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Abstract. A variety of approaches exist to the automatic retrieval of
the key part within a musical piece - its thumbnail. Most of these how-
ever do not use adequate modeling with respect to either harmony or
rhythm. In this work we therefore introduce thumbnailing that aims at
adequate musical feature modeling. The rhythmic structure is extracted
to obtain a segmentation based on beats and bars by an IIR comb-filter
bank. Further, we extract chroma energy distribution normalized statis-
tics features of the segmented song improving performance with dB(A)
and pitch correction. Harmonic similarities are determined by construc-
tion and analysis of a similarity matrix based on the normalized scalar
product of the feature vectors. Last, thumbnails are found lending tech-
niques from image processing. Extensive test runs on roughly 24 h of
music reveal the high effectiveness of our approach.

1 Introduction

A wide variety of applications uses audio thumbnails in order to provide an in-
sight into songs such as pre-hear functions in online music stores, teaser previews
on the radio, samples for deejays to create mega-mixes or efficiently browsing
through large music collections, e.g. on a mobile MP3 player. In addition query
by example systems highly benefit from pre-extracted thumbnails to build up
the required database for similarity matching with sung or hummed queries.
Nowadays these thumbnails usually have to be generated manually due to the
lack of appropriate and robust methods which are capable to accomplish reliable
automatic generation. Especially for acoustic formats which deal with real au-
dio (we use the popular MPEG-1 Audio Layer 3 standard) there are no known
prosperous methods or systems so far.

Since voiced, repeating sequences such as chorus sections are believed to be
the most mnemonic parts of songs [Burges et al., 2004], the approach described
in this work aims at extracting the chorus by successfully combining different
ideas of previous works. There are several works dealing with extracting audio
thumbnails or determining the musical structure of songs. They can be divided
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into two general types regarding the feature nature they are based upon. Alter-
natively they can also be classified according to their kind of approach, such as
building up and analyzing similarity matrices or applying a segmentation step
with a subsequent clustering or classification.

Burges et al. [Burges et al., 2004] create their own features by applying a
modulated complex lapped transform followed by a logarithmizing step and by
reducing the information using oriented principal component analysis. A clus-
tering algorithm is applied to merge similar sequences which are then clas-
sified by using a scaled Renyi entropie and spectral flatness. Logan et al.
[Logan and Chu, 2000] extract Mel frequency cepstral coefficients (MFCC) and
cluster the song using a modified Kullback Leibler distance. The second ap-
proach presented in [Logan and Chu, 2000] models each song by an ergodic
hidden Markov model (HMM) in order to extract the musical structure. Au-
couturier et al. use ergodic HMM with 3 states by approximating the spectral
envelope with MFCC, linear predictive coefficients and discrete cepstrum co-
efficients [Aucouturier et al., 2005] and with Gaussian mixture models initial-
ized by a clustering step [Aucouturier and Sandler, 2001]. Foote et al. introduce
the concept of music visualization by constructing a similarity matrix based on
MFCC using the scalar product [Foote, 1999] and a normalized scalar product
[Cooper and Foote, 2002]. Peeters et al. [Peeters et al., 2002] use dynamic fea-
tures which maximize the trans-information and build up a similarity matrix. A
segmentation step splits the song into small segments which are then processed
with a clustering algorithm in order to generate an initialized set for ergodic
HMM. Jehan [Jehan, 2005] first divides the music signal into several segments
using an event detection function and then applies dynamic time warping to
extract the musical structure.

Abdallah et al. [Abdallah et al., 2005] use an unsupervised Bayesian
clustering model to extract musical structure by estimating its parame-
ters using a modified expectation maximization algorithm. Bartsch et al.
[Bartsch and Wakefield, 2001] perform a beat synchronous segmentation using
a beat tracker followed by a similarity matrix based on chroma features. By
applying uniform moving average filtering a time-lag matrix is obtained whose
maximum element is located according to constraints regarding the minimum
lag and the maximum occurrence of a section. Goto [Goto, 2006] extends this
work by allowing modulated repetitions and by using an adapted measure to se-
lect chorus sections. Müller et al. [Müller and Kurth, 2006] present an approach
for enhancing similarity matrices by introducing a new set of features based on
harmonic informations.

