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Abstract

Modern radio, wireless, and satellite communication and radar systems of-
ten require accurate and efficient modeling, analysis, and/or synthesis of the
electrically large, uniquely designed beam pattern antennas operating in the
presence of geometrically complex environments. The electromagnetic analysis
and synthesis of such electrically large and complex structures pose a challeng-
ing problem in terms of computer resources.

In the work being presented here, the efficient and accurate analysis of the ra-
diation and scattering problems for arbitrarily shaped perfect electrically con-
ducting (PEC) as well as impedance boundary objects have been accomplished
by solving the numerically exact surface integral equation (IE) formulations
through the method of moments (MoM), where the adaptive singularity cancel-
lation technique based near-coupling evaluation, higher-order (HO) modeling
of the surface current densities, and the efficient storage capability of the k̂-
space representations of spherical harmonics expansion (SE) based multilevel
fast multipole method (MLFMM) have played significant role. The synthesis
of specialized antennas with uniquely designed tailor-made beam patterns have
been considered using inverse equivalent current method (ECM), where HO
basis functions have been incorporated in the modeling of unknown surface
current densities.

The near-coupling double surface integrals encountered in the MoM solution
of IEs, need special treatment for their accurate evaluation because of the
singular nature of the integrand which involves Green’s function. Singularity
cancellation technique with the adaptive choice of quadrature points in the
evaluation of interaction between a neighboring pair of planar source and test
domains has major contribution towards the efficient and accurate evaluation
of the near interactions. The low-order (LO) Rao-Wilton-Glisson (RWG) basis
functions, despite their widespread usage in the expansion of unknown surface
current densities suffer from the fundamental shortcoming that often dense ge-
ometrical discretization is necessary for sufficiently good accuracies. With the
implementation of hierarchical HO basis functions in the mixed order formula-
tion in the modeling of surface current densities, better accuracies with given
number of unknowns compared with the LO counterparts have been achieved.
Further, sufficient reduction in the number of unknowns for a given problem
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and same accuracy has also been observed with HO modeling. Large scale
problems are hardly solvable without the proper use of fast solvers like the
fast multipole method (FMM) or its associated multilevel version MLFMM.
Unfortunately the traditional MLFMM approaches become less efficient with
HO due to their larger element dimensions. In contrast, the SE-MLFMM
considerably reduces the usual high memory demands of traditional MLFMM
with HO, because of the efficient storage of the k̂-space representations of the
individual basis functions, and hence allows for very efficient iterative solution
of the resulting equation system.

The inverse equivalent surface currents on the surface of an exemplary para-
boloidal reflector have been investigated from the knowledge of a custom made
radiation pattern through the use of inverse equivalent current method (ECM).
For the realization of thus obtained equivalent surface currents, a few propo-
sitions have also been discussed to be carried out in future. The technique
considered here may serve as a future candidate in the synthesis of antenna
structures for customized radiation characteristics.
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1 Introduction

Modern advent in science and technology is undoubtedly by virtue of the
significant role of Mathematics which enabled scientists and technologists to
solve complex problems. Significant contributions of Al-Khwarizmi in the first
systematic solution of linear and quadratic equations [1], of Newton in the
better understanding of physical laws of mechanics, of Navier and Stokes in
the realm of physics of fluids, and of Maxwell in the theory of electromagnet-
ics are a few to mention [2]. With the knowledge that most of the governing
mathematical formulations, which are typically partial differential equations,
for the representation of physical behavior of devices and systems encountered
in various branches of science and engineering have no closed form solution,
mathematicians have been looking for the numerical means to solve such gov-
erning principles.

Electromagnetic devices and systems e.g. television, radio, satellite commu-
nication systems, radar systems, medical imaging systems, electrical power
networks, and many more are essential elements of modern era. Undoubtedly,
electromagnetic phenomena have a profound impact on contemporary society.
The understanding of electromagnetic phenomena is treated by electromag-
netics which describes interaction between sources (charges and currents) and
field quantities and is governed by Maxwell’s equations. As analytical solu-
tions in closed form are known for only a very limited number of special cases,
which hardly ever are directly applicable to real-world applications, numerical
solutions are often sought for such purposes. Furthermore, large scale and
complex problems often pose challenging constraints for their efficient and ac-
curate treatment [3]. Examples include design and analysis of gigantic reflector
antennas for radio astronomy observatories, sonar and radar tracking and iden-
tification of full-size ships and airplanes, propagation of communication signals
in complex environments, modeling of antennas on vehicles, mine location, and
geophysical remote sensing. These problems may involve models with millions
of unknowns. With the advent of modern fast and efficient computational re-
sources together with the availability of efficient solution strategies (e.g. [4–7]),
the large scale practical problems have become possible to be addressed in a
profound way. Computational electromagnetics therefore plays significant role
in faster and cost effective design of modern electromagnetic systems by mini-
mizing the use of time-consuming and expensive experiments with prototypes.



2 1 Introduction

The traditional way to solve ultra-large problems when the sizes are many
orders of wavelengths is to use high frequency asymptotic methods such as
physical optics, geometrical theory of diffraction etc. [8, 9]. However, because
of underlying approximations made by asymptotic methods in the governing
Maxwell’s equations, their use is limited for some simpler problems. Further-
more, the error incurred in these methods cannot be systematically controlled
through enhancements in memory and computations resources [10]. More pre-
cise treatments are possible with the aid of so-called full-wave techniques such
as finite-difference time-domain (FDTD), finite element method (FEM) and
method of moments solution of surface integral equations.

The matrix system associated with surface integral equation methods are usu-
ally dense whereas the differential equation solvers result in sparse matrix
system which greatly reduce the storage requirements. However, for impene-
trable scatterers, the advantage of solving a surface integral equation is that
often the unknown quantity (for present course of work it is current source J)
resides on a 2D surface, whereas in case of differential equation solvers the un-
known quantity (which can be field E) fills the whole 3D space. Consequently,
for large problem sizes, more unknowns are required to be solved with a dif-
ferential equation compared to a surface integral equation [11]. In the present
work, surface integral equation formulations have been opted for the treatment
of problem under-consideration and have been reviewed in chapter 3.

In method of moments solution of integral equation formulations, the singu-
lar nature of integrand requires proper treatment for the evaluation of the
integrals involved. The Duffy method [12], the singularity subtraction ap-
proach [13–17], regularization techniques [18, 19], and the singularity cancel-
lation approaches [20–22] are among the popular techniques. The aim of the
work presented here has been to develop a general purpose solver suitable for
the solution of radiation and scattering problems of arbitrarily shaped open as
well as closed surfaces composed of metallic and dielectric materials, where the
unknown current densities are modeled with higher order polynomial expan-
sion functions to achieve higher accuracies. For this purpose, the singularity
cancellation technique which is a purely numerical treatment has been im-
proved to its adaptive version [22–24] and has therefore been opted as a tool
for the treatment of singular integrals in the surface integral equation formu-
lations. Detailed discussion can be found in chapter 4.

In the MoM solution of integral equation formulations, the low-order basis
based modeling of the unknown current density requires the average size of
the surface and/or volumetric geometrical elements on the order of λ

10
in each

dimension, λ being the wavelength in the medium. This results in a very large
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number of unknown current/field expansion coefficients [25–31]. Furthermore,
the accuracy of the solution while using the LO bases is improved slowly with
increasing the number of unknowns. Great reduction of the number of un-
knowns for a given problem and desired accuracy is achievable through the
use of higher-order basis functions [25–33]. In our implementation, nearly-
orthogonal set of field basis functions [29, 30] for flat triangles is our choice
for possibly better conditioned system matrix. Moreover, the curl-free com-
ponents of first-order and curl space of the second-order were added to the
existing low-order RWG [34] bases, which makes the formulation complete to
full first order with respect to the curl of the basis functions. More discussion
on higher order basis functions can be found in chapter 5.

In the standard fast multipole method and multilevel fast multipole method
approaches [3,5,35,36], based on edge-to-edge interactions, the minimum FMM
group size and the number of FMM levels are limited by the size of the largest
elements in the geometrical modeling of the object, as long as the group sizes
are larger than that dictated by the so-called low-frequency breakdown of
FMM [5]. Now because of the larger element size with the HO basis functions,
the FMM group size is larger than that with LO basis functions. Equivalently,
fewer number of FMM levels are permissible which in turn restricts full utiliza-
tion of the MLFMM memory and computational efficiencies for high-frequency
applications, where the basis function density is kept as low as possible. A
point-based multilevel fast multipole algorithm (MLFMA) [37], as an example,
has tackled this problem by considering the point-to-point interactions permit-
ting two more FMM levels compared to the traditional basis-based MLFMM.
However, the spherical harmonics expansion based MLFMM [6] is inherently
more efficient in terms of memory and computational cost even with edge-to-
edge interactions due to the efficient storage of the k-space representations of
the individual basis functions. SE-MLFMM has therefore been utilized in the
current implementation to accelerate the HO bases based MoM solution of IEs.
A review of SE-MLFMM for HO basis can be seen in section 5.5.

In various applications of practical interest, e.g. antenna pattern measure-
ments, synthesis of antennas with customized radiation pattern etc., the in-
vestigation of the radiated fields or the equivalent electric/magnetic surface
currents on the object surface from the knowledge of electric/magnetic near-
field intensities defined on an arbitrary grid around the object under test is
often desired. The aim of this task is to determine surface current sources
such that their radiated fields best fit with the field strengths given at certain
grid of sample points. Out of various techniques available in the literature
(e.g. [38,39]), the inverse equivalent current methods e.g. [40,41] etc. are most
attractive because of their diverse applicability and robustness in the solution
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accuracies. The Huygens equivalent surface currents defined on the object un-
der consideration have therefore been investigated to account for the known
near-field characteristics using method of moments like solution strategy for
the governing integral equation. High efficiency has been achieved through the
application of SE-MLFMM and better accuracy was possible with higher-order
modeling of current densities. This is presented in chapter 6.

Synthesis of antenna structures for tailor-made radiation characteristics is of-
ten appreciated in radar systems and satellite communications. Customiza-
tions such as improvement/reduction in radiated power in certain directions,
pattern shaping etc., have been typically obtained (e.g. [42–44]) with the aid of
optimization algorithms ( e.g. [45–49]). In the present work, investigation has
been made in the reconstruction of reflector surface currents for customized
radiation pattern through the use of inverse equivalent current method. Ra-
diated fields which construct the desired radiation pattern have been first
mapped to the Huygens surface current on the surface of a preliminarily de-
signed parabolic surface. For the realization of thus obtained equivalent surface
currents, a few propositions have been discussed to be carried out in future.
This is discussed in chapter 7.



2 Basics of Electromagnetics

In order to investigate the electromagnetic behavior of a system, numerous
computational methods can be found in literature where the solution of gov-
erning Maxwell’s partial differential equations is sought. Some of these meth-
ods, such as the asymptotic methods, solve an approximation of the Maxwell
equations. Others seek numerical solutions for exact Maxwell’s equations or
a set equivalent to them. The latter methods e.g. integral equation meth-
ods and finite element methods are the most widely used approaches. In this
chapter, some of well-known techniques of computational electromagnetics are
reviewed.

2.1 Maxwell’s Equations

The Maxwell’s Equations are a set of fundamental equations governing the
behavior of electromagnetic fields. These equations are functions of space and
time and are given below1.

Faraday’s law:

∇×E = −µ∂H
∂t

(2.1)

Maxwell-Ampère law:

∇×H = ǫ
∂E

∂t
+ J (2.2)

Gauss’s law:

∇ · ǫE = ρ (2.3)

Gauss’s law for Magnetism (absence of magnetic monopoles):

∇ · µH = 0 (2.4)

1The original Maxwell’s equations were expressed in some 20 equations [11]. It was
Heaviside [50, 51] who distilled Maxwell’s equations into the four equations.



6 2 Basics of Electromagnetics

Equation of Continuity (Law of conservation of charge): The equation of
continuity is another fundamental equation, which can be derived from (2.2)
and (2.3).

∇ · J = −∂ρ
∂t
, (2.5)

where

E = electric field intensity (Volt per meter)

H = magnetic field intensity (Ampere per meter)

ρ = free electric charge density (Coulomb per cubic meter)

J = free current density (Ampere per square meter)

ǫ = permittivity of the medium (Farad per meter)

µ = permeability of the medium (Henry per meter)

σ = conductivity of the medium (Siemens per meter).

The constitutive parameters (ǫ, µ, σ) are scalar quantities in isotropic media
and tensor quantities in anisotropic media. Similarly, these parameters are
independent of position in case of homogeneous media and dependent on po-
sition in case of inhomogeneous media. The charge and current densities ρ, J
may be considered as the sources of the electromagnetic fields E, H and does
not include any induced polarization charges and currents [52]. For wave prop-
agation problems, these densities are localized in space; for example, they are
restricted to flow on an antenna. The generated electric and magnetic fields
are radiated away from these sources and can propagate to large distances to
the receiving antennas. Away from the sources, that is, in source-free regions
of space, ρ and J vanish in Maxwell’s equations.

Field quantities E and H in above equations are dependent on spatial (r) and
temporal (t) coordinates. When field quantities in Maxwell’s equations are
harmonically oscillating functions with a single frequency, say ω, the field is
referred to as time-harmonic. Using Fourier analysis, any time-varying field
can be expressed in terms of time-harmonic components. Assuming that the
time portion of the vector fields E and H is the fundamental harmonic in a
Fourier series, the electric and magnetic fields may take the form

E (r, t) = E (r) ejωt and H (r, t) =H (r) ejωt . (2.6)
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The time factor ejωt divides out of Maxwell’s equations so that (2.1), (2.2),
and (2.5) can be written in simplified form as

∇×E = −jωµH (2.7)

∇×H = jωǫE + J (2.8)

∇ · J = −jωρ (2.9)

2.2 Computational Electromagnetics

The Maxwell equations (2.7)-(2.9) are a set of first-order partial differential
equations connecting the temporal derivatives of vector fields namely E and
H to their partial spatial derivatives. As any partial differential equation or a
set of partial differential equations, the Maxwell’s equations are satisfied by an
infinite number of solutions. But unique solution to a problem may be obtained
by enforcing the appropriate initial and boundary conditions [25, 53]. Initial
conditions define that the field quantities are impressed in a given volume at
an initial time. Boundary conditions define that at any instant of time the field
quantities are impressed upon the whole surface enclosing the given volume.
In order to avoid any unphyiscal solution, the solutions of Maxwell’s equations
are also subject to the Sommerfeld radiation condition [54]. Mathematically
speaking, the electric and magnetic fields have to satisfy the following condition
at infinity [25,55]

lim
r→∞
r

[

∇×
(

E

H

)

+ jk0r̂ ×
(

E

H

)]

= 0, (2.10)

where k0 is the free space wave number, r = |r| is the magnitude of position
vector r and r̂ = r

r
gives its direction. With the enforcement of Sommerfeld

radiation condition (2.10), only the solution which corresponds to the fields
radiating from sources to infinity is filtered out and all other unphysical so-
lutions, e.g. corresponding to the energy coming from infinity and sinking in
sources, are rejected.

Unfortunately, Maxwell’s equations can be solved analytically only for a very
few idealized geometries of scattering/radiating structures [55]. For example,
when a linear antenna can be approximated as an infinitesimally short current
element or a finite wire with a known current distribution, its radiated field
can be calculated analytically. When a biconical antenna is assumed to ex-
tend to infinity, its radiated field and input impedance can also be obtained
analytically. Without an approximation, antennas cannot be analyzed analyt-
ically primarily because of their structural configurations. Whereas a variety
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of approximate analytical techniques have been developed for relatively simple
geometries, accurate and complete analysis of complex structures can be ac-
complished only through a numerical method that solves Maxwell’s equations
numerically with the aid of high-speed computers.

Almost all numerical approaches in solving Maxwell’s equations find the fields
in either the time domain or frequency domain. Time-domain models con-
tain many frequencies and can model transient behavior. On the other hand,
frequency-domain methods calculate solutions for one frequency at a time and
are appropriate for steady-state behavior. According to [55], it is difficult
to model nonlinear devices/media accurately using a frequency-domain-based
method. Fourier transforms allow transforming between the two domains.

Most numerical methods discretize the unknown quantity (fields or currents)
in spatial and/or temporal domains. The Nyquist rate requires sampling the
waveform at at least twice the highest frequency. However, due to the pres-
ence of sharp corners or other singular geometrical features of the scatterer,
variations in the surface current with higher spatial frequency may occur [56].
Generally, the accuracy of the solution is related to the discretization. Usu-
ally the finer the discretization, the better the accuracy of the solution but
at the cost of increased solution time. However, experiments imply a con-
sideration of some lower limit on the element size or equivalently maximum
number of unknowns or basis functions in a given problem. The discretization
of about 10 subdivisions per wavelength results in the condition number of
the system matrix typically smaller than 100, which increases badly for finer
discretization [57, 58]. Therefore, in most cases, discretization of the order of
λ/10 − λ/20 is chosen as the element size for good accuracies. Furthermore,
the numerical solutions of some2 integral equations begin to lose the accuracy
or even fail in the frequency region when the wavelength is much larger than
the dimensions of the structure – a phenomenon known as the low-frequency
breakdown (e.g. [58–61]). The reason for low-frequency breakdown is usually
traced in the different frequency scaling of the magnetic vector potential part
and the electric scalar potential part in the mixed-potential formulation of the
electric field integral equation. When the frequency is sufficiently low, the
magnetic vector potential contributions almost vanish in the moment matrix
and the remaining scalar potential contributions depend only on the ∇ · J .
The knowledge of ∇ · J is not sufficient to determine J which results in in-
accurate solutions in the low frequency region [59]. As a remedy to the low
frequency breakdown, loop-star and loop-tree basis decomposition method for

2Electric field integral equations suffer from low-frequency breakdown [59], whereas mag-
netic field integral equations can be solved at an arbitrarily low frequency without
encountering this low-frequency breakdown [60].
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RWG basis functions were introduced for EFIE [59, 61], which represent two
kinds of physical currents at low frequencies.

Variety of numerical treatments for the solutions of Maxwell’s equations are
available in literature [62–67]. The most commonly encountered methods for
numerically finding the solution of electromagnetic problems are briefly re-
viewed below.

2.2.1 High-Frequency Methods

High-frequency methods assume the wavelength approaches zero which works
well when applied to very large objects (at least a few order of wavelengths).
These high-frequency methods and hence their solutions are also known as
asymptotic in the sense that their accuracy increases as some characteristic
dimension associated with the scatterer becomes electrically large with increas-
ing frequency.

