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Abstract—This paper introduces a novel graphical model
architecture for robust and vocabulary independent keyword
spotting which does not require the training of an explicit
garbage model. We show how a graphical model structure for
phoneme recognition can be extended to a keyword spotter that
is robust with respect to phoneme recognition errors. We use a
hidden garbage variable together with the concept of switching
parents to model keywords as well as arbitrary speech. This
implies that keywords can be added to the vocabulary without
having to re-train the model. Thereby the design of our model
architecture is optimised to reliably detect keywords rather than
to decode keyword phoneme sequences as arbitrary speech,
while offering a parameter to adjust the operating point on the
Receiver Operating Characteristics curve. Experiments on the
TIMIT corpus reveal that our graphical model outperforms a
comparable Hidden Markov Model based keyword spotter that
uses conventional garbage modelling.

I. INTRODUCTION

As an important discipline in the field of automatic speech
recognition (ASR), keyword spotting has found many appli-
cations in recent years. For voice command detection, infor-
mation retrieval systems, or embodied conversational agents,
reliably detecting important keywords is often more important
than attempting to capture the whole spoken content of an
utterance. Hidden Markov Model (HMM) based keyword
spotting systems [1], [2] usually require keyword HMMs and
a filler or garbage HMM to model both, keywords and non-
keyword parts of the speech sequence. Using whole word
HMMs for the keywords and the garbage model presumes
that there are enough occurrences of the keywords in the
training corpus and suffers from low flexibility since new
keywords cannot be added to the system without having to
re-train it. Modelling sub-units of words, such as phonemes,
offers the possibility to design a garbage HMM that connects
all phoneme models [1]. However, the inherent drawback of
this approach is that the garbage HMM can potentially model
any phoneme sequence, including the keyword itself. Better
garbage models can be trained when modelling non-keyword
speech with a large vocabulary ASR system where the lexicon
excludes the keyword [3]. Disadvantages of this method are its
higher decoding complexity and the large amount of required
training data to obtain a reasonable language model. Moreover,
large vocabulary ASR systems presume that all keywords
are contained in the language model, which makes them

less flexible than vocabulary independent systems [4] where
no information about the set of keywords is required while
training the models.

Apart from the numerous HMM based approaches, more
unconventional keyword spotting strategies, such as applying
recurrent neural networks [5] or using discriminative learning
procedures [6], [7] have been developed. The latter technique
non-linearly maps speech features into an abstract vector space
which has shown good performance, but requires much more
computational power than HMM based methods.

In this paper we present a new graphical model (GM) design
which can be used for robust keyword spotting and overcomes
most of the drawbacks of other approaches. Graphical mod-
els offer a flexible statistical framework that is increasingly
applied for speech recognition tasks [8], [9] since it allows
for conceptual deviations from the conventional HMM archi-
tecture (as in [10] or [11] for example). The GM makes use
of the graph theory in order to describe the time evolution of
speech as a statistical process and thereby defines conditional
independence properties of the observed and hidden variables
that are involved in the process of speech decoding. Apart from
common HMM approaches, there exist only a small number
of works which try to address the task of keyword spotting
using the graphical model paradigm. In [12] a graphical model
is applied for spoken keyword spotting based on performing
a joint alignment between the phone lattices generated from
a spoken query and a long stored utterance. This concept,
however, is optimised for offline phone lattice generation
and bears no similarity to the technique proposed herein.
The same holds for approaches towards GM based out-of-
vocabulary (OOV) detection [13] where a graphical model
indicates possible OOV regions in continuous speech.

In the following sections we introduce the explicit graph
representation of a GM based keyword spotter that does not
need a trained garbage model and is robust with respect to
phoneme recognition errors. Our approach is conceptually
more simple than a large vocabulary ASR system since it does
not require a language model but only the keyword phonemi-
sations. By introducing a further hierarchy level in a graphical
model for phoneme recognition, we present a framework for
reliably detecting keywords in continuous speech. Thereby we
use a hidden garbage variable and the concept of switching
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parents [8] to model either a keyword or arbitrary speech.
The structure of this paper is as follows: Section II outlines

the graphical model architectures for training and decoding of
the keyword spotter. In Section III we evaluate our approach
on the TIMIT corpus before drawing conclusions in Section
IV.

