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Abstract—The performance of linear filters degrade drastically
when applied to mitigate intersymbol interference caused by
channels with frequent nulls in their spectral characteristics
like, e.g., time-dispersive radio channels. In such cases, the
well-known Decision Feedback Equalizer (DFE) is one possible
nonlinear approach to improve the quality of the receiver.
However, adapting the DFE filter coefficients to equalize time-
varying channels is computationally intense, especially if the
dimension of the observation vector is very high.

In this paper, we apply the Conjugate Gradient (CG) algorithm
to a conventional Minimum Mean Square Error (MMSE) DFE in
order to reduce its computational complexity. Moreover, we com-
pare its performance to the one of MMSE DFE versions which
are based on the computationally efficient Least-Mean-Square
(LMS) or Recursive Least-Squares (RLS) algorithm, respectively.
The analysis additionally includes a detailed investigation of
computational complexity with respect to the required number
of FLoating point OPerations (FLOPs). Simulation results when
applied to a digital communications system show the ability of
the CG based MMSE DFE to outperform either the LMS and the
RLS based MMSE DFE although its computational complexity
is even smaller in most of the cases.

I. INTRODUCTION

The linear Minimum Mean Square Error (MMSE) filter
estimates an unknown signal based on an observation by

minimizing the Mean Square Error (MSE) between its out-

put and the desired signal. Since the computation of the

filter coefficients implies the solution of a system of linear

equation—the so-called Wiener-Hopf equation—the computa-

tional complexity of the equalizer design increases with the

dimension of the observation signal in cubic order. This can

be especially computationally cumbersome if the filter needs

to be periodically adjusted due to a time-varying channel.

In such a case, adaptive implementations of the MMSE

filter like the Least-Mean-Squares (LMS) or the Recursive
Least-Squares (RLS) algorithm [1] represent computationally

efficient approximations of the optimal MMSE solution. Re-

cently, the Conjugate Gradient (CG) algorithm—originally

designed to solve iteratively systems of linear equations—

has been applied to adaptive filtering [2], [3]. For example,

Chowdhury et al. [4] used the CG algorithm as an adaptive

linear MMSE equalizer for a multiuser multiple-antenna sys-

tem and showed that the CG based equalizer has excellent

convergence properties at a moderate computational cost. The

CG algorithm neither requires the matrix manipulation as in

the RLS nor has any instability problems that afflict some fast

RLS methods [2].

All the above mentioned contributions are based on the

application of the CG algorithm to linear adaptive filters in

order to reduce their computational burden. However, if the

spectral characteristic of the channel possesses frequent nulls

which is the case for, e.g., time-dispersive radio channels,

nonlinear processing like the Decision Feedback Equalizer
(DFE) [5] is required to mitigate the effect of the dispersive

channel. In order to reduce the computational complexity of

the MMSE DFE, Zoltowski et al. [6] suggested recently a

CG based implementation thereof and applied it to digital

television which employs a 8-VSB modulation scheme with

no memory.

The contribution of this paper is to apply the CG algorithm

to the MMSE DFE where the statistics is either estimated

via a sample-mean or correlation procedure, or computed

based on the channel matrix which is estimated by using the

Least-Squares (LS) method (e.g., [7]). The latter estimation

approach has the advantage that it exploits special structures

like, e.g., zero entries or Toeplitz structure, in the statistics,

thus, reducing the number of parameters to be estimated and

leading to a better estimate or performance if the length of

the training sequence remains constant. Moreover, we present

MMSE DFE versions which are based on the computationally

efficient LMS or RLS algorithm and compare its performance

to the one of the CG based MMSE DFE when applied to a

digital communications system with parameters according to

the Enhanced Data rate for GSM Evolution (EDGE) standard

which suffers from severe intersymbol interference due to a

special type of pulse shaping. Finally, we present a detailed

investigation of the computational complexity for all proposed

MMSE DFE implementations by counting the required num-

ber of FLoating point OPerations (FLOPs).

