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Introduction

Non-Negative Matrix Factorization is well known to lead
to considerable successes in the blind separation of drums
and melodic parts of music recordings. Such splitting
may well serve as enhancement when it comes to typical
Music Information Retrieval tasks as automatic key
labelling or tempo detection. In this respect we introduce
the combination of an NMF based blind music separation
into several isolated audio tracks in combination with
Support Vector classification to assign each obtained
track to be either rhythmic or melodic. Thereby optimal
parametrization and performances are discussed. Next,
stereophonic information is further used to eliminate the
key melody and bass usually panned in the centre for
tempo detection or e.g. for chord labelling. We then
analyse the potential for the named tasks by a number
of experiments carried out on the MTV Europe Most
Wanted of the 1980ies and 90ies in MP3 format.

Drum-beat Separation by NMF

Uhle et al. [1] designed a system for drum beat separation
based on Independent Component Analysis. In contrast,
Smaragdis and Brown [2] relied on Non-negative Matriz
Facorization (NMF) to create a system for transcription
of polyphonic music that showed remarkable results
on piano music. Helen and Virtanen [3] used NMF,
combined with a feature extraction and classification
process, and achieved promising results in drum beat
separation from popular music. Similar techniques were
used by [4] and [5] for drum transcription. In this work
we want to evaluate NMF for the purpose of drum beat
separation as enhancement in tempo and key detection.
However, we first tweak the classification process by
evaluating different cost functions and parameters.

Given a matrix V € RZ{™ and a constant r € N, NMF
computes two matrices W € RL;" and H € RUY™, such
that

VaW-H. (1)
For r < n, m, there exists generally only an approximate
solution. Factorization is usually achieved by iterative
algorithms minimizing cost-functions as:
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Whereas the first two cost-functions are closely related
to each other as both minimize some form of quadratic

error, the latter interprets the matrices V and (WH) as
probability distributions and minimizes their divergence.
This is a modification of the Kullback-Leibler (KL)
divergence because of the additional term (WH),; — V;;,
which is not only added to introduce a measurement of
the absolute error but most importantly to ensure non-
negativity. Of course, a lot more such cost-functions do
exist. In fact, most of the available algorithms only differ
by their choice of one particular cost-function. As one of
the first practical algorithms for NMF, Lee and Seung [6]
developed so-called “multiplicative update rules” related
to the Frobenius norm as well as to the KL divergence.
While these differ from a regular gradient-descent, it can
be shown that under these rules, for each iteration step
the error is non-increasing. We evaluated both of the
suggested multiplicative update approaches as well as a
gradient descent with respect to the squared error.

Model

The basic idea of using non-negative matrix factorization
for instrument separation is the interpretation of a mono-
phonic signal’s short-time magnitude spectra as linear
combinations of several distinct components’ spectra.
In particular, it turns out that the assumption of non-
negativity of each component suffices for this model.
Now, when applying non-negative matrix factorization
on a signal’s magnitude spectrum and considering Eq.
1, one can interpret the resulting columns of W and
the rows of H as spectral components and their gains
over time, respectively. Hence, the overall contribution
of the i-th component to the magnitude spectrum of
the original signal can be calculated as the (dyadic)
product of the i-th column of W and the i-th row of
H. Since only the magnitude spectrum is factorized, the
separated components can be transformed back into the
time domain by simply using the calculated components’
magnitude spectra in conjunction with the original phase
spectrum. To distinguish between the terms instrument
separation and component separation, readers should
note that the spectrum of one particular instrument is
probably comprised of more than one component. That
being said, it is indispensable to have a closer look at the
available parameters of the described model introduced
by STFT and NMF.

Parameters introduced by STFT

Parameters for STFT include the choice of a window
function, window overlap and window size. Examples of
window functions are the rectangular window, the Hann
window as well as the square root of the Hann window,
the latter for example being used by [3]. It seems that



window size is among the parameters that have most
impact on the perceptual quality of the factorization.
According to our results, we conclude that for the task of
drum-beat separation window sizes between 40 to 60 ms
seem to be reasonable choices. For instance, a window
of 62.5ms captures the extension of an eighth note at
120 bpm. It should be noted that STFT can produce a
fairly large amount of data. For example, the magnitude-
and phase-spectrum matrices for a 30s signal have a
dimension of 1322 x 1000, assuming a window size of
60 ms, 50 % overlap, and a sample rate of 44.1 kHz.

