

to differently standalone PCs for pose estimation. The results of pose estimation, i.e. dif-
ference between current and desired camera pose, are fed back through a communication
network to the host PC. The communication is done by Ethernet with an enhancement
UDP protocol specialized in audio and video streaming, namely, real-time transport proto-
col (RTP). The First-in-First-out (FIFO) mechanism is considered during the transmission.
The packet dropouts are considered as additional delays. The round-trip transmission de-
lay in the experiment ranges from τtx = [3 39] ms and has mean value τ̄cp = 13.83 ms with
standard deviation 6.95 ms.

Sampling intervals

Each standlone PC (X86-64 AMD Phenom II ×4 810 processor 8G RAM) can execute
the process estimation at maximal camera framerate 40 Hz. Within the experiment, two
standalone PCs are assumed to be available over the network. The policy for distributed
computation follows a sequential assignment. As a result, the camera frame rate can be
improved to 80 Hz.
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It should be pointed out that each image frame has the resolution 640× 480 pixels and
the data size 2.4 Mb. For the camera running at framerate 80 Hz, the network data flow is
192Ṁb/s. In order to reduce the data flow, the co-design approach studied in Section 5.3.1
is considered. Two sampling intervals, i.e. sh1 = 12.5 ms (80 Hz) and sh2 = 25 ms (40 Hz),
are considered in the system analysis. An optimal distribution of the data transmission
intervals, i.e. sh1 and sh2 , will be determined so as good control performance can be achieved
at economic network consumption.

For later system analysis and controller design, the computation delay, transmission
delay and sampling intervals and the total delay are summarized in Table 6.4.

Table 6.4: The total delay of the considered networked visual servo control system.

τcp [ms] τtx [ms] shl [ms] total delay = τcp + τtx + shl [ms]

40 Hz [14 40] [3 39] 25 [42 104]
80 Hz [14 40] [3 39] 12.5 [29.5 91.5]

6.2.3 Controller design and optimal data transmission scheduling

The linear motor with input torque and output position is a second order system. The
system parameters are obtained by standard least square identification of the response to
square pulse input and yields

d

dt

[
x(t)
ẋ(t)

]
=

[
0 1

−0.959 −1169.9

] [
x(t)
ẋ(t)

]
+

[
0
1

]
u(t). (6.3)

Consider the maximal values of computation and transmission delays. According to (5.10)
in Section 5.3.1 of Chapter 5, the delay intervals become

s1 = sh1 + max{τcp + τtx} = 91.5, p1 = ph1 ,

s2 = sh2 + max{τcp + τtx} = 104, p2 = ph2 .

The probability distributions of sampling intervals ph1 and ph2 are designed such that optimal
network utilization is achieved. The control module is equipped with a set of delay-
dependent PD controllers. Combine the switching PD controller into (6.3)

d

dt

[
x(t)
ẋ(t)

]
=

[
0 1

−0.959 −1169.9

] [
x(t)
ẋ(t)

]
+

2∑
i=1

βi(t)K̄i

[
x(t− si)
ẋ(t− si)

]
, (6.4)

where

K̄i =

[
0 0
−KPi −KDi

]
.

Set the parameters γ = 0, C1 = 2, C2 = 1 and

R =

[
1 0
0 1

]
.
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Figure 6.10: The mean control error evolution of NCS with optimal sampling distribution
(solid line) and with high sampling rate 80 Hz (dash line).

The optimization problem in Proposition 5.3 is numerically solved by the optimiza-
tion fmincon as well as Yalmip toolbox in Matlab. With the initial condition
[x(0) ẋ(0)]T = [0 0], θ ∈ [−s2, 0], the cost function (5.15) in Proposition 5.3 is optimize
by [ph1 p

h
2 ] = [50% 50%] for J = 1.67. The associated stabilizing state-feedback gains are

K̄1 =

[
0 0
−900 −15

]
, K̄2 =

[
0 0
−600 −5

]
.

