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When writing on a whiteboard, the writer stands rather than sits and the writing arm does not rest. Due

to these adverse conditions when writing on a whiteboard, the script lines within the handwritten text

suffer from high variations, i.e. they cannot be approximated by polynomials of low order. In this paper,

we propose a novel method for identifying script lines in handwritten whiteboard notes by assigning

the sample points of the script trajectory to the script lines. The optimal assignment is then found by

the Viterbi algorithm. We present two ways to use the script line characterization. First, the script lines

are used to normalize the skew and size of the text lines. In a second approach, the feature vector of a

standard recognition system is augmented by the explicit script line membership of each sample point,

aiming at reducing the confusions between characters differing in size rather than in shape (like “s” and

“S” or “e” and “l”). As experiments show, a relative improvement of r=3.3% in character-level and r=3.4%

in word-level accuracy compared to a baseline system can be achieved with the proposed script line

identification method. In addition, the written character confusion as described above can be reduced.

Finally, the proposed utilizations are examined and discussed in further detail.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

For the past 35 years, research has been conducted on recogniz-

ing handwritten notes, words, and sentences [1]. Handwriting recog-

nition can be divided into off-line and on-line recognition [2–4]. In

case of off-line recognition, a static image of the handwritten script

serves as recognizer input, while in on-line recognition the move-

ment of the pen is captured as trajectory [5].

Off-line and on-line recognizers suffer from errors introduced by

wrongly presegmented words or characters [6,7], which creates a de-

pendency between segmentation and recognition. This phenomenon

is sometimes referred to as “Syres-Paradoxon” [8]. Hidden Markov

models (HMMs), first introduced for automatic speech recognition

(ASR) [9], enable a combined segmentation and recognition avoiding

any error-prone pre-segmentation and have therefore become quite

popular in both on-line and off-line handwriting recognition [4]. In

handwriting recognition, each symbol (e.g. character) is represented

by one single HMM. Words are recognized by combining several

character HMMs using a dictionary [10,11]. While high recognition

rates are reported for on-line handwriting recognition of isolated
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words (see for example [12]), recognition performance considerably

drops when it comes to unconstrained handwritten sentence recog-

nition.

1.1. Whiteboard note recognition

The recognition of handwritten text and symbols written on

whiteboards has been increasingly studied [13,14], as whiteboards

play an important role in the so-called “smart meeting room”

scenarios (see for example [15–17]). However, in a whiteboard sce-

nario the writer stands rather than sits and the writing arm does

not rest, introducing additional variation. The script lines in the text

cannot be approximated by a simple polynomial of low order. Fur-

thermore, it has been observed that the size and width of characters

and words vary to a higher degree on whiteboards than on tablets.

These conditions contribute to the characterization of the problem

of on-line whiteboard note recognition as “difficult.”

The first attempts at recognizing a limited set of symbols written

on a whiteboard are presented in [18]. Whole text lines written on

a whiteboard were first recognized using HMMs in [7,13]. In both

approaches listed above, the handwritten data on the whiteboard

was captured by a camera, which limits these approaches to off-

line recognition but allows the use of a standard whiteboard and a

normal pen. Hence, the recording of the whiteboard notes is enabled

at low cost.
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Fig. 1. Exemplary setup for recording handwritten whiteboard notes with the

eBeam-system. Illustration adopted and altered from [25].

Fig. 2. Illustration of script lines within a (fraction of a) line of text as defined in

e.g. [27,28]. Script sample has been taken from [25].

A number of commercial solutions exist for recording whiteboard

notes both in an off-line and in an on-line manner. The handwritten

as well as additionally attached notes are scanned by a large scanner

mounted in front of the whiteboard with the Panasonic Panaboard [19].

On-line recording of the script trajectory is enabled by the PolyVision

Webster [20] and the SMART Technology SMART Board [21] in which a

sensitive surface captures the position of the pen. The trajectory is

then either projected on the surface [21] or displayed on a screen

[22].

More recently, new systems for recording whiteboard notes in an

on-line fashion written on a standard whiteboard have been devel-

oped. The Mimio Interactive-system by Mimio [23] and the eBeam-system

by Lucida [24] consist of two devices: a receiver, mounted to any

corner of a standard whiteboard and a stylus pen sending either ul-

trasound or infrared signals to the receiver. While a special pen is

necessary in the Mimio Interactive-system, in the eBeam-system a normal

pen is put into a special sleeve and used for writing. These systems

offer on-line information of the handwritten whiteboard notes at rel-

atively low cost. The eBeam-system is used in the IDIAP smart meeting

room [15] and its recordings (e.g. provided by the IAM-onDB [25],

see Section 5) are widely used for research in handwritten white-

board note recognition [2,14]. Recognition of recordings gathered

from the eBeam-system was performed for the first time in [14,26]

with an off-line approach and then in [2] with an on-line approach.

In this paper, the recordings of the eBeam-system as described in [25]

are used. Fig. 1 shows an exemplary setup for recording handwritten

whiteboard notes with the eBeam-system.

1.2. Paper outline

Handwritten text can be separated into certain script lines (see

for example [27,28]), as shown in Fig. 2. The top line, the corpus line,

Fig. 3. Possible character confusions of characters that differ in size rather than

in shape without script lines (left) and relative size description with script lines

(right).

the base line and the bottom line are (ideally) defined by the top of

tall letters (such as “M” and “t”), the top of lower case letters (such

as “s” and “a”), the base line points, and the bottom of characters

such as “p”, respectively [28].

In this paper, the identification of the script lines in a line of text

is addressed. Different approaches for identifying these script lines

in a handwritten line of text have been published. Base lines and

corpus lines are described by a linear regression approximating lo-

cal minima and local maxima of the trajectory in [29]. In [30,31] the

script lines are found by analyzing the profile of the y-projection of

the handwritten script. All four script lines are approximated as pa-

rameterized curves of a second order polynomial in [27,28]. Their

parameters are found by fitting a geometrical model to the trajectory

by applying the expectation–maximization (EM) algorithm [28,32].

