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Chapter 1

Introduction and motivation for

the thesis

Introduction to the problem. Processes in nature where motion or change of states

is involved are mathematically modeled by dynamical systems. Their complexity ranges

from the relatively simple motion of a pendulum under gravitational influence to e.g.

the very complex processes in the atmosphere. Moreover, in a given context, particu-

lar aspects of the system under consideration are of interest. To understand the local

behavior, one could ask “Are there states which stay unchanged forever, and are they

stable?” or “Is there a periodic motion?”. For example, the vertically hanging pendu-

lum is in a stable fixed state, and (unless there is external forcing) certain motions of

the pendulum are periodic; but there is no stable weather like “eternal sunshine”, and

the rain is not falling “each Monday” either. This motivates a global analysis, where

reasonable questions would be “What is the probability that it will be warmer than 24 oC

tomorrow at noon?” or “How often is it going to rain next month?”. Questions like

the latter one motivate us to understand the long-term behavior of dynamical systems.

Approaching these questions numerically by the direct simulation of a long trajec-

tory works well for many systems, however, there are important applications where this

method is not robust, or it is even computationally intractable. It is well known that

the condition number of the flow arising from an ODE scales exponentially in time.

Therefore, a trajectory obtained from a long simulation may show completely different

behavior than any real trajectory of the system. There are results which remedy this

fact. For example, if the system is stochastically stable [Kif86, Zee88, Ben93], and
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1. INTRODUCTION AND MOTIVATION FOR THE THESIS

one can view numerical errors as small random perturbations of the system, then a

computed trajectory will exhibit similar statistical properties as the original one (cf.

“shadowing” [Guc83]; see also [Del99, Kif86]).1 Until now, not many systems have been

proven to be stochastically stable (e.g. Axiom A diffeomorphisms, see [Kif86]), and in

the corresponding proofs there are strong assumptions on the perturbation as well.

Also in favor of simulation is the fact that using symplectic integrators for Hamiltonian

systems allows one to interpret a numerically computed trajectory as a real trajectory

of a slightly perturbed Hamiltonian system [Hai96, Hai06]. On the other hand, certain

Hamiltonian systems arising from molecular dynamics elucidate a further problem re-

lated to direct simulation: The chemical properties of many biomolecules depend on

their conformation [Zho98]. A conformation is the large-scale geometrical “shape” of

the molecule which persists for a large time compared with the timescale of the motion

of a single atom in the molecule. Thus, conformational changes occur at much slower

timescales compared to the elementary frequencies of the system. The typical scale

difference for folding transitions in proteins ranges between 108 and 1016. Clearly, the

statistical analysis of such systems is not accessible via direct trajectory simulation,

since the time step for any numerical integrator needs to be chosen smaller than the

period of the fastest oscillation.

We can generalize the notion of conformations for arbitrary dynamical systems.

Suppose, that there are two or more “macroscopic states”, i.e. subsets in phase space

in which trajectories tend to stay long before switching to another. These sets are

called almost invariant [Del99]. They are a curse for methods which try to extract

long-term statistical properties from trajectories of finite length, since they can “trap”

orbits for a long time, and regions in the phase space may stay unvisited, if the length

of the simulation is not sufficient. Since they govern the dynamics of a system over

a large timescale, one is also interested in finding these almost invariant sets, and to

quantize “how much almost invariant” they are.

Fortunately, there are other (mathematical) objects which allow the characteriza-

tion of the long-term dynamical behavior without the simulation of long trajectories.

Ergodicity theorems relate the temporal averages of observables over particular trajec-

tories to spatial averages with respect to invariant measures or invariant densities. The

1Cases are known, where numerical errors are not random [Hig02], and the above reasoning does

not hold.
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latter turn out to be eigenfunctions at eigenvalue one of so-called transfer operators (cf.

Section 2.2). Also, we will see that information about almost invariance can be drawn

from eigenfunctions at eigenvalues near one of the same operator (cf. Section 2.2.2).

Thus, we can approach the problem also by solving an infinite dimensional eigenvalue

problem in Lp. Apart from special examples, typically no analytical solution can be ob-

tained, hence we are led to the challenge of designing efficient numerical algorithms for

the eigenfunction approximation of transfer operators at the desired eigenvalues. Such

approaches using transfer operators are applied in many fields, e.g. in molecular dynam-

ics [Deu96, Deu01, Deu04a], astrodynamics [Del05], and oceanography [Fro07, Del09].

So far, the method dedicated to Ulam [Ula60] received the most attention, due to

its robustness and the ability to interpret the resulting discretization as a Markov chain

related to the dynamical system (these two properties may have a lot in common). It

considers the Galerkin projection of the transfer operator onto a space of piecewise con-

stant functions, and uses the eigenfunctions of the discretized operator (also called the

transition matrix) as approximation to the real ones. Despite the rather slow conver-

gence (piecewise constant interpolation does not allow faster than linear convergence, in

general; however, not even this can be achieved in most cases [Bos01]), and the unpleas-

ant representation of the transition matrix entries (they are integrals of non-continuous

functions, cf. Section 2.3), the method has justified its usage by performing well in

various applications. It is also worth to note that the convergence of Ulam’s method is

still an open question for most systems except some specific ones (cf. Section 2.3).

This thesis. The aim of this thesis is to design algorithms based on transfer operator

methods which enable an efficient computation of the objects describing the long-term

dynamical behavior — the invariant density and almost invariant sets. A particular

emphasis lies on the theoretical analysis of these methods, regarding their efficiency

and convergence properties.

Chapters 3–6 are independent from each other, and can be read separately. At

the beginning of each chapter we motivate the work presented in there, and give a

brief outline. At its end, conclusions are drawn, and possible further developments

are discussed. For a deeper introduction to the chapters, we refer the reader to the

particular chapter itself. Here, we restrict ourselves to a brief overview.

Chapter 2 gives a background review on dynamical systems, transfer operators, Ulam’s

method, and classical molecular dynamics.

3



1. INTRODUCTION AND MOTIVATION FOR THE THESIS

Chapter 3 investigates the intriguing idea whether discretizations of a transfer oper-

ator can be viewed as small random perturbations of the underlying dynamical

system. This would allow a convergence analysis by the means of stochastic sta-

bility. Our result states that, using Galerkin projections, Ulam’s method is the

only one with this property. Unfortunately, the random perturbation equivalent

with Ulam’s method does not meet all the assumptions under which stochastic

stability can currently be shown.

Chapter 4 presents a discretization method (the Sparse Ulam method), using sparse

grids, for arbitrary systems on a d dimensional hyperrectangle, and considers the

question if one can defeat the curse of dimension from which Ulam’s method suf-

fers. A detailed numerical analysis of the Sparse Ulam method, and a comparison

with Ulam’s method is given.

Chapter 5 discusses two methods for approximating the eigenfunctions of the transfer

operator (semigroup) for time-continuous systems by discretizing the correspond-

ing infinitesimal generator. It enables to omit expensive time-integration of the

underlying ODE, which results in a computational speed-up of at least a fac-

tor ∼ 10 compared to standard methods. The methods (a robust cell-to-cell

approach, and a spectral method approach for smooth problems) are tested on

various examples.

Chapter 6 has the main focus on molecular dynamics, and analyzes if there are suit-

able low-dimensional systems, obtained by mean field theory, able to describe the

conformation changes in chain molecules. The theoretical framework is devel-

oped on time-discrete systems. Numerical experiments help to understand the

behavior of the method for weakly coupled systems. Afterwards, the method is

extended to time-continuous systems, and presented on a model of n-butane.

4



Chapter 2

Background

2.1 Dynamical systems

2.1.1 Time-discrete dynamical systems

Given a metric space (X, d) and the map S : X → X, the pair (X,S) is a discrete-time

dynamical system. The set X is called the state space, while one refers to S as the

dynamics. It models a system with motion; being at an instance in state x, in the next

instance the system is going to be in state S(x). For a x ∈ X the elements of the set{
x, S(x), S2(x), . . .

}
are called iterates of x and the whole set is the (forward) orbit

starting in x.

Some subsets of X may be emphasized by the dynamics. Such are invariant sets.

A set A ⊂ X is invariant if S−1(A) = A. The dynamics on A is independent of X \ A
and (A,S |A) is a dynamical system as well. Take a system with the invariant set A

and introduce some other dynamics S̃, such that d(S(x), S̃(x)) is small for all x ∈ X.

In this sense the dynamics S̃ is said to be near S. We cannot expect anymore that all

orbits starting in A stay in A forever, nevertheless we expect the majority of the orbits

to stay in A for many iterates before leaving it. This motivates the notion of almost

invariance. We would also like to measure “how invariant” the set A remained. For

this, assume that the phase space can be extended to a measure space (X,B, µ), where

B denotes the Borel-sigma algebra on X and µ is a finite measure; further let the map

S be Borel measurable. The set A with µ(A) > 0 is called ρ-almost-invariant w.r.t. µ,

if
µ(S−1(A) ∩A)

µ(A)
= ρ. (2.1)

5



2. BACKGROUND

In other words: choose x ∈ A at random according to the distribution µ(·)/µ(A), then

the probability that S(x) ∈ A is ρ.

Another interesting behavior is the accumulation of states around some subset of

the phase space. We call a compact set A ⊂ X an attractor if the iterates of every

bounded set B ⊂ X are uniformly tending to A; i.e. d(Sn(B), A) → 0 as n → ∞.1

Sometimes not all states in X tend to A. Nevertheless there can be local attractors

which dominate the asymptotic behavior of a subset of the state space. The attractor

AY relative to Y ⊂ X is given by AY =
⋂
n∈N S

n(Y ). The domain of attraction of a

relative attractor A is defined as D := {x ∈ X | d(Sn(x), A)→ 0 as n→∞}.

A map S defines the successive state always precisely. However, sometimes the

precise dynamics depend on unknown circumstances, which one would like to model

by random variables. This leads to non-deterministic dynamics, which are given by

stochastic transition functions.

Definition 2.1. Let (X,B, µ) be a probability space. The function p : X × B → [0, 1]

is a stochastic transition function if

(a) p(x, ·) is a probability measure for all x ∈ X, and

(b) p(·, A) is measurable for all A ∈ B.

Unless stated otherwise, for a compact state space X we have µ = m/m(X), where m

denotes the Lebesgue measure.

Setting p(1)(x,A) = p(x,A), the i-step transition function for i = 1, 2, . . . is defined by

p(i+1)(x,A) =

∫
X
p(i)(y,A) p(x, dy).

If p(x, ·) is absolutely continuous to µ for all x ∈ X, the Radon–Nikodym theorem

implies the existence of a nonnegative function q : X ×X → R with q(x, ·) ∈ L1(X,µ)

and

p(x,A) =

∫
A
q(x, y) dµ(y).

The function q is called the (stochastic) transition density (function).

The intuition behind the transition function is that if we are in state x, the probabil-

ity of being in A in the next instance is p(x,A). If we set p(x, ·) = δS(x)(·), where δS(x)

denotes the Dirac measure centered in S(x), we obtain the deterministic dynamics.

1For x ∈ X and A,B ⊂ X we define d(x,A) = infy∈A d(x, y) and d(A,B) =

max{supx∈A d(x,B), supx∈B d(x,A)}.

6



2.1 Dynamical systems

Example 2.2. One could model unknown perturbations of the deterministic dynamics

S as follows. Assuming, the iterate of x ∈ X = Rd is near S(x) and no further

specification of the perturbation is known, we set ε > 0 as the perturbation size and

distribute the image point uniformly in an ε-ball around S(x). The transition density

will be

q(x, y) =
1

εdm(B)
χB

(
1

ε
(y − S (x))

)
, (2.2)

where B is the unit ball in Rd centered in zero and χB the characteristic function of B

[Del99].

An analogous definition of invariant sets, as we had them for deterministic systems

does not make sense. Because of the uncertainty we cannot expect that only the points

of A may be mapped into A. Weakening the claim of invariance to forward invariance

gives an alternative definition. A set A ⊂ X is called invariant w.r.t. p if all points

in A are mapped into A almost surely (a.s.); i.e. A ⊂ {x ∈ X | p(x,A) = 1} . A set

A satisfying limi→∞ p
(i)(x,A) = 0 for all x ∈ X is called transient. A generalization

of almost invariance is straightforward. A set A ⊂ X is ρ-almost-invariant w.r.t. the

measure µ if µ(A) > 0 and ∫
X
p(x,A)dµ(x) = ρµ(A). (2.3)

Indeed, this is a generalization, since with p(x, ·) = δS(x)(·) we have (2.1).

2.1.2 Time-continuous dynamical systems

Time-continuous dynamical systems arise as flows of ordinary differential equations

(ODEs). Let the vector field v : X → Rd be given.1 We assume v to be at least

once continuously differentiable. Let St denote the solution operator (flow) of the ODE

ẋ(t) := dx(t)/dt = v(x(t)). All objects and properties introduced for time-discrete

systems are carried over one-to-one or with slight modifications. A set A is invariant if

A = S−t(A) for all t ≥ 0. The almost invariance ratio ρ of a set A will depend on t.

The theory of non-deterministic systems needs a more advanced probability theory.

Some tools required for this will not be used in this thesis anymore. Thus, instead

of introducing them rigorously, we aim to show the intuition behind the objects and

1We think of the phase space X as a subset of Rd, Td or Rd−k×Tk, where T is the one dimensional

unit torus.

7



2. BACKGROUND

for a precise introduction we refer to the books [Las94] and [Pav08]. We will consider

stochastically perturbed flows, where the perturbation is going to be a Brownian motion

(or Wiener process).

A stochastic process is a family of random variables {ξ(t)}t≥0. It is called continu-

ous, if its sample paths are almost surely continuous functions in t. The one dimensional

(normalized) Brownian motion is a continuous stochastic process {W (t)}t≥0 satisfying

1. W (0) = 0, and

2. for every s, t, 0 ≤ s < t, the random variable W (t) − W (s) has the Gaussian

density
1√

2π(t− s)
exp

(
−x2

2(t− s)

)
.

A multidimensional Brownian motion is given by W (t) = (c1W1(t), . . . , cdWd(t)), where

the Wi(t) are independent one dimensional Brownian motions and the ci ≥ 0. A

noteworthy way of thinking of the Brownian motion is presented in [Nor97]. Consider

a random walk on an equispaced grid. If we let the jump distance and the time step go

to zero between two consecutive jumps (while they satisfy a fixed relation), the limiting

process can be viewed as the Brownian motion. This also helps to understand that the

sample paths of a Brownian motion are almost surely not differentiable w.r.t. time at

any point.

We define the stochastically perturbed dynamics by the stochastic differential equa-

tion (SDE)

ẋ = v(x) + εξ, x(0) = x0, (2.4)

where ε > 0 and ξ is a random variable given by ξ = Ẇ . As mentioned above, Ẇ

almost surely does not exist at all, hence this is only a convenient formal notation for

the “vector field” of a flow perturbed by (scaled) Brownian motion.1 The stochastical

term is also called diffusion, while v is called the drift. The solution of such a SDE is

the stochastic process {x(t)}t≥0.

The definitions of the dynamical objects and properties introduced so far are car-

ried over from the non-deterministic case just as they did for the deterministic case.

However, the diffusion is a rather special random perturbation. There will not exist any

1The mathematically correct notation would be an integral equation including stochastic integrals;

see references above.

8



2.2 Transfer operators

invariant set (not even forward invariant) for (2.4), since for times large enough there

will be a nonzero probability of being anywhere in the phase space — independent of

the starting position; see Theorem 2.11 below. Similarly, if A was an attractor of the

system defined by ẋ = v(x), we may only expect for the system defined by (2.4) that

A is a region where the system is with high probability, if ε is small enough.

Unlike in the other cases, we still miss a characterization of the dynamics for non-

deterministic time-continuous systems. It would be desirable to have the distributions

of the solution random variables, x(t). Since the next section is devoted to the statistical

properties of dynamical systems, we discuss this issue there.

2.2 Transfer operators

Non-deterministic systems need a probabilistic treatment anyway, but we may also gain

a deeper insight into deterministic systems by exploring their statistical properties. One

of the main benefits is that the theory gives a characterization of the long-term behavior

of dynamical systems, without involving long orbits. This is a desirable property for

designing numerical methods, since long trajectory simulations are computationally

intractable if iterating is an ill-conditioned problem.

2.2.1 Invariant measures and ergodicity

Let X be a metric space, B the Borel-σ-algebra and S : X → X a nonsingular transfor-

mation.1 Further let M denote the space of all finite signed measures on (X,B). We

examine the action of the dynamics on distributions. For this, draw x ∈ X at random

according to the probability distribution µ. Then

Prob(S(x) ∈ A) = Prob(x ∈ S−1(A)) = µ(S−1(A)) ∀A ∈ B,

and hence S(x) is distributed according to µ◦S−1. The operator P :M→M, defined

by

Pµ(A) = µ(S−1(A)) ∀A ∈ B, (2.5)

is called the Frobenius–Perron operator (FPO) or the transfer operator. Probability

measures which do not change under the dynamics, i.e. Pµ = µ holds, are called

1The measurable transformation S is called nonsingular if m(A) = 0 implies m(S−1(A)) = 0.
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2. BACKGROUND

invariant. If the dynamics are irreducible w.r.t. the invariant measure µ in the sense

that all invariant sets A satisfy µ(A) = 0 or µ(A) = 1, then µ is called ergodic (w.r.t.

S). Ergodic measures play an important role in the long-term behavior of the system:

Theorem 2.3 (Birkhoff ergodic theorem [Bir31]). Let µ be an ergodic measure. Then,

for any φ ∈ L1(µ), the average of the observable φ along an orbit of S is equal almost

everywhere to the average of f w.r.t. µ; i.e.

lim
n→∞

1

n

n∑
k=0

φ(Sk(x)) =

∫
X
φdµ µ-a.e. (2.6)

As an example, by setting φ = χA we obtain the relative frequency of an orbit

visiting A.

We define the change of observables under the dynamics. From now on, if not stated

elsewise, Lp = Lp(X,m). The operator U : L∞ → L∞ defined by

Uf(x) = f (S (x)) (2.7)

is called the Koopman operator w.r.t. S. It is closely related to the Frobenius–Perron

operator, as we will see later on. Also, ergodicity may be characterized by means of

the Koopman operator, see Theorem 4.2.1 [Las94].

Theorem 2.4. The measure µ is ergodic if and only if all measurable functions f

satisfying Uf = f µ-almost-everywhere are constant functions.

In cases where the ergodic measure is not absolutely continuous to m it could

happen that (2.6) does not give any “physically relevant” information. For this, the

notion of physical measures was introduced; see [You02]. We call an ergodic measure

µ physical measure, if (2.6) holds for all φ ∈ C0(X) and x ∈ U ⊂ X with m(U) > 0.

One can show, that if an ergodic measure µ is absolutely continuous w.r.t. m, then µ

is a physical measure. This motivates us to make our considerations on the level of

densities, or more generally on functions in L1. By the nonsingularity of S and the

Radon–Nikodym theorem one can define the FPO via (2.5) also on L1, see [Las94].

Proposition 2.5. Given a nonsingular transformation S : X → X, the Frobenius–

Perron operator P : L1 → L1 is given uniquely by∫
A
Pu dm =

∫
S−1(A)

u dm ∀A ∈ B. (2.8)

10



2.2 Transfer operators

If, in addition, S is differentiable up to a set of measure zero, we have

Pu(x) =
∑

y∈S−1(x)

u(y)

| det(DS(y))|
. (2.9)

The density of an absolutely continuous invariant measure is called the invariant

density.

Remarks 2.6. We note some properties of the FPO:

(a) The FPO is the adjoint of the Koopman operator; i.e. it holds for all u ∈ L1 and

f ∈ L∞ that ∫
X
Pu f dm =

∫
X
u Uf dm.

(b) The FPO is a Markov operator, because it is a linear operator with Pu ≥ 0 and

‖Pu‖L1 = ‖u‖L1 for all u ∈ L1 with u ≥ 0.

(c) By (b), ‖Pu‖L1 ≤ ‖u‖L1 for all u ∈ L1, thus the spectrum of P lies in the unit

disk.

We may also define the FPO P : M → M associated with stochastic transition

functions. It is given by

Pµ(A) =

∫
X
p(x,A) dµ(x) ∀A ∈ B. (2.10)

If the transition function has a transition density q, we can define the FPO P : L1 → L1

associated with transition densities q.1 From (2.10) we have

Pu(y) =

∫
X
q(x, y)u(x) dm. (2.11)

A measure (or a density) is called invariant, if it is a fixed point of P. Following ergodic

theorem for transition densities can be found in [Doo60].

Theorem 2.7. Let p be a transition function with transition density function q. As-

sume that q is bounded on X ×X. Then X can be decomposed into a finite number of

disjoint invariant sets E1, E2, . . . , Ek and a transient set F = X \
⋃k
j=1Ej such that for

1We just write P, if it is clear what the FPO is associated with. Otherwise, the notation PS and

Pq (Pp) should make it clear.

11
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Ej there is a unique probability measure µj (called ergodic measure) with µj(Ej) = 1

and

lim
n→∞

1

n

n−1∑
i=0

p(i)(x,A) = µj(A) for all A ∈ B and x ∈ Ej .

Furthermore, every invariant measure of p is a convex combination of the µj. Finally,

the µj are absolutely continuous to m.

The evolution of observables needs an appropriate generalization for the non-de-

terministic case. Given the current state, the next state is a random variable and we

can merely give the expectation value of an observable w.r.t. its distribution. The

Koopman operator is defined by

Uf(x) =

∫
X
f(y)p(x,dy) =

∫
X
f(y)q(x, y) dy,

for f ∈ L∞. One can see easily that U and P : L1 → L1 are adjoint.

For deterministic continuous-time systems St, the transfer operator Pt : L1 → L1

(and Pt :M→M as well) is time-dependent, and an analogous definition to (2.8) is

possible. Moreover, since the flow St of an autonomous system is a diffeomorphism for

all t ∈ R (provided the right hand side v is smooth enough), we can give the FPO in

an explicit form equivalent to (2.9):

Ptu(x) = u
(
S−t (x)

) ∣∣det
(
DS−t (x)

)∣∣ . (2.12)

The Koopman operator U t : L∞ → L∞ is given by U tf(x) = f(St(x)). A density u is

called invariant, if Ptu = u for all t ≥ 0. The ergodicity is defined just as in the discrete

time case. The ergodic theorem can be derived from Theorem 2.3, see Theorem 7.3.1

in [Las94].

Corollary 2.8. Let µ be an ergodic measure w.r.t. St and let φ ∈ L1. Then

lim
T→∞

1

T

∫ T

0
φ
(
St (x)

)
dt =

∫
X
φ dµ

for all x ∈ X except for a set of µ-measure zero.

Assume, that the solution of the SDE (2.4), the random variable x(t), has the

density function u : [0,∞)×X → [0,∞]; i.e.

Prob (x(t) ∈ A) =

∫
A
u(t, x) dx.

12



2.2 Transfer operators

There is no explicit representation of u in general, however, the following characteriza-

tion is very useful. It summarizes results from Chapter 11 in [Las94].

Theorem 2.9 (Fokker–Planck equation). Under some regularity assumptions on v,

the function u satisfies the so-called Fokker–Planck equation (or Kolmogorov forward

eq.),

∂tu =
ε2

2
∆u− div (uv) for t > 0, x ∈ X.1 (2.13)

Posing some further growth conditions on v, (2.13) with the initial condition u(0, ·) =

f ∈ L1 has a unique (generalized) solution, which is the density of x(t), where x(t) is

the solution of (2.4) with x(0) being a random variable with density f .

Thus, the the FPO Pt is the solution operator of the Fokker–Planck equation.

Remark 2.10. If the phase space X is compact and v ∈ C3(X,Rd), the regularity and

growth conditions of Theorem 2.9 are satisfied.

Similar statements hold for the Koopman operator as well: U t is the solution oper-

ator of the partial differential equation (PDE)

∂tu =
ε2

2
∆u+∇u · v, (2.14)

also called as Kolmogorov backward equation. Note, that the operators L and L∗, where

Lu = ε2

2 ∆u+∇u · v and L∗u = ε2

2 ∆− div (uv), are adjoint on suitable spaces, just as

U t and Pt.
The following results are derived easily from Theorem 6.16 in [Pav08]. The null

space of an operator is denoted by N .

Theorem 2.11. Let X = Td. Then the following hold:

(a) N (L) = span {1};

(b) there exists a unique invariant density u with N (L∗) = span {u}, infx∈X u(x) > 0,

(c) the spectrum of L and L∗ lie strictly in the left half-plane, except the simple eigen-

value 0, and the spectrum of U and P lie strictly in the unit disk, except the simple

eigenvalue 1;

(d) constants C, λ > 0 exists such that for any h ∈ L1 with ‖h‖L1 = 1 one has∥∥Pth− u∥∥
L1 ≤ Ce−λt ∀t ≥ 0;

1Here and in the following, ∂t defines the derivative w.r.t. t, ∆ = ∂2
x
1

+ . . . + ∂2
x
d

is the Laplace

operator and div(·) stands for the divergence operator. ∇u denotes the gradient of u.
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(e) for all φ ∈ C0

lim
T→∞

1

T

∫ T

0
φ(x(t))dt =

∫
X
φu,

for all x(0) = x0.

This theorem shows the big influence of the diffusion on the dynamics. There will be

a unique invariant density, which is uniformly positive everywhere; i.e. by the diffusion

every trajectory samples the whole phase space, by ergodicity, property (e). Compare

property (a) with Theorem 2.4 and property (c) with Section 5.2.

2.2.2 Almost invariance and the spectrum of the transfer operator

The previous section showed, that the eigenfunction at the eigenvalue 1 (the invariant

density) of the FPO tells us about the long-term dynamical behavior. We will see, how

the other eigenfunctions at eigenvalues close to 1 connect to almost invariance.

The considerations here and the next result can be found in [Del99]. Let P be the

transfer operator for a discrete-time system or P = PT for a continuous-time system

with some fixed time T > 0. Suppose λ < 1 is a real eigenvalue of P with the real

signed eigenmeasure ν. Then ν(X) = 0. If ν is scaled so that |ν| is a probability

measure, there exists a set A ∈ B, such that ν(A) = 1/2 and ν(X \ A) = −1/2 by the

Hahn-decomposition. Then, ν = |ν| on A and ν = − |ν| on X \A. We have

Theorem 2.12 (Proposition 5.7 [Del99]). Suppose that ν is scaled so that |ν| is a

probability measure, and let A ⊂ X be a set with ν(A) = 1/2. Then

ρ1 + ρ2 = λ+ 1, (2.15)

if A is ρ1-almost invariant and X \A is ρ2-almost invariant w.r.t. |ν|.

Note, that (2.15) implies ρ1, ρ2 > λ, i.e. the eigenvalue is a lower estimate for the

almost invariance w.r.t. |ν|. The almost invariant sets are given as the supports of the

positive and negative part of the measure.

Concerning the previous result, two things are unsatisfactory. First, the almost

invariance is given w.r.t. the measure |ν|, and there is no evidence, in general, if this is

a physically relevant information. Second, if there are more than two almost invariant

sets, it is not obvious how to extract them from the information given by the eigenpairs
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2.2 Transfer operators

with eigenvalues near 1. However, results exist on bounding almost invariance ratios

in terms of transfer operator eigenvalues [Hui06].

An option for tackling these problems for conformation analysis in molecular dy-

namics is introduced on a solid mathematical basis in [Deu04b]. Similar ideas appeared

in [Gav98, Gav06]. The considerations have been made for dynamical systems with fi-

nite state space (i.e. Markov chains).

Let T ∈ Rn×n be the transition matrix of the Markov chain1 on Ω = {1, 2, . . . , n},
i.e. Tij = Prob(j → i). As T is a column stochastic matrix (and the FPO of the finite

state dynamical system), it holds e>T = e>, with e> = (1, . . . , 1), and there is an

invariant distribution π ≥ 0 (componentwise) with Tπ = π. Assume, that π > 0 and

that T is reversible, i.e. T is symmetrical w.r.t. the scalar product 〈·, ·〉π = 〈·, diag(π)·〉
(the discretization of the spatial transfer operator of Schütte (cf. Section 2.4.1) satisfies

this property).

Let us consider uncoupled Markov chains first. Assume, there exists a disjoint

partition Ω = Ω1 ∪ . . . ∪ Ωk, where the Ωi are invariant, therefore T is block diagonal

with the blocks Ti being individual stochastic matrices. Let χi be the characteristic

vector of the set Ωi, i.e. (
χi
)
j

=

{
1, j ∈ Ωi,
0, otherwise.

Assuming that all Ti are irreducible, the left eigenspace of T at the eigenvalue 1 is

spanned by the χi. We can interpret these vectors as an indicator, to which extent

a state j belongs to the invariant set Ωi. Here, the entries are either 1 or 0, but

they will take values in [0, 1] as almost invariance enters the stage. For now, assume,

there are k linearly independent left eigenvectors, X1, . . . , Xk, of T given. We wish to

compute the invariant sets, by finding the vectors χi. Hence, we search for the linear

transformation A ∈ Rk×k, such that χ = XA, where χ = (χi, . . . , χk) ∈ Rn×k and

X = (X1, . . . , Xk) ∈ Rn×k, the columnwise composition of the vectors to a matrix.

The task is easy, since the Xi take at most k distinct values. Note, that if we plot the

vectors
((
χ1

)
j
, . . . ,

(
χk
)
j

)
in Rk for all j, we get points in the vertices of the (k − 1)-

simplex σk−1 with the unit canonical vectors as vertices. Doing the same with X gives

the vertices of the linearly transformed simplex. Hence the linear transformation can

be read from figure 2.1: the ith row of A−1 is the ith vertex of the latter simplex.

1See eg. [Nor97] for an introduction on the basic theory of Markov chains.
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(1, 0, 0)

(0,1,0)

(0,0,1)
A−1

Figure 2.1: The linear transformation between the simplices - In the uncoupled

case all points lie in the vertices, coupling makes them spread out.

Perturb the transition matrix T to obtain T̃ (ε), an irreducible stochastic matrix1.

Choose the perturbation in such a way, that it has the eigenvalues

λ̃1 = 1, λ̃2 = 1− ε, λ̃3 = 1−O (ε) , . . . , λ̃k = 1−O (ε) .

The eigenvectors at the first k eigenvalues perturb to X̃1, . . . , X̃k, and we wish to

compute the perturbed analogons of the χi, which we denote by χ̃i. These characterize

the almost invariant sets — the “leftovers” of the Ωi. We do not aim a strict separation

between the almost invariant sets, but think of the (χ̃i)j as of the extent, that a given

j ∈ Ω belongs to the ith almost invariant set, or ith macroscopic state. For this,

it is natural to claim χ̃ ≥ 0 and
∑k

i=1(χ̃i)j = 1 for all j ∈ {1, . . . , n}. Again, we

search for Ã, such that χ̃ = X̃Ã. Since the system has been perturbed, the points

((X1)j , . . . , (Xk)j) ∈ Rk do not lie in the vertices of a simplex, but spread out, the

same with χ̃. Hence, the transformation Ã will be defined by one simplex, which

encloses the points ((X1)j , . . . , (Xk)j).

Theorem 2.13 (Theorem 2.1 [Deu04b]). Three of the following four conditions are

satisfiable:

(a)
∑k

i=1 χ̃i = e (partition of unity),

(b) (χ̃i)j ≥ 0 for all i = 1, . . . , k and j ∈ 1, . . . , n (positivity),

(c) χ̃ = X̃Ã with a nonsingular Ã (regularity of the transformation),

(d) for all i = 1, . . . , k there exists a j ∈ {1, . . . , n} with (χ̃i)j = 1 (existence of a

“center” of the almost invariant set).

1All perturbed objects depend on ε, which dependence is omitted in the notation, from now on.
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2.2 Transfer operators

If all four conditions hold, the solution is unique up to permutation of the index set

{1, . . . , k}.

Having computed the χ̃, follwing information may be drawn of it. The probability

of being in state i:

π̃i :=
n∑
j=1

πj(χ̃i)j =
〈
χ̃i, e

〉
π
,

or the almost invariance (also called metastability, here) of the state i:

ρ̃i =

〈
χ̃i, T̃

>χ̃i

〉
π

π̃i
.

Compared with Theorem 2.12 latter formula is of more physical relevance. It assumes,

that the system ran for a time long enough to be at equilibrium (the distribution π), and

computes the almost invariance ratio for the ith macroscopic state. The metastability

can also be bounded by the eigenfunctions.

Theorem 2.14 (Theorem 2.2 [Deu04b]). Given the transformation Ã with ‖Ã−1‖ =

O
(
‖X̃>‖

)
as ε→ 0, we have the bounds

k∑
i=1

λ̃i −O
(
ε2
)
≤

k∑
i=1

ρ̃i <

k∑
i=1

λ̃i.

The theory allows an algorithmical approach. Conditions (a)–(c) can always be

satisfied. The solution may not be unique, so we still have the freedom to optimize a

parameter of choice, for example the metastability
∑

i ρ̃i. A vague visualization of the

process is the following. Given the points Pj = ((X̃1)j , . . . , (X̃k)j) ∈ Rk, one chooses an

as tight as possible enclosing simplex around them. The tightness refers to the property

that ‖Ã−1‖ is small. Then, the j, for which Pj is near to the ith vertex of the enclosing

simplex, are going to build the core of the ith almost invariant set.

Summary: long-term behavior and spectral analysis. The previous sections

showed how the long-term dynamical properties connect to the spectrum of the transfer

operator. We are interested in these properties, and the major part of this thesis is

devoted to the efficient computation of the associated objects: invariant densities and

almost invariant sets.

17



2. BACKGROUND

Consider a naive approach computing some long orbits for the given system, and

then trying to draw the desired information from these. While such an approach may

work well in some cases, it fails in general. First, iterating a point for a long time is

an ill conditioned problem; thus by the accumulation of rounding errors the numerical

trajectory may not be even close to a real trajectory of the system. Second, if our

trajectory is trapped in one almost invariant set, we may not explore important parts

of the phase space. The transfer operator is given by one step of the dynamical system,

and its numerical approximation does not involve long trajectory simulations either;

see Section 2.3. Instead of long trajectories we will work with many short ones; this

way of exploring the state space allows us to design more robust algorithms.

2.3 Ulam’s method

In order to approximate the (most important) eigenfunctions of the Frobenius–Perron

operator, we have to discretize the corresponding infinite dimensional eigenproblem.

To this end, we project the L1 eigenvalue problem Pu = λu into a finite dimensional

subspace. Let Vn ⊂ L1 (we write Lp instead of Lp(X), if there is no ambiguity what is

meant) be an approximation subspace of L1 and let πn : L1 → Vn be some projection

onto Vn. We then define the discretized Frobenius-Perron operator as

Pn := πnP.

Ulam [Ula60] proposed to use spaces of piecewise constant functions as approxima-

tion spaces: Let Xn = {X1, . . . , Xn} be a disjoint partition of X. The Xi are usually

rectangles and called boxes. Define Vn := span{χ1, . . . , χn}, where χi denotes the

characteristic function of Xi. Further, let

πnh :=
n∑
i=1

ciχi with ci :=
1

m(Xi)

∫
X
i

h dm,

yielding Pn : V 1
n ⊆ V 1

n and PnV 1+
n ⊆ V 1+

n , where V 1
n :=

{
h ∈ Vn :

∫
|h| dm = 1

}
and

V 1+
n :=

{
h ∈ V 1

n : h ≥ 0
}
. Due to Brouwer’s fixed point theorem there always exists an

approximative invariant density un = Pnun ∈ V 1+
n . The matrix representation of the

linear map Pn |V
n
: V 1

n → V 1
n w.r.t. the basis of characteristic functions is given by the
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2.3 Ulam’s method

transition matrix, Pn, with entries

Pn,ij =
1

m(Xi)

∫
X
i

Pχjdm =
m(Xj ∩ S−1(Xi))

m(Xi)
. (2.16)

Stochastic interpretation. The transition matrix, introduced as above, corresponds

to a Galerkin projection w.r.t. the basis B :=
{
χ1, . . . , χn

}
. From an applicational

point of view it is very convenient to use this basis, since the coefficient representation

of a function already yields the function values.

