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Abstract. This paper introduces an novel framework for speech understanding
using extended context-free grammars (ECFGs) by combining statistical methods
and rule based knowledge. By only using 1st level labels a considerable lower ex-
pense of annotation effort can be achieved. In this paper we derive hierarchical
non-deterministic automata from the ECFGs, which are transformed into transi-
tion networks (TNs) representing all kinds of labels. A sequence of recognized
words is hierarchically decoded by using a Viterbi algorithm. In experiments the
difference between a hand-labeled tree bank annotation and our approach is eval-
uated. The conducted experiments show the superiority of our proposed frame-
work. Comparing to a hand-labeled baseline system (=100%) we achieve 95,4 %
acceptance rate for complete sentences and 97.8 % for words. This induces an
accuray rate of 95.1 % and error rate of 4.9 %, respectively F1-measure 95.6 % in
a corpus of 1300 sentences.

1 Introduction

In this paper, we address the problem of developing a simple, yet powerful speech un-
derstanding system based on manually derived domain-specific grammars. Contrary to
existing grammar based speech understanding systems (e. g. Nuance Toolkit platform),
not only grammar decisions are included, but information from grammar and word-label
connections are combined as well and decoded by Viterbi algorithm.

A two pass approach is often adopted, in which a domain-specific language model
is constructed and used for speech recognition in the first pass, and the understanding
model obtained with various learning algorithms is applied in the second pass to “un-
derstand” the output from the speech recognizer. Another approach handles recognition
and understanding at the same time [?/2]]. For this purpose so-called “concepts” are de-
fined, which represent a piece of information on the lexical as well as on the semantic
level. In this way all the statistical methods from speech recognition can be utilized for
all hierarchies. This concerns especially the stochastic modeling solutions offered by
Hidden Markov Models. The hierarchies consist of transition networks (TNs) whose
nodes either represent terminal symbols or refer to other TNs [3]]. This approach uses
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statistical methods for semantic speech understanding requiring fully annotated tree
banks. To this end a fully annotated tree bank in German language is available in the
NaDia corpus [2]], which is similar to the corpus used in the ATIS task [4]]. In our ex-
periments we use the NaDia corpus as baseline system.

In general, fully annotated tree banks are not available for most application domains.
However, a flat structure of words on the sentences level can commonly be realized
rather easily. The sentences of natural language understanding have to obey certain gram-
matical rules, e. g. time data rules. Therefore we use extended context free grammars
(ECFGs), whose production rules on the right-hand side consist of regular expressions
(REs). REs are compact notations to describe formal languages. In our approach, we
describe the working-domain’s grammar of our speech understanding system with ap-
propriate REs. The basic principles of RE can be found in [3]. Context-free grammars
(CFGs) consist of terminal and nonterminal symbols. Nonterminal symbols are used to
describe production rules in CFG. For this reason we obtain a hierarchical structure of
production rules, which constitute rule sets of semantic units (e. g. rules for time, origin,
and destination). The idea is that we start with the start nonterminal symbol S and re-
place it with any sequence in the language described by its RE. This hierarchical coding
determines the semantic meaning of the terminal symbol. Our aim is to analyse a given
sentence and to decode the hierarchical structure of each terminal symbol. A similar ap-
proach has been presented in combination of CFG and N-gram modeling in Semantic
Grammar Learning [6]. However, our system uses ECFGs, and is built on REs to describe
the grammar rules. Thereby we utilize the entire sentences for semantic decoding by the
grammar. The next section gives a brief overview of extended context-free grammars and
the hierarchical utilization. Afterwards we introduce our TN for speech understanding.
In section [ we present our Viterbi based parsing methods. The settings and the goals
of our experiments are defined in section [Sl Our system is evaluated in section 6] on a
hand-labeled tree bank. A comparison between hand-crafted annotation and automatic
annotation is presented. Finally, conclusions and outlook are given in section[7l

2 Extended Context-Free Grammars (ECFG)

CFGs are powerful enough to describe the syntax of most programming languages.
On the other hand they are simple enough to allow construction of efficient parsing
algorithms. In spoken language understanding, an extended CFG is used by the Phoenix
parser, which allows to skip unknown words and performs partial parsing [[7].

An ECFG G is specified by a tuple of the form (N, X, P, S), where N is a nonter-
minal alphabet, 3/ is a terminal alphabet, P is a set of production schemes of the form
A — L4, such that A is a nonterminal and L 4 is a regular language over the alphabet
YU N, and S is the sentence symbol, which is a nonterminal [8]].

