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Abstract

Non-rigid registration of 3D facial surfaces is a crucial
step in a variety of applications. Outliers, i.e., features in
a facial surface that are not present in the reference face,
often perturb the registration process. In this paper, we
present a novel method which registers facial surfaces re-
liably also in the presence of huge outlier regions. A cost
function incorporating several channels (red, green, blue,
etc.) is proposed. The weight of each point of the facial
surface in the cost function is controlled by a weight map,
which is learned iteratively. Ideally, outliers will get a zero
weight so that their disturbing effect is decreased. Results
show that with an intelligent initialization the weight map
improves the registration results considerably.

1. Introduction

There are many applications in computer vision and
computer graphics that stand or fall on the exact non-rigid
registration of 3D facial surfaces. Examples include trans-
fer of texture between faces [18], transfer of expressions
[11, 16], facial animation [19], or texture mapping [20].
Another popular application is building up a 3D face model
[3].

Non-rigid registration of facial surfaces is not a trivial
problem. In some approaches the non-rigid registration of
facial surfaces is based on a sparse set of feature points.
In [12], the authors suggest to select those points manu-
ally. Wang et al. [18] map the 3D facial surface into the
2D plane using harmonic mapping and feature points are
tracked at high video rate. In other works dense registration
methods are proposed. Blanz and Vetter [3] suggested an
automatic registration process similar to the Kanade-Lucas-
Tomasi (KLT) algorithm [17]. Savran and Sankur [15] pro-
posed a method where the 3D surface is mapped to the 2D
plane with least squares conformal mapping. As smooth-
ness constraint they employ a Green-Lagrange strain tensor.
However, the authors mention that the algorithm is not de-

signed to deal with outliers such as an open mouth. A sim-
ilar approach was presented by Litke et al. in [10]. The au-
thors propose a mapping function to map the 3D facial sur-
face into the 2D plane which minimizes length and area dis-
tortions. A sophisticated cost function depending on feature
demarcations, curvature and texture is minimized to match
the two 2D images. Also in this approach outliers were not
considered. Bronstein et al. [4] proposed generalized mul-
tidimensional scaling that allows to embed a facial surface
directly into the reference facial surface without any 2D reg-
istration process in between. The approach works without
texture information. Outliers, such as an open mouth, have
to be treated manually.

Relatively little has been done on the treatment of out-
liers, i.e., features that are not existent in the reference face,
such as facial hair, open mouth, glasses, borders, etc. How-
ever, it is most likely that outliers exist for faces of two
different individuals. If outliers are present they can seri-
ously corrupt the registration. Hellier et al. [7] presented
a study on dense deformation fields for the registration of
brain magnetic resonance images (MRI) in the presence of
outliers, where they apply robust error functions.

In this paper we particularly investigate registration of
3D facial surfaces with outliers (i.e. open mouth, glasses,
beard, etc.) that corrupt the registration of the surface, if not
treated specifically. The 3D facial surface is mapped into
the 2D plane with least squares conformal mapping. Subse-
quently, a cost function that accounts for texture/depth con-
stancy and spatial coherence is minimized. It is shown that
if the disturbing effect of outliers is not decreased the reg-
istration fails. The main constribution of this work is the
weight map that determines the significance of every pixel
in the registration process. Outliers should have a small
weight or ideally a zero weight so that their disturbing effect
is suppressed. We present an algorithm to learn the weight
map iteratively. With an intelligent initialization the method
registers the face and detects outliers reliably.

The paper is organized as follows. In Sec. 2 it is ex-
plained how the 3D facial surfaces are mapped into the 2D
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Figure 1. Mapping of a 3D facial surface (a) into the 2D plane (b)
via least squares conformal mapping.

plane. A cost function to solve the 2D registration problem
is described in Sec. 3. In Sec. 4 the weight map is intro-
duced. The results of the non-rigid registration method are
presented in Sec. 5. Section 6 gives a conclusion and out-
lines future work.