However, Ulam’s discretization shows structural similarities to the Markov operator

P, which become obvious using the basis B
′

:=
{
χ1/m(X1), . . . , χn/m(Xn)

}
. Let P

′

n

denote the transition matrix w.r.t. B
′
. First, note that

P
′

n,ij =
m(Xj ∩ S−1(Xi))

m(Xj)
=

∫
X
i

P
χj

m(Xj)
dm, (2.17)

which reads clearly as the probability that a point, sampled according to a uniform

probability distribution in Xj , is mapped into Xi. Hence, P
′

n,ij is the transition rate

from Xj to Xi and thus Ulam’s method defines a finite state Markov chain on Xn. This

gives a nice probabilistic interpretation for the discretization, see [Fro96].

Indeed, the matrix P
′

n is a stochastic matrix, i.e. P
′

n is positive and e>P
′

n = e>,

with e> = (1, . . . , 1). The Markov operator P is approximated by a finite dimensional

Markov operator Pn |Vn which is represented by a stochastic matrix.

Remark 2.15. Let Mn denote the diagonal matrix with ith diagonal entry m(Xi). We

obtain from the basis change:

P
′

n = MnPnM
−1
n .

The existence of a approximative invariant density un ∈ V 1+
n follows now from the

Perron–Frobenius theorem.

Not only a finite state Markov chain can be assigned to the discretized operator

P
′

n, but also a transition function pn : X ×B → [0, 1] on the whole state space, see the

interpretation after (2.17):

pn(x,A) =
n∑
j=1

m(A ∩Xi)

m(Xi)
P
′

n,ijx
, (2.18)

where jx is the unique (up to a set of measure zero, namely
⋃
i ∂Xi) index with x ∈ Xj

x
.

The advantage of this viewpoint is that we can consider discretizations as small random
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perturbations of the initial deterministic system, and extract connections between their

statistical properties; cf. Chapter 3.

Convergence. Ulam conjectured [Ula60] that if P has a unique stationary density

u, then the sequence (un)n∈N, with Pnun = un, converges to u in L1. It is still an

open question under which conditions on S this is true in general. Li [Li76] proved the

conjecture for expanding, piecewise continuous interval maps, Ding and Zhou [Din96]

for the corresponding multidimensional case. The convergence rate was established

in [Mur97, Bos01]. Froyland deals with the approximation of physical (or SRB) mea-

sures of Anosov systems in [Fro95].

In [Del99], Ulam’s method was applied to a small random perturbation of S which

might be chosen such that the corresponding transfer operator is compact on L2. In this

case, perturbation results (cf. [Osb75] and Section IV.3.5 in [Kat84]) for the spectrum

of compact operators imply convergence.

Numerical computation of the eigenpairs. Consider (2.16) to see that Pn,ij = 0

if S(Xj)∩Xi = ∅. Consequently, if S is Lipschitz continuous with a Lipschitz constant

LS and the partition elements Xi are congruent cubes, there can be at most LdS boxes

Xi to intersect with S(Xj). The partition being fine enough (i.e. n� LS), this means

that Pn is a sparse matrix — so the number of floating point operations (flops) required

to compute a matrix-vector multiplication is O (n) for a large n. Moreover, we are in-

terested only in the dominant part of the spectrum of Pn, hence Arnoldi type iterative

eigenvalue solvers may be used, which require some (usually a problem-dependent num-

ber) matrix-vector multiplications to solve this problem. To sum up, having set up the

transition matrix, the computational cost to compute the approximative eigenpairs is

O (n).

Curse of dimension. If the dimension of state space is high and no further reduction

is possible, problems arise concerning the computational tractability of Ulam’s method.

Suppose, for simplicity, that X = [0, 1]d. Divide X into md congruent cubes; there are

m along each edge of X. Use the characteristic functions of these cubes to define the

approximation space Vn. As one easily computes, for any given Lipschitz continuous

function f holds
∥∥f − πnf∥∥L1 = O

(
m−1

)
=
∥∥f − πnf∥∥L∞ . However, the costs of the
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2.3 Ulam’s method

approximation are at least its storage costs; i.e. O
(
md
)
. In other words, reaching the

accuracy ε implies costs of O
(
ε−d
)
, exponential in the dimension d of the state space.

This makes Ulam’s method in dimensions d ≥ 4 computationally inefficient or even

untractable. The phenomenon is called the curse of dimension.

Computing the transition matrix. The computation of one matrix entry (2.16)

requires a d-dimensional quadrature. A standard approach to this is Monte Carlo

quadrature (also cf. [Hun94]), i.e.

Pn,ij ≈
1

K

K∑
k=1

χi
(
S(xk)

)
, (2.19)

where the points x1, . . . , xK are chosen i.i.d fromXj according to a uniform distribution.

In [Gud97], a recursive exhaustion technique has been developed in order to compute

the entries to a prescribed accuracy. However, this approach relies on the availability

of local Lipschitz estimates on S which might not be cheaply computable in the case

that S is given as the time-T -map of a differential equation.

Number of sample points. Considering the Monte Carlo technique, we wish to

estimate how many sample points are necessary that the error in the eigenfunctions

(caused by the Monte Carlo quadrature) of the transition matrix goes to zero. One of

the simplest results on bounding the error of eigenfunctions in terms of the error of the

matrix is

Lemma 2.16 ([Qua00],pp. 203–204). For the (normed) eigenvectors xk and xk(ε) of

the matrices A resp. A(ε) = A+ εE holds:∥∥xk − xk(ε)∥∥2
≤

ε ‖E‖2
minj 6=k |λj − λk|

+O
(
ε2
)
.

In order to bound the norm of the difference matrix, first we have to estimate the

error of the individual matrix entries. For simplicity, consider a uniform partition of X

into n congruent cubes. Let Pn denote the transition matrix for this partition and let

P̃n be its Monte Carlo approximation. According to the central limit theorem (and its

error-estimate, the Berry–Esséen theorem [Fel71]) we have1

|P̃n,ij − Pn,ij | > 1/
√
K (2.20)

1We write a(K) > b(K) if there is a constant c > 0 independent of K such that a(K) ≤ cb(K).
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for the absolute error of the entries of P̃ . Thereby, K denotes the number of Monte

Carlo points.

Let ∆Pn := Pn − P̃n, i.e. the difference between the computed and the original

transition matrix. The ∆Pn,:j denote its columns. In each column there are ∼ LS

entries, where LS is the Lipschitz constant of S. Denote κ the number of all sample

points, which are assumed to be distributed uniformly over X. Since the m(Xi) are all

equal, we have

∆Pn,ij >
√
n

κ
,

and for the columns ∥∥∥∆Pn,:j

∥∥∥
2
≤
∥∥∥∆Pn,:j

∥∥∥
1
≤ LS

√
n

κ
.

Using

∥∥∆Pn
∥∥

2
= sup
‖x‖

2
=1

∣∣∣∣∣∣
∑
j

xj∆Pn,:j

∣∣∣∣∣∣ ≤ sup
‖x‖

2
=1

∑
j

|xj |
∥∥∥∆Pn,:j

∥∥∥
2
≤
√∑

j

∥∥∥∆Pn,:j

∥∥∥2

2
, (2.21)

we obtain ∥∥∆Pn
∥∥

2
>
LSn√
κ
.

By Lemma 2.16 we have for the error of the approximate eigenvector (∆λ denotes the

spectral gap at the eigenvalue in consideration)

‖∆f‖L2 >
LSn√
κ|∆λ|

, (2.22)

and by the Hölder inequality on X holds

‖∆f‖L1 >
cSn√
κ|∆λ|

,

where cS > 0 depends only on the dynamical system (X and S). Consequently, one

needs κ/n2 →∞, if one would like to expect the algorithm to converge.

Remark 2.17. For the above bound to hold, it is necessary that the spectral gap ∆λ does

not depend on n itself; or this dependence gets negligible as n→∞. This condition

is not satisfied for certain dynamical systems, see [Jun04]. However, applying specific

small stochastic perturbations to the dynamics, as it has been done e.g. in [Del99],

makes the eigenvalue of interest to be isolated and of multiplicity one. We expect the

above bound to work well in these cases.
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2.4 Classical molecular dynamics

2.4 Classical molecular dynamics

2.4.1 Short introduction

Simulation based analysis of physical, chemical, and even biological processes via clas-

sical molecular dynamics (MD) is a very attractive alternative to expensive and time-

consuming experiments. In order to be able to predict accurately the outcome of these

experiments just by computation, complicated MD models have arisen. Our aim here

is to introduce the reader into the mathematical description of MD, by using a model,

as simple as possible, which still captures the main property we would like to analyze

with transfer operator methods: conformation changes (the term shall be explained

below).

Transfer operator methods have been successfully applied for MD systems, even

for molecules with a several hundred atoms [Deu96, Sch99, Deu01, Deu04b, Deu04a,

Web07].

In situations when quantum effects can be neglected and no bond-breaking or bond-

formation takes place, the dynamics of a molecule with N atoms moving around in R3

can be described by a Hamiltonian of form

H(q, p) =
1

2
p ·M(q)−1p+ V (q), (2.23)

where (q, p) ∈ Ω×Rd ⊂ R2d, Ω being the configuration space, the mass matrix M(q) is

a positive definite d× d matrix for all q, and V : Rd → R is a potential describing the

atomic interactions. The first summand on the right hand side represents the kinetic

energy of the molecule.

In the case when all degrees of freedom are explicitly included and cartesian coordi-

nates are used, we have d = 3N (where N is the number of atoms), q = (q1, . . . , qN ) ∈
R3N , p = (p1, . . . , pN ), and M = diag(miI3×3), where qi ∈ R3 (i.e. the configuration

space is R3N ), pi ∈ R3, mi > 0 are the position, momentum, and mass of the ith atom.

It will prove useful to work with the more general form (2.23), in which the kinetic en-

ergy is a quadratic form of p depending on q. This form arises when inner coordinates

are used, which will play an important role below. For an N -atom chain molecule, the

latter consist of the (N − 1) nearest neighbor bondlengths rij , the (N − 2) bond angles

θijk between any three successive atoms, and the (N−3) torsion (also called “dihedral”)
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angles φijkl between any four successive atoms. In order to accurately model confor-

mation changes, V will have to contain at least nearest neighbor bond terms Vij(rij),

third neighbor angular terms Vijk(θijk), and fourth neighbor torsion terms Vijk`(φijk`).

In practice the potentials could come either from a suitable semiempirical molecular

force field model or from ab initio computations.

The Hamiltonian dynamics take the form

q̇ =
∂H

∂p
(q, p) = M(q)−1p, (2.24a)

ṗ = −∂H
∂q

(q, p) = − ∂

∂q

(
1

2
p ·M(q)−1p

)
−∇V (q). (2.24b)

It will be convenient to denote the phase space coordinates by z = (q, p) ∈ Ω× Rd

and the Hamiltonian vector field by

f :=

(
∂H
∂p

−∂H
∂q

)
, (2.25)

so that (2.24) becomes

ż = f(z). (2.26)

The change of probability densities under the dynamics is described by the Liouville

equation associated to (2.24)

∂tu+ f · ∇u = 0, (2.27)

where u = u(z, t), u : Ω × Rd × R → R, or, since the Hamiltonian vector field f is

divergence-free, its equivalent form as continuity equation1

∂tu+ div(u f) = 0. (2.28)

Compare (2.14) (set ε = 0) with (2.27) to see, that the FPO associated with the Hamil-

tonian H, and the Koopman operator associated with −H coincide on L∞(Ω × Rd)∩
L1(Ω × Rd). This imples that the FPO associated with the system (2.24) is given by2

Ptu = u ◦ Φ−t, (2.29)

where Φt is the time-t-map of (2.26). Note that for an arbitrary function g : R→ [0,∞)

of the Hamiltonian, the function u(z) = g(H(z)) satisfies ∇u(z) = g′(H(z))∇H(z).

1Compare with the Fokker–Planck equation (2.13) with zero diffusion.
2Compare with (2.12), and note that Φt is area preserving for all t ∈ R, as div(f) = 0.
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2.4 Classical molecular dynamics

Thus f · ∇u = 0 and u, normalized such that
∫
u(z) dz = 1, is an invariant density. Of

particular interest is the canonical density

h(z) = C exp(−βH(z)), (2.30)

C =
∫

exp(−βH(z)) dz, where β = 1/(kBT ) and kB is Boltzmann’s constant. This den-

sity describes the distribution of a (constant) large number of molecules at temperature

T and of constant volume. Note that we have

h(z) = h(q, p) = C exp

(
−β

2
p ·M−1(q)p

)
exp (−βV (q)) .

Finally, we note that (2.28) preserves the (expected value of) energy,

E(t) :=

∫
H(z)u(z, t) dz.

This is because by an integration by parts

d

dt
E(t) =

∫
H(z)

(
−div(u(z, t)f(z))

)
dz =

∫
∇H(z) · f(z)u(z, t) dz

and the inner product ∇H(z) · f(z) vanishes for all z, due to (2.25).

The spatial transfer operator. Molecular conformations should be thought of as

almost invariant subsets of configuration space. Schütte [Sch99] introduced a corre-

sponding spatial transfer operator by averaging (2.29) over the momenta: Let h ∈
L1(Ω × Rd) be an invariant density1 of (2.29) with h(q, p) = h(q,−p), let hq(q) =∫
h(q, p) dp, and consider the operator

T tw(q) =
1

hq(q)

∫
w
(
πqΦ

−t(q, p)
)
h(q, p) dp, (2.31)

where πq(q, p) = q is the canonical projection onto the configuration space. It is

designed to describe spatial fluctuations (i.e. fluctuations in the configuration space)

inside an ensemble of molecules distributed according to h. Schütte [Sch99] showed

that under suitable conditions, the spatial transfer operator is self-adjoint and quasi-

compact on a suitably weighted L2 space. Moreover, its eigenmodes with eigenvalue

near one give information about almost invariant regions in the configuration space, cf.

Section 2.2.2.
1Although the definition here works with arbitrary invariant densities, unless stated elsewise, we

consider h to be the canonical density. Hence the same notation.
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The spatial transfer operator T t is strongly connected to a stochastic process, which

can be sampled as follows. Given qk, draw a random sample pk according to the

distribution h(qk, ·)/hq(qk). Set qk+1 = πqΦ
t(qk, pk). The spatial tranfer operator is

the transfer operator of this process on a suitably weighted L1 space. This weighting

makes numerical computations more complicated, hence we define a related operator,

which we call spatial transfer operator as well:

Stw(q) =

∫
Pt
(
w
h(q, p)

hq(q)

)
dp. (2.32)

This operator is the FPO on L1(Ω) of the stochastic process described above. It is

related to the transfer operator of Schütte by (note, that hq(q) > 0 for all q ∈ Ω)

1

hq
Stw = T t

(
w

hq

)
.

Thus, if w is an eigenfunction of T t, then hqw is an eigenfunction of St at the same

eigenvalue. As we will see, we can draw from the eigenmodes of St qualitatively the

same information about almost invariant sets as from the ones of T t. Note also, that

the spatial distribution of the ensemble, hq, is a fixed point of St, thus an invariant

density of the process.1

Since we know how to sample the stochastic process, the discretization with Ulam’s

method is straightforward. Let us partition the configuration space Ω by using the

boxes Bk. Let Stn denote the matrix representation of the corresponding Ulam dis-

cretization Stn. Then we have

Sn,ij =
1

m(Bi)

∫
B
i

∫
Pt
(
χj
h(q, p)

hq(q)

)
dpdq

=
m(Bj)

m(Bi)
Prob

(
πqΦ

t(q, p) ∈ Bi
∣∣∣q ∼ χj

m(Bj)
, p ∼ h(q, ·)

hq(q)

)

=
1

m(Bi)

∫
B
j

∫
χi

(
πqΦ

t(q, p)
) h(q, p)

hq(q)
dpdq. (2.33)

If the Hamiltonian is smooth, the integrand in
∫
B
j
. . . dq is smooth as well, hence

this integral may be very well approximated by a small number of evaluations of the

integrand (e.g. by applying Gauss quadrature). The inner integral
∫
. . . dp is evaluated

by Monte Carlo quadrature.

1Schütte gives a thorough spectral analysis of the operator T t in his work. In particular, conditions

are given under which 1 is a simple and dominant eigenvalue of T t, thus of St as well.
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2.4 Classical molecular dynamics

2.4.2 Example: n-butane

We consider a united atom model [Bro83] of the n-butane molecule CH3-CH2-CH2-

CH3 (cf. Figure 2.2), viewing each CH3, respectively, CH2 group as a single particle.

Consequently, the configuration of the model is described by six degrees of freedom:

three bond lengths, two bond angles, and one torsion angle. We further simplify the

Figure 2.2: Cis- and trans-configuration of n-butane.

model by fixing the bond lengths at their equilibrium r0 = 0.153 nm. This leaves us

with the configuration variables θ1, θ2 and φ, the two bond angles and the torsion angle,

respectively. For the bond angles we use the potential

V2(θ) = −kθ
(
cos
(
θ − θ0

)
− 1
)

(2.34)

with kθ = 65 kJ
mol and θ0 = 109.47 ◦, and for the torsion angle we employ

V3(φ) = Kφ

(
1.116− 1.462 cosφ− 1.578 cos2 φ+ 0.368 cos3 φ

+ 3.156 cos4 φ+ 3.788 cos5 φ
)

with Kφ = 8.314 kJ
mol ; cf. Figure 2.3 (see also [Gri07]). There are three “potential wells”,

i.e. local minima of the potential, we expect the system to show rare transitions out of

one well into another. The positions of these wells correspond to dominant (i.e. almost

invariant) conformations. We wish to detect these with the eigenmodes of the spatial

transfer operator.

We fix mp = 1.672 ·10−24g as the mass of a proton and correspondingly m1 = 14mp

and m2 = 15mp as the masses of CH2 group and CH3 group, respectively. With
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Figure 2.3: Potential of the torsion angle.

q = (θ1, θ2, φ)> ∈ [0, π]× [0, π]× [0, 2π] =: Ω denoting the configuration of our model,

the motion of our system is determined by the Hamiltonian

H(q, p) =
1

2
p>M(q)−1p+ V (q) (2.35)

with V (q) = V2(q1)+V2(q2)+V3(q3) and the mass matrix M(q). The latter is computed

by means of a coordinate transformation q 7→ q̃(q) to cartesian coordinates q̃ ∈ R12 for

the individual particles, assuming that there is no external influence on the molecule

and its linear and angular momentum are zero: We have

˙̃q = Dq̃(q)q̇

and consequently

M(q) = Dq̃(q)>MDq̃(q),

where M denotes the (constant, diagonal) mass matrix of the Hamiltonian in cartesian

coordinates.

Everything is set to compute the Ulam discretization of the spatial transfer operator.

We consider an ensemble at temperature T = 1000K. Since transfer operator methods

need only short trajectory simulations, we use t = 5 ·10−14s and the forward Euler

method to integrate the system.1

We apply a 32× 32× 32 uniform partition of the configuration space Ω, use in each

box a three dimensional 8-node Gauss quadrature for the integral w.r.t. q, and for each

1The integration time t is chosen such that it is still small, but we can detect considerable motion

in trajectory simulations. For such a short period of time the forward Euler method is sufficiently

accurate for our purposes here. Of course, there are more suitable methods for integrating Hamilton

systems [Hai06], e.g. the Verlet scheme.
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2.4 Classical molecular dynamics

q-node 8 p-samples, see (2.33). Having computed the approximate transition matrix,

we compute the left and right eigenvectors. We visualize the latter by showing the

θ2-φ-marginals of the first 3 eigenfunctions in Figure 2.4. Note, that by the symmetry

of the molecule, the θ1-φ marginals have to look alike. Observe, that the sign structure

of the second and third eigenvectors indicate almost invariant sets at φ ≈ π/3, φ ≈ π

and φ ≈ 5π/3 — just where the wells of the potential V3 are. The compontents of
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Figure 2.4: Dominant configurations of n-butane, analyzed via right eigenvec-

tors - The θ2-φ marginals of the first three eigenfunctions (from left to right) of the ap-

proximate spatial transfer operator S32×32×32. The almost invariant sets can be extracted

from the sign structure of the second and third eigenfunctions.

the second and third approximate left eigenvectors plotted in R2 are shown Figure 2.5

(left). According to Section 2.2.2, the points near the vertices of the simplex show the

positions of the almost invariant sets. The corresponding areas in the configuration

space are shown in the right plot of the same figure.
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Figure 2.5: Dominant configurations of n-butane, analyzed via left eigenvectors

- Left: the points (v2,i, v3,i) ∈ R2 for i = 1, . . . , 323, where v2 and v3 are the second and

third approximate left eigenvectors of the discretized spatial transfer operator. Right: the

points near the “vertices” of the approximative simplex on the left correspond to boxes

in the partition of the configuration space. The almost invariant configurations are seen

easily here.
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Chapter 3

Projection and perturbation

3.1 Small random perturbations

A lot of scientific interest has been devoted to the question how properties of (deter-

ministic) dynamical systems change under perturbation of the system. There are two

natural concepts of perturbation. The first is taking a deterministic system S̃ : X → X

as a perturbation of the original one, S : X → X, and comparing their (local) topo-

logical behavior. It is assumed that ‖S − S̃‖ is small for a suitable norm ‖·‖. These

considerations are associated with the field of structural stability. Since we will not

deal with this topic, the reader is referred to the textbook [Guc83]. The second con-

cept is the notion of stochastic stability, which compares the original system S with

nondeterministic ones “near” S in a way described below. It is an appropriate way

of analyzing the robustness of statistical properties of dynamical systems. We use the

following definition of small random perturbations:

Definition 3.1 (Small random perturbation,[Kif86]). A family pε : X × B → [0, 1] of

stochastic transition functions is called a small random perturbation (s.r.p.) of the map

S : X → X, if

lim
ε→0

sup
x∈X

∣∣∣∣g(S(x))−
∫
X
g(y)p(x, dy)

∣∣∣∣ = 0 (3.1)

for all g ∈ C0(X).

One can also read this as ”pε(x, ·)→ δS(x)(·)” as ε→ 0 uniformly in x, where δx is

the Dirac delta function (or Dirac delta distribution) centered in x.

A first statement about the connection of the statistical properties of a dynamical

system and its s.r.p. gives this theorem from Khas’minskii:

31



3. PROJECTION AND PERTURBATION

Proposition 3.2 ([Kha63]). Let pε be a s.r.p. of S. For each ε let µε be an invariant

measure of pε. Let µε
i
→ µ in the weak sense1 for a sequence εi → 0. Then µ is an

invariant measure of S.

The result raises the question, if there are such invariant measures µ of particular

systems, where the above convergence holds for any arbitrary sequence εi → 0 with

the common limit µ (stochastic stability). Kifer gives a positive answer [Kif86] for

axiom A C2 diffeomorphisms, under some regularity assumptions on the s.r.p. In that

case the limiting measure is a physical measure of the system. To omit technicalities,

we only state the assumption which will play the most important role in our further

considerations: the transition function pε should have a transition density function qε,

and the support of qε(x, ·) should vary continuously with x (see [Kif86], §2., Remark

1.).

If one could interpret discretizations of the transfer operators as s.r.p. of the cor-

responding dynamical system, there would be a chance to prove the convergence of

approximative invariant measures to the invariant (physical) measure of the original sys-

tem. To my best knowledge, this idea goes back to Góra [Gor84] and Froyland [Fro95],

see also [Del99]. The current chapter is devoted to this question. More precisely, we

will derive assumptions on the approximation space, which guarantee that the Galerkin

projection of the transfer operator corresponds to a s.r.p. of the dynamical system in

consideration.

3.2 On characterizing Galerkin discretizations as small

random perturbations

The projection. Let X be a compact metric space and denote Lp = Lp(X) for

1 ≤ p ≤ ∞. Define linearly independent functionals `1, . . . , `n ∈ (L1)
′
, where (L1)

′
is

the dual of L1. Further let Vn := span
{
ϕ1, . . . , ϕn

}
,2 the ϕi are bounded, piecewise

continuous3 and linearly independent. Thus Vn ⊂ L∞ and dimVn = n. Let the

1A sequence of measures {µn} converges to the measure µ in the weak sense, if
∫
g dµn →

∫
g dµ

for every continuous function g.
2We omit here the indication that the ϕi depend on n itself, although it may be the case.
3A function is piecewise continuous, if there is a finite partition of its domain, where the function

is continuous on each partition element. Having numerical computations in mind, it certainly makes

sense to work with bounded piecewise continuous functions.
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perturbations

projection πn : L1 → Vn be defined by

`i(f − πnf) = 0 ∀ i = 1 . . . n.

It is unique if for every ϕ ∈ Vn following implication holds: if `i(ϕ) = 0 for all i = 1 . . . n,

then ϕ = 0. Since (L1)
′

is isomorph to L∞, there are ψ1, . . . , ψn ∈ L∞ such that

`i(f) =
∫
fψi for every f ∈ L1 and i = 1 . . . n.1 The ψi are called test functions. For

general ψi the projection is called Petrov–Galerkin projection, if ψi = ϕi, we call it a

Galerkin projection. We are going to consider Galerkin projections here, nevertheless

it should be clear from the derivation how can one construct the more general ones as

well.

Setting πnf =
∑n

i=1 ciϕi and ψi = ϕi, by

bj :=

∫
f ϕj =

∫
πnf ϕj =

n∑
i=1

ci

∫
ϕi ϕj︸ ︷︷ ︸

=:A
n,ji

,

the projection reads as c = A−1
n b, where

An =

∫
Φn Φ>n , b =

∫
Φnf,

with Φn = (ϕ1, . . . , ϕn)>. Thus

πnf = Φ>nA
−1
n

∫
Φnf (3.2)

Discretization as perturbation. We would like to find a stochastic transition den-

sity qn(x, y) such that Pq
n

= πnP on L1, P being the transfer operator associated with

S. Recall, that U denotes the Koopman operator, which is adjoint to P. Since

Pq
n
f(y) =

∫
qn(x, y)f(x)dx, (3.3)

and

πnPf(y) = Φn(y)>A−1
n

∫
Φn Pf = Φn(y)>A−1

n

∫
UΦn︸︷︷︸

=Φ
n
◦S

f, (3.4)

for all f ∈ L1, we conclude

qn(x, y) = Φn(y)>A−1
n Φn(S(x)) = q̄n(S(x), y), (3.5)

1If the set of integration is not indicated, the whole phase space X is meant to be integrated over.
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where q̄n(x, y) = Φn(y)>A−1
n Φn(x). Note, that qn is invariant under a change of the

basis. Further, since An is symmetric positive definite (s.p.d.), A−1
n is s.p.d. as well,

which implies the symmetry of q̄n.

Equation (3.5) could be understood as well as

qn(x, y) = Φn(y)>A−1
n

∫
Φn δS(x) = (πnδS(x))(y).

Topology of the approximating functions — some assumptions. Until now,

the projection property (3.2), and everything derived from it, is meant to hold Lebesgue

almost everywhere (a.e.). For later analysis we will need a stronger relation, which we

obtain by extracting some topological features of the approximation space. These

features appear to be evident if one has numerical applications in mind.

First of all, X should have a nonempty interior and X = int(X) ∪ ∂X. Further,

recalling the piecewise continuity of Φn, there should be a finite collection of sets Rni

and Γni , such that

(a) Rni = int(Rni ) ∪ Γni and int(Rni ) 6= ∅,

(b) Γni ⊂ ∂Rni ,

(c) the Rni are disjoint with
⋃
iR

n
i = X, and

(d) Φn is continuous on Rni .

Fix now some j, and recall the projection property (3.2)

Φn(y)>A−1
n

∫
Φnϕj = ϕj(y) for a.e. y ∈ X, (3.6)

where the integral does not depend on the L∞–representative of Φn. If (3.6) holds

Lebesgue a.e., it holds pointwise for a dense set Y ⊂ X. Let y ∈ X be arbitrary and

i such that y ∈ Rni . Then, by our assumptions, there is a sequence {yk} ⊂ Rni ∩ Y
such that yk → y. By the piecewise continuity of Φn, (3.6) holds for y as well, thus the

projection property (3.2) (and all its consequences) holds pointwise in X.

Finally, we state that the Γni can be chosen in dependence on j (if necessary, by

changing the values of ϕj on a zero-measure set) such that the basis function ϕj admits

a maximum. It may be impossible, however, to choose a partition {Rni }i such that all

ϕj admit their maxima at the same time. Nevertheless, changing the values of the ϕj

on the zero–measure sets Γni is not decisive for the fact if qn is a s.r.p. or not, but it

will be important in the proof of Theorem 3.7.
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3.2 On characterizing Galerkin discretizations as small random
perturbations

First considerations. If we want qn to be a stochastic transition density which is a

s.r.p. of S, three requirements have to be fulfilled:

(i) qn ≥ 0 on X ×X,

(ii)
∫
qn(x, ·) = 1 for all x ∈ X, and

(iii) qn is the transition density of a transition function which is a s.r.p. in the sense

of Definition 3.1.

Lemma 3.3. Let S be onto. Then following holds:

(i) qn ≥ 0 ⇔ q̄n ≥ 0

(ii)
∫
qn(x, ·) = 1 ∀x ⇔ 1 ∈ Vn, where 1(x) = 1 for all x ∈ X.

(iii) If qn is a stochastic transition density, the corresponding transition function is a

small random perturbation of S, iff πng → g as n→∞, uniformly (in x) for all

g ∈ C0.

Proof. To (i): Trivial by (3.5) and the surjectivity of S.

To (ii): Substitute (3.5) in the claim, and see that it is equivalent with πn1 = 1.

To (iii): As n→∞, we have

sup
x

∣∣∣∣g(S(x))−
∫
g(y)qn(x, y)dy

∣∣∣∣→ 0 ⇔ sup
x

∣∣∣∣g(S(x))− Φn(S(x))>A−1
n

∫
Φn g

∣∣∣∣→ 0

⇔ sup
x

∣∣g(S(x))− πng(S(x))
∣∣→ 0

⇔
∥∥g − πng∥∥L∞ → 0,

where the last equivalence follows from the surjectivity of S.

Remark 3.4. In some applications it may be the case that S is not onto, e.g. think

of X as a finite box covering of an attractor of complicated geometry. In general,

the covering certainly will not be congruent with the attractor and S cannot be onto.

Note, however, that the conditions posed on Vn and πn in Lemma 3.3 are still sufficient

for the claims on qn; only not necessary. In order to keep our analysis on the level

of approximation space and the corresponding projection, we stick to these sufficient

conditions. Otherwise, one would have to utilize specific geometrical properties of the

phase space/attractor, which may differ from system to system.
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3.3 The problem with nonnegativity

Let us fix the discretization parameter n and omit it as a subscript. This will ease the

reading in the following.

By Lemma 3.3 the nonnegativity of q is equivalent with the nonnegativity of q̄.

For an Ulam type approximation, i.e. using characteristic functions over the partition

elements Xi as basis functions, q̄(x, y) = 0 if x and y are not contained in the same par-

tition element Xi, meanwhile q̄(x, y) = 1/m(Xi) if both x, y ∈ Xi. The corresponding

q is a stochastic density function and a s.r.p. of S. Indeed, all criteria of Lemma 3.3 are

easily checked. Concerning (iii), note that continuous functions over a compact set are

uniformly continuous, which allows the piecewise constant approximations to converge

uniformly on X, if the box diameters tend to zero.1 A pity that supp (q̄(x, ·)) does not

depend continuously on x, hence the stochastic stability results from Kifer can not be

applied here.

A simple example of continuous basis functions occurring often in applications are

hat functions. Unfortunately, the resulting q̄ are already nonnegative for a coarse

discretization, and this gets only worse by increasing the resolution; cf. Figure 3.1.

Figure 3.1: The transition density is not nonnegative - plotted is q̄(0.5, ·) for 17

basis functions (left) and 65 basis functions (right).

The result. It turns out, that q̄ has negative parts not only for hat functions. We

would like to characterize in the following the basis functions satisfying the nonnega-

1Froyland shows in [Fro95] that the operator πnPπn can be viewed as a s.r.p. of S. Note, that we

work with πnP. The range and thus the invariant densities of the two operators are identical.
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3.3 The problem with nonnegativity

tivity requirements. For this, recall the projection property (πϕ = ϕ for ϕ ∈ V )∫
q̄(x, y)ϕ(y)dy = ϕ(x), (3.7)

and that q ought to be a stochastic transition density; i.e.
∫
q̄(x, ·) = 1 for all x ∈ X.

By the symmetry of q̄ it does not matter if q̄(·, y) or q̄(x, ·) is the projection kernel.

Now let ϕ ∈ V be arbitrary and the Rni chosen such that |ϕ| has a maximum place. By

the piecewise continuity and boundedness of ϕ, further by the compactness of X, there

will be (a not necessary unique) one, which we denote by x0. It follows from (3.7) that

∣∣ϕ(x0)
∣∣ =

∣∣∣∣∫ q̄(x0, y)ϕ(y)dy

∣∣∣∣ ≤ ∥∥q̄(x0, ·)
∥∥
L1︸ ︷︷ ︸

=1

max(|ϕ|) =
∣∣ϕ(x0)

∣∣ .
Equation can hold only if |ϕ| ≡

∣∣ϕ(x0)
∣∣ over M0 := supp

(
q̄
(
x0, ·

))
and ϕ(y) has the

same sign for all y ∈M0. Hence, ϕ = ϕ(x0) on M0. With other words, all x ∈M0 are

maximum places of |ϕ|. Continuing this argument, we obtain following:

Proposition 3.5. Define M0 := supp
(
q̄
(
x0, ·

))
and

Mk :=
{
x ∈ supp (q̄ (z, ·)) | z ∈Mk−1

}
.

Then ϕ(x) = ϕ(x0) for all x ∈
⋃
k∈N0

Mk.

We already know by (3.5) how q̄ is obtained from a basis of V . Here is a result

concerning the other direction.

Lemma 3.6. There is a x = (x1, . . . , xn) such that
{
q̄
(
xi, ·

)}
i=1,...,n

is a basis of V .

The xi may be chosen such that xi ∈
⋃
k int(Rnk ) for every i = 1, . . . , n.

Proof. Since
n∑
i=1

ci q̄(xi, y) = Φ(y)>A−1Φ(x)c,

with Φ(x) =
(
Φ(x1) . . .Φ(xn)

)
∈ Rn×n, the claim is equivalent with: there is an x such

that the Φ(xi) are linearly independent.

We construct the set
{
x1, . . . , xn

}
step by step. Choose x1 arbitrary, such that

x1 ∈ int(Rnk ) for some k. From now on, the proof goes by induction. Assume, we

have x1, . . . , xm with m < n and xi ∈ int(Rnk
i
). Assume further that there is no
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3. PROJECTION AND PERTURBATION

x ∈
⋃
k int(Rnk ) such that the Φ(x1), . . . ,Φ(xm),Φ(x) are linearly independent. Thus,

there are functions c1, . . . , cm :
⋃
k int(Rnk )→ R such that

m∑
i=1

ci(x)Φ(xi) = Φ(x) ∀ x ∈
⋃
k

int(Rnk ).

In other words, Φ(x) is in the range of the matrix Ψ ∈ Rn×m with Ψij = ϕi(xj) for all

x ∈
⋃
k int(Rnk ). But the range is a closed subspace and Φ is continuous, hence Φ(x)

is in the range of Ψ for x ∈
⋃
k Γnk as well. It follows, the ci can be extended to the

entire X and V is spanned by m functions (the ci), which contradicts dimV = n. The

induction step is hereby complete, hence the proof as well.