A well-known high-frequency method is geometrical optics (GO) [68–73], also
known as ray tracing, in which the electromagnetic rays, which are trajecto-
ries orthogonal to the phase fronts (in an isotropic medium), travel in straight
lines (in a homogeneous medium) and their direction is governed by so-called
Snell’s law3

n1 sin θ1 = n2 sin θ2 , (2.11)

where, θ1 and θ2 are the angles subtended by the two rays with the surface
normal at the media interface. n1 and n2 are the indices of refraction in two
media. The GO field behaves locally like a plane wave at any point r. Geo-
metrical optics however, ignores diffraction effects.

Another most frequently encountered high frequency method, known as phys-
ical optics (PO), also viewed as a wave optical method [71–73], computes
approximate surface currents from the tangential components of incident mag-
netic fields

Js =

{

2n̂×H , illuminated region,

0 , elsewhere,
(2.12)

where n̂ is the unit normal to the surface. The PO current only exists where
the incident field directly illuminates a surface (lit region). Once the current
is found, the radiated fields are calculated using the appropriate radiation

3Although well-known now-a-days as Snell’s law, however, according to [74], Snell’s law
was first accurately described in a mathematical form by Ibn Sahl, of Baghdad, in the
manuscript: On Burning Mirrors and Lenses (984).
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integral [70]. For edged bodies, the PO based radiation integral provides a
PO approximation to the edge-diffracted fields if the edges fall within the il-
luminated region. However, the discontinuity in the current at the boundary
between the illuminated and shadow region can introduce a spurious diffraction
contribution to the PO integral. Hence, PO approximation may be erroneous
for edge diffractions [70,75].

GO and PO work reasonably well for large objects and at angles near the
specular direction. However, both GO and PO are unable to describe nonzero
fields in the shadow region. Diffracted rays are postulated to arise from geo-
metrical and/or electrical discontinuities on the scattering obstacle [70]. For
example diffracted rays can arise when an incident wave impinges on an edge,
corner, or tip of scatterers. It also occurs as a creeping ray around a smooth
object when the incident field is at grazing incidence. Discontinuities in sur-
face electrical properties (e.g., discontinuity in surface impedance that models
thin material coatings on PEC surfaces) and shadow boundaries on a smooth
surface also produce diffracted rays. The geometrical theory of diffraction
(GTD) [76] adds a diffracted field to the GO approximation. The GTD based
dyadic edge diffraction coefficient becomes singular at the incident shadow
boundary (ISB) and the reflection shadow boundary (RSB) [70] which makes
GTD invalid at and near these boundaries. This deficiency in GTD can be
overcome via the uniform theory of diffraction (UTD) [70, 77]. The physical
theory of diffraction (PTD) [70,78] adds correction term in PO to include the
diffraction effects. GTD/UTD are ray-based method while the PTD requires
an integration of the currents on the scattering object.

While high-frequency methods are well suited for modeling the scattering prop-
erties of electrically large complex shapes, such methods have difficulty in
treating non-metallic material composition and volumetric complexity of a
structure [79].

2.2.2 Finite-Difference Time-Domain Method

The direct time-domain solutions of Maxwell’s equations on spatial grids may
be obtained by replacing the partial derivatives with finite difference formulas.
The finite-difference time-domain [80] directly solves the governing differential
equations where it replaces the partial derivatives with respect to space and
time with second-order finite difference approximation of the form [71]

d φ

d xi
≈ φ(xi+1)− φ(xi−1)

2h
, (2.13)
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where xi represent the grid coordinate and h is the grid spacing. Unlike the
integral equation formulations, FDTD method doesn’t need Green’s functions.
FDTD solves for both E and H using the coupled Maxwell’s (curl) equations
rather than solving for individual fields alone using a wave equation. This
makes the solution more robust. The basic FDTD makes use of rectangular
grid for the approximation of fields E andH . The FDTD method is also often
an explicit approach, that is, no matrix equation is set up and solved. The
sampling in spatial grid is typically 10–20 samples per wavelength. The time
steps must be less than a certain time which ensures numerical stability of the
algorithm and can also capture the transient behavior of the system and is
governed by the well-known Courant condition [79,81,82]

∆t ≤ ∆x
c
√
n
, (2.14)

where ∆x is spatial resolution, ∆t is temporal resolution, c is velocity of wave
propagation in the medium, and n represents the space dimension.

FDTD does not include the radiation condition [65]. For closed regions (e.g.
waveguide devices or cavities) this is of no concern. However, in applications
where the solution domain extends to infinity, such as radiation or scattering
problems, absorbing boundary conditions (ABC) , the numerical analogy of an
anechoic chamber, are employed at the outer truncation planes which ideally
permit all outgoing waves to exit the region with negligible reflection. The per-
fectly matched layer (PML) [53,83] is very common in FDTD, which absorbs
the electromagnetic waves from any angle of incidence and of any frequency.

Due to time domain of FDTD, computation of wideband response of a sys-
tem can be computed efficiently through the use of wideband sources. How-
ever, in reality many RF devices are quite narrow band or high-Q devices,
which require number of time steps to obtain sufficient frequency resolution.
Systems exhibiting dispersive (frequency dependent) characteristics, for in-
stance, waveguides etc., pose a challenge to FDTD solutions because of con-
volution [65]. Basic implementation of FDTD is simple and straightforward
for inhomogeneities. However, it is noteworthy that as the relative permit-
tivites at RF and microwave frequencies rarely exhibit significant variation,
and the dielectric properties of material usually play significant role, the ma-
terial treatments in FDTD for typical RF applications is direct. Whereas, low
frequency magnetostatic problems are mostly influenced by relative permeabil-
ities which may exhibit large variations, resulting in complications for accurate
modeling [65]. Furthermore, the FDTD formulation poses significant compli-
cations for non-orthogonal grids. As with FEM, the FDTD solutions become
inefficient compared to MoM for highly conducting scatterers/radiators.
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Some of the commercially available tools for FDTD based solution of elec-
tromagnetic problems include CST Microwave Studio4, REMCOM’s XFDTD,
SEMCAD X.

2.2.3 Finite Element Method

In the finite element methods, the Maxwell’s equations are solved in direct
manner by using either the variational analysis or the weighted residuals.
Both formulations start with the partial differential equation (PDE) form of
the Maxwell’equations and for most applications, result in identical equations.
Like FDTD, FEM doesn’t require a Green’s function.

The first step is to find a functional whose minimum corresponds to a solution
of the wave equation. The functionals for electric field for the variational anal-
ysis and weighted residual method may be represented respectively as [25,71]

Fv(E) =
1
2

∫∫

V

∫
[

1
µr

(∇×E) · (∇×E)− k2
0ǫrE ·E

]

dv

+
1
2

∫∫

S

[E · (n̂×∇×E)] da+

∫∫

V

∫

E ·
[

jk0Z0Js +∇× Ms

µr

]

dv ,

(2.15)

and

Fw(E) =
1
2

∫∫

V

∫
[

1
µr

(∇×E) · (∇×W )− k2
0ǫrE ·W

]

dv

+
1
2

∫∫

S

[W · (n̂×∇×E)] da+

∫∫

V

∫

W ·
[

jk0Z0Js +∇× Ms

µr

]

dv ,

(2.16)

where V is the volume containing the sources, S represents the boundary sur-
face of the volume, Js and Ms are equivalent current sources, and W is a
weighting function. The functional for weighted residuals (2.16) is known as
weak form because the governing equations are fulfilled in integral sense but
not in a point by point manner.

The core idea of FEM is to replace some unknown function on a domain
by a set of elements, with known shape but unknown amplitude. Courant in
1943 [25,65,84] for the first time found approximate solutions to the variational

4CST in fact uses Finite Integration Technique (FIT) solver, which is basically FDTD
with integration instead of differentiation.
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problems by using piecewise linear approximations on triangular elements. Un-
like FDTD, the FEM permits very general geometrical elements. The most
widely used elements are lines in 1D, triangles/rectangles in 2D, and tetrahe-
dral/bricks in 3D. This results in a system of linear equations which can be
solved to obtain the unknown quantity localized at each discrete element.

As with FDTD, FEM does not include the radiation condition [65]. There-
fore for open solution domains, a mathematical boundary condition or a ficti-
tious absorbing material layer or a surface integral equation must be incorpo-
rated. Examples include absorbing boundary condition [55], perfectly matched
layer [53,83], and hybridization of FEM with surface integral equation formu-
lations [55,85,86].

Traditionally, the FEM has been formulated in the frequency domain, although
time domain formulations have also been used for specialized applications.
FEM produces sparse matrix and is attractive for modeling complex geome-
tries, material inhomogeneities, as well as dispersive materials (i.e. having
frequency dependent properties e.g. waveguides, real dielectric and magnetic
materials). However, FEM becomes inefficient for highly conducting radia-
tors/scatterers. That is why FEM is a preferable tool for microwave device
simulations and eigenvalue problem analysis.

Ansoft’s HFSS, ANSYS’ Multiphysics software and COMSOL’s FEMLAB are
a few to mention the commercial software for FEM based solutions of scatter-
ing and radiation problems of electromagnetics.

2.2.4 Method of Moments Solution of Integral Equation

Formulations

The integral equation formulations are based on integral operators which relate
the unknown equivalent currents to the scattered fields. Radiating or scatter-
ing objects composed of conducting or homogeneous dielectric materials may
be replaced by Huygens’ equivalent surface currents radiating in free space,
whereas for inhomogeneous dielectric bodies volumetric currents can be used.
However, solution of volumetric formulations is computationally very expen-
sive. An advantage of IE formulations is that they automatically incorporate
the radiation condition and therefore contrary to the FEM and FDTD, IEs
do not require absorbing boundary conditions. Discretization and solution of
integral equation formulations by the method of moments was introduced to
the electromagnetics community by Harrington [87,88].

The Huygens’ equivalent surface currents Js andMs are the tangential com-
ponents of the magnetic and electric fields respectively determined on a close
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surface S surrounding the scatterer/radiator. These equivalent currents gen-
erate the scattered fields Esca and Hsca outside of surface So and can be
computed using radiation integrals [65,89]

E
sca(r) = −

∫

©
∫

So

[

Ms(r
′) · ∇ × Ḡ(r, r′) + jk0Z0Js(r

′) · Ḡ(r, r′)
]

ds′ , (2.17)

H
sca(r) =

∫

©
∫

So

[

Js(r
′) · ∇ × Ḡ(r, r′)− j k0

Z0
Ms(r

′) · Ḡ(r, r′)
]

ds′ , (2.18)

where

Ḡ(r, r′) =

(

Ī +
∇∇
k2

0

)

e−jk0|r−r′|
4π |r − r′| , (2.19)

is the free space dyadic Green’s function. r represents a field point and r′

denotes a source point. Z0 is the free space intrinsic impedance and k0 is the
free space wave number. Combining the integral representations (2.17) and
(2.18) with the boundary conditions [56]

n̂×
(

E
inc +Esca

)

= 0 , (2.20)

n̂×
(

H
inc +Hsca

)

= Js , (2.21)

leads to integral equation formulations. Here n̂ is a outward directed unit
surface normal. Electric field integral equation (EFIE) is obtained if (2.20) is
taken into consideration whereas (2.21) gives birth to a magnetic field integral
equation (MFIE) .

However, if EFIE and MFIE are used independently for a closed surface So,
both can support singular frequencies (nonphysical interior resonances) and
therefore can corrupt the numerical solutions [25, 55]. The combined field in-
tegral equation (CFIE) formulation linearly combines both EFIE and MFIE
formulations in order to reduce the spurious solutions. Also Shore [90,91] ad-
vocates dual surface MFIE and EFIE to eliminate the resonant problems still
associated with some formulations of the CFIE.

The surface integral equation formulations are capable of efficient treatment
of conducting as well as homogeneous dielectric bodies because only boundary
surface of the radiator/scattered need to be discretized. However, treatment
of inhomogeneous penetrable materials require fictitious equivalent volumetric
currents which make the formulation computationally very expensive com-
pared to FEM or FDTD [65]. For the thin dielectric coatings, a so-called
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impedance boundary condition (IBC) may further be imposed on the surface
integral equations to get efficient but approximate solutions for conducting
bodies with thin dielectric coatings [25,92,93].

Numerical Electromagnetic Code (NEC-2, NEC-4, SuperNEC), FEKO, CST
Microwave Studio, Ensemble, IE3D, GMACS are some of the public domain or
commercially available tools which offer surface integral equation formulations
for general-purpose modeling of radiation or scattering problems.

2.2.5 Hybrid Finite-Element Boundary-Integral Method

The most frequently encountered ABC and PML approaches for domain trun-
cation in FEM suffer from a common disadvantage that they are approximate,
i.e. they are not reflectionless for oblique incidence. A truly perfect boundary
condition may be obtained if surface integral equation formulations are used
to terminate the open region of FEM, however, at the cost of an increased
computational burden because of fully populated matrix resulting from inte-
gral equation formulations [25,55,84–86].

The Finite-Element Boundary-Integral (FEBI) method employs an arbitrary
boundary enclosing the object under consideration. Interior to this boundary
FEM is applied whereas, surface integral equation formulations are used to
represent the field in the region exterior to the boundary. Field continuity
conditions are employed at the boundary to couple the fields in the interior
and exterior regions [25,55]. Hybridization of FEM and MoM solution of IEs
results in so-called FEBI method and has proven very powerful in accurate
and efficient solutions of complicated electromagnetic problems involving elec-
tromagnetically penetrable media together with highly conducting bodies.

It is worthwhile to mention, that a FEBI code copyright of Prof. Eibert [86]
is very flexible and efficient tool to handle radiation and scattering problems
of arbitrary nature.

2.2.6 Multilevel Fast Multipole Method

The matrix vector product involving the fully populated coupling matrix aris-
ing from the MoM solution of surface integral equations requires O(N2) op-
erations for its direct computation, where N denotes the total number of
unknowns. The operation count can be reduced to O(N1.5) if the matrix
vector product is computed using the fast multipole method introduced by
Rokhlin [94–96]. This computational complexity can further be reduced to
O(N logN) by implementing multilevel fast multipole method [5–7,97–99]. It
is to be noted that the matrix-vector product may be equivalently represented
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as the mutual interaction between the basis and testing functions; i.e. the
fields radiated by the basis functions and then received by the testing func-
tions.

In order to carry out FMM based matrix-vector product in the MoM solution
of IEs, the common approach is to subdivide the entire computational domain
(usually the object under consideration) into boxes (also known as groups or
cells or cubes) with moderate number of elements in each box. The optimum
number of elements in each box has been reported [63,65] to be equal to

√
N ,

or equivalently
√
N FMM boxes, N being the total number of elements. In the

MLFMM however, the entire domain is first enclosed in a large box, which is
split up into eight small boxes. Each subbox is further recursively subdivided
into smaller boxes until the side length of the lowest level box is around one-
quarter wavelength5. For testing and basis function spatially residing in the
same finest level box or in its direct neighborhood, their interaction is known
as near-interaction and is computed in a direct manner through evaluating
the double surface integral equations (see Chapter 3). FMM does not affect
these contributions. However, when basis and testing vectors reside in differ-
ent non-neighboring boxes their interaction is known as far-interaction and
may be computed by FMM.

FMM based computation of matrix-vector product has foundations on the
truncated form of series representation of free space Green’s function obtained
using Gegenbauer’s addition theorem [96, 100] together with plane wave de-
composition to achieve diagonalization [25,67,101,102], and may be expressed
as

e−jk0|r−r
′|

4π |r − r′| =
e−jk0|D+d|

4π |D + d| ≈
1

4π

∫

©
∫

S

e−jk·dTL(k̂ · D̂)d2k̂ , (2.22)

with

TL(k̂ · D̂) = − jk0

4π

L
∑

l=0

(−j)l(2l + 1)h(2)
l (k0D)Pl(k̂ · D̂) , (2.23)

where h(2)
l (x) is a spherical Hankel function of the second kind, Pl(x) is a

Legendre polynomial. D and d are the spatial vectors (see Fig. (2.1)) such
that D > d. Integral in (2.22) is evaluated over the unit sphere S in k-space
(i.e. so-called Ewald sphere) and k = k0k̂ is the wave propagation vector.

5Often a good choice is to use the finest level box dimension equal to twice the maximum
length of an element.
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Aggregation Translation Disaggregation
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Fig. 2.1. Direct interaction path rmn is split up into three FMM based in-
teraction branches rn′n, rm′n′ and rmm′ respectively regarded as aggregation,
translation, and disaggregation.

The truncated multipole expansion TL is the diagonal matrix operator which
translates the radiated plane waves from the center of the radiating group
(synonymously known as source group) to the received plane waves at the
center of the receiving group (or equivalently testing group). To achieve a
relative error of the order of 10−da in the solution, an empirical formula for
the number of multipoles needed in (2.23) is given by [5]

L ≈ kd+ 1.8d2/3
a (kd)1/3 . (2.24)

Additionally the required number of plane waves (i.e. integration points over
the Ewald sphere) scales as 2(L + 1)2 [36]. The efficient evaluation of the
matrix-vector product with FMM is carried out in three major steps namely ag-
gregation, translation, and disaggregation and may be visualized in Fig. (2.1).

The efficiency of the FMM algorithm is based on precomputing and storing the
far-field pattern samples of the basis functions and the translation operator
prior to the start of the actual matrix-vector product [11]. Additionally inter-
polation/anterpolation techniques must be incorporated for the efficient evalu-
ation of the radiation/receiving patterns in k̂-directions at higher/lower levels
of the source/testing groups during aggregation/disaggregation processes re-
spectively [67].

In chapter 3 MoM solution of surface integral equation formulation for the
scattering and radiation problems of electromangetics will be discussed. As is
known that the near-interactions involve the direct evaluation of the double
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surface integrals which become singular for neighboring source and testing do-
mains, their accurate evaluation needs special treatment. Adaptive singularity
cancellation treatment has been proposed and will therefore be presented in
chapter 4. Choice of basis functions has significant role in the accurate and
efficient solution of integral equation formulations. For this we have imple-
mented hierarchical higher-order basis functions upto full first order in curl
space of the basis functions and this will be discussed in chapter 5. Having de-
veloped the efficient and accurate formulation for the MoM solution of general
purpose scattering and radiation problems, the aim of the present work is to
synthesize arbitrary antenna structures for customized radiation patterns. For
this purpose, inverse equivalent current method has been used for surface cur-
rent synthesis from the knowledge of predefined customized radiation patterns.
This is discussed in chapters 6 and 7.



3 Method of Moments Solution of Surface

Integral Equation Formulations in

Electromagnetics

Surface integral equation formulations have widespread applications in the so-
lutions of field problems for arbitrarily shaped 3D objects. The domain of the
governing integral equations is generally the boundary between the regions of
the problem with unequal electromagnetic characteristic parameters. The un-
known quantities, typically electric and/or magnetic surface equivalent current
densities encountered in the IEs are discretized on the boundary surface and
solution may be obtained through the numerical techniques such as MoM.

In the following, the calculation of fields using surface integral equation for-
mulation will be reviewed.