While these approaches work fine for normal handwriting, enhanced

algorithms are needed for lines of text written on a whiteboard. To

cope with the observed variations, in [2] a line of text is heuristi-

cally segmented into subparts in which the script lines are identified

separately.

In this paper, we propose a novel approach for script line iden-

tification in text lines written on a whiteboard. First, sample points

are found which are potential candidates for defining the script lines.

Then, a trellis is built holding all possible sample point to script line

assignments. The least costly path through that trellis is found by

applying the Viterbi algorithm [33]. Finally, we iteratively refine the

sample point assignment and obtain script lines, whichmay have any

characteristic (i.e. any bend). The identified script lines are utilized

in two ways. In the first approach, the script line-assignment is used

for skew correction and script size normalization by “equalizing” the

script lines: the script lines are forced to run both horizontally and

straight and the handwritten script is morphed accordingly.

As illustrated in Fig. 3 left even for a human observer, without

any context, it is impossible to distinguish between “s” and “S” or “e”

and “l”. However, if the script lines limiting the characters are given,

these characters are distinguishable from each other. Following this

reasoning, the second utilization of the script lines presented in this

paper is the definition of a novel “line-member” feature, describ-

ing the script line association of certain sample points to the cor-

responding script lines. This aims to reduce the confusion between

characters of similar shape and different size by adding additional

discriminance.

1.3. Structure of the paper

The next section gives a brief overview of our baseline system,

including the preprocessing used as initialization for the novel script

line identification, the set of standard features, and the HMM-based

recognizer. In Section 3 the novel script line identification is de-

scribed. Section 4 introduces the utilization of the script lines for

skew and size normalization, and as a novel “line-member” feature,

whereby the line-member feature describes the assignment between

the sample points and the script lines. In an experimental section

(Section 5) the influence of both script line utilizations is examined.

Conclusions are drawn and an outlook to further work is given in

Section 6.
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2. System overview

This section gives a brief overview of the recognition system,

including the preprocessing, the feature extraction, and the HMM-

based recognizer, used for the experiments in Section 5.

2.1. Preprocessing

The handwritten whiteboard data are first recorded using the

eBeam-system as described in the Introduction. Fig. 1 shows the ex-

perimental setup. After recording, the handwritten data are repre-

sented by the sample points s(t) = (x(t), y(t),p(t))T, where x(t) de-

notes the x-coordinate, y(t) the y-coordinate, p(t) the pressure of the

pen at time instance t and (·)T the transpose of a matrix or a vector.

Afterwards, the recorded data are heuristically segmented into lines

[2]. Due to the recording system's limitations the sampling is neither

space nor time equidistant. The sample rate fs differs in the range

of fs = 30Hz, . . . , 70Hz. Resampling is therefore performed as a first

preprocessing step in order to achieve a space-equidistant sampling

of the handwritten data. Following this, a histogram-based skew-

and slant-correction is performed as described in [34]. Next, all text

lines are normalized to meet a distance of “one” between the corpus

and the baseline followed by a final resampling of the data. For the

initial script line estimation, the corpus and baseline are assumed

parallel and horizontal. The position of both lines is estimated using

a histogram-based projection approach similar to [30]. This normal-

ization serves as initialization for the novel script line identification

as introduced in Section 3.

2.2. Standard feature extraction

Following the preprocessing, 24 features are extracted from

the three-dimensional sample points in order to describe the

handwritten data more thoroughly, and the feature vector

f(t) = (f1(t), . . . , f24(t)) is derived. This 24-dimensional feature vector

is enhanced by a 25th feature (fn,25(t)) later in Section 4.2, which

describes the “line membership” of each sample point.

The 24 state-of-the-art on-line and off-line features for handwrit-

ing recognition [2,27] used in this paper are briefly explained below.

As on-line features we extract

f1(t)indicating the pen “pressure”, i.e.

f1(t) =
{
1 pen tip on whiteboard,

0 otherwise
(1)

f2(t)velocity equivalent, which is computed before resampling

and later interpolated;

f3(t)x-coordinate after resampling, initial script normalization,

and subtraction of the moving average;

f4(t)y-coordinate after resampling and initial script normaliza-

tion;

f5,6(t)angle � of consecutive strokes (coded as sin� and cos�, the
“writing direction”);

f7,8(t)difference of consecutive angles �� = �(t)− �(t− 1) (coded

as sin�� and cos��, the “curvature”).

In addition, certain on-line features describing the relation of the

sample point st to its neighbors s(t− �), s(t− � + 1), . . . , s(t− 1) were

adopted and altered from those described in [2,27]:

f9(t) the aspect of the trajectory between the points s(t − �) and
s(t) (referred to as “vicinity aspect”),

v =
(

�y − �x
�y + �x

)
,

�x = x(t) − x(t − �),
�y = y(t) − y(t − �).

(2)

As v tends to peak for small values of �y + �x, we narrow its

range by

f9(t) = sign(v) · log(1 + |v|). (3)

Hence, a logarithmic transform of the vicinity aspect is used as

feature.

f10,11(t) angle � between the line s(t − �)s(t) and the horizontal

line (coded as sin� and cos�, the “vicinity slope”);

f12(t) length of the trajectory, normalized by the length

max(|�x|; |�y|) (“vicinity curliness”);

f13(t) average square distance to each point in the trajectory and

the line s(t − �)s(t).

The second class of features extracted for the baseline system,

the off-line features, are as follows:

f14–22(t) 3× 3 subsampled bitmap slid along the pen's trajectory

(“context map”) to incorporate a 30×30 fraction of the currently

written letter's actual image;

f23–24(t) number of pixels above, or, respectively, beneath the

current sample point st (the “ascenders” and “descenders”).