6.2.4 Experimental results

The reference module moves along sinusoidal trajectory with the amplitude of 20 cm and
frequency of 0.17 Hz. The experiment run 10 times from the same initial condition of both
modules. The control error, defined by

e(t) = xr(t)− xc(t),

where xr(t) denotes the position of the reference module and xc(t) denotes the posi-
tion of the controlled module, are compared. The evolution of mean control error is
shown in Fig. 6.10. The optimal data rate design approach has maximal tracking error
ēmax = 2.32 cm and variance of tracking error ēvar = 1.77× 10−4 cm2, similar to the max-
imal tracking error of high data rate design approach (+5.93%), see Table 6.5. However,
the network usage (data flow) is 25% less than high data rate design approach. As a result,
an optimal network utilization is achieved by NCS with optimal sampling rate. The exper-
imental results show that controller design algorithm proposed in Chapter 5 enables a good
control performance at low network resource consumption compared to the conventional
design.

It should be pointed out that the optimal sampling distribution can be envisioned as
a static network scheduling. However, unlike the MATI-based network scheduling, which
can only be applied to network with constant delay, such as token ring or token bus. The
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Table 6.5: Control performance and network usage.

ēmax [cm] ēvar [cm2] Network usage [unit]

optimal data rate 2.32 1.77× 10−4 1.5
high data rate 2.19 1.71× 10−4 2

optimal sampling distribution approach allows random delay and can be applied broadband
networks like Ethernet.

6.3 Summary and discussion

Two different experiments are conducted for the validation of the proposed co-design ap-
proaches developed in the previous chapter. The focus of the first experiment is to conjoint
design the control system and underlying QoS communication network. The QoS network
is and diffserv-based (differentiated services) and emulated by the emulator Netem. The
waiting delays of sensor data are considered as QoS parameter and adjusted by their prob-
ability transition rates. Based on the results obtained in Chapter 3, the performance
requirements of control systems and restrictions of QoS networks are related in terms of
the probability transition rates of waiting delays. A conjoint design of control systems and
communication networks is achieved by parameterizing the probability transition rates
of delays. This co-design approach can be applied to control systems over CSMA/CA
networks.

In the second experiment, a networked visual servo control system is addressed. In order
to relieve the network burden, a static data transmission scheduling is conjointly considered
within controller design. An optimal sampling distribution of control systems is derived
by a cost function, so as the performance is preserved by an acceptable level and the
data flow is reduced. Superior to existing MATI-based network scheduling algorithms, the
optimal sampling distribution supports the networks with random delays, e.g. Ethernet.
In addition, this approach can be further extend to dynamic data scheduling by feeding
the network traffic into the control loop.

According to the experimental results, both approaches demonstrate superior perfor-
mance benefits over conventional worst-case design and are very promising for future NCSs.
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7.1 Conclusion

In most NCS related works, the control systems are either designed robustly against the
network-induced uncertainties or are developed according to the known communication
quality [53]. The restriction on the former approaches concerns the worst-case assumptions
of network-induced delays or dropouts, which often result in conservation controller design.
The later approaches result in good control performance with guaranteed network quality.
However, their applications might be restrictive in cases of limited network resources. In
order to improve the restrictions in previous works, a novel stochastic conjoint design
scheme of control systems and communication networks for a set of LTI NCSs is presented
in this dissertation. The major contributions are three fold: i) stochastic control and
analysis methodologies are taken into account during the design phase. The resulting co-
design approaches consider the probability distributions of network uncertainties rather
than their worst-case assumptions. ii) the proposed co-design approaches integrate the
performance trade-off from control and communication. It enables the development of
more efficient and affordable NCSs with limited network resources. iii) the application of
the proposed co-design approaches requires no exact values of external uncertainties, but
their distributions. This simplifies the implementation in real systems and networks.

Two kinds of LTI systems are investigated in this dissertation. For LTI systems with pe-
riodic data transmission rate, a link between guaranteed control performance and required
network quality is established. The main objective is to balance the performance versus
required network resources. For the LTI systems with random data transmission rate, an
optimal data transmission scheduling is developed. It is aimed to adapt the system data
transmission rate to achieve an efficient network utilization.

