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Abstract

In this paper we study the influence of quantiza-
tion on the features used in on-line handwriting recog-
nition in order to apply discrete single and multiple
stream HMDMs. It turns out that the separation of the
features in statisticaly independent streams influences
the performance of the recognition system: using the
discrete “pressure” feature as an example, we show
that the statistical dependencies between the features
are as important as their proper quantization.

In an experimental section we show that a con-
tinuous state-of-the-art system for on-line handwrit-
ten whiteboard note recognition can be outperformed
by r = 2.0% relative in word level accuracy using a
three stream discrete HMM system with well chosen
streams. A relative improvement of r = 4.5% can be
achieved when comparing a single stream HMDM sys-
tem with the best performing mutliple stream HMM
system.

Keywords: Discrete HMM, discrete multiple
stream HMM, on-line whiteboard note recognition,
quantization

1. Introduction

In modern on-line handwriting recognition,
Hidden-Markov-Models (HMMs, [15; 18]) have
proven to be the classifier of choice [13], due to their
capability of modeling time-dynamic sequences of
variable lengths. HMMs also compensate for statisti-
cal variations in those sequences. More recently, they
were introduced for on-line handwritten whiteboard
note recognition [9].

Commonly, in a handwriting recognition system,
each symbol (for the purposes of this paper, each
character) is represented by a single HMM (either dis-
crete or continuous). By combining character-HMMs;
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words are recognized using a dictionary. While high
recognition rates are reported for isolated word recog-
nition systems, e.g. [5], performance considerably
drops when it comes to unconstrained handwritten
sentence recognition [9]: the lack of previous word
segmentation introduces new variability and therefore
requires more sophisticated character recognizers. An
even more demanding task is the recognition of hand-
written whiteboard notes as introduced in [9]. Due to
the conditions described in [9], one may characterize
the problem of on-line whiteboard note recognition as
“difficult”.

One distinguishes between continuous and discrete
HMMs. The latter are further divided into discrete
single and multiple stream HMMSs [16]. In case of con-
tinuous HMMs, the observation probability is mod-
eled by mixtures of Gaussians [15]. It is known that
the performance of a handwriting recognition systems
depends on both the number of Gaussians used and
the number of iterations for which each Gaussian is
trained [4]. Therefore, exhaustive optimizations are
needed when using continuous HMMs. In case of dis-
crete HMMs, the probabilities are estimated by count-
ing each discrete symbol’s occurrences [15]. The prob-
ability density function of the observation is thereby
derived exactly and not approximated by Gaussians,
as in case of continuous HMMs. However, in order
to transform the continuous handwriting data into
discrete symbols, vector quantization (VQ) is per-
formed, which introduces a quantization error. While
in automatic speech recognition (ASR) continuous
HMMs have gained wide acceptance, it remains un-
clear whether discrete or continuous HMMs should
be used in on-line handwriting [16] and whiteboard
note recognition in particular.

In this paper we discuss the use of discrete single
and multiple stream HMMs for the task of on-line
whiteboard note recognition with respect to varying


gue
Textfeld
From:  Proc. ICFHR 2008, Montreal, Canada
ISBN 1-895193-03-6


codebook-sizes and the number of streams. While
ASR features generally are continuous in nature, in
handwriting recognition continuous, discrete, and bi-
nary features are used [9]. We prove that the feature
describing the pen “pressure” is not quantized ade-
quately when performing vector quantization due to
quantization errors. In this paper we therefore form
groups of features which are quantized separately and
show that an improvement can be achieved using cer-
tain multiple stream configurations.

To that end, the next section gives a brief overview
of the general preprocessing and feature extraction
system for whiteboard note recognition. Section 3
reviews VQ and both discrete single and multiple
stream HMMs. Five different discrete HMM recog-
nition systems used and evaluated in this paper are
briefly summarized in Sec. 4. In an experimental
section (Sec. 5), the database used for evaluation is
explained and the formerly introduced systems are
evaluated. In addition, our system is compared to a
state-of-the-art continuous system to prove competi-
tiveness. Finally, conclusions and an outlook for fur-
ther work are presented in Sec. 6.