II. GRAPHICAL MODEL ARCHITECTURES

Generally speaking, a graphical model G(V,E) consists of a
set of nodes V and edges E, whereas nodes represent random
variables which can be either hidden or observed. Edges –
or rather missing edges – encode conditional independence
assumptions that are used to determine valid factorisations of
the joint probability distribution. Dynamic Bayesian Networks
(DBN) are the graphical models of choice for speech recog-
nition tasks, since they consist of repeated template structures
over time, modelling the temporal evolution of a speech
sequence. Conventional HMM approaches can be interpreted
as implicit graph representations using a single Markov chain
together with an integer state to represent all contextual and
control information determining the allowable sequencing. In
this work however, we decided for the explicit approach,
where information such as the current phoneme, the indication
of a phoneme transition, or the position within a word is
expressed by random variables. As shown in [9], explicit graph
representations are advantageous whenever the set of hidden
variables has factorisation constraints or consists of multiple
hierarchies. In the following sections we illustrate how the
inherent benefits of explicit modelling can be exploited for
the task of keyword spotting.

A. Training

The graphical model we used to train our keyword spotter is
depicted in Figure 1. Compared to the GM that will be applied
for decoding (see Section II-B), the GM for the training of the
keyword spotter is less complex, since so far, only phonemes
are modeled. Thereby the training procedure is split up into
two stages: in the first stage phonemes are trained framewise,
whereas during the second stage, the segmentation constraints
are relaxed using a forced alignment (embedded training).

In conformance with Figure 1, the following random vari-
ables are defined for every time step t: qc

t is a count variable
determining the current position in the phoneme sequence,
qt denotes the phoneme identity, qps

t represents the position
within the phoneme, qtr

t indicates a phoneme transition, st

is the current state with str
t indicating a state transition, and

ot denotes the observed acoustic features. Figure 1 displays
hidden variables as circles and observed variables as squares.
Deterministic conditional probability functions (CPFs) are rep-
resented by straight lines whereas zig-zagged lines correspond
to random CPFs. The grey-shaded arrow in Figure 1, pointing
from qtr

t−1 to qc
t is only valid during the second training

cycle when there are no segmentation constraints, and will be
ignored in Equations 1 and 2. Assuming a speech sequence of
length T , the DBN structure specifies the factorisation
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Fig. 1. DBN structure of the graphical model used to train the keyword
spotter
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with p(·) denoting random conditional probability functions
and f(·) describing deterministic CPFs. The probability of the
observed sequence can then be computed as

p(o1:T ) =
∑

qc
1:T ,q1:T ,qtr

1:T ,qps
1:T ,str

1:T ,s1:T

p(qc
1:T , q1:T , qtr

1:T , qps
1:T ,

str
1:T , s1:T , o1:T )

(2)

whereas the factorisation property given in Equation 1 is
exploited in order to optimally distribute the sums over the
hidden variables into the products. We therefore used the
junction tree algorithm [14] to move the sums as far to the right
as possible which reduces computational complexity (see also
[8] for a simple example of efficient probabilistic inference).
The CPFs p(ot|st) are described by Gaussian mixtures as
common in an HMM system. Together with p(str

t |st), they
are learnt via EM training. Thereby str

t is a binary variable,
indicating whether a state transition takes place or not. Since
the current state is known with certainty, given the phoneme
and the phoneme position, f(st|qps

t , qt) is purely deterministic.
A phoneme transition occurs whenever str

t = 1 and qps
t = S
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provided that S denotes the number of states of a phoneme.
This is expressed by the function f(qtr

t |q
ps
t , qt, s

tr
t ). During

training, the current phoneme qt is known, given the position
qc
t in the training utterance, which implies a deterministic

mapping f(qt|qc
t ). In the first training cycle qc

t is incremented
in every time frame, whereas in the second cycle qc

t is only
incremented if qtr

t−1 = 1. The phoneme position qps
t is known

with certainty if str
t−1, qps

t−1, and qtr
t−1 are given.

B. Decoding

Once the distributions p(ot|st) and p(str
t |st) are trained, a

more complex GM is used for keyword spotting (see Figure
2): in the decoding phase, the hidden variables wt, wps

t , and
wtr

t are included in order to model whole words. Further, a
hidden garbage variable gt indicates whether the current word
is a keyword or not. In Figure 2, dotted lines correspond to so-
called switching parents [8], which allow a variable’s parents
to change conditioned on the current value of the switching
parent. Thereby a switching parent cannot only change the
set of parents but also the implementation (i.e. the CPF) of a
parent. Considering all statistical independence assumptions,
the graphical model can be factorised as follows:
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(3)

The hidden variable wt can take values in the range wt =
0...K with K being the number of different keywords in the
vocabulary. In case wt = 0 the model is in the garbage
state which means that no keyword is uttered at that time.
The variable gt is then equal to one. wtr

t−1 is a switching
parent of wt: if no word transition is indicated, wt is equal
to wt−1. Otherwise a simple word bigram specifies the CPF
p(wt|wtr

t−1 = 1, wt−1). In our experiments we simplified the
word bigram to a zerogram which makes each keyword equally
likely. However, we introduced differing a priori likelihoods
for keywords and garbage phonemes:

p(wt = 1 : K|wtr
t−1 = 1) =

K · 10a

K · 10a + 1
(4)

and
p(wt = 0|wtr

t−1 = 1) =
1

K · 10a + 1
. (5)

