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Abstract

In this thesis, the Heisenberg-Pauli-Weyl uncertainty principle on the real line and the
Breitenberger uncertainty on the unit circle are generalized to Riemannian manifolds.
The proof of these generalized uncertainty principles is based on an operator theoretic
approach involving the commutator of two operators on a Hilbert space. As a momentum
operator, a special differential-difference operator is constructed which plays the role of a
generalized root of the radial part of the Laplace-Beltrami operator. Further, it is shown
that the resulting uncertainty inequalities are sharp. In the final part of the thesis, these
uncertainty principles are used to analyze the space-frequency behavior of polynomial
kernels on compact symmetric spaces and to construct polynomials that are optimally
localized in space with respect to the position variance of the uncertainty principle.





Zusammenfassung

In dieser Arbeit wird die Heisenberg-Pauli-Weyl’sche Unschärferelation und das Unschär-
feprinzip von Breitenberger auf abstrakte Riemannsche Mannigfaltigkeiten verallgemein-
ert. Der Beweis dieses Unschärfeprinzips beruht auf einem operatortheoretischen Ansatz,
in dem der Kommutator von zwei Operatoren auf einem Hilbertraum verwendet wird.
Als Impulsoperator wird dabei ein spezieller Differential-Differenzenoperator konstruiert,
der sich als verallgemeinerte Wurzel des radialen Teils des Laplace-Beltrami-Operators
herausstellt. Ferner wird gezeigt, dass die resultierenden Ungleichungen scharf sind. Im
letzten Teil der Arbeit werden die abgeleiteten Unschärfeprinzipien dazu benutzt um das
Zeit-Frequenz-Verhalten von polynomiellen Kernen auf kompakten symmetrischen Räu-
men zu analysieren und Polynome zu konstruieren, die bezüglich der Ortsvarianz des
Unschärfeprodukts optimal lokalisiert sind.





Non domandarci la formula che mondi possa aprirti,
sì qualche storta sillaba e secca come un ramo.
Codesto solo oggi possiamo dirti,
ciò che non siamo, ciò che non vogliamo.

Eugenio Montale, Non chiederci la
parola, Ossi di seppia, 1925
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"Aber an der scharfen Formulierung des Kausalgeset-
zes: „Wenn wir die Gegenwart genau kennen, können
wir die Zukunft berechnen”, ist nicht der Nachsatz,
sondern die Voraussetzung falsch. Wir können die
Gegenwart in allen Bestimmungsstücken prinzipiell
nicht kennenlernen. Deshalb ist alles Wahrnehmen
eine Auswahl aus einer Fülle von Möglichkeiten und
eine Beschränkung des zukünftig Möglichen."

W. Heisenberg, [33], p. 197

Introduction

In his famous work "Über den anschaulichen Inhalt der quantentheoretischen Kinematik
und Mechanik" (1927, [33]), Heisenberg revealed one of the fundamental principles of
quantum mechanics, the uncertainty principle. This principle states that the values of
two conjugate observables such as the position and the momentum of a quantum state f
can not both be precisely determined at the same time. In particular, the more precisely
one of the two properties is known, the less accurate the other variable can be measured.
The most common way to describe the uncertainty principle mathematically is due to the
following classical inequality, referred to as Heisenberg-Pauli-Weyl inequality (cf. [20]):
If f ∈ L2(R) and ‖f‖ = 1, then

∫
R
(t− t0)2|f(t)|2dt ·

∫
R
|f ′(t)− 2πiω0f(t)|2dt ≥ 1

4 , t0, ω0 ∈ R. (I.1)

In this formula, the quantum state f is interpreted as a L2-density function on the real
line R. The value varS(f) :=

∫
R(t− t0)2|f(t)|2dt is the variance of the L2-density f with

respect to the mean value t0 and is called the position variance of f . In view of the Fourier-
Plancharel transform F(f) of the function f , the value varF (f) :=

∫
R |f ′(t)−2πiω0f(t)|2dt

corresponds to the position variance of F(f) in the frequency domain and is called the
frequency or momentum variance of f . In this perspective, inequality (I.1) states that
the product of the two variances varS(f) and varF (f) of the density f is always larger
than 1

4 . Moreover, equality in (I.1) can be attained if and only if f corresponds to a
Gaussian function, i.e., f(t) = Ce2πiω0te−λ(t−t0)2 where C ∈ C and λ > 0.

If the function f is defined on a manifold different from the real line R, the question of
how to formulate an uncertainty principle like (I.1) becomes more difficult. One main
reason for this difficulty is due to the fact that for functions f on abstract manifolds it
is not clear how appropriate position and frequency variances can be defined, nor it is
clear whether Fourier techniques can be employed to determine a frequency variance.

To formulate an uncertainty principle on the unit circle T, an interesting approach was
pursued by Breitenberger in [6]. If one sets the frequency variance of a 2π-periodic
function f ∈ L2([−π, π]), ‖f‖ = 1, as

varF (f) =
∫ π

−π
|f ′(t)|2dt−

∣∣∣∣∫ π

−π
f ′(t)f(t)dt

∣∣∣∣2 dt
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Introduction

and introduces a mean value ε(f) by

ε(f) =
∫ π

−π
eit|f(t)|2dt,

then it is possible to prove (cf. [6], [63], [68]) the following uncertainty principle:

(1− |ε(f)|2) · varF (f) ≥ 1
4 |ε(f)|2. (I.2)

As the Heisenberg-Pauli-Weyl inequality, also (I.2) has a physical interpretation. If one
reads the value

varS(f) = 1− |ε(f)|2
|ε(f)|2

as the angular variance of the 2π-periodic density function f , then inequality (I.2) states
that the values of the two observables angular position and angular momentum of f
can not both be exactly determined at the same time. Furthermore, Prestin and Quak
showed in [68] that the constant 1

4 on the right hand side of inequality (I.2) is optimal.

Starting out from the classical inequalities (I.1) and (I.2), there have been a variety of
attempts to generalize these uncertainty principles to more abstract settings. For the unit
sphere Sd, interesting results can be found in the papers of Rösler and Voit [73], Narcovich
and Ward [62], Goh and Goodman [27] and Freeden and Windheuser [22]. Further,
there exist several uncertainty principles for particular orthogonal expansions like the
Jacobi polynomials [54, 73], the Bessel functions [74] as well as the Laguerre and Hermite
polynomials [55]. Remarkable in this context is the fact that the classical inequalities
(I.1) and (I.2) as well as the uncertainty inequalities in the above mentioned papers are
proven by a related operator theoretic approach. Hereby, one defines two appropriate
operators A and B in a Hilbert space H. Then, the commutator [A,B] = AB − BA is
used to prove a simple Hilbert space inequality that provides the corner stone for the
aimed-at uncertainty principle. For a brief summary of this approach, we refer to the
survey articles of Folland and Sitaram [20] and Selig [79].

The aim of this thesis is to extend the uncertainty principles (I.1) and (I.2) to the more
general setting of a Riemannian manifold M by means of the above mentioned operator
theoretic approach. Similar as in (I.1) and (I.2), the obtained uncertainty principles con-
tain an uncertainty product consisting of a position and a frequency variance term for
which a general lower bound is derived. Of special interest for the proof of these uncer-
tainty principles are the techniques developed by Rösler and Voit in [73]. In particular,
in the course of Chapter 2, we will define a Dunkl operator that turns out to be a gener-
alized root of the radial part of the Laplace-Beltrami operator ∆M and that is used as a
momentum operator to describe the frequency variance of a function f ∈ L2(M). If the
manifold M is diffeomorphic to the Euclidean space, the resulting uncertainty principle
(Theorem 2.54) will be similar to (I.1). On the other hand, if the manifoldM is compact,
we will use, as in (I.2), an appropriately introduced mean value εp(f) to define a position
variance with respect to a point p ∈M (see Corollary 2.43).
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Introduction

The proofs of the uncertainty principles are based on the following three ideas: First, one
uses the exponential map and geodesic polar coordinates on the Riemannian manifoldM
to get an isometric isomorphism between the Hilbert space L2(M) and a weighted L2-
space on a cylindrical domain. Then, a symmetric extension of this weighted L2-space is
constructed and, thereon, an appropriate Dunkl operator is defined. Finally, this Dunkl
operator together with a properly defined position operator and the commutator of these
two operators is used to derive the uncertainty inequality. If M is diffeomorphic to the
Euclidean space, then this proof leads to sharp uncertainty inequalities, where equality
is attained for Gaussian-type functions on M . On the other side, if M is compact, then
the obtained uncertainty inequality is asymptotically sharp (see Proposition 2.58).

Beside the uncertainty inequalities derived in this thesis, there exist a lot of uncertainty
principles that are based on different approaches. In particular, we want to mention
the articles [11, 72] of Ricci et al. and the article [56] of Martini in which uncertainty
principles for general measure spaces have been worked out and that can be used also for
Riemannian manifolds. As excellent summaries for a variety of well-known uncertainty
principles, we refer also to the survey article [20] and the book [32] of Havin and Jöricke.

The main advantages of the utilized operator theoretic approach in this thesis are the
sharpness of the resulting uncertainty principle and the availability of explicit expres-
sions varS(f) and varF (f) for the position variance and the frequency variance of the
function f . This turns the uncertainty principles developed in Chapter 1 and Chapter 2
into interesting auxiliary tools for space-frequency analysis. The variances varS(f) and
varF (f) provide a good measure on how well a function f is localized in the space and the
frequency domain and give substantial information on the space-frequency properties of
possible wavelets and frames. For the classical case M = Rd, there exists a broad theory
on this subject and we refer to the monograph [29] as a fine introduction. Also on the
unit circle, the Breitenberger uncertainty principle (I.2) provides a remarkable tool to
study the space-frequency localization of trigonometric wavelets (cf. [63], [69] and [78])
or to construct optimally space localized trigonometric polynomials (see the article [71]
of Rauhut). Similarly, a related formula for the position variance on the unit sphere Sd
can be used to determine space optimal spherical harmonics (see the work [48] of Laín
Fernández).

The objective of the last chapter in this thesis is to make use of the above mentioned
advantages and to utilize the uncertainty principles developed in Chapter 1 and 2 for
space-frequency analysis. We will present a few scenarios in which these uncertainty
principles can be used to analyze the space-frequency behavior of particular polynomial
kernels and to construct polynomials that are optimally localized in space with respect to
the position variance. In particular, the theory of optimally space localized polynomials
on the unit circle and on the unit sphere is extended to the more general setting of Jacobi
expansions and compact two-point homogeneous spaces. These results are also related
to the works of Filbir, Mhaskar and Prestin [17] and Petrushev and Xu [66] in which
exponentially and sub-exponentially localized polynomials are constructed. Further, we
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will discuss the space-frequency behavior of the Christoffel-Darboux kernel which plays
an important role in the theory of polynomial approximation, in particular on compact
two-point homogeneous spaces (see the article [53] of Levesley and Ragozin). Finally, we
will consider the de La Vallée Poussin kernel as an example of a polynomial kernel for
which the uncertainty product tends to the optimal lower bound.

Outline of the thesis

In Chapter 1, we start out by giving a short overview on the existing theory of uncertainty
principles in general Hilbert spaces (Theorems 1.2 and 1.4). As first examples of these
principles based on an operator theoretic approach, we will encounter the Heisenberg-
Pauli-Weyl uncertainty on the real line (Theorem 1.5) and the Breitenberger principle
for 2π-periodic functions (Theorem 1.7). Then, based on an approach developed by
Rösler and Voit [73] involving a particular Dunkl operator, uncertainty inequalities for
functions in a weighted L2-space are constructed. The considered underlying sets are the
unit interval [0, π] (Section 1.4.1) and the positive real half-axis (Section 1.4.3). Further,
in Section 1.4.2, we consider an interesting new intermediate result where the functions
in the uncertainty inequality have to satisfy a zero right-hand side boundary condition.
Finally, in Section 1.5, we will present uncertainty principles for weighted L2-spaces where
the weight function is connected to a particular orthogonal expansion. Thereby, we will
focus on functions that have an expansion in terms of Jacobi and Laguerre polynomials.

Chapter 2 contains the main new results of this thesis. In a first step, we will generalize
the theory of Chapter 1 to a multi-dimensional setting. In particular, we will proof
uncertainty principles for weighted L2-spaces where the underlying set is a cylinder Zd

π

or a tube Zd
∞ of dimension d (Section 2.1). Using the exponential map on the tangent

space TpM of a Riemannian manifold M , we will construct an isometric isomorphism
that maps the Hilbert space L2(M) onto such a weighted L2-space. In this way, we are
able to proof uncertainty principles for general Riemannian manifolds by using the theory
of Section 2.1. We will distinguish between three different types of settings:
(1) In the first setting, the Riemannian manifold M is supposed to be compact. The

obtained uncertainty principle in Theorem 2.41 can be considered as a generalization
of the Breitenberger principle. As examples, we will encounter the d-dimensional
spheres (Section 2.6.1), the projective spaces (Section 2.6.2) and the flat tori (Section
2.6.3).

(2) In the second case, we get an uncertainty inequality (Theorem 2.51) for functions f
defined on a compact star-shaped subdomain Ω of a Riemannian manifold M with
Lipschitz continuous boundary ∂Ω and the additional assumption that f vanishes at
∂Ω. This uncertainty principle is a generalization of Theorem 1.24 in Section 1.4.2.

(3) In the third case, we will develop uncertainty principles for Riemannian manifolds
that are diffeomorphic to the Euclidean space Rd (Theorem 2.54). It will turn out that
these uncertainty principles are multi-dimensional analogs of the original Heisenberg-

4
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Pauli-Weyl inequality. As an example, we will treat the hyperbolic space (Section
2.6.4).

In the third case, an important statement of Theorem 2.54 is the sharpness of the re-
sulting uncertainty inequality. The proof that the uncertainty principle for compact
Riemannian manifolds and the uncertainty principle for compact star-shaped domains
are also asymptotically sharp, can be found in Section 2.5. Finally, in Section 2.7, we
will investigate how information on the curvature of the Riemannian manifold M can
be used to simplify the derived uncertainty inequalities. In particular, depending on
the curvature, we will find easier to handle lower estimates of the original uncertainty
inequalities. The main part of Chapter 2 is already published and can be found in the
article [15].

In Chapter 3, we will use the uncertainty principle for Jacobi expansions on [0, π] and
the related uncertainty principle for compact two-point homogeneous spaces, i.e., the
uncertainty principle for the spheres and the projective spaces developed in Section 2.6.1
and 2.6.2, to construct optimally space localized polynomials. In particular, we will de-
termine those elements of a finite-dimensional polynomial subspace that minimize the
position variance of the respective uncertainty principle.
In Section 3.1, we will develop a simple theory to determine the optimally space lo-
calized polynomials for Jacobi expansions on [0, π] (Theorem 3.6). Using a generalized
Christoffel-Darboux formula, we can state these optimal polynomials explicitly (Corol-
lary 3.10). Further, we will compare the space-frequency localization of the optimally
space localized polynomials with the space-frequency behavior of other well known poly-
nomial kernels like the Christoffel-Darboux kernel and the de La Vallée Poussin kernel. It
turns out that the uncertainty product of the Christoffel-Darboux kernel tends linearly to
infinity as the order n of the polynomial kernel tends to infinity (Theorem 3.15), whereas
the uncertainty product of the de La Vallée Poussin kernel tends to the optimal lower
bound of the uncertainty principle (Theorem 3.16).
Section 3.2 contains some intermediate results to describe the behavior of the extremal
zeros of associated Jacobi polynomials if one of the involved parameters is changing. In
the final Section 3.3, these intermediate results are used to determine optimally space
localized polynomials on compact two-point homogeneous spaces.

In Chapter A of the appendix, we give a short introduction into the general theory of Rie-
mannian manifolds including the concepts of geodesics, the exponential map, curvature
and integration on manifolds. In the second appendix Chapter B, there is a recapitula-
tion of some basic facts concerning function spaces, the Stone-Weierstrass Theorem and
operators in Hilbert spaces.
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"The uncertainty principle "protects" quantum mechanics. Heisen-
berg recognized that if it were possible to measure the momentum
and the position simultaneously with a greater accuracy, the quan-
tum mechanics would collapse. So he proposed that it must be
impossible. Then people sat down and tried to figure out ways
of doing it, and nobody could figure out a way to measure the
position and the momentum of anything - a screen, an electron, a
billiard ball, anything - with any greater accuracy."

R.P. Feynman, R.B. Leighton and M. Sands, The Feynman
Lectures on Physics III: Quantum Mechanics, Addison Wesley

Publishing Company, 1965, p. 1-11 1
Uncertainty principles - An overview

1.1. Uncertainty inequalities in Hilbert spaces

In this first section, we will present a very common approach to express uncertainty prin-
ciples mathematically. It is based on a Hilbert space inequality involving the commutator
of two self-adjoint, or more generally, normal operators defined on the Hilbert space. The
various details of this theory and further references can be found in [19], [20], [28] and
[79]. A short introduction into the terminology of operators on Hilbert spaces can be
found in Section B.3 of the appendix.

A main advantage of the operator theoretic approach to uncertainty is the fact that
the uncertainty can be interpreted in terms of quantum mechanical observables. Let H
denote a Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖ =

√
〈·, ·〉. Then, the

state of a quantum mechanical system is represented by a unit vector v ∈ H, and the
observable quantity is usually represented by a self-adjoint operator A on H. By the
spectral theorem, there exists an operator-valued measure P such that A decomposes
into A =

∫
λdP (λ). The map µv(E) = 〈P (E)v, v〉 is a probability measure on R that

represents the distribution of the observable A in the state v. The mean and variance of
this measure are given by

εA(v) := 〈Av, v〉 =
∫

R
λ〈dP (λ)v, v〉, (1.1)

varA(v) := ‖ (A− εA(v)) v‖2 = ‖Av‖2 − |εA(v)|2 (1.2)

=
∫

R
(λ− εA(v))2〈dP (λ)v, v〉.

9



1. Uncertainty principles - An overview

The value εA(v) is called the expectation value of the observable A and varA(v) the
variance of A in the state v. In general, the variance varA(v) can be interpreted as a
measure of the uncertainty of A in the state v and an uncertainty principle is an assertion
about the product of two variances of two different observables A and B.

In the following, we suppose that the linear operators A and B are densely defined on H,
with domains D(A) ⊂ H and D(B) ⊂ H. The domain for the product AB is given by

D(AB) := {v ∈ D(B) : Bv ∈ D(A)}

and D(BA) likewise. If the commutator of the operators A and B is defined by

[A,B] := AB −BA on D([A,B]) := D(AB) ∩ D(BA),

the following uncertainty principle holds (cf. [19, Theorem 1.34]):

Theorem 1.1.
If A and B are self-adjoint operators on a Hilbert space H, then

‖(A− a)v‖ · ‖(B − b)v‖ ≥ 1
2 |〈[A,B]v, v〉| (1.3)

for all unit vectors v ∈ D([A,B]) and a, b ∈ R. Equality holds if and only if (A − a)v
and (B − b)v are purely imaginary scalar multiplies of one another.

It is not always the case that the considered operators A and B are self-adjoint, for
instance, when it is not possible to find a self-adjoint extension of a symmetric operator.
Analyzing the proof of Theorem 1.34 in [19], one can see that the symmetry of the
operators A and B suffices to prove the uncertainty principle. So, we get the following
generalization (cf. [79, Theorem 3.3]):

Theorem 1.2.
If A and B are symmetric operators on H, then

‖(A− a)v‖ · ‖(B − b)v‖ ≥ 1
2 |〈[A,B]v, v〉| (1.4)

for all unit vectors v ∈ D([A,B]) and a, b ∈ R. Equality holds if and only if (A − a)v
and (B − b)v are purely imaginary scalar multiplies of one another.

Proof. For a, b ∈ R and v ∈ D([A,B]), we have

[(A− a), (B − b)]v = ABv −BAv = [A,B]v.

Now, the symmetry of the operators A and B implies

〈[A,B]v, v〉 = 〈(A− a)(B − b)v − (B − b)(A− a)v, v〉
= 〈(B − b)v, (A− a)v〉 − 〈(A− a)v, (B − b)v〉
= 2i Im(〈(B − b)v, (A− a)v〉).
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The imaginary part of 〈[A,B]v, v〉 is bounded from above by the absolute value of
〈[A,B]v, v〉. Applying the Schwarz inequality yields

〈[A,B]v, v〉 ≤ 2|〈(B − b)v, (A− a)v〉| ≤ 2‖(A− a)v‖ · ‖(B − b)v‖.

Equality holds for the Schwarz inequality if and only if (A− a)v = λ(B − b)v for λ ∈ C
and for the first inequality if and only if Reλ = 0. 2

Remark 1.3. The proof of inequality (1.4) is quite simple, but there are some subtleties
hidden in the statement of Theorem 1.2. In fact, there are examples where the domain
D([A,B]) of the commutator gets very small or consists only of the zero vector. Moreover,
the commutator [A,B] is in general not closed and one can show that inequality (1.4)
does usually not hold for vectors v ∈ D([A,B]), where [A,B] denotes the closure of the
operator [A,B]. For the detailed investigation of these counterexamples, we refer to [20].
Altogether, we can conclude that, when using this kind of uncertainty inequality, one has
to keep a close watch at the domain D([A,B]) of the commutator.

Now, one may ask for which choices of a and b the left hand sides of inequalities (1.3) and
(1.4) are minimized. The answer is given by the Hilbert Projection Theorem. Namely,
for Av ∈ H the point v0 ∈ span{v} with minimal distance to Av is exactly the orthogonal
projection of Av on the one-dimensional linear subspace spanned by v, i.e. v0 = 〈Av, v〉v.
Therefore, if we take the variances

varA(v) = ‖(A− εA(v))v‖2 = min
a∈R
‖(A− a)v‖2, (1.5)

varB(v) = ‖(B − εB(v))v‖2 = min
b∈R
‖(B − b)v‖2, (1.6)

the inequalities (1.3) and (1.4) can be reformulated as

varA(v) · varB(v) ≥ 1
4 |〈[A,B]v, v〉|2. (1.7)

Another interesting situation emerges when one of the two operators A or B is normal
on H, but not necessarily symmetric or self-adjoint. Also in this case, it is possible to
formulate an uncertainty principle like (1.4) (cf. [79, Theorem 5.1]).

Theorem 1.4.
If B is symmetric and A is a normal operator on the Hilbert space H, then

‖(A− a)v‖ · ‖(B − b)v‖ ≥ 1
2 |〈[A,B]v, v〉| (1.8)

for all unit vectors v ∈ D([A,B]) and a ∈ C, b ∈ R. Equality holds if and only if

(B − b)v = λ(A− a)v = −λ̄(A∗ − ā)v

for a complex scalar λ ∈ C.

11
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Proof. If A is a normal operator, then also A − aI is normal and A∗ − āI is its adjoint
operator. Moreover, D(A∗) = D(A) and ‖(A − a)v‖ = ‖(A∗ − ā)v‖ for all v ∈ D(A).
Using the triangle and the Schwarz inequality, we get the estimate

|〈[A,B]v, v〉| = |〈(A− a)(B − b)v − (B − b)(A− a)v, v〉|
(∗)
≤ |〈(B − b)v, (A∗ − ā)v〉|+ |〈(A− a)v, (B − b)v〉|
(∗∗)
≤ ‖(B − b)v‖ · ‖(A∗ − ā)v‖+ ‖(A− a)v‖ · ‖(B − b)v‖
= 2‖(B − b)v‖ · ‖(A− a)v‖.

For the Schwarz inequality in (∗∗), equality holds if and only if

(B − b)v = λ1(A− a)v, (B − b)v = λ2(A∗ − ā)v, λ1, λ2 ∈ C.

The normality of A implies that |λ1| = |λ2|. Finally, the triangle inequality in (∗) becomes
an equality if and only if λ1 = −λ2. 2

1.2. The Heisenberg-Pauli-Weyl uncertainty principle

The first and undoubtedly most famous uncertainty principle goes back to Heisenberg
and his pathbreaking work [33] of 1927. The mathematical version of this principle was
formulated afterwards by Kennard [45] and by Pauli and Weyl (see [86], p. 77). It is the
main example of an uncertainty inequality in a Hilbert space and can be found nowadays
in numerous monographs and articles. As references, one may consider [19], [20], [29]
and [79].

The underlying Hilbert space for the Heisenberg-Pauli-Weyl-principle is the space L2(R)
of square integrable functions on the real axis R with inner product 〈f, g〉 :=

∫
R f(t)g(t)dt

and norm ‖f‖2 := 〈f, f〉. As a position operator A and as a momentum operator B, we
define

Af(t) := tf(t), D(A) := {f ∈ L2(R) : tf ∈ L2(R)},
Bf(t) := if ′(t), D(B) := {f ∈ ACloc(R) : f ′ ∈ L2(R)}.

The set ACloc(R) denotes the space of all locally absolutely continuous functions on R.
For a brief summary on absolutely continuous functions, we refer to Section B.1 of the
appendix. The operators A and B are densely defined in L2(R). Further, since∫

R
tf(t)g(t)dt =

∫
R
f(t)tg(t)dt f, g ∈ D(A),∫

R
if ′(t)g(t)dt = −

∫
R
f(t)ig′(t)dt f, g ∈ D(B),

12
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the operators A and B are both symmetric on their respective domains. Moreover, with
a little bit of extra effort one can show that A and B are even self-adjoint (cf. [70, Lemma
2.2.1] and [85, Example (b), p. 318]). In terms of the Fourier-Plancharel transform

F(f)(ω) :=
∫

R
f(t)e−2πiωtdt, F−1(g)(t) :=

∫
R
g(ω)e2πiωtdω,

the momentum operator B can be reformulated as

Bf(t) = (F−1AF(f))(t).

In this way, we get the following version of the Heisenberg-Pauli-Weyl principle:

Theorem 1.5 (Heisenberg-Pauli-Weyl uncertainty principle).
Let f ∈ ACloc(R) ∩ L2(R) with tf, f ′, tf ′ ∈ L2(R), ‖f‖ = 1 and

t0 :=
∫

R
t|f(t)|2dt, ω0 :=

∫
R
ω|F(f)(ω)|2dω.

Then, (
‖tf‖2 − |〈tf, f〉|2

)
·
(
‖f ′‖2 − |〈f ′, f〉|2

)
≥ 1

4 , (1.9)

or equivalently ∫
R
(t− t0)2|f(t)|2dt ·

∫
R
(ω − ω0)2|F(f)(ω)|2dω ≥ 1

16π2 . (1.10)

Equality is attained if and only if f(t) = Ce2πiω0te−λ(t−t0)2 for C ∈ C and λ > 0.

Proof. We adopt Theorem 1.2 to the Hilbert space L2(R), the unit vector v = f and
the position and momentum operators A and B defined above. The domain of the
commutator D([A,B]) consists precisely of the functions f ∈ ACloc(R) with tf, f ′, tf ′ ∈
L2(R). Moreover, for the values a and b, we take

a = εA(f) =
∫

R
t|f(t)|2dt = t0,

b = εB(f) = i
∫

R
f ′(t)f(t)dt.

Since [A,B]f = −if , inequality (1.9) follows directly from inequality (1.4). Further, due
to F(if ′)(ω) = −2πωF(f)(ω) and the Parseval identity, we get

εB(f) = i
∫

R
f ′(t)f(t)dt = −2π

∫
R
ω|F(f)(ω)|2dω = −2πω0

and hence
varB(f) = ‖if ′ − εB(f)f‖2 = 4π2

∫
R
(ω − ω0)2|F(f)|2dω.

13
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Therefore, inequality (1.10) is equivalent to (1.9). By Theorem 1.2, equality in (1.9)
holds if and only if if ′ + 2πω0f = −2iλ(t− t0)f with a real constant λ. This condition
implies the differential equation

f ′ = −2λ(t− t0)f + 2πiω0f.

The solutions of this differential equation correspond to the Gaussian functions G(t) =
Ce2πiω0te−λ(t−t0)2 with constants C ∈ C. Further, the constant λ has to be nonnegative
in order to guarantee G ∈ L2(R). 2

To keep the notation simple, we used in Theorem 1.5 the symbols tf and tf ′ as a shortcut
for the functions given by (tf)(t) = tf(t) and (tf ′)(t) = tf ′(t). We will maintain this
notation in the upcoming sections. The Heisenberg-Pauli-Weyl-inequality (I.1) in the
introduction is evidently also equivalent to (1.9) and (1.10).

1.3. The Breitenberger uncertainty principle

A remarkable uncertainty principle for 2π-periodic functions was formulated by Breit-
enberger [6] in 1983. As the Heisenberg-Pauli-Weyl principle, also the Breitenberger
principle is based on the operator theoretic approach of Section 1.1.

The underlying Hilbert space of the Breitenberger principle is the space L2([−π, π]) of
square integrable 2π-periodic functions with inner product

〈f, g〉 :=
∫ π

−π
f(t)g(t)dt (1.11)

and norm ‖f‖2 := 〈f, f〉. On L2([−π, π]), we define the operators

Af(t) := eitf(t), D(A) = L2([−π, π]), (1.12)
Bf(t) := if ′(t), D(B) := {f ∈ AC2π : f ′ ∈ L2([−π, π])}. (1.13)

The set AC2π denotes the space of all absolutely continuous 2π-periodic functions on
[−π, π]. For the details on absolutely continuous functions, we refer again to Section B.1.
If we consider f as a L2-density distribution on the complex unit circle, the operator A
determines the angular position of the density f . In particular, the expectation value of
the operator A,

ε(f) := εA(f) =
∫ π

−π
eit|f(t)|2dt, (1.14)

can be interpreted as the center of mass (or mean value) of f in the complex plane.
Further, the operator A is a unitary operator on L2([−π, π]). On the other hand, the
operator B gives the angular momentum of the density f . For two absolutely continuous
functions f, g ∈ AC2π, integration by parts yields∫ π

−π
if ′(t)g(t)dt =

∫ π

−π
f(t)ig′(t)dt.
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Thus, B is a symmetric operator and, moreover, self-adjoint (see [70, Lemma 2.3.1]).
Further, the commutator of A and B is given by

[A,B]f = ieitf ′ − i d
dt

(eitf) = eitf = Af,

where f ∈ D([A,B]) = D(B). Now, it is possible to prove the following uncertainty
principle (cf. [6], [63], [68]):

Theorem 1.6.
Let f ∈ AC2π ⊂ L2([−π, π]) with f ′ ∈ L2([−π, π]) and ‖f‖ = 1, then

(1− |ε(f)|2) ·
(
‖f ′‖2 − |〈f ′, f〉|2

)
≥ 1

4 |ε(f)|2. (1.15)

Equality in (1.15) is attained if and only if f(t) = Ceikt, |C| = 1√
2π , is a normalized

trigonometric monomial.

Proof. We adopt Theorem 1.4 to the Hilbert space L2([−π, π]) with the unitary operator
A and the symmetric operator B as defined in (1.12) and (1.13). For εA(f) = ε(f) and
εB(f) = 〈if ′, f〉, we get

varA(f) = ‖(A− εA(f))f‖2 = 1− |ε(f)|2,
varB(f) = ‖(B − εB(f))f‖2 = ‖f ′‖2 − |〈f ′, f〉|2.

The commutator of A and B is given by [A,B]f = ieitf ′ − i d
dt

(eitf). Hence,

D([A,B]) =
{
f ∈ AC2π : f ′ ∈ L2([−π, π])

}
= D(B).

Now, inequality (1.8) implies inequality (1.15).

Due to Theorem 1.4, equality in (1.15) holds if and only if

if ′ − εB(f)f = λ(eit − ε(f))f = −λ̄(e−it − ε(f))f,

for a complex scalar λ ∈ C. The second identity implies

f(t)
(
λeit + λ̄e−it − ε(f)λ− λ̄ε(f)

)
= 2f(t)

(
Re(λe−it)− Re(λε(f))

)
= 0.

This condition can only be satisfied if f = 0 or if λ = 0. In the latter case, we get
the equation if ′ − εB(f)f = 0. The solutions of this differential equation in D(B) are
precisely the monomials f(t) = Ceikt, where |C| = 1√

2π and εB(f) = k, k ∈ Z. 2

Motivated by Theorem 1.6, one defines

varS(f) := 1− |ε(f)|2
|ε(f)|2 (1.16)
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√
1− |ε(f)|2

1|ε(f)|

ε(f)

T

Re

Im √
1−|ε(f)|2
|ε(f)|2

0

Figure 2: Geometric interpretation of the angular variance varS(f) on the complex unit
circle T. The function f is chosen such that ε(f) = 5

6i and varS(f) = 11
25 .

as the angular position variance of a 2π-periodic function f (see Figure 2) and

varF (f) := ‖f ′‖2 − |〈f ′, f〉|2 (1.17)

as the angular momentum (or frequency) variance of f . Clearly, the definition of varS(f)
makes only sense if ε(f) 6= 0. If ε(f) = 0, we call the function f nowhere localized and set
varS(f) = ∞. Examples of nowhere localized 2π-periodic functions are the monomials

1√
2πe

ikt, k ∈ Z. Now, by Theorem 1.6, we get

Corollary 1.7 (Breitenberger uncertainty principle).
If f ∈ AC2π ⊂ L2([−π, π]) such that f ′ ∈ L2([−π, π]), ‖f‖ = 1 and ε(f) 6= 0, then

1− |ε(f)|2
|ε(f)|2 · (‖f ′‖2 − |〈f ′, f〉|2) > 1

4 . (1.18)

Remark 1.8. In [68], Prestin and Quak showed that the constant 1
4 on the right hand

side of inequality (1.18) is optimal. An alternative proof for this optimality that works
in a more general setting will be given in Proposition 2.58.
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1.4. Uncertainty principles for weighted L2-spaces

1.4.1. The compact case

In this section, we are going to generalize the Heisenberg-Pauli-Weyl uncertainty principle
and the Breitenberger principle to the case when the Hilbert space H is a weighted L2-
space. In the first part, we consider as un underlying domain the interval [0, π].
Assumption 1.9. An admissible weight function w on the interval [0, π] satisfies the
properties

(i) w ∈ AC([0, π]), (1.19)
(ii) w(t) > 0, t ∈ (0, π), (1.20)

(iii) t(π − t)w
′

w
∈ L∞([0, π]). (1.21)

The symbol AC([0, π]) denotes the space of absolutely continuous functions f on the
interval [0, π]. For a short introduction into the notion of absolute continuity, we refer
again to Section B.1 of the appendix. Further, the condition (1.20) ensures that w is
strictly positive in the interior (0, π) and property (1.21) guarantees that the fraction w′

w

is not decreasing too rapidly at the possible singularity points at t = 0 and t = π.
Example 1.10. Consider on [0, π] the weight function wαα(t) = sin2α+1 t, α ≥ −1/2.
Then, the properties (1.19) and (1.20) are evidently satisfied. Further,∣∣∣∣t(π − t)w′αα(t)

wαα(t)

∣∣∣∣ =
∣∣∣∣t(π − t)(2α + 1)cos t

sin t

∣∣∣∣ ≤ (2α + 1)π.

Therefore, also (1.21) is satisfied. The measure wαα(t)dt corresponds to the orthogonality
measure of the ultraspherical polynomials P (α,α)

l (cos t) on [0, π] (see Section 1.5.1).
Definition 1.11. For an admissible weight function w on [0, π], we denote by L2([0, π], w)
the Hilbert space of weighted square integrable functions on [0, π] with the inner product

〈f, g〉w :=
∫ π

0
f(t)g(t)w(t)dt (1.22)

and norm ‖f‖2
w := 〈f, f〉w.

Now, similar as in the case of the Breitenberger principle, one could think about the dif-
ferential operator B = d

dt
to be a suitable momentum operator for a possible uncertainty

principle on L2([0, π], w). However, for absolutely continuous functions f, g ∈ AC([0, π]),
integration by parts yields∫ π

0
f ′(t)g(t)w(t)dt = f(π)g(π)w(π)− f(0)g(0)w(0)

+
∫ π

0
f(t)g′(t)w(t)dt+

∫ π

0
f(t)g(t)w′(t)dt.
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1. Uncertainty principles - An overview

Hence, the differential operator d
dt

is in general not symmetric on L2([0, π], w) and the
two Theorems 1.2 and 1.4 can not be used to derive an uncertainty inequality in this
particular case. To circumnavigate this problem, we will use a differential-difference
operator T instead of the differential operator d

dt
. To define such a differential-difference

operator T properly, we require the symmetric extension of functions on the original
interval [0, π] to functions on the doubled interval [−π, π] and the symmetric extension
of the weight function w.

Definition 1.12. On the doubled interval [−π, π] we define the extended weight function
w̃ by

w̃(t) := 1
2w(|t|), t ∈ [−π, π]. (1.23)

By L2([−π, π], w̃), we denote the Hilbert space of weighted square integrable functions
on [−π, π] with the inner product

〈f, g〉w̃ :=
∫ π

−π
f(t)g(t)w̃(t)dt. (1.24)

and norm ‖f‖2
w̃ := 〈f, f〉w̃.

Definition 1.13. On L2([−π, π], w̃), we define the reflection operator ˇ by

ǧ(t) := g(−t), for a.e. t ∈ [−π, π].

We say that a function g ∈ L2([−π, π], w̃) is even (odd) if ǧ = g (ǧ = −g, respectively).
The subspace of even functions in L2([−π, π], w̃) is denoted by

L2
e([−π, π], w̃) :=

{
g ∈ L2([−π, π], w̃) : ǧ = g

}
. (1.25)

The notion "for a.e. t ∈ [−π, π]" in Definition 1.13 means that the statement holds for all
t ∈ [−π, π] except a set of Lebesgue measure zero. On L2([0, π], w) and L2([−π, π], w̃),
we can introduce the even extension operator e and the restriction operator r as

e : L2([0, π], w)→ L2([−π, π], w̃), e(f)(t) := f(|t|), (1.26)
r : L2([−π, π], w̃)→ L2([0, π], w), r(g) := g|[0,π]. (1.27)

Then, the operators e and r constitute isometric isomorphisms between L2([0, π], w) and
the space of even functions L2

e([−π, π], w̃).

Since w ∈ AC([0, π]), its symmetrically extended function w̃ ∈ AC2π is absolutely con-
tinuous and 2π-periodic. In particular, its Radon-Nikodym derivative, denoted as

w̃′ = dw̃

dt
, (1.28)

is an element of L1([−π, π]).
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Definition 1.14. For an admissible weight function w satisfying Assumption 1.9, we
define on L2([−π, π], w̃) the Dunkl operator T by

Tg := dg

dt
+ w̃′

w̃

g − ǧ
2 , (1.29)

with the domain

D(T ) :=
{
g ∈ L2([−π, π], w̃) ∩ AC2π : dg

dt
,
w̃′

w̃

g − ǧ
2 ∈ L2([−π, π], w̃)

}
. (1.30)

Remark 1.15. The fact that w satisfies Assumption 1.9 plays a very important role in
Definition 1.14. It guarantees that the domain D(T ) of the Dunkl operator T is dense in
the Hilbert space L2([−π, π], w̃). In fact, we can show that the trigonometric polynomials
form a subset of D(T ). Obviously, if P(t) = ∑n

l=−n cle
ilt is a trigonometric polynomial,

then P is absolutely continuous on [−π, π], P(−π) = P(π) and P ′ ∈ L2([−π, π], w̃).
Further, we have∫ π

−π

∣∣∣∣w̃′(t)w̃(t)
P(t)− P(−t)

2

∣∣∣∣2w̃(t)dt

=
∫ π

−π

∣∣∣∣t(π2 − t2)w̃
′(t)
w̃(t)

∣∣∣∣2∣∣∣∣ n∑
l=1

cl − c−l
2

sin(lt)
t(π2 − t2)

∣∣∣∣2w̃(t)dt

≤ 2
∥∥∥∥t(π − t)w′w

∥∥∥∥2

∞

( n∑
l=1
|cl − c−l|

∥∥∥∥ sin(lt)
t(π − t)

∥∥∥∥2

w

)
.

Hence, since the weight function w satisfies property (1.21) and sin(lt)
t(π−t) ∈ L

2([0, π], w), we
conclude that also w̃′

w̃
P−P̌

2 ∈ L2([−π, π], w̃).

Whereas the differential operator d
dt

is in general not symmetric on L2([0, π], w), we
can now show that the Dunkl operator iT is symmetric on the extended Hilbert space
L2([−π, π], w̃). Precisely this Dunkl operator will be used afterwards to determine an
uncertainty principle for functions in L2([0, π], w).

Lemma 1.16.
The operator iT is symmetric and densely defined on L2([−π, π], w̃). Moreover, if w̃ is
strictly positive on the whole interval [−π, π], then iT is self-adjoint.

Proof. By the Stone-Weierstrass Theorem B.1, the trigonometric polynomials form a
dense subspace of C2π, and thus also a dense subspace of L2([−π, π], w̃). Hence, by
Remark 1.15, also D(T ) is a dense subset of L2([−π, π], w̃).
To prove the symmetry of iT , we follow in principle the proof of [73, Lemma 3.1]. For
two absolutely continuous functions, integration by parts is well defined (see equation
(B.4) in the appendix). So, for f, g ∈ D(T ), we get∫ π

−π
f ′(t)g(t)w̃(t)dt = −

∫ π

−π
f(t) d

dt

(
g(t)w̃(t)

)
dt

= −
∫ π

−π
f(t)

(
g′(t) + g(t)w̃

′(t)
w̃(t)

)
w̃(t)dt.

19



1. Uncertainty principles - An overview

Now, by definition of the operator T , we get∫ π

−π
(iTf)(t)g(t)w̃(t)dt =− i

∫ π

−π

(
f(t)g′(t) + f(t)g(t)w̃

′(t)
w̃(t)

)
w̃(t)dt

+ i
∫ π

−π

f(t)− f(−t)
2 g(t)w̃

′(t)
w̃(t) w̃(t)dt

=− i
∫ π

−π

(
f(t)g′(t) + f(t) + f(−t)

2 g(t)w̃
′(t)
w̃(t)

)
w̃(t)dt

=− i
∫ π

−π

(
f(t)g′(t) + f(t)g(t)− g(−t)

2
w̃′(t)
w̃(t)

)
w̃(t)dt

=
∫ π

−π
f(t)(iTg)(t)w̃(t)dt.

Therefore, the operator iT is symmetric. In particular, the domain D(T ) is a subset of
the domain D(T ∗) of the dual operator T ∗ (see Section B.3).

We show now that iT is self-adjoint if w̃ is strictly positive on the whole interval [−π, π].
This can be done similarly as in [76, Example 13.4] by proving that also the inclusion
D(T ∗) ⊂ D(T ) holds. Therefore, we take a function g ∈ D(T ∗) and set f = T ∗g ∈
L2([−π, π], w̃). Next, we define as a generalized primitive of f (with respect to the Dunkl
operator T ), the function

F (t) = 1
w̃(t)

∫ t

−π

f(τ) + f(−τ)
2 w̃(τ)dτ +

∫ t

−π

f(τ)− f(−τ)
2 dτ. (1.31)

Since f ∈ L2([−π, π], w̃) ⊂ L1([−π, π]), F is well defined and absolutely continuous on
[−π, π] by the fundamental theorem of calculus for the Lebesgue integral. Moreover, we
get for a.e. t ∈ [−π, π]

TF (t) = f(t) + f(−t)
2 − w̃′(t)

w̃(t)2

∫ t

−π

f(τ) + f(−τ)
2 w̃(τ)dτ

+ w̃′(t)
w̃(t)2

∫ t

−π

f(τ) + f(−τ)
2 w̃(τ)dτ + f(t)− f(−t)

2 = f(t),

and for F (π)

F (π) = 1
w̃(π)

∫ π

−π

f(τ) + f(−τ)
2 w̃(τ)dτ = 1

w̃(π)

〈
f + f̌

2 , 1
〉
w̃

= 1
w̃(π)

〈
T ∗g + T ∗ǧ

2 , 1
〉
w̃

= 1
w̃(π)

〈
g + ǧ

2 , T1
〉
w̃

= 0.

Hence, F is 2π-periodic and, in particular, an element of D(T ). Now, using the symmetry
of the operator T , we get for all ϕ ∈ D(T )

〈Tϕ, g〉w̃ = 〈ϕ, T ∗g〉w̃ = 〈ϕ, f〉w̃ = 〈ϕ, TF 〉w̃ = −〈Tϕ, F 〉w̃. (1.32)
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1.4. Uncertainty principles for weighted L2-spaces

For f ∈ L2([−π, π], w̃), the generalized primitive F in (1.31) is an element of D(T ) if
and and only if F (π) = 0. Hence, the range of the Dunkl operator T is the set of all
f ∈ L2([−π, π], w̃) for which

∫ π
−π f(τ)w̃(τ)dτ = 0 holds, i.e. range(T )⊥ is the subspace

of constant functions in L2([−π, π], w̃). Thus, equation (1.32) implies that g = −F + C
for a constant C ∈ C. Since −F + C is absolutely continuous and 2π-periodic and
g′ ∈ L2([−π, π], w̃), it follows that g ∈ D(T ) and, hence, that iT is self-adjoint. 2

Example 1.17. Consider the weight function w(t) = t4 on [0, π]. Then, the Dunkl operator
on L2([−π, π], w̃) attains the form

Tg(t) = dg

dt
(t) + 2g(t)− g(−t)

t
.

The function h ∈ L2([−π, π], w̃) given by h(t) = |t|−1 is not absolutely continuous on
[−π, π] and therefore not in D(T ). On the other hand, for any g ∈ D(T ) integration by
parts yields

|〈Tg, h〉w̃| =
∣∣∣∣ ∫ π

−π

(
dg

dt
+ 2
t
(g(t)− g(−t))

)
|t|3dt

∣∣∣∣
=
∣∣∣∣ ∫ π

−π
(g(t) + 2g(−t)) sign(t)|t|2dt

∣∣∣∣ ≤ 3
∣∣∣∣ ∫ π

−π
|g(t)||t|2dt

∣∣∣∣ ≤ 6π‖g‖w̃.

Hence, the functional 〈Tg, h〉w̃ is continuous on D(T ). This implies that h is an element
of D(T ∗) and that D(T ) ( D(T ∗). So, if the weight function w is not strictly positive on
the whole interval [0, π], the operator iT is in general not self-adjoint.

Using Theorem 1.4 and the Dunkl operator T , we can deduce an uncertainty principle
for functions in the extended Hilbert space L2([−π, π], w̃). We fix a function h ∈ D(T )
and define two operators A and B on L2(Xd, W̃ ) by

Ag = hg, D(A) = L2([−π, π], w̃), (1.33)
Bg = iTg, D(B) = D(T ). (1.34)

The multiplication operator A is a normal and bounded operator on L2([−π, π], w̃). The
differential-difference operator B is symmetric due to Lemma 1.16. So, the next result is
an immediate consequence of Theorem 1.4.

Theorem 1.18.
For a fixed multiplier h ∈ D(T ) and an even function g ∈ D(T ) ∩ L2

e([−π, π], w̃), the
following inequality holds:(

‖hg‖2
w̃ −
|〈hg, g〉w̃|2

‖g‖w̃

)
· ‖g′‖2

w̃ ≥
1
4 |〈g Th, g〉w̃|. (1.35)

Proof. We consider the operators A and B defined in (1.33) and (1.34). For an even
function g ∈ D(T ), the derivative Tg = g′ is odd. Thus, 〈Bg, g〉w̃ = 〈ig′, g〉w̃ = 0 and
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〈Ag, g〉w̃ = 〈hg, g〉w̃. The commutator [A,B] of the operator A and B acting on functions
g ∈ D(AB) ∩ D(BA) = D(T ) is given by

[A,B]g(t) = ihTg(t)− iT (hg)(t) = −i
(
h′(t)g(t) + w′(t)

w(t)
h(t)− h(−t)

2

)
g(−t),

for a.e. t ∈ [−π, π]. Further, since g ∈ L2
e([−π, π], w̃) ∩ D(T ) is even, we get

[A,B]g = −(iTh)g. (1.36)

Inequality (1.35) now follows from inequality (1.8) with a = 〈hg, g〉w̃, b = 〈Bg, g〉w̃ = 0
and formula (1.36) for the commutator. 2

Theorem 1.18 gives a natural way to formulate an uncertainty principle for the initial
Hilbert space L2([0, π], w). Namely, if f ∈ L2([0, π], w), we can take the even extension
e(f) ∈ L2

e([−π, π], w̃) and then use inequality (1.35). A common choice for the multiplier
h in the definition (1.33) of the operator A is the 2π-periodic function h(t) = eit (see [27,
(2.13)], [73, Theorem 2.2] and [79, Theorem 9.2.]). With this particular choice for the
multiplier h, we get

Theorem 1.19.
Assume that the weight function w satisfies Assumption 1.9. Let f ∈ L2([0, π], w) ∩
AC([0, π]) with f ′ ∈ L2([0, π], w) and normalized such that ‖f‖w = 1. Then, the following
uncertainty principle holds:(

1−
( ∫ π

0
cos t |f(t)|2w(t)dt

)2
)
· ‖f ′‖2

w ≥

1
4

∣∣∣∣ ∫ π

0

(
cos t w(t) + sin t w′(t)

)
|f(t)|2dt

∣∣∣∣2. (1.37)

Equality in (1.37) can only be attained if f is a constant function.

Proof. If f ∈ AC([0, π]) with f ′ ∈ L2([0, π], w) and ‖f‖w = 1, then e(f) ∈ D(T ) and
‖e(f)‖w̃ = 1. Now, we can adopt inequality (1.35) to prove (1.37). As a multiplier h, we
choose h(t) = eit, t ∈ [−π, π]. Then h ∈ D(T ), and we get

‖he(f)‖2
w̃ = ‖e(f)‖2

w̃ = ‖f‖2
w = 1,

|〈he(f), e(f)〉w̃|2 = |〈eite(f), e(f)〉w̃|2 =
( ∫ π

0
cos t|f(t)|2w(t)dt

)2
,

‖e(f)′‖w̃ = ‖f ′‖w,

iTh(t) =
(
− eit − w̃′(t)

w̃(t) sin t
)
, for a.e. t ∈ [−π, π].
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1.4. Uncertainty principles for weighted L2-spaces

Further, since sin t and w̃′

w̃
are odd functions on [−π, π], we conclude

〈(iTh)e(f), e(f)〉w̃ =
∫ π

−π

(
− eit − w̃′(t)

w̃(t) sin t
)
|e(f)(t)|2w̃(t)dt

= −
∫ π

0

(
cos t w(t) + sin t w′(t)

)
|f(t)|2dt.