2. System Overview

For recording the handwritten whiteboard data
the EBEAM-System! is used. For further informa-
tion refer to [9]. After recording, the sampled data
(which is sampled equidistantly neither in time nor
space) is preprocessed and normalized as a first step.
The data is thereby resampled in order to achieve an
equidistant sampling in space. Then, a histogram-
based skew- and slant-correction is performed as de-
scribed in [7]. Finally all text lines are normalized to
meet a distance of “one” between the upper and lower
baseline similar to [3].

Following the preprocessing, 24 features are ex-
tracted from the recorded data, resulting in a 24-
dimensional feature vector f(t) = (fi(t),..., f2a(t))T
derived from the three-dimensional data vector (sam-
ple points) s; = (x(t),y(t),p(t))T. The state-of-the-
art features for handwriting recognition [6] and re-
cently published new features for whiteboard note
recognition [9] used in this paper are briefly listed
below. Commonly, the features can be divided into
two classes: on-line and off-line features. As on-line
features we extract
f1 : indicating the pen “pressure”, i.e. f; = 1 if the
pen’s touches hits the whiteboard and f; = 0 other-
wise.
f2 : velocity equivalent computed before resampling
and later interpolated
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f3 : z-coordinate after resampling and subtraction of
moving average
fa 1 y-coordinate after resampling and normalization
f5.6 : angle a of spatially resampled and normalized
strokes (coded as sin « and cos «, and called “writing
direction”)
frg : difference of consecutive angles Aa = oy — a1
(coded as sin A« and cos Aa, and called “curvature”)
In addition, we use on-line features which describe
the relation between a sample point s; and its neigh-
bors as described in [9] and altered.
fo : logarithmic transformation of the aspect of the
trajectory between the points s;_, and s;, whereby
T < t denotes the 7" sample point before s;. As this
aspect v (referred to as “vicinity aspect”),

Ay — Az
v=|-——"71
Ay+Ax )’
tends to peak for small values of Ay + Az, we narrow
its range by

Ar =x(t) —z(t —7)
Ay =y(t) =yt —7),

fo = sign(v) - log(1 + [v]).

f10.11 : angle ¢ between the line [s;_,,s;] and lower
line (coded as sin ¢ and cos ¢, and called “vicinity
slope”)
fiz : the length of trajectory normalized by the
max(|Az|; |Ay|) (“vicinity curliness”)
fi3 : average square distance to each point in the
trajectory and the line [s;_, s;]

The off-line features are:
f1a—22 : a 3 X 3 subsampled bitmap slid along pen’s
trajectory (“context map”) to incorporate a 30 x 30
partition of the currently written letter’s actual image
f23—24 : number of pixels above/beneath the current
sample point s; (the “ascenders” and “descenders”)

3. Discrete Single and Multiple Stream
HMMs and Vector Quantization

In this section we briefly summarize discrete Hid-
den Markov Models (HMMs) and discrete multiple
stream HMMs from a Graphical Model’s (GM, [2])
point of view and give a common notation. Then
vector quantization (VQ) is reviewed and the nec-
essary feature normalization for on-line whiteboard
note recognition is explained.

3.1. Discrete single stream HMMs

The GM of a discrete single stream HMM A with
the variable parameters A = (A,B,7) and hidden
states s1,...,sy is depicted in Fig. 1 left, where ¢
denotes the state s; which is occupied at time in-
stance t. Matrix A, consisting of the entries a;; =
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Figure 1. GM of a discrete single stream HMM (left)
and a discrete multiple stream HMM (right).

p(¢r = sjlgi—1 = s;) thereby describes the time-
invariant probability of a state transition ¢;_1 —
qt, B, with entries bs,(0;:) = p(ot|s;) the discrete
emission-probability of each state s; for each possi-
ble symbol o; and © = (7;,...,7n) the initial state
distribution m; = p(q1 = s;) [15]. Given a certain
parameter set A, the discrete HMM’s joint probabil-
ity of the observation o = (01,...07) and the state
sequence q = (q1,-..,qr) can be calculated to

T

= p(q1)-p(orlar)- ] [ plarlai—1)-p(orlgr). (1)

t=2

p(o,q|A)

By marginalizing, that is summing up Eq. 1 over all
possible state sequences q € Q, and using the above
substitutions a;;, bs, (ox) and 7;, the well-known pro-
duction probability

0|>‘ Zﬂ—fh q1 01 Ha(If 19t (It Ot (2)

q€Q

is derived and can be computed efficiently using the
forward-algorithm [15]. The parameters A of a HMM
can be trained using EM-Algorithm, in case of HMMs
known as Baum-Welch-algorithm [1].