The next section briefly reviews the MMSE DFE. In Sec-

tion III, the CG algorithm is introduced and its application

to the MMSE DFE is explained. The LMS and RLS based

MMSE DFE is derived in Section IV. Before applying the

proposed algorithms to a digital communications system in
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Section VI, we investigate the computational complexity of

all algorithms in Section V.

II. MMSE DECISION FEEDBACK EQUALIZATION

gH + Q(·)

δ[n− 1]fH

y[n] x̃[n]
x̂[n]

x̃[n− 1]

Fig. 1. MMSE decision feedback equalizer

The block diagram of the MMSE DFE which we consider

in the following of this paper is depicted in Figure 1. The

feedforward filter g ∈ C
N and the feedback filter f ∈ C

B

estimate the desired signal x[n− ν] based on the observation

vector y[n] ∈ C
N which comprises the observed signal

sequences at the multiple antennas of the receiver, as well

as the already decided symbols

x̃[n− 1] = δ[n− 1] ∗ x̃[n]

=

⎡
⎢⎢⎢⎣

δ[n− 1]
δ[n− 2]

...

δ[n−B]

⎤
⎥⎥⎥⎦ ∗ x̃[n] =

⎡
⎢⎢⎢⎣

x̃[n− 1]
x̃[n− 2]

...

x̃[n−B]

⎤
⎥⎥⎥⎦ ∈ C

B ,
(1)

respectively. Here, ν denotes the latency time of the DFE,

the operation ‘∗’ convolution, and δ[n] the unit impulse. The

decided symbols x̃[n] are obtained from the estimated signal

x̂[n] via quantization or hard decision denoted by Q(·).
The feedforward and feedback filter are designed to mini-

mize the MSE

ξ(g,f) = E
{
|x[n− ν]− x̂[n]|2

}
, (2)

i.e., the optimal filter coefficients compute as

(g,f) = argmin
(g′,f ′)

ξ(g′,f ′). (3)

If we assume that the statistics of the already decided symbols

and the one of the desired symbols are the same which is

true in case of no decision errors, the cross-correlation matrix

between y[n] and x̃[n− 1] can be written as

Ryx̃ = E
{
y[n]x̃H[n− 1]

}
= E

{
y[n]xH[n− ν − 1]

}
= Ryx,

(4)

where we used the fact that the decided symbol x̃[n] =
Q(x̂[n]) is an estimation of the delayed symbol x[n− ν] due

to the latency of the DFE (cf. also the cost function in Eq. 2).

Note that throughout this paper, (·)T denotes transpose, (·)∗
conjugate, and (·)H Hermitian, i.e., conjugate transpose. With

the auto-correlation matrix Ryy = E{y[n]yH[n]}, the cross-

correlation vector ryx = E{y[n]x∗[n− ν]}, and the variance

σ2
x = E{|x[n− ν]|2}, the MSE can be rewritten as

ξ(g,f) = σ2
x − 2 Re{gHryx}+ gHRyyg

+ 2 Re{gHRyxf}+ σ2
xfHf ,

(5)

and the solution of the optimization in (3), i.e., the MMSE

DFE filter coefficients finally compute as

g =
(

Ryy − 1
σ2

x

RyxRH
yx

)−1

ryx, (6)

f = − 1
σ2

x

RH
yxg. (7)

III. CONJUGATE GRADIENT BASED MMSE DFE

The computation of the MSE optimal DFE filter coefficients

according to (6) and (7) involves the solution of a system of

N linear equations with N unknowns, i.e.,

(
Ryy − 1

σ2
x

RyxRH
yx

)
g = ryx, (8)

each time when the statistics of the system is changing

which is periodically the case if the wireless channel is time-

varying. Adapting the filter coefficients to the channel state

can be computationally cumbersome because the complexity

of solving a system of linear equations is of cubic order.

