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Abstract 
Laser links have become a promising solution for bottle-necks in satellite-to-ground 
communication links (SGL). Investigations, however, show that atmospheric index-of-
refraction turbulence has a significant impact especially on coherent and fiber-coupled 
communication schemes. This thesis investigates adaptive optics techniques for the 
correction of atmospherically distorted wavefronts. Atmospheric measurements in SGLs from 
two LEO satellites form the basis of this work. An analysis of conventional wavefront sensors 
widely used in astronomy disclosed performance limitations. Based on the findings self-
referencing interferometers appear to be a promising solution for the difficult atmospheric 
conditions in these scenarios. Instantaneous phase-shifting interferometers and Fourier 
fringe analysis techniques are introduced as a new solution in this application. A lab 
implementation in the atmospheric testbed supports the obtained results. 
 
 
Zusammenfassung 
Laserverbindungen haben sich zu einer vielversprechenden Lösung für Engpässe in der 
Satelliten-Boden Kommunikation entwickelt. Atmosphärische Untersuchungen zeigen 
jedoch, dass atmosphärische Brechungsindexturbulenz einen signifikanten Einfluss auf 
Laserkommunikation hat. Diese Arbeit untersucht Techniken der adaptiven Optik zur 
Korrektur von atmosphärischen Wellenfrontverzerrungen. Grundlage dieser Arbeit bilden 
atmosphärische Messungen mit zwei LEO Satelliten. Eine Untersuchung von 
konventionellen Wellenfrontsensoren hauptsächlich aus der Astronomie zeigt 
Schwachpunkte dieser Sensoren auf. Basierend auf diesen Ergebnissen stellen selbst-
referenzierende Interferometer eine vielversprechende Lösung dar. Instantane Phase-
Shifting Interferometer und Fourier Fringe Analyse Techniken werden als neue Lösungen in 
dieser Applikation präsentiert. Erste Laboraufbauten im Atmosphärentestbett bestätigen die 
theoretischen Ergebnisse.   
  



 
 

IV 



 
 
 

  V 

 
Table of Content 
 
ABSTRACT............................................................................................................................................ III 
TABLE OF CONTENT ............................................................................................................................ V 
ACKNOWLEDGMENT......................................................................................................................... VIII 
1 INTRODUCTION ............................................................................................................................ 1 

1.1 FREE-SPACE LASER COMMUNICATIONS AND ITS APPLICATIONS.................................................. 1 
1.2 HISTORY OF FREE-SPACE LASER COMMUNICATIONS IN SPACE................................................... 3 
1.3 RESEARCH AT THE DLR INSTITUTE OF COMMUNICATIONS AND NAVIGATION ................................ 5 
1.4 THESIS OUTLINE ...................................................................................................................... 7 
1.5 STATEMENT OF WORK.............................................................................................................. 8 

2 LASER COMMUNICATIONS AND THE IMPACT OF THE ATMOSPHERE.............................. 13 
2.1 DESIGN OF OPTICAL COMMUNICATION SYSTEMS IN SATELLITE-TO-GROUND LINKS ................... 13 

2.1.1 Satellite Optical Communication Terminals..................................................................... 13 
2.1.2 Optical Ground Stations .................................................................................................. 15 

2.2 SATELLITE ORBITS IN LASER SATELLITE-TO-GROUND COMMUNICATION LINKS .......................... 18 
2.3 DIRECT-DETECTION AND COHERENT OPTICAL COMMUNICATION SYSTEMS................................ 20 
2.4 COHERENT RECEIVERS AND FIBER COUPLING ......................................................................... 22 
2.5 MOTIVATION FOR ADAPTIVE OPTICS IN COMMUNICATION SCENARIOS ....................................... 26 

3 ATMOSPHERIC MODELS AND MEASUREMENTS .................................................................. 27 
3.1 LASER BEAM TRANSMISSION THROUGH THE ATMOSPHERE....................................................... 27 

3.1.1 Atmospheric Attenuation ................................................................................................. 27 
3.1.2 Clouds and Ground Station Diversity .............................................................................. 28 
3.1.3 Atmospheric Standard Models ........................................................................................ 30 

3.1.3.1 Cn
2 Turbulence Profiles ........................................................................................................ 30 

3.1.3.2 Wind Profiles and Satellite Motion ........................................................................................ 31 
3.1.3.3 Spatial Power Spectra of Refractive-Index Fluctuations....................................................... 34 

3.1.4 Atmospheric Turbulence Effects on the Communication Beam...................................... 36 
3.1.4.1 Extended Rytov Theory for Weak&Strong Fluctuations........................................................ 37 
3.1.4.2 Intensity Scintillation Models................................................................................................. 39 
3.1.4.3 Phase Fluctuation Models .................................................................................................... 42 

3.2 ATMOSPHERIC MEASUREMENTS IN THE SATELLITE-TO-GROUND LINKS..................................... 44 
3.2.1 Differential Image Motion Monitor (DIMM)....................................................................... 48 
3.2.2 Turbulence Profiler .......................................................................................................... 49 
3.2.3 Shack-Hartmann Wavefront Sensor................................................................................ 50 
3.2.4 Focus Camera ................................................................................................................. 51 
3.2.5 Scintillation Measurements.............................................................................................. 52 

3.3 ATMOSPHERIC MEASUREMENT RESULTS................................................................................. 53 
3.3.1 Phase Fluctuations .......................................................................................................... 53 

3.3.1.1 Atmospheric Coherence Length r0........................................................................................ 53 
3.3.1.2 Phase Probability Density Function ...................................................................................... 53 

3.3.2 Intensity/Power Scintillation............................................................................................. 54 
3.3.2.1 Scintillation Index.................................................................................................................. 54 
3.3.2.2 Intensity/Power Probability Density Function........................................................................ 55 
3.3.2.3 Intensity Correlation Length.................................................................................................. 57 

3.3.3 Bit-Error Rate Measurements.......................................................................................... 58 
3.4 DISCUSSION........................................................................................................................... 59 

4 ADAPTIVE OPTICS FOR LASER SATELLITE-TO-GROUND COMMUNICATION .................. 61 
4.1 ADAPTIVE OPTICS SYSTEMS ................................................................................................... 61 

4.1.1 Adaptive Optics Components .......................................................................................... 62 
4.1.2 Modal Representation of the Wavefront Phase by Zernike Polynomials ........................ 63 
4.1.3 Wavefront Residual Error and Strehl Ratio ..................................................................... 68 

4.2 GENERAL REQUIREMENTS FOR ADAPTIVE OPTICS SYSTEMS IN SATELLITE-TO-GROUND LINKS .. 69 
4.2.1 Wavefront Variance and Tip-Tilt over the Telescope Aperture ....................................... 69 
4.2.2 Zonal Analysis – Resolution ............................................................................................ 70 



 
 

VI 

4.2.3 Modal Analysis with Zernike Polynomials........................................................................ 71 
4.2.4 Temporal Analysis – Bandwidth Requirements ............................................................... 72 

4.3 EFFECTS OF STRONG SCINTILLATION AND PHASE SINGULARITIES ............................................. 76 
4.3.1 Branch Points in Laser Physics ....................................................................................... 77 

4.3.1.1 Circular Edge Dislocation......................................................................................................77 
4.3.1.2 Screw Dislocation .................................................................................................................78 
4.3.1.3 Dislocations in a Convergent Beam......................................................................................81 

4.3.2 Branch Points in Atmospheric Beam Propagation........................................................... 83 
4.4 WAVEFRONT SENSORS........................................................................................................... 86 

4.4.1 Shack-Hartmann Wavefront Sensor ................................................................................ 87 
4.4.1.1 Phase Singularities and the Shack-Hartmann Sensor ..........................................................88 
4.4.1.2 Performance of the Shack-Hartmann....................................................................................92 

4.4.2 Curvature Sensor............................................................................................................. 93 
4.4.2.1 Introduction ...........................................................................................................................93 
4.4.2.2 Derivation of the Irradiance Transport Equation ...................................................................93 
4.4.2.3 Performance of the Curvature Sensor ..................................................................................95 
4.4.2.4 Simulation Results ................................................................................................................96 

4.4.3 Interferometric Methods ................................................................................................... 99 
4.4.3.1 Common-Path and Point-Diffraction Interferometers ..........................................................100 
4.4.3.2 Shearing Interferometer ......................................................................................................102 

4.4.4 Phase Retrieval Methods............................................................................................... 105 
4.4.4.1 Basic Phase Retrieval Algorithms.......................................................................................105 
4.4.4.2 Uniqueness.........................................................................................................................109 

4.5 OTHER ADAPTIVE OPTICS CONCEPTS.................................................................................... 110 
4.5.1 Wavefront Sensorless Adaptive Optics Systems........................................................... 110 
4.5.2 Phased-Array Concepts in Pupil and Focus Plane........................................................ 112 

4.6 DISCUSSION ......................................................................................................................... 113 
5 INTERFEROMETRIC WAVEFRONT SENSORS IN STRONG TURBULENCE ....................... 115 

5.1 SELF-REFERENCING INTERFEROMETER ................................................................................. 116 
5.1.1 Common-Path Interferometer ........................................................................................ 116 

5.1.1.1 Detailed Derivation of Common-Path Interferometers and their Variations.........................116 
5.1.1.2 Generation of the Synthetic Reference Wave.....................................................................119 
5.1.1.3 Visibility of the Interference Fringes ....................................................................................122 
5.1.1.4 Graphical Method for the Evaluation of CPIs ......................................................................123 

5.1.2 Point Diffraction Interferometer (Non-Common Path) ................................................... 124 
5.2 PHASE-SHIFTING INTERFEROMETRY ...................................................................................... 125 

5.2.1 Algorithms of Phase-Shifting Interferometry .................................................................. 126 
5.2.2 Evaluation of PSI Algorithms ......................................................................................... 134 

5.2.2.1 Fourier Method ...................................................................................................................134 
5.2.2.2 Characteristic Polynomial ...................................................................................................138 

5.2.3 Error Sources................................................................................................................. 142 
5.2.3.1 Phase-Shifting Errors..........................................................................................................143 
5.2.3.2 Detector Nonlinearity ..........................................................................................................143 
5.2.3.3 Detector Noise ....................................................................................................................144 
5.2.3.4 Vibration Errors...................................................................................................................147 

5.2.4 Phase Singularities and Phase-Shifting Interferometer................................................. 150 
5.3 INTERFEROMETER DESIGNS FOR THE SGL SCENARIO ............................................................ 150 

5.3.1 Single Mach-Zehnder Interferometer with a Fourier Fringe Analysis ............................ 151 
5.3.2 Instantaneous Phase-Shifting Interferometers .............................................................. 156 

5.3.2.1 Four-Camera IPSI...............................................................................................................156 
5.3.2.2 One-Cameras IPSI..............................................................................................................158 
5.3.2.3 IPSI with a Pixelated Polarization Mask..............................................................................160 

5.3.3 Common-Path Interferometer with a Gradient Optimization Scheme ........................... 161 
5.4 CONTROL OF THE CORRECTOR WITH A WRAPPED PHASE ....................................................... 164 
5.5 DISCUSSION ......................................................................................................................... 165 

6 EXPERIMENTAL VERIFICATION OF INTERFEROMETRIC WAVEFRONT SENSORS ........ 167 
6.1 ADAPTIVE OPTICS TEST ENVIRONMENT ................................................................................. 167 
6.2 INTERFEROMETER IMAGE PROCESSING SYSTEM .................................................................... 170 
6.3 SELF-REFERENCING INTERFEROMETER IN A MACH-ZEHNDER CONFIGURATION ....................... 172 

6.3.1 Characterization of the Reference Wave....................................................................... 173 
6.3.2 Laser Linewidth and Fringe Visibility ............................................................................. 174 
6.3.3 Halo around the Interferogram....................................................................................... 175 



 
 
 

  VII 

6.3.4 Effects of Intensity Fades and Obscurations................................................................. 176 
6.4 FOURIER FRINGE ANALYSIS TECHNIQUE FOR THE PHASE RECONSTRUCTION .......................... 176 
6.5 RESULTS OF A FIRST CLOSED-LOOP SYSTEM ........................................................................ 178 

7 CONCLUSION AND FUTURE WORK....................................................................................... 181 
7.1 SUMMARY AND CONCLUSIONS .............................................................................................. 181 
7.2 FUTURE WORK..................................................................................................................... 183 

A APPENDIX ................................................................................................................................. 185 
A.1 FOURIER TRANSFORMATION ................................................................................................. 185 

A.1.1 Continuous Fourier Transformation............................................................................... 185 
A.1.2 Discrete Fourier Transformation.................................................................................... 185 
A.1.3 Properties of the Fourier Transform .............................................................................. 187 

A.2 SIMULATION OF BEAM PROPAGATION .................................................................................... 188 
A.2.1 Free-Space Transmission ............................................................................................. 188 
A.2.2 Thin Lens ....................................................................................................................... 189 
A.2.3 Optical Fourier Transform.............................................................................................. 189 
A.2.4 Discrete Optical Fourier Transform ............................................................................... 191 

A.3 RELATIONS OF TRIGONOMETRIC FUNCTIONS ......................................................................... 192 
A.4 PROPERTIES OF COMPLEX CONJUGATE................................................................................. 192 
A.5 PROPERTIES OF VECTOR OPERATORS (GRADIENT, DIVERGENCE, CURL)................................ 193 
A.6 POLARIZATION AND JONES MATRIX ....................................................................................... 193 

B ABBREVIATIONS...................................................................................................................... 197 
C SYMBOLS AND NOTATIONS................................................................................................... 199 
D REFERENCES ........................................................................................................................... 205 
E INDEX......................................................................................................................................... 213 
 



 
 

VIII 

Acknowledgment 
First of all I want to thank my colleagues in the Optical Communication Group at DLR for 
supporting me to put together this work with fruitful discussions and allowing me to 
concentrate on writing even during strenuous measurement campaigns, in which they could 
have well used my support. At this point I would also thank my boss and colleague Dr. Dirk 
Giggenbach for his support providing me the time for this work and his helpful suggestions.  

Several people in the group have contributed to this work. Florian Moll designed and built 
the optical turbulence generator and the general setup of the testbed during his master 
thesis. Dr. Nicolas Perlot contributed software tools for the evaluation of DIMM and 
turbulence profiler. Joachim Horwath contributed with numerical simulations of the 
atmospheric conditions in the SGL scenarios with the DLR tool PILab, and he always was 
open for helpful discussion. Christian Fuchs contributed to the OGS with a new mount design 
and was responsible for the power measurements with the PIN diodes. Dr. Ramon Mata-
Calvo contributed with the setup of the first interferometers and with many valuable programs 
for the real-time evaluation of Shack-Hartmann images and the Fourier Fringe Analysis 
technique. Several students, Andreas Gstöttner, Sebastian Kurz, Christina Morfopoulou, Karl 
Zettl, and Carlos Burnett, have taken part in the programming of the measurement 
instruments and the telescope mount software to perform the orbit satellite tracking.  

Part of the work for this thesis was funded via the European Space Agency (ESA) by the 
German Space Agency in Bonn. The first generation of the optical ground station with the 
measurement instruments was built under an ESA contract.  Especially I want to mention the 
colleagues in Bonn, Rolf Meyer and Michael Lutzer, and at ESTEC Dr. Zoran Sodnik with his 
helpful contributions.  

A large number of experiments were conducted from the satellite TerraSAR-X with the 
Laser Communication Terminal (LCT) built by Tesat Spacecom AG. During these campaigns 
several colleagues at or close to Tesat supported the measurements, and I learned many 
things about optical communications and acquisition techniques. Here I want to mention and 
thank Dr. Bernhard Wandernoth, Dr. Uwe Sterr, Hartmut Kämpfner, Karin Saucke, and Mark 
Gregory. 

In the context of the project TerraSAR-X I also want to mention Dr. Florian David, from 
whom I took over the project DLR TerraSAR-X. His organized ways allowed me a quick start 
in the management of this project. 

Very successful and pleasant was the cooperation with the Japanese colleagues at the 
National Institute for Communications Technology NICT and the Japanese Space Agency 
JAXA, both in Tokyo. They allowed us to use their satellite OICETS for two measurement 
campaigns in 2006 and 2009, on which most of the measurement results in this work are 
based. I am especially grateful to Dr. Yoshihisa Takayama and Dr. Morio Toyoshima, who 
were very supportive and enabled the campaigns in a very trusting manner. 

Prof. Chris Dainty at the National University of Ireland supported me with several very 
inspiring discussions significantly improving this thesis. I feel very grateful to him for his 
encouraging ways and the willingness to support this work despite the geographic distance.  

I also want to thank Prof. Alexander Koch, who supported me to obtain my Ph.D. from the 
Technical University Munich, although the work was not performed at his department. He 
always backed me in a very straightforward way. 

And finally I want to express my special gratefulness to my parents Karin and Herbert for 
their unconditional support, love, and also patience. They were the most important ingredient 
to this work. 
 
The research for the presented thesis was performed during my work at the German 
Aerospace Center (DLR) at the Institute of Communications and Navigation.  



 
 
 

  IX 

 
 

 
Team of the DLR Optical Communication Group during a measurement campaign on Tenerife, 
2005. Satellite-to-ground links from ARTEMIS with atmospheric measurements. (from left: Dr. 
Dirk Giggenbach, Brandon Wilkerson, Markus Knapek, Hennes Henniger, Bernhard Epple, 
Joachim Horwath, Dr. Nicolas Perlot) 
 

 
Visit of the Japanese colleagues of NICT/JAXA 2006 to Oberpfaffenhofen during the 
preparations of the measurement campaign with OICETS. (from left: Dr. Dirk Giggenbach, Dr. 
Takashi Jono, Joachim Horwath, Dr. Yoshihisa Takayama, Dr. Nicolas Perlot, Dr. Yoshisada 
Koyama, Markus Knapek) 
 





 
 

1 

1 Introduction 

1.1 Free-Space Laser Communications and its Applications 
The most prominent motivation for using optical communications for satellite links in spite of 
the risks of a relatively new technology is an increase of the transmittable data rate by 
several orders of magnitude. Already the state-of-the-art Laser Communication Terminal 
(LCT) developed by Tesat-Spacecom under a DLR space agency contract, currently in 
operation on the German remote-sensing satellite TerraSAR-X, offers a data rate of 5.6Gbps 
for inter-satellite links (ISL) over a distance of up to 6000km [LAN05]. Optical space qualified 
terminals of the next generation can be expected to achieve even higher data rates. 
Spectrum in the optical domain is practically unlimited, and on top optical links do not 
interfere with each other due to beam divergence angles of less then a 1/1000 degree. 
Spectrum allocation is not coordinated by the ITU, which is a significant advantage for optical 
links.  

Inter-satellite links have been demonstrated in several semi-operational links since 2001; 
however, satellite-to-ground links (SGL) pose an additional challenge due to the impact of 
atmospheric turbulence on the communication link. The impact can be classified into three 
types: 

• Intensity effects, so called scintillation, describe the fluctuations in the signal 
intensity due to focussing effects of atmospheric turbulence cells. The 
communication receivers have to be able to cope with the large dynamics of 
the received power. Larger receiver apertures, apart from the higher received 
power, allow spatial averaging of the received intensity and therefore offer a 
reduced variability of the signal power.  

• Wavefront distortions (phase distortions) at the receiver are caused by optical 
path length differences due to fluctuations of the index-of-refraction in the 
atmosphere. A distorted wavefront especially impairs the performance of 
single-mode fiber-coupled receivers and coherent receivers, which superpose 
the received (distorted) wavefront with a local (undistorted) laser. 

• Attenuation effects, as they are caused by clouds or atmospheric absorption 
and scattering, have a significant impact on the viability and design of optical 
communication links; however, this work is concerned with index-of-refraction 
turbulence and this category is not treated here.  

Adaptive optics (AO) systems are proposed to correct the detrimental effects, especially 
phase distortions, of the atmosphere. This method is based on systems mainly applied in 
astronomy but is modified for the specific conditions of SGLs. Figure 1.1 shows the basic 
principle of an AO system for an optical communication link through the atmosphere. The 
transmitter sends out an undistorted wavefront, which is distorted by the atmosphere. On the 
receiver side a closed-loop control system with a wavefront sensor and correcting elements 
(deformable/tip-tilt mirror) attempts to correct the wavefront distortions, so that an optimal 
performance of the communication receiver is achieved. For a fiber-coupled receiver the 
performance is determined by the fiber-coupling efficiency and the strength of the 
fluctuations of the received power. For a coherent communication receiver the performance 
is given by the heterodyning efficiency. 
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Figure 1.1: Principle of an adaptive optics system for a communication link through the 
atmosphere. 

This work is primarily concerned with SGLs from low-earth orbit (LEO) and geostationary 
(GEO) satellites. LEO satellite SGLs are especially challenging due to the fast movement of 
the satellite across the sky. Typical SGLs last only around 10 minutes. Due to the satellite 
motion higher demands on the speed (wavefront corrector, sensor, and reconstruction) are 
placed upon an AO system; however, smaller aperture diameters are possible, as the link 
distances are quite short (<3000km). GEO SGLs are rather static and comparable to 
conditions in astronomy. Nevertheless, atmospheric conditions for SGL ground stations are 
expected to be worse than in astronomical applications, whose sites are usually operated at 
high altitudes with extremely good atmospheric conditions. SGL ground stations will be also 
operated at low altitudes with very difficult turbulence conditions. 

 

 
Figure 1.2: Possible link scenarios for optical communication links involving satellites and 
high altitude platforms (HAP). 
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Other link scenarios like connections between satellites and high-altitude platforms (HAP) 
or airplanes have been discussed in the literature; however, these links operate in higher 
atmospheric layers with low air pressure. Consequently, atmospheric effects are quite weak. 
A similar situation is true for future inter-HAP links, which are expected to operate at a 
minimum altitude of 13km to avoid cloud blockage. Downlinks from a HAP to a ground 
station can be treated similarly to a GEO-ground link. They would be almost static, but the 
elevation angles could be very low. Figure 1.2 shows a summary of possible link scenarios.  

1.2 History of Free-Space Laser Communications in Space 
The investigation of space laser communication systems started in the United States already 
in the 1960s with first experiments to solve the demanding challenges of pointing, 
acquisition, and tracking problems, and to find suitable laser sources and communication 
detectors [KOE02]. Initially only gas lasers were available, but soon solid-state and 
semiconductor lasers were developed and replaced the gas lasers as a candidate for space 
applications.  

In 1977 ESA started the development of space optical communication technologies with 
the investigation of high data-rate laser modulators for space applications [LUT97]. In the 
mid-1980s the organisation launched the ambitious SILEX (Semiconductor laser Inter-
satellite Link Experiment) program to demonstrate a pre-operational optical link in space. In 
2001 ESA could perform the world-first inter-satellite optical link between the European GEO 
satellite ARTEMIS and the French LEO satellite SPOT-4. Hundreds of successful links have 
been performed since then, relaying Earth observation data from SPOT-4 to ARTEMIS and 
via microwave to the ground [SOD06]. The SILEX communication system is an intensity 
modulation, direct detection (IM/DD) system with an asymmetric data rate of 50Mbps to 
ARTEMIS and 2Mbps in the other direction.   

As part of the SILEX program ESA constructed an optical ground station (OGS) on the 
Canary Island Tenerife, which was completed in the late 1990’s (Figure 1.3). The ESA OGS 
with its 1m telescope allowed to perform SGLs from ARTEMIS and to verify the performance 
of the optical communication terminal (OCT) on ARTEMIS.  

 

 
Figure 1.3: The ESA optical ground station on Tenerife at an altitude of 2400m above the sea 
level. 

In 2005 the Japanese Aerospace Exploration Agency (JAXA) launched the Optical Inter-Orbit 
Communications Engineering Test Satellite (OICETS), which is equipped with an OCT 
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compatible with the terminal on ARTEMIS. A first inter-satellite link between OICETS and 
ARTEMIS was established in December 2005. JAXA also performed SGL experiments from 
OICETS to their 1.5m OGS in Tokyo.  

The French department of defence planned an optical link from an airplane to ARTEMIS. 
The first link experiments of the project Liaison Optique Laser Aéroportée (LOLA) were 
performed in October 2006 with a first communication link in December 2006.  

In the 1990s very ambitious satellite communication networks with several hundred LEO 
satellites were envisaged in the Teledesic program. Each satellite in the network was 
planned to be equipped with six inter-satellite OCTs. The OCTs were to be developed by 
companies in Europe and the US; however, the work on this program was suspended in 
2002. On the European side the development of the OCTs was led by the German Bosch-
Telecom (today Tesat-Spacecom) and the Swiss Contraves (today Oerlikon Space).  

The Deutsche Agentur für Raumfahrtangelegenheiten (DARA, today the space agency as 
a part of the German Aerospace Center DLR) supported the development of coherent OCTs 
in the German program SOLACOS (Solid-State Laser Communications in Space) in the 
1990s. In 1996 ESA placed a contract to Contraves Space (today RUAG Aerospace) to 
develop a lightweight optical terminal for short-range inter-satellite links in the project SROIL.  
 

 
Figure 1.4: History of laser satellite communications of European research organizations and 
industry. Some facts of American and Japanese activities were added.  
 
Although the efforts of SOLACOS and SROIL did not lead to the manufacturing of flight 
terminals, the experience and knowledge of the developments at that time went into a further 
development of OCTs at Tesat-Spacecom, which finally led to the development of the Laser 
Communication Terminal (LCT), a space qualified 5.6Gbps ISL terminal with coherent binary 
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phase-shift keying (BPSK) modulation scheme [LAN05]. The development was financed by 
the Bundesministerium für Wirtschaft und Technologie (BMWi) via the DLR space agency in 
the program DLR-LCT. The first two terminals of this type were launched on the American 
military LEO satellite NFIRE in April 2007 and the German TerraSAR-X in June 2007. In May 
2008 first ISLs were successfully demonstrated at a distance of up to 5000km. Figure 1.5 
shows an image of the LCT installed on TerraSAR-X. 
 

 

1.3 Research at the DLR Institute of Communications and 
Navigation 

The German Aerospace Center (DLR) with the Optical Communication Group (OCG) at the 
Institute of Communications and Navigation started to study optical free-space 
communications for space applications in the late 1980’s. Early theoretic work at the OCG 
went into the developments of the SOLACOS and later of the DLR-LCT program. The OCG 
initially contributed advanced techniques for phase-locked loops, modulation schemes, and 
error correction techniques. Later the group studied the effects of the atmosphere on optical 
communication links.  

In 2004 ESA awarded a contract to the OCG to investigate the challenges of optical 
communication from a satellite to a ground station with a significant part of the link in the 
atmosphere. The project was intended to accompany the efforts of Tesat Spacecom in the 
development of the LCT for the LEO satellite TerraSAR-X.  

The results of a detailed study were summarized in the Coherent Transmission Feasibility 
Analysis (CTFA) [DAV04], which studied the feasibility of SGLs with the LCT through the 
atmosphere and gave recommendations for its improvement.  
In parallel the OCG started the development of an optical ground station (DLR OGS). The 
OGS includes a multitude of measurement instruments to study the atmospheric conditions 
in parallel to the communication link. The quality of the communication link is measured e.g. 
by the bit-error rate (BER) in the SGLs. Figure 1.6 shows the scheme of the optical 
measurement instruments (Atmospheric Transmission Monitor), which is further explained in 
Chapter 3. The OGS helped to expand and verify the practical knowledge of typical 
atmospheric conditions and their impact on the communication performance, i.e. heading 
towards a channel model for optical SGLs. Especially critical are communication links at very 
low elevation angles (<10 degrees), as turbulence conditions become severe. The scales of 
intensity and phase speckles decrease to the range of centimetres, which significantly 
impacts on the performance of communication links.  

 

Figure 1.5: The Laser Communication Terminal on TerraSAR-X with the periscope-type coarse 
pointing device (Artist’s Impression). 
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Figure 1.6: Atmospheric measurement (Atmospheric Transmission Monitor) instruments of the 
DLR OGS.  Turbulence Profiler and a power sensor (PIN diode) measure the intensity 
distribution in the receiver aperture. Differential Image Motion Monitor (DIMM), Shack-
Hartmann sensor, and focus camera allow an evaluation of the phase distortions. Details are 
given in Chapter 3.  

 

 
Figure 1.7: DLR Optical Ground Station at Oberpfaffenhofen near Munich. 

In order to verify the results of the CTFA in experiments already before the LCT was 
launched on TerraSAR-X, a link between the Canary islands of La Palma and Tenerife over 
142km was performed in 2005 [LAN06]. Both transmitter and receiver were located on 
mountains at about 2000m altitude on La Palma and Tenerife, respectively. First atmospheric 
measurements were gained under atmospheric conditions, which can be considered to be 
worst case. The experiment showed that coherent communication at the LCT’s data rate of 
5.6Gbps works through an extended volume of atmosphere, although challenges became 
apparent due to the high dynamics of the received signal power and the phase distortions of 
the received field. 

In 2006 a first European SGL from the Japanese LEO satellite OICETS was performed to 
the DLR OGS in a close cooperation with the Japanese Aerospace Exploration Agency 
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(JAXA) and the National Institute of Information and Communications Technology (NICT) 
both in Tokyo. Figure 1.7 shows the DLR OGS during the experiments with OICETS. Figure 
1.8 gives an impression of OICETS with the laser communication terminal during an SGL to 
Oberpfaffenhofen. Valuable data on the atmosphere was gained during these SGLs, 
including scintillation and phase distortion effects. Standard atmospheric parameters as 
scintillation index, temporal spectrum of the scintillation, and the atmospheric coherence 
length or Fried parameter r0 were measured over various elevation angles as low as 
3 degrees. In parallel to the atmospheric measurements a pseudo-random binary sequence 
was successfully received from the satellite at 50Mbps. Bit-error rates were measured, and 
conclusions could be drawn for the improvement of data receivers under atmospheric 
conditions especially to minimize the effects of intensity scintillation. 

In June 2007 TerraSAR-X was launched with an LCT on board. First tests of SGLs were 
performed to the DLR OGS in Oberpfaffenhofen in September. A first link acquisition could 
be demonstrated, however, a stable link could not be established. The OCG suggested that 
the combination of atmospheric beam-wander in the uplink and a very narrow beam 
divergence were responsible for the failure of a stable link. In October 2007 the experiments 
were repeated to the astronomical site Calar Alto in southern Spain at an altitude of 2133m, 
which offers the advantage of less atmospheric turbulence. Experiments were continued until 
mid-November. A stable communication link could not be established, but successful 
acquisition and incoherent tracking could be demonstrated. 

During the experiments with OICETS and TerraSAR-X, the OCG has gained valuable 
knowledge of the atmospheric effects and collected experience of how to design optical 
communication terminals for atmospheric links. The theoretic/ simulatory predictions and the 
atmospheric measurements form the foundation for the study of adaptive optics in optical 
SGLs presented in this work. 
 

.  
Figure 1.8: Optical SGL from the Japanese LEO satellite OICETS to the DLR OGS at 
Oberpfaffenhofen. (Artist’s impression) 

1.4 Thesis Outline 
Topic of this work is the application of AO systems under the specific conditions found in 
satellite-to-ground optical communications. AO systems are well understood from astronomy 
and find wide application in this field; however, the deployment of AO systems for SGLs has 
to cope with different conditions compared to the application in astronomy. Typical LEO 
satellites are seen 90 percent of the line-of-sight time below an angle of 30 degrees 
elevation. This implies very long link paths through highly turbulent layers of the atmosphere, 
causing strong phase distortions and intensity fluctuations; in addition, the beam moves with 
high angular velocity through the atmosphere due to the satellite motion, which puts 
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challenging temporal requirements on the AO system to correct the fast phase changes. An 
issue for low elevation links, which operate in the so called strong fluctuation regime, are 
phase singularities. Singularities prevent the description of the phase front with a continuous 
phase function. This has an impact on wavefront sensing as well as on the phase correction. 
Measurement quality of typical astronomical wavefront sensors like the Shack-Hartmann 
sensor or the curvature sensor significantly deteriorates using standard reconstruction 
algorithms. Even for a perfect measurement of the wavefront, corrector elements, which 
frequently use a continuous membrane/faceplate, are not able to cope with singularities. 
Alternative approaches are studied in this work to minimize correction errors and optimize 
the communication performance.  

Chapter 2 gives an overview of optical free-space communication systems including 
intensity modulated/ direct detection and coherent communication systems. State-of-the-art 
ground stations and flight-terminal systems are discussed. 

Chapter 3 shows typical atmospheric conditions and their impact on optical SGLs. In a 
first section theoretic models of the atmospheric effects are presented including statistical 
distributions of the received phase and intensity. Standard atmospheric turbulence profiles 
and a brief overview of the theoretic treatment of the atmospheric impact on communication 
links are given.  

Between 2006 and 2009 the OCG performed atmospheric measurements in SGLs mainly 
from the Japanese LEO satellite OICETS (and a few from TerraSAR-X) with the Atmospheric 
Transmission Monitor (ATM), which is part of the DLR OGS. Section 3.2 gives a short 
introduction to the measurement instruments of the ATM and the DLR OGS. Section 3.3 
shows a summary of the measurement results, which represent the basis for the further 
analysis in Chapter 4 and 5.  

Chapter 4 introduces basic AO concepts and gives a survey of relevant wavefront 
sensors, which have been discussed in the astronomical literature since the 1960s. Special 
emphasis will be given to the performance of the sensors under strong turbulence conditions 
also considering phase singularities. The wavefront sensors including the phase 
reconstruction will be evaluated for their processing speed. This chapter provides the 
foundations for the development of alternative AO concepts, which are optimized for the 
specific conditions in SGLs. 

In Chapter 5 alternative concepts for AO systems are presented with a main emphasis on 
self-referencing interferometric wavefront sensors. Here common-path interferometers and 
point-diffraction interferometers with phase-shifting techniques are discussed. This chapter is 
a starting point for the implementation of an AO system for LEO SGLs. 
In Chapter 6 first demonstrations of interferometric wavefront sensors in a lab environment 
are presented in the DLR atmospheric testbed.  

The structure of the thesis is summarized in Figure 1.9 showing the relation between the 
four main chapters.  

1.5 Statement of Work 
This thesis was motivated by the SGL experiment campaigns with the satellites OICETS and 
TerraSAR-X. The DLR optical ground station with its atmospheric measurement instruments 
was developed by the optical communication group (OCG) at DLR under an ESA contract 
specifically for the SGLs from TerraSAR-X. The idea of the atmospheric measurement 
instruments appeared in the OCG around 2003. Dr. Dirk Giggenbach, Dr. Florian David, Dr. 
Nicolas Perlot, Joachim Horwath, Hennes Henniger, and I were the leading characters in this 
process.  

Many contributions of the OCG have made this thesis possible. Florian Moll designed and 
built the optical turbulence generator and the general setup of the testbed during his master 
thesis. Dr. Ramon Mata-Calvo contributed with many valuable programs for the real-time 
evaluation of Shack-Hartmann images and the Fourier Fringe Analysis technique. Dr. Perlot 
contributed software tools for the evaluation of DIMM and turbulence profiler. Joachim 
Horwath contributed numerical simulations of the atmospheric conditions in the SGL 
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scenarios with the DLR tool PiLab. Several students have taken part in the programming of 
the measurement instruments and the telescope mount software to perform the orbit satellite 
tracking.  
The main aspects of my own work in this PhD thesis are: 

• Responsibility for the planning and construction of the DLR optical ground station. 
Development of large parts of the software. 

• Development of the optical/mechanical design and setup of the atmospheric 
measurement instruments of the DLR ground station, which was used for the 
measurements of the atmospheric channel in SGL scenarios (Chapter 3). 

• Development of a Shack-Hartmann sensor evaluation software (Matlab), which 
was used to obtain estimates of the atmospheric turbulence in the SGL scenarios.  

• Literature survey of potential wavefront sensors suitable for the deployment in 
SGL scenarios. Evaluation of the wavefront sensors’ performance (theory and 
simulations) under the relevant atmospheric conditions, including strong 
scintillation, phase distortions, phase singularities, and bandwidth requirements 
(Chapter 4).  To my knowledge this has not been done in such a comprehensive 
manner before, although of course individual sensors had been characterized 
under strong turbulence conditions.  

• Detailed theoretic and simulatory evaluation of interferometric sensors including 
several concrete system setups, which promise good performance in terms of 
robustness to strong scintillation and speed (Chapter 5). These methods are 
mainly known from optical shop testing. In this work special attention is given to 
strong phase distortions with intensity fluctuations caused by atmospheric 
turbulence and the increased bandwidth requirements caused by the satellite 
motion. 

• Test and evaluation of the performance of a promising interferometric 
measurement method with one interferometer (Fourier Fringe Analysis, Section 
5.3.1) in the DLR lab testbed (Chapter 6). Dr. Ramon Mata-Calvo and I jointly 
designed and setup the interferometric test system. 

 
Due literature reference is given in all places, where I have used the work and results of 
other authors. 
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2 Laser Communications and the Impact of the 
Atmosphere 

Chapter 2 describes general aspects of satellite-to-ground communication links (SGL) 
including link durations and elevation angles, but also some general thoughts on coherent 
and direct-detection communication techniques.  

2.1 Design of Optical Communication Systems in Satellite-To-
Ground Links 

This section gives an overview of currently existing optical communication terminals (OCT) 
and optical ground stations (OGS) to illustrate typical technical designs of these systems in 
SGLs.  

2.1.1 Satellite Optical Communication Terminals 
Figure 2.1 shows the Laser Communication Terminal (LCT) on TerraSAR-X. This terminal 
was built for inter-satellite links (ISL) between LEO satellites, i.e. for distances of 500-
5000km. This system is the most advanced of the terminals up to date, providing 5.6Gbps 
communication rate. The modulation format is a coherent binary phase shift keying 
technique, which offers high sensitivity and a very good background-light rejection; however, 
the system was not designed for atmospheric SGLs. In principle coherent systems are 
sensitive to phase distortions but also suffer from scintillation like the direct-detection 
systems. So far the ground receivers were implemented small enough with a receiver 
diameter of 6.5cm to avoid wavefront distortions over the aperture, but scintillation had a very 
deteriorating effect on the communication. Larger telescope areas reducing the scintillation 
due to aperture averaging are only feasible with an active wavefront correction. A second 
terminal of the LCT series was installed on the American LEO satellite NFIRE. 
 

 

Figure 2.1: The Laser Communication Terminal LCT on the German LEO satellite TerraSAR-X. 
Left: Artist’s impression of the LCT on TerraSAR-X; Right: The engineering model of the LCT in 
the system testbed at Tesat Spacecom. 

Figure 2.2 depicts the 25cm aperture terminal PASTEL installed on the European 
geostationary communication satellite ARTEMIS. This system was already designed in the 
1990s to demonstrate ISLs with the French LEO satellite SPOT-4. The 50Mbps laser link 
was intended to transmit remote-sensing date from SPOT-4 to ARTEMIS. The link to the 
ground was implemented by a conventional microwave link, although laser links from 
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ARTEMIS to the ground were successfully demonstrated (albeit only 2Mbps) to the 1m 
telescope of the ESA OGS on Tenerife.  
 

 
Figure 2.2: The terminal PASTEL on the geostationary satellite ARTEMIS. 

 
Figure 2.3 shows the 26cm aperture OCT LUCE on the Japanese LEO satellite OICETS. 
This system was designed to be compatible with the European ARTEMIS. Apart from the 
successful ISLs, LUCE was extensively used to demonstrate SGLs to ground stations in 
Japan, Europe, and the USA. 

Table 2.1 summarizes the most important parameters of the presented satellite terminals 
to give a general idea of the design data of such systems.  
 

 
 

Figure 2.3: The OCT LUCE on the Japanese LEO satellite OICETS. Left: LUCE during the 
integration on OICETS; Right: LUCE in the laboratory. 

 
 



Chapter 2: Laser Communications and the Impact of the Atmosphere 
 
 

15 

Table 2.1: Satellite optical communication terminals [GIG09][PLA04][SOD06][PER07]. 

Satellite Spot 4 ARTEMIS OICETS TerraSAR-X 

Communication 
Terminal OPALE PASTEL LUCE LCT 

Launch Date 24th March 
1998 12nd July 2001 23rd Aug. 2005 15th June 2007 

Satellite Type LEO GEO LEO LEO 

Link Types ISL LEO-GEO ISL LEO-GEO, 
SGL 

ISL LEO-GEO, 
SGL 

ISL LEO-LEO, 
(SGL) 

Channel Data 
Rate TX/RX 50/2Mbps 2/50Mbps 50/2Mbps 5.6/5.6Gbps 

Orbit Altitude 850km 35800km 610km 514km 

Distance in SGL n.a. ~38000km 2540 .. 610km  1728 .. 514km 

Min. Elevation 
with Tracking-
Lock 

n.a. n.a. 3° ~10° 

Modulation 
Format IM/DD NRZ IM/DD BPPM  IM/DD NRZ homodyne 

BPSK 

Communication 
TX-Power  60mW 37mW 100mW 0.7W 

Wavelength 
TX/RX 847nm/819nm 819nm/847nm 847nm/819nm 1064nm/1064nm

Downlink Beam 
Divergence 
FWHM 

<10µrad <10µrad 5.5µrad <10µrad 

TX Aperture  125mm 200mm 260mm 135mm 

RX Aperture  250mm 250mm 260mm 135mm 

DLR OGS Uplink 
Beacon n.a. 819nm 808nm 1064nm 

 
 

2.1.2 Optical Ground Stations 
This section presents some optical ground stations (OGS) as they are currently operated. 
The ESA OGS (Figure 2.4) is located on Tenerife at the astronomical site Izana. It has a 1m 
telescope, which was originally used for the demonstration of laser SGLs from ARTEMIS. 
Atmospheric conditions at the altitude of 2393m are very favorable. The station is only partly 
suitable for LEO SGLs, as mount and also the dome were designed for astronomical 
observations and GEO SGLs. The 1.5m NICT OGS (Figure 2.5) is located directly in the city 
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of Tokyo, only slightly above the sea-level, which brings rather poor atmospheric conditions. 
The ground terminal of Tesat Spacecom (Figure 2.6) intended as a counter terminal on the 
ground for the TerraSAR-X SGLs is mounted on a transportable container. It already was 
operated in Germany (Oberpfaffenhofen, Backnang), Spain (Calar Alto, Tenerife) and in the 
USA (Maui). Especially the locations outside Germany were chosen at extremely favorable 
sites above 2000m altitude to improve the SGL performance from TerraSAR-X. The DLR 
OGS is described in Section 3.2 with Figure 3.20. Table 2.2 summarizes parameters of those 
four OGSs to give an impression of typical ground stations as they are currently used. 
 

 

Figure 2.4: ESA OGS on the Canary island Tenerife. Left: Building of the OGS; Right: The 1m 
telescope with the paraxial mount.  

 

 
Figure 2.5: 1.5m telescope of the NICT OGS in Tokyo. 
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Figure 2.6: Laser Communication Terminal (LCT) with a 6.5cm aperture during the SGL 
experiments in Oberpfaffenhofen 2007. 

 
Table 2.2: Ground stations for laser SGLs 

Ground Station DLR OGS  NICT OGS ESA OGS Tesat LCT 
(ground) 

Location Oberpfaffenhofen, 
Germany Tokyo, Japan Tenerife, Spain 

Mobile 
Container 

Height above 
Sea-Level 653m 122m 2393m n.a. 

Link Types LEO LEO GEO, LEO LEO 

Satellites 

OICETS  
TerraSAR-X 
Aircraft Downlinks 
@1550nm 

OICETS  
TerraSAR-X 

OICETS 
ARTEMIS 
TerraSAR-X 

TerraSAR-X 

RX Aperture 0.4m 0.2m or 1.5m 1m 0.065m 

OGS Uplink 
Beacon* 

2x8W@808nm, 
CW, 5mrad 
2x5W@1064nm, 
Pulsed, 5mrad 
2x5W@1550nm, 
CW 

30W@808nm 
CW, 9mrad† 
10mW@815nm, 
BPPM, 
204μrad‡ 
5W@1064nm, 
CW 

0.3W@847nm, 
CW  
14W@1064nm, 
Pulsed, 1mrad 
 

1W@1064nm,  
BPSK, 7μrad 

 
 

                                                 
* Divergence angle, full cone 1/e2 

† NICT OGS beacon laser for the OICETS SGLs 
‡ NICT OGS communication laser with a 2PPM modulation at 2.048Mbps 
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2.2 Satellite Orbits in Laser Satellite-To-Ground Communication 
Links 

In this thesis special emphasis is given LEO SGLs. LEO satellites move in about 10 minutes 
over the sky (horizon to horizon). The consequence of this is, that most of the time, the 
satellite is seen under low elevation angles and that the communication duration is rather 
short. Figure 2.7 shows an example pass of the Japanese satellite OICETS with a maximum 
elevation of around 70 degrees. The orbit is a near-polar orbit with around 98 degrees 
inclination and an orbit height of about 600km. Link duration for this pass is approximately 
12.5 minutes. The range satellite-ground station is between 600km in the zenith to 2800km 
at the horizon. The laser beam moves with a small angular velocity close to the horizon due 
to the large link distance, but travels a long path through very turbulent parts of the 
atmosphere. At the zenith the angular velocity increases, but the beam has a much shorter 
fraction of the distance in the thick atmosphere at low altitudes.  