For this purpose, the theoretic properties of MJLSs are addressed and notions of stochas-
tic stability are revisited in Chapter 2. Stochastic NCSs with periodic and aperiodic sam-
pling intervals are studied in Chapter 3 and Chapter 4, respectively. In Chapter 3, the
random network-induced delay and packet dropouts are modeled by a Markov process.
Regarding the delays, a novel delay-dependent switching controller is proposed to im-
prove the performance. The resulting closed-loop system is an MJS with mode-dependent
delay. The associated stability as well as stabilization conditions are derived by using
stochastic Lyapunov functionals. Unconventional to deterministic time-delay systems, the
obtained stability as well as stabilization conditions are derived depending not only on de-
lays, but also on their associated statistical properties. An innovative guaranteed control
performance analysis is developed to link the statistical properties of delays and desired
performance of NCSs.

In Chapter 4, the aperiodic sampling intervals and transmission delays are reformulated
into time-varying delays by the input-delay approach. A set of indicator functions having
independent identical distributions (i.i.d.) is introduced to described the occurrence of
the time-varying delays. This closed-loop system becomes a randomly switched time-delay
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system. Associated stability and stabilization conditions are obtained depending on the
probabilistic distributions of sampling intervals and delays. A novel performance guaran-
teed design, which correlates the performance upper bound with probability distributions
of sampling intervals, is developed.

Based on the control methodologies derived in Chapter 3 and Chapter 4, two novel
approaches aiming at performance oriented control system and communication network
co-design are addressed in Chapter 5. The first co-design approach concerns a trade-off
between network cost and control performance. It is well-know that performance of an
NCS strongly depends on the underlying communication qualities, e.g. transmission delay.
Guaranteed short transmission delay results in good control performance. However, this
needs the provision of large network resources. Inspired by the Quality-of-Service (QoS)
concept from the networking community, the resources of a network can be assigned to
different applications for different performance requirements. According to the results
from Chapter 3, the performance requirements of a control system and restrictions of a
communication network are linked through statistical properties of an underling Markov
process. QoS is then referred to the ability of adjusting the probability transition rate
of such Markov process. A cost-performance trade-off can be achieved by appropriately
parameterizing the Markov probability transition rate.

The second co-design approach refers to the design of an NCS with acceptable perfor-
mance at affordable network usage. The focus there is to determine a data transmission
scheduling for NCSs such that the network resources is more efficiently used; meanwhile,
the control performance of connected systems is also preserved. In accordance to the re-
sults derived in Chapter 4, a stochastic cost function incorporates control performance and
network usage in terms of probability distributions of associated data rate is developed.
Consider probability distributions of data rate as design variables, an probabilistic data
scheduling can be determined by minimizing the cost function. The performance of both
considered approaches are explored in case studies. Benefits in terms of guaranteed control
performance with efficient network usage are shown in the simulation results.

The experimental validation of the developed con-design approaches in this dissertation
is presented in Chapter 6. Two different experiments are conducted. In the first exper-
iment, a 3-DoF robotic manipulator is subjected to a QoS network. The first co-design
approach addressed in Chapter 5 is used to cope with a cost-performance trade-off. Com-
pared to the conventional worst-case design approach, the QoS co-design approach has
63.5% less control error. The second experiment concerns a networked visual servo control
system (NVSCS) with variable image transmission rate. The second co-design approach in
Chapter 5 is applied to achieve a network usage-performance trade-off. Within the exper-
iment, an optimal data scheduling is determined by the proposed approach, which reduce
the total data flow up to 25% at similar control performance.

According to numerical or experimental results, the proposed co-design approaches
demonstrate superior performance benefits and are promising for the future NCSs.

7.2 Outlook

Due to the modularity, re-configurability, and versatility, NCSs are increasingly considered
as a replacement of traditional control systems in the automation industry. Furthermore,
the ongoing development of communication technologies, e.g. wireless communication,
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has speeded up this trends. An important issue in the further research of NCSs concerns
closing the gap between theories and the praxis, as well as extend the existing analysis
methodologies to more complex systems with non-ideal communication networks.