From these works we learn that beat-synchronous feature extraction is ad-
vantageous provided a reliable detection. Features that respect the musical back-
ground of the signal, such as chroma, are superior to e.g. MFCC, and it seems
favorable to incorporate temporal information as in [Müller and Kurth, 2006].
Finally, retrieving the pre-dominant parts by similarity matrices seems most
promising, and dynamic modeling, such as Dynamic Time Warp (DTW), is usu-
ally rather contra-productive provided beat-synchrony. In the next section we



describe a system built upon these considerations that lends simple but fast
techniques from image processing for the similarity matching and enhances fea-
tures by perceptive modeling. We also define measures for evaluation and report
results on a day of real MP3 audio from diverse genres.
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Abbildung 2.9: Blockschaltbild eines FIR-Filters (links) und eines IIR-Filters
(rechts).

berechnet. Der Kandidat mit dem größerem Konfidenzmaß repräsentiert das
Tatum Grid.

Aus dem Tatum Grid θT,IOI
7 kann sehr einfach die Länge eines Beats

θB,IOI im Musikstück abgeleitet werden, da θB,IOI ein Vielfaches von θT,IOI

ist. Für jedes i, 1 ≤ i ≤ 19 wird nun eine Bank von 2i+1 Filtern erstellt, die
eine Verzögerung von θT,IOI · i − i bis θT,IOI · i + i abdeckt. Die Energie des
gefilterten Musiksignals wird für jedes Filter errechnet und das Maximum
der Filterbank i wird in einen Vektor m an der Stelle i gespeichert. Ähnlich
der Normierung bei der Bestimmung des Tatum Grids, wird der Vektor m
unter Berücksichtigung der Differenz m19 −m1 normiert. Das Maximum des
normierten Vektors m̂ beschreibt die Beatlänge θB,IOI des Musikstücks. Das
Tempo θB,bpm des Signals errechnet sich für θB,IOI in Sekunden mit

θB,bpm =
60

θB,IOI
(2.22)

2.5.3 Beattracking

Ist das Tempo bekannt, erscheint das Beattracking auf den ersten Blick trivi-
al. Allerdings müssen einige Probleme für zuverlässiges Tracking gelöst wer-
den. Zum einen muss der Anfangsbeat gefunden werden, was aufgrund der
Tatsache erschwert wird, dass sehr viele Lieder einen einleitenden Teil (Intro)

7Im Folgenden wird mit dem Suffix IOI die Länge und mit dem Suffix bpm die Frequenz
einer metrischen Einheit bezeichnet. Die Beziehung dieser zwei Größen ist durch Gl. (2.22)
gegeben.

y[t] = (1−α)·u[t]+α·y[t−T ]

H(z) =
1 − α

1 − α · z−T

Fig. 1. Block diagram (left), difference equation (top) and transfer function (bottom)
of an IIR comb filter 1
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Fig. 2. Magnitude response for an IIR comb filter with gain α = 0.8 and base tempo
50bpm

2 Feature Extraction

2.1 Rhythm Information

We use our highly robust beat tracker introduced in [Schuller et al., 2007]to
extract rhythmic structure. After a preprocessing step which involves down-
sampling to 11 025 kHz and transforming into the frequency domain, the signal
is filtered with the A-weighting function according to the human perception
of sound. In order to reduce the number of bands without loosing rhythmic
information the audio signal is split into frequency bands using a bank of 24
overlapping triangular filters which are equidistant on the Mel-Frequency scale.
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Abbildung 2.7: Abba - Mamma Mia. Die Abbildung zeigt die Vertei-
lung von Chroma (hellgraue Kurve) und CENS (schwarze Balken) der ers-
ten 20 Sekunden. Dabei wurde eine Fensterlänge von 0.37 Sekunden, ein
Überlappungskoeffizient von 50 %, eine Downsamplingrate von 4 und eine
Fensterlänge für die CENS-Ermittlung von 11 Fenstern gewählt.

Fig. 3. Harmonic representation of the first 20 seconds of Abba - Mamma Mia. The
light curves illustrate the local chroma energy distribution, the dark bars the CENS
features.

