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ABSTRACT

In this paper, we motivate and introduce a novel vector quantization
(VQ) scheme for distributing the quantization error among the quan-
tized features of a continuous feature vector in a predefined manner.
This is done by defining ratios between the individual quantization
errors of the features and shaping the Voronoi cells accordingly.

In a series of experiments we show that the novel approach is
capable of either distributing the quantization error equally among
the dimensions or realize an arbitrary distribution.

Index Terms— vector quantization, quantization error, error
shaping, Voronoi cells

1. INTRODUCTION

Vector quantization (VQ [1, 2]), i. e. the mapping of a sequence
of continuous vectors to a discrete, one-dimensional sequence, is
widely used in data compression [3], signal processing, and pattern
recognition [4]. In speech coding, quantization error shaping in the
spectral domain is performed [5] such that each spectral component
of the signal contributes to the overall distortion equally [6].

The quantization error shaping presented here targets a different
problem. In machine learning, Hidden Markov Models (HMMs [4])
are used for classification of dynamic sequences, distinguishing be-
tween continuous and discrete HMMs. While in continuous HMMs
the distribution of the data is modeled by Gaussian mixtures, in dis-
crete HMMs this distribution is modeled by the relative frequency
of the vector quantized continuous data, outperforming continuous
HMMs in terms of processing speed [4]. In [7], we showed for the
features used in on-line handwriting recognition (HWR) of white-
board notes (see [8]) that the quantization error is not distributed
equally among the quantized features. Hence, the contribution of the
features to the quantization process varies. In this paper, we present a
novel VQ scheme which is capable of distributing the quantization
error in a predefined manner (e. g. equally) among the dimensions.

The next section gives a brief description of the HWR system.
Then, VQ is reviewed and summarized in Sec. 3. Section 4 introduces
our novel VQ scheme, which is analyzed in the experimental section
(Sec. 5). Conclusions and an outlook are given in Sec. 6.

2. HANDWRITING RECOGNITION SYSTEM

This section summarizes the on-line HWR system and its features
used for the experiments in Sec. 5. Further details can be found in [7].

The handwritten data, which is recorded with the E B E A M-
System and represented by sample vectors s(t), is heuristically seg-

mented into lines [8]. Then, preprocessing and normalization is
performed, and features are extracted from the sample vector and
form a 24-dimensional feature vector f(t) = (f1(t), . . . , f24(t)).
The features listed below can be divided into two groups: on-line and
off-line features. While the continuous on-line features are derived
from the pen’s trajectory, the discrete off-line features evaluate a
bitmap gained by binarization of the handwritten script. The on-line
features are:
f1 : indicating the pen “pressure", i. e. f1 = 1 if the pen tip is placed
on the whiteboard and f1 = 0 otherwise
f2 : velocity equivalent
f3,4 : x-and y-coordinate (high pass filtered)
f5,6 : angle α of spatially resampled and normalized strokes (coded
as sin α and cos α, “writing direction")
f7,8 : difference of consecutive angles Δα = α(t)−α(t−1) (coded
as sin Δα and cos Δα, “curvature")
f9 : logarithmized aspect v of the trajectory between the points
s(t− τ) and s(t), whereby τ < t denotes the τ th sample point before
s(t): f9 = sign(v) · lg(1 + |v|), where lg(·) = log10(·)
f10,11 : angle ϕ between the line [s(t − τ), s(t)] and lower line
(coded as sin ϕ and cos ϕ, “vicinity slope")
f12 : the length of the pen-trajectory between the sample points
s(t − τ) and s(t), normalized by the max(|Δx|; |Δy|) (“vicinity
curliness")
f13 : average square distance to each point and the line [s(t−τ), s(t)]

The off-line features are:
f14−22 : a 3 × 3 subsampled bitmap slid along the pen-trajectory
(“context map") to incorporate a 30 × 30 partition of the currently
written letter’s actual image
f23,24 : number of pixels above respectively beneath the current
sample point s(t) (the “ascenders" and “descenders")