2. Mapping of 3D Surfaces into the 2D Plane
The 3D facial surface is mapped into the 2D plane in

order to convert the registration of a 3D surface into a 2D
registration problem. The simplest approach would be con-
sidering the depth component of the 3D points of the facial
surface as fourth channel of a 2D RGB image. Blanz and
Vetter [3] suggested to apply cylindrical projection. How-
ever, such projections may cause large distortions in re-
gions where the angle between the surface normal and the
projection direction is large. More sophisticated methods
to map 3D surfaces into the 2D plane have been used in
[4, 10, 15, 18]. Many of these methods were developed in
the context of texture mapping. An overview of surface pa-
rameterization methods is given in [6].

We decided to apply LSCM presented by Lévy et al.
in [9]. For our purpose it is important that the distor-
tions caused by the mapping remain small. LSCM mini-
mizes angle deformations and non-uniform scalings. Fur-
thermore, by using conjugate gradient methods or quasi-
Newton methods for minimization the mapping can be com-
puted very fast. Consequently, 2D images with four chan-
nels (red, green, blue, and depth) are obtained. The 2D im-
age of the reference facial surface is denoted by Iref and the
image of the face that we want to register with respect to the
reference facial surface is denoted by Ireg. Figure 1 illus-
trates a 3D facial surface (a) from the Bosphorus database
[14] mapped into the 2D plane (b) with LSCM.

3. 2D Registration Method
A non-rigid 2D registration problem can be solved with

an optical flow estimation. A cost function that has to be
minimized can be formulated locally, as in [3], or globally,
as in [10] or [15]. We decided to apply a global cost func-
tion, because thereby it is easier to integrate a robust error

norm (introduced in Sec. 3.1) and a weight map (introduced
in Sec. 4.1).

3.1. Cost Function

Following the ISO typesetting standards, matrices are
denoted by capital bold letters (I) and scalars/elements of a
matrix by normal letters (I, u). The cost function is based
on two assumptions:

Texture/Depth Constancy. The shift between a pixel in
Iref and a corresponding pixel in Ireg is the unknown that
we want to compute. The shift of a pixel (x, y) in x-
direction and y-direction is denoted by u(x, y) and v(x, y),
respectively. For better readability, we will write u instead
of u(x, y), I instead of I(x, y), etc.

Since the beginning of optical flow estimation, it has
been assumed that the gray value of a pixel is not changed
by displacement. This assumption leads to the famous opti-
cal flow constraint [8] for each pixel: Ix ·u+Iy ·v+It = 0.
The partial derivatives of the gray value image in x- and y-
direction are denoted by Ix, Iy , the temporal derivative by
It.

We modify this assumption for our purpose. Instead of
only one gray value channel, six channels were employed.
Color information is available so the first three channels are
the red, green, and blue channel. The fourth channel is a
gray value derivative channel, which further improves the
illumination independency, as shown in [5]. The fifth and
the sixth channel are the partial derivatives of the depth in x-
and y-direction, respectively. Thereby, the susceptibility to
variable skull shapes of different individuals can be reduced
compared to just taking the depth channel.

The optical flow constraint for all six channels is com-
bined in the following cost function:

Et/d(u, v) = Ψ
( C∑

c=1

wc · (Ix,c ·u+ Iy,c · v+ ∆Ic)2
)
, (1)

where the index c stands for the channels (r, g, b, etc.) and
C is the total number of channels. ∆Ic is the subtraction of
Iref,c from Ireg,c. Each channel is weighted with a weight
wc. Note that, instead of a quadratic error norm, we use
Ψ(r2) =

√
r2 + ε2, where ε is set to a small fixed value

(here ε = 0.001), as suggested in [5]. This provides robust-
ness against small portions of outliers. Other robust error
norms have been suggested and intensively investigated in
[1] and [2].

