TECHNISCHE UNIVERSITAT MUNCHEN

Lehrstuhl fir Numerische Mechanik

Residual-based variational multiscale
methods for turbulent flows and
fluid-structure interaction

Peter Gamnitzer

\olistandiger Abdruck der von der Fakultat fur Maschimeesen der Technischen Universitat
Munchen zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Wolfgang H. Polifke, Ph. D. (CE&N
Prufer der Dissertation:
1. Univ.-Prof. Dr.-Ing. Wolfgang A. Wall
2. Prof. Assad A. Oberai, Ph. D.
Rensselaer Polytechnic Institute, Troy, NY/USA

Die Dissertation wurde am 14. April 2010 bei der Techniscbeiversitat Miinchen eingereicht
und durch die Fakultat fur Maschinenwesen am 21. Juni 20@nommen.






Abstract

Abstract

Many physical problems are characterised by a two-way @ctesn of fluid flow and elastic
structural deformation. Such fluid-structure interact{®I) problems cannot be split into two
independent subproblems but rather have to be treated agppéedosystem. This is the case for
instance for vortex shedding of flexible bodies or for winaiged thin-walled structures. Many
FSI applications of engineering interest will involve futlirbulent, incompressible flow.

The simulation framework established in the present work developed with respect to an
application in this important subclass. Thus, one chabefaged in this thesis is the combina-
tion of a multiscale component introduced by turbulence amaultiphysics part related to the
coupling of fluid and elastic solid. The emphasis is on thetisedle part, i.eon the turbulent
flow subproblem. Due to the enormous range of scales invdlvédgh REYNOLDS number
turbulence, a resolution of all scales is not feasible.

Within the present thesis, this problem is overcome usirgeleddy simulation (LES). In this
approach, the large scales are resolved while the morengsalyemall scales are modelled. The
multiphysics component is treated by an adaption of the poMvielock-preconditioned mono-
lithic solution algorithms for coupled problems, which areailable in the in-house research
code BACI. All subdomain problems in the proposed simutafi@mework are stated using
finite element (FE) discretisations of weak forms. In the Fipraach, the spatially discrete
problem is obtained by a restriction of trial and weightingdtion spaces to finite dimensional
subspaces. These ‘resolved’ subspaces introduce a natrsicale partitioning of the fluid
subproblem, separating large, resolved scales from soraksolved scales. The required clos-
ure for the unresolved scales is introduced by residuaddbasodel terms in the equation for the
resolved scales. This is done based on local algebraicgsak procedure that is adapted from
stabilised methods. Within the present work, this funaidrES approach is formulated in an
Arbitrary-LAGRANGEan-EULERian setting, i.efor deforming domains.

It is studied thoroughly, especially with respect to thedidependency of the unresolved
scales. Regarding resolved-scale quantities, thesetigagens do not indicate a positive effect
of a consideration of the time-dependency of the unresobeades. Nevertheless unresolved-
scale velocities are represented robustly for such an apjravhile the corresponding quantities
in the conventional approach exhibit a dependency on the step size. In addition, the numer-
ical dissipation of model terms is analysed. An explanat@rthe robustness of the resolved
scales in the conventional approach is given based on thelimedergy budget. For small time
steps, the dissipation related to the least-squares inassipility stabilisation compensates the
diminishing terms related to the unresolved-scale vakxit It is shown that the well-known
improved performance of the isogeometric, IMJRBS shape function based, approach with
respect to the resolved-scale results comes along with a pronounced representation of the
unresolved scales. Furthermore, for a turbulent flow are@usguare cylinder, a weak imposition
of the no-slip boundary conditions is shown to improve thprapimation of the drag value at
the cost of increased computational expenses.

Implications of these observations are that the conveatimsidual-based approach is suf-
ficient to serve as an LES model in the turbulent FSI contegttaat it is recommendable to
employ an isogeometric approach if possible. The feagthbif the combination of the two
methods is proven in one example, showing clearly the piatienit the established framework
for turbulent FSI.
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Zusammenfassung

Zusammenfassung

Physikalische Probleme kdnnen gleichzeitig eine strigsmechanische und eine strukturme-
chanische Komponente besitzen. Sind diese beiden Teldpnabaufgrund gegenseitiger Wech-
selwirkung nicht unabhangig voneinander, so mussenailteitlich als gekoppeltes System
behandelt werden. Man spricht dann von Fluid-Struktuesiaittion (FSI). Dies ist zum Bei-
spiel bei Wirbelablosungen an flexiblen Korpern oder i Wind angeregten, dinnwandigen
Strukturen der Fall. Viele ingenieurwissenschatftliclewante FSI Anwendungen sind solche mit
turbulenten, inkompressiblen Stromungen.

Die vorliegende Arbeit beschaftigt sich mit der Simulation Vorgangen aus dieser bedeu-
tenden Klasse. Sie behandelt demnach zwei grundlegentemstellungen: Zum einen muss
die Mehrskalennatur der turbulenten Stromung berltkigt werden und gleichzeitig muss
die Mehrfeldeigenschaft, die von der Kopplung zwischerdi@trng und elastischer Struktur
herriihrt, beachtet werden. Der Schwerpunkt der Arbegtlauf dem stromungsmechanischen
Teil des Problems. Dieser stellt eine besondere Herausfand dar, da aufgrund der enormen
Bandbreite an GroRenskalen, die in einer turbulenteonirig bei hoher RyNoLDszahl ent-
halten sind, eine Auflosung aller Skalen in einer Simutatioder Praxis nicht moglich ist.

Um dieser Problematik zu begegnen wird hier auf glearge-Eddy* Simulationsansatz (LES)
zuriickgegriffen. Er basiert auf der Idee, die groRereal&kaufzuldsen und den fehlenden Bei-
trag der universelleren, kleinen Skalen durch ein Modekmetzen. Die effiziente Behandlung
der Mehrfeldproblematik erfolgt im Rahmen dieser Arbeitatueine geeignete Anpassung der
leistungsfahigen blockweise vorkonditionierten mottofichen Losungsalgorithmen aus dem
lehrstuhleigenen Forschungsprogramm BACI. In dem voedigsih ganzheitlichen Simulations-
konzept werden alle Felder mit Hilfe von Finite Element (Ffisatzen diskretisiert. In einem
FE Ansatz wird die raumliche Diskretisierung durch einedehrankung der in der schwachen
Form verwendeten Funktionenraume auf endlich dimens&onailraume vorgenommen. Dies
erzeugt eine naturliche Partition des Stromungsproblengrol3e, aufgeldoste Skalen aus den
endlich dimensionalen Teilraumen und kleine, nicht aldfgte Skalen aus deren Komplement.
Aus dem LES Ansatz resultiert ein Schliel3ungsproblem fé@micht aufgelosten Terme in der
Gleichung fur die aufgelosten Skalen. Die SchlieBunglgtidurch eine Approximation, die auf
dem Residuum der grof3en Skalen basiert. Diese Approximetiourch ein ahnliches Vorgehen
im Rahmen von stabilisierten finiten Elementen motivied beruht auf lokalen, algebraischen
Skalierungsargumenten. Um eine Anwendung im ZusammenhériS! zu ermoglichen, wird
dieser Ansatz in einem ArbitraryAGRANGEan-BJLERian Kontext formuliert, das heif3t fur be-
wegte Gebiete.

Der verwendete Ansatz wird fur Testprobleme validiert @migehend untersucht. Dies gilt
insbesondere fur die Auswirkungen der Zeitabhangigtertnicht aufgelosten Skalen und den
Einflul3 einer isogeometrischen, d.h. NURBS basierten, \WahAnsatzfunktionen. Aus diesen
Untersuchungen kann auf keinen positiven Effekt eineuBlesichtigung der Zeitabhangigkeit
der nicht aufgeldsten Skalen im Bezug auf das Ergebnislifiaufgeldosten Skalen geschlos-
sen werden. Trotzdem fuhrt ein solches Vorgehen im Verpleum traditionellen Ansatz, der
die zeitliche Entwicklung der nicht aufgelosten Skalebenticksichtigt lafit, zu einer robuste-
ren, zeitschrittunabhangigen Darstellung nicht auwdgtdi, d.h. modellierter, Geschwindigkei-
ten. Eine Erklarung fur die tberraschende Robustheitadégeldsten Skalen im traditionellen
Ansatz wird in dieser Arbeit aus der Untersuchung der nuscbgn Dissipation der Modell-
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terme abgeleitet. Fur kleine Zeitschrittweiten Ubemmitder Stabilisierungsterm aus der Konti-
nuitatsstabilisierung die zuriickgehenden Beitrageadeeren Terme. Weiter wird gezeigt, dass
die vom isogeometrischen Ansatz erzeugte verbessertéedbdang aufgeloster GroRen mit einer

starker ausgepragten Modellierung der nicht aufgeldSkalen einher geht. Schliel3lich wird

auch noch am Beispiel einer turbulenten Umstromung eegsteckigen Zylinders gezeigt, daf3

eine schwache Aufbringung der Haftbedingung den bereehn&iderstandsbeiwert reduzieren

kann und damit zum Preis eines erhdohten Rechenaufwanel®essere Approximation erreicht

wird.

Eine wesentliche Folgerung aus den Ergebnissen dieseitAshealass die traditionelle Her-
angehensweise ohne Beriicksichtigung der Zeitabhaenidgr nicht aufgelosten Skalen fur die
betrachteten FSI Problemstellungen ausreicht. Der Eingat isogeometrischen Ansatzfunk-
tionen wird, sofern moglich, aus Genauigkeits- und Effizigrinden empfohlen. Das Potential
einer Kombination dieser beiden Ansatze wird durch einisf@delsimulation verdeutlicht.
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1 Introduction

1.1 Motivation

The application of finite elements in simulation of fluidigtture interaction has been under
intensive research for many years now. Significant prognassbeen made in this field, allow-
ing impressive simulations of complex biological systerks tracheobronchial trees or aortic
aneurysms as they can be found iDK'LER et al [149]. Nevertheless, fluid-structure interac-
tion involving turbulent flow is still an open research topecause of the additional complexity
introduced by the multiscale character of turbulence. Huet that the turbulent regime is char-
acteristic for many applications of engineering interdsivgs that further developments in this
direction are necessary. Examples for such applicatiombedound, for instance, in aircraft en-
gineering or civil engineering where air-flow induced fasgateract with aeroplanes, buildings,
bridges, wind turbines and so on.

An experimental investigation of such problems is not gtiforward and would involve
costly experimental setups like wind tunnels. Numericadidation allows to reduce these costs
and to obtain detailed information in a very convenient widgvertheless, it should be pointed
out that numerical simulation cannot make experimentslebsolt is rather necessary to check
thoroughly the results of each numerical method againsgtmxgnts or known solutions.

Finite elements are well established as the preferred rddtungroblems based on self-adjoint
elliptic or parabolic partial differential operators, whi can be found for instance in heat con-
duction and structural mechanics. Among other things,auskthe finite element method ap-
preciate the easy and accurate representation of compbemejees, the natural way differential
type boundary equations can be included and furthermoredheenient framework for an im-
plementation. In computational fluid dynamics, usage otdielements is not as widespread
yet. Nevertheless, since the introduction of stabilisethimgs, finite elements have constantly
been gaining popularity also in this field.

A characteristic feature of finite elements is that the agipnation theory behind this method
is based on weak forms and function spaces. Thus, discretenzal solutions correspond
not only to point values but to functions that are defined anwihole computational domain.
The concept of function spaces opens a door to a ‘natural’ efegcale separation allowing
turbulence modelling approaches that are embedded in thergleconcept of finite elements.
The main topic of this thesis is located in the overlap redietween turbulent flows and finite
elements. Methodologies are developed in particular veigfard to applications in fluid-structure
interaction, but they can be applied to other multiphysicbfems like turbulent combustion as
well.
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1.2 Scope and objectives

Within this work, a complete framework for residual-basadje eddy simulation on deformable
domains is provided, which can be used for the simulatioruadfstructure interaction involving
turbulent, incompressible flow. This framework consistsnany elements: Spatial discretisa-
tion using LAGRANGEan, serendipity and isogeometric finite elements, numietieatment of
time derivatives of resolved and unresolved, m®delled, quantities and residual-based subgrid
approximations.

The residual-based variational multiscale method (redibased VMM) arising from these
building blocks is investigated in detail. Special attentis given to an investigation of a time-
dependent treatment of the subgrid scales. Furthermagairpact of an isogeometric element
choice on unresolved scales is analysed. Numerical digsipaates associated with the model
terms arising from residual-based approximation of theesalved scales are evaluated, provid-
ing further insight into the mechanisms behind residuaeolbapproaches. Other integral parts
of this thesis are a careful evaluation of weak boundary timms with respect to forces im-
posed on structures in turbulent flows, and a brief discassifdhe efficiency of isogeometric
approaches in comparison to serendipity-based finite elesn&urthermore, the impact of ele-
ment length definitions in boundary layer meshes is clarid a consistent way for computing
spatial averages of finite element solution functions ivjoied.

In addition, the practicability of the presented framewdok fluid-structure interaction is
illustrated based on two examples: turbulent channel flow oresh that is deformed according
to a prescribed mesh motion and turbulent flow through a d&fag pipe. The latter incorporates
residual-based variational multiscale modelling and ésogetric finite elements for turbulent
fluid-structure interaction in a monolithic framework.

1.3 Overview

This thesis addresses a variety of different subjects. iPhlysquirements are discussed as
well as numerical algorithms. The computational approade investigated, validated and
combined with other algorithms in order to generate a mettioidh can be successfully applied
to turbulent fluid-structure interaction problems. Altlybueverything is directed towards this
application, the main focus of the thesis remains on the flaitl In order to simplify navigation
through the thesis and to help the reader to recognise theections between the individual
chapters, their contents are summarised briefly in theviatg.

In chapter 2, governing equations for flows on deforming dosare provided. Further-
more, an introduction to turbulence is given. Some basiaadge on this topic is required to
understand the methods and results that are presentediater

The governing equations form the base of the numerical glgordescribed in chapter 3. Its
main topic is a stabilised finite element method for the sofuof flow problems. Issues of time
integration are addressed, including an advanced linadniligy analysis for the generalised-
alpha method yielding an explicit formula for root-locuswes. In addition, the incorporation
of isogeometric finite element approaches is discussedransidlution process is outlined.

The residual-based variational multiscale modelling ebtllence presented in chapter 4 is
closely related to the numerical algorithm introduced imuter 3. It can be interpreted as a
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large-eddy simulation approach, establishing a connedigtween numerics and physics of
turbulence.

Chapter 5 provides some detailed investigations of residased large-eddy simulation ap-
proaches for the well-documented canonical flow exampleriuient plane channel flow. The
behaviour of different subgrid models is studied, espgcwaith respect to the time-dependency
of subgrid scales and their relation to the spatial dissa¢iton approach.

Further examples for applications of the method to more dertpirbulent flow examples are
contained in chapter 6. Among other things, these exampldade investigations of the ad-
vantages of RyLoOv-projection-based solver techniques for a purelRI@HLET bounded flow
problem, the AyLOR-COUETTE flow, and investigations of the performance of wealR@H-
LET boundary conditions with respect to lift and drag valuesot#d for a turbulent flow around
a square cylinder.

In chapter 7, the residual-based large-eddy simulatiddicg the advantageous isogeomet-
ric representation is incorporated into a monolithic flstddcture interaction framework. First
numerical examples show the feasibility of the combinedagagh in a turbulent regime.

The scope of chapter 8 is to summarise the main achievemetitis ovork, to draw conclu-
sions and to provide directions for future work.

Several appendices come along with this thesis. They hamibeluded for various reasons.
Appendix A is intended to provide additional details on tlegihtion of the kinematic formula-
tion that is used to develop the governing equations on ngowiashes. Furthermore, a number
of mathematical tools for the statistical description abtdent flows and for the statement of a
weak form are collected in that appendix.

The purpose of appendix B is to provide a small extension eovéry brief introduction of
non-uniform rational B-splines contained in chapter 3. Thetent does not exceed what can be
obtained from standard literature. However, readers moilfar with isogeometric finite element
approaches or non-uniform rational B-splines will posgagbpreciate this small collection.