Now we are ready to prove the main result.

Theorem 3.7. Assume V is spanned by such bounded, piecewise continuous functions

that the corresponding q̄ satisfies

(i) q̄ ≥ 0 on X ×X and

(ii)
∫
q̄(x, ·) = 1 for all x ∈ X.

Then V is spanned by characteristic functions.

Proof. By Lemma 3.6 there is a basis
{
q̄(xi, ·)

}
i=1...n

of V , where xi ∈
⋃
k int(Rnk ) for

i = 1, . . . , n. Let i be arbitrary and denote (for simplicity) z = xi. Then, by the basis

representation formula, it holds∫
q̄(x, y)q̄(z, y)dy = q̄(z, x).

If necessary, change the ϕj on the Γnk , so that q̄(z, ·) has a maximum, and let zm denote

a maximum place. This change affects each chosen basis function at most on a zero-

measure set (since xi /∈
⋃
k Γnk), hence linear independence is retained, and the basis

property as well. Then ∫
q̄(zm, y)q̄(z, y)dy = q̄(z, zm).

By q̄ ≥ 0 and
∫
q̄(zm, ·) = 1 we have (recall the considerations at the beginning of the

paragraph, in particular Proposition 3.5)

q̄(z, y) = q̄(z, zm) ∀y ∈ supp (q̄(zm, ·)) . (3.8)

By the symmetry of q̄ is q̄(zm, z) > 0 and hence z ∈ supp (q̄(zm, ·)). Thus by (3.8) is

z a maximum place of q̄(z, ·), and we can set zm = z. Once more using (3.8), we have

that q̄(z, ·) is constant over its whole support.
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3.4 The case Pn = πnPπn

The theorem tells us that if we would like to consider the Galerkin discretization

of the transfer operator as a s.r.p. of the dynamical system, the chosen approximation

space would consist of characteristic functions. We encounter the same problem as

discussed before with Ulam’s method: the continuous variation of the transition density

function support.

3.4 The case Pn = πnPπn

It is also possible to consider, instead of Pn = πnP, the operator Pn = πnPπn. The

eigenmodes corresponding to the nonzero spectrum are the same for the both operators,

in particular the modes at the largest eigenvalues. As one may easily see, the latter is

the transfer operator associated with the transition function (2.18). Let us compute the

transition density of this operator. Once again, we use the projection property (3.2).

πnPπnf(z) =

∫
q̄n(y, z)P

∫
q̄n(x, y)f(x)dxdy

=

∫
U q̄n(y, z)

∫
q̄n(x, y)f(x)dxdy

=

∫∫
q̄n(S(y), z)q̄n(x, y)dyf(x)dx,

where the compactness of X and the boundedness of q̄n allows the change of the integral

sequence. We obtain the transition density function

qn(x, y) =

∫
q̄n(S(z), y)q̄n(x, z)dz.

This may also be read as qn(·, y) = πnq̄n(S·, y). Setting S = Id, we are in the former

case (Pn = πnP), and see, that only piecewise constant functions may be interpreted as

s.r.p’s. Any more precise statement would require a deeper analysis of the interplay of

the dynamics S and the approximation space Vn, which is not considered in this work.

However, this description of the discretized transfer operator gives us an option to

show that (2.18) is a s.r.p. of S. The same has been proven earlier in [Fro95].

Proposition 3.8. Ulam’s method can be interpreted as a s.r.p. More precisely, the

transition function (2.18) is a s.r.p. of S, provided S is continuous.

Remark 3.9. The notion of s.r.p.’s used here was introduced in [Kif86] for diffeomor-

phisms, hence our assumption does not mean a serious restriction.
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3. PROJECTION AND PERTURBATION

Proof. Let g ∈ C0 be arbitrary. Then∣∣∣∣g(S(x))−
∫
g(y)qn(x, y)dy

∣∣∣∣ =

∣∣∣∣g(S(x))−
∫
g(y)

∫
q̄n(S(z), y)q̄n(x, z)dzdy

∣∣∣∣
=

∣∣g(S(x))− πn
((
πng

)
◦ S
)

(x)
∣∣ ,

where the second equation follows by swapping the integration sequence (allowed, just

as above). Thus, we need to show∥∥g ◦ S − πn ((πng) ◦ S)∥∥L∞ =
∥∥πn ((πng) ◦ S)− πn(g ◦ S)︸ ︷︷ ︸

=:I1

+πn(g ◦ S)− g ◦ S︸ ︷︷ ︸
=:I

2

∥∥
L∞
→ 0

as n→∞. Since the Ulam-type projection πn is a ‖·‖L∞-contraction, we have∥∥I1

∥∥
L∞
≤
∥∥(πng) ◦ S − g ◦ S

∥∥
L∞
≤
∥∥πng − g∥∥L∞ → 0

as n→∞, because g is uniformly continuous on the compact phase space X.
∥∥I2

∥∥
L∞
→

0 as n → ∞ if g ◦ S is uniformly continuous as well. This follows from the continuity

of S.

3.5 A more general case

Note from the proof of Theorem 3.7, that except for the boundedness and piecewise con-

tinuity assumptions made on the basis functions (which we would not like to weaken),

four conditions were used to end up with the (undesired) result:

• positivity of qn;

•
∫
qn(x, ·) = 1 for all x;

• projection property:
∫
qn(x, ·)ϕ(x) = πnPϕ for all ϕ ∈ Vn; and

• symmetry: q̄n(x, y) = q̄n(y, x) for all x, y ∈ X.

It is clear that the first three conditions are necessary if the Galerkin projection should

be viewed as a s.r.p. However, we may wish to drop symmetry. The third condition

tells us that it was also unnecessary strong to assume πnP = Pq
n

on L1; instead of this,

for our purposes it would be sufficient to claim

• πnP = Pq
n

on Vn, and
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3.5 A more general case

• Pq
n

has a fixed point in Vn.

Thus, we also have the needed freedom to drop the symmetry of q̄, since it was the

consequence of πnP = Pq
n

on L1; cf. (3.3) and (3.4). We end up with the following

task: find qn with

(a) qn ≥ 0 a.e.,

(b)
∫
qn(x, ·) = 1 a.e.,

(c)
∫
qn(x, ·)ϕ(x) = πnPϕ for all ϕ ∈ Vn, and

(d) there is a 0 ≤ ϕ∗n ∈ Vn such that Pq
n
ϕ∗n = ϕ∗n.

Note, that the third assumption cannot be valid, if there is a dynamical system S

and a positive function ϕ ∈ Vn such that πnPϕ � 0. Answering the question, if there

is a qn satisfying (a)–(d), may need further specifications of the approximation space

and/or the dynamical system. This lies beyond the scope of this work, however, could

be the topic of future investigations.

Remark 3.10. Another possibility to break symmetry, but still obtain an explicit repre-

sentation of the transition density qn, would be to consider Petrov–Galerkin discretiza-

tions. This would imply qn(x, y) = q̄(S(x), y), with q̄(x, y) = Ψn(x)>A−1
n Φn(y), where

Ψn = (ψ1, . . . , ψn)> and An =
∫

ΨnΦ>n . To my knowledge, Petrov–Galerkin methods

were only used in [Din91] to discretize transfer operators. Their approximation space

consists of globally continuous piecewise linear and quadratic functions, the test func-

tions are piecewise constant. Since this discretization leads to a Markov operator, as

they show, it may be another interesting topic for a future work to investigate this from

the point of view represented here.
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Chapter 4

The Sparse Ulam method

4.1 Motivation and outline

If the set where the essential dynamical behavior of a system takes place is of nonzero

Lebesgue measure in a high dimensional space, or if we have not enough knowledge

about the system to ease our numerical computations by reducing the dimension of the

computational domain, transfer operator methods will suffer from the curse of dimen-

sion; cf. Section 2.3. In such cases a more efficient approximation of the eigenfunctions

of the transfer operator would be desirable. Of course, without any further assump-

tions on these functions this is hardly possible. However, in particular cases where the

dynamics is subject to a (small) random perturbation, invariant densities and other

dominant eigenfunctions of the FPO tend to show regularities like Lipschitz continuity.

There should not occur any high oscillatory behavior in the eigenfunctions, since due to

the random perturbation the system reaches states close to each other with almost the

same probability. A similar statement on geometrical regularity is shown in [Jun04].

As approximation methods for regular scalar functions on high dimensional do-

mains, sparse grid techniques have been very successfully used in different fields in

the last decade. The idea goes back to [Smo63], where an efficient quadrature method

was proposed for evaluating integrals of specific functions. Later, it was extended to

interpolation and the solution of partial differential equations [Zen91], see also the

comprehensive work [Bun04].

Sparse grid interpolation allows us to achieve a higher approximation accuracy by

employing a smaller number of basis function. This is done by replacing the usual basis,
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4. THE SPARSE ULAM METHOD

where all basis functions are “equal” (characteristic functions over boxes), and using a

hierarchical basis instead. By comparing the approximation potential of the functions

on the different levels of this hierarchy, the most “efficient” basis is constructed under

the constraint, that the maximal number of all basis functions is given.

We propose to work with the transfer operator projected onto the sparse grid ap-

proximation spaces consisting of piecewise constant functions. The resulting method

is derived by giving a short introduction to sparse grids in Section 4.2, and discussing

some properties of the discretized operator in Section 4.3. A detailed analysis of the

efficiency and numerical realization is given in Section 4.4; with particular focus on

a comparison with Ulam’s method. Section 4.5 includes two examples on which our

method is tested and compared with Ulam’s method. Finally, the conclusions are drawn

in Section 4.6.

The results have partially been published in [Jun09].

4.2 Hierarchical Haar basis

We describe the Haar basis on the d-dimensional unit cube [0, 1]d, deriving the multi-

dimensional basis functions from the one dimensional ones, see e.g. [Gri99]. Let

fHaar(x) = −sign(x) · (|x| ≤ 1), (4.1)

where (|x| ≤ 1) equals 1, if the inequality is true, otherwise 0. A basis function of the

Haar basis is defined by the two parameters level i and center (point) j:

fi,j(x) :=

{
1 if i = 0,

2
i−1
2 · fHaar

(
2i
(
x− xi,j

))
if i ≥ 1,

(4.2)

where

xi,j := (2j + 1)/2i, j ∈ {0, . . . , 2i−1 − 1}. (4.3)

A d-dimensional basis function is constructed from the one dimensional ones using a

tensor product construction:

ϕk,l(x) :=

d∏
i=1

fk
i
,l
i
(xi), (4.4)

for x = (x1, . . . , xd) ∈ [0, 1]d. Here k = (k1, . . . ,kd), ki ∈ {0, 1, 2, . . .}, denotes the level

of the basis function and l = (l1, . . . , ld), li ∈ {0, . . . , 2
k
i − 1}, its center.
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Theorem 4.1 (Haar basis). The set

H =
{
fi,j | i ∈ N0, j ∈ {0, . . . , 2

i − 1}
}

is an orthonormal basis of L2([0, 1]), the Haar basis. Similarly, the set

Hd =
{
ϕk,l | k ∈ N

d
0, li ∈ {0, . . . , 2

k
i − 1}

}
is an orthonormal basis of L2([0, 1]d).1

1 1/2 1

11

-1

1/4 1/2 3/4 1

2

2-

Level 0 Level 1 Level 2

Figure 4.1: Haar basis - First three levels of the 1D Haar basis

Figure 4.1 shows the basis functions of the first three levels of the one dimensional

Haar basis. It will prove useful to collect all basis functions of one level in one subspace:

Wk := span
{
ϕk,l | li ∈ {0, . . . , 2

k
i − 1}

}
, k ∈ Nd0. (4.5)

Consequently, L2 = L2([0, 1]d) can be written as the infinite direct sum of the subspaces

Wk,

L2 =
⊕
k∈Nd0

Wk. (4.6)

In fact, L1 = L1([0, 1]d) =
⊕

k∈Nd0
Wk holds as well, because L2 is dense in L1. More-

over, we have

dim Wk =
d∏
i=1

2max{0,k
i
−1} = 2

∑
ki 6=0

k
i
−1
. (4.7)

1The claim can be easily seen by observing that all Haar functions up to level ` span the space of

piecewise constant functions over an equipartition of the unit interval into 2` subintervals. The union

of these spaces for `→∞ is known to be dense in L2([0, 1]). Analogously follows the multidimensional

case.
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In order to get a finite dimensional approximation space most appropriate for our pur-

poses, we are going to choose an optimal finite subset of the basis functions ϕk,l. Since

in general we do not have any a priori information about the function to be approxi-

mated, and since all basis functions in one subspace Wk deliver the same contribution

to the approximation error, we will use either all or none of them. In other words, the

choice for the approximation space is transferred to the level of subspaces Wk.

4.2.1 Approximation properties

The choice of the optimal set of subspaces Wk relies in the contribution of each of these

to the approximation error. The following statements give estimates on this.

Lemma 4.2. Let f ∈ C1([0, 1]) and let ci,j be its coefficients with respect to the Haar

basis, i.e. f =
∑

ij ci,jfi,j. Then for i > 0 and all j∣∣∣ci,j∣∣∣ ≤ 2−
3i+1
2

∥∥f ′∥∥∞ .
For f ∈ C1

(
[0, 1]d

)
we analogously have for k 6= 0 and all l

∣∣∣ck,l∣∣∣ ≤ 2
−
(∑

ki 6=0
3k
i
+1
)
/2 ∏

k
i
6=0

∥∥∂if∥∥∞ .
Proof. For i ≥ 1

2
1−i
2 cij =

∫ x
j

x
j
−2−i

f −
∫ x

j
+2−i

x
j

f

=

∫ x
j

x
j
−2−i

(
f(xj) +

∫ x

x
j

f ′

)
dx−

∫ x
j
+2−i

x
j

(
f(xj) +

∫ x

x
j

f ′

)
dx

and thus

2
1−i
2

∣∣∣cij∣∣∣ ≤ 2
∥∥f ′∥∥∞ ∫ 2−i

0
x dx,

which yields the claimed estimate for the 1d case. The bound in the d-dimensional case

follows similarly.

Using this bound on the contribution of a single basis function to the approximation

of a given function f , we can derive a bound on the total contribution of a subspace Wk.
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For fk ∈Wk ∥∥fk∥∥L1 ≤ 2
−
∑

ki 6=0
(k
i
+1) ∏

k
i
6=0

‖∂if‖∞, (4.8)

∥∥fk∥∥L2 ≤ 2
−
∑

ki 6=0
(k
i
+3)/2 ∏

k
i
6=0

‖∂if‖∞. (4.9)

4.2.2 The optimal subspace

The main idea of the sparse grid approach is to choose cost and (approximation) benefit

of the approximation subspace in an optimal way. We briefly sketch this idea here, for

a detailed exposition see [Zen91, Bun04]. For a set I ⊂ Nd0 of multiindices we define

WI =
⊕
k∈I

Wk.

Correspondingly, for f ∈ L1, let fI =
∑

k∈I fk, where fk is the L2-orthogonal projec-

tion1 of f onto Wk. We define the cost C(k) of a subspace Wk as its dimension,

C(k) = dimWk = 2
∑

ki 6=0
k
i
−1
.

Since

∥∥f − fI∥∥ ≤
∑
k/∈I

∥∥fk∥∥ =
∑
k∈Nd0

∥∥fk∥∥−∑
k∈I

∥∥fk∥∥ , (4.10)

the guaranteed increase in accuracy is bounded by the contribution of a subspace Wk

which we add to the approximation space. We therefore define the benefit B(k) of Wk

as the upper bound on its L1-contribution as derived above,

B(k) = 2
−
∑

ki 6=0
(k
i
+1)

. (4.11)

Note that we omited the factor involving derivatives of f . The reason is that it does

not affect the solution of the optimization problem (4.12)

Let C(I) =
∑

k∈IC(k) and B(I) =
∑

k∈IB(k) be the total cost and the total

benefit of the approximation space WI. In order to find the optimal approximation

1Note that since all functions in Wk are piecewise constant and have compact support, this projec-

tion is well defined on L1 as well.
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space we are now solving the following optimization problem: Given a bound c > 0 on

the total cost, find an approximation space WI which solves

max
C(I)≤c

B(I). (4.12)

One can show (cf. [Bun04]) that I ⊂ Nd0 is an optimal solution to (4.12) iff

C(k)

B(k)
= const for k ∈ ∂I, (4.13)

where the boundary ∂I is given by ∂I = {k ∈ I | k′ ∈ I,k′ ≥ k ⇒ k′ = k}1. Using the

definitions for cost and benefit as introduced above, we obtain

C(k)

B(k)
=

2
∑

ki 6=0
(k
i
−1)

2
−
∑

ki 6=0
(k
i
+1)

= 2
2
∑

ki 6=0
k
i = 22|k|, (4.14)

where |k| means the 1-norm of the vector k.

The optimality condition (4.13) thus translates into the simple condition

|k| = const for k ∈ ∂I. (4.15)

As a result, the optimal approximation space is WI(N) with

I(N) =
{

k ∈ Nd0 | |k| ≤ N
}
, (4.16)

where the level N = N(c) ∈ N is depending on the chosen cost bound c. Figure 4.2

schematically shows the basis functions of the optimal subspace in 2D for N = 3.

Remark 4.3. Because of the orthogonality of the Haar-basis in L2 one can take the

squared contribution as the benefit in the L2-case (resulting in equality in (4.10)). In

this case we obtain the optimality condition∑
k
i
6=0

(ki + 1) = const for k ∈ ∂I (4.17)

and correspondingly WI with

I(N) =

k ∈ Nd0 :
∑
k
i
6=0

(ki + 1) ≤ N

 , (4.18)

N = N(c), as the optimal approximation space.

1k′ ≥ k is meant componentwise
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4.3 The discretized operator

Figure 4.2: 3rd level sparse basis in two dimensions - Shaded means value 1, white

means value −1, thicker lines are support boundaries.

4.3 The discretized operator

Having chosen the optimal approximation space VN = WI(N) we now build the corre-

sponding discretized Frobenius-Perron operator PN . Since the sparse basis

BN :=
{
ϕk,l | |k| ≤ N, li ∈ {0, . . . , 2

k
i − 1}

}
(4.19)

is an L2-orthogonal basis of VN , the natural projection πN : L2 → VN is given by

πNf =
∑
ϕ∈B

N

(∫
fϕ

)
ϕ. (4.20)

As noted in the previous section, the above definition of πN makes it well defined on

L1 as well. Choosing an arbitrary enumeration of the basis, the (transition) matrix PN

of the discretized Frobenius-Perron operator

PN = πNP

with respect to BN has entries

PN,ij =

∫
ϕi Pϕj . (4.21)
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4. THE SPARSE ULAM METHOD

Writing ϕi = ϕ+
i − ϕ

−
i = |ϕi| · (χ

+
i − χ

−
i ), where |ϕi| is the (constant) absolute value

of the function over its support and χ+
i and χ−i are the characteristic functions on the

supports of the positive and negative parts of ϕi, we obtain

PN,ij = |ϕi||ϕj |
(∫

χ+
i Pχ

+
j −

∫
χ−i Pχ

+
j −

∫
χ+
i Pχ

−
j +

∫
χ−i Pχ

−
j

)
, (4.22)

which is, by (2.16)

PN,ij = |ϕi||ϕj |
∑
±m

(
X±j ∩ S

−1
(
X±i
))
, (4.23)

where X±i = supp (ϕ)±i and we add the 4 summands like in (4.22). These can be

computed in the same way as presented in Section 2.3.

Remark 4.4. We note that

(a) if the ith basis function is the one corresponding to k = (0, . . . , 0), then

PN,ij = δij .

(b) The entries of PN are bounded via

∣∣∣PN,ij∣∣∣ ≤
√
m(Xj)

m(Xi)
≤ 2N/2.

(c) If PNy = λy for a 0 6= y ∈ CdimVN with λ 6= 1, then yi = 0 if the ith basis function

is the one corresponding to k = (0, . . . , 0). This follows from

yi
(a)
= (e>i PN )y = eiλy = λyi. (4.24)

It is straightforward to show that this property is shared by every Ulam type

projection method with a constant function as element of the basis of the ap-

proximation space. This observation is useful for the reliable computation of an

eigenvector at an eigenvalue close to one (since it is ill conditioned): (4.24) al-

lows us to reduce the eigenproblem to the subspace orthogonal to the constant

function.

Properties (a)–(c) are valid for the numerical realization as well.
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4.3 The discretized operator

4.3.1 Convergence

As has been pointed out in Section 2.3, statements about the convergence of Ulam’s

method exist in certain cases. For certain random perturbations of S we obtain the

convergence of the Sparse Ulam method by applying the same arguments as for Ulam’s

method, [Del99], and the following lemma. An open question is, if in general, the

convergence of Ulam’s method implies convergence of Sparse Ulam and vice versa.

Lemma 4.5.
∥∥πNf − f∥∥Lp n→∞−→ 0 for f ∈ L2, p = 1, 2.

Proof. The convergence in the L2-norm is trivial.

Since X is bounded we have L2(X) ⊂ L1(X). Moreover, there is a constant c2 > 0

such that

‖h‖L1 ≤ c2 ‖h‖L2 ∀h ∈ L2(X).

Thus convergence in L2-norm also implies the convergence in L1 norm.

4.3.2 Spectral properties of the operator

Unlike the transition matrix from Ulam’s method, the one from the Sparse Ulam

method, PN , is not stochastic. Therefore, we cannot bound its spectrum in advance.

Such bounds are desirable, to know, e.g. if the eigenvalues we are searching for are in

fact the ones with the greatest magnitude. In this section we aim to find bounds on

the spectrum of PN .

Let V U
N be the (“Ulam type”) space spanned by characteristic functions over a full

equipartition of [0, 1]d with a resolution 2N in each dimension, and let πUN denote the

L2-orthogonal projection onto V U
N . Then πN = πNπ

U
N and hence PN = πNPUN , with

PUN = πUNP the Ulam matrix for the full grid. Thus, the Sparse Ulam transition matrix

is the product of a projector ΠN ∈ R2dN×2dN , which is the matrix representation of

πN : V U
N → VN ⊂ V U

N , and a stochastic matrix T ∈ R2dN×2dN , the matrix representation

of PUN (for both operators, the underlying basis is chosen to be the set of characteristic

functions of the partition elements). We determine the projector:

Lemma 4.6. Let Xi denote the partition elements of the full grid box covering, and

choose xi ∈ Xi arbitrary. With x = (x1, . . . , x2dN )> and mX := m(Xi) we have

ΠN,ki = mX

dim VN∑
j=1

ϕj(xi)ϕj(xk).
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4. THE SPARSE ULAM METHOD

Alternatively,

πN = RNR
>
N

with RN,ij =
√
mXϕj(xi). The columns of RN are mutually perpendicular.

Proof. Projecting one characteristic function (χi) onto VN yields

ΠN,ki =
∑
j

〈
χi, ϕj

〉
L2︸ ︷︷ ︸

=ϕ
j
(x
i
)m(X

i
)

ϕj(xk)

= m(Xi)
∑
j

ϕj(xi)ϕj(xk).

Because the partition elements are all congruent, m(Xi) = mX ∀i. This gives the first

claim. The second follows by the L2-orthogonality of the basis functions and the proper

scaling.

It follows

Corollary 4.7. For the projection ΠN the following equations hold:

(a) ΠN = Π>N .

(b) Π2
N = ΠN .

(c) ΠNe = e (the constant function is projected to itself).

Properties (a) and (b) say, that ΠN is an orthogonal projector [Tre97]. Our first

observation based on numerical experiments led us to

Conjecture 4.8 (Norm of ΠN ). For d = 2 it holds
∥∥ΠN

∥∥
1

=
∥∥ΠN

∥∥
∞ = 1 +N/2.

The second observation, also based on numerical experiments, is important. Its

validity would mean, that the spectrum of the Sparse Ulam transition matrix lies in

the unit disk.

Conjecture 4.9 (Spectrum of PN ). For any stochastic matrix T we have σ(ΠNT ) ⊂
B1(0).

It is interesting, that for an arbitrary projection Π the properties (a)–(c) of Corol-

lary 4.7 are not sufficient to obtain σ(ΠT ) ⊂ B1(0).

52



4.4 Numerical computation and complexity

Example 4.10. Define v1 = (1, 1, 1, 1)>, v2 = (1, 3, 1, 0)> and v3 = (0, 3, 3, 1)>. Let Π

be the orthogonal projector onto the subspace of R4 spanned by v1, v2 and v3. Let

T =

(
T1

T2

)
, T1 = T2 =

(
1 0.5

0 0.5

)
.

Then there is a λ ∈ σ(ΠT ) with λ ≥ 1.006.

Therefore, if Conjecture 4.9 is valid, it has to be a consequence of the special

structure of the Sparse Ulam discretization. A deeper analysis of this problem exploiting

spatial pattern of the basis functions in VN could be the subject of future work.

4.4 Numerical computation and complexity

In this section, we collect basic statements about the complexity of both methods.

4.4.1 Cost and accuracy

We defined the total cost of an approximation space as its dimension and the accuracy

via its contribution or benefit, see (4.11). In this section we derive a recurrence formula

for these numbers, depending on the level of the optimal subspaces and the system

dimension.

Let C(N, d) be the dimension of WI(N) in phase space dimension d. Then

C(N, d) = C(N, d− 1) +
N∑
k=1

C(N − k, d− 1)2k−1, (4.25)

since if k = (∗, . . . , ∗, 0), then the last dimension does not affect the number of basis

functions, and the total number of basis function’s for such k’s is C(N, d − 1). If

k = (∗, . . . , ∗,kd) with kd > 0, then the number of basis functions with such k’s is

C(N −kd, d−1)2kd−1, because there are 2kd−1 one-dimensional basis functions of level

kd possible for the tensor product in the last dimension. For d = 1 we simply deal with

the standard Haar basis, so C(N, 1) = 2N .

Lemma 4.11.

C(N, d)
.

=
Nd−1 2N−d+1

(d− 1)!
, (4.26)

where
.

= means the leading order term in N .
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4. THE SPARSE ULAM METHOD

Proof. By induction on d. The claim holds clearly for d = 1. Assume, it holds for d−1.

By considering the recurrence formula (4.25), we see that C(N, d) = p(N) 2N , where p

is a polynomial of order less or equal to d. Consequently,

C(N, d)
.

=
Nd−2 2N−d+2

(d− 2)!
+

N∑
k=1

(N − k)d−2 2N−k−d+2

(d− 2)!
2k−1

=
Nd−2 2N−d+2

(d− 2)!
+

2N−d+1

(d− 2)!

N∑
k=1

(N − k)d−2

.
=

Nd−2 2N−d+2

(d− 2)!
+

2N−d+1

(d− 2)!

Nd−1

d− 1

.
=

Nd−1 2N−d+1

(d− 1)!

According to (4.10), the approximation error
∥∥f − fI∥∥ is bounded by

∑
k/∈I
∥∥fk∥∥,

i.e. ∥∥f − fI∥∥ ≤ ∑
|k|>N

∥∥fk∥∥ ,
if we use the optimal approximation space WI(N). By (4.8) this means

∥∥f − fI∥∥ ≤ ∑
|k|>N

2
−
∑

ki 6=0
(k
i
+1) ∏

k
i
6=0

‖∂if‖∞


Again, the constants

∏
ki 6=0 ‖∂if‖∞ only depend on the function to be approximated.

Thus, without a priori knowledge about f we need to assume that they can be bounded

by some common constant and accordingly define the discretization error of the Nth

level sparse basis as

E(N, d) =
∑
|k|>N

2
−
∑

ki 6=0
(k
i
+1)

. (4.27)

Let E(−n, d) for n ∈ N, n > 0 represent the error of the empty basis and k = (k̃,kd)
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4.4 Numerical computation and complexity

with k̃ ∈ Nd−1
0 . Then

E(N, d) =
∑
|k|>N

2
−
∑

ki 6=0(ki+1)

=

∞∑
k
d
=0

2−(k
d
+1)(k

d
6=0)

∑
|k̃|>N−k

d

2
−
∑

k̃i 6=0
(k̃
i
+1)

=

∞∑
k
d
=0

2−(kd+1)(kd 6=0)E(N − kd, d− 1),

where the expression (ki 6= 0) has the value 1, if it is true, otherwise 0. By splitting

the sum, this leads to the recurrence formula

E(N, d) = E(N, d− 1) +

N∑
k=1

E(N −k, d− 1)2−k−1 +

∞∑
k=N+1

2−k−1E(−1, d− 1)︸ ︷︷ ︸
=2−N−1E(−1,d−1)

. (4.28)

We easily compute that E(N, 1) = 2−N−1 for N ≥ 0 and E(−1, d) = (3/2)d.

Lemma 4.12.

E(N, d)
.

=
Nd−1 2−N−d

(d− 1)!
, (4.29)

where, again,
.

= means the leading order term in N .

Proof. By induction on d. The claim holds for d = 1, assume it holds for d− 1. Then

E(N, d)
.

=
Nd−22−N−d+1

(d− 2)!
+

N∑
k=1

(N − k)d−22−N+k−d+1

(d− 2)!
2−k−1 +

(
3

2

)d−1

2−N−1

.
=

Nd−22−N−d+1

(d− 2)!
+

2−N−d

(d− 2)!

N∑
k=1

(N − k)d−2

.
=

2−N−d

(d− 2)!

Nd−1

d− 1

An asymptotic estimate. In order to be able to give more precise asymptotic

estimates we define beyond the estimation sign ∼ (an ∼ bn iff an . bn and bn . an)

another one. By abusing the common sign ≈, we say an ≈ bn iff an/bn → 1 as n→∞.

Since this is meant in limit, there should be no confusion with the original meaning of

the sign.
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4. THE SPARSE ULAM METHOD

Let us fix the dimension d and define

C(N) :=
Nd−1 2N−d+1

(d− 1)!
≈ C(N, d), (4.30)

E(N) :=
Nd−1 2−N−d

(d− 1)!
≈ E(N, d). (4.31)

We prescribe the accuracy ε and letN(ε) be the smallest solution to E(N) ≤ ε. Further,

we define C(ε) := C(N(ε)), the (approximative) costs to achieve the desired accuracy.

We would like to derive an asymptotic estimate for C(ε) as ε→ 0.

First we take the logarithm of (4.31):

N = (d− 1) log2N + log2 ε
−1 + const.

Using N − (d− 1) log2N ≈ N we get

N ≈ log2 ε
−1. (4.32)

Dividing (4.30) by (4.31) we obtain

2N+1 =

√
C(ε)

ε
.

Substituting this and (4.32) into (4.30) we have1

C(ε) ≈ 1

(d− 1)! 2d
(
log2 ε

−1
)d−1

√
C(ε)

ε
,

which we may solve for C(ε):

C(ε) ≈ 1

((d− 1)! 2d)
2

(
log2 ε

−1
)2d−2

ε−1. (4.33)

Remark 4.13. It is important that (4.33) is an asymptotic estimate as N →∞. It does

not say anything about the behavior of the complexity in d. Moreover, it gives the false

intuition, that C(ε) → 0 as d → ∞. In fact, as d gets bigger, the more smaller part

I(N) is of the “full” index set
{
k | ki ≤ N

}
(think of the d dimensional simplex in the d

dimensional cube), where latter has the approximation potential O
(
2−N

)
independent

of d. So, the approximation error of VN is increasing in d.

1Note that akn ≈ bkn for k ∈ N if an ≈ bn, since (an/bn)k → 1 if an/bn → 1.
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4.4 Numerical computation and complexity

Comparison with Ulam’s method. We now compare the expressions for the

asymptotic behavior of cost and discretization error in dependence of the discretization

level N and the problem dimension d in Lemmata 4.11 and 4.12 to the corresponding

expressions for the standard Ulam basis, i.e. the span of the characteristic functions on

a uniform partition of the unit cube into cubes of edge length 2−M in each coordinate

direction — this is
⊕
‖k‖∞≤M

Wk. This space consists of (2M )d basis functions, the

discretization error is O
(
2−M

)
.

We thus have — up to constants — the following asymptotic expressions for cost

and error of the sparse and the standard basis:

cost error

sparse basis (N/2)d−1 2N−d (N/2)d−1 2−N−d

standard basis 2dM 2−M

Table 4.1: Cost and accuracy comparison

To highlight the main difference compare the cost (approximation space dimen-

sion) estimate nUlam = O
(
ε−d
)

for Ulam’s method (cf. Section 2.3) with (4.33);

nSpU = O
((

log2 ε
−1
)2d−2

ε−1
)

. The dimension appears in the exponent only for the

logarithmic term, which indicates the partial overcoming of the curse of dimension.

Since we neglected lower order terms in the estimate (4.33), the only conclusion we

can draw from this is that from a certain accuracy requirement on, the sparse basis is

more efficient than the standard one.

However, the number of basis functions is not the only cost source to look at: we

also have to assembly the discretized operator, and for this, compute the matrix entries.

When using Monte Carlo quadrature in order to approximate the entries of the tran-

sition matrix in both methods, the overall computation breaks down into the following

three steps:

1. mapping the sample points,

2. constructing the transition matrix,

3. solving the eigenproblem.
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4. THE SPARSE ULAM METHOD

While steps 1. and 3. are identical for both methods, step 2. differs significantly. This

is due to the fact that in contrast to Ulam’s method, the basis functions of the sparse

hierarchical tensor basis have global and non-disjoint supports.

4.4.2 Number of sample points

Applying Monte Carlo approximation to (4.22), we obtain

p̃ij = |ϕi||ϕj |

m
(
X+
j

)
K+
j

K+
j∑

k=1

χ+
i

(
S(x+

k )
)
− χ−i

(
S(x+

k )
)

(4.34)

−
m
(
X−j

)
K−j

K−j∑
k=1

χ+
i (S(x−k ))− χ−i (S(x−k ))

 , (4.35)

where the sample points x±k are chosen i.i.d. from a uniform distribution on X+
j and

X−j , respectively. In fact, since the union of the supports of the basis functions in

one subspace Wk covers all of X, we can reuse the same set of κ sample points and

their images for each of the subspaces Wk (i.e.
(
N+d
d

)
times). Note that the number

K±j of test points chosen in X±j now varies with j since the supports of the various

basis functions are of different size: on average, K±j = κm(X±j ). Now, we estimate the

total number of sample points needed to approximate the discretized operator (and its

eigenfunctions) to a desired accuracy.

Error estimation. We proceed as in Section 2.3. Recall that on supp
(
ϕj

) ∣∣∣ϕj∣∣∣ =

1/√mj , with mj := m(Xj) holds. Then

PN,ij = |ϕi||ϕj |
∑
±m(X±j ∩ S

−1(X±i ))︸ ︷︷ ︸
=:Mij

and for the error:

∆PN,ij = |ϕi||ϕj |∆Mij .

With i(l) := {i | ϕi ∈ Wl} we have, that {S−1(Xi) | i ∈ i(l)} is a disjoint partition of

X, thus ∑
i(l)

|Mij | = mj ∀j.
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4.4 Numerical computation and complexity

Further,

∆Mij ∼
Mij
√κmj

.

While in an Ulam type basis consisting of characteristic functions of congruent boxes

all basis functions are a priori equivalent, this does not hold in the Sparse Ulam case.

They have supports of different size and a rescaled basis may perform better in our

error analysis. Thus, introduce a rescaled basis {ϕ̄j} with ϕ̄j = cjϕj and cj > 0. Since

all ϕj ∈ Wl are handled equivalently, they should have a common scaling factor cl as

well. The corresponding transition matrix writes as

P̄N,ij =
cj
ci
Pij ,

same for ∆P̄N . Hence for its columns∥∥∥∆P̄N,:j

∥∥∥2

2
∼
∑
i

(
|ϕj ||ϕi|

cj
ci

Mij

κmj

)2

=
c2
j

κm2
j

∑
l∈I

1

mlc
2
l

∑
i(l)

M2
ij︸ ︷︷ ︸

≤(
∑
i(l) |Mij |)2≤m

2
j

≤
c2
j

κ

∑
l

1

mlc
2
l

holds, and so (using (2.21))

∥∥∆P̄N
∥∥

2
≤ 1√

κ

(∑
l

1

ml

c−2
l

∑
l

1

ml

c2
l

)1/2

.