 
Figure 2.7: Typical LEO satellite pass, here as an example the Japanese satellite OICETS with a 
polar orbit (98deg inclination) and an orbit height of about 600km. 

 
The German LEO satellite TerraSAR-X also has a similar orbit with 97.4 degrees inclination 
and around 508km orbit height. Its orbit is precisely tailored to an 11 day repeat cycle. This 
means, that the satellite repeats its track above the ground every 11 days. Its orbit is sun-
synchronous, so that TerraSAR-X is always visible at the same time during sunrise or 
sunset. TerraSAR-X’s orbit is illustrated in Figure 2.8. Figure 2.9 shows the elevation angles 
of TerraSAR-X for the ground station site Oberpfaffenhofen during the 11 day cycle (=264 
hours). Satellite passes occur always in the morning or evening with 2-3 passes in a row, 
about 1.5 hours apart equaling one orbit. Between these packets of satellite passes, the 
satellite is not visible for 10-12 hours. It can be seen that most of the links have low elevation 
angles below 30 degrees elevation. Only 18 passes have maximum elevation angles of more 
than 30 degrees. This becomes even more obvious in Figure 2.10, which shows the share of 
the link time as a function of the elevation angle. The satellite is 90% of the overall link time 
visible below 30 degrees elevation. This illustrates the need for operational laser links at low 
elevation angles. 
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Figure 2.8: Ground track of the sun-synchronous, polar orbit of TerraSAR-X. The brighter 
regions are lit by the sun, the shaded areas are night time regions (from Heavens-Above.com).  

 

 
Figure 2.9: Elevation angles for the TerraSAR-X passes in the 11 days sun-synchronous orbit 
cycle. Each blue vertical line indicates a satellite pass.  
 

 
Figure 2.10: Share of the link time for TerraSAR-X SGLs. It can be seen, that 90% of the total 
link time is below 30deg elevation. 

 
Figure 2.11 shows the elevation angle for several example passes of TerraSAR-X with 
different maximum elevation angles. The graph shows, that the link duration has only a weak 
dependence on the maximum elevation angle. A pass with 82 degrees maximum elevation 
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has a link duration of 11.5 minutes, whereas the low pass with only 10 degrees takes 9 
minutes. 
 

 
Figure 2.11: Elevation angle of different TerraSAR-X passes with different maximum elevation. 

 

2.3 Direct-Detection and Coherent Optical Communication Systems 
This section gives a short overview on communication systems as they are used in the SGL 
scenarios. Two principle types of communication systems can be distinguished: Non-
coherent direct-detection systems with an intensity modulation (IM/DD) and coherent 
superposition receivers [GIG04][RYU04][MAJ08][DAV04b].  

In the case of an IM/DD system, the transmitter modulates the laser-beam intensity to 
transmit the information to the receiver. In the simplest case this is done in a binary fashion 
with an on-off amplitude modulation. The receiver then recovers the information bits simply 
from the course of the detected power.  This technique has been used for the communication 
terminals on ARTEMIS, SPOT-4, and OICETS.  

In coherent systems the information can be modulated on the amplitude (amplitude-shift 
keying ASK), the frequency (frequency-shift keying FSK), the phase (phase-shift keying 
PSK), or the polarization of the transmission beam. The beam at the receiver is superposed 
with a controlled laser, the local oscillator (LO). If the local oscillator has precisely the same 
frequency as the received signal, the system is called homodyne, or otherwise heterodyne. 
The most sensitive method is binary PSK with a homodyne receiver (homodyne BPSK), i.e. 
the local oscillator is exactly controlled (phase-locked) to the frequency of the transmit laser. 
This technique has been implemented in the Laser Communication Terminals by Tesat 
Spacecom.  

Different receiver types can be compared by the number of photons per bit (Ph/b) required 
for a certain bit-error rate [BAR90]. The theoretic limit for a homodyne BPSK system is 
9Ph/b. A heterodyne BPSK system is a factor 2 less sensitive with 18Ph/b. IM/DD systems 
require theoretically 20Ph/b for “1” bits. Coherent communication systems have the 
advantage that real systems outside the laboratory get close to the theoretic limits. The 
performance of IM/DD systems is significantly worse. Realistic systems often require 
400Ph/b. An extensive list on publications of optical receiver sensitivities was collected by 
Caplan in [MAJ08, pp. 212].  

In addition, coherent communication systems have the advantage that they are very 
insensitive to background light, as the coherent superposition produces a very narrow 
filtering of the signal at the communication frequency. IM/DD systems can be only protected 
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from background light by optical interference filters, which typically have a transmission 
bandwidth of some nano-meter.  

Both techniques are sensitive to intensity fluctuations of the input signal caused by 
atmospheric turbulence, however only the coherent receivers suffer from wavefront 
distortions.  

Figure 2.12 shows the design of a basic IM/DD receiver. The signal is directly taken from 
a photo-diode via a trans-impedance amplifier. An advantage of IM/DD receivers is the 
simplicity. Coherent receivers are more complex due to the LO as shown in Figure 2.13. The 
phase-locked LO and the received signal are combined with a beam-splitter cube or a fused 
fiber coupler to produce the superposed signals. 
 

 

Figure 2.12: Direct detection receiver.  

 

Figure 2.13: Balanced coherent receiver 
system using both outputs of the coupler. 
[GIG04] 

 
Writing the signal and the local oscillator electric field  

 ( )s Si t i t
S SU U e ω ϕ+= ⋅  

 L Li t i
L LU U e ω ϕ−= ⋅  

with the frequencies Sω , Lω  and the phase shifts ( )S tϕ , Lϕ , the output signal is given by 
[RYU94] 

 
( ) ( )

2

2 cos
L S

L S L S S L S L

I U U

I I I I t tω ω ϕ ϕ

= +

= + + − + +⎡ ⎤⎣ ⎦
. (2.1) 

The information of a PSK modulation is contained in ( )S tϕ . The mixing process is governed 

by the square-law of the photo-diode. If the two frequencies are the same ( 0s Lω ω− = ) with 
an accurately phase-locked local oscillator, Eq. (2.1) becomes  

 ( )2 cosL S L S S LI I I I I tϕ ϕ= + + +⎡ ⎤⎣ ⎦ , (2.2) 

now describing a homodyne receiver. Assuming a balanced receiver as in Figure 2.13, using 
both arms of the beam splitter, the DC components disappear and the signal increases by a 
factor 2  

 ( )4 cosL S S LI I I tϕ ϕ= +⎡ ⎤⎣ ⎦ . 



Chapter 2: Laser Communications and the Impact of the Atmosphere 
 
 

22 

2.4 Coherent Receivers and Fiber Coupling 
In the formulas of Section 2.3 a perfect match of the local oscillator wavefront and signal 
wavefront was assumed. In this section a more realistic approach with the heterodyne 
efficiency is discussed taking wavefront mismatches into account. Interesting to note is, that 
the same approach can be used to describe fiber coupling efficiency for a single-mode fiber. 
Details on efficiency calculation can be found for example in [COH75][WAG82][RUI01]. 

The incoming wavefront is described in the entrance pupil of the telescope by  

 ( ) ( ) ( ) ( )( )0 0 expP r W r A r i rϕ ϕ= ⋅ ⋅ , (2.3) 

where W0 denotes the pupil/aperture transmittance function 

 0

1
( )

0
if r R

W r
otherwise

<⎧
= ⎨
⎩

. (2.4) 

/ 2R D=  gives the telescope aperture radius. ( )0A r  and ( )rϕ  respectively describe the 
amplitude and phase of the field. Central in the calculation of fiber coupling and 
heterodyne/homodyne efficiencies is the normalized overlap integral over the telescope 
aperture 2A Rπ=  

 
( ) ( )

( ) ( )

2

* 2
0

2 22 2
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A
het

A

P r M r d r

P r d r M r d r

ϕ

ϕ

η

∞

=
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∫∫

∫∫ ∫∫
. (2.5) 

Using Parseval’s theorem (see Appendix A.1.3) Eq. (2.5) can be equally used in the focus 
plane. Here the integral area is given by the detector size with 2

dA rπ= . The aperture 
transmittance function is in both cases implicitly contained in the integral over the circular 
area A .  

In the case of a coherent homodyne/ heterodyne receiver ( )0M r  represents the 
reference field of the local laser, which takes the shape of a Gaussian profile. For single-
mode fiber coupling ( )0M r  represents the mode distribution in the fiber, which can be also 
approximated by a Gaussian distribution. So even in the case of a perfectly plane signal 
wave from the counter terminal, i.e. without any atmospheric disturbances, the overlap 
integral has a maximum value of around 0.8 due to the mismatch of the plane signal wave 
and the Gaussian local oscillator or the Gaussian-type fiber mode.  

In principle a Gaussian mode with the 1/e waist radius is given by 

 ( )
2

0 2
0

exp rM r A
w

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
. (2.6) 

For a single-mode fiber with step-index profile the mode radius 0w  in the fiber is well 
approximated by [NEU88] 

 ( )3/ 2 6
0 0.65 1.619 2.879f fw a V V− −= + +  

or in a different approximation by [THI04] 
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( )0

102 log f

aw
V

=
⋅

. (2.7) 

Vf denotes the fiber normalized frequency and a the fiber core radius. The two 
approximations are compared in Figure 2.14. The Vf number, which is closely related to the 
number of guided modes in the fiber, is calculated by [SAL91] 

 2 22
f co cl

aV n nπ
λ

= − , (2.8) 

where the numerical aperture 2 2
co clNA n n= +  is given from the index of refraction in the core 

con and in the fiber cladding cln . A Vf number smaller than 2.405 describes a single-mode 
fiber.  

 

Figure 2.14: Ratio 0 /w a  for step-index fibers as a function of the normalized frequency Vf  

(2.8).  

Cohen [COH75] derived in detail formulas for the overlap integral Eq. (2.5) for various 
distributions of the signal and local oscillator. The most relevant in the discussion of a 
coherent receiver or fiber-coupled receiver is a Gaussian local oscillator  

 ( )
2

2
r
w

LU r e
−

∝  (2.9) 

and an Airy distribution of the signal wave imaged into the focus plane with a focal length f 
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Putting Eq. (2.9) and (2.10) into (2.5) and using the integration formula 
( )2

1

0

1
2

J x
dx

x

∞

=∫ , the 

coupling efficiency hetη  for a single-mode fiber with a mode diameter of 0w , the telescope 
diameter DRx, the focal length f, the detector radius rd, and the wavelength λ  results to 
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∫
. (2.11) 

The ratio between the Airy diameter to the first zero crossing and the mode diameter in the 
single-mode fiber has to fulfill  

 
0

1.72
2

AiryD
w

=  (2.12) 

to achieve maximum coupling efficiency. The Airy diameter to the first zero-crossing for an 
undisturbed plane wave is given by 

 2.44Airy
Rx

fD
D
λ

= ⋅ . (2.13) 

The optimum focal length for a given aperture diameter and a given mode diameter in the 
fiber is then calculated by  

 0 0.71Rxw D
f λ

≈  or  01.408 RxDf ω
λ
⋅

≈ ⋅ . (2.14) 

With these parameters the optimum coupling efficiency respectively homodyne/heterodyne 
coupling efficiency is limited to  

 0.81hetη ≈ . (2.15) 

This theoretic limit is caused by the mismatch of the plane incoming wave and the Gaussian 
mode of the single-mode fiber, or expressed in the focus plane, a mismatch of the Airy 
distribution caused by the circular aperture of the entrance pupil and the Gaussian mode of 
the single-mode fiber. An equivalent calculation can be given for heterodyne/homodyne 
efficiencies. 

Figure 2.15 shows the fiber coupling efficiency for an example setup. Obviously the 
maximum efficiency is 0.81 at the point defined in Eq. (2.14), from which the correct F-
number of the telescope can be derived. Figure 2.16 then shows the amplitude distributions 
for the Airy and Gaussian distribution in the case of the best match. A telescope aperture of 
DRx=0.4m was assumed yielding an optimum focal length of 1.18m. 
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Figure 2.15: Fiber-coupling efficiency as a function of the telescope F-number. The assumed 
parameters of the single-mode fiber are shown in the right bottom corner of the graph. The top 
horizontal axis shows that Eq. (2.14) is fulfilled for a maximum efficiency. 

 

 
Figure 2.16: Best match of Airy and Gaussian (fiber) distribution according to Eq. (2.14) with 
the same fiber as in Figure 2.15. Coupling efficiency is 0.81hetη = . The rectangular area 
denotes the sensor area, which should be of the same size as the Airy distribution to the first 
zero. 

 
The approximation of the Strehl ratio (see Section 4.1.3) in dependence of the phase 
variance 2

ϕσ  of the received wave 

 ( )2
1 expS ϕσ≈ −  

can be also used to estimate the normalized coupling efficiency ( )2
,max/het hetϕη σ η . According 

to Ruilier [RUI98] the Strehl ratio underestimates the coupling efficiency. He also showed, 
which of the Zernike modes have a particularly detrimental effect on the coupling efficiency.  
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2.5 Motivation for Adaptive Optics in Communication Scenarios 
In the last decades several high-performance free-space laser communications systems 
have been developed, achieving very high data rates of several Gbps. The Laser 
Communication Terminal (LCT) on TerraSAR-X transmitted with 5.6Gbps with a coherent 
BPSK modulation scheme [LAN05]. In 2009 Ciaramella et al. [CIA09] presented a free-space 
laser communication based on single-mode fiber components for a transmission over 
2x212m (transmitter and receiver were at the same side) with a wavelength division multiplex 
(WDM) transmission scheme. Each of the 32 WDM channels had a transmission rate of 
40Gbps, resulting in a total rate of 1.28Tbps. Especially fiber-coupled systems with such data 
rates are only possible with the help of commercially available components from the fiber 
communication industry. 

Both systems, the LCT and the 1.28Tbps system, require an undisturbed plane wave over 
the receiver aperture to guarantee reasonable heterodyne and fiber-coupling efficiencies. 
This can be achieved if the receiver aperture is smaller than the atmospheric coherence 
length. The LCT ground terminal had an aperture diameter of 6.5cm and the fiber-coupled 
system of 2.4cm. For larger apertures the phase distortions over the aperture become 
significant. Small apertures however mean, that the link budget quickly proves to be a limiting 
element and scintillation become very strong on longer paths through the atmosphere with 
very deep fades causing outages of the communication link. Scintillation can be only 
decreased with the averaging effect of a larger aperture.  

Consequently, if coherent or fiber-coupled communication systems are used in long 
atmospheric communication scenarios, some means of correcting the disturbed incident 
wave has to be applied and thus enable the application of larger receiver apertures. The 
impact of the atmosphere becomes especially pressing for SGL scenarios at low elevation 
angles, where the atmospheric coherence length is very small and scintillation is very strong.  
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3 Atmospheric Models and Measurements 
Chapter 3 gives an overview on atmospheric effects in laser satellite-to-ground 
communications. Section 3.1 presents theoretic concepts including atmospheric attenuation 
and cloud considerations, turbulence standard models, and atmospheric turbulence models 
based on the Rytov theory. Section 3.2 gives a short overview of the atmospheric 
measurement instruments of the DLR ground station, which were used in several 
measurement campaigns. The measurement results are presented in Section 3.3. 

3.1 Laser Beam Transmission through the Atmosphere 
There are three principle effects affecting the transmission of a laser beam through the 
atmosphere: 

• Atmospheric attenuation due to absorption and scattering (Section 3.1.1) 
• Attenuation/blockage of the link due to clouds (Section 3.1.2) 
• Refractive-index effects due to atmospheric turbulence (Section 3.1.3 and 3.1.4). 

Atmospheric turbulence of course is most important for phase distortions and scintillation 
effects concerning adaptive optics (AO), however attenuation and clouds are also briefly 
addressed here, as they play a crucial role for communication links. 

3.1.1 Atmospheric Attenuation 
Laser beam attenuation in the atmosphere is described by Beer’s law [SMI93]: 

 
( ){ }

0
,

0

L
ext z dzL

Beer
IT e
I

α λ− ∑∫= = . (3.1) 

It yields the transmission of a beam path through the atmosphere with the extinction 
coefficient αext and the path length L. αext has a strong dependence on the altitude above sea-
level and changes with the wavelength λ. The transmission TBeer gives the ratio between the 
output intensity IL and the input intensity I0. Beer’s law usually is used to describe molecular 
absorption and scattering of the clear atmosphere, but it can also be applied for attenuation 
in clouds.  
The atmospheric extinction coefficient is shown in Figure 3.1 as an example in the 
wavelength range from 500nm to 2000nm. It can be seen, that typical communication 
wavelengths like 1064nm or 1550nm have low extinction coefficients and represent suitable 
transmission windows for satellite-to-ground links (SGL). 
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Figure 3.1: Extinction coefficient between 500 and 2000nm for three altitudes (sea-level, 3km, 
10km) [DAV04]. 

 
Transmission windows in the optical domain are plotted in Figure 3.2, also showing other 
atmospheric transmission windows with low absorption values, numbered from 1 to 9. The 
limit for usable long wavelengths is given by the atmospheric window between 7.5µm and 
15.0µm. Above this window laser communication through the atmosphere is prevented by 
water-vapor absorption. 
 

 
Figure 3.2: Transmission through the atmosphere in a vertical path e.g. for a satellite-to-ground 
link. Transmission windows are marked in gray [MOL07].  

 

3.1.2 Clouds and Ground Station Diversity 
Clouds pose a challenging issue for SGLs as they strongly influence the availability of the 
communication links. Already relatively thin clouds totally block laser beams. Thus, it is 
important to establish ground stations for SGLs at locations, where the probability of cloud 
coverage is low. Figure 3.3 shows the mean cloud coverage over Europe based on data from 
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the European Cloud Climatology (ECC) project. The images were taken by the AVHRR/3 
(Advanced Very High Resolution Radiometer Version 3), which is a payload of the NOAA 
satellites. 

Cloud coverage in southern regions of Europe is significantly lower than in the north. 
Thus, ground stations in Europe should be as far as possible located closer to the 
Mediterranean Sea, where the average availability of a single ground stations reaches 70%. 

 

 
Figure 3.3: Mean cloud coverage (in percent) over Europe derived from the European Cloud 
Climatology (ECC) of the years 1990/1995/2000/2004/2005. The typical north-south decrease is 
clearly visible. Also the influence of mountains can be seen, e.g. the Alps and the Carpathians 
[MOL07].   

 

 
Figure 3.4: Example locations of ground stations in the south of Europe: Spain, France, Italy, 
and Greece. The stations are separated by a distance of at least 1000 km between each other to 
avoid strong correlation of the weather situation between the stations [MOL07]. 

 
The availability of a single ground station even at favorable location still appears not high 
enough for many applications. Several stations distributed over a larger area, e.g. Europe, 
can be employed to increase the combined availability of the whole network. This scheme is 
called ground station diversity. In this way the probability, that all ground stations are blocked 
at the same time by a cloud layer, decreases. An example of several ground stations in 
southern Europe is shown in Figure 3.4. The locations are: Calar Alto (Spain), Aix-en-
Provence (France), Catania on Sicily (Italy), and Heraklion on Crete (Greece).  
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A single station in this region has an availability pj of around 70%. Assuming statistical 
independence of the cloud coverage between two of these locations, the joint availability Mp  
of M stations can be calculated by  

 ( )
1

1 1
M

M j
j

p p
=

= − −∏ . (3.2) 

 The more ground stations are included in the network, the higher the combined system 
availability becomes. Figure 3.5 shows the combined availability in dependence of the 
number of stations M and the single-station availability pj. The availability of the example 
stations of Figure 3.4 can be approximately read from the uppermost curve ( 70%jp ≈ ). 
Here only four ground stations are sufficient to achieve over 98% combined availability, i.e. 
less than 2% of the time all four stations are blocked by clouds at the same time. 

 

Figure 3.5: Combined availability of a ground network as a function of the number of stations.  
 

3.1.3 Atmospheric Standard Models 
The knowledge of typical atmospheric conditions is important for the assessment of 
atmospheric effects on communication links. In the following atmospheric models for the 
index-of-refraction turbulence ( )2

nC h  and atmospheric wind speeds 0 ( )v h  are presented, 
which will be used for the remainder of the work to evaluate analytic formulas and also to 
numerically simulate the effects of the atmosphere. The numerical field simulations in this 
work are based on the DLR proprietary tool PILab [HOR04][PER05]. 

3.1.3.1 Cn
2 Turbulence Profiles 

The index-of-refraction structure parameter ( )2
nC h  describes the atmospheric turbulence 

strength over the height h above ground in a turbulence profile. There are strong variations of 
the ( )2

nC h  parameter with the atmospheric conditions, but also with location and time 

(day/night). Lower ( )2
nC h  turbulence levels can be expected for elevated locations and 

during the night. Average ( )2
nC h  profiles over the height have been developed from 

measurement results.  
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A widely used model profile is the generalized Hufnagel-Valley (HV) model. The ( )2
nC h  

profile is given as a sum of exponential terms [HAR98] 

 
[ ] [ ] ( ) [ ]102

2 2

( ) exp exp / m exp /

                                     exp ( ) (2 )
n A B C

D

C h A h H B h H C h h H

D h H d

= ⋅ − + ⋅ − + ⋅ ⋅ − +

⎡ ⎤+ ⋅ − −⎣ ⎦
. (3.3) 

In this expression A is the coefficient for the surface (boundary layer) turbulence strength and 
HA is the height for its 1/e decay. B and HB similarly define the turbulence in the troposphere 
(up to about 10 km). C and HC define a turbulence peak at the tropopause, and D and HD 
define one or more isolated layers of turbulence, with d being the layer thickness. 
Parameters of the generalized HV model widely vary with the location. By far the largest 

( )2
nC h  values are found close to the ground. 

Throughout this work a specific parametrization of the Hufnagel-Valley model was used, 
commonly known as the HV5/7 model. This model yields an atmospheric coherence length 
r0=5cm and an isoplanatic angle of 7μrad for a wavelength λ=0.5μm. Figure 3.6 shows the 
HV5/7 model calculated with the parameters in Table 3.1 and Eq. (3.3). 
 
Table 3.1: Parameters of the standard Hufnagel-Valley HV5/7 model.  

 A 2/3m−⎡ ⎤⎣ ⎦  HA [m] B 2/3m−⎡ ⎤⎣ ⎦ HB [m] C 2/3m−⎡ ⎤⎣ ⎦  HC [m] D 2/3m−⎡ ⎤⎣ ⎦

HV5/7 17x10-15 100 27x10-17 1500 3.59x10-53 1000 0 
 

 

Figure 3.6: Refractive-index structure parameter ( )2
nC h  for a Hufnagel-Valley HV5/7 turbulence 

model. 

 

3.1.3.2 Wind Profiles and Satellite Motion 
Another important factor influencing the atmospheric propagation channel is the beam 
motion with respect to the air masses and therefore the turbulence cells. We distinguish 
atmospheric wind (motion of air masses) and motion of the beam with respect to air masses 
due to motion of the communication terminals (e.g. satellite motion). The combination of both 
influences the expected bandwidth requirements for the communication and AO system with 
respect to the atmospheric turbulence.  
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Atmospheric wind can be modelled by the Bufton (also called Gaussian) model, which is 
given by [HAR98] 

 
2

0 ( ) exp T
G T

T

h Hv h v v
L

⎡ ⎤⎛ ⎞−
⎢ ⎥= + ⋅ −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

, (3.4) 

where h is the height above ground, vG is the wind velocity at low altitudes, vT is the wind 
velocity in the tropopause, HT is the height and LT the thickness of the tropopause layer. The 
peak wind speed at the tropopause varies greatly with location and season.  

Throughout this work the Bufton wind model with Greenwood’s parametrization [GRE77] 
is used for the evaluation of analytic formulas and numerical simulations. The 
parametrization is given in Table 3.2 and the resulting wind profile is shown in Figure 3.7. 
 

Table 3.2: Greenwood parametrization [GRE77] for the Bufton wind model. 
 vG vT HT LT 

Greenwood 8m/s 30m/s 9.4×103m 4.8×103m 
 

 

Figure 3.7: Wind speed profile according to the Bufton model for a Greenwood 
parametrization. The peak of the wind speed is at an altitude of 9.4km. 

 
In the case of an SGL the combined transversal, relative velocity vB0  of the air masses across 
the beam can be calculated by  

 ( ) ( ) ( )( )
1/ 222 2

0 0 0( ) ( ) sin ( ) cos sinB g g g satv z v z v z zβ β α ω⎡ ⎤= ⋅ + ⋅ ⋅ −⎣ ⎦ , (3.5) 

where ( )0v z  is the wind speed, e.g. given by Eq. (3.4), βg is the telescope azimuth relative to 

the wind direction, gα  is the elevation angle, z is the distance from the telescope, and ωsat is 
the slew rate (in radians/second) associated with the satellite motion with respect to the 
terminal on the ground. Eq. (3.5) neglects the curvature of the Earth in order to keep the 
calculations simple. The wind direction is assumed to be horizontal. 
The slew rate for a satellite pass going through the Zenith, seen from the ground station, is 
given by 
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( )

2 2 2
2

sat sat e sat
s

sat e

V L H R H
L L H R

ω + +
= ⋅

+
, (3.6) 

where Vsat is the satellite speed, Hsat is the satellite altitude, and Re is the Earth radius. The 
distance ground-to-satellite L is calculated for the elevation angle gα  by 

 ( ) ( ) ( )2 2 2cos sinsat e e g e gL H R R Rα α= + − − . (3.7) 

For the analytic formulas and simulations in this work the following parameters were 
assumed approximating the orbit of the LEO satellite TerraSAR-X: Vsat = 7km/s, Hsat = 510km, 
Re = 6370km. Similar parameters are valid for other LEO satellites. The resulting slew rate 
ωsat of satellite is shown in Figure 3.8 as a function of the elevation angle αg.  

Figure 3.9 shows the combined, relative atmospheric motion (across the beam) for the 
elevation angles 30deggα =  and 90deggα = . The left plot shows the cases, where the 
horizontal beam-motion component and atmospheric wind have equal and opposite 
directions ( 0deggβ =  and 180deggβ = ). The right plot shows the combined motion for a 

crosswind ( 90deggβ = ). The motion on the ground equals then the wind velocity (8m/s), as 
can be seen from Eq. (3.5). 
 

 

Figure 3.8: Slew rate (at the ground station) of the beam to track TerraSAR-X as a function 
of the elevation angle. A zenith pass was assumed, which leads to the largest slew rates. 



Chapter 3: Atmospheric Models and Measurements 
 
 

34 

  

Figure 3.9: Relative motion of the turbulence cells across the beam resulting from beam 
motion and wind speed. Left: Velocity profiles for head and tail wind 0 /180deggβ = , 
indicated by Motion±Wind, at 30deg and 90deg elevation. Right: Velocity profiles for 
crosswinds at 30deg and 90deg elevation. The Bufton wind model was assumed for a link 
with TerraSAR-X. 

 

3.1.3.3 Spatial Power Spectra of Refractive-Index Fluctuations 
Based on Kolmogorov’s turbulence theory the structure of atmospheric turbulence can be 
understood with the idea of the energy cascade theory [e.g. AND05]. This describes the 
energy transfer from large turbulence cells on the order of the outer scale 0L  to smaller cells 
on the order of the inner scale 0l  (see Figure 3.10), where the turbulence cells/eddies 
disappear and their energy is dissipated as heat due to viscous forces. Typical outer scales 
are up to 100m at the surface layer. 0L  is assumed to grow linearly with height. The energy 
on the top of the cascade is injected by wind and eventually by solar radiation. The inner 
scale is on the order of several millimeters near ground and also increases with height. 
Eddies of scale size smaller than the outer scale are assumed to be statistically 
homogeneous and isotropic.  
 

 
Figure 3.10: Energy transfer cascade based on the Kolmogorov theory. 

 
The energy cascade describes in the first place the motion of air masses due to wind, but it 
can be transferred to temperature fluctuations and thus to refractive-index turbulence, which 
is most significant for optical wave propagation.  
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The refractive index in the atmosphere at a point r  in space and at a certain time t  is 
described by  

 ( ) ( )0 1, ,n r t n n r t= + , (3.8) 

where 0n  denotes the mean (constant) part of the refractive index and 1n  the variable, 
random deviation of the mean value. Fluctuations of the refractive index correspond to 
temperature and pressure fluctuations. Specifically in the near infrared the refractive index 
can be approximated by 

 ( ) ( )
( )

6 K1 79 10
mbar

P r
n r

T r
−≈ + ⋅ ⋅ , (3.9) 

which already implies, that there is only a very weak dependence of the refractive index on 
the wavelength. The pressure P is given here in millibar and the temperature T in kelvin. 

The refractive index is related to the refractive-index structure function by 

 ( ) ( ) ( )nD n r n rρ ρ= − +⎡ ⎤⎣ ⎦ , (3.10) 

where ρ ρ= . The angular brackets denote an ensemble average. With an increasing 
separation distance ρ , the refractive index of two points become more and more 
independent, and thus the structure function ( )nD ρ  also increases. The dependence on 
only one parameter, the separation distance, includes the assumption of homogeneity and 
isotropy. The structure function exhibits two asymptotic behaviours 
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⎩

. (3.11) 

The physical meaning of the refractive-index structure constant 2
nC  is a measure of the 

strength of refractive-index fluctuations. The structure function is related to the 3-dimensional 
refractive-index power spectrum ( )n κΦ  by  

 ( ) ( ) ( )2

0

sin
8 1n nD d

κρ
ρ π κ κ κ

κρ

∞ ⎛ ⎞
= Φ −⎜ ⎟

⎝ ⎠
∫ , (3.12) 

where κ  denotes a spatial frequency. ( )n κΦ  is widely used in the optical turbulence theory. 
One of the early models, which is often used for theoretical calculations due to its simplicity, 
is the Kolmogorov power-law spectrum 

 ( ) 2 11/3
0 00.033 , 1/ 1/n nC L lκ κ κ−Φ =  (3.13) 

which is valid only for the inertial subrange 0 01/ 1/L lκ . Usually it is assumed that the 
outer scale tends to infinity ( 0L = ∞ ) and the inner scale is negligible small ( 0 0l = ), however 
this may lead to divergent integrals in certain cases.  

Other models provide more accurate descriptions taking inner and outer scale effects into 
account. Two representatives are the modified von Kármán spectrum [AND05] 
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and the modified atmospheric spectrum [AND05] 
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 (3.15) 

which are both valid over all frequencies. Figure 3.11 compares the three spectrum laws 
presented. The frequencies 0κ  and lκ  corresponding to the inner scale 0l  and the outer 
scale 0L  are marked by vertical lines. 

In the satellite-to-ground link scenarios the refractive-index constant depends on the 
height of the turbulence layer in the atmosphere and the parameters in Equations (3.13)-
(3.15) are substituted by ( ) ( ) ( ) ( )2

0 0, , , ,n nC h h l h L hκΦ . 

 

 
Figure 3.11: Atmospheric spectrum models of refractive-index fluctuations according to 
Equations (3.13), (3.14), (3.15). 

 

3.1.4 Atmospheric Turbulence Effects on the Communication Beam 
The atmospheric turbulence effects on the communication beam are summarized by 

1. Wavefront distortions: Due to optical path-length differences increasing wavefront 
distortions appear and the beam becomes increasingly less (spatially) coherent with 
the propagation distance in the atmosphere.  
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2. Redistribution of the intensity within the beam: The distorted wavefront causes 
constructive and destructive interference effects, which disturb the beam’s intensity 
distribution. 

3. Beam wander: Turbulent cells larger than the beam radius cause the beam centroid 
to be redirected. 

4. Beam spreading: Broadening of the beam radius and thus reduction of the average 
received intensity. 

Especially significant for the development of AO systems are wavefront distortions (1) and 
scintillation effects (2, 3). Wavefront distortions, as they have an influence on the required 
mirror stroke and the speed requirements, have to be corrected with a suitable AO system. 
Scintillation effects significantly impact on the wavefront sensing, i.e. the sensors have to 
cope with the fact, that parts of the sensing area might not be illuminated sufficiently to 
produce meaningful results in this area. 

The following sections present the current state of the theory describing weak and 
especially strong intensity/phase fluctuations in LEO satellite downlinks, although it is clear 
due to the complexity of the topic that a detailed derivation cannot be given in this work. 
Appropriate references to the literature are given. 

3.1.4.1 Extended Rytov Theory for Weak&Strong Fluctuations 
The classical theory of beam propagation in the turbulent atmosphere is only valid in the 
weak intensity fluctuation regime. The principles of weak-fluctuation theory can be found in 
[TAT67][AND05]. In the weak fluctuation regime, the classical approximations of the Rytov 
and the Born approximations are valid. The turbulence regime is usually classified according 
to the Rytov variance, which equals the scintillation index of a plane wave under weak 
fluctuation conditions. The Rytov variance is given by 

 2 7 / 6 2 5/ 6

0

2.25 ( )
L

R nk C z z dzσ = ⋅∫ , (3.16) 

where z denotes the distance of the turbulence layer from the receiver on the ground. The 
Rytov variance is mainly influenced by high-altitude turbulence layers, which implies that 
scintillation needs a certain propagation distance to develop in contrast to phase distortions. 
At elevation angle above 30 degrees at the distances relevant for scintillation, the turbulence 
is already significantly reduced so that weak-fluctuation theory is applicable. Below 30 
degrees weak fluctuation theory is not valid anymore. It overestimates (deems it worse) the 
scintillation index. 

Weak fluctuations are commonly assumed for Rytov indices 2 0.3Rσ < . Strong fluctuations 

are present for 2 1Rσ > . In between the focusing regime is given. For very large 2
Rσ  the level 

of scintillation decreases again. This is called saturation regime.  
Several attempts have been made to produce a single theory for all fluctuation regimes. 

For the scintillation index Andrews et al. [AND00] presented such a model applying it to an 
SGL. This treatment assumes that the received intensity can be expressed as a product of 
two statistically independent variables I X Y= ⋅ , where X describes effects of large-scale 
turbulence cells/eddies, and Y  of small-scale cells. The scintillation index is then given by 

 ( )( ) ( )2 2 2 2 2 2 2
ln ln1 1 1 1 exp 1I X Y X YX Yσ σ σ σ σ= − = + + − = + − , (3.17) 

assuming an average received power of one, 1X Y= = . The large- respectively small-

scale scintillation indices are denoted by 2 2,X Yσ σ  and the corresponding log-intensity 

scintillation indices by 2 2
ln ln,X Yσ σ . 
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For the understanding of small scale and large scale, the significant scale sizes in respect to 
a propagating wave are 

• Inner scale of turbulence 0l  
• Spatial coherence radius of the optical wave 1 0l ρ∼  

• First Fresnel zone 2 /l L k∼  
• Beam radius w 
• Scattering disk 3 0/l L kρ∼  
• Outer scale of turbulence 0L  

From atmospheric turbulence theory it has been recognized that cells larger than the spatial 
coherence radius 0ρ  and smaller than the scattering disk 0/L kρ  have little influence on 
scintillation under strong fluctuations [AND05]. Figure 3.12 illustrates this property for a 
horizontal link with constant 2

nC . At around 200m propagation distance the strong scintillation 
regime dominates and certain turbulence cell sizes are not effective anymore due to the loss 
of wavefront coherence. The excluded cell sizes are indicated by the shaded area.  

 

 
Figure 3.12: Relative turbulence scale sizes as a function of propagation distance. The point of 
intersection denotes the onset of strong fluctuations. The shaded area indicates the excluded 
scale sizes. (from [AND01]) 

 
A filtering technique is now applied to reflect the effective power-law spectrum, excluding 
ineffective cell sizes. This leads to the effective atmospheric spectrum (Kolmogorov 
spectrum) 

 ( ) ( ) ( ) ( )2 11/3
, 0 0 0 0 0 0, , 0.033 , ,n e n nG l L C G l Lκ κ κ κ κ−Φ = Φ = . (3.18) 

( )0 0 0, ,G l Lκ  is an amplitude spatial filter, which consists of a small- and a large-scale 

component XG  and YG  

 ( ) ( ) ( )0 0 0 0 0 0, , , , ,X YG l L G l L G lκ κ κ= +  (3.19) 
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with 

 

( ) ( ) ( )

( )
( )

2

0 0 0 0 2

11/3

0 0 11/ 62 2

, , exp

, ,

X
X

Y

Y

G l L f l g L

G l L

κκ κ κ
κ

κκ
κ κ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

=
+

 (3.20) 

The functional forms of XG  and YG  were chosen for mathematical tractability, but other 
equations might be just as suitable. The spatial cutoff frequencies Xκ  and Yκ  define the 
filtering of the ineffective mid-range scale sizes under strong fluctuations. The cutoff 
frequencies can be estimated from the correlation width, scattering disk, and the Fresnel 
zone in the following way 

 
2

2
0

/ , 11
/ , 1

R

X R

L k
L k

σ
κ ρ σ

⎧⎪
⎨
⎪⎩

∼  (3.21) 

 
2

2
0

/ , 11
, 1

R

Y R

L k σ
κ ρ σ

⎧⎪
⎨
⎪⎩

∼  (3.22) 

The functions ( )0f lκ  and ( )0g Lκ  contain the influence of inner and outer scales of the 
turbulence.  

3.1.4.2 Intensity Scintillation Models 

Based on the extended Rytov theory of the previous section, the scintillation index for all 
turbulence regimes, neglecting inner and outer scale effects ( 0 00,l L→ →∞ ), can be 
estimated for a plane wave by [AND00] 

 
( ) ( )

2 2
2

7 / 6 5/ 612/5 12/5

0.49 0.51exp 1
1 1.11 1 0.69

R R
I

R R

σ σσ
σ σ

⎡ ⎤
⎢ ⎥= + −
⎢ ⎥+ +⎣ ⎦

, (3.23) 

where the Rytov variance 2
Rσ  is given by (3.16). Inner and outer scale effects [AND05] 

slightly modify the results, but do not contribute to the understanding of the order of 
magnitude of the scintillation effects in this discussion. Based on the results in horizontal 
links ( 2

nC const= ) it can be expected that inner scale effects increase the maximum value of 
the scintillation index, as is also confirmed by the measurements (Section 3.3.2.1). Figure 
3.13 shows the scintillation index for a satellite-to-ground link (downlink) as a function of the 
elevation angle. A Hufnagel-Valley HV5/7 ( )2

nC h  profile (3.3) was assumed for a wavelength 
of λ=1064nm. The Rytov variance equals the scintillation index in the weak fluctuation regime 
and for a plane wave. A good match of the Rytov variance and the extended Rytov theory 
can be observed for elevation angles larger 30 degrees. Below 30 degrees the Rytov 
variance overestimates the scintillation effects. At very low elevation angle (<5 deg), the 
extended Rytov theory shows the expected saturation of the scintillation index due to multiple 
scattering. This is also observed in the measurements. 
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Figure 3.13: Scintillation index 2
Iσ  for an SGL: Comparison of the extended Rytov theory Eq. 

(3.23), which is valid in the weak and strong fluctuation regime, with the Rytov variance (3.16), 
which is only valid in the weak fluctuation regime. An HV5/7 (Section 3.1.3.1) atmospheric 
turbulence model was assumed. 

Several probability density functions (PDF) ( )p I  have been suggested to describe intensity 
scintillation covering weak and strong scintillation regimes. An overview was given by Perlot 
[PER06]. Examples are the K-, the I-K or the Gamma-Gamma distributions. In the context of 
this work only the Gamma-Gamma distribution, discussed in several publications by Andrews 
et al. [AND00][AND05], is presented in  more detail, as it allows relating the distribution 
parameters to physical atmospheric parameters. The Gamma-Gamma distribution (named 
after the two Gamma functions) is given by 

 ( ) ( )( )

( ) ( )
( ) ( )

1 1

1 1

1 1

/ 2
/ 2 11 1

1 1
1 1

2
2 , 0.p I I K I I

α β
α β

α β

α β
α β

α β

+
+ −

−= >
Γ Γ

 (3.24) 

( )pK x  denotes the modified Bessel function of the second kind and ( )xΓ  the Gamma 
function [AND03]. The parameters α1 and β1 of the distribution can be related to the large- 
and small-scale scintillation indices by 

 
( )

( )

1 2 2
ln

1 2 2
ln

1 1
exp 1

1 1
exp 1

X X

Y Y

α
σ σ

β
σ σ

= =
−

= =
−

 (3.25) 

Again neglecting inner and outer scale effects the large- and small-scale log-intensity 
scintillation indices can be estimated by 

 
( )

( )

2
2
ln 7 / 612/5

2
2
ln 5/ 612/5

0.49

1 1.11

0.51

1 0.69

R
X

R

R
Y

R

σσ
σ

σσ
σ

=
+

=
+

  (3.26) 
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The combined scintillation index is calculated with Eq. (3.17). Table 3.3 summarizes the 
atmospheric parameters and the resulting Gamma-Gamma distribution parameters for 
several elevation angles. The resulting PDFs according to (3.24) are shown in Figure 3.14. 
At higher elevation angles the typical log-normal distributions can be observed almost 
assuming Gaussian shape at 90 degrees. At low elevation angles the distributions tend to a 
negative exponential shape.  

 
Table 3.3: Scintillation parameters and parameters of the Gamma-Gamma distribution for 
several elevation angles. 
Elevation 

[deg] 
2
Rσ  2

Iσ  2
ln xσ  2

ln yσ  1α  1β  

2.0 25.6 1.21 0.12 0.68 8.12 1.03 
10.0 2.3 1.03 0.22 0.49 4.01 1.59 
20.0 0.7 0.56 0.18 0.26 5.04 3.36 
30.0 0.3 0.32 0.12 0.15 7.55 6.03 
90.0 0.1 0.10 0.05 0.05 21.72 19.95 

 
 

 
Figure 3.14: Probability Density Function (PDF) of the received intensity at the ground station 
calculated from Eq. (3.24). Each curve shows one elevation angle. The simulation is based on a 
HV5/7 turbulence model (3.3) at the wavelength λ=1064nm. The intensity values are normalized 
to one. 

 

The Cumulative Distribution Function (CDF) ( )TP I I≤  can be simply derived from the PDF 
by its definition 

 ( ) ( )
0

TI

TP I I p I dI≤ = ∫ , (3.27) 

where IT  denotes the threshold intensity. For elevation angle below 20 degrees the received 
intensities reach down to zero, marking complete fades.  
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Figure 3.15: Cumulative Distribution Function (CDF) of the received intensity at the ground 
station calculated from Eq. (3.24) and the definition of the CDF (3.27). Each curve shows one 
elevation angle. 
 

3.1.4.3 Phase Fluctuation Models 
A PDF of the phase for a point source propagating through the turbulent atmosphere is 
assumed to be Gaussian [FAN61]. The phase variance of this Gaussian distribution can be 
calculated based on the formulas by Noll [NOL76], who gave the remaining phase variance 
in dependence of the degree of phase correction (See Section 4.1.2), i.e. the number of 
corrected Zernike modes. The variance over an aperture with diameter D is given excluding 
piston errors by 

 ( )0

5 32
1 1.0299 D

rσ = ⋅  (3.28) 

and excluding piston and tilt in x/y direction by 

 ( )0

5 32
3 0.134 D

rσ = ⋅ . (3.29) 

The second formula is of interest, as most AO systems use a separate tip/tilt correction to 
relax the requirements on the deformable mirror. The atmospheric coherence length or Fried 
parameter r0 for a plane wave is given by 

 
3/56 /5

2
0

0

0.423 ( )
2

L

n
z

r C z dzλ
π

−

=

⎡ ⎤⎛ ⎞= ⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦

∫ . (3.30) 

Figure 3.16 shows the phase variance for different aperture diameters D as a function of the 
elevation angle. A significant increase of the phase disturbances towards low elevation 
angles and also an increase with the aperture size can be observed. The phase standard 
deviation is reduced by a separate tip/tilt correction by about a factor 

1 3/ 1.0299 / 0.134 2.77σ σ = ≈ . 
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Figure 3.16: Phase standard deviation ϕσ  for various aperture diameters D as a function of the 
elevation angle; left: only piston errors excluded; right: piston and tip/tilt excluded. The 
atmospheric coherence length was calculated with (3.30) with a HV5/7 turbulence model (3.3) at 
the wavelength λ=1064nm. 

The phase PDFs assuming a Gaussian distribution with zero mean 

 ( )
2

22

1 exp
22

p
ϕϕ

ϕϕ
σπσ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 (3.31) 

are shown in Figure 3.17 without tip/tilt correction (3.28) and in Figure 3.18 with tip/tilt 
correction (3.29), each for 5deg and 90deg elevation and different aperture diameters. Small 
receiver apertures (e.g. 5D cm< ) imply a significantly reduced width of the phase PDF, 
eliminating the need of an AO system, but they also imply less received power with 
significantly higher intensity scintillation, as the aperture averaging effect is not present. In 
most communication systems and scenarios this cannot be tolerated. 
 
