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Abstract: Bimodal emotion recognition through audiovisual feature fusion has been shown superior over each individual
modality in the past. Still, synchronization of the two streams is a challenge, as many vision approaches work
on a frame basis opposing audio turn- or chunk-basis. Therefore, late fusion schemes such as simple logic or
voting strategies are commonly used for the overall estimation of underlying affect. However, early fusion is
known to be more effective in many other multimodal recognition tasks.
We therefore suggest a combined analysis by descriptive statistics of audio and video Low-Level-Descriptors
for subsequent static SVM Classification. This strategy also allows for a combined feature-space optimization
which will be discussed herein. The high effectiveness of this approach is shown on a database of 11.5h
containing six emotional situations in an airplane scenario.

1 INTRODUCTION

Automatic recognition of human emotion has recently
grown an important factor in multimodal human-
machine interfaces and further applications. It seems
commonly agreed that a fusion of several input cues is
advantageous, yet most efforts are spent on uni-modal
approaches (Pantic and Rothkrantz, 2003). The main
problem remains synchronization and synergistic fu-
sion of the streams. This comes, as speech is mostly
processed at turn-level while vision-based emotion
or behavior modeling mostly operates at a constant
frame or macro-frame-basis. In speech processing,
a turn denotes an entire phrase or a similar contigu-
ous part of the audio stream. (Schuller and Rigoll,
2006) shows that the analysis of speech at such a
constant rate is less reliable. For this reason, vision
and audio results are mostly synchronized by late fu-
sion, e.g. majority voting, to map frame results to a
turn-level-based interpretation. Likewise, most works
unite audio and video in a late semantic fusion.

As addressed in this paper, early feature fusion is
known to provide many advantages, such as keeping
all knowledge for the final decision process and the
ability of a combined feature-space optimization. We

therefore suggest to statistically analyzing multivari-
ate time-series as used in speech emotion recognition
for a combined processing of video-based and audio-
based low-level descriptors (LLDs). This approach
represents early feature fusion, which promises to ex-
ploit more semantical information from the given data
and thus provides more accurate results.

The paper is structured as follows: Section 2 and
Section 3 explain the acquisition of LLDs for video
and audio. Section 4 describes the functional-based
analysis and the optimization of the combined feature
space. Section 5 introduces the evaluation data and
elaborates on our experiments conducted. Summary
and outlook is finally given in Section 6.

Figure 1: Model-based techniques greatly support the task
of facial expression interpretation. The parameters of a de-
formable model give evidence about the currently visible
state of the face.
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2 VIDEO LOW-LEVEL
DESCRIPTORS

Model-based image interpretation exploits a priori
knowledge about objects, such as the shape or the
texture of a human face. Therefore, these techniques
serve as a good workhorse for extracting the vision-
based LLDs from our emotion recognition system,
see Figure 1. They reduce the large amount of im-
age data to a small set of model parameters, which fa-
cilitates and accelerates image interpretation. Model
fitting is the computational challenge of finding the
model parameterization that best describe a given im-
age. Our system consists of six components that are
common parts of model-based image interpretation:
the model itself, the localization algorithm, the skin
color extraction, the objective function, the fitting al-
gorithm, and the extraction of the video-based LLDs.

The model contains a parameter vector p that repre-
sents the possible configurations of the model, such as
position, orientation, scaling, and deformation. They
are mapped onto the surface of an image via a set of
feature points, a contour, a textured region, etc. Re-
ferring to (Edwards et al., 1998), deformable models
are highly suitable for analyzing human faces with all
their individual variations. Our approach makes use
of a statistics-based deformable model, as introduced
by (Cootes and Taylor, 1992). The model param-
eters p = (tx, ty,s,θ,b)T contain the translation, the
scaling factor, the rotation, and a vector of deforma-
tion parameters b = (b1, ...,bm)T . The latter compo-
nent describes the facial pose, opening of the mouth,
roundness of the eyes, raising of the eye brows, etc.,
see Figure 3. In this work, we set m = 17 in order to
cover all necessary modes of variation.