Spatial Coherence. The spatial coherence assumption
postulates that the flow field of neighboring points should
not differ too much. Several cost functions to integrate this
assumption have been proposed (see [15, 8, 2]). Facial skin
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has properties similar to a rubber membrane. Thus, the
membrane model [2] is suitable to model spatial coherence
in a face:

Es(u, v) =
∑

(un,vn)∈N

Ψ
(

(u− un)2 + (v − vn)2
)
, (2)

where (un, vn) ∈ N are pixels in the 3× 3 or 5× 5 neigh-
borhood of (u, v).

The total cost function is a weighted sum of the tex-
ture/depth constancy term and the spatial coherence term
summed over all pixels in Ωref :

E(u,v) =
∑
Ωref

λ · Et/d(u, v) + Es(u, v). (3)

Ωref is the set of all pixels that display facial texture in the
reference image. Background, i.e., parts of the image that
do not display the face, should not be considered.

In previous works (e.g. [2, 7, 5, 15]), λ is a fixed con-
stant, that has the same value for all pixels. In Sec. 4.1,
we propose to employ a λ(x, y) which is different for each
pixel. λ(x, y) should be low for potential outliers. Hence,
disturbing outliers can be suppressed.

3.2. Multiscale Approach

The total cost function is minimized via conjugate gra-
dient minimization [13]. In order to cope with larger mo-
tions the well-known coarse-to-fine strategy is employed
[17]. The optical flow field is first estimated at the coars-
est level of a Laplace pyramid. The coarse-scale estimate is
used to warp to the next pyramid level.

In Fig. 2, we illustrate some results of the registration
process with the suggested cost function. The reference face
is depicted in Fig. 2 (a). Several faces from the Bosphorus
Database [14] are shown as original in the left column. The
right column displays the texture of these faces mapped to
the shape of the reference face. For the individual in Fig.
2 (b), which is quite similar to the reference face, the reg-
istration was successful. If faces contain features that are
not existent in the reference face, as shown in Fig. 2 (c),
(d), and (e), the registration is significantly corrupted. The
glasses in Fig. 2 (c) are mapped to the eyes, because they
have also dark texture. The texture of the hair in Fig. 2 (d)
and the beard in Fig. 2 (e) is very different from the corre-
sponding texture in the reference face, so those points are
pushed outside the area that is considered by the cost func-
tion (Ωref ). The labels correct and incorrect on the faces
are based on the qualitative appearance of the warped faces.
Quantitative results are given in Sec. 5.2 (Tab. 1). The eval-
uation method is explained in detail also in this section. As
baseline system a registration incorporating the KLT algo-
rithm [17] instead of the global cost function we suggest
was used. The global cost function performs only slightly
better than the baseline system.

Original Warped

correct

incorrect

incorrect

incorrect

Referencea)

e)

d)

c)

b)

Figure 2. Left column: Several facial surfaces of the Bosphorus
Database [14]. Right column: Texture of those facial surfaces
mapped to the shape of the reference facial surface, that is shown
in (a). Without special treatment of the outliers the registration
works fine if the faces are similar (b). However, if there are fea-
tures that are not existent in the reference face, such as glasses (c),
hair (d), or beard (e), the registration is poor.

4. Outlier Detection

Outliers are points with depth or color values that are not
existent or cannot clearly be assigned to a point in the refer-
ence face, such as facial hair, open mouth, glasses, border,
etc. and thus can corrupt the registration process. Several
approaches (e.g. [2, 7, 5]) propose to include a robust error
norm that detects and reduces the influence of an outlier.
However, for larger outlier regions the results with a robust
error norm are unsatisfying. A robust error norm was in-
cluded in Eq. 1 and 2 and Fig. 2 (c), (d), and (e) show that
it fails. If there are regions with more outliers than non-
outliers, outliers cannot be detected and, even worse, non-
outliers are detected as outliers. The weight map that we
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will present in this work is able to handle these cases much
better.