Hence, inequality (1.37) holds. Due to Theorem 1.8, equality in (1.35) is attained if and
only if (note that a = 〈eite(f), e(f)〉w̃ and b = 0)

ie(f)′ = λ(eit − a)f = −λ̄(e−it − ā)f, λ ∈ C.

This identity implies

f(t)
(
λeit + λ̄e−it − aλ− λ̄ā

)
= 2f(t)

(
Re(λe−it)− Re(aλ)

)
= 0, t ∈ [−π, π].

This condition can only be satisfied if f = 0 or if λ = 0. In the latter case we get if ′ = 0.
Thus, f has to be constant on [0, π]. 2

Similar to the Breitenberger uncertainty principle (1.18), we can introduce a generalized
mean value ε(f) for a function f ∈ L2([0, π], w) by

ε(f) := 〈eite(f), e(f)〉w̃ =
∫ π

0
cos t |f(t)|2w(t)dt. (1.38)

Moreover, we denote the integral term on the right hand side of (1.37) as

ρ(f) := 〈−(iTeit)e(f), e(f)〉w̃ =
∫ π

0

(
cos t w(t) + sin t w′(t)

)
|f(t)|2dt. (1.39)

Definition 1.20. If ρ(f) 6= 0, we define

varS(f) := 1− ε(f)2

ρ(f)2 , (1.40)

varF (f) := ‖f ′‖w. (1.41)

The values varS(f) and varF (f) are called the position and the frequency variance of f ,
respectively.

Corollary 1.21.
Let w satisfy Assumption 1.9 and let f ∈ L2([0, π], w)∩AC([0, π]) with f ′ ∈ L2([0, π], w),
‖f‖w = 1 and ρ(f) 6= 0. Then, the following uncertainty principle holds:

varS(f) · varF (f) > 1
4 . (1.42)
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Proof. Clearly, (1.42) follows from (1.37). It remains to check the strict inequality in
(1.42). The only functions for which equality is attained in (1.37) are the constant
functions. If f = C is constant on [0, π], integration by parts with respect to the variable
t yields

ρ(f) = |C|
∫ π

0

(
cos t w(t) + sin t w′(t)

)
dt = 0.

Hence, there exists no function f with f ∈ L2([0, π], w) ∩ AC([0, π]), f ′ ∈ L2([0, π], w),
‖f‖w = 1 and ρ(f) 6= 0 for which equality holds in (1.42). 2

1.4.2. The compact case with zero boundary condition

In Theorem 1.18, the multiplier h has to be an element of the domain D(T ) in order
that the commutator [A,B] is well defined for functions in D(T ). This is certainly the
case if h is given by h(t) = eit, but not if we choose, for instance, h(t) = t, t ∈ [−π, π].
However, the option h(t) = t is possible, if we restrict the domain of the Dunkl operator
T to functions g ∈ AC([−π, π]) satisfying the boundary condition g(−π) = g(π) = 0.

Definition 1.22. Consider the Hilbert space L2([0, π], w) and the extension
L2([−π, π], w̃) as in Definition 1.12. Then, we restrict the Dunkl operator T defined
in (1.29) by Tg = g′ + w̃′

w̃
g−ǧ

2 to the smaller domain

D0(T ) :=
{
g ∈ AC2π : g(π) = 0, dg

dt
,
w̃′

w̃

g − ǧ
2 , t

w̃′

w̃
g ∈ L2([−π, π], w̃)

}
. (1.43)

In view of property (1.21) of the weight function w, the condition t w̃′
w̃
g ∈ L2([−π, π], w̃) in

(1.43) is a growth condition on the function g at the point t = π. This additional condition
will be needed in the proof of Theorem 1.23 below. Since D0(T ) ⊂ D(T ), Lemma 1.16
implies that the operator iT is also symmetric on the smaller domain D0(T ).

On L2([−π, π], w̃), we consider now the bounded operator A defined by Ag = hg and the
operator B = iT defined on the smaller domain D0(T ). In the following, we will show
that the commutator [A,B] is well defined for functions in D0(T ) if the multiplier h is
an element of

M :=
{
h ∈ AC([−π, π]) ∩ L2([−π, π], w̃) : dh

dt
∈ L2([−π, π], w̃),

(π2 − t2)w̃
′

w̃

h− ȟ
2 ∈ L2([−π, π], w̃)

}
. (1.44)

Note that the functions h ∈ M are not supposed to fulfill the periodicity condition
h(−π) = h(π) and that the condition (π2− t2) w̃′

w̃
h−ȟ

2 ∈ L
2([−π, π], w̃) is weaker than the

condition w̃′

w̃
h−ȟ

2 ∈ L2([−π, π], w̃) in the domain D(T ). Now, similar to Theorem 1.18,
we get the following result for even functions in D0(T ):
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1.4. Uncertainty principles for weighted L2-spaces

Theorem 1.23.
For a fixed h ∈M and an even function g ∈ D0(T )∩L2

e([−π, π], w̃), we have the inequality(
‖hg‖2

w̃ −
|〈hg, g〉w̃|2

‖g‖w̃

)
· ‖g′‖2

w̃ ≥
1
4 |〈hTg − T (hg), g〉w̃| . (1.45)

Proof. The operator A defined by Ag = hg, h ∈ M is a normal and bounded operator
on L2([−π, π], w̃) and the operator B = iT with domain D(B) = D0(T ) is symmetric
due to Lemma 1.16. For g ∈ D0(T ) and h ∈ M, we have that hg ∈ AC([−π, π]),
hg(−π) = hg(π) = 0 and that d(hg)

dt
∈ L2(Xd, W̃ ). Further, we have∥∥∥∥w̃′w̃ hg − ȟǧ

2

∥∥∥∥2

w̃
=
∥∥∥∥w̃′w̃ h− ȟ

2
g + ǧ

2 + w̃′

w̃

g − ǧ
2

h+ ȟ

2

∥∥∥∥2

w̃

≤
∥∥∥∥(π2 − t2 + |t|)w̃

′

w̃

h− ȟ
2

g + ǧ

2

∥∥∥∥2

w̃
+
∥∥∥∥w̃′w̃ g − ǧ

2

∥∥∥∥2

w̃
‖h‖∞

≤
∥∥∥∥(π2 − t2)w̃

′

w̃

h− ȟ
2

∥∥∥∥2

w̃
‖g‖∞ +

∥∥∥∥tw̃′w̃ g
∥∥∥∥2

w̃
‖h‖∞ +

∥∥∥∥w̃′w̃ g − ǧ
2

∥∥∥∥2

w̃
‖h‖∞.

Hence, by definition of the domain D0(T ) and the set M, the product hg is in D0(T )
and the commutator [A,B]g = h(iTg)− iT (hg) is well defined for functions g ∈ D0(TX).
Inequality (1.45) now follows from inequality (1.8) with a = 〈hg, g〉w̃ and b = 〈iTg, g〉w̃ =
〈ig′, g〉w̃ = 0. 2

Since M ⊃ D(T ), the set of admissible multipliers h in Theorem 1.23 is larger than in
Theorem 1.18. In particular, the multiplier h given by h(t) = t is an element ofM\D(T ).

Theorem 1.24.
Assume that the weight function w satisfies Assumption 1.9. Let f ∈ L2([0, π], w) ∩
AC([0, π]), f ′ ∈ L2([0, π], w), satisfying the zero boundary condition f(π) = 0 and tw′

w
f ∈

L2([0, π], w). Further, let f be normalized such that ‖f‖w = 1. Then, the following
uncertainty inequality holds:

‖tf‖2
w · ‖f ′‖2

w >
1
4

∣∣∣∣1 +
∫ π

0
tw′(t)|f(t)|2dt

∣∣∣∣2. (1.46)

Proof. We proceed as in the proof of Theorem 1.19. If f ∈ AC([0, π]) with f ′ ∈ L2([0, π]),
zero boundary condition f(π) = 0 and tw

′

w
f ∈ L2([0, π], w), then e(f) ∈ D0(T ). Now,

inserting g = e(f) and h(t) = t in inequality (1.45), we get

‖he(f)‖2
w̃ = ‖te(f)‖2

w̃ = ‖tf‖2
w,

〈he(f), e(f)〉w̃ = 〈te(f), e(f)〉w̃ = 0,
‖e(f)′‖w̃ = ‖f ′‖w,

(T (he(f))− hTe(f)) (t) = e(f)(t) + w̃′(t)
w̃(t) te(f)(t), for a.e. t ∈ [−π, π].
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Further, since t and w̃′

w̃
are odd functions on [−π, π], we conclude

〈T (he(f))− hTe(f), e(f)〉w̃ =
∫ π

−π

(
1 + w̃′(t)

w̃(t) t
)
|e(f)(t)|2w̃(t)dt

= 1 +
∫ π

0
tw′(t)|f(t)|2dt.

The operator A given by Ag = tg is symmetric. Since also B = iT is symmetric, Theorem
1.2 states that equality in (1.45) holds if and only if (note that a = 〈te(f), e(f)〉w̃ = 0,
b = 〈ie(f)′, e(f)〉w̃ = 0)

ie(f)′(t) = iλte(f)(t), t ∈ [−π, π], λ ∈ R,

i.e. if and only if f(t) = Ce−λt
2 . Since f has to satisfy the boundary condition f(π) = 0,

this can only hold for the zero function. But the zero function is not a permissible
function in Theorem 1.24. Hence, inequality (1.46) is strict. 2

1.4.3. The non-compact case

In this last part, we consider weighted square integrable functions on the nonnegative
real half axis [0,∞). The resulting uncertainty principle will be a generalization of
the Heisenberg-Pauli-Weyl inequality. Hereby, the weight function w has to satisfy the
following conditions:
Assumption 1.25. An admissible weight functions w on the nonnegative real half axis
[0,∞) satisfies the properties

(i) w ∈ ACloc([0,∞)), (1.47)
(ii) w(t) > 0, t ∈ (0,∞), (1.48)

(iii) tw
′

w

∣∣∣
[a,b]
∈ L∞([a, b]), for all [a, b] ⊂ [0,∞). (1.49)

Assumption 1.25 resembles Assumption 1.9 on the interval [0, π]. The conditions (1.47)
and (1.48) guarantee that w is strictly positive on (0,∞) and locally absolutely contin-
uous. The property (1.49) ensures that the fraction tw′

w
is essentially bounded on every

interval [a, b] ⊂ [0,∞). Further, there are no integrability restrictions on the weight
function w and, in particular, the integral

∫∞
0 w(t)dt is not supposed to be finite. This

is, for instance, the case in the Heisenberg-Pauli-Weyl principle (Theorem 1.5), where
w(t) = 1.
Example 1.26. Consider the weight function wα(t) = tαe−t, α ≥ 0, on [0,∞). The
conditions (1.47) and (1.48) are evidently satisfied. Further,∣∣∣∣tw′α(t)

wα(t)

∣∣∣∣ = t
∣∣∣α
t
− 1

∣∣∣ = |α− t|.

Hence, also condition (1.49) is satisfied. The weight function wα determines the ortho-
gonality measure of the Laguerre polynomials (see Section 1.5.2).
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Definition 1.27. For an admissible weight function w on [0,∞), we denote by
L2([0,∞), w) the Hilbert space of weighted square integrable functions on [0,∞) with
the inner product

〈f, g〉w :=
∫ ∞

0
f(t)g(t)w(t)dt (1.50)

and norm ‖f‖2
w := 〈f, f〉w.

Similar as in Definition 1.12, we can also define a symmetric extended weight function w̃
on the real axis R.

Definition 1.28. On R, we define the symmetric extended weight function w̃ by

w̃(t) := 1
2w(|t|), t ∈ R. (1.51)

and denote by L2(R, w̃) the Hilbert space of weighted square integrable functions on R
with the inner product

〈f, g〉w̃ :=
∫

R
f(t)g(t)w̃(t)dt (1.52)

and norm ‖f‖2
w̃ := 〈f, f〉w̃.

To relate the Hilbert spaces L2([0,∞), w) and L2(R, w̃), we introduce the even extension
operator e and the restriction operator r as

e : L2([0,∞), w)→ L2(R, w̃), e(f)(t) := f(|t|), (1.53)
r : L2(R, w̃)→ L2([0,∞), w), r(g) := g|[0,∞). (1.54)

The operators e and r define isometric isomorphisms between L2([0,∞), w) and the space
of even functions

L2
e(R, w̃) :=

{
g ∈ L2(R, w̃) : ǧ = g

}
.

Hereby, ǧ is defined as in the compact case by ǧ(t) = g(−t) for a.e. t ∈ R.

Since w ∈ ACloc([0,∞)), the even function w̃ ∈ ACloc(R) is locally absolutely continuous
on R. Its Radon-Nikodym derivative, denoted as w̃′ = dw̃

dt
, is locally integrable, i.e.,

w̃′|[a,b] ∈ L1([a, b]) for all intervals [a, b] ∈ R.

Definition 1.29. For a weight function w satisfying Assumption 1.25, we define on
L2(R, w̃) the Dunkl operator T by

Tg := dg

dt
+ w̃′

w̃

g − ǧ
2 (1.55)

with the domain

D(T ) =
{
g ∈ ACloc(R) ∩ L2(R, w̃) : dg

dt
,
w̃′

w̃

g − ǧ
2 ∈ L2(R, w̃)

}
. (1.56)
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Remark 1.30. The fact that w satisfies Assumption 1.25 is crucial in Definition 1.29. It
ensures that the domain D(T ) of the Dunkl operator T is dense in L2(R, w̃). Namely,
we can show that the C∞-functions with compact support in R, denoted as C∞c (R), are
included in D(T ). Clearly, if g ∈ C∞c (R), then g is locally absolutely continuous on R
and g′ ∈ C∞c (R) ⊂ L2(R, w̃). Further, if supp(g) ⊂ [−K,K], K > 0, we have∫

R

∣∣∣∣w̃′(t)w̃(t)
g(t)− g(−t)

2

∣∣∣∣2w̃(t)dt

=
∫ K

−K

∣∣∣∣tw̃′(t)w̃(t)

∣∣∣∣2∣∣∣∣g(t)− g(−t)
2t

∣∣∣∣2w̃(t)dt ≤
∥∥∥∥tw′w

∥∥∥∥2

L∞([0,K])

∥∥∥∥g − ǧ2t

∥∥∥∥2

w̃
.

Hence, since w satisfies the property (1.49) and g−ǧ
t
∈ L2(R, w̃), we conclude that also

w̃′

w̃
g−ǧ

2 ∈ L
2(R, w̃).

Now, as in the compact case (see Lemma 1.31), we can show that the Dunkl operator iT
is symmetric.

Lemma 1.31.
The operator iT is symmetric and densely defined on L2(R, w̃).

Proof. The space C∞c (R) of compactly supported C∞-functions is dense in L2(R, w̃). By
Remark 1.30, C∞c (R) is a subset of D(T ). Thus, also D(T ) is a dense subset of L2(R, w̃).
Finally, for f, g ∈ D(T ), we just have to follow the lines of the proof of Lemma 1.16 to
get the symmetry of iT . 2

On the Hilbert space L2(R, w̃), we can now define the operators A and B as

Ag(t) = tg(t), D(A) =
{
g ∈ L2(R, w̃) : tg ∈ L2(R, w̃)

}
, (1.57)

Bg = iTg, D(B) = D(T ). (1.58)

By Lemma 1.31, B = iT is symmetric, and for f, g ∈ D(A), we get

〈Af, g〉w̃ =
∫

R
tf(t)g(t)w̃(t)dt =

∫
R
f(t)tg(t)w̃(t)dt = 〈f, Ag〉w̃.

Therefore, also A is symmetric. Even more, it is possible to show (cf. [85], Example
(b), p. 318) that the operator A is self-adjoint. Now, adopting Theorem 1.2, we get the
following uncertainty principle (cf. [27, (2.20)]):

Theorem 1.32.
Suppose that w satisfies Assumption 1.25. Let f ∈ L2([0,∞), w) ∩ ACloc([0,∞)) such
that f ′, tf, tf ′, tw′

w
f ∈ L2([0,∞), w). Further, let f be normalized such that ‖f‖w = 1.

Then, the following uncertainty principle holds:

‖tf‖2
w · ‖f ′‖2

w ≥
1
4

∣∣∣∣1 +
∫ ∞

0
tw′(t)|f(t)|2dt

∣∣∣∣2. (1.59)
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Equality holds if and only if f = Ce−λt
2, with a complex scalar C and a real constant

λ ∈ R such that f fulfills the requirements of the theorem.

Proof. We consider the operators A and B defined in (1.57) and (1.58) on the Hilbert
space L2(R, w̃). The commutator of A and B is given by

[A,B]g(t) = −ig(t)− iw̃
′(t)
w̃(t) tg(−t), for a.e. t ∈ R,

for all functions g ∈ D(AB)∩D(BA). If we consider only even functions g ∈ L2
e(Y d, W̃ ),

we get
[A,B]g(t) = −ig(t)

(
1 + t

w̃′(t)
w̃(t)

)
, for a.e. t ∈ R.

Next, if f ∈ ACloc([0,∞)) with f ′, tf , tf ′ and tw
′

w
f in L2([0,∞), w), then the even

extension e(f) lies in the domain D([A,B]) = D(AB) ∩ D(BA) of the commutator.
Hence, if we apply the symmetric operators A and B to the function e(f), we get in
inequality (1.7):

‖Ae(f)‖2
w̃ = ‖te(f)‖2

w̃ = ‖tf‖2
w,

a = 〈Ae(f), e(f)〉w̃ = 〈te(f), e(f)〉w̃ = 0,
‖Be(f)‖w̃ = ‖e(f)′‖w̃ = ‖f ′‖w,

b = 〈Be(f), e(f)〉w̃ = 〈ie(f)′, e(f)〉w̃ = 0,

[A,B]e(f)(t) = −ie(f)(t)
(

1 + t
w̃′(t)
w̃(t)

)
, for a.e. t ∈ R.

Further, since w̃′ is an odd function and f is normalized, we conclude

|〈[A,B]e(f), e(f)〉w̃| =
∣∣∣∣ ∫ ∞
−∞

(
1 + w̃′(t)

w̃(t) t
)
|e(f)(t)|2w̃(t)dt

∣∣∣∣
=
∣∣∣∣1 +

∫ ∞
0

tw′(t)|f(t)|2dt
∣∣∣∣.

Due to Theorem 1.2, equality in (1.59) holds if and only if ie(f)′ = −i2λte(f), where
λ is a real constant. The solution of this differential equation is exactly the Gaussian
function e(f)(t) = Ce−λt

2 with a complex scalar C. Restricted to the nonnegative real
half axis, this yields the assertion. 2

Remark 1.33. Theorem 1.24 in Section 1.4.2 can be considered as an intermediate result
related to Theorem 1.18 in Section 1.4.1 and also to Theorem 1.32 above. Moreover,
it is possible to prove Theorem 1.24 in two different ways. The first way, presented in
Section 1.4.2, is by restricting the domain of the Dunkl operator T to functions with
zero boundary condition. Alternatively, Theorem 1.24 can be proven by restricting the
uncertainty inequality (1.59) above to functions that have compact support in the interval
[0, π].
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1.5. Uncertainty principles for orthogonal expansions

If the weight function w determines the orthogonality measure of a set of orthogonal
polynomials, the theory presented in the last section leads directly to an uncertainty
relation for functions having an expansion in terms of orthogonal polynomials. The first
work in this area was done by Rösler and Voit [73] who used the Dunkl operator T to
develop an uncertainty principle for ultraspherical polynomials. Later on, these results
were generalized by Li and Liu [54] to Jacobi polynomials. Using similar techniques as for
the Jacobi polynomials, there have been developed uncertainty principles also for other
well known orthogonal expansions like the spherical Bessel functions [74], the Laguerre
polynomials and the generalized Hermite polynomials [55]. In this section, we will focus
on the uncertainty principles for Jacobi and Laguerre expansions.

1.5.1. Uncertainty principles for Jacobi expansions

For α, β > −1,the weight function wαβ of the Jacobi polynomials is defined on [0, π] as

wαβ(t) := 2α+β+1 sin2α+1
(
t

2

)
cos2β+1

(
t

2

)
. (1.60)

Integrating the weight function wαβ from 0 to π yields (cf. [42, (4.0.2)])∫ π

0
wαβ(t)dt = 2α+β+1 Γ(α + 1)Γ(β + 1)

Γ(α + β + 2) . (1.61)

If α, β ≥ −1
2 , the Jacobi weight wαβ is a nonnegative and absolutely continuous function

on [0, π]. Moreover, we have

w′αβ(t)
wαβ(t) = (α + β + 1) + (α− β) cos t

sin t . (1.62)

Hence, the Jacobi weight function wαβ satisfies Assumption 1.9.

The Jacobi polynomials P (α,β)
n on the interval [−1, 1] can be defined by the explicit

formula (cf. [83, (4.21.1)])

P (α,β)
n (x) := Γ(n+ α + 1)

n!Γ(n+ α + β + 1)

n∑
j=0

(
n

j

)
Γ(n+ j + α + β + 1)

Γ(j + α + 1)

(
x− 1

2

)j
. (1.63)

Using the coordinate change [0, π]→ [−1, 1] : t→ cos t = x, we consider the polynomials
P (α,β)
n on the interval [0, π]. Then, the Jacobi polynomials P (α,β)

n satisfy the following
orthogonality relation (cf. [42, Theorem 4.1.1])∫ π

0
P (α,β)
m (cos t)P (α,β)

n (cos t)wαβ(t)dt = h(α,β)
n δm,n, (1.64)
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1.5. Uncertainty principles for orthogonal expansions

where
h(α,β)
n := 1

‖P (α,β)
n ‖2

wαβ

= 2α+β+1Γ(α + n+ 1)Γ(β + n+ 1)
n!Γ(α + β + n+ 1)(α + β + 2n+ 1) . (1.65)

The Jacobi polynomials {P (α,β)
n (cos t)}∞n=0 form a complete orthogonal set in the Hilbert

space L2([0, π], wαβ) (follows from the Stone-Weierstrass Theorem B.1 and the fact that
the continuous functions on [0, π] are dense in L2([0, π], wαβ)). Moreover, they satisfy
the second-order differential equation [83, (4.2.1)]

LαβP
(α,β)
n = −n(n+ α + β + 1)P (α,β)

n , (1.66)

where the differential operator Lαβ is given by

Lαβ := d2

dt2
+ (α + β + 1) cos t+ α− β

sin t
d

dt
. (1.67)

By Definition 1.14, the Dunkl operator T on the symmetrically extended Hilbert space
L2([−π, π], w̃αβ) is given by

Tg(t) = g′(t) + (α + β + 1) cos t+ (α− β)
sin t

g(t)− g(−t)
2 , g ∈ D(T ). (1.68)

The differential-difference operator T is strongly related to the second-order differential
operator Lαβ. Namely, for functions f ∈ C2([0, π]) with f ′(0) = f ′(π) = 0, we get

−Lαβf = r((iT )2e(f)). (1.69)

Therefore, the operator iT can be seen as a generalized root of the second-order differ-
ential operator Lαβ and the frequency variance varαβF (f) of f can be written as

varαβF (f) = ‖f ′‖2
wαβ

= ‖iTe(f)‖2
w̃αβ

= 〈−Lα,βf, f〉wαβ . (1.70)

Finally, if we introduce the generalized mean value εαβ(f) as in (1.38) by

εαβ(f) =
∫ π

0
cos t |f(t)|2wαβ(t)dt, (1.71)

we can deduce from Corollary 1.42 an uncertainty principle for functions in L2([0, π], wαβ)
(see also [54, Corollary 2] for an alternative formulation).

Corollary 1.34 (Uncertainty principle for Jacobi expansions).
Let f ∈ AC([0, π]) ∩ L2([0, π], wαβ) with f ′ ∈ L2([0, π], wαβ), ‖f‖wαβ = 1 and

(α− β) + (α + β + 2)εαβ(f) 6= 0.

Then, the following uncertainty principle holds:

1− εαβ(f)2

| α−β
α+β+2 + εαβ(f))|2

· ‖f ′‖2
wαβ

>
(α + β + 2)2

4 . (1.72)
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Proof. Corollary 1.34 is an immediate consequence of Corollary 1.21 when applied to the
weight function wαβ. The only thing that remains to check is the formula for the integral
term on the right hand side of equation (1.37). This is done by the following simple
calculation:∫ π

0

(
cos t wαβ(t) + sin t w′αβ(t)

)
|f(t)|2dt

=
∫ π

0

(
(α + β + 2) cos t+ (α− β)

)
|f(t)|2wαβ(t)dt

= (α− β) + (α + β + 2)εαβ(f). 2

If α = β, the polynomials P (α,α)
n are called ultraspherical polynomials. In this case,

Corollary 1.34 corresponds to the original result of Rösler and Voit [73, Theorem 2.2].

Corollary 1.35 (Uncertainty principle for ultraspherical expansions).
Let f ∈ L2([0, π], wαα) ∩ AC([0, π]) with f ′ ∈ L2([0, π], wαα), εαα(f) 6= 0 and normalized
such that ‖f‖wαα = 1. Then, the following uncertainty principle holds:

1− εαα(f)2

εαα(f)2 · ‖f ′‖2
wαα > (α + 1)2. (1.73)

Remark 1.36. In the articles [54, Lemma 8] and [73, Proposition 3.3], it is shown that the
constant (α+β+2)2

4 on the right hand side of inequality (1.72) is optimal. An alternative
proof of this optimality will be given in Theorem 3.16 where we will show that for a
family Ṽn of polynomial kernels of order n the uncertainty product in (1.72) tends to the
optimal constant as n→∞.

1.5.2. Uncertainty principles for Laguerre expansions

As an example for an orthogonal expansion on the nonnegative real half axis [0,∞), we
consider the Laguerre polynomials. For α > −1 the Laguerre polynomials Lαn can be
defined by the formula

L(α)
n (t) := et

n!
dn

dtn
(tne−t) (1.74)

and satisfy the orthogonality relation [42, Theorem 4.6.1]
∫ ∞

0
L(α)
m (t)L(α)

n (t)tαe−tdt = Γ(α + n+ 1)
n! δm,n. (1.75)

Hence, the Laguerre polynomials are orthogonal on [0,∞) with respect to the weight
function wα(t) = tαe−t. It is well-known that they form a complete orthogonal set in
the Hilbert space L2([0,∞), wα) and satisfy the second-order differential equation [42,
(4.6.15)]

LαL
(α)
n = −nL(α)

n , (1.76)
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where the differential operator Lα is given by

Lα := t
d2

dt2
+ (1 + α− t) d

dt
. (1.77)

For the fraction w′α
wα

, we get in the case of the Laguerre polynomials

w′α(t)
wα(t) = α

t
− 1, t ∈ (0,∞).

Thus, if α ≥ 0, the weight function wαβ satisfies Assumption 1.25 and, by Definition
1.55, the Dunkl operator T on the extended Hilbert space L2(R, w̃α) is given by

Tg(t) = g′(t) +
(
α

t
− sign t

)
g(t)− g(−t)

2 , for a.e. t ∈ R, g ∈ D(T ). (1.78)

Also this time, the Dunkl operator T is related to the second order differential operator
Lα. For functions f ∈ C2([0,∞) with f ′(0) = 0, we have

Lαf = r
[
(T ◦ |t| ◦ T )e(f)

]
. (1.79)

So, in the case of the Laguerre polynomials, the operator Lα can be decomposed with
help of the Dunkl operator T and the multiplication operator f → |t|f . Finally, as a
consequence of Theorem 1.32, we get the following uncertainty principle for functions in
L2([0,∞), wα):

Corollary 1.37.
For α ≥ 0, let f ∈ L2([0,∞), wα) ∩ ACloc([0,∞)) such that f ′, tf, tf ′ ∈ L2([0,∞), wα).
Further, let f be normalized such that ‖f‖wα = 1. Then, the following uncertainty
inequality holds:

‖tf‖2
wα · ‖f

′‖2
wα ≥

1
4

∣∣∣∣1 + α−
∫ ∞

0
t|f(t)|2wα(t)dt

∣∣∣∣2. (1.80)

Equality holds if and only if f(t) = Ce−λt
2 with a complex scalar C and a nonnegative

real value λ ≥ 0.

1.6. Remarks and References

Uncertainty principles in Hilbert spaces. Among many other standard references, The-
orem 1.1 can be found in [19, Theorem 1.34] and [29, Lemma 2.2.2]. The Theorems 1.2
and 1.4 as well as their proofs are taken from [79].

The Heisenberg-Pauli-Weyl uncertainty principle. The Heisenberg-Paul-Weyl inequality
(1.10) goes back to the pathbreaking work [33] of Heisenberg in 1927. In his work,
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Heisenberg gives a detailed description and physical interpretation of (1.10). The precise
mathematical formulation of (1.10), though, can firstly be found in the article of Kennard
[45] and in the book of Weyl (see [86], p. 77) who credits the result to Pauli.
Among other standard references, the Heisenberg-Pauli-Weyl-inequality can be found in
the form of inequality (1.10) in [20, Theorem 1.1], [29, Theorem 2.2.1] and [79, Theorem
6.1]. In the form of inequality (1.9), it can be found in [19, Corollary 1.35] or in [70,
Theorem 2.2.3].

The Breitenberger uncertainty principle. The inequalities (1.15) and (1.18) go back to
the primary work of Breitenberger [6] in 1983. In a more mathematical form, these two
inequalities have been restated by Narcowich and Ward [63] in 1996 using the angular
momentum operator from physics. In the version of (1.15) and (1.18), the Breitenberger
uncertainty principle can be found in [68] and [78], [79]. The optimality of the constant
1
4 on the right hand side of inequality (1.18) was firstly proven by Prestin and Quak in
the article [68].

Section 1.4.1. The results of Section 1.4.1 constitute a generalization of the work of
Rösler and Voit [73] who firstly used a Dunkl operator of the form (1.29) to prove an
uncertainty principle for functions on [0, π] having an expansion in terms of ultraspherical
polynomials. The main results of the section are taken from the survey article [79] of
Selig and from the work [26, 27] of Goh and Goodman. Related results can be also found
in the article [55] of Li and Liu.
Assumption 1.9 is a slightly modified version of the assumptions on the weight function
w given in [27, p. 23].
The definition of the Dunkl operator T in (1.29) corresponds to the definition of the
Dunkl operator in [27, p. 23]. The definition (1.30) of the domain D(T ) is slightly more
general than in [27, p. 23].
The proof of the symmetry of the Dunkl operator T in Lemma 1.16 is analog to the proof
of [73, Lemma 3.1]. The proof of the self-adjointness of T in Lemma 1.16 is very similar
to the proof of the self-adjointness of the differential operator d

dt
on L2([−π, π]) (see [70,

Lemma 2.3.1]).
Theorem 1.18 and 1.19 are generalized versions of Theorem 9.1 and 9.2 in [79], respec-
tively. Inequality (1.42) corresponds to inequality (2.12) in [27].

Section 1.4.2. Section 1.4.2 is a new result and can be considered as an intermediate
result between Section 1.4.1 and Section 1.4.3. Namely, Theorem 1.24 can be proven in
two ways. One way to prove it is by restricting the domain of the Dunkl operator T
to functions with zero boundary condition as shown in Section 1.4.2. The other way to
prove it is by restricting Theorem 1.32 in Section 1.4.3 to functions with compact support
in the interval [0, π].

Section 1.4.3. The results of Section 1.4.3 are mainly taken from [27]. Related results
can also be found in [55].
Assumption 1.25 summarizes in a slightly modified way the assumptions on the weight
function w given in [27, p. 24].
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The definition of the differential-difference operator T in (1.55) corresponds to the defi-
nition of the Dunkl operator T in [27, p. 24]. The definition (1.56) of the domain D(T )
is slightly more general than in [27, p. 24].
Inequality (1.42) is a reformulation of inequality (2.19) in [27]. For the weight function
wα(t) = tα, α ≥ 0 on [0,∞), inequality (1.42) reduces to the particular case of uncertainty
inequalities for Hankel transforms considered in [74].

Uncertainty principle for Jacobi polynomials. Corollary 1.34 can be found, in a slightly
modified form, in the article [54, Corollary 2]. The original version of Corollary 1.35 can
be found in [73, Theorem 2.2]. A qualitative uncertainty principle for Jacobi polynomials
can be found in the dissertation [18] of Fischer.

Uncertainty principle for Laguerre polynomials. A slightly different version of Corollary
1.37 can be found in [55, Theorem 9]. Similar to the Laguerre case, an uncertainty
principle for generalized Hermite polynomials was also proven in [55, Theorem 10].
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"In jeder Philosophie gibt es einen Punkt, wo die
"Überzeugung" des Philosophen auf die Bühne tritt:
oder, um es in der Sprache eines alten Mysteriums zu
sagen:

adventavit asinus
pulcher et fortissimus."

Friedrich Nietzsche, Jenseits von Gut und Böse, 1886

2
Uncertainty principles on

Riemannian manifolds

This chapter includes the main statements of this thesis. We will combine the theory
of uncertainty principles in Chapter 1 with the geometric structure of a Riemannian
manifold. First, we will extend the theory of Section 1.4 to weighted L2-spaces on a
multi-dimensional cylindrical domain Zd

π. Then, this extended theory is used to develop
an uncertainty principle for square-integrable functions on arbitrary compact Riemannian
manifoldsM . The main tools in this step are the exponential map expp on the tangential
space TpM and an isometric isomorphism from L2(M) onto a weighted L2-space on the
cylindrical domain Zd

π. In a similar way, we will prove uncertainty principles for compact
star-shaped domains Ω ⊂M with Lipschitz continuous boundary and for manifolds which
are diffeomorphic to the Euclidean space Rd. Finally, we will show that the developed
uncertainty principles are asymptotically sharp in the case that the underlying manifold
is compact, and sharp if M is diffeomorphic to Rd.

2.1. Weighted L2-inequalities on a multi-dimensional cylindrical
domain

2.1.1. Inequalities in the compact case

In this section, we are going to generalize the uncertainty principle of Theorem 1.19
to weighted L2-spaces where the underlying domain is not the interval [0, π] but the
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2. Uncertainty principles on Riemannian manifolds

d-dimensional cylinder

Zd
π := [0, π]× Sd−1 = {(t, ξ) : t ∈ [0, π], ξ ∈ Sd−1} ⊂ Rd+1, (2.1)

where Sd−1 :=
{
ξ ∈ Rd : |ξ|2 = ξ2

1 + · · ·+ ξ2
d = 1

}
denotes the (d − 1)-dimensional unit

sphere in Rd. The cylinder Zd
π is a differentiable submanifold of Rd+1 with left hand

boundary
∂LZ

d
π := {(0, ξ) : ξ ∈ Sd−1} (2.2)

and right hand boundary
∂RZ

d
π := {(π, ξ) : ξ ∈ Sd−1}. (2.3)

A Riemannian structure on Zd
π is given by the restriction of the Euclidean metric in Rd+1

to Zd
π. Hence, Zd

π is a compact Riemannian manifold with boundary ∂ZL and ∂ZR. A
canonical measure on Zd

π is given by the product measure dtdµ(ξ), where µ denotes the
standard surface measure on Sd−1.

Assumption 2.1. As admissible weight functions on Zd
π, we consider positive functions

W satisfying the properties

(i) W ∈ C(Zd
π) : W (·, ξ) ∈ AC([0, π]) for µ-a.e. ξ ∈ Sd−1,

W ′ = ∂W

∂t
∈ L1(Zd

π), (2.4)

(ii) W (t, ξ) > 0, (t, ξ) ∈ (0, π)× Sd−1, (2.5)

(iii) t(π − t)W
′

W
∈ L∞(Zd

π). (2.6)

Assumption 2.1 can be seen as an extension of Assumption 1.9 onto the d-dimensional
cylinder Zd

π. The symbol C(Zd
π) denotes the space of all continuous functions on the

compact manifold Zd
π. Then, the first condition (2.4) says that the weight function W is

absolutely continuous with respect to the variable t for µ-a.e. fixed unit vector ξ ∈ Sd−1,
and that the Radon-Nikodym derivative W ′ of W with respect to the variable t is an
integrable function on Zd

π. Hereby, the notion "for µ-a.e. ξ ∈ Sd−1" means that the
statement holds for all unit vectors ξ on Sd−1 except a subset of µ-measure zero, where µ
is the standard Riemannian measure on Sd−1. The second condition (2.5) ensures that the
weight function W is strictly positive on the interior Zd

π \ {∂LZd
π, ∂RZ

d
π} of the cylinder

Zd
π. Finally, the condition (2.6) guarantees that the fraction t(π − t)W ′

W
is essentially

bounded on Zd
π. Especially the last property (2.6) will play an important role in the

upcoming definition of the Dunkl operator.
Example 2.2. Consider the weight function Wα : Zd

π → R, Wα(t, ξ) := sin2α+1 t, α ≥ −1
2 .

The conditions (2.4) and (2.5) are obviously satisfied. Moreover,∣∣∣∣t(π − t)W ′
α(t, ξ)

Wα(t, ξ)

∣∣∣∣ = |(2α + 1)t(π − t) cot t| ≤ (2α + 1)π.

Hence, also condition (2.6) is satisfied. In Section 2.6.1, we will see that for α = d−2
2 the

weight function Wα is related to the exponential map on the unit sphere Sd.
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Definition 2.3. For an admissible weight function W on Zd
π we denote by L2(Zd

π,W )
the Hilbert space of weighted square integrable functions on Zd

π with the inner product

〈f, g〉W :=
∫
Sd−1

∫ π

0
f(t, ξ)g(t, ξ)W (t, ξ)dtdµ(ξ). (2.7)

The space L2(Zd
π,W ) is well defined and complete in the topology induced by the norm

‖ · ‖2
W := 〈·, ·〉W . This follows from the general theory of Lp-spaces on measure spaces

(see Section B.1 of the appendix).

Similar as in Section 1.4, the differential operator ∂
∂t

is in general not a symmetric op-
erator on the Hilbert space L2(Zd

π,W ). This difficulty can be solved by introducing an
appropriate differential-difference operator. To define such an operator, we have to dou-
ble the domain of the Hilbert space L2(Zd

π,W ). This is done by doubling the range of
the variable t.

Definition 2.4. On the doubled cylinder

Xd := [−π, π]× Sd−1 ⊂ Rd+1 (2.8)

we define the extended weight function W̃ by

W̃ (t, ξ) := 1
2W (|t|, ξ), (t, ξ) ∈ Xd. (2.9)

By L2(Xd, W̃ ), we denote the Hilbert space of weighted square integrable functions on
Xd with the inner product

〈f, g〉W̃ :=
∫

Sd

∫ π

−π
f(t, ξ)g(t, ξ)W̃ (t, ξ)dtdµ(ξ). (2.10)

As the cylinder Zd
π, also the doubled cylinder Xd can be considered as a compact Rie-

mannian manifold with boundary

∂LX
d := {(−π, ξ) : ξ ∈ Sd−1}, (2.11)

∂RX
d := {(π, ξ) : ξ ∈ Sd−1}. (2.12)

As the Hilbert space L2(Zd
π,W ), also the space L2(Xd, W̃ ) is a well defined and complete

Hilbert space with the norm ‖ · ‖2
W̃

:= 〈·, ·〉W̃ (see Section B.1).

Definition 2.5. On L2(Xd, W̃ ), we define the reflection operator ˇ by

ǧ(t, ξ) := g(−t, ξ), for a.e. (t, ξ) ∈ Xd.

We say that a function g ∈ L2(Xd, W̃ ) is even (odd) in the variable t if it satisfies ǧ = g
(ǧ = −g, respectively). The subspace of even functions in L2(Xd, W̃ ) is denoted by

L2
e(Xd, W̃ ) :=

{
g ∈ L2(Xd, W̃ ) : ǧ = g

}
. (2.13)
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Similar as before, the notion "for a.e. (t, ξ) ∈ Xd" means that the statement holds for all
(t, ξ) ∈ Xd except a set of measure zero, where in this case the measure is given by the
canonical product measure dtdµ(ξ) on Zd

π.

To relate the original Hilbert space L2(Zd
π,W ) with L2(Xd, W̃ ), we introduce the even

extension operator e and the restriction operator r as

e : L2(Zd
π,W )→ L2(Xd, W̃ ), e(f)(t, ξ) := f(|t|, ξ), (2.14)

r : L2(Xd, W̃ )→ L2(Zd
π,W ), r(g) := g|[0,π]×Sd−1 . (2.15)

Then, the operators e and r constitute isometric isomorphisms between the Hilbert space
L2(Zd

π,W ) and the subspace L2
e(Xd, W̃ ) of even functions.

By assumption (2.4), the weight function W is continuous on Zd
π, W (·, ξ) is absolutely

continuous for µ-a.e. ξ ∈ Sd−1 and the Radon-Nikodym derivative W ′ is integrable
on Zd

π. Thus, also the symmetrically extended function W̃ is continuous on Xd and
W̃ (·, ξ) ∈ AC2π is absolutely continuous for µ-a.e. ξ ∈ Sd−1. Moreover, its Radon-
Nikodym derivative with respect to the variable t, denoted as W̃ ′ := ∂W̃

∂t
, is integrable on

the doubled cylinder Xd.

Similar as in Definition 1.14, we can now introduce a differential-difference operator on
L2(Xd, W̃ ), referred to as Dunkl operator.

Definition 2.6. For a weight function W satisfying Assumption 2.15, we define the
Dunkl operator TX on the Hilbert space L2(Xd, W̃ ) by

TXg := κ
(
∂g

∂t
+ W̃ ′

W̃

g − ǧ
2

)
, (2.16)

where κ ∈ C(Sd−1) denotes a strictly positive and continuous scaling function depending
on the variable ξ ∈ Sd−1. As a domain of TX , we define

D(TX) :=
{
g ∈ L2(Xd, W̃ ) : g(·, ξ) ∈ AC2π for µ-a.e. ξ ∈ Sd−1,

∂g

∂t
,
W̃ ′

W̃

g − ǧ
2 ∈ L2(Xd, W̃ )

}
. (2.17)

The function κ in (2.16) is an additional scaling function that allows to regulate the
dependency on the variable ξ ∈ Sd−1 in the Dunkl operator. In particular, such a scaling
function κ will appear later on when we deal with uncertainty principles on compact
Riemannian manifolds. The definition (2.17) of the domain D(TX) is very similar to the
definition (1.30) in the one-dimensional case. In principle, the domain D(TX) consists
of all functions g that are absolutely continuous for µ-a.e. fixed ξ ∈ Sd−1 such that the
Radon-Nikodym derivative ∂g

∂t
and the fraction W̃ ′

W̃
g−ǧ

2 are elements of L2(Xd, W̃ ).
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Remark 2.7. Assumption 2.1 and, in particular, property (2.6) of the weight function W
are crucial for Definition 2.6. These conditions ensure that the domain D(TX) of the
Dunkl operator is dense in L2(Xd, W̃ ). To prove this, we consider the set

C1,t
2π (Xd) :=

{
g ∈ C(Xd) : ∂g

∂t
∈ C(Xd), g(−π, ξ) = g(π, ξ), ∂g

∂t
(−π, ξ) = ∂g

∂t
(π, ξ)

}
(2.18)

and show that C1,t
2π (Xd) is a subset of D(TX). Hereby, the t in the exponent indicates that

we consider functions that are continuously differentiable with respect to the variable t.
Obviously, if g ∈ C1,t

2π (Xd), then g(·, ξ) is absolutely continuous for all ξ ∈ Sd−1 and, since
Xd is compact, ∂g

∂t
∈ L2(Xd, W̃ ). It remains to check that W̃ ′

W̃
g−ǧ

2 ∈ L
2(Xd, W̃ ). Since

∂g
∂t
∈ C(Xd) and g(−π, ξ) = g(π, ξ) for all ξ ∈ Sd−1, the function g−ǧ

2t(π2−t2) is continuous
on Xd. Thus, we get

∫
Sd−1

∫ π

−π

∣∣∣∣∣W̃ ′(t, ξ)
W̃ (t, ξ)

g(t, ξ)− g(−t, ξ)
2

∣∣∣∣∣
2

W̃ (t, ξ)dtdµ(ξ)

=
∫

Sd−1

∫ π

−π

∣∣∣∣∣t(π2 − t2)W̃
′(t, ξ)

W̃ (t, ξ)

∣∣∣∣∣
2 ∣∣∣∣∣g(t, ξ)− g(−t, ξ)

2t(π2 − t2)

∣∣∣∣∣
2

W̃ (t, ξ)dtdµ(ξ)

≤
∥∥∥∥∥t(π2 − t2)W

′

W

∥∥∥∥∥
2

L∞(Zdπ)

∥∥∥∥∥ g − ǧ
2t(π2 − t2)

∥∥∥∥∥
2

W̃

.

Since the weight functionW satisfies property (2.6), we conclude that the fraction W̃ ′

W̃
g−ǧ

2
is in L2(Xd, W̃ ).

Similar as in Lemma 1.16 for the one-dimensional setting, we can now show that the
Dunkl operator TX is symmetric on L2(Xd, W̃ ).

Lemma 2.8.
The operator iTX with domain D(TX) is symmetric and densely defined on L2(Xd, W̃ ).

Proof. The set
C2π(Xd) := {g ∈ C(Xd) : g(−π, ξ) = g(π, ξ)}

is dense in L2(Xd, W̃ ) (follows, for instance, from [38, Theorem 13.21]). Hence, for
every g ∈ L2(Xd, W̃ ) and ε > 0 there exists a gc ∈ C2π(Xd) such that ‖g − gc‖W̃ < ε
Further, the space C1,t

2π (Xd) defined in (2.18) is a subalgebra of C2π(Xd) that contains
the constant functions, separates the points on Xd \ ∂LXd and is closed under complex
conjugation. To see that C1,t

2π (Xd) separates the points on Xd \ ∂LXd, we define for
p = (t1, ξ1), q = (t2, ξ2) ∈ Xd \ ∂LXd, t1 − t2 6= {0,±π}, the function s1(t, ξ) = sin(t−t1)

sin(t2−t1) .
Then, s1 ∈ C1,t

2π (Xd) and s1(p) = 0, s1(q) = 1. If t1 − t2 = ±π, we define s2(t, ξ) =
cos(t−t1)+1

2 . Then, also s2 ∈ C1,t
2π (Xd) and s2(p) = 0, s2(q) = 1. If t1 = t2, ξ1 6= ξ2, we
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take as separating function s3(t, ξ) = r(ξ), where r is a continuous function on Sd−1 with
r(ξ1) = 0 and r(ξ2) = 1.
Hence, by the Stone-Weierstrass Theorem B.1, C1,t

2π (Xd) is dense in C2π(Xd) and for
every gc ∈ C2π(Xd) there exists a g1 ∈ C1,t

2π (Xd) such that ‖gc − g1‖∞ < ε. Moreover, by
Remark 2.7, the function g1 is an element of D(TX). In total, we get

‖g − g1‖W̃ ≤ ‖g − gc‖W̃ + ‖gc − g1‖W̃
< ε+ ‖gc − g1‖∞

∫
Sd−1

∫ π

−π
W̃ (t, ξ)dtdµ(ξ) < (1 + ‖W‖L1(Zdπ))ε.

Thus, D(TX) is a dense subset of L2(Xd, W̃ ).
To check the symmetry of iTX , we essentially follow the lines of the proof of Lemma
1.16. For f, g ∈ D(TX), using integration by parts with respect to the variable t, we get
the identity∫

Sd−1

∫ π

−π

∂f

∂t
(t, ξ)g(t, ξ)W̃ (t, ξ)dtdµ(ξ) = −

∫
Sd−1

∫ π

−π
f(t, ξ) ∂

∂t

(
g(t, ξ)W̃ (t, ξ)

)
dtdµ(ξ)

=−
∫

Sd−1

∫ π

−π
f(t, ξ)

(
∂g

∂t
(t, ξ) + g(t, ξ)W̃

′(t, ξ)
W̃ (t, ξ)

)
W̃ (t, ξ)dtdµ(ξ).

Now, by definition (2.16) of the operator TX , we get∫
Sd−1

∫ π

−π
(iTXf)(t, ξ)g(t, ξ)W̃ (t, ξ)dtdµ(ξ)

= −i
∫

Sd−1

∫ π

−π
κ(ξ)

(
f(t, ξ)∂g

∂t
(t, ξ) + f(t, ξ)g(t, ξ)W̃

′(t, ξ)
W̃ (t, ξ)

)
W̃ (t, ξ)dtdµ(ξ)

+ i
∫

Sd−1

∫ π

−π
κ(ξ)f(t, ξ)− f(−t, ξ)

2 g(t, ξ)W̃
′(t, ξ)

W̃ (t, ξ)
W̃ (t, ξ)dtdµ(ξ)

= −i
∫

Sd−1

∫ π

−π
κ(ξ)

(
f(t, ξ)∂g

∂t
(t, ξ) + f(t, ξ) + f(−t, ξ)

2 g(t, ξ)W̃
′(t, ξ)

W̃ (t, ξ)

)
W̃ (t, ξ)dtdµ(ξ)

= −i
∫

Sd−1

∫ π

−π
κ(ξ)

(
f(t, ξ)∂g

∂t
(t, ξ) + f(t, ξ)g(t, ξ)− g(−t, ξ)

2
W̃ ′(t, ξ)
W̃ (t, ξ)

)
W̃ (t, ξ)dtdµ(ξ)

=
∫

Sd−1

∫ π

−π
f(t, ξ)(iTXg)(t, ξ)W̃ (t, ξ)dtdµ(ξ).

Hence, the operator TX is symmetric on the domain D(TX). 2

Now, we fix a multiplier h ∈ D(TX) and define two operators A and B on L2(Xd, W̃ ) by

Ag := hg, D(A) = L2(Xd, W̃ ), (2.19)
Bg := iTXg, D(B) = D(TX). (2.20)

The multiplication operator A is a normal and bounded operator on L2(Xd, W̃ ). The
differential-difference operator B is symmetric due to Lemma 1.16. For these two oper-
ators, Theorem 1.4 implies
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Theorem 2.9.
For a multiplier h ∈ D(TX) and an even function g ∈ L2

e(Xd, W̃ )∩D(TX), the following
inequality holds: (

‖hg‖2
W̃ −

|〈hg, g〉W̃ |2

‖g‖W̃

)∥∥∥∥κ∂g∂t
∥∥∥∥2

W̃
≥ 1

4 |〈g T
Xh, g〉W̃ |2. (2.21)

Proof. For an even function g ∈ L2
e(Xd, W̃ ) ∩ D(TX), we have

TXg(t, ξ) = κ(ξ)∂g
∂t

(t, ξ) for a.e. (t, ξ) ∈ Xd.