Figure 2: Our deformable model of a human face consists
of 134 contour points and represents the major facial com-
ponents.
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Figure 3: Changing individual model parameters yields
highly semantic facial deformation. Top-most row: b1 af-
fects the orientation of the head. Center row: b3 opens the
mouth. Lower-most row: b10 moves pupils accordingly.

The localization algorithm automatically starts the
interpretation process in case the intended object is
visible. It computes an initial estimate of the model
parameters that is further refined by the subsequent
fitting algorithm. Our system integrates the approach
of (Viola and Jones, 2004), which is able to detect the
affine transformation parameters (tx, ty, s, and θ) of
our 2D face model in case the image shows a frontal
view face.

We also integrated the ability to roughly estimate
the deformation parameters b to obtain higher accu-
racy. For this reason, we apply a second iteration of
the Viola and Jones object detector to the previously
determined image region that contains the face. We
specifically learned the algorithm to localize the fa-
cial parts, such as eyes and mouth, within this iter-
ation. In the case of the eyes, our positive training
images show the eye region only, whereas the nega-
tive training images contain the vicinity of the eyes,
such as the cheek, the nose, or the brows. Note that
the resulting eye detector1 is not able to extract the
eyes from a complex image, because most content of
these images was not part of the training data. How-
ever, the it is highly appropriate to determine the lo-
cation of the eyes given a pure face image or a face
region within a complex image. To some extent, this
approach is similar to the Pictoral Structures, Felzen-
szwalb et al. (Felzenszwalb and Huttenlocher, 2000)
elaborate on, because we also define a tree-like struc-
ture where a superordinate element (face) contains the
subordinate elements (eyes, mouth, etc.) and where a
geometric relation between these elements is given.

Skin color extraction acquires reliable information

1Our system integrates object detectors for several facial
parts. We make them accessible at the following web page:
www9.in.tum.de/people/wimmerm/se/project.eyefinder



Sequence 4 s: 64% b: 50% s: 67% b: 99%

Sequence 6 s: 100% b: 11% s: 89% b: 100%

Sequence 8 s: 89% b: 11% s: 87% b: 99%

Sequence 11 s: 37% b: 98% s: 69% b: 100%

Sequence 15 s: 100% b: 11% s: 84% b: 94%

Figure 4: Deriving skin color from the camera image (left)
using the non-adaptive classifier (center) and adapting the
classifier to the person and to the context (right). The num-
bers indicate the percentage of correctly identifying skin
color (s) and the background (b). These images have been
extracted from some image sequences of the Boston Uni-
versity Skin Color Database (Sigal et al., 2000).

about the face and the facial components, as opposed
to pixel values. It gives evidence about the location
and the contour lines of skin colored parts, on which
subsequent steps rely. Unfortunately, skin color varies
with the scenery, the person, and the technical equip-
ment, which challenges the automatic detection. As
in our previous work (Wimmer et al., 2006), a high
level vision module determines an image-specific skin
color model, on which the actual process of skin color
classification bases. This color model represents the
context conditions of the image and dynamic skin
color classifiers adapt to it. Therefore, our approach
facilitates to distinguish skin color from very similar
color, such as lip color or eyebrow color, see Figure 4.
Our approach makes use of this concept, because it
clearly extracts the borders the skin regions and sub-
sequent steps fit the contour model to these borders
with high accuracy.

The objective function f (I,p) yields a comparable
value that specifies how accurately a parameterized
model p matches an image I. It is also known as
the likelihood, similarity, energy, cost, goodness, or
quality function. Without losing generality, we con-
sider lower values to denote a better model fit. Tra-
ditionally, objective functions are manually specified

by first selecting a small number of simple image fea-
tures, such as edges or corners, and then formulating
mathematical calculation rules. Afterwards, the ap-
propriateness is subjectively determined by inspect-
ing the result on example images and example model
parameterizations. If the result is not satisfactory the
function is tuned or redesigned from scratch. This
heuristic approach relies on the designer’s intuition
about a good measure of fitness. Our earlier publica-
tions (Wimmer et al., 2007b; Wimmer et al., 2007a)
show that this methodology is erroneous and tedious.