Appendix C, in turn, provides a detailed description of aémlement-based dynami&cG-
ORINSKY implementation. This more traditional approach is use@¢éonparison to the residual-
based variational multiscale approach in several placdseipresent thesis.

The next appendix, D, contains a detailed listing of all mxatontributions arising from the
residual-based variational multiscale approach fornedamn chapter 4. It clarifies some state-
ments on the treatment of nonlinearity and provides an implgation-ready version of the
element-matrix part of the algorithm.

Finally, in appendix E, an efficient solution procedure ieided for linear systems corres-
ponding to problems for which the pressure level is definelg ap to a constant. Although
similar approaches are already used by some groups, theimfpsuch an approach is often un-
derestimated. For this reason, an implementation of aisolatethod for the projected system is
included. Additionally, numerical tests for the method eoatained in the AYLOR-COUETTE
flow example already mentioned above.
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2 Principles of turbulent
Incompressible flows

This chapter is intended to provide a short introductiomtpartant basic principles of turbulent
flows. The first section is about continuum mechanics, coirtgigoverning equations for in-
compressible flow of a BwToNian fluid. The second section focuses on the topic of turlméen
Main features of turbulent flows are highlighted and waysdsaidibe them using stochastic cal-
culus are discussed. Afterwards, the nature of turbulendealt with in the discussion of energy
spectra and wall-bounded turbulence.

2.1 Continuum mechanical description of
incompressible flows

In this section, continuum mechanical basics for the dpson of flows will be provided. For
general textbooks on continuum mechanics, the readerageefto the books by GRTIN [105]
or TRUESDELL and NoLL [210]. Beside this general literature on continuum meatgrthere
are a number of textbooks dealing with the application ofticaum mechanic principles to
flows. An example is the book byRUESDELL and RaJOPAL [211], containing a mathematically
profound introduction. Furthermore, a wide range of bookdloid mechanics in general, like
the books by BTCHELOR [10], GRANGER [93] or PANTON [169], is available. Among other
things, the books by @ANGER [93] and ANTON [169] include remarkable illustrations of
flow patterns. Another well-known reference igNlDAU and LIFSCHITZ [152], a book that
emphasises the relationship of hydromechanics to othaches of physics. Further information
on the description of flows on deformable domains using thetrary-LAGRANGEan-EULERIian
(ALE) approach, a name introduced byri [113] in 1974, can be obtained from the book by
DONEA and HUERTA [64] or the chapter by DNEA et al in [65]. Finally, for a description of
continuum mechanical principles in the interdisciplinagntext of fluid-structure interaction,
the reader is encouraged to consult the thesis byIW215].

This section starts with the kinematic description of flow$e causes for fluid motion are
discussed in the subsection on kinetics and finally, a cdiomebetween kinematics and kin-
etics is established by a constitutive equation. The secsi@oncluded with a summary of all
equations and a short description of initial and boundanddmns.

2.1.1 Flow kinematics and transport in flows

In this subsection, tools for the description of fluid motame provided. In addition, restrictions
on the fluid motion are discussed which arise from the inca®gibility requirement. Neverthe-
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less, causes for this motion will not be considered yet. &fitst part, all motions are described
using suitable mappings between initial, reference anceatidomain. Control volumes are in-
troduced as the regions in which the flow is under investigatSeveral ways to observe physical
quantities in flows are discussed. An example for these giemnare displacements and velo-
cities, which can be deduced from the motion mappings. Intiatg densities are introduced
and the transport of density, i #e mass conservation, is studied using tige’'ROLDS transport
theorem. The subsection will be closed by a discussion ahtipact of incompressibility on the
equation of mass conservation.

Domains, motions and control volumes

At time t = t,, the fluid under observation covers an initial dom&in The motion of the fluid
in time is described by a particle motion mapping, tlee current position of all infinitesimal
fluid volumes associated with points &, can be obtained for every timeaccording to the
following map:

p(t):Q— Q%) , X—e(X,t) (2.1)
with

(X,t(]):X V XGQQ.

For fixedt, the rang€&,, (¢) of the particle motion mapping (-, t) describes the domain cur-
rently covered by the fluid. In practice we are not interestetthe extremely large deformation
of the whole fluid domain but only in the flow through a ‘contwlume’ (2 (¢) in space. This is
visualised in the upper half of Figure 2.1. If this controlume deforms in time, the introduction
of a reference domaift, (¢) via a mapping

@ ('7t) : QE (t) — Qg (t) ’ € — @ (€7t) (22)
with

det(%?)(ﬁ,t)>0 V £e€Qe(t), t>t
P (§t) =€ V €€ Qg (t) = (to) =

is beneficial. This mapping is chosen such that it represtietgleformation from the initial
control volumef2 () to the control volume? (¢). Since, in the framework of finite elements,
the mesh can be associated with the control volume, this mgppill be referred to as the
mesh motion mapping. Note that this special choice for thppima is not mandatory. Any
other motion mapping from a possible physical state, a deetaonfiguration, to the current
configuration would be applicable as well. Neverthelessnist of the cases, the constant
control volume in the reference domain is a desirable pitygder practical reasons.

Both particle motion mapping and mesh motion mapping arertide. Thus, a third mapping
is defined via

1) Q0 — Qe (1),

Ul(t) = (q> o) (-
=07 (¢(X,1),1). (2.3)
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Figure 2.1: Initial domain (grey), current domain (bluedfarence domain (green). The map-
pings are defined by the fluid motion and the deformation ofdbetrol volume

(red).

This mapping represents the motion of infinitesimal fluidwvoés modulo the deformation of the
control volume. See Figure 2.1 for the complete interretaghip between the three mappings

and domains.

Observing physical quantities
An arbitrary physical quantityf can be measured by different observers that operate on the

domains introduced above:
e LAGRANGEan observers measure quantities in an infinitesimal voluamaent with initial
position X € €, i.e. they track a quantity along the infinitesimal volume’s tcagey.

f=Flx(X,1) (2.4)
e EULERIian observers measure quantities floating through an iafimital volume element
at positionz € €, (¢) in the current configuration.
f= 7l (1)
e Arbitrary-LAGRANGEan-EJLERIan observers measure a quantity floating through an in-

finitesimal volume element at a fixed po#te Q¢ (¢) in the reference configuration.

f=Tfle€1) (2.6)

(2.5)
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At every timet, a quantity determined by one observer in one point can beredad by all other
observers in appropriate points as well:

Flo@,t) = (Flxoe™) @1 = Flx (¢ (@.1),1) =

= (fleo®™) (@) = fle (@7 (.1).,1) (2.7)
Fle€t) = (Flao®) (€)= FI.((E1),0) =

= (flxo®)(€D) = f|X< GOR) (2.8)
Flx (X,0) = (Fleo ™) (X,0) = fle (7(X,1),1) =

— (Flew (X0 - flw( (X, 1)) (2.9)

Note that for the other observers in equations (2.7)—(2d®)only the position of measurement
changes intime but also that infinitesimal volume elememsiaformed according to the motion
mappings. This point will be dealt with in detail when inttaming densities later in this section.
In fluid mechanics, the E_ERian point of view is predominant. Nevertheless, as we wid se
later on, the Arbitrary-lAGRANGEan-BULERian observer is very useful for the description of
fluid flows on deforming domains since, by construction, tihserver can make use of control
volumes that do not deform in time.

Displacements

The motion mappings can be represented equivalently ussgladements, i.ethe distances
between current and initial positions. For example, a plartlisplacement is defined by

and a mesh displacement is given by

dG‘g (57 t) =@ (€7 t) - (€7 tO) =@ (ﬁ?t) - € : (211)

Velocities

The three motion mappings give rise to the definition of salelocities by time differentiation
of the motion mapping. At time, the velocity of a particle with initial positioX € 2, can be
obtained as

_de d (dlx)
The ‘grid’ velocity generated from the mesh motion mappismdefined as
el = 12 e - L) 2.13)
“le dt T dt '

and the combined mapping~—! defines

dw!

wly (X, 1) = =

(X,1). (2.14)
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The following equation,

de (v (X,1),t) 0@,
1 :E(\IJ (X, 1),t) +
0PN (X 1)

(T (X,t),1) — —

u|X (X>t) =

0P

"oE

= ugl, (P(X, 1), ) +

0P

3

shows that these three velocities are related and it allowarf interpretation of the ALE con-
vective velocity

(T (X,t),t) - w5 (X,1), (2.15)

oP ,
clx (X, t) = % (T (X,1),1) - w5 (X, 1) (2.16)
as the relative velocity between patrticles and deformingaio:
C|X(X>t):u|X(X>t)_uG|X(X>t) (217)

Note that in equations (2.12)—(2.14), total and partiaktiderivatives are equivalent since the
first arguments are not time dependent. Figure 2.2 showsieklnd ALE convective velocity
vectors in a simple example. The definition of a particle leg¢ion is straightforward. As
usual, it is defined as the second derivative of the partiep m time.

Densities

In the current configuration, every volumé C Q, (¢) can be associated with a unique mass
m (V). Based on this mass, a mass density can be obtained as theflithe ratio between
massm and volumevol for infinitesimally small volumes for each configuration. ueh) we
define the current density by

— . m(V)
pl, (T, t) = VOll(l‘gl_)O ol (V) xeV CQ,(t), (2.18)
the material density by
0 o m(e (V1) 0
p }X (X,t) = Vol(l\l/r(%—»O ol (V) X eV’ CQ, (2.19)
and the reference density by
ref L : m (Q) (Vref7 t)) ref
P (1) = VOI(EB})_)O ol (Ve EcV™C Qe (). (2.20)

The three densities are separate quantities, but they aradependent since they are related
via the motion mappings:

pref}g (€,t) - 10|m (‘I> (E,t) ,t) - det, (88—?) (5,75) —

= O] (®(&1),1) - det (%—‘Z) (€,1) (2.21)
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Figure 2.2: Flow from left to right through a plane channajrsent( (¢) with deforming top
and bottom wall. The motion of the wall is such that the chamearrowing as
indicated by the control volumes in the sketch in Figure 2hk, current control
volume is shown for three consecutive points in time. Vimeal are velocity vectors
(top) and ALE convective velocity vectors (bottom). Due he hon-slip condition
at the surface, in contrast to the ALE convective velochtg, telocity vectors do not
vanish on the deforming walls but represent the velocitjhefdomain deformation.

In this formula, the dcoBian determinant takes into account the volume change of antest
imal element caused by the motion mapping, see Figure 2 &fdlustration.

dm, dV
P (£,1)
dm dm
o, d Ple =0V = 7 -
S det <—€> dv
aq)—l ref
ref| dm = det ox P |a:
Ple="a

Figure 2.3: Definition of an associated density via a moti@pping.

According to the transformation theorem, see textbookswatyais like the book by KNIGS-
BERGER[145], relation (2.21) expresses the fact that the totalanaé® (V,¢)) in an arbitrary

10
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volumeV in the reference configuration can be computed in all thredigorations, i.e
m@)= [ ol = [ e i -
14

= / P (X,t) dX. (2.22)
W (Vt)

Substantial time derivative of moving domain integrals — a t ransport theorem

In appendix A.1, the RyNOLDS transport theorem is derived for an arbitrary motion magpin
with a positive AcoBlan determinant. From this general form of the theorem, tileviing
implications can be derived easily:

e The choiceY = ¥ results in the ALE RYNOLDS transport theorem in reference
representation

d
i, Fle&n de=

_ /v@ (86—135 (€,1) +zj:% (<w|5>j(§,t) : f|5(£,t)>> d§ (2.23)

This version will be used later on to derive conservationdam deforming control vol-
umes in the current configuration.

e ChoosingY = ¢ immediately results in the l_ERian version of the RYNOLDS trans-
port theorem in spatial representation:

d

— fl, (x, 1) de =
at o |2 (1)

9 £l 0
:/m)( 5 (w,t)+;%j<(u\m)j (:B,t)-f|m(m,t)>> dz (2.24)

This is the formulation normally used to derive theWER-STOKES equations for incom-
pressible flow on non-deforming control volumes. Note tRa24) is just a special case of
(2.23) with the choice of the mesh mapping equal to the itdedti= 1.

Keeping in mind the picture of Figure 2.1, we can now undeistahy the ALE point of view,
with a mesh motion mapping as introduced above, is so préditafonumerical approximation
of the local time derivative in equations (2.23) and (2.2Huires the evaluation of the trans-
ported quantityf|, and accordinglyf|£ for at least two points in time, andt + At. For an
EULERian observer, points may enter or leave the control volumhbértime intervalt, t + At].
Thus, for this observer, such an approximation of the loraétderivative in these points is
not computable. In contrast, the constant control volumih&ALE point of view allows an
approximation of the time derivative even for deforming mes

11
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Mass conservation

In incompressible flows, mass conservation acts as a cartstrathe fluid velocities. Strictly
speaking, mass conservation is not a ‘kinematic’ restiictiNevertheless, it is convenient to
derive this conservation equation here, since all neceggsgiredients like densities and transport
theorems have already been introduced. Conservation of mgsies that the mass contained
in a transported balance volumé(t) = ¢ (V (o), %) is constant. Expressed in the reference
configuration, this balance volume can be writter/& (t) = ¥~ (V (¢,),t) and thus, using
the ALE REYNOLDS transport theorem (2.23), we arrive at the following intgersion of the
ALE mass conservation equation in reference representatio

dm (V (1)  d - 00,
a4 /v m) ¢ (&) d& = Vr%)( S €+

dt T dt

+25€ (( )(ﬁt “ef\gﬁt))dﬁzo (2.25)

Since the balance volume was chosen arbitrarily, the egudtas to hold pointwise as well
and the differential form of the ALE mass conservation eumin reference representation is

obtained:
€0+ Y gg e (e (wle) (€0) (226)

This ALE mass conservation equation, also known as the AlrEiae of the continuity equation,
can be rewritten in spatial representation as well. At pairt ® (£,t), it reads as follows:

ref‘g

_ap| -1 8p‘m
0=—73F (2 (a:,t),t)+;(c|m)i(w,t)-8—mi(m,t)+
+pla(ant) 30 T (2.27)

In order to emphasise that equation (2.27) is obtained ftwALE point of view and not from
the EULERian point of view, the proof of the equivalence of (2.27) aB®6) will be given in
appendix A.2.

Incompressibility

A fluid is said to behave incompressibly if the density of aeneént of fluid is not affected
by the pressure. Such behaviour can be assumed in all le@Hvhumber applications, i.e
in flows with a flow velocity which is significantly smaller thahe speed of sound in the fluid.
Hence, incompressibility is not a material but rather a floaperty. Examples of fluids behaving
incompressibly are air in car aerodynamics, water in riv@rblood in arteries to name a few.
Nevertheless, it is obvious for instance that air flow hased@bnsidered compressible in other
applications like aircraft aerodynamics.
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2.1 Continuum mechanical description of incompressibleglo

Assuming incompressibility, the ALE version of the coniilylequation in spatial representa-
tion (2.27) shortens to

0= Z 8901 z,t). (2.28)

A very common special case, the only one considered in ti@sishis a fluid with a constant
density independent of space and time. For such a fluid, equg.28) could be derived from
equation (2.27) directly. For incompressible flows, th& ERian and Arbitrary-LAGRANGEan-
EULERIan point of view result in an identical continuity equation

2.1.2 Kinetics

This subsection establishes the relationship betweenrfiottbn and surface and volume forces,
the causes of the flow. This is done based on a continuum mieahartension of EWTON's
second law, which states that for every balance volume thagdof linear momentum is equal
to the resulting force on the balance volume. First, the ghaof linear momentum in a bal-
ance volume is studied as it is observed from an ALE point eéwusing the ALE version of
the REYNOLDS transport theorem. The result is restated in spatial remtasion, allowing to
express the momentum equation in the current configurataucHY stresses are introduced
and are used to rewrite the integral equation in a diffegtfdirm.