3.1 Integral Equations in Electromagnetics

Consider a general 3D arbitrarily shaped scatterer. In order to have a complete
system for the solution of fields, it is first necessary to enclose the scatterer
within a fictitious surface to separate the interior region from the exterior
region where the boundary integral equation may be applied. In most cases,
the boundary surface of the object under consideration may be chosen for
such a purpose, but for some scatterers other choices may be more efficient. A
general rule is to choose a fictitious surface that has the least surface area. The
fields inside the surface may then be formulated using FE method, whereas
those exterior to the surface may be expressed in terms of surface integrals.

For a general problem of electromagnetic fields E and H produced by an
electric current source density J in the presence of an arbitrarily shaped object
in free space, the governing equations for E and H are

∇×∇×E − k2
0E = −jωµ0J , (3.1)

∇×∇×H − k2
0H = ∇× J , (3.2)

or equivalently

∇2
E + k2

0E = jωµ0J +
j

ǫω
∇ (∇ · J) , (3.3)
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∇2
H + k2

0H = −∇× J . (3.4)

The three dimensional Green’s function G0 (r, r′) can be introduced for the
solution of this problem. Here G0 (r, r′) satisfies the Helmholtz equation

∇2G0

(

r, r′
)

+ k2
0G0

(

r, r′
)

= −δ
(

r − r′
)

, (3.5)

and the usual radiation condition. Solution of (3.5) under the radiation con-
dition results in free space scalar Green’s function

G0

(

r, r′
)

=
e−jk|r−r′|
4π |r − r′| . (3.6)

Next the scalar-vector Green’s theorem is considered for the development of
surface integral equation. Let b and a represent respectively scalar and vector
functions integrable in an arbitrary volume V and on its boundary surface S.
The scalar-vector Green’s theorem is given by [103]

∫∫

V

∫
[

b (∇×∇× a) + a∇2b+ (∇ · a)∇b
]

dv

=

∫

©
∫

S

[

(n̂ · a) (∇b) + (n̂× a)×∇b+ (n̂×∇× a) b
]

ds .

(3.7)

Now letting a = E and b = G0 (r, r′) = G0, we get
∫∫

V

∫
[

G0 (∇×∇×E) +E∇2G0 + (∇ ·E)∇G0

]

dv

=

∫

©
∫

S

[

(n̂ ·E) (∇G0) + (n̂×E)×∇G0 + (n̂×∇×E)G0

]

ds .

(3.8)

Substituting equations (3.1) and (3.5) on the LHS of (3.8) we get
∫∫

V

∫
[

G0

(

k2
0E − jωµ0J

)

+E
(

−k2
0G0 − δ

(

r − r′
))

+ (∇ ·E)∇G0

]

dv

=

∫

©
∫

S

[

(n̂ ·E) (∇G0) + (n̂×E)×∇G0 + (n̂×∇×E)G0

]

ds ,
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or
∫∫

V

∫
[

G0 (−jωµ0J) +E
(

−δ
(

r − r′
))

+ (∇ ·E)∇G0

]

dv

=

∫

©
∫

S

[

(n̂ ·E) (∇G0) + (n̂×E)×∇G0 + (n̂×∇×E)G0

]

ds .

(3.9)

Also substituting

∇ ·E =
ρ

ǫ0
=
−1
jǫ0ω
∇ · J =

j

ǫ0ω
∇ · J ,

and

∇×E = −jωB = −jωµ0H ,

(where time convention ejωt is utilized) in (3.9) we have
∫∫

V

∫
[

(

−jωµ0JG0 +
j

ǫ0ω
(∇ · J)∇G0

)

−Eδ
(

r − r′
)

]

dv

=

∫

©
∫

S

[

(n̂ ·E)∇G0 + (n̂×E)×∇G0 − jωµ0 (n̂×H)G0

]

ds .

(3.10)

Interchanging prime and unprimed coordinates, i.e.

J (r)→ J
(

r
′
)

, G0

(

r, r′
)

→ G0

(

r, r′
)

, n̂→ n̂′ ,
E (r)→ E

(

r
′
)

, H (r)→H
(

r
′
)

, ∇→ ∇′ , ds→ ds′ ,

and using ∇′G0 = −∇G0 and k2
0 = ω2ǫ0µ0 in (3.10) we get

∫∫

V

∫
[

− jωµ0

(

JG0 +
1
k2

0

(

∇′ · J
)

∇G0

)

−E
(

r
′
)

δ
(

r − r′
)

]

dv′

= −
∫

©
∫

S

[

(

n̂′ ·E
(

r
′
))

∇G0 +
(

n̂′ ×E
(

r
′
))

×∇G0

+ jωµ0

(

n̂′ ×H
(

r
′
))

G0

]

ds′ .

(3.11)
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The evaluation of the volume integral of the last term on the left hand side of
(3.11) may be split into two regions such that either r is inside of volume V
(i.e. r ∈ V ) or outside (i.e. r /∈ V ), and is given by [103]

∫∫

V

∫

E
(

r
′
)

δ
(

r − r′
)

dv′ =

{

E (r) , r ∈ V ,
0, r /∈ V .

(3.12)

It is worthwhile to mention that the radiated field E (r) exists at a set of
points r ∈ V and therefore the integral (3.12) vanishes when it is evaluated in
the space outside of domain V .

Now (3.11) will be evaluated separately in the region occupied by the impressed
sources and in the source-free region.

3.1.1 Fields over the Region Occupied by Impressed Sources

First we compute (3.11) over the region occupied by impressed sources i.e.
volume VJ , and its boundary SJ as shown in Fig. 3.1. In this region the
integration domain VJ does not contain r and hence, from (3.12)

∫∫

VJ

∫

E
(

r
′
)

δ
(

r − r′
)

dv′ = 0 . (3.13)

Further we define

−jωµ0

∫∫

VJ

∫
[

JG0 +
1
k2

0

(

∇′ · J
)

∇G0

]

dv′ ≡ Einc (r) , (3.14)

which represents the electric field produced by J in free space without the
presence of any scattering object.

Substituting (3.13) and (3.14) in (3.11) we get an integral representation for
field quantities within the region occupied by the impressed sources, i.e.

E
inc (r) = −

∫

©
∫

SJ

[

(

n̂′ ·E
(

r
′
))

∇G0 +
(

n̂′ ×E
(

r
′
))

×∇G0

+ jωµ0

(

n̂′ ×H
(

r
′
))

G0

]

ds′ .

(3.15)
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Fig. 3.1. Source and scattering volumes placed in free space.

3.1.2 Fields over the Exterior Region

Now the integral representation (3.11) is computed over the region exterior to
all sources and any scattering bodies i.e. volume V∞ − VJ − Vo ≡ Vb , and
its boundary S∞ − SJ − So ≡ Sb as shown in Fig. 3.1. In this region r is
contained in the integration domain Vb and therefore, from (3.12)

∫∫

Vb

∫

E
(

r
′
)

δ
(

r − r′
)

dv′ = E (r) ,

and since no impressed sources in this region, therefore

−jωµ0

∫∫

Vb

∫
[

JG0 +
1
k2

0

(

∇′ · J
)

∇G0

]

dv′ = 0 .

Further, the integral evaluated over V∞ vanishes if:

• the sources of the field are confined within a finite distance from the
origin,
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• field satisfies the Sommerfeld radiation condition, and

• Green’s function G0 is chosen to satisfy the radiation condition as well.

Thus, it can be shown [103] that
∫

©
∫

S∞

[

(

n̂′ ·E
(

r
′
))

∇G0 +
(

n̂′ ×E
(

r
′
))

×∇G0

+jωµ0

(

n̂′ ×H
(

r
′
))

G0

]

ds′ = 0 .

(3.16)

Hence, integral representation (3.11) becomes

−E (r) = −
∫

©
∫

Sb

[

(

n̂′ ·E
(

r
′
))

∇G0 +
(

n̂′ ×E
(

r
′
))

×∇G0

+ jωµ0

(

n̂′ ×H
(

r
′
))

G0

]

ds′

⇒ E (r) =

∫

©
∫

S∞

[

. . .

]

ds′ −
∫

©
∫

SJ

[

. . .

]

ds′ −
∫

©
∫

So

[

. . .

]

ds′ . (3.17)

Using (3.15) and (3.16) in (3.17) we get

E
inc (r)−

∫

©
∫

So

[

(

n̂′ ·E
(

r
′
))

∇G0 +
(

n̂′ ×E
(

r
′
))

×∇G0

+ jωµ0

(

n̂′ ×H
(

r
′
))

G0

]

ds′ = E (r) .

(3.18)

Integral equation (3.18) is valid for r ∈ Vb. However, as can be seen from
(3.12), the field E (r) will vanish for r ∈ Vo and hence we get

E
inc (r)−

∫

©
∫

So

[

(

n̂′ ·E
(

r
′
))

∇G0 +
(

n̂′ ×E
(

r
′
))

×∇G0

+ jωµ0

(

n̂′ ×H
(

r
′
))

G0

]

ds′ =

{

E (r) , r ∈ Vb ,
0, r ∈ Vo ,

(3.19)

where Vb represents the region exterior to the source and scattering bodies and
is often referred to as solution domain. Equation (3.19) represents a form of
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integral representation for electric field.

Similarly, if we substitute a = H and b = G0 (r, r′) = G0 in (3.7) we get an
integral representation for magnetic field

H
inc (r)−

∫

©
∫

So

[

(

n̂′ ·H
(

r
′
))

∇G0 +
(

n̂′ ×H
(

r
′
))

×∇G0

− jωǫ0
(

n̂′ ×E
(

r
′
))

G0

]

ds′ =

{

H (r) , r ∈ Vb .
0, r ∈ Vo .

(3.20)

Here Einc (r) and Hinc (r) represent respectively the electric and magnetic
fields produced by the impressed current sources J in free space without any
scattering object. In the region interior to the scattering bodies, above equa-
tions are also valid because the fields vanish.

Introduction of Huygens’ equivalent surface currents on the surface So of the
scatterer yields

Js = n̂×H and Ms = −n̂×E defined over So . (3.21)

From rearrangements of the Ampère law and the Faraday’s law applied on the
boundary So with no impressed sources present (or alternatively, using the
normal boundary conditions), we can get [25,104]

n̂ ·E =
ρs
ǫ0

=
j

ωǫ0
∇ · Js , (3.22)

and

n̂ ·H =
ρms
ǫ0

=
j

ωµ0
∇ ·Ms , (3.23)

where ρs represents surface electric charge density and ρms is (fictitious) surface
magnetic charge density. Using equations (3.21) - (3.23) in (3.19) and (3.20)
we get

E (r) + jk0Z0

[

1
k2

0

∇
∫

©
∫

So

G0∇′ · Js ds′ +
∫

©
∫

So

JsG0 ds
′

]

+

∫

©
∫

So

∇G0 ×Ms ds
′ = Einc (r) ,

(3.24)
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and

H (r) +
jk0

Z0

[

1
k2

0

∇
∫

©
∫

So

G0∇′ ·Ms ds
′ +

∫

©
∫

So

MsG0 ds
′

]

−
∫

©
∫

So

∇G0 × Js ds′ =Hinc (r) ,

(3.25)

where k0 = ω
√
ǫ0µ0 and Z0 =

√

µ0/ǫ0 are respectively wavenumber and
intrinsic impedance of free space. Einc (r) and Hinc (r) represent the fields
produced by electric and magnetic current sources J and M without the
presence of scatterer. Equations (3.24) and (3.25) define the fields E (r) and
H (r) produced by the current sources in the presence of the scatterers and
hold throughout the exterior region and provide the foundation to derive the
integral representations for current sources Js and Ms.

3.1.3 Electric Field Integral Equation

Computing (3.24) for its tangential component on the boundary surface So and
extracting the contribution of singular point r = r′ from the surface integrals,
we get [25,104]

−1
2
Ms (r) + jk0Z0 n̂×

[

1
k2

0

∇
∫

©
∫

So

G0∇′ · Js ds′ +
∫

©
∫

So

JsG0 ds
′

]

+ n̂×
∫

©
∫

So

∇G0 ×Ms ds
′ = n̂×Einc (r) ,

(3.26)

where singular contribution has been extracted from all integrals. Equation
(3.26) is known as electric field integral equation and can be used for both
open and closed bodies. However, this equation provides erroneous solution
at resonant frequencies of the cavity formed by covering the surface So with
PEC and filling the interior with the exterior medium. This problem is known
as interior resonance. One way to get rid of this problem is to use finite ele-
ment formulation in conjunction with the complexification of the wavenumber.
Another approach is to combine different integral equations to eliminate the
interior resonance completely [25]. The CFIE discussed below is free from this
drawback.
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3.1.4 Magnetic Field Integral Equation

Computing (3.25) for its tangential part on the boundary surface So and ex-
tracting the singular point contribution yields another integral equation

1
2
Js (r) +

jk0

Z0
n̂×

[

1
k2

0

∇
∫

©
∫

So

G0∇′ ·Ms ds
′ +

∫

©
∫

So

MsG0 ds
′

]

− n̂×
∫

©
∫

So

∇G0 × Js ds′ = n̂×Hinc (r) ,

(3.27)

which is known as magnetic field integral equation. It converges fastly but can
only be used for closed bodies. Unfortunately, this equation also suffers from
the problem of interior resonance.

3.1.5 Combined Field Integral Equation

EFIE can be used for both open and closed bodies, however, it suffers from the
interior resonance problem. Additionally, the iterative solver converges slowly
in the MoM solution of EFIE. The iterative solver for MFIE converges fastly
but it can only be used for closed bodies and also suffers from the problem of
interior resonance. A linear combination of EFIE and MFIE, known as CFIE,
is free from interior resonance problem and converges fastly. However it is
useful only for closed bodies. The CFIE is written as follows [105,106]:

αEFIE + (1− α)Z0 n̂× MFIE , (3.28)

where α ∈ [0, 1] is the CFIE combination coefficient. The combination (3.28)
results in an integral equation corresponding to that for a cavity with a resis-
tive wall whose resonant frequencies are complex and hence no singular real
frequencies in CFIE. Also, CFIE provides fast iterative solver convergence.

3.2 Impedance Boundary Condition

When the problem under consideration involves only the PEC objects, the
magnetic current densities Ms in the above IEs (3.26)-(3.28) vanish and only
the electric current densities Js remain as the unknown quantities. However,
in general, when scattered or radiated fields from a surface impedance body
are required, both electric and magnetic current densities are unknown quan-
tities. The under-determined system of equations, with unknown Js andMs,
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reduces to a determined system with the enforcement of an appropriate bound-
ary condition.

The simplest and most widely used approximate boundary condition, e.g. for
modeling the dielectrically coated conducting objects, is the impedance bound-
ary condition introduced by Leontovich [107] and defined on the boundary be-
tween the exterior of the coating and free space and may be expressed as [25]

Ms = ZS (Js × n̂) , (3.29)

where ZS is termed as the characteristic surface impedance. For PEC bodies
with thin dielectric coatings, ZS may be approximated as

ZS = jZ0

√

µr
ǫr

tan (k0d
√
ǫrµr) , (3.30)

d being the thickness of the coating and ǫr and µr are respectively the relative
permittivity and relative permeability of the dielectric coating.

3.3 Solution by Method of Moments

Method of moments is a general procedure for the solution of any differential
or integral equation. The basic principle of method of moments is to convert
the governing equations for a boundary value problem, through numerical
approximations, into a matrix equation that can be solved by numerical tech-
niques. The basic steps of MoM solution of an electromagnetic boundary value
problem (BVP) are as follow:

1. Formulation of the problem into an integral (or differential) equation.

2. Expansion of the unknown quantity using a set of basis functions e.g
RWG basis functions.

3. Inner product of the discretized integral equation with another set of
testing functions. This will result in a matrix equation.

4. Solution of matrix equation with appropriate numerical method and cal-
culate the desired quantities.

While solving either of the integral equations (3.26)-(3.28) by the MoM, the
unknown surface current densities Js and Ms are expanded using a set of
basis functions

Js =

NI
∑

n=1

Infn , Ms =

NM
∑

n=1

Vnfn , (3.31)
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where In and Vn are the unknown expansion coefficients. N = NI + NM is
the total number of unknowns. fn represent a set of vector basis functions.
As an example, the most popular LO triangular current basis functions similar
to those introduced in [34] are fn(r′) = r′−rc

2A
, where A is the area of the

triangle and rc are its three vertices. The degree of the polynomials defining
fn is a representative for the order of the basis functions.

Let gm be a testing function. Different choices of testing functions in MoM
solution of integral equations are found. First kind of testing is known as point
collocation or point matching and is expressed as

gm (r) = δ (r − rm) ,

where rm denotes a set of points in the solution domain.
Second kind of testing is known as subdomain collocation

gm (r) =

{

1 , r ∈ Ωm ,

0 , elsewhere ,

where Ωm denotes the mth subdomain.

A third kind of testing is to use the basis functions as the testing functions
and is known as Galerkin’s formulation i.e.

gm (r) = fm (r) .

In Galerkin’s formulation the system matrix becomes symmetric when the
integral operator is symmetric. These testing functions are widely used in the
MoM solutions of IEs.

Recent researches also indicate that solution accuracy depends primarily on the
choice of basis functions and much less on the choice of testing functions [66].
In [108] it has been investigated that if RWG functions are taken as both basis
and test functions for the solution of CFIE, it leads to a very unstable solution.
Only electric surface current is well tested in this case. Similarly, if n̂×RWG
functions are used as testing functions, only the magnetic current is well tested
and the solution is again inaccurate. The authors of [108] suggest to test CFIE
by both RWG and n̂×RWG functions.