 

 
Figure 3.17: Phase PDF without tip/tilt correction (3.28) for various aperture diameters D; left: 5 
degrees elevation; right: 90 degrees elevation. 
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Figure 3.18: Phase PDF with tip/tilt correction (3.29) for various aperture diameter D; left: 5 
degrees elevation; right: 90 degrees elevation. 

 

3.2 Atmospheric Measurements in the Satellite-To-Ground Links 
Atmospheric measurement instruments for the satellite-to-ground links to the DLR optical 
ground station (OGS) were developed between 2004 and 2009 in the framework of an ESA 
contract (see Chapter 1). This combination of several measurement instruments was called 
Atmospheric Transmission Monitor (ATM), as the laser source is located in space and the 
measurements are performed in the transmission through the atmosphere.  
 

 

Figure 3.19:  Concept of the Atmospheric Transmission Monitor (ATM). 

 
The fundamental idea of the ATM is to measure the atmospheric conditions in parallel with 
the quality of the data transmission. This idea is summarized in Figure 3.19. The 
measurement instruments of the ATM estimate the phase and the intensity distribution over 
the receiving aperture of the incoming beam from the satellite. From the distributions several 
statistical atmospheric parameters as the Fried parameter r0, the scintillation index 2

Iσ , or the 

( )2
nC h  profile (under weak turbulence conditions) can be estimated. At the same time a data 

receiver detects the communication signal and calculates the bit-error rate (BER) of the 
transmission. The combination of atmospheric measurements and BER allows conclusions 
about the atmospheric impact on the data transmission at various elevation angles, and thus, 
a channel model can be derived. 

The instruments and sensors of the ATM are summarized in Table 3.4. Brief overviews on 
the instruments are given in the following sections but are not the main focus of this work. 
Further details can be found in the referred publications. 
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Figure 3.20 shows the DLR optical ground station (OGS) at the site Oberpfaffenhofen. The 
main instrument is a 40cm Cassegrain telescope. On the back side of the telescope a plate 
with the measurement instruments (ATM) and the narrow field-of-view camera is attached. 
Two co-aligned beacon lasers are fixed to opposite sides of the telescope frame. The spatial 
separation of the beacons reduces scintillation of the two beams at the satellite receiver and 
tracking system, as they pass different volumes of the atmosphere. Additionally there are a 
PIN diode with a 5cm telescope (scintillation measurements) and the wide field-of-view 
(WFOV) tracking camera. Each sensor is connected to an own data recording system to 
maximize the sampling rate. Data evaluation is performed off-line after the experiments. 
Figure 3.21 and Figure 3.22 show detailed views of the ATM instrument plate, which is 
attached to the back of the main telescope. 
 

 
Figure 3.20: The DLR OGS in Oberpfaffenhofen. The plate of the ATM is located behind the 
telescope. 
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Figure 3.21: Layout of the ATM. The incoming beam is collimated and distributed to the NFOV 
tracking camera, the SHS, a power sensor (PIN diode), focus camera, DIMM, and Turbulence 
Profiler. 

 
 

 
Figure 3.22: Photo of the ATM. 
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The DLR OGS during a pass of the Japanese LEO satellite OICETS is shown in Figure 3.23. 
The two co-aligned beacon lasers on the left and right of the telescope produce a strong 
glow in the atmosphere and form an imaginary focus in the distance. The beacon lasers 
serve the acquisition and tracking system on the satellite to acquire and keep the link during 
the pass, i.e. keep the satellite terminal pointed to the ground station with micro-radian 
accuracy. 
 

 
Figure 3.23: DLR OGS seen from an installed web-cam during the OICETS satellites passes 26th 
June 2009 at 2:53AM local time. The two co-aligned beacon lasers on opposite sides of the 
telescope, which illuminate the satellite for the link acquisition and tracking, can be nicely 
seen. Also the glow of the fiber feed is visible.  

3.2.1 Differential Image Motion Monitor (DIMM) 
The Differential Image Motion Monitor (DIMM) was developed by astronomers to estimate 
the Fried parameter r0 at observatory sites [SAR90][TOK02b]. Usually referred to as the 
atmospheric coherence diameter for a plane wave, r0 can also characterize the coherence of 
other kinds of waves.  

The DIMM principle is depicted in Figure 3.24. The angle-of-arrival of the incoming wave 
is measured in two small apertures (diameter Dsub) separated by a distance d. The waves 
from the two apertures are focused by a lens, and one of the paths propagates through an 
optical wedge to separate the two focus spots on the camera chip. The variance of the 
differential focus-spot motion is taken to estimate the r0 parameter. As a source in space the 
laser on the satellite is used. 

The advantage of considering the difference of the focus-spot displacements is the 
cancellation of tracking errors. This characteristic is especially important for dynamic 
scenarios, where the ground station will always have residual tracking errors. In this way the 
DIMM gives an unbiased estimate of the image degradation due to the atmosphere alone. 
Details on the DIMM for the OGS-OP can be found in [KNA06]. An example for the two focus 
spots, which move relative to each other, can be seen in Figure 3.25. 
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Figure 3.24: Principle of the DIMM sensor. Two 
focus spots are generated by a lens and a wedge in 
one of the two paths. The variance of the relative 
spot motion allows the estimation of the Fried 
parameter. 
 

Figure 3.25: Typical frame of a DIMM, 
where the two focus-spots move 
relatively to each other.  
 

The Fried parameter in longitudinal direction r0,l and in transversal direction r0,t in dependence 
of the wavelength λ and the variance of the transversal/longitudinal differential spot motion 
σd,l/t  is calculated by  
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A combined r0 is estimated by an average of the transversal and longitudinal r0 values. 

3.2.2 Turbulence Profiler 
The ATM turbulence ( )2

nC h  profiler is based on scintillation measurements from a single 
source (in contrast to SCIDAR profilers, which require two sources). Despite its relative 
simplicity due to the use of a single source, the ATM profiler is intended to measure the 
atmospheric turbulence profiles in the SGL scenarios. Some astronomers have designed 
single-star profilers intended to sense the vertical atmosphere of astronomical sights with a 
plane wave from a bright star [TOK00][CAC87]. For those particular astronomical 
applications, the type of source is predefined and the turbulence profile roughly follows the 
well-known ( )2

nC h  models also given in Section 3.1.3.1.  

Turbulence profilers work only under weak-fluctuation conditions (vertical paths or short 
horizontal paths) as the underlying theory does not allow the profile restoration in the strong 
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turbulence regime. The single star profiler is based on the relation between the turbulence 
profile ( )2

nC h  and the intensity spatial covariance function ( )B ρ  in the receiving aperture. 
Because this correspondence relies on an ill-conditioned transformation, the profiles can be 
restored with only limited resolution, i.e. the relation between covariance function and profile 
is rather weak. 

A typical image of the intensity distribution at the entrance pupil of the telescope (plane of 
the spider and central obscuration) in an SGL is shown in Figure 3.26. Further details on the 
DLR OGS profiler can be found in [KNA06]. 
 

 
Figure 3.26: Typical intensity distribution in the 40cm telescope aperture with spider and 
central obscuration.  

The spatial covariance function of the intensity distribution in the telescope aperture directly 
contains the following information: 

- Scintillation index 
22

2
2I

I I

I
σ

−
= , which determines the strength of the intensity 

fluctuations and thus the depth of the fades. 
- The spatial correlation of the intensity, which gives the mean size of the intensity 

speckles in the receiver plane. 
 
For the reconstruction of the turbulence profile along the propagation path, the relation  

 ( ) ( )2

1
( ) ,

N

i n i i
i

B z C z W zρ ρ
=

= Δ ⋅ ⋅∑  (3.36) 

between the intensity spatial covariance function ( )B ρ  in the telescope aperture and the 

( )2
nC h  profile has to be inverted. The intensity spatial covariance depends on the location of 

turbulence layers along the propagation path. The weighting function ( , )W h ρ  describing the 
relation between the covariance function ( )B ρ  and the profile 2 ( )nC h  are known from 
scintillation theory under weak fluctuations [TOK00][CAC87]. Considerations on the profile 
restoration are given in [TOK02a]. 

3.2.3 Shack-Hartmann Wavefront Sensor 
The Shack-Hartmann wavefront sensor (SHS) of the DLR OGS was designed to measure 
the phase of the incoming beam with high resolution and sampling rate. Each focus spot 
covers an area of 12x12mm in the entrance pupil of the telescope. The intensity distribution 
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can be either read from the SHS with high temporal resolution (440fps) or with high spatial 
resolution from the Turbulence Profiler (~30fps). Figure 3.27 shows the optical setup of the 
SHS.  
 

 

Figure 3.27: Left: Shack-Hartmann sensor’s optical setup with the relay lenses and the mount 
for the lenslet array; Right: Schematics of the Shack-Hartmann sensor, also showing the 
lenslet array.   

 
Wavefront reconstruction is the process of restoring the phase values with respect to a 
reference plane from the slopes measured by the focus spot positions of the SHS lenslet 
array. The general principle is explained in many publications, e.g. [HAR98]. Figure 3.28 on 
the left shows a typical image obtained from the SHS camera. On the right side the 
reconstructed wavefront is depicted. Specific aspects of the wavefront reconstruction in the 
SGL scenarios are presented in Section 4.4.1. 
 

3.2.4 Focus Camera 
The atmospheric coherence length r0 can be estimated from several instruments, the DIMM , 
the SHS, and the focal spot (PSF) camera. The estimation of r0 from the focal spot images is 
based on Glindemann [GLI97] 

 0 0.98
FWHM

fr
D
λ ⋅

= ⋅ , (3.37) 

Figure 3.28: Left: Shack-Hartmann sensor image recorded with the Cheetah CL for a link 
distance of 400m at 1064nm. Artifacts of the spider, the central obscuration and the 
secondary-mirror drive can be seen. Right: Reconstructed wavefront. 
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where f is the effective focal length and DFWHM the full-width half maximum of the long-term 
spot in the focal plane. Figure 3.29 shows a typical image of the focal spot recorded during 
an SGL from the Japanese satellite OICETS. 

 
Figure 3.29: Focal spot image recorded during an SGL experiments from the Japanese satellite 
OICETS. 

3.2.5 Scintillation Measurements 
The ATM contains two PIN diodes to measure the received power values with a sampling 
rate of 20kHz. One PIN diode uses the full 40cm aperture and the other is attached to the 
main telescope frame with a 5cm aperture. The large bandwidth is required to resolve 
scintillation effects of the atmosphere.  

Figure 3.30 shows a sample graph of the optical power received at the OGS during the 
OICETS SGLs. The mean received power increases with the elevation angle, as the link 
distance decreases. The variation of the intensity shows the scintillation strength. Several 
short breaks of the signal can be seen, which are caused by a problem of the coarse pointing 
unit on the satellite.  

 

Figure 3.30: Sample power measurement during the OICETS SGLs 2007. The short signal 
breaks were caused by a problem of the coarse pointing unit of the satellite. 
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3.3 Atmospheric Measurement Results  
The following measurement results were recorded with the instruments of the DLR optical 
ground station during SGLs from the Japanese satellite OICETS. Some of the results were 
already published in [PER07] with stronger emphasis on the performance of the 
measurements itself. 

3.3.1 Phase Fluctuations 

3.3.1.1 Atmospheric Coherence Length r0 
Figure 3.31 (left) shows the atmospheric coherence length r0 during the SGLs from the 
Japanese LEO satellite OICETS as a function of the elevation angle. r0 increases (improves) 
with the elevation, as expected. Each curve shows a different SGL experiment (trial number 
(day) 2, 3, 4, 7). Variability between the r0 estimates for different downlinks (on different 
days) can be noticed. The experiments took place shortly after mid-night local time. The 
Japanese space agency JAXA avoided direct illumination of the satellite by the sun, which 
resulted in the maximum elevation angles between 30 and 40 degrees. The communication 
wavelength of OICETS is 847nm in the downlink.  

The Fried parameter r0 can be estimated based on the Rytov theory for a plane wave and 
the turbulence profile 2 ( )nC z  along the optical path from Eq. (3.30). Figure 3.31 (right) shows 
r0 values from analytic calculations at the typical communication wavelength λ=847, 1064, 
and 1550nm for a standard ( )2

nC h  Hufnagel-Valley model HV5/7 (see Section 3.1.3.1). The 
values of the 847nm curve nicely match with the OICETS downlink measurements. It can be 
seen that longer wavelengths suffer less from the effects of the atmosphere. 
 

 
Figure 3.31: Atmospheric coherence length r0; Left: Measurement of r0 during the OICETS SGL 
experiments 2006 at 847nm; Right:  Analytic r0 values for λ=847, 1064, and 1550nm based on 
Eq. (3.30) and a HV5/7 turbulence profile. 

3.3.1.2 Phase Probability Density Function 
Figure 3.32 and Figure 3.33 show phase probability density functions (PDF) from phase 
measurements recorded with the Shack-Hartmann sensor during the SGLs from OICETS 
during the second measurement campaign 2009. Figure 3.32 gives the unwrapped phase. A 
standard reconstruction algorithm was used, so that the phase values for elevation angles 
below 20 degrees elevation might be underestimated due to branch points (see Section 
4.4.1.1); however, a comparison with theory and standard models supported the qualitative 
validity of the results. Figure 3.33 shows the same results for a wrapped phase, i.e. 
π ϕ π− < ≤ + . For low elevation angles the phase distribution tends to a uniform distribution. 
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Figure 3.32: Unwrapped phase Probability Density Function (PDF) recorded by the Shack-
Hartmann sensor during the SGLs from OICETS 2009, trial day 8. Several elevation angles are 
shown. Averaging time for the evaluation was 10.7s (100 frames). 

 

 
Figure 3.33: Probability Density Function (PDF) of the wrapped phase (range π ϕ π− < ≤ + ) 
recorded by the Shack-Hartmann sensor during the SGLs from OICETS 2009, trial day 8. 
Several elevation angles are shown. Averaging time for the evaluation was 10.7s (100 frames). 

 

3.3.2 Intensity/Power Scintillation 

3.3.2.1 Scintillation Index 
The scintillation index is obtained in the measurements from the turbulence profiler, which 
gives the intensity distribution over the receiver aperture (e.g. Figure 3.26). Figure 3.34 
shows the intensity (left) and power (right) scintillation index for the OICETS downlink 
experiments 2006. The scintillation index is defined by 
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The measurements for the experiment days vary greatly (KT7 is about 5 times higher than 
KT3). Higher elevation angles have significantly lower scintillation levels. The power 
scintillation index for the full 40cm telescope aperture is about a factor 5 lower than the 
intensity scintillation index due to the aperture averaging effect [PER06]. 
 
 

 

Figure 3.34: Left: Intensity scintillation index 2
Iσ  as a function of the elevation. Right: Power 

scintillation index 2
Pσ  for the full 40cm aperture with a central obscuration of about 12cm 

(OICETS SGL experiments 2006). 

Figure 3.35 shows the intensity/power scintillation index for simulated fields for SGLs at 
various elevation angles. Each curve shows the scintillation index for a certain aperture 
diameter D. This clear shows the aperture averaging factor reducing the scintillation with 
growing aperture diameter.  
 

 
Figure 3.35: Intensity/power scintillation index for different aperture diameters over the 
elevation angle showing the aperture averaging effect (PILab simulation with a HV5/7 model at 

1064nmλ = ). 

3.3.2.2 Intensity/Power Probability Density Function  
Figure 3.36 shows the normalized power PDF measured with the Shack-Hartmann sensor. 
Each lenslet of the sensor corresponds to a 1.3cm diameter aperture in the telescope 
entrance pupil, and thus the power PDF comes pretty close to an intensity PDF. The shape 
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at higher elevations tends towards a Gaussian distribution around one implying few power 
drops to zero. Towards lower elevation angles, the shape becomes log-normal distributed, 
and then more and more similar to a negative-exponential distribution.  

 
Figure 3.36: Probability Density Function (PDF) of the power recorded with the Shack-
Hartmann sensor during the SGLs from OICETS 2009, trial day 8. Several elevation angles are 
shown. Averaging time for the evaluation was 10.7s (100 frames).  

The intensity and power PDFs in the SGL scenarios were also simulated with PILab to 
compare them with the measurements and to extrapolate the results to other elevation 
angles. A standard HV5/7 model (Section 3.1.3) at 1064nm was assumed for the simulations. 
Figure 3.37 shows the normalized intensity PDF at different elevation angles, again with the 
expected Gaussian, log-normal, and negative exponential shapes. Figure 3.38 gives 
normalized power PDFs. Each graph is given for a certain aperture diameter (D=0.5cm, 5cm, 
20cm). For small apertures, the received mean power over the aperture exhibits large 
variations and contains drops down to zero power for low elevation angles, which indicates 
strong fades for the communication system. Also the dynamics of the received power levels 
is larger for small apertures. 
 

 
Figure 3.37: Probability density function (PDF) of the (normalized) received intensity D at 
different elevation angles (PiLab simulation with a standard HV5/7 model at 1064nmλ = ).  
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Figure 3.38: Probability density function (PDF) of the (normalized) received power for different 
aperture diameters D (0.5cm, 5cm, 20cm) at different elevation angles (PiLab simulation with a 
standard HV5/7 model at 1064nmλ = ). 

3.3.2.3 Intensity Correlation Length 
The intensity correlation length is obtained in the measurements from the turbulence profiler. 
It can be interpreted as the mean intensity-speckle size in the telescope aperture. It is 
derived from the normalized spatial covariance function ( )Ib ρ  of the intensity distribution 
[AND01] 

 ( ) ( )
( )0

I
I

I

B
b

B
ρ

ρ = , (3.39) 

where ( )IB ρ  denotes the covariance function. The intensity correlation length is defined for 
the 1/e point of the normalized covariance function. 

The intensity correlation length measured during the OICETS downlink experiments 2006 
is shown in Figure 3.39. Typically values range between 4 and 8cm. Maximum values are 
reached at 10-15 degrees elevation. At lower elevation angles it decreases due to saturation 
as predicted from theory.  

Interesting to note is the different behaviour of the phase atmospheric coherence length r0 
and the intensity coherence length. r0 continues to increase at higher elevation angles, 
whereas the intensity correlation length saturates to about 4cm. 
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Figure 3.39 Intensity correlation length (1/e point of the normalized  covariance function) as a 
function of elevation (OICETS SGL experiments 2006). 

3.3.3 Bit-Error Rate Measurements 
Figure 3.40 shows the bit-error rate (BER) measurements for the OICETS SGL experiments 
2006. This is not important for the understanding of AO in the SGL scenarios, but the 
information is given for completeness in the discussion of AO for communication links. The 
data from OICETS was transmitted at 847nm with 50Mbps intensity modulation with a direct 
detection scheme. At low elevation angles, the BER is high due to the low signal level and 
strong scintillation. To higher elevation angles the BER improves as the satellite-to-ground 
distance decreases. An interesting effect in the experiments was the saturation of the BER 
above 30 degrees elevation. This was explained with the non-optimal adjustment of the 
threshold levels in the receiver front-end and a problem on the satellite with the laser driver 
causing a non-optimal signal shape. Interesting to note is that data could be received at 
elevation angles as low as 3 degrees in spite of the extreme atmospheric conditions.  
 

 
Figure 3.40: Bit-error rate measurements as a function of the elevation angle during OICETS 
SGL experiments 2006. 
 



Chapter 3: Atmospheric Models and Measurements 
 

59 

3.4 Discussion 
The presented measurement results illustrated the atmospheric conditions expected in an 
SGL scenario. Especially LEO satellites are most of the time seen under very low elevation 
angles (<10 degrees), as has been shown in Chapter 2. As a consequence optical 
communication links have to cope with severe atmospheric conditions. Typical r0 values 
become as low as 1-2cm, and also the intensity correlation length drops to a few 
centimeters. This implies that the AO system has to be designed with a high resolution for 
the wavefront sensor and the corrector. Assuming a telescope diameter of 40cm, as the 
telescope of the DLR OGS, the ratio D/r0  becomes 20-40.  

In addition, very strong scintillation appear on the link with frequent occurrences of low-
intensity regions. This has to be taken into consideration for the selection and development 
of suitable wavefront sensors. The low-intensity regions also contain zero-intensity points, 
which cause the appearance of phase singularities. This has a significant impact on widely 
used wavefront sensors as the Shack-Hartmann sensor and will be further discussed in 
Chapter 4.4.1. 

Another issue is that the atmospheric effects during a LEO satellite pass have a large 
dynamic range over the elevation angle. Already the received power varies by over a factor 
30, as the link distance ranges from around 600km in the zenith to 3000km at the horizon. 
The receiver system including the AO has to be designed with this dynamic range in mind. 
Not only too low intensities but also high intensities with sensor saturation can disturb the 
performance.  
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4 Adaptive Optics for Laser Satellite-To-Ground 
Communication 

This chapter gives an overview of adaptive optics (AO) in the context of laser satellite-to-
ground link (SGL) communications. This scenario is characterized by very strong scintillation 
and wavefront distortions, which increasingly become worse the lower the elevation angles 
are. Additionally, the fast transversal movement of the communication beam through the 
atmosphere due to the satellite motion causes very fast fluctuations of the intensity and the 
phase.  

Section 4.1 introduces the typical components of an AO system and presents general 
concepts widely used in adaptive optics like Zernike polynomials and Strehl ratio. Section 4.2 
discusses the general requirements on an AO system based on the atmospheric 
characteristics presented in Chapter 3. Section 4.3 introduces the concept of phase 
singularities, which also appear in the SGL scenarios at low elevation angles and which can 
severely disturb wavefront sensing and the correction of the wavefront. Section 4.4 
discusses the performance of various wavefront sensor types in strong turbulence 
conditions. And finally Section 4.5 briefly introduces non-conventional methods of adaptive 
receiver systems, which can be counted to AO systems in a broader sense, but which do not 
fit into the conventional concepts of AO systems. 

Based on the finding in this chapter, the rich class of self-referencing interferometers 
appears to be promising to be further investigated for wavefront sensing in SGL scenarios. A 
detailed discussion of self-referencing interferometers and their application in SGL 
communications is given in Chapter 5. 

4.1 Adaptive Optics Systems 
Adaptive optics is a technique that is used to correct dynamic aberrations in an optical 
system in real time. The concept has been particularly developed in the field of astronomy, 
where it was originally proposed for correcting aberrations introduced after propagation of 
stellar light through the atmosphere. Introductions to AO and the history of its development 
can be found in the works of Hardy [HAR98], Roddier [ROD99], or Tyson [TYS98].  

The basic principle of an AO system in a laser communication application is shown 
schematically in Figure 4.1. An incoming wavefront from a laser source that is corrugated 
after propagation through the atmosphere is collected at the receiver and reflected from a 
deformable mirror. The mirror is shaped to flatten the wavefront aberration using feedback 
from a wavefront sensor to give a corrected point-spread function at a detector, ideally close 
to that of a diffraction limited system. Usually such systems contain an additional element to 
correct angle-of-arrival errors, i.e. the Zernike modes 2 and 3, to relieve the deformable 
mirror, which is typically limited in its maximum stroke, from these modes. Here the element 
appears as a shiftable lens but is often a mirror on piezo actuators. 

In this schematic we have only considered the correction of the received light, but in 
principle the correction that is applied to an incoming wave can also be applied to an 
outgoing wave, i.e. to pre-compensate the aberrations that will be introduced by the 
atmosphere as the beam propagates, and thus increase the collected energy at a distant 
receiver. Pre-compensation is possible in the case, where the incoming and outgoing beams 
travel through approximately the same volume of atmosphere. This might not be true for 
dynamic scenarios, where the incoming and outgoing beams have to be separated by a 
point-ahead angle to achieve a link, taking runtime and the platform motion into account. A 
critical parameter is the isoplanatic angle of the atmosphere, i.e. the angular range in which 
the atmosphere has approximately the same properties [HAR98].  

The predominant development of AO has been for the use in astronomical applications at 
ground based observatories, therefore many of the components that are conventionally used 
in AO systems have a strong focus on low light levels, incoherent light sources, only 



Chapter 4: Adaptive Optics for Laser Satellite-To-Ground Communication 
 

 

62 

moderate phase distortions and weak intensity fluctuations. The requirements for AO 
systems in the field of optical communications however differ from the requirements in 
astronomy. AO systems seem to be most suitable for the deployment on the ground (less on 
flight platforms), considering the complexity of these systems and taking into account, that 
most of the atmospheric phase distortions are generated close to the ground. 

In the following sections we review the benefits of AO systems for the use in satellite-to-
ground communication scenarios. Estimates for the spatial (resolution) and temporal 
(bandwidth) requirements of such AO systems will be discussed. Different types of wavefront 
sensors are introduced and examined in the light of the special requirements of the scenario.  
 

 
Figure 4.1: Schematic of a general AO system for a laser communication link, including a 
deformable mirror, a wavefront sensor with control system, and the receiver element. 

4.1.1 Adaptive Optics Components 
The main components of an AO system are the correcting element to straighten the distorted 
wavefront, the wavefront sensor used to measure the residual wavefront error and the 
control computer, which is used to update the wavefront corrector with feedback from the 
wavefront sensor signal in real time.  

The wavefront corrector in most AO systems is typically a deformable mirror (DM), where 
a reflecting surface or membrane is moved by a number of actuators. A DM can be 
characterized by the surface type (continuous or segmented), the actuation type 
(piezoelectric, electrostatic, magnetic), the stroke (i.e. the maximum surface deformation and 
the maximum inter-actuator stroke), the number and arrangement of the actuators and the 
response time of the mirror. A comparison of a selection of commercially available mirrors in 
terms of spatial correction can be found in [DAL05, DEV08]. Two deformable mirrors with 
their actuator layout are depicted in Figure 4.2. 
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Figure 4.2: Actuator layout of two deformable mirrors (left: BMC140 from Boston 
Micromachines, 140 actuators, segmented/continuous; right: OKO37 from Flexible Optical, 37 
actuators, continuous) with the typical optical pupil superimposed (from [DEV08]). 

4.1.2 Modal Representation of the Wavefront Phase by Zernike 
Polynomials 

Zernike polynomials are used to represent a wavefront over a circular aperture. Originally the 
polynomials were used to describe aberrations of optical systems. Therefore the lower order 
polynomials give aberrations like tilt (j=2,3), defocus (j=4), astigmatism (j=5,6), and coma 
(j=7,8). Piston (j=1) is usually neglected for AO systems, as it does not influence the 
wavefront correction. An introduction to Zernike polynomials can be found in [HAR98, 
BOR99, ROD99, NOL76]. The following formulas and the numbering for the polynomials are 
based on Noll’s work [NOL76]. 

The wavefront phase φ (in radians) is represented by the Zernike polynomials ( ),jZ ρ ψ in 

polar coordinates ( ),ρ ρ ψ=  by 

 ( ) ( )
1

, ,j j
j

a Zϕ ρ ψ ρ ψ
∞

=

=∑ , (4.1) 

where the radius coordinate ρ (0<ρ<1) is normalized to the aperture radius R. The Zernike 
polynomials are chosen so that they fulfill the modal orthogonality property  
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where δij is the Kronecker delta 
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and the integration is performed in polar coordinates over the circular aperture. The factor π  
before the integral gives the area of the aperture with radius 1. Multiplying Eq. (4.1) on both 
sides with Zi 
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integrating over the circular aperture and using property (4.2), the Zernike coefficients aj for a 
specific wavefront can be calculated by  

 ( ) ( )
1 2

0 0

1 , ,j ja Z d d
π
ϕ ρ ψ ρ ψ ρ ρ ψ

π
= ⋅ ⋅∫ ∫  (4.5) 

The functions of the Zernike polynomials Zi can be found e.g. in [NOL76]. Figure 4.3 shows 
the first Zernike polynomials. Noll also presented, besides the Zernike polynomials, the 
Fourier transform and the derivative of the polynomials. 

 
Figure 4.3: First Zernike polynomials. The azimuthal degree m, the radial degree n, and the 
aberration name are given above the images. 

Mahajan [MAH81] and Dai [DAI07] extended the Zernike polynomials from circular to annular 
shaped apertures, i.e. with a central obscuration. A similar expression to Eq. (4.1) is given 
taking the obscuration ration Aperture

Obscuration

D
a Dε =  into account 

 ( ) ( ) ( )
0

, , , ,a j a j a
j

a Zϕ ρ ψ ε ε ρ ψ ε
∞

=

= ⋅∑ . (4.6) 

Again the orthogonality property is fulfilled, this time over the annulus, being expressed in the 
integral over the annulus 
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The annular coefficients are calculated by  
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The derivation of the annular Zernike polynomials in a recursive formula based on the 
conventional Zernike polynomials can be found in [DAI07]. Figure 4.4 shows the first annular 
Zernike polynomials with a central obscuration εa =1/3. 

 
Figure 4.4: First annular Zernike polynomials based on the publication of Dai and Majahan. The 
azimuthal degree m, the radial degree n, and the aberration name are given above the images. 

 
A topic of interest in the literature was the statistical analysis of phase distortions based on 
the Kolmogorov turbulence spectrum in terms of Zernike polynomials. Wang and Markey 
[WAN78] gave, based on the work of Fried [FRI65] and Noll [NOL76], an expression for the 
correlation *

'j ja a  between two Zernike polynomials Zj and Zj’ with the coefficients aj and aj’. 
Based on this the variance of a coefficient ai  with the radial degree n is given by 
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where Γ  denotes the Gamma function. Figure 4.5 shows the magnitude of the variance for 

the first 20 coefficients, omitting the factor ( )0

5/3
D
r  in Eq. (4.9). It can be clearly seen that the 

most significant impact on the wavefront comes from the first two Zernike polynomials 
(j=2,3), i.e. tip and tilt.  
 

 

Figure 4.5: Variance of the Zernike coefficients *
j ja a  for a Kolmogorov spectrum. 

A correcting element like a deformable mirror reduces the wavefront error by inversely 
applying the estimated wavefront cϕ . The mean square residual wavefront error can then be 
written as 

 [ ]22 1 ( , ) ( , )c
Aperture

d dσ ϕ ρ ψ ϕ ρ ψ ρ ρ ψ
π

= −∫∫  (4.10) 

The factor ρ is included for the integration in polar coordinates and 2σ  is given in radians 
square. The relation to the wavefront error expressed in meters instead of radians and 
assuming a wavelength λ is given by 2W

λ
πσ σ= ⋅ . For a modal Zernike approximation up to 

order N the resulting wavefront is given by 

 ( ) ( )
1

, ,
N

c j j
j

a Zϕ ρ ψ ρ ψ
=

=∑ . (4.11) 

Substituting Eq. (4.11) into (4.10) and changing the order of integration and summation gives 
the residual mean square phase error 2

Nσ  for a modal correction up to order N 
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( )

( ) ( )

2 2

1

, 1

1 2( ) ( )

1

N

N j j
jAperture Aperture

N

i j i j
i j Aperture

d a Z d

a a Z Z d

σ ρ ϕ ρ ρ ρ ϕ ρ ρ ρ
π π

ρ ρ ρ ρ
π

=

=

= ⋅ − ⋅ +

+ ⋅

∑∫∫ ∫∫

∑ ∫∫
. (4.12) 

With relation (4.5) to substitute the integral in the second term with jaπ  and the orthogonality 
condition (4.2) to perform the integration in the last term, we get 
 

 2 2 2

1

1 ( )
N

N i
iAperture

d aσ ρϕ ρ ρ
π =

= −∑∫∫ . (4.13) 

Eq. (4.12) and (4.13) yield the mean square residual error for one specific phase distribution. 
This relation can be modified to calculate the ensemble average, i.e. the average over time. 

 2 2 2

1

N

N i
i

aσ ϕ
=

= −∑  (4.14) 

Noll provided explicit formulas for the mean residual phase error 2
Nσ  based on a Kolmogorov 

turbulence spectrum. These expressions are based on Eq. (4.9). The value for the piston 
term j=1 is infinite, but the piston-corrected phase variance can be calculated by the sum 

 2 2
1

2
i

i
aσ

∞

=

=∑  (4.15) 

which yields in accordance with Noll 

 
5/3

2
1

0

1.03 D
r

σ
⎛ ⎞

= ⋅⎜ ⎟
⎝ ⎠

. (4.16) 

Table 4.1 shows the first 8 expressions for the for the mean square residual error for partial 
modal corrections.  
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Table 4.1: Residual mean square phase error for selected orders of modal correction. 
Residual Error Corrected terms 

( )0

5 32
1 1.0299 D

rσ = ⋅  Piston 

( )0

5 32
2 0.582 D

rσ = ⋅  

( )0

5 32
3 0.134 D

rσ = ⋅  
Piston, tilt  

( )0

5 32
4 0.111 D

rσ = ⋅  Piston, tilt, defocus  

( )0

5 32
5 0.0880 D

rσ = ⋅  

( )0

5 32
6 0.0648 D

rσ = ⋅  
Piston, tilt, defocus, astigmatism 

( )0

5 32
7 0.0587 D

rσ = ⋅  

( )0

5 32
8 0.0525 D

rσ = ⋅  
Piston, tilts, astigmatism, coma 

( )0

5 32 3 20.2944 D
N rNσ −≈ ⋅ ⋅  Approximation of the residual square 

phase error for larger values of N 
 

4.1.3 Wavefront Residual Error and Strehl Ratio 
A widely used measure for wavefront distortions and therefore for the quality of a formed 
focus spot is the Strehl ratio S. The Strehl ratio gives the ratio between the maximum 
intensity of an aberrated beam over the maximum intensity of an unaberrated beam, i.e. an 
Airy distribution. Therefore S=1 indicates an ideal focus spot. The range of S lies between 
zero and one. Several approximations for the relation between the wavefront error variance 
and the Strehl ratio have been given in the literature. Mahajan [MAH83] gave a comparison 
between several approximations. A widely used approximation is (σ  in radians) 

 ( )2
1 expS σ≈ − . (4.17) 

Maréchal gave the approximation 

 
22

2 1
2

S σ⎛ ⎞
≈ −⎜ ⎟
⎝ ⎠

, (4.18) 

which is closely related to a formula given by Born and Wolf [BOR99] 

 2
3 1S σ≈ −  (4.19) 

and can be easily derived from S2 by neglecting the fourth order term σ4. S2 and S3 are both 
related to S1 by the Taylor expansion ( )2 2 41

2exp 1 ...σ σ σ− = − + −  Mahajan showed that the 
error of all three approximations stays below 10% for Strehl ratios greater 0.6 or a wavefront 
standard deviation smaller 0.6 radians applied to primary aberrations across the pupil. 
Approximation S1 yields slightly better values. Both S2 and S3 underestimate the Strehl ratio. 
Figure 4.6 shows a comparison of the three algorithms. 
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Figure 4.6: Comparison of the approximations for the relationship between wavefront error and 
Strehl ratio. S1 and S2 typically underestimate the Strehl ratio.  

 

4.2 General Requirements for Adaptive Optics Systems in Satellite-
To-Ground Links 

This section analyzes the particular demands on an AO system for satellite-to-ground links 
(SGL). This will be the basis for the analysis of wavefront sensors and their performance 
characteristics under these specific conditions. From the experiments and measurements 
described in Chapter 3, it can be said that AO systems in these scenarios have to work 
under the following conditions [KNA09]: 

• Very strong phase distortions and intensity fluctuations (scintillation) due to the 
long path through the atmosphere especially at low elevation angles. 

• Challenging temporal requirements due to the transversal motion of the beam 
through the atmosphere. 

• Phase singularities, which impair the performance of wavefront sensors and 
might inhibit the use of continuous deformable mirrors. 

• Deployment of the ground stations at preferably non-astronomical sites at low 
altitudes to allow a wide spread of stations, however at the cost of difficult 
atmospheric turbulence conditions. 

4.2.1 Wavefront Variance and Tip-Tilt over the Telescope Aperture 
In a first step the expected variance of the wavefront and therefore the required stroke of a 
deformable mirror (DM) and the range of a tip-tilt correction for certain atmospheric 
conditions is estimated. The central atmospheric parameter for this estimation is the Fried 
parameter r0.  

Usually an AO system corrects the tip/tilt modes and the higher order modes with 
separate correctors. The reason for this is that typical DMs have a limited stroke, which is not 
sufficient to correct all modes. This seems to be especially reasonable as the tip/tilt modes 
produce the strongest phase distortions. The peak-to-peak stroke across the aperture can be 
estimated to 5 times [TYS00] the standard deviation of the values given in Table 4.1. Thus, 
the maximum required DM stroke with a tip/tilt corrected phase would be calculated by  
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5

62
3

0

5 5[ ] 0.3662 2
DStroke rad rσ ⎛ ⎞= ⋅ = ⋅ ⎜ ⎟

⎝ ⎠
. (4.20) 

The factor ½ is included as the mirror has to move only half the distance of the wavefront 
distortion due to the reflection. The stroke in meters is then calculated by 

 [ ] [ ]Stroke meters Stroke rad λ
π

= ⋅
2

 (4.21) 

The variance of the atmospheric tilt σθ over the aperture D of the telescope primary mirror 
and at the wavelength λ can be estimated by [TYS00] 

 ( )
5

232

0
0.184 D

r Dθ
λσ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
. (4.22) 

The maximum atmospheric tilt αθ that a tip-tilt correction mirror should be able to remove is 
estimated by 

 2.5θ θα σ= ± . (4.23) 

Because of the telescope magnification the total stroke of the tilt mirror calculates to 

 ( )tilt-mirror
1

2
D

DStrokeθ θα= , (4.24) 

where Dtilt-mirror denotes the beam diameter at the tilt mirror. The magnification of the 
telescope system is given by 

tilt mirror

D
Dm

−
= . As the tilt motion of the mirror results in twice the 

angular tilt of the beam, a factor ½ is included.  
Taking the Fried parameter for a plane wave (Section 3.1.4.3) 

 
3/56 /5

2
0

0

0.423 ( )
2

L

n
z

r C z dzλ
π

−

=

⎡ ⎤⎛ ⎞= ⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦

∫  (4.25)  

and inserting it into Eq. (4.22) results in 

 2 1/3 5/3 1/3 2
0

0

0.184 3.073 ( )
L

n
z

D r D C z dzθσ λ− 2 − −

=

= ⋅ ⋅ ⋅ = ⋅ ∫ . (4.26) 

It is interesting to note that the tilt variance is independent of the wavelength. 

4.2.2 Zonal Analysis – Resolution 

The achievable Strehl ratio S of an AO system depends on the actuator spacing rc of the DM, 
the Fried parameter r0 and the constant DMκ , which describes the behavior of the 
deformable mirror and its actuator influence function [TYS00]. Typical continuous faceplate 
DMs are well modeled by κDM = 0.35. The residual phase error σ is estimated for a certain 
actuator spacing rc  (in the entrance pupil of the telescope) and a worst case r0 assuming a 
Kolmogorov spectrum by [HUD77] 
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5/3

2

0

c
DM

r
r

σ κ
⎛ ⎞

= ⋅⎜ ⎟
⎝ ⎠

 (4.27) 

and the resulting Strehl ratio is estimated using approximation (4.17) 

 
5

3
c

0
exp DM

rS rκ
⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

. (4.28) 

In the opposite direction the actuator spacing can be derived from r0 and a required S by 

 
3

5

c 0
ln

DM

Sr r κ
⎛ ⎞= ⎜ ⎟−⎝ ⎠

. (4.29) 

The number of required actuators with spacing rc over the full aperture of the telescope can 
be estimated by 

 
( )2

2

2
4

4a
c c

D
DN

r r

π π⋅ ⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
. (4.30)  

As a rule of thumb the actuator spacing can be assumed to be equal to the minimum r0 to be 
corrected under the assumption of the weak fluctuation regime. This would result in a Strehl 
ratio of about S=0.7. For strong fluctuations with phase singularities, a higher actuator 
respectively sensor resolution is required (see Section 4.4.1.2). 

4.2.3 Modal Analysis with Zernike Polynomials 
The modal analysis shows the performance of an AO system for a partial correction with N 
Zernike modes. The higher the number of corrected modes, the lower the residual phase 
error and the better the Strehl ratio will be. Figure 4.7 shows the correction performance as a 
function of the ratio D/r0. Five curves with different degree of correction (N = 1 no correction 
(piston is ignored), N = 3 tip/tilt correction, N = 8, N = 20, N=100) are shown. The graph is 
based on the equations in Table 4.1 and the approximate relation between residual error and 
Strehl ratio (4.17).  

A simple tip-tilt correction (N = 3) suffices to achieve a Strehl ratio of 0.5 assuming a ratio 
D/r0=2.5. For a ratio D/r0 = 8 about N = 20 modes have to be corrected. In Chapter 3 typical 
values for the atmospheric coherence length r0 are given. At 5 degrees elevation, r0 values 
are as low as 2cm.  Assuming telescopes diameters of D=10-40cm, it becomes obvious that 
wavefront errors pose a problem to achieve reasonable Strehl ratios respectively residual 
phase errors.  Thus, phase distortions are a problem for fiber coupled or coherent 
communication system, as they rely on the quality of the received wavefront.  

Apart from the phase distortions, scintillation on the signal become very strong at low 
elevation angles. The strength of the power scintillation at the level of a fiber-coupled 
receiver can be reduced by using larger telescope apertures taking advantage of the 
aperture-averaging effect; however, this of course directly increases the demands on the AO 
system in terms of required resolution (sensor and corrector) and the number of required 
Zernike modes. 
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Figure 4.7: Mean residual phase error for selected orders of modal phase correction 
(N=1,3,8,20,100) as a function of D/r0. The corresponding Strehl ratio calculated with 
approximation (4.17) can be seen on the right axis.  

4.2.4 Temporal Analysis – Bandwidth Requirements 
An important parameter of an AO system is the required bandwidth to achieve a desired 
correction performance. Greenwood [GRE77] developed a method, based on a joint work 
with Fried [GRE76], to estimate the bandwidth requirements of an AO system using the 
Taylor “frozen turbulence” hypothesis. He expressed the mean residual phase error of the 
corrected wavefront due to bandwidth limitations by 

 ( ) ( )22
3

0

1 ,G dBH f f P f dfσ
∞

= −∫  (4.31) 

where P(f) denotes the disturbance power spectrum over the frequency f. The performance 
of the AO system can be modeled in various ways. Greenwood used a sharp cut-off function 
and a simple first order (RC) filter. The RC filter with the 3dB cut-off frequency f3dB is 
assumed for the following discussion and the closed-loop servo response is modeled by 

 ( )
1

3
3

, 1dB
dB

ifH f f
f

−
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 (4.32) 

and consequently  

 
2

2
2 2

3

1 ( )
dB

fH f
f f

− =
+

. (4.33) 

The residual phase error σG of the system can then be expressed in dependence of f3dB and 
the Greenwood frequency fG, which is characteristic for the atmospheric turbulence and wind 
conditions  

 
5/3

2

3

G
G

dB

f
f

σ
⎛ ⎞
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⎝ ⎠

 or  3 6/5
G

dB
G

ff
σ

= . (4.34) 
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The Greenwood frequency fG is given by 

 
3

5 536 /5 22.31 ( ) ( )G nf C z v z dzλ−
⊥

⎡ ⎤= ⋅ ⋅⎢ ⎥⎣ ⎦∫ . (4.35) 

It depends on the effective velocity v⊥  of the inhomogeneous media, which moves 
transversal across the beam. It includes the wind velocity and the angular speed due to the 
satellite motion. Eq. (4.35) is given for the asymptotic limit of infinite aperture diameters.  

Figure 4.8 shows the Greenwood frequency over the elevation angle for a static link, 
which includes only the wind speed (Bufton only), and a dynamic link to a LEO satellite, 
which includes the wind speed and the satellite motion (Sat. +Bufton). The simulations are 
based on the HV5/7 turbulence and the Bufton wind model with the parameters specified in 
Chapter 3. At low elevation angles the bandwidth requirements for a satellite link significantly 
increase, as the beam travels a longer distance through the atmosphere and the transversal 
motion of the beam linearly increases with the distance to the ground station, i.e. angular 
slew rate times distance s zω ⋅ . 

Figure 4.9 depicts the resulting Strehl ratio with an AO system as a function of the cut-off 
frequency f3dB based on Eq. (4.34) and (4.17). Also this graph shows very high bandwidth 
requirements for low elevation angles. 
 

 

Figure 4.8: Control-system bandwidth f3dB requirements at 1064nm over the elevation. The 
upper three curves give the bandwidth requirements for a LEO satellite SGL, taking the satellite 
motion and the Bufton wind model into consideration. The lower three curves represent a 
static link as in a GEO link considering only the atmospheric wind influence. Three different 
Strehl ratios (S=0.3, 0.6, 0.8) are plotted for each scenario. 
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Figure 4.9: Resulting Strehl ratio at 1064nm over the 3dB cut-off frequency f3dB of the AO 
system. Each curve represents a certain elevation angle. The graph is given for an SGL 
scenario from a LEO satellite. 