2.3. Recognizer

After the extraction of the features, the handwritten data are rec-

ognized by using a recognizer based on continuous HMMs [9]: each

symbol (in this paper: characters) is modeled by one HMM. For com-

parability, the HMM topology is mainly adopted from [2]. However,

in this paper use NGauss = 32 Gaussian mixtures for approximating

the output probabilities, instead of NGauss = 36 as are used in [2].

Training of the HMMs is performed by the EM algorithm [32]. Us-

ing the Viterbi algorithm the handwritten data are recognized and

segmented [9,33].

3. Script line identification

In this section we describe our novel approach for script line iden-

tification in on-line handwritten whiteboard note recognition. First,

all sample point to script line assignments are modeled by a finite

state machine and a reasonable reduction of sample point candidates

for the script line description is made. Then a trellis-representation

of the sample point to script line assignment, a suitable metric, and

the identification of the optimal assignment are described. Finally,

an iterative refinement of the sample point to script line assign-

ment is given. Throughout this section, it is assumed that the hand-

written data are preprocessed by the basic steps as summarized in

Section 2.1.

3.1. Finite state machine modeling

As explained in the Introduction, the four script lines are defined

by certain sample points. However, it is not always clear which sam-

ple point lies on a specific script line, making the sample point to

script line assignment unknown. If the association between sample

points and script lines is known, the characteristics of the script lines

can be derived. This is the basic principle underlying our approach:

Identifying the script line characteristics by finding the correspond-

ing sample points lying on the specific line.

This can be modeled by the finite state machine as depicted in

the upper part of Fig. 4: for each sample point s(t), the script line

assignment l(t) = i is represented by one state si in the finite state

machine, with i=0 when the sample point is assigned to no line and

i={1, . . . , 4} for the top, corpus, base, and bottom line, respectively. A

transition between two states si and sj is made, if the sample point

s(t − 1) is assigned to line i and the sample point s(t) is assigned to



3386 J. Schenk et al. / Pattern Recognition 42 (2009) 3383 -- 3393

Fig. 4. Finite state machine for modeling all possible sample point to script line

assignments (upper part), description (middle) and reduced finite state machine

(lower part) for assigning extreme points (sext) to the script lines. For the purposes

of clarity, some transitions are grayed.

line j, hence l(t − 1) = i and l(t) = j. As all states are interconnected,

each sample point s(t) of the T sample points in S = {s1, . . . , sT } may

be assigned to any of the Nl = 4 script lines regardless of the as-

signment l(t − 1) of the previous sample point s(t − 1). This leads

to Ntot = (Nl + 1)T different mappings, out of which one describes

the “correct” sample point to script line assignment. If T ≈ 100 is

assumed (this assumption is valid for the database used for the ex-

periments in Section 5), Ntot ≈ 7.8 × 1069 different mappings have

to be investigated.

3.2. Candidate reduction

In order to reduce the number of possible sample point to script

line assignments, first the number of potential candidates defining

the script lines is reduced. Meeting the script line definitions given

in the introduction we use spatial extreme points1 sext(n) ∈ Sext.

For the extreme points, local minima and local maxima are extracted

from the text line S according to

Smin = {s(t)|y(t)<y(t − 1) ∧ y(t)<y(t + 1)},
Smax = {s(t)|y(t)>y(t − 1) ∧ y(t)>y(t + 1)}, (4)

2� t�T − 1. The extreme points are then derived to Sext =Smin ∪
Smax, with

smin(n) ∈ Smin, 1�n�Nmin = |Smin|,
smax(n) ∈ Smax, 1�n�Nmax = |Smax|, (5)

and Next = Nmin + Nmax being the total number of extreme points.

Hence, in the following the script lines are defined by the extreme

points.

As each extreme point sext(n) is assumed to lie on a script line,

in a second step the finite state machine defining the script line

assignment described in Section 3.1 can be reduced by the first state

yielding the reduced state machine as displayed in the lower part of

Fig. 4. However, even with the reduced number of sample points and

1 Some authors recommend an estimation of extreme points in the velocity

domain rather than in the spatial domain (see for example [35]). However, as

mentioned in Section 2 the sample rate of the recording system differs in a wide

range, inhibiting a robust estimation of extreme points in the velocity domain.

Fig. 5. Trellis representation of the finite state machine as shown in the upper part

of Fig. 4 (left) and the reduced finite state machine as shown in the lower part of

Fig. 4 (right). For the purposes of clarity, some transitions are grayed.

states in the finite state machine Ntot = (Nl)
Next (in case of Next ≈ 30,

Ntot ≈ 1.2× 1018) different extreme point to script line assignments

can be found, which is computationally infeasible. Therefore a further

reduction of the number of assignments is necessary.

3.3. Trellis representation

Although reduced, all possible script line to extreme point assign-

ments cannot be searched for the optimal assignment by an exhaus-

tive search. The question therefore arises as to how the best extreme

point to script line assignment can be found with lower cost. For a

temporal interpretation of the finite state machines displayed in Fig.

4, they are evoluted in a trellis diagram as shown in Fig. 5 for a tran-

sition from t − 1 to t and n− 1 to n, respectively. The assignment of

the extreme point sext(n) to script line l is represented by the trellis

node c(l,n) and is called assignment “hypothesis” in the following.

Additionally, all possible transitions between states are displayed in

Fig. 5 and marked by arrows. Each path through the trellis represents

one certain mapping of all extreme points to the script lines.