Applying Galerkin’s method for testing (3.26)-(3.28) and (3.29), we can get
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the respective systems of linear equations

EFIE:

NM
∑

n=1

[

1
2
Amn +Dmn

]

Vn

+jZ0k0

NI
∑

n=1

[

Bmn +
Cmn
k2

0

]

In = GEm , m = 1, ..., NI , (3.32)

MFIE:

NI
∑

n=1

[

− 1
2
A′mn −D′mn

]

In

+j
k0

Z0

NM
∑

n=1

[

B′mn +
C′mn
k2

0

]

Vn = GHm , m = 1, ..., NI , (3.33)

IBC:

NM
∑

n=1

[

A′mn

]

Vn

+ZS

NI
∑

n=1

[

Amn

]

In = 0 , m = 1, ..., NM . (3.34)

A similar system of linear equations for CFIE can be obtained by substituting
(3.32) and (3.33) in (3.28). The matrix elements involved in (3.32), (3.33) and
(3.34) are

Amn =

∫∫

Sm

gm(r) · n̂× fn(r)ds , (3.35)

Bmn =

∫∫

Sm

gm(r) ·
∫∫

Sn

G0(r, r′)fn(r′)ds′ds , (3.36)

Cmn =

∫∫

Sm

gm(r) · ∇
∫∫

Sn

G0(r, r′)∇′s · fn(r′)ds′ds , (3.37)

= CMmn − CEmn , (3.37′)

CEmn =

∫∫

Sm

∇s · gm(r)

∫∫

Sn

G0(r, r′)∇′s · fn(r′)ds′ds , (3.38)
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CMmn =

∮

Cm

gm(r) · ûm
∫∫

Sn

G0(r, r′)∇′s · fn(r′)ds′dl , (3.39)

Dmn =

∫∫

Sm

gm(r) ·
∫∫

Sn

∇G0(r, r′)× fn(r′)ds′ds , (3.40)

GEm =

∫∫

Sm

fm(r) ·Eincds , and (3.41)

GHm =

∫∫

Sm

n̂× fm(r) ·Hincds , (3.42)

where gm = fm(r) for the unprimed versions of the matrix elements (i.e. Amn,
..., Dmn) and gm = n̂ × fm(r) for the primed matrix elements (i.e. A′mn, ...,
D′mn) used in (3.32), (3.33) and (3.34). Equation (3.37) has been rewritten
in (3.37′) through the use of Gauss’s divergence theorem [34, 109] to trans-
fer the del (∇) operator from G0 to gm. Note, while testing with low-order
RWG-functions, CMmn vanishes for EFIE, and CEmn vanishes for MFIE. How-
ever, generally speaking for HO basis functions, both terms (3.38) and (3.39)
are required. Sm and Sn are respectively the test and source domains under
consideration. Cm is the boundary curve of the test domain and ûm is the
unit vector in the tangent plane and perpendicular to the Cm.

Integrals (3.35), (3.41), and (3.42) can easily be evaluated numerically. How-
ever, direct numerical quadrature is not applicable for the integrals (3.36),
(3.37), and (3.40), especially for self-coupling and near-coupling terms, and
special numerical treatment of such integrals is necessary. In such cases, var-
ious techniques are available in the literature and will be reviewed briefly in
chapter 4. In our implementation, the adaptive singularity cancellation ap-
proach [22–24] has been used for the efficient computation of these integrals.
The fully numerical evaluation of the singular integrals and applicability to
arbitrary order of the basis functions are among the motives of this choice.
Further, its adaption to the HO formulation is straightforward. Thus, adaptive
Arcsinh transformation has been used to compute (3.36) and (3.37) while Ra-
dial Angular-R2 transformation has been applied for the evaluation of (3.40).
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The accuracy of method of moments solutions of integral equations depends
significantly on the calculation of the coupling integrals which involve singular
kernels. Direct numerical quadrature is not applicable, especially for neighbor-
ing source and test domains, and special numerical treatment of such integrals
is necessary. In this chapter adaptive singularity cancellation technique is dis-
cussed in detail for the accurate and efficient evaluation of coupling integrals.

4.1 Treatment of Singular Integrals - A Review

In literature, various techniques are available for the computation of singular
coupling integrals encountered in the MoM solutions of surface integral equa-
tions. The Duffy method [12], the singularity subtraction approach [13–17],
regularization techniques [18, 19] and the singularity cancellation approaches
[20–22] are among the popular techniques.

The considered singular integrals encountered in MoM solution of the surface
integral equation formulations of radiation and scattering problems have the
following general forms:

B =

∫∫

So

f(r′)
e−jk0R

R
ds′ , (4.1)

D =

∫∫

So

f(r′)×∇e
−jk0R

R
ds′ , (4.2)

where R = |r − r′|, f is the vector basis function and So represents the source
or integration domain. Integrals (4.1) and (4.2) possess 1

R
− and R

R3−type
singularities respectively.

Before we review these techniques it is to be noted that various conflicting
nomenclature can be found in the literature with regard to the location of
singular point as well as the order of singularity. However, we will restrict
ourself to following definitions throughout the entire discussion.

1. An observation point will be referred to as singular, if it is located within
the source domain (Fig. 4.1a).
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2. If the observation point is located away from the source domain but
resides on the same plane as that of the source domain, we refer it to as
near-singular (Fig. 4.1b).

3. When observation point is above/below the source plane however, pro-
jection of observation point lies within the source domain, it is termed
as hyper-singular1 (Fig. 4.1c).

4. In case when the observation point is located out of the source plane and
its projection also lies away from the source domain, it is referred to as
near hyper-singular (Fig. 4.1d).

(a) Singular (b) Near-singular

(c) Hyper-singular (d) Near hyper-singular

: Observation point : Projection of observation point on source plane

Fig. 4.1. Nomenclature for singularities w.r.t. relative position of the singular
observation point

Further, in MoM solution of IEs, the 1
R
−type singular kernels have con-

tributions usually for all above-mentioned four types of observation points,
whereas R

R3−type hyper-singular2 kernels don’t contribute for singular and
near-singular observation points.

4.1.1 Duffy Transformation Method

Duffy transformation [12] is based on decomposing the original source domain
into triangles that share the singular point as a common vertex. A transforma-

1Some authors e.g. [19] call such type of singularity as near-singular.
2Usually hyper-singular means a singularity of higher order and it is also known as

strongly singular kernel in physics and mechanical engineering literature.
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tion that maps the triangle into a degenerate quadrilateral is performed such
that the singularity of the integrand will be canceled by the Jacobian of the
transformation. As an example the singular integral

1
∫

0

x′
∫

0

f(x′, y′)
√

(x′)2 + (y′)2
dy′dx′ , (4.3)

which has triangular integration domain may be reduced to non-singular inte-
gral with rectangular integration domain

1
∫

0

1
∫

0

f(x′, x′u)√
1 + u2

dudx′, (4.4)

by using the transformation y′ = x′u. The Duffy transformation usually re-
duces the singularity by one order.

Some of the drawbacks of the Duffy method are [20]:

1. It produces an angular variation about the singular point in the resulting
integrand.

2. It appears not to work well when applied to hyper-singularities.

4.1.2 Singularity Subtraction Approach

The key step in this approach is to extract from the desired singular integrand a
term that has known closed form and can be evaluated analytically, such that a
well-behaved non-singular remainder that can easily be evaluated numerically
is left behind. As an example, the surface integral involving free space Green’s
function may be expressed as

∫

©
∫

So

e−jk0|r−r
′|

|r − r
′| ds

′ =

∫

©
∫

So

e−jk0|r−r
′| − 1

|r − r
′| ds′ +

∫

©
∫

So

1
|r − r

′|ds
′ , (4.5)

where the first term on the right hand side is non-singular and may be com-
puted numerically. Analytical expressions can be found (e.g. [15, 16]) for the
evaluation of second term.

The singularity subtraction approach relies on the existence of analytically eval-
uated potential integrals. Many of these have been worked out for constant
and linear source distributions [13–17] and even for higher order polynomial
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source variations as well as higher order geometries [110–112]. Polynomial
basis functions of any order may be integrated over planar triangles using
recurrence relationships [14], and extended for curved elements [112] by intro-
ducing tangent plane elements whose basis vectors at the contact point are
same as those of the curved element.

Some of the disadvantages of singularity subtraction methods are as below:

1. The difference integrand cannot be well approximated by a polynomial
in the vicinity of the singularity, thus limiting the achievable accuracy
of quadrature rules.

2. The process of Taylor series representation of the subtracted singular
term sometimes increase complications for higher order basis, curvilinear
elements, or complicated Green’s functions.

4.1.3 Regularization Techniques

In the regularization techniques, the singular integral is transformed to a reg-
ular integral by a coordinate transformation (e.g. [18,113,114]) or integration
by parts (e.g. [115]). Strong singularities can be regularized by addition and
subtraction of successive terms of a Taylor expansion of a singular kernel in
order to isolate strongly singular integrands from the numerically calculated
integrands. However, rigorous manipulations are involved in this regulariza-
tion method [19].

In a method proposed in [18], weakly singular kernels are considered for quadri-
lateral domains which is divided into subdomains with the singular point, say
(x′1, y

′
1) as a common vertex. The O(1/R) type singular integral may be regu-

larized by polar coordinate transformation such as [18]

1
∫

−1

1
∫

−1

f(x′, y′)dx′dy′ =

ϕ′
2
∫

ϕ′
1

ρ′(ϕ′)
∫

0

f(x′1 +ρ′ cosϕ′, y′1 +ρ′ sinϕ′)ρ′dϕ′dρ′ . (4.6)

Additionally, the polar Gaussian quadrature is used to evaluate the integral
which shows significantly fewer number of quadrature points required for a
given accuracy as compared to the standard Gauss-Legendre quadrature.

For the treatment of R

R3−type hyper singularities, [19] provides one order
reduction of singularity by using the regularization technique of [18] followed
by a Taylor series expansion of the term |r − r′| expressed in polar coordinates.

The treatment presented in [19] considers the situation when the observation
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point or its projection resides within or along the bounds of the source domain.
In situations when observation point or its projection resides close to but
outside the source domain (e.g. Fig. (4.1b) and (4.1d)), the method may
require significantly large number of quadrature points for good accuracies.

4.1.4 Singularity Cancellation Technique

Most recently, singularity cancellation technique has come up for the treatment
of singular integrals. In this technique fully numerical evaluation of singular
integrals has been proposed. For 1

R
−type singular kernels the Jacobian of

Arcsinh3 transformation [20] exactly cancels out the singularity. Further, for
the special cases when observation point is located on the plane of the source
domain, the transformed domain is rectangular which enables the integration
over the source domain with few sample points. For R

R3−type kernels, the
Radial Angular-R2 (RA-R2) transformation [21,116] cancels out the singular-
ity. However, the transformed domain is not rectangular and, depending upon
the observed geometry of the source domain, often large numbers of Gauss-
Legendre sample points are required for integration over the source domain.

Now for near-singularities and near-hyper-singularities the observation point
or its projection lies outside the source domain. The singularity cancellation
transformation appear less efficient for such couplings. Therefore for the case
of triangular domains at least one of the sub triangles lies completely outside
the source triangle and the remaining sub triangles are also partially outside.
Thus, most of the sample points lie outside the required integration domain.
It is noteworthy that the contribution of outer sample points is finally sub-
tracted from the overall result. This makes the scheme less efficient for the
near- and near-hyper-singularities. As a remedy an adaptive singularity can-
cellation technique [22,24] was proposed and is discussed in detail in upcoming
sections.

4.1.5 Adaptive Singularity Cancellation Technique

Adaptive singularity cancellation technique [22, 24], keeps the benefits of the
aforementioned singularity cancellation technique but avoids the time consum-
ing repeated integrations over unnecessary sample points which reside out of
the original source domain. Another important feature for the improvement

3In the present text Arcsinh refers to the inverse of sinus hyperbolicus which is com-
monly used, even though it is a misnomer notation. The inverses of the hyperbolic
functions are the area hyperbolic functions and therefore the correct abbreviation is
Arsinh. Heartiest thanks go to Prof. W. Rucker, Universität Stuttgart for the detailed
clarification.
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of efficiency is the appropriate choice of an adequate number of sample points
according to the instantaneous shape of the transformed integration domain
encountered during the analysis of a particular pair of source and test domains.
Different numbers of sample points are chosen for different radial and angular
dimensions of the transformed integration domain. For this, a criterion for
optimum sample point distribution is presented.

In the following sections, treatment of singular integrals encountered in the
MoM solution of surface integral equations while making use of singularity
cancellation technique and its adaptive version will be discussed in detail.

4.2 Choice of Singularity Technique

As reviewed in section 4.1, various treatments can be found in the literature
for the accurate computation of singular integrals encountered in the surface
integral equation formulations. For the solution of EFIE with only electric
current densities as unknown, only 1

R
−type singular integral of the form (4.1)

comes into action. The MFIE for electric current density as unknown involves
gradient of the Green’s function which is responsible for the R

R3−type singular-
ity of the form (4.2). We intend to develop a solver suitable for the solution of
radiation and scattering problems of arbitrarily shaped open as well as closed
surfaces composed of metallic and dielectric materials. Furthermore, unknown
current densities are aimed to be modeled with higher-order polynomial expan-
sion functions to achieve higher accuracies. Therefore, we searched for suitable
singularity cancellation technique which can handle both 1

R
− and R

R3−type
singularities and at the same time must be straight forward for adaption to
the higher-order polynomials.

Whereas singularity subtraction approaches discussed in section 4.1.2 provide
better treatment of singularities, the separate handling for analytical and nu-
merical terms involve rigorous programming. Furthermore, if the choice of
basis functions is altered, the implemented code will not be directly applica-
ble. The regularization techniques reviewed in section 4.1.3 produce regular-
ized integrals even for higher-order basis functions. However, the available
scheme (e.g. as reported in [19]) are applicable directly to quadrilateral do-
mains. On the other hand, the singularity cancellation technique (see section
4.1.4) is a purely numerical treatment and applied directly to triangular do-
mains. Therefore, we have opted this technique as a tool for the treatment of
singular integrals in the MoM solutions of surface integral equation formula-
tions.
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4.3 Treatment of Singularities with Singularity

Cancellation Technique

The singularity cancellation techniques proposed by Wilton and his co-workers
[20, 21] for the treatment of 1

R
− and R

R3−type singularities are discussed in
this section.

4.3.1 Arcsinh Transformation

For 1
R
−type singular integral (4.1), the Arcsinh transformation is [20]

u = Arcsinh

(

x′
√

(y′)2 + z2

)

, v = y′ , (4.7)

where the integration domain is assumed to lie in the x′y′-plane with origin
at the projection of the observation point onto the plane (Fig. 4.2). The
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Fig. 4.2. Subtriangle geometry and coordinate system for near singularities
under Arcsinh Transformation. For the figure, one subtriangle is completely
outside the original source domain ∆123.
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Jacobean of this transformation

J (u, v) =

∣

∣

∣

∣

∣

∣

∣

∂x′

∂u
∂x′

∂v

∂y′

∂u
∂y′

∂v

∣

∣

∣

∣

∣

∣

∣

= R , (4.8)

cancels out the singularity. After this transformation, the integral (4.1) looks
like

B =

vU
∫

vL

uU
∫

uL

β(r′) e−jkRdudv , (4.9)

where vL,U and uL,U are the lower and upper limits of integration in the
transformed domain. These limits are determined according to the geometry
of the subtriangle under consideration and can be computed as follow:

uL,U = Arcsinh

(

xL,U
√

y2 + z2

)

, vL,U = yL,U , (4.10)

where for original scheme [20]

yL,U = 0, h , (4.11)

and h represents the height of projected observation point from the opposite
edge of the subtriangle under consideration.

The integrand in (4.9) is now analytic in u and v and can therefore be inte-
grated accurately using an appropriate quadrature rule (e.g. Gauss-Legendre
quadrature rule). It is also interesting to note that for singularities with z = 0,
the transformed uv−domain is rectangular. In such cases the integral (4.9) can
be computed with very few sample points. For other situations, the domain is
non-rectangular and sometimes large number of sample points are necessary.
Excellent convergence results are however observed in this transformation.

4.3.2 Radial Angular-R2 Transformation

For the treatment of R

R3− type singular integrals (4.2), the Radial Angular-R2

transformation

u = φ = Arctan

(

y′

x′

)

, v = |z| lnR , (4.12)

is considered [21]. The geometry and coordinate system for RA-R2 transfor-
mation applied to triangular domains are shown in Fig. 4.3. The Jacobean of
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Fig. 4.3. Subtriangle geometry and coordinate system for near singularities
under RA-R2 transformation. For the figure, one subtriangle is completely
outside the original source domain ∆123.

this transformation is −R2

|z|
, which cancels out the singularity. The limits of

integration in the RA-R2 transformation are given by

uL,U = φL,U , vL,U =
|z|
2

ln

[

z2 +
(

R
′′

L,U (u)
)2
]

, (4.13)

where for original scheme [116]

R
′′

L,U (u) = 0,
h

sin (u)
. (4.14)

The transformed integration domain in RA-R2 transformation is not rectan-
gular and is deformed as the observation point moves closer to the source or
integration domain. Therefore, often very large numbers of sample points are
necessary for sufficiently good accuracies.

4.3.3 Drawbacks of Originally Proposed Singularity

Cancellation Transformations

The originally proposed singularity cancellation transformations reviewed above
provide a purely numerical method for exact cancellation of 1

R
− and R

R3−type
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singularities encountered in surface integral equation formulation of electro-
magnetics. However, they appeared less efficient for near-singular and near-
hypersingular couplings. The reason is that the observation point or its projec-
tion lies outside the source domain. In case of triangular domains at least one
of the subtriangles lies completely outside the source triangle and the remain-
ing subtriangles are also partially outside. Thus, most of the sample points
lie outside the required integration domain. The contribution of outer sam-
ple points is finally subtracted from the overall result. In order to avoid the
time-consuming integration over such sample points, we propose in section 4.4,
an adaptive singularity cancellation technique, which locates all sample points
within the desired integration domain and hence significant improvement in
the computational efficiency of the coupling matrices is achieved.

Furthermore, the convergence behavior of the original singularity cancellation
transformations is very sensitive to the height |z| of observation point above
the plane of source domain. Often very large number of sample points are
needed for original schemes which badly degrades the computational efficiency.
In [21], two different transformations were proposed to handle this problem.
RA-R2 was employed for higher values of |z| and RA-R3 was suggested for
lower values of |z|. In fact this is not a preferable solution in relevance to
object-oriented programming. The adaptive scheme inherently removes this
problem and converges fastly independent of the so-called|z| −variations.

4.4 Treatment of Singularities with Adaptive Singularity

Cancellation Technique

The singularity cancellation technique works well for singular and hyper-singular
integrals. However, as discussed in section 4.3.3, some improvements in the
treatment of near-singular as well as near-hyper-singular kernels are sought.
Therefore, an adaptive version of singularity cancellation technique is pre-
sented to remove the drawbacks of the original approach.

4.4.1 Geometrical Configuration for Near Singular Integrals

Dependent on the location of the projection of the observation point, two
different geometrical configurations for near-singularities are possible, as shown
in Figs. 4.4 and 4.5. The original singularity cancellation scheme divides the
original triangle into three sub triangles and integration over all sub triangles
starts from the local origin (i.e. observation point or its projection). As such,
one sub triangle is completely outside the source domain for the geometry of
Fig. 4.4, and two sub triangles are completely outside the source domain in
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the case of Fig. 4.5. The remaining sub triangles are also partially outside the
source domain.

In our proposed scheme, only two sub triangles are taken into account, which
constitute the original source domain. The two sub triangles, SubTria-1 and
SubTria-2, are shown shaded in Figs. 4.4 and 4.5. To achieve this, the adaptive
formulation modifies the limits of integration as compared to the originally
proposed singularity cancellation techniques.