Transport of linear momentum

The components of the vector of linear momentum associaitkcvtransported balance volume
V(t) =¢ (V (t),t) are computable in all configurations:

PV (1)) : = / P 6D (ul)y (6,1) aX =

B /Vref(t) ,Oref}e (E’ t) . <u|£>kz (57 t) d€ -

— [ de@d-(ul) @0 de k=123 (229)
V()

Once more V' (t) = W' (V (t,),t) denotes the representation of the transported balance
volume in the reference configuration. According to the ALEYROLDS transport theorem in
reference representation (2.23), the change of linear mumein this balance volume is given

by the following equation:

dt - ot (&1)+

AP ) _ | [a(ﬂrefs~ (wl),)
Vel(t)

_'_Zag << ) (&) ref‘g £,1) <’U/\£)k(§,t)) ] dg (2.30)

13



2 Principles of turbulent incompressible flows

Application of the product rule and subsequent usage of e Wass conservation equation in
reference representation (2.26) results in

4P (V) _ / N pfef}g@,t).[ (1), L6+ ) (wle) (€0 (41, (3 t)] £

dt O,
(2.31)
A spatial representation of this equation can be easilyiodtausing
| 0P
(“"e% ( ) 60 = 3 (wl), (€0 S € Zek (e 60,0 -
7,0
0
=2 (e t)-(auiu)( (&1),1) (2.32)

l

and the transformation theorem. The result is the spatmksentation of the total change of
linear momentum in a balance voluriig(t) = ® (V"' (¢) , t) in the current configuration:

w:/ ol (1) - M(Q‘l(w,t%tﬂ
0

dt ot
+ Z (ela); (@) - =522 (@.1) | da (2.33)
Integral formulation of the conservation of linear momentu m

External forces on a balance volume can be either of surfagelome type. Forces of surface
type can be expressed using the surface traction vecta.vEtor is associated with the current
configuration. It is defined as the limit of the quotient betwehe resulting forcd? (a) on the
surface element and the surface element area for infinitdlsismall surface elements

t|(z.t;n )= lim R (a)

t 2.34
area(a)—0 area (CL) ’ T cac 8V( ) (2.34)

The third parameter, the surface’s unit normal veetty in spatial representation, indicates that
this surface traction depends on the orientation of theaserelement in space, i.a different
balance volume containing the same painbn its surface at time might lead to a different
surface traction if it possesses a different unit normakmecForces of volume type can be
expressed using|_, the spatial representation of the body force per unit mBased on these
two types of external forces, the generalisation @WoN's second law reads:

dP V(1)

:/ ol (@.1) - bl (1) d:c+/ ¢l (2,1) da (2.35)
dt V(1) oV (1)

14



2.1 Continuum mechanical description of incompressibleglo

Using the spatial representation of the total change oklimomentum in a balance volume
from equation (2.33), the generalisation oEWNTON'S second law is equivalent to the three
equationsk = 1, 2, 3) of integral momentum conservation in spatial represérat

9(vle), g ) (ul,)
/V(t) p|a: (mvt) ) [Tk (‘I) (wvt) 7t> + Zj: (c|m)j (w7t) ) 8:3]- . (wvt) de =

[ petwt) Gl @t de s [ (8],), @) da (2.36)
V(t)

AV (t)

CAUCHY stresses and the differential form

According to QwcHY’s fundamental lemma, tractions are generated by a uniquele-talthe
conservation of angular momentum — symmetric tensor feeldhe CaucHY stress, with a
spatial representation

(0]g)1 (@ 1) (0lp)y (@) (0]4)15 (2,1)
oly (@,t) = | (Olp) (@ 1) (0ly)y (®,1) (o), (1) | (2.37)
(Olg)15 (@ 1) (Tlp)ys (@,1) (]4)55 (2,1)

The traction’s spatial representation is computable usigrespective representation of the
CAUCHY stresses, see MRSDEN and HUGHES[158]:

t| (x.t) = ol (x.t) - nl, (1) (2.38)

This equation holds in every point on the boundary of anyra/olume, i.epointwise in the
whole current domain. Thus, the integral momentum conservaquation in spatial represent-
ation (2.36) can be rewritten as follows:

o(ule), 5 (ul,),
/V(t) P‘m (mvt) ) [T ((I) (w>t) >t) + Z (c|:1:>j (mvt) ’ 8.’13]- (w7t)] de =

= z,t)- x mm -
_/V(t) [p|m( ;1) - (bly), ( ,t)+; o ( ,t)]d (2.39)

Here, GaussS’s divergence theorem, as it can be found for example GINKGSBERGER[145],
was used to transform the surface integral into a volumegmate Equation (2.39) holds for every
choice of the reference balance voluié€t) and hence is equivalent to the differential version
of the ALE linear momentum conservation equation in spatiptesentation:

(),

p|a: (mvt) ’ [T ((I)_l (wvt) >t) + Z (c|m)j (m7t) ' 0 aT;j (wat)] =

:p\m(m,t)-<b|m)k<m,t)+2%(m,t) for k=123 (2.40)

L
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2 Principles of turbulent incompressible flows

2.1.3 Constitutive equation

To establish the connection between kinetics and kinesyaicconstitutive model has to be
introduced, relating the stress tensor and the fluid motme of the characteristics of fluids is
that they are unable to support shear stress in static bguith. Nevertheless, it is well known

from hydrostatics that fluids are able to support a hydrastitess state at rest. Hence, it is
reasonable to separate the hydrostatic stress state f@@abcHY stress tensor, introducing

the fluid pressure and a trace-free, deviatoric part. Thislv@ done in the first paragraph.

Afterwards, a constitutive equation for this deviatorictpaill be provided.

Hydrostatic stress contribution and viscous stresses

The ‘mechanical’ fluid pressure is defined by
pl, (x,t) = —tr(o|, (x,1)). (2.41)

In compressible flows, this mechanical fluid pressure is lisaasumed to be identical to the
thermodynamic pressure. This is referred to as tmekEs assumption. For incompressible
flows, there is no such interpretation. The negative fluidguee can only be understood as the
averaged normal surface forces on an infinitesimal elemdsing the pressure, the hydrostatic
stress state can be separated from taecHy stress tensor, resulting in

ol,(x,t)=—p|, (x,t) 1+ 7|, (2,1 (2.42)

The so-called viscous stresg_ (x,t) denotes the trace-free, deviatoric part of theuCHY
stress tensor. It is a reasonable requirement that thiswssstress tensor is invariant under rigid
body rotations. Note that the part of the traction causedbyniydrostatic part- p|, (x,t)- 1 of
the stress tensor is the same for all surface orientations.

NEwTONian fluids

For a NewToONian fluid, it is assumed that the viscous stress tensor deplamehrly on the
symmetric part of the velocity gradient, the rate-of-gtrensor

_ 1 (0(ul,), 0(uly);
(el (uly); (2, 1) := 3 (ij (,7) + T om (1) (2.43)
wherei, 7 = 1, 2, 3. Using this rate-of-strain tensor, the constitutive egurabf a NEwTONian
fluid compatible to the BokES assumption reads:

2
Ty (2, 1) = 20 (el (uly)) (®,8) = gp-tr (el (ul,) (1)) - 1 (2.44)
The quantityy, called dynamic viscosity, is a material parameter. Accwdo this law, the
viscous stress in BwToNian fluids is defined instantaneously by the rate-of-stransor, i.e
there is no dependence on the past of the flow. Furthermar& gavToNian fluids the viscous
stress is local, i.gts value at one point depends only on the rate-of-straisdeat this point.
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2.1 Continuum mechanical description of incompressibleglo

For incompressible flows, the trace of the rate-of-stramste, which is identical to the di-
vergence of the velocity, vanishes. Thus, the constitidyeation for the viscous stress in the
incompressible case is simplified to

Tl (1) = 2~ (e, (ul,)) (z,1). (2.45)

In practice, many fluids like air, water or mineral oil can lmnsidered MwTONian. Neverthe-
less, fluids that exhibit a viscoelastic or nonlinear bebarcannot be described properly by the
NEwTONIan law. This is the case for instance for polymer melts ootlorhe interested reader
is referred to BRD and WEST [30] for a review of constitutive equations for polymeriquiids
and the textbook by 8HME [35] for an introduction to non-EwToNian fluids.

2.1.4 The arising system of nonlinear partial differential equations

For incompressible flows of BlwToNian fluids with constant current densipy the continu-

ity equation (2.28), the momentum equation (2.40) and thesttimitive law (2.42) incorporat-
ing (2.45), amount to a nonlinear system of partial diffél@requations in the primary variables
velocity u|, and pressure|_. In this subsection, this system of equations will be summar
ised in the ALE version of the NVIER-STOKES equations. An important special case, the
EULERian version for non-deformable control volumes will be @eted.

All of the following equations will be formulated in spatiedpresentation, i.all quantities
will be expressed as measured by anLERian observer in an appropriate point. Hence, for
ease of notation, the indek_ indicating the EJLERian observer will be dropped in the symbolic
short forms and the remaining sections and chapters oftibs4.

ALE version of the N AVIER-STOKES equations

Summing up the results from the previous sections, the ALEnem@um and continuity equa-
tions are given as follows:

(@7 @.0).1) + Y ((uly), (@)~ (ucl,), (@.0)) - %m%)k (2, 1)+

1 dp|, 9 (el, (uly))y, N _

J

ot

o(ul. ).
Z ;{JZ”)J (x,t) =0 (2.46)

The equation has been normalised by the constant densigycdistant = %, introduced for
convenience, is called kinematic viscosity. Note that theetderivative is not evaluated in the
current configuration but is obtained by an ALE observer mrigference domain. Furthermore,
the convective term is based on the ALE convective velodiyr a rigid-body mesh rotation
® (&,t) = R(t) &, defined with an orthogonal rotation matid¥, equation (2.46) can be used
to derive the MVIER-STOKES equations in a rotating frame of reference, seev®ITZER and
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2 Principles of turbulent incompressible flows

WALL [87]. The short form of equation (2.46) employing symbolpecators and omitting the
index |, is:

O0(uo®)

1
o o<I>_1+((u—uG)~V)u+;Vp—2VV-€(u):b

V-ou=0 (2.47)

EuLERIan formulation, convective form

For the special choic® (&,t) = &, equation (2.46) is equivalent to thesE=Rian form of the
NAVIER-STOKES equations in convective form:

2o @0+ ), ) T )+ 1 Gl ) -
—2V-Za(€|””az|w))’ﬁ (@.t) = (bl,), (1) for k=123
o(ul.).
Z (&Jj)ﬂ (x,t) =0 (2.48)

In this case, the convective velocity is just the fluid vetpciThe corresponding short form of
this equation using symbolic operators and neglectingritiex | _ is

ou 1
Ejt(u V)u+;Vp—2yV-e(u)—b

Vou=0 (2.49)

EuLERian formulation, conservative equations

Generalised conservation laws are equations of the form

Z 8:13 : (2.50)

Here, f is the conserved quantity; the so-called flux and is a source term. Using the incom-
pressibility constraint, the convective form of thelEERian formulation of the MVIER-STOKES
equations can be restated as such a generalised consetaatio

0 (ul,), 0+ Z % < (ul,), (@.1) - (ul,), (@,1) + w -
2 (el (ul,),, <w,t>) — (bl,), (@.1) for k=1,2,3
O(ul).
> (&Jj)f (z,1) =0 (2.51)
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2.1 Continuum mechanical description of incompressibleglo

Here,d;;, stands for the IRONECKERdelta. In this momentum equation, the conserved quantity
is the linear momentum normalised by the density. The fluxrefdr momentum is assembled
from a convective, a pressure, and a viscous part. The stemoecorresponds to the body force
acting on the fluid. The continuity equation can be undest®a generalised conservation law
for the mass as well. A symbolic short form is given by:

ou D B
E+v <u®u+;~1—2ya(u)) =b

Vou=0 (2.52)

Once more, the index,, indicating the E)LERian observer has been dropped in this equation.

2.1.5 The initial and boundary value problem

Equation system (2.48) and the corresponding special cas@sain a time derivative of the
velocity. Hence, a complete problem statement requirégimonditions for the velocity field:

ul, (x,t) = wo|,, () (2.53)

For a well-posed problem, this initial field has to satisfg thcompressibility constraint, i.éhe
equation
U0|

Z 8:13] =0 (2.54)

must hold.

Furthermore, the equation system under consideratiorohas ¢completed by suitable bound-
ary conditions. The usage of a control volume, as it was dss¢trin subsection 2.1.1, intro-
duces an additional difficulty at this point. Th&E=Rian and quasi-ELERian way, as the ALE
approach is aptly named inEBYTSCHKO et al [25], to define control volumes introduces ‘arti-
ficial’ boundaries)f2 (t) in the fluid domair(2, (¢). The price to pay for the advantages gained
from the fact that one is actually dealing only with a smalitpd the fluid motion is that one
has to prescribe suitable boundary condition®)N(t). This is not straightforward in general,
see for instance the discussions in section 3.7.1 and se&:Rol.

The simplest boundary conditions that can be imposed areRICBLET type

ul, (x,t) = up|, (x,t) on DIRICHLET boundariedp(t) (2.55)
or NEUMANN type
ol (x,t) n|, (x,t)=t|,(x,t) on NEUMANN boundaried y(t). (2.56)

Examples for these types of boundary conditions are the kwevn no-slip condition, a zero-
DIRICHLET boundary condition, and the do-nothing boundary condjtimposing zero traction
on a NEUMANN boundary. In practice, the range of suitable boundary d¢mmd is closely
related to the numerical approach used to solve the systemuations. For this reason, a more
detailed discussion of possible boundary conditions wllbiwv later in section 3.7.
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2 Principles of turbulent incompressible flows

An important special case are solelyRICHLET bounded problems witl'(t) = 9 (¢).
The continuity equation requires the following equation

u :Btda—/ x,t) de =0 2.57
/m pla(@.1) - WZ am] 2. 1) (2.57)

to hold in order to keep the problem well-posed. Furthermoréhis case, the pressure is only
defined up to a constant.

In general, statements on the existence and uniquenesonf dong-time solutions of the
NAVIER-STOKES equations in three dimensions are not available. Nevesisekexistence and
uniqueness of strong solutions have been proven locallyme,tor globally in time for two
dimensions or under a small-data assumption, see for icstaxDYZHENSKAYA and SOLON-
NIKOV [151] for a typical result. Weak solutions are known to exigivo and three dimensions,
but uniqueness is not guaranteed in the three-dimensiasal cThese results can be found for
instance in EMAM [203] or the comprehensive state of the art review yHERING [63], which
also describes the relationship between the vortex sirggahechanism in turbulent flows and
the mathematical difficulties in the three-dimensional/NR-STOKES equations.

2.2 The nature of turbulence

For the description of the nature of turbulent flows, it is orjant to acknowledge that turbulent
flows are not all alike. The following canonical turbulent®should give a rough impression
of the variety of possible flows. An example is isotropic gudoulence, which exists without a
preference for direction. It is not self-sustaining, butheiut a constant supply of energy it will
decay in time. As an approximation of ideal homogeneousagpat turbulence, it is perfectly
suited to study dissipation and energy transfer in turtiuflews, see subsection 2.2.4. Another
example, free-shear layer or mixing layer turbulence,udek for example jets and wakes. In
these flows, turbulence is constantly produced by meareitgldifferences. A self-similar be-
haviour can be expected for these flows in a certain distaiooe the origin of the turbulence.
Finally, there is wall-bounded turbulence, as it existsdwample in turbulent channel or pipe
flow. For those flows, the wall is governing the processesphaduce turbulence. As we will
see in subsection 2.2.5, we can expect a similar near-wht\weur in every fully developed
wall-bounded turbulent flow.