In particular, the function TXg satisfies TXg(t, ξ) = −TXg(−t, ξ) for a.e. (t, ξ) ∈ Xd,
implying that 〈Bg, g〉W̃ = 〈iTXg, g〉W̃ = 0.
The commutator [A,B] of A and B acting on functions g ∈ D(AB) ∩ D(BA) = D(TX)
is given by

[A,B]g(t, ξ) = ihTXg(t, ξ)− iTX(hg)(t, ξ)

= −iκ(ξ)
(
∂h

∂t
(t, ξ)g(t, ξ) + w′(t, ξ)

w(t, ξ)
h(t, ξ)− h(−t, ξ)

2

)
g(−t, ξ).

Since g ∈ L2
e(Xd, W̃ ) ∩ D(TX) is even, we get

[A,B]g = −(iTXh)g. (2.22)

Now, inserting the values a = 〈hg, g〉W̃ , b = 〈iTXg, g〉W̃ = 0 and identity (2.22) for the
commutator [A,B] in inequality (1.8), we get inequality (2.21). 2

An inequality for the initial Hilbert space L2(Zd
π,W ) can now be formulated by extending

functions symmetrically onto the Hilbert space L2(Xd, W̃ ) and using Theorem 2.9. In
particular, for the subset

D( ∂
∂t

;Zd
π) :=

{
f ∈ L2(Zd

π,W ) : f(·, ξ) ∈ AC([0, π]) for µ-a.e. ξ ∈ Sd−1,

∂f

∂t
∈ L2(Zd

π,W )
}
⊂ L2(Zd

π,W ), (2.23)

we get

Theorem 2.10.
Suppose that κ ∈ C(Sd−1) is a strictly positive scaling function on Sd−1 and that the weight
function W satisfies Assumption 2.1. Let f ∈ L2(Zd

π,W )∩D( ∂
∂t

;Zd
π) be normalized such

that ‖f‖W = 1. Then, the following inequality holds:(
1−

( ∫
Sd−1

∫ π

0
cos t |f(t, ξ)|2W (t, ξ)dtdµ(ξ)

)2
)
·
∥∥∥∥κ∂f∂t

∥∥∥∥2

W
≥ (2.24)

1
4

∣∣∣∣ ∫
Sd−1

∫ π

0
κ(ξ)

(
cos tW (t, ξ) + sin tW ′(t, ξ)

)
|f(t, ξ)|2dtdµ(ξ)

∣∣∣∣2.
Equality in (2.24) is attained if and only if f(·, ξ) = Cξ is constant for µ-a.e. ξ ∈ Sd−1.
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Proof. If f ∈ D( ∂
∂t

;Zd
π), then e(f)(·, ξ) ∈ AC2π for µ-a.e. ξ ∈ Sd−1, ‖∂e(f)

∂t
‖W̃ = ‖∂f

∂t
‖W

and e(f) = e(f)ˇ. Hence, the even extension e(f) ∈ D(TX) is an element of the domain of
the Dunkl operator TX . Now, we adopt inequality (2.21) to prove (2.24). As a multiplier
function h in the definition (2.19) of the operator A, we choose

h(t, ξ) = eit, (t, ξ) ∈ Xd.

Then, h ∈ D(TX), and we have

‖he(f)‖2
W̃ = ‖e(f)‖2

W̃ = ‖f‖2
W = 1,

|〈he(f), e(f)〉W̃ |2 = |〈eite(f), e(f)〉W̃ |2 =
( ∫

Sd−1

∫ π

0
cos t|f(t, ξ)|2W (t, ξ)dtdµ(ξ)

)2
,

‖TXe(f)‖W̃ =
∥∥∥∥κ∂e(f)

∂t

∥∥∥∥
W̃

=
∥∥∥∥κ∂f∂t

∥∥∥∥
W
,

iTXh(t, ξ) = κ(ξ)
(
− eit − W̃ ′(t, ξ)

W̃ (t, ξ)
sin t

)
for a.e. (t, ξ) ∈ Xd.

Further, since sin t and W̃ ′

W̃
are odd functions in the variable t, we conclude

〈e(f)iTXh, e(f)〉W̃ =
∫

Sd−1

∫ π

−π
κ(ξ)

(
− eit − W̃ ′(t, ξ)

W̃ (t, ξ)
sin t

)
|e(f)(t, ξ)|2W̃ (t, ξ)dtdµ(ξ)

= −
∫

Sd−1

∫ π

0
κ(ξ)

(
cos tW (t, ξ) + sin tW ′(t, ξ)

)
|f(t, ξ)|2dtdµ(ξ).

Hence, we have shown that inequality (2.24) holds.

Due to Theorem 1.8, equality in (2.24) is attained if and only if for a = 〈eite(f), e(f)〉W̃
and b = 〈iTXe(f), e(f)〉W̃ = 0 the following identity holds:

iκ
∂e(f)
∂t

= λ(eit − a)e(f) = −λ̄(e−it − ā)e(f), λ ∈ C.

The second identity implies

e(f)(t, ξ)
(
λeit + λ̄e−it − aλ− λ̄ā

)
= 2e(f)(t, ξ)

(
Re(λe−it)− Re(aλ)

)
= 0

for µ-a.e. ξ ∈ Sd−1. This condition can only be satisfied if e(f) = 0 or if λ = 0. In
the latter case we get iκ∂e(f)

∂t
= 0 for µ-a.e. ξ ∈ Sd−1. Hence, e(f)(t, ξ) = Cξ for µ-a.e.

ξ ∈ Sd−1 and, in particular, the function f does not depend on the variable t. 2

Inequality (2.24) can evidently be seen as a multi-dimensional version of the uncertainty
principle (1.37) originally shown by Goh and Goodman in [27]. In both cases, the theory
and the techniques are conceptually the same. The difference lies in the fact that in
the higher-dimensional case above the weight function W and the Dunkl operator TX
additionally depend on a variable ξ ∈ Sd−1.

44



2.1. Weighted L2-inequalities on a multi-dimensional cylindrical domain

Example 2.11. For the weight function Wα(t, ξ) = sin2α+1 t, α ≥ −1/2, and the scaling
function κ = 1 the Dunkl operator TX on L2(Xd, W̃α) reads as

TXg(t, ξ) = ∂g

∂t
(t, ξ) + (2α + 1)cos t

sin t
g(t, ξ)− g(−t, ξ)

2 , for a.e. (t, ξ) ∈ Xd.

In this case, inequality (2.24) attains the form(
1−

( ∫
Sd−1

∫ π

0
cos t|f(t, ξ)|2Wα(t, ξ)dtdµ(ξ)

)2
)
·
∥∥∥∥∂f∂t

∥∥∥∥2

W

≥ (1 + α)2
( ∫

Sd−1

∫ π

0
cos t|f(t, ξ)|2Wα(t, ξ)dtdµ(ξ)

)2
.

This Dunkl operator is a multi-dimensional version of the Dunkl operator introduced by
Rösler and Voit in [73] for ultraspherical expansions.

2.1.2. Inequalities in the compact case with zero boundary condition

The commutator [A,B] in (2.22) is well defined for functions in D(TX) if the multiplier
function h is an element of D(TX). This is evidently the case if h is given by h(t, ξ) = eit,
but not if we choose, for instance, h(t, ξ) = t. In the second case we have to restrict,
similar as in Theorem 1.24, the domain of the Dunkl operator.

Definition 2.12. Let L2(Xd, W̃ ) be the extension of L2(Zd
π,W ) as in Definition 2.4. We

restrict the Dunkl operator TX defined in (2.16) by TXg = κ(∂g
∂t

+ W̃ ′

W̃
g−ǧ

2 ) to the smaller
domain

D0(TX) :=
{
g ∈ L2(Xd, W̃ ) : g(·, ξ) ∈ AC2π, g(π, ξ) = 0 for µ-a.e. ξ ∈ Sd−1,

∂g

∂t
,
W̃ ′

W̃

g − ǧ
2 , t

W̃ ′

W̃
g ∈ L2(Xd, W̃ )

}
. (2.25)

Since D0(TX) ⊂ D(TX), Lemma 2.8 implies that the operator iTX is also symmetric
on the smaller domain D0(TX). Put in another way, the operator iTX on D(TX) is a
symmetric extension of iTX |D0(TX).

On L2(Xd, W̃ ), we consider now the operator A defined by Ag = hg and the operator
B = iTX defined on the restricted domain D0(TX). In the following, we will show that
the commutator [A,B] is well defined for functions in D0(TX) if the multiplier function
h is an element of

MX :=
{
h ∈ L2(Xd, W̃ ) : h(·, ξ) ∈ AC([−π, π]) for µ-a.e. ξ ∈ Sd−1,

∂h

∂t
∈ L2(Xd, W̃ ), (π2 − t2)W̃

′

W̃

h− ȟ
2 , ∈ L2(Xd, W̃ )

}
. (2.26)
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We remark that the multipliers h ∈MX , in contrast to functions g ∈ D(TX) do not have
to fulfill the periodicity condition h(−π, ξ) = h(π, ξ) for µ-a.e. ξ ∈ Sd−1 and that the
condition (π2− t2)W̃ ′

W̃
h−ȟ

2 ∈ L
2(Xd, W̃ ) is weaker than the condition W̃ ′

W̃
g−ǧ

2 ∈ L
2(Xd, W̃ )

in the domainD(T ). Similar to Theorem 2.9, we get the following result for even functions
in the restricted domain D0(TX).

Theorem 2.13.
For an even function g ∈ L2

e(Xd, W̃ ) ∩ D0(TX) and a fixed multiplier h ∈ MX the
following inequality holds:

(
‖hg‖2

W̃ −
|〈hg, g〉W̃ |2

‖g‖W̃

)
·
∥∥∥∥κ∂g∂t

∥∥∥∥2

W̃
≥ 1

4 |〈h(TXg)− TX(hg), g〉W̃ |2. (2.27)

Proof. The operator A defined by Ag = hg is a normal and bounded operator on
L2(Xd, W̃ ) and the operator B = iTX defined on D(B) = D0(TX) is symmetric due
to Lemma 2.8. For an even g ∈ L2

e(Xd, W̃ ) ∩ D(TX), we have TXg(t, ξ) = κ(ξ)∂g
∂t

(t, ξ)
for a.e. (t, ξ) ∈ Xd. Further, the fact that ∂g

∂t
(t, ξ) = −∂g

∂t
(−t, ξ) holds for a.e. (t, ξ) ∈ Xd

implies that 〈Bg, g〉W̃ = 0.
For the product hg of g ∈ D0(TX) and h ∈ MX , we have hg(·, ξ) ∈ AC2π, hg(−π, ξ) =
hg(π, ξ) = 0 for µ-a.e. ξ ∈ Sd−1 and ∂hg

∂t
∈ L2(Xd, W̃ ). Further,

∥∥∥∥W̃ ′

W̃

hg − ȟǧ
2

∥∥∥∥2

W̃
=
∥∥∥∥W̃ ′

W̃

h− ȟ
2

g + ǧ

2 + W̃ ′

W̃

g − ǧ
2

h+ ȟ

2

∥∥∥∥2

W̃

≤
∥∥∥∥(π2 − t2 + |t|)W̃

′

W̃

h− ȟ
2

g + ǧ

2

∥∥∥∥2

W̃
+
∥∥∥∥W̃ ′

W̃

g − ǧ
2

∥∥∥∥2

W̃
‖h‖∞

≤
∥∥∥∥(π2 − t2)W̃

′

W̃

h− ȟ
2

∥∥∥∥2

W̃
‖g‖∞ +

∥∥∥∥tW̃ ′

W̃
g

∥∥∥∥2

W̃
‖h‖∞ +

∥∥∥∥W̃ ′

W̃

g − ǧ
2

∥∥∥∥2

W̃
‖h‖∞.

Thus, hg ∈ D0(TX) and the commutator [A,B]g = hiTXg − iTX(hg) is well defined
for functions g ∈ D0(TX). Inequality (2.27) now follows from inequality (1.8) with
a = 〈hg, g〉W̃ and b = 〈iTXg, g〉W̃ = 0. 2

SinceMX ⊃ D(TX), we are more flexible in the choice of the multiplier h in Theorem
2.13 than in Theorem 2.9. In particular, functions h of the type h(t, ξ) = ι(ξ)t, where
ι is a nonnegative and continuous scaling function on Sd−1 are admissible multipliers in
Theorem 2.13. Now, for functions f in

D0( ∂
∂t

;Zd
π) :=

{
f ∈ L2(Zd

π,W ) : f(·, ξ) ∈ AC([0, π]), f(π, ξ) = 0 for µ-a.e. ξ ∈ Sd−1,

∂f

∂t
, t
W ′

W
f ∈ L2(Zd

π, w)
}
⊂ L2(Zd

π,W ), (2.28)

we can derive the following inequality:
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Theorem 2.14.
Assume that ι, κ ∈ C(Sd−1) are strictly positive scaling functions on Sd−1, and that the
weight function W satisfies Assumption 2.1. Let f ∈ L2(Zd

π,W ) ∩D0( ∂
∂t

;Zd
π) be normal-

ized such that ‖f‖W = 1. Then, the following inequality holds:

‖ι tf‖2
W ·

∥∥∥∥κ∂f∂t
∥∥∥∥2

W
>

1
4

∣∣∣∣ ∫
Sd−1

∫ π

0
ι(ξ)κ(ξ)(W (t, ξ) + tW ′(t, ξ))|f(t, ξ)|2dtdµ(ξ)

∣∣∣∣2 (2.29)

There is no function f ∈ D0( ∂
∂t

;Zd
π), ‖f‖W = 1, for which equality is attained in (2.29).

Proof. We proceed as in the proof of Theorem 2.10. If f(·, ξ) ∈ AC([0, π]), f(π, ξ) = 0,
for µ-a.e. ξ ∈ Sd−1 and ∂f

∂t
, tW

′

W
f ∈ L2(Zd

π,W ), then the even extension e(f) ∈ D0(TX)
and we can adopt Theorem 2.13. If we choose the multiplier function h ∈ MX as
h(t, ξ) = ι(ξ)t, (t, ξ) ∈ Xd, then we get in inequality (2.27):

‖he(f)‖2
W̃ = ‖ι te(f)‖2

W̃ = ‖ι tf‖2
W ,

〈he(f), e(f)〉W̃ = 〈ι te(f), e(f)〉W̃ = 0,∥∥∥∥κ∂e(f)
∂t

∥∥∥∥
W̃

=
∥∥∥∥κ∂f∂t

∥∥∥∥
W
,

〈iTXe(f), e(f)〉W̃ =
〈
κ
∂e(f)
∂t

, e(f)
〉
W̃

= 0,

TX(he(f))− hTX(e(f))) = ι κ
(

1 + W̃ ′

W̃
t
)
e(f).

Further, since t and W̃ ′

W̃
are odd functions in the variable t, we conclude

〈−i[A,B]e(f), e(f)〉W̃ =
〈
ι κ
(

1 + W̃ ′

W̃
t
)
e(f), e(f)

〉
W̃

=
∫

Sd−1

∫ π

0
ι(ξ)κ(ξ) (W (t, ξ) + tW ′(t, ξ)) |f(t, ξ)|2dtdµ(ξ).

Hence, inequality (2.29) is shown.

Since both operators A and B are symmetric, Theorem 1.2 states that equality in (2.29)
is attained if and only if

iκ(ξ)∂e(f)
∂t

(t, ξ) = iλι(ξ)t e(f)(t, ξ), λ ∈ R,

holds for a.e. (t, ξ) ∈ Xd, i.e., if and only if f(t, ξ) = Ce−λ
ι(ξ)
κ(ξ) t

2
for µ-a.e. ξ ∈ Sd−1. Since

f has to fulfill the boundary condition f(π, ξ) = 0 for µ-a.e. ξ ∈ Sd−1, there exists no
function f ∈ D0( ∂

∂t
;Zd

π), ‖f‖W = 1, for which equality is attained in (2.29). 2
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2.1.3. Inequalities in the non-compact case

We leave now the compact case and generalize the uncertainty principle of Theorem 1.32
to weighted L2-spaces where the underlying domain is the d-dimensional one-sided tube

Zd
∞ := {(t, ξ) : t ∈ [0,∞), ξ ∈ Sd−1} ⊂ Rd+1. (2.30)

Similar as Zd
π, also the non-compact set Zd

∞ is a Riemannian submanifold of Rd+1 with
boundary

∂LZ
d
∞ :=

{
(0, ξ) : ξ ∈ Sd−1

}
. (2.31)

The canonical measure on Zd
∞ is given by the product measure dtdµ(ξ).

Assumption 2.15. As admissible weight functions on Zd
∞, we consider positive functions

W satisfying the properties

(i) W ∈ C(Zd
∞) : W (·, ξ) ∈ ACloc([0,∞)) for µ-a.e. ξ ∈ Sd−1,

W ′|K ∈ L1(K) for all compact K ∈ Zd
∞, (2.32)

(ii) W (t, ξ) > 0 for all (t, ξ) ∈ (0,∞)× Sd−1, (2.33)

(iii) t
W ′

W
∈ L∞(K) for all compact K ∈ Zd

∞. (2.34)

Assumption 2.15 can be considered as an adaption of Assumption 2.1 onto the non-
compact tube Zd

∞. The first condition (2.32) says that the weight functionW is absolutely
continuous with respect to the variable t for µ-a.e. fixed unit vector ξ ∈ Sd−1, and that
the Radon-Nikodym derivative W ′ = ∂W

∂t
of W with respect to the variable t is a locally

integrable function on Zd
∞. The second property (2.33) implies that all the zeros ofW are

at the boundary ∂LZd
∞ of Zd

∞. The third condition (2.34) guarantees that the fraction
tW
′

W
is essentially bounded on every compact subset of Zd

∞. Further, we remark that
there are no integrability restrictions on the weight function W . In fact, the integral∫
Sd−1

∫∞
0 W (t, ξ)dµ(ξ)dt is not necessarily finite. This is, for instance, the case in the

Heisenberg-Pauli-Weyl principle for Rd where the weight function W can be determined
as W (t, ξ) = td−1 (see the upcoming Section 2.4).
Example 2.16. Consider the weight function Wν,r : Zd

∞ → R, Wν,r(t, ξ) = sinhν(rt),
ν ≥ 0, r > 0. The conditions (2.32) and (2.33) are obviously satisfied. Moreover,∣∣∣∣tW ′

ν,r(t, ξ)
Wν,r(t, ξ)

∣∣∣∣ = |rνt coth(rt)| =
∣∣∣∣ν(1 +

∞∑
k=1

2r2t2

k2(π2 + r2t2)

)∣∣∣∣ ≤ ν
(

1 + π2

3

)
.

Hence, also condition (2.34) is satisfied. In Section 2.6.4, we will see that for ν = d − 1
the weight function Wν,r is related to the hyperbolic space Hd

r .
Definition 2.17. For an admissible weight function W on Zd

∞, we denote by L2(Zd
∞,W )

the Hilbert space of weighted square integrable functions on Zd
∞ with the inner product

〈f, g〉W :=
∫
Sd−1

∫ ∞
0

f(t, ξ)g(t, ξ)W (t, ξ)dtdµ(ξ) (2.35)
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As a substitute for the differential operator ∂
∂t
, we construct, similar as in the case of the

nonnegative real half-axis (see (1.55)), a differential-difference operator on a symmetri-
cally extended Hilbert space.
Definition 2.18. On the two-sided tube

Y d := R× Sd−1 ⊂ Rd+1, (2.36)

we define the extended weight function W̃ by

W̃ (t, ξ) := 1
2W (|t|, ξ), (t, ξ) ∈ Y d. (2.37)

By L2(Y d, W̃ ), we denote the Hilbert space of weighted square integrable functions on
Y d with the inner product

〈f, g〉W̃ :=
∫

Sd

∫
R
f(t, ξ)g(t, ξ)W̃ (t, ξ)dtdµ(ξ). (2.38)

The set Y d ⊂ Rd+1 is a non-compact Riemannian manifold without boundary. The link
between the spaces L2(Zd

∞,W ) and L2(Y d, W̃ ) is given by the operators e and r:

e : L2(Zd
∞,W )→ L2(Y d, W̃ ), e(f)(t, ξ) := f(|t|, ξ) for a.e. (t, ξ) ∈ Y d, (2.39)

r : L2(Y d, W̃ )→ L2(Zd
∞,W ), r(g) := g|[0,∞)×Sd−1 . (2.40)

If we define

L2
e(Y d, W̃ ) :=

{
g ∈ L2(Y d, W̃ ) : g(t, ξ) = g(−t, ξ) for a.e. (t, ξ) ∈ Y d

}
(2.41)

as the subspace of even functions in L2(Y d, W̃ ), then the operators e and r constitute
isometric isomorphisms between the Hilbert spaces L2(Zd

∞,W ) and L2
e(Y d, W̃ ).

By property (2.32), the weight function W is continuous on Zd
∞ and its Radon-Nikodym

derivative W ′ with respect to t is integrable on every compact subset K of Zd
∞. Thus,

also the even extension W̃ is continuous on Y d, W̃ (·, ξ) ∈ ACloc(R) is locally absolutely
continuous for µ-a.e. ξ ∈ Sd−1 and the Radon-Nikodym derivative W̃ ′ = ∂W̃

∂t
is integrable

on every compact subset K of the two-sided tube Y d.
Definition 2.19. For a weight function W satisfying Assumption 2.15, we define the
Dunkl operator T Y on L2(Y d, W̃ ) as

T Y g := ∂g

∂t
+ W̃ ′

W̃

g − ǧ
2 , (2.42)

with the domain

D(T Y ) :=
{
g ∈ L2(Y d, W̃ ) : g(·, ξ) ∈ ACloc(R) for µ-a.e. ξ ∈ Sd−1,

∂g

∂t
,
W̃ ′

W̃

g − ǧ
2 ∈ L2(Y d, W̃ )

}
, (2.43)

where the reflection ǧ is defined by ǧ(t, ξ) = g(−t, ξ) for a.e. (t, ξ) ∈ Y d.
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2. Uncertainty principles on Riemannian manifolds

Lemma 2.20.
The operator iT Y with the domain D(T Y ) is symmetric and densely defined on
L2(Y d, W̃ ).

Proof. We consider the subset C1,t
c (Y d) :=

{
g ∈ Cc(Y d) : ∂g

∂t
∈ Cc(Y d)

}
of the space

Cc(Y d) of compactly supported and continuous functions on Y d. C1,t
c (Y d) is a subalgebra

of C0(Y d) that separates the points on Y d, vanishes nowhere and is closed under complex
conjugation (i.e. g ∈ C1,t

c (Y d) if g ∈ C1,t
c (Y d)). Then, by a variant of the Stone-

Weierstrass Theorem (see Theorem B.2), every function gc ∈ Cc(Y d) ⊂ C0(Y d) can be
approximated uniformly by a function from C1,t

c (Y d). Further, C1,t
c (Y d) is a subset of

D(T Y ) if W satisfies Assumption 2.15 (this follows in the same way as in Remark 2.7).
Therefore, since the space Cc(Y d) is dense in L2(Y d, W̃ ) (see, for instance, [38, Theorem
13.21]), we can conclude that D(T Y ) is dense in L2(Y d, W̃ ).
For two functions f, g on D(T Y ), integration by parts with respect to the variable t is
well defined (see equation (B.7)) and yields∫

Sd−1

∫ ∞
−∞

∂f

∂t
(t, ξ)g(t, ξ)W̃ (t, ξ)dtdµ(ξ) = −

∫
Sd−1

∫ ∞
−∞

f(t, ξ) ∂
∂t

(
g(t, ξ)W̃ (t, ξ)

)
dtdµ(ξ).

Now, following step by step the lines of the proof of Lemma 2.8 in which we proved the
symmetry of the operator iTX , we obtain the symmetry of iT Y . 2

We define now the operators A and B on the Hilbert space L2(Y d, W̃ ) by

Ag(t, ξ) := t g(t, ξ), D(A) =
{
g ∈ L2(Y d, W̃ ) : tg ∈ L2(Y d, W̃ )

}
, (2.44)

Bg(t, ξ) := iT Y g(t, ξ), D(B) = D(T Y ). (2.45)

By Lemma 2.20, B = iT Y is symmetric, and for f, g ∈ D(A), we have

〈Af, g〉W̃ =
∫

Sd−1

∫
R
tf(t, ξ)g(t, ξ)W̃ (t, ξ)dtdµ(ξ)

=
∫

Sd−1

∫
R
f(t, ξ)tg(t, ξ)W̃ (t, ξ)dtdµ(ξ) = 〈f, Ag〉W̃ .

Therefore, also A is symmetric. For functions f in

D( ∂
∂t
, t, t ∂

∂t
;Zd
∞) :=

{
f ∈ L2(Zd

∞,W ) : f(·, ξ) ∈ ACloc([0,∞)) for µ-a.e. ξ ∈ Sd−1,

tf,
∂f

∂t
, t
∂f

∂t
, t
W ′

W
f ∈ L2(Zd

∞,W )
}
, (2.46)

we get now the following inequality:

Theorem 2.21.
Suppose that the weight function W satisfies Assumption 2.15. Let f ∈ L2(Zd

∞,W ) ∩
D( ∂

∂t
, t, t ∂

∂t
;Zd
∞) such that ‖f‖W = 1. Then, the following inequality holds:

‖tf‖2
W ·

∥∥∥∥∂f∂t
∥∥∥∥2

W
≥ 1

4

∣∣∣∣1 +
∫

Sd−1

∫ ∞
0

tW ′(t, ξ)|f(t, ξ)|2dtdµ(ξ)
∣∣∣∣2. (2.47)
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Equality in (2.47) is attained if and only if f(t, ξ) = C(ξ)e−λt2, with a complex valued
function C : Sd−1 → C and a real constant λ ∈ R which have to be chosen such that f
satisfies the requirements of the theorem.

Proof. We consider the operators A and B defined in (2.44) and (2.45) on the Hilbert
space L2(Y d, W̃ ). The commutator of A and B is given by

[A,B]g = it
∂g

∂t
+ it

W̃ ′

W̃

g − ǧ
2 − it∂g

∂t
− ig(t, ξ)− itW̃

′

W̃

g + ǧ

2 , (2.48)

for all functions g ∈ D(AB)∩D(BA). If we consider only even functions g ∈ L2
e(Y d, W̃ ),

we get

[A,B]g = −ig
(

1 + t
W̃ ′

W̃

)
.

Next, if f ∈ L2(Zd
∞,W ) ∩ D( ∂

∂t
, t, t ∂

∂t
;Zd
∞), then the even extension e(f) ∈ L2(Y d, W̃ )

is an element of the domain D([A,B]) = D(AB) ∩ D(BA). Hence, if we apply the
symmetric operators A and B to the even function e(f), we obtain in inequality (1.4):

‖Ae(f)‖2
W̃ = ‖te(f)‖2

W̃ = ‖tf‖2
W ,

a = 〈Ae(f), e(f)〉W̃ = 〈te(f), e(f)〉W̃ = 0,

‖Be(f)‖2
W̃ = ‖iT Y e(f)‖2

W̃ =
∥∥∥∥∂e(f)

∂t

∥∥∥∥2

W̃
=
∥∥∥∥∂f∂t

∥∥∥∥2

W
,

b = 〈Be(f), e(f)〉W̃ = 〈i∂e(f)
∂t

, e(f)〉W̃ = 0,

[A,B]e(f) = −ie(f)
(

1 + t
W̃ ′

W̃

)
.

Further, since the identity map t → t and the function W̃ ′ are odd in t and f is a
normalized function, we conclude

|〈[A,B]e(f), e(f)〉W̃ | =
∣∣∣∣〈(1 + t

W̃ ′

W̃

)
e(f), e(f)

〉
W̃

∣∣∣∣
=
∣∣∣∣1 +

∫
Sd−1

∫ ∞
0

tW ′(t, ξ)|f(t, ξ)|2dt
∣∣∣∣.

Finally, by Theorem 1.2, equality in (2.47) is attained if and only if

i
∂e(f)
∂t

= −i2λte(f),

where λ denotes a real constant. The solution of this differential equation corresponds
to a function e(f) of the form e(f)(t, ξ) = C(ξ)e−λt2 . Restricted to the nonnegative
half-part Zd

∞ of the tube Y d, this yields the assertion. 2

51



2. Uncertainty principles on Riemannian manifolds

Example 2.22. For the weight function Wν,r(t, ξ) = sinhν(rt), ν ≥ 0, r > 0, the Dunkl
operator T Y on L2(Y d, W̃ν,r) reads as

T Y g(t, ξ) = ∂g

∂t
(t, ξ) + ν r coth(rt)g(t, ξ)− g(−t, ξ)

2 , for a.e. (t, ξ) ∈ Y d.

Then, inequality (2.47) attains the form

‖tf‖2
Wν,r
·
∥∥∥∥∂f∂t

∥∥∥∥2

Wν,r

≥ 1
4

∣∣∣∣1 + ν r
∫

Sd−1

∫ ∞
0

t|f(t, ξ)|2 coshν−1(rt)dtdµ(ξ)
∣∣∣∣2. (2.49)

2.2. Uncertainty principles on compact Riemannian manifolds

This section is one of the main parts of this work. In the following, we will combine
the weighted L2-inequalities developed in Section 2.1.1 with the geometry of a compact
Riemannian manifold M and derive an uncertainty principle for functions on L2(M).
In a first step, we will show that the geometric structure of the compact manifold M
leads to an isometric isomorphism between the Hilbert space L2(M) and a weighted
L2-space L2(Zd

π,WM,p) on the cylindrical domain Zd
π. Then, we will use the uncertainty

inequality (2.24) for the space L2(Zd
π,WM,p) to prove an uncertainty principle for compact

Riemannian manifolds.

2.2.1. An isomorphism between L2(M) and L2(Zd
π,WM,p)

In this first part, we will show that the Hilbert space L2(M) of square integrable functions
on a compact Riemannian manifoldM is isometrically isomorphic to a weighted L2-space
L2(Zd

π,WM,p) on the domain Zd
π. To this end, we will construct a chart that maps the

domain Zd
π onto the compact manifold M and a pull back operator that maps functions

on M to functions on Zd
π. In total, we need three mappings: the exponential map expp,

the polar transform P and a further coordinate transform LR.

We start out by recapitulating some basics and refer to the Appendix A for a short
introduction into Riemannian manifolds. Over the entire section, we denote by M a
simply connected, d-dimensional, compact Riemannian manifold without boundary and
by TpM the tangent space at the point p ∈M . Further, we denote by µM the canonical
Riemannian measure on M (see Section A.5).

Definition 2.23. We define the Hilbert space L2(M) of square integrable functions on
M as

L2(M) :=
{
f : M → C : f Borel measurable,

∫
M
|f(q)|2dµM(q) <∞

}
(2.50)
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with the inner product

〈f, g〉M :=
∫
M
f(q)g(q)dµM(q), f, g ∈ L2(M), (2.51)

and the norm ‖f‖M :=
√
〈f, f〉M , with the usual understanding that two functions

f, g ∈ L2(M) are identified with each other if f(q) = g(q) for µM -a.e. q ∈M , i.e., for all
q ∈M except a set of µM -measure zero.

The proof that the Hilbert space L2(M) is well-defined and complete in the topology
induced by the norm ‖ · ‖M is standard. For further details, we refer to Section B.1 of
the appendix.

Definition 2.24. A distance metric d(p, q) between two points p and q on the manifold
M is defined by

d(p, q) := inf
γ

∫ b

a
|γ′(t)|dt, (2.52)

where γ ranges over all piecewise differentiable paths γ : [a, b] → M satisfying γ(a) = p
and γ(b) = q. For p ∈M and δ > 0, we introduce on M the open balls and spheres with
center p as

B(p, δ) := {q ∈M, d(q, p) < δ}, (2.53)
S(p, δ) := {q ∈M, d(q, p) = δ}. (2.54)

Similarly, we define on the tangent space TpM

B(p, δ) := {ξ ∈ TpM, |ξ| < δ}, (2.55)
S(p, δ) := {ξ ∈ TpM, |ξ| = δ}, (2.56)

Sp := S(p, 1), (2.57)

where |ξ| denotes the Euclidean length of ξ in the tangent space TpM .

Now, as a first step to get a mapping from Zd
π onto M , we consider the exponential map

expp from the tangent space TpM onto M .

Definition 2.25. Let p ∈ M be fixed, ξ ∈ TpM and γξ : R → M be the locally unique
geodesic with initial conditions γξ(0) = p and γ′(0) = ξ (see Section A.3). Then, the
exponential map expp : TpM →M is defined as

expp(ξ) := γξ(1). (2.58)

Since M is compact and, hence, topologically complete, the Theorem of Hopf and Rinow
(Theorem A.2) ensures that the geodesic γξ can be defined on the whole real line R.
Thus, also the exponential map is well-defined on the whole tangent space TpM . The
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exponential map expp defines a local diffeomorphism from a neighborhood of the origin
0 in the tangent space TpM onto a neighborhood of p in M . In particular, for a small
δ > 0, the exponential expp maps the balls B(p, δ) ⊂ TpM isometrically onto the balls
B(p, δ) ⊂M , i.e.,

expp B(p, δ) = B(p, δ),
expp S(p, δ) = S(p, δ).

Moreover, there exists a maximal star-shaped open domain Dp of the tangent space
TpM for which the exponential map expp is a diffeomorphism and for which the image
Dp = expp Dp covers the whole manifold M up to a set Cp of Riemannian measure zero
(see Theorem A.4), i.e.,

M = Dp ∪ Cp. (2.59)

The null set Cp corresponds to the image expp Cp of the boundary Cp = ∂Dp of Dp and
is called the cut locus of p. Due to (A.30), we have the following formula for integrable
functions f on M : ∫

M
f(q)dµM(q) =

∫
Dp

f(expp(ξ))θ(ξ)dξ, (2.60)

where θ(ξ) := det((d expp)ξ) denotes the Jacobian determinant of the exponential map
expp and Dp = Dp ∪ Cp.

Example 2.26. For the unit sphere S2 = {q ∈ R3 : |q|2 = 1}, the tangent space TpS2

of a point p ∈ S2 can be identified with the orthogonal complement p⊥ of the linear
vector space Rp in R3. The cut locus Cp of p consists of the antipodal point {−p} and
Dp = S2 \ {−p}. The geodesics γξ through the point p correspond to the great circles
passing through p. Further, Dp = B(p, π), Cp = S(p, π) and the Jacobian determinant
θ(ξ) can be computed as (cf. [3, p. 57])

θ(ξ) = sin(|ξ|)
|ξ|

.

Hence, by (2.60), we get for integrable functions f on S2 the formula
∫

S2
f(q)dµS2(q) =

∫
B(p,π)

f(expp(ξ))
sin(|ξ|)
|ξ| dξ. (2.61)

A draft of the exponential map expp on TpS2 can be seen in Figure 3.

Next, we are going to introduce polar coordinates on the tangent space TpM . For a
precise distinction between the settings, we will always use the symbol Sp to denote the
(d−1)-dimensional unit sphere in the tangent space TpM , and the symbol Sd−1 to denote
the unit sphere in Rd.
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x

y
ξ

expp(ξ)

p

S2

Cp

TpS2

Figure 3: The exponential map expp on the unit sphere S2.

Definition 2.27. On the tubes [0,∞)×Sp and Zd
∞ = [0,∞)×Sd−1, we define the polar

transform P by

P : [0,∞)×Sp → TpM : P(t, ξ) = tξ, (2.62)
P : Zd

∞ → Rd : P(t, ξ) = tξ, (2.63)

and the inverse polar transform by

P−1 : TpM \ {0} → (0,∞)×Sp : P−1(ξ) = (|ξ|, 1
|ξ|ξ), (2.64)

P−1 : Rd \ {0} → Zd
∞ \ ∂LZd

∞ : P−1(ξ) = (|ξ|, 1
|ξ|ξ). (2.65)

Now, using the polar transform P, we want to describe the set Dp ⊂ TpM in terms of
the coordinates (t, ξ) ∈ [0,∞)×Sp. To this end, we define

R(ξ) := sup
t>0
{tξ ∈ Dp}, ξ ∈ Sp, (2.66)

as the Euclidean distance from the origin to the boundary Cp = ∂Dp in direction ξ ∈ Sp

(for an equivalent definition see also (A.18)). The distance R, considered as a real-
valued function on Sp, is strictly positive and, moreover, Lipschitz continuous on Sp

(see Theorem A.3 (c)). With help of the distance function R, we can define the pre-
image of the set Dp under the polar transform P .
Definition 2.28. We define the d-dimensional subset Zd

R of [0,∞)×Sp as

Zd
R := {(t, ξ) : t ∈ [0, R(ξ)], ξ ∈ Sp} ⊂ [0,∞)×Sp, (2.67)

with the boundary

∂LZ
d
R := {(0, ξ) : ξ ∈ Sp}, (2.68)

∂RZ
d
R := {(R(ξ), ξ) : ξ ∈ Sp}. (2.69)
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The set Zd
R is clearly a compact subset of [0,∞) × Sp and the polar transform P

maps Zd
R onto Dp. Moreover, the transformation P defines a diffeomorphism from

Zd
R \ {∂LZd

R, ∂RZ
d
R} onto the open set Dp \ {0}. Combining the polar transform P with

the exponential map expp, we have

expp P(Zd
R) = M,

and expp P defines a diffeomorphism from Zd
R \ {∂LZd

R, ∂RZ
d
R} onto Dp \ {p}. Hence, the

points (t, ξ) ∈ Zd
R determine a coordinate system on the manifold M and are usually

referred to as geodesic polar coordinates on M . Further, the polar transform P induces
a change of variables that yields the formula (see [75, Theorem 8.26])

∫
Dp

f(expp(ξ))θ(ξ)dξ =
∫

Sp

∫ R(ξ)

0
f(expp(tξ))td−1θ(tξ)dtdµ(ξ), (2.70)

where µ denotes the standard Riemannian measure on the unit sphere Sp and the term
td−1 corresponds to the Jacobian determinant of P.

To simplify the notation, we introduce the following pull backs of a function f on M :

Definition 2.29. For a function f : M → C, we define the pull back functions

exp∗p f : Dp → C, exp∗p f(ξ) := f(expp(ξ)), (2.71)
f ∗ : Zd

R → C, f ∗(t, ξ) := P ∗ exp∗p f(t, ξ) := exp∗p f(tξ) = f(expp(tξ)). (2.72)

The original function f and the pull backs f ∗ and exp∗p f are related by the following
commutative diagram:

M

TpM

∪
Dp Zd

R

C

expp P

f
exp∗p f

f∗

Figure 4: The relation between the functions f , f ∗ and exp∗p f .

On Zd
R, we introduce the weight function Θ by

Θ(t, ξ) := td−1θ(tξ). (2.73)

Then, formula (2.70) can be rewritten as
∫

Dp

exp∗p f(ξ)θ(ξ)dξ =
∫

Sp

∫ R(ξ)

0
f ∗(t, ξ)Θ(t, ξ)dt dµ(ξ). (2.74)
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Example 2.30. For the unit sphere S2, the distance R(ξ) to the cut locus is, independently
of the directional variable ξ ∈ Sp, always equal to π. Hence, if we parameterize the one-
dimensional unit sphere Sp using an angular variable ϕ ∈ [0, 2π), the formulas (2.61)
and (2.74) imply the following identity:∫

S2
f(q)dµS2(q) =

∫ 2π

0

∫ π

0
f ∗(t, ϕ) sin t dt dϕ. (2.75)

Up to now, we have built a coordinate transformation expp P that maps the set Zd
R onto

M . To get the desired map from the cylinder Zd
π onto M , we have to introduce a third

coordinate transform form Zd
π onto Zd

R.

Definition 2.31. On Zd
π, we define the coordinate transform LR as

LR : Zd
π → Zd

R, (τ, ξ)→ (R(ξ)
π
τ, ξ). (2.76)

The mapping Sd−1 → Sp, ξ → ξ, in (2.76) is well defined in the sense that there
exists a canonical identification between a unit vector ξ ∈ Sd−1 ⊂ Rd and an element
ξ ∈ Sp ⊂ TpM . Since the function ξ → R(ξ) is strictly positive and Lipschitz continuous
on Sp, also the inverse function ξ → 1

R(ξ) is strictly positive and Lipschitz continuous on
Sp (for the definition of Lipschitz continuous, see Section B.1). Hence, the mapping LR
defines a lipeomorphism (or a bi-Lipschitzian mapping) from Zd

π onto Zd
R. Moreover, the

points (τ, ξ) ∈ Zd
π form a new coordinate system for the compact manifold M .

For the integral of a function over a domain, a lipeomorphism yields a similar transforma-
tion formula as a diffeomorphism (see [88, Section 2.2]). In our case, the lipeomorphism
LR induces a change of variables that yields the following identity:∫

Sp

∫ R(ξ)

0
f ∗(t, ξ)Θ(t, ξ)dtdµ(ξ) =

∫
Sd−1

∫ π

0
f ∗(R(ξ)

π
τ, ξ) π

R(ξ)Θ(R(ξ)
π
τ, ξ)dτdµ(ξ), (2.77)

where the Jacobian determinant of LR equals π
R
almost everywhere.

Definition 2.32. For a function f ∗ on Zd
R, we define the pull back by the lipeomorphism

LR as
L∗Rf ∗ : Zd

π → C, L∗Rf ∗(τ, ξ) := f ∗(R(ξ)
π
τ, ξ), (τ, ξ) ∈ Zd

π, (2.78)
and introduce the weight function WM,p on Zd

π as

WM,p(τ, ξ) := π
R(ξ)Θ(R(ξ)

π
τ, ξ), (τ, ξ) ∈ [0, π]× Sd−1. (2.79)

Example 2.33. Let M be the two-dimensional quadratic flat torus T2
π = R2/(2πZ)2 with

side length 2π. For any point p ∈ T2
π, the set Dp in the tangent space TpT2

π consists of
the points in the open square

�π = {(ξ1, ξ2) ∈ TpT2
π : −π < ξ1, ξ2 < π}
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x

y

−π π
B(0, π)

R2

PLRP−1

ξ1

ξ2

−π π

π

−π

Dp

Cp

TpT2
π

Figure 5: The lipeomorphism PLRP−1 in the case that M = T2
π is the two-dimensional

flat torus with side length 2π.

and the tangential cut locus Cp corresponds exactly with the boundary of �π. Then,
PLRP−1 maps the balls B(0, r) \ {0} with radius r > 0 in R2 onto the squares �r \ {0}
with side length 2r (centered at the origin) in TpT2

π, see Figure 5. This example will be
further discussed in Section 2.6.3.

Proposition 2.34.
The Hilbert space L2(M) is isometrically isomorphic to the Hilbert space L2(Zd

π,WM,p)
with the weight function WM,p defined in (2.79). The isomorphism is explicitly given by
the pull back operator L∗RP∗ exp∗p.

Proof. For the proof of Proposition 2.34, we just have to collect the changes of variables
induced by the exponential map expp, the polar transform P and the lipeomorphism LR.
If f, g in L2(M), then we get

〈f, g〉M
(2.51)=

∫
M
f(q)g(q)dµM(q)

(2.60)=
∫

Dp

f(expp(ξ))g(expp(ξ)θ(ξ)dξ

(2.74)=
∫

Sp

∫ R(ξ)

0
f ∗(t, ξ)g∗(t, ξ)Θ(t, ξ)dtdµ(ξ)

(2.77)=
∫

Sd−1

∫ π

0
f ∗(R(ξ)

π
τ, ξ)g∗(R(ξ)

π
τ, ξ) π

R(ξ)Θ(R(ξ)
π
τ, ξ)dτdµ(ξ)

(2.78)=
(2.79)

∫
Sd−1

∫ π

0
L∗Rf ∗(τ, ξ)L∗Rg∗(τ, ξ)WM,p(τ, ξ)dτdµ(ξ)

(2.7)= 〈L∗Rf ∗,L∗Rg∗〉WM,p
.

Hence, the pull back operator L∗RP∗ exp∗p is an isometric homomorphism from L2(M) to
L2(Zd

π,WM,p). Since the point set {p} and the cut locus Cp are subsets of µM -measure
zero inM and expp PLR defines a lipeomorphism from Zd

π\{∂LZd
π, ∂RZ

d
π} ontoM\{p, Cp},
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2.2. Uncertainty principles on compact Riemannian manifolds

we can conclude that the operator L∗RP∗ exp∗p : L2(M)→ L2(Zd
π,WM,p) is also surjective

and, thus, an isomorphism. 2

Remark 2.35. In the proof of Proposition 2.34 is implicitly stated that the Hilbert spaces
L2(M) and L2(Zd

π,WM,p) are also isometrically isomorphic to the Hilbert space L2(Dp, θ)
with inner product

〈ϕ1, ϕ2〉θ :=
∫

Dp

ϕ1(ξ)ϕ2(ξ)θ(ξ)dξ

and to the Hilbert space L2(Zd
R,Θ) with inner product

〈ψ1, ψ2〉Θ :=
∫

Sp

∫ R(ξ)

0
ψ1(t, ξ)ψ2(t, ξ)Θ(t, ξ)dtdµ(ξ).

A summary for the links between the different Hilbert spaces is given in Figure 6.

M Dp
∪

TpM

Zd
R Zd

π

L2(M) L2(Dp, θ) L2(Zd
R,Θ) L2(Zd

π,WM,p)

expp P LR

exp∗p P∗ L∗R

Figure 6: The mappings expp, P and LR and the respective pull backs.

2.2.2. Uncertainty principles on compact Riemannian manifolds

The goal of this section is to prove an uncertainty principle for functions f in the
Hilbert space L2(M). To this end, we will use the isomorphism L∗RP ∗ exp∗p : L2(M) →
L2(Zd

π,WM,p) established in the last section, and adopt then Theorem 2.10 to get the
desired uncertainty inequality. First, we will show that the weight function WM,p defined
in (2.79) is admissible on Zd

π, i.e. that it satisfies Assumption 2.1.

Lemma 2.36.
The weight function WM,p on Zd

π satisfies Assumption 2.1.

Proof. The Jacobi determinant of the exponential map

θ(tξ) = det((d expp)gξ), (t, ξ) ∈ [0,∞)×Sp,

is a positive and continuously differentiable function on Dp and the zeros of θ, called the
conjugate points of p, lie at the boundary Cp of Dp (see [12, XII, Proposition 2.2] and
[8, Theorem II.5.5]). Since the distance function R is Lipschitz continuous on Sp (cf.
Theorem A.3 (c)) the weight function WM,p given by

WM,p(τ, ξ) = R(ξ)d−2

πd−2 τ d−1θ(R(ξ)
π
τξ)
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and its derivative W ′
M,p = ∂WM,p

∂τ
with respect to the variable τ are continuous functions

on Zd
π. Hence, conditions (2.4) and (2.5) are satisfied.

By construction, the zeros of WM,p lie at the boundary ∂LZd
π and ∂RZd

π of the cylinder
Zd
π. Therefore, to validate property (2.6) we have to check that the function τ(π − τ)W ′

W

is bounded at the boundary of Zd
π. Due to [49, Chapter X, Corollary 3.3], θ(tξ) has the

following Taylor expansion at t = 0:

θ(tξ) = 1− Ric(ξ, ξ)
6 t2 + O(t3). (2.80)

Therefore, the weight function WM,p(τ, ξ) has the following Taylor expansion at τ = 0:

WM,p(τ, ξ) = R(ξ)d−2

πd−2 τ d−1 − R(ξ)d
πd

Ric(ξ, ξ)
6 τ d+1 + O(τ d+2).

Thus,

τ
W ′
M,p(τ, ξ)

WM,p(τ, ξ)
= (d− 1) + O(τ 2)

and τ(π−τ)W ′
M,p/WM,p is bounded in a small neighborhood at τ = 0. Similarly, a Taylor

expansion of θ(tξ) at t = R(ξ) (using Jacobi vector fields, see [49], Propositions IX.5.1,
IX.5.3 and Proposition X.3.1) can be computed as

θ(tξ) = cξ(R(ξ)− t)k + O((R(ξ)− t)k+1),

where cξ > 0 and 0 ≤ k ≤ d − 1 is the dimension of the kernel of the Jacobi matrix
(d expp)R(ξ)ξ. So, the fraction

τ(π − τ)
W ′
M,p(τ, ξ)

WM,p(τ, ξ)
= −kπ + O(π − τ), τ → π,

is also bounded at the right hand boundary ∂RZd
π of Zd

π. In total, we can conclude that
τ(π− τ)W

′
M,p(τ,ξ)

WM,p(τ,ξ) is uniformly bounded on Zd
π and, hence, that property (2.6) is satisfied.

2

In principal, Theorem 2.10 can now be adopted to determine an uncertainty principle
for functions on a compact Riemannian manifold. Beforehand, however, we will discuss
the mapping expp PLR : Zd

π → M and the relation between continuous functions on M
and Zd

π in more detail. Further, we will investigate how the Dunkl operator on the space
L2(Xd, W̃M,p) is related to a differential operator on M .

The composition expp PLR is a continuous mapping from Zd
π ontoM . Moreover, expp PLR

maps the left hand boundary ∂LZ
d
π of the cylinder Zd

π onto the point p and the right
hand boundary ∂RZd

π onto the cut locus Cp of p. Hence, the image L∗Rf ∗ of a continuous
function f on M is also continuous on the cylinder Zd

π, but not every function g ∈ C(Zd
π)
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2.2. Uncertainty principles on compact Riemannian manifolds

is the image of a continuous function onM under the pull back operator L∗RP∗ exp∗p. This
is, for instance, the case if g ∈ C(Zd

π) satisfies g(0, ξ1) 6= g(0, ξ2) for ξ1 6= ξ2. So, if we
want to identify a continuous function g on Zd

π with a continuous function f on M , the
function g has to satisfy additional consistency conditions. These consistency conditions
are related to the topology of the compact Riemannian manifold M and, in particular,
to the form of the cut locus Cp.