Number of Components

Thinking of, for example, a piece of music that only
contains single notes while most notably remembering
the non-negativity constraint as introduced, one can
easily understand that every such note ought to be rep-
resentable through its very own spectrum and therefore
also through a single corresponding component. More
obviously, Smaragdis et al [2] hence speak of events
instead of components, which clearly emphasizes their
singularity. Generally speaking, a higher number of
components is not considered harmful as the superfluous
components’ contributions to the whole magnitude spec-
trum will be nearly zero. On the other hand, a higher
number of components results in smaller absolute values
and thus less maximum amplitudes of the separated
components. It is thus evident that, at best, the exact
number of components were known in advance. This
might even be possible for a certain subset of music or
due to preliminary analysis of the particular music that
should be separated, yet it is not the case in general.
According to our experience, an average choice of 20 to
30 components is advisable for unsupervised instrument
separation of popular music.

Limitations

Despite its great potential, non-negative matrix fac-
torization for the purpose of instrument separation is
subjected to the following limitations: NMF is not guar-
anteed to find a global minimum of the respective cost-
function. Furthermore, the randomized initialization of
the two matrices W and H leads to slightly different
results on each application of the algorithm. Paulus and
Virtanen [4] have therefore introduced targeted initial-
ization of the two matrices by using certain application-
dependent training sets. Still, this particular topic yields
promising potential for further research. Components
(events) that never occur by themselves are unlikely to
be separated by an algorithm with random initialization
of the matrices. Intuitively speaking, the algorithm
is not capable of separating events that always occur
together because it can just as well achieve a good
representation (in terms of the cost-function) by putting
them into a single component. Also, when using NMF
as a preprocessing step for feature extraction, caution
must be exercised with respect to the initialization as, for
instance, random initialization with small values within
[0.01,0.02], in comparison to values within [0.1, 0.2], often
yields results with totally different scale and hence could
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have a non-negligible impact on the extracted features’
values. As a side-effect of the factorization’s ambiguity,
which can easily be shown by regarding the product W-H
compared to W - A=t - A- H, where A is some arbitrary
permutation or affine transformation, the order of the
separated components is non-deterministic. =~ For our
intended application, this has no effect, since normally
the resulting components are classified automatically
and no assumptions are made about their order. Since
the model parameters have rather great influence on
the (perceptual) quality of the factorization, any prior
knowledge about the data to be processed should be used
wherever applicable.

Convergence Characteristics

In addition to the varying perceptual quality of their
factorization results, the beforementioned algorithms
most notably differ in their convergence characteristics.
Figure 1 shows an examplary comparison of the residual
error during factorization for the gradient descent as well
as for the multiplicative updates minimizing Frobenius
norm (distance) and divergence. Extracts of 15s length
from the following songs were used for the comparison:
Eminem - Stan, Fettes Broot — Jein, Michael Jackson
— Thriller, Prodigy — Firestarter, REM - Losing My
Religion, Run DMC — It’s Like That, Run DMC — Walk
This Way, Soft Cell — Tainted Love, U2 — Hold Me, Thrill
Me, Kiss Me, Kill Me.

The songs were monophonic and sampled at 44.1kHz
while the 15s intervals were chosen such that they are
preferably representative for the particular songs. For
every epoch, the residual error was computed as the ratio
of the Frobenius norms of the absolute error and the
original magnitude spectrum, i.e.