The extreme points which are assigned to the script line l are
contained in the set Ll, where

sext(n) ∈ Ll if sext(n) is assigned to script line l. (6)

The script line l is therefore characterized by the consecutive extreme

points sext(n) ∈ Ll. For each script line l an initial y-position cl(0),
1� l�Nl, where each cl(0) belongs to c(0) = (c1(0), . . . , cNl

(0))T, is

defined as

c(0) =
(

max
1�n�Next

yext(n), 1, 0, min
1�n�Next

yext(n)
)T

, (7)

as the line of text is normalized to a corpus–base line distance of

“one” during preprocessing (see Section 2.1). The absolute y-distance
between the current extreme point sext(n) and the script line l is

m(l,n) = |yext(n) − cl(0)|. (8)

In case of horizontal script lines the assignment is a simple nearest

neighbor search leading to

l̂(n) = argmin
1� l�Nl

m(l,n) ⇒ sext(n) ∈ Ll̂(n), (9)

where l̂(n) is the script line assignment hypothesis of extreme point

sext(n). However, the simple assignment described in Eq. (9) is not

valid for handwritten whiteboard notes—as pointed out in [2], the

script lines cannot be approximated by a polynomial of degree up

to two, i.e. the possibility exists that they are not straight lines. Each
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extreme point assigned to a specific script line alters its

characteristics. In addition, more than one script line can be a

reasonable assignment for the current extreme point, whereas the

following extreme points may decide whether this assignment is

valid. In the next section we therefore enhance the trellis nodes and

define the trellis-based script line-assignment using the mapping

hypothesis.

3.4. Line assignment

As explained in Section 3.1, for each extreme point sext(n),
sext(n) ∈ Sext, 1�n�Next an assignment to all script lines l
(1� l�Nl) is assumed. This hypothesis is represented in the trel-

lis nodes c(l,n) = (c1(l,n), . . . , cNl
(l,n))T, 1� l�Nl, 1�n�Next of an

Nl × Next trellis (see Fig. 5), where ci(l,n) holds the current absolute

y-position of script line i if sext(n) is assigned to the script line l.
The variation in the characteristics of the script line l (expressed as

the absolute value of the change in its y-position) introduced by the

association of the current extreme point sext(n) is captured by the

metric Mn(l) (which is more formally defined in Eqs. (10) and (11)).

A high value of Mn(l) indicates a high variation of the text lines,

whereas a small value describes horizontally running script lines.

As transitions in the trellis are made with respect to the assign-

ment of the previous extreme point, e.g. if c(2,n − 1) is followed by

c(4,n), sext(n−1) is assigned to the corpus line and sext(n) is assigned
to the bottom line (see Section 3.1), the current line-assignment de-

pends on the assignment of the subsequent extreme point sext(n+1).

In order to find an, in some sense, optimal assignment between

the extreme points and the script lines, the transitions in the trellis

are made with respect to minimizing the metricMn(l) for each trellis

node c(l,n) which describes the accumulated absolute variation of

each script line. The final extreme point to script line assignment is

derived from the path through the trellis yielding the smallest metric

MNext
(l). A path variable �n(l) is therefore used to store the preceding

trellis node. Hence, the metric Mn(l), the path variable �n(l) and the

trellis nodes c(l,n) are derived as follows: first the metric M1(l), the
path variable �1(l), and the trellis nodes c(l, 1) corresponding to the

first extreme point sext(1) are initialized using Eq. (7):

M1(l) = |cl(0) − yext(1)|,
�1(l) = 0,

ci(l, 1) =
{
yext(1) if l = i,
ci(0) otherwise.

1� i, l�Nl. (10)

The metric Mn(l), the path variable �n(l), and the trellis nodes

c(l,n) of the successive extreme points sext(n), 1�n�Next are recur-

sively defined by

Mn(l) = min
1� i�Nl

(Mn−1(i) + |cl(i,n − 1) − yext(n)|),

�n(l) = argmin
1� i�Nl

(Mn−1(i) + |cl(i,n − 1) − yext(n)|),

ci(l,n) =
{
yext(n) if l = i,
ci(�n(l),n − 1) otherwise,

(11)

with 2�n�Next and 1� i, l�Nl. If the current extreme point sext(n)
is assigned to script line l the characteristics of script line l are

changed such that it runs through the coordinates of that point. This

is expressed by cl(l,n) = yext(n). However, the characteristics of the

remaining script lines i, 1� i�Nl, i� l are not affected by this as-

signment and the position information of these lines is taken from

the trellis node of the preceding extreme point sext(n − 1) yielding

the lowest metric Mn−1(l), and deriving ci(l,n) = ci(�n(l),n − 1). The

updating defined by Eq. (11) is illustrated in Fig. 6 for an exemplary

transition from c(2,n − 1) to c(4,n) resulting in a minimum weight,

and hence sext(n − 1) is assigned to the corpus line and sext(n) is

assigned to the bottom line.

Fig. 6. The information of the script line positions stored in trellis node c(4,n) of

script line l = 4 is updated by the y-position yext(n) of the current extreme point

sext(n) (l = 4) and the position information (c1(2,n − 1), c2(2,n − 1) and c1(3,n − 1))

of the preceding trellis node c(2,n − 1) in case that a transition from c(2,n − 1)

to c(4,n) leads to the smallest metric Mn(4) (assigning sext(n − 1) to the corpus

line and sext(n) to the bottom line). For the purposes of clarity, some transitions

have been omitted. The script trajectory has been slightly interpolated for improved

display.

Fig. 7. Burst error in the assignment of successive extreme points after one previous

extreme point has been assigned to the wrong script line. Script sample taken from

[25].

The final script line assignment l̂(n) for each extreme point sext(n)
is found via backtracking:

l̂(Next) = argmin
1� l�Nl

MNext
(l) ⇒ sext(n) ∈ Ll̂(n),

l̂(n) = �n+1(l̂(n + 1)), n = Next − 1, . . . , 1, (12)

yielding the explicit assignments sext(n) ∈ Ll̂(n). This implements

the well-known Viterbi algorithm [9,33].