Nonterminal symbols are used to describe further production rules in ECFG. The
production rules consist of a “Kleene closure” expressed by *, 4+, and 7 operators in
regular expression syntax. Using this construction we obtain a hierarchical structure
of production rules in ECFG which constitute rule sets of semantic units (e. g. rules
for time, origin, and destination), see Fig. [[l Each terminal symbol is generated by a
nonterminal symbol, which is part of the hierarchical structure.
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Fig. 1. Schematic tree consisting of terminal leaf nodes and nonterminal symbols

Hence, for every terminal symbol a hierarchical coding is provided by the sequence
of nonterminal symbols leading from the root to the terminal symbol. This hierarchical
coding determines the semantic meaning of the terminal symbol. Our aim is to analyse
a given sentence and to decode the hierarchical structure of each terminal symbol.

To that end we formulate a TN that describes the transitions between each two suc-
ceeding terminal symbols in time. The TN cannot be derived directly from the ECFGs.
Therefore we translate the production rules in ECFGs into non-deterministic automata
(NDA), whose equivalence has been shown in [9].

3 Transition Network (TN)

3.1 Non-Deterministic Automata (NDA)

In this section we show how a TN can be derived from ECFGs using NDA. We may
assume that the language L 4 (see Sec. ) is represented by a nondeterministic finite
state automaton M4 = (Qa, X UN,04,54, Fa), where @ 4 is a finite set of states, § 4
is the transition relation, s 4 is the start state and 4 is a set of final states.

For example, consider sentences that contain any number of DUMMY followed by
either ORIG (origin) or DEST (destination), and are ended by any number of DUMMY.
The label DUMMY denotes a not-meaningful entity. The rather simple grammar de-
scribing these sentences formulated as a set of productions P in ECFG is shown in
Eq.[Il where a bold-font denotes nondetermistic states, the remaining states are deter-
ministic.

S = DUMMY*.(ORIG | DEST).DUMMY*

ORIG = FROM.DUMMY*.CITY (1)
DEST = TO.DUMMY".CITY

The equivalent NDA is shown in Fig. [2l As seen in this figure, the NDA consists of
states. A transition from one state to another is performed by emitting a terminal sym-
bol. For NDA, arbitrary emissions can lead from a certain state to a certain other state.
As explained above we build a structure of NDA with ECFGs. Each grammar rule is
represented by one sub-NDA. e-transitions denote transitions between states without
emitting a terminal symbol and are used to connect sub-NDA.
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Fig. 2. Schematic diagram of a nondeterministic finite state automaton

The NDA are now transformed into the NT. To avoid confusion, we distinguish be-
tween NDA states, i. e. states that are introduced during the transformation from ECFG
to the NDA, and rule-states (si, ...sy) which describe the TN. Each rule-state rep-
resents a terminal symbol, the transitions between the rule states describe the desired
transitions between terminal symbols in time. Each emitted symbol of the NDA corre-
sponds to a rule-state in the TN. Hence each rule-state emerges from and points to an
NDA state.

The transition between the rule-states is also defined by the NDA-states: One rule-
state (e. g. s;) is followed by all rule-states emerging from the NDA-state where rule-
state s; is pointing to. This leads from the NDA depicted in Fig. [2] to the rule net-
work described by matrix A = (a;;), 4,5 = 1,..., N, defined by the ten rule-states
S1,...,510-+

$101/31/30 0130 0 0 0
$501/31/30 01/30 0 0 0
s300 012120 0 0 0 0
s400 012120 00 0 0
A_$500 00000 0121/
T 00 00 0 01220 0
s700 0 0 0 012120 0
ss00 0000 0 0121/
590000 00 0 0121
$000 00 0000 0 1

The probabilities of each line 7 in A add up to Zj\,:l a;j = 1, except for the last line.
Every probability denotes a transition from s; to s;. In this work we assume each
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transition from one state to another as equally probable as long as the transition is
allowed by the rule-scheme. Each state s; corresponds to a terminal symbol which is
stored in the vector

b = (‘START’, ‘DUMMY’, ‘FROM’, ‘DUMMY’, ‘CITY,
‘TO’, ‘DUMMY’, ‘CITY’, ‘DUMMY’, ‘END’) 2)

The vector b denotes the first level labels from an annotated corpus. By definition every
sentence ends with the token “END”. Thus there are no transitions from the correspond-
ing state, and the last line in Matrix A is always 1 in the last column.