Nevertheless, all turbulent flows have common characiefesatures. These will be reviewed
in subsection 2.2.1. The fact that turbulent flows can berdest using statistical methods is
exploited in the next subsection 2.2.2 for the statemenhefREYNOLDS-averaged MVIER-
STOKES equations. A better understanding of the nature of turlmderan be deduced from
KoLMOGOROVS hypotheses. The pioneering work bypKMOGOROV in 1941, [144, 143], still
contributes a lot to the state-of-the-art knowledge abaitience, see for example the book by
FRISCH [84]. Important consequences are listed in a subsectioh®miultiscale character of
turbulence 2.2.3 and the subsequent section on energyapettirbulent flows 2.2.4. Finally,
this section will conclude by a brief discussion of turbuléiows near walls in the example
of turbulent plane channel flow in subsection 2.2.5. Manyhef turbulent flow computations
contained in this thesis are of this type, therefore a dsdaibnsideration of this class of turbulent
flows is justified.
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2.2 The nature of turbulence

For general literature on the topic of turbulent flows, thader is referred to an excellent
textbook by PPE [174]. Supplementary details can be found for example inkibeks by
MATHIEU and SOTT [159] or the classic reference byeRNEKESand LUMLEY [204].

2.2.1 Turbulent flow characteristics

According to TENNEKESand LUMLEY [204], the best way to describe the physical phenomenon
‘turbulence’, i.e to show the common features of all turbulent flows, is to lestesal important
characteristics of turbulent flows.

Turbulence is a continuum phenomenon

Turbulent flows are controlled by the same laws of continuuetimanics as every flow. Even
though turbulent flow structures, often referred to as ‘eddican be very small, they are still
large compared to the molecular length scales. Turbulemcei a material property, but a
flow property. Similar to the McH number for incompressibility, the B’NOLDS number is
a dimensionless parameter which can be used to classify 8gunes. Using a characteristic
length £, the kinematic viscosity and a characteristic velocity, it is defined by

Re:w 2Y (2.58)

14

For a low REyNoLDS number, the flow is diffusion dominated, .i.the elliptic part of the
NAVIER-STOKES equations is dominant. In this regime, the flow is clearly ilzan For a
sufficiently large EYNOLDS number, the flow will be convection dominated and will exhibi
all characteristics of a turbulent flow. In between these tegimes, a transition range exists.
The critical REYyNoOLDS numbers indicating the end of the laminar and the beginninigeofully
turbulent regime vary from problem to problem and depenthirmore on the definition of the
characteristic scales which is not unique. In pipe-flowegkample, using a RrNoLDS humber
based on the diameter and the mean velocity, the flow remamisiar for REYNOLDS numbers
smaller than 2300. A fully turbulent pipe-flow can be expddaéa value of 4000 or higher.

Irregularity, three-dimensionality and diffusivity

Wall-bounded turbulence in a channel flow will now be useditihlght several properties of
turbulence. Figure 2.4 shows the setup for this example. fllirek velocity at the wall is zero,
the transition to the core region of the flow is characteriggé sharp boundary layer. A more
precise description of the mean flow profile will follow latem in subsection 2.2.5. By looking
at a snapshot of the absolute velocity, as it can be seen urd-y4, it becomes obvious that
even though two homogeneous directions exist in this exanptbulence includes a certain
amount of spatial disorder and irregularity. For two poifffsand P, as introduced in Figure 2.4,
the time history of all three components of the velocity iegiin Figure 2.5. Again, an oscillat-
ing, irregular behaviour is observed. Nevertheless, wefined statistical quantities like mean
values can be determined using an appropriate averagirngguoe. Furthermore, even though
the averaged solution is essentially a one-dimensionatim of the wall-normal coordinate in
the channel, a three-dimensional behaviour of turbuleaoebe observed, see the oscillations in
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2 Principles of turbulent incompressible flows

P (near wall)

Figure 2.4: lllustrative example: Turbulent flow in a plareaonel. In the picture on the left,
a cut through the channel is depicted. The cutting plane asrspd by the main,
streamwise, flow direction and the wall normal. The chansdéhiinitely extended,
both in streamwise and spanwise direction normal to thengutilane. A constant
mean pressure gradieRt (p) results in a statistically steady state featuring a mean
velocity profile(u). The channel segment on the right, coloured by the instantzs
absolute value of the velocity field, demonstrates the i@ty of turbulent flows.
Furthermore, two point$; and P, are introduced for which temporal functions of
the velocity will be presented in Figure 2.5.

the wall-normal and spanwise components of the velocityiguie 2.5. This three-dimensional

behaviour is the basis for an important vorticity-mainteceemechanism called vortex stretch-
ing, and thus an additional necessary feature of turbulefether striking feature of turbulent

flows is their diffusivity. The fluctuating behaviour of tudent flows facilitates the transport of

flow properties like momentum or energy and the mixing ofacquantities. The transport rates
in turbulent flows are orders of magnitude higher than mdbrduansport rates.

2.2.2 REYNOLDS-averaged N AVIER-STOKES equations

As already indicated above, quantities like velocities @sgure in turbulent flows can be de-
scribed using statistical tools as they can be found in agligef 3. The statistical description al-
lows to derive equations for the expected quantities, theNdLDs-averaged NVIER-STOKES
equations. They will be presented here for the conservatvsion of the MVIER-STOKES
equations (2.52) on fixed domains.

Taking into account that the computation of expected vatoesmutes with time- and spatial
differentiation, the mean value of equation (2.52) is eglgmt to

0
ﬂ+v- ((u®u>+@~1—2ys((u>)) = (b)
ot p
V-{u)=0. (2.59)
Using a decomposition of the velocity into mean velocity aatbcity fluctuations,

u=(u)+u, (2.60)
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P, (centre) P, (near wall) ————-

streamwise velocity

T
1.5 Avw/\ Yy AP S WA Vr'\ /\vr\/\vv
My b i
(A \ oA
Lyl 1

1 F\’\’Nﬂ\fL
) . fr e v AR T
averaged streamwise velocity 0.5 Ly il i i .
'[Op 777777 T T O L L L

P, 2100 2120 2140 2160 t
wall-normal velocity

0.2 ;
0.1r¢
centre 0}
-0.1}

-0.2 : 1 :
2100 2120 2140 2160 't

03 cross—stream velocity

0 05 1 15 0_15Jl

0 il "I‘MI
-0.15+

-0.3 * x x
2100 2120 2140 2160 't

Figure 2.5: Time history of streamwise, wall-normal andrspie velocity in two points of the
channel (right). The averaged values of these quantitiecated by the constant
lines in the graphs on the right, give rise to a distributidrihee averaged velocity
over the height of the channel. This is displayed in the spoading graph (left).

the mean of the nonlinear convective term can be expanded as

(u@u) = (((u) +u) @ ((u) +u)) = (u) @ (u) + (u) @ (u) + (u) @ (u) + (v u) =
= (u) ® (u) + (u@ u). (2.61)

Here, the linearity of the mean-value computation and tlop@nties

((u) = (u), (u)=(u—(u)=(u) - ((u) =0 (2.62)

have been used. The combination of equations (2.59) and)(Be8ults in the RYNOLDS-
averaged NVIER-STOKES equations for the mean quantities:

%+v. (<u>®<u>+<y®y>+%~1—2V€<<“>>) —{o=0

V- (u) =0 (2.63)
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2 Principles of turbulent incompressible flows

It still contains the unclosed symmetrieRNOLDS-stress tensor

(ww) (wu,) (uu)
Trey == 0" <"$ ® y> =p g2u1> <~2~2> <~2~3> ) (2.64)

S (2yu,) ()

representing the flux of momentum due to the turbulent flucina. To be able to solve the
REYNOLDS-averaged MVIER-STOKES equations, a closure for the six unknown components
of the REYNOLDS-stress tensor has to be provided by a turbulence modelubsedion 4.2.1
for a discussion. The combination of the viscous stresotearsd the RYNOLDS stress tensor,

p - (Trey — 2ve ((u))), will be referred to as the effective stress tensor.

A generalisation of this approach to the ALE version of the/MR-STOKES equations in the
context of fluid-structure interaction problems is not gjidforward since the grid velocity has
to be considered as a fluctuating quantity as well. Thustrib@uces a further unclosed term in
the equation.

2.2.3 The multiscale character of turbulence

RICHARDSONS energy cascade [179] describes turbulence as being csedpat ‘eddies’, i.e
turbulent structures of different sizes. In this modelsitassumed that the largest eddies are
driven by the mean flow field. These eddies break up, passirthenenergy to smaller and
smaller eddies in a cascade-like process. This cascadeasnsizon as the eddies are small
enough so that their energy is converted into thermal enbygyiscous processes. Figure 2.6
illustrates this process in a symbolic way. Significantet#nces between eddies of different

L, U dissipation

production

Figure 2.6: lllustration of RRHARDSONS energy cascade. Energy is extracted from the mean
flow field and enters the cascade at the largest eddies axbwidh the character-
istic scalesC andi/. During the cascade process, larger eddies continuously pa
on this energy to smaller eddies. The rate of dissipatiahthe end of the process,
associated with the smallest eddies of characteristiesgahnd,, is determined
by the input at the beginning of the cascade.

scales were recognised early. Large eddies are alwaysnictddoy boundary conditions as well

as mean flow properties and thus are in general anisotrogdipmailem-specific. In contrast, for
large REYNOLDS number flows, the small scales exhibit a more universal caraThis was
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2.2 The nature of turbulence

summarised in 1941 by & MOGOROV in his hypothesis of local isotropy [144]. Following the
depiction in ®PE [174], this hypothesis states that at a sufficiently highvyRoLDS number
the small-scale turbulent motions are statistically igpic. Keeping in mind the picture of the
energy cascade, this means that all directional informahdhe large eddies is lost during the
scale-reduction process. This universal nature of the Issgales will be an important point
when discussing the idea of large eddy simulation in chafter

Figure 2.6 already introduced velocity and length scaledle smallest eddies in a turbu-
lent flow. The size of these smallest eddies will now be egtthasing KOLMOGOROV' first
similarity hypothesis. Approximately, the first similariassumption states that for every flow
at a sufficiently high RYNOLDS number, the statistics of the universal small-scale mastere

determined uniquely by the rate of dissipatiop's- | and the kinematic fluid viscosity |- |.

Simple dimensional analysis leads to thelKnOGOROV scales associated with these smallest
eddies. They are depicted in Table 2.1.

length scale| velocity scale| time scale
1
3\ * 1 v\ 3
=|— u, = (ve)t | t, = <—)
n ( p ) n (ve) n P

Table 2.1: Characteristic length, time and velocity scédeshe smallest eddies.

The assumption that energy originating from the large scaléransferred in the energy cas-
cade over a wide range of scales without dissipation wasasetl by KWLMOGOROV in his
second similarity hypothesis. In the version presented bye174], it reads as follows: In
every turbulent flow at a sufficiently higheERNOLDS number, the statistics of the motion of
scales, sufficiently smaller than the largest scaleand sufficiently larger than the smallest
scales), have a universal form that is uniquely determinedcbindependent of. An imme-
diate consequence of this conception is that the energipdigs, taking place at the smallest
scales, is determined by the energy input on the largestschktL be a characteristic length
andl{ a characteristic velocity of the large-scale motion. Th€ris of the order of magnitude
of energy per mass unit contained in these large-scale €daié7 := 5 is a characteristic
time-scale for large-scale eddies. It follows that the ddtdissipation per mass unitscales as

u  u3

€~ T = ,C .
Since the dissipation rate is directly related to the laggdes as presented in equation (2.65), the
ratio between the smallest and largest scales can be eggdrassn Table 2.2 using theeERN-
oLDs number. These scale ratios reveal the multiscale charattierrbulence. For flows of
engineering interest, values of th&eRVoLDS number up ta 0? are common. This results in an
extremely wide range of scales involved in turbulent flowbl€&s2.3, partially based onER'N-
oLDs numbers taken fromIEETCHER [77], quantifies these scale ratios. Looking for example at
the numbers for the length-scale ratios and keeping in ntiatiturbulence is inherently three-
dimensional, it becomes obvious that in practice the nurakresolution of all turbulent scales
will not be possible.

(2.65)
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2 Principles of turbulent incompressible flows

Table 2.2: The RyNoLDs number dependence of the range of eddy sizes.

Scale ratios
£NRei ﬂwRei ZNRe%
n Un ty

Water flowing a2 through alOcm pipe

Re =2 x 10°

£ ~ 9.5 x 103
n

u . 2.1 x 10
Up

Z ~ 4.5 x 102
t77

Large jet transport aircraft at cruise altitude

T
Re =7 x 107 E~7.7><105 ﬂ~9.2><101 ~ ~84x103
n Up ty
Ship,300m long at15%
T
Re = 4.5 x 10° E~1.7><107 Z~2.6><102 ~ ~6.7x 10
n Un ty

Table 2.3: Typical RyNOLDS numbers and scale ratios for flows of engineering interest.

2.2.4 Energy spectra

Up to now, only the transfer of energy between the scales wastdied. In this subsection,
additional information on the energy content of the scaldslve given in order to provide
a better insight into the nature of turbulence. This is dorwstheasily for ideal statistically
stationary homogeneous isotropic turbulence.

In this case, the averaged velocity is independent of thé&iposn space and hence, with
an appropriate choice of frame, it can be assumed to be zeéatenSents concerning the spa-
tial structure of homogeneous turbulence can be made usengd-called two-point, one-time
autocovariance, a generalisation of equation (A.36):

Ry; (d) = (u, (20) - u, (20 + d)) (2.66)

Once more, due to the homogeneity of the flow, the definitiotheftwo-point, one-time auto-
covariance does not depend on the particular choiag oT he total turbulent kinetic energy per
unit massk can be computed independentagffrom the two-point correlation (2.66) using

B =53 () () = 5 R 0). (2.67)
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2.2 The nature of turbulence

In order to be able to extract information about the scasrdbution of this energy, thedur-
IER-transform of the two-point, one-time autocovariance tsoduced:

O, (k) = (Qi)g /_ Z /_ Z /_ Z e Ry (1) dr (2.68)

© is called velocity spectrum tensor. Th@BRIER-transformation can be inverted recovering
the two-point, one-time autocovariance:

R, (r) = /_Z /:; /_Z e -0, (k) de (2.69)

Thus, the energy per mass volume from equation (2.67) caadtated using the velocity spec-

trum tensor by
3 3
1 1 o o o0
E:§ZRZ¢(0):§Z/ / / 0; (k) dk. (2.70)
i=1 i=1 Y TV To0 S m00

Collecting the energy contribution of all wave vectetsof norm « yields a spectral energy

density
1 3 o o o0
E(k) =3 Gii (k) -6 ([l — ») dr. (2.71)
: 2;/_00/_00/_00 )

E (k) is the contribution to turbulent kinetic energy of wave nwersin the range betweenand
K+ dk, i.e.

E = / E (k) dk. (2.72)
This spectral energy density (x) defines the energy content of scales of size
le = 2 : (2.73)
K

According to KOLMOGOROVS second similarity hypothesis, the spectral energy dgmnshigh
REYNOLDS number flow for scales sufficiently smaller than the largeatessC and sufficiently
larger than the smallest scaledhas a universal form that is exclusively determinedebyDi-
mensional analysis immediately results in the followingvpolaw spectrum for wave numbers
corresponding to these length scales:

wlot

E (k) = Ceir™ (2.74)

For wave numbers corresponding to length scales below #rdahsub-range, KLMOGOROVs

first similarity hypothesis indicates an additional depamze of the spectral energy density on
the viscosity. The corresponding range of wave numbersrgtlescales is called dissipation
range. Keeping in mind &LMOGOROVWS hypothesis of local isotropy, these statements remain
true for any kind of turbulent flow. Only the spectral energgndity of length scales above the
inertial sub-range is governed by the special flow. The spoading range contains most of the
energy and is therefore called the energy containing raRggire 2.7 contains an example en-
ergy spectrum of turbulence, showing the characteristiedlviour described above. For more
detailed information on energy spectra, the reader is orae meferred to BPES book [174].
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2 Principles of turbulent incompressible flows

. EC_ EQ

EC: Energy containing range
EQ: Universal equilibrium range

D: Dissipation range

[ Inertial subrange

bt > log Kk
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Figure 2.7: Double logarithmic plot of an energy spectrunwave number space

2.2.5 Wall-bounded turbulent channel flow

Turbulent plane channel flow was already utilised in subige@.2.1 to highlight several char-
acteristics of turbulence. In this subsection, more dedaihformation about this flow will be
given, including a discussion of the form of mean velocitgfpes.

