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Abstract 

Emotional surveillance of drivers possesses signifi-

cant potential for increased security within passenger 

transport. In an automotive setting the interaction can fur-

ther be improved by social awareness of an MMI. Within 

this scope the detection of security relevant behavior pat-

terns as aggressiveness or sadness is discussed. The focus 

lies on real-life usage respecting online processing, sub-

ject independency, and noise robustness. The approach 

introduced employs multivariate time-series analysis by 

brute-force feature generation. Extensive results are re-

ported on two public standard corpora. The influence of 

noise is discussed by representative car-noise overlay. 

Thereby impact per low-level-descriptor is considered.  

1 Introduction 

Recognition of the emotional state of a car driver pos-

seses great potential with respect to safety and enhanced 

comfort [1-5].  

However, the noise present in an automotive envi-

ronment downgrades performance of engines [6-9]. In 

contrast to a quiet test stand, emotion recognition in a real 

vehicle has to fight against hard conditions: first, speech 

is not recorded close to the speaker’s mouth, but in an 

immediate adjacency of the instrument panel. Thus the 

signal can be modified by the room acoustics dependent 

mouth-to-microphone transfer function. Second, while 

driving speech is superposed by several background 

noises. Their acoustic masking effect may hide important 

information and is large compared to that of the mouth-

to-microphone transfer function, which is therefore ne-

glected in the ongoing. 

Likewise we consider the impact of car-noise on the 

recognition performance by a variety of cars and driving 

situations. Further, we investigate how to cope with noise 

by three simple adaptation strategies: first matched condi-

tions learning with noisy speech samples. This cannot 

easily be guaranteed in an actual engine, as matching will 

not always be possible without error. However, by speed 

and GPS data, an estimate of the best noise samples can 

be made. Second, we consider feature selection in the 

noise. This too requires condition matching. Finally, the 

models can also be adapted to the driver's voice. The 

knowledge of the emotion is thereby not necessary. How-

ever, it seems desirable to have a broad variation of emo-

tions in the adaptation material.  

Apart from selection of mixed features spanning all 

types of low-level-contours as pitch or MFCC, we further 

analyse the impact of each adaptation strategy on contour 

types. 

The paper is structured as follows: we first introduce 

our acoustic features in sec. 2. Next, the speech and noise 

data is detailed in sec. 3. Sec. 4 shows our experimental 

results, which are concluded in sec. 5. 

2 Acoustic Features 

In order to represent a state-of-the-art emotion recog-

nition engine, we cover prosodic, articulatory and voice 

quality features known to carry information about emo-

tion by use of 1,406 acoustic systematically generated 

acoustic features as used in [10].  

 

Table 1: Audio Low-Level-Descriptors and functionals. 
 

LLD (2x37) Functionals (19) 

(Δ) Pitch 

(Δ) Energy 

(Δ) Envelope 

(Δ) Formant 1-5 Amplitude 

(Δ) Formant 1-5 Bandwidth 

(Δ) Formant 1-5 Frequency 

(Δ) MFCC Coefficient 1-16 

(Δ) HNR  

(Δ) Shimmer 

(Δ) Jitter 

Mean, Centr., Std. Dev. 

Skewness, Kurtosis 

Quartile 1,2,3 

Quartile 1 - Minimum 

Quartile 2 - Quartile 1 

Quartile 3 - Quartile 2 

Maximum - Quartile 3 

Max., Min., Rel. Pos. 

Range, ZCR 

Pos. 95% Roll-Off 

 

These base on 37 typical Low-Level-Descriptors 

(LLD) as seen in table 1 and their first order delta coeffi-

cients [2]. These 37x2 LLD are next smoothed by low-

pass filtering with an SMA-filter. Such systems next de-

rive statistics per speaker turn by a projection of each uni-

variate time series, respectively LLD, onto a scalar fea-

ture independent of the length of the turn [6]. This is real-

ised by use of a functional, such as statistical moments or 

extremes. 19 functionals are applied, herein, to each LLD 

on speaker-turn-level covering extremes, ranges, posi-

tions, first four moments and quartiles as shown in table 

1. Note that three functionals are related to position, 

known as duration in traditional phonetic terminology, as 

their physical unit is msec. 

3 Emotion and Noise Data 

3.1 EMO-DB 

First, the Berlin Emotional Speech Database (EMO-

DB) [11] is an audio only German emotion database of 10 
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professional actors (5 female). The recordings took place 

in an anechoic chamber with 16 kHz, 16 bit, thus allow-

ing for systematic noise overlay. For each of 7 emotions 

(anger, boredom, disgust, fear, happiness, sadness, and 

neutrality), 10 sentences of emotionally neutral content 

were spoken by each speaker. The final data-set consists 

of 494 samples. 

3.2 eNTERFACE 

The eNTERFACE corpus is a further public, yet au-

dio-visual emotion database [12]. It consists of the 'big 

six' emotion set (MPEG-4: surprise instead of boredom 

and no neutrality in comparison to EMO-DB), and con-

tains 44 subjects from 14 nations. As EMO-DB, it con-

sists of studio recordings of pre-defined spoken content, 

but in English. Each subject was instructed to listen to six 

successive short stories, each of them eliciting a particu-

lar emotion. They then had to react to each of the situa-

tions and two experts judged whether the reaction ex-

pressed the emotion in an unambiguous way. Only if this 

was the case, the sample was added to database. The au-

dio sample rate is 48 kHz, 16-bit. Overall, the database 

consists of 1,170 samples. 