To avoid this, we propose to learn the objective
function from annotated example images. Our ap-
proach splits up the generation of the objective func-
tion into several independent steps that are mostly
automated. This provides several benefits: first, au-
tomated steps replace the labor-intensive design of
the objective function. Second, this approach is less
error-prone, because giving examples of good fit is
much easier than explicitly specifying rules that need
to cover all examples. Third, this approach does not
need any expert knowledge and therefore, it is gener-
ally applicable and not domain-dependent. The bot-
tom line is that this approach yields more robust and
accurate objective functions, which greatly facilitate
the task of the fitting algorithms. For a detailed de-
scription of our approach, we refer to (Wimmer et al.,
2007b)

The fitting algorithm searches for the model that
best describes the face visible in the image. There-
fore, it needs to find the model parameters that min-
imize the objective function. Fitting algorithms have
been the subject of intensive research and evaluation,
e.g. Simulated Annealing, Genetic Algorithms, Parti-
cle Filtering, RANSAC, CONDENSATION, and CCD.
We refer to (Hanek, 2004) for a recent overview and
categorization. Since we adapt the objective function
rather than the fitting algorithm to the specifics of the
face interpretation scenario, we are able to use any of
these standard fitting algorithms.

Emotion interpretation applications mostly re-
quire real-time capabilities, our experiments in Sec-
tion 5 have been conducted with a quick hill climb-
ing algorithm. Note that the reasonable specification
of the objective function makes this local optimiza-
tion method nearly as accurate as global optimization
strategies.

The extraction of vision LLDs infers information
that is descriptive for facial expressions considering
the content of the current image and the entire im-
age sequence as well as the model parameters. Two
aspects characterize facial expressions: first, they turn
the face into a distinctive state (Littlewort et al., 2002)



Figure 5: Model-based image interpretation for facial ex-
pression recognition: Fitting a deformable face model to
images and inferring different facial expressions by taking
structural and temporal image features into account.

and second, the involved muscles show a distinctive
motion (Schweiger et al., 2004; Michel and Kaliouby,
2003). Our approach considers either aspect by ex-
tracting both structural and temporal features. This
large amount of feature data provides a fundamen-
tal basis for the subsequent sensor fusion step and,
in turn, for recognizing human emotion.

Structural features: The deformation parame-
ters b describe the constitution of the visible face. The
examples in Figure 3 illustrates the relation between
the facial expression and the components of b. Since
it provides structural information, we consider b for
the interpretation process. In contrast, the affine trans-
formation parameters tx, ty, s, and θ do not give evi-
dence about the facial expression. They represent the
position and orientation of the face model instead and
therefore, we do not consider them as features for the
interpretation process.

Temporal features: Facial expressions also
emerge from muscle activity and therefore, the mo-
tion of particular feature points within the face is de-
scriptive as well. Again, real-time capability is im-
portant and therefore, a moderate number of feature
points within the area of the face model is consid-
ered only. The relative location of these points is
connected to the structure of the face model. Note
that we do not specify these locations manually, be-
cause this assumes a good experience of the designer
in analyzing facial expressions. In contrast, we au-
tomatically generate a moderate number of G feature
points that are equally distributed, see Figure 5. We
expect these points to move uniquely and predictably
in the case of a particular facial expression. As low-
level features, we sum up the motion gx,i and gy,i of
each point 1 ≤ i ≤ G during a short time period. We
set this period to 2 seconds to cover slowly expressed
emotions as well. The motion of the feature points
is normalized by the affine transformation of the en-
tire face (tx, ty, s, and θ) in order to separate the facial
motion from the rigid head motion.

tv = (b1, ...,b17,gx,1,gy,1, ...,gx,140,gy,140)T (1)

The vision-based LLD feature vector tv describes
the currently visible face and it is assembled from the
structural and the temporal features mentioned. The
time series Tv is constructed from a sequence of tv
sampled at frame rate. It is established for a certain
amount of time which is determined by speech pro-
cessing.