Channel flow setup, mean flow equations and R EYNOLDS numbers

The problem under consideration is statistically statigrflow through a rectangular duct as
described in Figure 2.8. It is assumed that the control velumwhich the flow is investigated,

W
28 ]F T

6>>J ez
L>6

—

Figure 2.8: Setup for a plane channel flow aligned with:ttexis. The height of the channel is
26. Channel length. and widthb are assumed to be very large in comparison to the
height so that the channel can be assumed to be extendetkigfinistreamwisex)
and spanwisez{) direction.

is sufficiently far from the entry and the side walls of the tlsw that the flow can be considered
fully developed and homogeneous in the streamwise and spandivection. Hence, the velocity
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2.2 The nature of turbulence

statistics can be assumed to be independent efand¢. Furthermore, it is assumed that the
mean flow is in thery-plane and that the mean pressure is independent Diie flow statistics
can be expected to be symmetric under reflection in the midglaty = 6 andz = 0. In this
subsectiony, v andw will indicate the velocities in the-, - andz-direction respectively. The
notation of means and fluctuations will make use of this ass&nt as well.

For the fully developed channel flow, a bulk velocitgan be defined as the mean streamwise
velocity (u) averaged over the channel height:

1)
U= %/ (u) dy (2.75)
y=0

Based on this bulk velocity, the kinematic viscosityand the channel height a REYNOLDS
number can be defined:
_u-20
N 14
The flow in the channel is laminar up e = 1350, a fully turbulent flow can be expected for
Re > 1800, see the book by ®E[174] and references therein.

The symmetry and homogeneity irdirection implies vanishing RyNOLDS stresseigw
and @ﬂg} Due to homogeneity, stationarity and symmetry, tleeryRoLDS-averaged NVIER-
STOKES equations reduce to the two momentum equations

Re:

(2.76)

0 0 (u) 10(p)
Bn <<gg> v Dy ) +; D7 =0 (2.77)
0 5 0 (v) 10{p)
3y (<g > v By ) + oy 0 (2.78)
and the continuity equation
0 (v) _
By =0. (2.79)
Combining equations (2.78) and (2.79) implies
9 2 <p>)
— | w)+—]=0 2.80
Ay <<~ ) P (2.80)

and so the term in brackets depends onlyrorirurthermore, since? vanishes on the wall, the
term can be expressed using the pressure on thepyyall

(*) + % — ]% (2.81)

The REYNOLDS stress<g2> is independent af. Thus, the gradient of the averaged pressure in
streamwise direction is completely governed by the pressarthe wall, i.e

9(p) _ Opw
5 = B (2.82)
Integration of the averaged balance of momentum (2.77)gatloey axis using equation (2.82)
results in 2
O\ _ Opw
(p (w) — pv By )yzo =20 ==, (2.83)
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2 Principles of turbulent incompressible flows

Due to the no-slip condition on the walls, th&RNOLDS stress contribution vanishes in (2.83).
Thus, the mean wall shear stregs can be related to the viscous part in (2.83). Using the
symmetry about the midplane @at= 9, it reads

= pv (%”) ——pw (%@)5 , (2.84)

yielding the following balance between mean wall sheaissteand pressure gradient:

Tw_ _ Opw
) or '’
Based on the definition of the mean wall shear stress (2.B4d)acteristic velocity and length
scales for the near wall flow can be defined. These are thefrigelocity

(2.85)

Upy = 4| — (2.86)

and the viscous length scale
Oy i=Vy|— = —. (2.87)

Tw Uy,
It is an important observation that the viscous length sdalgends on the kinematic viscos-
ity while, according to equations (2.85) and (2.86), thetion velocity is independent of the
kinematic viscosity. The friction velocity gives rise toetldefinition of a friction RYNOLDS
number 5
Y " 9 (2.88)

1%
The distance from the wall normalised by the viscous lengé#ies i.e the distance to the wall
measured in wall units, is defined by

Re, :=

yt =24 U Y (2.89)
0, v
This can be interpreted as a locatRvOLDS number relating the relative importance of turbu-

lent and viscous stresses.

Wall regions and the law of the wall

Different regions in the flow can be defined based on the diefindf ;. The region associated
with y* < 50 is called viscous wall layer. It is chosen such that the uisdorces have a signi-
ficant contribution to the effective shear stress in thisaegln the outer layer corresponding to
y™ > 50, the contribution of viscous stresses can be neglectednipadson to the RYNOLDS
shear stress.

Furthermore, for sufficiently high RyNoLDS numbers, an inner layer is postulated according
to PRANDTL [175] as the region in which the mean velocity profile is detieed by viscous
scales), independent of. For a summary of the definitions of the inner layer, the viscwall
region and the outer layer the reader is referred to Figude Subsequently, an equation for
the gradient of the mean streamwise veloc%zg, will be derived by means of a dimensional
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2.2 The nature of turbulence
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Figure 2.9: Wall regions and properties in turbulent chafioer at sufficiently high REYNOLDS
number, adapted fromd®Pe[174].

analysis. In general, the velocity profile in a fully devetopchannel flow will be defined by
the four parameters, o, p and ‘r%“. Thus, the gradient of the mean streamwise velocity at

positiony will depend only ony, v, 6, p and%%“. These five quantities introduce three different
units, meaning that two independent dimensionless vasagland i, can be deduced from
them. Using these dimensionless parameters, the gradiém: enean streamwise velocity can
be written using a universal non-dimensional functibn

O(u) _ Un, vy
3 = u f((”V (2.90)

The functionF was chosen such that for the inner layer, tiR&RDTL hypothesis can be readily

applied to (2.90), yielding
0 <u> _ Uy inner [ Y
oy F 5 (2.91)

with a universal non-dimensional functig""" depending only on the distance to the wall in
wall unitsy™ = éi Using the normalised mean streamwise velocity

ut = @ (2.92)
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2 Principles of turbulent incompressible flows

equation (2.91) can be integrated yielding the law of thd:wal

+

Yy 1 .

ut =ut (y-i-) _ / — . geinner (ﬂ+) dﬂ+ (2_93)
o Y

This is a fundamental, characteristic formula not only fabtlent channel flow but also for

other turbulent flows near walls like pipe flow and boundagels.

Viscous sublayer

In the proximity of the wall, the law of the wall can be expadde a TAYLOR series around
yt =0:
ou™

ut (Ay™T) =ut(0) + o 0)-AyT + 0 (Ay+2> (2.94)

According to the no-slip condition,™ (0) = 0 holds. Furthermore, the first derivative of the nor-
malised mean velocity can be computed based on the meanhgall stress, i.aising equation

(2.84):
au+(0)zi_<8<w) _ v WV Tw (2.95)
y=0

oy U, \ Oy Uny PV WD, pV

This results in the following formula for the law of the walbse to the wall:
ut (Ay*t) = Ayt + 0 (Ay+2> (2.96)
Equation (2.96) is a decent approximationfoyt < 5. Thisregion is called viscous sublayer. A

TAYLOR series expansion is also possible for velocity fluctuati@hge to the no-slip condition,
it starts at most with the first order term:

ou 0*u Ay?

u(By) = 52(0) Ay + 5.5 (0) == +0 (&) (2.97)
ov o) Ay? 5
ow d*w Ay?

w(Ay) = 5 (0) - Ay + 55(0) - +0(ay") (2.99)

Furthermore, the continuity equation gives

ou v ow B v B
e 05, O+ 7 0)=7(0=0 (2.100)

implying the following scalings for the RrNOLDS stresses close to the wall:

(uu) ~ Ay? (vu) ~ Ay*

(2.101)
(ww) ~ Ay (uv) ~ Ay?
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2.2 The nature of turbulence

Log-law theory

At very high REYNOLDS numbers, the viscosity can be assumed to have little effeti®@mean
flow close tog = 0.1 in the outer part of the inner layer. In this region, the unsa function in
equation (2.91) can be assumed to be independent of thesitisand hence to be independent
of £ yielding

3,

ou™ 1
= 2.102
oyt Kllog-lawy+ ( )
with the vON KARMAN constantsg.aw- Integration of (2.102) results in the log-law
1
ut (y+) = In <y+) + Blog-law- (2.103)

Rlog-law

Suitable choices for the parameters 8fg..aw = 0.41 and Biogaw = 5.2, See for instance the
book by ROPE[174].

Although the assumption which was used to derive the logiaguite restrictive, it provides
a reasonable representation of the mean flow even in partseabuter layer, see the size of
the log-law region displayed in Figure 2.9. For an extengibthis theory to incorporate fi-
nite REYNOLDS numbers effects and for a more detailed investigation ofrédmge above the
buffer layer see VBSNIK et al [223]. Furthermore, in BSCHMANN and GAD-EL-HAK [44],
a review on contemporary advances in analytical and asyompproaches to determine the
mean-velocity profile can be found.

SPALDING’S law

An important empirical formula is SALDING’s law [193], combining the formulas for viscous
sublayer and log-law region:

N (Kiogaawtt)”  (Kiogawti ™)
y+ — u+ + e—ﬂlog-lawBlog—law .| efoglant™ 1 () — ﬁlog-lawu+ _ 0g-law _ 0g-law

2 6
(2.104)
SPALDING’s law is visualised in Figure 2.10. For a giveri, u* is defined implicitly by a
nonlinear equation. Thus," has to be determined iteratively.
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25 ey S T -
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Figure 2.101og-lin plot of SPALDING’s law, providing a smooth transition between the linear
viscous sublayer and the log-law region.
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3 Finite elements for incompressible
flows — base algorithm

The instationary, incompressibleAMER-STOKES equations contain a spatial and a temporal
component. A numerical approximation of the whole equatexquires a treatment of both of
these parts. For this purpose, basically two options ardade. The first option, which was
selected in this thesis, is to perform a discretisation @éhlm@mponents in a sequential manner.
The approach to perform time discretisation prior to spaserdtisation, which is usually called
ROTHE's method [183], prescribes the way this chapter is stractuSection 3.1 on implicittime
integration with special respect to the generalised-atpha integration precedes sections 3.2
to 3.7, which provide information on the spatial discrdima approach and related solution
procedures. Nevertheless the approach often termed ‘methbnes’, which is equivalent to
perform spatial discretisation before temporal discedits, is very useful as well. For example,
it allows the interpretation of the semi-discrete systena adferential algebraic problem. For
the sake of completeness, another option shall be mentibaeglas well. It is to perform
space and time discretisation in a single step using a gpaedfinite element procedure. This
approach allows an alternative treatment of deforming ftiachains without requiring an ALE
formulation. See for exampleaMET and BONNEROT[129, 130], TEZDUYAR et al [206, 205]
and BEHR [24].

The spatial discretisation approach chosen for this thedlee finite element method. Com-
mon literature on this approach is for example the book mGHES[116], the book series by
ZIENKIEWICZ and TAYLOR [225, 226, 227], the book by BENNER and S OTT [41] and the
book by BRAESS[40]. Books on finite elements with a focus on fluid mechaniedar instance
DONEA and HUERTA [64] and the book series byrEsHoand S\NI [102, 103]. The approach
used in this thesis is not the only way to perform a spatiardissation. Finite volume methods,
which are based on an integral form of the conservation éopustare a widespread alternative
in computational fluid dynamics. Furthermore, finite diflece methods are frequently used,
but are less well-suited for complicated geometries siheg are preferably used in conjunction
with structured grids. The book byERzIGER and FERIC [76] provides a brief introduction to
these methods, as well as the book bg&¥8ELING [219] to finite volume schemes. Discontinu-
ous GALERKIN methods can be interpreted as a generalisation of finitenwelonethods incor-
porating ideas of numerical fluxes into the framework of @rétements. The interested reader
is referred to the overview article byd@KBURN, KARNIADAKIS and SHU [51]. Compared to
continuous @LERKIN methods, as are used in traditional finite element appreacdgcontinu-
ous GALERKIN methods are more flexible since they allow jumps along el¢méges, but this
naturally comes along with an increased number of degrefsedom, see for instance the art-
icle by ENGEL et al [69]. In contrast to all methods described above, meshrrethods do not
require the generation of elements in the computationalaieysee for example N'ROLES,
TouzoT and MILLON [164] and BELYTSCHKO, Lu and QU [26]. For turbulent flow compu-
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3 Finite elements for incompressible flows — base algorithm

tations, this method seems to be inadequate for efficierasores. In contrast to the aforemen-
tioned approaches, spectral methods as describedinu@, HUSSAINI, QUARTERONI and
ZANG [46] are well known to be a very efficient choice and are wideagd in the turbulence
community, especially for computations on simple periodicenains as they are required for
turbulent channel flow or homogeneous isotropic turbule@mectral methods can not only be
realised as GLERKIN methods, but also as collocation methods, seeREgRET [172]. The
idea of collocation is to enforce the partial differentiguation at discrete ‘collocation’ points.
These methods are impressively simple and efficient whickesnéhem a valid alternative to
finite element analysis.

3.1 Implicit time integration

The incompressible NVIER-STOKES equations include a constraint equation, the incompress-
ibility condition. The momentum equation contains a timeiagive of velocity, but pressure
is defined instantaneously at each time by the current ugldieid via the so-called pressure
POISSON equation. This pressure equation can be obtained by a tiffexetitiation of the
incompressibility condition in combination with the montem equation. Based on finite ele-
ments, a semi-discretisation of the incompressibd@INR-STOKES equations in space results
in a differential algebraic equation. Problems of this tyse well known to be very challen-
ging for time integration methods, and thus requiring iraplime integration procedures with
adequate stability properties, see for instane@lRACHER [178]. The preferred method in the
present work is the generalised-alpha time integratioegarted in GUNG and HILBERT [49],
JANSEN, WHITING and HULBERT [132]. It provides an accurate method which allows con-
trol of numerical damping by a single parametgr. The analysis of several time integration
methods by BTTMER and RERIC [61] as well as many successful applications of this method
indicate that itis a very good choice for fluid problems in gext. Furthermore, due to numerical
damping control, the impact of time integration on turbuemodelling is kept to a minimum,
making it especially well-suited for the investigation ekidual-based variational modelling of
turbulence.

A general initial value problem of order one is defined by adimary differential equation

W (1) = £y (6). 1) 31

in combination with initial values for the solution(t,). This generic initial value problem
will be used to introduce the generalised-alpha time irggn in subsection 3.1.1. Special
parameter settings and the resulting schemes will be dsduproviding a relationship of the
generalised-alpha method to other well-known time intégnaschemes. This subsection also
briefly reviews important stability properties of the meathfterwards, in subsection 3.1.2, a
time-discretised version of theAMIER-STOKES equations will be presented.

For general literature on ordinary differential equatiotiee reader is referred to the book
series by KAIRER et al [106, 107]. In the context of stiff systems, as are encowalten
this thesis, the second volume byalRER and WANNER proved to be especially valuable.
Further literature which can be consulted for general statgs on existence and uniqueness
of solutions, stability and consistency are for examplUBLHARD and BORNEMANN [62],
SCHWARZ [188], BORNEMANN [38] and SUART and HUMPHRIES [197].
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3.1 Implicit time integration

3.1.1 Generalised-alpha time integration

For the generalised-alpha time integration as it is desedrild ANSEN, WHITING and HUL-
BERT [132], the intermediate time levels

[ g (£ ) = g A @2)
and
tn-i-()c]u — tn + an - (tn+1 _ tn) — tn + oy - At (33)

are introduced based on two parameters ;. For the time discretised version of differential
equation (3.1),

yTH-CV]VI — f (yTH'CVF’tTH'CVF) (3_4)
§rTOM = " 4y - (y”“ — y”) (3.5)
yrrer =yt ap - (Y —y") (3.6)

Yy =yt A (- (5T =), (3.7)

the evaluation of the acceleration tegnis shifted tot"*** and the evaluation of the right hand
side is shifted ta"+*r, see equation (3.4). In equations (3.5), (3.6), the intdiate quantities
gtem andy™tr are defined as linear combinations of the respective valasa steps: and

n + 1. The acceleration is not taken as an independent variable but is related todlludi@n y
according to equation (3.7). For many parameter settitngsgéneralised-alpha method (3.4)—
(3.6) requires initial values not only for the solutighbut also for the acceleratiaj?.