3.2. Discrete multiple stream HMMs

In GM-notation, a discrete multiple stream HMM
with D observation streams and parameters gy =
(A, B, ) producing the observation sequence O =
[01,...,07] is shown on the right hand side of Fig. 1.
It is the discrete counterpart of the “Multi-Stream”
HMM with equally weighted streams, as e.g. de-
scribed in [14]. While the parameters A and 7
have the same definition as for single stream HMMs,
the production probabilities of the discrete multiple
stream HMM are stored separately for each stream d

in B={By,...,Bp}. At each time instance ¢ the ob-
servation o; = [0:(1),...,0:(D)] is produced, where
the observation o;(d) of stream d is produced statisti-
cally independently from all other streams given the
current state ¢;. This is indicated in Fig. 1:

D
p(ogs;) = Hp o¢(d H = li(04).

The joint probability of the observation sequence O
and the state sequence q = (g, .. .,qr) is then, simi-
larly to Eq. 1, given by

p(0,qlrst) = p(q1) - | | plor(d)lsi)-

Mo

. d;l
HP(Qt|Qt71) : H ploe(d)]ss). (4)
t=2 d=1

Again, by marginalizing and using the substitutions
aij, T;, and Eq. 3 the production probability yields

O|>‘ Zﬂ-th q1 01 Ha(h 14t (It Ot (5)

q€Q

As indicated by the similar structure of Eqs. 2 and
5, the training algorithms for the discrete HMM as
described in [1] have to be slightly modified to handle
multiple streams.

3.3. Vector Quantization

In order to use discrete single or multiple stream
HMDMSs, all continuous observations O are assigned
to a stream of discrete observations o via quantiza-
tion, whereby continuous, IN-dimensional sequence
O = (f,...,fr), f; € RY of length T is mapped to
a discrete, one dimensional sequence of codebook in-
dices 6 = (fl, ceey fT) fi € N provided by a codebook
C=(c1,...,¢n,y), ¢k € RY containing |C| = Neap
centroids ¢; [12]. For N = 1 this mapping is called
scalar, and in all other cases (N > 2) wector quanti-
zation (VQ).

Once a codebook C is generated, the assignment
of the continuous sequence to the codebook entries is
a minimum distance search

fi = argmin d(f;, cg), (6)
1<k<Ncap

where d(f;, cx) is commonly the squared Euclidean
distance. The codebook C itself and its entries
c; are derived from a training set Sirain containing
|Strain| = Nirain training samples O; by partitioning
the N-dimensional feature space defined by Siyain into



Neap cells. This is performed by the well known k-
Means algorithm as described e.g. in [12]. As stated
n [12], the centroids of a well trained codebook cap-
ture the distribution of the underlying feature vectors
p(f) in the training data.

As the values of the features described in Sec. 2 are
neither mean nor variance normalized, each feature
f; is normalized to the mean p; = 0 and standard
derivation o; = 1, yielding the normalized feature f]
Thereby the statistical dependencies of the features
are not changed.

4. Discrete HMM systems

In this section we briefly summarize the five differ-
ent system topologies that are evaluated in Sec. 5.

System 1: The first system comprises the base-
line system in which all normalized features
(f1,--., fos) are jointly quantized by one codebook
and mapped to the discrete symbol f . This results
in the single observation stream o = (fl,...,fT).
As only one observation stream exists recognition is
performed by single stream HMMSs as described in
Sec. 3.1. The same baseline system has been used in
our previous work [17].

System 2: To prove that the binary “pressure”
feature f; is not adequately quantized by standard
VQ, the second system is used. All features ez-
cept f1 are jointly quantized by the discrete sym-
bol fr, resulting in one single observation stream
o= (fnl, ey fLT). Again, the single stream observa-
tions are recognized by single stream HMMs (Sec. 3.1)
(see also [17]).