It shall be noted that the script line-assignment as performed by

adequately applying Eqs. (10)–(12) allows for the incorporation of

constraints on the characteristics of the script lines, e.g. that script

lines may not cross or lie on each other. This is expressed by the

condition

c1(l,n)> · · ·>cNl
(l,n),

1� l�Nl,

1�n�Next.
(13)

All paths through the trellis in which at least one extreme point to

script line assignment violates Eq. (13) are omitted.

3.5. Refinement

The basic trellis approach as introduced in the above section

and explicitly expressed by Eqs. (10)–(12) performs a script line-

assignment for each extreme point sext(n), whether or not the cur-

rent point lies on any script line. This leads to mischaracterized script

lines. Furthermore, due to this wrong characterization succeeding

points may be assigned to wrong lines, perpetuating the wrong char-

acterization, and a “burst error” occurs as shown in Fig. 7.
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Fig. 8. Assignment between certain extreme points within a fraction of a text line and the script line is found by applying the Viterbi algorithm in order to find the least

costly path through a trellis built by the algorithms as presented in the Sections 3.4 and 3.5. Script sample taken from [25]. For the purposes of clarity, some transitions

have been omitted.

To avoid the forced assignment of each extreme point, the

following assumptions are made:

1. the extreme points contained in Smin belong to the bottom and

base line, whereasSmax consists of extreme points on the corpus

and top line and

2. for each tuple of lines (bottom and base line; corpus and top line)

a main line exists, which holds most of the extreme points. The

base line and the corpus line are assumed to be the main line for

Smin and Smax, respectively.

The first assumption is motivated by the definition of the script

lines as given in the introduction and is commonly used, see

[2,27,28]. The second assumption is based on the fact that most

characters contain the base and corpus line, whereas the bottom

and top line are shared by fewer characters.

With these common-sense refinements the line-assignment as

explained above is performed on the two separate sets Smin and

Smax as defined in Eq. (5), still taking all script line hypotheses for

each minimum or maximum into account. Thereby minima which

belong to the top of tall letters (e.g. “J”) are absorbed by either the

corpus or top line and not assigned to the relevant bottom or base

line.

For both sets the number of extreme points Nmain assigned

to the main line is counted. After this first assignment, both

sets are iteratively reduced by one extreme point and the as-

signment is repeated on the reduced sets. In cases where the

number of extreme points assigned to the main lines is higher

than for the initial assignment, the omitted extreme point leads

to an improvement and the sets are further reduced. Otherwise

the initial line-assignment is used. The following listing describes

the extended algorithm for the script line-assignment in further

detail.

Fig. 8 shows the exemplary trellis that results if the basic algo-

rithm presented in Section 3.4 as well as the refinement from this

section are applied on (a fraction of) a text line. Note the parallel

paths: when two parallel paths merge for the current extreme point,

a final decision on the script line-assignment of all preceding extreme

points is made.

4. Normalization and “line-member” feature

In this sectionwe suggest twomethods of how to utilize the script

lines found by the algorithms described in Section 3: first, they are

used for normalizing the skew and size of the text line as presented

in [36]. A second approach uses the line assignment of the extreme

points to augment the feature by describing the line membership of

each sample point yielding a 25th feature fn,25(t) [37].

Algorithm. Extended script line-assignment.

Data: Smin,Smax

Result: script line-assignment

forall the S ∈ {Smin,Smin} do⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Sproc =S= {s(1), . . . , s(|Sproc|)};
imp = 1;

while imp = =1 do⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nmain(0) = Anzahl Extrempunkte auf Hauptlinie(Sproc);
nach Gleichungen (10)–(12)

forall the i ∈ {1, . . . , |Sproc|} do⌊
Nmain(i) = Anzahl Extrempunkte auf Hauptlinie({Sproc\s(i)});

nach Gleichungen (10)–(12)

if î = argmax
0� i� |Sproc|

Nmain(i) = =0 then∣∣ imp = 0

else⌊
Sproc = {Sproc\s(î)}

4.1. Script line normalization

After assigning all extreme points to the script lines according to

Eq. (6), by properly applying the methods as described in Section 3,

the script lines can be equalized, i.e. the particular assigned points

sext(n) ∈ Ll of each script line are shifted in order to lie on a hori-

zontal line and meet the same y-position for all text lines. The target

heights rl, 1� l�Nl of the script line l are set to r = (2, 1, 0,−1)T. By

warping each sample point s(t)= (x(t), y(t))T of the script trajectory,

which is limited by the script lines according to the shifts of the sup-

porting points, the script trajectory is normalized both in skew and

in size.
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To perform the mentioned warping of the script trajectory, the

script lines are interpolated between the supporting points. In our

paper this is done by a linear interpolation

ŷl(x(t)) = yl(n − 1) + yl(n) − yl(n − 1)

xl(n) − xl(n − 1)
· (x(t) − xl(n − 1)), (14)

where ŷl(x(t)) is the linearly interpolated y-position of script line l
at the x-position x(t); xl(n−1), xl(n) and yl(n−1), yl(n) denote the x-
and y-position of the supporting points sext(n−1), sext(n) ∈ Ll lying

closest to the sample point s(t). The warped y-position ỹ(t) of each
sample point s(t) of the script trajectory S is given by

ỹ(t) = rl2 + y(t) − ŷl2(x(t))
ŷl1(x(t)) − ŷl2(x(t))

· (rl1 − rl2), (15)

where l1 and l2 (l1<l2) are the two script lines in between which s(t)
lies. To cope with horizontal distortions due to the vertical warping,

s = 1

T

T∑
t=1

ŷl2(x(t)) − ŷl1(x(t))
rl2 − rl1

(16)

Fig. 9. Script trajectory before novel normalization (upper part) and normalized

script trajectory (lower part) after shifting the extreme points s(n− 1) and s(n) and
the sample point s(t) in order to achieve parallel and horizontally running script

lines. The script trajectory has been slightly interpolated for better illustration.