As the values of the features may vary in different ranges, each
dimension d of the feature vector is normalized to a mean of μd = 0
and variance of vard = 1. After feature extraction, the handwritten
data is recognized by a discrete HMM-based recognizer [7]. Com-
bined segmentation and classification is provided by the well-known
Viterbi-Algorithm [9]

3. QUANTIZATION

As mentioned in the introduction, quantization denotes the map-
ping of a sequence F = (f(1), . . . , f(T )) of T continuous, D-
dimensional vectors f(t) ∈ R

D to a discrete, one-dimensional se-

quence f̂ = (f(1), . . . , f(T )) of codebook indices f̂(t) ∈ N in the
codebook C = (c(1), . . . c(Ncdb)) containing |C| = Ncdb centroids
c(i) ∈ R

D . For D = 1, this mapping is called scalar, in all other
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Fig. 1. Voronoi cells and centroids for joint VQ of the features f6 and
f9 (left), overall and (unevenly distributed) per-feature SNR (right).

cases D ≥ 2 vector quantization (VQ). The codebook C and its
entries c(i) are derived from a training set St with |St| = Nt training
sequences Fj , by partitioning the D-dimensional feature space de-
fined by St into Ncdb Voronoi cells Vi represented by the centroids
c(i) [1]. Herein, this is performed by the well-known k-Means al-
gorithm as described e. g. in [2]. The Ncdb = 16 Voronoi cells
partitioning the space spanned by the two features f6 and f9 (see
Sec. 2) and their corresponding centroids are shown in Fig. 1 (left).

Once a codebook C is generated, the assignment of the continu-
ous sequence to the codebook entries is a minimum distance search

f̂(t) = argmin
1≤k≤Ncdb

d(f(t), c(k)). (1)

The quality of the VQ is measured by its distortion. In this paper, the
signal-to-noise ratio (SNR) is used:

SNR = 10lg
S̄

Ē
= 10lg

∑Nt

j=1

∑Tj

t=1 ||fj(t)||2∑Nt

j=1

∑Tj

t=1 ||fj(t)− c(f̂j(t))||2
(2)

with S̄ the average, square signal amplitude, Ē the average, square
quantization error of all observations Fj , and fj(t) the tth of Tj

feature vectors in the j th of Nt sentences in the training set. Hence,
the SNR is the average signal energy normalized by the distortion on
a logarithmic scale [2]. As mentioned in Sec. 2, each dimension of the
continuous feature vector, and therefore each feature, is normalized
by its mean and variance value, yielding an average square signal
amplitude of s̄d = 1 in each dimension. The SNR can then be
expressed by the average square quantization error ēd of each feature:

SNR = 10lg
S̄

Ē
= 10 ·

[
lgD − lg

(
D∑

d=1

ēd

)]
(3)

with ēd =
∑Nt

j=1

∑Tj

t=1(fj,d(t) − cf̂j ,d(t))2. The overall as well

as the per-dimension SNR when quantizing the features f6 and f9

with the centroids c in Fig. 1 (left) is shown in Fig. 1 (right). As
can be seen, although normalized, the per-feature SNR and hence,
the quantization error are not equal. This has also been shown for
different vector quantizers and a higher number of features in [7].

4. VORONOI CELL SHAPING

As pointed out in Sec. 3, the quantization error introduced by the
quantization is not distributed equally among the dimensions. This

Fig. 2. VQ post processing depicted as control loop for achieving an
equally distributed quantization error.

section describes our approach for distributing the quantization error
in a predefined manner among the dimensions, which consists of two
stages: the centroid computation as described in Sec. 3 and a shaping
of the Voronoi cells in order to achieve a distinct distribution of the
quantization error.