4.1. Weight Map

A novel approach to reduce the disturbing effect of out-
liers is proposed in this work. A different weight λ(x, y)
for each pixel in Eq. 3 is used instead of a constant λ for
all pixels. We call the matrix that stores the weight for each
pixel weight map λ. Thus, Eq. 3 can be reformulated as

E(u,v) =
∑
Ωref

λ(x, y) · Et/d(u, v) + Es(u, v). (4)

Ideally, the weight of an outlier should be 0 and the weight
of a non-outlier 1. Note that the weight for the texture/depth
constancy term is controlled by the weight map λ, while
the factor for the spatial coherence term remains constant
so that the flow field for outliers is guided by the nearest
non-outliers. The weight map is learned iteratively. It is
initialized with 1 for each pixel in Ωref and with 0 for pixels
lying outside. After the registration process the weight for
each pixel is updated:

λi+1(x, y) =
1
2

( 1∑C
c=1 ∆c(x, y) + ε

+ λi(x, y)
)
, (5)

with ε = 0.001 preventing a division by zero. The differ-
ence of the value of channel c (red, green, blue, etc.) of
a pixel (x, y) in Iref and the corresponding pixel in Ireg

according to the current estimate of (u, v) is denoted by
∆c(x, y). Subsequently, the weight map is normalized so
that the sum of all weights remains constant. With the new
weight map the registration process can be repeated and a
finer registration is obtained since the disturbing effect of
the outliers is reduced. The repetition of the registration
process can be stopped after a fixed number of iterations or
if the weight map is not changing considerably any more. In
order to let the weight map converge correctly, a good ini-
tialization is needed. If initially too many non-outliers have
a low weight, the algorithm converges to a local minimum
which results in an improper registration.

Both quantitative results and a detailed explanation of
the evaluation method are given in Sec. 5.2 (Tab. 1). Com-
pared to the registration without a weight map λ there is
some improvement, but it can be significantly enhanced
with a proper initialization, which is described in the next
section. The problem that still has to be solved is that for
some individuals the iterative registration converges only to
a local minimum.

4.2. Intelligent Initialization of the Weight Map

As could be seen in the last section, the registration pro-
cess stops at a local minimum, if the initial estimate of
the weight map is too poor. A registration only based on

depth information, although not very exact, is always a good
rough first estimate and it is not corrupted too much by out-
liers. Once the facial surface is roughly registered, a proper
initial guess for the weight map is computed and the reg-
istration process can be repeated with all channels for finer
registration. The algorithm can thus be divided into the fol-
lowing steps:

1. Weight for all pixels in Ωref is 1, for other pixels 0.

2. Repeat

(a) Register facial surface.∗

(b) Compute weight map with the result.

(c) Stop after fixed number of iterations or if weight
map does not change considerably any more.

∗For the first iteration only channels that depend on depth
information are applied for a robust initialization. At later
iterations all channels are considered for refinement.

Compared to the baseline system, the weight map with
an intelligent initialization could decrease the average reg-
istration error by 16%. In Sec. 5 it is explained how the
average registration error is computed. Quantitative results
(Tab. 1) and qualitative results (Fig. 3) are commented in
detail also in this section.

5. Results
5.1. Parameters

A 256×192 raster has been employed to map the 3D sur-
face into the 2D plane. We used 5 resolution levels for the
coarse-to-fine pyramid and 6 iterations for the registration
process (one only with channels depending on the depth in-
formation and five depending on all channels, as proposed
in Sec. 4.2). The weights of the channels in Eq. 1 were
chosen so that the two channels depending on depth infor-
mation together have the same weight as the four channels
depending on color information together. The registration
of the facial surfaces has been implemented in C++ and one
iteration took approximately 20 seconds on a 3GHz Intel R©

Pentium R© Duo-Core so 6 iterations took roughly 120 sec-
onds.

Some registration results are depicted in Fig. 3. Again,
the texture of the faces in the database is mapped to the
shape of the reference face according to the correspondence,
which has been computed. The reference face and the sam-
ple faces that have been used in the previous figures are
shown in Fig. 3 (a) and (b), respectively. The outliers are
illustrated in the right column. It can be seen that with
a weight map λ and an intelligent initialization the faces
could be registered and the outliers detected reliably. The
glasses are not shrunk and facial hair is not pushed outside
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the reference face as before. Figure 3 (c) shows the results
of the registration process for several other faces with out-
liers, such as beard, hair and open mouth. For all those
faces, which partly deviate considerably from the reference
face, the registration process was qualitatively successful.