Definition 2.37. A continuous function g on Zd
π is called topologically consistent with

a continuous function f on M under the mapping expp PLR if g(t, ξ) = L∗Rf ∗(t, ξ) for all
(t, ξ) ∈ Zd

π. In this case, g satisfies the following consistency conditions:

g(0, ξ1) = g(0, ξ2) for all ξ1, ξ2 ∈ Sd−1, (2.81)
g(π, ξ1) = g(π, ξ2) if expp PLR(π, ξ1) = expp PLR(π, ξ2) on M. (2.82)

Moreover, we introduce the function space CM as

CM(Zd
π) :=

{
g ∈ C(Zd

π) : g satisfies (2.81) and (2.82)
}
. (2.83)

The condition (2.81) implies that g is constant at the left hand boundary ∂LZd
π of Zd

π.
Further, if the function g on Zd

π is topologically consistent with f ∈ C(M), then the
constant value at ∂LZd

π corresponds exactly with the value f(p). The second condition
(2.82) ensures the topological consistency of the function g with the function f at the
points of the cut locus Cp of p, i.e., if expp PLR maps two different points (π, ξ1), (π, ξ2) ∈
Zd
π onto the same point q ∈ Cp, then g(π, ξ1) = g(π, ξ2) = f(q). Moreover, the operator

L∗RP∗ exp∗p defines an isometric isomorphism from the space C(M) onto the space CM(Zd
π)

in the uniform norm.

In the following, whenever we consider functions on Zd
π that are supposed to reflect the

topological structure of the Riemannian manifold M we will ensure that the conditions
(2.81) and (2.82) are satisfied. In particular, these conditions will be added in the up-
coming definition of the domain of the radial differential operator.

Next, we want to introduce a radial frequency variance on the compact Riemannian
manifold M and relate it to a Dunkl operator TX . First of all, we introduce a new
notation for operators that enables us to switch easily between operators described in
geodesic polar coordinates (t, ξ) ∈ Zd

R and operators on L2(M).

Definition 2.38. For an operator A on the Hilbert space L2(Zd
R,Θ), we define its coun-

terpart A∗ on L2(M) by

A∗ : L2(M)→ L2(M) : (A∗f)∗ := Af ∗. (2.84)

In particular, we define the multiplication with a function h ∈ L2(Zd
R,Θ) by

(h∗f)∗(t, ξ) := h(t, ξ)f ∗(t, ξ) for a.e. (t, ξ) ∈ Zd
R,
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and the radial differential operator ∂
∂t∗ with respect to p ∈M by

(
∂

∂t∗
f
)∗

(t, ξ) := ∂f ∗

∂t
(t, ξ) for a.e. (t, ξ) ∈ Zd

R, (2.85)

with the domain

D( ∂
∂t∗;M) =

{
f ∈ L2(M) : L∗Rf ∗(·, ξ) ∈ AC([0, π]), L∗Rf ∗ satisfies (2.86)

conditions (2.81) and (2.82) for µ-a.e. ξ ∈ Sd−1,
∂

∂t∗
f ∈ L2(M)

}
.

The definition (2.85) of the radial differential operator ∂
∂t∗ can be described concretely

by the following commutative diagram.

D( ∂
∂t∗;M) ⊂ L2(M) D( ∂

∂t
;Zd

R) := D( ∂
∂t∗;M)∗

L2(M) L2(Zd
R,Θ)

P ∗ exp∗p

∂
∂t

P ∗ exp∗p

∂
∂t∗

Figure 7: Commutative diagram for the radial differential operator ∂
∂t∗ on M .

The condition L∗Rf ∗(·, ξ) ∈ AC([0, π]) for µ-a.e. ξ ∈ Sd−1 in (2.86) is equivalent to the
fact that the function f is absolutely continuous on µ-a.e. geodesic curve γξ starting
at γξ(0) = p in direction γ′ξ(0) = ξ and ending at the cut point γξ(R(ξ)). Note that
the exponential map in (2.58) was exactly defined by the geodesics γξ. Further, the
consistency conditions (2.81) and (2.82) ensure that for µ-a.e. ξ1, ξ2 ∈ Sp the function
values f(γξ1(0)) and f(γξ2(0)) coincide and that f(γξ1(R(ξ1))) coincides with f(γξ2(R(ξ)))
if γξ1(R(ξ1)) = γξ2(R(ξ2)) denotes the same point on the cut locus Cp of p.

In the definition (2.86) of the domainD( ∂
∂t∗;M) is also implicitly stated that the functions

f ∗(·, ξ) are absolutely continuous on [0, R(ξ)] for µ-a.e. ξ ∈ Sp and that the derivative
∂
∂t
f ∗ is an element of the Hilbert space L2(Zd

R,Θ). Hence, ∂
∂t∗f is a well defined function

in L2(M) and describes precisely the derivative of f with respect to the geodesic distance
t to the point p. Therefore, the denomination radial differential operator for the operator
∂
∂t∗ is justified.

Moreover, since the continuously differentiable functions on M form a subspace of the
domain D( ∂

∂t∗;M), it follows from the Stone-Weierstrass Theorem B.1 that D( ∂
∂t∗;M) is

a dense subspace of L2(M). We can now define the following radial frequency variance
for a function f on the manifold M .
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2.2. Uncertainty principles on compact Riemannian manifolds

Definition 2.39. We define the radial frequency variance varMF,p(f) of a function f ∈
D( ∂

∂t∗;M) as

varMF,p(f) :=
∥∥∥∥ ∂∂t∗f

∥∥∥∥2

M
. (2.87)

Adopting the pull back operator L∗RP∗ exp∗p to the derivative ∂
∂t∗f , we get

L∗R
(
∂

∂t∗
f

)∗
= L∗R

(
∂

∂t
f ∗
)

= π

R

∂

∂τ
L∗Rf ∗.

Hence, by Proposition 2.34, we can rewrite the latter definition as

varMF,p(f) =
∥∥∥∥ πR ∂

∂τ
L∗Rf ∗

∥∥∥∥2

WM,p

.

Therefore, if we want to use varMF,p(f) as a term for the frequency variance in Theorem
2.10, we have to choose the scaling function κ in (2.24) as κ(ξ) = π

R(ξ) . The respective
Dunkl operator on L2(Xd, W̃M,p) can be introduced as follows.
Definition 2.40. Let L2(Xd, W̃M,p) be the extension of the Hilbert space L2(Zd

π,WM,p)
as in Definition 2.4. Then, we define the Dunkl operator TXM,p on the Hilbert space
L2(Xd, W̃M,p) as

TXM,p g := π

R

(
∂g

∂τ
+
W̃ ′
M,p

W̃M,p

g − ǧ
2

)
, (2.88)

with the domain

D(TXM,p) :=
{
g ∈ L2(Xd, W̃M,p) : g(·, ξ) ∈ AC2π for µ-a.e. ξ ∈ Sd−1, (2.89)

∂g

∂τ
,
W ′
M,p

WM,p

g − ǧ
2 ∈ L2(Xd, W̃M,p)

}
.

The definition (2.88) of the Dunkl operator TXM,p corresponds to the definition (2.16) of
the Dunkl operator TX with scaling function κ = π

R
and weight function W̃ = W̃M,p. The

domain D(TXM,p) corresponds to the domain D(TX) defined in (2.17). We get now, as a
main result of this chapter, an uncertainty inequality for compact Riemannian manifolds.

Theorem 2.41.
Let M be a simply connected, compact Riemannian manifold without boundary and p ∈
M . If f ∈ L2(M) ∩ D( ∂

∂t∗;M) such that ‖f‖M = 1, then, the following uncertainty
principle holds:(

1−
( ∫

Sp

∫ R(ξ)

0
cos( πt

R(ξ))|f
∗(t, ξ)|2Θ(t, ξ)dtdµ(ξ)

)2
)
·
∥∥∥∥ ∂∂t∗f

∥∥∥∥2

M
≥ (2.90)

1
4

∣∣∣∣ ∫
Sp

∫ R(ξ)

0

(
π

R(ξ) cos( πt
R(ξ)) + sin( πt

R(ξ))
Θ′(t,ξ)
Θ(t,ξ)

)
Θ(t, ξ)|f ∗(t, ξ)|2dtdµ(ξ)

∣∣∣∣2.
Equality in (2.90) is attained if and only if f is constant.
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Proof. If the function f ∈ L2(M) ∩ D( ∂
∂t∗;M), then the pull back L∗Rf ∗ lies in

L2(Zd
π,WM,p) ∩ D( ∂

∂τ
;Zd

π) (see definition (2.23)). Further, the even extension e(L∗Rf ∗) ∈
L2
e(Xd, W̃M,p) is an element of the domain D(TXM,p) of the Dunkl operator TXM,p. By

Lemma 2.36, we know that the weight function WM,p satisfies Assumption 2.1. Now,
using Theorem 2.10 together with the differential-difference operator TXM,p, yields the
inequality(

1−
( ∫

Sd−1

∫ π

0
cos τ |L∗Rf ∗(τ, ξ)|2WM,p(τ, ξ)dτdµ(ξ)

)2
)
·
∥∥∥∥ π

R(ξ)
∂L∗Rf ∗
∂τ

∥∥∥∥2

WM,p

≥

1
4

∣∣∣∣ ∫
Sd−1

∫ π

0
π

R(ξ)

(
cos τ WM,p(τ, ξ) + sin τ W ′

M,p(τ, ξ)
)
|L∗Rf ∗(τ, ξ)|2dtdµ(ξ)

∣∣∣∣2.
Moreover, for the pull back operator L∗R, we have τ = L∗R( tπ

R
), π

R
∂
∂τ

L∗Rf ∗ = L∗R( ∂
∂t
f ∗),

R
π
WM,p = L∗R(Θ) and W ′

M,p = L∗R(Θ′). Hence, a coordinate transform with respect to the
lipeomorphism LR implies inequality (2.90). Finally, by Theorem 2.10, equality in (2.90)
holds if and only if f ∗(·, ξ) = Cξ is constant for µ-a.e. ξ ∈ Sp. Since f ∈ D( ∂

∂t∗;M)
satisfies the consistency condition (2.81) for µ-a.e. ξ ∈ Sp, we have Cξ = C and f has
to be constant µM -a.e. on M in order to obtain equality in (2.90). 2

Similar to the Breitenberger uncertainty principle (1.18) and to the uncertainty principle
(1.38) for weighted L2-spaces on the interval, we can introduce a generalized mean value
εp(f) for a function f ∈ L2(M) by

εp(f) := 〈eiτe(L∗Rf ∗), e(L∗Rf ∗)〉W̃M,p
(2.91)

=
∫

Sp

∫ R(ξ)

0
cos( πt

R(ξ))|f
∗(t, ξ)|2Θ(t, ξ)dtdµ(ξ).

Moreover, we denote the integral term on the right hand side of (2.90) as

ρp(f) := 〈−(iTXM,pe
iτ )e(L∗Rf ∗), e(L∗Rf ∗)〉W̃M,p

(2.92)

=
∫

Sp

∫ R(ξ)

0

(
π

R(ξ) cos( πt
R(ξ)) + sin( πt

R(ξ))
Θ′(t,ξ)
Θ(t,ξ)

)
|f ∗(t, ξ)|2Θ(t, ξ)dtdµ(ξ).

Definition 2.42. Let f ∈ L2(M). If ρp(f) 6= 0, we define

varMS,p(f) := d2 1− εp(f)2

ρp(f)2 . (2.93)

The value varMS,p(f) is called the position variance of the function f at the point p ∈M .

Corollary 2.43.
Let p ∈M and f ∈ L2(M) ∩ D( ∂

∂t∗;M) with ‖f‖M = 1 and ρp(f) 6= 0. Then,

varMS,p(f) · varMF,p(f) > d2

4 . (2.94)
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2.2. Uncertainty principles on compact Riemannian manifolds

Proof. Evidently, (2.94) follows from (2.90). The only thing that remains to check is
the strict inequality in (2.94). The only functions for which equality can be obtained in
(2.90) are the constant functions. If f = C is constant on M , integration by parts with
respect to the variable τ yields

ρp(f) =
∫

Sp

∫ R(ξ)

0

(
π

R(ξ) cos( πt
R(ξ))Θ(t, ξ) + sin( πt

R(ξ))Θ
′(t, ξ)

)
dtdµ(ξ)

=
∫

Sd−1

∫ π

0
(cos τ WM,p(τ) + sin τ W ′

M,p(τ))dτdµ(ξ) = 0.

Hence, there exists no function f with f ∈ L2(M)∩D( ∂
∂t∗;M), ‖f‖M = 1 and ρp(f) 6= 0

for which equality can be attained in (2.94). 2

Remark 2.44. Although inequality (2.94) is strict, we will show in Proposition 2.58 that
the constant d2

4 on the right hand side of (2.94) is optimal.

In contrast to Theorem 2.10 where we considered relatively general weight functions W
on Zd

π, the weight function WM,p and its counterpart Θ in Theorem 2.41 play a more
substantial role. These weight functions are linked to the exponential map expp on the
tangent space TpM and implicitly contain information on the curvature of the Riemannian
manifold M at the point p. We will see in Section 2.7 how this information can be used
to compute lower estimates of inequality (2.90).
Remark 2.45. Using the generalized mean value εp(f), we can search for a point pf ∈M
that can be interpreted as the expectation value of the density f ∈ L2(M), ‖f‖M = 1.
Namely, we consider the value εp(f) as a measure on how well the function f is localized
at the point p ∈ M . Since ‖f‖M = 1, the closer εp(f) approaches the value 1, the more
the L2-mass of f is concentrated at p. The point at which f is localized best is then
defined as the point pf where εp(f) gets maximal, i.e.,

pf = arg sup
p∈M

εp(f). (2.95)

If pf is uniquely determined, we call it the expectation value of f .

2.2.3. The Dunkl and the radial Laplace-Beltrami operator

The Dunkl operator TXM,p is closely related to the Laplace-Beltrami operator ∆M of the
Riemannian manifoldM (see Section A.7 for a short introduction and the definition). For
a radial function F centered at the point p ∈M , i.e., the pull back F ∗ depends solely on
the radial distance t, the Laplace-Beltrami operator ∆M reads in a small neighborhood
around p as (cf. [3, Proposition G.V.3])

(∆MF )∗(t, ξ) = d2

dt2
F ∗(t) + Θ′(t, ξ)

Θ(t, ξ)
d

dt
F ∗(t).
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2. Uncertainty principles on Riemannian manifolds

This second-order differential operator can be extended to the whole manifold M and
used globally for functions f on M . In geodesic polar coordinates (t, ξ) ∈ Zd

R, we define
the operator ∆p,t as

(∆p,tf)∗(t, ξ) := ∂2

∂t2
f ∗(t, ξ) + Θ′(t, ξ)

Θ(t, ξ)
∂

∂t
f ∗(t, ξ). (2.96)

For radial functions centered at the point p, the operator ∆p,t corresponds locally with
the Laplace-Beltrami operator ∆M . Therefore, the operator ∆p,t is referred to as radial
Laplace-Beltrami operator. Adopting the lipeomorphism LR, we get for (τ, ξ) ∈ Zd

π the
formula

L∗R(∆p,tf)∗(τ, ξ) = π2

R(ξ)2

(
∂2

∂τ 2 L∗Rf ∗(τ, ξ) +
W ′
M,p(τ, ξ)

WM,p(τ, ξ)
∂

∂τ
L∗Rf ∗(τ, ξ)

)
.

As a domain of the radial Laplacian, we consider the set

D(∆p,t) :=
{
f ∈ C2(M) : ∂

∂τ
L∗Rf ∗(0, ξ) = ∂

∂τ
L∗Rf ∗(π, ξ) = 0, ξ ∈ Sd−1

}
. (2.97)

So, if f ∈ D(∆p,t), then iTXM,p(e(L∗Rf ∗)) = i π
R

∂e(L∗Rf
∗)

∂τ
∈ D(TXM,p), and we get the following

relation between the radial Laplace-Beltrami-operator ∆p,t and the Dunkl operator iTXM,p

visualized in Figure 8:

e (L∗R(−∆p,tf)∗) = (iTXM,p)2e(L∗Rf ∗). (2.98)

L2(M) ∩ D(∆p,t) L2(Zd
R,Θ) L2(Zd

π,WM,p) L2(Xd, W̃M,p)

L2(Xd, W̃M,p)

L2(M) L2(Zd
R,Θ) L2(Zd

π,WM,p) L2(Xd, W̃M,p)

P ∗ exp∗p L∗R e

eL∗R
P ∗ exp∗p

−∆p,t

iTXM,p

iTXM,p

Figure 8: Commutative diagram for the decomposition of −∆p,t.

In this way, the differential-difference operator iTXM,p can be seen as a generalized sym-
metric root of the operator −∆p,t. In particular, this relation gives a new view on the
frequency variance varMF,p(f) of a function f ∈ D(∆p,t) defined in 2.87. Namely, we get

varMF,p(f) =
∥∥∥∥∥ ∂∂t∗f

∥∥∥∥∥
2

M

=
∥∥∥iTXM,pe(L∗Rf ∗)

∥∥∥2

W̃M,p

=
〈
(iTXM,p)2e(L∗Rf ∗), e(L∗Rf ∗)

〉
W̃M,p

= 〈−∆p,tf, f〉M . (2.99)
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Formula (2.99) asserts that the frequency variance in the uncertainty inequality (2.94)
is completely determined by the radial derivative of the function f . Many authors (see,
for instance, [27] or [56]) prefer to use the full Laplace-Beltrami operator ∆M for the
frequency variance, i.e. varMF (f) := 〈−∆Mf, f〉M , instead of the radial approach (2.99).
However, since varMF,p(f) ≤ 〈−∆Mf, f〉M for functions f that are locally supported at
p ∈ M , we get sharper inequalities in (2.90) and (2.94) if we use the radial Laplace-
Beltrami operator.

2.3. Uncertainty principles on compact star-shaped domains

In this section, we will give an alternative uncertainty principle in the case that the
underlying domain of the L2-space is not a whole Riemannian manifoldM but a compact
subset Ω ⊂ M . We will only consider functions that satisfy a zero boundary condition
at the boundary ∂Ω of Ω. The goal is to establish an uncertainty principle for locally
supported functions with a position variance that is easier to handle than the position
variance (2.93) in the last section. For the proof of this uncertainty principle, we want to
adopt Theorem 2.14. Therefore, we have to show as in the last section that the Hilbert
space L2(Ω) is isometrically isomorphic to a weighted space L2(Zd

π,WΩ,p). This is possible
if we assume that the compact set Ω is star-shaped with respect to a point p ∈ M and
that its boundary ∂Ω satisfies a Lipschitz condition.

Definition 2.46. We call a compact subset Ω of a Riemannian manifold M star-shaped
with respect to an interior point p ∈ Ω if:

(i) For every point q ∈ Ω there exists a minimizing geodesic γξ with γξ(0) = p and
γξ(tq) = q such that γξ(t) ∈ Ω for all t ∈ [0, tq].

(ii) If q ∈ ∂Ω is an element of the boundary ∂Ω of Ω, then γξ(t) /∈ ∂Ω lies in the interior
of Ω for all t ∈ [0, tq).

By Q(ξ), we denote the length d(p, q) > 0 of the geodesic γξ connecting the center point
p with a boundary point q ∈ ∂Ω in direction ξ ∈ Sp. From now on, we will assume that
Ω is a compact star-shaped subset of a (not necessarily compact) Riemannian manifold
M and that the distance function Q is Lipschitz continuous on Sp ⊂ TpM .

By L2(Ω), we denote the Hilbert space of square integrable functions on Ω with scalar
product

〈f, g〉Ω :=
∫

Ω
f(q)g(q)dµM(q) (2.100)

and norm ‖f‖2
Ω := 〈f, f〉Ω. To show that L2(Ω) is isometrically isomorphic to a weighted

space L2(Zd
π,WΩ,p), we use similar as in Section 2.2 three coordinate transforms: the

exponential map expp, the polar transform P and a Lipschitz continuous mapping LΩ.
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2. Uncertainty principles on Riemannian manifolds

Let Zd
Q be defined as in (2.67) with the distance function Q instead of the distance

R and the boundaries ∂LZd
Q and ∂RZd

Q. Since Ω is a star-shaped and compact set, the
composition expp P is a well defined function on Zd

Q that maps the set Zd
Q\{∂LZd

Q, ∂RZ
d
Q}

diffeomorphically onto the domain Ω \ {p, ∂Ω}. Further, the left hand boundary ∂LZd
Q

is mapped onto {p} and the right hand boundary ∂RZd
Q onto the boundary ∂Ω of Ω. So

the points (t, ξ) ∈ Zd
Q form a coordinate system for the domain Ω, referred to as geodesic

polar coordinates on Ω. Moreover, for an integrable function f on Ω, we get from (A.30)
and the polar transform P the integral formula

∫
Ω
f(q)dµM(q) =

∫
Sp

∫ Q(ξ)

0
f ∗(t, ξ)Θ(t, ξ)dtdµ(ξ), (2.101)

where the Jacobi determinant Θ is given as in (2.73).

Let LQ : Zd
π → Zd

Q be the coordinate transformation as defined in (2.76) with the distance
function Q instead of R. Then, since the distance function Q is assumed to be Lipschitz
continuous on Sp, the coordinate transform LQ is a lipeomorphism that maps Zd

π onto
Zd
Q. Further, LQ induces a change of variables that leads, as in (2.77), to the integral

formula∫
Sp

∫ Q(ξ)

0
f ∗(t, ξ)Θ(t, ξ)dtdµ(ξ) =

∫
Sd−1

∫ π

0
f ∗(Q(ξ)

π
τ, ξ) π

Q(ξ)Θ(Q(ξ)
π
τ, ξ)dτdµ(ξ). (2.102)

Hereby, the Jacobian determinant of LQ equals π
Q

almost everywhere on Zd
π.

For a function f ∗ on Zd
Q, we define the pull back L∗Qf ∗ by the lipeomorphism LQ as in

(2.78) by
L∗Qf ∗(τ, ξ) := f ∗(Q(ξ)

π
τ, ξ), (τ, ξ) ∈ [0, π]× Sd−1, (2.103)

and introduce the weight function WΩ,p on Zd
π as

WΩ,p(τ, ξ) := π
Q(ξ)Θ(Q(ξ)

π
τ, ξ), (τ, ξ) ∈ [0, π]× Sd−1. (2.104)

Then, analogously to Proposition 2.34, we get the following result.

Proposition 2.47.
The Hilbert space L2(Ω) is isometrically isomorphic to the space L2(Zd

π,WΩ,p). The
isomorphism is given by the pull back operator L∗QP∗ exp∗p.

Proof. We collect the coordinate changes given by the exponential map expp, the polar
transform P and the lipeomorphism LQ. For f, g in L2(Ω), we get

〈f, g〉Ω
(2.100)=

∫
Ω
f(q)g(q)dµM(q)

(2.101)=
∫

Sp

∫ Q(ξ)

0
f ∗(t, ξ)g∗(t, ξ)Θ(t, ξ)dtdµ(ξ)

68



2.3. Uncertainty principles on compact star-shaped domains

(2.102)=
∫

Sd−1

∫ π

0
f ∗(Q(ξ)

π
τ, ξ)g∗(Q(ξ)

π
τ, ξ) π

Q(ξ)Θ(Q(ξ)
π
τ, ξ)dτdµ(ξ)

(2.103)=
(2.104)

∫
Sd−1

∫ π

0
L∗Qf ∗(τ, ξ)L∗Qg∗(τ, ξ)WΩ,p(τ, ξ)dτdµ(ξ)

(2.7)= 〈L∗Qf ∗,L∗Qg∗〉WΩ,p .

Hence, the pull back operator L∗QP∗ exp∗p is an isometric homomorphism from L2(Ω) to
L2(Zd

π,WΩ,p). Since the point set {p} and the boundary ∂Ω are sets of µM -measure zero
in Ω and expp PLQ defines a lipeomorphism from Zd

π \{∂LZd
π, ∂RZ

d
π} onto Ω\{p, ∂Ω}, the

operator L∗QP∗ exp∗p from L2(Ω) to the space L2(Zd
π,WΩ,p) is also surjective and, thus, an

isomorphism. 2

M ⊃ Ω Zd
Q Zd

π

L2(Ω) L2(Zd
Q,Θ) L2(Zd

π,WΩ,p)

expp P LQ

P ∗ exp∗p L∗Q

Figure 9: The mappings expp P, LQ and the respective pull backs.

As in Lemma 2.36, we can now show that the weight function WΩ,p satisfies the required
Assumption 2.1.

Lemma 2.48.
The weight function WΩ,p on Zd

π satisfies Assumption 2.1.

Proof. To prove Lemma 2.48, we just have to follow the lines of the proof of Lemma 2.36
and replace the cut locus distance R by the distance function Q. 2

Now, in order to use Theorem 2.14, we have to guarantee that for f ∈ L2(Ω) the pull
back L∗Qf ∗ lies in D0( ∂

∂t
;Zd

π), as defined in (2.28). In particular, the function L∗Qf ∗ has
to satisfy a zero boundary condition on ∂RZ

d
π. Moreover, we want to make sure that

L∗Qf ∗ fulfills the consistency condition (2.81), i.e. that L∗Qf ∗(0, ξ1) = L∗Qf ∗(0, ξ2) holds
for µ-a.e. ξ1, ξ2 ∈ Sd−1. Altogether, we define in the style of (2.86) the domain of the
radial differential operator ∂

∂t∗ on Ω ⊂M as

D0( ∂
∂t∗; Ω) :=

{
f ∈ L2(Ω) : L∗Qf ∗(·, ξ) ∈ AC([0, π]), L∗Qf ∗ satisfies (2.81) and

L∗Qf ∗(π, ξ) = 0 µ-a.e., ∂

∂τ
L∗Qf ∗, τ

W ′
Ω,p

WΩ,p
L∗Qf ∗ ∈ L2(Zd

π,WΩ,p)
}
. (2.105)

By Proposition 2.47, the condition ∂
∂τ

L∗Qf ∗ ∈ L2(Zd
π,WΩ,p) is equivalent to the property

∂
∂t∗f ∈ L

2(Ω). As a position and frequency variance of a function f on Ω with respect to
a point p, we will use the following expressions:
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2. Uncertainty principles on Riemannian manifolds

Definition 2.49. We define the position variance varΩ
S,p(f) and the radial frequency

variance varΩ
F,p(f) of a function f ∈ D0( ∂

∂t∗; Ω) as

varΩ
S,p(f) := ‖t∗f‖2

Ω, (2.106)

varΩ
F,p(f) :=

∥∥∥∥ ∂∂t∗f
∥∥∥∥2

Ω
. (2.107)

Due to Proposition 2.47, the radial frequency variance can be rewritten as

varΩ
F,p(f) =

∥∥∥∥ πQ ∂

∂τ
L∗Qf ∗

∥∥∥∥2

WΩ,p

.

Therefore, in order to use the expression varΩ
F,p(f) in Theorem 2.14 we have to choose

the scaling function κ as κ(ξ) = π
Q(ξ) . Related to this scaling function is the following

Dunkl operator:

Definition 2.50. Let L2(Xd, W̃Ω,p) be the extension of the Hilbert space L2(Zd
π,WΩ,p)

as in Definition 2.4. Then, we define the Dunkl operator TXΩ,p on L2(Xd, W̃Ω,p) as

TXΩ,p g := π

Q

(
∂g

∂τ
+
W̃ ′

Ω,p

W̃Ω,p

g − ǧ
2

)
, (2.108)

with the domain

D0(TXΩ,p) :=
{
g ∈ L2(Xd, W̃Ω,p) : g(·, ξ) ∈ AC2π, g(π, ξ) = 0 for µ-a.e. ξ ∈ Sd−1,

∂g

∂τ
,
W ′

Ω,p

WΩ,p

g − ǧ
2 , τ

W ′
Ω,p

WΩ,p
g ∈ L2(Xd, W̃Ω,p)

}
. (2.109)

The definition (2.108) of the Dunkl operator TXΩ,p corresponds to the definition (2.16) of
TX with the scaling function κ(ξ) = π

Q(ξ) and the weight function W̃ = W̃Ω,p. The domain
D0(TXΩ,p) corresponds to the restricted domain D0(TX) defined in (2.25). By Lemma 2.8,
we know that iTXΩ,p is symmetric on L2(Xd, W̃Ω,p). Hence, we get the following uncertainty
principle for compact star-shaped domains:

Theorem 2.51.
Let M be a Riemannian manifold and Ω ⊂ M be a compact star-shaped domain with
interior point p and Lipschitz continuous boundary ∂Ω. Let f ∈ L2(Ω)∩D0( ∂

∂t∗; Ω) such
that ‖f‖Ω = 1. Then, the following uncertainty principle holds:

‖t∗f‖2
Ω ·
∥∥∥∥ ∂∂t∗f

∥∥∥∥2

Ω
>

1
4

∣∣∣∣1 +
∫

Sp

∫ Q(ξ)

0
tΘ′(t, ξ))|f ∗(t, ξ)|2dtdµ(ξ)

∣∣∣∣2. (2.110)

Proof. If f ∈ L2(Ω) ∩ D0( ∂
∂t∗; Ω), then, by Proposition 2.47, L∗Qf ∗ ∈ L2(Zd

π,WΩ,p) ∩
D0( ∂

∂τ
;Zd

π) and the even extension e(L∗Qf ∗) ∈ L2
e(Xd, W̃Ω,p) is an element of the domain
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2.4. Uncertainty principles on manifolds diffeomorphic to Rd

D0(TXΩ,p) of the Dunkl operator TXΩ,p. Moreover, we know from Lemma 2.48 that the weight
function WΩ,p satisfies Assumption 2.1. Then, if we consider the symmetric operators A
and B on L2(Xd, W̃Ω,p) defined by Ag = Q(ξ)

π
τg and Bg = iTXΩ,p g, we get in Theorem

2.14 the inequality
∥∥∥Q(ξ)

π
τL∗Qf ∗

∥∥∥2

WΩ,p
·
∥∥∥∥∥ π

Q(ξ)
∂L∗Qf ∗

∂τ

∥∥∥∥∥
2

WΩ,p

>

1
4

∣∣∣∣ ∫
Sd−1

∫ π

0
(WΩ,p(τ, ξ) + τW ′

Ω,p(τ, ξ))|L∗Qf ∗(τ, ξ)|2dτdµ(ξ)
∣∣∣∣2.

Now, by the coordinate transformation LQ, we have τ = L∗Q( tπ
Q

), π
Q

∂
∂τ

L∗Qf ∗ = L∗Q( ∂
∂t
f ∗)

and W ′
Ω,p = L∗Q(Θ′). This implies inequality (2.110). 2

Example 2.52. As an example of a compact star-shaped domain we consider the unit ball
Bd in Rd centered at p = 0. In this case, the distance function Q is given by Q(ξ) = 1
for all ξ ∈ Sp and the weight function Θ on Zd

Q is given by Θ(t, ξ) = td−1. Hence
Θ′(t, ξ) = (d− 1)td−2 and Theorem 2.51 implies the inequality

‖t∗f‖2
Bd ·

∥∥∥∥ ∂∂t∗f
∥∥∥∥2

Bd
>
d2

4 (2.111)

for all functions f ∈ L2(Bd) ∩ D0( ∂
∂t∗;B

d) normalized such that ‖f‖Bd = 1.

2.4. Uncertainty principles on manifolds diffeomorphic to Rd

We leave now the compact settings and consider Riemannian manifolds E that are dif-
feomorphic to the Euclidean space Rd. In this particular case, the exponential map expp
defines a diffeomorphism from TpE onto E. Thus, by (A.30) and the polar transform P,
we get for an integrable function f on E in geodesic polar coordinates (t, ξ) ∈ [0,∞)×Sp

the formula ∫
E
f(q)dµE(q) =

∫
Sp

∫ ∞
0

f ∗(t, ξ)Θ(t, ξ)dtdµ(ξ), (2.112)

where the weight function Θ is given as in (2.73). To keep the notation simple, we identify
the tangent space TpE with the Euclidean space Rd and use the symbol Zd

∞ instead of
[0,∞)×Sp. However, to indicate that we are working in the tangent space TpE, we will
still use the symbol Sp for the unit sphere.

The Hilbert space L2(E) with inner product

〈f, g〉E :=
∫
E
f(q)g(q)dµE(q) (2.113)

is isometrically isomorphic to the Hilbert space L2(Zd
∞,Θ) with scalar product

〈f ∗, g∗〉Θ :=
∫

Sp

∫ ∞
0

f ∗(t, ξ)g∗(t, ξ)Θ(t, ξ)dtdµ(ξ). (2.114)
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Now, we can derive an uncertainty principle on the non-compact Riemannian manifold
E by using the uncertainty principle on the tube Zd

∞ developed in Section 2.1.3. In
particular, we can adopt Theorem 2.21. First, we show that the weight function Θ is
admissible.

Lemma 2.53.
Let E be diffeomorphic to the Euclidean space Rd. Then the weight function Θ satisfies
Assumption 2.15.

Proof. Since E is diffeomorphic to Rd, the Jacobi determinant θ(ξ) = det((d expp)ξ) is
continuously differentiable and strictly positive on the whole tangent space TpE. Hence
Θ(t, ξ) = td−1θ(tξ) is continuously differentiable on Zd

∞ and vanishes only at the boundary
∂LZ

d
∞ of Zd

∞. Hence, the conditions (2.32) and (2.33) are satisfied. Further, since

t
Θ′(t, ξ)
Θ(t, ξ) = (d− 1) + t

θ′(tξ)
θ(tξ)

is bounded for every compact subset of Zd
∞, also (2.34) is satisfied. 2

From Theorem 2.21, we can now derive the following uncertainty principle for Riemannian
manifolds diffeomorphic to the Euclidean space.

Theorem 2.54.
Let E be a Riemannian manifold diffeomorphic to Rd and p ∈ E. Let f ∈ L2(E),
‖f‖E = 1, such that f ∗ ∈ D( ∂

∂t
, t, t ∂

∂t
;Zd
∞) (see (2.46)) and such that the consistency

condition f ∗(0, ξ1) = f ∗(0, ξ2) is satisfied for µ-a.e. ξ1, ξ2 ∈ Sp. Then, the following
uncertainty principle holds:

‖t∗f‖2
E ·

∥∥∥∥ ∂∂t∗f
∥∥∥∥2

E
≥ 1

4

∣∣∣∣1 +
∫

Sp

∫ ∞
0

tΘ′(t, ξ)|f ∗(t, ξ)|2dtdµ(ξ)
∣∣∣∣2. (2.115)

Equality holds if and only if f ∗(t, ξ) = Ce−λt
2, with a complex scalar C and a real constant

λ ∈ R such that f satisfies the requirements of the theorem.

Proof. By Lemma 2.53, the weight function Θ satisfies Assumption 2.15 and ‖f ∗‖Θ =
‖f‖E = 1. Thus, the statement follows from Theorem 2.21. Hereby, the consistency
condition f ∗(0, ξ1) = f ∗(0, ξ2) for µ-a.e. ξ1, ξ2 ∈ Sp makes sure that the complex constant
C in the optimal function f ∗(t, ξ) = Ce−λt

2 does not depend on the variable ξ ∈ Sp. 2

Definition 2.55. In the non-compact case, we define the position and frequency variance
of a function f at the point p ∈ E as

varES,p(f) := ‖t∗f‖2
E =

∫
Sp

∫ ∞
0

t2|f ∗(t, ξ)|2Θ(t, ξ)dtdµ(ξ), (2.116)

varEF,p(f) :=
∥∥∥∥ ∂∂t∗f

∥∥∥∥2

E
=
∫

Sp

∫ ∞
0

∣∣∣∣∂f ∗∂t (t, ξ)
∣∣∣∣2Θ(t, ξ)dtdµ(ξ). (2.117)
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In view of the latter definition, the following uncertainty inequality holds for all functions
satisfying the requirements of Theorem 2.54.

varES,p(f) · varEF,p(f) ≥ 1
4

∣∣∣∣1 +
∫

Sp

∫ ∞
0

tΘ′(t, ξ)|f ∗(t, ξ)|2dtdµ(ξ)
∣∣∣∣2. (2.118)

Example 2.56. If E = Rd, p ∈ Rd, then Θ(t, ξ) = td−1, Θ′(t, ξ) = (d−1)td−2 and Theorem
2.54 implies the uncertainty principle

‖t∗f‖2
Rd ·

∥∥∥∥ ∂∂t∗f
∥∥∥∥2

Rd
≥ d2

4 . (2.119)

Equality in (2.119) is attained if and only if f(q) = Ce−λ|q|
2 for a constant λ > 0 and a

complex constant C. This inequality is the d-dimensional analog of the one-dimensional
Heisenberg-Pauli-Weyl inequality (1.9).

Similar as in the case of a compact manifoldM , there exists a relation between the Dunkl
operator T Y given on L2(Y d, Θ̃) by

T Y g = ∂g

∂t
+ Θ̃′

Θ̃
g − ǧ

2

and the radial part of the Laplace-Beltrami operator ∆E. As in (2.96), we introduce the
radial Laplace-Beltrami operator ∆p,t in geodesic polar coordinates (t, ξ) as

(∆p,tf)∗(t, ξ) := ∂2

∂t2
f ∗(t, ξ) + Θ′(t, ξ)

Θ(t, ξ)
∂

∂t
f ∗(t, ξ), (t, ξ) ∈ Zd

∞, (2.120)

on the domain

D(∆p,t) :=
{
f ∈ C2(E) ∩ L2(E) : ∂

∂t
f ∗(0, ξ) = 0, ξ ∈ Sp

}
. (2.121)

Now, for f ∈ D(∆p,t), we can use the even extension e(f ∗) ∈ L2
e(Y d, Θ̃) to get the

following decomposition of the radial Laplace-Beltrami operator ∆p,t, also shown in the
commutative diagram in Figure 10.

e((−∆p,tf)∗) = (iT Y )2e(f ∗). (2.122)

Hence, as in the compact setting, the operator iT Y can be seen as a generalized symmetric
root of −∆p,t. Further, since

varES,p(f) =
∥∥∥∥ ∂∂t∗f

∥∥∥∥2

E
=
∥∥∥iT Y e(f ∗)∥∥∥2

Θ̃
= 〈−∆p,tf, f〉E, (2.123)

we get a second representation of the frequency variance varES,p(f).
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L2(E) ∩ D(∆p,t) L2(Zd
∞,Θ) L2(Y d, Θ̃)

L2(Y d, Θ̃))

L2(E) L2(Zd
∞,Θ) L2(Y d, Θ̃)

P ∗ exp∗p e

e
P ∗ exp∗p

−∆p,t

iTY

iTY

Figure 10: Commutative diagram for the decomposition of −∆p,t for Riemannian mani-
folds E diffeomorphic to Rd.

2.5. Asymptotic sharpness of the uncertainty principles on
compacta

In this section, we show that the uncertainty principle (2.94) for compact Riemannian
manifolds M and the uncertainty principle (2.110) for compact star-shaped domains Ω
are asymptotically sharp, i.e., that there exists a family of functions Hλ in the domain of
the differential operator ∂

∂t∗ onM and Ω such that for λ→ 0 equality is attained in (2.94)
and (2.110), respectively. For this purpose, we construct a family Hλ of Gaussian-like
functions on M and Ω.

First, we prove an auxiliary result. For k ∈ N0 and σ > 0, we have the following
well-known moment formulas for the Gaussian function (cf. [64, p. 110]):∫ ∞

0
t2ke−

t2
σ2 dt =

√
π

2
(2k)!
4kk! σ

2k+1, (2.124)∫ ∞
0

t2k+1e−
t2
σ2 dt = k!

2 σ
2k+2. (2.125)

On [0,∞), we introduce for d ∈ N, d ≥ 1 and σ > 0 the Gaussians Gd,σ as

Gd,σ(t) :=


√

2√
π

4kk!
(2k)!

1
σk+1/2 e

− t2
2σ2 if d = 2k + 1,√

2
k!

1
σk+1 e

− t2
2σ2 if d = 2k + 2.

Then, the moment formulas (2.124) and (2.125) imply that Gd,σ is a normalized function
in the Hilbert space L2

d := L2([0,∞), td−1) with ‖Gd,σ‖L2
d

= 1. Moreover, the following
properties hold:

Lemma 2.57.
Consider Gd,σ as an element of the Hilbert space L2

d. Then,

‖tGd,σ‖2
L2
d

= d

2σ
2, (2.126)

‖G′d,σ‖2
L2
d

= d

2
1
σ2 . (2.127)
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2.5. Asymptotic sharpness of the uncertainty principles on compacta

Proof. We prove equations (2.126) and (2.127) by direct calculation using the formulas
(2.124) and (2.125). For d odd and k = d−1

2 , we get

‖G′d,σ‖2
L2
d

=
∫ ∞

0

2√
π

4kk!
(2k)!

1
σ2k+1

(
d

dt
e−

t2
2σ2

)2

t2kdt

=
∫ ∞

0

2√
π

4kk!
(2k)!

1
σ2k+5 e

− t2
σ2 t2k+2dt = 1

4
k!

(2k)!
(2k + 2)!
(k + 1)!

1
σ2 = d

2
1
σ2 .

‖tGd,σ‖2
L2
d

=
∫ ∞

0

2√
π

4kk!
(2k)!

1
σ2k+1 e

− t2
σ2 t2k+2dt = d

2σ
2.

On the other hand, for d even and k = d−2
2 , we have

‖G′d,σ‖2
L2
d

=
∫ ∞

0

2
k!

1
σ2k+2

(
d

dt
e−

t2
2σ2

)2

t2kdt

=
∫ ∞

0

2
k!

1
σ2k+6 e

− t2
σ2 t2k+2dt = (k + 1)!

k!
1
σ2 = d

2
1
σ2 .

‖tGd,σ‖2
L2
d

=
∫ ∞

0

2
k!

1
σ2k+2 e

− t2
σ2 t2k+2dt = d

2σ
2.

2

Now, we consider first the uncertainty principle on a compact Riemannian manifold M
proven in Section 2.2 and show that inequality (2.94) is asymptotically sharp. We start
out by choosing δ > 0 small enough such that the open ball B(p, δ) with center p and
radius δ is a subset of Dp ⊂ M . Further, we define a C∞-cut-off function ϕδ : [0,∞)→
[0, 1] with the property that ϕδ(t) = 1 for 0 ≤ t ≤ δ

2 , 0 ≤ ϕδ(t) ≤ 1 for δ
2 ≤ t ≤ δ, and

ϕδ(t) = 0 for t ≥ δ. Then, we set cξ :=
√

R(ξ)
π

and define for λ ∈ (0,∞) the family of
functions H̃λ in geodesic polar coordinates at p ∈M by

H̃∗λ(t, ξ) := Gd,cξλ(t)ϕδ(t) (2.128)

and its normalization as
Hλ := H̃λ

‖H̃λ‖M
. (2.129)

Because of the cut-off function ϕδ, the functions Hλ are compactly supported in B(p, δ) ⊂
M and, in particular, elements of L2(M) ∩ D( ∂

∂t∗;M). Now, we can show the following
proposition:

Proposition 2.58.
Let |Sp| denote the volume of the unit sphere Sp, then

lim
λ→0

1− εp(Hλ)2

λ2 = d

2|Sp|

∫
Sp

π
R(ξ)dµ(ξ), (2.130)
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lim
λ→0

λ2
∥∥∥∥ ∂∂t∗Hλ

∥∥∥∥2

M
= d

2|Sp|

∫
Sp

π
R(ξ)dµ(ξ), (2.131)

lim
λ→0

ρp(Hλ) = d

|Sp|

∫
Sp

π
R(ξ)dµ(ξ). (2.132)

In particular, the uncertainty inequality (2.94) is asymptotically sharp.

Proof. Beside Lemma 2.57, we need two facts for the proof. The first one is a property
of the weight function Θ. If δ > 0 is chosen small enough, we have for t ≤ δ the Taylor
expansion (cf. (2.80) and [8, XII 8])

Θ(t, ξ) = td−1 − Ric(ξ, ξ)
6 td+1 + O(td+2), (2.133)

Θ′(t, ξ) = (d− 1)td−2 − (d+ 1) Ric(ξ, ξ)
6 td + O(td+1), (2.134)

where Ric(·, ·) denotes the Ricci tensor on TpM×TpM (see Section A.6). The second fact
concerns the Gaussian function Gd,cξλ. Since the term cξ =

√
R(ξ)
π

is uniformly bounded
above and below by positive constants, there exists for δ > 0 and ε > 0 a λδ,ε such that
for all λ < λδ,ε and ξ ∈ Sp we have∫ ∞

δ/2
Gd,cξλ(t)2td−1dt < ε. (2.135)

We consider now the L2-norm of H̃λ on M . Using the Taylor expansion (2.133) of the
weight function Θ and property (2.126) of Lemma 2.57, we get the estimate

lim
λ→0
‖H̃λ‖2

M = lim
λ→0

∫
Sp

∫ δ

0
Gd,cξλ(t)2ϕδ(t)2Θ(t, ξ)dtdµ(ξ)

= lim
λ→0

∫
Sp

∫ δ

0
Gd,cξλ(t)2ϕδ(t)2

(
td−1 + O(td+1)

)
dtdµ(ξ)

≤ lim
λ→0

∫
Sp

∫ ∞
0

Gd,cξλ(t)2
(
td−1 + O(td+1)

)
dtdµ(ξ)

= lim
λ→0
|Sp|+ O(λ2) = |Sp|,

where |Sp| denotes the volume of the (d− 1)-dimensional unit sphere Sp in the tangent
space TpM . Using property (2.135), we get for an arbitrary ε > 0 and λ < λδ,ε

‖H̃λ‖2
M =

∫
Sp

∫ δ

0
Gd,cξλ(t)2ϕδ(t)2

(
td−1 + O(td+1)

)
dtdµ(ξ)

≥
∫

Sp

∫ ∞
0

Gd,cξλ(t)2
(
td−1 + O(td+1)

)
dtdµ(ξ)− ε|Sp|

= (1− ε)|Sp|+ O(λ2).

Therefore,
lim
λ→0
‖H̃λ‖2

M = |Sp|. (2.136)
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We consider now equation (2.130). Using the Taylor expansion (2.133) of the weight
function Θ and property (2.126), we get the upper estimate

1− εp(Hλ) = 1
‖H̃λ‖2

M

∫
Sp

∫ δ

0

(
1− cos( π

R(ξ)t)
)
Gd,cξλ(t)2ϕδ(t)2Θ(t, ξ)dtdµ(ξ)

≤ 1
‖H̃λ‖2

M

∫
Sp

∫ δ

0
π2

R(ξ)2
t2

2 Gd,cξλ(t)2ϕδ(t)2Θ(t, ξ)dtdµ(ξ)

≤ 1
‖H̃λ‖2

M

∫
Sp

∫ ∞
0

π2

R(ξ)2
t2

2 Gd,cξλ(t)2
(
td−1 + O(td+1)

)
dtdµ(ξ)

= d

4λ
2 1
‖H̃λ‖2

M

∫
Sp

π
R(ξ)dµ(ξ) + O(λ4).

Further, since ‖Hλ‖M = 1, we have εp(Hλ) ≤ 1 and, hence, (1 + εp(Hλ)) ≤ 2. In total,
we get

lim
λ→0

1− εp(Hλ)2

λ2 ≤ 2 lim
λ→0

1− εp(Hλ)
λ2 ≤ d

2|Sp|

∫
Sp

π
R(ξ)dµ(ξ). (2.137)

Next, we turn to equation (2.131). For the following estimate, we use the Taylor expan-
sion (2.133) and equation (2.127) of Lemma 2.57.

∥∥∥∥ ∂∂t∗Hλ

∥∥∥∥2

M
= 1
‖H̃λ‖2

M

∫
Sp

∫ δ

0

∣∣∣∣ ∂∂t
(
Gd,cξλ(t)ϕδ(t)

)∣∣∣∣2Θ(t, ξ)dtdµ(ξ)

≤ 1
‖H̃λ‖2

M

∫
Sp

∫ ∞
0

[
|G′d,cξλ(t)|

2 + 2|G′d,cξλ(t)|‖ϕ
′
δ‖∞+

+ |Gd,cξλ(t)|‖ϕ′δ‖2
∞

](
td−1 + O(td+1)

)
dtdµ(ξ)

= d

2
1
λ2

1
‖H̃λ‖2

M

∫
Sp

π
R(ξ)dµ(ξ) + O

(1
λ

)
.

Thus, we get

lim
λ→0

λ2
∥∥∥∥ ∂∂t∗Hλ

∥∥∥∥2

M
≤ d

2|Sp|

∫
Sp

π
R(ξ)dµ(ξ). (2.138)

Finally, we take a look at equation (2.132). Due to (2.133) and (2.134), the function
Θ′(t,ξ)
Θ(t,ξ) sin( π

R(ξ)t) has for small t the Taylor expansion

Θ′(t, ξ)
Θ(t, ξ) sin( π

R(ξ)t) = (d− 1) π

R(ξ) + O(t2). (2.139)
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Using (2.139) and property (2.135), we derive for an arbitrary ε > 0 and for λ < λδ,ε

ρp(Hλ) =
∫

Sp

∫ δ

0

(
π

R(ξ) cos( π
R(ξ)t) + Θ(t,ξ)′

Θ(t,ξ) sin( π
R(ξ)t)

)
|H∗λ(t, ξ)|2Θ(t, ξ)dtdµ(ξ)

= 1
‖H̃λ‖2

M

∫
Sp

∫ δ

0

(
π

R(ξ) cos( π
R(ξ)t) + Θ(t,ξ)′

Θ(t,ξ) sin( π
R(ξ)t)

)
×
(
Gd,cξλ(t)ϕδ(t)

)2
Θ(t, ξ)dtdµ(ξ)

= d

‖H̃λ‖2
M

∫
Sp

π
R(ξ)

∫ δ

0

(
Gd,cξλ(t)ϕδ(t)

)2(
td−1 + O(td+1)

)
dtdµ(ξ)

≥ d

‖H̃λ‖2
M

∫
Sp

π

R(ξ)dµ(ξ)(1− ε) + O(λ2).