The parameter a can be used to adjust the trade-off between
true positives and false positives. Setting a = 0 means that
the a priori probability of a keyword and the probability that
the current phoneme does not belong to a keyword are equal.
Adjusting a > 0 implies a more aggressive search for key-
words, leading to higher true positive and false positive rates.
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Fig. 2. DBN structure of the graphical model for keyword spotting

The CPFs f(wtr
t |qtr

t , wps
t , wt) and f(wps

t |qtr
t−1, w

ps
t−1, w

tr
t−1)

are similar to the phoneme layer of the GM (i.e. the CPFs
for qtr

t and qps
t ). However, we assume that ‘garbage words’

always consist of only one phoneme, meaning that if gt = 1,
a word transition occurs as soon as qtr

t = 1. Consequently
wps

t is always zero if the model is in the garbage state. The
variable qt has two switching parents: qtr

t−1 and gt. Similar to
the word layer, qt is equal to qt−1 if qtr

t−1 = 0. Otherwise,
the switching parent gt determines the parents of qt. In case
gt = 0 – meaning that the current word is a keyword – qt is
a deterministic function of the current keyword wt and the
position within the keyword wps

t . If the model is in the garbage
state, qt only depends on qt−1 using a trained phoneme bigram
P. This phoneme bigram matrix is used to model arbitrary
speech and was learnt by simply counting phoneme transitions
that occur in a training corpus:

P = N− f · I (6)

Thereby the bigram matrix P contains the probabilities

Pij = p(qt = j|qtr
t−1 = 1, gt = 1, qt−1 = i) (7)

that the phoneme j occurs after phoneme i. N includes the
number of phoneme transitions nij , normalised by the number
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Ni of occurrences of the phoneme i in the training corpus,
whereas nij is floored to f :

Nij = max
(nij

Ni
,

f

Ni

)
(8)

Since Equation 8 introduces a probability floor value for all
possible transitions, the subtraction of the identity matrix I
weighted by f ensures that transitions from phoneme i to
phoneme i occur with zero probability.

Note that the design of the CPF p(qt|qtr
t−1, qt−1, w

ps
t , wt, gt)

entails that the GM will strongly tend to choose gt = 0
(i.e. it will detect a keyword) once a phoneme sequence that
corresponds to a keyword is observed. Decoding such an ob-
servation while being in the garbage state gt = 1 would lead to
‘phoneme transition penalties’ since P contains probabilities
less than one. By contrast, p(qt|qtr

t−1 = 1, wps
t , wt, gt = 0) is

deterministic, introducing no likelihood penalties at phoneme
borders.

III. EXPERIMENTS

Our GM keyword spotter was trained and evaluated on the
TIMIT corpus. The feature vectors consisted of cepstral mean
normalised MFCC coefficients 1 to 12, energy, as well as first
and second order regression coefficients. The phoneme models
were composed of three hidden states each. During the first
training cycle of the GM, phonemes were trained framewise
using the training portion of the TIMIT corpus. Thereby all
Gaussian mixtures were split once 0.02% convergence was
reached until the number of mixtures per state increased to 16
and 32 respectively. In the second training cycle segmentation
constraints were relaxed, whereas no further mixture splitting
was conducted (embedded training). We randomly chose 60
keywords from the TIMIT corpus to evaluate the keyword
spotter GM. The used dictionary allowed for multiple pronun-
ciations. The floor value f (see Equation 8) was set to 10 and
the trade-off parameter a (see Equation 4) was varied between
0 and 10.

For comparison, a phoneme based keyword spotter us-
ing conventional HMM modelling was trained and evaluated
on the same task. Analogous to the GM experiment, each
phoneme was represented by three states (left-to-right HMMs)
with either 16 or 32 Gaussian mixtures. Thereby we used
cross-word triphone models in order to account for contextual
information. Like the GM, all phoneme HMMs were re-trained
using embedded training. For keyword detection we defined
a set of keyword models and a garbage model. The keyword
models estimate the likelihood of a feature vector sequence,
given that it corresponds to the keyword phoneme sequence.
We thereby allowed for the same keyword pronunciation
variants as in the GM experiment. The garbage model is
composed of phoneme HMMs that are fully connected to each
others, meaning that it can model any phoneme sequence. Via
Viterbi decoding the best path through all models is found and
a keyword is detected as soon as the path passes through the
corresponding keyword HMM. In order to be able to adjust the
operating point on the ROC curve we introduced different a