One way of efficiently solving a system of linear equations

is to apply the CG algorithm [8]. Here, we apply it to

compute iteratively the coefficients g and f of the equalizer

by solving (8). The CG method is based on Gram-Schmidt
orthogonalization where the search directions dn are con-

structed by conjugation of the residuals rn = ryx −Ryygn

corresponding to the approximate solutions gn. The residuals

are orthogonal to all previous search directions, and hence,

it gives a new linearly independent search direction for each

iteration, unless and until the residual is zero which is the

case when the algorithm finds the optimum solution. Since

the residuals are orthogonal to previous search directions, they

are also orthogonal to previous residuals. Therefore, the new

residual rn+1 is a linear combination of previous residuals

and Ryyrn. It can be shown that the (n + 1)-dimensional

subspace Dn+1 spanned by the search directions d0, d1, . . . ,

and dn, is formed by the sum of the previous subspace Dn

and the subspace spanned by RyyDn, resulting in a Krylov
subspace [9]. Algorithm 1 summarizes the CG method with

D iterations to solve (8) in order to get finally the filter

coefficients according to (6) and (7). Note that if D < N ,

the resulting filter coefficients are only approximations of the

optimal MMSE DFE coefficients.

In order to perform Algorithm 1, the unknown statistics need

to be estimated. This can be done by estimating the channel

based on a LS approach and using the resulting channel

estimate to compute the statistics like, e.g., presented in [7].

An alternative way is to estimate the statistics directly via

a sample-mean or correlation procedure. From the received

observation vector y[n] and the training symbols x[n], con-

sidering the ergodicity theorem, we can estimate the auto-

correlation matrix, the cross-correlation matrix, and the cross-
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Algorithm 1 CG based MMSE DFE

g0 ← 0N (or the filter vector of the previous block)

r0 ← ryx −Ryyg0

d0 ← r0

for n = 0, 1, . . . , D − 1, D ≤ N do
αn ← rH

n rn/(dH
n Ryydn)

gn+1 ← gn + αndn

rn+1 ← rn − αnRyydn

βn+1 ← rH
n+1rn+1/(rH

n rn)
dn+1 ← rn+1 + βn+1dn

end for
ĝ ← gD

f̂ ← −RH
yxgD/σ2

x

correlation vector for an Lp-length training sequence via

R̂yy =
1
Lp

Lp−1∑
n=0

y[n]yH[n], (9)

R̂yx =
1
Lp

Lp−1∑
n=0

y[n]xH[n− ν − 1], (10)

r̂yx =
1
Lp

Lp−1∑
n=0

y[n]x∗[n− ν], (11)

respectively.

Note that the fundamental difference between both estima-

tion approaches is the fact that the LS channel estimation

based scheme is exploiting the structure of the correlation

matrices, i.e., zero entries, Toeplitz structure, etc., whereas

the correlation based method does not. We will see in the

simulation results of Section VI that the exploitation of struc-

tures leads to a better performance at the same or even at

a smaller computational cost. This is because the number of

parameters to be estimated is reduced, hence, if the length

of the training sequence is kept constant, the estimation of

statistics is improved.

IV. LMS AND RLS BASED MMSE DFE

The LMS and RLS algorithms [1] are two well-known

adaptive implementations of the MMSE equalizer. Here, we

extend the LMS and RLS idea to adaptively compute the filter

coefficients of the MMSE DFE. To do so, we reformulate (6)

and (7) to get the following system of linear equations:[
Ryy Ryx

RH
yx σ2

x1B

] [
g
f

]
=

[
ryx

0B

]
. (12)

Then, with the definitions

z[n] =
[

y[n]
x̃[n− 1]

]
∈ C

N+B , w =
[
g
f

]
∈ C

N+B , (13)

the LMS and RLS algorithm can be applied to solve (12) as

described by Algorithms 2 and 3. Compared to the CG based

MMSE DFE which can be implemented by either exploiting

the structure of statistics or not, the LMS and RLS based

MMSE DFE cannot exploit the structure in any case. This

is a major drawback of the LMS and RLS algorithm in the

given context.