Thus, we conclude
lim
λ→0

ρp(Hλ) ≥
d

|Sp|

∫
Sp

π
R(ξ)dµ(ξ). (2.140)

Now, inserting the inequalities (2.137), (2.138) and (2.140) in the uncertainty inequality
(2.90), we get the same value on both sides, namely d2

4|Sp|2 (
∫
Sp

π
R(ξ)dµ(ξ))2. Thus, inequal-

ities (2.137), (2.138) and (2.140) are in fact equalities and the proposition is proven. 2

Similarly, if Ω is a compact star-shaped subset of M , it is possible to prove that the
uncertainty principle (2.110) is asymptotically sharp. As above, we choose δ > 0 small
enough such that B(p, δ) ⊂ Ω and use ϕδ as a cut-off-function. Similar as in (2.128), we
define for λ ∈ (0,∞) a Gaussian-type family of functions H̃Ω

λ by

H̃Ω∗
λ (t, ξ) := Gd,λ(t)ϕδ(t)

and the normalized functions by

HΩ
λ := H̃Ω

λ

‖H̃Ω
λ ‖Ω

.

Obviously, the function HΩ
λ is supported in B(p, δ) and is an element of L2(M) ∩

D0( ∂
∂t∗; Ω). Moreover, we get the following asymptotic result:

Proposition 2.59.

lim
λ→0

‖t∗HΩ
λ ‖2

Ω
λ2 = d

2 , (2.141)

lim
λ→0

λ2
∥∥∥∥ ∂∂t∗HΩ

λ

∥∥∥∥2

Ω
= d

2 , (2.142)

lim
λ→0

1 +
∫

Sp

∫ Q(ξ)

0
tΘ′(t, ξ))|HΩ∗

λ (t, ξ)|2dtdµ(ξ) = d. (2.143)

In particular, the uncertainty principle (2.110) is asymptotically sharp.
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Proof. We consider first the L2-norm of H̃Ω
λ on Ω. Similar as in (2.136), we get the

asymptotic formula
lim
λ→0
‖H̃Ω

λ ‖2
Ω = |Sp|. (2.144)

Next, we turn to equation (2.141). Using the Taylor expansion (2.133) of the weight
function Θ and property (2.126), we get the upper bound

‖t∗HΩ
λ ‖2

Ω = 1
‖H̃Ω

λ ‖2
Ω

∫
Sp

∫ δ

0
t2Gd,λ(t)2ϕδ(t)2Θ(t, ξ)dtdµ(ξ)

≤ 1
‖H̃Ω

λ ‖2
Ω

∫
Sp

∫ ∞
0

Gd,λ(t)2
(
td+1 + O(td+3)

)
dtdµ(ξ)

= d

2λ
2 |Sp|
‖H̃Ω

λ ‖2
Ω

+ O(λ4).

Thus, in the limit λ→ 0, we get

lim
λ→0

‖t∗HΩ
λ ‖2

Ω
λ2 ≤ d

2 . (2.145)

Next, we consider equation (2.142). Proceeding in the same way as in the proof of
inequality (2.138), we get the estimate

lim
λ→0

λ2
∥∥∥∥ ∂∂t∗HΩ

λ

∥∥∥∥2

Ω
≤ d

2 . (2.146)

Finally, we turn to equation (2.143). Due to (2.134) and property (2.135), we derive for
an arbitrary ε > 0 and for λ < λδ,ε∫

Sp

∫ Q(ξ)

0
tΘ′(t, ξ))|HΩ

λ (t, ξ)|2dtdµ(ξ) =

= 1
‖H̃λ‖2

Ω

∫
Sp

∫ δ

0
tΘ′(t, ξ))

(
Gd,λ(t)ϕδ(t)

)2
dtdµ(ξ)

≥ d− 1
‖H̃λ‖2

Ω

∫
Sp

( ∫ ∞
0

(
Gd,λ(t)ϕδ(t)

)2(
td−1 + O(td+1)

)
dt− ε

)
dµ(ξ)

≥ (d− 1)|Sp|
‖H̃Ω

λ ‖2
Ω

(1− ε) + O(λ2).

Thus, we can conclude

lim
λ→0

(
1 +

∫
Sp

∫ Q(ξ)

0
tΘ′(t, ξ))|HΩ∗

λ (t, ξ)|2dtdµ(ξ)
)
≥ d. (2.147)

Using the inequalities (2.145), (2.146) and (2.147) in the uncertainty inequality (2.110),
we get on both sides the value d2

4 . Thus, we have shown that the inequalities (2.145),
(2.146) and (2.147) are in fact equalities. 2
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2.6. Examples

2.6.1. The spheres

As a first example of a compact Riemannian manifold, we start with the d-dimensional
sphere

Sdr = {q ∈ Rd+1 : q2
1 + . . .+ q2

d+1 = r2}

with radius r > 0. The sphere Sdr is a submanifold of Rd+1 and the canonical Riemannian
structure on Sdr is defined by the restriction of the standard Euclidean metric in Rd+1 to
the submanifold Sdr . If p ∈ Sdr , we identify the tangent space TpSdr with the orthogonal
complement p⊥ of the linear vector space Rp in Rd+1. An arbitrary point q ∈ Sdr can
then be represented as

q = q(t, ξ) = r cos( t
r
)p+ r sin( t

r
)ξ,

where t ∈ [0, rπ] and ξ ∈ Sp is a unit vector in the hyperplane p⊥. For fixed ξ, the
functions γξ(t) = q(t, ξ) describe the geodesics on Sdr starting at γξ(0) = p (see [9, Section
II.3]), and the coordinates (t, ξ) correspond to the geodesic polar coordinates at p. The
cut locus Cp consists of the single point {−p} lying at the antipodal end of the sphere.
Further, the distance value R(ξ) is, independently from the directional variable ξ, equal
to rπ. The weight function Θ can be determined as (cf. [3, p. 57])

Θ(t, ξ) = rd−1 sind−1( t
r
), (2.148)

and the Laplace-Beltrami operator on Sdr as (cf. [8, II.5, equation (29)])

(∆Sdrf)∗(t, ξ) = ∂2

∂t
f ∗(t, ξ) + d− 1

r
cot( t

r
) ∂
∂t
f ∗(t, ξ) + ∆Sp(f ∗(t, ξ)|Sp)

r2 sin2( t
r
) , (2.149)

for t ∈ (0, π) and ξ ∈ Sp. The radial part of the Laplacian is given as

(∆p,tf)∗(t, ξ) = ∂2

∂t
f ∗(t, ξ) + d− 1

r
cot( t

r
) ∂
∂t
f ∗(t, ξ). (2.150)

Now, an uncertainty principle on Sdr can be formulated as follows.

Corollary 2.60.
Let p ∈ Sdr and f ∈ L2(Sdr)∩D( ∂

∂t∗; S
d
r) be normalized such that ‖f‖Sdr = 1 and εp(f) 6= 0.

Then, the following uncertainty principle holds:

r2 1− εp(f)2

εp(f)2 ·
∥∥∥∥ ∂∂t∗f

∥∥∥∥2

Sdr
>
d2

4 . (2.151)

The constant d2

4 is optimal.

80



2.6. Examples

Proof. If we apply Theorem 2.41 to the sphere Sdr and use the respective weight function
(2.148), the only thing that remains to validate is the right hand side of inequality (2.90).
This is done by the following simple calculation.

ρp(f) =
∫

Sp

∫ rπ

0

(
1
r

cos( t
r
) + Θ′(t,ξ)

Θ(t,ξ) sin( t
r
)
)
|f ∗(t, ξ)|2Θ(t, ξ)dtdµ(ξ)

= 1
r
εp(f) + d− 1

r

∫
Sp

∫ rπ

0
cot( t

r
) sin( t

r
)|f ∗(t, ξ)|2 sind−1( t

r
)dtdµ(ξ) = d

r
εp(f).

The optimality of the constant d2

4 is a direct consequence of Proposition 2.58. 2

r
√

1− εp(f)2

rrεp(f)

S2
r

r
√

1−εp(f)2

εp(f)2

0

p

Figure 11: Geometric interpretation of the position variance varS2
r
S,p(f) on the sphere S2

r

with radius r > 0.

If we consider only the radial functions on the unit sphere Sd = Sd1, inequality (2.151)
corresponds exactly with the uncertainty principle (1.73) proven in [73] for functions hav-
ing an expansion in terms of the Gegenbauer polynomials C( d−1

2 )
n . This is not surprising

since the polynomials C( d−1
2 )

n constitute a basis for the radial, square integrable functions
on Sd and also the radial Laplacian (2.150) corresponds to the second-order differential
operator L d−2

2 , d−2
2

of the corresponding Gegenbauer polynomials defined in (1.67). The
sharpness of inequality (2.151) is therefore also a consequence of the sharpness of the
uncertainty inequality (1.73) and vice versa.

2.6.2. The projective spaces

Our next main examples are the projective spaces. We start with the d-dimensional real
projective space RPdr . We consider the standard sphere Sd2r with radius 2r and define the
antipodal map A : Sd2r → Sd2r by Ap = −p. The real projective space RPdr with diameter
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2. Uncertainty principles on Riemannian manifolds

rπ is then defined as the quotient of Sd2r under the group G = {id, A}. Since G is a proper
and free isometry group on Sd2r, we get in a canonical way a Riemannian metric on the
quotient RPdr from the standard Riemannian metric on the covering Sd2r. Moreover, the
identification of RPdr with Sd2r/G allows the introduction of geodesic polar coordinates at
a point p as in the case of the sphere. In this way, the Riemannian measure on RPdr can
be deduced from (2.148) as

dµ∗RPdr (t, ξ) = (2r)d−1 sind−1( t
2r )dtdµ(ξ), (t, ξ) ∈ [0, rπ]×Sp. (2.152)

The cut locus Cp on RPdr corresponds to the set of points lying on the equator of Sd2r with
respect to the pole p. Since the antipodal points are also identified with each other on
the equator, the cut locus Cp is isometric to the real projective space RPd−1

r . Due to our
special construction, the distance R(ξ) from p to the cut locus is, independently of the
direction ξ, equal to rπ. Further, the Laplace-Beltrami operator on RPdr can be deduced
from (2.149) as

(∆RPdrf)∗(t, ξ) = ∂2f∗

∂t2
(t, ξ) + (d− 1)

2r
1 + cos( tr )

sin( tr )
∂f∗

∂t
(t, ξ) +

∆Sp(f∗(t, ξ)|Sp)
4r2 sin2( t

2r )
. (2.153)

Next, we take a look at the complex projective space CPdr , d = 2, 4, 6, . . .. We identify the
complex space C d

2 +1 with the real Euclidean space Rd+2 and consider the sphere Sd+1
2r as

a Riemannian submanifold of C d
2 +1. Then, the complex projective space CPdr is defined

as the quotient of Sd+1
2r ⊂ C d

2 +1 under the group of complex scalars of absolute value
1 acting on Sd+1

2r ⊂ C d
2 +1. The projection Sd+1

2r → CPdr is a fibration (in particular a
submersion, see [3, Chapter 1, E5] and Section A.1 of the Appendix) known as the Hopf
fibration, and CPdr can therefore be endowed with a unique Riemannian structure. If we
introduce geodesic polar coordinates (t, ξ) ∈ [0, rπ] × Sp at a point p ∈ CPdr , then the
weight function Θ(t, ξ) assumes, independently of the directional variable ξ, the value
(cf. [3, Chapter 2, F42], [35, p. 171])

Θ(t, ξ) = (2r)d−1 sind−1( t
2r ) cos( t

2r ), (2.154)

and the geodesic distance R(ξ) from p to the cut locus Cp ' CPd−2
r is equal to rπ. So,

the radial Laplacian ∆p,t reads as

(∆p,tf)∗(t, ξ) = ∂2f ∗

∂t2
(t, ξ) +

d− 2 + d cos( t
r
)

2r sin( t
r
)

∂f ∗

∂t
(t, ξ). (2.155)

Similarly, one obtains the quaternionic projective space HPdr , d = 4, 8, 12, . . ., by starting
with the unit sphere Sd+3

2r as a Riemannian submanifold of the quaternionic space H d
4 +1.

Then HPdr is defined as the quotient of Sd+3
2r under the group of unit quaternions acting

on Sd+3
2r ⊂ H d

4 +1. Again, the projection Sd+3
2r → HPdr is a fibration and HPdr can be

endowed with a unique Riemannian structure. In geodesic polar coordinates at a point
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p, the weight function Θ for the quaternionic complex space can be computed as (see [3,
Chapter 2, F46], [35, p. 171])

Θ(t, ξ) = (2r)d−1 sind−1( t
2r ) cos3( t

2r ), (2.156)

where (t, ξ) ∈ [0, rπ]×Sp. The cut locus at t = R(ξ) = rπ is a Riemannian submanifold
of HPdr isometric to HPd−4

r . Moreover, the radial Laplacian ∆p,t on HPdr reads as

(∆p,tf)∗(t, ξ) = ∂2f ∗

∂t2
(t, ξ) +

d− 4 + (d+ 2) cos( t
r
)

2r sin( t
r
)

∂f ∗

∂t
(t, ξ). (2.157)

Beside the projective spaces RPdr , CPdr and HPdr , there exists a further projective space
constructed upon the octonions, the so called Cayley plane Car. As a 16-dimensional
homogeneous space, it can be defined as the quotient of the exceptional Lie group F4,(−52)
and the spin group SO(9) (see [4, Chapter 3 G]). The weight function Θ(t, ξ) for the
Cayley plane can be written as (see [3, p. 113], [35, p. 171])

Θ(t, ξ) = (2r)15 sin15( t
2r ) cos7( t

2r ), (2.158)

where (t, ξ) ∈ [0, rπ]×Sp. The cut locus Cp at t = R(ξ) = rπ is isometric to the sphere
S8
r. The radial Laplacian ∆p,t on Car reads as

∆p,tf(t, ξ) = ∂2

∂t2
f ∗(t, ξ) +

4 + 11 cos( t
r
)

r sin( t
r
)

∂

∂t
f ∗(t, ξ). (2.159)

To unify the notation for the projective spaces, we set βM = −1
2 , 0, 1, 3 if M =

RPdr ,CPdr ,HPdr ,Car, respectively. Then, the weight function ΘM(t, ξ) for the projective
spaces can be written as

ΘM(t, ξ) = (2r)d−1 sind−1( t
2r ) cos2βM+1( t

2r ), (2.160)

and the radial Laplacian reads as

(∆M
p,tf)∗(t, ξ) = ∂2

∂t2
f ∗(t, ξ) +

d− 2− 2βM + (d+ 2βM) cos( t
r
)

2r sin( t
r
)

∂

∂t
f ∗(t, ξ). (2.161)

So, an uncertainty principle for the projective spaces can be formulated as follows.

Corollary 2.61.
Let M be one of the projective spaces M = RPdr ,CPdr ,HPdr and Car. Let p ∈ M and
f ∈ L2(M) ∩ D( ∂

∂t∗;M) such that ‖f‖M = 1 and

ρp(f) = d− 2− 2βM
2r + d+ 2 + 2βM

2r εp(f) 6= 0.

Then, the following uncertainty principle holds:

r2 1− εp(f)2(
d−2−2βM

2d + d+2+2βM
2d εp(f)

)2 ·
∥∥∥ ∂
∂t∗
f
∥∥∥2

M
>
d2

4 . (2.162)

The constant d2

4 on the right hand side is optimal.
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Proof. Due to equation (2.160), we have ΘM(t, ξ) = (2r)d−1 sin( t
2r )

d−1 cos( t
2r )

2βM+1. Now,
if we apply Theorem 2.41, we get on the right hand side of inequality (2.90):

ρp(f) =
∫

Sp

∫ rπ

0

(
1
r

cos( t
r
) + Θ′M (t,ξ)

ΘM (t,ξ) sin( t
r
)
)
|f ∗(t, ξ)|2ΘM(t, ξ)dtdµ(ξ)

= 1
r
εp(f) +

∫
Sp

∫ rπ

0

d− 2− 2βM + (d+ 2βM) cos( t
r
)

2r |f ∗(t, ξ)|2ΘM(t, ξ)dtdµ(ξ)

= d− 2− 2βM
2r + d+ 2 + 2βM

2r εp(f).

The optimality of (2.162) follows from Proposition 2.58. 2

r
√

1− εp(f)2

rεp(f)

r
3

2r
3

2r

G

S2
r

RP2
r

2r
√

1−εp(f)2

(1+3εp(f))2p

Figure 12: Geometric interpretation of the position variance varRP2
r

S,p (f) for the real pro-
jective space RP2

r with diameter rπ > 0. The point G denotes the center of
gravity of RP2

r ⊂ R3.

It is well-known (see [24], [35]) that the radial square integrable functions on the projective
space at a point p have an expansion in terms of the Jacobi polynomials P ( d−2

2 ,βM )
l (cos( t

r
)).

Moreover, if r = 1, the radial Laplacian ∆M
p,t in (3.49) corresponds exactly to the second-

order differential operator L d−2
2 ,βM

of the corresponding Jacobi polynomials P ( d−2
2 ,βM )

l

defined in (1.67). Thus, if r = 1, inequality (2.162) restricted to radial functions on the
projective space is the same as the uncertainty principle (1.34) proven by Li and Liu in
[54] for the Jacobi polynomials P ( d−2

2 ,βM )
l .
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2.6.3. The flat tori

The flat tori Td
r are defined as the quotients of the Euclidean space Rd under the action

of the free abelian groups (2rZ)d, r > 0. In this way, the flat tori Td
r are compact

Riemannian manifolds with curvature K = 0. If p ∈ Td
r , the cut locus Cp in the tangent

space TpTd
r corresponds to the surface of the d-dimensional cuboid [−r, r]d with center 0

and edge length 2r (see also Example 2.33). Since Td
r is a flat Riemannian manifold, the

weight function Θ reads as
Θ(t, ξ) = td−1 (2.163)

and the Laplace-Beltrami operator ∆Tdr corresponds locally to the Laplacian in Rd. If
q ∈ [−r, r]d, we set the Euclidean norm as |q|2 = t2 = q2

1 + · · · + q2
d and the maximum

norm as |q|∞ = maxi=1,...,d |qi|. The distance function R can then be expressed in terms
of q 6= 0 as R( q

|q|) = r |q||q|∞ . The inverse coordinate transform PL−1
R P−1, which maps the

cuboid [−r, r]d \ {0} onto the ball Bd
π \ {0}, can be written as PL−1

R P−1 : q → π
r
|q|∞
|q| q.

An uncertainty principle on Td
r can now be formulated as follows.

Corollary 2.62.
Let p ∈ Td

r and f ∈ L2(Td
r)∩D( ∂

∂t∗; T
d
r) be normalized such that ‖f‖Tdr = 1 and ρp(f) 6= 0.

Then, the following uncertainty principle holds:

1−
( ∫

[−r,r]d
cos(π

r
|q|∞)|f(p+ q)|2dq

)2

(∫
[−r,r]d

(
π
rd
|q|∞
|q| cos(π

r
|q|∞) + d−1

d|q| sin(π
r
|q|∞)

)
|f(p+ q)|2dq

)2 ·
∥∥∥∥ ∂∂t∗f

∥∥∥∥2

Tdr
>
d2

4 . (2.164)

The constant d2

4 is optimal.

Proof. We adopt Theorem 2.41, to derive an uncertainty principle for the flat torus Td
r .

Clearly, the conditions of Theorem 2.41 are fulfilled. The value εp(f) can be written as

εp(f) =
∫

Sp

∫ R(ξ)

0
cos( π

R(ξ)t)|f
∗(t, ξ)|2td−1dtdµ(ξ) =

∫
[−r,r]d

cos(π
r
|q|∞)|f(p+ q)|2dq.

Moreover, since R( q
|q|) = r |q||q|∞ and |q| = t, we get on the right hand side of (2.90)

ρp(f) =
∫

Sp

∫ R(ξ)

0

(
π

R(ξ) cos( π
R(ξ)t) + Θ′(t,ξ)

Θ(t,ξ) sin( π
R(ξ)t)

)
|f ∗(t, ξ)|2Θ(t, ξ)dtdµ(ξ)

=
∫

[−r,r]d

(
π
r
|q|∞
|q| cos(π

r
|q|∞) + d−1

|q| sin(π
r
|q|∞)

)
|f(p+ q)|2dq.

Thus, by Theorem 2.41, we get inequality (2.164) and the optimality of the constant d2

4
follows from Proposition 2.58. 2
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2.6.4. The hyperbolic spaces

As an example of a Riemannian manifold that is diffeomorphic to Rd, we consider the
hyperbolic space. If Rd+1 is equipped with the symmetric bilinear form (x, y) = −x0y0 +∑d
i=1 xiyi, the hyperbolic space Hd

r , r > 0, is defined as the submanifold of Rd+1 satisfying

Hd
r =

{
x ∈ Rd+1 : (x, x) = −r2, x0 > 0

}
.

The bilinear form (·, ·) restricted to Hd
r induces a positive definite metric on Hd

r and makes
it to a Riemannian manifold. Moreover, it is well-known (see [9, Chapter II.3]) that the
hyperbolic space Hd

r has constant negative sectional curvature K = − 1
r2 and the weight

function Θ at a point p ∈ Hd
r is given by

Θ(t, ξ) = rd−1 sinhd−1( t
r
), (t, ξ) ∈ [0,∞)×Sp, (2.165)

Θ′(t, ξ) = (d− 1)rd−2 cosh( t
r
) sinhd−2( t

r
). (2.166)

Now, using Theorem 2.54, we get the following uncertainty principle for the hyperbolic
space:

Corollary 2.63.
Let p ∈ Hd

r and f ∈ L2(Hd
r), ‖f‖Hdr = 1, such that f ∗ ∈ D( ∂

∂t
, t, t ∂

∂t
;Zd
∞) and the con-

sistency condition f ∗(0, ξ1) = f ∗(0, ξ2) is satisfied for µ-a.e. ξ1, ξ2 ∈ Sp. Then, the
following uncertainty principle holds:

‖t∗f‖2
Hdr ·

∥∥∥∥ ∂∂t∗f
∥∥∥∥2

Hdr
≥ 1

4
(
1 + (d− 1)

∥∥∥√ t
r

coth( t
r
)
∗
f
∥∥∥2

Hdr

)2
. (2.167)

Equality in (2.167) is obtained if and only if f ∗(t, ξ) = Ce−λt
2 for a nonnegative constant

λ > 0 and a complex scalar C.

2.6.5. One-dimensional closed curves

If the manifold M is a closed one-dimensional curve, we can simplify inequality (2.90)
considerably. We consider a C∞-differentiable Jordan curve γ : [−r, r] → Rd, naturally
parameterized such that |γ′(t)| = 1 for every t ∈ [−r, r]. The geodesic distance on the
curve is then given as

d(γ(t1), γ(t2)) =
∣∣∣∣ ∫ t2

t1
|γ′(t)|dt

∣∣∣∣ = |t1 − t2|

and the length of the whole curve is 2r. Now, for the formulation of the uncertainty
principle, we adopt the notation of the previous sections. Without loss of generality
we can assume that the point p at which the geodesic polar coordinates are introduced
corresponds to γ(0). Then the cut locus corresponds to the point γ(r) and the weight
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function Θ satisfies Θ(t, ξ) = |γ′(ξt)| = 1 for all t ∈ [0, r] and ξ ∈ {±1}. The integration
on γ can be written in the polar coordinates as∫

γ
fdγ =

∑
ξ∈{±1}

∫ r

0
f(γ(ξt))dt

and the Laplacian ∆γ translates to

∆γf(γ(ξt)) = ∆p,tf(γ(ξt)) = d2

dt2
f(γ(ξt)).

Now, we can formulate the uncertainty principle (2.90) for the curve γ as follows.

Corollary 2.64.
If f(γ(·)) ∈ AC([−r, r]), f(γ(−r)) = f(γ(r)), d

dt∗f ∈ L2(γ) and ‖f‖γ = 1, then the
following inequality holds:

r2

π2
1− εp(f)2

εp(f)2 ·
∥∥∥∥ ddt∗f

∥∥∥∥2

γ
>

1
4 , (2.168)

where
εp(f) =

∫ r

−r
cos(π

r
t)|f(γ(t))|2dt.

The constant 1
4 on the right hand side of inequality (2.168) is optimal.

We remark that this result can also be shown in a different way. Since a smooth Jordan
curve γ with length 2r is isometric to the circle with radius r

π
, the uncertainty for γ can

directly be deduced from the Breitenberger uncertainty principle (1.7). Moreover, this
relation also shows that inequality (2.168) is optimal (see [68] for the optimality on the
unit circle).

2.7. Estimates of the uncertainty principles using comparison
principles

For general Riemannian manifolds with dimension d ≥ 2, the right hand side of the
inequalities (2.90), (2.110) and (2.115) is usually hard to determine. However, it is
possible to simplify these terms if some further information on the curvature of the
Riemannian manifold is given. The main tool in this context is Bishop’s comparison
theorem. A short introduction into various concepts of curvature can be found in Section
A.6 of the appendix.

Theorem 2.65 (Bishop, [9], Theorem III.4.1&2).
Let p ∈ M and assume that all sectional curvatures K of M are less than or equal to a
constant κ, then

κ > 0 : Θ′(t, ξ)
Θ(t, ξ) ≥ (d− 1)

√
κ cot(

√
κt), (t, ξ) ∈ (0, π√

κ
)×Sp, (2.169)
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κ = 0 : Θ′(t, ξ)
Θ(t, ξ) ≥ (d− 1)1

t
, (t, ξ) ∈ (0,∞)×Sp, (2.170)

κ < 0 : Θ′(t, ξ)
Θ(t, ξ) ≥ (d− 1)

√
−κ coth(

√
−κt), (t, ξ) ∈ (0,∞)×Sp, (2.171)

and

κ > 0 : Θ(t, ξ) ≥ κ−
d−1

2 sin(
√
κt)d−1, (t, ξ) ∈ (0, π√

κ
)×Sp, (2.172)

κ = 0 : Θ(t, ξ) ≥ td−1, (t, ξ) ∈ (0,∞)×Sp, (2.173)
κ < 0 : Θ(t, ξ) ≥ (−κ)− d−1

2 sinh(
√
−κt)d−1, (t, ξ) ∈ (0,∞)×Sp. (2.174)

Equality in (2.169), (2.170), (2.171) and (2.172), (2.173), (2.174) holds if and only if,
for all permissible t, the ball B(p, t) ⊂ M is isometric to a ball of radius t in the d-
dimensional space Mκ of constant curvature κ (Mκ = Sd1/√κ, M0 = Rd and Mκ = Hd

1/
√
−κ

if κ > 0, κ = 0 and κ < 0, respectively).

We consider first the case when M is a compact Riemannian manifold. We assume that
the Ricci curvature on M satisfies

Ric(tξ, tξ) ≥ κ1(d− 1)t2

for a constant κ1 > 0, t ≥ 0 and all unit tangent vectors ξ in the tangent bundle TM .
Then, the Bonnet-Myers Theorem [9, Theorem II.6.1] states that the distance R(ξ) is
bounded from above by π√

κ1
. Further, if we assume that all sectional curvatures onM are

less than or equal to a given constant κ2, κ2 ≥ κ1, then Bishop’s comparison Theorem
(see equation (2.169)) states that

Θ(t, ξ)′
Θ(t, ξ) ≥ (d− 1)√κ2 cot(√κ2t) (2.175)

for all ξ ∈ Sp and 0 < t < π√
κ2
. Moreover, the Morse-Schönberg Theorem [9, Theorem

II.6.3] ensures that the distance R(ξ) is bounded from below by π√
κ2
. Combining (2.175)

and √κ1 ≤ π
R(ξ) ≤

√
κ2, we get the estimate

π
R(ξ) cos( π

R(ξ)t) + Θ(t,ξ)′
Θ(t,ξ) sin( π

R(ξ)t) ≥
π

R(ξ) cos(√κ2t) + (d− 1)√κ2 cot(√κ2t) sin(√κ1t) ≥ d
√
κ1 cos(√κ2t)

for all 0 < t ≤ π
2√κ2

. So, if we introduce

εκ2
p (f) =

∫
Sp

∫ π
2√κ2

0
cos(√κ2t)|f ∗(t, ξ)|2Θ(t, ξ)dtdµp(ξ)

as a modified mean value, then the above assumptions ensure that

εp(f) ≥ εκ2
p (f)

holds for all functions f ∈ L2(M) having compact support in the ball B(p, π
2√κ2

) centered
at p. So, modifying Theorem 2.41, we get to the following local uncertainty principle.
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Corollary 2.66.
Let M be a compact Riemannian manifold (d ≥ 2) whose Ricci curvature fulfills

Ric(tξ, tξ) ≥ κ1(d− 1)t2

for all unit tangent vectors ξ ∈ TM , and all of whose sectional curvatures K are less
than or equal to a constant κ2, κ2 ≥ κ1 > 0. If f ∈ L2(M) satisfies the assumptions of
Theorem 2.41 and has compact support in B(p, π

2√κ2
), then the following inequality holds:

(
1− εκ2

p (f)2
)
·
∥∥∥∥ ∂∂t∗f

∥∥∥∥2

M
≥ κ1

d2

4 ε
κ2
p (f)2. (2.176)

In the case that M is a d-dimensional sphere with radius 1√
κ
, we have κ1 = κ2 = κ.

Inequality (2.176) then reduces to the well known principle (see the uncertainty inequality
(2.151) on the sphere Sdr)(

1− εp(f)2
)
·
∥∥∥∥ ∂∂t∗f

∥∥∥∥2

Sd
≥ κ

d2

4 εp(f)2.

Thus, the point of Corollary 2.66 is that if M is a "sphere-like" manifold where the
curvature is varying only slightly around a constant κ, then the resulting uncertainty
principle is also very similar to the uncertainty principle of a d-dimensional sphere with
curvature κ.

Next, if Ω is a star-shaped subdomain of a Riemannian manifold M , then Bishop’s
comparison Theorem 2.65 implies the following modified version of Theorem 2.51.

Corollary 2.67.
Let M , d ≥ 2, be a Riemannian manifold all of whose sectional curvatures are less than
or equal to a constant κ and Ω ⊂M be a compact star-shaped domain with respect to the
interior point p. If κ > 0, let Q(ξ) ≤ π

2
√
κ
for all ξ ∈ Sp. Further, assume that f ∈ L2(Ω)

fulfills the conditions of Theorem 2.51. Then, the following inequalities hold:

κ > 0 : ‖t∗f‖2
Ω ·
∥∥∥∥ ∂∂t∗f

∥∥∥∥2

Ω
>

1
4

∣∣∣∣1 +
√
κ(d− 1)

∥∥∥√t cot(
√
κt)
∗
f
∥∥∥2

Ω

∣∣∣∣2, (2.177)

κ = 0 : ‖t∗f‖2
Ω ·
∥∥∥∥ ∂∂t∗f

∥∥∥∥2

Ω
>
d2

4 , (2.178)

κ < 0 : ‖t∗f‖2
Ω ·
∥∥∥∥ ∂∂t∗f

∥∥∥∥2

Ω
>

1
4

∣∣∣∣1 +
√
−κ(d− 1)

∥∥∥√t coth(
√
−κt)

∗
f
∥∥∥2

Ω

∣∣∣∣2. (2.179)

Finally, if E is a Riemannian manifold diffeomorphic to Rd, we can combine the uncer-
tainty principle (2.115) with Bishop’s comparison Theorem 2.65 and get the following
result.
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Corollary 2.68.
Assume that E is a Riemannian manifold diffeomorphic to Rd all of whose sectional
curvatures are less than or equal to a constant κ. Further assume that p ∈ E and that
f ∈ L2(E) satisfies the conditions of Theorem 2.54. Then, for κ = 0, the inequality

‖t∗f‖2
E ·

∥∥∥∥ ∂∂t∗f
∥∥∥∥2

E
≥ d2

4 (2.180)

and for κ < 0, the inequality

‖t∗f‖2
E ·

∥∥∥∥ ∂∂t∗f
∥∥∥∥2

E
≥ 1

4

∣∣∣∣1 +
√
−κ(d− 1)

∥∥∥√t coth(
√
−κt)

∗
f
∥∥∥2

E

∣∣∣∣2 (2.181)

holds. The inequalities (2.180) and (2.181) do not differ from the uncertainty inequality
(2.115) if and only if E is isometric to the Euclidean space Rd or to the hyperbolic space
Hd

1/
√
−κ with constant negative curvature κ, respectively.

2.8. Remarks and References

Weighted L2-inequalities on a cylindrical domain. The weighted L2-inequalities stated in
Section 2.1 are new and can be considered as multi-dimensional extensions of the results
in Section 1.4. In particular, the inequalities and the Dunkl operators of the subsections
2.1.1, 2.1.2 and 2.1.3 are multi-dimensional generalizations of the inequalities and the
Dunkl operators presented in the subsections 1.4.1, 1.4.2 and 1.4.3, respectively. As
in Section 1.4 also the methods used in Section 2.1 are based on the Dunkl operator
approach developed in [73] and [27]. The quote in the header of page 42 is taken from:
Douglas Adams, The Hitchhiker’s Guide to the Galaxy, 1979.

Uncertainty principles on compact Riemannian manifolds. The uncertainty principle
of Theorem 2.41, stated in this form, is an entirely novel result and can be considered
as a generalization of the Breitenberger uncertainty principle (1.15) on the unit circle.
Nonetheless, there exist various uncertainty principles in the literature that hold also
for compact Riemannian manifolds but are based on different approaches. For a general
review on various types of uncertainty principles, we refer to the survey article [20] and
the book [32].
A particularly interesting uncertainty principle for compact Riemannian manifolds can
be found in the recent work [56] of Martini. In [56], it is shown that for all α, β > 0 and
f ∈ L2(M) with null mean value the following inequality holds:

‖f‖M ≤ Cα,β‖tα∗f‖
β

α+β
M · ‖(−∆M)

β
2 f‖

α
α+β
M .

This inequality is a special case of a more general theory treating uncertainty principles
on abstract measure spaces (see also [11] and [72]). The proof of this inequality is mainly
based on the spectral theorem and on estimates involving the heat semigroup generated
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by the Laplace-Beltrami operator ∆M . In contrast to the uncertainty inequality (2.94),
the constant Cα,β in the above inequality is not explicitly known.
Another interesting uncertainty principle for compact manifolds, a generalization of
the uncertainty principle of Hardy that is based on the eigenfunction expansion of the
Laplace-Beltrami operator ∆M , can be found in the article [65].

Sections 2.3 and 2.4. Theorem 2.54 in Section 2.4 can be seen as a generalization of
the classical Heisenberg-Pauli-Weyl inequality (1.9). A variety of uncertainty principles
that are related to the uncertainty inequality (2.115) can be found in the literature, in
particular, in [20], [32] and [56]. However, Theorem 2.54 in this form is new and partic-
ularly interesting since the included uncertainty inequality is sharp and the underlying
proof is based on an operator theoretic approach that provides a position and a frequency
variance of a function f .
Theorem 2.51 in Section 2.3 is also a new result and has strong relations to the uncertainty
principles in Sections 2.2 and 2.4. In particular, if Ω is a compact star-shaped subset of
a manifold E diffeomorphic to Rd, then Theorem 2.51 is an immediate consequence of
Theorem 2.54.

Asymptotic sharpness. The usage of a Gaussian-type function instead of the heat kernel
to prove the asymptotic sharpness of the uncertainty principles in the Propositions 2.58
and 2.59 is novel in this thesis. In prior works, Fourier techniques and the heat kernel were
used to prove the asymptotic sharpness of the uncertainty principles for ultraspherical
expansions [73], for Jacobi expansions [54] and on the unit circle [68].

Uncertainty principles on the unit sphere. In the literature, there exist several uncer-
tainty principles on the unit sphere Sd that are very similar to the one in Corollary 2.60.
In the first place, we mention the article [73] in which Corollary 2.60 was proven for
radial functions on the unit sphere Sd, i.e. functions that have an expansion in terms of
ultraspherical polynomials.
Other works treating uncertainty principles on the sphere attained similar results as
in Corollary 2.60, but worked with slightly different techniques. In [62], the Laplace-
Beltrami operator ∆S2 was used to define a frequency variance for functions on S2. For
the proof of the uncertainty inequality, a vector valued differential operator was intro-
duced to split the operator ∆S2 . Similar results using the same technique as in [62] were
also obtained in [21, Section 5.5] and [22].
Later on, also in [26] and [27] vector valued differential operators were used to prove an
uncertainty principle on Sd that is very similar to the uncertainty in Corollary 2.60.

Uncertainty principles on projective spaces. Corollary 2.61 is a novel result but strongly
related to uncertainty principles for Jacobi expansions. In fact, since the radial square
integrable functions on a projective space have an expansion in terms of Jacobi polyno-
mials, Corollary 2.61 restricted to radial functions corresponds exactly to the uncertainty
principle proven in [54]. The technical details of the projective spaces are primarily taken
from the books [3], [4] and the article [35].
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2. Uncertainty principles on Riemannian manifolds

Uncertainty principles on hyperbolic spaces. The uncertainty principle on hyperbolic
spaces formulated in Corollary 2.63 is novel. Another interesting local uncertainty prin-
ciple for hyperbolic spaces can be found in [82].

Estimates of the uncertainty principles using comparison principles. The usage of com-
parison theorems, in particular Bishop’s theorem, to estimate the uncertainty principles
explicitly in terms of the curvature of the Riemannian manifold is novel in this the-
sis. All the comparison theorems used in Section 2.7, including Bishop’s Theorem, the
Morse-Schönberg Theorem and the Bonnet-Myers Theorem used are taken from [9].
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"Two gin-scented tears trickled down the sides of his
nose. But it was all right, everything was all right,
the struggle was finished. He had won the victory
over himself. He loved Big Brother."

George Orwell, Nineteen Eighty-Four, 1949

3
Optimally space localized

polynomials

In this final chapter, we are going to study how the uncertainty principles of the previous
chapters can be used to find well-localized polynomials and to analyze the space-frequency
behavior of certain families of polynomials. In principle, we will consider two particular
settings: Jacobi expansions on the interval [0, π] and spherical polynomials on compact
two-point homogeneous spaces.

In the first section, we will study the uncertainty inequality (1.72) for Jacobi expansions
with regard to polynomial subspaces of L2([0, π], wαβ). In particular, in Theorem 3.6
and in Corollary 3.10, we will give representations of those polynomials P(α,β)

n that are
optimally localized at the left hand boundary of the interval [0, π] with respect to the
mean value εαβ. We will show (Proposition 3.7) that the position variance varαβS of the
uncertainty principle gets minimal for the polynomials P(α,β)

n . Moreover, in Theorem 3.14,
we will prove that the uncertainty product varαβS (P(α,β)

n ) · varαβF (P(α,β)
n ) of the optimally

space localized polynomials P(α,β)
n is uniformly bounded but does in general not tend to

the optimal constant as n → ∞. Finally, we will analyze the space-frequency behavior
of two further well-known families of polynomials, the Christoffel-Darboux kernels and
the de La Vallée Poussin kernels. As a consequence of Theorem 3.15, we will see that the
uncertainty product for the Christoffel-Darboux kernel K̃(α,β)

n tends linearly to infinity
as n → ∞, whereas the uncertainty product of the de La Vallée Poussin kernel Ṽn in
Theorem 3.16 tends to the optimal constant of the uncertainty principle.

The second section includes an intermediate result on the monotonicity of extremal zeros
of Jacobi and associated Jacobi polynomials when certain parameters are altered. This
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3. Optimally space localized polynomials

auxiliary result enables us to carry the optimality results of Theorem 3.6 over to the
setting of spherical polynomials on a compact two-point homogeneous space M .

In the last section, we will then investigate the uncertainty product on compact two-
point homogeneous spaces M , i.e., the spheres Sdr and the projective spaces RPdr , CPdr ,
HPdr and Car, in relation with certain spaces of spherical polynomials on M . Similar as
in Section 3.1, we will give in Theorem 3.28 and Corollary 3.29 explicit formulas for those
polynomials PMn that are optimally localized at a point p ∈M with respect to the mean
value εMp and that minimize the position variance varMS,p of the uncertainty principle.

3.1. Optimally space localized polynomials for Jacobi
expansions

We start out by introducing particular polynomial subspaces of the Hilbert space
L2([0, π], wαβ). As in Section 1.5.1, the weight function wαβ given by

wαβ(t) = 2α+β+1 sin2α+1
(
t

2

)
cos2β+1

(
t

2

)

denotes for α, β > −1 the Jacobi weight on the interval [0, π] and P (α,β)
l (cos t) the Jacobi

polynomial of order l. Further, we define by

p
(α,β)
l (cos t) := P

(α,β)
l (cos t)
‖P (α,β)

l ‖wαβ
(3.1)

the respective orthonormal Jacobi polynomial on [0, π].

Definition 3.1. As subspaces of L2([0, π], wαβ), we consider the following three polyno-
mial spaces:

(1) The space spanned by the polynomials p(α,β)
l , l ≤ n:

Π(α,β)
n :=

{
P : P (t) =

n∑
l=0

clp
(α,β)
l (cos t), c0, . . . , cn ∈ C

}
. (3.2)

(2) The space spanned by the polynomials p(α,β)
l , m ≤ l ≤ n:

Π(α,β)
m,n :=

{
P : P (t) =

n∑
l=m

clp
(α,β)
l (cos t), cm, . . . , cn ∈ C

}
. (3.3)

(3) The space spanned by a polynomialR(t) = p(α,β)
m (cos t)+

m−1∑
l=0

elp
(α,β)
l (cos t) of degree
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3.1. Optimally space localized polynomials for Jacobi expansions

m and the polynomials p(α,β)
l , m+ 1 ≤ l ≤ n:

Π(α,β)
R,n :=

P : P (t) = cmR(t) +
n∑

l=m+1
clp

(α,β)
l (cos t), cm, . . . , cn ∈ C

 . (3.4)

Further, we define the unit spheres of the spaces Π(α,β)
n , Π(α,β)

m,n and Π(α,β)
R,n as

S(α,β)
n :=

{
P ∈ Π(α,β)

n : ‖P‖wαβ = 1
}
,

S(α,β)
m,n :=

{
P ∈ Π(α,β)

m,n : ‖P‖wαβ = 1
}
,

S(α,β)
R,n :=

{
P ∈ Π(α,β)

R,n : ‖P‖wαβ = 1
}
.

Remark 3.2. Clearly, Π(α,β)
m,n ⊂ Π(α,β)

n and Π(α,β)
R,n ⊂ Π(α,β)

n . In the literature, the spaces
Π(α,β)
m,n are sometimes called wavelet spaces and considered in a more general theory on

polynomial wavelets and polynomial frames, see for instance [58] and the references
therein. The standardization em = 1 for the highest expansion coefficient of the poly-
nomial R causes no loss of generality and is a useful convention for the upcoming cal-
culations. The polynomials in the spaces Π(α,β)

R,n play an important role in the theory of
polynomial approximation. Hereby, a usual choice for the polynomialR is the Christoffel-
Darboux kernel K(α,β)

m (t) of order m given by

K(α,β)
m (t) :=

m∑
l=0

p
(α,β)
l (1)p(α,β)

l (cos t).

As contemporary references on this topic we refer to [17] and [59].

The first goal of this section is to study the localization of the polynomials in the spaces
Π(α,β)
n , Π(α,β)

m,n and Π(α,β)
R,n at the left hand boundary of the interval [0, π] and to determine

those polynomials that are in some sense best localized. As an analyzing tool for the
localization of a function f ∈ L2([0, π], wαβ) at the point t = 0, we consider the mean
value

εαβ(f) =
∫ π

0
cos t |f(t)|2wαβ(t)dt, (3.5)

as defined in (1.71). If ‖f‖wαβ = 1, then −1 < εαβ(f) < 1, and the more the mass of
the L2-density f is concentrated at the boundary point t = 0, the closer the value εαβ(f)
gets to 1. Therefore, the value εαβ(f) can be interpreted as a measure on how well the
function f is localized at the left hand boundary of the interval [0, π]. We say that f is
localized at t = 0 if the value εαβ(f) approaches 1.

Now, our aim is to find those elements of the polynomial spaces Π(α,β)
n , Π(α,β)

m,n and Π(α,β)
R,n

that are optimally localized at the boundary point t = 0. In particular, we want to solve
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3. Optimally space localized polynomials

the following optimization problems:

P(α,β)
n = arg max

P∈S(α,β)
n

εαβ(P ), (3.6)

P(α,β)
m,n = arg max

P∈S(α,β)
m,n

εαβ(P ), (3.7)

P(α,β)
R,n = arg max

P∈S(α,β)
R,n

εαβ(P ). (3.8)

Since the linear spaces Π(α,β)
n , Π(α,β)

m,n and Π(α,β)
R,n are finite-dimensional, the unit spheres

S(α,β)
n , S(α,β)

m,n and S(α,β)
R,n are compact subsets and the functional εαβ is bounded and con-

tinuous on the respective polynomial space. Hence, it is guaranteed that solutions of the
optimization problems (3.6), (3.7) and (3.8) exist.

Remark 3.3. Instead of searching for the polynomials P(α,β)
n , P(α,β)

m,n and P(α,β)
R,n that are

optimally localized at t = 0 and that maximize the mean value εαβ, we could also search
for the polynomials that are optimally localized at the right hand boundary of the interval
[0, π] and that minimize the mean value εαβ. Since the weight function wαβ and the Jacobi
polynomial p(α,β)

n satisfy wαβ(t) = wβα(π − t) and p(α,β)
n (cos t) = (−1)np(β,α)

n (cos(π − t)),
minimizing εαβ(P ) with respect to polynomials in S(α,β)

n , S(α,β)
m,n and S(α,β)

R,n yields the same
as maximizing εβα(P ) with respect to polynomials in S(β,α)

n , S(β,α)
m,n and S(β,α)

R,n . Because
of this symmetric relation, it is entirely sufficient to consider only the maximization
problems (3.6), (3.7) and (3.8).

In order to describe the optimal polynomials, we need the notion of associated and of
scaled co-recursive associated polynomials. First of all, we know that the orthonormal
Jacobi polynomials p(α,β)

l satisfy the three-term recurrence relation (see [25, Table 1.1])

bl+1p
(α,β)
l+1 (x) = (x− al)p(α,β)

l (x)− blp(α,β)
l (x), l = 0, 1, 2, 3, . . . (3.9)

p
(α,β)
−1 (x) = 0, p

(α,β)
0 (x) = 1

b0
,

for x = cos t in the interval [−1, 1] and

al = β2 − α2

(2l + α + β)(2l + α + β + 2) , l = 0, 1, 2, . . . (3.10)

bl =
(

4l(l + α)(l + β)(l + α + β)
(2l + α + β)2(2l + α + β + 1)(2l + α + β − 1)

) 1
2

, l = 1, 2, 3, . . . (3.11)

b0 =
(∫ π

0
wαβdt

) 1
2

=
(

2α+β+1 Γ(α + 1)Γ(β + 1)
Γ(α + β + 2)

) 1
2

.

Then, the associated and the scaled co-recursive associated Jacobi polynomials are de-
fined as follows:
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3.1. Optimally space localized polynomials for Jacobi expansions

Definition 3.4. For c ≥ 0 (if c > 0, assume that α+β 6= −2c), we define the associated
Jacobi polynomials p(α,β)

l (x, c) on the interval [−1, 1] by the shifted recurrence relation

bc+l+1 p
(α,β)
l+1 (x, c) = (x− ac+l) p(α,β)

l (x, c)− bc+l p(α,β)
l−1 (x, c), l = 0, 1, 2, . . . , (3.12)

p
(α,β)
−1 (x, c) = 0, p

(α,β)
0 (x, c) = 1.

Further, for γ ∈ R and δ ≥ 0, we define the scaled co-recursive associated Jacobi poly-
nomials p(α,β)

l (x, c, γ, δ) on [−1, 1] by the three-term recurrence relation

bc+l+1 p
(α,β)
l+1 (x, c, γ, δ) = (x− ac+l) p(α,β)

l (x, c, γ, δ)− bc+l p(α,β)
l−1 (x, c, γ, δ),

l = 1, 2, 3, 4 . . . , (3.13)

p
(α,β)
0 (x, c, γ, δ) = 1, p

(α,β)
1 (x, c, γ, δ) = δx− ac − γ

βc+1
.

The three-term recurrence relation of the co-recursive associated Jacobi polynomials
p

(α,β)
l+1 (x, c, γ, δ) corresponds to the three-term recurrence relation of the associated Ja-

cobi polynomials except for the formula of the initial polynomial p(α,β)
1 (x, c, γ, δ). For

c = 0, γ = 0 and δ = 1, we have the identities p(α,β)
l (x, 0) = p

(α,β)
l (x, 0, 0, 1) = b0 p

(α,β)
l (x).

For m ∈ N, the associated polynomials p(α,β)
l (x,m) and p(α,β)

l (x,m, γ, δ) can be described
with help of the symmetric Jacobi matrix Jmn , 0 ≤ m ≤ n, defined by

Jmn =



am bm+1 0 0 · · · 0
bm+1 am+1 bm+2 0 · · · 0

0 bm+2 am+2 bm+3
. . . ...

... . . . . . . . . . . . . 0
0 · · · 0 bn−2 an−1 bn−1
0 · · · · · · 0 bn−1 an


. (3.14)

If m = 0, we write Jn instead of J0
n. Then, in view of the three-term recurrence formulas

(3.12) and (3.13), the polynomials p(α,β)
l (x,m) and p(α,β)

l (x,m, γ, δ), l ≥ 1, can be written
as (cf. [42, Theorem 2.2.4])

p
(α,β)
l (x,m) = det(x1l − Jmm+l−1), (3.15)

and
p

(α,β)
l (x,m, γ, δ) = det

(
x

(
δ 0
0 1l−1

)
− Jmm+l−1 −

(
γ 0
0 0l−1

))
, (3.16)

where 1l−1 denotes the (l−1)-dimensional identity matrix and 0l−1 the (l−1)-dimensional
zero matrix.

Next, we give a characterization of the mean value εαβ(P ) in terms of the expansion
coefficients cl of the polynomial P = ∑m

l=n clp
(α,β)
l .
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Lemma 3.5.
For the polynomial P (t) =

n∑
l=0

clp
(α,β)
l (cos t), we have

εαβ(P ) = cHJnc, if P ∈ Π(α,β)
n ,

εαβ(P ) = c̃HJmn c̃, if P ∈ Π(α,β)
m,n ,

εαβ(P ) = c̃HJmn c̃ + (εαβ(R)− am)|cm|2, if P ∈ Π(α,β)
R,n ,

with the coefficient vectors c = (c0, . . . , cn)T and c̃ = (cm, . . . , cn)T .