Research on future directions connected to the presented co-design scheme includes
the extension of the analysis methods derived in Chapter 3 and Chapter 4 to stochastic
nonlinear feedback systems, e.g. small-gain theorem. The controller design algorithms are
obtained in terms of linear matrix inequality (LMI) for numerical efficiency. However, it
introduces conservatism. A less conservative but more efficient controller design algorithm
is desirable for NCSs. Furthermore, there is a number of research directions emerging from
this dissertation which may further have significant impact in the applications. Some of
them are

• Visual servo control systems: The integration of vision into control is recognized
as a key element to increase the accuracy, autonomy and application domains of
robots in manufacturing. However, using visual-data in the feedback loop causes ran-
dom delays from image acquisition, image processing and data transmission, which
deteriorates the control performance. The transmission of high-speed video stream
over network needs large network bandwidth, which is limited. The knowledge and
intuition gained from this dissertation can be applied to visual servo control sys-
tems. Compared to conventional visual servo control design, a compatible control
performance at less network resource requirement can be achieved.

• Complex systems: Many practical complex dynamical systems suffer lots of abrupt
and unknown uncertainties, e.g. sensor or actuator failures. From operation point
of view, it is desirable to know how much uncertainties a complex system can tol-
erate. The proposed approaches of this dissertation concerns statistical properties
of network-induced uncertainties into the control design. This can be extended to
complex dynamical systems in the face of component failures. By using the proposed
approaches, the stability and performance of dynamical systems can be guaranteed
to certain percentage of uncertainties or component failures.

• Smart power grid: The trend in the current power generation is moving from a
centralized supply architecture to a distributed module, where many small energy
sources (e.g. solar cells, wind turbines) are interconnected to each other to supply
the entire energy consumption. The aggregate system can be viewed as a complex
NCS comprising two parts with different characteristics, i.e. the energy network,
and the communication network which is used to exchange information among the
energy sources and energy consumers. An important issue of smart grid technology
concerns how to use different energy sources more efficiently to lower the energy cost
for consumers. Similar to the QoS concept, different energy sources can be viewed
as different power supply quality. By modeling the energy consuming as a dynam-
ical system, a energy source allocation strategy can be determined by applying the
proposed QoS design approach. Furthermore, by feeding the current energy con-
sumption back to different power plants via the communication network, a dynamic
energy control can be developed to increase the energy independence.
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A.1 Design Tools

As mentioned earlier, the controller design algorithms derived in Chapter 3 and Chapter 4
are represented in terms of LMIs. In order to solve the LMI problems, in the rest of this
section, a numerical tool will be introduced based on Yalmip Toolbox [80] for Matlab. For
the controller design, the ready-to-run Matlab scripts can be found in the accompanying
CD. The system requirements for using these scripts are

• Matlab 2007 (or higher),

• Yalmip Toolbox, http://users.isy.liu.se/johanl/yalmip,

• SeDuMi, http://sedumi.ie.lehigh.edu/,

• PENBMI, http://www.penopt.com.

The instructions of these scripts are given in the following subsections.

A.1.1 NCS with periodic sampling and random delay

The design goal is to compute a controller K(rt) for a linear control system

ẋ(t) = Ax(t) +BK(rt)x(t− τ(rt))

with Markovian delay τ(rt) = [τ(1), . . . , τ(N)] and probability transition rate A = (αi,j),
i, j ∈ S := [1, . . . , N ].

The ready-to-run script for state-feedback controller ps statfeedbacklmi.m can be
found in the accompanying CD. According to Theorem 3.2 in Chapter 3, the known pa-
rameters of ps statfeedbacklmi.m are defined as:

A = [0 1; 1 -50];
B = [0.5 ; 1];

Tr = [-3 3; 1 -1]; %probability transition rate
t = [0.02 0.04]; %Markovian delay
g = 1.2; %decay rate: gamma

n1 1 = 8.1e+04;
n2 1 = 1.327e+05;
n1 2 = 7.29e+05;
n2 2 = 9.676e+05;
ep1 = 3.051;
ep2 = 1.332;