3 AUDIO LOW-LEVEL
DESCRIPTORS

In our former publication (Schuller et al., 2005),
we compared static and dynamic feature sets for the
prosodic analysis and demonstrated the higher perfor-
mance of derived static features by multivariate time-
series analysis. As an optimal set of such global fea-
tures is broadly discussed by (Pantic and Rothkrantz,
2003), we consider an initially large set of 38 audio-
based LLDs, which cannot all be described in detail,
here. However, the target is to become utmost in-
dependent of the spoken content and ideally also of
the speaker, but model the underlying emotion with
respect to prosodic, articulatory and voice quality as-
pects. The feature basis is formed by the raw contours
of zero crossing rate (ZCR), pitch, first seven for-
mants, energy, spectral development, and Harmonics-
to-Noise-Ratio (HNR). Duration-based features rely
on common bi-state dynamic energy threshold seg-
mentation and voicing probability.

In order to calculate the according low-level de-
scriptors, we analyze 20 ms frames of the speech
signal every 10 ms using a Hamming window func-
tion. Pitch is detected by the auto correlation func-
tion (ACF) with window compensation and dynamic
programming (DP) for global error minimization.
HNR also relies on the ACF. The values of energy re-
semble the logarithmic mean energy within a frame.
Formants base on 18-point LPC spectrum and DP. We
use their position and bandwidth, herein. For spec-
tral development we use 15 MFCC coefficients and
a FFT-spectrum out of which we calculate spectral
flux, Centroid and 95%-roll-off-point after dB(A)-
correction according to human perception. Low-pass
SMA filtering smoothes the raw contours prior to the
statistical analysis. First and second order regression
coefficients are subsequently calculated for selected
LLDs resulting in a total of 88 features.

These low-level descriptors are combined to the
audio-based feature vector ta. Again, the time se-
ries Ta is constructed from sampling ta over a certain
amount of time.



Type Pitch Energy Duration Formant HNR MFCC FFT ZCR
[#] 12 11 5 105 3 120 17 3

Table 1: Distribution of acoustic features

4 EMOTION CLASSIFICATION

The preceding sections shows the extraction of raw
audio and video low-level descriptors. Here, we de-
scribe the fusion of these features in our early fusion
approach.

4.1 COMBINING AUDIO AND
VIDEO DESCRIPTORS

As stated in Section 3, these LLDs can be directly
processed by dynamic modeling as Hidden Markov
Models (HMM) or Dynamic Bayesian Nets (DBN).
Yet, streams usually need to be synchronized for
this purpose. We therefore prefer the application
of functionals f to the combined low-level descrip-
tors Tc=[Tv,Ta] in order to obtain a feature vec-
tor x ∈ Rd , see Equation 2. As opposed to the time-
series data, this feature vector is of constant dimen-
sion d, which allows for an analysis with standardized
techniques.

f : Tc → x (2)

The higher-level features are likewise derived by
means of descriptive statistical analysis as linear mo-
ments, extremes, ranges, quartiles, or durations, and
normalized. Overall the final per-turn feature vec-
tor consists of 276 audio features, see Table 1, and
1,048 video features.

This feature vector x is now classified by use
of Support Vector Machines (SVM) with polynomial
Kernel and a couple-wise multi-class discrimination
strategy.

4.2 OPTIMIZING FEATURE SPACE

Apart from the choice of an optimal classifier, selec-
tion of the most relevant features is important as well.
It saves computation time considering real-time pro-
cessing and boosts performance as some classifiers
are susceptible to high dimensionality. We chose Se-
quential Forward Floating Search (SFFS) with SVM
as wrapper to employ classification error as optimiza-
tion criterion and avoid NP-hard exhaustive search
recommended in (Schuller et al., 2005). A set is like-
wise optimized rather than finding single attributes
of high relevance. As an audiovisual super vector
is constructed, we can select features in one pass to

point out the importance of audio and video features,
each. The optimal number of features is determined
in accordance to the highest accuracy throughout se-
lection.

5 EXPERIMENTAL EVALUATION

This section describes the evaluation conducted upon
the system introduced. Since there is no sufficient
public data for our purpose, we acquired a sufficient
data base by our own.