System 3: In order to keep the exact value of
feature fi, its values are directly used to form an
independent observation, where 0;(1) in Eq. 3 be-
comes o0¢(1) = f1(t), using the unnormalized values
of the feature. The remaining features (fz, e f24)
are jointly quantized as in the second system, forming
a second observation 04(2) = fi(t). The two-stream
observation o; = (f1(t), fs.¢) is then recognized using
two-stream HMMs as explained in Sec. 3.2.

System 4: Besides the discrete “pressure,” we use
other discrete features: the off-line features f14_24.
In this system the values of each discrete feature, in-
cluding f;, form a separate stream. The remaining
features (fo—13) are jointly quantized and mapped by
the discrete symbol fon. Thus a 13-stream observa-
tion o; = (fl,fon,fM, ..., foq) is derived and a 13-
stream HMM is applied for recognition.

System 5: The last system is motivated by
e.g. [16], in which the on-line and off-line features
form two separate observation streams. In this paper
we augment this approach by a further discrete ob-

servation stream formed by the values of f;, whereby
the on-line features fg,lg are jointly quantized and
mapped to the discrete symbol fon and the off-line fea-
tures fi14—24 are mapped to the discrete symbol foff.
Hence, a three-stream observation o; = (f1, fon, fog)
is obtained. As the on-line and off-line features are
quantized independently their codebook sizes Ny,
and Nog may differ. The optimal ratio R = Noft/N,,
is found by experiment.

5. Experiments

The experiments presented in this section are
conducted on a database containing handwritten,
heuristically line-segmented whiteboard notes (IAM-
OnDB?, [8]). Comparability of the results is provided
by using the settings of the writer-independent TAM-
onDB-t1 benchmark. The IAM-onDB-t1 benchmark
provides four writer-disjunct sets of arbitrary size:
one training set, two validation sets and a test set.
In this paper the training set is used for training, the
combination of both validation sets is used for vali-
dation, and the final tests are performed on the test
set. Our experiments use the same HMM topology
and number of states as in [9].

The following five experiments are conducted on
the combination of both validation sets and on each
system described in Sec. 4 at different codebook sizes.
As the number of observation streams varies, the num-
ber N of “feature describing parameters” is fixed, i. e.
N = 25:1 N, where Ny is the number of codebook
entries of each observation stream d. To achieve com-
parability all experiments are performed for values of
N =10, 100, 500, 1000, 2000, 5000 and 7500.

Experiment 1 (Exp. 1): Using the first system,
this experiment forms the baseline: all features are
quantized in one single stream. The results derived
on the validation sets are shown in Fig. 2 left. The
best character level accuracy is achieved for N.q, =
5000 prototypes and yields a;, = 62.6%. The drop
in performance when further increasing the codebook
size to N = 7500 is due to sparse data [15].

Experiment 2 (Ezp. 2): The inadequate quanti-
zation of the binary “pressure” feature is proven by
experiments on the second system. As Fig. 2 left
shows, only slight degradation in recognition perfor-
mance compared to the baseline can be observed. In
fact, both codebook size-ACC curves run almost par-
allel. The peak rate of agys2 = 62.5 % is once again
reached for a codebook size of N.q, = 5000, which
equals a relative change of 7 = 0.2 %. This is rather
surprising as in [11] pressure is proven to be a relevant
feature in on-line whiteboard note recognition.

2http://www.iam.unibe.ch/~ fki/iamnodb/



baseline

Rl

e \

Codebook size N ——>

system 2

system 3

system 4
‘ R —H&— system5 | o
35 — — ——
10 1.0-102 1.0-108 1.0-104 1.0-10 1.0-102 1.0-10" 1.0 10

R—mmmm

Figure 2. Left: evaluation of different systems’ character level accuracies with respect to the codebook size N. Right:
character level accuracies for different codebook sizes and varying ratios R = Nefi/N,, of a three-stream HMM system
(where the three streams are formed by the values of the pressure, the jointly quantized on-line features using Non
centroids, and the jointly quantized off-line features using Nog centroids).

Experiment 3 (Ezp. 3): The result of the previ-
ous experiment suggests that the discrete pressure in-
formation of feature f; is not adequately quantized
by the vector quantizer. The third system allows the
direct use of the values of f; as a separate observation
stream. The pressure information is thereby modeled
without loss. This results in no improvement. As
mentioned in Sec. 3.2, both observation streams are
modeled statistically independently. Although mod-
eled without loss in a separate stream, the neglect of
the statistical dependencies between the pressure and
the remaining features inhibits any improvement.