The unknown variables of ps statfeedbacklmi.m are defined as:
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W = sdpvar(4,4); % W>0
x11 1 = sdpvar(2,2); % x11 1>0

Y1 = sdpvar(1,2);
x11 2 = sdpvar(2,2); % x11 2>0

Y2 = sdpvar(1,2);
Z2 = zeros(2);
X1 = [x11 1 Z2; -n1 1*x11 1 n2 1*x11 1];
X2 = [x11 2 Z2; -n1 2*x11 2 n2 2*x11 2];

Running ps statfeedbacklmi.m in Matlab environment, the delay-dependent switching
feedback controller can be determined as:

K1 =
-4.5670 -1.9830

K2 =
-2.0000 -1.3570

If PENBMI is installed, the feedback controller can be also solved by a ready-to-run
BMI script ps statfeedbackbmi.m. The parameter settings of ps statfeedbackbmi.m

are similar to ps statfeedbackbmi.m. The only different is in the unknown variable
settings:

W = sdpvar(4,4); % W>0
x11 1 = sdpvar(2,2); % x11 1>0
x21 1 = sdpvar(2,2); % x21 1>0
x22 1 = sdpvar(2,2);
x11 2 = sdpvar(2,2);
x21 2 = sdpvar(2,2);
x22 2 = sdpvar(2,2);

K1 = sdpvar(1,2); %K1 can be defined as unknown variable or given value
K2 = sdpvar(1,2); %K2 can be defined as unknown variable or given value
X1 = [x11 1 Z2; x21 1 x22 1];
X2 = [x11 2 Z2; x21 2 x22 2];

It should be pointed out that the state-feedback gains are defined as known variables
in ps statfeedbackbmi.m. However, in order to increase the numerical efficiency, the
state-feedback gains K1 and K2 are often defined as known values. Likewise, running
ps statfeedbackbmi.m in Matlab environment, the delay-dependent switching feedback
controller can be determined as:

K1 =
-30.3680 -20.0410

K2 =
-10.6500 -5.0320

Remark A.1 Similar Matlab scripts for designing delay-dependent output-feedback
controllers based on Theorem 3.4 can be found in the accompanying CD, i.e.
ps outputfeedbacklmi.m (LMI) and ps outputfeedbackbmi.m (BMI). The parameter
settings of output-feedback controller are similar to state-feedback controller design and
therefore omitted here.
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A.1.2 NCS with aperiodic sampling

For NCSs with aperiodic sampling, the design purpose is to compute a set of Ki, i =
1, . . . , N , which stabilizes a randomly switched time-delay system

ẋ(t) = Ax(t) +
N∑
i=1

βiBKix(t− si),

with the occurrence probability of si

E{βi} = pi,
N∑
i=1

pi = 1.

A Matlab script for state-feedback controller as statfeedbacklmi.m can be found in
the accompanying CD. According to Theorem 4.2 in Chapter 4, the known parameters of
as statfeedbacklmi.m are defined as:

A = [0 1; 1 -50];
B = [0.5 ; 1];
s1 = 0.045; %45ms delay
s2 = 0.065; %65ms delay
s3 = 0.085; %85 ms delay
p1 = 0.6; %p1 = 60%
p2 = 0.3; %p2 = 30%
p3 = 0.1; %p3 = 10%
g = 0; %decay rate: gamma

r1 = 3.051;
r2 = 1.332;

The unknown variables of as statfeedbacklmi.m are defined as:

U1 = sdpvar(4,4); % U1>0
U2 = sdpvar(4,4); % U2>0
U3 = sdpvar(4,4); % U3>0
Y1 = sdpvar(1,2);
Y2 = sdpvar(1,2);
Y3 = sdpvar(1,2);
X1 = sdpvar(2,2); % X1>0
Z2 = zeros(2);
X = [X1 Z2; -r1*X1 r2*X1];