Proof. Using the three-term recurrence formula (3.9) and the orthonormality relation of
the Jacobi polynomials p(α,β)

l , we get for P ∈ Π(α,β)
n

εαβ(P ) =
∫ π

0
cos t

∣∣∣∣ n∑
l=0

clp
(α,β)
l (cos t)

∣∣∣∣2wαβ(t)dt

=
∫ π

0

( n∑
l=0

cl cos t p(α,β)
l (cos t)

)( n∑
l=0

clp
(α,β)
l (cos t)

)
wαβ(t)dt

=
∫ π

0

( n∑
l=0

cl
(
bl+1p

(α,β)
l+1 (cos t) + alp

(α,β)
l (cos t) + blp

(α,β)
l−1 (cos t)

))

×
( n∑
l=0

clp
(α,β)
l (cos t)

)
wαβ(t)dt

=
n∑
l=0

al|cl|2 +
n−1∑
l=0

(
bl+1clc̄l+1 + bl+1c̄lcl+1

)
= cHJnc.

If c0 = . . . = cm−1 = 0, we get the assertion for polynomials P in the space Π(α,β)
m,n . If

P ∈ Π(α,β)
R,n , then P has the representation

P (t) = cm

(
p(α,β)
m (cos t) +

m−1∑
l=0

elp
(α,β)
l (cos t)

)
+

n∑
l=m+1

clp
(α,β)
l (cos t),

where the polynomial R is given by R(t) = p(α,β)
m (cos t) +∑m−1

l=0 elp
(α,β)
l (cos t). Inserting

this representation in the upper formula for εαβ(P ) yields the identity εαβ(P ) = (εαβ(R)−
am)|cm|2 + c̃HJmn c̃. 2

Using the characterization of εαβ(P ) in Lemma 3.5, we proceed to the solution of the
optimization problems (3.6), (3.7) and (3.8).

Theorem 3.6.
The solutions of the optimization problems (3.6), (3.7) and (3.8) are given by

P(α,β)
n (t) = κ1

n∑
l=0

p
(α,β)
l (λn+1) p(α,β)

l (cos t), (3.17)
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3.1. Optimally space localized polynomials for Jacobi expansions

P(α,β)
m,n (t) = κ2

n∑
l=m

p
(α,β)
l−m (λmn−m+1,m) p(α,β)

l (cos t), (3.18)

P(α,β)
R,n (t) = κ3

R(t) +
n∑

l=m+1
p

(α,β)
l−m (λRn−m+1,m, γR, δR)p(α,β)

l (cos t)
 , (3.19)

where p
(α,β)
l (x,m) and p

(α,β)
l (x,m, γR, δR) denote the associated and the scaled co-

recursive associated Jacobi polynomials as given in Definition 3.4 with the shift term
γR := εαβ(R)− am and the scaling factor δR := ‖R‖2

wαβ
.

The values λn+1, λmn−m+1 and λRn−m+1 denote the largest zero of the polynomials p(α,β)
n+1 (x),

p
(α,β)
n−m+1(x,m) and p(α,β)

n−m+1(x,m, γR, δR) in the interval [−1, 1], respectively. The constants
κ1, κ2 and κ3 are chosen such that the optimal polynomials lie in the respective unit sphere
and are uniquely determined up to multiplication with a complex scalar of absolute value
one. The maximal value of εαβ in the respective polynomial space is given by

M (α,β)
n := max

P∈S(α,β)
n

εαβ(P ) = λn+1,

M (α,β)
m,n := max

P∈S(α,β)
m,n

εαβ(P ) = λmn−m+1,

M
(α,β)
R,n := max

P∈S(α,β)
R,n

εαβ(P ) = λRn−m+1.

Proof. We start out by determining the optimal solution P(α,β)
m,n for the optimization

problem (3.7). The formula for the the optimal polynomial P(α,β)
n follows then as a

special case if we set m = 0. First of all, Lemma 3.5 states that the mean value εαβ(P )
of a polynomial P (t) = ∑n

l=m clp
(α,β)
l (cos t) can be written as εαβ(P ) = c̃HJmn c̃ with the

coefficient vector c̃ = (cm, · · · , cn)T . Thus, maximizing εαβ(P ) with respect to a normed
polynomial P ∈ S(α,β)

m,n is equivalent to maximize the quadratic functional c̃HJmn c̃ subject
to |c̃|2 = c2

m + c2
m+1 + · · · + c2

n = 1. If λmn−m+1 denotes the largest eigenvalue of the
symmetric Jacobi matrix Jmn , we have

c̃HJmn c̃ ≤ λmn−m+1|c̃|2 (3.20)

and equality is attained for the eigenvectors corresponding to λmn−m+1. Now, the largest
eigenvalue of the Jacobi matrix Jmn corresponds exactly with the largest zero of the as-
sociated Jacobi polynomial p(α,β)

n−m+1(x,m) (cf. [25, Theorem 1.31]). Using the recursion
formula (3.12) of the associated Jacobi polynomials p(α,β)

l (x,m) with cm = 1 the eigen-
value equation Jmn c̃ = λmn−m+1c̃ yields

cl = p
(α,β)
l−m (λmn−m+1,m), l = m, . . . n.

Finally, we have to normalize the coefficients cl, m ≤ l ≤ n, such that |c̃|2 = 1. This is
done by the absolute value of the constant κ2. The uniqueness (up to a complex scalar
with absolute value 1) of the optimal polynomial P(α,β)

n follows from the fact that the
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3. Optimally space localized polynomials

largest zero of p(α,β)
n−m+1(x,m) is simple (see [10, Theorem 5.3]). The formula for M (α,β)

m,n

follows directly from the estimate in (3.20).

We consider now the third polynomial space Π(α,β)
R,n . Lemma 3.5 states that in this case the

mean value εαβ(P ) of P (t) = cmR(t) +∑n
l=m+1 clp

(α,β)
l (cos t) can be written as εαβ(P ) =

c̃HJmn c̃ + (εαβ(R)− am)|cm|2, with the coefficient vector c̃ = (cm, · · · , cn)T . Maximizing
εαβ(P ) with respect to a polynomial P ∈ S(α,β)

R,n is therefore equivalent to maximize the
quadratic functional c̃HJmn c̃+(εαβ(R)−am)|cm|2 subject to (‖R‖2

wαβ
−1)|cm|2 + |c̃|2 = 1.

Using a Lagrange multiplier λ and differentiating the Lagrange function, we obtain the
identity

Jmn c̃ + γR(cm, 0, · · · , 0)T = λ
(
δRcm, cm+1, · · · , cn

)T
as a necessary condition for the maximum, where γR = εαβ(R)−am and δR = ‖R‖2

wαβ
. By

the equation (3.16), this system of equations is related to the three-term recursion formula
(3.13) of the scaled co-recursive associated polynomials p(α,β)

l (x,m, γR, δR). In particular,
the value λ corresponds to a root of p(α,β)

n−m+1(x,m, γR, δR). Moreover, the maximum of
c̃HJmn c̃ + γR|cm|2 is attained for the largest root λ = λRn−m+1 of p(α,β)

n−m+1(x,m, γR, δR) and
the corresponding eigenvector

c̃ = κ3

(
1, p(α,β)

1 (λRn−m+1,m, γR, δR), . . . , p(α,β)
n−m(λRn−m+1,m, γR, δR)

)T
,

where the constant κ3 is chosen such that the condition (δR − 1)|cm|2 + |c̃|2 = 1 is
satisfied. The uniqueness of the polynomial P(α,β)

R,n (up to a complex scalar of absolute
value one) follows from the simplicity of the largest root λRn−m+1 of the polynomials
p

(α,β)
l (x,m, γR, δR) (see [10, Theorem 5.3]). From the above argumentation it is also

clear that the maximal value M (α,β)
R,n is precisely the largest eigenvalue λRn−m+1. 2

In Corollary 1.34, the uncertainty principle for functions f ∈ L2([0, π], wαβ) was formu-
lated in terms of the following position variance:

varαβS (f) = 1− εαβ(f)2(
α−β
α+β+2 + εαβ(f)

)2 . (3.21)

As the mean value εαβ(f), also the position variance varαβS (f) measures the localization
of the function f at the boundary point t = 0 of the interval [0, π]. In fact, if we define
the subsets

L(α,β)
n := {P ∈ S(α,β)

n : εαβ(P ) > λ1},
L(α,β)
m,n := {P ∈ S(α,β)

m,n : εαβ(P ) > λ1},

L(α,β)
R,n := {P ∈ S(α,β)

R,n : εαβ(P ) > λ1},

100



3.1. Optimally space localized polynomials for Jacobi expansions

where λ1 = β−α
2+α+β corresponds to the sole root of the Jacobi polynomial p(α,β)

1 , the
following proposition holds.

Proposition 3.7.
If the sets Ln, Lmn and LRn are nonempty, then

arg min
P∈L(α,β)

n

varαβS (P ) = arg max
P∈L(α,β)

n

εαβ(P ) = P(α,β)
n ,

arg min
P∈L(α,β)

m,n

varαβS (P ) = arg max
P∈L(α,β)

m,n

εαβ(P ) = P(α,β)
m,n ,

arg min
P∈L(α,β)

R,n

varαβS (P ) = arg max
P∈L(α,β)

R,n

εαβ(P ) = P(α,β)
R,n .

Proof. We consider the space variance varαβS as a function of λ = εαβ(f). We have

varαβS (λ) = 1− λ2

(λ− λ1)2 ,

d varαβS
dλ

(λ) = −2(λ− λ1)λ− 2(1− λ2)
(λ− λ1)3 = −2(1− λ1λ)

(λ− λ1)3 .

Therefore, the derivative d
dλ

varαβS is strictly decaying on the open interval (λ1, 1) and
strictly increasing on (−1, λ1). So, for P ∈ L(α,β)

n ,L(α,β)
m,n ,L

(α,β)
R,n , maximizing εαβ(P ) yields

the same result as minimizing varαβS (P ). 2

Remark 3.8. Whereas it can not be guaranteed that the sets L(α,β)
m,n and L(α,β)

R,n are
nonempty, the non-emptiness of the sets L(α,β)

n , n ≥ 1, is a consequence of the interlacing
property of the zeros of the Jacobi polynomials (cf. [83, Theorem 3.3.2], [10, Theorem
5.3]). Namely, this interlacing property implies that εαβ(P(α,β)

n ) = λn+1 > λn > . . . > λ1.

3.1.1. Explicit expression for the optimally space localized polynomials

Our next goal is to find explicit expressions for the optimal polynomials P(α,β)
n , P(α,β)

m,n and
P(α,β)
R,n derived in Theorem 3.6. To this end, we need a Christoffel-Darboux type formula

for the associated Jacobi polynomials p(α,β)
l (x,m) and p(α,β)

l (x,m, γ, δ).

Lemma 3.9.
Let p(α,β)

l (x,m) and p(α,β)
l (x,m, γ, δ) be the associated and the scaled co-recursive associ-

ated Jacobi polynomials as defined in (3.12) and (3.13). Then, the following Christoffel-
Darboux type formulas hold:

n∑
k=m

p
(α,β)
k (x)p(α,β)

k−m(y,m) (3.22)

= bn+1
p

(α,β)
n+1 (x)p(α,β)

n−m(y,m)− p(α,β)
n−m+1(y,m)p(α,β)

n (x)
x− y

+ bm
p

(α,β)
m−1 (x)
x− y

,
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3. Optimally space localized polynomials

n∑
k=m

p
(α,β)
k (x)p(α,β)

k−m(y,m, γ, δ) (3.23)

= bn+1
p

(α,β)
n+1 (x)p(α,β)

n−m(y,m, γ, δ)− p(α,β)
n−m+1(y,m, γ, δ)p(α,β)

n (x)
x− y

+ p(α,β)
m (x)((δ − 1)y − γ)

x− y
+ bm

p
(α,β)
m−1 (x)
x− y

.

Proof. We follow the lines of the proof of the original Christoffel-Darboux formula (see
[10, Theorem 4.5]). By (3.9) and (3.12), we have for k ≥ m the identities

xp
(α,β)
k (x)p(α,β)

k−m(y,m)
= bk+1p

(α,β)
k+1 (x)p(α,β)

k−m(y,m) + akp
(α,β)
k (x)p(α,β)

k−m(y,m) + bkp
(α,β)
k−1 (x)p(α,β)

k−m(y,m),
yp

(α,β)
k (x)p(α,β)

k−m(y,m)
= bk+1p

(α,β)
k (x)p(α,β)

k−m+1(y,m) + akp
(α,β)
k (x)p(α,β)

k−m(y,m) + bkp
(α,β)
k (x)p(α,β)

k−m−1(y,m).

Subtracting the second equation from the first, we get

(x− y)p(α,β)
k (x)p(α,β)

k−m(y,m)
= bk+1

(
p

(α,β)
k+1 (x)p(α,β)

k−m(y,m)− p(α,β)
k (x)p(α,β)

k−m+1(y,m)
)

− bk
(
p

(α,β)
k (x)p(α,β)

k−m−1(y,m)− p(α,β)
k−1 (x)p(α,β)

k−m(y,m)
)
.

Let

Fk(x, y) = bk+1
p

(α,β)
k+1 (x)p(α,β)

k−m(y,m)− p(α,β)
k (x)p(α,β)

k−m+1(y,m)
x− y

.

Then, the last equation can be rewritten as

p
(α,β)
k (x)p(α,β)

k−m(y,m) = Fk(x, y)− Fk−1(x, y), k ≥ m,

where Fm−1(x, y) = −bmp(α,β)
m−1 (x). Summing the latter from m to n, we obtain (3.22).

Analogously, we get for the scaled co-recursive associated polynomials

p
(α,β)
k (x)p(α,β)

k−m(y,m, γ, δ) = Gk(x, y)−Gk−1(x, y), k ≥ m+ 1,
p(α,β)
m (x)p(α,β)

0 (y,m, γ, δ) = p(α,β)
m (x),

where

Gk(x, y) = bk+1
p

(α,β)
k+1 (x)p(α,β)

k−m(y,m, γ, δ)− p(α,β)
k (x)p(α,β)

k−m+1(y,m, γ, δ)
x− y

,

Gm(x, y) = bm+1p
(α,β)
m+1 (x)− p(α,β)

m (x)(δy − am − γ)
x− y

, k ≥ m+ 1.
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3.1. Optimally space localized polynomials for Jacobi expansions

Then, summing from m to n, we get

n∑
k=m

p
(α,β)
k (x)p(α,β)

k−m(y,m, γ, δ) =
n∑

k=m+1
(Gk(x, y)−Gk−1(x, y)) + p(α,β)

m (x)

=Gn(x, y)− bm+1p
(α,β)
m+1 (x) + p(α,β)

m (x)(δy − am − γ)
x− y

+ p(α,β)
m (x)(x− y)

x− y

=Gn(x, y) + p(α,β)
m (x)((δ − 1)y − γ)

x− y
+ bm

p
(α,β)
m−1 (x)
x− y

.

Hence, we obtain formula (3.23). 2

As a direct consequence of the Christoffel-Darboux type formulas in Lemma 3.9, we get
the following explicit formulas for the optimal polynomials in Theorem 3.6:

Corollary 3.10.
The optimal polynomials P(α,β)

n , P(α,β)
m,n and P(α,β)

R,n in Theorem 3.6 have the explicit form

P(α,β)
n (t) = κ1bn+1

p
(α,β)
n+1 (cos t)p(α,β)

n (λn+1)
cos t− λn+1

,

P(α,β)
m,n (t) = κ2

bn+1p
(α,β)
n+1 (cos t)p(α,β)

n−m(λmn−m+1,m) + bmp
(α,β)
m−1 (cos t)

cos t− λmn−m+1
,

P(α,β)
R,n (t) = κ3

bn+1p
(α,β)
n+1 (cos t)p(α,β)

n−m(λRn−m+1,m, γR, δR)
cos t− λRn−m+1

+ p(α,β)
m (cos t)((δR − 1)λRn−m+1 − γR) + bmp

(α,β)
m−1 (cos t)

cos t− λRn−m+1

 ,
where the constants κ1, κ2, κ3 and the roots λn+1 λ

m
n−m+1 and λRn−m+1 are given as in

Theorem 3.6.

Example 3.11. We consider the orthonormal Chebyshev polynomials tn corresponding to
the Jacobi polynomials p(α,β)

n with α = β = −1
2 and the weight function wαβ(t) = 1. The

orthonormal Chebyshev polynomials are explicitly given as (see [25, p. 28-29])

t0(cos t) = 1√
π
, tn(cos t) =

√
2
π

cos(nt), n ≥ 1.

The largest zero of the Chebyshev polynomials tn+1 is given by λn+1 = cos( π
2n+2) (see

[83, (6.3.5)]). The normalized associated polynomials tn(x,m), m ≥ 1, correspond to the
Chebyshev polynomials un of the second kind given by (see [25, p. 28-29])

un(cos t) =
√

2
π

sin((n+ 1)t)
sin t , n ≥ 0.
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3. Optimally space localized polynomials

The largest zero of the polynomials un+1 is given by λn+1 = cos( π
n+2). So, in the case of

the Chebyshev polynomials, we get for the optimally space localized polynomials P(- 1
2 ,-

1
2 )

n

and P(- 1
2 ,-

1
2 )

m,n , n ≥ 1, the formulas

P(- 1
2 ,-

1
2 )

n (t) = κ1

π

(
1 + 2

n∑
k=1

cos
(

kπ

2n+ 2

)
cos(kt)

)
= κ1

π

cos((n+ 1)t) cos( nπ
2n+2)

cos t− cos( π
2n+2) .

P(- 1
2 ,-

1
2 )

m,n (t) = 2κ2

π sin( π
n−m+2)

(
n∑

k=m
sin

(
(k −m+ 1)π
n−m+ 2

)
cos(kt)

)
, m ≥ 1.

The polynomials P(- 1
2 ,-

1
2 )

n are almost identical to the Rogosinski kernel Rn which is defined
as

Rn(t) = 1 + 2
n∑
k=1

cos
(

kπ

2n+ 1

)
cos(kt), t ∈ [0, π].

For more details on the Rogosinski kernel and the relation to the optimal polynomials
P(- 1

2 ,-
1
2 )

n , we refer to [50, p. 112-114], [70, Section 5.2] and [71].

P(- 1
2 ,-

1
2 )

6 (t).

P(- 1
2 ,-

1
2 )

6,12 (t).

P(- 1
2 ,-

1
2 )

12 (t).

P(- 1
2 ,-

1
2 )

6,18 (t).

P(- 1
2 ,-

1
2 )

24 (t).

P(- 1
2 ,-

1
2 )

6,30 (t).

Figure 13: Optimally space localized polynomials and wavelets for Chebyshev expansions
on [0, π] (α = β = −1

2)
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3.1. Optimally space localized polynomials for Jacobi expansions

P(0.42,0.42)
6 (t).

P(0.42,0.42)
6,12 (t).

P(0.42,0.42)
12 (t).

P(0.42,0.42)
6,18 (t).

P(0.42,0.42)
24 (t).

P(0.42,0.42)
6,30 (t).

Figure 14: Optimally space localized polynomials and wavelets for Jacobi expansions on
[0, π] with α = β = 0.42

3.1.2. Space-frequency localization of the optimally space localized
polynomials

In this section, we will compute the frequency variance varαβF (P(α,β)
n ) of the optimally

space localized polynomials P(α,β)
n . This will enable us to determine the space-frequency

localization of the polynomials P(α,β)
n and, in particular, to determine the asymptotic

behavior of the uncertainty product varαβS (P(α,β)
n ) · varαβF (P(α,β)

n ) as the degree n of the
polynomial P(α,β)

n tends to infinity. Again, we need a Christoffel-Darboux type formula,
but this time for the derivatives p(α,β)′

k (x) := d
dx
p

(α,β)
k (x), p(α,β)′′

k (x) := d2

dx2p
(α,β)
k (x) of the

Jacobi polynomial p(α,β)
k .

Lemma 3.12.
The following Christoffel-Darboux type formulas hold:

n∑
k=1

p
(α,β)′
k (x)p(α,β)′

k (y) +
n∑
k=1

p
(α,β)
k (x)p(α,β)′

k (y)− p(α,β)′
k (x)p(α,β)

k (y)
x− y

= bn+1
p

(α,β)′
n+1 (x)p(α,β)′

n (y)− p(α,β)′
n+1 (y)p(α,β)′

n (x)
x− y

, (3.24)
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n∑
l=1

p
(α,β)′
l (x)p(α,β)

l (x) = 1
2bn+1

(
p

(α,β)′′
n+1 (x)p(α,β)

n (x)− p(α,β)′′
n (x)p(α,β)

n+1 (x)
)
, (3.25)

n∑
k=1

p
(α,β)′′
k (x)p(α,β)

k (x) = 1
3bn+1

(
p

(α,β)′′′
n+1 (x)p(α,β)

n (x)− p(α,β)
n+1 (x)p(α,β)′′′

n (x)
)
, (3.26)

n∑
k=1

p
(α,β)′
k (x)2 = 1

6bn+1
(
p

(α,β)
n+1 (x)p(α,β)′′′

n (x)− 3p(α,β)′
n+1 (x)p(α,β)′′

n (x)

+ 3p(α,β)′′
n+1 (x)p(α,β)′

n (x)− p(α,β)′′′
n+1 (x)p(α,β)

n (x)
)
. (3.27)

Proof. In principle, we follow again the lines of the proof of Theorem 4.5 in [10]. By the
three-term recurrence relation of the orthonormal Jacobi polynomials (3.9), we have the
identities

xp
(α,β)′
k (x)p(α,β)′

k (y) =
(
(xp(α,β)

k )′(x)− p(α,β)
k (x)

)
p

(α,β)′
k (y)

= bk+1p
(α,β)′
k+1 (x)p(α,β)′

k (y) + akp
(α,β)′
k (x)p(α,β)′

k (y)
+ bkp

(α,β)′
k−1 (x)p(α,β)′

k (y)− p(α,β)
k (x)p(α,β)′

k (y),
yp

(α,β)′
k (x)p(α,β)′

k (y) = p
(α,β)′
k (x)

(
(yp(α,β)

k )′(y)− p(α,β)
k (y)

)
= bk+1p

(α,β)′
k (x)p(α,β)′

k+1 (y) + akp
(α,β)′
k (x)p(α,β)′

k (y)
+ bkp

(α,β)′
k (x)p(α,β)′

k−1 (y)− p(α,β)′
k (x)p(α,β)

k (y).

Subtracting the second equation from the first, we get

(x− y)p(α,β)′
k (x)p(α,β)′

k (y) = bk+1
(
p

(α,β)′
k+1 (x)p(α,β)′

k (y)− p(α,β)′
k (x)p(α,β)′

k+1 (y)
)

− bk
(
p

(α,β)′
k (x)p(α,β)′

k−1 (y)− p(α,β)′
k−1 (x)p(α,β)′

k (y)
)

−
(
p

(α,β)
k (x)p(α,β)′

k (y)− p(α,β)′
k (x)p(α,β)

k (y)
)
.

Now, summing from k = 1 to k = n and dividing by (x− y), we get equation (3.24).

For the limit x→ y in (3.24), we get the equation

2
n∑
k=1

p
(α,β)′
k (x)2 −

n∑
k=1

p
(α,β)′′
k (x)p(α,β)

k (x)

= bn+1

(
p

(α,β)′′
n+1 (x)p(α,β)′

n (x)− p(α,β)′
n+1 (x)p(α,β)′′

n (x)
)
. (3.28)

Further, we have the well known Christoffel-Darboux formula [10, Theorem 4.6]
n∑
l=0

p
(α,β)
l (x)2 = bn+1

(
p

(α,β)′
n+1 (x)p(α,β)

n (x)− p(α,β)′
n (x)p(α,β)

n+1 (x)
)
. (3.29)
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3.1. Optimally space localized polynomials for Jacobi expansions

Differentiating both sides of (3.29) twice with respect to x, we get

2
n∑
l=1

p
(α,β)′
l (x)p(α,β)

l (x) = bn+1
(
p

(α,β)′′
n+1 (x)p(α,β)

n (x)− p(α,β)′′
n (x)p(α,β)

n+1 (x)
)

2
n∑
l=1

(
p

(α,β)′′
l (x)p(α,β)

l (x) + p
(α,β)′
l (x)2

)
= bn+1

(
p

(α,β)′′′
n+1 (x)p(α,β)

n (x)− p(α,β)′′′
n (x)p(α,β)

n+1 (x)

+ p
(α,β)′′
n+1 (x)p(α,β)′

n (x)− p(α,β)′′
n (x)p(α,β)′

n+1 (x)
)
.

Then, the first equation above gives (3.25) and the second equation in combination with
formula (3.28) implies the equations (3.26) and (3.27). 2

With the help of the Christoffel-Darboux type formulas in Lemma 3.12, it is possible
to compute the frequency variance of the optimally space localized polynomials P(α,β)

n

explicitly. To this end, we need also the second-order differential operator Lαβ and
the respective differential equation of the Jacobi polynomials (see equations (1.66) and
(1.67)), i.e.,

Lαβp
(α,β)
n = −n(n+ α + β + 1)p(α,β)

n , (3.30)

where the differential operator Lαβ is given in the variable x = cos t as

Lαβ = (1− x2) d
2

dx2 + (β − α− (α + β + 2)x) d

dx
. (3.31)

Proposition 3.13.
The frequency variance varαβF of the optimal polynomial P(α,β)

n has the explicit form

varαβF (P(α,β)
n ) = n(n+ α + β + 3)

3 + (α− β + λn+1(α + β))2 − 4(λn+1)2

6(1− (λn+1)2) . (3.32)

Proof. By Corollary 3.10 and Theorem 3.6, the optimal polynomial P(α,β)
n has the repre-

sentations

P(α,β)
n (t) = κ1bn+1

p
(α,β)
n+1 (cos t)p(α,β)

n (λn+1)
cos t− λn+1

= κ1

n∑
l=0

p
(α,β)
l (λn+1)p(α,β)

l (cos t).

Without loss of generality we can assume that P(α,β)
n (0) > 0. Then, the constant κ1 is

given by

κ1 = ‖P(α,β)
n ‖−1

wαβ
=
( n∑
l=0

p
(α,β)
l (λn+1)2

)− 1
2
.

By formula (1.70) and the equations (3.31) and (3.30), we get for the frequency variance
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of P(α,β)
n :

varαβF (P(α,β)
n ) (1.70)= 〈−Lα,βP(α,β)

n ,P(α,β)
n 〉wαβ

(3.30)= κ2
1

n∑
l=0

l(l + α + β + 1)p(α,β)
l (λn+1)2

(3.30)= −κ2
1

n∑
l=0

(Lαβp(α,β)
l )(λn+1)p(α,β)

l (λn+1)

(3.31)= −(1− (λn+1)2)
∑n
l=0 p

(α,β)′′
l (λn+1)p(α,β)

l (λn+1)∑n
l=0 p

(α,β)
l (λn+1)2

+ (α− β + λn+1(α + β + 2))
∑n
l=0 p

(α,β)′
l (λn+1)p(α,β)

l (λn+1)∑n
l=0 p

(α,β)
l (λn+1)2

.

Now, using Lemma 3.12 and the fact that λn+1 is the largest zero of p(α,β)
n+1 , we get

varαβF (P(α,β)
n ) = −1− (λn+1)2

3
p

(α,β)′′′
n+1 (λn+1)
p

(α,β)′
n+1 (λn+1)

+ α− β + λn+1(α + β + 2)
2

p
(α,β)′′
n+1 (λn+1)
p

(α,β)′
n+1 (λn+1)

.

The derivative P (α,β)′
n+1 is related to the Jacobi polynomial P (α+1,β+1)

n by (cf. [83, (4.21.7)])

P
(α,β)′
n+1 (x) = n+ α + β + 1

2 P (α+1,β+1)
n (x). (3.33)

Hence, using (3.33) and the formula (3.31) for the operator Lαβ, we get for the frequency
variance

varαβF (P(α,β)
n ) = (λn+1)2 − 1

3
p(α+1,β+1)′′
n (λn+1)
p

(α+1,β+1)
n (λn+1)

+ α− β + λn+1(α + β + 2)
2

p(α+1,β+1)′
n (λn+1)
p

(α+1,β+1)
n (λn+1)

= n(n+ α + β + 3)
3 + α− β + λn+1(α + β − 2)

6
p(α+1,β+1)′
n (λn+1)
p

(α+1,β+1)
n (λn+1)

= n(n+ α + β + 3)
3 + α− β + λn+1(α + β − 2)

6(1− (λn+1)2)
(1− (λn+1)2)p(α,β)′′

n+1 (λn+1)
p

(α,β)′
n+1 (λn+1)

= n(n+ α + β + 3)
3 + (α− β + λn+1(α + β))2 − 4(λn+1)2

6(1− (λn+1)2) .

2

Finally, we can show that the uncertainty product varαβS (P(α,β)
n ) · varαβF (P(α,β)

n ) for the
optimal polynomials P(α,β)

n is uniformly bounded for all n ∈ N. In the case that |α| =
|β| = 1

2 , we even get explicit results.
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3.1. Optimally space localized polynomials for Jacobi expansions

Theorem 3.14.
There exists a constant Cαβ, independent of n, such that the uncertainty product of the
optimal polynomial P(α,β)

n is bounded by

varαβS (P(α,β)
n ) · varαβF (P(α,β)

n ) ≤ Cαβ.

Further, if −1
2 < α, β < 1

2 , then

lim
n→∞

varαβS (P(α,β)
n ) · varαβF (P(α,β)

n ) ≤ (α + β + 2)2(π2 + 2α2 − 2)
12(α + 1)2 .

In the case that |α| = |β| = 1
2 , we get

lim
n→∞

var- 1
2 ,-

1
2

S (P(- 1
2 ,-

1
2 )

n ) · var- 1
2 ,-

1
2

F (P(- 1
2 ,-

1
2 )

n ) = π2

12 −
1
2 ≈ 0.3225 > 1

4 ,

lim
n→∞

var
1
2 ,

1
2

S (P( 1
2 ,

1
2 )

n ) · var
1
2 ,

1
2

F (P( 1
2 ,

1
2 )

n ) = π2

3 −
1
2 ≈ 2.7899 > 9

4 ,

lim
n→∞

var
1
2 ,-

1
2

S (P( 1
2 ,-

1
2 )

n ) · var
1
2 ,-

1
2

F (P( 1
2 ,-

1
2 )

n ) = 4
9

(
π2

3 −
1
2

)
≈ 1.2399 > 1,

lim
n→∞

var- 1
2 ,

1
2

S (P(- 1
2 ,

1
2 )

n ) · var- 1
2 ,

1
2

F (P(- 1
2 ,

1
2 )

n ) = π2

3 − 2 ≈ 1, 2899 > 1.

Proof. By [83, Theorem 8.9.1], there exists a constant cαβ > −π, independent of n, such
that

λn+1 ≥ cos
(
π + cαβ
n+ 1

)
.

Then, we get by Proposition 3.13

varαβS (P(α,β)
n ) · varαβF (P(α,β)

n )

= 1− (λn+1)2(
α−β
α+β+2 + λn+1

)2

(
n(n+ α + β + 3)

3 + (α− β + λn+1(α + β))2 − 4(λn+1)2

6(1− (λn+1)2)

)

≤ (π + cαβ)2(
α−β
α+β+2 + λn+1

)2
n(n+ α + β + 3)

3(n+ 1)2 + (α + β + 2)2(α− β + λn+1(α + β − 2))
6(α− β + λn+1(α + β + 2)) .

Both terms on the right hand side of the above inequality can be bounded uniformly
by a constant independent of n. Hence also the product varαβS (P(α,β)

n ) · varαβF (P(α,β)
n ) is

uniformly bounded by a constant Cαβ.

If −1
2 < α, β < 1

2 , then by [83, Theorem 6.3.2], the largest zero of p(α,β)
n+1 (x) is bounded by

λn+1 > cos
( 2π

2n+ α + β + 3

)
.
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3. Optimally space localized polynomials

Hence,

lim
n→∞

varαβS (P(α,β)
n ) · varαβF (P(α,β)

n )

= lim
n→∞

1− (λn+1)2(
α−β
α+β+2 + λn+1

)2

(
n(n+ α + β + 3)

3 + (α− β + λn+1(α + β))2 − 4(λn+1)2

6(1− (λn+1)2)

)

≤ lim
n→∞

4π2(
α−β
α+β+2 + λn+1

)2
n(n+ α + β + 3)

3(2n+ α + β + 3)2 + (α + β + 2)2(α− β + λn+1(α + β − 2))
6(α− β + λn+1(α + β + 2))

= (α + β + 2)2(π2 + 2α2 − 2)
12(α + 1)2 .

Finally, if α = β = −1
2 , α = β = 1

2 , α = −β = −1
2 , α = −β = 1

2 , the extremal zeros of
the Jacobi polynomials p(α,β)

n+1 (x) can be computed as (see [83, (6.3.5)])

λn+1 = cos
(

π

2n+ 2

)
, λn+1 = cos

(
π

n+ 1

)
,

λn+1 = cos
( 2π

2n+ 1

)
, λn+1 = cos

(
π

2n+ 1

)
,

respectively. Therefore, we get

lim
n→∞

var
1
2 ,

1
2

S (P( 1
2 ,

1
2 )

n ) · var
1
2 ,

1
2

F (P( 1
2 ,

1
2 )

n ) = lim
n→∞

1− (λn+1)2

(λn+1)2
n(n+ 4)

3 − 1
2 = π2

3 −
1
2 ,

lim
n→∞

var- 1
2 ,-

1
2

S (P(- 1
2 ,-

1
2 )

n ) · var- 1
2 ,-

1
2

F (P(- 1
2 ,-

1
2 )

n ) = lim
n→∞

1− (λn+1)2

(λn+1)2
n(n+ 2)

3 − 1
2 = π2

12 −
1
2 ,

lim
n→∞

var- 1
2 ,

1
2

S (P(- 1
2 ,

1
2 )

n ) · var- 1
2 ,

1
2

F (P(- 1
2 ,

1
2 )

n ) = lim
n→∞

1− (λn+1)2

(λn+1 − 1
2)2

n(n+ 3)
3 − 2λn+1 + 1

3(4λn+1 − 2)

= π2

3 − 2,

lim
n→∞

var
1
2 ,-

1
2

S (P( 1
2 ,-

1
2 )

n ) · var
1
2 ,-

1
2

F (P( 1
2 ,-

1
2 )

n ) = lim
n→∞

1− (λn+1)2

(1
2 + λn+1)2

n(n+ 3)
3 + 2(1− 2λn+1))

3(1 + 2λn+1))

= 4
9
(π2

3 −
1
2
)
.

2

3.1.3. Space-frequency localization of the Christoffel-Darboux kernel

We are now going to compare the space-frequency localization of the space optimal
polynomials P(α,β)

n with the space-frequency behavior of other well-known families of
polynomials. As a first example, we consider the Christoffel-Darboux kernels K(α,β)

n of
degree n which are defined on [0, π] as

K(α,β)
n (t) :=

n∑
l=0

p
(α,β)
l (1)p(α,β)

l (cos t), (3.34)
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3.1. Optimally space localized polynomials for Jacobi expansions

and have the explicit form (cf. [83, (4.5.3)])

K(α,β)
n (t) = 2−α−β−2 Γ(n+ α + β + 2)

Γ(α + 1)Γ(n+ β + 1)P
(α+1,β)
n (cos t). (3.35)

In the case that α = β = −1
2 , i.e., for the Chebyshev polynomials of first kind, the

Christoffel-Darboux kernel corresponds to the Dirichlet kernel Dn given by

Dn(t) := K
(− 1

2 ,−
1
2 )

n (t) = 1
π

sin(2n+1
2 t)

sin( t2) .

For the Dirichlet kernel it is known that the uncertainty product is far from being optimal.
More precisely, in [68] it was shown that for the normalized Dirichlet kernel D̃n :=
Dn/‖Dn‖ the following formula holds:

varS(D̃n) · varF (D̃n) = (4n+ 1)(n+ 1)
12n .

So, the uncertainty product tends linearly to infinity as the degree n of the Dirichlet kernel
D̃n tends to infinity. A similar result can be shown also for the normalized Christoffel-
Darboux kernel K̃(α,β)

n defined by

K̃(α,β)
n (cos t) := K(α,β)

n (cos t)
‖K(α,β)

n ‖wαβ
= P (α+1,β)

n (cos t)
‖P (α+1,β)

n ‖wαβ
.

Theorem 3.15.
For the normalized Christoffel-Darboux kernel K̃(α,β)

n , the following formulas hold:

εαβ
(
K̃(α,β)
n

)
= 1− 2(α + 1)

2n+ α + β + 2 ,

varαβF
(
K̃(α,β)
n

)
= α + 1
α + 2n(n+ α + β + 2),

varαβS
(
K̃(α,β)
n

)
· varαβF

(
K̃(α,β)
n

)
= (α + β + 2)2

α + 2
(2n+ β + 1)(n+ α + β + 2)

4n .

Proof. For the norm ‖P (α+1,β)
n ‖wα+1,β , we know from formula (1.64) that

‖P (α+1,β)
n ‖2

wα+1,β
=
∫ π

0
P (α+1,β)
n (cos t)2wα+1,β(t)dt

= 2α+β+2Γ(α + n+ 2)Γ(β + n+ 1)
n!Γ(α + β + n+ 2)(α + β + 2n+ 2) .

To compute the norm ‖P (α+1,β)
n ‖wα,β , we use first of all the coordinate transform x = cos t.

Then, ‖P (α+1,β)
n ‖2

wα,β
reads as

‖P (α+1,β)
n ‖2

wα,β
=
∫ 1

−1
P (α+1,β)
n (x)2(1− x)α(1 + x)βdx.
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3. Optimally space localized polynomials

Now, using the definition (1.63) of the polynomial P (α+1,β)
n , i.e.,

P (α+1,β)
n (x) = Γ(n+ α + 2)

n!Γ(n+ α + β + 2)

n∑
j=0

(
n

j

)
Γ(n+ j + α + β + 2)

Γ(j + α + 2)

(
x− 1

2

)j
, (3.36)

and the orthogonality relation (1.64) of the Jacobi polynomials, we can derive

‖P (α+1,β)
n ‖2

wα,β
= Γ(n+ α + 2)

n!Γ(α + 2)

∫ 1

−1
P (α+1,β)
n (x)(1− x)α(1 + x)βdx.

Next, applying the Rodriguez formula (see [83, 4.3.1]) of the Jacobi polynomial
P (α+1,β)
n (x) and integrating by parts n times, yields the equation

‖P (α+1,β)
n ‖2

wα,β
= (−1)nΓ(n+ α + 2)

(n!)22nΓ(α + 2)

∫ 1

−1

(
d

dx

)(n) [
(1− x)n+α+1(1 + x)β+n

] 1
1− xdx

= Γ(n+ α + 2)
n!2nΓ(α + 2)

∫ 1

−1
(1− x)α(1 + x)β+ndx

= Γ(n+ α + 2)
n!Γ(α + 2) 2α+β+1 Γ(α + 1)Γ(β + n+ 1)

Γ(α + β + n+ 2)

= 2α+β+1

α + 1
Γ(n+ α + 2)Γ(β + n+ 1)

Γ(α + β + n+ 2)n! , (3.37)

where in the penultimate equality we used the integral formula (1.61). In total, we get
for the mean value εαβ of the normalized Christoffel-Darboux kernel:

1− εαβ
(
K̃(α,β)
n

)
= 1− εαβ(P (α+1,β)

n )
‖P (α+1,β)

n ‖2
wαβ

=

∫ π

0
(1− cos t)P (α+1,β)

n (cos t)2wα,β(t)dt

‖P (α+1,β)
n ‖2

wαβ

=
‖P (α+1,β)

n ‖2
wα+1,β

‖P (α+1,β)
n ‖2

wαβ

= 2(α + 1)
2n+ α + β + 2 .

Next, using the representation (3.36) for the polynomial P (α+2,β+1)
n−1 and the orthogonality

relation (1.64), we can deduce the following identity

∫ 1

−1
(1 + x)P (α+2,β+1)

n−1 (x)P (α+1,β)
n (x)(1− x)α(1 + x)βdx

= Γ(n+ α + 2)
(n− 1)!Γ(α + 3)

∫ 1

−1
(1 + x)P (α+1,β)

n (x)(1− x)α(1 + x)βdx

= 2 Γ(n+ α + 2)
(n− 1)!Γ(α + 3)

∫ 1

−1
P (α+1,β)
n (x)(1− x)α(1 + x)βdx.
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3.1. Optimally space localized polynomials for Jacobi expansions

Now, with the same procedure as in (3.37), we get the equation∫ 1

−1
(1 + x)P (α+2,β+1)

n−1 (x)P (α+1,β)
n (x)(1− x)α(1 + x)βdx

= Γ(n+ α + 2)
(n− 1)!Γ(α + 3)2α+β+2 Γ(α + 1)Γ(β + n+ 1)

Γ(α + β + n+ 2)

= 2α+β+2

(n− 1)!
Γ(α + n+ 2)Γ(β + n+ 1)

(α + 2)(α + 1)Γ(α + β + n+ 2) . (3.38)

Using the formula (3.31) for the operator Lαβ and formula (3.33) for the derivative of
the Jacobi polynomials, we get for the frequency variance of the normalized Christoffel-
Darboux kernel:

varαβF
(
K̃(α,β)
n

)
=
〈−LαβP (α+1,β)

n , P (α+1,β)
n 〉wαβ

‖P (α+1,β)
n ‖2

wαβ

=
〈−Lα+1,βP

(α+1,β)
n − (1 + cos t)P (α+1,β)′

n , P (α+1,β)
n 〉wαβ

‖P (α+1,β)
n ‖2

wαβ

=
〈−Lα+1,βP

(α+1,β)
n , P (α+1,β)

n 〉wαβ
‖P (α+1,β)

n ‖2
wαβ

− n+ α + β + 2
2

〈(1 + cos t)P (α+2,β+1)
n−1 , P (α+1,β)

n 〉wαβ
‖P (α+1,β)

n ‖2
wαβ

.

Now, using formula (3.30) and equation (3.38), we get

varαβF
(
K̃(α,β)
n

)
= n(n+ α + β + 2)− 1

α + 2n(n+ α + β + 2)

= α + 1
α + 2 n(n+ α + β + 2).

Finally, for the uncertainty product, we get

varαβS
(
K̃(α,β)
n

)
· varαβF

(
K̃(α,β)
n

)
=

1− εαβ
(
K̃(α,β)
n

)2

∣∣∣ α−β
α+β+2 + εαβ

(
K̃

(α,β)
n

)∣∣∣2 · varαβF
(
K̃(α,β)
n

)

= (α + β + 2)2

α + 2
(2n+ β + 1)(n+ α + β + 2)

4n .

2

Theorem 3.15 states that also in the more general Jacobi setting the uncertainty product
of the normalized Christoffel-Darboux kernel K̃(α,β)

n tends linearly to infinity as n→∞.
The Christoffel-Darboux kernel has therefore a much worse space-frequency behavior
than the space optimal polynomial P(α,β)

n (see Theorem 3.14).
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D̃6(t).

K̃
(0.42,0.42)
6 (t).

D̃12(t).

K̃
(0.42,0.42)
12 (t).

D̃24(t).

K̃
(0.42,0.42)
24 (t).

Figure 15: Dirichlet kernel and Christoffel-Darboux kernel for Jacobi expansions with
parameters α = β = 0.42 on [0, π].

3.1.4. Space-frequency localization of the de La Vallée Poussin kernel

As a second example, we consider a family of polynomial functions Vn for which the
uncertainty product of position and frequency variance tends to the optimal constant
(α+β+2)2

4 as n → ∞. In this way, we get also an alternative proof for the asymptotic
sharpness of the uncertainty principle (1.72) for Jacobi expansions.

The trigonometric polynomial Vn of degree n, known as de La Vallée Poussin kernel (cf.
[31, p. 88]), is defined as

Vn(t) := (1 + cos t)n, n ∈ N. (3.39)

As in the last section, we denote by Ṽn the normalized variant of the de La Vallée Poussin
kernel, i.e., Ṽn(t) = Vn(t)/‖Vn‖wαβ . The following Theorem is a slight generalization of
[27, Theorem 2.2] proven by Goh and Goodman for ultraspherical expansions.

Theorem 3.16.
For the normalized de La Vallée Poussin kernel Ṽn, the following identities hold:

εαβ(Ṽn) = 1− 2α + 2
2n+ α + β + 2 ,
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varαβF (Ṽn) = ‖Ṽ ′n‖2
wαβ

= (α + 1)n2

2n+ β
,

1− εαβ(Ṽn)2

| α−β
α+β+2 + εαβ(Ṽn)|2

varαβF (Ṽn) = (α + β + 2)2

4

(
1 + 1

2n+ β

)
.

Proof. Using the integral formula (1.61), we get the identities

‖Vn‖2
wαβ

= 22n+α+β+1
∫ π

0
cos4n( t2) sin2α+1( t2) cos2β+1( t2)dt

= 22n+α+β+1 Γ(α + 1)Γ(2n+ β + 1)
Γ(α + β + 2n+ 2) ,

‖V ′n‖2
wαβ

= 22n+α+β+1n2
∫ π

0
cos4n−2( t2) sin2α+3( t2) cos2β+1( t2)dt

= 22n+α+β+1n2 Γ(α + 2)Γ(2n+ β)
Γ(α + β + 2n+ 2) ,

‖Vn‖2
wαβ
− εαβ(Vn) = 22n+α+β+2

∫ π

0
sin2( t2) cos4n( t2) sin2α+1( t2) cos2β+1( t2)dt

= 22n+α+β+2 Γ(α + 2)Γ(2n+ β + 1)
Γ(α + β + 2n+ 3) .

Hence, the formulas for εαβ(Ṽn) and varαβF (Ṽn) follow immediately. Moreover, insert-
ing the obtained values for εαβ(Ṽn) and varαβF (Ṽn) in the uncertainty product, a short
calculation gives

1− εαβ(Ṽn)2

| α−β
α+β+2 + εαβ(Ṽn)|2

varαβF (Ṽn) = (α + β + 2)2

4

(
1 + 1

2n+ β

)
.

2

Hence, although the polynomial Ṽn is not localized in space as well as the space optimal
polynomial P(α,β)

n , the de La Vallée Poussin kernel Ṽn shows a better space-frequency
behavior as n tends to infinity. In particular, the frequency variance of Ṽn increases only
linearly in n, whereas varαβF (P(α,β)

n ) increases quadratically.

115



3. Optimally space localized polynomials

Ṽ6(t). Ṽ12(t). Ṽ24(t).

Figure 16: The de La Vallée Poussin kernel normalized in the Chebyshev norm ‖ · ‖wαβ ,
where α = β = −1

2 .

3.2. Monotonicity of extremal zeros of orthogonal polynomials

To carry the results of Theorem 3.6 over to the setting of a compact two-point homoge-
neous space, we need an intermediate result concerning the behavior of the extremal zeros
of orthogonal polynomials Pn(x, τ) in terms of a parameter τ . An interesting result in
this direction based on the Hellmann-Feynman theorem is due to Ismail [41]. A slightly
modified variant of the results in [41] is given by the next theorem.

Theorem 3.17.
Let Qn(x, τ), n ≥ 0, be a family of monic orthogonal polynomials on [a, b] (−∞ ≤ a ≤
b ≤ ∞) depending on the parameter τ and fulfilling the three-term recursion formula

xQn(x, τ) = Qn+1(x, τ) + an(τ)Qn(x, τ) + bn(τ)Qn−1(x, τ), n ≥ 0, (3.40)
Q−1(x, τ) = 0, Q0(x, τ) = 1.

Assume that the coefficients an(τ) (n ≥ 0) and bn(τ) > 0 (n ≥ 1) are differentiable
monotone decreasing (increasing) functions of the parameter τ . Then the largest zero of
the polynomial Qn(x, τ) is also a differentiable monotone decreasing (increasing) function
of the parameter τ .
On the other hand, if the coefficients bn(τ) are monotone decreasing (increasing) and the
coefficients an(τ) are monotone increasing (decreasing) functions, then the smallest zero
of Qn(x, τ) is differentiable monotone increasing (decreasing). If one of the coefficients
ak(τ) or bk(τ), k ≤ n, is strictly monotone decreasing or increasing, then, in the above
statement, the smallest and the largest zero of Qn(x, τ) are also strictly monotone.

Proof. Let λ(τ) be the largest zero of Qn(x, τ). Clearly, all zeros of Qn(x, τ) are differ-
entiable functions of τ . Then, the Hellmann-Feynman theorem (see Theorem 7.3.1 and,
in particular, equation (7.3.8) in [42]) combined with the three-term recurrence formula
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(3.40) of the polynomials Qn(x, τ) implies the formula

( n−1∑
k=0

Q2
k(λ, τ)
ζk

)
dλ(τ)
dτ

=
n−1∑
k=0

Qk(λ, τ)
ζk

(
a′k(τ)Qk(λ, τ) + b′k(τ)Qk−1(λ, τ)

)
(3.41)

where a′k and b′k denote differentiation with respect to τ and ζk = ∏k
i=1 bi(τ). Since

the polynomials Qk(x, τ) are monic, we have Qk(x, τ) = ∏k
i=1(x − xi(τ)), where xki (τ),

i = 1, . . . , k denote the k distinct real zeros of Qk(x, τ) in (a, b). Hence, Qk(b, τ) >
0. Moreover, since λ(τ) is the largest zero of Qn(x, τ), we have due to the interlacing
property of the polynomials Qk(x, τ) (see [83, Theorem 3.3.2])) that Qk(λ, τ) > 0 for
k = 0, . . . , n − 1. Therefore, if ak(τ) and bk(τ) are decreasing (increasing) functions of
the parameter τ , then the right hand side of equation (3.41) is negative (positive) and
the first statement of the Theorem is shown. A similar argumentation for the smallest
zero (keeping in mind that sign(Qk(a, τ)) = (−1)k) implies the second statement. The
statement for the strict monotonicity follows directly from formula (3.41). 2

Now, we will use Theorem 3.17 to prove that the largest zero of the associated Jacobi
and ultraspherical polynomials is decreasing if certain parameters are increased.