4.4.2 Adaptive Limits of Integration for Arcsinh

Transformation

For 1
R

-type singularities, the lower and upper limits xL and xU in the Arcsinh
transformation are constrained by the boundaries of the sub triangle under
consideration. These limits can be determined from the intersection of lines.
For the geometry of Fig. 4.4, the integration limits are given by

yL,U = m2

(

y1 −m1x1

m2 −m1

)

, h , (4.15)

xL,U (y) =
y

m2
,
y − y1 +m1x1

m1
. (4.16)

Similarly, for the geometry of Fig. 4.5, the integration limits are given by

yL,U = h, m2

(

y1 −m1x1

m2 −m1

)

, (4.17)

xL,U (y) =
y − y1 +m1x1

m1
,
y

m2
, (4.18)

where

m1 =
y2 − y1
x2 − x1

, and m2 =
y3
x3
, (4.19)

are the slopes of the two sides of the source triangle.

4.4.3 Adaptive Limits of Integration for Radial Angular-R2

Transformation

For RA-R2 transformation, the angular limits uL,U of integration are those of
the original scheme (see (4.13)). However, the modified limits of integration
in the radial direction vL,U given in (4.13) are modified such that

R
′′

L,U (u) =

{

h3

sin(δ)
, h

sin(u)
for Fig. 4.4 ,

h
sin(u)

, h3

sin(δ)
for Fig. 4.5 ,

(4.20)
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instead of (4.14). Equation (4.20) represents the respective instantaneous
radial distances. Here, h represents the perpendicular distance of projection
of the observation point from the opposite edge (|23| or |31|) in the sub triangle
under consideration, h3 is the perpendicular distance from the edge |12| and

δ is the angle of instantaneous radius vector R
′′

as measured with edge |12|
(Figs. 4.4 and 4.5).

4.4.4 Adaptive Criterion for Distribution of Sample Points

The selection of the number of sample points in the transformed non rectangu-
lar domain is of critical nature. The deformation in the transformed domain
becomes more and more pronounced as the projected observation point moves
closer to the boundary of the original source domain and a larger number
of sample points is needed to achieve accurate results. Also, it is observed
that the integrands exhibit larger variations when the size of the integration
domain relative to its distance from the projection of the observation point be-
comes larger. Therefore, a real-time selection of distribution of sample points
for the particular geometry encountered is employed in order to account for
the particular deformations and integrand variations, and to enhance the effi-
ciency of the solver to a great extent. As in the original schemes, the Gaussian
quadrature rule is applied however, the number of sample points is selected
proportional to the observed relative angular and radial dimensions (with re-
spect to the observation point or its projection) of the instantaneous slice of
the sub triangle under consideration. The instantaneous check on the ratio
of the length of the slice to its radial proximity from the projection of the
observation point enables the use of optimum numbers of sample points.

The parameters αφ =
∣

∣

φU−φL
π

∣

∣ and αR =

∣

∣

∣

∣

R
′′

U
−R

′′

L

R
′′

U

∣

∣

∣

∣

are proposed for the adap-

tive selection criterion in the angular and radial directions, respectively. For
smaller angular dimensions, described by smaller values of αφ, as few as two
sample points are sufficient (assuming linear vector basis functions), whereas
for larger angular dimensions, described by larger values of αφ, more sample
points are required for good accuracies. Similarly, more sample points are
required for larger values of αR. Although the number of sample points in a
particular radial or angular segment are proportional to αR,φ, yet, the exact
numbers depend on the desired accuracy and can be determined from the nu-
merical experiments. For our requirements, we have subdivided the complete
range of αR,φ ∈ [0, 1] into four segments and used different numbers of samples
for different segments.

In order to demonstrate the adaptive selection of the number of sample points
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Fig. 4.4. Geometry and coordinate system of sub triangles in source domain
when one sub triangle is completely outside the original source domain ∆123.

in radial and angular directions, in Fig. 4.6 a fixed source domain is shown for
two different observation points. In Fig. 4.6(a), as seen from the observation
point, the angular domain of the right-sided sub triangle is larger than that of
the left-sided sub triangle. Therefore, the adaptive scheme chooses 8 samples
in angular direction for the right-sided sub triangle and 2 angular samples for
the left-sided sub triangle. Moreover, because the instantaneous slices are not
very broad in the radial direction, only two sample points in radial direction
are chosen. However, in Fig. 4.6(b) the angular domain as observed from the
observation point is very small and, therefore, only two angular samples are
chosen. Since each instantaneous radial slice is of significantly different size,
the adaptive scheme chooses more samples (i.e. 8) for the larger slice and less
sample points (i.e. 2) for the smaller slice.

4.5 Numerical Results

A comparison of distribution of Gauss-Legendre sample points in the original
and adaptive RA-R2 singularity cancellation transformations is shown in Fig.
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4.7. It can be observed that for 4 × 4 distribution of sample points per sub
triangle, the original scheme uses a total of 4× 4× 3 = 48 points in the source
triangle, out of which only a few are located within the desired source domain.
However, the proposed scheme utilizes 4× 4× 2 = 32 points, all of which are
located completely inside the source domain. This enables the computation of
accurate results with fewer sample points.

In the subsequent results, the real part of the potential integral (4.1) with
scalar basis function for Arcsinh and real part of the normal component of (4.1)
with Rao-Wilton-Glission vector basis functions for RA-R2 were computed at
10 m wavelength.

4.5.1 Convergence Tests for RA-R2 Transformation

In Fig. 4.8, the convergence of the original and adaptive schemes is presented
for the calculation of potential gradient integral (4.2). The proposed scheme
converges for a total of 2×2×2 = 8 sample points, whereas the original scheme
is approximately converged with 5× 5× 3 = 75 sample points. In Fig. 4.9, we
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Fig. 4.6. Adaptive distribution of sample points for a fixed source domain and
two different observation point.

consider a special case in which the source domain is highly deformed. The
integral (4.2) was computed using the original and adaptive RA-R2 schemes.
The adaptive scheme is remarkably faster than the original one.
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Fig. 4.7. Comparison of distribution of Gauss-Legendre sample points for a
near-singularity in the original and adaptive RA-R2 transformations.
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4.5.2 Convergence Tests for Arcsinh Transformation

In another example, we consider a right triangular source domain with vertices
(0, 0, 0), (1 m, 0, 0) and (0, 1 m, 0). The observation point is taken at
(-0.1 m, 0.1 m, 0.01 m). A comparison of convergence behavior in original
and adaptive Arcsinh transformations is presented in Fig. 4.10. The highly
efficient converging behavior of the adaptive Arcsinh transformation is self
evident. Similar to RA-R2, the adaptive Arcsinh scheme converges fastly even
for highly deformed geometries.

4.5.3 Convergence Tests for Various |z|-values of Observation

Point

Another interesting benefit of the adaptive scheme over the original scheme
is that it converges rapidly independent of height of observation point above
the plane of source domain. For this purpose, the geometry being used has
the vertices (0, 0, 0), (0.5 m, -0.5 m, 0) and (0.7 m, 0.1 m, 0). The near-
singular observation point is located at (0.1 m, 2.0 m, |z|). A comparison
of convergence behaviors of original and adaptive RA-R2 schemes for two
different heights |z| = 0.1 m, 0.0001 m, is presented in Fig. 4.11. This shows
that the convergence behavior of original RA-R2 transformations is highly
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sensitive to the height |z| of the observation point above the source plane.
The sensitivity to |z|-variations of the original RA-R2 scheme is due to the fact
that as the height of observation point above the source plane is decreased, the
quadrature points start clustering more closer to the observation point. Since
for near-singularities, the observation point resides outside the actual source
domain, the number of samples which are inside the original source domain are
reduced and hence the accuracy of the computation becomes worse. However,
this is not the case for the proposed adaptive transformations. Because all
of the quadrature points already reside completely inside the original source
domain, therefore the adaptive version of the transformation converges with
fewer sample points regardless of the height of the observation point over
source plane. Similarly the convergence of adaptive Arcsinh scheme has been
found independent of |z|-variations in the observation point.

4.5.4 Mean Error Versus Quadrature Samples

The mean error in the numerical integrations of original and adaptive schemes
for RA-R2 transformations is compared in Fig. 4.12 for the above geometry
given in the legend. For given accuracies, the original scheme requires a large
number of samples as compared to the adaptive one. The mean error curve
for the adaptive scheme has a much sharper inclination than the original one.
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Thus for higher accuracies, the adaptive scheme converges remarkably faster.
Similarly, the mean error in the numerical integrations of the original and
adaptive Arcsinh transformations is compared in Fig. 4.13. Evidently, the
adaptive scheme requires a much smaller number of samples as compared to
the original one for a desired accuracy.

4.5.5 Computational Cost

A comparison of the computational efficiencies of the original and adaptive
schemes was carried out under the same memory and speed environments for
the computation of the near field matrix for a problem with 135 876 unknowns.
For a comparable accuracy of the order of 2 significant digits, the original
scheme took 2 926 seconds whereas the adaptive scheme took 606 seconds.
This explains the effectiveness of the adaptive scheme over the original scheme
in terms of numerical computational cost. Finally, a fully metallic car body
with 4 monopole antennas on its top was analysed with a code based on the
adaptive scheme. The MoM model consisted of 3.1 million Rao-Wilton-Glisson
unknowns and the computation time for about 376 million near-coupling contri-
butions required in the Multilevel Fast Multipole accelerated code was 7 076.6
sec on an AMD Opteron 2.8 GHz processor.
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5 Surface Current Modeling with

Hierarchical Basis Functions

Higher-order basis functions interpolate the field intensities and current den-
sities over sufficiently smooth surfaces more accurately than their lower-order
counterparts. However, near edges and corners lower-order interpolations are
often even more efficient. Hierarchical basis functions are formed by adding
new higher-order basis functions to lower-order ones. A set of hierarchical
higher-order basis functions which makes the formulation complete to full first
order with respect to the divergence of the basis functions has been imple-
mented in the MoM solution of surface integral equations under full utilization
of the developed adaptive singularity cancellation method and is described in
the following sections.

5.1 Introduction

In the method of moments solution of surface integral equation formulations for
the boundary value problems in electromagnetics, the low-order vector basis
functions are widely used for the modeling of electromagnetic field intensities
and corresponding current densities. However, these basis functions have the
fundamental shortcoming that often dense geometrical discretization is neces-
sary for sufficiently good accuracies. In other words, the average size of the
surface and/or volumetric geometrical elements is on the order of λ

10
in each

dimension, λ being the wavelength in the medium. This results in a very large
number of unknown current/field expansion coefficients [25–31]. Furthermore,
the accuracy of the solution while using the LO bases is improved slowly with
increasing the number of unknowns.

Great reduction of the number of unknowns for a given problem and desired
accuracy is achievable through the use of higher-order basis functions [25–33].
Motivated with the benefits of HO basis functions over the LO counterparts,
HO modeling of surface current densities in the MoM solution of surface IEs
is implemented [117,118] and hence discussed below.
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5.2 Complete Versus Mixed-Order Basis Functions

Using Helmholtz’s decomposition, a vector field F may be resolved into curl-
free (alternate names are gradient or irrotational) component and divergence-
free (also known as rotational or solenoidal) component vector fields [29,104]

F = ∇φ+∇×A, ∇ ·A = 0 , (5.1)

where φ and A are respectively known as scalar and vector potentials of the
vector field F . The first term ∇φ in (5.1) represents curl-free component and
second term ∇×A is the divergence-free component.

The electromagnetic formulation for the field solutions consists of two terms,
one related to the curl of the field and other to the field itself. The curl of a field
(say electric field) is the time rate of change of its counterpart field (magnetic
field). Similarly, the integral equations for the modeling of surface current
densities involve the current density as well as its divergence. The divergence
of the current density corresponds to the time rate of change of charge den-
sity. The hierarchical basis functions (e.g. [29,30,33]) try to provide separate
representation of curl-free and divergence-free components of the vector fields.
The idea of mixed-order1 vector elements is to remove terms from the polyno-
mial approximation of the field or current which do not contribute to its curl
or divergence respectively [33, 119]. That is, the curl-free field component or
divergence-free current components of the highest order of basis functions may
be removed from the field or current modeling respectively without the loss
of accuracy. If both the curl-free and divergence-free components of the high-
est order basis functions are incorporated in the modeling of fields/currents,
the formulation is known as full-order or complete space with respect to basis
functions.

Davidson [119] and Webb [33] have demonstrated that the problems where the
electric and magnetic fields are of more or less equal importance, the use of
mixed-order vector elements is beneficial to obtain maximum accuracy for a
given number of unknowns. A sharp edge, for example, will result in a singu-
larity in both the electric and the magnetic fields. However, in problems where
either electric or magnetic field is dominated, the mixed-order formulation is
not preferable. For example, for certain field and discontinuity orientations,
such as partially blocked parallel plate waveguide excited by the electric field,
the singularity is in the electric field alone which is strongly gradient in nature.
In such situations, the curl of the electric field, that is the magnetic field, is

1In case of field modeling, mixed-order vector elements are also known as reduced-gradient
elements.
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relatively less important and hence the mixed-order formulation becomes less
efficient than the complete representation.

In our implementation [117, 118], the curl-free components of first-order and
curl space of the second-order were added to the existing low order RWG [34]
bases, which makes the formulation complete to full first order with respect to
the curl or divergence of the basis functions.

5.3 Choice of Basis Functions

Higher-order current and field modeling in electromagnetics can be achieved
using interpolatory or hierarchical vector basis functions, in both divergence
and curl-conforming arrangements. The interpolatory basis functions are de-
fined on a set of points on an element, such that each basis function is of the
same order and typically vanishes at all the points except for one. These basis
functions possess good linear independence and thus the matrix system is well
conditioned. Unfortunately, the interpolatory basis functions of a given order
are completely different from those of the lower order. Thus basis functions of
different orders cannot easily be used together. On the other hand, the basis
functions are said to be hierarchical, if the LO basis functions form a subspace
of the HO basis functions. The use of basis functions of different orders in a
problem is therefore possible with the hierarchical basis functions.

In contrast to the interpolatory basis functions, the hierarchical basis func-
tions suffer from a weakness that as the order increases, the system matrix
becomes ill-conditioned, which worsens the convergence rate of the iterative
solver. However, if the basis vectors are made orthogonal, a better condi-
tioned system matrix may be obtained. Nearly-orthogonal set of field basis
functions [29,30] for flat triangles is our choice for possibly better conditioned
system matrix. Another class of near-orthogonal basis functions for curvilinear
quadrilaterals is presented in [28].

In the context of finite element modeling, the tangential continuity of the field
intensities is guaranteed through the use of tangentially continuous set of basis
vectors. Similarly, the set of basis functions most suitable for the modeling
of current densities in the MoM solution of integral equations must guarantee
the normal continuity. The work presented here benefits from the use of tan-
gentially continuous field basis functions αn [29, 30], which are transformed
into normally continuous current counterparts fn using [25,26]

fn = n̂× αn , (5.2)

where n̂ is the outward directed unit surface normal.
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The selected basis functions complete to full first order for the curl or diver-
gence of the basis functions, along with their characteristics necessary for the
MoM system matrix setup are given in Table 5.1 and presented graphically in
Fig. 5.1.

For the higher order modeling of current densities, the matrix elements namely
(3.35)-(3.42), of the governing surface integral equations have to be computed
to include the additional interactions between LO and HO basis functions.

As can be seen from the Table 5.1, a general form of vector basis functions for
the present implementation is

fn =
u(λ1, λ2) t12 + v(λ1, λ2) t23 + w(λ1, λ2) t13

2A
, (5.3)

where tij are the edge vectors of the element under consideration as shown in
Fig. 5.2, A is the surface area of the element, and u, v and w are polynomial
functions of the normalized barycentric (simplex) coordinates λ1, λ2. It is to
be noted that the edge vectors are constant vectors for a pair of testing and
source elements.

Now basis-by-basis evaluation of the coupling integrals (3.35)-(3.42) enables
the quicker adaption of lower order existing formulation to HO counterpart.
As pointed out in [34], the integral evaluation can be made efficient by rewrit-
ing the expressions such that the terms involving constant edge vectors tij
are taken out of the integrand and the necessary scalar integrals containing
barycentric polynomials u, v, w and the scalar Green’s function G0 are evalu-
ated once. An exemplary problem is computed with basis-by-basis evaluation
procedure as well as with scalar barycentric integral approach and is reported
in the section 5.6 to compare computational costs.

5.4 Iterative Solver Matrix-Vector Product

The MoM solution of IEs results in a system of linear equation

[Z] {x} = {b} , (5.4)

where [Z] is the fully populated coupling matrix, {b} is the excitation vector
and {x} represents the expansion coefficients of the discretized unknown sur-
face current density. For large problems, it is mandatory to solve the equation
system by an iterative method [120], where especially the generalized minimal
residual algorithm (GMRES) is attractive. These equation solvers require the
repeated evaluation of matrix-vector products [Z] {x}. To speed-up the compu-
tation of matrix-vector products, the MLFMM algorithm is used. In many sit-
uations, the convergence of a simple iterative algorithm is not satisfactory and
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Fig. 5.1. Graphical representation of the basis functions fn = n̂ × αn: (a)
1st order, edge associated, rotational space, (b) 1st order, edge associated, gra-
dient space and (c) 2nd order, face associated, rotational space. The terms
rotational and gradient spaces are with respect to the αn. Basis functions (a)
and (b) are associated with the common edge 12 of the two contiguous triangles.
The 2nd order basis functions (c) are associated with the face 123. Addition of
the bases (b) and (c) to those of (a) will build a set of basis functions complete
to full first order with respect to the curl or divergence of the basis functions.
For the modeling of an unknown quantity (e.g. either electric or magnetic cur-
rent density) inside an element, one basis function of each type (a) and (b) is
associated with each edge, and two basis functions of type (c) are associated
with each face of the element.
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Fig. 5.2. Vectorial representation on a triangular element under the local coor-
dinate system for the illustration of vector basis functions.

improved convergence behavior is sought to be obtained by preconditioning the
equation system according to (e.g. left-hand side preconditioner) [120,121]

[

Z̃
]−1

([Z] {x} = {b}) , (5.5)

where
[

Z̃
]

is an approximation of [Z] that is relatively cheaper to invert, but

can also be chosen identical to the original matrices [121].
[

Z̃
]−1

is iteratively
computed as suggested in [122] and illustrated in Fig. 5.3. When the iterative
preconditioner is applied, the iteration loop is broken after each matrix-vector

product and another iteration loop is started to compute
[

Z̃
]−1 {y}, where

{y} is the result of the matrix-vector product in the main iteration loop. In
contrast to the main iteration loop, the preconditioner iteration loop is not
necessarily iterated until convergence is achieved. To obtain a cheap precon-
ditioner, it is terminated as early as possible. However, convergence must be
good enough to have a useful preconditioner and to obtain a stable overall iter-
ation process. To improve the convergence of the preconditioner iteration, the
concept in [122] has been extended in [121] and further preconditioning levels
were introduced. The preconditioner iteration loop is broken again and an-
other iteration loop is started to precondition the preconditioner. The second

preconditioner is generated with the matrix
[

˜̃Z
]

which is an approximation
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Fig. 5.3. Recursive iterative solution of linear equation system.

of
[

Z̃
]

. It has been reported in [121] that two preconditioner levels are suf-
ficiently advantageous. The matrix-vector product computations are speeded
up by this method. This recursive iterative solver is known as the flexible
generalized minimal residual algorithm (F-GMRES) and will be applied for
the solutions of numerical examples presented in section 5.6.