Then, the state-feedback gains can determined by LMI in the Matlab environment.
In order to derive a less conservative state-feedback controllers, a BMI Matlab script
as statfeedbackbmi.m can be found in the CD. The difference in the variable setting
of as statfeedbackbmi.m to the above mentioned LMI script concerns:
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U1 = sdpvar(4,4); % U1>0
U2 = sdpvar(4,4); % U2>0
U3 = sdpvar(4,4); % U3>0
K1 = sdpvar(1,2); %K1 can be defined as unknown variable or given value
K2 = sdpvar(1,2); %K2 can be defined as unknown variable or given value
K3 = sdpvar(1,2); %K3 can be defined as unknown variable or given value
X1 = sdpvar(2,2); % X1>0
X2 = sdpvar(2,2);
X3 = sdpvar(2,2);
X = [X1 Z2; X2 X3];

Note that the feedback gains K1, K2 an K3 can be either defined as unknown variables or, in
order to reduce the numerical complexity, given values. Executing as statfeedbackbmi.m

in the Matlab environment, the feedback gains are determined as:

K1 =
-11.9560 -23.8775

K2 =
-6.1933 -12.1706

K3 =
-2.8319 -5.5417

Remark A.2 The Matlab scripts for designing delay-dependent output-feedback con-
trollers can be also found in the accompanying CD, i.e. as outputfeedbacklmi.m (LMI)
and as outputfeedbackbmi.m (BMI).

A.2 Lemmas

This section introduces a number of Lemmas, which are extensively used in this dissertation
in various proofs of the proposed theorems.

Lemma A.1 [14] Let X and Y be real constant matrices with appropriate dimensions.
Then

XTY + Y TX ≤ εXTX +
1

ε
Y TY

holds for any ε > 0.

Lemma A.2 Let Y be a symmetric matrix, H and E be any known matrices of appro-
priate dimensions and F satisfy F TF ≤ I. For any scalar ζ > 0, it has

(i) HFE + ETF THT ≤ ζHHT + ζ−1ETE

(ii) Y +HFE + ETF THT < 0 holds if and only if there exists a scalar ζ > 0 such that
Y + ζHHT + ζ−1ETE < 0.

Lemma A.3 Let X, Y be positive definite matrices and a, b be scalars satisfying a > 0
and a > b. Then

λmax(aX + bY ) ≤ λmax(aX + aY ).
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Proof : It is noted that

(aX + bY )T (aX + bY ) ≤ (aX + aY )T (aX + aY ).

Pre- and post-multiply the above inequality by the normalized eigenvector vT and v, which
corresponds to the maximal eigenvalue, i.e. λmax(aX + bY ). It becomes

λ2
max(aX + bY ) = vT (aX + bY )T (aX + bY )v

≤ vT (aX + aY )T (aX + aY )v.
(A.1)

According to the definition of second order induced norm (Euclidean norm) of matrix, it
has

λ2
max(aX + aY ) = ||aX + aY ||2

= max
‖v‖2=1

vT (aX + aY )T (aX + aY )v (A.2)

Combine (A.1) and (A.2), it yields

λmax(aX + bY ) ≤ λmax(aX + aY )

Lemma A.4 Consider a function

V (z(t), rt) =

∫ 0

−τ(rt)

∫ t

t+θ

zT (s)Qz(s)dsdθ.

For rt = i, LV (z(t), rt) has the inequality

LV (z(t), rt) ≤ τ(i)zT (t)Qz(t)−
∫ t

t−τ(i)

zT (s)Qz(s)ds

+ ᾱ

∫ −τ
−τ̄

∫ t

t+θ

zT (s)Qz(s)dsdθ.