For the orthonormal basis, i.e. cl = 1, we obtain

‖∆f‖L2 ≤

∑ 1
ml√

κ|∆λ|
=

nSpU√
κ|∆λ|

. (4.36)

Compare estimate (4.36) with the corresponding one for Ulam’s method, (2.22): they

are the same up to a constant factor and by nSpU � nUlam we expect the Sparse Ulam

method to get along with a less amount of sample points. Once again, the (asymptotic)

invariance of the spectral gap in n is crucial, see Remark 2.17.

Is there any scaling, which gives a better estimate? In the new basis, a coefficient

representation v of the function f means a norm

‖f‖L2 = ‖Cv‖2 ,

with C = diag(ci). Thus,
‖∆f‖L2

‖f‖L2

≤
max cj
min cj︸ ︷︷ ︸
=:Λ(c)

‖∆v‖2
‖v‖2

.
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Using the error estimate from above, we seek for a c s.t.

E(c) := Λ(c)
∑ 1

ml

c−2
l

∑ 1

ml

c2
l = min!

By the Cauchy–Schwarz inequality,

E(c) ≥
∑ 1
√
ml

c−1
l ·

1
√
ml

cl =
∑ 1

ml

= nSpU,

with equation iff cl = 1 for all l. The orthonormal basis is the best choice.

Comparison with Ulam’s method. Since the error estimates concerning the Monte

Carlo method are very similar for the two methods, it is easy to draw the conclusion,

which method needs fewer sample points. If ε is the error of the approximation space,

it is a rational choice to set ∆f = O (ε) as well. Taking the estimates for nUlam and

nSpU, substituting them into (2.22) respectively (4.36), we obtain

κUlam = O
(
ε−2d−2

)
,

κSpU = O
((

log2 ε
−1
)4d−4

)
ε−3.

Once more, these expressions allow us a qualitative comparison, how many sample

points the two methods need. The dominance of the Sparse Ulam method is well

highlighted by the formulas.

Generating the sample points. We discussed the number of sample points needed

for the Sparse Ulam method, if they are uniformly distributed. To ensure the uniform

distribution, a quasi-Monte Carlo sampling is used. First, we partition the state space

into segments, and then draw a given number of (uniform) random sample points in

each segment. In general, the segments are chosen to be congruent, hence the same

number of samples will be drawn in each of them. The number of segments (usually

chosen to be md with some m ∈ N) is determined such that it is not too large (not

more than 106), and that in each segment there are ∼100 sample points.

4.4.3 Number of index computations

While in Ulam’s method each sample point is used in the computation of one entry of

the transition matrix only, this is not the case in the Sparse Ulam method. In fact,
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each sample point (and its image) is used in the computation of |I(N)|2 matrix entries,

namely one entry for each pair (Wk,Wl) of subspaces.

Correspondingly, for each sample point x (and its image) and for each k ∈ I(N),

we have to compute the index l of the basis function ϕk,l ∈Wk whose support contains

x. Since (cf. the previous section) the required number of sample points to achieve

accuracy TOL is O
(

(dimV
N

)2

TOL2

)
and |I(N)| =

(
N+d
d

)
≈ Nd

d! (cf. (4.16)), this leads to

κ · |I(N)| . Nd

d!

(
dimVN
TOL

)2

of these computations (for reasonable d). In contrast, in Ulam’s method the corre-

sponding number is

κ · 1 =

(
2dM

)2
TOL2 =

(
dimVM

TOL

)2

.

Note that for the Sparse Ulam method the number of index computations is not staying

proportional to the (squared) dimension of the approximation space. However, it is still

scaling much more mildly with d than for Ulam’s method.

4.4.4 The transition matrix is full

The matrix which represents the discretized transfer operator in Ulam’s method is

sparse: the supports of the basis functions are disjoint, and thus Pn,ij 6= 0 only if

S(Xj)∩Xi 6= ∅. Hence, for a sufficiently fine partition, the number of partition elements

Xi which are intersected by the image S(Xj) is determined by the local expansion of

S. This is a fixed number related to a Lipschitz estimate on S and so the matrix

of the discretized transfer operator with respect to the standard Ulam basis is sparse

for sufficiently large n. Unfortunately this property is not shared by the matrix with

respect to the sparse basis as the following considerations show.

The main reason for this is that the supports of the basis functions in the sparse basis

are not localized, cf. the thin and long supports of the basis of Wk for k = (N, 0, . . . , 0).

This means that the occupancy of the transition matrix strongly depends on the global

behavior of the dynamical system S. Let

Bk :=
{
ϕk,l | li ∈ {0, . . . , 2

k
i − 1}

}
denote the basis of Wk and let

nnz(k, l) =
∣∣∣{(i, j) | S(supp(ϕi)) ∩ supp(ϕj) 6= ∅, ϕi ∈ Bk, ϕj ∈ Bl

}∣∣∣
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Figure 4.3: Modeling the matrix occupancy two dimensions - shaded and colorless

(white) show the function values (±|ϕ|), thicker black lines the support boundaries

be the number of nonzero matrix entries which arise from the interaction of the basis

functions from the subspaces Wk and Wl if Wk is mapped. We define the matrix

occupancy of a basis BI =
⋃

k∈IBk as

nnz(BI) =
∑
k,l∈I

nnz(k, l). (4.37)

In order to estimate nnz(k, l) we employ upper bounds Li, i = 1, . . . , d, for the Lipschitz-

constants of S, cf. Figure 4.3. We obtain

Proposition 4.14.

nnz(k, l) ≤
∣∣Bk

∣∣ d∏
i=1

⌈
Li · 2

−k
i
+1−(k

i
=0)

2−li+1−(li=0)

⌉
. (4.38)

Proof. Since we have used upper bounds for the Lipschitz constants, one mapped box

has at most the extension Li · 2
−k

i
+1−(k

i
=0) in the ith dimension. Consequently, its

support intersects with at most ⌈
Li · 2

−k
i
+1−(k

i
=0)

2−li+1−(l
i
=0)

⌉

supports of basis functions from Wl.

Remark 4.15. Numerical experiments suggest that the above bound approximates the

matrix occupancy quite well. However, it could be improved: (4.21) shows that a

matrix entry still can be zero even if supp(ϕi) and supp(Pϕj) intersect. This is e.g. the

case if supp(Pϕj) is included in a subset of supp(ϕi), where ϕi is constant (i.e. does
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4.4 Numerical computation and complexity

not change sign). The property ‖Pf‖L1 = ‖f‖L1 for f ≥ 0 and positivity of P imply

PN,ij = 0, since
∥∥∥ϕ+

j

∥∥∥
L1

=
∥∥∥ϕ−j ∥∥∥

L1
.

An asymptotic estimate. Let us examine nnz(k, l) for k = (0, . . . , 0, N) and l =

(N, 0, . . . , 0). By taking all Lipschitz-constants Li = 1 we get

nnz(k, l) ? 22N ,

since |Bk| = 2N−1 and the image of each basis function from Bk intersects with each

basis function from Bk. Since |BN | ∼ Nd−12N , we get

22N > nnz(BN ) > N2d−222N . (4.39)

The exponential term dominates the polynomial one for large N , so asymptotically we

will not get a sparse matrix.

Does this affect the calculations regarding efficiency made above? As already men-

tioned, the costs of Ulam’s method are proportional to the dimension of the approxi-

mation space, O
(
ε−d
)
. Assuming that the Sparse Ulam method has the same error, its

worst-case cost is
(
log2 ε

−1
)4d−4

ε−2. Clearly, this means — similarly to Section 4.4.1

— partially overcoming the curse of dimensionality. Even in the most optimistic case,

i.e. the costs are O
(
22N

)
, we have at least O

(
ε−2

(
log2 ε

−1
)2d−2

)
costs, so the Sparse

Ulam method is more efficient (concerning the number of flops for a matrix-vector

multiplication) than Ulam’s only if d ≥ 3.

However, the fact that the transition matrix with respect to the sparse basis is not

sparse posts another obstacle: the memory requirements for storing the matrix grow

faster with the dimension d of phase space than one would desire. Figure 4.4 shows a

comparison of the estimated number of nonzero entries (for the Sparse Ulam method,

the number is obtained by taking the geometric mean of the two bounds in (4.39)) in

dependence of d. Clearly, for d > 5 the storage requirements render computations on

standard workstations impossible.
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4. THE SPARSE ULAM METHOD

Figure 4.4: Estimated number of nonzero entries in the matrix representation

of the discretized operator - in dependence of the dimension of phase space for ε = 0.01

4.5 Numerical examples

4.5.1 A 3d expanding map

We compare both methods by approximating the invariant density of a simple three

dimensional map. Let Si : [0, 1]→ [0, 1] be given by

S1(x) = 1− 2|x− 1/2|,

S2(x) =

{
2x/(1− x), x < 1/3
(1− x)/(2x), else,

,

S3(x) =

{
2x/(1− x2), x <

√
2− 1

(1− x2)/(2x), else,

and S : [0, 1]3 → [0, 1]3 be the tensor product map S(x) =
(
S1(x1), S2(x2), S3(x3)

)>
,

where x = (x1, x2, x3)>. This map is expanding and its unique invariant density is

given by (cf. [Din96])

f1(x) =
8

π(1 + x2
3)(1 + x2)2

.

We approximate f1 by Ulam’s method on an equipartition of 23M boxes for M =

4, 5, 6 as well as by the Sparse Ulam method on levels N = 4, 5, 6. Each discretization

was computed several times for an increasing number of sample points, until no im-

provement was visible any more; i.e. the accuracy limit of the approximation space was

reached. Figure 4.5 shows the L1-error for both methods in dependence of the number

of sample points (left) as well as the number of index computations (right). Identical

discretizations, computed with different number of sample points, are connected. While

the Sparse Ulam method requires almost three orders of magnitude fewer sample points
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4.5 Numerical examples

Figure 4.5: Left: L1-error of the approximate invariant density in dependence on the

number of sample points for levels N,M = 4, 5, 6. Right: Corresponding number of index

computations. Ulam’s method: blue circles; Sparse Ulam method: red diamonds.

than Ulam’s method, the number of index computations is roughly comparable. This

is in good agreement with our theoretical considerations in sections 4.4.2 and 4.4.3.

In Figure 4.6 we show the dependence of the L1-error on the number of nonzeros

in the transition matrices for levels M,N = 3, . . . , 6. Again, the Sparse Ulam method

is ahead of Ulam’s method by almost an order of magnitude.

Figure 4.6: L1-error of the approximate invariant densities in dependence on the number

of nonzeros in the transition matrices.
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4. THE SPARSE ULAM METHOD

4.5.2 A 4d conservative map

In a second numerical experiment, we approximate a few dominant eigenfunctions of

the transfer operator for an area preserving map. Since the information on almost

invariant sets does not change [Fro05] (but the eigenproblem becomes easier to solve)

we here consider the symmetrized transition matrix 1
2(P + P>), cf. also [Jun04].

Consider the so called standard map Sρ : [0, 1]2 → [0, 1]2,

(x1, x2)> 7→
(
x1 + x2 + ρ sin(2πx1) + 0.5, x2 + ρ sin

(
2πx1

))>
mod 1,

where 0 < ρ < 1 is a parameter. This map is area preserving, i.e. the Lebesgue measure

is invariant w.r.t. Sρ. Figure 4.7 shows approximations of the eigenfunctions at the

second largest eigenvalue of Sρ for ρ = 0.3 (left) and ρ = 0.6 (right) computed via

Ulam’s method on an equipartition of 22·6 boxes (i.e. for M = 6).
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Figure 4.7: Eigenfunction of the symmetrized transition matrix at the second largest

eigenvalue for the standard map. Left: ρ = 0.3, λ2 = 0.97, right: ρ = 0.6, λ2 = 0.93.

We now define S : [0, 1]4 → [0, 1]4 by

S = Sρ
1
⊗ Sρ

2
,

with ρ1 = 0.3 and ρ2 = 0.6. Note that the eigenfunctions of S are tensor products

of the eigenfunctions of the Sρ
i
. This is reflected in figures 4.8 and 4.9 where we

show the eigenfunctions at the two largest eigenvalues, computed by the Sparse Ulam

method on level N = 8, using 224 sample points overall. Clearly, each of these two is

a tensor product of the (2d-) eigenfunction at the second largest eigenvalue with the

(2d-) invariant (i.e. constant) density.
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4.5 Numerical examples

Figure 4.8: Approximate eigenfunction at λ2 = 0.97. Left: f2(·, ·, x3, x4) for fixed x3, x4,

right: f2(x1, x2, ·, ·) for fixed x1, x2.

Figure 4.9: Approximate eigenfunction at λ2 = 0.93.

Figure 4.10 shows an eigenfunction for which both factors of the tensor product

are non-constant. The resolution of this eigenfunction seems worse than for those

with one constant factor. In fact, for an approximation of an eigenfunction which

is constant with respect to, say, x3 and x4 it suffices to consider subspaces W` with

` = (`1, `2, 0, 0). Since level N in 2d allows a better approximation than level N

in 4d (see Remark 4.13), functions varying in merely two dimensions can be better

approximated than one varying in all four.

As we know S to be conservative, its invariant density is the constant function. We

compute the L1-error of the approximative invariant density and compare it with a

computation for the same system made with Ulam’s method on a uniform 32 × 32 ×

32 × 32 partition with 100 Monte Carlo sample points per box. The following table

compares the accuracy and the cost factors of the two methods. Note that the Sparse
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4. THE SPARSE ULAM METHOD

Figure 4.10: Approximate eigenfunction at λ = 0.80.

Ulam method yields a ten times smaller error, and requires ten times fewer sampling

points.

error # basis functions # nonzeros # samples

Sparse Ulam 7.8·10−5 10496 ≈ 108 ≈ 1.7·107

Ulam’s method 9.8·10−4 1048576 ≈ 5·107 ≈ 108

Table 4.2: The Sparse Ulam method and Ulam’s method for the four dimen-

sional standard map - comparison of the accuracy of the approximative invariant

density and of some cost indicators (number of basis functions, number of nonzero entries

in the transition matrix, and overall number of sample points).

Remark 4.16. The standard map for the parameter values given here has infinitely many

periodic orbits, hence the associated transfer operator has the eigenvalue one with infi-

nite multiplicity. From this, it is not clear which invariant densities are approximated

by our numerical methods. Therefore, we applied in this example a componentwise

additive random perturbation with uniform distribution on [−0.05, 0.05]. This ran-

dom perturbation ensured that the eigenvalues of the transfer operator are isolated

and of multiplicity one. Note, that the invariant density stays unchanged under this

perturbation.

4.6 Conclusions and outlook

While there are O
(
ε−d
)

basis functions needed in the standard basis consisting of

characteristic functions to achieve the approximation error ε, using piecewise constant
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sparse grid functions we need a number of O
((

log2 ε
−1
)2d−2

ε−1
)

functions. The term

(log2 ε
−1)d is growing slow enough, such that the sparse grid approximation method

allows us to overcome the curse of dimension — partly.

Consider expressions (4.8) and (4.9) (the ith derivative indicates how strongly is the

function varying in the ith direction), and the fact that the sparse grid approximation

spaces VN include only basis functions which do not allow a good spatial resolution in

many directions at a time (cf. Figure 4.2). They lead us to the conclusion, that those

functions can be particularly well approximated in VN which do not vary strongly in

many dimensions. This is reflected by the eigenfunctions of the discretized transfer

operator in the examples above. Figures 4.8, 4.9 and 4.10 emphasize this very well. If

there is an eigenfunction varying strongly in all directions, the Sparse Ulam method

will be unable to detect it, unless the level N gets very large. This, in turn, leads to

computational inefficiency.

A thorough algorithmical analysis showed that not only the number of basis func-

tions can be decreased significantly in comparison to Ulam’s method, but other costs

as well. The computationally most expensive step is the mapping of the sample points

— from which the Sparse Ulam method requires far less than Ulam’s; cf. Section 4.4.2.

Unfortunately, the geometry of the basis function supports has the side-effect that

the transition matrix of the Sparse Ulam method is not sparse, but fully occupied.

Hence, storage of the matrix, and manipulation with it have a complexity quadratic in

the dimension of VN . Clearly, this is the main bottleneck of this method. As long as

basis functions with “widespread” supports are applied, this seems inevitable.

Another issue, not discussed in this work, is the one of handling more complex

geometries. Our considerations here were restricted to the unit cube as phase space.

It is straightforward to extend the method for rectangular phase spaces, but more

complex geometries need some other treatment. How to “cover” the phase space with

basis functions? How does the geometry of the phase space influence the approximation

properties of VN? As a first step towards answering these questions, we suggest to

consult the existing literature on sparse grid methods for partial differential equations.

Further work could be done to detect the spectral properties of the discretized op-

erator PN , to verify if Conjecture 4.9 holds. Also, more developed sampling techniques

could make the numerical computation P̃N to inherit properties of the operator PN , if

desired so.
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4. THE SPARSE ULAM METHOD

To sum up, we expect the Sparse Ulam method to be a very efficient method for

analyzing chaotic systems on a high dimensional phase space with regular geometry,

where the eigenfunctions of the associated transfer operator (e.g. because of random

perturbations) are sufficiently smooth and varying strongly only in several dimensions.
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Chapter 5

Approximation of the

infinitesimal generator

5.1 Motivation and outline

The general analysis of continuous-time systems with transfer operator methods in-

volves the associated FPO Pt, where t > 0 is some characteristic time of the system,

such that significant motion can be observed. Assuming that the system is autonomous

(i.e. its vector field does not depend on the time t), Pt is also the FPO associated with

the time-t-map St of the system. Any numerical approximation of the transfer oper-

ator needs the computation of the time-t-map, hence the numerical integration of the

underlying ODE, say ẋ = v(x), with vector field v. This, in turn, requires several

evaluations of the vector field v.

Now, if we consider Ulam’s method on a partition of the phase space into n boxes,

where the transition rates are computed by Monte Carlo quadrature, we need a total

numberO
(
n2
)

of sample points, as shown in Section 2.3. All these have to be integrated

for time t, which results in typically k ∼ 10−100 vector field evaluations for each sample.

For a large n, the size of k makes a big difference in the computational costs.

However, for autonomous systems the vector field v carries all the information

needed to obtain Pt for any t ≥ 0. The long-term dynamical behavior, which we wish

to compute, is encoded in the eigenpairs of the transfer operator. One could ask the

question, if there is a possibility to obtain these eigenmodes without time integration.

The answer is given by Theorem 5.6 below, which states that one may get eigenpairs
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5. APPROXIMATION OF THE INFINITESIMAL GENERATOR

of Pt for any t > 0 by computing eigenpairs of just one operator A, the so-called

infinitesimal generator of Pt. From a computational point of view, we expect that A

is numerically cheaper to compute than Pt, because we can avoid the time integration.

If the associated eigenvalue problem is also similarly cheap to solve than the one for

Pt, such a method has obvious advantages compared to Ulam’s method, for example.

In this chapter we introduce two methods for the approximation of the infinites-

imal generator of Pt. Further, we discuss their advantages, numerical computation,

convergence properties, limitations, and problems arising in their implementation. All

these are shown on several examples. The mathematical tools relating the operators

A and Pt belong to the field of semigroups of operators, hence we start with a brief

introduction on this in Section 5.2. Sections 5.3, 5.4 and 5.5 are dealing with the first

discretization method, which is the spatial discretization from the upwind scheme, a

well-known numerical technique to approximate solutions of hyperbolic conservation

laws; cf. [Kro97, LeV02] and references in them. However, the idea of applying this

method for the approximation of the long-term dynamical behavior is new, and goes

back to Froyland [Fro]. Also, to the best knowledge of the author, there exists no previ-

ous work which applies semigroup theory in order to analyze the convergence properties

of such discretizations. Introducing the second method in Section 5.6, we exploit the

exponential convergence speed of spectral methods to obtain a powerful discretization

of the infinitesimal generator for smooth vector fields and tensor product phase space

geometry. The methods are demonstrated on several numerical examples in Section 5.7.

Parts of the results in this chapter are intended to be published in [Fro]. Lemmas 5.9,

5.11 and 5.13, and their proofs are due to Gary Froyland. An earlier attempt to

discretize the infinitesimal generator has been made in the honours thesis [Sta07].

5.2 Semigroups of operators

Definition 5.1. Let (Y, ‖·‖) be a Banach space. A one parameter family
{
T t
}
t≥0

of

bounded linear operators is called a semigroup on Y , if

(a) T t = I (I denoting the identity on Y ),

(b) T t+s = T tT s for all t, s ≥ 0.
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5.2 Semigroups of operators

Further, if ‖T t‖ ≤ 1, the family is called a semigroup of contractions.

If

lim
t→0
‖T tf − f‖ = 0 for every f ∈ Y,

T t is a continuous semigroup (C0 semigroup).

The transfer operator Pt, the FPO associated with the ODE ẋ = v(x) on the phase

space X, is a C0 semigroup of contractions on L1(X).1 See [Las94] for a proof on this

(especially Remark 7.6.2 to see the continuity). Now we introduce the central object

we are going to work with.

Definition 5.2 (Infinitesimal generator). For a semigroup T t we define the operator

A : D(A)→ Y as

Af = lim
t→0

T tf − f
t

, f ∈ D(A),

with D(A) ⊂ Y being the linear subspace of Y where the above limit exists; called the

domain of A. The operator A is called the infinitesimal generator of the semigroup.

Further, if A is the infinitesimal generator of the semigroup T t, we write A ∈ G(M,ω)

if
∥∥T t∥∥ ≤Meωt.

We also have

Proposition 5.3 ([Paz83]). Let T t be a C0 semigroup, A its infinitesimal generator

and f ∈ D(A). Then u(t) = T tf is the unique solution of

du(t)

dt
= Au(t) for t > 0,

u(0) = f.

For Pt, the infinitesimal generator turns out to be

APF f = −div(fv),

(provided the vi are continuously differentiable, what we assume from now on), see [Las94].

Therefore, C1 ⊂ D(A).

The intuition that T t = etA is strong, however false in general. If A is a bounded

operator, this equation holds indeed. For unbounded ones, there are several results for

the representation of the semigroup by exponential formulas. We shall use the following

one later.

1We omit the indication of X from now on if we write function spaces, like Lp, C1, etc.
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Theorem 5.4 (Theorem 1.8.1 [Paz83]). Let T t be a C0 semigroup on Y . Let

A(h)f =
T hf − f

h
,

then for every f ∈ Y we have

T tf = lim
h↘0

etA(h)f

and the limit is uniform in t for t in bounded intervals.

The approximation of the infinitesimal generator can be related to the approxima-

tion of the corresponding semigroups by

Theorem 5.5 (Theorem 3.4.5 [Paz83]). Let An ∈ G(M,ω) and assume

(a) As n→∞, Anf → Af for every f ∈ D, where D is a dense subset of Y .

(b) There exists a λ0 with Reλ0 > ω for which (λ0I −A)D is dense in Y .

Then, the closure Ā of A is in G(M,ω). If Tn(t) and T (t) are the C0 semigroups

generated by An and Ā respectively, then

lim
n→∞

Tn(t)f = T (t)f for all t ≥ 0, f ∈ Y,

and this limit is uniform in t for t in bounded intervals.

Theorem 2.2.4 from [Paz83] shows the connection between the eigenvalues of the

semigroup operators and their infinitesimal generator:

Theorem 5.6 (Spectral mapping theorem). Let T t be a C0 semigroup and let A be its

infinitesimal generator. Then

etσ(A) ⊂ σ
(
T t
)
⊂ etσ(A) ∪ {0},

where σ(·) denotes the point spectrum of the operator. The corresponding eigenvectors

are identical.

This has important consequences for invariant densities:

Corollary 5.7. The function f is an invariant density of Pt for all t ≥ 0 if and only

if APF f = 0.

Since Pt is a contraction, we have

Corollary 5.8. The eigenvalues of APF lie in the closed left complex half plane.

From now on we drop the subscripts and write A for the infinitesimal generator of

Pt as well. It should always be clear from the context, which semigroup is meant.
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5.3 The Ulam type approach for the nondiffusive case

5.3.1 The method

Let us consider X = Td, the d dimensional unit torus, and let a time-continuous

dynamical system St be given by the ODE ẋ = v(x). Assume v to be twice continuously

differentiable.1 The corresponding transfer operator is denoted by Pt, its infinitesimal

generator by A. We partition X into d dimensional connected, positive volume subsets

{X1, . . . , Xn}. Typically, each Xi will be a hyperrectangle to simplify computations.

We always assume that the Xi are closed sets, i.e. X̄i = Xi.

We wish to give a numerical approximation of the infinitesimal generator, analogous

to Ulam’s discretization. First, we wish to deal with the deterministic case, hence we

consider the system without diffusion, i.e. ε = 0.

Let Vn = span
{
χ1, . . . , χn

}
, χi denoting χX

i
, the characteristic function of Xi.

When we give a matrix representation of an operator acting on Vn, we always refer to the

basis
{
χi
}
i=1,...,n

, unless stated elsewise. For any fixed time t, one may form the Ulam

approximation of Pt, namely the operator Ptn : Vn → Vn with matrix representation

Pn,ij := m(Xj ∩ S−tXi)/m(Xi).

We wish to construct an operator An : Vn → Vn that is close in some sense to

the operator A. Motivated by Ulam’s method, one would like to form πnAπn, which

unfortunately does not exist, because Vn * D(A). Recall, that A is the time derivative

of Pt. Instead of differentiating w.r.t. time and then doing the projection, we swap the

order of these operations. Let us build the Ulam approximation Ptn first, which will

not be a semigroup any more, still, for fixed t it approximates Pt. Taking the time

derivative at t = 0, our candidate approximate operator is

Anu := lim
t→0

(
πnPtπnu− πnu

t

)
.

We conclude from the following lemma that D(An) = L1. The lemma also emphasizes

the intuition behind the definition of the discretized generator: if Ptn defines a finite

state Markov chain on the Xi, then An is the generator of a Markov jump process,2

which stays “near” Ptn (the meaning of “near” will be elucidated in Proposition 5.22).

1I.e. vi ∈ C2(X,Rd) for i = 1, . . . , d. Apart from Lemma 5.20, simple continuous differentiability

suffices as well.
2A matrix A ∈ Rn×n is said to generate a Markov jump process on the finite state space {1, . . . , n},

if P (t) = etA is a (column-)stochastic matrix for all t ≥ 0 and Prob (x(t+ s) = i| x(s) = j) = P (t)ij
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Lemma 5.9. The matrix representation of An : Vn → Vn is

An,ij =


limt→0

m(X
j
∩S−tX

i
)

t·m(X
i
) , i 6= j;

limt→0

m(Xj∩S
−tXj)−m(Xj)

t·m(X
j
) , otherwise.

(5.1)

Proof. We consider the action of Pt on χj .

lim
t→0

πn
Ptχj − χj

t
= lim

t→0

n∑
i=1

1

m(Xi)

(∫
X
i

Ptχj − χj
t

dm

)
χi

= lim
t→0

∑
i 6=j

1

m(Xi)

(∫
X
i

Ptχj
t

dm

)
χi + lim

t→0

1

m(Xj)

(∫
X
j

Ptχj − χj
t

dm

)
χj

= lim
t→0

∑
i 6=j

1

m(Xi)

(∫
S−tXi

χj
t

dm

)
χi

+ lim
t→0

1

m(Xj)

(∫
S−tX

j

χj
t

dm−
∫
X
j

χj
t

dm

)
χj

=
∑
i 6=j

lim
t→0

m(Xj ∩ S−t(Xi))

t·m(Xi)
χi + lim

t→0

m(Xj ∩ S−tXj)−m(Xj)

t·m(Xj)
χj

Thus under right multiplication we obtain (5.1). The question, if the limits exist, is

answered below by Lemma 5.11.

Remark 5.10. Lemma 5.9 states, that An,ij , i 6= j, is the outflow rate of uniformly

distributed mass from Xj into Xi.

The following lemma shows the main advantage of this discretization. It allows us

the construction of An without the computation of the flow St, which is the numerically

most expensive step in other methods used so far.

Lemma 5.11. For x ∈ ∂Xj, define nj(x) to be the unit normal vector pointing out of

Xj. The sets Xj should be chosen such that nj exists almost everywhere on ∂Xj (mea-

sured by the d− 1 dimensional Lebesgue measure on ∂Xj). The matrix representation

for all i, j ∈ {1, . . . , n} and s, t ≥ 0. One can think of the jump process as a stochastic process jumping

at random times from one state to another. We will not need the mathematical background of these

processes, hence we refer to [Nor97] for more details. However, analogously as the Ulam discretization

is connected with discrete-time Markov chains, the viewpoint of jump processes enables us to give a

physical meaning to the discretization of the generator. The justification that An generates a Markov

jump process on the set of boxes is given later in Remark 5.14.
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of An : Vn → Vn is

An,ij =


(1/m(Xi))

∫
X
j
∩X

i
max{v(x)·nj(x), 0} dmd−1(x), i 6= j;

−
∑

k 6=i
m(Xk)

m(X
i
)An,ki, i = j.

(5.2)

Proof. From (5.1) we have for i 6= j that An,ij = limt→0

m(X
j
∩S−tX

i
)

t·m(Xi)
. Denoting

Mij(t) = m(Xj ∩ S−tXi) we have that An,ij = M ′ij(0)/m(Xi) where the prime denotes

differentiation with respect to t. The quantity M ′ij(0) is simply the rate of flux out of Xj

through the face Xj ∩Xi into Xi and so M ′ij(0) =
∫
X
j
∩X

i
max{v(x)·nj(x), 0}dmd−1(x).

For the diagonal elements An,jj we have An,jj = limt→0

m(Xj∩S
−tXj)−m(Xj)

t·m(X
j
) . Note

thatm(Xj)−m(Xj∩S−tXj) = m(Xj\S−tXj). ClearlyXj\S−tXj = Xj∩
⋃
k 6=j S

−tXk =⋃
k 6=j Xj ∩ S−tXk modulo sets of Lebesgue measure zero. Thus, m(Xj) −

m(Xj ∩ S−tXj) = m(Xj \ S−tXj) =
∑

k 6=jm(Xj ∩ S−tXk). It follows that An,jj =

−
∑

k 6=j
m(X

k
)

m(Xj)
An,kj .

In one dimension, (5.2) has a particularly simple form.

Corollary 5.12. Let X = T1, and consider the flow generated by ẋ = v(x). As-

sume without loss that v ≥ 0 on X.1 Denote by
{
x0, x1, . . . , xn

}
the endpoints of the

subintervals {X1, . . . , Xn} in the partition of X. Then the matrix representation of

An : Vn → Vn is

An,ij =


−v(xj)/m(Xj), i = j;

v(xj)/m(Xi), i = j + 1;

0, otherwise.

(5.3)

We remark that (5.3) is the matrix arising in finite difference methods using back-

ward differences (clearly, it would be forward differences if v ≤ 0). Finally, we show

that our constructions (5.2) and (5.3) always provide a solution to the system Anu = 0

for some u ∈ Vn.

Lemma 5.13. There exists a nonnegative, nonzero u ∈ Vn so that Anu = 0.

Proof. Let Mn,ij = m(Xi)δij and note that Qn := MnAnM
−1
n satisfies

Qn,ij =

{
(1/m(Xj))

∫
X
i
∩X

j
max{v(x)·nj(x), 0}dmd−1(x), i 6= j;

−
∑

i 6=j Qn,ij , otherwise.
(5.4)

1If v � 0 and v � 0, we have one or more stable fixed points, and every trajectory converges to one

of them. Hence, there is no interesting statistical behavior to analyze.
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5. APPROXIMATION OF THE INFINITESIMAL GENERATOR

Let c = max1≤i≤n
∑

i 6=j Qn,ij . The matrix Q̂n := Qn+cI is nonnegative with all column

sums equal to c. By the Perron–Frobenius theorem, the largest eigenvalue of Q̂n is c

(of multiplicity1 possibly greater than 1) and there is a corresponding left/right eigen-

vector pair un, vn that may be chosen to be nonnegative. Clearly un, vn are left/right

eigenvectors of Qn corresponding to the eigenvalue 0 and Mnun,Mnvn are nonnegative

left/right eigenvectors corresponding to 0 for An.

Remark 5.14. Note, that the existence of an eigenvector (not necessarily non-negative)

to eigenvalue zero follows already from (1, . . . , 1)An = 0, see (5.2). Furthermore, it can

be shown easily by the same formula that An generates a Markov jump process [Nor97]

on the set of boxes
{
X1, . . . , Xn

}
, i.e. etAn is (column-)stochastic for all t ≥ 0.

Algorithm 5.15 (Ulam type discretization of the generator).

1. Partition X into positive volume connected sets {X1, . . . , Xn}. Typically each Xi

will be a hyperrectangle.

2. Compute

An,ij =


(1/m(Xi))

∫
X
j
∩X

i
max{v(x)·nj(x), 0}dmd−1(x), i 6= j,

−
∑

k 6=i
m(Xk)

m(X
i
)An,ki, i = j,

where some numerical quadrature method is used to estimate the integral.

3. Estimates of invariant densities for St lie in right null space of An. Let Anw = 0;

the existence of such a w is guaranteed by Lemma 5.13. Then u :=
∑n

i=1wiχi
satisfies Anu = 0.

4. Left and right eigenvectors of An corresponding to small (in magnitude) real

eigenvalues λ < 0 provide information about almost invariant sets.

Remark 5.16. Note, that the discretized generator An is a sparse matrix, since An,ij = 0

if Xi and Xj are not adjacent.

5.3.2 Convergence

The main results in this section are Theorem 5.21, which states the pointwise conver-

gence in L1 of the semigroup generated by An to Pt; and Proposition 5.22 which shows

1in this 1D situation, Q̂n is primitive (irreducible and there exists k such that Q̂kn > 0) and the

eigenvalue c has algebraic and geometric multiplicity 1.
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5.3 The Ulam type approach for the nondiffusive case

the asymptotic closeness of the semigroup generated by An and the Ulam discretization

πnPt in t. We will use Theorem 5.5 to show the first result. For this, some preparation

is needed. The next lemma states that our approximation to the infinitesimal generator

is a meaningful one.

Lemma 5.17. Let X = Td, and let all boxes of the underlying discretization be con-

gruent with edge length 1/n. Then for all u ∈ C1 we have Anu→ Au in the L1-norm

as n→∞.

Proof. Fix u ∈ C1. Note u ∈ D(A). Since the defining limits of Au and Anu exist, we

may write

Anu−Au = lim
t→0

πnPtu− πnu
t

− P
tu− u
t

+
πnPt(πn − I)u

t
.

The second summand tends to Au, the first to πnAu as t → 0. Latter follows by the

continuity of πn. We also have πnAu→ Au as n→∞, hence it remains to show

lim
n→∞

lim
t→0

1

t
πnP

t(πn − I)u = 0.

Let xi denote the center of the box Xi. Fix the index i. Let u = ũ + δu, where

ũ(x) = u(xi) + Du(xi)(x − xi), the local linearization of u. Since u ∈ C1, it holds

δu(x) = o(n−1) for |x− xi| = O(n−1), as n→∞.1 Now define ṽ(x) ≡ v(xi) and let P̃t

be the associated FPO. Let πn,i denote the L2-orthogonal projection onto the constant

functions over the box Xi, i.e.

πi,nh =

(
1

m(Xi)

∫
X
i

h

)
χi =

(
nd
∫
X
i

h

)
χi.

