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ABSTRACT

In this paper we describe the effectiveness of some linguis-
tic features for detecting problems in spoken child-computer
interactions. To this aim, we use an Automatic Speech Rec-
ognizer for generating the spoken word chain, and a word to-
kenizer for obtaining the lexical and stemming information.
Automatic classification of each turn is eventually achieved
by exploiting the frequencies of tokens’ classes. The im-
pact of ASR and tagger accuracy on automatic detection
are discussed by comparing fully automatic with manually
corrected approaches.

1. INTRODUCTION

Recently, children’s speech has been gaining growing at-
tention from the research community and in industry. In
fact, children do not represent just another group of the
world’s population: whereas speech and multimedia tech-
nologies are still far from perfection for adults, children’s
speech poses even more compelling questions to solve. Both
acoustic and linguistic characteristics of children’s speech
differ from those of adults: pitch, volume, formant posi-
tions, and co-articulations vary strongly due to anatomical
and physiological development [7, 5]; the linguistic structure
of the children’s utterance is not too uniform, and lapses,
short or not well-constructed sentences, repetitions, and dis-
fluences are generally frequent, mainly depending on age and
socio-economic factors [7].

In spite of these difficulties, the ease of children in adopt-
ing technology [8] has stimulated and boosted interest, above
all for commercial applications. The three main speech-
related fields where research on children speech has acquired
considerable momentum are, probably, health care (aids for
diagnostic and therapy), edutainment (aids for pronuncia-
tion, understanding), and entertainment (computer games).

In this study, we investigate critical dialogue phases in
spontaneous recordings of children playing with the Sony
pet-robot AIBO. Although the experimental setting is fixed
and the robot has to complete a pre-determined sequence of
actions, the child is led to believe that the robot is respond-
ing to his or her commands (Wizard-of-Oz). Therefore, both
speech and emotional content can be considered spontaneous
and prototypical with respect to real-life situations.

Unlike usual approaches that mainly rely on acoustic mod-
eling [1], here we focus on the use of linguistic information
only. In doing so, we have to tackle all the aforementioned
problems: children’s acoustic variability is a major issue in
Automatic Speech Recognition (ASR), and linguistic cues

might be affected by ASR errors. The effects on the word
tokenization (both POS tagging and stemming) for extract-
ing feature vectors, as well as the influence of the tokenizer
accuracy on the final classification are also considered: fully
automatic results are compared with both the manual tran-
scriptions of the dialogues and the manual correction of the
tokenizer output or the manual assignment of POS/stem
classes.

In Section 2 we describe the speech data adopted for the
experiments. The system and its single components are pre-
sented in Section 3, while results of the experiment appear
in Section 4. A brief description of ongoing and future work
closes the paper.

2. SPEECH CORPUS

The corpus used is the FAU-AIBO emotion corpus (hence-
forth FAU-AIBO), a German database with recordings of
children communicating with Sony’s AIBO pet robot [1].
Speech was collected from 51 children, aged 10-13, from two
different schools, MONT and OHM. The total amount of
speech equals to about 9 hours, after removing pauses. The
data are segmented into ‘turns’ of variable length, using as
criterion a pause of > 1.0 seconds.

The speech is intended to be spontaneous and emotion
to be natural. Children are told to talk to AIBO like they
would talk to a friend, but while they are led to believe that
the robot is following their commands, the AIBO is actually
being controlled by a human operator, the ‘wizard’. The
framework is designed to provoke the children in order to
elicit emotional behaviour by finding a balanced compromise
of obedient and disobedient behaviour.

Some emotional state like angry or emphatic (and any
marked deviation from a neutral speaking style [2]) can be
taken as possible indication of some (starting) trouble in
communication. If a child gets the impression that the ma-
chine does not understand her, she tries different strategies
such as repetitions, reformulations, etc. or simply the use of
a pronounced, marked, emphatic speaking style.

Labeling

Each word of FAU-AIBO has been annotated by five la-
bellers separately, choosing amongst eleven different emo-
tion classes, including neutral as default. Final labels are
assigned by majority voting: if three or more labellers agree,
the label is attributed to the word. These word-based labels
are then mapped onto turn labels by employing the following
strategy: fragments and auxiliaries are used as stop words.
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For this study, emotion classes are mapped onto two cover
classes: non-negative, comprising neutral and motherese,
and negative, comprising emphatic as pre-stage of anger,
touchy/irritated, reprimanding, and angry; details can be
found in [1]. As motivated in the previous section, the turn
label negative might probably indicate the presence of some
problem in the child-robot interaction.