Next, the envelope of each band is extracted using a half wave raised cosine
filter and processed by incorporating the moving average over the previous 10
and the following 20 samples due to the fact that humans perceive note onsets
louder if they occur after a longer time of lower sound level. Hence, we determine
the lowest metrical level referred to as tatum grid using a bank of 57 phase comb
filters with gain α = 0.8 and delays ranging from τ = 18 to τ = 74 envelope
samples. A comb filter is able to extract a frequency and its multiples by adding
to the signal a delayed version of itself specified by the gain α and the delay τ .
An example for such a comb filter is depicted in figure 1, its magnitude response
for α = 0.8 and τ = 50 bpm is illustrated in figure 2. Based on the tatum grid
our beat tracker is able to determine meter and tempo features by setting up
narrow comb filters centered on multiple tempos of the tatum grid.

2.2 Harmonic Information

In order to incorporate the temporal harmonic structure of a song we use the
chroma energy distribution normalized statistics introduced by Müller et al.



[Müller et al., 2005]. These features are based on chroma features which are
computed using a fast Fourier transform with a window length of 372 ms and an
overlap of 0.5 by taking into account a psychoacoustic model using A-weighting
filtering as within the beat tracking according to DIN EN 61672-1:2003-10 and
by decomposing the audio signal into frequency bands representing the semitones
which are defined for equal temperament as

fi = f0 · 2i/12 f0 = f(A0) = 27.5 Hz (1)

with 15 ≤ i ≤ 110 (corrisponding to the notes C2–B9) and therefore cover-
ing 96 semitones (8 octaves). In order to overcome deficient recordings due to
mis-arranged recording settings or intentional manipulations of the sound im-
pression, pitch correction is applied. A long term frequency analysis computes
the prominent frequency fp and determines a factor c

c =
fp

fr
(2)

with

fr = argmin
fi

∥∥∥∥fp

fi
− 1
∥∥∥∥ (3)

Next, all semitones fi are multiplied with the factor c to correct their pitch. In
order to allocate the frequencies to the semitones a nearest neighbor approach
is applied which implies the use of Gaussian bells gi(x) centered at fi given by

gi(x) =
1

σ
√

2π
· e−

(
x−fi

fi−fi−1

)2

2σ2 σ = 0.125 (4)

Now we normalize the resulting sub-bands si by dividing each one belonging to
the same octave O by the sum of these sub-bands according to

ŝi =
si,O∑
si,O

si,O = si ∈ O (5)

In a final step we add up all sub-bands corresponding to the
same relative pitch class, for example for the chroma C we compute
s1 = ŝ15 + ŝ27 + . . .+ ŝ99, and normalize the resulting values

vi =
si∑
si

1 ≤ i ≤ 12 (6)

Due to the fact that the local chroma features are too sensitive concerning ar-
ticulation effects and local tempo deviations we extend the chroma features
following Müller et al. [Müller et al., 2005] and apply to each component of
v = (v1, . . . , v12) a quantization function Q defined as

Q(a) :=



4 for 0.4 ≤ a ≤ 1
3 for 0.2 ≤ a < 0.4
2 for 0.1 ≤ a < 0.2
1 for 0.05 ≤ a < 0.1
0 for 0 ≤ a < 0.05

(7)



In the next step, we convolve 11 consecutive quantized chroma vectors Q(v(i))
component-wisely using a Hann window resulting in a weighted 12-dimensional
features vector including temporal harmonic information. As the information
changes due to the windowing being quite slow, down-sampling with a factor
of 4 is applied. The resulting feature vectors are referred to as chroma energy
distribution normalized statistics (CENS) which we will denote from now on as
v = (v1, . . . , v12). A comparison between the two types of features is visualized
in figure 2.2.

Adriano Celentano − Azzuro.mp3
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Fig. 4. Similarity matrix for Adriano Celentano - Azzurro. Bright diagonals illustrate
a high similarity between two segments.