In our case, each transition of one state to another is equally probable, as far as it is
allowed by the TN.

3.2 Hierarchical Structure

As explained above, each state s; of the transition matrix A represents a terminal sym-
bol from the ECFG. To keep the hierarchical information of each terminal symbol, the
list H is introduced, where

H=(1—8;2— S:;3— S,0RIG; 4 — S,0RIG,
5 — S,ORIG; 6 — S,DEST; 7 — S,DEST;
8 — S,DEST; 9 — S;10 — 8) 3)

contains the hierarchical information for each state. Matrix A can be illustrated in a
transition-diagram with the possible transitions between two consecutive time instances
t and t + 1, as shown in Fig. B} additionally the hierarchical structure of each terminal
symbol is shown in this figure. For example, the terminal symbol ‘DUMMY” can occur
both in concept ORIG and in concept DEST.
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Fig. 3. Possible state transitions from time instance ¢ to ¢ 4 1
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4 Parsing

The unparsed sequence of first-level labels b = (by, ..., br) is hierarchically decoded
by finding the best path q = (q1, . . ., ) through a trellis — built by concatenating the
transition diagrams — leading from the start symbol to the end symbol. However, in nat-
ural spoken sentences, a direct mapping between the words (terminals in the sentence)
to the labels (terminals in the rule-network) is not available for each word. E. g. the
word “to” has different meanings, depending on the context. First it may be an infini-
tive companion, second it can be used as a TOLOC (e. g. “to location”) when combined
with a city. In our approach all possible meanings of a word are pursued in the trellis
leading to a variety of sentence hypotheses. To cope with different meanings of words,
the word-label probability p(b;|w;), describing the probability that a certain word wy,
belongs to the given first level label b;, is introduced. Applying Bayes’ rule, one derives

p(we|b;) - p(bi)
p(we)
The probabilities of the right hand side of Eq.[d] are estimated by using databases and

are referred to as “world knowledge”. Given the sentence “I want to go to Munich”,
hence

p(bijw) = )

w = (‘START’, ‘T, ‘want’, ‘to’, ‘go’, ‘to’, ‘Munich’, ‘END’),
the transition diagram shown in Fig.[3l and the trellis diagram displayed in Fig. d] can
be built, containing all parsing hypotheses.

The y-axis shows the terminal symbols b including the hierarchical structures, which
were defined in H. The x-axis represents time. All possible transitions can be displayed
depending on their consecutive time instances (concatenation of Fig. [3). For the test
example our system finds the optimal path through the trellis diagram (shown as bold
arrows in Fig. [)). Light arrows represent possible alternative paths that have not been
chosen due to the statistical constraints.

4.1 Viterbi Path

The best path through the trellis (the path with the highest probability) can be found
by using the Viterbi algorithm. Introducing the quantity d;(¢) describing the probability
of a single path at time ¢ that ends in state s;, the Viterbi algorithm is formulated as
displayed in the following:

Initialization:

,1<i<N. (@)
Recursion:

0:(7) = max [0e—1 (i) - ayg] - plbjlwe) o 4 o p
Yi(j) = argmax[6;—1(i) - a;] - p(bjlwe)” 1 < j < N
1<i<N

(6)

Termination:

Gr = argmax dp(7) @)
1<i<N
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Fig. 4. Trellis diagram and best path for “I want to go to Munich”

The best path is then found by backtracking

Gt = Ver1(Gs1)- (8

With the states revealed from the backtracking path the hierarchical structure of the sen-
tence w is derived using the hierarchy list H. Considering the above reviewed sentence,
backtracking leads to the hierarchical decoding of the sentence shown in Fig. ] as well
as to the best path found by the Viterbi algorithm.