Corollary 3.18.
Let c ≥ 0 (if c > 0, assume that 2c+α+β > 0), α ≥ 0, β ≥ −1/2 and β ≤ max{1

2 , 2α} .
Then, the largest zero λ(α) of the associated Jacobi polynomial p(α,β)

n (x, c) is a decreasing
function of the parameter α.

Proof. We consider the monic associated Jacobi polynomials Q(α,β)
n (x, c) as orthogonal

polynomials depending on the parameter α. The polynomials Q(α,β)
n (x, c) are defined by

the three-term recurrence relation

xQ(α,β)
n (x, c) = Q

(α,β)
n+1 (x, c) + an+c(α)Q(α,β)

n (x, c) + b2
n+c(α)Q(α,β)

n−1 (x, c), n ≥ 0, (3.42)
Q

(α,β)
−1 (x, c) = 0, Q

(α,β)
0 (x, c) = 1,

where the coefficients an+c(α) and b2
n+c(α) are given by (see Table 1.1 in [25] for the

coefficients of the Jacobi polynomials)

an+c(α) = β2 − α2

(2n+ 2c+ α + β) (2n+ 2c+ 2 + α + β) , n ≥ 0,

b2
n+c(α) = 4(n+ c) (n+ c+ α) (n+ c+ β) (n+ c+ α + β)

(2n+ 2c+ α + β)2 (2n+ 2c+ α + β + 1) (2n+ 2c+ α + β − 1)
, n ≥ 1.

Now, we have to check that the assumptions of Theorem 3.17 hold. In particular, we
show that an+c(α) and b2

n+c(α) are decreasing functions of the variable α.
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3. Optimally space localized polynomials

First, we consider the derivative a′n+c. For n ≥ 0, c > 0, we have

a′n+c(α) =

(
−2α− β2−α2

(2n+2c+α+β) −
β2−α2

(2n+2c+2+α+β)

)
(2n+ 2c+ α + β) (2n+ 2c+ 2 + α + β)

= −2

(
4α (n+ c)2 + 2(n+ c)(2α + (α + β)2) + (1 + β)(α + β)2

)
(2n+ 2c+ α + β)2 (2n+ 2c+ 2 + α + β)2 .

Since we assumed that α ≥ 0 and β ≥ −1/2, the term on the right hand side is always
negative. It remains to check the case n = 0, c = 0. In this case, we get

a′0(α) = − 2(1 + β)
(α + β + 2)2 < 0.

Thus, an+c(α) is a monotone decreasing function of the parameter α if α ≥ 0, β ≥ −1
2

and n ≥ 0.

Next, we examine the derivative (b2
n+c)′(α). For n ≥ 1, we get

(b2
n+c)′(α) = b2

n+c(α)
(

1
n+ c+ α

+ 1
n+ c+ α + β

− 2
2n+ 2c+ α + β

− 1
2n+ 2c+ α + β + 1 −

1
2n+ 2c+ α + β − 1

)
.

We consider first the case when α ≥ 1
2 and −1

2 ≤ β ≤ 2α. Here, we get the upper bound

(b2
n+c)′(α) ≤ b2

n+c(α)
(

1
n+ c+ α

+ 1
n+ c+ α + β

− 4
2n+ 2c+ α + β

)

= b2
n+c(α) −2(n+ c)α + (β + α)(β − 2α)

(n+ c+ α)(n+ c+ α + β)(2n+ 2c+ α + β) ≤ 0.

Hence (b2
n+c)′(α) is negative if α ≥ 1

2 , −
1
2 ≤ β ≤ 2α, c ≥ 0 and n ≥ 1. Next, we consider
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3.2. Monotonicity of extremal zeros of orthogonal polynomials

the case 0 ≤ α ≤ 1
2 , −

1
2 ≤ β ≤ 1

2 and n ≥ 1. In this case, we get the estimate

(b2
n+c)′(α) = b2

n+c(α)
 2

(n+ c+ α + β
2 )− β2

4n+4c+4α+2β

− 2
2n+ 2c+ α + β

− 2
(2n+ 2c+ α + β)− 1

2n+2c+α+β


= b2

n+c(α)
 2

(n+ c+ α + β
2 )− β2

4n+4c+4α+2β

− 2(
2n+ 2c+ α + β − 1

4n+4c+2α+2β

)
+ 1

4n+4c+2α+2β

− 2(
2n+ 2c+ α + β − 1

4n+4c+2α+2β

)
− 1

4n+4c+2α+2β


≤ b2

n+c(α)
 2
n+ c+ α + β

2 −
β2

4n+4c+4α+2β

− 2
n+ c+ α

2 + β
2 −

1
8n+8c+4α+4β

 .
Since (n+ c+ α+ β

2 ) ≥ (n+ c+ α
2 + β

2 ) and β2

4n+4c+4α+2β ≤
1

8n+8c+4α+4β , we can see that
also in this case the derivative (b2

n+c)′(α) ≤ 0 is negative.
In total, we can conclude that (b2

n+c)′(α) ≤ 0 and that b2
n+c(α) is a monotone decay-

ing function of the parameter α if n ≥ 1, c ≥ 0, α ≥ 0 and −1
2 ≤ β ≤ max{1

2 , 2α}.
By Theorem 3.17, the largest zero λ(α) of Q(α,β)

n (x, c) is therefore a decreasing func-
tion of the parameter α. Since the polynomials p(α,β)

n (x, c) are given by p(α,β)
n (x, c) =

b1+c · · · bn+cQ
(α,β)
n (x, c) (compare the recurrence relations (3.42) and (3.12)), the same

statement holds also for the polynomials p(α,β)
n (x, c). 2

Corollary 3.19.
If α ≥ 0, then the largest zero λ(α) of the associated ultraspherical polynomials p(α,α)

n (x, c),
c ≥ 0, is a decreasing function of the parameter α.

Proof. By (3.42), the monic associated ultraspherical polynomials Q(α,α)
n (x, c) satisfy the

three-term recurrence relation

xQ(α,α)
n (x, c) = Q

(α,α)
n+1 (x, c) + b2

n+c(α)Q(α,α)
n−1 (x, c), n ≥ 0,

Q
(α,α)
−1 (x, c) = 0, Q

(α,α)
0 (x, c) = 1,

with the coefficients

an+c(α) = 0, n ≥ 0,

b2
n+c(α) = (n+ c)(n+ c+ 2α)

4
(
n+ c+ α + 1

2

) (
n+ c+ α− 1

2

) , n ≥ 1.
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3. Optimally space localized polynomials

Thus, we have a′n+c(α) = 0, and for (b2
n+c)′(α), α ≥ 0, we get

(b2
n+c)′(α) = b2

n+c(α)
(

2
n+ c+ 2α −

1
n+ c+ α + 1

2
− 1
n+ c+ α− 1

2

)

= b2
n+c(α)

−2α(n+ c− 1)− 2(α + 1
2)2

(n+ c+ 2α)(n+ c+ α + 1
2)(n+ c+ α− 1

2) ≤ 0.

Thus, b2
n+c(α) is a decreasing function of the parameter α if α ≥ 0. Due to Theorem

3.17, the largest zero of Q(α,α)
n (x, c) is a decreasing function of the parameter α, and so

is the largest zero λ(α) of p(α,α)
n (x, c) = b1+c · · · bn+cQ

(α,α)
n (x, c). 2

Also for the next result, we can use Theorem 3.17.

Corollary 3.20.
Let α ≥ β, α+ β ≥ 0, c > 0, 2c+ α+ β > 0 and 0 ≤ τ ≤ c. Then, the largest zero λ(τ)
of the associated Jacobi polynomial p(α+τ,β+τ)

n (x, c − τ), c ≥ 0, is a strictly decreasing
function of the parameter τ . Similarly, if α ≥ 0, β > −1 and 0 ≤ σ ≤ c, then the largest
zero λ(σ) of the associated Jacobi polynomial p(α+2σ,β)

n (x, c − σ) is a strictly decreasing
function of the parameter σ.

Proof. First, we consider the monic associated Jacobi polynomials Q(α+τ,β+τ)
n (x, c − τ)

as a family of orthogonal polynomials depending on the parameter τ . In this case, the
coefficients an(τ) and b2

n(τ) in the three-term recurrence formula (3.42) are given by

an(τ) = β2 − α2 + 2τ(β − α)
(2n+ 2c+ α + β) (2n+ 2c+ 2 + α + β) , n ≥ 0, (3.43)

b2
n(τ) = 4(n+ c− τ) (n+ c+ α) (n+ c+ β) (n+ c+ α + β + τ)

(2n+ 2c+ α + β)2 (2n+ 2c+ α + β + 1) (2n+ 2c+ α + β − 1)
, n ≥ 1.

(3.44)

For the derivatives, we get

a′n(τ) = 2(β − α)
(2n+ 2c+ α + β) (2n+ 2c+ 2 + α + β) ≤ 0 if α ≥ β, (3.45)

(b2
n)′(τ) = b2

n(τ)
(

1
n+ c+ α + β + τ

− 1
n+ c− τ

)
≤ 0 if α + β ≥ 0. (3.46)

Further, inequality (3.46) is strict if τ > 0. Thus, by Theorem 3.17, the largest zero
of Q(α+τ,α+τ)

n (x, c − τ), and therefore also the largest zero of the normalized polynomial
p(α+τ,α+τ)
n (x, c− τ), is a strictly decreasing function of the parameter 0 ≤ τ ≤ c.

Now, we consider the monic associated polynomials Q(α+2σ,β)
n (x, c− σ) depending on the
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3.2. Monotonicity of extremal zeros of orthogonal polynomials

parameter σ. The coefficients of the three-term recurrence formula are given by

an(σ) = β2 − (α + 2σ)2

(2n+ 2c+ α + β) (2n+ 2c+ 2 + α + β) , n ≥ 0,

b2
n(σ) = 4(n+ c− σ) (n+ c+ α + σ) (n+ c− σ + β) (n+ c+ α + σ + β)

(2n+ 2c+ α + β)2 (2n+ 2c+ α + β + 1) (2n+ 2c+ α + β − 1)
, n ≥ 1.

In this case, we get for the derivatives

a′n(σ) = −4(α + 2σ)
(2n+ 2c+ α + β) (2n+ 2c+ 2 + α + β) ,

(b2
n)′(σ) = b2

n(σ)
(
− 1
n+ c− σ

+ 1
n+ c+ α + σ

− 1
n+ c+ β − σ

+ 1
n+ c+ α + β + σ

)

= −b2
n(σ)

(
α + 2σ

(n+ c− σ)(n+ c+ α + σ) + α + 2σ
(n+ c+ α + β + σ)(n+ c+ β − σ)

)
.

Both, a′n(σ) and (b2
n)′(σ) are negative if α ≥ 0 and strictly negative if τ > 0. Thus,

the largest zero of the polynomial Q(α+2σ,β)
n (x, c − σ) and of the normalized polynomial

p(α+2σ,β)
n (x, c− σ) is a strictly decreasing function of the parameter 0 ≤ σ ≤ c. 2

If α = 0 and β < 0, it is not possible to use Corollary 3.20 to prove that the largest
zero λ(τ) of the polynomial p(τ,β+τ)

n (x, c− τ) is a decreasing function of the parameter τ .
Nevertheless, we can show the following result.

Theorem 3.21.
Let α ≥ 0, −1 < β ≤ 0, α ≤ |β| and 2c + α + β > 0. Then all the zeros of the associ-
ated Jacobi polynomial p(α,β)

n (x, c) are larger than the respective zeros of the polynomial
p(−β,−α)
n (x, c+ α + β).

Proof. As in Corollary 3.20, we consider the associated Jacobi polynomials Pn+1(τ)(x) =
p

(α+τ,β+τ)
n+1 (x, c− τ) with the Jacobi matrix

Jn(τ) =



a0(τ) b1(τ) 0 0 · · · 0
b1(τ) a1(τ) b2(τ) 0 · · · 0

0 b2(τ) a2(τ) b3(τ) . . . ...
... . . . . . . . . . . . . 0
0 · · · 0 bn−2(τ) an−1(τ) bn−1(τ)
0 · · · · · · 0 bn−1(τ) an(τ)


,

and the coefficients an(τ) and bn(τ) =
√
b2
n(τ) given in (3.43) and (3.44). Then,

Pn+1(0)(x) = p
(α,β)
n+1 (x, c) and Pn+1(−α−β)(x) = p

(−β,−α)
n+1 (x, c+α+β). Now, the zeros of
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3. Optimally space localized polynomials

the polynomials Pn+1(0) and Pn+1(−α − β) correspond to the eigenvalues of the Jacobi
matrices Jn(0) and Jn(−α− β), respectively. Since

Jn(−α− β)− J(0) = diag
(
a0(−α− β)− a0(0), · · · , an(−α− β)− an(0)

)
is a diagonal matrix with the negative entries

ak(−α− β)− ak(0) = 2 α2 − β2

(2k + 2c+ α + β)(2k + 2c+ α + β + 2) ,

the eigenvalues of Jn(0) are larger than the eigenvalues of Jn(−α − β). Thus, the same
holds for the zeros of the polynomials p(α,β)

n+1 (x, c) and p(−β,−α)
n+1 (x, c+ α + β). 2

3.3. Optimally space localized spherical polynomials on
compact two-point homogeneous spaces

3.3.1. Compact two-point homogeneous spaces

A connected Riemannian manifold M is called two-point homogeneous if for any two
pairs of points p1, p2 and q1, q2 on M with d(p1, p2) = d(q1, q2) there exists an isometry
I on M carrying p1 to q1 and p2 to q2. According to Wang [84], the compact two-
point homogeneous spaces are precisely the spheres and the projective spaces introduced
in Section 2.6.1 and 2.6.2, and can be listed as follows (see also [1, Section 3], [24, p.
176-177] and [35, p. 170]):

(i) The sphere Sdr , r > 0, d = 1, 2, 3, . . .

(ii) The real projective space RPdr , r > 0, d = 2, 3, 4, . . .

(iii) The complex projective space CPdr , r > 0, d = 4, 6, 8, . . .

(iv) The quaternionic projective space HPdr , r > 0, d = 8, 12, 16, . . .

(v) The Cayley plane Car,

where the superscripts d denote the real dimension of the respective manifold. In the
literature, these spaces are also known as the compact symmetric spaces of rank one
(see [34, Section IX.5]). From now on, the symbol M will denote a compact two-point
homogeneous space and p a point on M .

The compact two-point homogeneous spaces are very similar in their geometry. In partic-
ular, these spaces have the remarkable property that all their geodesics are closed curves
of length 2rπ (see [36, VII, Proposition 10.2]). Further, the diameter of M is given by

diam(M) = sup {d(q1, q2) : q1, q2 ∈M} = rπ
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3.3. Optimally space localized spherical polynomials

and the cut locus Cp of p, with the Riemannian structure induced by M , is itself a
compact two-point homogeneous space (see [36, VII, Proposition 10.4]). For the details on
isometry groups, symmetric spaces and, in particular, compact two-point homogeneous
spaces, we refer to the classics [34], [36] and [37].

If G denotes the maximal connected group of isometries ofM andK = {I ∈ G : Ip = p},
then M corresponds to the homogeneous space G/K. The isometry groups G and K of
each two-point homogeneous space M are well-known and are listed, for instance, in [24,
p. 177].

The Hilbert space L2(M) of square integrable functions on M can be decomposed into
a direct orthogonal sum of finite-dimensional G-invariant, G-irreducible subspaces HM

l ,
such that (see [37, Chapter V, Theorem 4.3, and Chapter II, Proposition 4.11] )

L2(M) =
∞⊕
l=0
HM
l .

The G-invariant subspace HM
l corresponds to the eigenspace of the Laplace-Beltrami

operator ∆M with respect to the eigenvalue l(l + d
2 + βM), i.e.,

HM
l = {f ∈ C∞(M) : ∆Mf = l(l + d

2 + βM)f}, (3.47)

where the parameter βM is given as βM = d−2
2 in the case that M is the sphere Sdr and as

βM = −1
2 , 0, 1, 3 in the case that M is one of the projective spaces RPdr , CPdr , HPdr and

Car, respectively. The dimensions dimHM
l of the spaces HM

l can be computed explicitly
and are collected in Table 1.

Table 1: The dimension of the subspaces HM
l ([80], p. 90).

Space dimHM
l

Sdr
(2l + d− 1)(l + d− 2)!

l!(d− 1)!

RPdr
(4l + d− 1)(2l + d− 2)!

(2l)!(d− 1)!

CPdr
(2l + d

2)(l + d
2 − 1)!(l + d

2 − 1)!
(d2)!(d2 − 1)!l!l!

HPdr
(2l + d

2 + 1)(l + d
2)!(l + d

2 − 1)!
(d2 + 1)!(d2 − 1)!(l + 1)!l!

Car
(2l + 11)(l + 10)!(l + 7)!3!

11!l!(l + 3)!7!
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3. Optimally space localized polynomials

In geodesic polar coordinates (t, ξ) at a point p, the weight functions ΘM are given as
(see equations (2.148) and (2.160) or [35, p. 169])

ΘM(t, ξ) = (2r)d−1 sind−1( t
2r ) cos2βM+1( t

2r ), (3.48)

and the radial part ∆M
p,t of the Laplace-Beltrami operator ∆M reads as

(∆M
p,tf)∗(t, ξ) = ∂2

∂t2
f ∗(t, ξ) +

d− 2− 2βM + (d+ 2βM) cos( t
r
)

2r sin( t
r
)

∂

∂t
f ∗(t, ξ). (3.49)

Moreover, each subspace HM
l contains only one radial function PM

l that depends solely
on the distance t = d(q, p) to the point p and that is normalized such that ‖PM

l ‖M = 1,
PM
l (p) > 0. In terms of Jacobi polynomials, the radial functions PM

l can be written as
(see [1, p. 131-132], [24, p. 178] and [37, V, Theorem 4.5])

PM∗
l (t) = 1

|Sp|
1
2 2

d−2−2βM
4 r

d
2

p
( d−2

2 ,βM )
l (cos( t

r
)), t ∈ [0, rπ], (3.50)

where |Sp| denotes the volume of the (d− 1)-dimensional unit sphere Sp.

Next, we are giving an orthonormal basis for the subspaces HM
l . To this end, we need

an orthonormal basis for the subspaces HSp

k ⊂ L2(Sp) on the unit sphere Sp. Such a
basis is given by the orthonormal spherical harmonics Y d−1

k,j , 1 ≤ j ≤ dimHSp

l , of order
k in d− 1 dimensions (for the details, see [60]). For d = 2, the spherical harmonics Y 1

k,j,
j ∈ {1, 2}, are identified with the characters 1√

2πe
i(−1)jkt, k ∈ N, on [−π, π] and the space

HSp

k with span
{

1√
2πe

ikt, 1√
2πe
−ikt

}
. In the following, we use the symbol N(d− 1, k) as an

abbreviation for the dimension of the spaces HSp

k .

Proposition 3.22.
If M = Sdr, d ≥ 2, an orthonormal basis for the space HSdr

l is given in geodesic polar
coordinates at p ∈ Sdr by the functions

P
Sdr∗
l,k,j(t, ξ) = r−

d
2 sink( t

r
)p( d−2

2 +k, d−2
2 +k)

l−k (cos( t
r
))Y d−1

k,j (ξ), (3.51)

0 ≤ k ≤ l, 1 ≤ j ≤ N(d− 1, k).

If M = RPdr, d ≥ 2, an orthonormal basis for HRPdr
l is given by

P
RPdr∗
l,k,j (t, ξ) = 2P Sd2r∗

2l,k,j(t, ξ) = 2(2r)− d2 sink( t
2r )p

( d−2
2 +k, d−2

2 +k)
2l−k (cos( t

2r ))Y
d−1
k,j (ξ), (3.52)

=


2−d+2k+1

4 r−
d
2 sink( t

2r )p
( d−2

2 +k,− 1
2 )

l− k2
(cos( t

r
))Y d−1

k,j (ξ), k even,

2−d+2k+3
4 r−

d
2 sink( t

2r ) cos( t
2r )p

( d−2
2 +k, 12 )

l− k+1
2

(cos( t
r
))Y d−1

k,j (ξ), k odd,

0 ≤ k ≤ 2l, 0 ≤ j ≤ N(d− 1, k).
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Finally, if M is one of the projective spaces CPdr, d ≥ 4, or HPdr, d ≥ 8, or Car, then an
explicit orthonormal basis for HM

l is given by the functions

PM∗
l,k,j(t, ξ) = 2

−d+2+2βM+4k
4 r−

d
2 sin2k( t

2r )p
( d−2

2 +2k,βM )
l−k (cos( t

r
))Y d−1

k,j (ξ), (3.53)

0 ≤ k ≤ l, 0 ≤ j ≤ N(d− 1, k).

Proof. We will give no explicit proofs at this place, but refer to the literature. The
proof that the spherical harmonics P Sd∗

l,k,j(t, ξ) and Y d−1
k,j (ξ) form an orthonormal basis of

HSd
l and HSp

k , respectively, can be found in the books [60] and [14]. The assertion for
an arbitrary sphere Sdr follows by scaling with r. The assertion for the real projective
space is an immediate consequence of the fact that RPdr is the quotient of Sd2r under the
antipodal map A : x → −x and that HRPdr

l can be identified with HSd2r
2l . The second

identity in (3.52) follows from [83, Theorem 4.1]. The proof for the remaining projective
spaces can be found in [80]. Hereby, the formula in (3.53) follows from [80, Theorem
4.22] with the coordinate change t→ sin( t

2r )
2. A related proof can also be found in the

article [46]. 2

In Proposition 3.22, the functions PM
l,0,1 correspond to the radial functions PM

l defined
in (3.50). Now, as in (2.91), we introduce the generalized mean value of a function
f ∈ L2(M) at a point p ∈M by

εMp (f) =
∫

Sp

∫ rπ

0
cos( t

r
)|f(t, ξ)|2ΘM(t)dtdµ(ξ). (3.54)

Then, by Corollary 2.60 and Corollary 2.61, we know that the following uncertainty
inequality holds for all normalized functions f ∈ L2(M) ∩ D( ∂

∂t∗;M) satisfying εMp (f) 6=
2βM+2−d
2βM+2+d :

varMS,p(f) · varMF,p(f) > d2

4 , (3.55)

where

varMS,p(f) = r2 1− εMp (f)2(
d−2−2βM

2d + d+2+2βM
2d εMp (f)

)2 , (3.56)

varMF,p(f) =
∥∥∥ ∂
∂t∗
f
∥∥∥2

M
. (3.57)

Moreover, we know that the constant d2

4 on the right hand side of (3.55) is optimal.

3.3.2. Optimally space localized spherical polynomials

According to the polynomial subspaces of L2([0, π], wαβ) introduced in Definition 3.1, we
define now finite-dimensional subspaces of the Hilbert space L2(M) spanned by the basis
functions of the spaces HM

l .
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Definition 3.23. As subspaces of L2(M), we consider:

(1) The space spanned by the basis functions of HM
l , 0 ≤ l ≤ n:

ΠM
n :=

P : P ∗(t, ξ) =
n∑
l=0

l∑
k=0

N(d−1,k)∑
j=1

cl,k,jP
M∗
l,k,j(t, ξ), cl,k,j ∈ C

 . (3.58)

(2) The space spanned by the basis functions of HM
l , m ≤ l ≤ n:

ΠM
m,n :=

P : P ∗(t, ξ) =
n∑

l=m

l∑
k=0

N(d−1,k)∑
j=1

cl,k,jP
M∗
l,k,j(t, ξ), cl,k,j ∈ C

 . (3.59)

(3) The space spanned by a radial function R given by R∗(t) = PM∗
m−1(t)+

m−1∑
l=0

elP
M∗
l (t)

and the basis functions of HM
l , m ≤ l ≤ n:

ΠM
R,n :=

P : P ∗(t, ξ) = cm−1R∗(t) +
n∑

l=m

l∑
k=0

N(d−1,k)∑
j=1

cl,k,jP
M∗
l,k,j(t, ξ), cl,k,j,∈ C

 .
(3.60)

The functions in the space ΠM
n are referred to as spherical polynomials of degree less

than n and the functions in ΠM
m,n as spherical wavelets. The unit spheres in the spaces

ΠM
n , ΠM

m,n and ΠM
R,n are defined as

SMn :=
{
P ∈ ΠM

n : ‖P‖M = 1
}
,

SMm,n :=
{
P ∈ ΠM

m,n : ‖P‖M = 1
}
,

SMR,n :=
{
P ∈ ΠM

R,n : ‖P‖M = 1
}
.

Further, we define the subsets

LMn :=
{
P ∈ SMn : εMp (P ) > λ1

}
,

LM,m
n :=

{
P ∈ SMm,n : εMp (P ) > λ1

}
,

LM,R
n :=

{
P ∈ SMR,n : εMp (P ) > λ1

}
,

where λ1 = 2βM−d+2
2βM+d+2 corresponds to the sole root of the Jacobi polynomial p( d−2

2 ,βM )
1 (x).

Similar as in Section 3.1, we want to use the generalized mean value εMp (P ) and the
position variance varMS,p(P ) as auxiliary tools to determine whether a spherical polynomial
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3.3. Optimally space localized spherical polynomials

P ∈ SMn is localized at the point p ∈M or not. If ‖P‖M = 1, then εMp (P ) is a real value
between −1 and 1, and the more the mass of P is concentrated at the point p the closer
the value εMp (P ) gets to 1. Hence, we call a spherical polynomial P ∈ SMn localized at
p ∈M if εMp (P ) approaches the value 1. Similar as in the case of the Jacobi polynomials,
we want to find the following optimally space localized spherical polynomials on M :

PMn := arg max
P∈SMn

εMp (P ), (3.61)

PMm,n := arg max
P∈SMm,n

εMp (P ), (3.62)

PMR,n := arg max
P∈SMR,n

εMp (P ). (3.63)

In terms of the position variance varMS,p the latter optimization problems can be reformu-
lated as follows:

Proposition 3.24.
Assume that the sets LMn , LM,m

n and LM,R
n are nonempty, then

PMn = arg max
P∈LMn

εMp (P ) = arg min
P∈LMn

varMS,p(P ),

PMm,n = arg max
P∈LM,mn

εMp (P ) = arg min
P∈LM,mn

varMS,p(P ),

PMR,n = arg max
P∈LM,Rn

εMp (P ) = arg min
P∈LM,Rn

varMS,p(P ).

Proof. The proof of Proposition 3.24 is identical to the proof of Proposition 3.7 with εαβ
and varαβS replaced by εMp and varMS,p. 2

Hence, by Proposition 3.24, minimizing the position variance varMS,p(P ) with respect to
a polynomial P ∈ LMn (or P ∈ LM,m

n ,LM,R
n , respectively) is equivalent to maximize the

mean value εMp (P ). Similar as in Proposition 3.24, the non-emptiness of the sets LM,m
n

and LM,R
n can not be guaranteed in general. Since the radial functions on M have an

expansion in terms of the Jacobi polynomials p( d−2
2 ,βM )

n the non-emptiness of the set LMn ,
n ≥ 1, follows as in Remark 3.8 from the interlacing property of the zeros of the Jacobi
polynomials.

To compute the optimally space localized spherical polynomials PMn , PMm,n and PMR,n, we
need, similarly as in the case of the Jacobi setting (see Lemma 3.5), a characterization
of the mean value εMp (P ) in terms of the expansion coefficients cl,k,j. Since this charac-
terization will depend on the type of the compact two-point homogeneous space M , we
will split the statement into three lemmas.
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3. Optimally space localized polynomials

Lemma 3.25.
Let M be one of the projective spaces CPdr, d ≥ 4, or HPdr, d ≥ 8, or Car, and P a
spherical polynomial given by P ∗(t, ξ) = ∑n

l=0
∑l
k=0

∑N(d−1,k)
j=1 cl,k,jP

M∗
l,k,j(t, ξ). Then,

εMp (P ) =
n∑
k=0

N(d−1,k)∑
j=1

cHk,j
[
J
(
d−2

2 + 2k, βM
)
n−k

]
ck,j, if P ∈ ΠM

n ,

εMp (P ) =
m∑
k=0

N(d−1,k)∑
j=1

cHk,j
[
J
(
d−2

2 + 2k, βM
)m−k
n−k

]
ck,j

+
n∑

k=m+1

N(d−1,k)∑
j=1

cHk,j
[
J
(
d−2

2 + 2k, βM
)
n−k

]
ck,j, if P ∈ ΠM

m,n,

εMp (P ) = c̃H0,1
[
J
(
d−2

2 , βM
)m−1

n

]
c̃0,1 + (εMp (R)− am−1)|cm−1|2

+
m∑
k=1

N(d−1,k)∑
j=1

cHk,j
[
J
(
d−2

2 + 2k, βM
)m−k
n−k

]
ck,j

+
n∑

k=m+1

N(d−1,k)∑
j=1

cHk,j
[
J
(
d−2

2 + 2k, βM
)
n−k

]
ck,j, if P ∈ ΠM

R,n,

with the coefficient vectors

ck,j = (cm,k,j, cm+1,k,j . . . , cn,k,j)T , 0 ≤ k ≤ m,

ck,j = (ck,k,j, ck+1,k,j . . . , cn,k,j)T , m+ 1 ≤ k ≤ n,

c̃0,1 = (cm−1, cm,0,1, cm+1,0,1 . . . , cn,0,1)T ,

and the matrices J(d−2
2 + 2k, βM)mn corresponding to the Jacobi matrices Jmn of the asso-

ciated Jacobi polynomials p( d−2
2 +2k,βM )

l (x,m).

Proof. We start with the spherical wavelets P ∈ ΠM
m,n having an expansion of the form

P ∗(t, ξ) =
n∑

l=m

l∑
k=0

N(d−1,k)∑
j=1

cl,k,jP
M∗
l,k,j(t, ξ).

Taking the definition (3.53) of the spherical polynomials PM
l,k,j, we get for the value εMp (P ):

εMp (P ) =
∫

Sp

∫ rπ

0
cos( t

r
)|P ∗(t, ξ)|2(2r)d−1 sind−1( t

2r ) cos2βM+1( t
2r )dtdµ(ξ)

=
∫

Sp

∫ rπ

0

 n∑
l=m

l∑
k=0

N(d−1,k)∑
j=1

cl,k,j2k sin2k( t
2r ) cos( t

r
)p( d−2

2 +2k,βM )
l−k (cos( t

r
))Y d−1

k,j (ξ)


×

 n∑
l=m

l∑
k=0

N(d−1,k)∑
j=1

cl,k,j2k sin2k( t
2r )p

( d−2
2 +2k,βM )

l−k (cos( t
r
))Y d−1

k,j (ξ)


× 2 d
2 +βM 1

r
sind−1( t

2r ) cos2βM+1( t
2r )dtdµ(ξ).
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3.3. Optimally space localized spherical polynomials

Now, we use the orthonormality of the spherical harmonics Y d−1
k,j and rearrange the order

of summation. Then, we get

εMp (P ) =
m∑
k=0

N(d−1,k)∑
j=1

∫ rπ

0

(
n∑

l=m
cl,k,j cos( t

r
)p( d−2

2 +2k,βM )
l−k (cos( t

r
))
)

×
(

n∑
l=m

cl,k,jp
( d−2

2 +2k,βM )
l−k (cos( t

r
))
)

22k+ d
2 +βM 1

r
sin4k+d−1( t

2r ) cos2βM+1( t
2r )dt

+
n∑

k=m+1

N(d−1,k)∑
j=1

∫ rπ

0

(
n∑
l=k

cl,k,j cos( t
r
)p( d−2

2 +2k,βM )
l−k (cos( t

r
))
)

×
(

n∑
l=k

cl,k,jp
( d−2

2 +2k,βM )
l−k (cos( t

r
))
)

22k+ d
2 +βM 1

r
sin4k+d−1( t

2r ) cos2βM+1( t
2r )dt.

Finally, using the three-term recurrence relation (3.9) and the orthonormality of the
Jacobi polynomials p( d−2

2 +2k,βM )
l , we conclude

εMp (P ) =
m∑
k=0

N(d−1,k)∑
j=1

∫ rπ

0

( n∑
l=m

cl,k,j

(
bl−kp

( d−2
2 +2k,βM )

l−k−1 (cos( t
r
)) + alp

( d−2
2 +2k,βM )

l−k (cos( t
r
))

+ bl−k+1p
( d−2

2 +2k,βM )
l−k+1 (cos( t

r
))
))( n∑

l=m
cl,k,jp

( d−2
2 +2k,βM )

l−k (cos( t
r
))
)

× 22k+ d
2 +βM 1

r
sin4k+d−1( t

2r ) cos2βM+1( t
2r )dt

+
n∑

k=m+1

N(d−1,k)∑
j=1

∫ rπ

0

( n∑
l=k

cl,k,j

(
bl−kp

( d−2
2 +2k,βM )

l−k−1 (cos( t
r
)) + alp

( d−2
2 +2k,βM )

l−k (cos( t
r
))

+ bl−k+1p
( d−2

2 +2k,βM )
l−k+1 (cos( t

r
))
))( n∑

l=k
cl,k,jp

( d−2
2 +2k,βM )

l−k (cos( t
r
))
)

× 22k+ d
2 +βM 1

r
sin( t

2r )
4k+d−1 cos( t

2r )
2βM+1dt

=
m∑
k=0

N(d−1,k)∑
j=1

cHk,j
[
J
(
d−2

2 + 2k, βM
)m−k
n−k

]
ck,j

+
n∑

k=m+1

N(d−1,k)∑
j=1

cHk,j
[
J
(
d−2

2 + 2k, βM
)
n−k

]
ck,j.

Thus, the statement for the spherical wavelets P ∈ ΠM
m,n is shown. If m = 0, the

statement for P ∈ ΠM
n follows as a special case. Finally, the statement for P ∈ ΠM

R,n
follows, if we set m = 0 and consider coefficient sets {cl,k,j} of the form

cl,k,j ∈ C, if l ≥ m,

cl,k,j = 0, if l < m, k 6= 0,
cl,k,j = elcm−1, if l < m, k = 0,

where el denote the expansion coefficients of the radial function R. 2
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Lemma 3.26.
Let M = Sdr and P be given by P ∗(t, ξ) = ∑n

l=0
∑l
k=0

∑N(d−1,k)
j=1 cl,k,jP

Sdr∗
l,k,j(t, ξ). Then,

εSdr
p (P ) =

n∑
k=0

N(d−1,k)∑
j=1

cHk,j
[
J
(
d−2

2 + k, d−2
2 + k

)
n−k

]
ck,j, if P ∈ ΠSdr

n ,

εSdr
p (P ) =

m∑
k=0

N(d−1,k)∑
j=1

cHk,j
[
J
(
d−2

2 + k, d−2
2 + k

)m−k
n−k

]
ck,j

+
n∑

k=m+1

N(d−1,k)∑
j=1

cHk,j
[
J
(
d−2

2 + k, d−2
2 + k

)
n−k

]
ck,j, if P ∈ ΠSdr

m,n,

εSdr
p (P ) = c̃H0,1

[
J
(
d−2

2 , d−2
2

)m−1

n

]
c̃0,1 + (εSdr

p (R)− am−1)|cm−1|2

+
m∑
k=1

N(d−1,k)∑
j=1

cHk,j
[
J
(
d−2

2 + k, d−2
2 + k

)m−k
n−k

]
ck,j

+
n∑

k=m+1

N(d−1,k)∑
j=1

cHk,j
[
J
(
d−2

2 + k, d−2
2 + k

)
n−k

]
ck,j, if P ∈ ΠSdr

R,n,

with the coefficient vectors

ck,j = (cm,k,j, cm+1,k,j . . . , cn,k,j)T , 0 ≤ k ≤ m,

ck,j = (ck,k,j, ck+1,k,j . . . , cn,k,j)T , m+ 1 ≤ k ≤ n,

c̃0,1 = (cm−1, cm,0,1, cm+1,0,1 . . . , cn,0,1)T ,

and the matrices J(d−2
2 + k, d−2

2 + k)mn corresponding to the Jacobi matrices Jmn of the
associated ultraspherical polynomials p( d−2

2 +k, d−2
2 +k)

l (x,m).

Proof. Up to an adaption of the underlying basis, the proof of Lemma 3.26 is the same
as the proof of Lemma 3.25. The details are therefore omitted. 2

Lemma 3.27.
If M = RPdr is the real projective space and P is a spherical polynomial on RPdr defined
by P ∗(t, ξ) = ∑n

l=0
∑l
k=0

∑N(d−1,k)
j=1 cl,k,jP

RPdr∗
l,k,j (t, ξ), we get

εRPdr
p (P ) =

n∑
k=0

N(d−1,k)∑
j=1

cHk,j
[
J
(
d−2

2 + k,− (−1)k
2

)
n−k

]
ck,j, if P ∈ ΠRPdr

n ,

εRPdr
p (P ) =

m∑
k=0

N(d−1,k)∑
j=1

cHk,j
[
J
(
d−2

2 + k,− (−1)k
2

)m−k
n−k

]
ck,j

+
n∑

k=m+1

N(d−1,k)∑
j=1

cHk,j
[
J
(
d−2

2 + k,− (−1)k
2

)
n−k

]
ck,j, if P ∈ ΠRPdr

m,n,
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εRPdr
p (P ) = c̃H0,1

[
J
(
d−2

2 ,−1
2

)m−1

n

]
c̃0,1 + γm−1|cm−1|2

+
m∑
k=1

N(d−1,k)∑
j=1

cHk,j
[
J
(
d−2

2 + k,− (−1)k
2

)m−k
n−k

]
ck,j

+
n∑

k=m+1

N(d−1,k)∑
j=1

cHk,j
[
J
(
d−2

2 + k,− (−1)k
2

)
n−k

]
ck,j, if P ∈ ΠRPdr

R,n,

with the coefficient vectors c̃0,1 and ck,j as defined in Lemma 3.26 and the matrices
J(d−2

2 + k,− (−1)k
2 )mn corresponding to the Jacobi matrices Jmn of the associated Jacobi

polynomials p( d−2
2 +k,− (−1)k

2 )
l (x,m).

Proof. Using the orthonormal spherical polynomials (3.52) of the real projective space
RPdr instead of the orthonormal spherical polynomials in Lemma 3.25, the proof of Lemma
3.27 is up to a minor change in the notion the same as the proof of Lemma 3.25. So, the
details are omitted also at this place. 2

Now, for the optimization problems (3.61), (3.62) and (3.63), we can conclude:

Theorem 3.28.
Let P ∈ SMn ,SMm,n,SMR,n, respectively. Then, the maximum of εMp (P ) is attained for the
radial spherical polynomials

PM∗n (t) = κ1

n∑
l=0

p
(α,β)
l (λn+1)PM

l (t), (3.64)

PM,m∗
n (t) = κ2

n∑
l=m

p
(α,β)
l−m (λmn−m+1,m)PM

l (t), (3.65)

PM,R∗
n (t) = κ3

(
R(t) +

n∑
l=m

p
(α,β)
l−m+1(λRn−m+2,m− 1, γR, δR)PM

l (t)
)
, (3.66)

where the values λn+1, λmn−m+1 and λRn−m+2 denote the largest zero of the polynomials
p

( d−2
2 ,βM )

n+1 (x), p( d−2
2 ,βM )

n−m+1 (x,m) and p( d−2
2 ,βM )

n−m+2 (x,m − 1, γR, δR) in [−1, 1], respectively. The
parameters of the scaled co-recursive associated polynomials p(α,β)

l−m+1(x,m− 1, γR, δR) are
given as γR = εMp (R) − am−1 and δR = ‖R‖2

M . The constants κ1, κ2 and κ3 are nor-
malization factors which ensure that ‖PMn ‖M = ‖PMm,n‖M = ‖PMR,n‖M = 1 is satisfied.
The constants κ1, κ2 and κ3 are uniquely determined up to multiplication with a complex
scalar of absolute value one. Finally, the maximum values of εαβ(P ) are given as

MM
n := max

P∈SMn
εMp (P ) = λn+1,

MM
m,n := max

P∈SMm,n
εMp (P ) = λmn−m+1,

MM
R,n := max

P∈SMR,n
εMp (P ) = λRn−m+2.
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Proof. We consider first the case when M is one the projective spaces CPdr , d ≥ 4,
or HPdr , d ≥ 8, or Car, and P ∈ SMm,n is a spherical wavelet given by P ∗(t, ξ) =∑n
l=m

∑l
k=0

∑N(d−1,k)
j=1 cl,k,jP

M∗
l,k,j(t, ξ). Then, by Lemma 3.25, we can write the mean value

εMp (P ) as

εMp (P ) =
m∑
k=0

N(d−1,k)∑
j=1

cHk,j
[
J
(
d−2

2 + 2k, βM
)m−k
n−k

]
ck,j

+
n∑

k=m+1

N(d−1,k)∑
j=1

cHk,j
[
J
(
d−2

2 + 2k, βM
)
n−k

]
ck,j, (3.67)

with the coefficient vectors

ck,j = (cm,k,j, cm+1,k,j, . . . , cn,k,j)T , 0 ≤ k ≤ m,

ck,j = (ck,k,j, ck+1,k,j, . . . , cn,k,j)T , m+ 1 ≤ k ≤ n,

and the matrices J(d−2
2 + 2k, βM)m−kn−k corresponding to the Jacobi matrices of the asso-

ciated Jacobi polynomials p( d−2
2 +2k,βM )

l (x,m− k).

Now, maximizing εMp (P ) with respect to P ∈ SMm,n is equivalent to maximize the quadratic
functional (3.67) subject to ∑n

k=0
∑N(d−1,k)
j=1 |ck,j|2 = 1. Hence, we get

m∑
k=0

N(d−1,k)∑
j=1

cHk,j
[
J
(
d−2

2 + k, d−2
2 + k

)m−k
n−k

]
ck,j (3.68)

+
n∑

k=m+1

N(d−1,k)∑
j=1

cHk,j
[
J
(
d−2

2 + k, d−2
2 + k

)
n−k

]
ck,j ≤ λmax

n∑
k=0

N(d−1,k)∑
j=1

|ck,j|22,

where λmax corresponds to the largest eigenvalue taken over all the symmetric matri-
ces J

(
d−2

2 + 2k, βM
)
n−k

and J
(
d−2

2 + 2k, βM
)m−k
n−k

in (3.68), and where equality holds
for an eigenvector corresponding to λmax. Moreover, the eigenvalues of the matrices
J(d−2

2 + 2k, βM)n−k correspond to the roots of the Jacobi polynomials p( d−2
2 +2k,βM )

n−k+1 (x)
and the eigenvalues of the matrices J(d−2

2 + 2k, βM)m−kn−k to the zeros of the associated
polynomials p( d−2

2 +2k,βM )
n−m+1 (x,m− k).

Now, the results of Section 3.2 on the monotonicity of the largest zero of associated
Jacobi polynomials come into play. Due to the interlacing property of the zeros of the
Jacobi polynomials (see [83, Theorem 3.3.2]) and Corollary 3.18 (alternatively, one could
also use the results in [13] and [44]), the matrix J(d−2

2 + 2k, βM)n−k, m ≤ k ≤ n, with
the largest eigenvalue is precisely the matrix J(d−2

2 + 2m,βM)n−m. Further, by Corol-
lary 3.20, the matrix J(d−2

2 + 2k, βM)m−kn−k , 0 ≤ k ≤ m, with the largest eigenvalue is
the matrix J(d−2

2 , βM)mn which appears only one time as a submatrix in (3.67). Hence,
the unique overall submatrix in (3.67) with the largest eigenvalue is precisely the ma-
trix J(d−2

2 , βM)mn and λmax = λmn+m+1 corresponds to the largest zero of the associated
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Jacobi polynomial p( d−2
2 ,βM )

n−m+1 (x,m). Due to the three-term recurrence relation (3.12) of
the polynomial p( d−2

2 ,βM )
n−m+1 (x,m), the coefficients of the corresponding eigenvector can be

determined as

cl,0,1 = p
( d−2

2 ,βM )
l−m (λmn−m+1,m), if m ≤ l ≤ n,

cl,k,j = 0, if 0 ≤ l ≤ m− 1 or k 6= 0.

Next, we have to normalize the coefficients cl,k,j such that∑n
l=m |p

( d−2
2 ,βM )

l−m (λmn−m+1,m)|2 =
1. This is done by an appropriately defined constant κ2. The uniqueness (up to a complex
scalar with absolute value 1) of the optimal polynomial PMm,n follows from the fact that
the largest zero of p( d−2

2 ,βM )
n−m+1 (x,m) is simple and that the largest eigenvalue of the matrix

J(d−2
2 , βM)mn is strictly larger than the largest eigenvalues of all other submatrices in

(3.67) (see Corollary 3.20). The formula for MM
m,n follows directly from the estimate

(3.68). Moreover, if we set m = 0, we get the formula for PMn as a special case.

Next, we will show the formula for PMR,n. Lemma 3.25 states that the mean value εMp (P ) of
a polynomial P ∈ ΠM

R,n given by P ∗(t, ξ) = cm−1R(t)+∑n
l=m

∑l
k=0

∑N(d−1,k)
j=1 cl,k,jP

M∗
l,k,j(t, ξ)

can be written as

εMp (P ) = c̃H0,1
[
J
(
d−2

2 , βM
)m−1

n

]
c̃0,1 + (εMp (R)− am−1)|cm−1|2 (3.69)

+
m∑
k=1

N(d−1,k)∑
j=1

cHk,j
[
J
(
d−2

2 + 2k, βM
)m−k
n−k

]
ck,j

+
n∑

k=m+1

N(d−1,k)∑
j=1

cHk,j
[
J
(
d−2

2 + 2k, βM
)
n−k

]
ck,j,

with the coefficient vectors

ck,j = (cm,k,j, cm+1,k,j, . . . , cn,k,j)T , 1 ≤ k ≤ m,

ck,j = (ck,k,j, ck+1,k,j, . . . , cn,k,j)T , m+ 1 ≤ k ≤ n,

c̃0,1 = (cm−1, cm,0,1, cm+1,0,1, · · · , cn,0,1)T .

Maximizing εMp (P ) with respect to a polynomial P ∈ SMR,n is therefore equivalent to
maximize the quadratic functional in (3.69) subject to (‖R‖2

M − 1)|cm−1|2 + |c̃0,1|2 +∑n
k=1

∑N(d−1,k)
j=1 |ck,j|2 = 1. Using a Lagrange multiplier λ and differentiating the Lagrange

function with respect to the coefficients cl,k,j, we obtain a block matrix equation with the
linear subsystems of equations[

J
(
d−2

2 , βM
)m−1

n

]
c̃0,1 + γR(cm−1, 0, . . . , 0)T = λ

(
δRcm−1, cm,0,1, cm+1,0,1, . . . , cn,0,1

)T
,[

J
(
d−2

2 + 2k, βM
)m−k
n−k

]
ck,j = λck,j, 1 ≤ k ≤ m, 1 ≤ j ≤ N(d− 1, k), (3.70)[

J
(
d−2

2 + 2k, βM
)
n−k

]
ck,j = λck,j, m+ 1 ≤ k ≤ n, 1 ≤ j ≤ N(d− 1, k),
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3. Optimally space localized polynomials

as necessary conditions for the maximum, where γR = εMp (R) − am−1 and δR = ‖R‖2
M .

In (3.70), the first system of equations is equivalent to the symmetric eigenvalue problem

J̃(d−2
2 , βM)m−1

n
˜̃c0,1 = λ˜̃c0,1, (3.71)

with the symmetric matrix

J̃(d−2
2 , βM)m−1

n =



am−1+γR√
δR

bm√
δR

0 · · · 0
bm√
δR

0 J(d−2
2 , βM)mn

...
0


and the coefficient vector

˜̃c0,1 =
(√

δRcm−1, cm,0,1, cm+1,0,1, . . . , cn,0,1
)T
.

From the argumentation after equation (3.67) we know that from the matrices
J(d−2

2 + 2k, βM)m−kn−k , k = 0, . . . ,m, and J(d−2
2 + 2k, βM)n−k, k = m+1, . . . , n, the matrix

with the largest eigenvalue is J(d−2
2 , βM)mn . Moreover, because of the eigenvalue interlac-

ing theorem for bordered matrices (see [39, Theorem 4.3.8]), the largest eigenvalue of the
matrix J̃(d−2

2 , βM)m−1
n is strictly larger than the largest eigenvalue of J(d−2

2 , βM)mn . Since
the eigenvalue equation (3.71) is equivalent to the first system of equations in (3.70), the
eigenvalues of J̃(d−2

2 , βM)m−1
n correspond to the zeros of the co-recursive associated Jacobi

polynomials p( d−2
2 ,βM )

n−m+2 (x,m− 1, γR, δR) (cf. the three-term recursion formula (3.13)).

In total, the largest eigenvalue of all matrices in (3.70) corresponds precisely to the largest
zero λRn−m+2 of the polynomial p( d−2

2 ,βM )
n−m+2 (x,m−1, γR, δR). The corresponding eigenvector

can be computed from the three-term recurrence relation (3.13) as

cm−1 = 1,

cl,0,1 = p
( d−2

2 ,βM )
l−m+1 (λRn−m+2,m− 1, γR, δR), for m ≤ l ≤ n,

cl,k,j = 0, if m ≤ l ≤ n, k 6= 0.

The coefficients are normalized by the constant κ3 and the uniqueness (up to multipli-
cation with a complex scalar of absolute value 1) follows from the fact that the largest
eigenvalue of the orthogonal polynomials p( d−2

2 ,βM )
n−m+2 (x,m−1, γR, δR) is simple and the fact

that the largest eigenvalue of the matrix J̃(d−2
2 , βM)m−1

n is strictly larger than the largest
eigenvalues of all the submatrices in (3.70) (see again Corollary 3.20). Finally, the value
for MM

R,n follows also from (3.70) and the formula (3.69) for εMp .