 
Tyler [TYL94] developed an expression for the centre-of-gravity (G-tilt) power spectrum of an 
atmospheric link and deduced a characteristic frequency

GTf , also called the tilt Greenwood 
frequency due to its similarity to the Greenwood frequency. It is given by  

 
1/ 6 1/ 2

2 20.331 ( ) ( )
GT n

Df C z v z dz
λ

−

⊥
⎡ ⎤= ⎣ ⎦∫ . (4.36) 

The according residual one-axis tilt variance is estimated again in dependence of the 3dB 
cut-off frequency f3dB of the AO system  

  
2 2

2

3

G

dB

f
f Dθ

λσ
⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. (4.37) 

Figure 4.10 shows the tilt Greenwood frequency for a 0.2m telescope over the elevation 
angle, which gives an estimate for the bandwidth requirements of a tip-tilt correction system. 
Again the bandwidth requirement shows an increase for low elevation angles. Figure 4.11 
shows the residual tilt variance as a function of the control-loop bandwidth.  
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Figure 4.10: Control-system bandwidth f3dB  for a tip-tilt correction over the elevation angle for 
a static beam and a moving beam due to a LEO satellite motion.  The static beam assumes a 
transversal wind velocity calculated from the Bufton model. The dynamic beam assumes the 
satellite motion together with the wind velocity. Simulation parameters are λ=1064nm, D=20cm. 

 

Figure 4.11: Residual tilt variance over the 3dB cut-off frequency f3dB of the AO system as a 
function of the elevation angle. Simulation parameters are λ=1064nm, D=20cm in a SGL 
scenario from a LEO satellite. 
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4.3 Effects of Strong Scintillation and Phase Singularities   
The strength of intensity scintillation is commonly classified from the weak (intensity) 
fluctuation regime over the moderate to strong fluctuation regime. Most of the calculations 
describing the effects of the atmosphere can only be applied for the weak fluctuation regime, 
as they are based on the Rytov theory which is only valid under weak fluctuations. A 
measure of the scintillation level on a path through the atmosphere is the Rytov index 
(variance) given for an SGL, i.e. transmitter in space and assuming a plane wave, by 

 2 7 / 6 2 5/ 6

0

2.25 ( )
L

R nk C z z dzσ = ⋅∫ , (4.38) 

where z is the distance from the ground station, ( )2
nC z  the atmospheric-turbulence structure 

constant at the distance z, and L the distance to the satellite. Typically, values of 2 0.3Rσ <  
are assumed to be in the weak fluctuation regime. Higher values indicate moderate to strong 
fluctuations. The Rytov index corresponds to the normalized variance of the intensity for a 
plane wave under weak fluctuations and assuming a Kolmogorov turbulence spectrum. 
Figure 4.12 shows the Rytov index for an SGL over the elevation angle. The strong 
fluctuation regime approximately starts below an elevation angle of 30 degrees at 2 0.3Rσ > . 

 
Figure 4.12: The Rytov index for a plane wave as a function of the elevation angle for three 
communication wavelengths. A HV5/7 turbulence model was taken (Section 3.1.3.1). 

 
Several authors have investigated the occurrence of phase singularities (also called branch 
points, phase dislocations) in atmospheric laser links [BAR83][FRI98]. Voitsekhovich et al. 
[VOI98] and Tyler [TYL00] gave expressions for the density of phase singularities. Tyler 
suggested that singularities appear at 2 0.3Rσ > , which is confirmed by our own simulations 
with the phase screen approach. Fried [FRI98] and Tyler [TYL00] studied the influence of 
phase singularities on the least-square type phase reconstruction usually employed for 
standard Shack-Hartmann wavefront sensors, whose performance steeply deteriorates in the 
presence of singularities (see Section 4.4.1.1). Fried [FRI01], Barchers et al. [BAR02a], and 
Murphy et al. [MUR08] analyzed more advanced reconstruction methods, e.g. the complex 
exponential or the branch point potential method, to improve the performance in the strong 
fluctuation regime.  
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4.3.1 Branch Points in Laser Physics 
For the understanding of phase dislocations it is instructive to study their appearance in laser 
physics. Vasnetsov [VAS99] and Soskin [SOS01] described in detail how to create phase 
dislocations with Gaussian, Laguerre-Gaussian, and Hermite-Gaussian beams. They 
distinguished between edge/circular dislocations and screw dislocations, which are described 
in the following sections. 

4.3.1.1 Circular Edge Dislocation 
Although in atmospheric laser communications only screw dislocations are observed, as a 
first example of an artificially created dislocation a circular dislocation is shown, as this type 
can be simply generated by the superposition of two Gaussian beams. A Gaussian beam 
travelling along the z-axis is described by 

 ( ) ( ) ( ) ( )
2 2

0
02, exp exp arctan

2G
G G R

w k zE z E i i ikz i
w z w z R z z

ρ ρρ φ
⎛ ⎞ ⎛ ⎞

= − − + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (4.39) 

where EG gives the amplitude, w0 the waist radius, wG(z) the beam radius (1/e for the 
amplitude and 1/e² for the intensity), R(z) the radius of curvature, zR the Rayleigh range, 

2k π
λ=  the wave-number and Φ0 a constant phase offset. The beam radius is given by 

( ) 2 2
0 1 /G Rw z w z z= + , the beam radius of curvature by ( ) ( )2 21 /RR z z z z= +  and the 

Rayleigh range by 21
02Rz kw= . 

The superposition of two Gaussian beams E1 and E2 both with the waist at z=0 gives 

 ( ) ( ) ( )
2 2

1 01 2 022 2
01 02

, 0 exp exp exp expE z E i E i
w w
ρ ρρ φ φ

⎛ ⎞ ⎛ ⎞
= = − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. (4.40) 

1E , 2E  and 2
01w , 2

02w  denote the amplitudes and the waist radii of the first and second 

beam. If the phase of the beams is shifted by a value of π, i.e. 02 01φ φ π− = ± , it is obvious 
that the amplitude of the combined beam drops to zero for  

 
2 2

1 22 2
01 02

exp expE E
w w
ρ ρ⎛ ⎞ ⎛ ⎞

− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (4.41) 

forming a zero-amplitude ring at the radius  

 
2 2

101 02
2 2
02 01 2

ln
Ew w

w w E
ρ

⎛ ⎞
= ⎜ ⎟⎜ ⎟− ⎝ ⎠

. (4.42) 

Figure 4.13 and Figure 4.14 show an example of two beams at z=0. The following 
parameters were assumed: 1 1E = , 2 0.5E = , w01=10, w01=100, and k=1. Taking Eq. (4.42) 
the zero-amplitude circle appears at ρ0=8.36. Figure 4.13 depicts the two beam amplitudes 
(left). At the crossing point, i.e. equal amplitude, the zero-amplitude ring appears (right). 
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Figure 4.13: Appearance of a zero amplitude ring at locations, where the superposed beams 
have equal amplitude but opposite phase ( 02 01φ φ π− = ± ). On the left the crossing point of the 
amplitudes is shown over the radius ρ. On the right side the resulting zero-amplitude ring can 
be observed. 

 
Figure 4.14 shows the phase of the combined beams in a cut along the ρ-z plane. At the 
waist z=0 and ρ0=8.36 the expected dislocation can be observed at the location of zero 
amplitude. From the dislocations the lines of equal phase radiate in a star-like fashion. An 
extra wavefront sheet is introduced to the right of the dislocation.  
 

Figure 4.14: Phase shown in the ρ-z plane. In the center the circular dislocation can be seen, 
which extends into the viewing plane. A zoomed-in view is shown on the right, including lines 
of equal phase. To the right of the dislocation an extra wavefront sheet is introduced. To the 
left of the dislocation the typical saddle point is found. 

4.3.1.2 Screw Dislocation 
Soskin [SOS99] describes in his work the generation of screw dislocations using a 
superposition of a Laguerre-Gaussian (LG) and a Hermite-Gaussian (HG) beam, both 
propagating along the z-axis. Details on LG and HG beams can be found for example in 
Saleh and Teich [SAL91]. The more physical realization of laser beams to generate 
dislocations is studied in Smith et al. [SMI99]. The LG beam 0

1LG is described by 
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and the HG beam 01HG by 

 ( )
( ) ( )01
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22, , sin exp exp 2
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where the Gouy phase is given by ( ) ( )arctan
R

z
zzΞ = . ( ),ρ ψ  are the polar coordinates in 

the transverse plane. The HG beam can be created by the combination of two LG beams 
1 1
0 0

HG LG LG
iE E E

+ −
= − . The required LG beams 1

0LG
E

±
 are given by 
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The combination of the LG and HG beam 0 011
HGLG

E iE+ is illustrated in Figure 4.15 at z=0 

(waist). The 0
1LG  beam has a zero-amplitude ring at radius 0

2
wρ = , and the HG01 beam has 

a zero-amplitude line at y=0. In the combination two zero-amplitude locations appear at 

( )0

2
, 0, 0wx y z= ± = = .  

 
Figure 4.15: The combination of the Laguerre-Gaussian and Hermite-Gaussian beam 

0 011
HGLG

E iE+ results in two locations with zero-amplitude and therefore two screw-dislocations 

with opposite charge. 

Figure 4.16 shows the phase function in the waist plane with the two vortices (dipole) of the 
dislocations. The white lines denote equiphase lines with a spacing of λ/30, which terminate 
or originate at the dislocations. For a dipole dislocation the equiphase lines inter-connect the 
singularity points.  
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Figure 4.16: Phase image [radians] in the waist plane for the combined LG and HG beam. The 
two screw-dislocations with the typical screw like structure can be observed.  

Taking Eq. (4.43) and (4.44), collecting all real factors in A, neglecting 
( )

2

2
ki
R z
ρ

 and the Gouy 

phase for small z, the combined beam close to the waist plane can be written as 

 ( ) ( )0 011

2

2
0 0

2exp 1 sinHGLG
E iE A ikz i

w w
ρ ρ ψ

⎡ ⎤⎛ ⎞
+ = ⋅ ⋅ − +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
. (4.46) 

The ( )
0

sin
w
ρ ψ  is a monotonically increasing function walking around the dislocations, i.e. 

forming the phase screw. The local (polar) coordinates ( ),r φ and Cartesian coordinates (a,b) 

around the right dislocation expressed in polar coordinates ( ),ρ ϕ  of the origin are 

 0cos cos
2

wa r φ ρ ψ= = −  (4.47) 

 sin sinb r φ ρ ψ= = . (4.48) 

Transforming (4.48) to  

 
sin

sin
r φρ

ψ
= ,  (4.49) 

inserting this into (4.47) and assuming that cos 1ψ ≈  for 1r  gives 

 0sinsin cos
2

wr
r
ψφ φ⎛ ⎞= +⎜ ⎟
⎝ ⎠

. (4.50) 

Taking the results from (4.49) and (4.50), the last term in (4.46) results to  
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 ( )
2

2
0 0 0

2 41 sin cos sin
2
ri ir

w w w
ρ ρ ψ φ φ

⎡ ⎤⎛ ⎞
− + = +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
, (4.51) 

which describes an ellipse in the immediate vicinity of the dislocation and shows a 
monotonically increasing phase from 0 2π−  around the dislocation. The ellipse is very 
elongated along the b-axis for small r, and becomes more circular for increasing r. The 
phase component of (4.51) can be expressed by a function ( ), ,a b rϕ . With this the surfaces 
of equal phase (wavefronts) are given by  

 ( )( , , ) 2 0,1, 2...a b r kz n nϕ π+ = =  

which describes a helical shape of a screw dislocation similar to the one shown in Figure 
4.17 for a circular shape of ( ), ,a b rϕ . A similar derivation can be performed for the other 
dislocation. 

 
Figure 4.17: Helical shape of a screw dislocation. 

 

4.3.1.3 Dislocations in a Convergent Beam 
Circular/edge and screw dislocations also appear in a convergent beam after a focus lens. 
This is even the case, if the input beam before the lens does not contain any zero amplitude 
locations or phase dislocations. 

Circular dislocations can be observed for an ideal focus spot with an Airy distribution. 
Around the zero amplitude rings in the focus a similar phase distribution as shown in Figure 
4.14 appears. Figure 4.18 shows the phase and amplitude distribution of the Airy pattern in 
the vicinity of the focus in a ρ-z plane. The amplitude plot clearly shows the first two zero-
amplitude rings on each side of the beam axis ρ=0. The dislocations are visible at the same 
locations in the phase plot, with alternating charge. 
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Figure 4.18: Sagittal plane cut for the phase and amplitude of the ideal Airy distribution around 
the focus.  

 
As soon as there are slight wavefront distortions in the incoming beam, the circular 
dislocations disappear and screw dislocations appear. Towards the focus plane an increase 
of the number of dislocations can be observed.  Figure 4.19 and Figure 4.20 show 
transversal cuts through the beam of an ideal plane wave and a distorted wave.  
 

 
Figure 4.19: Phase distribution in the transverse plane with the central image in the focus 
plane. On the left planes before and on the right planes after the focus are shown. Circular 
dislocation can only be recognized in the focus plane at the edge of each band. 
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Figure 4.20: The same planes as in Figure 4.19 are shown, however the input wavefront is 
slightly distorted (r0=0.1m). In the vicinity of the focus a large number of screw dislocations 
appear and the circular dislocations have disappeared.  

4.3.2 Branch Points in Atmospheric Beam Propagation 
Screw dislocations, or branch points as they are mostly called in the laser communication 
community, appear in the atmosphere in strong turbulence conditions with long paths 
through the atmosphere. Their appearance is caused by interference effects similar to the 
ones described in Section 4.3.1. They are called branch points due to the split up of one 
interference fringe into two. They appear at locations where the amplitude (intensity) drops to 
zero, i.e. a point where both the real and imaginary part of the complex field E become zero. 
In the consequence branch points are always located at the intersection of the lines real(E)=0 
and imaginary(E)=0. The crossing divides the field around the branch point into the four 
quadrants of the 2π phase circle, already suggesting the phase screw.  

Optical phase dislocations caused by atmospheric turbulence have been studied by 
several authors. Fried and Vaughn [FRI92] described the origin of branch points. 
Voitsekhovich [VOI98] studied the density of turbulence-induced phase dislocations. Wide 
attention to this topic was also given in the Soviet Union, e.g. the work of Baranova and 
Zeldovich can be mentioned [BAR81]. Several authors specifically worked on the impact of 
branch points to adaptive optics (AO) systems. Fried [FRI98] and Tyler [TYL00] analyzed the 
performance deterioration of AO system especially with phase reconstruction algorithms as 
used in Shack-Hartmann wavefront sensors. Details on this will be given in the analysis of 
Shack-Hartmann sensors in Chapter 4.4.1. Baranova et al. [BAR83] discussed restrictions of 
adaptive mirrors in the presence of branch points. Murphy et al. [MUR08] investigated the 
detection and correction of branch points using the branch point potential method introduced 
by [WIL99]. Fried [FRI01] discussed the complex exponential method to reconstruct a correct 
phase estimate with a Shack-Hartmann sensor in strong scintillation.  

Simulations of the atmospheric turbulence with the DLR tool PILab [PER05], which is 
based on a phase-screen approach, confirmed the appearance of branch points below about 
20 degrees elevation. Figure 4.21 shows a section of the amplitude and phase (wrapped 
phase 0-2π) of a typical LEO satellite-to-ground link (SGL) at 10 degrees elevation. White 
lines indicate real(E)=0 and black lines imaginary(E)=0. At each crossing point a branch point 
is located. In the amplitude figure it can be seen that the branch points are always located in 
regions with relatively low amplitude. 
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Figure 4.21: Simulated received field in a LEO SGL at 10 degrees elevation. On the left the 
amplitude of the field and on the right the phase. The black and white lines indicate lines of 
zeros of the real respectively imaginary part of the complex field E. At the crossings of a white 
and a black line screw dislocations can be observed in the phase image. At the same positions 
zero amplitude points are visible in the amplitude plot.  

 
Branch points are always located at zero-amplitude points. Therefore a first approach to 
detect branch points would be to search for zero-amplitude points; however, in real sensor 
systems it is not possible to distinguish between zero amplitude and almost zero amplitude. 
This is due to sensor noise and also sensor resolution. Fried [FRI98] suggested a different 
approach by measuring the rotational component of the phase gradients, i.e. measuring the 

slope of the screw. For this Fried introduced the principal value gradient ( ) ( )
( )( ),

,
,

pv
x
pv
x

g x ypv
g x y

g x y = . 

The gradient in x-direction (and accordingly in y-direction) is given by 

 ( ) ( ) ( ){ }
0

PV , ,
, limpv

x

x y x y
g x y

δ

ϕ δ ϕ
δ→

⎡ ⎤+ −
= ⎢ ⎥

⎢ ⎥⎣ ⎦
. (4.52) 

The principal value operator limits the gradient to the range –π to +π by adding or subtracting 
2π.  A branch point can now be detected with the closed-line integral 

 ( ) ( )( ) 2 if a branch point is enclosed
0 if no branch point is enclosed

pv

C

t g r d
π

ξ ξ ξ
±⎧

⋅ = ⎨
⎩

∫ , (4.53) 

where ( )t ξ  is the tangential vector to the closed shape. An equivalent formulation can be 
given for the discrete case. Figure 4.22 shows detected branch points in the simulated field 
already shown in Figure 4.21. 
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Figure 4.22: Detected branch points in SGL at 10 degrees elevation. Left: Full simulated field 
50cm square with green rings and red crosses indicating opposite charge of the vortices. 
Right: Detailed view of the rectangular area with the same dimensions as in Figure 4.21. 

 
The steep increase of the number of branch points in an SGL below an elevation angle of 30 
degrees elevation could also be observed in the simulated fields as it is shown in Figure 
4.23. The number of branch points was detected as a function of the elevation angle for the 
50cm square field of the simulation with a resolution of 1024x1024 pixels at a wavelength of 
λ=1064nm.  

 

Figure 4.23: Number of phase singularities in the simulation for the satellite SGL. Simulation 
area 50x50cm, 1024x1024 pixels, λ=1064nm. Fields were simulated at 5, 10, 20, 45, and 90 
degrees elevation. 

 
As branch points always appear in regions of the incoming field with very little amplitude, 
they are difficult to measure with noise limited sensors. Figure 4.24 shows the intensity 
measurements with a Shack-Hartmann sensor setup for different elevation angles between 
10 and 40 degrees elevation during the SGLs from OICETS. Larger regions of low intensity 
can be recognized at 10 and 20 degrees elevation. This makes it difficult to detect branch 
points for example by the measurement of the rotational component of the slopes as 
suggested in Eq. (4.53). Another difficult issue is the very large dynamics of the received 
intensity, i.e. the range between fades and surges, which can be observed at low elevation 
angles. At 40 degrees elevation less variation can be seen in the telescope pupil.  
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Figure 4.24: Typical intensity distribution (pixel values of the sensor) in the 40cm telescope 
aperture recorded with the Shack-Hartmann sensor during an SGL from OICETS at 10, 20, 30, 
and 40 degrees elevation. The slit at the bottom of the aperture is part of the telescope spider.  

 

4.4 Wavefront Sensors 
This section surveys the range of major wavefront sensors described in the literature and 
investigates their properties under the specific conditions of LEO satellite-to-ground links, 
which distinguish the use of the wavefront sensor from that in astronomical applications.  
Atmospheric conditions are much more severe in SGL scenarios: 

• Very strong phase distortions due to the long path through the atmosphere at 
low elevation angles. 

• Very strong intensity fluctuations due to the long path through the atmosphere 
at low elevation angles. 

• Phase singularities, which impair the performance of wavefront sensors and 
might prohibit the use of continuous deformable mirrors. 

• Challenging temporal requirements due to the fast motion of the beam through 
the atmosphere. 

• Preferably deployment of the ground stations at non-astronomical sites at low 
altitudes and therefore at worse atmospheric turbulence conditions. 

In addition, the scenario exhibits some properties very specific to satellite-to-ground links: 

• Comparatively high received power levels, as the communication system at 
several Gbps requires a sufficient link budget. 

• The communication laser is always a point source.  

• Usually the source will be highly monochromatic and coherent. 

• Relatively small telescope apertures (<=1m) for near Earth scenarios will be 
used for communication, compared to several meters in Astronomy. 

• The AO correction will be for a very small field-of-view, as a point source is 
observed. In the consequence no multi-conjugate system will be required even 
for strong turbulence. 

Typical free-space optical (FSO) communication systems use various sensors for the 
pointing, acquisition, and tracking (PAT) systems for the link build-up and sustainment. Four-
quadrant sensors have been widely used, but with the further development of standard CCD 
cameras also high-resolution imaging sensors have become available at low cost. Especially 
the latter might offer an interesting solution for a dual use sensor, providing data for the PAT 
system and at the same time for the reconstruction or at least partly reconstruction of the 
wavefront distortions. 
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FSO communication systems at least in the near Earth region, up to GEO satellites, work 
at high received power levels, as the communication system for high data-rates requires 
sufficient power levels for sufficient bit-error rates. As the distances are rather short, rather 
small telescope apertures (<1m) compared to astronomical systems are used. This simplifies 
the task of wavefront correction, however the scale sizes of phase distortions become rather 
small with Fried parameters r0 on the order of a few centimeters. This has to be taken into 
consideration for the spatial resolution of the wavefront sensors as well as the correcting 
elements. 

Table 4.2 shows a coarse classification of the wavefront sensor types. On a first level the 
techniques can be classified into iterative and deterministic techniques. Iterative techniques 
attempt in several steps to obtain an estimate of the wavefront distortions by minimizing a 
quality measure. Phase retrieval and phase diversity methods can be mentioned here, which 
are discussed in Section 4.4.4. Also wavefront “sensorless” systems belong to this category 
in a wider sense. They use a single measurement point, for example the power coupled into 
a fiber, to improve the correction of the wavefront in a gradient-optimization fashion. In this 
way they also gain an estimate of the wavefront distortions. As they measure the phase in a 
very indirect way, they are not discussed with the wavefront sensors, but in Section 4.5. 

The deterministic techniques can be classified into geometric optics methods and 
interferometric methods. Classical wavefront sensors from astronomy like the Shack-
Hartmann sensor (Section 4.4.1) and the curvature sensor (Section 4.4.2) belong to the 
group of geometric optics methods. Interferometric methods are better known from optical 
shop testing. Of the interferometric methods common-path interferometer, unequal path 
point-diffraction interferometer, and shearing interferometer are introduced in Section 4.4.3. 
A detailed discussion will be given in Chapter 5. Common-path and unequal-path 
interferometers are presented in a self-referencing design, i.e. the reference beam of the 
interferometer is generated from the received and distorted wave by a spatial filter in a 
Fourier plane, transmitting only the zero-order (spatial) spectral component of the beam.  

Common-path and unequal path interferometer can be setup in a way that they directly 
measure the phase and no reconstruction of the wavefront is necessary from the sensor 
images, i.e. the phase is directly mapped to intensity on the sensor. Therefore they can be 
called direct wavefront sensors.  
 
Table 4.2: Classification of wavefront sensor types 

Iterative 
Techniques Deterministic Techniques 

 Geometric Optics Interferometric Methods 

  Shearing 
Interfero-
meter 

Common Path 
Interferometer 

Unequal Path PDI 
Interferometer 

 

Phase Retrieval 
Phase Diversity 
Wavefront 
Sensorless AO 
Systems 
 

Shack-Hartmann 
Sensor 
Curvature Sensor 
Pyramid Sensor 
 

 Zernike Phase 
Contrast 
 

Twyman-Green  
Mach-Zehnder  

 

4.4.1 Shack-Hartmann Wavefront Sensor 
One of the most common wavefront sensors in AO systems is the Shack-Hartmann 
wavefront sensor (SHS). This is due to the physical robustness of the sensor and its ease of 
implementation. The sensor consists of a lenslet array, placed in a plane conjugate to the 
telescope pupil, and a pixellated detector, placed in the back focal plane of the lenslet array. 
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Each lenslet of the array produces a focus spot on the detector (Figure 4.25). The 
displacement of each spot is proportional to the (averaged) gradient (tilt) of the wavefront 
across the lenslet. More details on the SHS can be found in many publications, e.g. [HAR98].  

 
 
Figure 4.25: Principle of a SHS with a lenslet array and a pixellated sensor (camera). 

 
The SHS is based on the simple principle that the difference between two neighboring phase 
points 1ϕ  and 2ϕ   is proportional to the gradient g between these points (e.g. two lenslets) 

 1 2 1g ϕ ϕ∝ − . (4.54) 

For the whole array of gradient measurements and corresponding wavefront phase points 
(both stacked in a vector) a relation can be established with the geometry matrix Ageo by 

 i geo ig A ϕ= ,  (4.55) 

which can be inverted for example by a least-square method in order to obtain the phase 
from the Shack-Hartmann gradient measurements 

 ( ) 1T T
i geo geo geo iA A A gϕ

−
= . (4.56) 

The subscript i with the phase points and gradients indicates a discrete formulation (sampled 
on a grid), in contrast to ( )xϕ  and ( )g x  in the continuous formulation of the next section. A 
direct inversion of Ageo is not possible, as Ageo is not a square matrix. Details on solving such 
systems of linear equations can be found e.g. in [PRE92]. Problems with so-called waffle 
modes (appearance of checker board patterns in the reconstruction), corresponding to 
singular mode spaces of the geometry matrix, are for example treated in [GAV03].  

Eq. (4.56) holds in the weak fluctuation regime. In the next section the impact of strong 
fluctuations including phase singularities is further examined. 

An example image recorded with a Shack-Hartmann sensor in a ground-ground scenario 
over about 500m can be seen in Figure 3.28 on the left. The displacements of the spots due 
to wavefront distortions are visible. Central obscuration and the telescope spider obstruct 
part of the incoming wave. On the right side the reconstructed wavefront is depicted. 

4.4.1.1 Phase Singularities and the Shack-Hartmann Sensor 
Tyler [TYL00] studied the effect of singularities on the phase reconstruction of a Shack-
Hartmann sensor extending the work of Fried [FRI98] and others. He showed that any vector 
field ( )g x can be expressed as the gradient of a scalar (potential) field ( )LS xϕ  and the curl 

of a vector field ( )V x  

 ( ) ( ) ( )LSg x x V xϕ= ∇ +∇× . (4.57) 



Chapter 4: Adaptive Optics for Laser Satellite-To-Ground Communication 
 

89 

The Shack-Hartmann sensor measures the gradient ( ) ( )
( )

x

y

g x
g x

g x
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

and reconstructs the 

phase ( )xϕ  typically by a least-square reconstructor as in Eq. (4.56). A least-square 

reconstructor implicitly assumes that the gradient ( )g x  is derived only from the gradient 

( )LS xϕ∇  of the scalar potential, where LS denotes the least-square phase. This however 
neglects the second, curl component of the vector potential, which gives a contribution in the 
presence of phase singularities. 

The benefit of Tyler’s work is that he presented a closed form of the scalar potential and 
the vector field based on the gradients measured by the Shack-Hartmann sensor 

 
( ) ( ) ( )2( ) exp 2
2

x x y y
LS

G G
x i x d

i

κ κ κ κ
ϕ π κ κ

π κ

+
= ⋅∫∫  (4.58) 

 
( ) ( ) ( )2( ) exp 2
2

y x x yG G
V x i x d

i

κ κ κ κ
π κ κ

π κ

−
= ⋅∫∫  (4.59) 

 ( ) ( )Hz zV x V x e=  (4.60) 

Gx and Gy are the two-dimensional Fourier transforms of gx and gy. ze  denotes the unit vector 

along the z-axis, so that the vector field ( )V x  has only a z-component, which follows from 

the fact that ( )g x  has only non-zero components in x and y. The double integrals with 

( )exp 2 i xπ κ ⋅  denote a Fourier transform. Tyler confirmed the scalar potential as the result 
of the least-square reconstruction and VHz as the phase discrepancy component, which Fried 
called the hidden phase. VHz has only non-zero values, if singularities are present in the 
incoming field. It is the vector potential equal to the Hertz vector mentioned in [FRI98]. 

In this way the total gradient can be expressed as a sum of the least-square component 
LSg  and the slope discrepancy component SDg , i.e. 

 ( ) ( ) ( )total LS SDg x g x g x= + . (4.61) 

In a similar way the phase can be decomposed in a least-square and a slope-discrepancy 
component 

 ( ) ( ) ( )total LS SDx x xϕ ϕ ϕ= + , (4.62) 

where  

 ( ) ( )SD x V xϕ⊥∇ = ∇× . (4.63) 

Taking the above formulations it can be seen, why a standard least-square reconstructor is 
blind to phase singularities. In the discrete formulation of the conventional least-square 
reconstructor (4.56), the first operation is a multiplication with the transpose of the geometry 
matrix AT. Transposing A it can be shown that the multiplication with AT is equal to a discrete 
version of a divergence operator [TYL00, FRI98]. As the gradient g includes the curl of a 
vector field as shown in (4.57), and noting that the divergence of a curl operation is zero 
(Appendix A.5) 
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 ( ) 0g∇⋅ ∇× = , (4.64) 

it becomes clear that a least-square reconstructor inherently cannot not see the component 
of the slope-discrepancy phase, i.e. yielding wrong results in the presence of phase 
singularities.  

Numerically simulated fields in an SGL scenario for 5 and 10 degrees elevation in Figure 
4.26 and Figure 4.27 illustrate these findings. In a simulated field, where the incoming field is 
known, it is easy to calculate the slope discrepancy phase SDϕ  from the difference of the 
original phase and the least-square phase LSϕ  obtained from Eq. (4.58). Each figure gives 
from left to right the original phase, the least-square phase (LS-Phase) and the slope-
discrepancy phase (SD-Phase). At 5 degrees, as expected, a strong SD phase component 
can be observed, and the LS phase, which a standard least-square reconstructor would 
yield, shows almost no resemblance to the original phase. At 10 degrees elevation already a 
strong resemblance of the LS phase to the original phase can be seen, although there is still 
a significant SD component. Phase singularities can be easily recognized in the SD phase 
images. 

A detailed view of a slope discrepancy phase is shown in Figure 4.28. The black lines are 
lines of equal phase, which nicely show the interconnection between two branch points with 
opposite charge.  

A Hertz potential ( )HzV x  for 10 degrees elevation calculated from Eq. (4.59) is shown in 
Figure 4.29. Extrema appear at the locations of the phase singularities. The charge can be 
seen in the sign of the potential.  



C
ha

pt
er

 4
: A

da
pt

iv
e 

O
pt

ic
s 

fo
r L

as
er

 S
at

el
lit

e-
To

-G
ro

un
d 

C
om

m
un

ic
at

io
n  

91
 

 
Fi

gu
re

 4
.2

6:
 S

im
ul

at
ed

 p
ha

se
 o

f a
n 

SG
L 

at
 5

 d
eg

re
es

 e
le

va
tio

n 
(D

=0
.5

m
, λ

=1
06

4n
m

, 1
02

4x
10

24
 p

ix
el

s)
. 

 
Fi

gu
re

 4
.2

7:
 S

im
ul

at
ed

 p
ha

se
 o

f a
n 

SG
L 

at
 1

0 
de

gr
ee

s 
el

ev
at

io
n 

(D
=0

.5
m

, λ
=1

06
4n

m
, 1

02
4x

10
24

 p
ix

el
s)

. 
 



Chapter 4: Adaptive Optics for Laser Satellite-To-Ground Communication 
 

 

92 

 
Figure 4.28: Slope discrepancy phase (wrapped) for an SGL at 10deg elevation. 

 

 
Figure 4.29: Hertz potential at 10deg elevation. Phase singularities are marked with a white 
spot. It can be seen that most singularities appear in pairs, which are close together. 

 

4.4.1.2 Performance of the Shack-Hartmann 
Barchers et al. [BAR02a] analyzed the performance of Shack-Hartmann sensors in strong 
turbulence conditions. As expected they observed a severe performance deterioration for a 
conventional least-square reconstructor for Rytov indices 2 0.2Rσ > , which implies an 
increasing number of phase singularities. They also deployed a complex exponential 
reconstructor (CER) [FRI01], which showed a significant improvement also in the strong 
fluctuation regime, as the CER is able to detect the slope-discrepancy phase. The 
performance improvement however could only be achieved for a high-resolution sensor. The 
CER algorithm gave a performance improvement, if the ratio between the lenslet diameter dL 
and the atmospheric coherence length r0 was 0/ 1/ 4Ld r < . 

This implies that the resolution requirement for the SHS becomes much stricter in the 
strong fluctuation regime compared to the standard rule of thumb introduced in Section 4.2.2, 
where a ratio of 0/ 1Ld r ≤  is suggested. 
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Especially with the above condition for the resolution under strong turbulence fluctuations 
and if each focus spot is resolved with several pixels, a SHS requires a large number of 
pixels. This limits the sampling rate of the SHS, as cameras are limited with the number of 
pixel samples they can send to the processing system. The closed-loop bandwidth of the full 
AO system becomes limited by the camera’s frame rate and the speed of the processing 
algorithm. This poses a problem for the high bandwidth requirements in a LEO SGL 
scenario.   
 

4.4.2 Curvature Sensor 

4.4.2.1 Introduction 

Curvature sensing as described by Roddier [ROD88] is based on the measurement of two 
intensity distributions in planes shortly before and after the geometric focus (focal length f) as 
shown in Figure 4.30 (Planes P1 and P2). The distance from the geometric focus to the two 
measurement planes is given by z .  

 
Figure 4.30: Principle of the curvature sensor. 

The principle of the curvature sensor can be derived from the irradiance transport equation 
as it was shown by Roddier [ROD90]. Streibl [STR84], Teague [TEA83], and Ichikawa 
[ICH88] give more details on the irradiance transport equation. Van Dam and Lane [DAM02] 
investigated non-linear effects in curvature sensing, which had been neglected in previous 
works. 

4.4.2.2 Derivation of the Irradiance Transport Equation 

Based on the time-independent Helmholtz equation 

 ( )2 2 ( ) 0k u x∇ + = , 

Teague [TEA83] derived a paraxial wave equation in a Fresnel approximation for a wave uz 
travelling in z-direction 

 
2

( ) 0
2 zi k u r

k z
⊥⎛ ⎞∇ ∂
+ + ⋅ =⎜ ⎟∂⎝ ⎠

. (4.65) 

⊥∇  denotes the Laplacian operator in transversal direction  

 x

y

∂
∂

⊥ ∂
∂

⎛ ⎞
∇ = ⎜ ⎟

⎝ ⎠
 and 

2 2
2

2 2x y⊥

∂ ∂
∇ = +

∂ ∂
 (4.66) 
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and k the wave number 2 /k π λ= . Expressing the complex field uz at the transversal 
coordinate r  in terms of the intensity I and the phase ϕ  [radians] gives  

 [ ] [ ]1/ 2( ) ( ) exp ( )zu r I r i rϕ= . (4.67) 

In order to understand the functionality of the curvature sensor, it is useful to bring Eq. (4.65) 
into a different form by writing 

 
2

*( ) ( ) 0
2z zu r i k u r

k z
⊥⎛ ⎞∇ ∂

⋅ + + ⋅ =⎜ ⎟∂⎝ ⎠
 (4.68) 

 
*2

( ) ( ) 0
2z zu r i k u r

k z
⊥

⎡ ⎤⎛ ⎞∇ ∂
⋅ + + ⋅ =⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦

 (4.69) 

The star * denotes the complex conjugate. Eq. (4.67) is inserted in (4.68) and (4.69). The first 
term in the round brackets gives (omitting the dependence on r ) 

 
( )

( ) ( ) ( )

2 1/ 2

2 21/ 2 2 1 1 2 2

1 exp
2

1 1 1exp
2 4 2

I i
k

I i I I iI I I I i
k

ϕ

ϕ ϕ ϕ ϕ

⊥

− − −
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⎡ ⎤∇ =⎣ ⎦

⎡ ⎤= ⋅ − ∇ − ∇ + ∇ ⋅∇ + ∇ + ∇⎢ ⎥⎣ ⎦

 

  (4.70) 

and the second term  

 ( ) ( )1/ 2 1/ 2 11exp exp
2

i I i iI i I I i
z z z

ϕ ϕ ϕ−∂ ∂ ∂⎡ ⎤⎡ ⎤ = +⎣ ⎦ ⎢ ⎥∂ ∂ ∂⎣ ⎦
 (4.71) 

Subtracting Eq. (4.69) from (4.68) results in a description of the intensity distribution along 
the z-axis (Irradiance Transport Equation ITE) 

 2k I I I
z

ϕ ϕ⊥ ⊥ ⊥

∂
= − ∇ −∇ ⋅∇

∂
  (ITE). (4.72) 

This can be interpreted as the change of the intensity along the z-direction [ICH88]. The first 
term on the right side can be considered a lens term, describing the local convergence and 
divergence of the beam. The second term is a prism term, which describes the local 
redirection of the beam intensity according to the ray direction ϕ⊥∇ . Eq. (4.72) can be 
rewritten in a slightly different form, which can be considered to be a law of light energy 
conservation.  

 ( )k I I
z

ϕ⊥ ⊥
∂

= −∇ ⋅ ∇
∂

. (4.73) 

The divergence of I ϕ⊥∇ , i.e. a flux through a plane transverse to the z-direction, equals the 
change of the intensity in the z-direction.  
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The addition of Eq. (4.68) and (4.69) shows the propagation effects on the wavefront phase 
(Wavefront Transport Equation WTE) 

 ( ) ( )2 22 2 2 2 21 12 2
2 4

kI I I I I k I
z
ϕ ϕ⊥ ⊥ ⊥

∂
= ∇ − ∇ − ∇ +

∂
  (WTE). (4.74) 

In the original derivation of the curvature sensor a uniform illumination IP0 in the pupil plane 
was assumed, i.e. IP0 within the aperture and zero outside. Hence I⊥∇  becomes zero in the 
pupil area, except on the pupil rim 

 0P cI I nδ⊥∇ = − , (4.75) 

where δc is a linear Dirac distribution along the rim and n  a unit vector perpendicular to the 
rim pointing outward. Consequently Eq. (4.72) becomes 

 2
0 0P c Pk I I I

z n
ϕ δ ϕ⊥

∂ ∂
= ⋅ − ∇

∂ ∂
, (4.76) 

where n
n
ϕ ϕ∂
= ∇ ⋅

∂
, i.e. the derivative of ϕ  in a direction perpendicular to the aperture rim. 

Therefore the intensity distributions in the planes P1 and P2 can be written as 

 1 0PI I I z
z
∂

= + ⋅
∂

 and 2 0PI I I z
z
∂

= − ⋅
∂

 (4.77) 

and from this the sensor signal S is derived with the scaling factor c by 

 21 2

1 2 0

1
c

P

I I cS c c I z z
I I I z k n

ϕδ ϕ⊥
− ∂ ∂⎛ ⎞= = ⋅ = −∇ ⋅⎜ ⎟+ ∂ ∂⎝ ⎠

. (4.78) 

For the optical setup the effective propagation distance ( ) /f f z z−  is composed of the 

distance to the first plane ( )f z−  and the scaling of the planes P1 and P2 by /f z  

compared to the telescope aperture. The larger the distance ( )f z− , the stronger the 
angles of the gradient operations influence the sensor signal. And the smaller the images in 
the planes P1 and P2 are, the stronger the signal will be. 

 
( ) ( )
( ) ( )

( ) ( ) ( )2 1 2

2 1

f f
cz z

I x I x f f z
S x x

I x I x k z n
ϕ δ ϕ⊥

− − − ∂⎛ ⎞= = −∇⎜ ⎟− + ⋅ ∂⎝ ⎠
. (4.79) 

A minus sign is introduced with the operand of I2, as the image is flipped. With the wavefront 
a scaling factor /f z  is added to account for the convergent beam. An additional lens is 
inserted at the focus with a focal length of f/2 to ensure that the two images are of the same 
scale. 

4.4.2.3 Performance of the Curvature Sensor 
The original derivation of the curvature sensor assumed a constant intensity in the telescope 
aperture and relatively weak phase distortions, so that the wavefront change in z-direction 

zϕ∂
∂

 described in Eq. (4.74) could be neglected and the formulas became easy to handle.  
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Taking intensity fluctuations over the aperture into account, the term I ϕ⊥ ⊥∇ ⋅∇  in Eq. 
(4.72) cannot be neglected as in the original derivation. With this additional term the sensor 
output signal becomes 

 
( ) ( ) ( )2f f

cz z

f f z IS x x
k z n I

ϕϕ δ ϕ⊥
− ∂ ∇ ⋅∇⎛ ⎞= −∇ −⎜ ⎟⋅ ∂⎝ ⎠

, (4.80) 

where the new term can be seen as an error signal influencing the curvature sensing. 
Voitsekhovich [VOI03] gave an expression for this error term by a ratio of the mixed 

phase/intensity term 
1 I
I

ϕ⊥ ⊥∇ ⋅∇  and the curvature term 2ϕ⊥∇   

 
( )

2

2
22

1

S

I
I

ϕ
σ

ϕ

⊥ ⊥

⊥

⎛ ⎞∇ ⋅∇⎜ ⎟
⎝ ⎠

=
∇

. (4.81) 

From atmospheric theory in the weak fluctuations regime he calculated values for 2
Sσ  based 

on 2
nC  profiles typically found in astronomical scenarios. For these scenarios he predicted 

scintillation errors up to 20%. For SGLs much stronger effects can be expected due to strong 
scintillation and phase distortions.  

Van Dam [DAM02] analyzed the curvature sensor taking the wavefront transport equation 
into account, describing not only the intensity changes with the propagation of the beam, but 
also the wavefront changes itself. This leads to a nonlinear relation between the intensity 
measurement and the curvature estimate; in addition, phase distortions cause diffraction and 
thus blurring effects, which are not predicted by the geometric optics approach. 

An interesting observation is based on the fact that the curvature is the divergence of the 
gradient. Following the observations of Section 4.4.1.1 that the gradient field is the sum of 
the least-square and the slope discrepancy component 

 ( ) ( ) ( )LSg x x V xϕ= ∇ +∇×  (4.82) 

and that curvature is the divergence of the gradient d g= ∇⋅ , it becomes clear, using the 

vector identity ( ) 0V∇⋅ ∇× = , that  

 ( ) ( )LS LSd Vϕ ϕ= ∇⋅ ∇ +∇× = ∇⋅ ∇ . (4.83) 

This shows that the curvature sensor cannot detect the phase component caused by 
singularities, which results in a wrong phase estimation similar to what has been shown for 
the Shack-Hartmann sensor.  

4.4.2.4 Simulation Results 
The behavior of the curvature sensor is simulated to evaluate the sensor’s performance. The 
simulation is based on the concepts introduced in Appendix A.2. The simulated propagation 
consists of three parts as shown in Figure 4.31:  

• Free-space propagation from the pupil plane to the lens LensL f= ; 
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• Multiplication with the lens phase factor 
2 2

0 0( , ) exp
2

x yt x y h ik
f

⎡ ⎤+
≈ ⎢ ⎥

⎣ ⎦
;  

• Free-space propagation from the lens to the image plane LensL f z= + .  

Lensf  gives the focus length of the lens. The two free-space propagation sections are 
calculated in the Fourier domain, while the lens factor is multiplied in the spatial domain.  
 

 
Figure 4.31: Simulation concept of the amplitude distributions near the focus.  

 
Two examples of simulated propagations are shown in Figure 4.32 and Figure 4.33. Figure 
4.32 shows the intensity distribution in a cut in the meridional plane in the vicinity of the focus 
for an unaberrated, plane wave. In the upper section example intensity distributions in 
transversal planes are shown. The focus diameter to the first zero-crossing is calculated from 
the pupil diameter DLens, the focal length fLens, and the wavelength λ 

 2.44Airy
Lens

fD
D

λ= ⋅ ⋅ . (4.84) 

Figure 4.33 shows an example for an aberrated wave but with uniform amplitude. The input 
phase was generated by a phase simulation with 0 5r cm=  and a lens diameter 

20LensD cm= . In the top-right corner the phase distortions [in radians] in the pupil is depicted 
also showing the circular aperture. The principle of the curvature sensor can be intuitively 
understood observing that the local curvatures in areas with negative phase values (blue) 
(also rather having negative curvature) move intensity areas before the nominal focus plane, 
while areas with positive phase values (red) (rather having positive curvature) move intensity 
areas after the nominal focus plane. The structures can be recognized in the transversal 
image planes.  

The graphs use normalized coordinates u and v as they are given by Born and Wolf 
[BOR99] 

 

2
2

2

2
2

Lens

Lens

Du z
f

Dv r
f

π
λ

π
λ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, (4.85) 

corresponding to the propagation axis z and the radial distance r. 0u =  shows the nominal 
focus plane. 
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Figure 4.32: The contour plot shows the amplitude distribution in a meridional plane near the 
focus.  This distribution is given for a plane wave and a circular aperture. The upper plot shows 
several intensity distributions in transversal planes through the focus. The distribution in the 
focus plane is shown in the center and the normalized coordinate u gives the distance to the 
focus plane (4.85). 