3.3 Car-Noise 

To study the impact on recognition in the car noise 

environment, several noise scenarios were recorded [1,5]. 

A condenser microphone was therefore mounted in the 

middle of the instrument panel of diverse cars. In order to 

cover a wide spectrum of car versions, speech from 

EMO-DB and eNTERFACE is superposed by the interior 

noise of four very different vehicles, namely a BMW 5 

series Touring and 6 series Convertible as executive cars, 

an M5 Sedan as sports car, and a MINI Cooper Converti-

ble as Super-mini. In this vehicle choice, the influence 

and configuration of single noise sources differs. The 

worst case is represented by the MINI. Just as the vehicle 

type, the road surface affects the interior noise. We re-

corded the interior noise in all cars on the following sur-

faces: smooth city road, 50 km/h (CTY), highway, 120 

km/h (HWY), big cobbles, 30 km/h (COB), and acceler-

ated highway drive (ACC, only for M5). Eventually, a 

total of 13 car-noise scenarios is simulated. Every noise 

scenario takes approximately 30 seconds. Additionally, 

ambient babble noise was recorded to simulate voice 

over-talk deriving e.g. from a car-stereo, a communica-

tion device, or passengers. The recording was carried out 

during business hour in a pedestrian street in downtown 

Munich, Germany, with the same microphone, and takes 

approximately one hour. 

Noise is normalised to 125dB prior to addition to non-

normalised speech. In the ACC and babble scenario we 

connected samples of each emotion separately prior to 

noise-stream-overlay. In any other scenario a clip of the 

according length of the spoken utterance was cut from the 

beginning of the noise recordings. 

4 Experimental Results 

We provide results in a Leave-One-Subject-Out 

(LOSO) manner. This ensures speaker independency at 

any time, as required in a reasonable in-car system [9]. As 

classifier Support Vector Machines (SVM) with polyno-

mial kernel and a one-vs.-one multiclass discrimination 

strategy are used. Learning is carried out by Sequential 

Minimal Optimisation (SMO) [13]. 

First, figure 1 depicts the effect of additive noise over-

lay for the two databases EMO-DB and eNTERFACE 

with respect to SNR level distribution.  

Second, table 2 shows observed accuracies for emo-

tion recognition on the databases EMO-DB and eNTER-

FACE. Note that car noise is summarised by the mean 

over all car types and driving situations. As a worst case 

scenario we also provide results for the MINI on big cob-

bles (COB), which proved the hardest challenge, overlaid 

with the babble noise.  

Since noise clearly degrades performance, we herein 

introduce four compensation strategies: first, noise adap-

tation (NA) by training in the noise and recognition as-

suming matched conditions (as can be realised by speed 

indicator or GPS data); second, speaker adaptation (SA) 

by mean and standard deviation normalisation for each 

speaker, individually. Thereby the whole speaker context 

is used. Note that in a real adaptation scenario no emotion 

information is needed for SA; third, combined speaker 

and noise adaptation (NSA). Finally, as a novel strategy, 

we combine noise and speaker adaptation with noise spe-

cific feature selection (NSAFS) by Correlation-based 

Feature Subset Selection (CFSS) [13] with Sequential 

Floating Forward Search to avoid NP-hard exhaustive 

search. As a result, accuracies can be step-wisely “re-

paired” by combination of methods, even in the worst 

case noise scenario. 

Tables 3 and 4 detail these results by car type and sur-

face, respectively driving situation. Apparently, the car 

type has less influence on the accuracy degradation than 

the driving situation. The worst cases thereby are the 

slow drive over big city cobbles, and the accelerated 

highway drive, as one would also assume from experi-

ence. 

We finally provide details on the impact of noise with 

respect to feature type as in [14]. Features are thereby 

grouped by their according LLD type: prosodic, voice 

quality, and spectral/cepstral. Table 5 shows the different 

effect of the diverse named strategies to cope with noise. 

As can be seen by the shown absolute gain, adaptation 

generally clearly helps to improve. However, the combi-

nation of noise and speaker adaptation is not necessarily 

the best choice - depending on the LLD type. Generally, 

eNTERFACE shows a more evenly distributed down-

grade over all types. This may derive from the on average 

lower SNR ratio in comparison to EMO-DB. On EMO-

DB the energy related features suffer most from noise-

overlay. Independent of the database, spectral features 

seem a good choice.  
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Figure 1 (left): SNR distribution EMO-DB (top) and 

eNTERFACE (bottom). Each: upper four: diverse cars; 

middle: babble noise; bottom: MINI + babble.  

 

Table 2: Emotion recognition, diverse noises.  