_[WH = V][r

(2)
where V represents the original spectrum and W, H are
the factorization’s results. The referred figure eventually
shows the respective minimum and maximum error as
well as the expected value during the respective epochs.
One quickly notices the steeper convergence of both
multiplicative update approaches versus the gradient
descent. It is also straightforward to see that a certain
residual error always remains. Furthermore, as the
residual error is computed with respect to the Frobe-
nius norm, it is no coincidence that the corresponding
algorithm shows the fastest convergence rate. When
looking at the convergence characteristics, it is also
important to examine the computational speeds of the
distinct algorithms. The real time factors (RTF) for
100 iterations and total time (TT) for 500 iterations
were determined on a 2.6 GHz Intel Xeon with 5GB
memory as depicted in Table 1 for a total of 150s
of input data. As to memory requirements, at the
time of this writing the memory consumption of our
implementation for processing 1 second of monophonic
samples at 44.1kHz is at a ratio of about 1 to 3, i.e.
1s of sound to 3MB of memory, depending on the
selected algorithm. Summa summarum it is worth noting



that in spite of being the “slowest” of the evaluated
algorithms, the divergence multiplicative update shows
at least equally good convergence characteristics and by
far delivers the best perceptual results with respect to the
separated components, because — due to its nature — it
not only finds an arbitrary factorization but also respects
the underlying data’s distribution.
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Figure 1: Exemplary comparison of NMF algorithms’
convergence. Depicted is the decrease of the cost function over
the course of the iteration. Dashed lines indicate extrema,
continuous lines the mean.

Algorithm TT (500 it.) [s] RTF (100 it.)
Distance 151 0.201
Grad. Descent 181 0.241
Divergence 877 1.169

Table 1: Real time factor (RTF) and total time (TT) for
different algorithms for NMF. Grad. abbreviates Gradient.

Component Assignment

As outlined, the number of components is usually greater
than the number of classes that should be separated.
For instance, in drum beat separation there are only
two classes (drum and harmonic), while the number
of components should be chosen around 20 to 30 for
best separation results. Thus, components need to be
classified and then superposed to generate the signals
that correspond to each class. To present suited features
to the classifier we implemented feature extraction for the
drum beat separation task following the approaches by
[1] and [3]. As shown, each component is characterized
by a column of the spectral matrix W and a row of the
gains matrix H that have been obtained by NMF. In
the following, we will refer to these as spectral vector
and gains vector, respectively. Omne could think of
obtaining time signals for each component as described
and extracting features from these time signals, but we
feel that this procedure would not be optimal as features
would be extracted from redundant representations of the
components. Since the spectral and gains vectors contain
all relevant information about the respective component,
we perform feature extraction on these two vectors.
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Spectral Features

From each spectral vector s = (si,...,sn5)7, cor-
responding to frequencies fi,...,fn, we extract the
following features: 10 Mel frequency cepstral coefficients
(MFCCs), sample standard deviation, spectral centroid,
95 % roll-off point, noise-likeness [1], spectral flatness and
spectral dissonance [1]. For the calculation of MFCCs,
we use a filter bank that ranges from 20 Hz to 8000 Hz.
The sample standard deviation is computed using the
common unbiased estimator.

Temporal Features

Temporal features are calculated from the gains vectors.
For each gains vector ¢ = (g1,...,9Mm), we extract
the following features: sample standard deviation, per-
cussiveness, periodicity, average peak length and peak
fluctuation.

Percussiveness [1] is a measurement of how accurately g
can be modelled using instantaneous attacks and linear
decays, a model which seems to resemble the structure
of most drum patterns.

Periodicity [3] is based on the notion that drum patterns
are often periodic in intervals that correspond to the
tempo of the piece. We compute auto-correlation coef-
ficients (i.e. autocorrelation values normalized by mean
and variance) of g, with delays that correspond to tempi
of 30 to 240bpm, at intervals of 5bpm. We define as
periodicity the maximum of the obtained autocorrelation
coefficients. In order to define average peak length and
peak fluctuation, we first introduce the concept of peaks.
Informally speaking, a peak is any area of g that is over a
threshold of 20 % of the maximum of g. Formally, a peak
of length [ is a set of consecutive indices {¢,i+1,...,i+
-1} C{1,..., M} such that

Gi» Git1s- - > Gigi—1 = 0.2 - max{g;}. (3)

After finding the peaks in g, we can determine the
average peak length, that is the sample mean of the peak
lengths, and the peak fluctuation, that is their sample
standard deviation [3]. Our data provides evidence that
generally drum components have short peaks of similar
length, whereas harmonic ones have longer peaks that
vary more in length.