 
Figure 4.33: Similar graph as in Figure 4.32. This distribution is given for a distorted wavefront 
at the telescope pupil with a constant intensity distribution. An atmospheric coherence length 
of r0=5cm was taken.  
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4.4.3 Interferometric Methods 
Interferometric wavefront sensors are based on a very similar principle as coherent 
communication receivers. The received signal beam US, which is the object beam with a 
distorted wavefront in adaptive optics, is superposed with a local beam UL, which can be 
approximated by a plane wave. The intensity of the superposed signal is then given by 
[RYU94] 

 
( )

( ) ( ) ( ) ( )

2,

, 2 , cos ,

L S

L S L S S L S L

I x y U U

I I x y I I x y t x yω ω ϕ ϕ

= +

= + + − + +⎡ ⎤⎣ ⎦
, (4.86) 

where the electric fields of the signal and local wave with the optical frequencies Sω , Lω  and 
the phase shifts Sϕ , Lϕ  are given by 

 ( ) ( ) ( ),, , s Si t i x y
S SU x y U x y e ω ϕ+= ⋅  (4.87) 

 L Li t i
L LU U e ω ϕ−= ⋅  (4.88) 

The term ( )S L tω ω−  is called the beat signal at an intermediate frequency of the signal and 
local oscillator wave. In homodyne communication systems the frequency of the local beam 
is matched to the signal frequency by a phase-locked loop. In the consequence the beat term 
becomes zero and the signal is not time-varying anymore. If Sω  and Lω  are not equal a 
heterodyne demodulation scheme has to be applied.  

In a first approximation the local beam is constant in phase and amplitude over the 
receiver plane. The error in the phase-match between local and signal beam goes into the 
superposition efficiency and determines the sensitivity of the receiver. There are two principle 
ways to apply this superposition method to interferometric wavefront measurements:  

The distorted wavefront is superposed with a local, undistorted beam. This would be the 
same method applied for coherent communication receivers. Advantage is a high sensitivity 
of the system, which would allow the operation at low received powers; however, the phase 
of the local laser would have to be phase-locked to the signal phase, which implicates a 
significant technical effort complicated by a varying signal phase and intensity over the 
aperture. Especially intensity scintillation caused by the atmosphere can also hinder the 
correct operation of the phase-locked loop, which has been an issue for coherent 
communication SGLs from TerraSAR-X. 

Self-referencing interferometers present the second approach for interferometric 
wavefront sensors. Here the beam for the superposition is taking from the received signal 
itself. In the consequence phase stabilization as phase-locked loops are not required. Table 
4.3 shows several types of self-referencing interferometers. Point-diffraction interferometers 
split the beam into the object wave (the distorted wave) and the reference wave. In the 
reference arm a lens focuses the beam, and the still distorted wave is thus transformed into 
the Fourier (spatial frequency) domain. Here a spatial filter (e.g. a pin-hole) blocks higher-
order frequencies of the signal and only allows the zero-order (low order) signal to pass. In 
this way an approximately plane wave reference beam is generated. An important question is 
how much light passes through the spatial filter, i.e. how strong is the reference wave. This 
has an impact on the visibility of the fringe pattern of the interferometer. At least a tip-tilt 
correction of the beam has to be applied to get enough signal strength of the reference 
beam. Typical setups of point diffraction interferometer are Mach-Zehnder or Twyman-Green 
interferometer.  

Common-path interferometers have a similar principle, but combine the separate arms of 
e.g. a Mach-Zehnder interferometer in one common path. The spatial filter is replaced by a 
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more general phase plate. Both interferometer types can be described in a similar way and 
are therefore explained together in Section 4.4.3.1.  

Shearing interferometer also use the signal beam to measure the wavefront, however they 
do not use a spatial filter to produce a plane reference wave. Their principle is based on 
laterally shifting one of the two beams by some distance and in this way generating the 
derivatives of the wavefront. 

 
Table 4.3: Self-referencing interferometers. 
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4.4.3.1 Common-Path and Point-Diffraction Interferometers 
Common-path interferometers are based on Zernike’s phase contrast method, for which he 
was awarded the Nobel Prize in 1953. The beauty of this method is that a phase disturbance 
is directly converted to an intensity modulation. Therefore the method can be called a direct 
wavefront sensor, as the information on the sensor chip does not have to be further 
processed to obtain a phase estimate. The principle of phase contrast has been described in 
many publications since then [GOO96, BOR99]. More detailed analyses were performed by 
Glückstad [GLU01] and Vorontsov [VOR01], which will be further discussed in Chapter 5. 
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The principle design of a wavefront sensor based on the phase contrast method is shown 
in Table 4.3. A phase plate is positioned in the lenses’ common focus. The phase plate 
typically has a small circular area or dot in the center, which modifies the focused wave for 
low-order spatial frequencies, similar to the pin-hole in a point-diffraction interferometer. A 
general phase plate with a circular central area can be modeled by  

 
( )
( )

0
iT q e for q q

T q otherwise

θγ

β

= <

=
, (4.89) 

where q  gives the position in the focal plane, q0 the size of the filter dot, 1γ ≤  is the value of 
absorption of the dot, and θ  is the phase shift of the dot. Typically the dot size is on the 
order of the diffraction limited focal spot. The transmission outside the dot is β. The classical 
Zernike filter has 1γ β= =  and a phase shift of π/2. The Smartt point diffraction 
interferometer [SMA75] has an opaque dot, i.e. 0γ =  and 1β = . 

The basic idea of this sensor can be expressed in the following way. The incoming field, 
assuming a weak phase distortion ( ),x yϕ  and a constant intensity over the aperture, is 
expressed (not showing the time dependence) by  

 ( ) ( ) 1 ( )i xf x e i xϕ ϕ= ≈ + , (4.90) 

neglecting all higher terms of the Taylor expansion 
2

1
2

x xe x= + + +… . The transformation of 

Eq. (4.90) into the Fourier plane gives 

 ( ) ( ) ( )F k k i kδ≈ + Φ , (4.91) 

where ( )kδ denotes a Dirac impulse and thus approximating the Fourier transform of an 
undistorted, plane wave. Φ is the Fourier transform of φ. The phase plate with the phase dot 
acts on the Dirac impulse introducing a phase shift of a quarter wavelength or a factor 

/ 2ii e π= .  The field after the phase plate can then be expressed as 

 ( ) ( ) ( )E k i k i kδ≈ + Φ . (4.92) 

Transforming this back by an inverse Fourier transform gives  

 ( ) ( )1 ( )e x i xϕ= + , (4.93) 

and the intensity on the sensor 

 ( ) ( ) ( ) ( )2 2
1 1 2 ...eI x e x x xϕ ϕ= = + ≈ + +⎡ ⎤⎣ ⎦ . (4.94) 

Assuming small wavefront distortions, this yields in a first approximation a linear relationship 
between the intensity and the phase, i.e. a direct wavefront sensor, which does not require 
any reconstruction to obtain the phase. This relationship is not valid anymore for larger 
wavefront distortions or amplitude fluctuations, which directly influence the result.  

The huge advantage of a direct sensor is the fast processing speed. All processing is 
done optically and no digital reconstruction, which would introduce delays, is necessary; in 
addition, each sensor pixel will give one phase-point measurement. This allows very high 
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resolution without high speed. In Chapter 5 details will be given on how to extend the direct 
sensor capability to the full 2π  phase circle even in strong intensity fluctuations using e.g. 
phase-shifting techniques.  
 

4.4.3.2 Shearing Interferometer 
In a lateral shearing interferometer two versions of the same wavefront with a lateral shift 
(shear) x  or y   in one direction are superposed. The two waves can be produced by a 
parallel-sided shear plate, where the incoming wave is reflected twice, once on the front and 
once on the back side (Table 4.3). The two reflections are laterally separated due to the finite 
thickness of the plate. Details on lateral shearing interferometers can be found for example in 
Malacara [MAL07].  

The resulting wavefront difference between the two waves (here shifted in x-direction) is 
given by 

 ( ), ( , ) ,
2 2
x xx y x y x yϕ ϕ ϕ ⎛ ⎞= − − +⎜ ⎟

⎝ ⎠
. (4.95) 

Interference fringes appear at  

 ( ),x y nϕ λ= , (4.96) 

where the integer n is the order of the interference fringe and λ the wavelength. The fringes of 
a shearing interferometer are the loci of constant average wavefront slope over the shear 
distance. This is different from other types of interferometers like Twyman-Green, where the 
fringes are loci of constant wavefront phase. There is a resemblance between the Shack-
Hartmann sensor and the shearing interferometer, which can be observed in Eq. (4.95) and 
(4.54). The wavefront difference ( ),x yϕ  is approximated for small lateral shifts by the 
partial derivate  

 ( ) ( ), ,x y x y x
x

ϕ ϕ∂
≈ ⋅
∂

 or ( ) ( ), ,x y x y y
y

ϕ ϕ∂
≈ ⋅
∂

. (4.97) 

The output of lateral shearing interferometers can be simply calculated with Eq. (4.97) and 
the power series expansion of primary aberration. For example spherical aberration is given 
by 

 ( ) ( )2 2, Defocusx y k x yϕ = + , (4.98) 

and therefore the phase difference in a lateral shift in x becomes 

 ( ), 2Defocusx y k x xϕ = ⋅ ⋅ . (4.99) 

Similar function can be found for other primary aberrations. The main aberrations are 
summarized in Table 4.4. The constants k gives the strength of the specific aberration. The 
interferograms of these aberrations are shown in Figure 4.34 before, in, and after the focus, 
i.e. with an additional negative, zero, and positive defocus term.  In the first line, showing 
only the defocus component, an additional tilt in y-direction between the two waves 

( ), y Tiltx y k yϕ −= ⋅  has been introduced, which results in the characteristic rotation of the 
fringes during the pass through the focus. This tilt is usually introduced with a slight angle 
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between the front and backside of the testing device, and enables preciser beam collimation 
as in a non-tilted setup. 
 
Table 4.4: Main primary aberrations and their phase differences in a shearing interferometer. 

Primary Aberration Phase Phase difference 

Defocus ( ) ( )2 2, Defocusx y k x yϕ = +  ( ), 2Defocusx y k x xϕ = ⋅ ⋅  

Spherical ( ) ( )22 2, Sphericalx y k x yϕ = +  ( ) ( )2 2, 4Sphericalx y k x y x xϕ = ⋅ + ⋅

Coma in y ( ) ( )2 2, Comax y k y x yϕ = +  ( ), 2Comax y k xy xϕ = ⋅ ⋅  

Astigmatism ( ) ( )2 2, Astigmatismx y k x yϕ = +  ( ), 2Astigmatismx y k x xϕ = ⋅ ⋅  

 
 

 
Figure 4.34: Interference fringes for three primary aberrations (Defocus, Spherical, Coma). In 
the first line, showing only the defocus component, an additional tilt in y-direction between the 
two waves ( ), y Tiltx y k yϕ −= ⋅  has been introduced, which results in the characteristic 
rotation of the fringes. 
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The signal of the shearing interferometer is given by 

( )

( ) ( ) ( ) ( ) ( ) ( )

2

2 2

2 2 2 2 2 2

, , ,
2 2

, , 2 , , cos , ,x x x x x x

x xI x y U x y U x y

U x y U x y U x y U x y x y x yϕ ϕ

⎛ ⎞ ⎛ ⎞= − + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤= − + + + + − − − +⎣ ⎦
  (4.100) 

This can be simplified assuming an approximately equal field amplitude for / 2x±  by 

 ( ) ( ) ( )2
, 2 , 1 cos ,I x y U x y x y x

x
ϕ⎡ ∂ ⎤⎛ ⎞= + ⋅⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦

. (4.101) 

Stacking the phase values ( ),x yϕ  into vector ϕ  and the phase differences ( ),x yϕ  into 

xϕ / yϕ  for lateral shear in x-/y-direction, the relation between the phase and phase 
differences can be written with the two geometry matrices Ax and Ay  

 x x

y y

A
A

ϕ ϕ
ϕ ϕ

=
=

 , (4.102) 

which can be also written similar to the technique for the Shack-Hartmann sensor in one 
system of linear equations 

 x x

y y

A
A

ϕ
ϕ

ϕ
⎡ ⎤ ⎡ ⎤

= ⋅⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 or Aϕ ϕ= ⋅ . (4.103) 

This can again be solved by a least-square solver in the fashion 

 ( ) 1T TA A Aϕ ϕ
−

= . (4.104) 

The phase differences or gradient ϕ  can be expressed as the derivative of a scalar field 
and the curl of a vector field (see Eq. (4.57)) as discussed in Section 4.4.1.1 on phase 
singularities with the Shack-Hartmann sensor. Remembering that AT is the matrix equivalent 
of a divergence operator, it becomes clear that the shearing interferometer suffers from the 
same limitations as the Shack-Hartmann sensor in the presence of phase singularities due to 
the fact that the divergence of a curl operation is zero. 

Barchers et al. [BAR02b] studied the performance of shearing interferometer in the 
presence of phase singularities in strong scintillation. For the reconstruction step they 
compared the performances of a least-square reconstructor and a complex exponential 
reconstructor [FRI01]. The least-square reconstructor was not able to reconstruct the part of 
the phase associated with the curl of the vector potential. In the consequence a sharp drop of 
the performance occurred for Rytov variances 2 0.2Rσ > , as already had been shown in 
previous studies for the Shack-Hartmann sensor [BAR02a, TYL00]. The complex exponential 
reconstructor correctly estimated the phase even in the presence of phase singularities, as 
long as the ratio of the lateral shear and the atmospheric coherence length 0/x r  was 
sufficiently small. The performance deterioration was especially pronounced for the least-
square reconstructor, even for ratios 0/ 1/ 2x r = . This is caused by the fact, that shearing 

interferometers suffer from the fact, that phase differences outside the interval [ ],π π−  are 
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not correctly measured and errors of 2π±  occur. This can be recognized from Eq. (4.101). 
Large phase differences occur when the atmospheric coherence length 0r  approaches the 
lateral shear x . The 2π  measurement errors have a direct effect on the phase estimation 
of a least-square reconstructor. In contrast there is no effect of the 2π  errors on the complex 
exponential reconstructor due to the operation of the complex exponential, as ( )exp 2 1i π = ; 

however, for large ratios 0/ 1x r ≥  the performance of both reconstructors deteriorates due 
to measurement noise, i.e. the large variance of the signal over the shear distance. 

4.4.4 Phase Retrieval Methods 
Phase retrieval algorithms attempt to recover the field, i.e. intensity and phase, in the 
entrance pupil plane of the telescope by measuring one or more intensity distributions in 
different planes in the optical system. The original algorithm proposed by Gerchberg and 
Saxton [GER72] used two measurements of the intensity, in the telescope pupil plane 

pupilu I=  and the focus intensity focusU I= . The algorithms were further developed e.g. 
by Fienup [FIE82, FIE87], in order to reduce the number of iterations and also to investigate 
the possibility to retrieve the telescope-pupil field from one intensity measurement in the 
focus plane. For the latter one additional constraints, such as zero intensity outside the 
telescope aperture, were applied. The question of the uniqueness of the retrieved phase was 
discussed in several publications [MIA98][FOL81].   

Phase retrieval algorithms are of interest for the application in communication systems, as 
typical optical communication receivers in mobile scenarios measure the intensity distribution 
in the focus to operate the tracking system to point the telescope to the counter terminal. In 
this sense it would be interesting to use the already available and anyway required 
information to also drive an AO system, maybe with a low-order modal correction, and taking 
the specific conditions of the scenarios into account. 

However, the algorithms are computationally very demanding due to their iterative 
character and the large number of Fourier transforms required. One of the important 
requirements for AO systems in the SGL scenarios is high speed, which would not be 
achievable with phase retrieval algorithms. Nevertheless, a basic introduction is given to this 
method as it might be a good starting point for further investigations in this direction and in 
this way simplifying AO systems for communication scenarios. 

4.4.4.1 Basic Phase Retrieval Algorithms 
The first phase retrieval algorithm was proposed in [GER72][FIE82] with the error-reduction 
method. It was based on the measurement of the intensity in the telescope pupil plane and 
the focus plane. The electrical field in the focus plane U is related to the field in the telescope 
pupil plane u by a focus transformation, which can be mathematically expressed by a Fourier 
transform (Appendix A.2.3) 

 ( ) ( ){ } ( ) ( )1 1 exp 2U q FT u x u x iq x dx
f f

π
λ λ

= = ⋅∫∫ , (4.105) 

where  

 
( ) ( ) ( )( )
( ) ( ) ( )( )

exp

exp

u x u x i x

U q U q i q

ϕ

φ

=

=
 (4.106) 

The complex constants of the focus transformation are neglected, as they do not have an 
influence on the measured intensities in the focus/pupil plane and cancel out in the forward 
and back transformation. 
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In the following variables in the Fourier plane (Focus plane) are designated with capital 
letters, while variables in the telescope pupil plane are shown with lower-case letters. 

The algorithm starts with an estimate of the field in the pupil plane. This could be just the 
aperture function (i.e. one inside, zero outside the aperture) of the telescope with diameter D. 
The following steps state the phase retrieval algorithm: 

1. Fourier transform an estimate of the field in the pupil plane to get an estimate of the 
field in the focus plane. 

2. Replace the modulus of the estimated field in the focus plane with the measured 
intensity M . 

3. Transform the modified field of the focus plane back to the pupil plane by an inverse 
Fourier transform. 

4. In the pupil plane apply additional constraints to estimate the field in the pupil plane. 
Constraints could be another intensity measurement or just again the assumption that 
the field outside the telescope aperture is zero. 

The principle is summarized in Figure 4.35. The convergence of the process can be checked 
by the amount by which the constraints in the pupil and Fourier domain are violated. For the 
Fourier plane this gives an error for the jth iteration jE   

 ( ) ( ) ( ) ( )
221 1

j j j
A A

E U q U q dq U q M q dq
A A

⎡ ⎤′= − = −⎣ ⎦∫∫ ∫∫  (4.107) 

and for the pupil plane je  

 ( ) ( ) 2

1
1

j j j
A

e u x u x dx
A + ′= −∫∫ . (4.108) 

The respective area of integration is denoted by A. For a two-intensity measurement problem 
with a measured intensity m  in the pupil plane, the error value in the focus transforms to  

 ( ) ( )
21

j j
A

e u x m x dx
A

⎡ ⎤′= −⎣ ⎦∫∫ . (4.109) 

For a single intensity measurement in the focus plane and the additional pupil-plane 
constraint, that the intensity outside the telescope aperture is zero, the error value in the 
pupil plane becomes  

 ( )
21

j j
A

e u x dx
A

⎡ ⎤′= ⎣ ⎦∫∫ , (4.110) 

where A  denotes the area outside the telescope aperture. 
 
A numerical simulation of phase retrieval with two intensity measurements is shown in Figure 
4.36. A phase and intensity distribution was generated with a ratio of aperture diameter and 
atmospheric coherence length of D/r0=2. Statistical independence of phase and intensity was 
assumed. The upper row shows the original field (phase and amplitude) in the pupil and the 
focus amplitude. The middle row gives the retrieved field after 20 iterations. In the lower row 
the differences in the pupil phase are shown and the convergence of the algorithm with the 
squared error in the pupil (4.110) and in the focus plane (4.107). This shows a nice 



Chapter 4: Adaptive Optics for Laser Satellite-To-Ground Communication 
 

107 

convergence with two intensity measurements, however the convergence is not always 
guaranteed. 

A related algorithm was suggest by Paxman and Fienup [PAX88], called Phase Diversity. 
This algorithm is based on two measurements of the intensity distribution, one in the focus 
plane and one in an intentionally defocused plane. Again a nonlinear, iterative optimization 
technique is used to find the phase distribution. 

 

 
Figure 4.35: Principle of the phase retrieval algorithm based on an error-reduction method. 
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Figure 4.36: Retrieval of the phase distribution in the pupil plane from intensity measurements 
in the pupil and the focus plane. Original field created for an aperture D=0.2m and r0=0.1m. 
Scintillation were added to the field. In the first row the original field with phase/amplitude in 
the pupil plane and the focus amplitude. In the second row the reconstructed field after 20 
iterations. In the bottom row the phase error in the pupil plane and the development of the 
focus and pupil plane error values. 

 
A slightly different approach was suggested by Southwell [SOU77]. He described the 
estimated phase by Zernike polynomials with the coefficients stacked in the vector a . An 
estimate for the Zernike coefficients is obtained by minimizing the difference between the 
measured intensity distribution IM and the intensity distribution Ia estimated from the Zernike 
coefficients. Both intensities are taken in the focus plane.  

 ( ) ( ) ( )2 2

,

, , , / ,M a
x y

e I x y I x y a x yσ= −⎡ ⎤⎣ ⎦∑  (4.111) 

Each pixel value (x,y) is scaled by its expected noise variance ( )2,x yσ  assuming a 
Gaussian distribution. Ia is calculated by the squared modulus of the Fourier transform of the 
estimated phase, assuming a constant intensity distribution I0 in the telescope pupil plane. 
The minimization can be performed by any non-linear optimization algorithm. As the 
algorithms before, this method cannot solve the ambiguity issues described in the next 
section, and it is only applicable with the assumption of a constant intensity distribution in the 
pupil plane, which is not realistic for SGL scenarios. 
 



Chapter 4: Adaptive Optics for Laser Satellite-To-Ground Communication 
 

109 

4.4.4.2 Uniqueness 
Considerations on the uniqueness of the phase retrieval problem can be found in 
[MIA98][BAT82]. Some problems of the uniqueness can be already analyzed in the 
properties of the Fourier transform. The discrete Fourier transformation, i.e. the relation 
between the complex field in the telescope pupil plane and the focus plane, is given by 

 
1

, 0
( ) ( ) exp(2 / )

x y

N

n n
G k g n ik n Nπ

−

=

= ⋅∑ , (4.112) 

where x x y yk n k n k n⋅ = +  and k and n are integer numbers. Consequently the intensity in the 
Fourier plane is written by 

 

2
12

, 0

( ) ( ) exp(2 / )
x y

N

n n

G k g n ik n Nπ
−

=

= ⋅∑ . (4.113) 

Eq. (4.113) can be seen as a set of non-linear equations. In the one-dimensional case, there 
are N equations, but 2N unknowns, namely the real and complex parts of g(n). Equivalently 
there are 2N2 unknowns in the two-dimensional case. The reason for the under-determined 
system lies in the fact, that only the modulus of the field but not the phase can be measured 
in the focus.  

Because of the loss of the phase in the focus field, there are some fundamental 
ambiguities in the retrieval process. Any of the following three quantities ( )g x , 

( )0
cig x x e θ+ , ( )*

0
cig x x e θ− + , i.e. phase constant, translation, and conjugate image, are 

equal in the modulus of the Fourier transform. The corresponding Fourier properties are (see 
Appendix A.1.3) 
 
Table 4.5: Fourier properties, which explain the ambiguities in the phase retrieval. 

a) ( ) ( )c ci ie g x e G kθ θ→  Multiplication with a complex constant 

b) 02
0( ) ( )i x kg x x e G kπ−− →  Shift in the signal domain 

c) * *( ) ( )g x G k− →  Complex conjugate and mirroring  

 
Figure 4.37 shows an example for the reconstruction of a phase in the pupil plane using the 
intensities in the focus plane and the pupil plane. Clearly the ambiguity in the reconstruction 
can be seen. The estimated field is the complex conjugate of the original field mirrored at the 
image center. The ambiguity appears according to property c) in Table 4.5.  Although the 
phase is not correctly estimated, the Fourier transform of the estimated field gives a very 
good estimate of the focus spot, and the error measures in the focus and the pupil plane 
nicely decrease; however, an AO system would not work in this case, as the phase estimate 
is wrong. 
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Figure 4.37: Retrieved phase by the error-reduction algorithm. The estimated field is the 
complex conjugate of the original field mirrored at the image center. 

 

4.5 Other Adaptive Optics Concepts 

4.5.1 Wavefront Sensorless Adaptive Optics Systems 
Interesting for fiber-coupled communication receivers appear to be so called wavefront-
sensorless AO systems, which use a performance metric, e.g. image sharpness or power 
coupled into a fiber, to correct phase distortions with an iterative method [VOR02]. The 
natural performance metric for a communication system would be the power coupled into the 
receiver fiber and thus the directly optimization of the communication SNR. The main 
challenge in this iterative approach is convergence speed, where the limiting component is 
not the sensor but the deformable mirror. Fast state-of-the-art mirrors have a bandwidth of a 
few kilohertz. This issue appears to be especially critical for the high-bandwidth requirements 
of links through the atmosphere, where only few hundred micro-seconds are available to find 
a good approximation of the wavefront.  

Wavefront sensorless systems are based on an implicit phase reconstruction without the 
help of a wavefront sensor. The measured performance metric ( )J J u=  is a function of the 
control parameters { }1 2, ,..., Nu u u u= , which are usually the control signals for the adaptive 
mirror. The performance metric is optimized by some type of gradient-descent optimization 
technique [PRE92]. Figure 4.38 shows the typical design of a wavefront-sensorless system. 
Vorontsov et al. have studied the performance of different optimization techniques 
[VOR98][VOR00][VOR02].  
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Figure 4.38: Principle concept of a wavefront sensorless AO system. 

 
Sequential gradient-descent algorithms incrementally adjust the control parameters u to 
improve the value of the performance metric by means of a real-time estimation of the 
gradient  

 
1

,...,
N

J u J J
u u

⎧ ⎫∂ ∂′ = ∇ = ⎨ ⎬∂ ∂⎩ ⎭
. (4.114) 

J’ can be estimated by applying small changes in the control parameters juδ , where uj 

indicates the jth control parameter. An estimate for gradient can then be given by j
j

JJ
u
δ
δ

′ =  in 

place of the real, partial derivative gradient.  
In the sequential gradient-descent method the control parameters are impinged one after 

the other with a small delta juδ , and the approximation for each partial derivative is 
calculated. In this method the convergence time increases with the number N of control 
channels, at least on the order N2 [VOR98].  

The algorithm updates the control channels to maximize the performance metric J by 

 
( )

( 1) ( )
m

m m
l l

l

Ju u
u

μ+ ∂
= +

∂
, (4.115) 

where μ is a small constant controlling the speed of the control parameter update and m 
indicates the iteration number. 

The convergence-time problem could potentially be reduced by a multidithering approach 
as described in [OME77]. Small harmonic signals with different dithering frequencies are 
applied to each control channel in parallel. Estimates of the gradients can then be obtained 
from synchronous, coherent signal detection in the performance metric. Difficulties arise from 
the large bandwidth requirements of the approach to achieve an adequate frequency spacing 
of the dithering excitations, and also the necessity of the frequencies to be above the 
frequency spectrum of the atmospheric disturbance.   

An alternative approach is the Stochastic Parallel-Gradient-Descent Optimization 
Technique (SPGD) [VOR98]. In this method small stochastic (random) perturbations 
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1..ju j Nδ =  are synchronously (in parallel) applied to all control channels. The change of 
the performance metric is then 

  1 1 1( ,..., ) ( ,..., )N N NJ J u u u u J u uδ δ δ= + + − . (4.116) 

The channel update for the parallel gradient-descent method is then given similar to Eq. 
(4.115) but without the knowledge of the exact gradient of each channel 

 ( 1) ( ) ( ) ( ) , 1,...,m m m m
l l lu u J u l Nμ δ δ+ = + ⋅ ⋅ = . (4.117) 

In contrast to the sequential method, it is not intuitive to expect a convergence of the 
algorithm for the parallel gradient-descent method, however Vorontsov could derive an 
expression proving the actual convergence of such an algorithm. Although the parallel 
approach provides an increase of the convergence speed, the technique is still significantly 
limited by the actuator speed and appears not be applicable to drive the AO system. 
Actuators with a bandwidth of several 100kHz would be required. With current technology 
this approach could be well suited to correct slow drifts of the whole optical system due to 
thermal effects or a change in the telescope orientation. 

4.5.2 Phased-Array Concepts in Pupil and Focus Plane 
Another promising technique for adaptive optics correction in free-space optical 
communication systems are phased fiber arrays. The idea is not a new one, in fact the very 
first AO systems were developed on the principle of coherent beam combining, using a ‘glint 
reflection’ from a target as a feedback for the phasing of beams [BRI74].  

Over the last 15 years, adaptive phase-locked fiber arrays have been considered as a 
way to make scalable, light weight launch systems, capable of correcting higher-order phase-
aberration errors as well as the traditional use for beam steering [KUD94]. Figure 4.39 shows 
the principle method of the phase-locked fiber arrays. 
 

 
 

Figure 4.39: Example of a four-aperture receive-telescope array. The radiation from the sub-
telescopes is combined via two stages of directional fiber couplers. The phase of each sub-arm 
is adapted by a phase shifter (piston actuator), so that the power values on the measurement 
photo diodes become minimal and at the same time the combined output is maximized 
[KUD94]. 
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There are many advantages in using a fiber bundle transceiver, such as the ease of 
separation of transmit and receive wavelengths using wavelength division multiplex (WDM) 
techniques and the ability to use readily available fiber components and detectors, as well as 
the possibility of using fiber amplifiers [BRU05]. Very high correction rates are possible 
(100kHz) by using phase-shifting fibers. The feasibility of such a system has recently been 
demonstrated by [VOR09]. 

Focal array receivers (FAR) [GIG04] are a related technique. Several heterodyne 
receivers are implemented in the focal plane. Only one local oscillator (LO) is applied to all 
receiver elements, so that each receiver element requires individual electronics to produce 
the signal in the base band. The signal combination is achieved in the electric domain in 
contrast to fiber arrays, where the signal combination is performed in the optical domain.  
 

 
 

Figure 4.40: Principle design of a Focal Array Receiver [GIG04]. The incident wave is 
superposed with the local oscillator in the focal plane.  

 

4.6 Discussion 
Chapter 4 discussed the specific conditions on satellite-to-ground links and investigated the 
performance of several wavefront sensors and adaptive optics concepts under these 
conditions. Among the important questions for each wavefront sensor were the type of 
reconstruction, the robustness to strong phase distortions and intensity fluctuations, the 
robustness to phase singularities, the possible speed of the wavefront sensor taking the pixel 
to phase point measurement ratio into account, and the complexity of the setup.  

Table 4.6 tries to summarize properties of the wavefront sensors under the discussed 
conditions of the scenario. A plus +, a minus – and an o indicate rather positive, negative and 
neutral characteristics of the specific sensor. It is clear that wavefront sensors are complex 
systems and difficult to characterize with a few parameters, but it was attempted to give a 
quick overview of the findings in this chapter and especially their usability in the SGL 
scenario at low elevation angles of the satellite. 

• Resolution: This parameter characterizes the spatial resolution of a wavefront 
sensor. Interferometers score well here, as they have a favorable ratio 
between required sensor pixels and phase measurement points. This ensures 
high frame rates and high processing speed with low delays due to the camera 
frame transfer. 

• Complexity of reconstruction – speed: The complexity of the reconstruction 
is an important factor for the speed or bandwidth of the AO system. Self-
referencing common-path and unequal path interferometers (as described by 
Zernike) belong to the direct sensors, which do not require an explicit 
(numerical) reconstruction, and they have a favorable pixel/measurement point 
ratio. In the consequence they appear to be well suited for the application in 
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SGL scenarios. Shack-Hartmann, curvature, and shearing interferometer 
sensor require advanced reconstruction methods (e.g. a complex exponential 
reconstructor) to cope with phase singularities making them potentially slow. 
Phase retrieval and wavefront-sensorless systems are inherently slow due to 
their iterative character. 

• Robustness to singularities: Self-referencing common-path and unequal 
path interferometers simply detect phase singularities without any complex 
reconstruction, while Shack-Hartmann, curvature, and shearing interferometer 
sensors require a complex reconstruction step with a high sensor resolution, if 
a correct reconstruction of the singularities is possible at all.  

• Sensitivity to scintillation: Especially the iterative methods react sensitive to 
intensity scintillation, but also the curvature sensor relies on weak intensity 
fluctuations across the pupil. 

• Complexity of the optical setup: Wavefront-sensorless systems have a clear 
advantage in terms of setup complexity; however, they do not show the 
potential for an overall fast AO performance.  

 
Table 4.6: Overview of wavefront sensors and their characteristics. 
Wavefront 
Sensor 

Resolution Complexity of 
Reconstruction – 

Speed 

Robustness to 
Singularities 

Sensitivity to 
Scintillation 

Complexity 
of Setup 
(Optics) 

Shack-Hartmann - o (Unwrapped 
phase) - + + 

Curvature 
Sensor o - (++ for a 

bimorph mirror) - - o 

Phase Retrieval 
from Focus 
Intensity 

- Slow and instable - - + 

Wavefront 
Sensorless - Slow but simple + o ++ 

Lateral Shearing 
Interferometer  + - o + o 

Common-Path 
Interferometer + o (wrapped 

phase, iterative) + o + 

Phase-Shifting 
Interferometer 

+ + (wrapped 
phase) 

+ + - 

 
This chapter has shown that interferometric wavefront sensors exhibit some favourable 
characteristics in strong-fluctuation scenarios, where the conventional sensors like Shack-
Hartmann and curvature sensor appear to have weaknesses, which can be only 
compensated, if at all, with a high (and expensive) technical effort.  
Interferometric sensors can provide very high resolution due to a favourable pixel to phase 
point ratio, and thus potentially can help to achieve a fast closed-loop bandwidth. Some of 
the interferometric techniques yield phase estimates almost without numerical processing 
(phase-shifting interferometer) and are at the same time highly robust to phase singularities 
and scintillation. 
Interferometric wavefront sensors exist in a large variety. Several techniques and technical 
implementations will be further investigated in the following chapter, also illuminating the 
properties of the different techniques in respect to resolution, complexity and reconstruction 
speed, singularities, strong scintillation, and the complexity of the optical setup.  
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5 Interferometric Wavefront Sensors in Strong Turbulence  
This section analyzes in detail interferometric wavefront sensors for the application in 
satellite-to-ground links (SGL). Special emphasis will be again given to the particular 
conditions found in these scenarios [KNA09]. Apart from the general atmospheric conditions 
already presented in Section 4.4, there are conditions specific to interferometers, which have 
to be taken into account for the development of suitable wavefront sensors and adaptive 
optics (AO) systems. The most important conditions are summarized in the following: 
 

• A self-referencing interferometer type is required, generating the reference 
wave from the input wave by a spatial filter in the Fourier plane; 

• Strong phase distortions over the entrance aperture and therefore large 
variations of the strength of the reference wave  (at least in the initial phase of the 
wavefront correction); 

• Strong intensity fluctuations over the entrance aperture; 
• Full 2π phase circle measurements are required and ambiguities have to be 

resolved; 
• Difficult environmental conditions for the operation of the AO system with 

some amount of vibration (e.g. mount motion) and temperature variations (e.g. 
solar radiation); 

• Highly monochromatic and polarized laser source in space with a long 
coherence length; 

• The integration of the interferometric sensor into an AO system makes 
certain iterative techniques possible; 

 
Self-referencing interferometers appear to be especially interesting for the application in SGL 
scenarios. The term self-referencing implies that the reference wave is obtained from the 
incoming wave itself by applying a spatial filter in a Fourier plane. A separate reference beam 
is not used, which would require a local, phase-locked laser as in coherent communication 
receivers. A detailed analysis of the properties of self-referencing interferometers can be 
found in the literature on common-path interferometers (CPI) [GLU01, AND95], which is 
presented in Section 5.1.1 with a focus on the creation of the synthetic reference wave. 
Some considerations are also given to non-common path point-diffraction interferometers 
(PDI) in Section 5.1.2.  

A single CPI (as described by Zernike) does not resolve the phase ambiguities of the 
cosine term in the interferometer Eq. (4.86) and also does not take into account effects from 
varying intensity distributions in the object wave and the reference wave. These issues are 
approached in the Section 5.2 with phase-shifting interferometers (PSI), which use several 
interferograms (at least three) to recover the unique phase even in the presence of intensity 
fluctuations [CRE88, MAL07]. Sections 5.2.2 and 5.2.3 contain an overview of PSI evaluation 
techniques and relevant error sources, where especially phase-shifter errors, nonlinearities, 
detector noise, and vibrations appear significant for the satellite communication scenarios. 
Section 5.3 treats design issues of self-referencing interferometers for the deployment in an 
optical ground station for satellite-to-ground communications. Here Fourier fringe analysis 
(FFA) techniques as discussed by Takeda [TAK82], instantaneous PSIs [SIV03, DUN03, 
NOT07, MIL05], and also iterative CPI methods [VOR01] are presented. First, encouraging 
experimental results from laboratory setups are shown in Chapter 6. 
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5.1 Self-Referencing Interferometer  

5.1.1 Common-Path Interferometer 
The original description of the common-path interferometer (CPI), as it was invented by 
Zernike, gave the simplified equation ( ) 1 2eI x ϕ≈ +  for the relation between phase and 
intensity (see Section 4.4.3.1, Eq. (4.90)). This result is only valid for weak phase fluctuations 
and assumes a constant intensity distribution over the aperture. Also fluctuations of the 
synthetic reference wave are not taken into account. Section 5.1.1.1 presents a more 
detailed derivation of the equations of the CPI including intensity fluctuations, wavefront 
distortions over the complete 2π phase circle, and generalized filter parameters. Section 
5.1.1.2 is devoted to the analysis of the synthetic reference wave (SRW). Both sections can 
be applied not only to CPIs, but also help for the understanding of non-common path point-
diffraction interferometers (PDI) (Section 5.1.2). 

5.1.1.1 Detailed Derivation of Common-Path Interferometers and their Variations  
The derivation of the CPI shown here is based on the work of Glückstad [GLU01] and 
Vorontsov [VOR01], however with some modifications to accommodate the specific 
requirements of the scenario. In particular a non-uniform intensity distribution in the input 
plane was assumed.  
 

 
Figure 5.1: Principle setup of a common-path interferometer. 

 
Figure 5.1 shows the detailed design of a CPI in a 4-f configuration. The incoming wave 

with the electric field ( ) ( ) ( ),, , i x y
in ing x y g x y e ϕ=  is distorted by the atmospheric turbulence. 

The filter plate is located in the focus plane of the first lens, where the field is proportional to 
the Fourier transform so that ( ) ( ){ }in l inG f h FT g r= ⋅ . FT{} denotes the Fourier 
transformation. hl is a complex scaling factor (see Appendix A.2.3 Optical Fourier Transform), 
which however can be neglected, as it cancels out during the inverse Fourier transformation 
of the second lens. The vector ( ),r x y=  gives the transversal coordinates in the spatial 

domain, while ( ),x yf f f=  gives the frequencies in the Fourier domain. The scaling of the 

frequencies to the spatial coordinates is given by ( ), , yx
x y

qqf f
f fλ λ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, where ( ),x yq q q=  

denotes the spatial coordinates in the Fourier plane, f  the focal length of the lenses and λ the 
wavelength.  

A general phase plate with a circular central area (filter dot) is given by the transfer 
function 

 0( )
( )

i
dot

dot

H q e for q q
H q otherwise

θγ
β

= <

=
, (5.1) 
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where γ denotes the transmission (attenuation) and θ the phase shift of the filter dot. The 
transmission (attenuation) of the area around the filter dot is denoted by β. In the following 
the filter dot is assumed to have infinitely small dimensions ( 0 0q → ) in order to simplify the 
formulas and to make the characteristics of the CPI easier to understand. Thus, the filter dot 
is modelled by a Dirac impulse ( )fδ . The transfer function of the filter plate can now be 
written by  

 ( ) ( ) ( ) ( )( )1 ei i
dotH f f e f fθ θβ δ γ δ β δ γ β⎡ ⎤= − + = + −⎣ ⎦ . (5.2) 

The field directly before the filter ( )inG f is multiplied with the filter function ( )dotH f , which 

yields the output field ( )outG f  

 ( ) ( ) ( ) ( )( ) i
out in inG f G f e G f fθβ γ β δ= + − . (5.3) 

Here the second term ( ) ( ) ( )i
ine G f fθγ β δ−  can be interpreted as a synthetic reference 

wave similar to the synthetic reference wave generated in a non-common path PDI (Section 
5.1.2). Performing the inverse Fourier transform gives the field at the image sensor 

 ( ){ } ( )1
0

1( ) i
out out in

l

g r FT G f g r e g
h

θβ γ β− ⎡ ⎤= = + − ⋅⎣ ⎦ , (5.4) 

where the complex constant (spatially constant but not temporally) 0g  is the averaged 
complex field over the aperture area A in the entrance pupil and therefore the field at the filter 
dot at ( )0,0f = . The Fourier transformation of the input field ( )ing r  into the focus plane is 
given by 

 ( ) ( ) ( ) 2 2i r i r f
in l in

A

G f h g r e e d rϕ π ⋅= ⋅ ∫∫  (5.5) 

with x yr f x f y f⋅ = ⋅ + ⋅ . A denotes the area of the input pupil with diameter D. 
Consequently, the field at the filter dot is  

 ( ) ( ) ( ) 2
00,0 i r

in l in
A

G h g r e d r gϕ= ⋅ =∫∫ . (5.6) 

The intensity distribution on the camera chip is calculated by 

 ( ) ( ) ( )2 *( ) out out outI r g r g r g r= = ⋅ . (5.7) 

The star * denotes the complex conjugate. Putting Eq. (5.4) into (5.7) results in 

 ( ) ( ) ( ) ( ) ( )( ) ( )
2

*
0

i r i i
out out inI r g r g r g r e e g eϕ ϕ θ ϕβ γ β+= ⋅ = + − , (5.8) 
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where 0 0
ig g e ϕ=  as shown in Eq. (5.6). ϕ  and ϕ  are the average and variable parts of the 

input phase, so that ( ) ( )r rϕ ϕ ϕ= + . The constant factor ie ϕ  drops out due to the absolute 
value, so that the CPI equation becomes 

 ( ) ( ) ( ) ( ) 2

0
i r i

inI r g r e e gϕ θβ γ β= + − . (5.9) 

Expanding this yields 

 ( ) ( ) ( ) ( ) ( )( ) ( )2 22 2 2
0 02 cos 2 cos cosin inI r g r g g r g r rβ β γ βγ θ β γ ϕ θ β ϕ⎡ ⎤= + + − + − −⎣ ⎦ , 

from which the equations of some of the known CPIs can be derived with the according filter 
parameters , ,θ β γ .  

Positive Zernike phase contrast filter 

The classical Zernike phase contrast filter is given by the filter parameters 
/ 2, 1, 1θ π β γ= = = . Thus,  

 ( ) ( ) ( ) ( ) ( )2 2( )
0 02 2 sin coszer in inI r g r g g r g r rϕ ϕ+ = + + −⎡ ⎤⎣ ⎦ . (5.10) 

Assuming ( ) 2 2
0 1ing r g= = , using the Taylor expansions of 

3

sin ...
6
ϕϕ ϕ= − +  and 

2

cos 1 ...
2
ϕϕ = − +  and neglecting higher order terms for small ϕ , this equation can be 

simplified to  

 ( ) ( ) ( ) ( ) ( )( ) 23 2 sin cos 1 2 ...zerI r r r r rϕ ϕ ϕ ϕ+ = + − ≈ + +⎡ ⎤⎣ ⎦  (5.11) 

showing the expected linear relationship between phase and intensity already given in 
Section 4.4.3.1. 

Negative Zernike phase contrast filter 

Similar results are obtained with the negative Zernike phase contrast filter: 
/ 2, 1, 1θ π β γ= − = =  

 ( ) ( ) ( ) ( ) ( )2 2( )
0 02 2 sin coszer in inI r g r g g r g r rϕ ϕ− = + + − −⎡ ⎤⎣ ⎦ . (5.12) 

 
Differential Zernike filter [VOR01] 
Subtracting Eq. (5.12) from (5.10) gives 

 ( ) ( ) ( ) ( ) ( )( ) ( )
04 sindif zer zer inI r I r I r g r g rϕ+ −= − = . (5.13) 

Simplifying with ( ) 2 2
0 1ing r g= = , the differential filter becomes 
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 ( ) ( ) ( ) ( ) ( ) ( )3
( ) ( ) 4sin 4 ...

6dif zer zer

r
I r I r I r r r

ϕ
ϕ ϕ+ − ⎛ ⎞

= − = = − +⎜ ⎟
⎝ ⎠

. (5.14) 

Thus, the output of the differential Zernike filter is, in a first approximation, directly 
proportional to the phase. The non-linear terms start with 3ϕ  in contrast to the simple Zernike 
filters, e.g. (5.11), and therefore the linear range of the phase-intensity mapping is extended. 
 
Henning filter 

Henning filter [HEN74]: / 4, 1/ 2, 1θ π β γ= = =  

 ( ) ( ) ( ) ( )2 2
0 0

1 1 sin
2 2in inI r g r g g r g rϕ= + + . (5.15) 

Simplifying with ( ) 2 2
0 1ing r g= = , the Henning filter becomes 

 ( ) ( ) ( )1 sin 1 ...I r r rϕ ϕ= + ≈ + −  (5.16) 

 
Figure 5.2 compares the three shown Zernike configurations, the positive Zernike filter, the 
differential Zernike filter, and the Henning filter. It can be seen, that the positive (classical) 
Zernike filter has only a very small range of linear phase-intensity mapping. Significant 
improvement is achieved with the differential and the Henning filter configurations, where the 
assumption of linearity is valid for / 3ϕ π< . The curves are shown for the simplification 

( ) 2 2
0 1ing r g= = , i.e. intensity fluctuations and a varying synthetic reference wave are not 

considered. 
 

 
Figure 5.2: Comparison of the linear range of three Zernike filter configurations (Positive 
Zernike, Differential Zernike, Henning Filter).  