 

Acc. [%] - NA SA NSA NSAFS 

EMO-DB 

Clean 74.9 - 79.6 - 80.4 

Car Noise 70.0 76.1 77.9 78.7 80.5 

Bab. Noise 60.5 72.1 75.1 76.3 77.3 

Bab.+MINI 46.6 70.4 75.7 76.1 79.5 

eNTERFACE 

Clean 54.2 - 61.4 - 62.8 

Car Noise 42.1 53.2 54.2 61.0 61.6 

Bab. Noise 38.5 48.3 51.8 56.7 59.7 

Bab.+MINI 30.6 49.8 46.2 55.8 58.6 

 

Table 3: Emotion recognition, cars/surfaces, EMO-DB.  

 

Acc. [%] - NA SA NSA NSAFS 

530i 

HWY 71.7 76.3 79.2 78.5 80.6 

COB 66.8 78.7 74.5 79.1 81.2 

CTY 72.9 72.9 78.9 75.1 79.7 

645Ci 

HWY 71.7 74.3 78.1 79.6 80.8 

COB 70.0 78.1 79.6 81.4 83.0 

CTY 73.7 76.1 79.6 81.6 82.2 

M5 

HWY 72.0 74.7 77.5 77.5 81.6 

COB 66.6 75.3 78.4 79.1 78.7 

CTY 73.3 74.5 78.4 78.1 76.7 

ACC 61.5 74.7 74.3 76.9 81.0 

MINI 

HWY 68.4 78.9 78.1 79.1 82.0 

COB 67.0 76.9 77.9 78.7 81.2 

CTY 74.5 77.3 77.3 77.9 79.4 

 

Table 4: Emotion recognition, cars/surfaces, eNTER-

FACE.  

 

Acc. [%] - NA SA NSA NSAFS 

530i 

HWY 43.2 53.5 55.4 61.0 60.2 

COB 35.7 53.5 50.9 63.2 59.6 

CTY 49.9 52.8 56.6 61.5 62.5 

645Ci 

HWY 41.8 53.1 54.2 61.4 61.6 

COB 37.4 56.2 53.4 61.6 60.4 

CTY 49.9 53.2 58.2 60.9 63.2 

M5 

HWY 42.6 54.0 55.6 62.7 63.9 

COB 35.6 53.8 48.9 58.5 60.9 

CTY 47.4 54.2 56.3 63.0 61.2 

ACC 43.1 49.7 52.4 56.6 60.3 

MINI 

HWY 40.3 52.6 55.7 62.1 60.7 

COB 32.9 51.6 48.8 59.6 60.1 

CTY 47.2 53.3 57.4 51.3 65.0 

ITG-Fachtagung Sprachkommunikation  ·  8. – 10. Oktober 2008 in Aachen VDE VERLAG GMBH



Table 5: Influence on low-level-descriptor types (number 

per type provided, c.f. table 1) for speaker-independent 

emotion recognition, diverse noises. Prosodic (pitch (F0) 

and energy plus envelope (EN)), voice quality (VQ, jitter, 

shimmer, HNR), and spectral (formants 1-5 amplitude, 

bandwidth, frequency (FO), MFCC 1-16 (MF)) plus 

delta, each. Per type: accuracy clean speech, absolute loss 

noisy speech, and absolute gain (+) by adaptation. 

 

[%] Type F0 EN VQ FO MF 

#  38 76 114 570 608 

EMO-DB  

Clean acc. 48.2 57.5 47.8 65.8 48.2 

 SA 8.9 2.0 0.6 4.6 8.9 

MINI loss -0.9 -17.4 -5.3 -5.5 -0.9 

 +NA 0.7 12.1 11.1 4.3 0.7 

 +SA 7.2 3.6 3.7 6.7 7.2 

 +NSA 6.1 8.7 6.1 9.3 6.1 

MINI+ loss -4.3 -26.5 -5.9 -22.1 -4.3 

Babble +NA 0.4 16.1 7.3 23.5 0.4 

 +SA 7.9 9.7 -3.8 16.2 7.9 

 +NSA 6.9 19.4 2.2 25.0 6.9 

eNTERFACE  

Clean acc. 39.0 33.4 31.9 43.6 48.8 

 SA 1.0 2.5 -0.4 6.1 6.1 

MINI loss -13.7 -12.7 -12.2 -11.5 -15.0 

 +NA 0.3 8.2 2.8 15.2 5.4 

 +SA 7.9 11.6 12.4 8.0 15.3 

 +NSA 13.7 16.1 14.2 24.7 14.0 

MINI+ loss -13.7 -12.4 -11.8 -12.5 -17.6 

Babble +NA 7.1 11.4 11.4 8.5 15.9 

 +SA 0.6 6.6 -0.8 8.6 11.1 

 +NSA 9.1 14.6 11.9 12.4 20.5 

5 Conclusion 

In this paper we introduced recognition of emotion in 

the car. The requirement of real-time capability could be 

fulfilled. Extensive results were presented facing subject 

independency, and considering diverse noise scenarios as 

to be expected in real-life application. While noise heav-

ily downgraded recognition accuracies, this loss could be 

overcome by the introduced novel combined noise and 

speaker adaptation with matched feature selection.  

Further efforts will have to investigate realistic data to 

allow for more accurate insights and model constructions. 
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