Data partitioning

We partition the whole corpus into two main parts. The
turns selected for automatic classification are those charac-
terized by the following property: the annotators agreement
on turn labeling must be equal or higher than 60%. This
means that automatic classification is performed on that
part of the data that is most reliably annotated. This crite-
rion leads to a sub-group of turns, called EVAL (3990 turns,
i.e. 1775 non-negative and 2215 negative). The rest of
the data, called TRAIN consists of 9652 turns and is used for
ASR training only. More details about the characteristics of
the datasets are illustrated in Table 1 and in [10].

3. SYSTEM DESCRIPTION

The system chain is composed by an ASR engine, a word
tokenizer, and a statistical classifier.

Automatic Speech Recognition

The parametric representation of speech signals is obtained
as follows. Each speech frame is parameterized into 13 Mel
Frequency Cepstral Coefficients (MFCCs). Frame energy
is represented as the first MFCC. These coefficients, plus
their first and second order time derivatives, are combined
to form 39-dimensional observation vectors. Cepstral mean
subtraction is performed on static features on an utterance-
by-utterance basis. Acoustic models are state-tied, cross-
word triphone HMMs [3]. In particular, a phonetic decision
tree is used for tying the states of triphone HMMs. Out-
put distributions associated with HMM states are modeled
with mixtures with up to 32 diagonal covariance Gaussian
densities. The total number of Gaussian densities is about
4000-5000. A set of 38 phonetic units, corresponding to
the German phonemes, are modeled. “Silence” is modeled
with a single state HMM. Each speech frame is parameter-
ized into a 39-dimensional observation vector composed of
13 MFCCs plus their first and second order time derivatives.
Cepstral mean subtraction is performed on static features on
an utterance-by-utterance basis.

Table 1: Partitioning of FAU-AIBO speech corpus
into TRAINing and EVALuation sets. TRAIN and EVAL
are divided into 2 groups (schools) for ASR cross-
validation. ASR results reported in Table 2 are ob-
tained training on MONT data, and testing on OHM
(third and last column), and vice-versa

TRAIN EVAL
school MonT OnHM MoNT OHM
# speakers 25 26 25 26
# words 15385 15405 6859 10752
# turns 4915 4737 1738 2252

Both acoustic and (bigram, closed vocabulary) language
models (LMs) are trained on data of one school (within
TRAIN U EVAL) and tested on data of the other school. We
distinguish two cases: (1) testing on the data of one school
within EVAL only, or (2) testing on all the data of one school
(TRAIN U EVAL). In this 2-fold cross validation framework,
out of vocabulary words of one fold are added as unigrams
with flat probabilities to the LM estimated on the other fold,
so to be in a closed vocabulary condition. Recognition per-
formance, in terms of Word Error Rate (WER), on the data
from the two schools together (2) equals to 22.6%. WER on
the EVAL set only (1) is 24.0%. Both figures are obtained by
2-fold (school based) cross validation. Speech recognition
results (2) are shown in Table 2: the difference in perfor-
mance between the two schools is mainly explained by the
fact that more data are available when training on OHM.

Table 2: Speech recognition results (WER, [%]).
WER in the last raw is obtained by a school-based
cross-validation of the whole dataset (EVAL+TRAIN)

TRAIN EVAL  WER [%]

MoNT OHM 27.47
OHM MoNT 16.91
Cross-validation 22.62

Word Tokenization & Feature Extraction

Features are extracted from the transcribed turns by a two-
step procedure: first, words are tokenized by lexical or mor-
phological rules, then, the normalized frequencies of the to-
kens are used to generate feature vectors of the size of the to-
kens’ alphabet. The automatic extraction of POS and stems
is performed using TreeTagger [9], using models trained on
out-of-domain data. To avoid too large feature spaces, we
resort to relatively coarse taxonomies:

POS: the Part-of-Speech is the most compact approach of
lexical tokenization adopted in this paper. More specif-
ically, we use two sets of POS classes (a compact set
with 6 tags, and a more detailed one with ~ 40 tags)
and two extraction methods (fully automatic or man-
ual). Manual methods are COVER and FULL: in the
former, the ASR lexicon containing all word forms of
FAU-AIBO is annotated manually with six POS cover
classes such as noun, adjective, particle, etc.; ambigui-
ties are solved either by clustering or by using heuristic
rules. In the latter method, POS classes are extracted
automatically and subsequently, the assignment is cor-
rected manually. Fully automatic methods are FULL-
AUTO and COVER-AUTO; they differ in the number of
POS eventually obtained: COVER-AUTO is obtained by
mapping FULL-AUTO on 6 POS tags.