5 Experiments

We verified our approach on a database containing more than 1300 sentences (1000
for training, 300 for testing) of the air traveling information domain from the German
NaDia corpus [2]]. Each word in each sentence is manually hierarchically labeled (base-
line system), according to its meaning. We used our system to hierarchically decode the
sentences, given a certain ECFG. The crucial probabilities p(w;|b;) for the decoding
are trained using the NaDia corpus. However any other corpus in the same language
could be used for training. The production rules of an ECFG describing the transition
matrix A are defined to match the requirements of the corpus and suit the German gram-
mar. The performance of the system depends on the production rules which are used in
ECFG. On the one hand the rules must be precise enough to take care of the semantic
content, on the other hand the rules have to capture all variants of natural language for-
mulations. To show this, we created three different types of production rules in ECFG
(in rising the number of states of the transition matrix), differing by their perplexity. In
our experiments we compare the performance of the production rules in ECFG with the
manually hierarchically labeled annotations (baseline system).

The goal is to identify the concepts TIME , ORIGIN, and DESTINATION indepen-
dently of their order and combination, in more than 300 sentences of the air traveling
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information domain. Each word in the sentences is labeled by one of 14 tags, like
Dummy, AOrigin, ADestination, ATime, etc.

6 Results

The proposed types of ECFGs (see Sec.[d) are evaluated using the following mea-
surement methods. A sentence is accepted, if the hierarchical structure automatically
obtained by our system fully matches the baseline labeling. We define the sentence
acceptance rate 7y as

# of accepted sentences
total # of sentences

Tsent = (9)
As explained above, a sentence is rejected as soon as the hierarchical decoding of one
single word differs from the baseline annotation. To investigate our system’s decoding
abilities on a word level we use the word acceptance rate

# of accepted words (10)

fword = otal # of words

Tab. [I] shows further the word accuracy, the error rate and the well-known F1-
measure results of three different types of ECFGs. In Tab.[dlit is assumed that the hand-
labeled annotation works perfectly (=100%). The results shown in Tab. [lrepresent the
automatic method for comparison. The best results were achieved in ECFG3 with a
word acceptance rate of 97.8 % respectivley 95.6 % Fl-measure and 95.4 % for com-
plete sentences. The columns of Tab. [T represent three different types of ECFGs, which
differ in the number of terminal symbols. In ECFGI a rough description of the con-
cepts TIME, ORIGIN, and DESTINATION exists, whereas the perplexitiy is reduced
in ECFG2 and ECFG3. The main difference consists in the description of TIME rules.
As shown in Tab. [Tl the sentence and word acceptance rate increases by the complexity
of their grammar, which increases also to the number of states. The slight difference
between the word and sentence acceptance rates is caused by multiple word errors in
same sentences. In result most of our 1300 sentences were accepted by the grammar.
However, some sentences are refused as they do not follow the German grammar rules.

Table 1. Results for different ECFGs with decreasing perplexity

ECFG1 ECFG2 ECFG3

Tsem[%] 92.8 94.7 95.4
Tword[ %] 95.5 969 97.8
Fstates 89 98 113

Accuracy [%]  93.1 940 95.1
Error [%] 6.9 6.0 49
F1-Measure [%] 93.3 95,0 95.6
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7 Conclusions and Outlook

In this work a novel approach for speech understanding has been presented. We showed
how ECFGs can be used instead of tree bank annotations, e. g. understanding time data,
etc. Our approach combines semantic grammar rules with the advantage of statistical
methods. The system provides all possible rules by working in parallel running from
the first frame till the last frame of the sentence. Thus a set of alternative trails on
the trellis diagram results. The best path is found by using the Viterbi algorithm. We
showed how to build a transition matrix A from ECFGs. The probability at postion (i7)
in this matrix, denoting a transition from s; to s; (see Sec. 3D, is set equal for each
possible transition allowed by the rule-scheme up to now. In future work, we will be
able to weight the transitions according to a training set. The results already (see Sec.
[6) showed that our approach is comparable to a full hand-labeled annotated tree bank
(baseline system). Our best verification reaches an acceptance rate of 95.4 % for com-
plete sentences and 97.8 % for words. Furthermore in contrast to hand-labeled tree bank
annotations our approach only needs a non-hierarchical annotation from a corpus, but
up to now just suits parts of the German grammar. In future investigations we therefore
plan to learn general parts of grammar (ECFGs) from a training set.

At this stage we presented only the principles of our approach. For further results we
will apply our approach on the ATIS-Tasks. Additionally the perplexity of our grammar
will be increased by automatic grammar reduction.

In this work our approach used just the decoder’s best word hypotheses (having
maximum probability). However our approach offers the possibility to evaluate word-
confidences utilizing the ECFGs. In future work, we aim to introduce alternative word
hypotheses and confidence measures from the one-stage decoder [?].
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