Synthesis

After classification, time signals for each class are ob-
tained by the procedure proposed by [3]: for each class,
we calculate a magnitude spectrogram by adding the
magnitude spectrograms of the components belonging to
that class. (The magnitude spectrogram of a component
is the dyadic product of its spectral and gains vector.)
We perform a column-wise inverse discrete-time Fourier
transformation (IDFT) on the class spectrograms, using
the phase values from the corresponding columns of the
phase matrix of the original signal. We obtain time
signals by windowing the columns with the square root
of the Hann function, then using overlap-add.
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Drum Beat Separation Evaluation

From the song collection “20 Years on MTV” [7], con-
sisting of 200 songs in total, we generated one input
signal per song, each about 15 to 30s long. Using our
framework, we calculated spectrograms of these signals,
using the square root of the Hann function with a
window size of 60ms and 50% window overlap. We
then applied NMF, setting the number of components
to 30. We selected 344 of the 6 000 resulting components
by perceptual quality. Music experts assigned each to
exactly one of the classes “Drum” (95 components) or
“Harmonic” (249 components). We validated this data
set using 10-fold stratified cross-validation (SCV). The
data were scaled such that the values of every feature
were in the range [—1,1]. As classifier, we used a SVM
with linear kernel. The “complete” feature set contains
all features described above and leads to accuracy of
95.9%. The “reduced” feature set includes 10 MFCCs,
noise-likeness, standard deviation, spectral centroid and
rolloff for spectral vectors, and average peak length,
percussiveness, peak fluctuation and periodicity for gains
vectors. This is the feature set proposed by [3], and
performs best for our data set at an accuracy of 96.2 %.

Application of NMF

We now evaluate the potential gain of drum-beat separa-
tion for two highly relevant Music Information Retrieval
tasks, namely tempo and key detection. Both experi-
ments are carried out on the full “20 Years on MTV” [7]
set. For tempo and meter (duple or triple) detection we
use a comb-filter bank-based approach as described in [8].
Table 2 shows results for this task with the original audio
and mids-removed audio by stereo channel subtraction
for all, only harmonic or only drum components added
accordingly. Interestingly, no improvement can be found
in any of the processing steps. Apparently either spectral
distortions are responsible for this effect, or the tempo
simply is best reflected by all components.

Acc. Original Channel Subtracted
(%] | all drum | harm| all drum | harm
meter| 98.4 96.2 98.4 1 95.7 93.5 89.2
tempol 93.5 93.0 92.5 | 89.2 85.0 80.1
octavd 75.8 4.7 74.7 | 72.6 69.9 66.7

Table 2: Effect on accuracy of blind drum separation by
NMF for meter and tempo detection. Shown are duple or
trimple meter, tempo with (tempo), and without (octave)
allowance of octave errors for all components, only drum, and
only harmonic (harm) such.

Next we consider recognition of 12 major keys in Table 3.
Relative minor keys are mapped upon these, accordingly.
We use CHROMA features (frame size 8192, frame
overlap 50%, windows: Hanning (FFT), Gauss (semitone
bandpasses), frequency range 126Hz - 4066 Hz, pitch
adjustment to cope with detuning) with the same SVM in
10-fold SCV. Only the original audio with all components
or exclusively harmonic components are considered: here,
mid removal would eliminate important information on
the scale tones carried by melody and bass. Again, no
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improvement is found in NMF-based separation.

[%] Key Sub Dom Sum
all 70.7 6.9 12.7 90.3
harmonic] 68.6 11.7 8.5 88.8

Table 3: Effect on accuracy of blind drum separation by
NMF for key detection. Shown are the percentage of correctly
assigned keys (Key), confusions with the (sub-)dominants
(Sub/Dom) and the respective sum.

Conclusion

In this work we have shown a highly effective separation
of music into drum-beat and harmonic section. While the
audible results are well usable in e. g. DeeJay applications
or music remixing, no gain could be obtained by using
the separation to boost performance of tempo and key
detection in musical recordings. In future work we
will investigate whether the separation can be better
exploited on an earlier stage: in tempo detection NMF
components could replace the mel-filter bank prior to the
comb-filter analysis, and in key detection the CHROMA
features could be based on spectral decomposition by
NMEF of the Gaussian semitone band filters.
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