5.1 AIRPLANE BEHAVIOR CORPUS

As public audiovisual emotion data is sparse, we de-
cided to record a database, which is crafted for our
special target application of public transport surveil-
lance. To obtain data in equivalent conditions of sev-
eral subjects of diverse classes we decided for acted
behavior, see Table 2. There is a broad discussion
in the community with respect to acted vs. sponta-
neous data, which we will not address herein. How-
ever, it is believed, that mood induction procedures fa-
vor realism in behavior. Therefore a script was used,
which leads the subjects through a guided storyline
by automatically played prerecorded announcements.
The framework is a vacation flight with return flight,
consisting of 13 and 10 scenes respectively, such as
takeoff, serving of wrong food, turbulences, falling
asleep, conversation with a neighbor, or touch-down.
The setup is an airplane seat for the subject in front of
a blue screen. A camera and a condenser microphone
were fixed without occlusions of the subject.

In the acquizition phase, 8 subjects in gender-
balance from 25 years to 48 years with a mean of
32 years took part. A total of 11.5 hours of video
was recorded, pre-segmented, and annotated by 3 ex-
perienced labelers independently with a closed set as
seen in Table 3. This segmentation process yields a
total of 396 clips that contain both emotional audio
and video data with an average length of 8.4 seconds.
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Table 2: Distribution of behaviors, database ABC.
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[#] f1 [%]

aggressive 83 1 0 1 2 0 87 91.7
cheerful 6 87 1 3 2 1 100 82.9

intoxicated 0 8 19 1 3 0 31 73.1
nervous 2 5 0 49 13 1 70 73.7
neutral 2 8 0 4 52 2 68 74.3
tired 1 1 1 5 0 32 40 84.2

Table 3: Behavior confusions and f1-measures by use of
SVM in a 10-fold SCV, optimized audiovisual feature set,
database ABC.

This table also shows the final distribution with to-
tal inter-labeler-agreement. This set is referenced as
ABC (Airplane Behavior Corpus).

5.2 EXPERIMENTS

We use j-fold stratified cross validation (SCV), be-
cause it allows for testing and disjunctive training on
the whole corpus available. Table 3 shows individual
class-wise f1-measures for each feature stream and
optimization with respect to combined and individual
strategy. Most confusions occur between nervous and
neutral, and intoxicated and cheerful behavior. Note
that intoxicated behavior is a complex behavior, as it
can be aggressive as well as joyful.

Table 4 summarizes the results: Features are
firstly selected by SVM-SFFS as described in Sec-
tion 4.2, separately for audio and video as a pre-
selection step to keep computation effort in reason-
able limits. Subsequently, the combined set is reduced
by another SVM-SFFS selection. As can be seen au-
dio standalone is superior to video standalone. How-
ever, a remarkable overall gain is observed for the fu-
sion of these two sources. Table 3 illustrates the con-
fusion of our classification scheme with respect to the
different emotional states. These results clearly show
the superiority of the combined audiovisual approach.

According to the description in Section 4.2, we
further reduce the total number of features by the
combined feature selection. Table 4 shows that this
also leads to overall higher accuracy, and the com-
bined time-series-analysis approach to audiovisual
behavior modeling proved highly promising.

6 SUMMARY AND OUTLOOK

Former publications show both that early sensor fu-
sion is advantageous over late fusion and that the in-
tegration of audio and video information greatly sup-
ports emotion recognition. However, previous ap-
proaches mostly apply late sensor fusion to this ap-

plication because of the obstacles that these different
types of sensor information pose.

The presented approach integrates state-of-the-art
techniques in order to acquire a large range of both
audio and video low-level features at frame rate. It
applies well-known functionals to obtain representa-
tive and robust feature set for emotion classification.
Our experiments show that this combined feature set
is superior over the individual audio or video feature
set. Furthermore, we conduct feature selection that
again indicates that the combination outperforms the
stand-alone approaches.

We are currently conducting explicit comparison
to late fusion approaches that empirically prove our
statements. In future work, we aim at testing our ap-
proach on further data sets and in-depth feature anal-
ysis. We will also investigate the accuracy and run-
time performance of asynchronous feature fusion and
the application of hierarchical functionals. Further-
more, we intend to dynamically model the emotional
expression on a meta basis including both video and
audio aspects.
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