Fig. 10. Script trajectory after standard normalization (upper part) and after applying the novel preprocessing (lower part) presented in this paper. Script sample taken from

[25].

is derived and horizontal scaling is performed by

x̃(t) = s · x(t), 1� t�T, (17)

with x̃(t) the warped x-position of the sample point s(t). As a result

the warped sample point s̃(t) = (x̃(t), ỹ(t))T is obtained. The warping

procedure is illustrated in Fig. 9. The extreme points sext(n) assigned
to the script lines are shifted according to Eqs. (15) and (17), resulting

in the shifted extreme points s̃ = (x̃l(n), ỹl(n))
T. All extreme points

sext(n) ∈ Ll defining the script line l share the same y-coordinate
ỹl(n) = rl after warping as indicated in the lower part of Fig. 9.

The result of the normalization of whole text line using the warp-

ing as expressed in Eqs. (15) and (17) is shown in the lower part

of Fig. 10. After normalization of the script trajectories according

to Eqs. (17) and (15), resampling is performed in order to achieve

space equidistantly distributed sample points (see Section 2.1), and

subsequently the 24 standard features are extracted as explained in

Section 2.2.

4.2. Line-member

As explained in the Introduction, characters that differ in size

rather than in shape can be confused. To overcome this problem, a

feature characterizing the line-assignment of each of the T sample

points s(t) of a text line S = [s(1), . . . , s(T)] is defined. This “line-

member” feature fn,25(t) is given by

fn,25(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if s(t) lies on no line,

1 if s(t) lies on top line,

2 if s(t) lies on corpus line,

3 if s(t) lies on base line,

4 if s(t) lies on bottom line.

(18)

After reducing the number of line-member candidates to the spatial

extreme points in the script trajectory, the line assignment (see Sec-

tion 3.4), and the subsequent refinement (see Section 3.5) the final

assignment between the extreme points sext(n), 1�n�Next and the

script line l is given by the sets Sl. Hence, the value assignment of

the line-member feature as defined in Eq. (18) derives to

fn,25(t) =
{
l if s(t) ∈ Sl, 1� l�Nl,

0 otherwise.
(19)

The former feature vector f(t) is augmented by the feature defined

by Eqs. (18) and (19), yielding the 25-dimensional feature vec-

tor fn(t) = (fT(t), fn,25(t))
T. In contrast to the novel normalization

scheme as explained in Section 4.1, the position of the sample

points is not changed and a further resampling is therefore not

necessary.

5. Experimental results

The experiments presented in this section are conducted on a

database containing Ntot = 13049 handwritten and heuristically
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Table 1
Summary of the results obtained by the experiments conducted in Section 5 given as character-level accuracy measured on the validation set and word-level accuracy

gained on the test set of the IAM-OnDB-t1 benchmark [38].

Baseline Novel normalization Line-member feature Reference [25]

(Experiment 1) (Experiment 2) (Experiment 3) (Ref. system)

Char. ACC (on validation set) relative improvement �r(pN) ab = 61.2% anorm = 62.2% alm = 63.3% –

(compared to baseline) – 1.6% (0.91) 3.3% (>0.99)

(compared to anorm) – 1.7% (0.93)

Word. ACC (on test set) Ab = 62.6% Anorm = 63.5% Alm = 64.8% A[25] = 65.2%

relative improvement �r(pN) �rbase = 4.0%

(compared to baseline) – 1.4% (0.92) 3.4% (>0.99) �rnorm = 2.6%

(compared to Anorm and/or Alm) – 2.0% (0.98) �rlm = 0.6%

Additionally the relative changes �r in recognition performance of the various systems as well as the significance level pN are given. Notes to the editor: In the final paper

format a greater font size for this table will be used. This table is designed for being spread over two columns.

line-segmented whiteboard notes (IAM-OnDB2 ). For further infor-

mation on the IAM-OnDB see [25]. Comparability of the results is pro-

vided by using the well-defined settings of the writer-independent

IAM-onDB-t1 benchmark, consisting of 56 different characters, and

an 11k dictionary. It provides four data-sets: one for training, two for

validation, and one for testing. The recognition of the handwritten

whiteboard notes is performed independently of the writer. Hence,

text lines written by one specific writer appear in just one of the four

data-sets. The training set defined by the IAM-onDB-t1 benchmark

consists of Ntrain =5365 text lines; the two validation sets consist of

Nval,1 = 1438 and Nval,2 = 1518 text lines, and the test set consists of

Ntest=3857 text lines. Since only one validation set is required in this

paper, the combination of both validation sets provided by the IAM-

OnDB-t1 benchmark serves as validation set, containing Nval = 2956

lines of text. In sum Nt1 = 12177 text lines out of the Ntot = 13049

text lines of the IAM-OnDB are used for the experiments presented

in this section.

The parameters of the HMMs used for recognition are estimated

from the data in the training set. In order to avoid over-fitting of

the models to the training data, after each iteration character-level

recognition is performed on the validation set. Training continues,

until no improvement on the validation set can be achieved. For

measuring the performance of the systems the accuracy (ACC) is

used:

ACC : a = 100 ·
(
1 − Nins + Nsubs + Ndel

Nocc

)
(%), (20)

withNins the number of insertions,Nsubs the number of substitutions,

and Ndel the number of deletions of the recognizer's transcriptions

compared to the transcriptions of the IAMonDB, referring to a data-

set with a total of Nocc character and words, respectively.

In all our experiments presented in this section, the recognition

accuracy obtained on the validation set is given on the character-

level (the number of characters in the validation set is Nocc=71193).

The best performing parameters are then used for a final test on the

test set. The recognition performance measured on the test set is

given as word-level accuracy (the number of words in the test set is

Nocc = 24685). By applying the same language model as in [38] for

the final test, comparability to the results as, for example, presented

in [38] is provided. For our experiments, the same HMM topology

as in [2] is used in all our systems. However, in contrast to [2], the

observation probability of the HMMs is modeled with NGauss = 32

instead of NGauss = 36 Gaussian mixtures. Statistical significance of

the results is, whenever possible, proven by the one sided t-test giv-
ing the probability pN of rejecting the hypothesis “both approaches

perform equally.”