Special cases

Depending on the choice of the parameters, the four equati)—(3.6) are equivalent to some
well-known implicit single or double step methods. Choit@ssingle-step methods are:

¢ One-stagd# methods for,, = v

This choice allows to eliminate all dependencies on acagtar in equations (3.4) to (3.5)
for a single time step, yielding

Yt —yn +1 +
= tap- (YT =y, ). (3.8)

At
This is equivalent to a one-stag®@ RGE-KUTTA method

m = y”+At-aF-f(n1,t"+aF)
yn-l—l — y"+At-f(771,t"+°‘F)

—F’TF. (3.10)
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One-stagé® methods include the second order midpoint ruledgr = v = ap = %

yn-i-l _ yn yn-i-l + yn L1
_ = 21T 4 A1
< ( U e (3.11)
and the first order implicit ELER method forar = 1
yn+1 — yn n+l gn+l
- = t : 3.12
A £yt (3.12)

e The one-step-theta family fary; = ar = 1

Evaluation of (3.4) for two succeeding time steps and coatimn with equation (3.7)
yields the following linear one step method

Y=yt A (L=9) - f ) - f (") (3.13)
equivalent to a two-stagelRIGE-KUTTA method

n

m =Y
e = Y+ At (=) [, ")+ Aty f (g, t"H) (3.14)
Yyt o= oyt AL (L =) - f () + Aty - f (g, )

with the BUTCHER tableau
0

11—7y v. (3.15)
l=v v

This is the well-known one-step-theta family, including fp = % the second order
trapezoidal (RANK-NICHOLSON) rule as well as the implicit ELER rule described
above. For linear problems, the one-step-theta family isvadent to the one-stage
methods above.

For more general parameter choices, the generalised-atetfzod can be considered as a two-
step method. Evaluation of (3.4)—(3.6) for two consecutinee steps: — 1 andn allows to
eliminate all dependencies on the acceleration. The iagudtheme,

Qg - yn+1 4 (1 _ 2@]\/[> yn i (1 . OZM) ) yn_l _
=(1—7)-At-f ((1 —ap) - yn—l +ap - yn’tn—l—i—aF) X
by At f (1= ap) -y + ap -yt rer) | (3.16)

clearly reveals the method’s character of a two-step metBottef is evaluated at an interme-
diate time-level"*t*r, a linear multi-step method can only be recovered for lipgablems or
the choicenr = 1. The multi-step character also explains that in general fitat sufficient to
prescribe only the initial velocity but that a second quigrdorresponding to the ‘old’ time step
is also required. Choices for two-step methods are for examp
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3.1 Implicit time integration

e The BDF2 time integration foy = ap = 1 anda,, = 3

This parameter choice leads to the second order linear1steji method of GRTISS and
HIRSCHFELDER[60], see also GAR [88]:

4 I, 2 ntl 4m
yn+1_§yn+§yn 1=§Atf(y +1,t+1) (317)

Due to its excellent stability properties, this method isl@y used for the solution of stiff
problems, see for instanc@®RSTER[78] for an application in the context of finite element
flow computations on deforming meshes.

e Thep,, family of JANSEN, WHITING and HULBERT [132]

For0 < p, < 1, a family of second order time integration methods is defingdhe

parameters
1 /3~ pu 1
S = 3.18
M 2<1+poo)’ ar 1+ poo ( )

and the second order condition which can be derived from tezju&3.16) by RYLOR
expansion of the discrete evolutiongf:

1
OéM—Fi:OéF—i-’Y (319)

This second order condition is equivalent to

1
=T

5 (3.20)

The only parameter of this family,, is called spectral radius of an infinite time step, see
the original paper or the discussion on linear stabilityolefor further explanation. The
parametep,, defines a smooth transition from maximum damping for the BBfe2hod

at po = 0 to minimum damping for the midpoint rule at, = 1, see Figure 3.1 for
the resulting parameters. The chojeg = % for which ANSEN, WHITING and HUL-
BERT [132] report a good numerical performance with an acceptalbiount of damping,

is the base for the numerical results that will be preserdtst In this thesis.

Some results of linear stability analysis for the generalis ed-alpha method

The linear test equation
gt)y=XA-y(t), Re(A) <0 (3.21)

can be used to investigate basic stability properties o€ timtegration methods. The exact
solutiony (t) = y (ty) - e of equation (3.21) decays in time if and only if the real pdrthe
complex parametex is less than zero, i.e\ € C~. According to REsHoand NI [102], the
real part ofA can be interpreted in analogy to a diffusive term in a corieadiffusion problem,
while the imaginary part is related to the convective part.

39



3 Finite elements for incompressible flows — base algorithm

BDF2 » midpoint
32

56 .
23— ———
12

Figure 3.1: Second order parameter choices for generadigdth methods plotted over the spec-
tral radiusp,, of an infinite time step. The graphs fay- and~ are identical. Values
are provided fop,, = % the parameter choice used in this thesis.

Application of the generalised-alpha method to the tesaggn (3.21) yields the linear dif-
ference equation
y" o — yap - At +
+y" - [(1 —2apy) — (ap +7 — 2ap - 7) - NA] +
+y" (1 —ayn)—(1—7)-(1—ap) - AAt] =0. (3.22)
According to DEUFLHARD and BORNEMANN [62], this linear difference equation is stable if
and only if the absolute values of all solutiapsf the equation
Q) = [an — yar - AAL - P+
+ [(1 —QOéM) — (OZF—F’}/—QOéF"}/) )\At] C+
+[-Q—ay)— 1 —7) - (1 —ar) - AAt] =0 (3.23)
are less than or equal one and solutions of absolute valuei@anique. This condition is
called root condition ang*2 (¢) is called the associated characteristic polynomial of ithealr

difference equation (3.22). For an interpretation of thetsmf equation (3.23), equation (3.22)
can be restated in a matrix recursion form

yn-i-l ) ( yn )
=A- 3.24
( yn yn—l ( )
using the amplification matrix

[—(1—2ap)+(ap+y—2ap7) AAL]  [(1—apr)+(1—7)-(1—ap)-AAL]
A= )

apr—yap-AAtL apr—yap-AAL

- (3.25)

A straightforward computation of the eigenvalues®oghows that they are identical to the roots
of equation (3.23). This interpretation allows the condughat the difference equation (3.22)
is asymptotically stable, i.é holds that

lim y" =0, (3.26)

n—oo
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3.1 Implicit time integration

if and only if the recursion (3.24) is contractive, .i@l roots of equation (3.23) are strictly
smaller than one.

The region of stability of the linear difference equatior?@ and hence the region of stability
of the generalised-alpha method applied to the test proidatafined as the set of all complex
AAt for which the root condition is satisfied. The boundary of #st&bility region is the root
locus curve. It can be obtained from equation (3.23) by rsgti := ¢*# for ¢ € [0;27[ and
solving the resulting equation

ayr - €2 + (1 —2ay) - €% — (1 — ayy)
Jar %+ (ar 71— Zap 7)) 7 = (1=7) - (1 = ap)

()\At)rootloc _ (3.27)

for AAt. Figure 3.2 contains several examples of root locus cureeshe generalised-alpha
method for special parameter choices.

12 T T T T
BDF2, poo = 0.0 ——
10 - generalised-alpha, poo = 0.5 ——
midpoint rule, poo = 1.0 ——
. 8T implicit EULER 7
4
= 6f -
E
4 - |
2 m -
0 | ! ! |
-5 0 5 10 15
Re (AA?)

Figure 3.2: Root locus curves for several parameter chaxtdbke generalised-alpha method.
Due to symmetry, only the positive part of the imaginary asiglisplayed. The
stability regions of the methods are outside the closedesufer implicit EULER,
P = 0.5andp,, = 0.0 respectively on the left of the imaginary axis for the midygoi
rule po, = 1.0.

For extremely stiff problems, as they are encountered irctrgext of incompressible fluid
flows, it is required that the method applied is stable fondlk with a negative real part. Such
methods, whose stability region comprisés, are calledA-stable. The paper byA3ISEN,
WHITING and HULBERT [132] contains investigations of the roots of equation 33.@r in-
finitely large and infinitely small time steps. From theseestgations and the second order
condition (3.19), they derive the following necessary #itgizondition

O p Z (032 Z (328)

N =
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3 Finite elements for incompressible flows — base algorithm

and show that in the limit of infinitely large time steps, tlo®ts ({1, (;) of equation (3.23) are
given as

. o —1+2(Oé]\/[—ap) 1
Altlinoo (Clu <2) - ( 1+ 2(041\/[ _ aF) 71 - Oé_F) : (329)
The p,, family is defined such that
Altiinoo G| = Altiinoo |G| = poo s (3.30)

explaining the name ‘spectral radius of an infinite time step p... For this family, the root
locus curve can be obtained in the form

(1= px)’ - (poe + 1) - (c0s(p) =1)* |

(2000 - cOS() + p% +1)*
Ly (et 1) - sin(p) - (202 = 2p00 +2 = (P2 - 4poc + 1) cos(p)) (3.31)
(2poc - cos(ip) + p3, + 1)

()\At)rootloc _
Poo

for po < 1. The case,, = 1 has to be treated separately. For this parameter choiceg@the
part in equation (3.31) converges to zero independent afile the imaginary part exhibits
a singularity atp = 7. The stability properties for this choice are exactly thdlwaown
properties of the midpoint rule, see Figure 3.2. par € [0; 1], the real part of the root locus
curve (3.31) is positive and zero only fgr= 0, yielding a closed curve on the right side of the
imaginary axis. By differentiation, it becomes clear thed teal part is monotonic increasing for
¢ €]0; 7[ and monotonic decreasing for|r; 27[. Furthermore, the imaginary part is positive
for ¢ €]0; 7| and negative ip €]7; 2|, resulting in a ‘circle-like’ shape of the root locus curve.
Thus the stability region outside the root locus curve coist&~ and all members of thg,,
family inherit the stability from the continuous problent @l time step sized\t, i.e. they are

in fact A-stable.

According to its definition, the parametey, controls the behaviour of the method for infinite
time steps. Afp., = 0, the numerical method will return the correct solutiofor the linear
test problem (3.21) in only one infinite time st&g — oo. This is a well-known property of
the BDF2 method. In contrast to that, for, = 1, the method exhibits the problems of the
midpoint rule, for which in the limitA¢ — oo the sign of the solution switches in every time
step corresponding to an eigenvalué.

3.1.2 Application to the incompressible N  AVIER-STOKES equations

In this subsection, the generalised-alpha time integnatidi be applied to the WVIER-STOKES
equations. The most general formulation, the discretsain deforming domains, is presented
first. The versions for convective and conservative.ERian descriptions are depicted after-
wards.
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3.1 Implicit time integration

ALE version

The generalised-alpha time integration applied to the AeEswn of the MVIER-STOKES equa-
tions (2.47) results in the time discrete momentum equation

,&n-i—on + ((un—i-ap o ug—i—a;:) . V) un+aF+
1
+ ;V}D"Jrl — 2wV e (u"r) =" =0, (3.32)
the incompressibility constraint
V-u"t =0 (3.33)

and the following linear relations corresponding to equadi(3.5)—(3.7):

w7 = ap - (uo®)" Mo ®d 4 (1—ap) (uod) o d! (3.34)
: 9 (uo®)\"™ 0(uo®)\"
"M =y - (7(u0§ )) o® 4 (1 —ayy) - <%) 0@ (3.35)
't = (uwo®)" o ® ! 4 (1 —~) At
O(uo®)\" o O(wo®)\""" o

These equations are stated with respect to the control w{ufr**!) at the new time level, i.e
&~ in equations (3.34)—(3.36) belongs to the same new timé. [&hés implies that

(wo®)" M o @™l =yt (3.37)

but in general
(wo®)" o @ #£ u" (3.38)

In equations (3.34)—(3.36) quantities are averaged indfezence domain. This reflects the fact
that for the Arbitrary-LAGRANGEan-BEJLERIan approach, the time derivative is computed with
respect to the reference configuration.

The fully implicit treatment of the pressure in equatior8@.for incompressible flows is done
according to WAITING [220]. It takes into account the fact that the pressure isalgt not integ-
rated in time but instantaneously enforces the incomgégiconstraint in each new time step.
In agreement with this idea, the incompressibility coriatres also requested at the new time
step in equation (3.33). This extension of the method pregpas WHITING [220] is intended to
provide more robustness in the context of turbulent chafloel simulations, which are started
from a randomly perturbed initial profile which possibly lates the incompressibility.

Up to now, the body force and the grid velocity in equatiorBg3}.have been considered as
known quantities, which can be evaluated at the intermediate level:"**r. Unfortunately,
in practice, an explicitly defined grid velocity is not axle. Instead, a mesh motion algorithm
will provide only mesh displacements at discrete time Ieas defined in (2.11),
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3 Finite elements for incompressible flows — base algorithm

The actual mesh velocity has to be obtained from these vdiyesfinite difference approx-
imation. As pointed out by &rsTERet al [79], the order of accuracy of this approximation
has to match the temporal accuracy of the fluid time integnatd maintain the overall order
of accuracy. For the generalised-alpha time integrati@d us this thesis, a second order finite
difference approximation equivalent to the one proposethénabove-mentioned reference is
applied to determine the new grid velocities at tithe!:

w1 3(dgo @) 0@ — 4(dgo®)" 0 ® 4 (dgo®)" 0B 3.40

The intermediate grid velocity used in equation (3.32) entbomputed in the usual way
ungO‘F = Qfp - ugH + (]_ - OéF) . (’LLG @) ‘I))n @) ‘I)_l, (341)

a procedure which can as well be applied to the body force ifdtris available only at discrete

time levels.

Convective and conservative E ULERian version

For a vanishing mesh displacemelat = 0, equations (3.32)—(3.36) immediately yield the time-
discretised, convective form of theAMIER-STOKES equations in BLERian description. The
momentum equation is

un—l—aM + (un-‘rap A V) un+aF+

1
+ =Vp"t = 2wV e (uTF) — b =0, (3.42)
p

the continuity equation is identical to the ALE case (3.33)rthermore, the intermediate quant-
ities are defined by the following linear equations:

u"F = ap - w4 (1 - ap) - uw” (3.43)
't = oy - a (1 — ay) - 4" (3.44)
u"t =u" (1 — ) At - W" + At - (3.45)

For the conservative form, equation (3.42) is simply repthby
un—l—aM + v ) (un—l—aF ® un—l—aF) +

1
+ =Vp"tt = 2wV e (uT) =BT =0, (3.46)
p

3.2 Weak form of the semi-discrete problem

To obtain a weak, variational form of the time-discretises/NR-STOKES system, the bound-
ary value problem is multiplied by appropriate test, veeighting, functions. The arising
weighted residual is integrated over the current comparatidomain, yielding a weighted re-
sidual form of the problem. A successive partial integmatiesults in a weak form of the problem
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3.2 Weak form of the semi-discrete problem

which is the base for spatial discretisation as it will bealé®d later. The solution of the weak
equation are velocity and pressure functions for which teakwariational equation holds true
for all admissible weighting functions.