(A.3)

Proof: Since

E{V (z(t+ ∆t), rt+∆t|z(t), rt = i)}

= E
{∫ 0

−τ(rt+∆t)

∫ t+∆t

t+∆t+θ

zT (s)Qz(s)dsdθ
∣∣∣z(t), rt = i

}
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and

E
{∫ 0

−τ(rt+∆t)

∫ t+∆t

t+∆t+θ

zT (s)Qz(s)dsdθ
∣∣∣z(t), rt = i

}
=

N∑
j 6=i

E
{
I{rt+∆t=j}

∫ 0

−τ(j)

∫ t+∆t

t+∆t+θ

zT (s)Qz(s)dsdθ
∣∣∣z(t), rt = i

}

+ E
{
I{rt+∆t=i}

∫ 0

−τ(i)

∫ t+∆t

t+∆t+θ

zT (s)Qz(s)dsdθ
∣∣∣z(t), rt = i

}
=

N∑
j 6=i

P{rt+∆t = j|rt = i}
∫ 0

−τ(j)

∫ t+∆t

t+∆t+θ

zT (s)Qz(s)dsd

+ P{rt+∆t = i|rt = i}
∫ 0

−τ(i)

∫ t+∆t

t+∆t+θ

zT (s)Qz(s)dsd

=
N∑
j 6=i

(
αi,j∆t+ o(∆t)

) ∫ 0

−τ(j)

∫ t+∆t

t+∆t+θ

zT (s)Qz(s)dsd

+
(
1 + αi,i∆t+ o(∆t)

) ∫ 0

−τ(i)

∫ t+∆t

t+∆t+θ

zT (s)Qz(s)dsd,

where I{·} is an indicator function. Applying above two equations, it becomes

E{V (z(t+ ∆t), rt+∆t|z(t), rt = i)} − V (z(t), t)

=

∫ 0

−τ(i)

∫ t+∆t

t+∆t+θ

zT (s)Qz(s)dsd−
∫ 0

−τ(i)

∫ t

t+θ

zT (s)Qz(s)dsd

+
(
αi,i∆t+ o(∆t)

) ∫ 0

−τ(i)

∫ t+∆t

t+∆t+θ

zT (s)Qz(s)dsd

+
N∑
j 6=i

(
αi,j∆t+ o(∆t)

) ∫ 0

−τ(j)

∫ t+∆t

t+∆t+θ

zT (s)Qz(s)dsd.

According to Definition 2.4 and due to the fact lim∆t→0 o(∆t)/∆t = 0, it yields

LV (z(t), rt) = lim
∆t→0+

1

∆t

{
E{V (z(t+ ∆t), rt+∆t|z(t), rt = i)} − V (z(t), rt)

}
= τ(i)zT (t)Qz(t)−

∫ t

t−τ(i)

zT (s)Qz(s)ds

+
N∑
j=1

αi,j

∫ 0

−τ(j)

∫ t

t+θ

zT (s)Qz(s)dsdθ.

(A.4)
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Since αi,j > 0, i 6= j and −αi,i =
∑N

i 6=j αi,j for i, j ∈ S, equation (A.4) can be written as

LV (z(t), rt) = τ(i)zT (t)Qz(t)−
∫ t

t−τ(i)

zT (s)Qz(s)ds+ αi,i

∫ 0

−τ(i)

∫ t

t+θ

zT (s)Qz(s)dsdθ

+
N∑
i 6=j

αi,j

∫ 0

−τ(j)

∫ t

t+θ

zT (s)Qz(s)dsdθ

≤ τ(i)zT (t)Qz(t)−
∫ t

t−τ(i)

zT (s)Qz(s)ds+ αi,i

∫ 0

−τ

∫ t

t+θ

zT (s)Qz(s)dsdθ

+
N∑
i 6=j

αi,j

∫ 0

−τ̄

∫ t

t+θ

zT (s)Qz(s)dsdθ

= τ(i)zT (t)Qz(t)−
∫ t

t−τ(i)

zT (s)Qz(s)ds+ αi,i

∫ 0

−τ

∫ t

t+θ

zT (s)Qz(s)dsdθ

+ αi

∫ 0

−τ̄

∫ t

t+θ

zT (s)Qz(s)dsdθ.

Define ᾱ = maxi∈S{αi}, it becomes

LV (z(t), rt) ≤ τ(i)zT (t)Qz(t)−
∫ t

t−τ(i)

zT (s)Qz(s)ds+ ᾱ

∫ −τ
−τ̄

∫ t

t+θ

zT (s)Qz(s)dsdθ.

and completes the proof.
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