2 http://www.iam.unibe.ch/∼fki/iamnodb/

Fig. 11. Although the correct sample point to script line assignment is found, after

applying the novel normalization scheme a wrongly normalized trajectory is the

result, causing a reduction in character-level accuracy.

Experiment 1: In the first experiment, the baseline system (Sys-

tem 1) is evaluated. It uses the standard preprocessing (see Section

2.1) and the 24 standard features (see Section 2.2). A character-level

accuracy of ab = 61.2% (obtained on the validation set) and a word

accuracy of Ab = 62.6% for the final test are achieved. Both results

are shown in the second column of Table 1. These results form the

baseline with which other results are compared.

Experiment 2: The influence of the novel script line normaliza-

tion is shown in the second experiment. Thereby, in System 2 the

same 24-standard features as for System 2 are extracted from the

sample points of the script trajectory which have been normalized

as explained in Section 4.1. The results are shown in the third col-

umn of Table 1: on the character-level an accuracy of anorm = 62.2%

is obtained which translates to a relative improvement of �r = 1.6%

compared to the performance of System 1. This improvement is sta-

tistically significant (pN = 0.91). When a word-level recognition of

the test-set is conducted, an accuracy of Anorm = 63.5% can be re-

ported, which denotes a relative improvement of �r = 1.4% when

compared to System 1. Again, this is a statistically significant im-

provement (pN = 0.92).

While the novel normalization scheme significantly improves the

overall recognition performance, in some cases the novel normaliza-

tion introduces errors which are not observable without the novel

normalization. This is shown in Fig. 11 taking the character “a” as

example. Depending on the character's shape, the novel normaliza-

tion can lead to a script trajectory suffering from higher distortions

than before the normalization. As can be seen in Fig. 11, all extreme

points are assigned to the correct script line. However, since a part

of the character's trajectory runs above an extreme point lying on

the corpus line, this part is located above the corpus line after nor-

malization. This leads to the observed additional distortion. In these

cases a local normalization will be used in future approaches to limit

the influence of the novel normalization on already correctly posi-

tioned parts of the characters.

Another issue with the proposed normalization technique is il-

lustrated on the left-hand side of Fig. 13, in which a wrong sample

point to script line assignment leads to an incorrect script line esti-

mation. Once the text line is normalized according to the script lines,

features are extracted from the script trajectory. As both the on-line

and the off-line features as introduced in Section 2 are derived from
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Table 2
Absolute count of character confusions of selected character pairs without and with

the novel line-member feature (f25).

System e ↔ l s ↔ S a ↔ d

Novel feature

Without 388 392 156

With 39 193 90

Fig. 12. While a correct classification is possible without the line-member feature

(left), a character confusion occurs if a wrong line-member feature value is used

for recognition (right).

the script trajectory, a wrong normalization influences all features,

which introduces additional recognition errors.

However, as the results indicate, the errors caused by the above-

mentioned additional distortions introduced by our novel normal-

ization rarely occur. This leads to an improvement of the overall

recognition accuracy of our recognition system.

Experiment 3: In the last experiment, the benefit of the line-

member feature is examined. Taking System 1 as a start, the fea-

ture vector is augmented by the explicit information whether the

current sample point lies on a script line. In case it does, the in-

formation on which of the four script line the sample point lies is

coded into the feature value according to Section 4.2. This forms

System 3. No further preprocessing is performed. Table 1 shows

some rather promising results: while a character-level accuracy of

alm = 63.3% conducted on the validation set and therefore a relative

improvement of �r = 3.3% compared to System 1 can be observed,

a slightly higher relative improvement of �r = 3.4% in word-level

accuracy (yielding Alm = 64.8%) on the test set is achieved. Both

improvements are statistically highly significant (pN >0.99 in both

cases).

As explained in the Introduction, the main motivation of the line-

member feature is to distinguish between characters that differ in

size rather than in shape. The absolute counts of mutual character

confusions of selected character pairs for the baseline system are

shown in the second line of Table 2. In order to prove the reduction

of the character confusions, the same confusion analysis has been

performed on the system using the line-member feature. The result

is shown in the third line of Table 2. As intended, the absolute count

of mutual character confusions drops. However, there are still some

confusions.

The remaining, observable confusions are caused by an im-

proper feature extraction: in some cases the sample points are not

assigned to the correct script lines. By carefully examining the exam-

ples showing character confusions, two impacts of false line mem-

bership can be identified. First, an erroneous line-member feature

leads to the same confusion as without the line-member feature.

Second, the line-member feature introduces novel character confu-

sions compared to the baseline system. This is illustrated in Fig. 12.

The left part of Fig. 12 shows a trajectory of the character “a” with

an unusual, yet not unnatural ascender. When using the baseline

system for recognition, the character is recognized correctly. Due to

a wrong extreme point to script line assignment, as depicted on the

right-hand side of Fig. 12, the top of the ascender is associated with

top line. This leads to a character confusion, as in the novel system

which utilizes the line-member feature, the same character is rec-

ognized as “d”. However, the overall number of mutual character

confusions can still be reduced by the line-member feature.

Fig. 13. Influence of wrong extreme point to sample point assignment on the novel

normalization (left) and the line member feature (right). While in case of the novel

normalization all features are influenced by the wrong assignment, the influence is

limited solely to the line-member feature.