Before explicit equations for the weak forms of the conwerALE and conservative lH_ER-
ian form will be given in subsections 3.2.1 and 3.2.2, sué&aipaces for weighting and solution,
i.e. admissible trial functions will be defined. The reader whoas familiar with the general
function spaces, their inner products and related notatised in the following definitions, is
referred to appendix A.4 for a short introduction. For théoeéies, the trial spacé,, is defined

by
Sui={we [H(2())]° | ulpy iy =un } (3.47)

The prescribed DRICHLET velocity in this definition cannot be chosen arbitrarilyf bas to be
the restriction of a function in the trace space onto thrIDHLET part of the boundary:

up (a:, tn+1) = g\FD(th) (w) for ag c F_% (tn+1) (348)

The velocity weighting function spacg, corresponding t&,, is defined as

T, = {v e [H (2 (1"))]°| vl oer) = 0} (3.49)

If DIRICHLET and domain boundary are equivalent, the velocity weighfimgtion space/,, is
also termedH; (Q (t"+1))]3. According to equations (3.47) and (3.49), thR[ZHLET bound-
ary conditions for velocities are directly incorporatedfie formulation via the definition of trial
and weighting function spaces. The definitions of weighting trial function spaces for pres-
sure are depending oniIRICHLET boundary conditions applied to velocities. For a not purely
DIRICHLET bounded domain, i.e9Q (t"*1) # I'p(t"*!), the following choices for pressure
solution function space

S, = L2 (Q (1)) (3.50)

and pressure weighting function space
T, = L2 (2 (")) (3.51)

are appropriate. In the special ca¥e (1" ™!) = I'p(t"*!), i.e. for solely DIRICHLET bounded
domains, the pressure solution is defined only up to a cons@a subsection 2.1.5. One option
to ensure an unique solution in this case is to set the pegsel in one pointc, € Q2 (") to

a prescribed valug, using a DRICHLET boundary condition on the pressure. This procedure
requires a modification of pressure weighting and trial florxcspaces similar to equations (3.47)
and (3.49), viz

S;nod,DirichIet — {p c L2 (Q (tn+1)) ‘ p(xy) = po} (3.52)
gmoaDitehlet, _ £ ¢ 12 (Q (£"1))] ¢ (o) = 0} . (3.53)

The second, preferred option to obtain a unique solutioo keep the pressure weighting func-
tion space7,, and to look for a pressure solution only in the quotient spd@guivalence classes

Sir)estricted:: |2 (Q (tn+1))/R_ (3.54)
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3 Finite elements for incompressible flows — base algorithm

The elements of this spaagesm“e“are groups of functions which only differ by a constant. The
modified solution process for this approach will be discdssedetail in appendix E. Having
introduced appropriate weighting and trial spaces, weak$will now be given for the different
formulations. For ease of notation, only the case of a no¢lguDIRICHLET bounded domain
will be depicted in the following.

3.2.1 ALE and convective E ULERian formulation

First, the weak form of the ALE version of theaMIER-STOKES equations will be presented. It
is: Find (™!, p"*™!) € S, x S, such that for al(v, q) € 7,, x 7, the variational equation

T I (e B P R

LT 0) e v (e (@) e ()

P (¢nt+1) Q(nt1)
1
n4oarp . n+1 _ n+aor.
— (0" 0) gy + (V" @) iy = ; ("5 0) oy (3.55)
holds with prescribed boundary traction
trer = —p"ton 4 2u € (W) n . (3.56)

The NEUMANN boundary condition term on the right hand side of equatiab5Barises
from partial integration of the viscous and the pressumntand thus is often referred to as the
natural boundary condition. The intermediate quantifi®s** andw”+** in equation (3.55)
can be expanded in terms of the unknowrt$! according to equations (3.34)—(3.36). Naturally,
the convective HLERian version can be recovered from equation (3.55) for a vamgsmesh
displacement (2.11).

3.2.2 Conservative E ULERIan version

For the weak form of the conservativaJEERIan equation, the nonlinear convective term can
be partially integrated as well. Thus the weak problem isrd fielocity and pressure solutions
(u™tt prth) e S, x S, such that for allv, ¢) € 7,, x 7, the variational equation

("o v) — (™ [(wr - V) v])

Q(tnt1) Q1)

(p"*, V- 'U)Q(tnﬂ) +v (e (u"r) e (v))

+(V-u" q) Q(ently T

= ((@™ - m), (w0 v))

Q(tnt1) -

I

—

n+op .,
bT U)Q(t"+1)

= ()

—_

(3.57)

D (") Py ()

holds.

The boundary term- (w7 - n) , (u"*** - v)). ;.41 IS generated by partial integration of
the convective term and has to be taken into account if a coatsee form is used in combination
with a NEUMANN boundary. Again, the intermediate quantities ™, "+~ are related to the
unknown velocityu™*! as prescribed by the time integration in equations (3.43%5)).
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3.3 Geometry approximation

3.2.3 Abstract notation
Both formulations (3.55) and (3.57) can be written in theagenform
B(u"™v) -G (" v)+D(u"q) - F(v)=0. (3.58)

The linear contributions of pressure

G(p"tv)==(p"",V-v) (3.59)

Q(tn+1)

I

and continuity

D (u™',q) = (V-u"", q) (3.60)

Q(tn+1 )

are explicitly separated from the rest of the equatiBriz™ !, v) is defined such that each of its
contributions depends at least linearly on the unknownaoiloSince it contains contributions
from the convective term, it is obviously nonlinear in thevneelocities. The linear forn¥' (v)

contains surface traction and body force effects as welbagibutions from previous time steps.

3.3 Geometry approximation

The weak form (3.58) is based on integrals over the currentaiio which have to be evaluated
numerically. For this purpose, a discretised represemtati the domain is required. The ap-
proximation of the solution will take place on the discrezpnesentation. Consequently, a good
approximation of the geometry is a prerequisite for a pr@mpgaroximation of the solution.

This section has two main purposes. Firstly, a brief intotun into non-uniform rational B-
splines (NURBS) as a tool for geometric design will be givesubsection 3.3.1. Secondly, two
methods to acquire an analysis-suitable finite element hioma a geometry will be described
in subsection 3.3.2. The first approach described in thatesttlon is the standard finite element
method using a AGRANGEan element domain representation. The second approactnpees
is the isogeometric finite element method proposed bgHEeESset al [117]. In this approach, the
description of the geometry in the computation is based o®UBIS representation, allowing
among other things an exact, smooth representation of neaigtic designs. The isogeometric
finite element method is not the only technique capable ofxacteepresentation of computer
aided design (CAD) geometries in a finite element framewdtkother option that should be
mentioned here is the NURBS enhanced finite element meth@tby LA et al [189], which
uses enhanced elements only next to curved boundaries.

For further motivation, a list of classes of problems for @fhthe quality of the solution is
particularly influenced by the approximation of the domadubdaries will be given in the fol-
lowing. The first class are problems in fluid mechanics inwaiwcurved boundaries. For these
applications, the necessity of an appropriate boundamesemtation has been pointed out for
instance in BKILSSON and SHERWIN [70], KRIVODONOVA and BERGER [147] and BAssI
and REBAY [9]. Additionally, when considering turbulent flows and tlestructure interaction,
it becomes obvious that a proper representation of the kayrehould be provided for these
problems as well. The second class are problems involvidggl contact surfaces. For these
problems, an improved performance can be obtained utjismooth discretisations of contact
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3 Finite elements for incompressible flows — base algorithm

surfaces using ERMITE or BEZIER splines. See for instance the book byRWGERS[224].
Another class are sliding mesh applications for the sinnutedf fluid flow around rotating bod-
ies as they are presented iInBLEVS and HUGHES[20]. In this type of application, the exact
circular shape of the domain boundary provided by a NURBS@pmation is exploited.

3.3.1 Introduction to NURBS

In classical engineering applications, geometries amenofenerated by computer aided design
using NURBS representations. This subsection summarnseggies of NURBS, which are re-
quired for a basic understanding and that will be used latédoothe isogeometric finite element
implementation. Fundamentals on NURBS are well documantkigrature, for instance in the
textbooks by FEGL and TiLLER [173], ROGERS[182] or FARIN [74].

B-spline polynomials

In the following, the construction dfB-spline polynomials of ordep corresponding to a knot
vector
w = (Ur, Ug, - ., Upppii) (3.61)

will be explained. In equation (3.61) < R is the:™" knot value andi; < w,;,,. The interval
[us; i) Will be referred to as thé™ knot span of the knot vector. The knot vector is called
uniform if all knot values are equally spaced, otherwise italled non-uniform. Multiples of
knot values are possible. Knot vectors are termed open firgteand last knot is repeated+ 1
times. Furthermore, they are termed periodic if

Uip1 — Ui = Uppip1 — W fOri=1,....p. (3.62)

B-spline polynomials of degreeare defined by recursion over the degree. The recursion is
initialised by piecewise constant functions for the degree

0 L 1 if U <u < Ujqq
B (u):= { 0 otherwise (3.63)

The desired B-spline polynomials are then obtained usiagbhx-DE BOOR-MANSFIELD re-

cursion formula
M_B;z—l(u)+M.Bf;11(u),d:l,...,p. (3.64)

Uiqpd — Uy Ujgd+1 — Uil

B (u) ==
The recursion can be represented by a truncated triangle, tede Figure 3.3 for an example
with quadratic B-splines defined on the open knot vector
v = (0.0,0.0,0.0,0.3,0.6,0.9,1.4,1.7,2.0,2.0, 2.0) . (3.65)

The B-splines corresponding to the triangle table are Vise@in Figure 3.4.
This figure also exemplifies several important propertieB-splines. The basis functions are
nonnegative and they constitute a partition of unity, i.e

l
> 5
i=1

1. (3.66)
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<B><BS\>/\/\/\/\/\/\</B\><>

0
9
<B%> B; B Bl B B B <B>

\/\/\/\/\/\/\/

2 2
1 B 4 Bo 6

Figure 3.3: Truncated triangle table for the computationhef B-spline basis functions shown
in Figure 3.4. The light grey triangle marks all nonvanighbasis functions on knot
span eight. The darker grey triangle illustrates that thgpsut of the fourth basis
function comprises knot spans four to six.

1y m
0.8]- 5
0.6/ }
0.4] |
0.2 }

0.2] .

0
knot span id|| ® ® ©) ©) © ®
0.0 0.3 0.6 0.9 1.4 1.7 2.0

Figure 3.4: B-spline basis functions corresponding to tbadated triangle table in Figure 3.3.
The light grey colour highlights the nonzero basis funcsiom knot span eight, the
darker grey colour indicates the support of basis functiomber four.
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Furthermore, each basis functié has compact suppdtt;, u;,+1]. For open knot vectors, the
first basis function equals onewat = . .. = u,, and the last basis function equals one;at =

. = Upy1. IN the interior of[us, u;4,41], @ basis functiorB? equals one only at a times
repeated knot. For repeated knots, some basis functionsreegn recursion formula (3.64)
may not be well defined since their support vanishes. In tlaengke of Figure 3.3, this is the
case for all basis functions in brackets. In this case, tepaetive basis functions will not be
computed. For the computation of basis functions whichiregte value of an undefined basis
function, the summand in equation (3.64) correspondingeamdefined function is set to zero.

B-splines exhibit certain smoothness properties. In therior of a knot span, continuous
derivatives of arbitrary order exist. At the position of kaaf multiplicity m, B-spline basis
functions with adjacent support afe — m) times continuously differentiable. The first deriv-
atives of B-spline polynomials of ordercan be computed as a linear combination of B-spline
polynomials of orde(p — 1):

d B? P _ P _
L) = —2— B () - —— 2 . BPly 3.67
o) = B ) - B (3.67)

Furthermore, higher order derivatives are computablerssati combinations of lower order de-
rivatives of basis polynomials of lower degree:
_ _ k—
d* B¢ d  d"'B! d "' Bl

u) = : (u) — :
duk Uitd — Uy dub-t Uitd+1 — Ui dub-t

(u) (3.68)

Of special interest for the application of B-splines in #nélements is an algorithm which
computes all values and derivatives of nonzero B-splingramhials at a given point, corres-
ponding to the light grey triangle in the truncated triangble in Figure 3.3. Among a collec-
tion of other efficient algorithms, such an algorithm whistalso avoiding divisions by zero can
be found in PEGL and TiLLER [173].

B-spline curves, surfaces, volumes

B-spline polynomials can be used to construct B-splineesias linear combinations béontrol
points X? € R™:

l
C®e () :=> " BY (u) - X7 (3.69)

Linear interpolation of these control points defines thetmdpolygon of the curve. In contrast
to the control polygon, B-spline curves do not necessaniigrpolate the control points.

A generalisation to B-spline surfaces and volumes is dittogwvard. B-spline surfaces are
defined on the ErRTESIan product space of two knot vectors

u = (Ul, U, . . . 7ulu+pu+1> s vV = (Ul, Vo, ... 7Ulv+pv+1> (370)

using a control net of, - [, control pomtsX e R™

SB-spline Z Z BPu pr ) . X?’j (3.71)

i=1 j5=1
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3.3 Geometry approximation

As indicated in equation (3.71), the combined basis funetig/“ - BY* can be constructed from
one-dimensional basis functions of different degree. Kbedess, for ease of notation, it will
be assumed that all basis functions involved are of the s&geed, i.ep, = p, = p. Finally,
B-spline volumes are defined on the&resian product of three knot vectors

u = (u17 e ,uz,u+p+1) 5 vV = (Ul, e 7,Ul1;+p+1) 5 w = ('Ujl, e ,'Ujlw_;’_p_’_l) (372)
and a control net of, - I, - [,, control pointsX?; , € R™:

lw

lu Iy
V—B-spline(u7 v,w) = Z Z Z BP (u) - Bﬁ.’ (v) - By (w) - XEM (3.73)
i=1 j=1 k=1

For implementation purposes, it should be kept in mind thetbmputation of a sum as in equa-
tion (3.73) on knot spafi + p, j + p, k + p) actually involves onlyp + 1)* nonzero summands.
These nonzero summands are the ones with numbers

(t+ZT-1,7+T-1Lk+K—-1)
I=1,....,p+1, J=1,...,p+1, K=1,...,p+1. (3.74)

For B-spline curves, surfaces and volumes it is possibleettopm knot insertion and degree
elevation without a modification of their geometrical andgmaetrical representation. The reader
is referred to appendix B.1 or the book byeBL and TiLLER [173] for more information.

NURBS curves, surfaces, volumes and basis functions

Many geometric entities cannot be represented exactlygysatewise polynomial interpolation.
Nevertheless, conic sections such as circles or ellipsebeaecovered by projective transform-
ation of B-spline curves. In order to obtain a projected Brgpcurve inn-dimensional space, a
generating B-spline curve has to be providedrint- 1)-dimensional space.

Let CBPi"®he a generic B-spline curve in+ 1-dimensional space described by

(X7),
l .
(B-spline (u) = Z BP (u) - (XB) (3.75)
L Wi .

The notationy; for the last component oK ® already emphasises that this entry will be asso-
ciated with the weight of the corresponding control pointied generated NURBS curve. The
projected curve is obtained by scaling with the inverse eflédst component:

l (x9),
- spli B (u) :
CprOJected B spllne(u) _ 7 . 5 (376)
2T | (X0,
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3 Finite elements for incompressible flows — base algorithm

The firstn components of the projected curve constitute the NURBSecurv
CNURES (4 Z N? (u (3.77)

with rational NURBS basis functions

. BP
NP (u) = —2 ’(,,) (3.78)
2 j—1ws - B (u)
and NURBS control points
XB
X;: : (3.79)
Wi

For a geometric interpretation of this definition as a coraise and the example of a B-spline
curve generating a circle segment, the reader is referragpendix B.2.