5.5 Multilevel Fast Multipole Method

In the standard FMM and MLFMM approaches [3, 5, 35, 36], based on edge-
to-edge interactions, the minimum FMM group size and the number of FMM
levels are limited by the size of the largest elements in the geometrical mod-
eling of the object, as long as the group sizes are larger than that dictated
by the so-called low-frequency breakdown of FMM [5]. Now because of the
larger element size with the HO basis functions, the FMM group size is larger
than that with LO basis functions. Equivalently, fewer number of FMM levels
are permissible which in turn restricts full utilization of the MLFMM memory
and computational efficiencies for high-frequency applications, where the basis
function density is kept as low as possible. Further, with the increasing order
of the basis functions, the average number of unknowns per element is also
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increased resulting in a denser FMM group in terms of unknowns with HO
bases than with the LO bases. Consequently, associated with each HO basis
function, more near couplings must be evaluated and stored which makes the
traditional MLFMM relatively inefficient. A point-based multilevel fast mul-
tipole algorithm (MLFMA) [37], as an example, has tackled this problem by
implementing MLFMM based upon the point-to-point interactions permitting
two more FMM levels compared to the traditional basis-based MLFMM. In
point-based MLFMA, the memory requirement for the storage of radiation and
receiving patterns for each basis has been reported to be reduced by a factor
of about 4 but that associated with the near field interactions is unchanged
in comparison with the basis-based MLFMM. However, the SE-MLFMM [6]
is inherently more efficient in terms of memory and computational cost even
with edge-to-edge interactions due to the efficient storage of the k-space repre-
sentations of the individual basis functions. SE-MLFMM has therefore been
utilized in the current implementation to accelerate the HO bases based MoM
solution of IEs.

The memory savings in SE-MLFMM have been achieved using the spherical
harmonics expansion of the k-space representations of the basis/testing func-
tions. The k-space representation of the basis functions fn(r) belonging to an
FMM group with its center index n′, is given by [5,6]

∼

fn(k̂) =

∫

©
∫

So

fn(r)ejk·(r−r
n′

) ds′ . (5.6)

For the memory efficient representation of
∼

fn, the orthonormalized spherical
harmonics Ypq [36,123]

Ypq(θ, φ) =

√

(p− q)!
(p+ q)!

(2p+ 1)
4π

P qp (cos θ) ejqφ , (5.7)

with P qp being the associated Legendre polynomials of degree p and order q
are used for its expansion according to

∼

fn(θ, φ) =

P
∑

p=0

p
∑

q=−p

f
n
pqYpq(θ, φ) , (5.8)

where fnpq represent the SE coefficients and P is the SE degree. For further
details on the formulation of SE-MLFMM interested readers may refer to [6].

It is known from [36] that the spherical harmonics (5.8) at the finest level in
the expansion of basis functions decay rapidly for P > L

2
, L being the number
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of multipoles (2.23) at the finest level in the expansion of translation opera-
tor. According to [6], this choice of degree P of spherical harmonics is valid
when only the tangential components (i.e. spherical vector components) of the
basis/testing functions are considered in the FMM formulations. This makes
it sufficient to store k̂-space representations for these two vector components.
However, as reported in [6] the spectral contents of Cartesian vector compo-
nents is smaller than that of vector components tangential to the Ewald sphere.
Thus, the k̂-space representations of three Cartesian vector components has
been reported to be more memory efficient than that of two vector tangential
components. Therefore for SE-MLFMM, where the Cartesian vector compo-
nents have been formulated, P = L/2 − 1 may be opted [6]. Whereas in [6]
the choice P = 2 is recommended, this value works well for LO basis func-
tions. However, for HO basis functions, as can be revealed from (5.6), higher
P -values are needed for comparable accuracies. The choice P = L

2
for even

L and P = L+1
2

for odd L is a suggestion for sufficiently good accuracies.
However, in cases when L > 10, the values P > 5 did not show significant
improvements in the solution accuracies and hence for the present HO formu-
lation P ≤ 5 is recommended.

5.6 Numerical Results

In order to demonstrate the accuracy and efficiency of our implementation, sev-
eral candidate problems are being presented in this section. Root mean square
(RMS) error was used as a measuring tool for the comparison of accuracies of
the solutions and is defined as

RMS =

√

√

√

√

1
Nr

Nr
∑

i=1

|φR − φF |2 , (5.9)

where Nr is the total number of result values in a problem under consideration,
φR represents the reference value obtained either from some available exact
solution or otherwise computed with our code with sufficiently fine discretiza-
tion of the object surface. φF is the result calculated with our code. The
normalized residual error of the iterative solver was fixed to 10−4 for all exam-
ples, unless stated otherwise. Flexible generalized minimal residual solver was
used for the iterative solution of the MoM matrix. All computations, unless
otherwise mentioned, were carried out on an AMD Opteron(tm) Processor 854
with 2.8 GHz central processing unit and total available memory of 32 GB.
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5.6.1 PEC Sphere

In the first example, we carried out computations of the bistatic radar cross
section (Bi-RCS) of a perfectly electrically conducting sphere of diameter 1 m
at various frequencies for an x-polarized, z-directed incident plane wave. CFIE
was used for these calculations. In a first attempt, the sphere was discretized
with 53 822 triangular elements giving rise to 269 110 HO electric current un-
knowns. The Bi-RCS was computed at 11.8 GHz using six FMM levels. Near
coupling matrix elements were computed using adaptive singularity cancel-
lation technique. The spherical harmonics based expansion of the k̂-space
representation of the basis functions (see eq. (5.8)) was truncated at P = 5
during the initialization step of MLFMM. The matrix setup time with basis-
by-basis evaluation of the coupling integrals (3.35)-(3.42) was 1 838.2 sec and
with scalar barycentric integral approach was 769.5 sec both computed on an
AMD Athlon(tm) XP 2500+ 1.84 GHz and 2 GB of RAM, which demonstrates
at least twice faster evaluation of the later over the former approach. Future
examples are solved with the scalar barycentric integral approach. The RMS
error computed with reference to the exact solution using Mie series was found
to be 0.10 dB. The detailed memory and processor time requirements, com-
puted on 2.8 GHz AMD Opteron, are summarized in Table 5.2 (see soln. no.
1) and the Bi-RCS in E-plane is plotted in Fig. 5.4.

Next the memory requirements of HO implementation based on SE-MLFMM
are compared with those of point-based MLFMA. The interpolatory HO basis
functions proposed by [32] are used in [37, 124]. On average there are 1.5,
5, and 10.5 unknowns per triangle for zeroth-, first-, and second-order basis
functions respectively. Therefore, in terms of accuracy of the solution for a
given number of unknowns, our HO formulation should be comparable to the
first-order basis functions solution of [37, 124]. As reported in [124, Table
III], the computation of Bi-RCS of a PEC cube having side length of 15λ
requires 750 MB memory for 73 200 1st order basis functions. Whereas, the
SE-MLFMM based HO implementation requires 374.3 MB memory using four
FMM levels with 74 400 HO unknowns (Table 5.3, soln. no. 17).

In another example, a 73.4λ diameter PEC sphere was modeled with 201 232
and 772 598 triangular elements to get 1 006 160 HO and 1 158 897 LO basis
functions respectively. The Bi-RCS was computed with seven-levels of SE-
MLFMM in both cases and required computational resources are summarized
in Table 5.2 (soln. nos. 10 and 11). Memory requirements for LO and HO
are almost comparable. The difference in the matrix setup time for LO and
HO is due to larger number of LO triangles in each FMM group. However,
the iterative solver for HO becomes slowly converging, as expected. The RMS
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Fig. 5.4. Bistatic RCS of a 39.4λ diameter conducting sphere with an incident
plane wave at f=11.8 GHz. A zoomed copy for 40◦ span is also placed at top
right corner.

error was found to be 0.09 dB for HO solution and 0.43 dB for LO solution.
Similarly, the RMS error for the Bi-RCS of 76.7λ was 0.09 dB and 0.46 dB
for HO and LO solutions, respectively (Table 5.2, soln. nos. 12 and 13). Re-
ferring to soln. no. 5 of Table 5.2, computation of Bi-RCS of 76.7λ PEC
sphere with 1 006 160 HO unknowns and seven-levels SE-MLFMM took about
3.26 GB memory.

The largest problem which we computed with SE-MLFMM based HO code
was a sphere with 772 598 triangular elements and resulting 3 862 990 HO basis
functions. Using this discretization the Bi-RCS was computed for 150λ, 166.8λ,
183.5λ, and 200λ diameter spheres with 54.6, 44.2, 36.5, and 30.7 number
of HO basis functions per square wavelength. The RMS errors in dB with
reference to the Mie series solution were found to be 0.11, 0.16, 0.23, and 0.42,
respectively (Table 5.2, soln. nos. 6-9).
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5.6.2 Box-Plate Scatterer

An example of perfectly electrically conducting box-plate scatterer [125] was
also solved with SE-MLFMM based HO implementation. The scatterer con-
sists of a 2 m × 1 m × 0.3 m box and on it is a vertically oriented 1 m× 1 m
plate. The Bi-RCS is computed for a z-directed x-polarized incident plane
wave. Computational requirements are summarized in Table 5.3 (soln. nos.
12-16) and Bi-RCS is also plotted in Fig. 5.5. The Bi-RCS was obtained
through the use of EFIE and normalized residual error of 10−3 using vari-
ous numbers of the LO and HO basis functions for the entire domain. Using
11 830 HO unknowns and four FMM levels, the overall memory requirement
was 16.57 MB which is comparable to the one reported in [125, Table I] for 1.5
order of basis functions. Using 3-level recursive preconditioner [122,126] with
3, 5, and 8 search vectors respectively in the outer, inner and inner-most loops,
the F-GMRES solver was converged to the desired accuracy in 37 restarts of
the outer loop consuming 445.9 seconds for the complete solution. The ex-
periment when performed on an AMD Athlon(tm) XP 2500+ 1.84 GHz and
2 GB of RAM, the total solution time was observed to be 1 014.3 seconds.
However, as reported in [125], the restarted version of GMRES(30) algorithm
took 9 201 iteration steps and 9 773 seconds for 11 614 unknowns of 1.5 order
on a Pentium 4 with 2.9 GHz CPU and 1 GB of RAM. From the comparison
of RMS errors in soln. nos. 13 and 14, it can again be reviewed that higher
solution accuracies are achievable with HO basis functions than with equal
number of LO basis functions except the drawback of slower convergence of
the iterative solver. One possible solution for slower convergence is the use of
more search vectors in the multilevel iterative solver. From Table 5.3 it can
be seen from the soln. no. 15 which is just a replica of soln. no. 14 except
that strong solver parameters (i.e. search vectors 8, 12, and 15 respectively
in the outer, inner and inner-most loops) were incorporated and the complete
solution time was reduced to 290.2 seconds but at the cost of slightly larger
solution memory. The soln. no. 14 and 15 converged to the desired accuracy
in 37 and 4 restarts, respectively.

5.6.3 PEC Plate

Another experiment was carried out for the computation of Bi-RCS of a PEC
15λ plate for grazing incidence of the incident plane wave. Memory and compu-
tational requirements are summarized in soln. nos. 1-7 of Table 5.3. Existence
of the deep nulls in φ = 0◦ plane, results in higher values of the RMS errors in
this plane. From the soln. nos. 3 and 6 of Table 5.3, it can also be observed
that about 55 HO basis functions per square wavelength produce accuracies
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Fig. 5.5. Bistatic RCS of a box-plate scatterer at 1 GHz in φ = 0◦ plane.

comparable to that of 211 LO basis functions per square wavelength. Ben-
efit in terms of the requirements of memory and computational time is also
observable.

5.6.4 Thin Dielectric Coatings on a PEC Sphere

In order to elaborate the efficient treatment of material coating on metallic
surfaces using IBC, the Bi-RCS of a PEC sphere of 1 m diameter coated
with 0.25 cm thick dielectric (ǫr = 2.5 − j0.5) was computed due to a 3 GHz
linearly polarized incident plane wave. The computations were carried out
with LO and HO basis representation and results are compared with the Mie
series solution in Fig. 5.6. Reasonably accurate solution was obtained with
much fewer HO unknowns than with LO unknowns. It can be seen that 38 660
HO unknowns produce results of similar accuracy as that with 176 472 LO
unknowns. Further, if we compare the results of 40 530 LO and 38 660 HO
unknowns in Fig. 5.6, the higher accuracy achieved with the HO unknowns
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than with almost similar number of LO unknowns is however, to some extent,
evident. The HO solution with 38 660 unknowns was done in 272 s with 232 MB
solver memory using three-level SE-MLFMM. On the other hand, 40 530 LO
unknowns problem was solved in 485.7 s requiring 250.2 MB using three-level
SE-MLFMM. In all cases 3, 4, and 4 search vectors were respectively used in
the outer, inner and inner-most loops. The LO solution of 176 472 unknowns
was obtained in 1 084.7 s, 630.8 MB while making use of 5-level SE-MLFMM.
Efficient and relatively accurate MoM solution of surface integral equations
with HO modeling of current densities, subject to IBC, is thus obvious.

5.6.5 Paraboloidal Reflector Antenna

Finally, an offset parabolic reflector antenna having diameter 21.89λ, offset
height 4.13λ and focal length 20.65λ illuminated with a pyramidal feed horn
operating at 6.175 GHz was modeled with LO and HO basis functions for
the evaluation of far-field radiation pattern. The current distribution on the
surfaces of horn and reflector antenna along with the radiation patterns are
shown in Fig. 5.7. The computational data is summarized in soln. nos. 8-11
of Table 5.3.

5.6.6 Computational Performance with Diagonal and

Symmetric Diagonal Preconditioner

As can be seen in above presented results for the comparison of LO and HO
basis functions, although better accuracies have been obtained with HO as
compared to LO, the solution times are often much larger for HO case. This
makes the choice of HO relatively less favorable. A symmetric- (or square-
root-) diagonal preconditioner has therefore been applied to enhance the com-
putational efficiencies with HO discretizations. In this case, square-root of the
diagonal preconditioner is used as both left- and right-preconditioner. Better
performance has been observed with HO basis vectors.

The reflector model of section (5.6.5) has been chosen for this experiment.
Computations were carried out on an Intel 2.83 GHz CPU, 16 GB RAM, with
MS Windows XP-Pro x64 edition. The minimum size of FMM box was chosen
twice the maximum edge length in both LO and HO modeling. During the
iterative solution, 8, 10, and 18 search vectors respectively in the outer, inner,
and inner-most preconditioner loops were used for all experiments. The de-
grees of multipole expansion on the finest level for LO and HO were 6 and 14.
Based on this, the maximum number of spherical harmonics expansion terms
in the series representation of the basis functions in an FMM group have been
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Fig. 5.6. Bistatic RCS in φ = 0◦ plane of a dielectrically coated PEC sphere
having 1 m diameter. Computations were carried out using LO and HO basis
functions for an incident plane wave of 3 GHz and results are compared with
Mie series solution.

chosen to be 3 and 5 respectively for LO and HO. The computation time and
memory requirements are reported in Table 5.4. Obviously, the symmetric-
diagonal preconditioner used for HO solutions gives about 30% improvement
for HO and about 15% improvement for LO in the computation time for the
flexible GMRES solver applied to the problem underconsideration. Unfortu-
nately, the solution time for HO is still higher than the LO for approximately
similar solution accuracies. This issue has to be addressed in future studies
for further improvements in solution of integral equations with HO modeling
of current densities.
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5.6.7 Computational Performance with Mixed- and

Complete-Order Basis Functions

As discussed in section 5.2, set of basis functions used in the MoM modeling of
surface current densities for the solution of integral equations, may be mixed-
order or complete-order bases. Here we compare the performance of these two
types of basis formulations for the analysis of the reflector antenna of section
(5.6.5). The complete-order basis formulation consists of LO (i.e. R1 vectors
of Table 5.1) plus the divergence-free functions (i.e. G1 vectors of Table 5.1).
With reference to Table 5.1, we call our basis formulation as LO, complete-
order, and mixed-order if the set of functions R1, R1 +G1, and R1 +G1 +R2

are opted as the basis functions. A point to be noted is that the complete-order
and mixed-order here means complete or mixed with respect to the basis space
and not with respect to the curl or divergence of the basis space. A comparison
of results with these three types of modeling options is summarized in Table
5.5. The computations are carried out with symmetric-diagonal preconditioner.
Other parameters are similar to those reported in section 5.6.6. The far field
radiation pattern in φ = 0◦ plane computed for the above mentioned three
choice of basis functions is plotted in Fig. 5.7(b). From these results, it can be
concluded that addition of divergence-free terms to the low order RWG makes
the formulation more favorable (at least for the problem under-consideration)
for a given accuracy of the solution.

Table 5.4
Comparison of MoM Based Solutions of EFIE for Reflector Antenna

with Diagonal and Symmetric-Diagonal Preconditioner.

Base FMM Mem. Time

Ord. N length Precond. levels (MB) (sec)

LO 304478 λ/14 Diag. 6 1124 2703

LO 304478 λ/14 Sym. Diag. 6 1124 2293

HO 109014 λ/5 Diag. 5 982 5666

HO 109014 λ/5 Sym. Diag. 5 982 3919
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Table 5.5
Comparison of MoM Based Solutions of EFIE for Reflector Antenna

with LO, Complete-Order and Mixed-Order Basis Functions.

FMM Mem. Time Res.

Type of bases N levels (MB) (sec) error

LO: R1 304478 6 1124 2293 1.70 × 10−5

Complete: R1 +G1 65252 5 392 1135 1.06 × 10−6

Mixed: R1 +G1 +R2 109014 5 982 3919 3.50 × 10−5



5.6 Numerical Results 73

-200 -150 -100 -50 0 50 100 150 200
-30

-25

-20

-15

-10

-5

0

5

10

Theta (deg)

2
0
*l
o
g
1
0
(E
) 
(d
B
V
/m
)

LO: N=18859

HO: N=6008

(a)

-150 -100 -50 0 50 100 150
-80

-70

-60

-50

-40

-30

-20

-10

0

Theta (deg)

N
o

rm
a

li
z
e

d
 r

a
d

ia
ti

o
n

 p
a

tt
e

rn
 (

d
B

)

LO: R1: N= 304478

HO: R1 + G1: N= 65252

HO: R1 + G1 + R2: N=109014

(b)

Fig. 5.7. Far field radiation patterns and electric current distribution on the
surface of (a) pyramidal feed horn and (b) horn-fed parabolic reflector.