Then πn =
∑

j πn,j . We have

1

t
πn,iP

t(πn − I)u =
1

t
πn,iP

t(πn − I)ũ︸ ︷︷ ︸
(I)

+
1

t
πn,iP

t(πn − I)δu︸ ︷︷ ︸
(II)

. (5.5)

We investigate the summands separately:

To (I). By the linearity of ũ and the congruency of the boxes, one has (πn−I)ũ |X
j

(x) =

−Du(xi)(x − xj). Thus,
∫
X
j
(πn − I)ũ = 0 for every j and the function (πn − I)ũ is

periodic in each coordinate with period 1
n . By this, each translation of the function

1We say f(x) = o(g(x)) as x→ 0, if f(x)/g(x)→ 0 as x→ 0.
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5. APPROXIMATION OF THE INFINITESIMAL GENERATOR

(πn− I)ũ has integral zero over each box. Since the transfer operator P̃t corresponding

to the constant flow ṽ is merely a translation, we have

πn,iP̃
t(πn − I)ũ = 0. (5.6)

Let S̃−t be the flow associated with the vector field −ṽ. Then S−t(x) − S̃−t(x) =

O(tn−1) as t → 0 and n → ∞, uniformly in x with
∣∣x− xi∣∣ = O

(
n−1

)
. This implies

for the symmetrical difference of the sets:

S−tXi ∆ S̃−tXi ⊂ Bε
(
∂S̃−tXi

)
,

where ε = O
(
tn−1

)
and Bε(·) denotes the ε neighborhood of a set. From this we have

m
(
S−tXi ∆ S̃−tXi

)
≤ m

(
Bε

(
∂S̃−tXi

))
≤ O

(
tn−1

)
md−1

(
∂S̃−tXi

)
= O

(
tn−d

)
,

since the perimeter of Xi is O
(
n1−d) and the translation S̃−t does not change this.

Recall
∫
Xj
Ptu =

∫
S−tXj

u. Thus, for an arbitrary h ∈ C1 we have∣∣∣∣∣
∫
Xi

Pth−
∫
Xi

P̃th

∣∣∣∣∣ ≤
∫
S−tXi ∆ S̃−tXi

|h| = ‖h‖∞O(tn−d).

Set h = (πn − I)ũ. Since
∫
X
i
P̃t(πn − I)ũ = 0,

∥∥(πn − I)ũ
∥∥
∞ = O(n−1), and since

1
tπi,nP

t(πn−I)ũ = 1
tn

d
∫
X
i
Pt(πn−I)ũ, the first summand in (5.5) is O(n−1) as n→∞.

To (II). Considering the second summand, note, that
∫
X
i
(πn − I)h = 0 for all h ∈ L1.

We have

1

t
nd
∫
X
i

Pt(πn − I)δu =
1

t
nd

(∫
X
i

Pt(πn − I)δu−
∫
X
i

(πn − I)δu

)
t→0−→ nd

d

dt

(∫
X
i

Pt(πn − I)δu

)∣∣∣∣
t=0

= −nd
∫
∂X

i

gi ni ·v

= o(1) as n→∞,

where

gi(x) :=


lim y→x

y∈X
i

(πn − I)δu(y), if ni(x)·v(x) ≥ 0,

lim y→x
y∈X

j

(πn − I)δu(y), otherwise, with x ∈ ∂Xj .

The second equation follows from the fact that the derivative is simply the rate of

flux across ∂Xi. The function (πn − I)δu is merely piecewise differentiable (is C1(Xj)
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5.3 The Ulam type approach for the nondiffusive case

for each j). That makes the definition of gi necessary: we have to look at what does

the flow “drag” into Xi and what is “dragged” outside. The last equation follows by

(πn − I)δu(x) = o(n−1) as n→∞, uniformly in x for
∣∣x− xi∣∣ = O

(
n−1

)
.

Thus, we showed

lim
n→∞

lim
t→0

nd
∫
X
i

Pt(πn − I)u

t
= 0.

All approximations were uniform in i, since the first derivatives of u are uniformly

continuous by the compactness of X. Thus limt→0
1
tπnP

t(πn− I)u→ 0 as n→∞.

Remark 5.18. The assumption that the boxes are congruent is crucial. The discretized

operator Ptn = πnPt from Ulam’s method converges pointwise if the diameter of the

largest box tends to zero. This is not sufficient here. We give a counterexample:

Take X = T1 the unit circle and v ≡ 1 the constant flow. Let Vn (n even) be

associated with the box covering of T1, where the box numbering is from left to right

and each box with odd number is an interval of length 4
3n , each one with even number

is an interval of length 2
3n . Then

An =
3n

4



−1 1

2 −2

1 −1

2
. . .

. . . −2


.

Let f(x) = sin(2πx). Then Af(x) = −2π cos(2πx). As Figure 5.1 shows, Anf
(red) does not converge to Af (blue). As an interesting observation, we note that the

corresponding semigroup does seem to converge in this example; i.e. exp(tAn)f → Ptf
as n→∞ for a fixed t > 0.

Nevertheless, we may weaken the assumption about the congruency of the boxes.

However, they still have to tend to a uniform shape in the following sense: are bi,1, . . . , bi,d

the edge lengths of the ith box, it should hold

maxi=1,...,n bi,j
mini=1,...,n bi,j

→ 1, for j = 1, . . . , d (5.7)

as n→∞. Then

Corollary 5.19. By weakening the congruency assumption on the boxes to (5.7) the

claim of Lemma 5.20 still holds.
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5. APPROXIMATION OF THE INFINITESIMAL GENERATOR

Figure 5.1: Improper convergence of the approximative infinitesimal generator

on a non-uniform grid - This computation with grid size n = 80 highlights the problem:

Anf (red) converges on the subintervals of different size against different multiples of Af
(blue).

Sketch of proof. The proof of Lemma 5.17 still applies by changing (5.6) to

πn,iP̃
t(πn − I)ũ = o(tn−1),

which can be shown by considering that P̃ is just a translation, and the edges lengths

of the boxes differ by o(n−1), cf. (5.7). �

Lemma 5.20. For a λ > 0 sufficiently large, one has (λ−A)−1 u ∈ C1 for all u ∈ C1.

Proof. We have from Remark 1.5.4 in [Paz83] that

(λ−A)−1u(x) =

∫ ∞
0

e−λtPtu(x)dt. (5.8)

By Lebesgue’s dominated convergence theorem, it is sufficient for the differentiability

of the right hand side w.r.t. x that

e−λt
∣∣DPtu(x)

∣∣ ≤ h(t) uniformly in x,

for an integrable h. Here and in the following D denotes the derivative w.r.t. x. Recall

the explicit representation of the FPO,

Ptu(x) = u
(
S−tx

) ∣∣detDS−t(x)
∣∣ .

82



5.3 The Ulam type approach for the nondiffusive case

For autonomous flows the above determinant is nonzero for all t and x. So, it will not

change sign, since it is continuous as a function of t. By this, we drop the absolute

value, since DS0 = I with positive determinant. We compute

DPtu(x) = Du
(
S−tx

)
DS−t(x) det

(
DS−t(x)

)
+ u

(
S−tx

)
det′

(
DS−t (x)

)
D2S−t(x).

Note, that the determinant is just a polynomial in the entries of the matrix. Thus, to

bound
∣∣DPtu∣∣, we need bounds on the derivatives DS−t and D2S−t of the flow. For

this, derive the variational equation for the flow through x of the differential equation

ẋ = v(x):
d

dt
DS−tx = −Dv(S−tx)DS−tx,

or with W1(t) := DS−tx : Ẇ1(t) = −Dv(S−tx)W1(t). For W2(t) = D2S−tx, we obtain

Ẇ2(t) = −D2v(S−tx)W1(t)2 −Dv(S−tx)W2(t).

We do not care about the exact tensor structures of the particular derivatives, just note

that they are multilinear functions. Gronwall’s inequality gives∥∥W1(t)
∥∥
∞ ≤ e

λ
1
t,

where λ1 =
∥∥Dv(S−t·)

∥∥
∞. By this, applying Gronwall’s inequality on the ODE for

W2(t), we obtain ∥∥W2(t)
∥∥
∞ ≤ e

λ
2
t,

with a suitable λ2 > 0. The determinant is a polynomial in the entries of the matrix,

consequently
∣∣det(DS−t(x))

∣∣ ≤ cedλ1t for a suitable c > 0 and for all x ∈ X. Similar

holds for
∣∣det ′

(
DS−t(x)

)∣∣. Du
(
S−tx

)
and u

(
S−tx

)
are uniformly bounded, since

u ∈ C1 and X is compact. Thus, we can conclude that there are constants C,Λ > 0, Λ

independent on u, such that∣∣DPtu(x)
∣∣ ≤ CeΛt uniformly in x.

Setting λ > Λ, |h(t)| ≤ Ce(Λ−λ)t is integrable over [0,∞], hence the right hand side of

(5.8) is differentiable w.r.t. x, so is (λ−A)−1u.

Theorem 5.21. The operator An generates a C0 semigroup Rtn := exp
(
tAn

)
= I −

πn + exp(tAn |V
n
)πn. For all u ∈ L1 and t ≥ 0 we have Rtnu → Ptu in L1, uniformly

in t on bounded intervals.

Proof. We use Theorem 5.5 with D = C1. By the Hille–Yosida theorem (Theorem 1.3.1

[Paz83]), A is a closed operator. Since we showed in Lemma 5.17, that Anu → Au as

n→∞ for all u ∈ C1, it remains to show:
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(a) An ∈ G(1, 0), i.e. An generates a semigroup, which is uniformly bounded by 1 in

the operator norm.

(b) There is a λ with Re λ > 0 such that (λ−A)C1 is dense in L1.

To (a). The range of An is in Vn and An = Anπn. Both πn and An |V
n

are bounded

operators with
∥∥πn∥∥L1 = 1 and

∥∥∥etAn|Vn∥∥∥
L1
≤ 1 (see Remark 5.14), hence Rtn = etAn

exists and
∥∥Rtn∥∥L1 ≤ 1. This implies An ∈ G(1, 0).

Moreover, by

Rtn = etAn = (I − πn) + (I +An +
1

2
A2
n + . . .)πn

we have Rtn = I − πn + exp
(
tAn |V

n

)
πn.

To (b). By Lemma 5.20 one has C1 ⊂ (λ − A)C1. Since C1 is dense in L1, this

completes the proof.

After the convergence results for n → ∞ we present a result which gives closeness

of Rtn and Pt for small times.

Proposition 5.22. As t→ 0 it holds

Rtnu− πnP
tu = O(t2) (5.9)

for all u ∈ Vn.

Proof. First we give an expansion of πnPtu in t. For this, define

A(h)g :=
Phg − g

h
.

By Theorem 5.4 we have

Ptu = lim
h→0

etA(h)u (5.10)

uniformly on bounded t-intervals, hence by πnu = u and the continuity of πn,

πnP
tu = lim

h→0
πne

tA(h)u = u+ t lim
h→0

πnA(h)u+ lim
h→0

r(t, h).

The first limit on the right hand side exists, and is equal to Anu. Therefore, the

second limit must exist as well, and because of the uniform convergence in (5.10) and

uniform boundedness of the term tπnA(h)u in t and h, r(t, h) is uniformly bounded as

well; ‖r(t, h)‖ ≤ C. Moreover, since r(t, h) is the remainder in the expansion of the

exponential function, it holds ‖r(t, h)‖ ≤ C(h)t2 as t→ 0. Together with the previous

bound we have C(h) ≤ C̃ <∞. This implies

lim
h→0

r(t, h) = O(t2),
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5.4 The Ulam type approach for the diffusive case

which gives

πnP
tu = u+ tAnu+O(t2).

Since

Rtn |Vn= etAn |Vn= IVn
+ tAn |Vn +O(t2),

the proof is completed.

Remark 5.23 (Connections with the upwind scheme). Clearly, An is the spatial dis-

cretization from the so-called upwind scheme in finite volume methods; cf. [LeV02].

The scheme is known to be stable. Stability of finite volume schemes is often related

to “numerical diffusion” in them; cf. Section 5.7.1. Our derivation allows the under-

standing of stability in a similar way. We shoved in Proposition 5.22 that Ptn is the

transition matrix of a Markov process near the Markov jump process generated by An
for small t > 0. The discretized FPO Ptn can be related to a non-deterministic dynami-

cal system, which, after mapping the initial point, adds some uncertainty to produce a

uniform distribution of the image point in the box where it landed; see Chapter 3 and

[Fro96]. This uncetrainty resulting from the numerical discretization, equivalently to

the numerical diffusion in the upwind scheme, can be viewed as the reason for robust

behavior — stability.

5.4 The Ulam type approach for the diffusive case

5.4.1 The method

We still assume that X = Td is partitioned by congruent cubes with edge length 1/n.

We introduce a small uncertainty to the dynamics. Latter will be governed by the SDE

ẋ = v(x) + εẆ ,

where W denotes the Brownian motion; cf. Section 2.1.2. The associated transfer

operator Qt (we use another symbol instead of Pt to emphasize that the underlying

dynamics is non-deterministic; and the dependence of the semigroup on the diffusion

parameter ε is dropped in the notation) is the evolution operator of the Fokker–Planck

equation

∂tu =
ε2

2
∆u− div(uv) =: A(ε)u.

This equation has a classical solution for sufficiently smooth data. More importantly,

for t > 0, Qt is a compact operator on C0 and on L1, see [Zee88]. Compactness of the
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5. APPROXIMATION OF THE INFINITESIMAL GENERATOR

semigroup is a desirable property and can be used to show convergence of numerical

methods, like Ulam’s method [Del99].

Unfortunately, here it is not possible to discretize the infinitesimal generator by

considering the exact box-to-box flow rates, since

lim
t→0

πnQtπnu− πnu
t

may not exist in L1. This can be seen by the simple one dimensional example with

zero flow (only diffusion) and u = χi for an arbitrary subinterval Xi. The diffusion

smears out the discontinuity of χi with an infinite flow rate, hence the above limit does

not exist. We have to deal with the diffusion differently. Define the discrete Laplace

operator ∆n : L1 → Vn as

∆nu :=
∑
i

n2

 ∑
j∈N (i)

(
uj − ui

)χi, where πnu =
∑
i

uiχi, (5.11)

and

N (i) :=
{
j 6= i | md−1(Xi ∩Xj) 6= 0

}
,

with md−1 being the d − 1 dimensional Lebesgue measure. The set N (i) contains the

indices of the neighboring boxes to i which have a common (d − 1 dimensional) face.

This is not only the usual discretization from finite differences, but it also restores some

of the lost intuition, that the discretization may be viewed in terms of flow rates. It

tells us, that the flow rate between adjacent boxes is proportional to the mass difference

between them. This is a known property of the diffusion, since ∆u = div(∇u). The

matrix representation Dn of ∆n satisfies

Dn,ij =


n2 j ∈ N (i),
−2dn2 j = i,
0 otherwise.

We still denote by Pt the transfer operator of the deterministic system (ε = 0) and by

An its discretized generator. The discretized generator of the diffusive system is now

defined as:

A(ε)
n u :=

ε2

2
∆nu+Anu. (5.12)
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Remark 5.24. A slight modification has to be applied, if the boxes are not cubes, but

hyperrectangles with edge length hk along the kth coordinate direction. The mass

loss of box i (to box j, which is adjacent to i along the kth coordinate direction) is

proportional to the mass difference between the two boxes and the surface of their

common face, however, inversely proportional to hk and the volume of box i. Thus,

(5.11) turns to

∆nu :=
∑
i

 ∑
j∈N (i)

h−2
k(j)

(
uj − ui

)χi,

where k(j) is the direction along which Xi and Xj are adjacent.

5.4.2 Convergence

Pointwise convergence of the approximative generator and the correspond-

ing semigroup. It is easy to check that ∆nu→ ∆u in L1 as n→∞ for every u ∈ C2.

Since for u ∈ C2 ⊂ C1 also Anu → Au holds, we have A(ε)
n u → A(ε)u for u ∈ C2. To

show the convergence of the semigroup corresponding to the approximative generator

to the transfer operator semigroup by Theorem 5.5, we just need the following:

Lemma 5.25. Assume v ∈ C∞(X,Rd). Then, for a λ > 0 sufficiently large

(λ−A(ε))C2 is dense in L1.

Proof. From Theorem 9.9 in [Agm65] we have C∞ ⊂ (λ − A(ε))C∞ for a sufficiently

large λ. Since C∞ is contained in C2 and dense in L1, the claim follows immediately.

Corollary 5.26. Assume v ∈ C∞(X,Rd). Then, the semigroup generated by the ap-

proximative generator A(ε)
n converges to Qt pointwise in L1 as n → ∞ and uniformly

in t for t from bounded intervals.

Convergence of eigenfunctions. We recall, that our aim with the discretization

of the infinitesimal generator is the approximation of its eigenmodes, from which we

extract the information about the long-term behavior of the corresponding system.

Therefore, the most desired convergence results are of the following form.

Conjecture 5.27. Fix ε > 0. Let A(ε)u = λu for some ‖u‖ = 1. Then, for n

sufficiently large there are λn, un, with
∥∥un∥∥ = 1, such that A(ε)

n un = λnun, and λn → λ

and
∥∥un − u∥∥→ 0 as n→∞.

87



5. APPROXIMATION OF THE INFINITESIMAL GENERATOR

We sketch here a possible proof. The missing link is Conjecture 5.28, for which we

do not have a proof.

Fix t > 0 and consider Qt and Qtn, the semigroups generated by A(ε) and A(ε)
n re-

spectively. Since the range ofQtn is not Vn,1 it is advantageous to work with Q̃tn = Qtnπn
instead, which is no semigroup, however. Because the range of A(ε)

n is a subset of Vn,

Q̃tn and A(ε)
n share the same eigenfunctions. The corresponding eigenvalues transform

as λ
(
Qt
)
7→ λ(A) = 1

t log
(
λ
(
Qt
))

, which is a Lipschitz continuous transformation for

λ(Qt) near one. Hence, it is equivalent to state Conjecture 5.27 with replacing the

generators by the corresponding operators Qt and Q̃tn (for the fixed time t > 0).

The advantage of doing this is that Qt and Q̃tn are compact operators, and these

are better understood from the perspective of spectral approximation. We would like

to use the results from [Osb75]. There are two assumptions which have to hold:

1. Pointwise convergence of Q̃tn to Qt in L1 as n→∞.

2. Collective compactness of the sequence
{
Q̃tn
}
n∈N; i.e. that the set{

Q̃tnu
∣∣ ‖u‖L1 ≤ 1, n ∈ N

}
is relatively compact.

The first assumption follows from Corollary 5.26 and that πn → I pointwise as n →

∞. Concerning the second one, we would like to show that the total variation of the

functions Q̃tnu, where ‖u‖L1 ≤ 1, is bounded from above independently on n. This

would imply the relative compactness by Theorem 1.19 in [Giu84]. One can see easily

that if the following conjecture holds, we have the (in n uniform) boundedness of the

total variation.

Conjecture 5.28. For simplicity, assume, that every box covering consists of congruent

boxes with edge length 1/n. For every t > 0 there is a K(t) > 0 such that for any f ∈ Vn
with ‖f‖L1 ≤ 1, u := Q̃tnf satisfies∣∣ui − uj∣∣

1/n
≤ K(t) for all j ∈ N (i), (5.13)

and the bound is independent on n ∈ N.

1It holds merely that the range of
(
Qtn − I

)
is a subset of Vn. Compare with the representation of

Rtn in Theorem 5.21.
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5.5 How to handle boundaries?

Inequality (5.13) bounds the “discrete derivatives” of the piecewise constant func-

tions from Q̃tnf ∈ Vn. So, we expect (5.13) to hold, since the diffusion “smears out”

any rough behavior in the initial functions f ; just as it was exploited for the continuous

case in [Zee88]. On analogy to the proof of Zeeman, we are able to show (5.13) for

X = T1 and pure diffusion by using discrete Fourier transformation; however, more

general results have to be found. The author is confident that results on this exist, but

there is none known to him yet.

5.5 How to handle boundaries?

In this section we would like to adjust the above introduced Ulam type infinitesimal

generator approach to cases where the phase space of interest has a boundary. Addi-

tional complications arise if there is no box covering which is identical with the phase

space; then the latter has to be a real subset of the former. We motivate the cases with

examples, but their numerical study is postponed to a later section.

If results could be shown for the diffusive case similar to Conjecture 5.28, the con-

vergence of eigenfunctions and eigenvalues could be obtained in a similar manner like

in Section 5.4.2.

5.5.1 Nondiffusive case

Our motivating example is the Lorenz system, cf. Section 5.7. For the given parameter

values the system has an attractor of complicated geometry which has zero Lebesgue

measure [Tuc99]. Hence, measures supported on the attractor are not absolutely contin-

uous to the Lebesgue measure, which makes a comparison with the computed densities

hard. Moreover, the covering is bigger than the attractor itself, whereby it will not be

an invariant set, in general.

Keeping this example in mind, we consider a general system with the attractor X,

a closed set X̃ ⊃ X with nonempty interior and a piecewise smooth boundary. Further,

let Xn be a covering partition of X̃ containing congruent hyperrectangles, such that

X̃ ⊂ int(X+
n ) with X+

n :=
⋃
X
i
∈X

n
Xi; cf. Figure 5.2
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X

X̃

X+
n

Figure 5.2: Handling complicated geometry - X is the set of interest, X̃ the regular

neighborhood and X+
n its box covering.

No outflow on ∂X̃. Assume that n·v ≤ 0 on ∂X̃; i.e. there is no outflow out of X̃.

We may restrict the transfer operator Pt : L1(Rd)→ L1(Rd) onto L1(X̃). For this, we

extend u ∈ L1(X̃) to L1(Rd) by

Eu(x) =

{
u(x), x ∈ X̃,

0, otherwise,

and set

P̃tu = (PtEu) |
X̃
.

Since there is no flow outwards of X̃, it holds

supp
(
PtEu

)
⊂ X̃

and P̃t is a semigroup. We also have mass conservation:∫
X̃
P̃tu =

∫
X̃
u.

Lemmas 5.17 and 5.20 apply with some slight changes (see corollaries 5.29 and

5.30), such that pointwise convergence of the approximative semigroup to P̃t follows by

Theorem 5.5, analogously as in Theorem 5.21. The trick is to extend the considerations

to Rd:

Corollary 5.29. Let C1
X̃

(Rd) :=
{
f ∈ C1(Rd)

∣∣∣ supp (f) ⊂ X̃
}

. We have Anu → Au
as n→∞ for u ∈ C1

X̃
(Rd).
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Proof. Since there is no outflow out of X̃, we have supp
(
PtEu

)
⊂ X̃ ⊂ X+

n for t > 0.

Every function in C1
X̃

(Rd) has uniformly continuous derivatives. Now we may reason

exactly as in the proof of Lemma 5.17.

Corollary 5.30. For λ large enough, we have C1
X̃

(Rd) ⊂ (λ − A) C1
X̃

(Rd), thus the

latter set is dense in L1(X̃).

Proof. The proof follows the lines of the one of Lemma 5.20: for u ∈ C1
X̃

(Rd) we show

that

(λ−A)−1u =

∫ ∞
0

e−λtPtudt

exists and is differentiable, then a simple argument leads to the inclusion.

• Existence/differentiability: The Gronwall estimates hold uniformly in x, since u, Du,

v, Dv and D2v are all uniformly bounded on the compact set X̃. If S−t0x /∈ X̃ for a

t0 > 0, then u(S−tx) = 0 and Du(S−tx) = 0 for all t ≥ t0 and the Gronwall estimate

still applies.

• Inclusion: By the existence and differentiability, the above equation will hold point-

wise. If x /∈ X̃, then S−tx /∈ X̃ for all t > 0, hence (λ−A)−1u(x) = 0, and we conclude

(λ−A)−1u ∈ C1
X̃

(Rd).

Including outflow on ∂X̃. The case where we have to take also outflow in consid-

eration is more subtle. The restriction of the transfer operator to X̃ is no semigroup

anymore, since mass could leave X̃ and then enter again at another place on the bound-

ary. Our discretization is, however, constructed in a way that it cannot keep track of

such mass fractions; if something leaves X̃, it is lost.

We do not wish to construct adequate semigroups, which could be approximated

by the one generated by An, just conjecture the following:

Conjecture 5.31. We expect Rtnu→ Ptu in L1 as n→∞ for all u ∈ L1 with

supp (u) ⊂
{
x ∈ X̃

∣∣∣Stx ∈ X̃ ∀t ≥ 0
}
,

i.e. for functions, which support stays completely inside X̃ for all times.

5.5.2 Diffusive case

Absorbing boundary. Take the guiding example from the former section, but add

now a small amount of diffusion to the dynamics. If the attracting effect of X is strong

(or the diffusion is small) enough, after a sufficiently long time the majority of the
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mass will be concentrated in a small neighborhood of the attractor X. We would like

to restrict the significant dynamics to a bounded set which we can handle numerically.

Let X̃ ⊃ X be an arbitrary set with a smooth boundary. We think of X̃ as a set

so large that only an insignificant amount of mass leaves X̃, provided the initial mass

was distributed closely around X. Then we may pose absorbing boundary conditions:

what hits the boundary, gets lost. To this correspond homogeneous Dirichlet boundary

conditions in the Fokker–Planck equation:

∂tu = A(ε)u, u(t, ·) |
∂X̃

= 0 ∀t > 0, u(0, x) = u0(x), (5.14)

where A(ε) := ε2

2 ∆ + A. Under the given assumptions, and by assuming that

v ∈ C1(X̃,Rd), we have that A(ε) generates a compact C0 semigroup of contractions

on L1(X̃), see [Ama83].1

Just as in the previous section, consider a tight box covering Xn of X̃ (i.e. there is

no Xi ∈ Xn with Xi ∩ X̃ = ∅). Let X bn :=
{
Xi ∈ Xn

∣∣∃j ∈ N (i) ∪ {i} : Xj ∩ ∂X̃ 6= ∅
}

denote the set of boundary (and boundary-near) boxes, called the boundary cover-

ing. We call X∂
n :=

⋃
Xi∈X bn

Xi the boundary layer. Boxes which are not in the

boundary covering, have all their (d − 1 dimensional) face neighbors in int(X̃), hence

A(ε)
n u, defined as in (5.12), makes sense on these boxes for every u ∈ L1(X̃). Define

A(ε)
n : L1(X̃)→ Vn by

A(ε)
n u =

{
ε2

2 ∆nu+Anu, as in (5.12), on X+
n \X∂

n ,

0, on X∂
n ∩ X̃.

We obtain

Theorem 5.32. Assume v ∈ C∞(X̃,Rd). Let Qtn denote the semigroup generated by

A(ε)
n , defined above. Then we have the following convergences in L1 as n→∞:

(a) A(ε)
n u→ A(ε)u for all u ∈ C2

0 (X̃) :=
{
g ∈ C2(X̃)

∣∣∣ g |∂X̃= 0
}

; and

(b) Qtnu→ Qtu for all u ∈ L1(X̃) and for any fixed t > 0.

Proof. To (a). The proof of Lemma 5.17 is based on local estimates, and that argu-

mentation applies here for all boxes in Xn \ X bn too. Since the function u ∈ C2
0 (X̃) has

1The generated semigroup is even analytic (in the time variable t). A semigroup
{
T t
}
t≥0

is called

compact, if T t is a compact operator for every t > 0. The analyticity of the semigroup is also shown

by Theorem 7.3.10 in [Paz83].
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uniformly bounded derivatives, the local estimates imply the global one by the unifor-

mity, and we have Anu→ Au on X̃, because m(X∂
n)→ 0 as n→∞. Also ∆nu→ ∆u

as n→∞ on X+
n \X∂

n . This can be seen easily by Taylor expansions, considering the

fact that u ∈ C2
0 and that the operator ∆n takes information from first-neighbor-boxes,

which are still completely in int(X̃) for Xn \ X bn. Once again, the measure of the sets

X∂
n tends to zero as n→∞, hence the convergence in L1 follows.

To (b). This goes analogously to the proof of Theorem 5.21. From the theory

of stochastic matrix semigroups and their generators we have that A(ε)
n ∈ G(1, 0),

and we need to show that (λ − A(ε))C2
0 (X̃) is dense in L1(X̃) for a sufficiently large

λ > 0. Theorem 9.9 and Section 10 in [Agm65] shows that the Dirichlet boundary

value problem

(λ−A(ε))w = h, w |
∂X̃

= 0

has a unique solution w ∈ C∞(X̃), w |
∂X̃

= 0, provided ∂X̃ is smooth, the coefficients of

A(ε) are smooth, and h ∈ C∞(X̃). Since C∞ is dense in L1, and the former conditions

are satisfied, the claim follows.

Remark 5.33. Perhaps a more extensive literature study would show that the smooth-

ness condition v ∈ C∞(X̃,Rd) can be weakened. The same holds for the results in

Section 5.4.2.

Reflecting boundary. Let X be a phase space which can be perfectly partitioned

by boxes. In some cases an absorbing boundary does not make physically sense. Such

a case would be a fluid flow in a fixed container. The vector field on the boundary is

tangential to it, and the portion of mass transport caused by diffusion is reflected on

the boundary. This is modeled by reflecting boundary conditions in the Fokker–Planck

equation:

∂tu =
ε2

2
∆u− div(uv), n·∇u = 0 on ∂X.1 (5.15)

Amann shows [Ama83] that if v ∈ C1(X,Rd) and ∂X is a C3 boundary, then (5.15)

defines a compact C0 semigroup of contractions on L1.

The boundary condition, of course, has to be respected by the discretization. The

definition of the drift is consistent with the boundary condition; there is no flow on the

face of the box which is a part of the boundary, since the flow is tangential. Diffusion

1These are called natural boundary conditions. The general condition would be n·( ε
2

2
∇u−uv) = 0,

i.e. no probability flow is allowed transversely to the boundary, but by n ·v = 0 this reduces to the

condition given here.
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occurs only between boxes of the phase space. Using the definition (5.11) for ∆n (note

the difference in the adjacency of boxes between the current phase space, which has a

boundary, and between Td) to obtain A(ε)
n , we have:

Lemma 5.34. Define

C2
n(X) :=

{
f ∈ C2(X) | ∇f ·n = 0 on ∂X

}
.

Then A(ε)
n u→ A(ε)u as n→∞ for all u ∈ C2

n(X).

To prove this, one has to deal with the boundary terms. A Taylor expansion and

considering the fact that normal derivatives are zero leads to the desired result. We omit

the details. The previous lemma with the following one gives the convergence of the

corresponding operator semigroups. Once again, this is a consequence of Theorem 5.5.

Lemma 5.35. Assume that ∂X is uniformly C3. Then there is a λ > 0 such that

(λ−A(ε))C2
n(X) is dense in L1(X).

Proof. From [Lun95] Proposition 3.1.23 and Theorem 3.1.25 we have that for all f ∈ C1

(λ−A(ε))u = f, (∇u·n) |∂X= 0

is solvable and u ∈ C2
n. Since C1 is dense in L1, the claim follows.

5.6 The spectral method approach

The Ulam type approximation method for the infinitesimal generator performs very well

for general systems, see Section 5.7. However, by their poor approximation properties,

the piecewise constant basis functions do not allow faster than linear convergence, in

general. In some specific cases, as we will see, the eigenfunctions of the infinitesimal

generator, which are to be approximated, are smooth enough, such that higher order

approximation functions would allow faster convergence rates and even less vector field

evaluations to obtain a high accuracy.

Extensive studies have been made using piecewise polynomials as approximation

functions to discretize the Frobenius–Perron operator associated with interval maps,

see, e.g. [Din93, Din91]. These local higher order approximations perform well in most

cases, and the convergence theory of Ulam’s method (see [Li76]) can be extended to

them.
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The aim of this section is to apply tools known as spectral methods for the numerical

approximation of the eigenfunctions of the infinitesimal generator. These are global

methods, in the sense that the approximation functions have global support. We have

to note that spectral methods are a highly-developed field of numerical analysis, and

have been used, e.g. for the approximation of eigenmodes of differential operators; cf.

[Boy01, Tre00] and references in them. Once again, the novelty is their directed usage

for smooth dynamical systems. We restrict our attention to cases which are interesting

for us, and focus on the question if there is a gain by using these methods, and how to

implement them.

We need to justify if the objects we intend to approximate are smooth, indeed. The

following result is a consequence of Theorem 9.9 in [Agm65] (see also the considerations

in Section 10 in the same textbook). The definitions of an elliptic operator and of a

smooth (i.e. C∞) boundary can be found in textbooks on partial differential equations,

e.g. [Agm65],[Eva98]. Note, that the infinitesimal generator A(ε) is strongly elliptic.

Theorem 5.36. Let X be a (closed) subset of a Euclidean space with boundary of class

C∞ and

Lu(x) =
∑
j,k

ajk(x)∂x
j
x
k
u(x) +

∑
j

bj(x)∂x
j
u(x) + c(x)u(x)

be a strongly elliptic differential operator on X with ajk, bj , c ∈ C∞(X). Then all

eigenfunctions of L (equipped with homogeneous Dirichlet or with natural boundary

conditions) are in C∞(X).

This theorem applies for domains X ⊂ Rd with smooth boundary as well as for

domains like X = Td−k × [0, 1]k, k ∈ {0, 1} (for k ≥ 2 the boundary of such domains is

not smooth). We will have examples on such domains too.

Similar results may hold for the case when X is a compact C∞ Riemannian manifold

with C∞ boundary. Some results on this are Theorems 4.4, 4.7 and 4.18 in [Aub82].

Unfortunately they cover merely the pure diffusion case L = ∆.

5.6.1 Spectral methods for smooth problems

Function approximation. Let X = [−1, 1] or X = T1 and u ∈ C∞(X). We wish to

approximate u to a possibly high accuracy in the ‖·‖∞ norm by using a small number

of approximating functions. If X = T1, the Fourier basis is a natural choice:

Fk(x) := e2πikx, Bf
n :=

{
Fk−bn−1

2 c(x)
∣∣ k = 0, . . . , n− 1

}
,
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where i =
√
−1 and bxc is the biggest integer smaller than x. In general, we choose n

to be odd such that every imaginary mode has its counterpart (the zero mode is pure

real) which allows real functions to have real Fourier interpolants.

For X = [−1, 1], use the Chebyshev polynomials

Tk(x) := cos (k arccos(x)) , Bc
n :=

{
Tk(x) | k = 0, . . . , n− 1

}
.

It can be shown that Tk is a polynomial1 of degree k. By writing Bn we mean “Bf
n or

Bc
n, depending on X”. Choose a set of test functions, Ψn = {ψk : X → R | k = 0, . . . ,

n− 1}, and define the (hopefully) unique function un ∈ lin(Bn) as the solution of the

set of linear equations ∫
X

(u− un)ψk = 0, k = 0, . . . , n− 1. (5.16)

If Ψn = Bn, the solution of (5.16) is unique and the un is called the Galerkin projection

of u onto linBn.

Define the nodes x
(n)
k = k/n if X = T1, and x

(n)
k = − cos

(
kπ
n−1

)
if X = [−1, 1],

k = 0, . . . , n − 1. Setting formally ψk = δ
x
(n)
k

, with δx being the Dirac delta function

centered in x, (5.16) turns into an interpolation problem

un
(
x

(n)
k

)
− u
(
x

(n)
k

)
= 0, k = 0, . . . , n− 1. (5.17)

The solution to this is also unique, since the xk are pairwise different; and un is called

the interpolant of u. We have for both approximation methods:

Theorem 5.37 ([Boy01],[Tre00]). For u ∈ C∞(X), let un be the Galerkin projection

or the interpolant w.r.t. the nodes introduced above. Then for each k ∈ N and ν ∈ N0

there is a ck,ν > 0 such that∥∥∥u(ν) − u(ν)
n

∥∥∥
∞
≤ ck,νn

−k for all n ∈ N, (5.18)

i.e. the convergence rate is faster than algebraic for each derivative of u.2 To this is

referred as spectral accuracy. If, in addition, u is analytic, one has c, Cν > 0 such that∥∥∥u(ν) − u(ν)
n

∥∥∥
∞
≤ Cνe

−cn for all n ∈ N,

i.e. exponential convergence.