priori likelihoods for keyword and garbage HMMs, identical
to the word zerogram used for the graphical model. Apart
from the transition probabilities implied by the zerogram, the
HMM system uses no additional likelihood penalties at the
phoneme borders. In this respect our HMM baseline is similar
to a system as described in [15].
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Fig. 3. Part of the ROC curve for the GM- and for the HMM keyword spotter
(using 16 Gaussian mixtures per state) – the operating points correspond to the
values a = 0, 1, 2, 3, 5, 10 (the larger a, the greater the false positive rate)
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Fig. 4. Part of the ROC curve for the GM- and for the HMM keyword spotter
(using 32 Gaussian mixtures per state) – the operating points correspond to the
values a = 0, 1, 2, 3, 5, 10 (the larger a, the greater the false positive rate)

Figures 3 and 4 show a part of the Receiver Operating
Characteristics (ROC) curve for our GM keyword spotter and
the HMM based keyword spotter, displaying the true positive
rate (tpr) as a function of the false positive rate (fpr) when
using 16 mixtures (Figure 3) or 32 mixtures (Figure 4). Note
that due to the design of the decoder, the full ROC curve –
ending at an operating point tpr=1 and fpr=1 – cannot be
determined, since the model does not include a confidence
threshold that can be set to an arbitrarily low value.

Due to the inherent robustness with respect to phoneme
recognition errors, which was outlined at the end of Section
II-B, our graphical model architecture achieves significantly
higher true positive rates at equal false positive rates, compared
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to the trivial HMM approach. We thereby can observe a
performance difference of up to 10% (see Figures 3 and 4).
Conducting the McNemar’s test revealed that the performance
difference between the GM keyword spotter and the HMM
approach is statistically significant at a common significance
level of 0.01. For both decoders 32 mixtures performed slightly
better than 16 mixtures.

IV. CONCLUSION AND DISCUSSION

In this work we showed how a graphical model can be
used for the task of keyword spotting. We presented the
explicit graph representation of a GM that can be used to train
phoneme models and extended the graph in a way that a set
of defined keywords can be reliably detected in continuous
speech. The aim was to encode all model assumptions via
hidden variables and conditional probability functions in a
unified GM framework and to create a basis for investi-
gating architectural modifications and refinements. A major
advantage of using graphical models in general, and explicit
graph representations in particular, is that they allow for rapid
prototyping if the potential of new model architectures shall
be investigated (as done in [10] for example). Thus, this work
can be seen as an attempt to view the task of spoken term
detection from the graphical model perspective – as it is done
e.g. in [9] for a simple whole word decoder – and thereby offer
all the advantages involved with that point of view.

Our graphical model was designed in a way that it over-
comes most of the drawbacks of previous keyword spotting
techniques. The model is vocabulary independent meaning that
during the training phase no knowledge about the specific set
of keywords the system shall be applied for, is necessary. This
implies that the GM can be trained on any corpus, no matter
if and how many times the keywords occur in the training
database. It is only in the testing phase that the model needs
to know the pronunciations of the keywords. Thereby it is
important to notice that even though our concept bases on joint
modelling of ‘garbage phonemes’ and keywords, the same
effect of vocabulary independent keyword detection cannot
be achieved with a system (and language model respectively)
trained on mixed phonetic/word transcriptions, where only
non-keywords are represented phonetically. Such a system
would again presume that the keywords are contained in the
training set and would therefore be less flexible.

Moreover, in contrast to many other approaches, the GM
introduced in this paper does not need an explicitly trained
garbage model. It rather uses a hidden garbage variable that
serves as a switching parent of the phoneme node in the
network. Thus, the model can switch between keywords and
non-keyword parts of a speech sequence without requiring
a model that was trained on ‘garbage speech’. Of course
the proposed architecture is not the only way to implement
a distinction between keywords and garbage speech within
the GM framework. If the phoneme node is for example
conditioned on further parent nodes, the switching could also
be encoded in the conditional probability function of the
phoneme node. Yet, in order to reduce the dimensionality of

the CPFs, we decided for the proposed technique, using the
concept of switching parents.

When evaluating the GM on a keyword detection task using
the TIMIT database, we found that our technique can outper-
form a comparable HMM based system that uses a garbage
model which connects all phoneme models. More precisely,
the GM approach achieves higher true positive rates since the
design of the graphical model implicitly introduces a certain
robustness with respect to errors made by the underlying
phoneme recognition network.

Future works might investigate alternative GM structures,
discriminative learning strategies, or advanced techniques of
context modelling (such as Long Short-Term Memory [7])
in order to further improve keyword spotting with graphical
models.
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