 

5.1.1.2 Generation of the Synthetic Reference Wave 
A detailed analysis of the generation of the synthetic reference wave (SRW) was given by 
Glückstad and Mogensen [GLU01] partly based on the work of Anderson [AND95]. They 
describe the effect of a finite filter-dot diameter on the quality of the SRW and thus the 
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accuracy of the phase estimation. This detailed analysis of the SRW is important especially 
due to the strong phase and amplitude fluctuations of the incoming wave for the considered 
scenarios. Two approximations of the SRW are compared here, an own one and the one of 
Glückstad.  

The field distribution in the focus (filter-dot) plane is given by Eq. (5.5) and (5.6). In the 
first approximation a constant field ( )0,0 i

inG e ϕ  is assumed over the circular filter dot 
(neglecting any variations), now with finite radius q0. The resulting intensity distribution in the 
sensor plane ( )'SRWI ρ  results to an Airy distribution [SAL91] 

 ( ) ( ) ( ) 2
1 0

0

2 2 '/
' 0,0

2 '/SRW SRW

J q f
I I

q f
π ρ λ

ρ
π ρ λ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
.  (5.17) 

The power over the full Airy pattern P0 equals the power over the filter dot due to 
conservation of energy, which can be used to determine the value for the center intensity 

( )0,0SRWI . Integrating Eq. (5.17) in polar coordinates over an infinite plane gives the entire 
power P0 

 ( ) ( )
( )

22
1 0

0 2
' 0 0 0

4 2 '/
0,0 ' '

2 '/
SRW

J q f
P I d d

q f

π

ρ ϕ

π ρ λ
ρ ϕ ρ

π ρ λ

∞

= =

= ⋅∫ ∫ , (5.18) 

which can be integrated with [GRA81, eq. 6.574] 

 
( )2

1

0

1
2x

J x
dx

x
α∞

=

=∫ . (5.19) 

The center intensity of the Airy distribution becomes with the area Ad of the filter dot  

 ( )
2

0 0
2 2 2 20,0 d d

SRW
P A I AI

f fλ λ
= = ,  (5.20) 

where ( ) 2
0 0,0inI G=  denotes the (constant) intensity across the filter-dot aperture. This 

also shows, as expected, that the smaller the filter dot, the lower is the central intensity of the 
Airy distribution and thus the visibility of the fringe pattern is decreased (See Section 5.1.1.3).  

The radius of the Airy distribution to the first intensity zero in the focus plane in 
dependence of the telescope aperture diameter D is   

 1.22Airy
fr
D
λ⋅

= , (5.21) 

and the ratio η of the filter-dot radius q0 and the radius of the Airy in the focus plane rAiry is 
given by 

 0 0

1.22Airy

q q D
r f

η
λ

= = . (5.22) 

Therefore the intensity distribution in the sensor plane combining Eq. (5.18), (5.20) and 
(5.22) becomes 
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 ( ) ( ) 22
10

2 2

2 2.44 '/
'

2.44 '/
d

SRW

J DI AI
f D

πηρ
ρ

λ πηρ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

.  (5.23) 

From this approximation of the intensity distribution of the SRW in the sensor plane, it is easy 
to understand that a small filter dot generates a broader SRW, where the intensity is 
relatively constant over the aperture diameter. This is important, as a drop in the intensity to 
the edge of the aperture directly influences the quality of the phase estimation. A similar 
situation is given for the phase of the Airy distribution, which can be seen in Figure 4.18 and 
Figure 4.19. 

Glückstad [GLU01] gave a different approximation of the SRW. He assumed an ideal Airy 
intensity distribution in the filter plane created by the telescope entrance aperture. He then 
weighted this distribution with the aperture function of the filter dot with radius q0 and Fourier 
transformed the result to the sensor plane, so that  

 ( ) ( )0 2
1 2 '

0
' 0 0

2 '/
, ' '

'/

q
ir q

SRW
q

J Dq f
g r g e q d dq

Dq f

π
π

ϕ

π λ
φ ϕ

π λ
⋅

= =

= ⋅∫ ∫ . (5.24) 

Consequently, the distribution in the focus (filter-dot) plane is not constant anymore. 
Glückstad simplified the integral (5.24) with a zero-order Hankel transformation [GOO96] and 
solved the remaining one-dimensional integral with a Bessel power series expansion. Figure 
5.3 compares the approximation of the constant amplitude over the filter dot (Eq. (5.23), left) 
and Glückstad’s approximation (right). Both approximations show a similar decrease of the 
amplitude to the edge of the aperture. The first approximation (5.23) slightly underestimates 
the amplitude.  
 

 
Figure 5.3: Normalized SRW amplitude over the radius in the sensor plane for different ratios η  
of the Airy diameter in the focus plane and the filter dot diameter. Left: Approximation with an 
Airy distribution in the sensor plane. Right: Approximation with Bessel functions [GLU01]. 
 
Both Glückstad [GLU01] and Anderson [AND95] suggested a filter dot size of 0.4η =  as a 
good compromise between a sufficiently constant SRW over the aperture and sufficient 
power of the SRW.  
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5.1.1.3 Visibility of the Interference Fringes 
An important issue for the performance of interferometers in atmospheric applications is the 
visibility of the interference fringes, i.e. the contrast of the fringes. The visibility was studied 
by Anderson [AND95] in the context of CPIs. The basic formula for the visibility is  

 max min

max min

I IV
I I

−
=

+
, (5.25) 

where maxI  and minI  give the maximum and minimum of the interferometer intensity as a 
function of the phase ϕ . Taking the output of a Henning CPI from Eq. (5.15), the visibility 
calculates to  

 
( )

( )
0

2 2
0

2 in

in

g r g
V

g r g
=

+
. (5.26) 

The maximum intensity of the interference term is  

 ( )max 0inI g r g= . (5.27) 

Two effects influence the visibility and the maximum intensity: The intensity ( )ing r  at a 
certain position, which is a consequence of scintillation on the atmospheric path, and the 
intensity 0g  at the filter dot, which is mainly influenced by phase distortions and determines 
the strength of the SRW. The tip-tilt error of the incident phase has an especially strong 
impact on the filter dot intensity, as it moves the focus spot off the filter dot or pin hole in a 
PDI.  

In both cases, if the received intensity at a certain position or the filter-dot intensity tend 
towards zero, the visibility and the maximum intensity maxI  also decrease towards zero. Low 
visibility or low maximum intensity implicate that the quantization noise of the sensors 
increases, as fewer bits of the sensor’s dynamic range are used for the analogue to digital 
conversion, and the effect of sensor noise increases.  

Another factor influencing the fringe visibility is the transmit laser’s degree of coherence 
and the optical path difference of the interferometer arms. Extending the basic self-
referencing interferometer Eq. (5.36) with the degree of coherence [BOR99, p.564] gives 

 ( ) ( ) ( ) ( )( )0 0 12, , 2 , cos ,R RI x y I I x y I I x y x yγ ϕ θ= + + ⋅ + , (5.28) 

where 12γ  is the modulus of the complex degree of coherence, which includes in the 

interferometer setup the optical path difference, i.e. ( )12 2 1s sγ −  with the optical path lengths 

s2, s1 of the interferometer arms. Since 12 1γ ≤ , it can be seen that a reduced coherence 
decreases the fringe visibility and thus affects the quality of the reconstructed phase.  
Also the degree of polarization of the incoming wave could be an issue for the phase 
reconstruction, however to a negligible degree for self-referencing interferometers, which will 
have the same polarization for the object and the reference wave independent of the 
incoming wave; in addition, Toyoshima et al. [TOY09] could show in experiments with 
OICETS, that the effect of depolarization in SGL scenarios due to the atmosphere is rather 
week guaranteeing a degree of polarization of around 99% even for low elevation angles. 
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5.1.1.4 Graphical Method for the Evaluation of CPIs 
Glückstad [GLU98] developed a graphical method to evaluate the properties of different CPI 
setups. Slightly modifying Eq. (5.9) gives  

 ( ) ( ) ( ) ( ) 22 1
0 1i r i

inI r g r e g eϕ θβ γβ −= − − , (5.29) 

forming the basis for the graphical method.  
Figure 5.4 shows the positive Zernike phase contrast method (see Section 5.1.1.1) in the 

graphical representation. The filter-dot parameters are / 2, 1, 1θ π β γ= = = , and Eq. (5.29) 
reduces to  

 ( ) ( ) ( ) 2

0 1i r iI r e g eϕ θ= − − , (5.30) 

assuming a constant input amplitude ( ) 1ing r = . Both terms in the difference of Eq. (5.30), 
( )i re ϕ  and ( )1

0 1 ig e θγβ −−  are shown in the graph of the complex plane. The real part is 
applied on the horizontal and the imaginary part on the vertical axis. The left circle around 
the origin shows ie ϕ , i.e. is dependent on the sought phase, and the circles on the right show 

( )0 1 ig e θ− , i.e. circles around 0g , which is the amplitude at the filter dot. Originating now at 

( )0 1 ig e θ−  the difference between the two terms is indicated by an intensity axis (red 

arrow), which crosses the left circle at ie ϕ . The square relationship of the distance and the 
intensity is indicated with the axis below the graph. This illustrates nicely the relation between 
the phase and the intensity, and the linear regions can be estimated. An unique relation can 
be achieved for 31

4 4π ϕ π− < < , which matches with Figure 5.2. 

 

 
Figure 5.4: Graphical representation of the positive Zernike phase contrast 
( / 2, 1, 1θ π β γ= = = ).  

 



Chapter 5: Interferometric Wavefront Sensors in Strong Turbulence 
 

 

124 

Figure 5.5 shows the graph for the Henning phase contrast method 
( / 4, 1/ 2, 1θ π β γ= = = ), assuming ( ) 0 1ing r g= = . Under these conditions there is an 

unique mapping between phase ϕ  and intensity for 1 1
2 2π ϕ π− < < , which is confirmed by 

Figure 5.2; however, for an optimum operation this scheme would require the amplitudes 
( )ing r  and 0g  to be controlled.  

More examples for the graphical evaluation method of CPI variations can be found in 
[GLU98] and [GLU01]. 
 

 
Figure 5.5: Graphical representation of the Henning phase contrast method 
( / 4, 1/ 2, 1θ π β γ= = = ). 

5.1.2 Point Diffraction Interferometer (Non-Common Path) 
Common-path interferometer (CPI) and point diffraction interferometer (PDI) have very 
similar properties and can be described with the same methodologies. In particular the 
description of the synthetic reference wave (SRW) as shown in Section 5.1.1.2 is equal for 
CPIs and PDIs. The principle setup of a PDI is shown in Figure 5.6. 
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Figure 5.6: Point-diffraction interferometer in a Mach-Zehnder configuration. The SRW is 
generated by a pin hole in a Fourier plane.  

 
The incoming field distribution at the entrance pupil is given by 

 ( ) ( ) ( ),
0 0, , i x yU x y U x y e ϕ= ⋅ , (5.31) 

and the reference wave is described for simplicity as a plane wave, which is shifted by a 
phase value of θ  

 i
R RU U e θ−= ⋅  (5.32) 

The intensity in the camera plane is then given by 

 
( ) ( )

( ) ( ) ( )( )

2
0

0 0

, ,

, 2 , cos ,

R

R R

I x y U U x y

I I x y I I x y x yϕ θ

= +

= + + +
, (5.33) 

where 2*
R R R RI U U U= ⋅ =  and 2*

0 0 0 0I U U U= ⋅ = . The phase shift θ  in a PDI configuration 
is unknown, as it is determined by the path length of the two interferometer arms. In a CPI 
this path difference is known, as it is determined by the filter-dot phase shift. Apart from the 
filter dot, both waves otherwise have the same path in a CPI. 

If the first beam splitter in the PDI is substituted by a polarizing beam-splitter, reference 
wave and object wave attain perpendicular polarizations. This is an interesting feature for the 
instantaneous phase-shifting interferometers, as they are discussed in Section 5.3.2. Both 
the designs by Sivakumar (Section 5.3.2.1) and Notaras (Section 5.3.2.2) require 
perpendicularly polarized reference and object waves.  
 

5.2 Phase-Shifting Interferometry 
Common-path and point-diffraction interferometers in a Zernike phase contrast configuration 
are direct wavefront sensors requiring no phase reconstruction step, and they have a very 
favorable ratio between measurement and phase points. In this sense they are of interest for 
the application in SGL scenarios, where high speed is required; however, their results are 
only valid for very small phase distortions. Apart from the ambiguous relationship between 
the phase and the intensity for larger phase distortions, the amplitude distribution of the 
incoming wave and the strength of the SRW are unknown and change the results.  
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Phase-shifting interferometers (PSI) offer a solution to overcome these limitations, 
measuring the interference fringes for different phase shifts jθ  of the reference wave against 
the object wave. These methods are usually classified by the number of phase shifts they 
use to calculate the phase. Phase shifts can be generated in a sequential fashion for 
example by a moving mirror, which is commonly known by the term temporal phase shifting. 
A piezo-electric actuator might drive the mirror. Or phase shifts are created by optical 
elements in different optical arms, which is often called geometrical or spatial phase shifting. 
An overview of spatial and temporal phase-shifting methods is given for example in [MAL07].  

If the created interferograms with different phase shifts are recorded synchronously, this is 
referred to by the term instantaneous phase-shifting interferometry, as in one instant a 
sufficient number of interferograms, each with a certain phase shift jθ , is detected on the 
(synchronized) sensor chips (or only one sensor chip) to unambiguously calculate the 
incoming phase. Instantaneous PSI methods are usually less sensitive to vibrations and are 
faster, as they require only one sampling period instead of several as for the sequential 
methods. Optical designs of instantaneous PSI methods are presented in Section 5.3.2. 

Section 5.2.1 introduces the basic principles of PSIs and presents some of the common 
algorithms. Section 5.2.2 discusses evaluation methods to optimize PSI algorithms for the 
application scenario. Section 5.2.3 analyzes error sources in PSIs and their effects on 
different algorithms. Special attention will be given to vibration and noise effects. The 
systems are intended to work under difficult environmental conditions and possibly with 
vibrations from a telescope mount. Noise effects are important, as low-light levels are 
expected to occur due to atmospheric scintillation. The used cameras for the infrared 
(InGaAs) have very poor performance in terms of detector noise, but they have a good 
sensitivity in the required wavelength range.  

5.2.1 Algorithms of Phase-Shifting Interferometry 
Introductions to PSI can be found for example in [MAL07], which also gives an extensive 
listing of different PSI algorithms. An earlier overview was given by Creath [CRE88].  

The incoming field distribution at the entrance pupil is given by 

 ( ) ( ) ( ),
0 0, , i x yU x y U x y e ϕ= ⋅ , (5.34) 

and the reference wave, possibly generated with the methods introduced in Section 5.1.1.2, 
is described for simplicity as a plane wave, which is delayed by a phase value of jθ  

 ji
R RU U e θ−= ⋅ . (5.35) 

0U  and RU  denote the amplitudes of the object and reference wave. The intensity in the 
camera plane is then given by 

 
( ) ( )

( ) ( ) ( )( )

2
0

0 0

, ,

, 2 , cos ,

R

R R j

I x y U U x y

I I x y I I x y x yϕ θ

= +

= + + +
, (5.36) 

where 2*
R R R RI U U U= ⋅ =  and 2*

0 0 0 0I U U U= ⋅ = . Distributions over the telescope aperture 
are indicated with the coordinate dependence (x,y), in contrast to the (spatially) constant 
reference wave. Eq. (5.36) shows, that there are basically three unknowns, an offset 
component ( )0 ,RI I x y+ , a fringe modulation component (or contrast) ( )02 ,RI I x y , and of 

course the sought phase ( ),x yϕ . This assumes that the phase shifts jθ  are well known. 
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Deviations from the nominal phase shifts introduce so-called phase-shift errors. This is 
discussed in more detail in Section 5.2.3.1. 

As there are three unknowns, at least three phase steps are required to obtain the sought 
wavefront phase. An example for a three-step PSI algorithm is given by Wyant et al. 
[WYA84] with the steps 3 51

4 4 4,jθ π π π= , . For the given phase steps the three interferometer 
equations based on (5.36) are  

 

( )
( )
( )

1
1 0 0 4

3
2 0 0 4

5
3 0 0 4

2 cos

2 cos

2 cos

R R

R R

R R

I I I I I

I I I I I

I I I I I

ϕ π

ϕ π

ϕ π

= + + +

= + + +

= + + +

 (5.37) 

The coordinates (x,y) with the object-wave intensity and the phase were omitted for clarity. 
The phase can then be calculated by  

 ( )2 3 2 1 2arctan ,I I I Iϕ = − − , (5.38) 

where arctan2 is the two-variable version of the arctangent to get the phase over the full 2π 
circle.  Eq. (5.38) is derived by using the trigonometric relation 

( )cos cos cos sin sinα β α β α β± = ∓ : 

 
( ) ( )
( ) ( )

5 3
4 43 2

31
1 2 4 4

cos cos sin
cos cos cos

I I
I I

ϕ π ϕ π ϕ
ϕ π ϕ π ϕ
+ − +−

= =
− + − +

, (5.39) 

A generalized symmetric three-step method was suggested by Creath [CRE88][MAL07] with 
the phase steps 0,jθ = − , + . 

 

( )
( )
( )

1 0 0

2 0 0

3 0 0

2 cos

2 cos

2 cos

R R

R R

R R

I I I I I

I I I I I

I I I I I

ϕ

ϕ

ϕ

= + + −

= + +

= + + +

 (5.40) 

The phase is then calculated by  

 ( ) 1 3

2 1 3

1 cos, arctan
sin 2

I Ix y
I I I

ϕ
⎛ ⎞−−

= ⋅⎜ ⎟− −⎝ ⎠
. (5.41) 

The interferograms modulation 02 RI I  is given by 

 
( )( ) ( )

( )

2 2
1 3 2 1 3

0

1 cos 2 sin
2

2 1 cos sinR

I I I I I
I I

− − + − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦=
−

 (5.42) 

and the offset term by 

 
( )

1 3 2
0

2 cos
2 1 cosR

I I II I + −
+ =

−
. (5.43) 
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The ratio 0

0

2 R

R

I I
I I+

 represents a convenient value to assess the modulation depth and thus to 

identify data points with insufficient modulation, which appear in areas with low object-beam 
intensities due to atmospheric scintillation or during a drop of the SRW strength.  

This method can be nicely applied to the instantaneous PSI methods discussed in Section 
5.3.2, where the phase shift is / 2π= .  With this Eq. (5.40) and (5.41) simplify to 

 

1 0 0

2 0 0

3 0 0

2 sin

2 cos

2 sin

R R

R R

R R

I I I I I

I I I I I

I I I I I

ϕ

ϕ

ϕ

= + +

= + +

= + −

 (5.44) 

and  

 ( ) 1 3

2 1 3

, arctan
2

I Ix y
I I I

ϕ
⎛ ⎞−

= ⎜ ⎟− −⎝ ⎠
. (5.45) 

Eq. (5.42) and (5.43) simplify to 

 ( ) ( )2 21
0 1 3 2 1 322 2RI I I I I I I= − + − −  (5.46) 

and  

 1 3
0 2R

I II I +
+ = . (5.47) 

The ratio 0

0

2 R

R

I I
I I+

 then becomes 

 
( ) ( )2 2

1 3 2 1 30

0 1 3

22 R

R

I I I I II I
I I I I

− + − −
=

+ +
. (5.48) 

Similar equations can be produced for four-step algorithms with the phase shifts 
31

2 20, ,jθ π π π= , . The intensities of the four interferometers are 

 

( )
( ) ( )
( ) ( )
( ) ( )

1 0 0

1
2 0 0 0 02

3 0 0 0 0

3
4 0 0 0 02

2 cos

2 cos 2 sin

2 cos 2 cos

2 cos 2 sin

R R

R R R R

R R R R

R R R R

I I I I I

I I I I I I I I I

I I I I I I I I I

I I I I I I I I I

ϕ

ϕ π ϕ

ϕ π ϕ

ϕ π ϕ

= + +

= + + + = + −

= + + + = + −

= + + + = + +

 (5.49) 

 
and the phase is calculated by  

 ( )2 2 4 3 1arctan ,I I I Iϕ = − − . (5.50) 
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The presented methods measure the interferograms at discrete phase steps. This can be 
slightly modified to an integrating-bucket technique [e.g. CRE88]. Here the relative phase 
between the reference and object beam is varied at a constant rate rather than in discrete 
steps. This has advantages especially for the mechanical adjustment of the relative phase 
and can increase the measurement speed for temporal PSI methods. Main focus of this 
thesis however will be on geometrical and especially instantaneous PSI algorithms. 

Figure 5.7 shows the simulation of a three-step interferometer on an input field of an SGL 
scenario at 10 degrees elevation. Phase singularities in the field are correctly displayed by 
the phase reconstruction based on Eq. (5.38). For this example the input amplitude was set 
to a constant value, which allows seeing the phase structures in the individual 
interferograms. Figure 5.8 shows the interferograms for the same scenario but with 
scintillation in the input amplitude. The separate interferograms mainly show the amplitude 
distribution of the input field, and the required dynamic range for the interferograms is 
significantly increased. This has to be taken into account for the specification of the camera 
sensors. 
 

 
Figure 5.7: Simulation of a three-step interferometer: The upper row shows the three 
interferograms I1-I3 taken for the phase steps 3 51

4 4 4,jθ π π π= , ; The lower row shows the 
input-field amplitude/phase and the estimated phase calculated from the images I1-I3 by Eq. 
(5.38). The input field is a simulated phase distribution for an SGL scenario at 10 degrees 
elevation. The input phase distribution contains a large number of singularities, which are 
correctly reproduced from the PSI. The input amplitude is set to a constant value to make the 
phase structures in the separate interferograms visible. 
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Figure 5.8: Same plot as Figure 5.7, only now with a varying input-amplitude distribution. The 
separate interferograms now show mainly the amplitude distribution of the input field. The 
reconstruction result is the same, however, the required sensor dynamics is significantly 
increased. 
 
Table 5.1 summarizes common 3, 4, and 5 step phase-shifting algorithms discussed in the 
literature. The behavior of these algorithms to various error sources will be discussed in 
Section 5.2.2 and 5.2.3. The table was limited to up to 5 steps, as one of the main 
requirements of the discussed scenario is the speed increase and the complexity reduction 
of the AO system. A larger number of phase measurements comes with more complex 
algorithms, a higher number of sensor pixels, and therefore with a lower overall speed.  
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5.2.2 Evaluation of PSI Algorithms 
Two powerful analytical techniques are introduced in this section to evaluate the 
performance of different PSI algorithms. Freischlad and Koliopoulos [FRE90] used a Fourier 
method, which describes the phase retrieval step as a filtering process in the frequency 
domain. The second technique presented here is the evaluation of the PSI methods based 
on the characteristic polynomial as suggested by Surrel [SUR96]. 

5.2.2.1 Fourier Method 

Freischlad assumed for the Fourier method that the introduced phase shift linearly increases 
with time, i.e. a phase shift of 2 stθ πν= . With this the measured intensity on a (linear) 
sensor is modulated in a sinusoidal fashion and is given by 

 ( ) ( )0 02 cos 2R R sI t I I I I tϕ πν= + + + . (5.51) 

ϕ  denotes the sought phase. The dependence of the spatial coordinates is omitted in this 
section. Taking for example the PSI algorithm of Brunning [BRU74] (Algorithm #3 in Table 
5.1), the phase ϕ  is obtained by 

 
( ) ( )
( ) ( )

3
4 42 4

2 2
3 1 2

arctan arctan
0

s s

s

T T

T

I II I
I I I I

ϕ
⎛ ⎞−⎛ ⎞− ⎜ ⎟= =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

. (5.52) 

The period Ts is given by 
1

s
s

T
ν

= , where sν  is the modulation frequency of the phase shift. In 

general the phase reconstruction can be described by a correlation of the modulated 
intensity with two filter functions fi  so that  

 ( ) ( ) , 1, 2i ic I f d iτ τ τ
∞

−∞

= =∫  (5.53) 

which is the correlation at 0t = . This is equivalent to a heterodyne phase measurement, 
where the signal is mixed with two sinusoidal signals 90 degrees out of phase. Using 
Parseval’s theorem 

  ( ) ( ) ( ) ( )* *f x g x dx F G dν ν ν
∞ ∞

−∞ −∞

=∫ ∫ ,  (5.54) 

noting that the intensity and the filter functions are real functions, and taking the symmetry 
properties of real functions in the Fourier domain (see Appendix A.1.3) into account, the 
correlation can be written in the Fourier domain by  

 ( ) ( )*

0

2 Re . 1, 2i F ic I F d iν ν ν
∞⎧ ⎫

= =⎨ ⎬
⎩ ⎭
∫  (5.55) 

Here ( )FI ν  denotes the Fourier transform of ( )I t  and ν  the frequency. From this it can be 
seen that the functions Fi  filter or transmit certain frequencies. 



Chapter 5: Interferometric Wavefront Sensors in Strong Turbulence 
 
 

135 

So far only purely sinusoidal signals as in Eq. (5.51) have been considered. To consider 
higher harmonics of the signal, i.e. disturbances, the signal can be expanded in a discrete 
Fourier transform assuming a periodic signal 

 ( ) ( )
0

cos 2m s
m

I t s m tπ ν
∞

=

= ∑ , (5.56) 

where sm are the complex coefficients of the decomposition. The Fourier transform of 
( )cos 2 s mm tπ ν ϕ+  is given by 

 ( ) ( ) ( )1cos 2
2

mi
s m s sm t m m e ϕπ ν ϕ δ ν ν δ ν ν+ → + + −⎡ ⎤⎣ ⎦ . (5.57) 

As the signal is periodic, formed of cosine functions based on the frequency sν , the Fourier 
transform becomes a series of Dirac impulses 

 ( ) ( )2F n s
n

I s nν δ ν ν
∞

=−∞

= −∑ . (5.58) 

The phase values mϕ  of each harmonic are now contained in the coefficients sn. The sought 
phase is contained in s1. To determine the phase of the input signal the ratio of the two 
correlations in Eq. (5.55) is formed 

 
( ) ( )

( ) ( )

*
0 1 1

11

*2
0 2 2

1

0 2Re

0 2Re

m s
m

m s
m

s F s F m
cr
c s F s F m

ν

ν

∞

=
∞

=

⎧ ⎫
+ ⎨ ⎬

⎩ ⎭= =
⎧ ⎫+ ⎨ ⎬
⎩ ⎭

∑

∑
. (5.59) 

If the two Fourier filters are 90 degrees out of phase for the sought (signal) frequency (m=1), 
i.e.  

 ( ) ( )1 2s sF iFν ν= ,  (5.60) 

then the phase can be obtained by the arc tangent of the ratio r 

 ( )arctan .m r constϕ = +  (5.61) 

The modified arctan (arctan2) should be used to obtain the full 2π circle.  
As an example Schwider’s algorithm with N=4 (Table 5.1, #6) is evaluated in more detail. 
The algorithm is given by 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 3
4 4 41 2 3 4

2 3
1 2 3 4 4 4 4

0 33arctan arctan
3 0 3

s s s

s s s

T T T

T T T

I I I II I I I
I I I I I I I I

ϕ
⎛ ⎞− + +⎛ ⎞− + + ⎜ ⎟= =⎜ ⎟ ⎜ ⎟+ − + + − +⎝ ⎠ ⎝ ⎠

. (5.62) 

The according filter functions in the spatial domain are 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 3
1 4 4 4

2 3
2 4 4 4

3

3

f f f

f f f

T T T

T T T

f t t t t t

f t t t t t

δ δ δ δ

δ δ δ δ

= − − + − + −

= + − − − + −
 (5.63) 

The filter functions are based on the period 
1

f
f

T
ν

= , indicating the possible discrepancy 

between the signal period sT  and the filter period fT . The Fourier transforms of the Eq. 
(5.63) are given by 

 
( )

( )

5
2 4

1

3
2 2

2

1 3 2 cos
4

1 3

f f

f f f

i i

f

i i i

F e e

F e e e

π ν π ν
ν ν

π ν ν π νπ
ν ν ν

π νν
ν

ν

− −

− − −

⎛ ⎞
= − + ⎜ ⎟⎜ ⎟

⎝ ⎠

= + − +

. (5.64) 

Putting Equations (5.64) into (5.59) for s fν ν ν= =  with a purely sinusoidal signal (5.51), it is 
easy to verify Eq. (5.60) and to derive the expected result  

 
sin
cos

r ϕ
ϕ

= . (5.65) 

Figure 5.9 and Figure 5.10 show the filter functions in the Fourier domain for the PSI 
algorithms presented in Table 5.1. Two interesting properties of the algorithms can be 
evaluated from the graphs, robustness to signal harmonics (m>1) and to phase-shifting errors 
( )s fν ν≠ .  

An algorithm is insensitive to a harmonic component of the signal (m>1), if both F1 and F2 
are zero at the frequency smν  with 2,3,4...m = . Harmonics in the signal appear for example 
due to a nonlinear behaviour of the detector. Among the shown algorithms such zeros can 
only be observed for the algorithms #3 (Bruning 1974, N=4) and #8 (Schwider 1983, N=5), 
both for the second harmonics (m=2). Algorithms with more samples can suppress a number 
of harmonics; however, in the context of the SGL scenarios and their bandwidth 
requirements, it does not seem reasonable to use more than 5 samples. In particular for the 
instantaneous PSI methods, as they are discussed in Section 5.3.2., only algorithms using 
samples distributed over less than 2π are suitable. These are algorithms with 4N ≤ .  

Phase-shifting errors can be modelled by a difference in the signal frequency sν and the 
filter sampling frequency fν . Robustness to phase-shifting errors is given, if the amplitude 
gradient of the two filter functions in the Fourier domain are equal at m=1. This is true for 
algorithms #3, #6, #7, and #8.  
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Figure 5.9: Filter functions amplitudes F1, F2 and the graphical representation of the 
characteristic polynomials for the PSI methods #1-#4 of Table 5.1. N denotes the number of 
phase steps and θ  the phase step size. The third method (Brunning) with N=4 suppresses 
second harmonics, and therefore shows some robustness against detector non-linearity.   
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Figure 5.10: Filter functions amplitudes F1, F2 and the graphical representation of the 
characteristic polynomials for the PSI methods #5-#8 of Table 5.1. N denotes the number of 
phase steps and θ  the phase step size. Method #6 (Schwider 1993, N=4) and method #7 
(Schmit/Creath 1995 N=5) have an equal gradient of the filter functions at the normalized 
frequency one and therefore are robust against linear phase-shifting errors. Method #8 
(Schwider 1983, N=5) also shows this behavior plus zeros at the second harmonics. This 
algorithm however requires five phase steps, which is not realizable with instantaneous PSI 
methods.  

5.2.2.2 Characteristic Polynomial 
Surrel [SUR96] developed an evaluation method based on the fact that every PSI algorithm 
can be described by a characteristic polynomial ( )P z , which shows the performance of the 
algorithm in respect to signal harmonics and linear phase-shifter errors. The method is 
related to Freischlad’s Fourier technique described in the previous section. 

Starting from Eq. (5.51) the intensity signal is developed in a discrete Fourier series to 
account for non-sinusoidal waveforms 

 ( ) ( )in
n

n
I s e ϕ θϕ θ

∞
+

=−∞

+ = ∑ , (5.66) 

where the output intensity is given for a PSI phase shift θ . The sought phase ϕ  is in this PSI 
technique not estimated via the arctangent function, but the argument of a complex linear 
combination  
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 ( ) ( )
1

0
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kc
N

k k
k

a ib I kϕ ϕ θ
−

=

⎧ ⎫⎪ ⎪= + +⎨ ⎬
⎪ ⎪⎩ ⎭
∑ , (5.67) 

where the coefficients ka  and kb  are taken from the equations of the PSI algorithms as in 
Table 5.1, and k k kc a ib= + . The coefficients of the nominator are taken for kb  and of the 
denominator for ka . Setting the results from Eq. (5.66) into (5.67) yields 

 

( )

1

0

arg
N kin in

n k
n k

z

P z

s e c eϕ θϕ
∞ −

=−∞ =

⎧ ⎫
⎪ ⎪
⎪ ⎪⎡ ⎤= ⎨ ⎬⎣ ⎦
⎪ ⎪
⎪ ⎪⎩ ⎭

∑ ∑ , (5.68) 

where the characteristic polynomial P(z) is now given by  

 ( )
1 1

0 0

N Nkin k
k k

k k
z

P z c e c zθ
− −

= =

⎡ ⎤= =⎣ ⎦∑ ∑ . (5.69) 

It can be now seen, that if the phase ϕ  is supposed to be independent of certain harmonics 

of the signal for 1n ≠ , that the characteristic polynomial ( )inP e θ  has to be zero at the 

positions ine θ . In other words ine θ  is a root of the characteristic polynomial ( )P z . Of course 

the exponential ie θ , i.e. 1n = , should not be a root of ( )P z , as this is the term to obtain the 
sought phase.  

Taking Schwider’s PSI algorithm (Table 5.1, #8) 

 2 4

1 3 5

2 2arctan
2

I I
I I I

ϕ
⎛ ⎞− +

= ⎜ ⎟− +⎝ ⎠
  (5.70) 

as an example, the characteristic polynomial is calculated to  

 ( ) 4 3 22 2 2 1P z z iz z iz= + − − + . (5.71) 

The coefficients in Eq. (5.70) of the denominator become the real parts and the nominator 
the imaginary parts in ( )P z . The factorization of Eq. (5.71) shows the roots { }1,1,z i= − −  of 
the polynomial 

 ( ) ( )( )( )21 1P z z z z i= − + + . (5.72) 

Remembering that inz e θ=  it is clear that the roots have to be located on the unit circle in the 
complex plane and that the roots have to be of the form ine θ . Figure 5.11 shows a graphical 
representation of the characteristic polynomial. It can be seen that there are roots at 

0, 1, 2,2,3n = − −  (not showing higher orders). This shows that the algorithm is insensitive to 
second order harmonics, as the polynomial contains the roots for 2n = −  and 2n = . The 
roots for 0n =  and 1n = −  have to be included for all PSI algorithms. And as expected 1n =  
is not a root of the polynomial being required for the measurement of the phase ϕ . 
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Figure 5.11: Graphical representation of the characteristic polynomials here for Schwider’s PSI 
algorithm [SCH83], (Table 5.1, #8), with N=5 signal samples. The gray lines in the central area 
indicate the phase steps (here / 2nθ π= ). The red dots denote single roots of ( )P z , a circle 
around the dot indicates a double root. The numbers around the unit circle show the degree n. 

 
An important issue of PSI algorithms, apart from the sensitivity to signal harmonics, is the 
sensitivity to phase-shifter errors, which can be also estimated from the characteristic 
polynomial. The real phase shift is given by  

 ( )1θ ε θ′ = +  (5.73) 

with the nominal phase shift θ  and the shifting error ε . Thus, the first order Taylor 
expansion of ( )P z in θ ′  becomes 

 
( ) ( ) ( ) ( )

( ) ( )

in in in in

in in in

P e P e P e ine

P e in e P e

θ θ θ θ

θ θ θ

θ θ

εθ

′ ′ ′= + − ⋅ +

′= + ⋅ +

…

…
 (5.74) 

with  

 ( ) ( )P z P z
z
∂′ =
∂

. (5.75) 

Consequently, to ensure that ( )P z  is zero for a certain harmonic n even in the presence of a 

phase-shifter error, also the first derivative of ( )P z  has to be zero. This implies that ine θ±  
has to be a double root of the characteristic polynomial. For n=0 a simple root is sufficient, 
and for n=-1 only ie θ−  has to be a double root.  
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Figure 5.12: Fourier evaluation of an N=7 PSI algorithm by Hibino [HIB95]. Second order 
harmonics 2n =  are suppressed with a double root, also reducing the influence of phase-
shifter errors. 

 
To illustrate the consequences of the characteristic polynomial, two PSI algorithms by Hibino 
et al. [HIB95] with a larger number of intensity sample points are presented with their Fourier 
filter functions and the graphical representation of the characteristic polynomial. Figure 5.12 
shows a N=7 algorithm, for which ( )P z  and ( )P z′  are zero for 2ie θ± , i.e. 2ie θ±  are each 
double roots of the characteristic polynomial. This can be seen from the filter functions, which 
are here plotted with the real, imaginary parts, and the amplitude of the functions. The filter 
functions have a zero at the normalized frequency / 2fν ν = . Therefore this algorithm is 
insensitive to the second signal harmonics including phase-shifting errors. The same 
conclusions can be drawn from the graphical representation of the characteristic polynomial. 
In addition, the gradient of the amplitudes at / 1fν ν =  is equal for both functions; therefore, 
also the detection term is insensitive to phase-shifting errors.  

Suppression of higher order harmonics can be achieved with the N=10 algorithm by 
Hibino [HIB95], which is given in [MAL07]. Figure 5.13 shows the filter functions and the 
graphical representation of the characteristic polynomial. Here the harmonics 2,3,4n =  are 
suppressed with a double root.  
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Figure 5.13: Fourier evaluation of an N=10 PSI algorithm by Hibino [HIB95]. Harmonics 
2,3,4n =  are suppressed with a double root, also reducing the influence of phase-shifter 

errors. 

 

5.2.3 Error Sources 
There are a number of error sources, which affect the accuracy of phase measurements 
performed by the various PSI algorithms. Some of the PSI algorithms are less sensitive to 
particular error sources than others, which already has been discussed in the previous 
section. Typical error sources for phase-shifting interferometers are  

• Phase-shifting errors 
• Detector nonlinearities 
• Detector noise and vibration errors 
• Thermal effects 
• Interferometer optical errors  
• Quantization errors  

 
Error contributions specific to each algorithm have been tabulated in various publications 
[WIN91, MAL07]. The algorithms list in Table 5.1 with N=3 to 5 phase steps are treated in 
this section in more details, as they provide promising solutions for the use with 
instantaneous PSI methods presented later in Section 5.3.2. Special emphasis will be given 
to systematic errors as phase-shifting errors and the detector nonlinearity, and the random 
errors as detector noise, vibration errors and thermal effects. Optical and quantization errors 
are not treated in this context.  
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5.2.3.1 Phase-Shifting Errors 
Phase-shifting interferometers rely on the accuracy of the introduced phase shifts. A relative 
phase-shifting error ε  directly influences the measurement results at the phase steps. The 
intensity for an interferometer with phase step ,j εθ  is given by 

 ( ) ( ) ( ) ( )( )0 0 ,, , 2 , cos ,R R jI x y I I x y I I x y x y εϕ θ= + + + , (5.76) 

where ,j εθ  indicates the phase step impinged with the relative phase-shifting error ε , so that 

( ), 1j jεθ θ ε= + . Using Eq. (5.76) with the PSI algorithms presented in Table 5.1 allows the 
evaluation of the robustness of the PSI algorithms in respect to the phase-shifting error. The 
results are summarized in Figure 5.14. 

An interesting algorithm appears to be the method by Schwider (Table 5.1, #6). It exhibits 
with only 4 steps a good robustness to linear phase-shifting errors compared to other 3 and 4 
step methods. This was predicted by the evaluation methods presented in Section 5.2.2 and 
can be confirmed from Figure 5.10, as F1 and F2 have the same gradients at the detection 
frequency / 1sν ν =  and the algorithm shows a double root at n=-1.  

An even better performance has the 5-step algorithm by Schmit and Creath (Table 5.1, 
#7) with a triple root at 1n = − , but without the insensitivity to second harmonic disturbances. 
Algorithms #7 and #8 requires 5 steps over more than one period and cannot be 
implemented with instantaneous PSI algorithms as discussed in Section 5.3.2. 

 

 
Figure 5.14: Sensitivity to phase-shifter errors of the PSI algorithms of Table 5.1.  
 

5.2.3.2 Detector Nonlinearity 
Detector nonlinearity produces significant errors in the phase reconstruction if the 
interferometer fringes have a large dynamic range. The performance of the discussed PSI 
algorithms can be inferred from the Fourier and characteristic polynomial methods in Section 
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5.2.2. Figure 5.9 and Figure 5.10 show the characteristic graphs for the 3 to 5 step methods. 
None of the investigated 3 step algorithms (Table 5.1, #1 and #2) is insensitive to second-
order harmonics of the signal caused by detector nonlinearity. Among the 4- and 5-step 
algorithms only the method of Bruning (Table 5.1, #3, N=4) and Schwider (Table 5.1, #8, 
N=5) are insensitive to second-order harmonics of the signal, but higher order harmonics are 
also not suppressed by these algorithms, which would require a larger number of phase 
steps over more than one signal period. Also it has to be mentioned that no algorithm in 
Table 5.1 is insensitive to nonlinearity errors in the presence of phase-shifting errors, which 
would require a double root for the according harmonic order. Examples for such algorithms 
being insensitive to more than one harmonic order and phase-shifting errors are presented in 
Figure 5.12 (N=7) and Figure 5.13 (N=10). 

5.2.3.3 Detector Noise  
Detector noise is an important issue in the discussed scenarios as the received intensity 
exhibits strong signal fluctuations with deep fades. The fades can reach down to zero 
amplitude for phase singularities. In regions on the sensor with an intensity fade the noise of 
the sensor itself becomes significant for the performance of the wavefront reconstruction.  

The following analysis of the detector noise is based on the derivation of Freischlad and 
Koliopoulos [FRE90]. Similar results were obtained with the characteristic polynomial method 
of Surrel [SUR97]. Assuming a linear combination y of M statistically independent variables xj 

 
1

M

j j
j

y a x
=

=∑ , (5.77) 

the combined noise variance is given by 

 2 2 2

1

M

y j j
j

aσ σ
=

=∑ . (5.78) 

2
jσ  denotes the noise variance of the jth variable xj. For any (nonlinear) function  

 ( )1, , My f x x= … . (5.79) 

the variance of y can be approximated by a first order linearization, using the first order of a 
Taylor expansion 
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y j
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σ σ
=
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∑

…
. (5.80) 

 
As an example Eq. (5.80) is applied to Wyant’s three-step algorithm (Table 5.1, #1, N=3) 

 1 2 3

1 3

2arctan I I I
I I

ϕ
⎛ ⎞− +

= ⎜ ⎟−⎝ ⎠
. (5.81) 

In a first step the partial derivatives are determined. The derivate 
1I
ϕ∂
∂

 is given by  
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( ) ( )

2
2 2
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I I I I I I
ϕ∂
=

∂ − + − +
. (5.82) 

Similar equations are found for the partial derivatives 
2I
ϕ∂
∂

 and 
3I
ϕ∂
∂

. Summing the squared 

results with Eq. (5.80) and simplifying the notation with 0c RI I I= +  and 0

0

2 R

R

I I
V

I I
=

+
, the 

results for the variance of the phase error 2
ϕσ  in dependence of the detector noise 2

nσ  (equal 
for I1 to I3)  for the PSI algorithms in Table 5.1 are presented in Table 5.2.  

The sensitivity to Gaussian noise is summarized in Figure 5.15. It can be seen that the 
algorithms, which are partly insensitive to higher order harmonics, also exhibit improved 
noise-rejection capabilities. Within the three-step algorithms, Bruning’s algorithm #2 performs 
over 30% better than #1. Within the four-step algorithms, Bruning’s algorithm #3 with an 
insensitivity to second-order harmonics performs approximately 35% better than the worst 
candidate. The best overall performance shows Schwider’s algorithm #8. Naturally 
algorithms with a larger number of samples perform better, as they have more capabilities to 
average the results. 
 

Table 5.2: Variance of the phase error 2
ϕσ  in dependence of the detector noise 2

nσ . 

# N tanϕ =  Step 
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Figure 5.15: Average noise scaling factor (additive Gaussian noise) taken from Table 5.2. The 
averaging was performed over all phase values ϕ . 

Figure 5.16 and Figure 5.17 show the simulated results of a three-step interferometer 
(Bruning 1974, #2, N=3). The simulated input field was generated for an SGL at 10° elevation 
and for a telescope diameter of D=0.5m with a HV5/7 2

nC  profile (Section 3.1.3.1) at 
1064nmλ = . The diameter of the filter-dot was chosen to be 50% of the Airy diameter 

( 0.5η = ) to produce the synthetic reference wave. Figure 5.16 shows the simulation for a 
signal strength of 1 (arbitrary normalization). The noise level was set to 0.1. The upper row 
shows the three interferograms containing a significant noise level. The second row shows 
the original phase and the reconstructed phase, which is disturbed by noise. Figure 5.17 
shows the same interferograms, but with a four times larger signal strength. The signal-to-
noise ratio is significantly improved. 
 

 

 
Figure 5.16: Simulation of a three-step interferometer (Bruning 1974, #2, N=3): The upper row 
shows the three interferograms I1-I3 for the phase-steps 2 4

3 30 ,δ π π= , ; The lower row shows 
the input, original phase and the reconstructed phase calculated from the images I1 to I3. 
Images I1 to I3 were disturbed by a normal distributed noise with σn=0.1. Signal strength was 1 
(arbitrary normalization).  
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Figure 5.17: Same as Figure 5.16, but with a 4 times larger signal strength. It can be seen that 
the signal-to-noise ratio in the output is significantly improved.  