Algorithm 2 LMS based MMSE DFE

w0 ← 0N+B (or the filter vector of the previous block)

for n = 0, 1, . . . , Lp − 1 do
x̂[n] ← wH

n z[n]
e[n]← x[n− ν]− x̂[n]
wn+1 ← wn + μz[n]e∗[n]

end for
ŵ ← wLp

Algorithm 3 RLS based MMSE DFE

w0 ← 0N+B (or the filter vector of the previous block)

P 0 ← δI
for n = 0, 1, . . . , Lp − 1 do

kn ← λ−1P nz[n]/(1 + λ−1zH[n]P nz[n])
ξ[n] ← x[n− ν]−wH

n−1z[n]
wn+1 ← wn + knξ∗[n]
P n+1 ← λ−1P n − λ−1knzH[n]P n

end for
ŵ ← wLp

V. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we investigate the computational complexity

of the different DFE implementations by counting the exact

number of real-valued FLOPs involved when computing the

equalizer coefficients. Here, one FLOP is defined as either

one real multiplication or one real summation. Considering

the Hermitian symmetry of the auto-correlation matrix, the

CG based MMSE DFE requires

CCG-C =
4
κ

(
κLp − N

K
+ 1

)(
N2 + (2B + 1)N + 1

)
+ D

(
8N2 + 26N − 2

)
+ N2(4B − 2)

+ N

(
4B − 2

κ
(B + 1) + 2

)
− 12 FLOPs,

(14)

if statistics is computed via correlation as given in (9), (10),

and (11). If statistics is computed based on LS channel

estimation, the CG based MMSE DFE requires

CCG-LS = D
(
8N2 + 26N − 2

)
+ 4(2 + B)N2

+ 8BN − 7N + 8KL(κLp − L) + 6KL

+
2KL

κ

(
2KL

κ
− 1

)
− 3 FLOPs.

(15)

Note that L is the length of the channel impulse response, K
the number of receive antennas, and κ an oversampling factor.

Here and in the simulation results of the next section, we

assume that the received signal is sampled κ times per symbol

duration before it is processed by the DFE (see, e.g., [10]).
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Finally, the number of FLOPs required for the LMS and

RLS based MMSE DFE computes as

CLMS =
1
κ

(
κLp − N

K
+ 1

)
(16(N + B) + 2), (16)

CRLS =
1
κ

(
κLp − N

K
+ 1

)(
16 +

24
N + B

)
(17)

· (N + B)2. (18)

VI. NUMERICAL SIMULATIONS

We consider a digital communications system with parame-

ters according to the EDGE standard, i.e., with 8-PSK modula-

tion and Laurent pulse shaping [11]. The Laurent impulse is a

linearized Gaussian Minimum-Shift Keying (GMSK) impulse

with a duration of five symbol times, thus, introducing se-

vere intersymbol interference even without channel distortion.

The symbol sequence is transmitted with a symbol time of

T = 3.69 μs and propagates over a time-varying Rayleigh

fading channel with a maximum doppler frequency of about

83 Hz, corresponding to a velocity of 100 km/h at a carrier

frequency of 900 MHz, and a delay spread of τmax equals

three symbol times. Hence, the combination of pulse shaping

and channel can be modeled as a L = 6 tap filter. We

assume a constant channel during one burst with 148 symbols

(excluding the guard symbols) where Lp = 26 symbols are

used for training. At the receiver, the space-time observation

vector y[n] comprises 15 time samples at each of the K = 2
antennas, i.e., its dimension computes as N = 2 · 15 = 30,

where κ = 2 samples have been taken per symbol duration.

The feedback filter has B = 6 taps and the latency time

ν = 17. The following parameters have been chosen for

Algorithms 2 and 3: μ = 0.03, δ = 0.3, and λ = 1.