If M is the sphere Sdr or the real projective space RPdr , the proof of Theorem 3.28 is
almost identical to the preceding proof. The only difference lies in the fact that in the
formulas for the basis polynomials PM

l,k,j (see (3.51) and (3.52)) and in the formulas for
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3.3. Optimally space localized spherical polynomials

the mean value εMp (P ) (see Lemma 3.26 and 3.27) one uses the ultraspherical polynomials
for the sphere and particular Jacobi polynomials for the real projective spaces instead of
the Jacobi polynomials in the above argumentation. Since otherwise the proof remains
conceptually the same, the details are omitted at this place. For M = RP2 one has to
use Theorem 3.21 in addition to Corollary 3.20. 2

Since the polynomials PMn , PMm,n and PMR,n are radial functions on M and have an ex-
pansion in terms of the Jacobi polynomials p( d−2

2 ,βM )
l , we can use Corollary 3.10 to get

explicit formulas for the optimally space localized polynomials on M .

Corollary 3.29.
The optimally space localized spherical polynomials PMn , PMm,n and PMR,n of Theorem 3.28
have the explicit representation

PM∗n (t) = κ1bn+1
PM∗
n+1(t)p( d−2

2 ,βM )
n (λn+1)

cos( t
r
)− λn+1

,

PM,m∗
n (t) = κ2

bn+1P
M∗
n+1(t)p( d−2

2 ,βM )
n−m (λmn−m+1,m) + bmP

M∗
m−1(t)

cos( t
r
)− λmn−m+1

,

PM,R∗
n (t) = κ3

bn+1P
M∗
n+1(t)p( d−2

2 ,βM )
n−m+1 (λRn−m+2,m− 1, γR, δR)
cos( t

r
)− λRn−m+2

+
PM∗
m−1(t)((δR − 1)λRn−m+2 − γR) + bm−1P

M∗
m−2(cos( t

r
))

cos( t
r
)− λRn−m+2

)
,

where the constants κ1, κ2, κ3 and the roots λn+1, λmn−m+1, λRn−m+2 are given as in
Theorem 3.28.
Remark 3.30. The Christoffel-Darboux kernel and the de La Vallée Poussin kernel intro-
duced in Section 3.1.3 and Section 3.1.4 for the Jacobi polynomials can be considered
also as radial spherical polynomials on the compact two-point homogeneous spaces. For
this, we define the kernels Km

n and V M
n on M by

KM∗

n (t) := 1
|Sp|

1
2 2

d−2−2βM
4 r

d
2

K
( d−2

2 ,βM )
n ( t

r
),

V M∗

n (t) := Vn( t
r
).

In particular, the Christoffel-Darboux kernel KM
n plays an important role in the theory

of polynomial approximation on M . One of its remarkable properties is the so called
reproducing property for spherical polynomials P ∈ ΠM

n , i.e., the kernel KM
n satisfies

(see [57])
P (q) =

∫
M
P (s)KM∗

n (d(s, q))dµM(s), q ∈M, P ∈ ΠM
n .

Moreover, the operator Sn on L2(M) given by Snf(q) =
∫
M f(s)KM∗

n (d(s, q))dµM(s) is
the orthogonal projection of the function f ∈ L2(M) onto the subspace ΠM

n (see [53]).
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3. Optimally space localized polynomials

3.4. Remarks and References

Associated and scaled co-recursive associated polynomials. Associated polynomials
Pl(x, c) can be defined quite generally for orthogonal polynomials Pl(x) by shifting the
coefficients in the three-term recurrence relation, similar as in (3.12) for the Jacobi poly-
nomials.
For c = 1, the associated polynomials Pl(x, 1) are sometimes also called numerator poly-
nomials (see [10, Definition 4.1]). Particular results for some families of associated poly-
nomials like the associated Laguerre, Hermite and Jacobi polynomials concerning orthog-
onality measures, explicit forms and differential equations can be found in [42, Sections
5.6, 5.7, 15.9], [87] and in further references therein.
Co-recursive associated polynomials were introduced for special cases by J. Letessier in
[51], [52]. The polynomials p(α,β)

l (x,m, γ, δ) coincide with a slightly different notation
with the scaled co-recursive associated Jacobi polynomials considered in [40].

Optimally space localized Jacobi polynomials. Optimally space localized trigonometric
polynomials and wavelets that minimize the angular variance of the Breitenberger un-
certainty principle (1.18), and, in particular, Example 3.11, were firstly considered by
Rauhut in [70] and [71]. In [71], also the limit n→∞ for the uncertainty product of the
optimally space localized trigonometric polynomials (corresponding to the statement of
Theorem 3.14 with α = β = −1

2) was computed.
For the more general Jacobi case, Theorem 3.6 is a novel result. In particular, the polyno-
mial spaces Π(α,β)

R,n that play an important role in the theory of polynomial approximation
and the respective optimally space localized polynomials P(α,β)

R,n are considered for the
first time. New are also the Christoffel-Darboux-type formulas in Lemma 3.9 and the
explicit formulas for the optimally space localized polynomials in Corollary 3.10.
Beside the theory discussed in Section 3.1, there exist also other concepts of localiza-
tion of polynomials in the literature. In particular, in [17], Filbir, Mhaskar and Prestin
constructed exponentially localized polynomial kernels φn for Jacobi expansions on [0, π]
that satisfy the property

|φn(t)| ≤ Cn2 max{α,β}+2 exp(−cnt2).

Similar results can be also found in the article [66] of Petrushev and Xu.

Space-frequency localization of the Christoffel-Darboux kernel. For the general Jacobi case
α, β > −1, Theorem 3.15 constitutes a new result. For the Chebyshev case α = β = −1

2 ,
the formulas of Theorem 3.15 are shown in [68]. Similar results for the frequency variance
and the uncertainty product of various trigonometric polynomials and wavelets generating
a multiresolution analysis on the unit circle can be found in [63], [67], [69], [70] and [78].

Space-frequency localization of the de La Vallée Poussin kernel. Theorem 3.16 on the
space-frequency localization of the de La Vallée Poussin kernel is a slightly more general
version of [27, Theorem 2.2] in which the ultraspherical case was shown.
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3.4. Remarks and References

Monotonicity of the extremal zeros of orthogonal polynomials. The monotonicity re-
sult of Theorem 3.17 is based on the Hellmann-Feynman Theorem and is a variant of
the monotonicity results proven by Ismail in [41]. Many similar results based on the
Hellmann-Feynman approach, including extremal zeros of Laguerre and of birth and
death process polynomials, can be found in [42, Sections 7.3,7.4], [61] and the references
therein. The results on the monotonicity of the extremal zeros of the Jacobi polynomials,
i.e., Corollary 3.18, Corollary 3.20 and Theorem 3.21 have evolved from joint work with
Ferenc Toókos and are novel in this thesis. Corollary 3.19 is due to [81].

Compact two-point homogeneous spaces. For a good introduction into Lie groups, sym-
metric spaces, two-point homogeneous spaces and the harmonic analysis on these spaces,
we refer to the books [34], [36] and [37] of Helgason. Many technical details of compact
two-point homogeneous spaces in Section 3.3.1 are also taken from the books [3], [4] and
the articles [1], [24], [35] and [84]. Further, a good introduction into spherical harmonics
on the unit sphere is the book [60] of Müller. The basis system for the L2-space on the
projective spaces in Proposition 3.22 is taken from the article [80] of Sherman. Related
basis systems can be also found in the article [46] and in the book [14].

Optimally space localized spherical polynomials. Optimally space localized spherical poly-
nomials and wavelets on the unit sphere Sd, d ≥ 2, in combination with associated ul-
traspherical polynomials were intensively studied by Laín Fernández, in [48] and [47].
In particular, the part of Theorem 3.28 concerning optimally space localized spherical
polynomials and wavelets on the unit sphere Sd was firstly proven in [48].
New in Section 3.3 is the method of the proof based on the monotonicity results of Sec-
tion 3.2 and the formulas for the optimally space localized polynomials on the projective
spaces. Furthermore, the interesting polynomial spaces ΠM

R,n and the respective optimally
space localized polynomials PMR,n are discussed here for the first time.
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3. Optimally space localized polynomials

PS2
12 (q).

KS2
12 (q).

V S2
12 (q).

PS2
24 (q).

KS2
24 (q).

V S2
24 (q).

PS2
48 (q).

KS2
48 (q).

V S2
48 (q).

Figure 17: The kernels PS2
n , KS2

n and V S2
n on the unit sphere S2 centered at the north

pole p and normalized such that PS2
n (p) = PS2

m,n(p) = PS2
R,n(p) = 1.
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"A map is not the territory it represents, but, if correct,
it has a similar structure to the territory, which accounts
for its usefulness. If the map could be ideally correct, it
would include, in a reduced scale, the map of the map;
the map of the map, of the map; and so on, endlessly"
A. Korzybski, Science and Sanity, Institute of General

Semantics, 5. edition, 1994, p. 58

A
A brief introduction to Riemannian

manifolds

In this short appendix, we summarize some basic facts about Riemannian manifolds and
introduce the necessary notation for Chapter 2. The details can be found among other
standard references in [2], [3], [5], [9], [12], [23], [30] and [36].

A.1. Basic definitions

A differentiable manifold M of dimension d is a Hausdorff topological space (with a
countable basis) together with a family of injective mappings xi : Ui ⊂ Rd → M (Ui
open) such that:

(1) ⋃i xi(Ui) = M .

(2) For any pair i, j with xi(Ui) ∩ xj(Uj) = W 6= ∅, the sets x−1
i (W ) and x−1

j (W ) are
open sets in Rd and x−1

j xi ∈ C∞.

(3) The family {(Ui,xi)} is maximal with respect to (1) and (2).

The pair (Ui,xi) with p ∈ xi(Ui) is called a parametrization (or a system of coordinates)
of the manifold M at p, the set xi(Ui) is called a coordinate neighborhood at the point
p. A family {(Ui,xi)} satisfying (1) and (2) is called a differentiable structure on M .
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A. A brief introduction to Riemannian manifolds

On a differentiable manifold M , we consider now differentiable curves γ : R ⊃ I → M
such that 0 ∈ I and γ(0) = p ∈ M . The tangent vector at p to the curve γ at t = 0 is a
function γ′(0) that associates to every differentiable function f the value

γ′(0)f := d(f ◦ γ)
dt

∣∣∣∣
t=0
.

If we choose a parametrization x : U →M at the point p = x(0), the function f and the
curve γ can be written as

f ◦ x(q) = f(x1, . . . , xd), q = (x1, ..., xd) ∈ U,

and
x−1 ◦ γ(t) = (x1(t), . . . , xd(t)),

respectively. So, restricting f to the curve γ, we obtain

γ′(0)f =
d∑

k=1
x′k(0)

(
∂f

∂xk

)
xk=0

=
(

d∑
k=1

x′k(0) ∂

∂xk

)
f, (A.1)

where ∂
∂xk

corresponds to the tangent vector of the coordinate curve

xk → x(0, . . . , 0, xk, 0, . . . , 0).

Equation (A.1) shows that the tangent vector to the curve γ at p depends only on the
derivative of γ in a coordinate system and that the set TpM of all tangent vectors forms
a d-dimensional vector space with basis

{
∂
∂x1
, . . . , ∂

∂xd

}
. The vector space TpM is called

tangent space ofM at p and the set TM = {(p, v) : p ∈M, ξ ∈ TpM} the tangent bundle
of M .

Now, let M and N be differentiable manifolds and ϕ : M → N a differentiable mapping.
For every p ∈ M and ξ ∈ TpM , one can choose a differentiable curve γ on M with
γ(0) = p and γ′(0) = ξ. Then, the mapping

dϕp : TpM → Tϕ(p)N, dϕp(ξ) = (ϕ ◦ γ)′(0) (A.2)

is a linear mapping that does not depend on the choice of γ (see [12], Chapter 0, Propo-
sition 1.2.7). The linear mapping dϕp is called the differential of ϕ at p. If U ⊂ M and
V ⊂ N are open subsets of the differentiable manifolds M and N , respectively, a map-
ping ϕ : U → V is called a diffeomorphism if it is differentiable, bijective, and its inverse
ϕ−1 is also differentiable. The Inverse Function Theorem implies that if the differential
dϕp is an isomorphism from TpM to Tϕ(p)N , then ϕ is a diffeomorphism from an open
neighborhood of p onto an open neighborhood of ϕ(p).

A vector field X on a differentiable manifold M is a mapping of M into the tangent
bundle TM such that, for any p ∈ M , X(p) ∈ TpM . The field is called differentiable if
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A.1. Basic definitions

the mapping X : M → TM is of class C∞. The set of all differentiable vector fields onM
is denoted by Γ(TM). A vector field V along a curve γ : I ⊂ R→ M is a differentiable
curve V : I → TM such that V (t) ∈ Tγ(t)M for all t ∈ I. The vector field γ′(t) := dγ( d

dt
)

along γ is called the velocity field (or tangent vector field) of γ.

A Riemannian metric on a differentiable manifold M is a correspondence which asso-
ciates to each point p ∈ M an inner product 〈·, ·〉p on the tangent space TpM which
varies differentiably in the following sense: If x : U ⊂ Rd → M is a chart around p,
with x(x1, . . . , xd) = q ∈ x(U) and the differential ∂

∂xk
(q) = dxq(0, . . . , 1, . . . , 0), then

gj,k(x1, . . . , xd) = 〈 ∂
∂xj

(q), ∂
∂xk

(q)〉q are differentiable functions on U . A differentiable
manifold endowed with a Riemannian metric is called a Riemannian manifold. For the
functions gj,k, we define the matrix

GU,x =
[
gj,k(x1, . . . , xd)

]d
j,k=1

=
[〈

∂

∂xj
(q), ∂

∂xk
(q)
〉
q

]d
j,k=1

. (A.3)

The inverse of GU,x and its matrix entries are denoted by

G−1
U,x =

[
gj,k(x1, . . . , xd)

]d
j,k=1

. (A.4)

If M and N are Riemannian manifolds, a diffeomorphism ϕ : M → N is called an
isometry if

〈ξ1, ξ2〉p = 〈dϕp(ξ1), dϕp(ξ2)〉ϕ(p), for all p ∈M, ξ1, ξ2 ∈ TpM. (A.5)

Let ϕ : M → N be an immersion, i.e. ϕ is differentiable and dϕp : TpM → Tϕ(p)N is
injective for all p ∈ M . If N has a Riemannian structure, then ϕ induces a Riemannian
structure on M by

〈ξ1, ξ2〉p = 〈dϕp(ξ1), dϕp(ξ2)〉ϕ(p).

Since dϕp is injective, 〈·, ·〉p is positive definite. This metric on M is called the metric
induced by ϕ.

A differentiable map ϕ : M → N is called a Riemannian covering map if ϕ(M) covers
N and ϕ satisfies the isometry condition (A.5) locally. If G is a discrete, free and
proper group of isometries on M , then the quotient manifold N = M/G can be endowed
with a unique Riemannian metric such that the canonical projection ϕ : M → N is a
Riemannian covering map (see [23, Proposition 2.20]).

On the other hand, if G is a Lie group of isometries on M acting smoothly, properly
and freely on M , then the quotient manifold N = M/G can be endowed with a unique
Riemannian metric such that the projection map ϕ : M → N is a submersion, i.e., ϕ
is differentiable and dϕp : TpM → Tϕ(p)N is an epimorphism for all p ∈ M (see [23,
Proposition 2.28]). Moreover, in this case the map ϕ : M → N is a smooth fibration
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A. A brief introduction to Riemannian manifolds

with fiber G (see [23, Theorem 1.95]), i.e., ϕ is surjective and there exists an open cover
{Ui}i∈I of N and diffeomorphisms

hi : ϕ−1(Ui)→ Ui ×G

such that hi(ϕ−1(p) = {p} ×G for p ∈ Ui.

A.2. Connections and the covariant derivative

Whereas the differentiation of functions is well defined for differentiable manifolds, there
is no natural concept of differentiation of vector fields on a manifold M . Therefore, one
considers all possibilities of such a differentiation, the so called connections.

A connection ∇ on a differentiable manifold M is a mapping ∇ : Γ(TM) × Γ(TM) →
Γ(TM) denoted by (X, Y ) ∇→ ∇X(Y ) which satisfies the properties

(1) ∇fX+gYZ = f∇XZ + g∇YZ,

(2) ∇X(Y + Z) = ∇XY +∇XZ,

(3) ∇X(fY ) = f∇XY +X(f)Y ,

for X, Y, Z ∈ Γ(TM) and f, g ∈ C∞(M). For any connection ∇, there exists a unique
differentiation operator D

dt
(cf. [12, Proposition 2.2.2]) defined on the vector space of

vector fields along a differentiable curve γ such that:

(1) D
dt

(V +W ) = D
dt
V + D

dt
W for vector fields V,W along γ,

(2) D
dt

(fV ) = f ′V + f D
dt
V for a differentiable function f ,

(3) If V is induced by a vector field Y , i.e. V (t) = Y (γ(t)), then D
dt
V = ∇γ′Y .

D
dt
V is called the covariant derivative of V along the curve γ. A vector field V along a

curve γ : I →M is called parallel if D
dt
V = 0, for all t ∈ I.

On a general differentiable manifold, there exists no connection with distinguished prop-
erties. However, if M is a Riemannian manifold with Riemannian metric 〈·, ·〉p, then
there exists a unique connection ∇ on M (cf. [12, Theorem 3.6]) satisfying the following
conditions:

(a) ∇ is symmetric, i.e. ∇XY −∇YX = [X, Y ] for all vector fields X, Y ∈ Γ(TM).

(b) ∇ is compatible with the Riemannian metric, i.e. for any smooth curve γ and any
pair of parallel vector fields V and W along γ, we have 〈V,W 〉c(t) = constant.
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This canonical connection ∇ of a Riemannian manifold is called Levi-Civita connection.
If two vector fields X and Y have the representations

X =
d∑
i=1

Xi
∂

∂xi
, Y =

∑
i=1

Yi
∂

∂xi

in a local chart x : U ⊂ Rd →M around p ∈M , then the Levi-Civita connection ∇ can
be written in local coordinates as [23, Proposition 2.54],

∇XY =
d∑
i=1

( d∑
j=1

Xj
∂Yj
∂xj

+
d∑

j,k=1
Γij,kXjYk

)
∂

∂xi
, (A.6)

where the Christoffel symbols Γij,k are defined by the relation ∇ ∂
∂xj

∂
∂xk

= ∑d
i=1 Γij,k ∂

∂xi
.

Further, we have

Γij,k = 1
2

d∑
l=1

gil
(
∂

∂xj
gkl + ∂

∂xk
glj −

∂

∂xl
gjk

)
. (A.7)

A.3. Geodesics and the metric space structure

In what follows, we will always assume that M is a Riemannian manifold endowed with
the Levi-Civita connection ∇ and that D

dt
is the covariant derivative associated to the

Levi-Civita connection.

A parametrized curve γ : I → M is called a geodesic if the acceleration vector field D
dt
γ′

is zero for every t ∈ I. Due to equation (A.6), in a local chart x : U ⊂ Rd → M , the
geodesics are the solutions of the differential equation

d2xi
dt2

+
d∑

j,k=1
Γij,k(x(t))dxk

dt

dxj
dt

= 0, 1 ≤ i ≤ d, (A.8)

where x(t) = (x1(t), . . . , xd(t)). If γξ(t) is a geodesic with initial conditions γ(0) = p
and γ′(0) = ξ, then there exists a neighborhood U around p in which γξ(t) is uniquely
determined and depends smoothly on the parameters t and ξ (see [23, Corollary 2.85]).

If Iξ is the maximal interval on which γξ(t) is defined, then for any α ∈ R \ {0}, we have

Iαξ = 1
α
Iξ, γαξ(t) = γξ(αt).

If we denote by TpM the subset

TpM := {ξ ∈ TpM : 1 ∈ Iξ} ⊂ TpM, (A.9)
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A. A brief introduction to Riemannian manifolds

of the tangent space and by TM the respective subset of the tangent bundle TM , then
we can define the so called exponential map

expp : TpM →M, expp(ξ) := γξ(1). (A.10)

Applied to the whole bundle TM , we denote the exponential map by exp.

By the Riemannian metric structure of M , the length of an element ξ in the tangent
space TpM is given by

|ξ| := 〈ξ, ξ〉1/2p .

Moreover, we can define the length of a piecewise differentiable curve γ : I →M as

l(γ) :=
∫
I
|γ′(t)|dt. (A.11)

In particular, if γ is a geodesic, then

d

dt
〈γ′, γ′〉 = 2

〈D
dt
γ′, γ′

〉
= 0.

Thus, the length of the tangent vector γ′ is constant. If the geodesic γ is starting at
γ(0) = p, the length of γ from p to γ(t) is given by

l(γ) =
∫ t

0
|γ′(t)|dt = ct,

where c denotes the constant length |γ′| of γ′. Therefore, the parameter of a geodesic is
proportional to the arc length l(γ).

With help of the arc length (A.11) of curves, a distance metric d(p, q) between two points
p and q can be introduced on M by

d(p, q) := inf
γ

∫ b

a
|γ′(t)|dt, (A.12)

where γ ranges over all piecewise differentiable paths γ : [a, b] → M satisfying γ(a) = p
and γ(b) = q. For p ∈ M and δ > 0, the open ball and the sphere with center p on M
are defined as

B(p, δ) := {x ∈M, d(x, p) < δ}, (A.13)
S(p, δ) := {x ∈M, d(x, p) = δ}. (A.14)

By the same token, we define on the tangent space TpM

B(p, δ) := {ξ ∈ TpM, |ξ| < δ}, (A.15)
S(p, δ) := {ξ ∈ TpM, |ξ| = δ}, (A.16)

Sp := S(p, 1). (A.17)
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A.3. Geodesics and the metric space structure

The distance metric d : M ×M → R given in equation (A.12) turns M into a metric
space (cf. [9, Corollary I.6.1]). Moreover, for p ∈M and δ > 0 small enough, we have

expp B(p, δ) = B(p, δ),
expp S(p, δ) = S(p, δ),

diffeomorphically. Thus, the topology induced by the distance metric d(·, ·) coincides
with the original topology of M . Moreover, the following local result holds (cf. [23,
Theorem 2.92]):

Theorem A.1.
For each p ∈ M , there exists a neighborhood U of p and ε > 0 such that any two points
q1 and q2 of U are joined by a unique geodesic γ in M of length less than ε. Moreover,
the geodesic γ depends differentiably on its endpoints q1 and q2 and its length is given by
l(γ) = d(q1, q2).

A curve γ connecting two points γ(a) and γ(b) in M is called minimal if l(γ|[a,b]) =
d(γ(a), γ(b)). Thus, by Theorem A.1, a geodesic γ is locally minimal. On the other
hand, if a curve γ is parameterized proportional to arc length and γ is locally minimal,
then γ is a geodesic (see [23, Corollary 2.94]).

We say that a Riemannian manifold M is geodesically complete if for every p ∈ M and
ξ ∈ TpM , the geodesic γξ(t) is defined for all values t ∈ R, that is, if the exponential
map expp is defined on the whole tangent space TpM . The connection between geodesic
completeness and completeness as a metric space is established in the Theorem of Hopf
and Rinow (cf. [12, Chapter 7, Theorem 2.8]).

Theorem A.2 (Hopf and Rinow).
Let M be a Riemannian manifold. For p ∈M , the following assertions are equivalent:

(a) expp is defined on all of TpM , in particular TpM = TpM .

(b) The closed and bounded sets of M are compact.

(c) M is complete as a metric space.

(d) M is geodesically complete.

(e) There exists a sequence of compact subsets Kn ⊂ M , Kn ⊂ Kn+1 and ⋃∞n=1Kn =
M , such that if qn /∈ Kn then d(p, qn)→∞.

In addition, any of the statements above implies that

(f) For any point q ∈ M , there exists a geodesic γ joining p to q with minimal length
l(γ) = d(p, q).

Note that the geodesic in part (f) of Theorem A.2 is in general not unique.
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A.4. The cut locus

For p ∈M and a unit vector ξ ∈ Sp ⊂ TpM , we define the distance R(ξ) to the cut point
of p along the geodesic γξ(t) by

R(ξ) := sup
t>0
{tξ ∈ TpM : d(p, γξ(t)) = t} . (A.18)

In other words, R(ξ) is the maximal distance in direction ξ for which the exponential map
expp is isometric. The point γξ(R(ξ)) is called the cut point of p along the geodesic γξ(t).
The geodesic γξ(t) minimizes the distance between p and expp(tξ) for all t ∈ [0, R(ξ)),
and fails to minimize the distance for all t > R(ξ). Indeed, if there exists a t ∈ [0, R(ξ))
such that d(p, expp(tξ)) < t , then the triangle inequality implies

d(p,R(ξ)) ≤ d(p, expp(tξ)) + d(expp(tξ), R(ξ)) < t+ (R(ξ)− t) = R(ξ),

a contradiction. If t < R(ξ), then γξ is the only minimal geodesic between p and γξ(t).
Moreover, if R(ξ) is finite and R(ξ)ξ ∈ TpM , then γξ minimizes also the distance between
p and expp(R(ξ)ξ).

We consider now R as a function on the unit sphere Sp. The following theorem collects
some information on the smoothness of R.

Theorem A.3.
For p ∈M , the function R : Sp → (0,∞] has the following properties:

(a) R is upper semicontinuous on Sp [9, Theorem III.2.1].

(b) If M is geodesically complete, then R is continuous on Sp [9, Theorem III.2.1].

(c) If M is a compact real analytic Riemannian manifold of dimension d, then the
surface ξ ∈ Sp → R(ξ)ξ is a (d− 1)-dimensional simplicial complex [7].

(d) If M is compact, then the distance function R is a Lipschitz continuous function
on Sp [43].

For p ∈M , we define the tangential cut locus Cp in the tangent space TpM by

Cp := {R(ξ)ξ : R(ξ) <∞, ξ ∈ Sp} ∩ TpM, (A.19)

and the cut locus Cp of p in M , by

Cp := expp Cp. (A.20)

Moreover, we set
Dp := {tξ : 0 ≤ t < R(ξ), ξ ∈ Sp} , (A.21)

and
Dp := expp Dp. (A.22)
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If M is complete, we get the following decomposition (cf. [23, Proposition 2.113 and
Corollary 3.77])

Theorem A.4.
Let M be a complete Riemannian manifold. Then, for any p ∈ M we have the disjoint
decomposition

M = Dp ∪ Cp. (A.23)

Moreover, Dp is the largest star-shaped open domain in TpM (with respect to the origin)
for which the exponential map is a diffeomorphism with Dp = expp(Dp) = M \ Cp.

For p ∈M , we define the injectivity radius inj p of p by

inj p := inf
ξ∈Sp

{R(ξ)} (A.24)

and the injectivity radius of M by

injM := inf
p∈M
{inj p}. (A.25)

A.5. Integration on Riemannian manifolds

Let x : U ⊂ Rd → M be a chart on M . For each q ∈ x(U), we consider the matrices
GU,x defined in (A.3). Then, the determinant detGU,x is positive and, on U , we can
define the positive measure

√
detGU,xdx1 · · · dxd. Thus, by x(

√
detGU,xdx1 · · · dxd) we

get a positive measure on x(U) ⊂ M that is independent from the particular choice of
the chart x (see [9, Section III.3]). By a partition of unity argument we construct now a
global Riemannian measure. We take an atlas{

xi : Ui ⊂ Rd →M, i ∈ I
}

on M , a subordinate partition of unity {φi : i ∈ I}, and define the global Riemannian
measure µM by

dµM :=
∑
i∈I

φi xi(
√

detGUi,xidx
i
1 · · · dxid). (A.26)

The measure µM is positive and well-defined (cf. [77, Chapter IV, Theorem 17]), i.e.
independent of the choice of atlas and the subordinate partition of unity. Further, a
function f is measurable with respect to dµM if and only if f ◦ xi is measurable on Ui
for any chart xi : Ui ⊂ Rd →M . The measure µM is called the canonical measure or the
Riemannian measure on M .

Now, we consider the measure on M induced by the exponential map. Let therefore
p ∈ M and V and U be open neighborhoods of 0 ∈ TpM and of p in M , respectively,
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such that the exponential expp |V is a diffeomorphism from V onto U . We identify the
tangent space at ξ ∈ TpM with TpM itself and consider the differential

(d expp)ξ : TξTpM → Texpp(ξ)M. (A.27)

The differential (d expp)ξ is a linear mapping and can therefore be considered as an
isomorphism from the Euclidean space TpM onto the Euclidean space Texpp(ξ)M . We
define

θ(ξ) := det((d expp)ξ). (A.28)
and denote by dξ the standard Lebesgue measure on the Euclidean space TpM . Then,
for any integrable function f on U , we have (cf. [3, Proposition C.III.2])∫

U
f(q)dµM(q) =

∫
V
f(expp(ξ))θ(ξ)dξ. (A.29)

From Theorem A.4, we know that Dp is the largest open subset of M for which the
exponential map is a diffeomorphism. If M is a complete Riemannian manifold, then the
cut locus Cp = M \Dp is a set of Riemannian measure zero [9, Proposition III.3.1], and
we can deduce the formula∫

M
f(q)dµM(q) =

∫
Dp

f(expp(ξ))θ(ξ)dξ (A.30)

for the integral of a function f over the whole manifold M .

A.6. Curvature

The curvature R of a Riemannian manifold M is a correspondence that associates to
every pair X, Y ∈ Γ(TM) of vector fields a mapping R(X, Y ) : Γ(TM)→ Γ(TM) given
by

R(X, Y )Z := ∇Y∇XZ −∇X∇YZ +∇[X,Y ]Z, Z ∈ Γ(TM), (A.31)
where ∇ is the usual Levi-Civita-connection on M . The curvature tensor R has the
following properties (cf. [12], Chapter 4, Proposition 2.2 and 2.4)

(i) R is bilinear in Γ(TM)× Γ(TM), i.e.,

R(fX1 + gX2, Y1) = fR(X1, Y1) + gR(X2, Y1),
R(X1, fY1 + gY2) = fR(X1, Y1) + gR(X1, Y2),
f, g ∈ C∞(M), X1, X2, Y1, Y2 ∈ Γ(TM).

(ii) For X, Y ∈ Γ(TM), the curvature operator R(X, Y ) : Γ(TM) → Γ(TM) is linear,
i.e.,

R(X, Y )(Z +W ) = R(X, Y )Z + R(X, Y )W,
R(X, Y )(fZ) = fR(X, Y )Z, f ∈ C∞(M), Z,W ∈ Γ(TM).
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(iii) R(X, Y )Z + R(Y, Z)X + R(Z,X)Y = 0 (Bianchi identity).

For p ∈ M , we consider a two-dimensional subspace of TpM spanned by the vectors
ξ1, ξ2 ∈ TpM . Then, the real value

K(ξ1, ξ2) := 〈R(ξ1, ξ2)ξ1, ξ2〉p√
|ξ1|2|ξ2|2 − 〈ξ1, ξ2〉p

(A.32)

is known as the sectional curvature of the space spanned by the vectors ξ1, ξ2 ∈ TpM at
p. The value K(ξ1, ξ2) does not depend on the particular choice of the vectors ξ1 and
ξ2, see [12, chapter 4, Proposition 3.1]. Certain averages of the sectional curvature
are known as Ricci curvature and scalar curvature. In particular, if {e1, e2, · · · , ed}
denotes an orthonormal basis of the tangent space TpM , then the Ricci curvature tensor
Ric : TpM × TpM → R is defined as

Ric(ξ1, ξ2) :=
d∑
i=1
〈R(ξ1, ei)ξ2, ei〉p, (A.33)

and the scalar curvature as

K :=
d∑

i,j=1,i 6=j
〈R(ei, ej)ei, ej〉p. (A.34)

The Ricci and the scalar curvature are independent of the particular choice of the or-
thonormal basis.

A.7. The Laplace-Beltrami operator

For any differentiable function f on the Riemannian manifold M , the gradient grad f of
f is the vector field defined by

〈grad f(p), ξ〉p := dfp(ξ), for all p ∈M, ξ ∈ TpM. (A.35)

Further, for a differentiable vector field X on M , the divergence of X, divX : M → R,
is defined by

divX(p) := tr(ξ → ∇ξX), (A.36)

where ξ ranges over all tangent vectors in TpM and ∇ denotes as usual the Levi-Civita
connection on M . If x : U ⊂ Rd → M is a chart on M , then grad f can be written in
local coordinates as

grad f =
d∑

j,k=1

∂(f ◦ x)
∂xj

gjk
∂

∂xk
. (A.37)
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Moreover, one has for differentiable functions f and g,

grad(f + g) = grad f + grad g,
grad(fg) = g grad f + f grad g.

If the vector field X has the representation X = ∑d
i=1Xi

∂
∂xi

, then the divergence divX
can be written in the local coordinates as

div f = 1√
detGU,x

d∑
i=1

∂(Xi

√
detGU,x)
∂xj

. (A.38)

Further, for a differentiable function f and differentiable vector fields X and Y , the
following properties hold:

div(X + Y ) = divX + div Y,
div(fX)(p) = f(p) divX(p) + 〈grad f,X〉p.

For a C2-function f on M , we define the Laplacian of f by

∆Mf := div grad f. (A.39)

The operator ∆M is referred to as the Laplace-Beltrami operator. In a local chart x :
U ⊂ Rd →M , we have

∆Mf = 1√
detGU,x

d∑
j,k=1

∂

∂xj

(√
detGU,xg

jk ∂(f ◦ x)
∂xk

)
. (A.40)

Moreover, the Laplace-Beltrami operator ∆M satisfies the properties

∆M(f + g) = ∆Mf + ∆Mg,

div(f grad g)(p) = f(p)∆Mg(p) + 〈grad f, grad g〉p,

where f and g are C2-functions on M .
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"I propose we leave math to the machines and
go play outside."

Calvin, Calvin and Hobbes by Bill
Watterson, 1992

B
Basics on function spaces and
operators on Hilbert spaces

B.1. Function spaces

First of all, we summarize some basic facts about general Lp-spaces. A detailed elabora-
tion of this topic can be found in the classical monograph [38, Section 13].

Let 1 ≤ p ≤ ∞ and (X,A, µ) be an arbitrary measure space. Then, we define the spaces

Lp(X) :=
{
f : X → C : f A-measurable,

∫
X
|f(x)|pdµ(x) <∞

}
, 1 ≤ p <∞,

L∞(X) :=
{
f : X → C : f A-measurable, ess sup

x∈X
|f(x)| <∞

}
.

On Lp(X), we define the functional ‖ · ‖p by

‖f‖p :=
(∫

X
|f(x)|pdµ(x)

) 1
p

, 1 ≤ p <∞,

‖f‖∞ := ess sup
x∈X
|f(x)|.

For f ∈ Lp(X), the function f → ‖f‖p satisfies all axioms of a norm except for the
positivity condition, i.e. ‖f‖p > 0 if f 6= 0. Therefore, let

N := {f ∈ Lp(X) : f = 0 µ-a.e.}.
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Then, N is a closed linear subset of Lp(X) and we can define the quotient space

Lp(X) := Lp(X)/N , 1 ≤ p ≤ ∞. (B.1)

Now it is straightforward to show that Lp(X) with the norm ‖ · ‖p is a linear normed
vector spaces, where f = g means that f(x) = g(x) for µ-a.e. x ∈ X,i.e., for all x ∈ X
except a set of µ-measure zero. Moreover, Lp(X) with the metric d(f, g) = ‖f − g‖p is a
complete metric space and, hence, a Banach space.

The special case p = 2 is particularly interesting. In this case, one can define the inner
product

〈·, ·〉 : L2(X)× L2(X)→ C, 〈f, g〉 =
∫
X
f(x)g(x)dµ(x), (B.2)

that turns L2(X) into a Hilbert space. Further, the norm on L2(X) can be expressed as
‖f‖2 =

√
〈f, f〉.

If the measure space (X,A, µ) consists of a Riemannian manifold M endowed with the
Borel σ-algebra and the Riemannian measure µM , we denote the Lp-spaces in (B.1) as
Lp(M) and the scalar product in (B.2) as 〈·, ·〉M .

Next, we consider absolutely continuous functions on an interval [a, b] and on the real
line R. For a detailed introduction, we refer to [38, Section 18]. A function f : [a, b]→ C
is called absolutely continuous if f admits the representation

f(x)− f(a) =
∫ x

a
f0(t)dt (B.3)

for a function f0 ∈ L1([a, b]). The function f0 is called the Radon-Nikodym derivative of
f . An absolutely continuous function f is uniformly continuous on [a, b] and differentiable
for almost all t ∈ (a, b). Further, for the pointwise derivative f ′ we have f ′(t) = f0(t) for
a.e. t ∈ [a, b]. Hence, f ′ = f0 in L1([a, b]) and we can from now on use the symbol f ′
also for the Radon-Nikodym derivative of f .
The space of all absolutely continuous functions on [a, b] is denoted by AC([a, b]). If
f, g ∈ AC([a, b]), then also fg is absolutely continuous and for the Radon-Nikodym
derivative the usual product formula holds, i.e.

(fg)′(t) = f ′(t)g(t) + g′(t)f(t)

for a.e. t ∈ [a, b]. Moreover, integration by parts for two functions f, g ∈ AC([a, b]) reads
as follows (cf. [38, Corollary 18.20]):∫ b

a
f ′(t)g(t)dt = f(a)g(a)− f(b)g(b)−

∫ b

a
f(t)g′(t)dt. (B.4)

If the underlying set is the real line R, we define the space of locally absolutely continuous
functions ACloc(R) as

ACloc(R) :=
{
f : R→ C : f |[a,b] ∈ AC([a, b]), for all [a, b] ⊂ R

}
, (B.5)
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and the space of absolutely continuous functions on R as

AC(R) :=
{
f ∈ ACloc(R) : f ′ ∈ L1(R)

}
. (B.6)

So, every absolutely continuous function f ∈ AC(R) can be written as f(x) =∫ x
−∞ f0(t)dt, where f0 ∈ L1(R) and f ′(t) = f0(t) for a.e. t ∈ R. Further, if f, g ∈ AC(R),
then the following formula holds (cf. [38, Corollary 18.21]):∫ ∞

−∞
f ′(t)g(t)dt+

∫ ∞
−∞

f(t)g′(t)dt = lim
x→∞

f(x) lim
x→∞

g(x). (B.7)

Let (X, dX) and (Y, dY ) be two metric spaces with metric dX and dY , respectively. Then,
a function f : X → Y is called Lipschitz continuous on X if there exists a constant
K ≥ 0 such that for all x1, x2 ∈ X the following inequality holds:

dY (f(x1), f(x2)) ≤ KdX(x1, x2).

Finally, we list some classical function spaces that are used within the text.

C([a, b]) := {f : [a, b]→ C : f continuous on [a,b]} , (B.8)
C2π := {f ∈ C([−π, π]) : f(−π) = f(π)} , (B.9)

AC2π := {f ∈ AC([−π, π]) : f(−π) = f(π)} , (B.10)
C1([a, b]) := {f ∈ C([a, b]) differentiable on (a,b) : f ′ ∈ C([a, b])} , (B.11)
Ck([a, b]) :=

{
f ∈ Ck−1([a, b]) differentiable on (a,b) : f (k) ∈ C([a, b])

}
. (B.12)

B.2. The Stone-Weierstrass Theorem

There exist various versions of the Stone-Weierstrass Theorem. In the following, we will
present two of them that are needed within the text.

First, let X denote a nonvoid compact Hausdorff space and C(X) the space of all con-
tinuous complex-valued functions on X. Endowed with the norm

‖f‖∞ = sup
x∈X
|f(x)|, f ∈ C(X), (B.13)

the space C(X) is a Banach space. Further, if we define an involution operator ˜ on C(X)
by f̃(x) := f(x), the space C(X) with addition and multiplication defined pointwise, and
endowed with the involution ˜ is a commutative C∗-algebra.

We say that a subset A ⊂ C(X) is a separating family of functions on X if for every
x, y ∈ X, x 6= y, there exists a function f ∈ A such that f(x) 6= f(y). We say that A is
closed under complex conjugation if for every f ∈ A, also the involution f̃ ∈ A. Then,
the following result holds (cf. [38, Theorem 7.34]):
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Theorem B.1 (Stone-Weierstrass Theorem).
Let A be a separating subalgebra of C(X) that contains the constant functions and that
is closed under complex conjugation. Then, the functions from A are dense in C(X) in
the topology induced by the norm ‖ · ‖∞.

There exists also a noncompact version of the Stone-Weierstrass theorem in the case that
X is a locally compact Hausdorff space. In this case, we consider the closed subalgebra
C0(X) ⊂ C(X) of continuous functions f on X with the property that for every ε > 0
there exists a compact set K(ε, f) ⊂ X such that |f(x)| < ε for all x ∈ X \K(ε, f). A
family of functions A ⊂ C0(X) is said to vanish nowhere if for every x ∈ X there exists
a function f ∈ A such that f(x) 6= 0. Now, we get the following result (see [38, Exercise
7.37]):

Theorem B.2 (Stone-Weierstrass Theorem - locally compact version).
Let X be a locally compact Hausdorff space. Let A be a separating subalgebra of C0(X)
that vanishes nowhere and that is closed under complex conjugation. Then, the functions
from A are dense in C0(X) in the topology induced by the norm ‖ · ‖∞.

B.3. Operators on Hilbert spaces

In this last part, we give some basic facts about operators on Hilbert spaces. A detailed
introduction can be found in the monographs [76] and [85].

Let H be a Hilbert space with scalar product 〈·, ·〉. An operator A : H ⊃ D(A) → H is
a linear mapping whose domain of definition D(A) is a subspace of H.

The operator A is called densely defined if D(A) is a dense subset of H. The operator
A is called bounded if D(A) = H and ‖A‖ = supv∈H,‖v‖=1 ‖Av‖ < ∞. The value ‖A‖
is then called operator norm of A. The operator A is called closed if the graph G(A) =
{(v,Av) : v ∈ D(A)} is a closed subset of H×H.
An operator B : H ⊃ D(B) → H is called an extension of A if D(A) ⊂ D(B) and
Bv = Av for all v ∈ D(A).

To introduce the Hilbert space adjoint A∗ of A, we consider the domain

D(A∗) := {w ∈ H : v → 〈Av,w〉 continuous on D(A)} .

If w ∈ D(A∗), the functional v → 〈Av,w〉 can be extended to a continuous linear func-
tional on H by the Hahn-Banach theorem. Therefore, if D(A) is dense in H, there exists
an unique element A∗w ∈ H satisfying

〈Av,w〉 = 〈v,A∗w〉, v ∈ D(A).

In this way, we introduce the well-defined adjoint operator A∗ : D(A∗)→ H.
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The product AB of two operators A and B is naturally defined by ABv = A(Bv) with
the domain

D(AB) := {v ∈ D(B) : Bv ∈ D(A)}.

Further, if A, B and AB are densely defined operators on H, then (AB)∗ is an extension
of B∗A∗.

The operator A is called symmetric if

〈Av,w〉 = 〈v,Aw〉

for all v, w ∈ D(A). In this case the adjoint A∗ is an extension of A. If moreover
D(A) = D(A∗) is satisfied, then A is said to be self-adjoint.

A densely defined closed operator A is called normal if A∗A = AA∗ holds. If A is normal,
then D(A) = D(A∗) and ‖Av‖ = ‖A∗v‖ for all v ∈ H. Clearly, every self-adjoint operator
A is also normal. A further important subclass of normal operators is the class of unitary
operators. An operator B is called unitary if it is bounded onH and satisfies the property
B∗B = BB∗ = I. In this case, one has the identity

〈Bv,Bv〉 = 〈B∗Bv, v〉 = 〈v, v〉

and the adjoint B∗ corresponds to the inverse operator B−1.
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Nomenclature

Chapter 1

ACloc(R) locally absolutely continuous functions on R, p. 12, 153
AC2π absolutely continuous 2π-periodic functions on [−π, π], p. 14, 152

L2([0, π], w) space of weighted square integrable functions on [0, π], p. 17
w̃ symmetric extension of the weight function w, p. 18, 27

L2
e([−π, π], w̃) space of even, weighted L2-functions on [−π, π], p. 18

e even extension operator, p. 18, 27, 40, 49
r reduction operator, p. 18, 27, 40, 49
T Dunkl operator, p. 19, 27
ε(f) mean value of the function f ∈ L2([0, π], w), p. 23
ρ(f) integral term on the right hand side of inequality (1.37), p. 23

varS(f) position variance of f ∈ L2([0, π], w), p. 23
varF (f) frequency variance of f ∈ L2([0, π], w), p. 23
wαβ weight function of the Jacobi polynomials, p. 30
P (α,β)
n Jacobi polynomial of degree n, p. 30
Lαβ second order differential operator of the Jacobi polynomials, p. 31
εαβ(f) mean value of the function f ∈ L2([0, π], wαβ), p. 31

Chapter 2

Zd
π d-dimensional cylinder of length π, p. 38

Sd−1 (d− 1)-dimensional unit sphere in Rd, p. 38
µ standard Riemannian measure on Sd−1 and Sp, p. 38, 56

C(Zd
π) space of continuous functions on Zd

π, p. 38
L2(Zd

π,W ) Hilbert space of weighted L2-functions on Zd
π, p. 39

Xd doubled d-dimensional cylinder of length 2π, p. 39
W̃ symmetric extension of the weight function W , p. 39
ˇ reflection operator, p. 39

L2
e(Xd, W̃ ) space of even, weighted L2-functions on Xd, p. 39
TX Dunkl operator on the Hilbert space L2(Xd, W̃ ), p. 40

C1,t
2π (Xd) space of continuously differentiable functions on Xd in t, p. 41
Zd
∞ d-dimensional one-sided tube, p. 48
Y d d-dimensional two-sided tube, p. 49
M Riemannian manifold, compact in Section 2.2, p. 52, 141
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Nomenclature

TpM tangential space at the point p ∈M , p. 52, 140
µM canonical Riemannian measure on M , p. 52, 147

L2(M) space of square integrable functions on M , p. 53
d(p, q) distance metric between two points p, q ∈M , p. 53, 144
B(p, δ) open ball with center p and radius δ on M , p. 53, 144
S(p, δ) sphere with center p and radius δ on M , p. 53, 144
B(p, δ) open ball centered at 0 with radius δ in TpM , p. 53, 144
S(p, δ) sphere centered at 0 with radius δ in TpM , p. 53, 144

Sp unit sphere in the tangential space TpM , p. 53, 144
γξ geodesic with initial conditions γξ(0) = p and γ′ξ(0) = ξ, p. 53, 143

expp the exponential map from TpM to M , p. 53, 144
Dp maximal set in TpM for which expp is diffeomorphic, p. 54, 146
Cp tangential cut locus of p, p. 54, 146
Dp image of Dp under expp, p. 54, 146
Cp cut locus of p, p. 54, 146
θ(ξ) Jacobian determinant of expp at ξ ∈ TpM , p. 54
P Polar transform, p. 55

R(ξ) geodesic distance to the cut locus Cp in direction ξ, p. 55, 146
Zd
R cylinder with right boundary given by the function R, p. 55

exp∗p f pull back of the function f by expp, p. 56
f ∗ pull back of the function f by P and expp, p. 56

Θ(t, ξ) Jacobian determinant of expp in geodesic polar coordinates, p. 56
LR lipeomorphism determined by the distance function R, p. 57

L∗Rf ∗ pull back of the function f by the mapping expp PLR, p. 57
WM,p(τ, ξ) Jacobian determinant of the mapping expp PLR on Zd

π, p. 57
∂
∂t∗ radial differential operator for functions on M , p. 62

varMF,p(f) radial frequency variance of the function f on M , p. 63
TXM,p Dunkl operator on the Hilbert space L2(Xd, W̃M,p), p. 63
εp(f) mean value of the function f with respect to p ∈M , p. 64
ρp(f) integral term on the right hand side of inequality (2.90), p. 64

varMS,p(f) position variance of the function f on M , p. 64
∆M Laplace-Beltrami operator on the manifold M , p. 66, 149
∆p,t radial part of the Laplace-Beltrami operator on M , p. 66
Ω compact star-shaped subdomain of M , p. 67
∂Ω boundary of Ω, p. 67
Q(ξ) geodesic length from p to ∂Ω in direction ξ ∈ Sp, p. 67
E Riemannian manifold diffeomorphic to Rd, p. 71
Sdr sphere with radius r in Rd+1, p. 80

RPdr real projective space with diameter rπ, p. 81
CPdr complex projective space with diameter rπ, p. 82
HPdr quaternionic projective space with diameter rπ, p. 82
Cadr Cayley plane with diameter rπ, p. 83
Td
r flat torus with diameter

√
2r, p. 85
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Nomenclature

Hd
r hyperbolic space with negative curvature − 1

r2 , p. 86
K(ξ1, ξ2) sectional curvature of the space span{ξ1, ξ2}, p. 87, 149

Ric Ricci curvature tensor on TpM × TpM , p. 88, 149

Chapter 3

p(α,β)
n orthonormal Jacobi polynomials, p. 94

Π(α,β)
n ,Π(α,β)

m,n ,Π
(α,β)
R,n polynomial subspaces of L2([0, π], wαβ), p. 94

S(α,β)
n ,S(α,β)

m,n ,S
(α,β)
R,n unit spheres in the polynomial spaces, p. 94

P(α,β)
n ,P(α,β)

m,n ,P(α,β)
R,n optimally space localized polynomials, p. 96

al, bl coefficients of the three-term recurrence relation of p(α,β)
n , p. 96

p(α,β)
n (·, c) associated Jacobi polynomials, p. 97

p(α,β)
n (·, c, γ, δ) scaled co-recursive associated Jacobi polynomials, p. 97

Jmn Jacobi matrix corresponding to the polynomial p(α,β)
n (·,m), p. 97

Ln,Lmn ,LRn subsets of the unit spheres S(α,β)
n ,S(α,β)

m,n ,S
(α,β)
R,n , p. 101

K(α,β)
n Christoffel-Darboux kernel, p. 110
Vn de La Vallée Poussin kernel, p. 114

Q(α,β)
n (x, c) monic associated Jacobi polynomials, p. 117
PM
l radial spherical polynomial of order l on M , p. 124

PM
l,k,j general spherical polynomial of order l on M , p. 125

ΠM
n ,ΠM

m,n,ΠM
R,n spaces of spherical polynomials, p. 126

SMn ,SMm,n,SMR,n unit spheres in the spaces of spherical polynomials, p. 126
LMn ,LM,m

n ,LM,R
n subsets of the unit spheres SMn ,SMm,n, SMR,n , p. 126

PMn ,PMm,n,PMR,n optimally space localized spherical polynomials, p. 127
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