5.2.3.4 Vibration Errors 
Mechanical vibrations are a difficult issue for interferometric measurements [MAL07]. Their 
presence can be detrimental to the point of completely obliterating interference fringes; 
however, vibrations cannot be avoided in all cases. In the discussed scenario the AO system 
with the interferometric sensor may have to be mounted on a telescope mount, which will 
have some amount of vibrations. Therefore, it is important to optimize the interferometric 
sensors to be as far as possible insensitive to these disturbances.  

Small-scale vibrations manifest itself in a similar way as the phase-shifting errors 
discussed in Section 5.2.3.1. PSI implementations, which are insensitive to phase-shifting 
errors, also tend to be insensitive to mechanical vibrations. Common-path interferometers in 
general are more robust, as the vibrations affect both the reference and the object beam. 
The PSI setups discussed in Section 5.3.2 use common paths for the object and reference 
waves over large sections, and should therefore be more robust to vibrations. Non-common 
path in these setups is the generation of the reference wave. 

De Groot and Deck discussed numerical simulations of vibration effects in PSI 
configurations [GRO96][MAL07]. The idea is to numerically determine the root-mean square 
(RMS) value of the phase measurement error. The signal of the interferometer with vibration 
disturbance is given for the sought (real) phase ϕ  by  

 ( ) [ ]( )0 0 v v v2 cos 2 cos 2R R sI t I I I I t A tπν ϕ πν α= + + + + + , (5.83) 

where vA  denotes the amplitude of the vibrations, vν  the frequency of the vibration, and vα  
the phase shift of the vibration. The RMS value for the frequency vν  is calculated with the 

error term ( )v v, ,ϕ ϕ ϕ α ν ϕ= −  by  

 ( ) ( ) ( )( )
22 2

v v v v v0 0
, ,RMS d d

π π
ν ϕ ϕ α ν ϕ α ϕ α= −∫ ∫ , (5.84) 
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integrating over all combinations of the phase ϕ  and the vibration phase shift vα . 

( )v v, ,ϕ ϕ α ν  denotes the measured phase, disturbed by a vibration with the parameters 

( )v v v, ,A α ν . The averaged phase in the integral is given by 

 ( ) ( )v v
1 ,

2
d

π

π

ϕ α ϕ ϕ α ϕ
π −

= ∫ . (5.85) 

Figure 5.18 and Figure 5.19 show the RMS course over the vibration frequency vν for the 
algorithms given in Table 5.1 and the 10-point algorithm by Hibino [HIB95] (Figure 5.13). The 
graphs show a strong variation in sensitivity as a function of vibration frequency. 

De Groot assumed an integrating bucket scheme, where the intensity of the interferometer 
is not only measured at an instant of time, but integrated over the sampling period τ . Thus, 
the measured intensity of the jth sample can be written with the averaging integral 

 ( )
/ 2

/ 2

1 ,j jI I t t dt
τ

τ

ϕ
τ −

= +∫ . (5.86) 

The integration causes the decrease of the RMS error to higher vibration frequencies, as 
they are simply averaged out for vibration frequencies greater than the sampling frequency. 
This can be seen from Eq. (5.83). 
 

 
Figure 5.18: Sensitivity of the PSI algorithms presented in Table 5.1 (Algorithms #1-#4) to 
vibrations expressed as the RMS phase error.  
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Figure 5.19: Sensitivity of the PSI algorithms presented in Table 5.1 (Algorithms #5-#8) to 
vibrations expressed as the RMS phase error. Additionally, the algorithm by Hibino [HIB95] 
introduced in Section 5.2.2.2 is shown to illustrate the robustness of this algorithm.  
 
Integrating the RMS values over all vibration frequencies gives an overall sensitivity value vs  
for each presented algorithm 

  ( )v v v
0

s RMS dν ν
∞

= ∫ . (5.87) 

Figure 5.20 shows the relative sensitivity values normalized to the vs  value of the PSI 
algorithm #1. Among the three- and four-step algorithms the methods of Bruning [BRU74], 
among the five-step algorithms Schwider’s method [SCH83] perform best. This is an 
expected result from the algorithm evaluation in Section 5.2.2, Figure 5.9 and Figure 5.10, as 
these two algorithms also suppress second-order signal harmonics. The algorithm of Hibino 
[HIB95] is overall a strong method with the best performance in vibration suppression, 
however requiring 10 sample points. 

 
Figure 5.20: Comparison of vibration sensitivity values vs  of the presented PSI algorithms.  
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5.2.4 Phase Singularities and Phase-Shifting Interferometer 
The behavior of PSI techniques in the presence of phase singularities as described in 
Section 4.3 was tested with a numerically simulated field. The parameters of the simulation 
were adapted for an SGL at 10 degrees elevation and for a telescope diameter of D=0.5m 
with a HV5/7 2

nC  profile (Section 3.1.3.1) at 1064nmλ = .  

The simulated field, which has been already shown in Figure 5.16 and Figure 5.17, 
contains a larger number of phase singularities due to the low elevation angle. The Rytov 
variance is 2 1Rσ ≈ . Figure 5.21 shows an enlarged area of the input wave with several 
singularities recognizable from the typical phase screw. The singularities are, as expected, 
accurately reconstructed by the deployed three-step PSI.  

Another interesting aspect of PSIs is that all phase measurements are related to the 
reference wave. Therefore local minima of the received intensity can influence the quality of 
the reconstructed phase only locally, but all other regions produce a valid phase, even if 
some areas in the aperture are encircled by an almost-zero intensity barrier. This kind of 
behavior is not guaranteed for wavefront sensors as the Shack-Hartmann, which performs a 
global reconstruction of the phase taking all focus spots into account. Separated regions do 
not have a common reference, as only derivatives of the wavefront are known from the 
sensor. As a consequence piston phase shifts between the separated regions might appear, 
depending on the used algorithms.  
 

 
Figure 5.21: Enlarged area of the input and reconstructed phase distributions as in Figure 5.16 
and Figure 5.17. The singularities are clearly reconstructed by the three-step PSI (Table 5.1, #2, 
N=3). 

5.3 Interferometer Designs for the SGL Scenario 
This section presents several possible interferometer designs, which appear to be especially 
suitable for the deployment in the SGL scenarios. Sections 5.3.1 and 5.3.3 introduce 
concepts, which use only one interferometer, while Section 5.3.2 shows the use of 
synchronous or instantaneous phase-shifting interferometers. 
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5.3.1 Single Mach-Zehnder Interferometer with a Fourier Fringe Analysis 
Takeda [TAK82] described a method to retrieve the phase of the input field with a single 
interferometer, calling it a Fourier fringe analysis (FFA) technique. Certain aspects of 
Takeda’s approach were also discussed by Roddier and Roddier [ROD87], including the 
boundary problem of the telescope aperture. This method was applied by Notaras and 
Paterson [NOT08] in an adaptive optics system in strong scintillation.  

Taking Eq. (5.33) describing the point-diffraction interferometer, and tilting one of the arms 
of the interferometer by a small angle, a regular interference pattern appears with the input 
intensity and phase structure superposed 

 ( ) ( ) ( ) ( )( )1 0 0 0, , 2 , cos , 2R RI x y I I x y I I x y x y f xϕ π= + + + . (5.88) 

           
Figure 5.22: Interference fringes due to the tilted wavefront of one interferometer arm. The 
phase distribution of the incoming wave distorts the ripple pattern. The intensity distribution is 
superposed to the fringe pattern and also changes the fringe modulation depth.  

 
The interference pattern due to the tilted interferometer arm can be seen in the vertical line 
pattern of Figure 5.22. The intensity modulation frequency f0 increases with the tilt angle 
between reference and object wave. Expressing the cosine function in (5.88) with 
exponential functions yields 
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, (5.89) 

where ( ) ( ) ( ),
0, , i x y

Rb x y I I x y e ϕ=  and the star denotes the complex conjugate. Fourier 
transforming Eq. (5.89) results to  

 ( ) ( ) ( ) ( )*
0 0, , , ,F x y x y x y x yI f f A f f B f f f B f f f= + − + + . (5.90) 

IF, A, and B denote the Fourier transforms of the corresponding values I1, a, and b in the 
spatial domain. The exponential functions of the modulation frequency f0 cause a translation 
of B in the Fourier domain. If the spatial variations of a, b and ϕ  are slow in comparison with 
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the spatial frequency f0, the three components A, B, and B* are separated as shown in Figure 
5.23. Taking the peak B in the Fourier domain, moving it to the center, and taking the inverse 
Fourier transform, the component ( ),b x y  can be retrieved. From this the phase ( ),x yϕ  can 
be simply calculated either by the angle function or the log function  

 ( )( ) ( ) ( )0log , log , ,Rb x y I I x y i x yϕ= + . (5.91) 

Also the amplitude distribution of the input wave can be determined by taking the absolute 
value of b, if the distribution of the reference wave is known.  

       
Figure 5.23: Separation of the components A, B, and B* by a modulation with frequency f0. To 
retrieve the phase ( ),x yϕ , B is taken and moved to the center. 

Figure 5.24 demonstrates the phase reconstruction for a simulated field of a 10 degree 
elevation SGL. A resolution of 512x512 pixels was used. Although the input field contains a 
larger number of phase singularities and strong scintillation, the phase reconstruction 
provides a quite accurate phase estimate with a Strehl ratio of S=0.92 for the corrected field.  
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Figure 5.24: Simulation of a phase reconstruction with a single interferometer based on the 
FFA method. First row: Incoming amplitude, phase, and focus spot intensity. Second row: 
Phase error of the reconstruction, estimated phase, and resulting focus spot intensity with the 
corrected phase. Simulation parameters: 0.5η =  (pin-hole diameter), resolution: 512x512 
pixels.  

For lower resolutions the three peaks in Figure 5.23 move closer together, which can lead to 
aliasing effects, i.e. parts of the central peak spill into the side peaks. This effect can be 
reduced by also using the second, destructive-interference arm of the combining beam 
splitter [VAN03]. The interferogram of the destructive-interference arm is given by  

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 0

0 0

, 2 , 2
2 0 0

2 2*

, , ,

, , ,

i x y if x i x y if x
R R

if x if x

I x y I I x y I I x y e e

a x y b x y e b x y e

ϕ π ϕ π

π π

+ − −

+ −

⎡ ⎤= + − +⎣ ⎦
= − −

. (5.92) 

Now Fourier transforming I1 (5.89), I2 and subtracting the results yields 

 ( ) ( ) ( )*
,1 2 0 0, 2 , 2 ,F x y x y x yI f f B f f f B f f f− = − + + . (5.93) 

This has eliminated the central peak and, in addition, doubled the amplitudes of the side-
peaks increasing the SNR. Without the central peak the windowing function to extract the 
required side-peak can be chose to be larger, which increases the resolution of the 
technique. Considerations about the resolution can be found in [KOS93] for the single-
interferogram technique and in [VAN03] for the differential technique. Figure 5.25 shows the 
effects of both techniques. The upper graph gives the three peaks of a single interferogram. 
In the middle the two peaks of the differential technique are shown. In the lower row cuts 
through the interferograms along the dash-dotted green lines are depicted. The doubling of 
the amplitude and the disappearance of the central peak can be nicely seen for the 
differential method.  
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Figure 5.25: The upper graph gives the three peaks of a single interferogram. In the middle the 
two peaks of the differential technique are shown. In the lower row cuts through the 
interferograms along the dash-dotted green lines are depicted. 

Figure 5.26 shows several variations of the FFA technique. Images B and C compare 
reconstruction quality of a single interferogram with the differential interferogram technique of 
Eq. (5.93). Both interferograms were taken at a relatively low resolution of 128x128 pixels. 
The Strehl ratio of the differential interferogram technique significantly improves (0.74 against 
0.46). The advantage of a lower resolution is that the camera can run with a higher frame 
rate due to a smaller region-of-interest, and that the required time for the two Fourier 
transforms is shortened. Lower resolution, however, also implies that higher frequencies are 
cut off in the reconstruction and the resolution is decreased.   
Image D demonstrates the effect of noise. The noise is given as a percentage of the 
maximum amplitude of the interferogram, i.e. the frame taken from the camera chip, which 
then simulates camera noise. The reconstructed phase with a resolution of 512x512 pixels is 
quite good with a Strehl ratio of 0.62 despite the high noise level of 20%. 
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Figure 5.26: Effects of different variations of the FFA technique. A. Simulated input phase for a 
10 degree elevation SGL; B. Reconstructed phase from a single interferogram with 128x128 
pixels resolution resulting in a Strehl ratio of 0.46; C. Reconstructed phase from the differential 
techniques with 128x128 pixels resolution resulting in a Strehl ratio of 0.74; D. Reconstructed 
phase from a single interferogram with 512x512 pixels resolution and 20% noise on the 
interferogram resulting in a Strehl ratio of 0.62. 

Figure 5.27 shows the effect of an additional obscuration under the influence of noise. 
Comparing images A with obscuration and B without obscuration, it can be seen that the 
effect of obscuration is localized to the area of the obscuration, where of course no valid 
phase estimate can be retrieved. The effect of the obscuration on the Strehl ratio is rather 
low, which shows in the resulting focus spots. The input phase was the same as in Figure 
5.26-A. The obscured area can be detected from the absolute value of the output shown in 
Figure 5.28. This can be also used to detect regions with low illumination levels to assess the 
reliability of the phase reconstruction. 
 

 
Figure 5.27: Effects of an obscuration; Reconstructed phase from a single interferogram with 
512x512 pixels resolution and 10% noise on the interferogram: A. With a rectangular 
obscuration yielding a Strehl ratio of 0.71; B. Without the obscuration, yielding a Strehl ratio of 
0.77. 
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Figure 5.28: The obscuration, but also areas with low illumination, can be detected from the 
absolute value of the interferogram. 

5.3.2 Instantaneous Phase-Shifting Interferometers 
This section presents possible designs for instantaneous phase-shifting interferometers 
(PSI). Instantaneous means, that several interferograms are recorded at the same instant of 
time. Phase-shifting is for example achieved by a combination of quarter-wave plates and 
polarizers (or polarizing beam splitters). This approach is called geometric PSI in contrast to 
temporal PSI. Instantaneous PSIs have important advantages over sequential, temporal 
PSIs. They take several, usually three or four, interferograms at the same time. There are no 
moving mechanical parts involved and usually interfering beams take the same path through 
the interferometer. In the consequence this PSI type is robust to vibrations and other 
environmental effects, and the rate of the phase reconstruction is increased in comparison to 
temporal PSIs. These factors are important in the discussed application scenarios.  

5.3.2.1 Four-Camera IPSI 
Sivakumar et al. [SIV03] suggested an instantaneous PSI with four synchronized CCD 
cameras. The working principle is shown in Figure 5.29. The reference beam (horizontal-
linear polarization) and the object beam (vertical-linear polarization) are split by three non-
polarizing beam splitters (NPBS) into four interferometer arms. Each arm contains a 
combination of a polarizer and a quarter-wave plate to obtain the required phase shifts of 0°, 
90°, 180°, and 270° between the reference and the object beam. With these four 
interferograms the phase of the incoming object wave can be estimated according to the 
methods presented in Section 5.2. The phase shifts can be calculated using Jones vectors 
and matrices, which describe the polarization state of a wave and the effects of polarization 
devices on the wave. Details are given in the Section A.6 Polarization and Jones Matrix. 
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Figure 5.29: Design of an instantaneous PSI as suggested by Sivakumar et al. [SIV03]. Non-
polarizing beam-splitters (NPBS) generate four interferometer arms (A0/90/180/270). Each arm 
contains a combination of a quarter-wave plate (QWP) and a polarizer (P). The degree value 
indicates the rotation of the device against the x-axis. The interference patterns are recorded 
by synchronized CCD cameras. 

The polarization properties of each arm are listed in Table 5.3. Arms A0° and A180° contain 
a polarizer rotated by 45 degrees (P@45°) respectively 135 degrees (P@135°) against the x-
axis. This allows the perpendicular input reference and object beam to interfere and 
produces relative phase shifts of 0 and 180 degrees. The according Jones matrices are 

given by @45

1 11
1 12PJ °

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 and @135

1 11
1 12PJ °

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

. 

Arm A90° and A270° contain an additional quarter-wave plate (QWP@0°), which is 
oriented so that the fast axis is aligned with the horizontal x-axis. This introduces a phase 
shift of 90 degrees between the reference and the object beam. The Jones matrix of the 

QWP is given by @0

1 0
0QWPJ

i°

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

. 

The additional mirrors (M1, M2) in arms A0° and A270° are essential to obtain images 
with the right orientation.  

Reference and object beam are separated by a point-diffraction interferometer setup as 
described in Section 5.1.2. A polarizing beam splitter is used to obtain perpendicularly 
polarized reference and object beams. 
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Table 5.3: Summary of the polarization states and the phase-shifting properties of the 
interferometer arms. The reference wave ER is horizontally and the input object wave EO 
vertically polarized. 

 
Sivakumar’s design still has the disadvantage that four separate cameras are required to 
record the four interferograms. The cameras have to be synchronized and the solution 
becomes costly especially for expensive (fast) InGaAs cameras, which have to be used at 
wavelengths in the infrared, e.g. for the widely used communication wavelength 1550nm.  

5.3.2.2 One-Cameras IPSI 
Notaras and Paterson [NOT07] gave a solution for an instantaneous PSI without the 
requirement of separate cameras. Their solution is based on the work of Dunsby et al. 
[DUN03]. All four interferograms are imaged on one camera chip next to each other. The 
interferometer principle is shown in Figure 5.30, and its properties are summarized in Table 
5.4. In this design the input object and reference beam can be inserted either on two sides of 
the PSI non-polarizing beam splitter (NPBS) (as in Figure 5.30) or on only one side. The 
insertion from two sides gives the advantage, that the NPBS of the PSI can be part of the 
system generating the synthetic reference wave. In Figure 5.30 the incoming beam is split up 
with a polarizing beam splitter (PBS). The incoming beam has to be circularly polarized or 
linearly polarized with an angle of 45 degrees.  
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Figure 5.30: Design of an instantaneous PSI as suggested by Notaras and Paterson [NOT07] 
with the generation of a perpendicularly polarized reference wave. The four resulting 
interferograms of the PSI are imaged on one camera chip next to each other as shown in the 
inley. Key: Non-polarizing beam-splitter (NPBS), polarizing beam splitter (PBS), Quarter wave-
plate with fast axis at 0 and 45 degrees to the x-axis (QWP@0°, QWP@45°), mirrors M1-7, 
lenses L1-6.  

 
Table 5.4: Summary of the polarization states and the phase-shifting properties of the 
interferometer arms. The interferometer object wave EO is vertically and the reference wave ER 
horizontally polarized. 

 
Another design suitable as an instantaneous PSI was suggest by Kwon [KWO87], using a 
grating in a focus plane to split the object beam into three replicas. If the grating is laterally 
shifted by a quarter of the grating period, the three replicas obtain different phase shifts 
separated by / 2π , which can then be used with a three-step algorithm. The principle design 
is shown in Figure 5.31. Another grating design was suggested by Hettwer et al. [HET00], 
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but here the grating was only used to split up the beam into three arms. The phase shifts 
were introduced by separate wave plates and polarizers. 
 

 
 

Figure 5.31: Instantaneous PSI using a laterally shifted grating [KWO87]. 

5.3.2.3 IPSI with a Pixelated Polarization Mask 
Millerd et al. [MIL05] proposed an instantaneous PSI design with a polarizer mask as shown 
in Figure 5.32. The vertically polarized object beam and the horizontally polarized reference 
beam pass a quarter-wave plate rotated by 45 degrees to generate left and right circularly 
polarized beams (which are shifted by / 2π ). In front of the image sensor a polarizer mask is 
inserted with four different orientations of the polarization. Each pixel gets one of the four 
polarization orientations, and four pixels form a super-pixel, for which the input phase can be 
calculated over the 2π  phase circle. According to the polarization orientations of 0, 45, 90 
and 135 degrees, the phase shifts 0, 90, 180, and 270 degrees are generated within one 
super-pixel. Table 5.5 summarizes the resulting phase shifts of the four mask cells. 
 

 
Figure 5.32: Design of an instantaneous PSI as suggested by Millerd [MIL05]. The linearly 
polarized object and reference beams are converted to circularly polarized beams with 
opposite sign. In front of the image sensor a polarizer mask is inserted with four different 
polarization states (0, 45, 90, 135 degrees). Always four pixels are joined to one super-pixel, 
which allows the phase reconstruction.  
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Table 5.5: Summary of the polarization states and the phase-shifting properties of the 
interferometer sections. The input object wave EO is vertically and the reference wave ER 
horizontally polarized. 

 

5.3.3 Common-Path Interferometer with a Gradient Optimization Scheme 
Vorontsov et al. [VOR01] and Justh et al. [JUS01] investigated the use of various phase 
contrast techniques, as they are discussed in Section 5.1.1.1, for high-resolution adaptive 
optics in combination with iterative methods. In iterative techniques usually some 
performance metric J has to be optimized. This could be for example 

 ( ) ( ) ( ) ( ) 22 2
1 0 2,

A

J u S u u u u r d rϕ α α= − − − ∇∫∫ , (5.94) 

where S denotes the Strehl ratio, u the actuator positions of the AO system,  u  the average 
of all actuator positions, u0 the actuator target position. To avoid a phase drift of all actuators 
the penalty term ( )2

1 0u uα −  is introduced. The third term penalizes large inter-actuator steps 
in order to keep the corrector phase smooth enough. α1 and α2 are appropriate scaling factors 
to fix the penalty term contribution. The Strehl ratio S can be substituted by a term integrating 
the input field over the aperture 

 ( )( ) ( ) ( ) ( ) ( ) ( )
2

222 2
1 0 2

i r u r
in

A A

J u r g r e d r u u u r d rϕ α α+⎡ ⎤⎣ ⎦= − − − ∇∫∫ ∫∫ . (5.95) 

The gradient of the performance metric 

 ( ) ( )( )
( )

J u r
J r

u r
∂

′ =
∂

 (5.96) 

is required to close the loop of an AO system with a gradient-optimization technique. Justh et 
al. could show that the gradient of the performance metric ( )J r′  can be expressed taking 
the result of the differential Zernike filter (5.13)  

 ( ) ( ) ( ){ } ( ) ( ) ( )( )( ) ( )
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which now includes the actuator positions ( )u r . ( )J r′  can then be derived from (5.95) with 
(5.97)   

 ( ) ( ) ( ) ( )2
1 0 22 2difJ r I r u u u rα α′ = − − − + ∇ . (5.98) 

This can be used to close the loop of the AO system to drive the corrector actuators (now 
showing the time dependences) 

 
( ) ( ) ( )( ) ( )2

0 1 0 2

,
, ,dif

u r t
I r t u t u u r t

t
κ κ κ

∂
= − − − + ∇

∂
, (5.99) 

where 0 1 2, ,κ κ κ  depend on the parameters 1 2,α α  and govern the closed-loop behavior. The 

correct effect of ( )difI r  is relatively intuitive for small phase distortions where (5.97) can be 

substituted by the linear equation ( ) ( ) ( ) ( )0 02 sin 2in ing r g r g r g rϕ ϕ≈ , however Justh’s 
and own simulations showed that (5.99) even provides good correction results for phase 
distortions larger 2π . And even positive results were achieved with strong intensity 

fluctuations (not a constant amplitude over the aperture) of the input signal ( ) 2
ing r , as the 

sum-term ( ) 2
ing r  in (5.100) cancels out during the subtraction of the two interferometer 

images. Nevertheless an intensity dependent factor ( )ing r  remains in (5.97), which slightly 
decreases the performance of the closed-loop system.  

Eq. (5.99) can also be built up with a single Zernike phase contrast interferometer as in 
(5.10) assuming a constant illumination over the telescope aperture 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2 2( )
0 02 2 sin coszer in inI r g r g g r g r u r r u rϕ ϕ+ = + + + − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . (5.100) 

Here the first two constant terms and of course the cosine term potentially destroy the 
closed-loop operation. But as long as the input amplitude is approximately constant, (5.100) 

in  (5.99) provides good results. For a varying amplitude, ( ) 2
ing r  becomes a dominating 

term in (5.100), and the closed-loop operation fails. A solution for this is to separately 

measure the intensity distribution ( ) 2
ing r  in the aperture and to subtract it in (5.100). Thus, 

modifying (5.99) yields 

 
( ) ( ) ( ) ( )( ) ( )2( ) 2

0 1 0 2

,
, ,zer in

u r t
I r t g r u t u u r t

t
κ κ κ+∂ ⎡ ⎤′= − − − − + ∇

⎣ ⎦∂
, (5.101) 

which allows an iterative closed-loop operation with only two measurements in the aperture, 
one interferometer and one amplitude distribution. 

Figure 5.33 illustrates a simulated closed-loop operation with a constant amplitude 
distribution based on a differential Zernike interferometer approach (5.99). The Strehl ratio 
increases within 7 iterations form 0.06 to 0.84. In the images of the corrected phase 
(wrapped and unwrapped), phase walls can be spotted, which separate regions with 2π  
difference. These regions do not deteriorate the Strehl ratio, however, pose a problem for 
continuous membrane mirrors. This problem might be solved with optimized parameters of 
the second and third term in Eq. (5.99).  
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Figure 5.33: Iterative correction of a phase distortion with uniform amplitude distribution (A=1) 
and r0=5cm on a 50cm telescope aperture. The AO system is based on (5.99). Top row: 
Uncorrected field (unwrapped phase/amplitude) with focus spot (iteration n=1), estimated 
phase after 10 iterations; Bottom row: Corrected phase (wrapped and unwrapped), focus spot 
after 10 iterations, and Strehl ratio. 

Figure 5.34 illustrates a simulated closed-loop operation including amplitude variations based 
on a positive Zernike interferometer and an additional measurement of the intensity 
distribution in the aperture using Eq. (5.101). The Strehl ratio increases within 10 iterations 
form 0.05 to 0.63. The input field generated in a PILab simulation for a 10° elevation SGL 
scenario contains a number of phase singularities. The attempt to unwrap the corrected 
phase with a standard unwrapping algorithm fails due to phase singularities, causing vertical 
stripes. 
 

 
Figure 5.34: Iterative correction of a phase distortion including amplitude fluctuations. The 
input field simulates an SGL scenario at 10° elevation with a HV5/7 2

nC  profile at 1064nmλ = . 
Aperture diameter is 50cm. The AO system is based on (5.101) using a single interferometer 
and an additional measurement of the intensity distribution in the aperture. Top row: 
Uncorrected field (wrapped phase/amplitude) with focus spot (iteration n=1), estimated phase 
after 10 iterations; Bottom row: Corrected phase (wrapped and unwrapped), focus spot after 10 
iterations, Strehl ratio. 
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5.4 Control of the Corrector with a Wrapped Phase 
Interferometric wavefront sensors return the measured phase wrapped in the interval [-π,+ π]. 
It is intuitive to understand how to drive a segmented mirror with such a wrapped phase, but 
this becomes less obvious for a continuous mirror, which is not able to accurately reproduce 
the wrapped phase of the wavefront sensor. Principally there are two approaches to drive 
continuous mirrors with a wrapped phase: 

• Control the mirror within the interval [-π,+ π]: Simply control the mirror with the 
wrapped signal of the interferometric wavefront sensor. This limits the stroke of 
the mirror to a range of 2π. The 2π phase steps can be replicated by the 
continuous mirror only with limited accuracy. 

• Unwrapping the phase by some method as described by Ghiglia and Pritt 
[GHI98]. The phase would be only wrapped, when it leaves the stroke of the 
mirror or when a continuous unwrapping is not possible due to branch points; 
however, unwrapping algorithms require processing power, especially the more 
complex techniques yielding good results also in the presence of branch points. 

Notaras and Paterson [NOT07] presented an AO system with an instantaneous PSI sensor 
and evaluated the performance of the system. Their experiments confirmed that an AO 
system, which drives the continuous mirror with an unwrapped phase, performed better than 
simply driving the mirror with the wrapped phase.  
The continuous mirror shows the largest fitting errors, if the driving phase has 

( )2 1,0,1,m mπ = −… …  steps. Therefore phase steps between neighboring actuators should 
be avoided, which is expressed in minimizing the following sum 

 ( ) ( ){ } ( ) ( ){ }
1 1 2 2

1 1

1, , , 1 ,
K L

k l

k l k l k l k lφ φ φ φ
− −

= =

+ − + + −∑∑ , (5.102) 

where ( ),k lφ  is the phase ( ),k lϕ  corrected by ( )2 ,m k lπ  so that 

 ( ) ( ) ( ), , 2 ,k l k l m k lφ ϕ π= + . (5.103) 

( ),k l  denote the discrete coordinates of the phase measurement points in the aperture, and 

( ),m k l  are integer values to get an optimum correction of the phase distortions with the 
continuous mirror. 
 

 
Figure 5.35: Comparison of a wrapped (simulated) phase in the interval [-π,+ π] (left) and an 
unwrapped phase (center). The 2π phase steps in the wrapped phase are marked with white 
lines. The right graph shows the integer values m to get an unwrapped phase. 

An advantage of interferometric sensors is that they reconstruct the phase locally, not taking 
neighboring regions into account. Therefore in strong scintillation, where some parts of the 
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telescope aperture might not be illuminated, the mirror can still be driven in the areas, which 
have enough light. In the case of gradient sensors, like Shack-Hartmann or curvature sensor, 
the reconstruction of the phase is based on the slopes of the full aperture. As a consequence 
the reconstruction might give a wrong phase distribution over the aperture, if some of the 
slopes are not illuminated. The errors would not be confined to the dark regions but would 
affect the whole reconstructed phase 

5.5 Discussion 
Chapter 5 discussed various aspects of interferometric wavefront sensors. Section 5.1 
introduced the fundamental concepts of common-path and point-diffraction interferometers. A 
critical issue in the discussed scenarios is the generation of the SRW, which itself is 
influenced by the atmospheric phase distortions. This is especially an issue to start-off the 
AO system. When the AO system is in operation, the remaining phase errors should be small 
enough to guarantee a stable SRW.  

Section 5.2 presented in depth PSI algorithms and evaluated their robustness to error 
influences such as phase-shifting errors, nonlinearities, noise, and vibration errors. Among 
the 4-step PSIs only Bruning’s algorithm (Table 5.1, #3, N=4) showed an increased 
robustness to nonlinearities and vibration errors. Schwider’s algorithm (Table 5.1, #6, N=4) 
showed an improvement under phase-shifter errors.  

Section 5.3 presented several interferometer designs. IPSI techniques should have the 
best performance in terms of speed, as they do not require complex calculations; however, 
the effort for the optical system is higher. Single interferometer techniques like the FFA 
method have a simple design, but require two Fourier transforms for the phase 
reconstruction. The iterative technique of Vorontsov requires one interferometer and one 
intensity measurement, but a good phase reconstruction is only achieved after several 
iterations, which slows the performance of the closed-loop AO system.  
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6 Experimental Verification of Interferometric Wavefront 
Sensors 

6.1 Adaptive Optics Test Environment 
Since 2008 a test environment for laser communications through the atmosphere and the 
correction of phase distortions by adaptive optics (AO) has been built up in a laboratory 
environment [MOL09]. This testbed is intended to optimize AO methods, test different 
wavefront sensors, and optimize fiber-coupling in connection with a phase correction.  

The experiments presented here are not intended to show a finished AO system, but they 
demonstrate the basic principles of the interferometric wavefront sensors. Further 
developments are still required to achieve a fast enough processing and grabbing of the 
camera images to correct the phase distortions of the atmospheric turbulence generator or of 
an atmospheric field test-range. 

Figure 6.1 shows the AO and fiber-coupling testbed. It contains a tip-tilt mirror, a 
deformable mirror, and as wavefront sensors a conventional Shack-Hartmann sensor and 
the test interferometer. The interferometer is designed in a Mach-Zehnder type configuration 
as in Figure 5.6. The used camera from Xenics (Cheetah CL640) has an InGaAs sensor 
chip. This reduces the quality of the obtained images, as InGaAs exhibits higher noise levels 
and larger variations in the pixel amplification factors, but it enables the use of the 
widespread communication wavelength of 1550nm. Some details on the components are 
summarized in Table 6.1. 

The Shack-Hartmann sensor and the points-spread function camera are intended for a 
future comparison with the interferometric wavefront sensor. In this way the performance of 
the wavefront sensors can be directly evaluated without the need of a closed-loop AO 
system and the comparison with the Strehl ratio of the corrected phase.  

Two laser sources with different quality at 1550nm are available to perform experiments 
with different coherence length. The setup of the interferometer has slightly different path 
lengths of the optical arms, since no measures were taken to make them equal except for a 
visual inspection. This causes a deterioration of the interferometer fringe visibility, if the path 
length difference reaches the order of the laser coherence length. The high-quality laser from 
TeraXion has a linewidth of 2.5kHzFWHMν ≈  and a very long coherence length. Fringe 
visibility is almost ideal. The IPG Photonics has a linewidth of 80GHzFWHMν ≈ , which 
causes a slight deterioration of the fringe quality.  

The deformable mirror is a continuous Boston Micromachines Multi-DM140 with 140 
actuators and a fast response time with frequencies of up to 2-4kHz, which is required for the 
atmospheric conditions met in an SGL scenario with bandwidth demands of several 100Hz 
as shown in Section 4.2.4.  
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Figure 6.1: Setup of the AO system on the optical table. The incoming beam (red) with the 
distorted wavefront is reflected by a tip-tilt mirror and a deformable mirror. After the correcting 
elements the beam is directed to a Shack-Hartmann sensor and an interferometer experiment 
setup. The interferometer setup is implemented in a Mach-Zehnder configuration with the pin-
hole in the reference arm.  

 
Table 6.1: Components of the laboratory testbed. 
System Manufacturer  

Instrument Type 
Specification 

Camera SHS & 
Interferometer 

Xenics  
Cheetah-640CL 

InGaAs detector, λ=0.9-1.7μm, 640x512 
pixels, pixel size 20x20μm, 400fps, 
CameraLink interface 

Camera Point 
Spread Function 

Dalsa 
CA-D1 

Si detector, λ=0.4-1.0μm, 128x128 pixels, 
pixel size 16μm, 720fps 

Deformable Mirror Boston Micromachines 
Multi-DM140 

12x12 actuators, 3.5μm stroke, pitch 
400μm, 2-4kHz, protective-window coating 
for 635nm, 1064nm, 1550nm.  

SHS Lenslet Array aμs 
APO-Q-P150-R4.5 

Square, pitch 150μm, curvature radius 
R=4.5mm, f=9.7mm, fused silica, plano-
convex 

Laser 1550nm 
High quality 

TeraXion Pure 
Pure Spectrum PS-NLL-
1550 

Linewidth ~2.5kHz, 13mW transmit power 

Laser 1550nm IPG Photonics 
IPG-ELD-1-1550 
 

Erbium fiber laser, linewidth ~80GHz or 
0.6nm, 10mW-1W transmit power 
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The principle lab setup can be seen in Figure 6.2. The communication laser beam passes an 
optical turbulence generator (OTG) twice and reaches the test setup of the AO and fiber-
coupled communication system.  
 

 
Figure 6.2: Adaptive optics testbed. The transmitter on the optical table under the clean room 
unit (3) sends the laser beam through the optical turbulence generator (OTG) (2). The beam is 
reflected with a flat mirror (1), propagates through the OTG a second time and reaches the 
receiver on the optical table (3). 

     
Figure 6.3: Concept of hot-air turbulence generator. The air is forced into the mixing chamber 
through inputs 1 and 2. A heating element warms up one of the flows and air straigtheners 
produce two laminar flows that collide in the mixing chamber. The mixed air leaves the box at 
the two outflows. The laser beam passes the turbulence through the holes at 6 and 7. 

The atmospheric turbulence in the testbed is generated by an OTG (Figure 6.3), which is 
based on the mixing of two air flows, one heated and one at ambient temperature. Jolissaint 
[JOL06] gave a review on different methods to simulate atmospheric turbulence in lab 
setups. The specific setup in the DLR AO testbed was implemented by Florian Moll [MOL09] 
taking the specific environmental conditions of long atmospheric transmission paths into 
consideration. Moll also performed the characterization of the OTG to establish the relation 
between target atmospheric turbulence parameters, e.g. the atmospheric coherence length 
r0, and the settings of the OTG, which are the speed and the temperature difference of the 
two air flows. This relation is plotted for several wavelengths in Figure 6.4, assuming a 
standard speed of the air flows (10V at the fans). The actual measurement was performed at 
1064nm. Characteristic functions for other wavelengths λ′  can be calculated with the scaling 
law  
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derived from turbulence theory as in Eq. (3.30). r0 down to about 2mm can be achieved for a 
maximum temperature difference of 135K. The entrance aperture of the test setup on the 
optical table has a diameter of 15mm, therefore maximum ratios 0/D r  of about 7 can be 
reached taking the values of Figure 6.4. 
 

 
Figure 6.4: Measurement of r0 over the temperature difference of the two air flows. The air-flow 
speed  was set to a fixed value by the fan voltage (Vfan = 10V). The curves at 1550nm and 847nm 
were calculated with Eq. (6.1). 
 

6.2 Interferometer Image Processing System 
A first closed-loop AO system was setup with the interferometer shown in Figure 6.1. The 
interferometer processing is based on the FFA algorithm, implemented in a real-time AO 
system developed over the last years. The image processing is performed on a Matrox 
Odyssey Xpro+ PCI-X card with a Freescale G4 PowerPC. The functionality of the card is 
accessed with the Matrox Imaging Library (MIL). The software package itself is written in 
C++. A basic diagram of the Matrox Odyssey is shown in Figure 6.5. The card contains apart 
from the PowerPC an FPGA Altera Stratix II core, which is intended for a future extension of 
the wavefront-sensor image processing. The FPGA processing might prove especially 
interesting for phase-shifting techniques, which obviously can be parallelized and contain 
relatively simple numerical operations. More details on the processing system were 
described by Ramon Mata Calvo [MAT08], who also was responsible for the software 
development of the real-time system.  

Figure 6.6 shows the graphical user interface of the AO real-time system. Basic functions 
as the camera control and area-of-interest adjustment are provided, but also functions to 
obtain the influence function between the wavefront sensor and the deformable mirror. In the 
left-lower corner the fringe pattern of the FFA algorithm is shown.  
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Figure 6.5: Scheme of the Matrox Odyssey XPro+ image-processing board with a frame 
grabber module (CameraLink), a G4 PowerPC, and an Altera Stratix II FPGA core.  

 

 
Figure 6.6: Graphical user interface to control the AO system.  

 
Figure 6.7 shows the amplitude of the Fourier transform of the fringe pattern (compare Eq. 
(5.90)) for an undisturbed phase. The two side peaks and the central peak of the FFA 
technique can be seen. Due to the scaling the noise pattern around the three peaks 
becomes visible. The inlays show the fringe pattern and a cut through one of the side peaks. 
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Figure 6.7: Amplitude of the Fourier transform of the FFA fringe pattern with the central peak 
and the two side peaks containing the phase information. Upper inlay: Fringe pattern from the 
camera. Lower inlay: Cut through the right side-peak.  

6.3 Self-Referencing Interferometer in a Mach-Zehnder 
Configuration 

A first test of the interferometer setup of Figure 6.1 and shown in more detail in Figure 6.8 is 
intended to illustrate the usability of a self-referencing interferometer under the atmospheric 
turbulence conditions generated by the OTG. The interferometer setup is based on the PDI 
description provided in Section 5.1.2.  
 

 
Figure 6.8: Self-referencing interferometer setup in a Mach-Zehnder configuration. The 
reference wave is created by a 75μm pin-hole ( )0.64η = .  

Figure 6.9 shows the measured object wave intensity, reference wave intensity, and the 
resulting interferogram intensity distribution. The image of the object wave shows the 
intensity distribution in the entrance pupil of the system. A variable iris formed the entrance 
pupil. For the measurements the aperture had an open diameter of around 1cm and was 
imaged to a 1.6mm beam on the camera chip. Thus, with this optical system 80 pixels in 
diameter were illuminated on the camera. The area of interest of the camera chip was kept 
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small (128x128 pixels) to allow a higher frame rate. The image of the reference wave shows 
a Gaussian or Airy like distribution of the intensity.  

 
Figure 6.9: Object wave, synthetic reference wave, and the resulting interferogram from the 
self-referencing Mach-Zehnder interferometer. A slight tilt of the reference wave against the 
object wave was introduced for the Fourier reconstruction technique described in Section 
5.3.1. 

6.3.1 Characterization of the Reference Wave 
Figure 6.10 shows in detail the shape of the reference wave on the camera chip. Assuming a 
6.4mm beam diameter at the entrance lens of the interferometer, the diameter to the first 
zero of the Airy pattern at the pin-hole is given by Eq. (5.21) 

 2.44 118Airy
fD m
D
λ μ⋅

= ≈  (6.2) 

with the parameters 200 , 1.55 , 6.4f mm m D mmλ μ= = = . A pin-hole with 75μm diameter 
was used to remove higher modes from the incoming beam, and thus the ratio of the Airy 
pattern and pin-hole diameter was 0.64η ≈ . With this the intensity distribution in the aperture 
can be estimated from Figure 5.3, yielding a drop of the intensity at the rim of the aperture to 
about half of the maximum value. The cut through the amplitude distribution in the 
experiment (Figure 6.10) shows that the amplitude drops to about 40%, which is in good 
agreement with the theoretic predictions. 
 

 
Figure 6.10: Example reference wave. Left: Amplitude distribution; Right: Cut through the 
distribution along the white line. The size of the pupil is indicated by vertical (red) lines 
showing that the amplitude drops to about 40% at the pupil rim. This is in good agreement with 
the values shown in Figure 5.3 for a pin-hole size of 64%η = .  
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During the experiments it was observed that the Airy intensity distribution of the reference 
wave slightly moves with the tip-tilt error of the incoming wave (the extra tip-tilt correction 
was not active), while the pupil image produced by the object wave is fixed being an image of 
the entrance pupil. This has an effect on the visibility of the interferogram fringes, which 
varies over the aperture and over time. This problem can be improved, if the incoming wave 
is tip-tilt corrected by an independent system, which is anyway required to stabilize the 
strength of the reference wave (to hit the pin hole) before the initial start of the AO system.  

Figure 6.11 illustrates the movement of the reference wave and the variations of its 
strength. Ten example images of the reference-wave intensity are shown in the top row, 
which were recorded during 1 second. Below the variance of the power fluctuations is shown, 
indicating power drops of 10dB due to the atmospheric disturbances of the OTG.  
 

 

 
Figure 6.11: Behavior of the reference wave for a turbulence of 80KT ≈ (Heating 70%, 

0 4mmr ≈ ,  0/ 2.5D r ≈ ). The graph shows the power values during 1s (~850 frames) 
normalized to the mean power. The power was taken over the area of the camera frame. Power 
fades of up to 10dB can be observed. In the upper line example images of the reference wave 
can be seen, illustrating the wander and the varying strength of the reference wave. 

6.3.2 Laser Linewidth and Fringe Visibility  
The quality of the deployed lasers described by the laser linewidth FWHMν  has a significant 
influence on the performance of the phase reconstruction, as the fringe visibility defined in 
Eq. (5.25) decreases with an increasing linewidth owing to the reduction of coherence 
between the waves in the two interferometer arms. The decrease of the fringe visibility 
depends on the coherence length of the used laser in relation to the optical path difference of 
the interferometer arms. The coherence length cl  of a laser is given by [SAL91, pp.346] 

 c c
FWHM

cl c τ
ν

= ⋅ = , (6.3) 

where c is the speed of light and 
1

c
FWHM

τ
ν

=  the coherence time. The degree of coherence 

is then given assuming a Gaussian distribution of the laser spectrum by 
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Here the optical path difference of the two arms is given by 2 1s s− , resulting in a time 

difference of 2 1s s
c

τ −
= . The visibility of the fringes is also reduced by the factor 12γ  as 

shown in Eq. (5.28).  

An experimental evaluation of the fringe visibility using the TeraXion ( )2.5kHzFWHMν =  

and the IPG Photonics ( )80GHzFWHMν =  laser is depicted in Figure 6.12. The fringe 
visibility of the IPG Photonics laser was reduced by a factor 0.79, indicating a degree of 
coherence of 12 0.79γ =  assuming a perfect coherence for the TeraXion laser. The IPG 

Photonics laser has a coherence time 12.5pscτ =  and therefore a coherence length 
3.8mmcl = . Using Eq. (6.4) this reduction could be explained by a (very plausible) path 

difference in the interferometer arms of about 1.4mm.  

The reduced quality of the reconstruction can be also read from the ratio 0,max

1,max

I
I

 of the 

maximum intensities of the central peak 0,maxI  and the side peaks 1,maxI  in the Fourier 
transform. In the example the ratio increased from 3.1 to 7.5, i.e. the side peaks containing 
the phase information became weaker. 
 

 
Figure 6.12: Deterioration of the fringe visibility due to the laser linewidth. Two 1550nm lasers 
with different quality were used yielding different fringe visibilities V. Left: TeraXion 

2.5kHzFWHMν = , V=0.94; Right: IPG Photonics 80GHzFWHMν = , V=0.75.  