5.2. Evaluation
The Bosphorus Database [14] was employed for the

evaluation. The data is labeled with 22 landmarks per
face. These landmarks were considered as ground truth.
For those 22 sample points the accuracy of the registra-
tion process can be measured. The average distance d̄ =∑

i

√
∆x2

i + ∆y2
i + ∆z2

i between the position estimated
by our method and the true coordinates of this landmark
was computed. The average distance was normalized to the
height of the reference face. For example, a distance of 0.05
stands for 5% of the height of the reference face.

Table 1 shows the average distance for all 105 faces in
the database with a neutral expression. For comparison
the classical Kanade-Lucas-Tomasi (KLT) algorithm [17],
as proposed in [3], was chosen as baseline system. It can
be seen that the registration works to some degree with the
KLT algorithm (average distance of 0.0537) or the global
cost function that has been presented in Sec. 3 (average dis-
tance of 0.0521). With only a weight map (Sec. 4.1) an
average distance of 0.0494 can be achieved. However, with
both a weight map (Sec. 4.1) and an intelligent initialization
(Sec. 4.2) an average distance of 0.0450 can be achieved.
Compared to the baseline system with an average distance
of 0.0537 our method could decrease the average distance
by (0.0537 − 0.0450)/0.0537 = 16%. It is observed that
with the method that has been proposed the global minimum
tends to be found reliably. The quantitative results coincide
with the qualitative results. Visually it can be verified in
Fig. 3 that the faces are registered accurately and also huge
outlier regions could be detected reliably.

6. Conclusion and Future Work
In this paper, we propose a novel method to register 3D

facial surfaces and to detect features that are not present
in the reference face more robustly. A weight map, which
is learned iteratively, controls the weight of each point of
the facial surface in the registration cost function. The first
estimate of the weight map is computed only with depth in-
formation, which is less exact but also less outlier prone. At
later iterations also texture information is considered. Re-
markable results could be achieved only after a few itera-
tions even in the presence of large outlier regions, as shown
in Fig. 3. Quantitative results are given using landmarks
available with the database as ground truth. Our method
could improve the registration accuracy by 16 % compared
to the method [3] which was chosen as baseline system.

In our ongoing research, we will employ other strategies
to map the 3D facial surface into the 2D plane and investi-

Original Warped

Reference

Outliers

correct

correct

correct

correct

correct

correct

correct

a)

b)

c)

Figure 3. Left column: Several facial surfaces of the Bosphorus
Database [14]. Middle column: Texture of those facial surfaces
mapped to the shape of the reference facial surface, that is shown
in (a). Right column: Outliers painted in silver gray. (b) shows
that all faces from Fig. 2 could be registered properly. In (c) some
more faces with outliers are depicted.
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average distance landmarks
at eye
brows

landmarks
at eyes

landmarks
at nose

landmarks
at mouth

landmarks
at chin

overall

KLT algorithm as in [3] 0.0522 0.0548 0.0517 0.0582 0.0422 0.0537

our method without
weight map

0.0539 0.0585 0.0537 0.0457 0.0460 0.0521

our method with weight
map

0.0507 0.0539 0.0501 0.0450 0.0460 0.0494

our method with
weight map and
intelligent initialization

0.0474 0.0505 0.0457 0.0391 0.0399 0.0450

Table 1. Average distance between the point on the facial surface to register that corresponds to a certain landmark in the reference face
and the true coordinates of this landmark in the facial surface to register (number of landmarks: 22). The distances are normalized to the
height of the reference face. A global cost function with a weight map in combination with an intelligent initialization could decrease the
average distance by 16% compared to a registration with the Kanade-Lucas-Tomasi (KLT) algorithm.

gate their influence on the results. It is also planned to com-
bine our method with an anterior rigid 3D registration step
to be able to register faces that are recorded from a lateral
point of view.
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