3 Chorus Extraction

3.1 Similarity matrix

In line with Foote et al. [Cooper and Foote, 2002] we compute a N×N similarity
matrix S based on the normalized scalar product

S(i, j) =
〈v(i),v(j)〉
‖v(i)‖ · ‖v(j)‖ (8)

In terms of music visualization we are looking for bright diagonals (we mean
diagonal segments parallel to the main diagonal, c.f. figure 4) in this matrix
which correspond to similar segments in a song. Thus, we use an edge filter
given by

FDiag(i, j) =


1 for i = j

c for 0 < |i− j| ≤ b
0 for |i− j| > b

(9)



with 1 ≤ i, j ≤ 20, b = 5 and c = − 2
17 , to extract these bright diagonals from the

similarity matrix. After a normalization step a threshold δ is subtracted from the
filtered image resulting in the matrix Ŝ in order to reduce noise that is generated
by the edge filtering. δ corresponds to the highest value which is exceeded by at
least 10 ·N values of the filtered image. In a subsequent step, we create a binary
matrix Sb according to

Sb(i, j) =

{
1 for Ŝ(i, j) > 0
0 for Ŝ(i, j) ≤ 0

(10)
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Fig. 5. Similarity matrices after the processing steps: first, edge filtered (top left), then
dynamic thresholding (top right). From the resulting matrix Ŝ, respectively its binary
representation Sb, ROI are determined by length and characteristics of each segment
(bottom left). Last, adjacent segments are combined (bottom right).

3.2 Regions of interest

Now we determine regions of interest (ROI). Starting and ending points of po-
tential chorus sections are extracted by the following approach: Let d(i, j) denote



the temporal derivate along a diagonal segment Sb(i + 1, j + 1) − Sb(i, j). In a
first step segment bounds are estimated by setting starting points at i and at j
if d(i, j) > 0 and corresponding ending points at i and j if d(i, j) < 0. In order
to correct these preliminary bounds we introduce a counter ck for each segment
k and define a threshold δSim which corresponds to the highest value exceeded
by at least 0.1 ·N2 entries of the matrix S. Starting at the middle (x, y) of each
segment, we increment ck, if S(x, y) falls below δSim, and decrement ck if it
exceeds δSim up to a minimal counter value of ck = 0. If ck is smaller than C we
process the next value (x, y) := (x − 1, y − 1). Otherwise we stop and save the
corrected starting point (x+C, y+C). Next, we apply these steps for the other
directions with (x, y) := (x+ 1, y+ 1) starting again at the middle of segment k
gaining the corrected ending point (x−C, y−C). The algorithm with C = 4 has
delivered the best performance in practice. The described process is depicted by
an example in figure 5.

In order to reduce the amount of regions of interest we define lower and upper
limits for the segment length l. A dynamic lower bound given by

l ·mSim > 8.7 s (11)

where mSim is denoting the mean similarity of the segment in the similarity
matrix S. This has proven as an optimal choice to eliminate short repeating
sections containing non-relevant segments. Further, a static upper bound given
by 29.1 s has shown good results to distinguish between chorus sections and
longer sections such as verse or verse plus chorus. In a last step we combine
adjacent segments as they do not contain any additional information.

We now define an audio thumbnail by taking the best remaining segment
regarding its mean similarity mSim, as we assume chorus sections to be the
most similar sequences among the regions of interest. In order to evaluate the
regions of interest and to provide multiple thumbnails for each song, we extract
the 3 best segments.

4 Results and discussion

Our approach was tested on a database containing 360 songs of different genres
with an overall duration of 23 h 47 min. The database consists on the one hand
of 110 songs belonging mainly to rock music and oldies and on the other hand of
250 songs indexed by genre each with 50 songs covering electronic dance, pop,
rock, german folk and pop music and oldies.

The evaluation was performed by comparing the initial positions of the ex-
tracted thumbnails to those manually annotated. If the deviation between these
positions was at most Tmax the extracted audio thumbnail was assumed cor-
rect. The notation TopX represents the percentage of the songs where one of
the X best thumbnails was correctly extracted. Table 1 shows the results for
a maximal allowed deviation of Tmax = 1, 2 and 3 s. Most of the not correctly
extracted thumbnails represent a characteristic part of the song as well, such as



Tmax[s] Top1 [%] Top2 [%] Top3 [%]

1 22.6 37.8 45.8
2 48.6 67.2 73.3
3 60.6 76.1 81.4

Table 1. Correctly extracted audio thumbnails for different maximal deviations
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Fig. 6. Correctly extracted audio thumbnails depending on the evaluated genres for
Tmax = 2 s

the chorus section with a deviation slightly above Tmax, a non-equivalent repe-
tition of the chorus or the beginning of verse or bridge. Unfortunately, no other
work provides quantitative results of the generated audio thumbnails in terms
of deviation from the actual chorus sections. Therefore, no objective comparison
is possible at this time.