Experiment 4 (Ezp. /): The previous experi-
ment’s outcome might show that neglecting the statis-
tical dependencies between the features influences the
recognition accuracy. Because in on-line handwritten
whiteboard note recognition other discrete features
besides the “pressure” feature are used, they can be
modeled in separate observation streams without loss
using the fourth system. The exact values of each
feature are thereby modeled without any loss while
their statistical dependencies are neglected. Peak per-
formance of agys4 = 60.6 % is reached for N = 5000,
which is a relative drop of r = —3.3% compared to
the baseline system. This drop confirms the assump-
tion that the statistical dependencies between fea-
tures have an influence on the system’s performance.

Table 1. Final results of experiments 1,...,5 and a
state-of-the-art continuous system [10] on the same
word level recognition task.

Expl FEaxp2 FExp838 FErp4 Ezpb
(Ab) (Asys 2) (Asys 3) (Asys 4) (Asys 5)

63.5% 63.3% 63.6% 61.0% 66.5% 65.2%

(10]

system

word acc.

Experiment 5 (Ezp. 5): In this last experiment
the fifth system is evaluated. Three independent ob-
servation streams are formed consisting of the val-
ues of feature f1, the jointly quantized on-line fea-
tures fo_13, and the jointly quantized off-line features
f1a_24. Both parameters, N = 2+ Nyg+ Nopn and the
ratio R = Nott/N,, (where Ny, and Nog denotes the
number of centroids used to quantize the on-line and
off-line features), are found by experiment. Fig. 2
shows at right the character level accuracy at given
ratio R for different N. The peak rates which are
achieved for each N and corresponding optimal R are
plotted in Fig. 2 left. The highest character level ac-
curacy rate of agys5 = 64.8 % is reached for N = 5000
and Ropy = 0.105, i.e. Ny = 4523 and Nog = 475
centroids are used to quantize the on-line and off-line
features respectively. This is a relative improvement
of r = 3.4% compared to the baseline.



In order to prove the competitiveness of our sys-
tems the parameters and models which provide the
best results in the experiments Fxp. 1,...,5 are taken
to perform word level recognition on the test set of the
TAM-onDB-t1 benchmark. The results are compared
with the performance of a state-of-the-art continuous
recognition system [10] and shown in Tab. 1. The
highest word level accuracy of Agys = 66.5% can
be reported for the 5" system using three indepen-
dent feature streams leading to an improvement of
r = 2.0% relative (R = 1.3 % absolute) as compared
to the state-of-the-art system. A straightforward ap-
proach, i.e. jointly quantizing all features in a single
stream, leads to a word level accuracy of Ay, = 63.5 %.
The three stream approach as perfomed in system five
therefore leads to a relative improvement of r = 4.5 %
compared to this baseline system.

6. Conclusions and Outlook

In this paper we intensively investigated the use
of discrete single and multiple stream HMMs. We
examined both the continuous and discrete features
typically used in on-line handwritten whiteboard note
recognition and their vector quantizations. These
quantizations introduce quantization errors. By con-
ducting a series of experiments we showed, using the
“pressure” feature as example, that both the quanti-
zation of the features and the statistical dependen-
cies between them influence recognition performance.
This assumption is confirmed by the observation that
recognition accuracy considerably drops if the statisti-
cal dependencies between the features are neglected,
even though they are modeled without loss in sepa-
rate streams. However, we also showed that a single-
stream discrete HMM baseline system using jointly
quantized features can be outperformed by r = 4.5%
relative in word level accuracy using a three-stream
discrete HMM system which models the pressure,
the on-line features and the off-line features indepen-
dently.

Finally our discrete systems were compared to
a state-of-the-art continuous system as presented
in [10], yielding an improvement of r = 2.0% rela-
tive in word level accuracy.

As our experiments indicate, the statistical depen-
dencies between the features have an impact on the
system’s performance. In future work we therefore
plan to study these influences in further detail in or-
der to achieve an optimal feature stream selection.
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