1See [Tre00], Chapter 8.
2The νth order derivatives of a function u are denoted by u(ν).
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Remark 5.38. (a) We can simply extend our considerations to arbitrary intervals

[a, b] ⊂ R. We just use the affine-linear transformations which map X to [a, b]

and vice versa.

(b) Theorem 5.37 also holds if X is a multidimensional domain obtained as an arbitrary

tensor product of domains T1 and [−1, 1], e.g. X = T1 × [−1, 1] × T1. The basis

of the approximation space is obtained by building tensor products of the one

dimensional ones. The interpolation is also done on a tensor product grid.

(c) The reason why we picked the Chebyshev polynomials instead of any other arbitrary

polynomial basis is twofold. First, interpolation on the Chebyshev grid is a well-

conditioned problem, unlike the interpolation w.r.t. an equispaced grid. Second,

Chebyshev and Fourier approximations are strongly related via transforming u :

[−1, 1] → R into U : T1 → R by U(θ) = u(cos(2πθ)). For further details we refer

the reader to [Tre00], Chapter 8.

Operator discretization. Having a way to approximate functions by the set of

approximate functions, Bn, it is straightforward to define approximations of differential

operators. Let Vn = lin(Bn) and Wn = lin(Ψn). We restrict our considerations to

second order operators of the form:

Lu(x) =
∑
j,k

ajk(x)∂x
j
x
k
u(x) +

∑
j

bj(x)∂x
j
u(x) + c(x)u(x),

where the coefficients ajk, bj and c are smooth functions. Then we define the linear

operator Ln : Vn → Vn by∫
X

(Lφ− Lnφ)ψ = 0, for all φ ∈ Vn, ψ ∈Wn,

which makes sense because Vn ⊂ C∞(X). If the test functions ψ ∈Wn are Dirac delta

functions, the discretization is called collocation, since

Lu
(
x

(n)
k

)
= Lnu

(
x

(n)
k

)
, for all k = 0, . . . , n− 1. (5.19)

In the case of Wn = Vn we refer to it as the Galerkin projection. Just as in Chapter 3,

both discretizations can be written as Ln = πnL with a projector πn : C∞ → Vn defined

by ∫
X

(u− πnu)ψ = 0, for all ψ ∈Wn.
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Spectral convergence of eigenfunctions. The spectral accuracy of the approxi-

mation carries over to the approximate eigenmodes as well.

Theorem 5.39. Let L be as above, strongly elliptic and let Ln be its Galerkin projection

onto Vn. Then there are sequences
{
λj,n

}
n∈N

and
{
wj,n

}
n∈N

, wj,n being normed to

unity, such that Lnwj,n = λj,nwj,n and∣∣∣λj,n − λj∣∣∣ = O
(
n−k

)
as n→∞ for all k ∈ N. Also, there is a uj,n with Luj,n = λjuj,n such that∥∥∥uj,n − wj,n∥∥∥

H1
= O

(
n−k

)
as n→∞ for all k ∈ N. H1 denotes the usual Sobolev space, see, e.g. [Eva98].

Sketch of the proof. The proof is exactly the same as in II.8 [Bab91], only applied for

our setting. We just verify the assumptions made there for our case. We employ the

same notation as in the above work. If we refer to equations in [Bab91], it is done by

using the bracket [ ].

Set H1 = H2 = H1(X) (or H1
0 (X) in the special case of homogeneous Dirichlet

boundary conditions). Let µ > 0 and Lµ := L+ µI, where I denotes the identity. By

this we just shift the spectrum, the eigenfunctions remain the same. By [3.14], if µ is

sufficiently large, Lµ gives rise to a strongly elliptic bilinear form. Estimates [8.2]–[8.5]

follow. Continuity of the form, [8.1], follows by standard estimates, [8.7] as well.

The approximation space is defined by S1,h = Vn with h = 1/n. [8.11]–[8.12] follow

from ellipticity, [8.13] from the denseness of test functions in H1. The crucial objects

which control the spectral convergence are εh and ε∗h from [8.21] and [8.22]. The gener-

alized eigenfunctions are smooth1 and they span a finite dimensional subspace. Hence

the set of normed generalized eigenfunctions M and M∗ is approximated uniformly

with spectral accuracy,

εh = O
(
hk
)

and ε∗h = O
(
hk
)

for all k ∈ N.

Theorems 8.1–8.4 in [Bab91] complete the proof. �

1Let α be the ascent of λ−Lµ, i.e. α is the smallest number with N ((λ− Lµ)α) = N
(
(λ− Lµ)α+1).

The generalized eigenvectors are those u which satisfy (λ− Lµ)α u = 0. Let (λ−Lµ)2u = 0 and define

v = (λ−Lµ)u. Then (λ−Lµ)v = 0, hence v is eigenvector of Lµ and thus smooth. Since (λ−Lµ)u = v

it follows from Theorem 9.9 [Agm65] that u is smooth as well. The general case follows by induction.
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Remark 5.40. It could seem strange in the proof above that we need to shift L in order

to be able to apply the convergence theory. The key fact is that the spectral theory

of compact operators is used, and L−1
µ is compact on suitable Sobolev spaces, with a

sufficiently large shift µ. The shift influences the constant in the O
(
n−k

)
estimate.

However, modifying the r.h.s. of the variationally posed eigenvalue problem [8.10] from

b(·, ·) to µb(·, ·), the eigenvalues transform as λ 7→ λ+µ
µ , hence remain at an order of

magnitude 1 for large µ. Moreover, the proofs of Theorems 8.1–8.4 in [Bab91] tell us

that the factor of change introduced by the shift in the constant of the O
(
n−k

)
estimate

tends to 1 for µ→∞. Hence, the shift does not affect the spectral convergence rate.

Presumably, it is harder to obtain similar results for the collocation method, cf.

the convergence theory of both methods (Galerkin and collocation) for boundary value

problems in [Can07]. However, we may strengthen our intuition that collocation con-

verges as well, if we consider the following (cf. [Boy01] Chapter 4). First, if we compute

the integrals arising in the Galerkin method by Gauss quadrature (and we will have to

use numerical integration, in general) we obtain the collocation method. Second, the

approximation error of interpolation is at most a factor two worse than the one of the

Galerkin projection.

Algorithm 5.41 (Spectral method discretization of the generator).

1. Define the approximation space Vn, which is spanned by tensor product Cheby-

shev and/or Fourier polynomials.

2. Compute the matrix representation A(ε)
n of the discretized (Galerkin or colloca-

tion) infinitesimal generator A(ε)
n by∫

X

(
A(ε)φ−A(ε)

n φ
)
ψ = 0, for all φ ∈ Vn, ψ ∈Wn,

as described in the following sections.

3. Right eigenvectors of A(ε)
n correspond to eigenfunctions of A(ε)

n , which are consid-

ered as approximations to the eigenfunctions of A(ε). In particular, the eigenfunc-

tion of A(ε)
n at the eigenvalue with smallest magnitude approximates the invariant

density.

4. Unlike for the Ulam type approach, left eigenvectors ofA(ε)
n , whereA(ε)

n is obtained

by the collocation method, do not correspond to eigenfunctions of the adjoint

operator. If one would like to extract information about almost invariance using
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5. APPROXIMATION OF THE INFINITESIMAL GENERATOR

the simplex-method (cf. Section 2.2.2), one has to discretize the adjoint operator;

cf. (2.14). However, this is possible without additional vector field evaluations.

5.6.2 Implementation and numerical costs

For simplicity and better readability we show first how to implement the spectral dis-

cretizations of differential operators in one space dimension,

Lu(x) = a(x)u′′(x) + b(x)u′(x) + c(x)u(x),

and proceed later to the multidimensional case. The main tools will be so-called dif-

ferentiation matrices, D(1)
n and D(2)

n , which realize the first and second derivatives of

functions in Vn.

From an applicational point of view the most convenient is to work with the nodal

evaluations. Mathematically, this corresponds to the basis En of Lagrange polynomials

`0, . . . , `n−1 with `j

(
x

(n)
k

)
= δjk. The multiplication by the functions a, b and c is also

very simple using this basis.

Fourier and Chebyshev collocation method. Given a smooth function u, differ-

entiating the interpolant is a good approximation to u′. For this, we define un as the

vector of point evaluations with un,j = u
(
x

(n)
j

)
. Denoting the interpolant of u by pn,

we define D(1)
n and D(2)

n by

u′
(
x

(n)
j

)
≈
(
D(1)
n un

)
j

:= p′n

(
x

(n)
j

)
for all j = 0, . . . , n− 1

and

u′′
(
x

(n)
j

)
≈
(
D(2)
n un

)
j

:= p′′n

(
x

(n)
j

)
for all j = 0, . . . , n− 1.

For the Fourier case holds D(1)
n D(1)

n = D(2)
n , which is not true for the Chebyshev case.

Also, there is a simple computation of D(1)
n un in the Fourier case (the methodology is

extendable to the Chebyshev case as well, cf. Remark 5.38 (c)). Note:

• Differentiation in the frequency space is merely a diagonal scaling:

F ′k(x) = 2πikFk(x).

An additional constant factor is applied if T1 is scaled.
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5.6 The spectral method approach

• By aliasing, the modes −n−1
2 , . . . ,−1 are indistinguishable from the modes

n−1
2 + 1, . . . , n− 1 on the given grid.

Hence D(1)
n hn is easily computed in several steps:

1. Compute the fast Fourier transform (FFT) of un and assign the frequencies

−n−1
2 , . . . , n−1

2 to the modes (by aliasing).

2. Apply a componentwise scaling to the vector, realizing the differentiation in the

frequency space.

3. Assign the frequencies 0, . . . , n to the modes (again, by aliasing) and apply the

inverse FFT (IFFT) to get back to the physical space (nodal evaluations).

The following diagram emphasizes the computational steps.

En
FFT−→ Bn

d
dx−→ Bn

IFFT−→ En

D(2)
n is computed in the same way. The computational cost is O (n log n).

The matrix representation Ln of Ln : Vn → Vn w.r.t. the basis En is obtained as

follows. Define

an =
(
a
(
x

(n)
0

)
, . . . , a

(
x

(n)
n−1

))>
,

bn and cn analogously. Let diag(d) denote the diagonal matrix with the vector d on

the diagonal. Then we have

Ln = diag(an)D(2)
n + diag(bn)D(1)

n + diag(cn). (5.20)

For the grids used here, both the Fourier and Chebyshev differentiation matrices

can be given analytically and can be calculated in O
(
n2
)

flops [Tre00].

Fourier Galerkin method. The Galerkin discretization is more subtle to set up.

While (5.19) and (5.20) gives the matrix representation Ln of the discretized operator

w.r.t. En directly, here we have Ln = M−1
n L̄n w.r.t. Bn with

L̄n,jk =

∫
X
LFk Fj , Mn,jk =

∫
X
FjFk,

where Mn is called the mass matrix. Since the coefficient functions a, b and c are

arbitrary, we cannot set up L̄n analytically, numerical quadrature is needed.
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5. APPROXIMATION OF THE INFINITESIMAL GENERATOR

On the one hand we are facing the two problems (a) we would like to obtain Ln

w.r.t. En and (b) numerical approximation of the integrals. On the other hand we

already have a simple way to approximate L: collocation. Choosing N > n sufficiently

large, we expect by spectral accuracy, that Lcol
N u (obtained by collocation) is for all

u ∈ Vn far closer to Lu than the approximation potential on the space Vn (note that

Vn ⊂ VN ). So we could use πgal
n Lcol

N as the numerical approximation of Lgal
n . We would

like Ln = Lgal
n w.r.t. the basis En, but the projection πgal

n is easily implemented w.r.t.

Bn. To sum up, we take following strategy to obtain Ln:

En → Bn
embed−→ BN → EN

LcolN−→ EN → BN

project−→ Bn → En. (5.21)

The transformations E ↔ B are simple FFT/IFFT-pairs (one should not forget the

rearranging; see above). The embedding and projecting needs some explanation, how-

ever. Generally, we consider the truncated Fourier series containing the frequencies

−n−1
2 , . . . , 0, . . . n−1

2 . We respect this with the embedding, hence the amplitudes of

the frequencies −N−1
2 , . . . ,−n+1

2 and n+1
2 , . . . , N−1

2 are set to zero and the embedding

Bn → BN is complete. The projection is not more complicated either. Since the

basis is orthogonal w.r.t. the L2 scalar product, projection is nothing but throwing out

unwanted frequencies.

Chebyshev Galerkin method. In fact, the strategy is exactly the same as for the

Fourier Galerkin method, however the basis transformations E↔ B and the projection

are not so simple.

The embedding is the extension of T0, . . . , Tn to T0, . . . , TN . The transformation

Bn → En is given by Sn ∈ Rn×n with

Sn,jk = Tk−1(x
(n)
j−1).

Now to the projection. The Chebyshev polynomials satisfy1

Tm,n :=

∫ 1

−1
Tm(x)Tn(x)dx = − (m2 + n2 − 1)(1 + (−1)m+n)

((m− n)2 − 1)((m+ n)2 − 1)
.

Observe that if m and n don’t share the same parity, Tm,n = 0. By transforming the

problem onto the interval [a, b] is Tm,n multiplied by a factor (b − a)/2. The mass

1Computation made by Mathematica.
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matrices MN resp. Mn are given by MN,jk = Tj,k resp. Mn = (MN )1:n,1:n, where we are

using the usual Matlab notation to indicate sub-matrices. Hence, the projection from

BN to Bn is given by the matrix

M−1
n (MN )1:n,1:N =

[
In M−1

n (MN )1:n,n+1:N

]
.

In denotes the identity. This gives by the diagram (5.21)

Ln = Sn
[
In M−1

n (MN )1:n,n+1:N

]
S−1
M Lcol

n (SM )1:N,1:n.

Extending to multiple dimensions. For multidimensional domains of tensor prod-

uct structure (i.e. X =
⊗d

j=1Xj , where either Xj = [aj , bj ] ⊂ R or Xj = T1 for each

j) there is a very simple extension of the above introduced methods. For notational

simplicity we handle here the two dimensional case where the domain is Y × Z, Y

and Z being one dimensional, and we show it only for the collocation method. The

methodology is then applicable for more dimensions and the Galerkin method without

difficulties.

In multiple dimensions, we consider tensor product grids resp. tensor product

basis functions. Let the one dimensional grids be given by y =
{
y1, . . . , yn

}
and

z =
{
z1, . . . , zm

}
. The grid points in the two dimensional grid are ordered by the

“z-first-principle”, i.e.1

(y1, z1), (y1, z2), . . . , (y1, zm), (y2, z1), (y2, z2), . . . , (yn, zm).

This implies, that any linear operation L on the y coordinate, given on the grid y by

Ly, is carried out on the full grid by Ly ⊗ Im; and any linear operation L on the z

coordinate, given on the grid z by Lz, by In ⊗ Lz. In is the unit matrix in Rn and

A⊗B denotes the Kronecker product of the matrices A and B.

For example, the divergence operator ∂y + ∂z is discretized by

D(1)
n ⊗ Im + In ⊗D

(1)
m ,

where D(1)
n and D(1)

m are the differentiation matrices derived earlier for the factor spaces.

If one would like to apply consecutively two linear operations on one coordinate,

following identity may save computational resources: (In⊗Lz)(In⊗Kz) = In⊗(LzKz).

1Hence the global index of the point (yj , zk) is (j − 1)m+ k.
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5. APPROXIMATION OF THE INFINITESIMAL GENERATOR

Discussion and computational costs. It should be emphasized once more that

the collocation methods have a very simple implementation (see also [Tre00]). The

computationally most expensive step is to evaluate the coefficients of L. In our case

Lu = −A(ε)u = − ε2

2 ∆u + div(uv), so the coefficient evaluation reduces to the eval-

uation of the vector field v. This suggests to measure the costs of the assembling of

the approximative operator in the number of the vector field evaluations. The colloca-

tion method uses one evaluation per node, i.e. O (n), where n is the dimension of the

approximation space Vn.

The question may arise, that if we already have computed an accurate approxima-

tion Lcol
N to the operator L, why do we not just use it instead of the low-precision one,

Lgal
n ?

Unlike the basis in the Ulam type approach, the basis of the approximation space

for spectral methods consists of globally supported functions. Hence, the discretized

operator will be a fully occupied matrix. By this, the eigenvalue and eigenvector com-

putations cost at least a factor O (n) more in comparison to the sparse matrices of the

Ulam type method. It is also worth to note, that for Ulam’s method one searches for

the largest eigenvalues of the discrete transfer operator. This is done by forward itera-

tion. For the infinitesimal generator approach, we are seeking for the eigenvalues with

the smallest magnitude, which is implemented by backward iteration. That means, we

have to solve in each iteration step a system of linear equations. Iterative methods

(e.g. GMRES) can solve a problem Ax = b in O (#flops(A·x)) flops. Still, it means a

complexity of O
(
n2
)

for our fully occupied matrices. Although, by spectral accuracy

we expect to obtain fairly good results with a small number of ∼ 10 basis functions in

each dimension, the effect of the O
(
n2
)

complexity should not be underestimated in

higher dimensions.

So, while setting up the operator approximation is cheap, since a small number of

vector field evaluations have to be used, solving the eigenproblem may be computation-

ally expensive. In general, one expects Galerkin methods to do better than collocation

methods with the same number of basis functions, since the projection uses global in-

formation (since the ψk are globally supported functions) in contrast to collocation,

where we have the information merely from the nodes. If there are high oscillatory

modes “hidden” from collocation, the Galerkin method may deal with them as well.

Consequently, one is well advised to use Galerkin methods if collocation does not seem
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to be accurate enough, and the approximation matrix is so big that we are already on

the limit of our computational resources.

However, in all examples below we have obtained sufficiently accurate results by

the collocation method.

5.6.3 Adjustments to meet the boundary conditions

The two dynamical boundary conditions (absorbing and reflecting) also equip the cor-

responding infinitesimal operator with boundary conditions (homogeneous Dirichlet

or natural/Neumann). The discretization has to behold this as well. Since T1 has no

boundary, boundaries arise only on directions where the Chebyshev grid is applied. The

endpoints of the interval are Chebyshev nodes, that allows a comfortable treatment.

Homogeneous Dirichlet BC: Setting the function values to zero at the boundary is

equivalent with erasing the rows and columns of the matrix Ln which correspond to

these nodes. The eigenvectors of the resulting matrix L′n correspond to values in the

“inner” nodes, the nodes on the boundary have value zero.

Also, we could choose basis functions which satisfy the boundary conditions a pri-

ori. One possible way is explained below the Neumann boundary conditions. For the

Dirichlet boundary we did not use this kind of approach in our examples. We refer the

reader to Section 3.2 in [Boy01].

Natural/Neumann BC: Since we expect the vector field to be tangential at the

boundary of the state space, the natural boundary conditions simplify to∇u·n = 0. The

tensor product structure of the state space reduces this to ∂x
j
u = 0 on the boundary

defined by xj = const. Here we have two possible solutions: include the boundary

conditions by setting up a generalized eigenvalue problem or use another set of of basis

functions which satisfy the condition ∂xj
u = 0.

The first idea includes the boundary conditions into the operator. The eigenvalue

problem Lnu = λu is replaced with L′nu = λKnu. Those rows of Ln which correspond

to the boundary nodes are replaced by the corresponding row of the differentiation

matrix which discretizes the operator ∂x
j
, hence we obtain L′n. Kn is the identity

matrix except the diagonal entries corresponding to the boundary nodes, which are set

to zero. The modified rows enforce ∂x
j
u = 0 for the computed eigenfunctions.
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A basis adapted to the boundary conditions. Once again, the ideas are repre-

sented in one dimension, and carried over easily to multidimensional tensor product

spaces. We would like to use a subspace of Vn consisting of functions which a priori

satisfy the boundary conditions u′(x) |x=±1= 0.

Our first aim is to find a simple linear combination of the Chebyshev polynomials

Tk, such that the resulting functions form a basis of the desired space. We have from

[Boy01]:
dTk
dx

(x)

∣∣∣∣
x=1

= k2,
dTk
dx

(x)

∣∣∣∣
x=−1

= k2(−1)k−1.

Possible simple combinations of basis functions are (for k ≥ 1)

(a) T̃2k+1 = 1
(2k+1)2

T2k+1 − T1, T̃2k = 1
k2
T2k − T2,

(b) T̃k = (k − 1)2/(k + 1)2Tk+1 − Tk−1.

The factors are chosen such that ‖T̃k‖∞ 9 0 and ‖T̃k‖∞ 9 ∞ as k → ∞. Choice (a)

has the drawback, that the T̃ converge to T1 or T2. This ruins the condition of the

approximation problem. Thus, we take choice (b), T̃k = (k− 1)2/(k+ 1)2, T̃k+1−Tk−1.

Note that

‖T̃k‖∞ ≤ 2 and |T̃k(±1)| = 1− (k − 1)2

(k + 1)2
∼ 4

k
as k →∞.

The basis functions T̃k get smaller closer to the boundary. Nevertheless, the number

of basis functions is ∼ 50 for spectral methods, so interpolating with this basis should

stay well-conditioned.

Implementation: The usual approach to compute a differentiation matrix of dimen-

sion n would be to fix some interpolation (and evaluation) points, interpolate on this

grid w.r.t. T̃1, . . . , T̃n, and derive a (hopefully simple) analytic formula for the matrix.

To omit a possibly complicated analysis, we take advantage of the known differentia-

tion matrix for the full Chebyshev basis and use another approach instead: embed the

subspace spanned by the T̃k into the span of the Tk and make the differentiation w.r.t.

the known basis.

Note, span
{
T̃1, . . . , T̃n

}
⊂ span

{
T0, . . . , Tn+1

}
. Let

{
xk
}
k=0...n+1

denote the points

of the (n+ 2)-point Chebyshev grid. Further define

• ET̃ : Lagrange basis in the nodes x1, . . . , xn.
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• ET : Lagrange basis in the nodes x0, . . . , xn+1.

• BT̃ : Basis
{
T̃1, . . . , T̃n

}
.

• BT : Basis
{
T0, . . . , Tn+1

}
.

• DT̃ , DT : Differentiation matrices on the spaces ET̃ and ET respectively.

We would like to set up the differentiation matrix on ET̃ . We know the differentiation

matrix on ET , and the transformation BT̃ → BT by the above definition of the T̃k.

The basis transformation E ↔ B is given by matrices S and S−1 below. Hence, the

computation follows the diagram:

ET̃
S−1

T̃−→ BT̃

BT̃→T−→ BT

ST−→ ET

d
dx−→ ET

restrict−→ ET̃ ,

where

ST̃ ,ij = T̃j(xi), ST,ij = Tj−1(xi−1) and BT̃→T,ij =


(j−1)2

(j+1)2
i = j + 2,

−1 i = j,
0 otherwise.

Note: ST̃ ∈ R
n×n, ST ∈ R(n+2)×n+2 and BT̃→T ∈ R

(n+2)×n. Considering, that the

restriction is just cutting off the first and last components, we have (using MATLAB

notation)

DT̃ =
(
DTSTBT̃→TS

−1
T̃

)
2:n+1,:

.

Further simplifications can be made by realizing that STBT̃→TS
−1
T̃

: ET̃ → ET is the

identity on the inner grid points, i.e.

STBT̃→TS
−1
T̃

=

 w>1In×n
w>2

 .
Using the partition (DT )2:n+1,: =

[
d1 D̃ d2

]
, where d1 and d2 are the first and last

columns, respectively, we may write

DT̃ = d1w
>
1 + D̃ + d2w

>
2 .

107



5. APPROXIMATION OF THE INFINITESIMAL GENERATOR

5.7 Numerical examples

5.7.1 A flow on the circle

We start with a one dimensional example, a flow on the unit circle. The vector field is

given by

v(x) = sin(4πx) + 1.1,

x ∈ T1 = [0, 1] with periodic boundary conditions, and we wish to compute the invariant

density of the system. Recall that an invariant density u ∈ L1(T1) needs to fulfill

Au = 0, where Au = −(uv)′. The unique solution to this equation is u∗(x) = C/v(x),

C being a normalizing constant (i.e. such that ‖u∗‖L1 = 1). We use three methods in

order to approximate u∗:

1. the classical method of Ulam for the Frobenius-Perron operator (cf. Section 2.3)

for t = 0.01,

2. Ulam’s method for the generator and

3. the spectral method for the generator.

Figure 5.3 (left) shows the true invariant density (dashed black line), together with

its approximations by Ulam’s method for the generator (bars) on a partition with 16

intervals and the spectral method for the generator for 16 grid points (solid line). In

Figure 5.3 (right) we compare the efficiency of the three methods in terms of how

the L1-error of the computed invariant density depends on the number of vector field

evaluations.

Efficiency comparison

• Ulam’s method. The error in Ulam’s method decreases like O(n−1) for smooth

invariant densities [Din93]. Thus, we need to compute the transition rates between

the intervals to an accuracy of O(n−1) (since otherwise we cannot expect the

approximate density to have a smaller error). To this end, we use a uniform grid

of n sample points in each interval. In summary, this leads to O(n2) evaluations

of the vector field. For the numbers in Figure 5.3 we only counted each point

once, i.e. we neglected the fact that for the time integration we have to perform

several time steps per point.
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Figure 5.3: Left: true invariant density (dashed line), approximation by Ulam’s method

for the generator (bars) and approximation by the spectral method (solid line). Right:

L1-error of the approximate invariant density in dependence on the number vector field

evaluations.

• Ulam’s method for the generator. Here, only one evaluation of the vector

field per interval is needed. On a partition with n intervals, this method then

seems to yield an accuracy of O(n−1). Note, that from Corollary 5.12 it follows

that the vector with components 1/v(xi) is a right eigenvector of the transition

matrix (5.3) for the generator at the eigenvalue 0. This fact shows the pointwise

convergence of the invariant density of the discretization towards the real one.

• Spectral method. Choose n odd here. By the odd number of grid points every

complex mode has also its conjugate in the approximation space, thus real data

have a pure real interpolant. This helps to avoid instabilities in the imaginary

direction.1

Here, the vector field is evaluated once per grid point. As predicted by Theo-

rem 5.39, the accuracy increases exponentially with n.

(Almost) cyclic behavior. It has been shown in [Del99] that complex eigenvalues

of modulo (near) one of the transfer operator imply (almost) cyclic dynamical behavior.

Similar holds for the generator as well.

Lemma 5.42. Let Au = λAu and let ure denote the real part of u. Let t > 0 be such

that etλA = λP ∈ R. Then Pture = λPure.

1This problem is also known in numerical differentiation, see [Tre00], Chapter 3.
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Proof. From the proof of Theorem 2.2.4 in [Paz83] we have Ptu = λPu. If uim denotes

the imaginary part of u, we have by linearity: Ptu = Pture + i Ptuim. Thus

λPure︸ ︷︷ ︸
∈R

+i λPuim︸ ︷︷ ︸
∈R

= Pture︸ ︷︷ ︸
∈R

+i Ptuim︸ ︷︷ ︸
∈R

.

The claim follows immediately.

Hence, having a non-real λA ∈ σ(A) and a t > 0 with 1 ≈ etλA ∈ R, then the real

part of the corresponding eigenfunction yields a decomposition of the phase space into

almost cyclic sets.

Let us test this on our example. The vector field v gives rise to a periodic flow

with period t0 =
∫ 1

0 1/v(x) dx ≈ 2.1822. Thus, we expect the infinitesimal generator to

have pure imaginary eigenvalues with imaginary parts 2πk/t0, k ∈ Z. For k = 1, 2, 3,

the spectral method approach with n = 63 provides these eigenvalues with an error of

10−14, 10−5 and 10−3, respectively. The real parts of the computed eigenvalues are all

at most 10−13.

Making these computations with the Ulam type generator approach, we experience

that the eigenvalues have not negligible negative real parts; however diminishing in

magnitude, as n gets larger. This phenomenon is discussed in the following paragraph.

Numerical diffusion. Assume, for a moment, that v ≡ v̄ > 0, i.e. the flow is con-

stant. Numerical diffusion arises, when the discretization An of the differential opera-

tor Au = −(uv)′ is actually a higher order approximation of the differential operator

Aεu := εu′′ − (uv)′ for some ε > 0. This is the case for the upwind method (the Ulam

type generator approximation). To see this, let a uniform partition of T1 be given with

box size 1/n, and πn the projection onto the space of piecewise constant functions over

this partition. Let u ∈ C4(T1) and un := πnu. Then it holds

(Anu)i = nv̄
(
un,i−1 − un,i

)
= nv̄

(
un,i−1 − un,i+1

2
+
un,i−1 − 2un,i + un,i+1

2

)
= v̄

un,i−1 − un,i+1

2n−1
+

v̄

2n

un,i−1 − 2un,i + un,i+1

n−2
,

hence Anu = πnAεu + O
(
n−2

)
with ε = v̄

2n , while Anu = πnAu + O
(
n−1

)
. That is

why one expects quantities computed by An to reflect the actual behavior of Aε. For

more details we refer to [LeV02], Section 8.6.1.
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Since general flows are not constant, better models of the numerical diffusion can

be gained by setting the diffusion term dependent on the spatial variable; i.e. ε = ε(x).

Figure 5.4 shows a numerical justification of the above considerations. We compare

the dependence of the real part of the second smallest eigenvalue of the Ulam type

generator on the number of partition elements n, and the dependence of the real part

of the second smallest eigenvalue of Aε on ε, where Aε is discretized by the spectral

method (for n = 151 the computed eigenvalues are considered to be exact).

Figure 5.4: Dependence of the second smallest eigenvalue of the Ulam type generator

approximation on the partition size n (left); and dependence of the second smallest eigen-

value of the infinitesimal generator on the diffusion parameter ε (right). The ’+’ signs

indicate the computed values and the solid line is obtained by linear fitting of the data.

A linear fitting (indicated in the plots by red lines) gives ε ∼ 0.55·n−0.98, which is

in very good correspondence with the theoretical prediction. Moreover, the slope equal

to one in the right plot also suggests the asymptotics Re(λ2) ∼ cε as ε→ 0.

5.7.2 An area-preserving cylinder flow

We consider an area-preserving flow on the cylinder, defined by interpolating a nu-

merically given vector field as shown in Figure 5.5, which is a snapshot from a quasi-

geostrophic flow, cf. [Tre90, Tre94]. The domain is periodic with respect to the x

coordinate and the field is zero at the boundaries y = 0 and y = 8·105.

Perturbing the model. Looking at the vector field we expect the system to have

several fixed points in the interior of the domain, which are surrounded by periodic
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Figure 5.5: Vector field of the area-preserving cylinder flow

orbits. Hence, there will be a continuum of invariant sets; and we examine their ro-

bustness under random perturbations of the deterministic system.

For this, we choose the noise level ε such that the resulting diffusion coefficient ε2/2

is larger than, but has the same order of magnitude as, the numerical diffusion present

within Ulam’s method for the generator. Since the estimate from Section 5.7.1 yields

a numerical diffusion coefficient of ≈ 120, we choose ε =
√

2 · 500 here.

Again, we apply the three methods discussed in Section 5.7.1 in order to compute

approximate eigenfunctions of the transfer operator resp. the generator.

1. Ulam’s method: For the simulation of the SDE (2.4) a fourth order Runge–

Kutta method is used, where in every time step a properly scaled (by a factor
√
τ ·ε, where τ is the time step) normally distributed random number is added.

We use 1000 sample points per box and the integration time T = 5·106, which is

realized by 20 steps of the Runge–Kutta method. Note, that the integrator does

not know that the flow lines should not cross the lower and upper boundaries

of the state space. Points that leave phase space are projected back along the

y axis into the next boundary box. An adaptive step–size control could resolve

this problem, however at the cost of even more right hand side evaluations. The

domain is partitioned into 128× 128 boxes.

2. Ulam’s method for the generator. Again, we employ a partition of 128×128

boxes and approximate the edge integrals by the trapezoidal rule using nine nodes.
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3. Spectral method. We employ 51 Fourier modes in the x coordinate (periodic

boundary conditions) and the first 51 Chebyshev polynomials in the y coordinate,

together with Neumann boundary conditions (the two approaches for handling

the boundary conditions from Section 5.6.3 do not show significant differences).

Computing almost invariant sets. In Figure 5.6 we compare the approximate

eigenvectors at the second, third and fourth relevant eigenvalue of the transfer operator

(resp. generator) for the three different methods discussed in the previous sections.

Clearly, they all give the same qualitative picture. Yet, the number of vector field

evaluations differs significantly, as shown in the following table.

method # of rhs evals

Ulam’s method ≈ 3·108

Ulam’s method for the generator ≈ 3·105

Spectral method for the generator ≈ 3·103

Table 5.1: Number of vector field evaluations in order to set up the approximate operator

or generator.

We list the corresponding eigenvalues in the next table. The ones of Ulam’s method

and the spectral method for the generator match well, while Ulam’s method for the

generator gives eigenvalues approximately 6
5 times bigger in magnitude. As estimated

above, the numerical diffusion is roughly 1
5 of the applied artificial diffusion, which

explains the difference between the eigenvalues.1

method λ2 λ3 λ4

Ulam’s method (log(λi)/T ) −1.64·10−8 −0.91·10−7 −1.06·10−7

Ulam’s method for the generator −1.98·10−8 −1.03·10−7 −1.19·10−7

spectral method for the generator −1.65·10−8 −0.91·10−7 −1.05·10−7

Table 5.2: Approximate eigenvalues.

For illustration, we apply the simplex method [Deu04b], also discussed in Sec-

tion 2.2.2, on the current example to obtain the four most dominant almost invariant

sets. The method is applicable, according to the theory, if the Markov (jump) chain

1This reasoning assumes that the eigenvalues vary linearly in the diffusion coefficient; cf. Sec-

tion 5.7.1.
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(a) Ulam’s method

(b) Ulam’s method for the generator

(c) Spectral method for the generator

Figure 5.6: From left to right: Eigenvectors at the second, third and fourth eigenvalue.
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Figure 5.7: Almost invariant sets of the area-preserving flow - the sets most robust

under random perturbation are neighborhoods of the steady states of the flow.

generated by the approximative generator is reversible. It is not the case here, however

the method seems to work. The (left) eigenfunctions plotted in R3 do give an object

which’ convex hull is nearly a simplex. Cutting down the vertices and plotting the

corresponding points in the phase space yields the four sets we already expected to be

almost invariant, see Figure 5.7.

5.7.3 A volume-preserving three dimensional example: the ABC-flow

We consider the so-called ABC-flow [Arn65], given by

ẋ = a sin(2πz) + c cos(2πy),

ẏ = b sin(2πx) + a cos(2πz),

ż = c sin(2πy) + b cos(2πx),

on the 3 dimensional torus T3. The flow is volume-preserving, for a =
√

3, b =
√

2

and c = 1, it seems to exhibit complicated dynamics and invariant sets of complicated

geometry [Dom86, Fro09].

This example serves to compare the performances of the Ulam type and the spectral

type generator methods for a higher dimensional smooth problem. The methods are

realized as follows.

1. Ulam’s method for the generator. A 64× 64× 64 box covering is used. To

set up the approximative generator, surface integrals have to be computed, see

(5.2). Since the vector field is smooth, a 3-by-3-point Gaussian quadrature rule
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is used on each box face.1 The numerical diffusion is estimated to be ≈ 0.013;

and we do not add any extra diffusion.

2. Spectral method. By the smoothness of the vector field a small number of

grid points should suffice to obtain an accurate result. We add extra diffusion

ε2

2 = 0.013, and compute the six dominant eigenmodes of the generator obtained

by the collocation spectral method on a 11 × 11 × 11 and a 13 × 13 × 13 grid,

respectively. The eigenvalues differ by a relative magnitude of 10−3. We deduce

from this, that the spectral method approach converges so fast that the 13 grid

points per dimension are sufficient.