6 Inverse Equivalent Current Method

Radiation characteristics of an object under investigation are often desired
from the knowledge of its near-field distribution. Inverse equivalent current
method has been employed because of its versatile applicability to deal with
arbitrary working domains and robust solution strategy where fast solvers are
viable to gain memory and computation efficiencies. This treatment is based
on an integral equation which relates the field intensities to their sources,
usually the surface current densities. The Huygens equivalent surface currents
have been investigated to account for the known near field characteristics of
an object. Method of moments like solution may be sought for the governing
integral equation. High efficiency has been achieved through the application of
multilevel fast multipole method and better accuracy was possible with higher
order modeling of current densities. This is presented in the sections to follow.

6.1 Integral Equation in Inverse ECM Formulation

In various applications of practical interest, for example antenna pattern mea-
surements, tailor-made antenna synthesis etc., the investigation of the radiated
fields or the equivalent electric/magnetic surface currents on the object surface
from the knowledge of electric/magnetic near-field intensities defined on an ar-
bitrary grid around the object under test is often desired. The aim of this task
is to determine surface current sources such that their radiated fields best fit
with the field strengths given at certain grid of sample points. Out of various
techniques available in the literature, the inverse equivalent current methods
e.g. [40,41] etc. are most attractive because of their diverse applicability and
robustness in the solution accuracies.

According to Huygens’ principle, an arbitrarily shaped radiating or scattering
object may be characterized by equivalent electric and magnetic current densi-
ties defined on a closed surface So around/on the object. In the inverse ECM,
aim is to synthesize the equivalent current sources on such arbitrary Huygens
surface from the knowledge of field strength. In order to investigate such prob-
lem, the radiated or scattered electric and magnetic fields E(r), H(r) defined
on arbitrary observation point r may be related to the equivalent electric and
magnetic surface current densities Js(r′),Ms(r′) defined at r′ ∈ So, through
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the integral equations [40,41]

E(r) =

∫∫

So

[

−

G
E
J (r, r′) · JA(r′) +

−

G
E
M (r, r′) ·MA(r′)

]

ds′+Einc(r) , (6.1)

H(r) =

∫∫

So

[

−

G
H
J (r, r′) · JA(r′) +

−

G
H
M (r, r′) ·MA(r′)

]

ds′+Hinc(r) , (6.2)

where
−

GEJ and
−

GEM are the electric type dyadic Green’s functions for the elec-

tric and magnetic currents respectively and similarly
−

GHJ and
−

GHM represent
the magnetic type dyadic Green’s functions associated with the electric and
magnetic currents. Einc(r) and Hinc(r) are respectively the incident electric
and magnetic fields. Integral equation (6.1) may be solved if electric field
samples are available, whereas (6.2) can be considered if one is interested in
magnetic field samples. The minimum number of field samples sufficient for
good accuracy are dependent on the electrical size of the Huygens surface
opted as the domain of current sources and may be computed by the crite-
rion presented in [39]. The ECM formulation presented here assumes that the
electric field samples are known and hence only (6.1) will be considered in the
following sections.

6.2 MoM-Like Solution Strategy

Method of moments like procedure may be adapted in the solution of the
integral equation (6.1), in which case the unknown inverse equivalent currents
may be expanded using a set of expansion functions as

Js =

NI
∑

n=1

Jnfn , Ms =

NM
∑

n=1

Mnfn , (6.3)

where Jn and Mn are the unknown expansion coefficients. N = NI +NM is
the total number of unknowns. fn represents a set of basis functions which
may be low-order or higher-order.

In solving (6.1), recently low-order Rao-Wilton-Glisson functions have been
employed for triangular domains in the discretization of unknown surface cur-
rent densities [40]. Efficient solutions of surface integral equations in radiation
and/or scattering problems of electromagnetics are possible with higher-order
expansion functions as discussed in Chapter 5. With this motivation, hier-
archical nearly-orthogonal higher-order expansion functions (see Chapter 5)
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have been utilized for the discretization of inverse equivalent currents on the
planar triangular domains [127].

The discretized version of the integral equation (6.1) may be transformed to a
system of linear equations when tested at each field sample resulting in matrix
equation

[Z] {I} = {E} . (6.4)

As described in [40], the present formulation is implemented in such a way
that each angular component, i.e. Eθ and Eφ, of the field intensity gives one
constraint equation. Hence, the total number (say M) of constraint equations
in a problem is twice the number of field observation points. Contrary to the
usual MoM solution of integral equations, the impedance matrix [Z] encoun-
tered in ECM is non-square (i.e. N 6=M) in addition to being ill-conditioned.
Consequently M linear equations have to be solved for N current unknowns.
Therefore, the matrix system is solved in a least mean square (LMS) sense

[Z]adj ([Z] {I} = {E}) , (6.5)

where [Z]adj is the adjoint matrix corresponding to the impedance matrix [Z].
Spherical harmonics based MLFMM [6,128] has been utilized to speed-up the
overall computation of the ECM. In the present treatment of ECM formulation,
observation points are chosen sufficiently apart from the source domain such
that field contributions are always computed according to the SE-MLFMM.
The generalized minimal residual solver has been utilized for the solution of
normal equation (6.5). In the present work, the iterative solver is stopped at

∣

∣[Z]adj ([Z] {I} − {E})
∣

∣ ≤ 10−da , (6.6)

where da represents the number of digits of accuracy and in the present course
of study our choice is da = 4. The near-field residual error [40]

ǫNF =
([Z] {I} − {E})adj ([Z] {I} − {E})

{E}adj {E}
(6.7)

have been considered which is a representative of the mapping between the
near-field samples E and ECM currents Js as governed by (6.1). The smaller
the ǫNF, the better the solution.

6.3 Numerical Results

A comparison of inverse ECM with LO and HO current modeling is presented
through various numerical experiments. Number of field samples in all exam-
ples is chosen according to the criterion laid down in [39]. In order to demon-
strate the relatively higher accuracies in the solutions of HO based ECM than
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with those of LO, the radiation patterns in the principle planes due to the ECM
currents as well as NF errors (6.7) have been compared. All experiments have
been carried out on an Intel 2.83 GHz CPU, 16 GB RAM, with MS Windows
XP-Pro x64 edition.

In first experiment, electric field samples on a sphere with radius 2.7 m have
been computed at 12 GHz with MoM due to a small dipole (1 cm × 4 cm)
excited with a δ-gap voltage source at its center. From these field samples,
inverse currents are computed at the same frequency with LO and HO based
ECM on the surface of the dipole. The surface of the antenna is considered as
the Huygens surface. In order to investigate the solution accuracies with LO
and HO basis functions, in this example a surface triangular model with about
1.8 subdivisions per wavelength is considered for the ECM solution. From the
inverse ECM currents obtained with both LO and HO basis functions, the
relative radiation patterns in horizontal plane (φ = 0◦) are computed and
compared in Fig. 6.1. The HO based ECM currents produced radiation pat-
terns which show good agreement with the reference MoM results. However,
as can be seen, LO based ECM results vary significantly from the reference
MoM results. Furthermore, the relative NF errors due to LO and HO basis
functions were found to be 0.306 and 0.0876 respectively. This explains better
accuracies obtained in ECM solutions with HO than with LO basis functions.

In second example, inverse ECM currents on a 20λ PEC plate are investigated.
The surface of the PEC plate is considered as the Huygens surface. Firstly, the
scattered electric fields on a spherical grid of 11 536 samples due to a plane wave
incident on the plate at grazing angle have been computed employing MoM
solution of integral equations with sufficiently finer triangular discretization
of the plate. From the field samples, the inverse ECM currents are computed
on the plate with LO and HO basis functions using about 1.4 subdivisions
per wavelength. Identical FMM parameters (e.g. size of FMM box at finest
level, number of multipoles and integration samples) and the solver parameters
(e.g. search vectors, residual error) in accordance with well-known criterion
have been used in both LO and HO based ECM solution. For the solution
of 2 727 LO unknowns and 9 170 HO unknowns, the ECM solver converged to
less than 10−4 residual error in 6 748 sec and 1 180 sec, respectively, for LO
and HO basis functions. The memory requirements for LO and HO were 265
MB and 272 MB, respectively. The Bistatic RCS in horizontal and vertical
planes have been computed from the inverse currents and are plotted in Fig.
6.2. HO results show better agreement than those of LO when compared with
the reference MoM solution. Furthermore, the relative NF errors due to LO
and HO basis functions have been found to be 0.319 and 0.024 respectively.
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Fig. 6.1. Normalized radiation pattern of a dipole in φ = 0◦ plane at 12 GHz
from LO and HO ECM currents using 4 186 field samples on a sphere with radius
2.7 m. A triangular surface mesh with about 1.8 subdivisions per wavelength
has been used in the ECM model.

In another example, various Huygens surfaces are considered in ECM solutions
with LO and HO surface current modeling. Firstly, MoM based computations
of the near field samples are carried out due to a horn antenna at 6.175 GHz on
a sphere around the horn and having radius of 2 m (far field distance ≈ 3 m)
and 2◦ steps in φ and θ directions. From these near field samples, ECM cur-
rents have been computed over three different Huygens surfaces, namely the
horn itself, a sphere and a box both circumscribing the original horn. In each
case, suitable discretization of the Huygens surface is used such that the result-
ing NF errors ǫNF for LO and HO are of comparable magnitude. Furthermore,
in the ECM solution, the side length of FMM group at the finest level was
chosen equal to twice the maximum edge length of the triangular domains in
both LO and HO cases. In Table 6.1 comparison of LO and HO computa-
tional performance is presented for three Huygens surfaces. As can be seen,
the overall computation time for HO, in most cases, is significantly less than
that of LO. The corresponding far field plots in horizontal plane are shown
in Fig. 6.3. From the results presented in Table 6.1, it can be observed that
for HO current modeling fewer number of large sized triangles are sufficient
to obtain a solution comparable to LO modeling. Depending on the actual
setup, the Huygens surface, the solver parameters etc. HO modeling is able
to reduce the computation time for ECM solutions.
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Fig. 6.2. Bistatic RCS in vertical plane (φ = 90◦) of a PEC plate with side
length 20λ due to LO and HO inverse currents on the surface of plate computed
with a plane wave at grazing incidence using 11 536 field samples on a sphere
with radius 20 m. ECM model for both LO and HO basis functions works with
triangular surface mesh having 1.4 subdivisions per wavelength.

Table 6.1
Comparison of ECM-LO and ECM-HO for Different Huygens Surfaces.

Mean edge No. of Solution Time NF error

length Triangles (Sec) ǫNF

Horn LO λ/16 12 619 1 416 0.0044

Horn HO λ/10 4 540 563 0.0064

Sphere LO λ/14 60 850 6 332 0.0015

Sphere HO λ/7 17 334 2 585 0.0013

Box LO λ/15 26 656 810 0.0062

Box HO λ/8 6 696 793 0.0061
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7 Analysis of Space-Borne Reflector

Antennas

For spacecraft applications the computation of radiation pattern of antennas
is of significant importance. It is often desired to predict accurate radiation
patterns not only in the main beam region but also in outer regions to avoid in-
terference with other neighboring communication networks. Having developed
efficient and accurate techniques for the analysis of electromagnetic problems,
a few exemplary satellite antennas with and without the presence of satellite
assembly are hereby considered for the prediction of their radiation perfor-
mance.

7.1 Isolated Reflector Antennas

In this section it is assumed that the antennas under investigation are work-
ing in free space without any consideration of its surrounding objects. The
method of moments based surface integral equation solver incorporating adap-
tive singularity cancellation technique [22–24, 104] and higher-order surface
current modeling [117, 118] accelerated with spherical harmonics expansion
based MLFMM [6] has been utilized for the analysis of two exemplary satel-
lite antennas. Additionally the field computations are also carried out with
a Jacobi-Bessel series expansion of physical optics radiation integral formula-
tion [42,129,130] for comparison purposes.

In the first example a 1.06 m offset parabolic reflector with focal length 1 m and
offset height 0.2 m operating at 6.175 GHz illuminated with a 11.2 cm × 8 cm
aperture pyramidal feed horn is analyzed. In a Jacobi-Bessel series expansion
of physical optics radiation integral formulation [42, 129, 130], the C and D
matrices have been precomputed and stored in the memory and are used for
the computation of radiation pattern in any (θ, φ) directions. In SE-MLFMM
accelerated MoM-IE formulation, 65 252 complete-order (R1 +G1) current ba-
sis functions have been solved making use of 5 FMM levels. The solution of the
linear system of matrix equation has converged in about 1 135 s for a residual
error of 1.06 × 10−6 while working on an Intel 2.83 GHz CPU, 16 GB RAM,
with MS Windows XP-Pro x64 edition. Radiated fields are then determined
from the knowledge of current distribution and making use of radiation inte-
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Fig. 7.1. Relative power distribution in dB on the surface of the 1.06 m offset
reflector.

gral in negligible time.

The current distribution on the reflector surface is shown in Fig. 7.1, where the
design parameter -10 dB edge illumination is visible. The far-field radiation
pattern obtained with series-PO and MLFMM-MoM in H- and E-planes are
compared in Fig. 7.2. It can be observed that PO and MoM patterns in both
planes are very identical for main lobe and first few sidelobes. However, in
far lobes PO results deviate from those of MoM. In E-plane away from ±20◦,
deviation of PO results from those of MoM are very pronounced.

In PO formulation, approximation of surface current density and edge disconti-
nuities in currents on reflector are thought to be the reasons for such deviations.
Also feed coupling effects have not been included in PO formulation reported
in [129]. Although good agreement is observed between MLFMM-MoM and
PO formulations in main lobe and first few side lobes, yet the fields in the
region far from the main direction suffer from significant deviation. MLFMM
accelerated MoM based solution of IEs is therefore recommended for better
accuracies.

Furthermore, a full 3D radiation pattern for the 1.06 m reflector has been com-
puted from the currents obtained with MLFMM-MoM solver. The pattern in
the main and back directions is plotted in Fig. 7.3(a) and 7.3(b). In 7.3(c),
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Fig. 7.2. Comparison of (a) H-plane and (b) E-plane radiation pattern plot for
1.06 m reflector.

main lobe and first few side lobes are again plotted for better visualization.
The amplitudes and phases of the electric fields computed at the focal plane
aperture of the reflector have also been plotted in Fig. 7.4.

In another problem an offset reflector with diameter of 1.5 m, focal length
1 m and offset height 0.2 m operating at 3.95 GHz, which is illuminated by a
combined 3-sectoral feed horns each 14 cm × 2.9 cm aperture is analyzed with
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(a) (b)

(c)

Fig. 7.3. Normalized 3D radiation pattern in dB for 1.06 m offset reflector in (a)
forward direction, (b) backward direction and (c) surroundings of main lobe.

(a) (b)

Fig. 7.4. Field distribution on the focal plane aperture of 1.06 m offset reflector:
(a) Amplitude in dB and (b) phase in degrees of the electric field.
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Fig. 7.5. Relative power distribution in dB on the surface of the 1.5 m 3-feed
offset parabolic reflector.

MLFMM-MoM and series-PO. MLFMM-MoM formulation involved 165 302
LO unknowns. The system of matrix equation has been solved with 7 FMM
levels obtaining a residual error of the order of 8.5× 10−5. It has been noted
that because of the complex geometry of the three feed structure, the conver-
gence was slower than the simple case of one feed horn. Also it is because
the only option for open metallic objects is EFIE which suffers from poor
convergence. The convergence can however, be made faster for residual error
of the order of 10−3, which produces acceptably good accuracies at least in
the computations of radiated fields. The current distribution on the reflector
surface is shown in Fig. 7.5. The resulting radiation patterns of PO and MoM
are compared in Fig. 7.6. Although good agreement is observed in main lobe
and first few side lobes, yet the fields in the region far from the main direction
suffer from significant deviation. MLFMM accelerated MoM based solution of
IEs is to be opted for better accuracies.

7.2 Reflector Antennas in Complex Environment

It is of importance to predict the antenna pattern distortions due to its sur-
rounding satellite structure environment, which might lead to undesired radi-
ation pattern resulting in a potential outage in the communication link. The
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Fig. 7.6. Comparison of (a) H-plane and (b) E-plane radiation pattern plot for
1.5 m reflector excited with triple-feed horn assembly.

pattern distortions are dependent on several factors, mainly the location of
the antenna with respect to the satellite platform, the shape of the satellite
platform itself, the presence of obstacles and the influence of other antennas
on the satellite.

In order to study the influence of complex structures in the neighborhood of an
antenna under test, antenna radiation analysis has been carried out together
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Fig. 7.7. Geometry of satellite assembly comprising of two reflector antennas
mounted on a satellite platform. Supporting rods for reflector and feed horns
are not considered.
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Fig. 7.8. Surface current distribution on linear scale due to excitation of 1.06 m
reflector in the presence of a second reflector and satellite assembly.

with an exemplary satellite platform. As can be seen in Fig. 7.7, the structure
under consideration is composed of a satellite platform of 1.5 m side length
cuboid on which are the two reflectors mounted on opposite faces. Direction of
main beam for each reflector is towards z-axis of the global coordinate system.
In the present analysis, no supporting structure for the mounting of feeds or
reflectors is taken into consideration. Each reflector-feed geometry is placed
on the satellite platform such that visible zone of the reflector as viewed from
the feed horn is unobstructed due to satellite platform edges and corners.

Now 1.06 m reflector is operating at 6.175 GHz and 1.5 m reflector at 3.95 GHz.
At a time only one reflector is in operational mode for the radiation analysis
with MLFMM-MoM solver. Firstly the 1.06 m reflector is excited and sur-
face current distribution on the whole structure is computed as shown in Fig.
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Fig. 7.9. Analysis of 1.06 m reflector in the presence of a 1.5 m reflector and
satellite body: (a) radiated fields in φ = 0 deg and (b) radiated fields in φ =
90 deg.
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7.8. Here real part of the complex surface current density is presented. The
radiated field has been computed and compared in two principle planes with
the isolated reflector as shown in Fig. 7.9. Similarly, in the next simulation
1.5 m reflector has been activated at it operating frequency of 3.95 GHz and
the resulting surface currents and radiated fields are presented in Fig. 7.10
and Fig. 7.11. In the following paragraphs the importance of the analysis of
reflector antennas in complex environment is discussed.

Fig. 7.10. Surface current distribution on linear scale due to excitation of 1.5 m
reflector in the presence of a second reflector and satellite assembly.

Discussion:

From the results of analysis of satellite reflector antennas with and without
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Fig. 7.11. Analysis of 1.5 m reflector in the presence of a 1.06 m reflector and
satellite assembly: (a) radiated fields in φ = 0 deg and (b) radiated fields in
φ = 90 deg.
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the presence of neighboring structures, following remarks must be considered
in the establishment of safe communication link.