4.1. Preliminaries

The vector r = (r1, . . . , rD)T is introduced, which contains coeffi-
cients rd corresponding to the features fd. The goal of our VQ is to
provide average per-dimension quantization errors ēd with

ē1/r1 = ē2/r2 = . . . = ēD/rD (4)

by shaping the Voronoi cells utilizing the distance measure

d(fj(t), c(k)) = (fj(t)− c(k))T ·G · (fj(t)− c(k)) (5)

with G a diagonal weight-matrix containing the weights gd of the
features fd, in Eq. 1. By selecting the weights gd, the average quan-
tization error ēd of the feature fd can be influenced. To show this
property, the following relations between the weights gd are assumed:

g1 = xg2 = x2g3 = . . . = xD−1gD = xD−1g, x, g > 1. (6)

The feature fj(t) is then assigned to c(k) instead of c(k′) if

d(fj(t), c(k)) < d(fj(t), c(k′))⇒ (7)

D∑
d=1

(fj,d(t)− cd(k))2xD−dg <
D∑

d=1

(fj,d(t)− cd(k′))2xD−dg.

Dividing Eq. 7 by xD−1 · g > 1 yields

(fj,1(t)− c1(k))2+ . . . +
(fj,D(t)− cD(k))2

xD−1
<

(fj,1(t)− c1(k
′))2+ . . . +

(fj,D(t)− cD(k′))2

xD−1
.

(8)

As can be seen from Eq. 8, choosing x = 1 lets each feature contribute
to the overall distortion d(fj(t), c(k)) by its actual distance to the
corresponding centroid dimension cd(k). However, when raising
the value of x the contribution of higher numbered features decays.
Finally, when choosing x →∞ only the distance of the first feature
contributes to the distortion and is therefore minimized.
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Fig. 3. Shaped Voronoi cells around the same centroids as in Fig. 1
(left), overall and (evenly distributed) per-feature SNR (right).

4.2. Weight Estimation

The analytic relation between the actual quantization error ēd of each
feature fd and the corresponding weight gd is unknown. Hence, a
control loop is used for recursively fitting the weights gd, 1 ≤ d ≤ D
to achieve an error distribution as defined by Eq. 4. The weight gdmax

of the feature fmax that differs most from the distribution defined
by Eq. 4, edmax is not changed; all other weights are lowered by a
factor depending on ēdmax − ēd > 0. After an initialization with
gd(0) = 1/D the weights gd(n) are recursively updated:

g̃d(n+1) = gd(n) ·exp
[
α ·

ēd(n)/rd −max1≤δ≤D
ēδ(n)/rδ

max1≤δ≤D
ēδ(n)/rδ

]
, (9)

with 1 ≤ d ≤ D and an experimentally chosen step size α. The
normalization by max(·) in Eq. 9 is necessary, due to the variation
in the absolute value of the quantization errors. In order to prevent
an infinite growth of the updated weights g̃d(n + 1) their values are

normalized such that they meet
∑D

d=1 gd(n + 1) = 1:

gd(n + 1) =
g̃d(n + 1)∑D

δ=1 g̃δ(n + 1)
. (10)

The weight adaptation is continued until the change in the indi-
vidual quantization errors ēd falls below a threshold. Fig. 2 shows
the control loop in order to find the desired weighting values gd. The
result of applying the proposed VQ scheme on the centroid and fea-
ture distribution as depicted in Fig. 1 is shown in Fig. 3: after shaping
the Voronoi cells, as is shown on the left hand side, the SNR of both
features is the same. However, this is accompanied by a slight drop
in the overall SNR.

5. EXPERIMENTS

The experiments presented in this section are conducted on the IAM-
OnDB database, containing handwritten, heuristically line-segmented
whiteboard notes [10]. The training set defined in the IAM-onDB-t1
benchmark (see [11]), contains Nt = 5364 text lines written on a
whiteboard. On these text lines, preprocessing, normalization, and
feature extraction is performed as explained in Sec. 2. The derived
feature vectors f(t), containing the features f1, . . . , f24 are vector
quantized with and without our error shaping method using a varying
number of codebook entries (Ncdb = 10, 100, 1000) in the following
experiments.

Experiment 1 (Exp. 1): In the first experiment, all 24 features
are first vector quantized with a standard k-Means VQ. Then, our

novel VQ scheme using r1 = . . . = r24 = 1 is applied. Hence, the
quantization errors and, due to the normalization, the SNR of each
feature is required to be the same. The result is shown in Fig. 4. While
regardless of the number of codebook entries the SNR is distributed
unevenly among the dimensions in case of standard VQ, our novel
approach yields an approximately even distribution except for the
feature f1. This can be explained with the binary nature of the first
feature. In [7], we therefore suggest a special treatment when quan-
tizing this feature. Our novel VQ scheme lowers the SNR of some
features, while raising the SNR of others at the same time, yielding an
equal contribution of each feature to the quantization process, which
is accompanied by a slight drop in overall quantization performance.