Error of the invariant density. The ABC-flow is area-preserving, thus the invariant

density is the constant one function. Table 5.3 shows the L1-errors for the methods.

Note, that both methods suffer from the curse of dimension; but, since the spectral

method L1-error

Ulam’s method for the generator 2·10−9

spectral method for the generator 8·10−15

Table 5.3: L1-error of the approximative invariant density of the ABC-flow.

method needs only a few degrees of freedom in each coordinate direction to approximate

smooth functions well, the number of vector field evaluations (one per degree of freedom,

in fact) stays low. Furthermore, we have the numerical diffusion in the Ulam type

generator method, which cannot be controlled. The only way to make it smaller is

decreasing the box diameters — and thus increasing the number of boxes and vector

field evaluations. For the spectral method approach any kind of diffusion can be simply

added artificially.

The disadvantage of the spectral method approach can be seen by looking at the

matrix occupancies. The Ulam type method generates a sparse matrix, while the

spectral generator gives a full matrix (cf. Section 5.6.2). This could make the eigenvalue

problem computationally intractable, if too many basis functions are involved in the

1Contrary to v, the function on the box faces, (v·nj)+, does not have to be smooth, only continuous.

Hence any other quadrature rule could perform at least similarly well. However, if the resolution is fine

enough, (v·nj)+ will not change sign on the majority of box faces. Therefore, we expect the Gaussian

quadrature rule to be a proper compromise between accuracy and efficiency.
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approximation space. However, this problem is not present in this example, because of

the small number of grid points. Trying to solve the large eigenvalue problem for the

generator discretized by the Ulam type approach, one experiences difficulties. They are

thoroughly discussed in Section 5.7.4.

The previous observations are summarized in Table 5.4.

method # of rhs evals nonzeros in An
Ulam’s method for the generator ≈ 7.1·106 ≈ 1.1·106

Spectral method for the generator ≈ 2200 ≈ 4.8·106

Table 5.4: Number of vector field evaluations in order to set up the approximate generator,

and number of nonzeros in it’s matrix representation.

Computing and visualizing almost invariant sets. We briefly compare the ap-

proximative eigenfunctions at the second dominant eigenvalue for the two methods;

and the almost invariant sets extracted from them. To visualize the almost invariant

sets we are inspired by the thresholding strategy introduced in [Fro03]. For simplicity,

instead of finding an optimal threshold, we just heuristically set c = 0.6
∥∥u2

∥∥
L∞

(u2

is the approximative eigenfunction at the second dominant eigenvalue), and draw the

sets
{
u2 > c

}
and

{
u2 < −c

}
. It turns out, that the half of the total mass of |u2| is

supported on the sets shown in Figure 5.8, i.e. they can be seen as the “cores” of the

actual almost invariant sets.

The reader may wish to compare these pictures with computations made with Ulam’s

method for the ABC-flow [Fro09].

5.7.4 A three dimensional example with complicated geometry: the

Lorenz system

As a last example we consider a system where the effective dynamics is supported on a

set of complicated geometry – and of not even full dimension. This is the well-known
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(a) Ulam’s method for the generator

(b) Spectral method for the generator

Figure 5.8: Eigenvector at the second eigenvalue of the approximative generator (left);

and the almost invariant sets {u2 > c} (red) and {u2 < −c} (blue), extracted by thresh-

olding (right).
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Lorenz system [Lor63]

ẋ = σ(y − x),

ẏ = x(%− z)− y,

ż = xy − βz,

with σ = 10, % = 28 and β = 8/3. The effective dynamics happen on the attractor – a

set of complicated geometry. Eigenfunctions of the transfer operator may be supported

on the attractor, hence we do not expect the spectral approach to work well. Thus, we

use the Ulam type approach for the generator.

A decade ago numerical techniques have been constructed to compute box coverings

for attractors of complicated structure [Del97, Del96, Del98]. These techniques exploit

the fact, that the set X to be computed is an attractor, hence each trajectory starting

in its vicinity will be pulled to X in a fairly short time. In our approach time is not

considered, we use only movement directions, speed vectors. Since the boundary of

the box covering does not have to coincide with the boundary of the attractor, a tight

box covering might not show desired results, because relatively big outflow rates in

boundary boxes could occur. The simplest idea is (as discussed in Section 5.5.1) to use

a rectangle big enough – in our case [−30, 30]× [−30, 30]× [−10, 70].

This rectangle is not a forward invariant set, hence we may have outflow on its

boundary. If it’s so, there will be no invariant density, just an “almost invariant” one,

corresponding to a negative eigenvalue close to zero.

Now we are ready to compute the discretized generator, and its left and right

eigenvectors. We use a 128× 128× 128 box covering. The attractor is then extracted

by simple thresholding of the approximative (almost) invariant density u1: where u1 is

strictly away from zero, we expect to have a small neighborhood of the attractor1. As

one would expect from the presence of numerical diffusion, outside of the attractor u1

drops exponentially. We cut off the invariant density at a threshold value c = 5·10−6,

such that 96% of its mass is supported on
{
u1 > c

}
. Having the attractor, we may

restrict the other eigenfunctions on this set to yield the almost invariant sets in the

attractor, see Figure 5.9.

1The finer the resolution, the smaller the diffusion introduced by the discretization, the tighter this

neighborhood of the attractor is.
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Figure 5.9: Approximation of the Lorenz attractor - and of almost invariant sets in

it. The bottom graphs show the sign structure (red and blue) of the second and third left

eigenfunction, respectively. The computation has been done on a uniform covering with

128 boxes in each direction.
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Solving the large eigenvalue problem. Our computations have been done in Mat-

lab, and we used the built-in solver eigs for solving the eigenvalue problem for the

matrix A. It is an Arnoldi type iterative solver. We are interested in the eigenvalues

with the smallest magnitude; these are computed by backward iteration. Hence, in each

step a system of linear equations of the form Ax = b has to be solved. Already for a

resolution 64×64×64 the matrix A is too big to compute a sparse LU - decomposition,

that is just what eigs tries to do.

Consequently, we have to provide a program computing A−1b for an input vector

b. Unfortunately A is not symmetric and the CG method is not applicable. We chose

to use the GMRES method. This did not converge for random initial vectors and we

were lead to the problem of finding good starting vectors.

Our strategy to obtain proper initial vectors is inspired by multigrid methods. The

matrix A stems from a discretization of the operator A by the Ulam type approach.

Take a coarser box partition (for example merge 2 boxes in each dimension to one big

box — as we were doing it) and compute the matrix A1 arising from the corresponding

operator discretization. Project the vector b onto this coarse partition to obtain b1.

Compute x1 = A−1
1 b1 and embed it back to the fine partition (this can be done easily if

the fine partition is obtained from the coarse one by subdividing boxes). So, if we can

obtain a numerical solution to A1x1 = b1, then we use the embedding of x1 as initial

vector for the GMRES iteration, if not, we apply the same strategy to the problem

A1x1 = b1, and so on. No later than the problem Akxk = bk is small enough to obtain

a solution by direct LU - decomposition, we have a starting vector for the (k − 1)st

“inner” iteration. In other words, each problem Akxk = bk provides a starting vector

for the GMRES iteration to solve the problem Ak−1xk−1 = bk−1. In the end, we expect

to get a numerical solution of Ax = b.

Of course, it is undesirable to compute all the coarser discretizations A1, A2, . . . just

as we computed A (especially if the vector field v is expensive to evaluate). Fortunately,

we may compute them directly by linearcombining entries of A at linear complexity.

Denoting Xk
i the elements of the kth partition, and

Ikij :=

{
(i`, j`)

∣∣∣∣Xk−1
i`
⊂ Xk

i , X
k−1
j`
⊂ Xk

j and md−1(∂Xk−1
i`
∩ ∂Xk−1

j`
) 6= 0

}
,
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(5.2) gives

Ak,ij =
1

m(Xk
i )

∑
(i
`
,j
`
)∈Ikij

m(Xk−1
i
`

)Ak−1,i
`
j
`
.

Figure 5.10 visualizes this.

Xk
j Xk

i
Xk−1
j
1

Xk−1
j
2

Xk−1
i
1

Xk−1
i
2

Ak,ij

Ak−1,i
1
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Figure 5.10: Collapsing of A - obtaining Ak from Ak−1.

The reader may be confused, that in order to compute eigenvectors at eigenvalues

zero or near zero we try to solve problems x = A−1b. These are of course ill conditioned,

and despite strategies like above, the GMRES method (or the backward iteration it-

self) may not converge. In all these cases the following shifting strategy solved our

problems. Take µ ≈ |λ2| and work with the matrix (A − µI) instead of A. This is

merely a shift of the eigenvalues; the eigenvectors stay unchanged. The spectrum of A

is expected to lie in the left complex half plane, hence (A − µI) is non-singular, and

(λ1 − µ)−1, (λ2 − µ)−1, . . . are the dominant eigenvalues of (A− µI)−1.

5.7.5 Computing the domain of attraction without trajectory simu-

lation

To close the sequence of examples we demonstrate the usability of the infinitesimal gen-

erator approach to compute the domain of attraction of an asymptotically stable fixed

point. The following system is fully artificial, made for the purpose of yielding com-

plicated dynamics and an asymptotically stable fixed point (the origin) with bounded

domain of attraction.1

ẋ = (3x2 + 3y2)(3y2 − 50y4 + 2y + x)− y − 2x+ 3x2,
ẏ = (3x2 + 3y2)(2x− 3x2 + y)− (2y + 1)(3y2 − 50y4 + 2y + x).

(5.22)

1I am grateful to Alexander Volf, who inspired the application of the infinitesimal generator in

order to compute domains of attraction. Also, the system analyzed here is due to him.
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The idea of using transition probabilities to compute the domain of attraction is ex-

ploited in [Gol04]. A different approach also for cell-to-cell mappings is shown in

[Hsu87].

Consider a dynamical system governed by a SDE. We denote the solution ran-

dom variable of the SDE by X(t). Define an absorbing state x0 (i.e. X(t) = x0

implies X(s) = x0 for all s > t), and the absorption probability function (APF)

p(x) := Prob
(
X(t) = x0 for a t > 0 | X(0) = x

)
. For a fixed t > 0, let qt(x, ·) de-

note the density of X(t), provided X(0) = x. Then it holds
∫
qt(x, y)p(y) dy = p(x) for

all x and all t ≥ 0. In other words: U tp = p, the APF is the fixed point of the Koopman

operator. Denoting the infinitesimal generator of U t by A∗, we have A∗p = 0.

If the dynamical system is deterministic (i.e. ε = 0), p is 1 in the domain of at-

traction of x0 and 0 outside of it. From an applicational point of view, mostly this

case is of interest. Hence, we have to approximate nearly characteristic functions of

a set of possibly complicated geometry. Therefore, the spectral method approach is

not expected to work well (numerical experiments, not discussed here, confirm this).

However, the Ulam type generator method turns out to perform properly. Define an

analogous discretization of U t as of Pt:

A∗nf := lim
t→0

πn
U tπnf − πnf

t
. (5.23)

If we compute the approximate generator of the FPO, we have the approximate gener-

ator of U t as well:

Proposition 5.43. The operator A∗n is the adjoint of An.

Proof. Deriving the entries of the matrix representation of A∗n involve entirely the same

computations as deriving the matrix representation of An |V
n
. Using the adjointness of

Pt and U t, ∫
X
j

U tχi =

∫
χjU

tχi =

∫
Ptχjχi =

∫
X
i

Ptχj ,

the claim follows.

Thus, if we are given a matrix representation An of An, the left eigenvector (normed

to one in the ∞-norm) at the eigenvalue 0 gives us the approximative absorption prob-

abilities. We expect these values to be 1 in the interior of the domain of attraction,

0 outside, and between 0 and 1 near its boundary. This is due to the discretization,
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which introduces numerical diffusion, that can be viewed as uncertainty in the dynam-

ics: near the boundary there is a considerable probability, that trajectories starting in

the domain of attraction, but near its boundary, do not tend to the absorbing state.

Figure 5.11 shows the left eigenvector to eigenvalue 0 of the Ulam type generator

approximated on a 1001 × 1001 box covering of [−1, 1]2. Note the regions along the

boundary, where the absorption probabilities do not fall so steep. These may indicate

(a) trajectories which run a long way along the boundary before attracted to the origin,

so that the diffusion has “much time” to drag trajectories out of the domain; or

(b) strong drift (large vector field values), which implies a big numerical diffusion.

We remark, that if not even the rough location of the domain of attraction is known,

one may get a bound by making a coarse computation on a larger domain, and iterate

this process on more and more tight approximate regions.
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Figure 5.11: The approximate domain of attraction of the origin - fixed points

and some connecting orbits (left); and the left eigenvector of the Ulam type approximate

generator on a 1001× 1001 box covering.

5.8 Conclusions and outlook

In this chapter we developed and extensively analyzed two numerical methods for the

discretization of the infinitesimal generator of the semigroup Pt of Frobenius–Perron

operators. The main benefit is that the expensive numerical integration, which is

involved in any approximation of Pt, can be avoided. Also, there is an “optimal”
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exhaustion of the computed information, in the sense, that every evaluation of the

vector field goes directly into the approximation. Meanwhile, e.g. the discretization

of Pt by Ulam’s method uses only the endpoints of the simulated trajectories, and

does not consider the former points of the trajectory which were computed by the time

integrator on the way getting to the endpoint.

The first method, the Ulam type approach for the infinitesimal generator, turned

out to be the known upwind scheme from finite volume methods. An analysis by op-

erator semigroup theory showed that it is an adequate approximation, even if the set

of interesting dynamical behavior is a subset of Rd with complicated geometry. We

believe, that the robustness of the method is strongly connected with the numerical

diffusion arising by the discretization (just as numerical diffusion stabilizes the upwind

scheme). However, the significance of this concept for our purposes is not perfectly

understood yet. A drawback is, that we cannot “turn off” this diffusion; it is always

present, we can only decrease it under a desired threshold by making the box sizes

smaller. Nevertheless, the size of the numerical diffusion is the same as the magnitude

of the phase space resolution (see Section 5.7.1), therefore, if one would like to resolve

the spatial behavior further, one would have to increase the resolution anyway.

Convergence of the eigenfunctions (or at least of the invariant density) is still an open

question (cf. Section 5.4.2). It would be desirable to understand as well, why the con-

gruency of boxes is so important for the convergence of the generator (see Lemma 5.17

and the remark afterwards); and if there is an approximation which converges even for

general box coverings?

The second method, the spectral method approach for the infinitesimal generator,

can be proven to have the spectral convergence speed — at least for the Galerkin

method. All our examples were computed to a sufficient accuracy by the collocation

method, but there could be systems, in particularly in higher space dimensions, where

the full occupancy of the matrix representation of the discretized operator sets compu-

tational limits. There, the Galerkin method should be applied.

We can exploit the full power of spectral methods only in spaces which are tensor

products of intervals. On spaces with more complicated geometry so-called spectral

elements (also called hp finite elements) could be used.

Note, that the discretization for both methods can be written as A(ε)
n = ε∆n +An,

where An is the discretization with ε = 0. In order to study the properties of the
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system for different values of ε, the discretized operator An has to be assembled only

once. If we would discretize the transfer operator by Ulam’s method, we would have

to set up the transition matrix every time anew, since a different SDE (2.4) has to be

integrated.
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Chapter 6

Mean field approximation for

marginals of invariant densities

6.1 Motivation

Every time we have to compute the macroscopic behavior of dynamical systems with

high phase space dimension, by using transfer operator methods we run into difficulties.

Unless we can exploit some dynamical structure to reduce the problem dimension (e.g.

there are slow and fast variables [Pav08], or the attractor has a smaller fractal dimension

[Del96, Del97]), or we can use adaptivity to find a partition we can still deal with, the

curse of dimension puts these problems beyond the limits of current numerical methods.

General approaches, like the one introduced in Chapter 4, allow us to access a few

dimensions more, but the computational treatment of molecules with a few hundred

atoms is still way out of reach for these.1

We abandon generality, and turn our attention to more specific systems. We assume

that the dynamical system consists of subsystems, each acting on a low-dimensional

space. Moreover, each subsystem interacts strongly only with a few other subsystems,

and its interaction with the other ones is negligible or very weak; where it is always to

specify what “weak” means. Furthermore, we will be only interested in the evolution

(resp. long-term behavior) of some particular subsystems. Until now, one would have

had to analyze the whole system to draw, in the end, the desired (reduced or marginal)

1Note, that in the context of conformation dynamics, special transfer operator based techniques

have successfully been developed, see the references in Section 2.4.1.
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information of the subsystem. Our aim in this chapter is to define proper reduced

systems (on a low dimensional phase space) which give good approximations on the

statistical behavior of the marginal system. Furthermore, we wish to use them for

numerical computations, since these systems on low dimensional spaces are accessible

via transfer operator methods.

To include the influence of interacting subsystems into the dynamics of the subsys-

tem under consideration we use mean field theory. Here, one averages the action of the

surrounding interacting subsystems w.r.t. appropriate distributions. The idea is not

new, it has been successfully applied in many fields, e.g. in quantum chemistry in the

Hartree–Fock theory of many-particle Schrödinger equations [Har28, Foc30].

Our guiding examples are coupled map lattices and molecular dynamical (MD)

systems for chain molecules. First, the mean field theory for coupled maps is introduced

in Section 6.2, where we concentrate on asymptotic results in dependence of the coupling

strength. Second, we apply the methodology on MD systems in Section 6.3, and test it

on the example of n-butane. While the results for the latter problem look promising,

there are several important questions, to be discussed in the future:

• How to extend the method for larger molecules?

• Under which assumptions does the method work for large molecules?

They are topic of ongoing work, hence our answers can only be founded conjectures.

The reader may also find, that this chapter is of highly experimental nature. Indeed,

the behavior we analyzed elucidate only some aspects of mean field approximation of

coupled dynamical systems. There are still many more interesting questions to ask.

6.2 Mean field for maps

6.2.1 Nondeterministic mean field

Let X and Y be compact spaces measurable with the Lebesgue measure m. Define

the full system by S : X × Y → X × Y , S(x, y) =
(
S1(x, y), S2(x, y)

)>
, where S is

nonsingular and Si(·, y) resp. Si(x, ·) are nonsingular1 for i = 1, 2 and for all x ∈ X,

y ∈ Y . The transfer operator associated with S is denoted by P. Although we restrict

1T : X → Y is nonsingular, if for all measurable A ⊂ Y with m(A) = 0 we have m(T−1(A)) = 0
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our considerations on two subsystems, it is straightforward to generalize everything for

an arbitrary number of subspaces.

Assume, that the full system has an invariant density. Let x be the variable of

interest. We would like to characterize its long-term behavior, hence we search for the

marginal of the invariant density w.r.t. x. How does x evolve, if the system is distributed

according to its invariant density? Then, y is a random variable with a distribution

depending on x itself, and x is mapped to a random variable x = S1(x,y). Since

we started with the invariant distribution, we expect (without justification, for now)

x to be distributed nearly according to the x-marginal of the invariant density. As a

further approximation step, we assume the subsystems being “sufficiently independent”,

such that the distribution of y can be well approximated by the density u2 ∈ L1(Y ),

independent of x. Then we can look at u2 as (an approximation) to the y-marginal of

the invariant density. Now, we may define the approximate evolution of the x variable,

given that the full system is in “equilibrium”, i.e. it is distributed according to its

invariant density. We call it the mean field dynamics of the x variable (or x-subsystem).

xk+1 = S1(xk,y), (6.1)

where y is distributed according to u2. Let p1,mf [u2](·, ·) be the transition function

associated with this system, i.e.

p1,mf [u2](x,A) =

∫
χA
(
S1 (x, y)

)
u2(y) dy =

∫
{y|S1(x,y)∈A}

u2(y) dy, (6.2)

for all measurable A ⊂ X. By the non-singularity of S1,x and the Radon–Nikodym

theorem, p1,mf [u2] has a transition density function as well; cf. Definition 2.1. In order

to obtain it, we introduce a formal FPO P1,x : L1(Y ) → L1(X) associated with the

function S1,x := S1(x, ·) : Y → X, by
∫
A P1,xf =

∫
S−1
1,x(A) f

1. The operator is well

defined, since S1,x is nonsingular. We get

p1,mf [u2](x,A) =

∫
A
P1,xu2(z) dz. (6.3)

In other words, q1,mf [u2](x, z) = P1,xu2(z) is the transition density function of the

system (6.1).

1Note, that the first integral is over A ⊂ X, and the second one over S−1
1,x(A) ⊂ Y .
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The mean field system. One can, of course, do the same derivation, but with the

aim to describe the evolution of the y variable. Then, one would fix a u1 representing the

distribution of the the random variable x, and S2(x, ·) defines the mean field dynamics

of the y variable. So, even if the system is not in equilibrium, i.e. u1 and u2 do not

necessary represent marginals of the invariant density, one can define a coupled system

on X and Y — the mean field system, — by

xk+1 = S1(xk,y),

yk+1 = S2(x,yk),
(6.4)

where x (resp. y) is a random variable independent of xk and yk, having the same

distribution as xk (resp. yk).

The associated transfer operator. Let P1,mf [u2] denote the FPO associated with

p1,mf [u2](·, ·). An explicit representation of P1,mf [u2] can be given by (2.11), and the

transition density above.

For u1 ∈ L1(X) and an arbitrary measurable A ⊂ X we have∫
A
P1,mf [u2]u1(x) dx =

∫
X
u1(x)p1,mf [u2](x,A) dx

=

∫
X

∫
{y|S1

(x,y)∈A}
u1(x)u2(y) dydx

=

∫∫
{(x,y)>|S

1
(x,y)∈A}

u1(x)u2(y) d(x, y). (6.5)

Note, that the integration domain is actually S−1 (A× Y ), but this depends only on S1.

For comparison, we compute the marginal of a density u ∈ L1(X × Y ) iterated by

P (integrated over A ⊂ X, just as above):∫
A

∫
Y

(Pu)(x, y) d(x, y) =

∫∫
S−1(A×Y )

u(x, y) d(x, y)

=

∫∫
S−1
1 (A)

u(x, y) d(x, y),

which is exactly (6.5) for all measurable sets A ⊂ X, if u(x, y) = u1(x)u2(y). We have

proven:

Proposition 6.1. Let the full density u ∈ L1(X × Y ) be separable, i.e. u = u1 ⊗ u2.

Then the nondeterministic mean field system (6.4) describes the exact one-step evolu-

tion of the distributions of the subsystems, i.e.

P1,mf [u2]u1 =

∫
Y
P(u1u2) and P2,mf [u1]u2 =

∫
X
P(u1u2). (6.6)
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Moreover, if the invariant density of the full system is separable, the marginals are

invariant under the respective mean field subsystem dynamics, i.e.

P1,mf [u2]u1 = u1 and P2,mf [u1]u2 = u2.

The marginal of Pu. We derive here an expression for the marginal(s) of Pu, where

u ∈ L1(X × Y ), not necessary separable. It will be useful in a later section, where

we analyze the mean field model for weakly coupled systems. Also, we get a second

explicit representation of the mean field transfer operator.

Lemma 6.2. The marginal density of Pu can be written as∫
Y
Pu(x, y) dy =

∫
Y

(
P1,yuy

)
(x) dy, (6.7)

where uy(x) = u(x, y), and P1,y is the transfer operator associated with S1(·, y).

By (6.6) we also get

P1,mf [u2]u1 =

∫
Y

(
P1,yu1

)
u2(y) dy. (6.8)

One can derive analogously formulas for the y-marginal and the corresponding mean

field transfer operator.

Proof. The idea for obtaining a representation formula is to split the integral below on

integration over fibers:∫
A

∫
Y
Pu(x, y) d(x, y) =

∫
S−1
1 (A)

u(x, y) d(x, y)

=

∫
Y

∫
S−1
1,y(A)

uy(x) dxdy

=

∫
Y

∫
A

(
P1,yuy

)
(x) dxdy

Fubini
=

∫
A

∫
Y

(
P1,yuy

)
(x) dydx,

Since this holds for every measurable A ⊂ X, the proof is complete.

6.2.2 Deterministic mean field

In cases, such as

• the y variable evolves much faster than the x variable (i.e.
∣∣S1(·, y)− Idx

∣∣ /`x �∣∣S2(x, ·) − Idy
∣∣/`y for all x, y, where `x and `y are typical length scales of the x

and y variables, respectively), or
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• the variance of S1(x,y) is small independently of the distribution of y, and the

variance of S2(x, y) is small independently of the distribution of x,

it is well-founded to approximate the non-deterministic mean field system with a deter-

ministic one, just by setting the image of a point as the expectation value of the image

random variable.1

Definition 6.3 (Deterministic mean field). The deterministic mean field2 system is

given by3

xk+1 = S1,MF[u2,k](xk) := Eu
2,k

(
S1

(
xk,y

))
=

∫
Y S1(x, y)u2,k(y) dy,

yk+1 = S2,MF[u1,k](yk) := Eu
1,k

(
S2

(
x, yk

))
=

∫
X S2(x, y)u1,k(x) dx,

(6.9)

where for i = 1, 2 the ui,0 are given initial densities, ui,k+1 = Pi,MF[uic,k]ui,k, and

Pi,MF[uic,k] is the FPO associated with Si,MF[uic,k] (ic is the complement of i, i.e.

{i, ic} = {1, 2}).

6.2.3 Numerical computation with the mean field system

In order to be able to work with the mean field system, we introduce an Ulam type

discretization, cf. Section 2.3. The densities ui,k, i = 1, 2 and k ∈ N, are approximated

by the piecewise constant functions un,i,k ∈ Vn,i, Vn,i being the approximation space

associated with the partition of X (if i = 1), resp. of Y (if i = 2).

Iterating the mean field system. Following algorithms approximate the iterates

of the mean field systems (6.4) and (6.9).

Algorithm 6.4 (Iterating the non-deterministic mean field system). Let the initial

densities un,1,0 ∈ Vn,1 and un,2,0 ∈ Vn,2 be given. For k = 0, 1, . . . we compute:

System samples. We sample the transition function p1,mf [un,2,k](x, ·) for a given x ∈ X
by

1. drawing a random sample y ∈ Y according to the distribution un,2,k, and

1The first case is a discrete-time analogon to “averaging”, see [Pav08]. The x variable barely

changes, meanwhile the y variable already samples its invariant density. In the second case, the dy-

namics resemble deterministic movement under a small random perturbation.
2To emphasize the difference between stochastic and deterministic mean field, we indicate the

former with “mf”, and latter with “MF”.
3We denote the expectation value of the random variable y with density u by Eu(y).
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2. then computing S1(x, y).

The transition function p2,mf [un,1,k](y, ·) is sampled in the same fashion.

Discretized transfer operator. We set up the transition matrices Pn,i,mf [un,ic,k] (matrix

representations of the discretized transfer operators Pn,i,mf [un,ic,k]) by (2.19). The

images of the sample points are computed by the two-step system sampling from above.

Next iterates. Now we can sample xk+1 and yk+1, if we want to. Their distributions

are approximated by un,i,k+1 := Pn,i,mf [un,ic,k]un,i,k.

Algorithm 6.5 (Iterating the deterministic mean field system). Let the initial densities

un,1,0 ∈ Vn,1 and un,2,0 ∈ Vn,2, as well as initial points x0 ∈ X and y0 ∈ Y be given.

For k = 0, 1, . . . we compute:

Next iterates. The iterate

xk+1 =

∫
Y
S1(xk, y)un,2,k(y)dy

is computed by numerical quadrature. If we expect the box resolution to be high

enough, that the function S1(x, ·) does not vary strongly in a box, one map evaluation

per box is sufficient. The iterate yk+1 is computed analogously.

Discretized transfer operator. We have just discussed, how the map Si,MF[un,ic,k] is

evaluated. The corresponding transition matrix Pn,i,MF[un,ic,k] is computed with (2.19).

The new densities are obtained by un,i,k+1 := Pn,i,MF[un,ic,k]un,i,k.

Approximating marginals. If we expect the mean field system to approximate the

dynamics of the subsystems qualitatively well, it is a natural choice to define the mean

field invariant marginal densities as the pair (u1, u2) satisfying

u1 = P1,mf [u2]u1,

u2 = P2,mf [u1]u2;
(6.10)

analogously for the deterministic mean field system. It is a nonlinearly coupled eigen-

value problem. For its solution we propose to use a procedure which is inspired by the

so-called Roothaan algorithm from quantum chemistry.

Algorithm 6.6 (Roothaan iteration). Let u0
n,1 ∈ Vn,1 and u0

n,2 ∈ Vn,2 be initial (ap-

proximative) guesses for the invariant marginals.

By alternating i (or running through the subsystems cyclically, if there are more than

two) we compute the density uk+1
n,i from

uk+1
n,i = Pn,i,mf

[
uk
∗

n,ic

]
uk+1
n,i ,
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where k∗ is the largest index uk
∗

n,ic is already defined for.

End the iteration, if (6.10) is satisfied to a desired accuracy, or if no further improvement

is observed.

Once the approximative invariant marginals un,1 and un,2 are obtained, we can use

the operators Pn,i,mf [un,ic ], i = 1, 2, to detect almost invariant structures in the subsys-

tems. We simply compute their eigenmodes with eigenvalues near one, and proceed as

in Section 2.2.2. By this, we reveal almost invariant structures under the assumption,

that the surrounding subsystems are distributed according to their (marginal) invariant

densities.

Complexity. For simplicity, assume that X and Y are full dimensional rectangular

subsets of d1 and d2 dimensional spaces, respectively. Let them be partitioned by a

uniform box covering, consisting of n boxes in each dimension. Hence, dim(Vn,i) = ndi .

To evaluate the deterministic mean field system, we have to compute transition matrices

over a space of dimension di, which is done by Ulam’s method in #flops(Si,MF) ·O
(
ndi
)

flops. However, one evaluation of the the mean field subsystem Si,MF needs O
(
ndic

)
flops, because of the involved numerical quadrature. Overall, the O

(
nd1+d2

)
costs are

at the same order of magnitude as if we were applying Ulam’s method for the full system

with the tensor product partition, resulting in the approximation space Vn,1⊗Vn,2. For

the non-deterministic mean field system we may decide, how many sample points per

box are needed. However, in order to get a good approximation on the distribution

of p1,mf [un,2](x, ·), we need to sample un,2 properly, i.e. the whole space Y has to be

sampled. This results in an at least as large complexity, as before.

For completely coupled systems, until now the only gain of applying the mean

field methods onto the system, is that the transfer operators involved are of smaller

dimensions, since ndi � nd1+d
2 . Their storage and any computation with them is of

much less effort. Nevertheless, their assembly involves numerical costs of O
(
nd1+d

2

)
.

We expect mean field to show a real advantage in the case where more subsystems

are involved, but each one of them interacts strongly (directly) only with a few others.

Then, weak interactions could be neglected, and computations on one subsystem are

of complexity of computations made on a group of strongly interacting subsystems.

Nonetheless, if we choose systems i and j, respectively j and k to be directly coupled

in our model, then there is an indirect coupling between the systems i and k. In order
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to include the effect of this indirect coupling in the computations, iterative algorithms

have to be used, like the Roothaan iteration.

6.2.4 Numerical examples

Fast convergence of the approximative marginals. This example is inspired by

coupled map lattices. We consider the approximation error of the mean field invariant

density for a vanishing coupling strength. Let two maps on the unit interval be given

by

S1(x) =

{
2x

1−x , if x < 1/3,
1−x
2x , otherwise,

and S2(x) =

{
2x, if x < 1/2,
2(1− x), otherwise,

with invariant densities u1(x) = 2
(1+x)2

and u2(x) = 1, cf. [Din96]. They are assembled

to define the two dimensional coupled map

Sε(x, y) =

(
(1− ε)S1(x) + εS2(y)
εS1(x) + (1− ε)S2(y)

)
, (6.11)

with the coupling constant ε > 0.

Following computations are done for ε = 2−1, . . . , 2−9. We use the uniform partition

of [0, 1] into n = 64 boxes, which also yields a 64 × 64 box partition of [0, 1]2. On the

latter, the approximate invariant density of Sε is computed by Ulam’s method. Then,

the Roothaan iteration is done, to obtain the approximative (deterministic) mean field

invariant marginals. For this, the Ulam approximations of the one dimensional invariant

densities of S1 and S2 are chosen as initial vectors. The Roothaan iteration always

converged after just several steps (∼ 5). Figure 6.1 shows

• the L1-difference of the two dimensional invariant densities of S0 and Sε (blue

dots);

• the L1-difference of the two dimensional invariant density of Sε and uεn,1 ⊗ uεn,2,

where uεn,i is the mean field invariant marginal of the ith subsystem computed by

the Roothaan iteration (green squares);

• the L1-difference of the one dimensional (x- resp. y-) marginals of the invariant

density of Sε, and uεn,1 resp. uεn,2 (red and cyan triangles).
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Figure 6.1: Error asymptotics in ε - The error of the mean field marginal invariant

densities decay faster than linear in ε. The invariant density converges only at a linear rate

to the invariant density of the decoupled system (ε = 0).
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Where the best approximation error, O
(
n−1

)
, allowed by the approximation space, is

reached, no further improvement is possible.

While the invariant density of the decoupled system seems to be only an order one

approximation of the invariant density of Sε, the mean field approximation shows better

asymptotics. This observation lead to the error analysis in Section 6.2.5.

Connections with the tensor product approximability. The interplay between

almost invariance and coupling yields an interesting behavior. Let us consider the

parameter-dependent maps

S1,a(x) =

{
2x, x < 1/4 or x ≥ 3/4
2(x− 1/4) + a, 1/4 ≤ x < 3/4

}
mod 1,

and

S2,a(x) =

{
2x+ a, x < 1/4 or x ≥ 3/4
2(x− 1/4), 1/4 ≤ x < 3/4

}
mod 1.

Both S1,a and S2,a have the almost invariant sets [0, 1/2] and [1/2, 1] with almost

invariance ratio 1 − a. We define the coupled system Sε,a as in (6.11), with S1,a and

S2,a replacing S1 and S2, respectively. Then, the Roothaan iteration is performed for

all a ∈
{

10−3, 2·10−3, . . . , 2·10−2
}

and ε ∈
{

10−3, 2·10−3, . . . , 2·10−2
}

, to obtain the

(deterministic) mean field invariant marginals. The numerical computations are done

by using a uniform partition of 128 boxes per dimension. As initial vectors we use here

marginals of the two dimensional invariant densities computed with Ulam’s method on

a coarse partition (n = 16), embedded in the space of piecewise constant functions over

the fine partition (n = 128). In the end, the L1-errors of the mean field marginals to

the marginals of the two dimensional invariant density are computed, cf. Figure 6.2.

As we see, for some pairs (a, ε) both marginals are computed with a big error. The

stochastic mean field approach gives qualitatively the same picture. It turns out, that

these error plots are very similar to the ones obtained by plotting the error of the best

approximation of the two dimensional invariant density by tensor product functions (i.e.

functions u which can be represented as u(x, y) = u1(x)u2(y)); cf. [War10]. Observe also

for the previous example, in Figure 6.1, that the good asymptotic behavior of the mean

field marginals is accompanied by the good approximability of the two dimensional

invariant density by tensor product functions. Since the Roothaan iteration seems to

converge for all pairs (a, ε), we can draw the following conclusion:
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Figure 6.2: The errors of the mean field marginal invariant densities - L1-error

of the x-marginal (left) and L1-error of the y-marginal (right), computed on a uniform

partition of 128 boxes.

• the mean field invariant marginal densities are proper approximations of the in-

variant density marginals only if the multidimensional invariant density can be

well approximated by a tensor product function; or

• the Roothaan iteration converges under some circumstances to the wrong fixed

point.

In this work we do not analyze these problems any further.