TABLE I
COMPUTATIONAL COMPLEXITY OF MMSE DFE

MMSE DFE type FLOPs

LMS 9,056
RLS 345,312
CG-C, D = 4 it. 84,966
CG-C, D = 6 it. 100,922
CG-LS, D = 4 it. 66,559
CG-LS, D = 6 it. 82,515

Table I shows the computational complexity with respect to

the number of FLOPs for the system parameters assumed in

this section. We observe that the LMS based MMSE DFE is

the computational cheapest solution whereas the RLS based

MMSE DFE requires the highest number of FLOPs. Besides,

the LS channel estimation based CG algorithm is computation-

ally cheaper than the correlation based counterpart. In case of

4 iterations, the LS based CG implementation of the MMSE

DFE requires less than a fifth of the number of FLOPs needed

to perform the RLS based MMSE DFE.

Next, we investigate the performance of the proposed

algorithms by evaluating the resulting uncoded Bit Error
Rate (BER) for different Signal-to-Noise Ratio (SNR) values.
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U
n
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d
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B
E

R

CG-C, l = 6 it.
CG-C, l = 4 it.
RLS
LMS

Fig. 2. BER comparison with correlation based CG method when starting
algorithms with zero vector
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Fig. 3. BER comparison with correlation based CG method when starting
algorithms with filter vector of the previous block

Figure 2 presents a BER comparison of the LMS, RLS, and

CG based MMSE DFE where the latter estimates the statistics

based on the correlation procedure. At the beginning of each

block, all algorithms are initialized with a filter vector equals

zero. The simulation results show that the CG based MMSE

DFE with only 4 iterations performs significantly better than

either the LMS and RLS based MMSE DFE at the given

SNR range although its computational complexity is smaller.

Only the LMS based MMSE DFE is computationally much

more efficient than the CG based MMSE DFE, however, its

performance is not acceptable. Note that the CG based MMSE

DFE with 4 iterations outperforms the CG based MMSE

DFE with 6 iterations at lower SNRs due to the regularizing

effect [12] of the CG algorithm.

Figure 3 presents a BER comparison of the given algo-

rithms if they are initialized with the filter coefficients of the

previous block. Doing so improves the performance of all

algorithms drastically. However, the CG based MMSE DFE

still outperforms the remaining adaptive DFE implementations

for all considered values of D. In case of the LMS based

MMSE DFE, the initialization with the filter vector of the

previous block results directly in a longer training sequence.

Note that the performance of the RLS based MMSE DFE can

be further improved by starting the correlation also with the
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Fig. 4. BER comparison with LS based CG method when starting algorithms
with zero vector
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Fig. 5. BER comparison with LS based CG method when starting algorithms
with filter vector of the previous block

final statistics estimate of the previous block, which can be

also applied to the CG based MMSE DFE. However, this has

not been considered in this paper.

Finally, Figures 4 and 5 present BER comparisons where the

statistics of the CG based MMSE DFE is calculated based on

a LS estimation of the channel. We see that the performance

of the CG based MMSE DFE improves if the estimation of

statistics exploits its structure appropriately. This is especially

remarkable if we recall that the computational complexity is

even smaller than in case of statistics estimation via correlation

(cf. Table I).

VII. CONCLUSIONS

In this paper, we derived an MMSE DFE implementation

based on the CG algorithm. The simulation results when

applied to a digital communications system together with a

detailed computational complexity analysis showed that the

CG based MMSE DFE outperforms the computationally more

expensive RLS based MMSE DFE both in terms of BER and

in terms of computational complexity. Contrary to that, the

LMS based MMSE is computationally most efficient among

all algorithms, however, its performance is too poor in the

considered scenario. Using the initial values of the coefficients

as the values computed for the previous block improves the

performance of all algorithms without any increase in com-

putational complexity. It remains to mention that one should

determine statistics via LS channel estimation if one decides

to use the CG based MMSE DFE because this implementation

achieves lower BERs than the correlation based version despite

the decreased computational complexity.
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