6.3.3 Halo around the Interferogram 
The halo around the interferogram stems from the intensity distribution of the reference wave 
(See Section 5.1.1.2) outside the pupil, where no interference occurs. Thus, the strength of 
the reference wave can be estimated by averaging the intensity distribution around the 
interferogram itself and knowing the shape of the intensity distribution in dependence of the 
pin-hole size as e.g. given in Eq. (5.23). A typical image of the halo, with the central 
interferogram region blinded out, is given in Figure 6.13. Slight errors probably due to a non-
optimal imaging of the entrance pupil can be seen in the frayed rim, but the halo is well 
visible.  
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Figure 6.13: Halo around the interferogram caused by the reference wave outside the pupil. 
Some slight interference fringes remain and can be also seen around the central part of the 
interferogram, probably due to a non-optimal imaging of the entrance pupil.  

6.3.4 Effects of Intensity Fades and Obscurations 
In Section 5.3.1, Figure 5.27, it could be demonstrated in simulation that an obscuration of 
the interferogram affects only the corresponding area of the phase reconstruction, giving 
correct phase values for the unobstructed area. This could be also confirmed in the 
experiment. Figure 6.14 shows an obstructed fringe pattern (left) and the reconstructed 
phase (right) taken from the real-time software. The obscuration only influences the 
corresponding part, but allows correct phase values for the unobstructed side. This also 
confirms that scintillation fades cause wrong phase values only in the affected areas. The 
dark areas can be detected using the absolute value of the inverse Fourier transform as 
shown in Figure 5.28, and the unreliable phase values can be discarded. 

Interesting to note is that the reference wave becomes visible in the obstructed area. This 
could be used to estimate the reference-wave strength in a telescope system with central 
obscuration, where the central part of the reference wave would be nicely observable. 
 

         
Figure 6.14: Test of masking a part of the interferometer image in the experiment. Left: The 
fringe pattern with the obscuration. Right: Result of the real-time phase reconstruction.  

6.4 Fourier Fringe Analysis Technique for the Phase 
Reconstruction 

Based on the Fourier Fringe Analysis (FFA) technique (Section 5.3.1) an analysis of a single 
interferometer was performed, and the phase was reconstructed. The density of the fringe 
pattern could be adjusted by tilting mirrors in the interferometer setup using micrometer 
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screws. The density was set to about 4 pixels per fringe. Figure 6.15 and Figure 6.16 show 
two examples. The interferogram of Figure 6.15 was recorded for a OTG temperature 
difference of the two air flows of about 20K with 0 9mmr ≈  and 0/ 1D r ≈ . 

 
Figure 6.15: Fourier reconstruction algorithm for turbulence with 20KT ≈ (Heating 40%), 

0 9mmr ≈ ,  0/ 1D r ≈  at 1550nmλ = . A: Recorded fringe pattern; B: Fourier transform of the 
fringe pattern; C: Detailed view of the upper side peak in the Fourier transform; D: 
Reconstructed, unwrapped phase. 

 
Figure 6.16 shows the interferogram pattern for a stronger turbulence scenario with 

80KT ≈ , 0 4mmr ≈ , 0/ 2.5D r ≈ . Here phase singularities could be found in the 
reconstructed phase, which probably appear in the Fourier transforms due to noise. The 
intensity fades in this scenario are not strong enough to allow singularities due to 
atmospheric turbulence. The quality guided unwrapping technique presented in Ghiglia and 
Pritt [GHI98] was used for the phase unwrapping. In the fringe pattern stronger variations of 
the intensity and the visibility can be observed. 



Chapter 6:  Experimental Verification of Interferometric Wavefront Sensors 
 
 

178 

 
Figure 6.16: Fourier reconstruction algorithm for turbulence with 80KT ≈  (Heating 70%), 

0 4mmr ≈ ,  0/ 2.5D r ≈  at 1550nmλ = . A: Recorded fringe pattern; B: Fourier transform of the 
fringe pattern; C: Detailed view of the upper side peak in the Fourier transform; D: 
Reconstructed, unwrapped phase. 

6.5 Results of a First Closed-Loop System 
Figure 6.17 shows the closed-loop performance of the AO system based on the FFA 
technique for a static phase disturbance, a transparent plastic plate. In the uncorrected case 
the focus spot is broken up in several speckles, while with the AO correction the focus is well 
corrected (almost diffraction limited) showing the first ring of the Airy distribution.  

Currently, the real-time processing system is not optimized to achieve high frame rates 
and to correct the effects of the OTG. It was intended for a first demonstration of the phase 
reconstruction with an interferometer using the FFA technique. In a next step it is planned to 
increase the speed of the processing system to reach frame rates above 1kHz.  
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Figure 6.17: Performance of the closed-loop AO system with an FFA reconstruction. The phase 
disturbance was produced by a (low-quality) transparent plastic plate. Left: Focus spot of the 
uncorrected phase. Right: Focus spot with correction.  
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7 Conclusion and Future Work 

7.1 Summary and Conclusions  
This work has illustrated various aspects of adaptive optics (AO) systems, with an emphasis 
on wavefront sensors, for the deployment in LEO satellite-to-ground links (SGL). To my 
knowledge the applicability of AO systems in these scenarios has to date not been studied in 
this detail. For the understanding of the atmospheric conditions on the SGLs unique 
atmospheric measurements were performed with two satellites, OICETS and TerraSAR-X. 
The evaluation in this work, based on the measurement results and atmospheric theory, 
showed that typical wavefront sensors from astronomical applications are not very suitable 
for SGL scenarios. Severe phase distortions, intensity scintillations, and high bandwidth 
requirements on the AO system strongly impact on sensors such as the Shack-Hartmann. As 
an alternative, interferometric sensors provide a promising solution based on the analysis in 
Chapter 4 and 5. Interferometric wavefront sensors are widely used for surface testing, but 
they proved to have very favorable properties for the use in SGLs.  

The content of this work is: 
• General aspects of laser SGLs, current system designs of flight terminals, and 

ground stations. 
• Overview on atmospheric conditions of SGLs based on theory, numerical 

simulations, and measurements in SGLs taking into account the effects on the 
communication beam. Description of the optical ground station and the 
measurement instruments. 

• Derivation of AO requirements based on the presented atmospheric conditions. 
• Performance analysis of various wavefront sensors under the presented 

atmospheric conditions. 
• Selection of interferometric wavefront sensors as a promising approach and 

detailed analysis of interferometric techniques for the use in SGL scenarios. 
• Experimental demonstration of an interferometric Fourier Fringe Analysis (FFA) 

technique with a single interferometer in the DLR atmospheric testbed. 
• First closed-loop demonstration with the FFA technique. 

The thesis structure is summarized in Figure 1.9 with the four main chapters: Atmospheric 
conditions, selection of a suitable wavefront-sensor concept for the atmospheric conditions in 
SGLs, analysis of interferometric sensors, and the experimental verification of an 
interferometric sensor in the atmospheric turbulence testbed. 
 
LEO Satellite-To-Ground Links (Chapter 2) 
LEO satellites are mostly seen under very low elevation angles, e.g. 90% of the link time 
below 30deg elevation at mid-range geographic latitude. Therefore, in order to achieve 
highest possible link durations, both the communication system and a possible AO system 
have to be able to cope with the difficult atmospheric turbulence conditions in these 
scenarios caused by the long path through dense regions of the atmosphere. Such scenarios 
are typically not found in astronomy, which operates at high elevation angles and at sites 
with extremely favorable seeing conditions. 
 
Atmospheric Conditions (Chapter 3) 
Strong power scintillation with fades down to zero are very disturbing for communication 
systems. These fades can be reduced with telescope apertures significantly larger than the 
intensity speckles of the received field (aperture averaging, e.g. D>20cm); however, this 
implies that phase distortions over the aperture become significant (the aperture becomes 
larger than the scales sizes of the phase distortions) and reveal their deteriorating impact on 
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coherent or fiber-coupled communication systems. As a consequence phase correction has 
to be implemented for reliable communication.  

Several atmospheric measurement campaigns (at wavelengths 847nmλ =  and 
1064nmλ = ) have been performed with the DLR ground station between 2006 and 2009. 

The main results of these campaigns are presented here, with an emphasis on parameters 
significant to AO systems and communication links. SGLs are characterized by very strong 
scintillation ( 2 2Iσ > ) and phase distortions ( 0r  down to 1cm) at low elevation angles. Due to 
the motion of the beam through the atmosphere, the bandwidth requirements for an AO 
system are significantly increased ( 1kHzGf > ) compared to astronomical applications; in 
addition, phase singularities appear below 30 degrees elevation, which potentially destroy 
the performance of some of the widely-used (mainly in astronomy) wavefront sensors.  

 
Conventional Wavefront Sensors (Chapter 4) 
The performance of several wavefront sensors has been studied under the described 
atmospheric turbulence conditions. Two widespread sensors, the Shack-Hartmann and the 
curvature sensor, show quickly deteriorating quality of the reconstructed phase in the strong 
fluctuation regime. Specialized reconstruction algorithms have been developed for the 
Shack-Hartmann sensor to cope with this situation, which, however, are more complex, 
numerically more demanding, and require a higher resolution of the sensor. High resolution 
implies that the frame rate of currently available cameras becomes too low in view of the 
severe bandwidth requirements in the SGL scenarios. 

Shearing interferometers have a behavior similar to the Shack-Hartmann sensor, as they 
also reconstruct the phase from phase derivatives. Consequently, they suffer from similar 
problems as the Shack-Hartmann sensor. 

Phase retrieval methods have the advantage that they allow a phase reconstruction from 
the intensity of a focus spot distribution. The focus spot anyway has to be measured for the 
tracking system and/or the communication system in typical ground stations; however, these 
algorithms show, apart from ambiguities in the reconstruction, a weak performance for larger 

0/D r  ratios and under strong intensity scintillation; in addition, they require quite a large 
number of numerically demanding iterations (Fourier transforms) to reconstruct an 
acceptable phase estimate.  

 
Self-Referencing Interferometers (Chapter 5) 
Self-referencing interferometers based on common-path or point-diffraction setups provide a 
promising solution for SGL scenarios. These techniques are mainly applied for optical 
component testing, but they are here studied and demonstrated for the use in AO and 
communication systems. Main aspects for the evaluation of their performance are speed, 
robustness to phase/intensity fluctuations, phase singularities, and environmental influences. 
Three main types of interferometer designs were discussed: 

• Instantaneous phase-shifting interferometers (IPSI) take three or four 
interferograms synchronously, each with a different phase shift. The calculations 
for the phase reconstruction are very simple, so that the sensor comes very close 
to a direct wavefront sensor. The ratio pixel over phase-point count is very 
favorable (3-4), phase singularities do not disturb the results, and telescope areas 
with low intensity levels can be easily detected. Taking into account the bandwidth 
requirements, the strong phase distortions, and intensity scintillation, this sensor 
type seems to be a good solution under the stated conditions, however, with an 
increased effort of several interferometer arms. Some optical setups of an almost 
common-path style are presented (Section 5.3.2), which should be robust to 
environmental disturbances like vibrations or temperature fluctuations (solar 
radiation). Several techniques to evaluate the performance in the presence of 
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phase-shifting errors, detector nonlinearity/noise, and vibration errors are 
discussed (Section 5.2.2 and 5.2.3). 

• The Fourier Fringe Analysis (FFA) technique (Section 5.3.1) recovers the phase 
from one or two interferograms. This technique is numerically more demanding 
(two Fourier transforms) but can be implemented with a good ratio pixel over 
phase-point count (1-2) making camera sensors very fast. The resolution of the 
phase reconstruction is slightly reduced due to the sampling requirements of the 
fringes. Phase reconstruction quality is disturbed only locally by low intensity 
levels, still allowing a good overall performance. 

• The iterative technique of Vorontsov (Section 5.3.3) uses one interferometer and 
an additional measurement of the intensity distribution in order to estimate the 
phase in a closed-loop AO system. This technique is numerically very simple, has 
a good ratio pixel over phase-point count (1-2), but of course requires a few 
iterations (n<10) to obtain an adequate phase estimate. 

IPSI techniques provide the most accurate phase estimates of the interferometers with a 
good bandwidth performance, however, with an additional effort for the optical system. If 
processing power is not the limiting factor and an optically simple solution is required, the 
FFA technique offers a promising solution. The iterative technique has the lowest processing 
requirements; however, the speed demands on the camera and the wavefront corrector are 
the highest to achieve high bandwidth despite the iterative character. 

An issue of self-referencing interferometers is the strength and stability of the reference 
wave, which also depends on the impinging wavefront. This, however, should be only a 
problem to start off the AO system until the phase reconstruction and correction catches on. 
During operation the phase should be sufficiently corrected to ensure a relatively stable 
reference wave. 

 
Experimental Demonstration (Chapter 6) 
As a conclusion of this work a testbed for interferometric sensors and closed-loop AO 
systems has been setup in a lab environment in order to characterize the performance with 
an optical turbulence generator. First experiments have been performed for a point-diffraction 
interferometer setup with an FFA reconstruction. The results are promising and a first closed-
loop AO system with such a sensor has been demonstrated.  
 

7.2 Future Work 
This thesis provided an investigation of wavefront sensing under extreme atmospheric 
conditions to develop AO systems for SGL scenarios. The next steps will be to study in detail 
the performance of several of the suggested interferometric wavefront sensors in laboratory 
experiments and compare their performance with the Shack-Hartmann sensor.  

From the lab environment the system has to be taken to experiments on an outdoor test-
range with a sufficiently long propagation distance (1-2km) providing severe atmospheric 
conditions close to the ground. In contrast to the actual satellite downlinks there is ample 
time on the test-range to optimize all parameters of the AO systems. In SGL scenarios link 
durations are only 8-12 minutes every couple of days. Therefore, the AO and communication 
systems have to be perfected first in ground tests to guarantee an optimal performance 
during the short measurement intervals of an SGL campaign. 
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A Appendix 

A.1 Fourier Transformation 

A.1.1 Continuous Fourier Transformation 
The Fourier transform G(f) of a function g(x) is defined by  

 2( ) ( ) ifxG f g x e dxπ
∞

−

−∞

= ∫  (A.1) 

 2( ) ( ) ifxg x G f e dfπ
∞

−∞

= ∫ . (A.2) 

Fourier transform in two dimensions: 

 ( ) ( ) 2 if xG f g x e dxπ− ⋅= ∫∫  (A.3) 

 ( ) ( ) 2 if xg x G f e dfπ ⋅= ∫∫ , (A.4) 

where ( ),x yf f f= , ( ),x x y= , and x yf x f x f y⋅ = ⋅ + ⋅ . In general Fourier transforms of 
functions in the spatial/time domain are indicated by the corresponding capital letter, e.g. 
( ) ( )g x G f→ . 

A.1.2 Discrete Fourier Transformation 
In the following a time or spatial function is sampled in the interval X0. N sampling points are 
taken in intervals ax , so that 0 aX N x= ⋅ . The sampled function might be padded with 
zeros to increase the resolution in the Fourier domain. The Fourier integral (A.1) can then be 
written as sum over N terms 

 ( ) ( )
0 1

22

00

a

k a

X N x N
if n xifx

a a
nx

g x e dx x g n x e ππ
= ⋅ −

− ⋅−

==

⇒ ⋅ ⋅∑∫ . (A.5) 

With the sampling frequencies k
a

kf
N x

=
⋅

, the discrete Fourier transformation becomes 

 
1

2 /

0

( ) ( )
N

ikn N
d a

n

G k g n x e π
−

−

=

= ⋅∑  (A.6) 

 ( )
1

2 /

0

1( )
N

ikn N
d

k
g n G k f e

N
π

−

=

= ⋅∑ . (A.7) 

The spacing of the samples in the frequency domain is given by 
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0

1 1

a

f
N x X

= =
⋅

. (A.8) 

Important to note is the absence of the factor ax  in the definition of the discrete Fourier 
transform [SCH92], which has to be included to get the equivalent of the continuous Fourier 
transform and to achieve a correct scaling in the sense of energy conservation for example in 
the formulas of the optical Fourier transform (see section A.2.4). For this the discrete Fourier 
transformation has to be multiplied by the factor ax  to get the equivalent of the Fourier 
transform in value and unit  

 ( ) ( )k a d kG f x G f= ⋅ . (A.9) 

The two-dimensional discrete Fourier transformation for the 2D spatial signal (matrix) 
( , )x yx n n  is then given by 

 
2 ( )1 1

0 0
( , ) ( , )

x x y y

x y

i k n k nN N
N

d x y x y
n n

G k k g n n e
π +− − −

= =

= ∑ ∑  (A.10)  

 
2 ( )1 1

2
0 0

1( , ) ( , )
x x y y

x y

i k n k nN N
N

x y d x y
n n

g n n G k k e
N

π +− −

= =

= ∑ ∑ , (A.11) 

which is sampled at the normalized frequencies 0/kf k X=  in both dimensions. The size of 
the signal matrix in both dimensions is again given by 0 aX N x= ⋅ .  Note that the discrete 

Fourier transformation has to be multiplied with the factor 2
ax  to approximate the result of 

the continuous Fourier transform. Consequently an energy conserving form of the discrete 
Fourier transform can be written as  

 ( )
2 ( )1 1

2 2

0 0
( , ) ( , ) ( , )

x x y y

x y

k n k nN N i
N

x y a x y a d x y
n n

G k k x g n n e x FT g n n
π +− − −

= =

= = ⋅∑ ∑  (A.12) 

 ( )
2 ( )1 1

1
2 2 2

0 0

1 1( , ) ( , ) ( , )
x x y y

x y

k n k nN N i
N

x y d x y d d x y
n na a

g n n G k k e FT G k k
N x x

π +− −
−

= =

= =
⋅ ∑ ∑ , (A.13) 

where dFT  denotes the discrete Fourier transformation as given in (A.10). 
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A.1.3 Properties of the Fourier Transform 
Table 2: Selected Fourier transform pairs based on Eq. (A.1) and (A.2). 
 Time/Space Domain Fourier Domain 

1. 1 ( )fδ  

2. ( )xδ  1 

3. ( )0x xδ −  02 ix fe π−  

4. iaxe  2
afδ
π

⎛ ⎞−⎜ ⎟
⎝ ⎠

 

5. ( )cos ax  
1
2 2 2

a af fδ δ
π π

⎡ ⎤⎛ ⎞ ⎛ ⎞+ + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 

6. ( )sin ax  
2 2 2
i a af fδ δ

π π
⎡ ⎤⎛ ⎞ ⎛ ⎞+ − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

7. ( )
n

x nTδ
∞

=−∞

−∑  
1

k

kf
T T

δ
∞

=−∞

⎛ ⎞−⎜ ⎟
⎝ ⎠

∑  

 
Table 3: Some selected properties of the Fourier transform. 
 Time/Space Domain Fourier Domain 

Linearity ( ) ( ) ( )h x af x bg x= +  ( ) ( ) ( )H f aF f bG f= +  

Translation ( ) ( )0h x g x x= −  ( ) ( ) ( )0exp 2H f ix f G fπ= −  

Modulation ( ) ( ) ( )0exp 2h x ixf g xπ=  ( ) ( )0H f G f f= −  

Scaling ( ) ( )h x g ax=  ( ) 1 fH f G
a a

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

Time-Reversal ( ) ( )h x g x= −  ( ) ( )H f G f= −  

Conjugation ( ) ( )*h x g x=  ( ) ( )*H f G f= −  

Convolution ( ) ( ) ( )h x f x g x= ∗  ( ) ( ) ( )H f F f G f= ⋅  

 
Symmetries: 

 
 

where the indices R and I denote the real/imaginary parts, and even/odd the corresponding 
even/odd parts of the function. 
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Parseval’s theorem: For two square-integrable functions f(x) and g(x) with their respective 
Fourier transformations F(f) and G(f) the Parseval’s theorem is given by 

 ( ) ( ) ( ) ( )* *f x g x dx F f G f df
∞ ∞

−∞ −∞

=∫ ∫ , (A.14) 

where the star denotes the complex conjugate. Using only one function g(x) this theorem is 
also called the Plancherel theorem. It is given for the continuous case by 

 ( ) ( )2 2
g x dx G f df

∞ ∞

−∞ −∞

=∫ ∫  (A.15) 

and in the discrete case by 

 ( ) ( )
1 12 2

0 0

1N N

n k

g n G k
N

− −

= =

=∑ ∑  (A.16) 

 

A.2 Simulation of Beam Propagation 
The simulation of beam propagation is based on [SAL91] and [GOO96]. 

A.2.1 Free-Space Transmission 
Given a complex electric field distribution f(x,y) in the input plane, the field distribution g(x,y)  
after a free-space transmission of distance d can be calculated in the Fourier or in the spatial 
domain. ( ),x yF υ υ  and ( ),x yG υ υ  are the corresponding Fourier transforms of f(x,y) and 
g(x,y). The free-space transmission in the Fourier domain is given by 

 ( , ) ( , ) ( , )x y x y x yG H Fυ υ υ υ υ υ= ⋅  (A.17) 

with the transfer function of the free-space transmission in the Fresnel approximation 

 ( )2 2
0( , ) expx y x yi dυ υ πλ υ υ⎡ ⎤Η ≈ Η ⋅ +⎣ ⎦  (A.18) 

with ( )0 exp ikdΗ = . ( , )x yυ υ  give the spatial frequencies in the Fourier domain in the 

directions (x,y). The wavelength of the propagated wave is λ. In the discrete case ( , )x yυ υ are 
given by 

 ( , ) , yx
x y

a a

kk
N x N x

υ υ
⎛ ⎞

= ⎜ ⎟⋅ ⋅⎝ ⎠
, (A.19) 

where ax  is the spacing in the spatial domain and ( ),x yk k  are the sampling values in the 
Fourier domain. In the spatial domain the free-space transmission is calculated by the 
convolution 
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 ( , ) ( , )* ( , ) ( , ) ( , )g x y h x y f x y f x y h x x y y dx dy
∞ ∞

−∞ −∞

′ ′ ′ ′ ′ ′= = ⋅ − −∫ ∫ , (A.20) 

where the impulse-response function is given by 

 
2 2

0( , ) exp
2

x yh x y h ik
d

⎡ ⎤+
≈ ⋅ −⎢ ⎥

⎣ ⎦
 (A.21) 

with 

 ( )0 expih ikd
dλ

⎛ ⎞= ⋅ −⎜ ⎟
⎝ ⎠

. (A.22) 

Both transfer function and impulse-response function are given in the simplification of the 
Fresnel approximation, which assumes that the distances x and y are small compared to the 
distances f and d.  

A.2.2 Thin Lens 
The effect of a thin lens is given by  

 ( , ) ( , ) ( , )g x y t x y f x y= ⋅  (A.23) 

with the lens transmittance  

 
2 2

0 0( , ) exp
2

x yt x y h ik
f

⎡ ⎤+
≈ ⎢ ⎥

⎣ ⎦
, (A.24) 

where 0 0 0exp( )h ink d= −  with the index-of-refraction n of the lens material and d0 the 
thickness of the lens. A plane wave is transformed into a paraboloidal wave. For a discrete 
simulation of a lens transmittance, it has to be considered that the term within the brackets 

2 2

0 2
x yik

f
+

 becomes rather large for usual lens configurations with an F-number of about 

1-10, which causes the exponential function to quickly oscillate. This easily brings numerical 
simulations to the limit of spatial resolution. This can be solved with long focal lengths or 
alternatively small aperture sizes.  

A.2.3 Optical Fourier Transform 
The Fourier transform of an input wave can be “calculated optically” by a focus 
transformation of a lens. The modulus of the Fourier transformation can then be estimated by 
measuring the focus spot intensity with a camera.   
Given a complex electric field distribution f(x,y) in the input plane, the focal-plane field 
distribution g(x,y) gives the Fourier transformation of f(x,y) and is obtained as shown in Figure 
A.1 by a 

• Free-space transmission with the distance d 

• Transmission through a lens with focus length f 

• Free-space transmission with the distance f 
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Figure A.1: The input field can be described as a superposition of plane waves. Each plane 
wave with a tilt angle of θx,y in the input plane produces the frequency component ( ),x yυ υ  due 
to the tilt as it crosses the input plane. Each tilted wave is then mapped to a certain location in 
the focal plane, which yields the Fourier transform of the input field.  

 

( ),x y  are the spatial coordinates in the transversal plane. The according frequencies with 

unit [1/m] are given by ( ), ,x y
x yf f
f fλ λ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

. 

Using the Fresnel approximation to calculate the propagation of light in free-space, the 
transformation of the field from the pupil plane to the focus plane can be written by the 
Fourier transform 

 ( ) ( )( )2 2

2, exp ,l

x y d f x yg x y h i FT
f f f

π
λ λ λ

⎡ ⎤+ − ⎛ ⎞
⎢ ⎥= ⎜ ⎟
⎢ ⎥ ⎝ ⎠⎣ ⎦

, (A.25) 

where [ ]exp ( )l
ih ik d f
fλ

⎛ ⎞
= − +⎜ ⎟
⎝ ⎠

 and 
2k π
λ

= . The intensity is proportional to the squared 

absolute value of the Fourier transform of f(x,y) 

 
( )

2

2
1( , ) ,x yI x y FT

f ff λ λλ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. (A.26) 

Observing the intensity in the focus plane (d=f) removes the exponential term in (A.25), so 
that  

 ( , ) ,l
x yg x y h FT
f fλ λ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, (A.27) 

where [ ]exp 2l
ih i kf
fλ

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

. In the discrete case Eq. (A.27) changes to 
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 ( )
2 1, ,a

x y l x y
a a

xf fg n n h FT n n
x N x N f N
λ λ

λ
⎛ ⎞

⋅ ⋅ = ⋅ ⋅⎜ ⎟ ⋅⎝ ⎠
, (A.28) 

where ( ),x yn n denote the sample points (nx,ny=-N/2…N/2) of the Fourier transform. The 

sampling points in the focus plane have the frequency values ,x y
a a

f fn n
x N x N
λ λ⎛ ⎞

⋅ ⋅⎜ ⎟
⎝ ⎠

. 

A.2.4 Discrete Optical Fourier Transform 
A two-dimensional Discrete Fourier Transform (DFT) is used for the numerical simulation of 
the optical Fourier transform. The input electrical field f(m,n) and the field in the focus plane 
g(m,n) are stored in complex matrices. An efficient implementation of the DFT is the Fast 
Fourier Transform (FFT), which reduces the computational complexity from ( )2O N of the 

DFT to ( )log( )O N N⋅ , where N denotes the matrix dimension of the sampled fields.  

For a typical numerical implementation of the FFT, such as in Matlab, the relation of the input 
plane and the focal plane, assuming d=f (see A.2.3), with the correct scaling is given by 

 ( ) ( )
2

, ( , ) a
x y x y

xF k k FFT f n n
fλ

= ⋅
⋅

. (A.29) 

fx denotes the frequency spacing in the focal plane, and N gives the size of the field 
matrices f(m,n) and g(m,n), including possible zero padding, i.e. the field might be sampled 
with 256x256 values and is padded with zeros to a matrix size of 1024x1024 (N=1024). The 
relation between ax and fx is given for the focal length f by 

 f
a

fx
x N
λ ⋅

=
⋅

. (A.30) 

Eq. (A.29) can be rewritten with (A.30) to give 

 ( ) ( ) 1, ( , ) a
d x y x y

f

xF k k FFT f n n
x N

= ⋅ ⋅ . (A.31) 

Usually the frequency axis is inversed for two-dimensional FFTs, so that the lowest 
frequencies are mapped to the corners of the output matrix. Software packages like Matlab 
provide functions to rearrange the frequencies, e.g. FFTSHIFT in Matlab. The forward 
Fourier transform is given in Matlab by 

 
Focus=FFTSHIFT(FFT2(FFTSHIFT(aperture)))*dxa^2/(lambda*focus) 
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A.3 Relations of Trigonometric Functions 
Selected relations of trigonometric functions, e.g. [BRO93]: 
 

1. ( )sin sin cos cos sinα β α β α β± = ±  

2. ( )cos cos cos sin sinα β α β α β± = ∓  

3. sin 2 2sin cosα α α=  

4. 2 2cos 2 cos sinα α α= −  

5. sin sin 2sin cos
2 2

α β α βα β + −
+ =  

6. sin sin 2cos sin
2 2

α β α βα β + −
− =  

7. cos cos 2cos cos
2 2

α β α βα β + −
+ =  

8. cos cos 2sin sin
2 2

α β α βα β + −
− = −  

9. ( ) ( )1sin sin cos cos
2

α β α β α β= − − +⎡ ⎤⎣ ⎦  

10. ( ) ( )1cos cos cos cos
2

α β α β α β= − + +⎡ ⎤⎣ ⎦  

11. ( ) ( )1sin cos sin sin
2

α β α β α β= − + +⎡ ⎤⎣ ⎦  

12. ( )2 1sin 1 cos 2
2

α α= −  

13. ( )2 1cos 1 cos 2
2

α α= +  

14. ( )1cos
2

i ie eα αα −= +   (Euler’s formula) 

15. ( )1sin
2

i ie e
i

α αα −= −   (Euler’s formula) 

 

A.4 Properties of Complex Conjugate 
 

1. ( )* * *z w z w+ = +  

2. ( )* * *z w z w− = −  

3. ( )* * *zw z w=  

4. 
* *

*

z z
w w

⎛ ⎞ =⎜ ⎟
⎝ ⎠

,  if w is non-zero 
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5. 2 * *z z z z z= ⋅ = ⋅  

6. { } ( )*1Re
2

z z z= +  

7. { } ( )*1Im
2

z z z
i

= −  

 

A.5 Properties of Vector Operators (Gradient, Divergence, 
Curl) 
The properties of vector operators can be found for example in [AND03, p.178] or [BRO93]. 
The nabla operator is given by  

 
x

y

z

∂
∂
∂
∂

∂
∂

⎛ ⎞
⎜ ⎟

∇ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

.  

Scalar fields are denoted by lower letters and vector fields by capital letters with an arrow. 
 

( )fg g f f g∇ = ∇ + ∇    

( ) ( )fG f G f G∇⋅ = ∇ ⋅ +∇ ⋅  

( ) ( )fG f G f G∇× = ∇× +∇ ×  

 
0f∇×∇ =      Curl of a gradient is zero 

0F∇⋅∇× =      Divergence of a curl is zero 
 

( ) ( ) ( )F G G F F G∇⋅ × = ⋅ ∇× − ⋅ ∇×  

( ) ( ) 2F F F∇× ∇× = ∇ ∇⋅ −∇  

 

( ) dff u u
du

∇ = ∇     Chain rule 

( ) ( ) ( ), , ,f u v f u v f u vu v
x u x v x

∂ ∂ ∂∂ ∂
= +

∂ ∂ ∂ ∂ ∂
  Chain rule 

 
 

A.6 Polarization and Jones Matrix 
The explanation of polarization and the Jones vector/matrix is based on the presentation in 
[SAL91]. The electric field E can be expressed in the field components in x and y direction 

 ( ), x x y yE z t E e E e= + , (A.32) 
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where  

 

cos 2 cos 2

cos 2 cos 2

x x x x

y y y y

z zE a f t A f t
c c

z zE a f t A f t
c c

π ϕ π

π ϕ π

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= − + = −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= − + = −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

. (A.33) 

Ax and Ay are the complex envelope of the electric field and determine the polarization of the 

wave. The polarization state of a wave can be characterized by the Jones matrix x

y

A
J

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. 

Some examples for J are given in Table 4. 
 
 

 
 
The properties of polarization devices are modeled by the Jones matrix T, which is multiplied 
to the Jones vector J1 by a matrix multiplication 

 2 1J TJ= . 

 

Table 4: Jones vector x

y

A
J

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 for some specific polarization states. 

 
Linear polarization in x- and y-direction 

 
1
0
⎡ ⎤
⎢ ⎥
⎣ ⎦

, 
0
1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
Linear polarization with an angle θ  with the 
x-axis 

cos
sin

θ
θ

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
Right circular polarized 11

2 i
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
Left circular polarized 11

2 i
⎡ ⎤
⎢ ⎥−⎣ ⎦
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Table 5: Jones matrices for some specific polarization devices. 

 
Linear polarizer in x-/y-direction  

 
1 0
0 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

,
0 0
0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 

Linear polarizer rotated by 45/135 degrees 
(or -135/-45 degrees) 

1 11
1 12
⎡ ⎤
⎢ ⎥
⎣ ⎦

,
1 11
1 12

−⎡ ⎤
⎢ ⎥−⎣ ⎦

 

Wave retarder (here the fast axis is along the 
x-direction) ( )

1 0
0 exp i ϕ
⎡ ⎤
⎢ ⎥−⎣ ⎦

 

 

Quarter-wave plate at 45 degrees rotation 
/ 4 11

12
i i

e
i

π− ⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 

Polarization rotator; rotates the plane of 
polarization by the angle θ  

cos sin
sin cos

θ θ
θ θ

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
 
A wave retarder with / 2ϕ π=  is called a quarter-wave retarder/plate. It converts linear 

polarized light 
1
1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 into left circular polarized light 
1
i

⎡ ⎤
⎢ ⎥−⎣ ⎦

, and converts right polarized light 
1
i
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

into linear polarized light 
1
1
⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

 
Change of Coordinate System 
The change of the coordinate system of a Jones vector and matrix is realized with the 
rotation matrix 

 ( )
cos sin
sin cos

R
θ θ

θ
θ θ

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

,  (A.34) 

where θ  denotes the rotation angle to obtain the rotated coordinate axes x’ and y’. A Jones 
vector in the rotated coordinate system is given by 

 ( )J R Jθ′ =  (A.35) 

and a Jones matrix, i.e. equaling a rotated polarization device by the angle θ− , in the new 
coordinate system is 

 ( ) ( )T R T Rθ θ′ = ⋅ ⋅ − . (A.36) 
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B Abbreviations  

AO Adaptive optics 
ARTEMIS ESA telecommunications satellite with optical communications 

terminal 
ATM Atmospheric Transmission Monitor 
BER Bit-Error Ratio 
BPSK Binary Phase-Shift Keying 
CCD Charge-Coupled Device 
CDF Cumulative Distribution Function 
CMOS Complementary Metal Oxide Semiconductor 
CPI Common-Path Interferometer 
CTFA Coherent Transmission Feasibility Analysis 
DARA Deutsch Agentur für Raumfahrtangelegenheiten, today part of the 

German Space Agency 
DFT Discrete Fourier Transform 
DIMM Differential Image Motion Monitor 
DLR Deutsches Zentrum für Luft- und Raumfahrt e.V., German Aerospace 

Center 
DM Deformable Mirror 
ESA European Space Agency 
ESTEC European Space Research and Technology Center 
FAR Focal Array Receiver 
FFA Fourier Fringe Analysis 
FOV Field of View 
fps Frames per Second 
FSO Free-Space Optical (Communication Systems) 
Gbps Giga-bits per second 
GEO Geo-Stationary Satellite 
HAP High-Altitude Platform 
HG Hermite-Gaussian (Beam) 
HV Hufnagel-Valley Model 
HV5/7 Hufnagel-Valley 2

nC  profile with standard parametrization (r0=5cm and 
isoplanatic angle of 7μrad for λ=0.5μm) 

IM/DD Intensity Modulation/ Direct Detection 
IPSI Instantaneous Phase-Shifting Interferometer 
ISL Inter-Satellite Link 
ITE Irradiance Transport Equation 
JAXA Japanese Aerospace Exploration Agency, Tokyo 
LCT Laser Communications Terminal 
LEO Low Earth Orbit 
LG Laguerre-Gaussian (Beam) 
LO Local Oscillator 
LOLA Liaison Optique Laser Aéroportée 
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Mbps Mega-bits per second 
NA Numerical Aperture 
NFOV Narrow Field-of-View (Camera) 
NICT National Institute of Information and Communications Technology, 

Tokyo 
NPBS Non-Polarizing Beam Splitter 
OCG Optical Communication Group 
OCT Optical Communication Terminal 
OGS Optical Ground Station  
OICETS Optical Inter-Orbit Communications Engineering Test Satellite 
OPALE Optical Payload for Inter-Satellite Link Experiment (on SPOT-4) 
OTG Optical Turbulence Generator 
PASTEL Passager Telecom (on ARTEMIS) 
PAT Pointing, Acquisition, and Tracking 
PBS Polarizing Beam Splitter 
PDF Probability Density Function 
PDI Point-Diffraction Interferometer 
Ph/b Photons per bit 
PILab Propagation and Imaging Lab, DLR proprietary tool for simulation of 

atmospheric propagation 
PSF Point Spread Function 
PSI Phase-Shifting Interferometer (Interferometry) 
PSK Phase-Shift Keying 
px Camera pixels 
QWP Quarter-Wave Plate 
RMS Root Mean Square 
RX Receive 
SCIDAR Scintillation Detection and Ranging 
SGL Satellite-To-Ground Link 
SHS Shack-Hartmann Wavefront Sensor 
SILEX Semiconductor laser Inter-satellite Link Experiment (ARTEMIS-

SPOT4) 
SM Single-Mode (Fiber) 
SNR Signal-to-Noise Ratio 
SOLACOS Solid State Laser Communications in Space 
SPGD Stochastic Parallel Gradient Descent Optimization Technique 
SROIL Short-Range Optical Inter-Satellite Link 
SRW Synthetic Reference Wave 
Tbps Tera-bits per second. 
TX Transmit 
WDM Wavelength Division Multiplex 
WFOV Wide Field-of-View Camera  
WTE Wavefront Transport Equation 
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C Symbols and Notations 

Symbol  Description Unit 
  Phase step rad 

gα   Elevation angle rad 

θα   Tilt angle rad 

extα   Extinction coefficient 1km−  

vα   Phase shift of the vibration disturbance in a phase-shifting 
interferometer rad 

gβ   Azimuth angle rad 

β   Transmission of the common path interferometer phase plate 
outside the central phase dot  

γ   Transmission of the common path interferometer phase plate 
inside the central phase dot  

12γ   Complex degree of coherence  

( )xΓ   Gamma function  

( )xδ   Dirac impulse  

ijδ   Kronecker delta  

ε   Relative phase-shifter error in phase-shifting interferometers  

aε   Size of the annulus in percent of the aperture  

η   Ration of the Airy pattern diameter (first zero) and the pin-hole 
diameter in a point-diffraction interferometer  

hetη   Heterodyne efficiency  

θ   Phase shift of the common-path interferometer phase plate 
inside the central phase dot rad 

θj  Phase steps in the phase-shifting interferometry rad 

κ  Spatial/temporal frequency in the Fourier transformation 1/m, 
1/s 

DMκ   Constant of the actuator influence function  

,X Yκ κ   Large- and small-scale spatial cutoff frequencies 1/m 

λ  Wavelength m 
ν   Frequency in the spectral PSI analysis technique Hz 

FWHMν   Spectral width or linewidth of a laser Hz 

vν   Frequency of the vibration disturbance in a phase-shifting 
interferometer Hz 

ρ  Normalized radius (polar coordinates)  

0ρ   Spatial coherence radius m 
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( ),ρ ψ   Polar coordinates with radius and azimuth angle m, rad 

σ  Standard deviation ( 2σ  variance)  

σθ  Standard deviation of the tilt/angle-of-arrival rad 

ϕσ   Phase standard deviation  
2
dσ   Variance of the spot position in the DIMM m2 

2
Gσ   Residual phase error limited due to AO bandwidth (Greenwood 

frequency) rad2 

2
Iσ   Intensity scintillation index  

2 2
ln ln,x yσ σ   Large/small scale log-irradiance scintillation index  

2
nσ   Detector noise  
2
Nσ   Residual phase variance after correction with N Zernike modes  
2
Pσ   Power scintillation index  
2
Rσ   Rytov variance  
2
Sσ   Scintillation error of the curvature sensor  

τ   
Difference in run-time of the two interferometer arms 

2 1s s
c

τ −
=  s 

cτ   Coherence time s 
ϕ   Wavefront phase rad 

cϕ   Wavefront shape of the corrector rad 

Lϕ   Phase shift of the local oscillator rad 

LSϕ   Reconstructed phase in the least-square sense rad 

Sϕ   Phase shift of the received signal rad 

SDϕ   Slope-discrepancy phase rad 

( ),r φ   Polar coordinates with radius and azimuth angle. m, rad 

Φ   Fourier transform of the phase φ 1rad −  

( )n κΦ   Power spectrum model for refractive-index fluctuations 3m  

( ),ρ ψ   Polar coordinates with radius and azimuth angle. m,rad 

Lω   Optical frequency of the local oscillator Hz 

Sω   Optical frequency of the received signal beam Hz 

satω   Satellite slew rate rad/s 

⊥∇   Transversal Laplacian operator  
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(a,b)  Local Cartesian coordinates m 
aj  Zernike coefficient of order j  
A  Area m2 

( ),x yA f f   Central peak in the Fourier domain of the FFA technique 2/Ws m

Ad  Area of the CPI filter dot m2 

Ageo  Geometry matrix describing the relation between slopes and 
wavefront points in a Shack-Hartmann sensor  

ka   Coefficients of the denominator in a PSI algorithm  

( )B ρ   Spatial covariance function  

( ),x yB f f   Side peak in the Fourier domain of the FFA technique 2/Ws m

( )Ib ρ   Normalized spatial covariance function of the intensity  

( )IB ρ   Spatial covariance function of the intensity  

kb   Coefficients of the nominator in a PSI algorithm  

C  Speed of light 83 10 m
sc = ⋅  m/s 

( )2
nC h   Refractive-index structure function 2/3m−  

d  Aperture separation distance in the DIMM m 
dL  Aperture diameter of a lenslet in a Shack-Hartmann sensor m 
D  Aperture diameter m 

( )nD ρ   Index-of-refraction structure function  

DSub  Sub-aperture diameter m 
E  Electric field V/m 
f  Focal length  m 

( ),x yf f f=   Coordinates in the Fourier domain 1/m 

f0  Fringe modulation frequency in the FFA technique 1/m 
F1, F2  Filter functions in the PSI evaluation  

f3dB  3dB closed-loop servo cut-off frequency Hz 
fG  Greenwood frequency Hz 

{ }FT x   Fourier transform   

GTf   Tilt Greenwood frequency Hz 

g  Gradient (slopes) of a wavefront  
G  Fourier transform of the gradient g  

0 , ,X YG G G   Amplitude spatial filter functions for the effective atmospheric 
spectrum (combined, large-scale, small-scale)  

( )xG κ ,

( )yG κ  
 Two-dimensional Fourier transforms of the slope components gx 

and gy 
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H(f,f3dB)  Closed-loop servo response  

( )dotH q   Transfer function of the CPI filter dot  

Hsat  Satellite altitude above ground m 

I   Intensity of Irradiance 2/W m

IF  Fourier transform of the intensity signal 
2/Ws m

 

IL  Intensity of the local oscillator 2/W m
I0  Intensity distribution of the interferometer object beam 2/W m

0PI   Intensity distribution in the entrance pupil of the curvature 
sensor 

2/W m

IR  Intensity distribution of the interferometer reference beam 2/W m
IS  Intensity of the received signal 2/W m

TI   Threshold intensity (normalized) of a cumulative distribution 
function (CDF)  

J  Performance metric in model-free optimization techniques  
Jn(x)  Bessel function of the first kind.  

,QWP PJ J   Jones matrix of a quarter-wave plate and a polarizer  

k  Wave number 2 /k π λ=  1/m 

Kp(x)  Modified Bessel function of the second kind  
L  Path length m 
l0  Atmospheric inner scale m 
L0  Atmospheric outer scale m 
n  Refractive index  
N  Number of samples/coefficients  

P   Pressure Pascal 
p(I)  Probability density function of the intensity  
P(z)  Characteristic polynomial in the PSI evaluation  
pj  Availability of ground station j  

Mp   Combined availability of M ground stations  

{ }PV x   Principal value operator  

( ),x yq q q=   Spatial coordinate in the Fourier plane m 

q0  Filter-dot radius m 

( ),r φ   Polar coordinates with radius and azimuth angle. m,rad 

r0  Atmospheric coherence length, Fried parameter m 
rd  Radius of the (circular) detector m 
Re  Earth radius (spherical model), Re ~ 6370km m 
S  Strehl ratio  
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vs   Integrated vibration sensitivity value for a phase-shifting 
interferometer.  

t  Time s 

T   Temperature K 
u,v  Normalized Cartesian coordinates  
U  Complex electric field V 
( )m
lu   Position of actuator l at the iteration m  

UL  Electric field of the local oscillator V 
U0 , UR  Complex electric field of the object/reference wave V 

US  Electric field of the received signal V 

ν⊥   Transversal wind velocity m/s 

v0  Wind velocity on ground m/s 

HzV   Hertz potential  

V  Visibility of fringes  
Vf  Fiber normalized frequency  

Vsat  Satellite speed m/s 

vv   Vibration frequency Hz 

w0  Waist radius of a Gaussian beam (1/e for the amplitude and 1/e² 
for the intensity) m 

W0  Aperture transmittance function  

( )Gw z   Beam radius of a Gaussian beam at distance z m 

w  Beam radius m 
(x,y)  Cartesian coordinates m 

,a fx x   Sampling interval in the spatial/frequency domain  m,1/m 

z  Distance from the ground station m 

Rz   Rayleigh range m 

( ),jZ ρ ψ   Zernike polynomial of order j  
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