6.2.5 Accuracy for weakly coupled systems

The first example in the previous section suggests, that the mean field system is capable

of approximating the marginals at a higher order of accuracy. Here we prove a result

on this.

Let X ⊂ Rd, and let two maps S : X → X and T : X → Rd be given. Define the

perturbation of S, Sε : X → Rd, by Sε = S + εT .

Sε as a diffeomorphism. We restrict Sε onto the reduced phase space Xε :=⋂
n≥0 S

n
ε (X), on which Sε is surjective. Write Id = S−1 ◦ S to obtain

∥∥x1 − x2

∥∥ ≤ LS−1

∥∥S(x1)− S(x2)
∥∥ ,
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where LS−1 is the Lipschitz constant of S−1. A sufficient condition for Sε to be one-

to-one is ∥∥S(x1)− S(x2)
∥∥ > ε

∥∥T (x1)− T (x2)
∥∥ ∀x1, x2,

since this implies Sε(x1) 6= Sε(x2). We compute

ε
∥∥T (x1)− T (x2)

∥∥ ≤ εLT ∥∥x1 − x2

∥∥ ≤ εLS−1LT︸ ︷︷ ︸
:=δ

∥∥S(x1)− S(x2)
∥∥ .

Hence we need δ < 1 to get injectivity, i.e.

ε <
1

LS−1LT
. (6.12)

Further, we have for all x1, x2∥∥Sε(x1)− Sε(x2)
∥∥ =

∥∥S(x1)− S(x2) + ε
(
T (x1)− T (x2)

)∥∥
≥

∥∥S(x1)− S(x2)
∥∥− ε∥∥T (x1)− T (x2)

∥∥︸ ︷︷ ︸
≤δ‖S(x

1
)−S(x

2
)‖

≥ (1− δ)
∥∥S(x1)− S(x2)

∥∥
≥ 1− δ

LS−1

∥∥x1 − x2

∥∥ .
This implies that DSε cannot have a singular value smaller than (1− δ)/LS−1 , and by

the inverse function theorem we have that Sε : Xε → Xε is a diffeomorphism, provided

that T is continuously differentiable and the above bound on ε holds. Moreover, we

may bound the Lipschitz constant of S−1
ε :

LS−1
ε
≤

LS−1

1− εLS−1LT
. (6.13)

Expansion of S−1
ε in ε. We would like to expand the inverse of Sε up to O (ε) terms.

Observe

S−1
(
Sε(x)

)
= x+ εDS−1(S(x)) · T (x) +O

(
ε2
)
,

or, by setting y = Sε(x),

S−1
ε (y) = S−1(y)− εDS−1

(
S
(
S−1
ε (y)

))
· T
(
S−1
ε (y)

)
+O

(
ε2
)
,

if S−1 is twice continuously differentiable. Since S(x) = Sε(x) +O (ε), this inspires the

approximation

S−1
ε ≈ S̄ε := S−1 − εDS−1 · T ◦ S−1.
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The function S̄ε is differentiable, if T is so. Then a first order Taylor expansion yields

S̄ε(Sε(x)︸ ︷︷ ︸
=y

) = x︸︷︷︸
=S−1

ε (y)

+O
(
ε2
)
,

uniformly in x, thus uniformly in y (over compact sets), since Sε is a diffeomorphism.

This means that S̄ε is the expansion we were searching for, and we need S−1 ∈ C2(X)

and T ∈ C1(X). The following Lemma summarizes these results.

Lemma 6.7. Let X be a compact set, and S : X → X a diffeomorphism with

S−1 ∈ C2(X). Further let T ∈ C1(X). Then it holds for Sε = S + εT , ε small enough,

S−1
ε (x) = S−1(x)− εDS−1(x) · T ◦ S−1(x) +O

(
ε2
)

(6.14)

uniformly in x ∈ Xε; provided Xε has nonempty interior.

Perturbation analysis of mean field. Let a dynamical system S : X×Y → X×Y
be given with

S(x, y) =

(
S1(x)
S2(y)

)
,

where S1 and S2 are diffeomorphisms with twice continuously differentiable inverses.

Define its perturbation

Sε(x, y) =

(
S1,ε(x, y)

S2,ε(x, y)

)
=

(
S1(x) + εT1(x, y)
S2(y) + εT2(x, y)

)
,

where we assume T1 and T2 to be differentiable. Further, we assume, that Sε is surjec-

tive on X × Y for all ε in consideration. Let Pε denote the FPO associated with Sε.

Given a separable density u = u1 ⊗ u2 (u1 and u2 both twice continuously differen-

tiable) we would like to compare the marginal of Pεu with the deterministic mean field

iterate of u1. We have already seen in Proposition 6.1 that the stochastic mean field

system gives the exact marginals.

Recall that for a diffeomorphism, the FPO can be written as

Pu = u ◦ S−1 ·
∣∣DS−1

∣∣ , (6.15)

where
∣∣DS−1

∣∣ =
∣∣det

(
DS−1

)∣∣. Since the determinant is continuous as a function of the

matrix components, and DS is never singular, we may omit the absolute value brackets

without loss. In the following |A| denotes det(A).

We begin with the expansion of the determinant.
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Lemma 6.8 (Perturbation expansion of the determinant). It holds

det(I +X) = 1 + tr(X) +O(X2).

If A is a nonsingular matrix we also have

det(A+ εB) = det(A)
(
1 + ε tr

(
A−1B

))
+O

(
ε2
)
,

as ε→ 0.

First, we compute the perturbation expansion of the marginal density.

Lemma 6.9. The expansion of the marginal density is∫
Y
Pεudy = u1 ◦ S

−1
1

∣∣DS−1
1

∣∣− ε ∣∣DS−1
1

∣∣ (∇u>1 ◦ S−1
1 ·

∫
Y
T

(−1)
1,y u2(y) dy+

+u1 ◦ S
−1
1

∫
Y

tr
(

(DS−1
1 )−1DT

(−1)
1,y

)
u2(y) dy

)
+O

(
ε2
)
. (6.16)

Proof. By (6.14) we have, that the inverse of the first component map has following

expansion:

S−1
1,ε,y = S−1

1 − εDS−1
1 · T1,y ◦ S

−1
1︸ ︷︷ ︸

T
(−1)
1,y

+O
(
ε2
)
. (6.17)

Equation (6.7) gives ∫
Y
Pεudy =

∫
Y
P1,y,εu1 u2(y) dy.

Using the expression (6.15) for the FPO and using the expansions (6.17) and Lemma 6.8,

we obtain∫
Y
Pεudy =

∫
Y
u1

(
S−1

1 − εT (−1)
1,y +O

(
ε2
)) ∣∣∣DS−1

1 − εDT (−1)
1,y

∣∣∣u2(y) dy

=

∫
Y

(
u1 ◦ S

−1
1 − ε∇u>1 ◦ S

−1
1 · T (−1)

1,y +O
(
ε2
))
·

·
∣∣DS−1

1

∣∣ (1− ε tr
(

(DS−1
1 )−1DT

(−1)
1,y

)
+O

(
ε2
))
u2(y) dy,

where the second equation follows from Taylor expansions. Reordering the terms by

their order of ε and pulling out the factors from the integral which depend solely on x,

we get (6.16).

Next we do the same for the deterministic mean field system

S1,MF,ε = S1 + ε

∫
Y
T1,yu2(y) dy︸ ︷︷ ︸
T
1,MF

,

with associated transfer operator P1,MF,ε.
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Lemma 6.10. The expansion of the iterated density is

P1,MF,εu1 = u1 ◦ S
−1
1

∣∣DS−1
1

∣∣− ε ∣∣DS−1
1

∣∣ (∇u>1 ◦ S−1
1 · T (−1)

1,MF+

+u1 ◦ S
−1
1 tr

(
(DS−1

1 )−1DT
(−1)
1,MF

))
+O

(
ε2
)
. (6.18)

Proof. The inverse of the mean field map has following expansion:

S−1
1,MF,ε = S−1

1 − εDS−1
1 · T1,MF ◦ S

−1
1︸ ︷︷ ︸

T
(−1)
1,MF

+O
(
ε2
)
. (6.19)

By definition is T1,MF continuously differentiable. The rest of the proof follows exactly

the lines of the proof of Lemma 6.9 (except that we do not need (6.7)).

Now we are ready to show, that the mean field iterate coincides with the marginal

of the iterate of the full density up to first order. Naively, one would have expected

only zeroth order match.

Theorem 6.11. Under the assumptions made before it holds

P1,MF,εu1(x)−
∫
Y
Pεu(x, y) dy = O

(
ε2
)
,

uniformly in x.

Proof. It is easy to see, that

T
(−1)
1,MF =

∫
Y
T

(−1)
1,y dy.

Comparing (6.16) and (6.18), we only need that the functional A(y) 7→
∫
A(y)u(y) dy

and the trace function are interchangeable:∫
trA(y)u(y) dy =

∫ ∑
i

aii(y)u(y) dy =
∑
i

∫
aii(y)u(y) dy = tr

∫
A(y)u(y) dy.

Thus the proof is competed.

Remark 6.12 (Deterministic mean field - general coupling). Theorem 6.11 holds for

general couplings as well. Consider

Sε(x, y) =

(
S1,ε(x, y)

S2,ε(x, y)

)
=

(
S1(x) + εT1,ε(x, y)

S2(y) + εT2,ε(x, y)

)
,

i.e. the first order terms will depend on ε as well. We can omit higher order terms,

since they can be included in the first order ones. This does not change the expansion

of the inverse either, and allows an analogous derivation as above.
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Remark 6.13. Comparing Figure 6.1 with Theorem 6.11 we observe a O
(
ε1/2

)
loss of

accuracy. A reason for this may be that the mapping is no diffeomorphism, merely

piecewise differentiable and piecewise invertible, or that the reduced phase space Xε is

not the whole space, just a rhomboid with vertices (0, 0), (1− ε, ε), (1, 1) and (ε, 1− ε).

6.3 Mean field for molecular dynamics

The idea of applying mean field theory for detecting dominant conformations of molecules

goes back to Friesecke et al. [Fri09]. We give here a detailed explanation of the method

presented in that publication. We expect the mean field description of particular clas-

sical MD systems to work well for reasons that follow.

The examples to the mean field theory for maps suggest, that our method works

well in cases where the invariant density of the system is “as decoupled as possible”;

i.e. a good tensor product approximability is available. Considering MD, the canonical

density is decoupled (i.e. in tensor product form), if the Hamiltonian consists of inde-

pendent summands, see Section 2.4.1. This can be partly achieved for chain molecules

with the standard force field we are working with (the potential depending on bond

lengths, bond angles and torsion angles), by using inner coordinates. Coupling occurs

only in the kinetic energy term 1
2p
>M(q)−1p, the potential part of the canonical den-

sity is decoupled. It turns out, that the coupling induced by M(q) is not of negligible

magnitude for “neighboring” degrees of freedom. Still, the exact details of determin-

istic momentum evolution do not seem to play a very inportant role in conformation

dynamics. Conformational changes may be observed by modeling the system with

the Langevin equation, where one applies perturbation of the momenta by suitably

scaled white noise. Another successful approach (Schütte’s spatial transfer operator,

cf. Section 2.4.1) considers only fluctuations on the configuration space by building

expectation values w.r.t. the distribution of momenta.

6.3.1 The continuous-time mean field system

We establish here our theory of mean field approximation for MD systems introduced

in Section 2.4.1. Our starting point is a, for the moment arbitrary, partition of phase
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space coordinates z = (q, p) into subsystem coordinates:

z = (z1, . . . , zN ) ∈ Ω× Rd, zi = (qi, pi) ∈ Ωi × R
di , dim(Ωi) = di,

N∑
i=1

di = d,

where pi is the vector of momentum coordinates corresponding to the position coordi-

nates qi. Let fi =
(
∂H
∂p
i
,−∂H

∂q
i

)
. Then (2.26) can be rewritten as

żi = fi(z), i = 1, . . . , N. (6.20)

We define the mean field system in an analogous manner, as for maps. Here we

consider only the deterministic system, cf. Definition 6.3. Since we are dealing with

time-continuous systems, it is natural to average the effect of the influencing subsystems

on the right hand side. Let the ui(·, t), i = 1, . . . , N , be probability density functions

describing the distribution of the ith subsystem at time t. For notational convenience,

let ẑi denote the coordinates (zj)j 6=i, ûi =
∏
j 6=i uj , and Ω̂i =

⊗
j 6=i Ωj the tensor

product space. The mean field system is defined by the (time-depenent!) right hand

sides

fi,MF[ûi](zi, t) :=

∫
Ω̂
i
×Rd−di

fi(z)ûi(ẑi, t) dẑi, (6.21)

where the evolution of subsystem densities is governed by

∂tui + divz
i

(
uifi,MF[ûi]

)
, i = 1, . . . , N. (6.22)

We call the system of equations (6.22), i = 1, . . . , N , the mean field approximation

to the Liouville equation. Note that it is a system of N coupled nonlinear partial

integrodifferential equations on the lower-dimensional subsystem phase spaces R2d
i ,

whereas the original Liouville equation was a linear partial differential equation on

Ω × Rd ⊂ R2d, d =
∑

i di.

We record some basic properties of the mean field approximation. For more details,

we refer to [Fri09].

1. The total densities
∫
ui(zi, t) dzi are conserved.1 This is immediate from the con-

servation law form (6.22). Thus we may continue to interpret the ui as probability

densities.

1Since the integration domains should be always clear, we omit indicating them from now on.
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2. For noninteracting subsystems, i.e.,

H(z) =
N∑
i=1

(
1

2
p>i Mi(qi)

−1pi + Vi(qi)

)
,

the mean field system is exact; that is, if the ui(zi, t) evolve according to 6.22, then

the product u1(z1, t) · · ·uN (zN , t) solves the original Liouville equation (2.28).

3. For given uj , j 6= i, the dynamics of the ith subsystem are governed by the

time-dependent subsystem Hamiltonian

Hi,MF[ûi](qj , pj , t) =

∫
H(q, p)

∏
j 6=i

uj(qj , pj , t) dẑi; (6.23)

so,

fi,MF[ûi](qi, pi, t) =

(
∂
∂p
i
Hi,MF(pi, qi, t)

− ∂
∂q
i
Hi,MF(pi, qi, t)

)
. (6.24)

In particular, fi,MF is divergence-free. Note that time-dependence of the effective

subsystem Hamiltonian enters only through time-dependence of the uj , j 6= i.

4. The total energy expectation

E(t) :=

∫
H(z)u1(z1, t) · · ·uN (zN , t) dz1 · · · dzN

is conserved.

Property 2 contains useful information regarding how the, up to now arbitrary, par-

titioning into subsystems should be chosen in practice. In order to maximize agreement

with the full Liouville equation (2.27), the subsystems should be only weakly coupled.

In the case of an N -atom chain, this suggests working with subsystems defined by

inner, not cartesian, coordinates (as it has been done in the example of n-butane in

Section 2.4.2). Namely, in inner coordinates, at least the potential energy decouples

completely for standard potentials containing nearest neighbor bond terms, third neigh-

bor angular terms, and fourth neighbor torsion terms: V ((rij), (θijk)ijk, (φijk`)ijk`)

=
∑
Vij(rij) +

∑
Vijk(θijk) +

∑
Vijk`(φijk`).

Remark 6.14. A deeper, and perhaps surprising, theoretical property of the mean field

model which goes beyond property 2 concerns weakly coupled subsystems. Consider

a Hamiltonian of the form H(z) = H0(z) + εHint(z), where H0 is a noninteracting

Hamiltonian of the form given in 2 and ε is a coupling constant. We expect, in analogy
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with Theorem 6.11, that in case of a tensor product initial density the exact marginal

subsystem densities
∫
u(·, t) dẑi, obtained from (2.27), and the mean field densities

obtained by solving (6.22) differ, up to any fixed time t, only by O(ε2), and not the

naively expected O(ε). This means that the effect of coupling between subsystems

is captured correctly to leading order (in the coupling constant) by the mean field

approximation.

We do not prove this statement here, but leave it as a conjecture. In particular,

note, that the coupling of the momenta, introduced by M(q), is not of small magnitude.

However, we assume mean field to work well here due to the reasons given above in the

introduction.

The mean field transfer operator. The most natural way to define the mean field

transfer operators would be as the evolution operator of the coupled system of mean

field Liouville equations (6.22). This would be a nonlinear operator, since changing an

initial subsystem density ui(·, 0) will affect all other mean field subsystems (which are

coupled with the ith), which, in turn, influences the dynamics of the ith subsystem

nonlinearly.

In order to obtain linear operators still appropriate for our purposes, let us re-

call what our aim is with the mean field approximation: we wish to characterize the

long-term behavior of the subsystems by defining suitable dynamics, “averaged” w.r.t.

the distribution of the other systems, on them. Assuming, that the full system is in

equilibrium (i.e. distributed according to its invariant density), the subsystems are dis-

tributed according to the marginals of the invariant density. Therefore, we seek for

subsystem densities ui which are invariant under the mean field dynamics induced by

themselves. Hence, we freeze time, and define time-independent right hand sides for

the (time-independent) subsystem densities ui, i = 1, . . . , N ,

fi,MF[ûi](zi) :=

∫
R2(d−di)

fi(z)
∏
j 6=i

uj(zj) dẑi. (6.25)

Thus, we have N autonomous systems with flow denoted by Φt
i,MF. We define the

mean field transfer operator of the ith subsystem, Pi,MF[ûi], by the transfer operator

associated with Φt
i,MF.

Once we have the mean field approximations to the invariant marginals, i.e. ui,

i = 1, . . . , N , with Pi,MF[ûi]ui = ui for i = 1, . . . , N , the mean field transfer operators
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describe the density changes in equilibrium, or “averaged along a long iteration” of the

system.1 Hence, we expect eigenfunctions of Pi,MF[ûi] at eigenvalues near one to give

information about almost invariant behavior (or “rarely occurring transitions” in a long

iteration — we think of conformation changes in MD) of the ith subsystem. Note, this

operator is not suitable for describing the evolution of the mean field system in general,

merely for characterizing evolution in equilibrium.

Recall, that h(q, p) denotes the canonical density of the system, and the spatial

transfer operator is given by

Stw =

∫
Pt
(
wh̄(·, p)

)
dp,

where h̄ is the distribution of momenta for a given position q, i.e.

h̄(q, p) =
h(q, p)∫
h(q, p) dp

.

Now we define the spatial transfer operator corresponding to the mean field system.

The (canonical) distribution of the ith subsystem is given by

hi(qi, pi) =

∫
h(z) dẑi.

The distribution of pi for a given qi is

h̄i(qi, pi) =
hi(qi, pi)∫
hi(qi, pi) dpi

.

We therefore define the mean field spatial transfer operator as

Sti,MF[ŵi]wi(qi) =

∫
Pti,MF[ûi]ui(qi, pi) dpi, (6.26)

where ui := wih̄i.

Mean field spatial eigenfunction approximation. We approximate the eigen-

functions of the spatial transfer operator the same way as indicated in the previous para-

graph. In the first step, we search for the mean field invariant marginals w1, . . . , wN .

They satisfy Sti,MF[ŵi]wi = wi, i = 1, . . . , N . In the second step, dominant configura-

tions are obtained as almost invariant sets in the configuration space of the subsystems,

i.e. we search for eigenvalues near one of the operators St[ŵi].
1Assuming ergodicity, states along a long trajectory will be distributed according to the invariant

density of the system; see Section 2.2.1.
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The computation of the first step is done by a Roothaan type iteration, cf. Algo-

rithm 6.6. We fix initial values w0
i and solve the linear eigenvalue problems St[ŵi]wnew

i =

wnew
i , by updating the wi running cyclically over the subsystem index i. The iteration

is terminated if no improvement is observable. Then, the second step is carried out by

taking the final wi, and computing eigenfunctions of the St[ŵi] at eigenvalues near one.

The computation of the numerical discretization of the St[ŵi] is discussed in the next

section.

6.3.2 Numerical realization

Equation (2.33) shows us a way to discretize the spatial transfer operator. However, in

order to use it for the mean field spatial transfer operators, two questions have to be

answered.

• How to sample h̄i(qi, ·), i.e. the distribution of the momenta pi?

• Given the spatial distributions wi, i = 1, . . . , N , how to compute the flows Φt
i,MF?

The computations here assume, that we use inner coordinates, where the potential is

decoupled, i.e. V (q) =
∑N

k=1 Vk(qk). Recall the Hamiltonian

H(q, p) =
1

2
p>M(q)−1p+ V (q),

where M(q) is symmetric positive definite for every q, and the canonical density

h(q, p) = C exp(−βH(q, p)) = C exp

(
−β

2
p>M(q)−1p

) N∏
k=1

exp(−βVk(qk)).

Sampling of h̄i(qi, ·). First, we consider marginal canonical density hi.

hi(qi, pi) = C

∫
e−βV (q)

∫
exp

(
−β

2
p>M(q)−1p

)
dp̂i︸ ︷︷ ︸

analytical solution?

dq̂i. (6.27)

A semi-analytical solution of the integral can be obtained as follows. Without loss, we

may permute the subsystems such that i = 1. Decompose M(q)−1 by

M(q)−1 =

(
A V >

V M̂

)
,
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with A ∈ Rdi×di , V ∈ R(d−di)×di and M̂ ∈ R(d−di)×(d−di). The dependence on q is

suppressed for notational simplicity. Just asM(q), also A and M̂ are symmetric positive

definite, and thus the latter can be diagonalized by the orthogonal matrix Q̂. Hence

Q̂>M̂Q̂ = D̂ = diag(d̂). By coordinate transformation, exploiting
∫
R e
−αx2 dx =

√
π/α

for α > 0, and denoting the columns of the matrix V >Q̂D̂−1 by v1, . . . , vd−di
, we have∫

exp

(
−β

2
p>M(q)−1p

)
dp̂i =

= exp

(
−β

2
p>i Api

)∫
exp

(
−β

2

(
2p>i V

>p̂i + p̂i
>M̂p̂i

))
dp̂i

p̂
i
=Q̂y
= exp

(
−β

2
p>i Api

)∫
exp

(
−β

2

(
2p>i V

>Q̂y + y>D̂y
))

dy

= exp

(
−β

2
p>i Api

)∫
exp

−β
2

d−di∑
k=1

d̂k

(
y + p>i vk

)2
− d̂k(p

>
i vk)

2

 dy

= exp

(
−β

2
p>i Bpi

) d−d
i∏

k=1

√
2π

βd̂k
,

with B = A − V >Q̂D̂−1Q̂V = A − V >M̂−1V . Note, B = B(q) is symmetric positive

definite for all q. Numerical computations suggest, that M(q) and B(q) are smooth,

thereby the integral w.r.t. q̂i in (6.27) can be approximated very well by a low order

tensor product Gauss quadrature. Let q`i , c
`
i , ` = 1, . . . , L, denote the quadrature nodes

in Ω̂i and weights, respectively. Then we have

hi(qi, pi) ≈ C
L∑
`=1

c`i exp
(
−βV ((qi, q

`
i ))
) d−di∏
k=1

√
2π

βd̂k((qi, q
`
i ))︸ ︷︷ ︸

=:C`i (qi)

exp

(
−β

2
p>i B((qi, q

`
i ))pi

)

(6.28)

For any fixed qi, the density h̄i(qi, ·) is just the function hi(qi, ·), normed to be a prob-

ability density. Hence, h̄(qi, ·) can be approximated with a weighted sum of Gaussians,

where the weights have the same pairwise ratios as the C`i (qi).

Note, that Gaussians can be sampled easily by suitably scaled normally distributed

random variables.1 The most programs used for numerical computations provide rou-

1A random variable x distributed according to a multivariate normal distribution with covariance

matrix Σ can be sampled as follows. The symmetric positive definite covariance matrix has a Cholesky

factorization L>L = Σ. The components of the random variable y = L−>x are independent with

variance 1. Hence, we can draw a sample y of y, and set L>y as a sample of x.
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tines for drawing random samples according to a normal distribution with variance one.

Hence, we may sample h̄(qi, ·) in two steps:

1. Choose ˜̀∈ {1, . . . , L} with probability C
˜̀
i (qi)

/∑L
`=1C

`
i (qi).

2. Draw a random sample according to a normal distribution with covariance matrix

B(q
˜̀
).

Regarding complexity, to set up the sampling of h̄(qi, ·), an initial step is made, where

L different (d−di)-by-(d−di) matrices are diagonalized. If the latter step is performed

by the QR algorithm, the complexity is O
(
L(d− di)3

)
. All other computational steps

have costs of lower order, thus these are the leading order costs of sampling h̄(qi, ·) for

a fixed qi.

The full representation of h̄i will be needed in the following paragraph, so we give an

explicit expression for hi,q(qi) =
∫
hi(qi, pi) dpi as well. Let σ(B(q)) =

{
b1(q), . . . , bd

i
(q)
}

denote the spectrum of B(q). Then we have

hi,q(qi) = C

∫
e−βV (q)

d−d
i∏

k=1

√
2π

βd̂k(q)

d
i∏

j=1

√
2π

βbj(q)
dq̂i

= C

(
2π

β

)d/2 ∫
e−βV (q)

d−d
i∏

k=1

d̂k(q)
−1/2

d
i∏

j=1

bj(q)
−1/2 dq̂i. (6.29)

Computing the flow Φt
i,MF. As discussed in Section 2.4.2, we apply small inte-

gration times t. Hence, some low order explicit integration schemes are suitable for

the numerical approximation of the flow Φt
i,MF. Nevertheless, they all require some

evaluations of the right hand side fi,MF, the computation of which is discussed in the

following. Recall, that the subsystem distributions are given by ui = wih̄i. This

gives with (6.25) the differential equations describing the motion of the ith subsystem,

(q̇i, ṗi) = fi,MF(qi, pi) (remember, we use decoupled potentials), i.e.

q̇i =

∫
∂

∂pi

(
1
2p
>
i M(q)−1pi

)∏
k 6=i

wk(qk)h̄k(qk, pk) dẑi,

ṗi =

∫ (
− ∂

∂qi

(
1
2p
>
i M(q)−1pi

)
−∇q

i
Vi(qi)

)∏
k 6=i

wk(qk)h̄k(qk, pk) dẑi.

In the following, we assume all subsystems to be one dimensional. Hence, qi and pi can

be viewed as the ith component of the vectors q and p, respectively. This will simplify
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the derivation of the results below. Nevertheless, analogous results hold in the general

case as well.

To q̇i. We have

q̇i =

∫∫ (
M(q)−1p

)
i

∏
k 6=i

wk(qk)h̄k(qk, pk) dp̂idq̂i

=

∫ ∏
k 6=i

wk(qk)

∫ ∑
`

(
M(q)−1

)
i`
p`

∏
j 6=i

h̄j(qj , pj) dp̂idq̂i

= . . .

where hj(qj , pj) is an even function of pj , thus pjhj(qj , pj) is odd as a function of pj ,

so its integral over the real line vanishes, and the above sum reduces to a single term:

. . . =

∫ ∏
k 6=i

wk(qk)
(
M(q)−1

)
ii
pi

∫ ∏
j 6=i

h̄j(qj , pj)︸ ︷︷ ︸∫
... dpj=1

dp̂idq̂i

= pi

∫ (
M(q)−1

)
ii
ŵi(q̂i) dq̂i.

To ṗi. We deal with the two summands separately. It is an easy task to compute the

mean field force contribution of the potentials, since the potential is decoupled, thus

ṗII
i =

∫
−V ′i (qi)

∏
k 6=i

wk(qk)h̄k(qk, pk) dp̂idq̂i = −V ′i (qi).

Considering the first term, we have

ṗI
i =

∫∫
−1

2p
> ∂

∂qi
M(q)−1p

∏
k 6=i

wk(qk)h̄k(qk, pk) dp̂idq̂i

= −1
2

∫ ∏
k 6=i

wk(qk)

∫
p>

∂

∂qi
M(q)−1p

∏
j 6=i

h̄j(qj , pj) dp̂idq̂i

= −1
2

∫ ∏
k 6=i

wk(qk)
d∑

n,m=1

∂

∂qi

(
M(q)−1

)
nm


∫
pnpm

∏
j 6=i

h̄j(qj , pj) dp̂i

dq̂i

= . . .

The integral in the brackets {} vanishes every time n 6= m, because then either n 6= i

or m 6= i, and we integrate the function pj h̄j(qj , pj), which is odd in pj , over the real

line. We get

−1
2

∫ ∏
k 6=i

wk(qk)

{∑
n 6=i

∂

∂qi

(
M(q)−1

)
nn

∫
p2
nh̄n(pn, qn) dpn︸ ︷︷ ︸

analytical solution?

+
∂

∂qi

(
M(q)−1

)
ii
p2
i

}
dq̂i.
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Indeed, there can be given an expression for underbraced integral, by using the notation

introduced in the previous paragraph. Since the subsystems are one dimensional, the

matrix B(q) is simply a scalar, denoted by bn(q), indicating the dependence on n.

∫
p2
nh̄n(pn, qn) dpn =

1

β

∫
bn(q)−3/2

∏
k d̂k(q)

−1/2
∏
j 6=n e

−βVj(qj) dq̂n∫
bn(q)−1/2

∏
k d̂k(q)

−1/2
∏
j 6=n e

−βV
j
(q
j
) dq̂n

.

Note, that this expression does not depend on qi. Hence, if we fix the quadrature nodes

(see below) for the integral
∫
. . . dq̂i above, these values can be computed in advance

and stored in a “lookup table”.

While we managed to compute the integrals w.r.t. dp̂i analytically, the integrals

w.r.t. q̂i need numerical treatment. Since in our approximation the wi are piecewise

constant functions, these integrals are computed by evaluating the integrand at the

center points of the boxes and summing it up with an appropriate scaling.

To conclude, we have seen, that the originally 2(d− di) dimensional integral which

defines fi,MF can be simplified analytically, such that for the numerical evaluation of

the right hand side only d− di dimensional numerical quadratures are required.

Complexity. Let us first investigate the costs of setting up the discretized transfer

operator for (an arbitrary) subsystem i. Using Ulam’s method as for (2.33), we need

to perform the following steps for each partition element Bj :

• fix quadrature nodes q` ∈ Bj and corresponding weights;

• for each q`, sample several p`,n according to h̄(q`, ·);

• integrate the mean field system for time t and initial data (q`, p`,n); and

• project the endpoint onto the configuration space and find the partition element

Bk it is contained in.

Using the canonical density for the invariant density h, there is an explicit represen-

tation for the momentum distributions h̄i(q
`, ·) which can be sufficiently well approx-

imated by a linear combination of Gaussians. The numerical time integration of the

initial points requires several evaluations of the mean field vector field (6.25). This, in

turn, requires the numerical evaluation of a 2(d−di) dimensional integral. The integral

with respect to the p̂i can be handled analytically by an a priori computation which is
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independent of the wi, pi, and qi. Naively, this leaves us with a d−di dimensional inte-

gral. However, note, that in the case of noninteracting subsystems, i.e., fi(z) = fi(zi),

fi can be pulled out and the integral reduces to 1. For systems with small subsystems,

i.e. di ≤ d̄ and d̄ small, and in which only a fixed and small number of neighboring

subsystems interact (strongly), the dimensionality of the integral is
∑

j∼i dj = O
(
d̄
)
,

where j ∼ i means all subsystems j which interact with subsystem i.

Remark 6.15. Observe, that the eigenfunctions of the spatial transfer operator seem

to be smooth. Hence, it could be advantageous to use sparse grid quadrature for

computing the integrals w.r.t. q̂i in fi,MF. This variant of the method has not been

implemented yet.

The solution of the resulting eigenvalue problems is simple compared with the as-

sembling of the discretized mean field transfer operator, particularly since di is small,

and we are interested only in the dominant part of the spectrum. Arnoldi-type iteration

methods can be used.

On the observation with the interacting subsystems above relies the hope to be

able to use our methods for larger chain molecules. We neglect the direct inclusion of

weak interactions, reducing the dimension of the integration domain. Indirectly, these

interactions enter through the solution of the coupled eigenvalue problem.

6.3.3 Example: n-butane

We analyze the n-butane molecule, cf. Section 2.4.2. We decompose the model into

three subsystems; i.e., each configuration variable is treated separately. As discussed

above, we perform the Roothaan iteration to compute fixed points of the mean field

spatial transfer operators, and having these, we compute eigenfunctions at eigenvalues

near one for Sφ,MF[ŵφ]; i.e. for the mean field spatial transfer operator corresponding

to the φ-subsystem.

The Roothaan iteration is initialized with w0
i (qi) := Cie

−βVi(qi), i = 1, 2, 3, where β

is the inverse temperature corresponding to 1000 K and Ci is a corresponding normal-

izing factor. We partition the (one dimensional) subsystems into 32 subintervals each.

The entries of the transition matrix are computed as discussed after Equation (2.33);

where a one-node Gauss quadrature is used with 32 Monte Carlo sample points to

approximate the integral w.r.t. momenta.

153



6. MEAN FIELD APPROXIMATION FOR MARGINALS OF
INVARIANT DENSITIES

We denote the computed mean field invariant marginals by wθ
1
, wθ

2
and wφ, and the

(other) eigenfunctions of Sφ,MF[ŵφ] with vφ,j , j = 2, 3, . . . Then wθ
2
⊗ wφ, wθ

2
⊗ vφ,2

and wθ2
⊗ vφ,3, shown in Figure 6.3, approximate the θ2-φ-marginals of the first three

eigenfunctions of the full spatial transfer operator, shown in Figure 2.4. The “rough”
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Figure 6.3: Mean field approximations to the marginals of the dominant eigen-

functions of the spatial transfer operator - the sign structure of the second and third

eigenfunctions (middle and right, respectively) indicate the dominant configurations.

surface of the eigenfunctions indicate that the quadrature involved was not accurate

enough. Because of the same reason, the second and third eigenfnuctions are swapped.

Note, the results are qualitatively correct. This points out, that for a more efficient im-

plementation of the mean field method other sampling strategies, or other discretization

have to be applied. This will be the topic of future work.

6.4 Conclusions and outlook

We started our considerations with the aim of developing a method appropriate to

describe the statistical evolution of subsystems of (large) coupled systems. We showed

that, under certain regularity assumptions and weak coupling, the mean field model

shows first order accuracy for the marginal densities; cf. Theorem 6.11. However,

numerical experiments showed that if the full system invariant density can not be well

approximated by tensor product functions (i.e. the long-term statistical behavior is not

“decoupled”), then the mean field approximation of the marginal invariant densities

is not adequate, or the Roothaan algorithm fails to converge to the right fixed point.

To assess the real potential of the method, it would be desirable to show which of the

above cases is responsible for the wrong results. Until then we have to take the worst
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6.4 Conclusions and outlook

case into account, and conclude that the mean field approximation works well if the

full system invariant density is having a “nearly tensor product structure”.

The mean field description of classical MD systems in inner coordinates with stan-

dard force field shows very good qualitative results. A quantitative analysis, e.g. the

comparison of the rates of conformation changes predicted by the mean field model

with the rates computed by a suitable simulation, is the topic of future work. Further,

one would like to have a theoretical explanation for the good performance, although

the coupling (introduced by the momenta) between the subsystems is of order one.

Also, the extension of the method for larger chain molecules lies ahead. The inter-

acting subsystems in the model have to be chosen such that we avoid the computation

of high dimensional integrals. For long chain molecules, geometrical constraints have to

be taken into account as well (the molecule may be folded, but two atoms are never al-

lowed to come too close to each other). Hence, other potentials, like the Lennard–Jones

potential, have to be included in the model.
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[Arn65] V. Arnol’d. “Sur la topologie des écoulements stationnaires des fluides parfaits”. C.

R. Acad. Sci. Paris, Vol. 261, pp. 17–20, 1965.

[Aub82] T. Aubin. Nonlinear Analysis on Manifolds. Monge–Ampère Equations. Springer-

Verl., 1982.
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