Figure 6 illustrates the results specific to the genre. The notably higher per-
formance for electronic dance results from the fact that electronic music provides
higher similarities due to perfect accordance of the electronically produced tones.
Further, the musical structure is mostly simpler and fewer variations are found.

5 Conclusion and outlook

Within this paper we presented an effective approach for automatic extraction of
audio thumbnails based on rhythmic structure and harmonic similarity analysis.
Experimental test runs provided promising results, especially for electronic dance
music where we were able to determine the chorus section for 70 % of the songs
with a maximal deviation of ±2 s. Likewise, we could ”‘compress”’ one day of
music to roughly half an hour of thumbnails.

In future works the algorithm can easily be extended by additional modules to
increase the performance by incorporating progression structure or by classifying
vocal and non-vocal sequences.



References

[Abdallah et al., 2005] Abdallah, S. A., Noland, K., Sandler, M., Casey, M., and
Rhodes, C. (2005). Theory and Evaluation of a Bayesian Music Structure Extractor.
In Proc. 6th ISMIR, pages 420–425.

[Aucouturier et al., 2005] Aucouturier, J.-J., Pachet, F., and Sandler, M. (2005). ”The
way it Sounds”: Timbre Models for Analysis and Retrieval of Music Signals. IEEE
Transactions on Multimedia, 7(6):1028–1035.

[Aucouturier and Sandler, 2001] Aucouturier, J.-J. and Sandler, M. (2001). Segmen-
tation of Musical Signals Using Hidden Markov Models. In Proc. of the Audio Engi-
neering Society 110th Convention.

[Bartsch and Wakefield, 2001] Bartsch, M. A. and Wakefield, G. H. (2001). To Catch
a Chorus: using Chroma-Based Representations for Audiothumbnailing. In Proc.
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pages
15–18.

[Burges et al., 2004] Burges, C. J. C., Plastina, D., Platt, J. C., Renshaw, E., and
Malvar, H. S. (2004). Duplicate Detection and Audio Thumbnails with Audio Fin-
gerprinting. Technical Report MSR-TR-2004-19, Microsoft Research (MSR).

[Cooper and Foote, 2002] Cooper, M. and Foote, J. (2002). Automatic Music Summa-
rization via Similarity Analysis. In Proc. 3rd ISMIR, pages 81–5.

[Foote, 1999] Foote, J. (1999). Visualizing Music and Audio using Self-Similarity. In
Proc. 7th ACM Int. Conf. on Multimedia (Part 1), pages 77–80.

[Goto, 2006] Goto, M. (2006). A Chorus Section Detection Method for Musical Audio
Signals and its Application to a Music Listening Station. IEEE Transactions on
Audio, Speech and Language Processing, 14(5):1783–1794.

[Jehan, 2005] Jehan, T. (2005). Hierarchical Multi-Class Self Similarities. In Proc.
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pages
311–314.

[Logan and Chu, 2000] Logan, B. and Chu, S. (2000). Music Summarization Using
Key Phrases. In Proc. ICASSP, volume 2, pages 749–752.

[Müller and Kurth, 2006] Müller, M. and Kurth, F. (2006). Enhancing Similarity Ma-
trices for Music Audio Analysis. In Proc. ICASSP, volume 5, pages 9–12.

[Müller et al., 2005] Müller, M., Kurth, F., and Clausen, M. (2005). Chroma-Based
Statistical Audio Features for Audio Matching. In Proc. IEEE Workshop on Appli-
cations of Signal Processing to Audio and Acoustics, pages 275–278.

[Peeters et al., 2002] Peeters, G., Burthe, A. L., and Rodet, X. (2002). Toward auto-
matic music audio summary generation from signal analysis. In Proc. 3rd ISMIR,
pages 94–100.

[Schuller et al., 2007] Schuller, B., Eyben, F., and Rigoll, G. (2007). Fast and Robust
Meter and Tempo Recognition for the Automatic Discrimination of Ballroom Dance
Styles. In Proc. ICASSP, volume 1, pages 217–220.