1. In general it is observed that the surface current distribution and radia-
tion patterns are influenced by many factors mainly the location of the
antenna with respect to the satellite platform, the shape of the satel-
lite platform itself, the presence of obstacles and the influence of other
antennas on the satellite.

2. Antenna pattern distortions can be seen in Fig. 7.9 and Fig. 7.11 where
diffractions from the surrounding satellite structure environment lead to
significant variations up to 10 dB in the power levels in certain angular
directions. For example, one might not want about 2 dB higher side lobe
at θ ≈ −5◦ in Fig. 7.9(a). Similarly, the null in the pattern at θ ≈ ±17◦

might be unwanted.

3. From the surface currents shown in Fig. 7.8 and Fig. 7.10, the side lobes
of the radiation pattern of the feed horn itself are assumed to be a cause
of strong surface currents on the satellite body just near the excited feed
horn. These current magnitudes cause radiations in unwanted directions.
Furthermore, appropriate heat analysis might have to be carried out for
any rise of temperature inside the satellite structure due to this unwanted
current flow.

Therefore in conclusion it is of importance to accurately predict the antenna
pattern distortions due to its surrounding satellite structure environment e.g.
satellite body, supporting structure, other antennas etc., which might lead to
unwanted side lobes, null pattern or a potential outage in the communication
link. These pattern distortions are dependent on several factors, mainly the
location of the antenna with respect to the satellite platform, the shape of the
satellite platform itself, the presence of obstacles and the influence of other
antennas on the satellite. The implemented SE-MLFMM accelerated MoM
bases solution of IEs together with adaptive singularity treatment and higher
order current discretization enables highly accurate and efficient analysis of
such complex structures.

7.3 Surface Current Synthesis for Customized Radiation

Pattern

Synthesis of antenna structures for customized radiation characteristics is often
appreciated in radar systems and satellite communications. Customizations
such as improvement in antenna gain or reduction of side lobe levels in certain



7.3 Surface Current Synthesis for Customized Radiation Pattern 95

directions etc., are typically obtained (e.g. [42–44]) with the aid of optimiza-
tion algorithms (e.g. [45–49]). In the present work, as a preliminary effort,
investigation has been made in the reconstruction of reflector surface currents
for customized radiation pattern through the use of inverse equivalent current
method.

7.3.1 Methodology

In the approach investigated here, following steps are considered for the syn-
thesis of antenna surface currents for optimized/customized radiated fields.

1. MLFMM-MoM based computation of surface currents on the preliminar-
ily designed antenna. From these currents, the electric fields are com-
puted on a sphere in the far zone of the antenna under consideration.

2. The far zone electric field samples are scaled in the desired angular range.
In present examples, the electric fields are customized such that the first
few side lobes are further suppressed by a few dB of magnitude while
keeping the main lobe power distribution un-altered.

3. These scaled electric fields are then mapped to inverse equivalent surface
currents on reflector surface using ECM solver. Furthermore, the radi-
ated fields are computed from these scaled ECM currents for the validity
of the ECM solution.

4. Now these ECM currents are responsible for customized radiated fields.
For the realization of these currents various techniques are reviewed
which can be worked out in detail in future.

7.3.2 Examples

A focus-fed 1.06 m offset parabolic reflector has been selected for the purpose
of this investigation. Initially the radiated fields of this reflector have been
computed with MLFMM-MoM. For the validation of ECM solver, first these E-
fields have been mapped to reconstruct the inverse equivalent surface currents
on the reflector. These currents are shown in Fig. 7.12. Both currents are
identical and it validates the ECM solver. Next, the MoM fields are scaled
according to the needs of a certain application which states that the radiated
fields in the angular region 4◦ < |θ| < 20◦ be further suppressed by about 0.5-
3 dB. Two separate simulations of ECM solver have been carried out which
correspond to the 0.5 dB and 3 dB side lobe suppression in the given angular
region. In the scaling process of electric fields, the phase of the fields is kept
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(a)

(b)

Fig. 7.12. Surface currents on the reflector antenna obtained for: (a) MoM-IE
based analysis and (b) ECM based synthesis. The ECM currents in (b) have
been obtained from the near field samples with 1◦ angular resolution in both θ
and φ directions located on a sphere of radius 1000 km from the antenna.



7.3 Surface Current Synthesis for Customized Radiation Pattern 97

(a)

(b)

Fig. 7.13. Surface currents on the reflector antenna obtained with ECM solver
for: (a) 0.5 dB side lobe suppression and (b) 3 dB side lobe suppression. Note
the different scaling in (b).
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Fig. 7.14. Radiated fields obtained for: (a) scaled ECM surface currents of
Fig. 7.13(a) with 0.5 dB suppression in first few side lobes and (b) scaled ECM
surface currents of Fig. 7.13(b) with about 3 dB SLL suppression in first few
side lobes.
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unchanged whereas the amplitude is modified to fulfill the desired power level.
These customized radiated fields have then been mapped to inverse equivalent
surface currents on the surface of the reflector using the ECM solver.

The resulting surface currents corresponding to these customized fields for
0.5 dB and 3 dB SLL suppression are shown in Fig. 7.13. The computations
of inverse currents of Fig. 7.13 were carried out with about 1 million HO
unknowns for electric field samples distributed equally with 1◦ resolution in
both θ and φ direction on a sphere of radius 1000 m centered at the origin of
the reflector coordinate system. The radiated fields computed from the inverse
ECM currents are shown in Fig. 7.14 where the desired suppression is achieved
to a great extent. However, it is to be noted that in the present investigation,
the reduction in SLL is achieved at the cost of higher power levels partially in
other angular directions and partially in cross polarization while keeping the
main lobe power distribution unchanged.

7.3.3 Realization Review and Guidelines Towards Future

Work

For the realization of inverse ECM currents shown in Fig. 7.13, which result in
customized radiation pattern presented in Fig. 7.14 a few possible approaches
are discussed in the following paragraphs. However, this work is referred for
future consideration.

Surface shaping with geometrical optics based ray path adjustment:

As a preliminary effort, the amplitudes and the phases of the aperture
fields due to MoM currents, inverse ECM corresponding to unscaled
field strengths and inverse ECM obtained with customized (scaled) field
pattern have been computed and presented in Fig. 7.15. Deviations
in the amplitudes and phases of the fields due to scaled pattern from
those of the MoM or unscaled fields are visible. It is expected that by
compensating the phase differences through adjusting the corresponding
path differences using geometrical optics, the desired suppression in side
lobes might be achieved. The path difference might be compensated
through the shaping of the reflector surface. Therefore, efforts will be
made in shaping the surface of the paraboloidal such that unscaled ECM
phase/amplitude coincides with those of the scaled ECM.

Feed pattern synthesis using subreflector: Another possibility might be
to design the feed structure suitable for the realization of inverse ECM
currents. One solution might be to insert a subreflector which can re-
shape the feed pattern H incident on the main reflector such that the
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physical optics equivalent current

Js = 2n̂×H , (7.1)

best fit the inverse ECM currents of Fig. 7.13, where n̂ is unit surface
normal. This configuration results in a Cassegrain or Gregorian reflector.

Use of dynamically adjustable resistive sheets: In [131] resistive sheets
with electrically adjustable conductivity are used to adaptively place
nulls in the radiation pattern of reflector antennas. These resistive
screens are composed of thin polymer composites the resistance of which
can be controlled via an electrical signal. Material such as polypyrroles
and polyanilines exihibit variations in their conductivity between 10−7

and 103 S/cm [131]. It is expected that the inverse ECM currents might
be worked out through the adjustment of surface conductivity with the
use of such resistive sheets at appropriate locations on the reflector sur-
face.
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Fig. 7.15. Comparison of focal plane aperture field distribution computed at a
horizontal cross-section of the reflector and obtained from the surface current
distribution due to MoM (Fig. 7.12(a)), unscaled ECM (Fig. 7.12(b)), and with
3 dB SLL suppression (Fig. 7.13(b)). The amplitude of the electric field in dB
is shown in (a) and its phase in degrees is given in (b).





Summary and Conclusion

The surface integral equation formulations have been considered for the effi-
cient and accurate treatment of radiation and scattering problems of electro-
magnetics where the governing integral equations have been converted into a
system of linear equations through method of moments employing Galerkin’s
approach with triangular hierarchical higher-order vector basis functions and
adaptive treatment of singularities involved in the coupling integrals. The re-
sulting system of linear equations have been solved using fast iterative solvers
empowered with spherical harmonics expansion based MLFMM. The method
has been proven to be an extremely powerful and versatile numerical technique
for electromagnetic field simulation in antenna and scattering applications for
arbitrarily shaped large structures.

The accuracy of MoM solutions of integral equations depends significantly
on the calculation of the coupling integrals, which involve singular kernels.
Quadrature rules are not directly applicable, especially for neighboring source
and test domains, and special numerical treatment of such integrals is there-
fore necessary. Adaptive singularity cancellation technique has been proposed
for the efficient, accurate and fully numerical treatment of the singular inte-
grals. The Arcsinh transformation and the Radial Angular-R2 transformation
exactly cancel out the singularities of 1

R
− and R

R3−type kernels where the
time-consuming computations beyond the original source domains in case of
near-singularities have been avoided through the use of adaptive versions of
the above-mentioned techniques. Additionally, for given accuracies the depen-
dence of the convergence on the height of observation point above the plane
of source domain, which often demanded very large number of sample points
especially for close proximities have been removed with the proposed adaptive
singularity cancellation technique. Thus accurate computation of singular cou-
pling integrals have been achieved with significantly fewer quadrature points
independent of the heights of observation point above the plane of source do-
main resulting in higher computational efficiencies in the near-coupling evalu-
ation.

Higher-order modeling of unknown source representation in the MoM formula-
tions is essential in order to develop efficient algorithms for the computational
electromagnetics. The widely used low order RWG basis functions in the
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expansion of unknown surface current densities suffer from the fundamental
shortcoming that often dense geometrical discretization is necessary for suffi-
ciently good accuracies. As a remedy hierarchical HO basis functions in the
mixed order formulation have been implemented in the modeling of surface cur-
rent densities and better accuracies with given number of unknowns compared
with the LO counterparts have been achieved. Furthermore, sufficient reduc-
tion in the number of unknowns for a given problem and same accuracy has
also been observed with HO modeling. The solution of large scale problems
with integral equation formulations is hardly achievable without the proper
use of fast solvers. Unfortunately the traditional MLFMM approaches become
less efficient with HO due to their larger element dimensions. In contrast, the
SE-MLFMM has been found considerably efficient in terms of memory and
computation requirements even with HO current modeling, because of the ef-
ficient storage of the k̂-space representations of the individual basis functions,
and hence allows for very efficient iterative solution of the resulting equation
system.

Thus the implemented SE-MLFMM accelerated MoM solution of integral equa-
tion formulation incorporating adaptive singularity cancellation technique and
higher-order surface current modeling has been applied in the analysis of vari-
ous applications of practical interest. Spacecraft reflector antennas have been
studied in isolation as well as in complex environments. This enables the
accurate predictions of radiation pattern and current flows on the neighbor-
ing structures. Furthermore, surface current shaping has been investigated
through the use of inverse equivalent currents for customized radiation pat-
terns. The realization of thus obtained surface currents has been postponed
for future work for which a few propositions are made.



A Vector Theorems

A.1 Gauss’s Divergence Theorem

∫∫

V

∫

∇ · Fdv =

∫

©
∫

S

F · n̂ ds (A.1)

A.2 First Scalar Green’s Theorem

∫∫

V

∫

[

a∇2b+∇a · ∇b
]

dv =

∫

©
∫

S

a
∂b

∂n
ds (A.2)

Proof: Substituting F = a∇b in Gauss’s divergence theorem (equation (A.1)),
we get

∫∫

V

∫

∇ · (a∇b) dv =

∫

©
∫

S

(a∇b) · n̂ ds (A.3)

Using the vector identity

∇ · (fF ) = f (∇ · F ) + F (∇f)

in eq. (A.3), we get
∫∫

V

∫

[

a∇2b+∇a · ∇b
]

dv =

∫

©
∫

S

a (∇b · n̂) ds

From the definition of gradient operator,

∇f · n̂ =
∂f

∂n

Hence the above equation reduces to first scalar Green’s theorem i.e.
∫∫

V

∫

[

a∇2b+∇a · ∇b
]

dv =

∫

©
∫

S

a
∂b

∂n
ds



106 A Vector Theorems

A.3 Second Scalar Green’s Theorem

∫∫

V

∫

[

a∇2b− b∇2a
]

dv =

∫

©
∫

S

[

a
∂b

∂n
− b ∂a
∂n

]

ds (A.4)

Proof: Substituting F = b∇a in Gauss’s divergence theorem (equation (A.1))
and proceeding in similar way as in paragraph A.2, we come up with

∫∫

V

∫

[

b∇2a+∇a · ∇b
]

dv =

∫

©
∫

S

b
∂a

∂n
ds (A.5)

Subtracting eq. (A.5) from eq. (A.2), we get the second scalar Green’s theorem
i.e.

∫∫

V

∫

[

a∇2b− b∇2a
]

dv =

∫

©
∫

S

[

a
∂b

∂n
− b ∂a
∂n

]

ds

A.4 First Vector Green’s Theorem

∫∫

V

∫

[(∇× a) · (∇× b)− a · (∇×∇× b)] dv

=

∫

©
∫

S

(a×∇× b) · n̂ ds (A.6)

Proof: Substituting F = a×∇× b in Gauss’s divergence theorem (equation
(A.1)) we get

∫∫

V

∫

∇ · (a×∇× b) dv =

∫

©
∫

S

(a×∇× b) · n̂ ds (A.7)

Using the vector identity

∇ · (F ×G) = (∇× F ) ·G− F · ∇ ×G

with F = a, G = ∇× b on the LHS of eq. (A.7) we get first vector Green’s
theorem i.e.

∫∫

V

∫

[(∇× a) · (∇× b)− a · (∇×∇× b)] dv =

∫

©
∫

S

(a×∇× b) · n̂ ds
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A.5 Second Vector Green’s Theorem

∫∫

V

∫
[

a · (∇×∇× b)− b · (∇×∇× a)
]

dv

= −
∫

©
∫

S

[

a×∇× b+ (∇× a)× b
]

· n̂ ds (A.8)

Proof: Switching the positions of a and b in eq. (A.6) we get
∫∫

V

∫

[(∇× a) · (∇× b)− b · (∇×∇× a)] dv

=

∫

©
∫

S

(b×∇× a) · n̂ ds (A.9)

Subtracting first vector Green’s theorem (eq. (A.6)) from eq. (A.9) results in
second vector Green’s theorem i.e.

∫∫

V

∫
[

a · (∇×∇× b)− b · (∇×∇× a)
]

dv

= −
∫

©
∫

S

[

a×∇× b+ (∇× a)× b
]

· n̂ ds

A.6 Scalar-Vector Green’s Theorem

∫∫

V

∫
[

b (∇×∇× a) + a∇2b+ (∇ · a)∇b
]

dv

=

∫

©
∫

S

[

(n̂ · a)∇b+ (n̂× a)×∇b+ (n̂×∇× a) b
]

ds (A.10)
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Proof: Let a and b be integrable vector functions in a volume V enclosed by
a surface S. Consider following vector operations,

b = bb̂ (A.11)

∇ · b = ∇b · b̂ (A.12)

∇2
b =

(

∇2b
)

b̂ (A.13)

∇× b = ∇b× b̂ (A.14)

Note that the unit vector b̂ is constant in a particular coordinate system in
which the operator ∇ is defined.
Rewriting the first Curl-Curl operator appearing in Second Vector Green’s
Theorem:

a · (∇×∇× b) = a ·
[

∇∇ · b− (∇ · ∇) b

]

= a · (∇∇ · b)− a · ∇2
b (A.15)

From vector identities, we can write:

∇ · (a∇ · b) = (∇ · a) (∇ · b) + a · (∇∇ · b)
⇒ a · (∇∇ · b) = ∇ · (a∇ · b)− (∇ · a) (∇ · b) (A.16)

Substituting (A.16) into (A.15) and making use of (A.11-A.13) we obtain:

a · (∇×∇× b) = ∇ · (a∇ · b)− (∇ · a) (∇ · b)− a · ∇2
b

= ∇ · (a∇ · b)− (∇ · a)
(

∇b · b̂
)

−
(

a∇2b
)

· b̂

= ∇ · (a∇ · b)−
[

(∇ · a)∇b+
(

a∇2b
)

]

· b̂ (A.17)

Also from Gauss’s divergence theorem,
∫∫

V

∫

∇ · (a∇ · b) dv =

∫

©
∫

S

n̂ · (a∇ · b) ds

=

∫

©
∫

S

(n̂ · a) (∇b) · b̂ ds (A.18)

Taking volume integral of (A.17) over V and making use of (A.18) we get:
∫∫

V

∫

a · (∇×∇× b) dv
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=

∫∫

V

∫

∇ · (a∇ · b) dv −
∫∫

V

∫
[

a∇2b+ (∇ · a)∇b
]

· b̂ dv

=

∫

©
∫

S

(n̂ · a) (∇b) · b̂ ds−
∫∫

V

∫
[

a∇2b+ (∇ · a)∇b
]

· b̂ dv (A.19)

Utilizing the property of interchange of vector operations in the scalar triple
product we can write the followings:

n̂ · a× (∇× b) = (n̂× a) · (∇× b)
= (n̂× a) ·

(

∇b× b̂
)

= (n̂× a)×∇b · b̂ (A.20)

n̂ · (∇× a)× b = (n̂×∇× a) · b
= (n̂×∇× a) b · b̂ (A.21)

Substituting (A.11) and (A.19-A.21) in Second Vector Green’s Theorem (equa-
tion (A.8)) we get:

∫∫

V

∫
[

− b (∇×∇× a)− a∇2b+ (∇ · a)∇b
]

· b̂ dv

= −
∫

©
∫

S

(n̂ · a) (∇b) · b̂ ds−
∫

©
∫

S

[

(n̂× a)×∇b+ (n̂×∇× a) b
]

· b̂ ds

⇒
∫∫

V

∫
[

b (∇×∇× a) + a∇2b+ (∇ · a)∇b
]

· b̂ dv

=

∫

©
∫

S

[

(n̂ · a) (∇b) + (n̂× a)×∇b+ (n̂×∇× a) b

]

· b̂ ds (A.22)

Equation (A.22) is valid for arbitrary b̂ and hence it is valid in general, i.e.
∫∫

V

∫
[

b (∇×∇× a) + a∇2b+ (∇ · a)∇b
]

dv

=

∫

©
∫

S

[

(n̂ · a) (∇b) + (n̂× a)×∇b+ (n̂×∇× a) b

]

ds (A.23)

which is the desired Scalar-Vector Green’s Theorem.
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