Experiment 2 (Exp. 2): In the second and third experiment, the
findings of Exp. 1 are further investigated. The feature set is therefore
narrowed to X = {f4, f6, f7, f14, f17, f18, f21}, containing three
continuous on-line features and four discrete off-line features. The re-
sult, when applying both the standard VQ and our novel VQ approach
with r4 = . . . = r21 = 1, is shown in Fig. 5 (top). Again, it can
be observed that the SNR is distributed evenly among the dimension
after proper Voronoi cell shaping. All features therefore contribute
equally to the quantization process.

Experiment 3 (Exp. 3): In the last experiment, it is shown that
our novel VQ approach is also capable of distributing the quan-
tization error among the dimensions in an arbitrary manner: in
two quantization scenarios r4 = 1; r6 = . . . = f21 = 4 and
f4 = f6 = f8 = . . . = f21 = 4; f7 = 1 is chosen respectively.
Following Eq. 2, this translates to an increase of the SNR value of
Δ = 6 dB for the features f4 and f6, respectively, when compared to
the other features, which all share the same SNR value. This assump-
tion is confirmed by the results shown in Fig. 5 (middle, bottom). As
can be seen, the SNR-value of the selected feature is increased given
the remaining features. Again, a slight drop in overall quantization
performance can be observed.

6. CONCLUSION AND OUTLOOK

In this paper, we introduced a novel VQ scheme realizing constraints
on the distribution of the quantization error. The constraints are
defined by describing the ratio between the per-feature average quan-
tization error after quantization. The implementation consists of two
steps: first the centroids are found; then, their corresponding Voronoi
cells are shaped accordingly. In a series of experiments we applied
our novel VQ scheme on the features used in on-line HWR of white-
board notes. The general purpose of our VQ scheme could be shown,
however revealing a draw back: while the constraints are satisfactorily
met, the overall quantization performance drops.

In future work, we therefore plan to combine the two stage ap-
proach presented here into an one stage VQ, i. e. the centroids are
found and the Voronoi cells are shaped together. We also plan to
utilize the here presented VQ to perform feature selection in com-
bination with VQ: it has to be assured that all features contribute
equally to the quantization process, as the significance of the feature
can either be influenced by (im-)proper quantization or by the expres-
siveness for the given recognition task. This can be realized with
our novel VQ approach in two ways: the expressiveness of certain
features can be measured either by combining them in a feature sub-
set and distributing quantization error distributed equally among the
features or these features are quantized with a higher SNR than the
remaining features.

Although the features on which the novel VQ scheme has been
applied are native to HWR, the VQ scheme is not — therefore it can
also be useful for the signal processing and speech community.
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Fig. 4. Results for Exp. 1: Overall and per-dimension SNR derived on all features f1 – f24 used in on-line HWR of whiteboard notes for
codebook sizes of Ncdb = 10, 100, 1000 applying standard VQ (each on the left) and our novel VQ (each on the right) in order to achieve an
equal distribution of the quantization error and hence the same SNR in each dimension (i. e. r1 = . . . = r24 = 1).

Fig. 5. Results of Exp. 2 and Exp. 3 (see labels in the figure):
Overall and per-dimension SNR calculated on the feature subset
X = {f4, f6, f7, f14, f17, f18, f21} for codebook sizes of Ncdb =
10, 100, 1000 applying standard VQ (each on the left) and our novel
VQ (each on the right). Equal distribution (i. e. r7 = . . . = r21 = 1,
top), increase of 4th feature’s SNR (i. e. f4 = 1; f6 = 4, . . . = f21,
middle), and increase of 7th feature’s SNR (i. e. f4 = f6 = f8 =
. . . = f21 = 4; f7 = 1, bottom).
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