Compared to System 2, which also utilizes the sample point to

script line assignments (see experiment 2), a significant, relative im-

provement of �r=1.7% (pN =0.93%) in character-level accuracy and

�r = 2.0% (pN = 0.98) in word accuracy can be reported. A reason-

able explanation for this observation is the influence of misclassi-

fied sample points leading to wrongly characterized script lines as

mentioned earlier and displayed in Fig. 13, left. After normalization,

each feature in the feature vector f(t) is influenced by the erroneous

script lines. However, in case of the line-member feature, the wrong

extreme point to script line assignment influences one single fea-

ture and hence, delivers a higher improvement in both character-

and word-level accuracy.

Reference system: In order to prove the competitiveness of our

systems, our results are compared to the recently published result

of a state-of-the-art HMM-based recognition system evaluated using

the same IAM-OnDB benchmark. The word-level accuracy as pub-

lished in [38] is shown in the last column of Table 1. As can be seen,

all our systems are (slightly) outperformed. This is due to several

reasons. First, a slightly altered and reduced standard feature set is

used in all our systems. Second, as stated in [39], the performance

of continuous HMM-based on-line handwriting recognition systems

is influenced by the number of both Gaussian mixtures and train-

ing iterations. While [38] NGauss =36 Gaussian mixtures are used for

modeling the observation, we reduced the number of Gaussians to

NGauss = 32 for computational reasons. Additionally, the exact train-

ing process of the system in [38] could not be completely duplicated.

This is mainly responsible for the difference in performance. How-

ever, the slight drop of �rbase = 0.6% when comparing our best sys-

tem to the system presented in [38] shows the competitiveness of

our systems. Furthermore, as the parameters through all our exper-

iments stay the same, the positive impact of both the novel normal-

ization and the utilization of the line-member feature is proven.

6. Conclusions and outlook

In this paperwe introduced a novel approach for identifying script

lines in text handwritten on a whiteboard. By assuming that the

script lines in the script trajectory are defined by the sample points

lying on them, the principal idea behind the approach is to find an, in

some sense, optimal sample point to script line assignment, the “line-

members”. To that end, first the number of potential line-member

candidates is reduced to spatial extreme points (either maxima or

minima of the script trajectory). Then, the assignment of each sample

point to every script line is hypothesized, which is modeled by a
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finite state machine. All states and transitions of the finite state

machine given a line of text can be summarized in a trellis diagram.

Assignments of all sample points to script lines are then expressed

as a path through the trellis. By formulating constraints, e.g. that the

derived script lines have minimal bendings or may not cross, the

optimal path through that trellis is found by the Viterbi algorithm.

Additionally, the system is further refined by omitting certain line-

members leading to mischaracterized script lines. As a result, for

each script line l a set Sl of sample points s(t) ∈ Sl is obtained,

characterizing the script lines, which may have any bending. This

is the main advantage of the proposed method: no restrictions are

made on the characteristics of the script lines.
Subsequently, the sample point to script line assignment is used

in two different ways in order to improve a state-of-the-art HMM-

based handwriting recognition system. In the first approach, the

identified script lines are forced to run in parallel and horizontally by

shifting the supporting points of each script line. The whole script is

warped and thereby normalized in skew and size. The system using

the novel normalization is denoted System 2. The second approach

uses the line membership of the sample points directly as a feature

and forms the third system (System 3): in case the current sample

point lies on a script line, the feature vector is augmented by the

information on which script line the sample point lies.
In an experimental section both approaches that utilize the novel

method for script line identification have been evaluated. A base-

line HMM-based system (System 1) has been defined, using stan-

dard preprocessing and 24 features for recognition. As the results

show, regardless to how the additional script line information is in-

corporated into the system, a significant or even highly significant

improvement of both the character- and the word-level accuracy

can be observed. System 2 achieves a significant relative improve-

ment of �r = 1.6% (pN = 0.91) on the character-level and �r = 1.4%

(pN =0.92) on the word-level accuracy compared to System 1. A peak

character-level accuracy of anorm = 62.2% and word-level accuracy

of Anorm = 63.5% can be reported. System 3 shown an even better

performance: a relative improvement of �r = 3.3% (pN >0.99) com-

pared to System 1 and �r=1.7% (pN =0.93) compared to System 2 is

achieved on the character-level and an even higher relative improve-

ment of �r = 3.4% (pN >0.99) compared to System 1 and �r = 2.0%

(pN =0.98) compared to System 2 is obtained on the word-level. The

peak rates for the character- and the word-level accuracy for System

3 are Alm = 63.3% and 64.8%, respectively. As can be seen, System 3

performs better than System 2. This is due to the influence of mis-

classified script lines. While in the case of the novel normalization

all features are affected, in the case of the augmented feature vector

the affection is limited to the line-member feature. When perform-

ing a character confusion analysis, it has been shown that the use of

the line-member feature for recognition leads to a reduction of the

confusion of characters that differ in size rather than in shape.
Although they offer the above-mentioned improvements in both

character-level and word-level accuracy, there are some issues with

the two novel recognition systems. In case of the novel normal-

izations, correctly placed parts of a character may be additionally

distorted by the global normalization (see Fig. 11). Hence, a local nor-

malization is needed, which limits the impact of the normalization

on the script trajectory to the sample points neighboring the cur-

rent extreme point. In the case of the line-member feature, in rare

cases additional character confusions have been introduced. How-

ever, these can be reduced when association between the extreme

point and the script lines becomes more accurate. To that end, in

future work, different metrics, such as the ascending slope rather

than the absolute y-position of the script lines will be investigated.

We also plan to construct a baseline system with hand-annotated

sample point to script line assignments for certain sample points.

Furthermore, the line-member approach will be extended in order

to include all sample points with the distance of each sample point

to its closest script line being used to augment the feature vector.

Additionally the overall training process of the Gaussians will be op-

timized according to [40]. In [41] we proposed novel vector quan-

tizing systems for using discrete HMMs for on-line recognition of

handwritten whiteboard notes. In future work, the influence of both

the novel normalization and the augmented feature vector will be

investigated on the systems presented in [41].
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