STEM: the second tokenization adopted is stemming. Stem-
ming stands for clustering of morphological variants of
lexemes. This clustering reduces the number of entries
in the vocabulary, i.e. the feature space, by mapping
each word to its root (thereby the name; with Bag of
Words, BOW, we identify stem-based features without
any structured, either sequential or hierarchical infor-



Table 3: Results of problem detection in child-
computer interaction: above: POS-based features,
below: STEM-based features; 51-fold CV, speaker in-
dependent. F-measures [%]

transcription
7 id MANUAL ASR  CROSS
6  COVER-AUTO 68.4 61.6 61.3
n 6  COVER 68.1 63.1  62.6
8 40 FULL-AUTO 71.6 66.3 59.4
36 FULL 72.9 67.2  66.7
250 COVER-AUTO 69.5 68.4 71.5
Z 303 COVER 69.4 684 719
c'T) 407 FULL-AUTO 76.1 74.1 71.4
436 FULL 76.1 74.4 71.9

mation). Following the process adopted for the extrac-
tion of POS features, we first employ TreeTagger to
obtain full automatically derived BOWSs (FULL-AUTO).
Later on, these bags are manually checked (FULL). To
further increase the compression, we also present a fil-
tered version obtained by eliminating functional words:
these are removed either automatically (COVER-AUTO)
or with the aid of human supervision (COVER), basi-
cally, by exploiting the information already encoded in
POS features.

POS and STEM frequencies are finally normalized to remove
the information about the length of the utterance. Note that
the number of features (i.e. the number of token classes)
slightly differs between the automatic and the manual ver-
sions: a different number of token classes is usually adopted
by TreeTagger to cope with unknown, misspelled, or am-
biguous words. Furthermore, the coding through STEM
features is very sparse: most of the vectors have only a few
non-zero entries. However, given the extreme sparseness,
it is reasonable to assume that linear Support Vector Ma-
chines (SVMs) represent an adequate method for automatic
classification [4].

Classification

For each turn, the frequencies of the tokenised words are
used as input into linear SVMs. More specifically, we trained
by coordinate descent method (LIBLINEAR [6]). Classifica-
tion experiments are performed by partitioning the ASR test
set EVAL into 51 splits, one for each child, meeting speaker-
independency requirement. These splits are used in a 51-
fold cross validation framework. To compensate for class
imbalance, we up-sampled the 51 training sets by random
repetition per class, until we finally approximated uniform
distributions of each training.

4. EXPERIMENTS AND RESULTS

Results are reported in Tables 3 and 4. The rows rep-
resent different feature constellations, obtained by using ei-
ther manual or automatic POS-tagging or STEM-ming. In
the last three columns, classification results (F-measure, %)
are reported using MANUAL- and ASR-based transcriptions
respectively; the right-most column (CROSS) shows mixed

Table 4: Results of problem detection in child-
computer interaction: combining best POS- and
STEM-based features, 51-fold CV, speaker indepen-
dent. F-measures [%)]

transcription
id #  MANUAL ASR CROSS

FULL-AUTO 447 76.0 73.7 71.5
FULL 472 75.6 73.8 72.6

conditions, where the SVMs are trained on human transcrip-
tions and tested on automatic ones.

Most important results are: 1) The differences in classi-
fication performance using manual rather than human cor-
rected tokenization is almost negligible, except for POS fea-
tures, but only if ASR is involved. 2) ASR errors do affect
classification: figures in column ASR are always lower than in
column MANUAL; furthermore, in CROSS configuration (when
the two transcriptions are used in parallel), we meet the
worst behaviour. 3) Classification performance grows with
the granularity of the feature set, even for ASR transcrip-
tions. This is not entirely obvious, since POS features might
have smoothed ASR errors, and could have been more ro-
bust in the presence of noise. Almost the same behavior is
observed when merging POS and STEM features (Table 4),
where classification performance does not improve over the
best row of Table 3. This means that POS and STEM fea-
tures are highly correlated, also when ASR introduces inac-
curacies in the transcriptions.

5. CONCLUSIONS AND FUTURE WORK

These outcomes aim at shedding light on the influence
of ASR and tokenizer accuracy. In respect of this aim, an
improvement of linguistic features for classification seems to
be obtainable by improving ASR. In this direction, acoustic
adaptation should probably be the first, mandatory step;
first experiments using cluster-based speaker normalization
alone (CMLLR) allow to gain a 10% (relative) improvement
in ASR performance.

Unpublished experiments will extend this work by adopt-
ing more elaborate approaches, such as word and character
n-grams (in the model proposed in this paper the informa-
tion on the order of the words is lost), higher semantics, and
string kernels. We also plan to systematically compare and
integrate the linguistic feature sets described in this paper
to acoustic feature vectors. Finally, significance tests will be
used to measure the differences among results.
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