A generalisation to surfaces and volumes based on tensdugi® of B-spline basis func-
tions is straightforward. For example NURBS volumes can d&fined using the B-spline basis
polynomials from equation (3.73) by

VNURBS (4 v, w) Z NP (wv,w) - X (3.80)

i=1 j=1 k=1
The rational NURBS basis functions in this equation are eeffi;s follows:

w B U, V, W
Np (u,'l}7w)': ij ij( » Y )

k : i
" Zruzl Zs:l Zt:l Wrs,t " B;l‘),s,t (U, v, w)

NURBS basis functions inherit many important propertiesfrB-spline polynomials. They,
too, constitute a partition of unity, they have the same cachpupport, they are guaranteed to
equal one in places where the corresponding B-spline patyais equal one. Furthermore, they
inherit the smoothness properties of B-splines. Deriestiof NURBS basis functions can be
derived from B-splines derivatives by application of thaichrule. For instance for a NURBS
volume, the resulting formula for the first derivatives imedition«, wherea can beu, v or w,
reads

(3.81)

P
aNzykz o Wi j.k

p
Ao Er,s,twﬂsvt ' Br,s,t

zykz

p
da Zr,s,twﬂsvt ' Br,s,t

aB'r s,t
aBp BZI:],IQ ’ (Z?",S,twrws’t Oa )
: (3.82)

The formula for the second derivatives in directidis «), with g as well equal ta:, v or w,
can be computed as

O*>N?. Wi 0?B?.
i,5,k t,5,k 1,7,k
= -0 -0, - 03+ 0 3.83
930 Zm’t W5 * Bf,s 860 1 2 3+ Ly ( )
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3.3 Geometry approximation

with
aBP

b oB?
.4k . r,5,t
Oa <Er s,t Wy »8,t [oJ¢] >

1= ; (3.84)
(Zr s,t Wr ,8,t " Bf,s,t)
oBP oBf _,
E?ZBJ o <Er,s,t Wr,s,t E;Of )
O, = , (3.85)
<Zr st Wrst® Bf,s,t)
82Bf.s.t
Bf] k (Zr,s,t Wrs,t * 858’04’ )
O, — , (3.86)
<ertw7"5t BTSt)
aB'r s,t aB’II‘)S t
2- B? ’ <Zr,s,t Wrst * O ) ) (er tWrsit 85’ )
0, = ) (3.87)

2
(Zr,sthSt BT’St)

The partial derivatives of B-spline basis functions in égues (3.82)-(3.87) are computed using
the product rule and the derivatives of B-spline polynosifabm equations (3.67) and (3.68).
For a triple index, 7, k, these derivatives are

0B; oBY
S (0, 0) = OO () B2 () B (w),
OBy, 92 B?
S v w) = S0 ) B ) - B (w),
>*BY oB? OB?
0,5,k _ i . J . RP
R (u,v,w) = 5 (u) ER (v) - By (w),.... (3.88)

Patches

For more complex geometries, a description using a singI&BS® curve, surface or volume is
not possible. This shortcoming can be overcome in manyigedaases by a subdivision of the
geometry into a set of patches. These patches are desigaedhsu they can be described by
a single NURBS entity. Each patch is associated with oReTESan product of knot vectors.
Thus, using the mapping defined by the NURBS entity, eacthgattopologically equivalent
to a CaARTESan product of knot vectors. In most applications, the kresttars are chosen to be
open. In this case the surfaces and lines on the patch bounilarepresent NURBS entities
themselves. As can be seen from the example in Figure 3.pathbes may share control points.

3.3.2 Finite element geometry representation

For finite element approaches, the computational domaihrigetdimensional space is parti-
tioned into a set of nonoverlapping subdomains the so-called computational element do-

mains:
Q@ = J (3.89)

elements
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3 Finite elements for incompressible flows — base algorithm

Figure 3.5: The design geometry on the left can be repreddayt& NURBS patches as shown
on the right. Patches 1 to 4 can equivalently be representeda patch using a knot
vector which allows interpolation in the patch interioe, iwhich has multiple knots.

They are chosen such that they can be mapped to a simple staidment geometry, for in-
stance the normalised cubel; 1]°, via a mapping

Xe * [_17 1]3 - Qe? (517 52753) = Xe (51752753) : (390)

All numerical integration in equation (3.58) will be penfoed by quadrature on the reference
element, for example by & ss-quadrature. One of the key features of the finite elemertepin

is that the complete spatial representation is defined wsiingte numben,,, of point coordin-
atese"*! and corresponding basis functioNs(z). The basis functions are chosen as continu-
ous functions with local support restricted to a small numddeneighbouring elements. Only a
small amount:y;, of basis functions are nonzero on an arbitrary elemerithe nonzero basis
functions on elementare defined such that they can be evaluated on the referaamer using
element shape functiorts (&1, &2, &3):

Nion(e,[) (Xe (51752753)) = S; (61762763)7 I = 17"'7n§p (391)

Here,ien (e, I) is the mapping from the element local number of the basistiond¢o the as-
sociated global index of the basis function. Using these basis functions, the mapio the
computational element domain (3.90) can be written as

Nip

51752753 Z ien(e,l) Xe 51752753)) flerrchjll)_

nnp

- ZSI 61752753) fle:—ie_lj) (392)

In moving mesh applications, the current coordinate hag toamtinuously updated by the mesh
displacemend ;""" viz.
wh n+1 0 + dh TL+1 (3.93)
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3.3 Geometry approximation

The underbar indicates that the vectors in equation (3.83)ain all coordinate vectors from all
points. The restriction of the geometry representationfinite dimensional basis representation
naturally limits the amount of geometries which can be repnéed exactly. In the rest of this
subsection, several possible choices for shape functiolhdevpresented. These are based
on LAGRANGEan, serendipity or isogeometric formulations. This setecbf shape functions
is not complete. There are other concepts like hierarchieals functions, see for instance
ZIENKIEWICZ and TAYLOR [225] or WHITING and ANSEN [221], but these approaches will
not be considered in this thesis.

LAGRANGEan and serendipity approaches

For LAGRANGEan approaches, the element shape functions are chosen tadraNGEan
basis polynomials. They equal one in exactly one node posénd are zero in all other node
positions on the element. Therefore, the arising contisuglabal basis functions define an in-
terpolatory set of nodal basis functions. Figure 3.6 exdmplthe relation between the point
coordinates in the global system and the corresponding posiéons on the reference element.
In LAGRANGEan approaches, the point coordinates correspond to realqattypositions inside
the computational domain and are identified with the nodeth@fdiscretisation. Serendipity
elements are similar to higher ordenGRANGEan elements without inner nodes. For inform-
ation on these standard element types, the reader is referre textbook by ENKIEWICZ

»

A
4 oqe b+l
&1 Xe=212157 wi;r?(t,l)
1 2

Figure 3.6: Two-dimensional example for abRANGEan geometry representation using bilin-
ear shape functions on a four-noded element.
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3 Finite elements for incompressible flows — base algorithm

and TAYLOR [225], which provides explicit formulas for the shape fuoos S§ (&, &2, &3) of
various types of hexahedral and tetrahedral elements.

LAGRANGEan geometry representation will always lead to polynomiatbunded domains,
i.e. the representation of cylindrical shapes will not be exatte quality of the approximation
can be improved byi-refinement, i.eby using a larger number of smaller elements to represent
the geometry, or by-refinement, i.eby the use of higher order shape functions which allow a
curved boundary approximation. Nevertheless, curved Bades will not be smoothly repres-
ented and maintain a ‘facet’ structure with kinks betweemgints.

Isogeometric geometry representation

Isogeometric analysis uses the same set of functions fogrdesd analysis, i.eNURBS as

a basis for finite element analysis. Elements for the isoggonoapproach are identified with
element knot spans, see the sketch in Figure 3.7 ¢ lbet the element associated with element
knot span(u,.4i; Up+it1] X [Vpts; Uprit1] X [Wpik; Wpikt1] OF patChnpacn If the element knot
span has a nonzero volume,. ir® repeated knots, then it is connected to the referenceseliem
by an affine transformation

u (&1) Up+4 SE (up+i+1 - up+i)
v(&) | = v || S (Vprjrr —vpry) |- (3.94)
w(&3) Wptk &3 (wp+k+1 - wp+k:)

element knot vector
(uiu cee 7ui+2p+1) X <Uj7 s 7Uj+2p+l)

D 3 D h,n

vy Xe (€1,62) }2?11 o Nz jiga(w(&),v(&) '%en(t,lz)
] \

element knot span

&1

reference element

physical element domain

e
n’np

X (€1,6) = S0 S5 (61,60) - @ty

Figure 3.7: Two-dimensional example for an isogeometrmngetry representation using quad-
ratic NURBS shape functions.
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3.4 Spatial approximation of the solution

Based on this mapping, isogeometric shape functions caefbeed as the pull-back of NURBS
basis functions to the reference element. The = (p + 1)* element shape functions with
element-local indices

I =T+@(p+1)-(J-1)-0+(p+1)-(K-1)),

I=1,....p+1, J=1,....p+1, K=1,...,p+1 (3.95)
are thus defined by
ST (&1,62,83) = Nf+z—1,j+J—1,k+lc_1 (u (&), v (&2),w(&3)) - (3.96)

The recursive evaluation of the element shape functionsimregjall knot values collected in the
element knot vector

(Ui -, Uigops1) X (Uja con 7Uj+2p+l) X (W, -+ Why2pt1) - (3.97)

The number of possible element knot vectors and thus elenreatpatch igl, — p) - (I, — p) -
(I, — p). In case of repeated knots, some of these elements willlacheaof size zero. Nev-
ertheless, they are likely to be kept in a practical impletagon, since they allow a convenient
CARTESan numbering of the elements:

e — (4,7, k, npatch)
e = offset (npaten) +i + (lu —p) - (j —1) - (1 + (L, —p) - (K — 1)) (3.98)

e is the unique element index, j, k the corresponding patch-localA@TESian index in patch
Npach The valueoffset (npacn) COrresponds to the number of elements contained in patcities w
an index smaller thanpacr For integration, elements with size zero will simply bepgled.

For isogeometric elements, the point coordinates cormdpo the control points of the geo-
metrical design. In general, they can be located outsidphigsical domain and they do not have
a corresponding location on the reference element like aau¢he LAGRANGEan approach.
Furthermore, control points store an additional weighteain comparison to nodes. Deriv-
atives of the shape functions with respect to the refereteraent can be computed from the
derivatives on the element knot span (3.82), (3.83) andAtegian of transformation (3.94).
In contrast to the AGRANGEan approach, the shape functions in the isogeometric agproa
are not only specific to the element type but rather specifindvidual elements, i.ethey are
defined by the element’s knot vector and weights of its cdmants.

The representation of the geometry using a NURBS basis ist ésa NURBS-based CAD
geometries. Nevertheless, a refinement of the approximatiay be required since the same
functions that represent the geometry will be used to remiethe solution later on. NURBS
provide refinement strategies that all@refinement by knot insertion as well agefinement
by order elevation without changing the represented domairocal refinement seems also
possible using multiple patches, seedaN, FISCHERand BAR-Y OSEPH[138] for a discussion
in the context of B-spline-based finite elements.

3.4 Spatial approximation of the solution

Having an appropriate geometry representation at handatalp discretised version of the
weak form (3.58) can be deduced by a finite element approiematn this section, the iso-
parametric concept for AGRANGEan and isogeometric finite elements will be presented. The
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3 Finite elements for incompressible flows — base algorithm

GALERKIN approximation including its shortcomings for equal ordeerpolation and convec-
tion dominated problems will be introduced. A discussiorse¥eral well-known stabilisation
techniques to overcome these problems will follow in thetrsextion.

3.4.1 Restriction to finite dimensional subspaces

The approximation of the solution of the weak problem in guene step is primarily achieved
by a restriction of weighting and trial function spaces tatérdimensional subspaces. The
resulting variational problem,

Ru, (,u’h,n—i-I’ph,n—i-l7 ’Uh) =0

Rp (uh,n-i-l’ph,n-i-l’ qh) — O, (399)

is then solved on these subspaces in form of a nonlineariequdthe finite dimensional sub-
spaces are labelled by an index

SﬁngcSuxSp
T x T C T, x T, (3.100)

Accordingly, the members of these spaces are charactdristéte same label.
For the moment, a simpleA&ERKIN approach

R. (uh,n-l-l’ph,n-‘rl’ 'vh) _B (uh,n-i-l’ vh) e (ph’"H, vh) _F (vh)
Rp (uh,n—i—l’ph,n-i-l’ qh) —D (,u’h,n-l-l7 qh) (3101)

is assumed. Later of,, (u"", p"*! v") andR, (u"" !, ph Tt ¢") will be extended in the
discussion of stabilised methods and residual-basedtiaré multiscale approaches. In order
to avoid an unnecessary repetition of the general solutioogulure for these more general cases,
the dependency at, (u"", p""** ¢") onp™"* is already included at this point. For the rest
of this section, the geometry is considered to be repredexxiactly and all integrals are assumed
to be evaluated exactly. As we have seen in section 3.3,glmsgeneral not the case for finite
elements. Nevertheless, this simplification does not affecfollowing basic explanations, so it
is kept here for ease of notation.

3.4.2 Isoparametric concept, basis representations and de grees of
freedom

The choice of finite dimensional subspaces in equation (3.1l be done according to the

isoparametric concept. This means that finite dimensioralftinction spaces will be chosen

such that their members can be expressed using the samduradions N, (x) that have been

used to represent the geometry in equation (3.92).
The basis representation for a member of the velocity tuatfion space reads

Nnp 3
u" (@) =) (Z e;- N, (x) ~uf§f+1) . (3.102)

=1 j=1
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3.4 Spatial approximation of the solution

e, is the unit vector in direction, a three-dimensional physical space is assumed. Using an
unique index for the velocity degree of freedom,

§:=3-(t—1)+7, (3.103)

a basis function for the representation of the velocity sofucan be defined. It will be denoted
by
N (z) :=e; N, (z) (3.104)

and uh nrh— uhf“ is the corresponding value of the velocity degree of freeddiithout

loss of generality, it can be assumed that all basis funstéasa numbered such that basis func-
tions which are zero on [RICHLET boundaries have numbets. . ., n%°". The number of non-
DIRICHLET velocity degrees of freedom', corresponds to the dimension of the finite dimen-
sional subspace of velocity trial functio&§§. Accordingly, basis functions which are nonzero on
DIRICHLET boundaries have numbet§” + 1, ..., n%" = 3. n,,. The corresponding functions
are used to incorporate theaRICHLET condltlon |n the basis representation,.viz

dof ﬁ%m
W ( Z NS () - a1 ST NS (@) -l (3.105)

d=ndof+1

s @)

The functionu);"*" is called a lifting. In contrast to the boundary conditiep (z, t"*"), which

is defined onIy on the domain boundary, it is defined on the wldoimain. Equation (3.105)
implicitly contains the assumption that the prescribe@IDHLET boundary condition is com-
patible with the finite dimensional trial function space, i.

up (,0"4) = ufy| (x) fora uly"lest. (3.106)
I‘D(tn+1)

This assumption will be revisited in subsection 3.7.1. Tiftey can always be used to define

an auxiliary solution variable

h,n+1 e o hnt1 h,n+1
Uero Dirichlet - — U —Uup . (3.107)

Using this auxiliary variable, the problem can be restatedraequivalent problem with homo-
geneous RICHLET boundary conditions.
The basis representation of a solution function for presseads

dof
h n+1 Z NS}L h n+1 (3108)

Here,ngOf corresponds to the number of pressure degrees of fregdrit. If an isoparametric
equal order approach is applied, the pressure basis funsctian be expressed using the same
geometry basis functions that already have been used fira$is representation of velocity:

N () = N, () (3.109)

L
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3 Finite elements for incompressible flows — base algorithm

In this case, the number of pressure degrees of freedomsegial
A basis representation for velocity and pressure weigHitimgtions is defined accordingly:

n?f’f

o' (2) = Y NT () ol (3.110)
6=1
and
ngof
h
" (x) =Y N7 () 4. (3.111)
k=1

The span of functionN?JL (x)withd = 1,...,n%"is equal to the weighting function spagg.

u

Nevertheless, it is convenient to define the additional nang functions

NT with § = nd' 41, 7%, (3.112)
They will be used to introduce IRICHLET conditions in the resulting system of equations later
on. For the moment, it will be assumed that weighting and fiactions are identical, i.g¢hat

NS = N with 6 = 1,..., 7% (3.113)
and X X
NP = N withw = 1,..., 0% (3.114)

p

Such approaches, in which trial and weighting function sgaare chosen analogously, are
termed BJBNOV-GALERKIN methods. They are widespread in finite element analysis, and
they have proven to be very successful in applications baseelliptic problems. For zero
DIRICHLET boundary conditions, trial and weighting function spaces identical for BJB-
NOV-GALERKIN methods. Approaches which allow the usage of differentsbfasictions for
trial and weighting function spaces are usually termed BOV-GALERKIN methods. They
naturally arise when methods oUBNOV-GALERKIN type are enhanced by residual-based sta-
bilisation techniques. A discussion of such methods whieleapecially valuable for convection
dominated problems will follow later in section 3.5.

To sum up, the basis functions for the whole product spatesc S" and 7.} x 7. are
defined by the individual basis functions as it is usuallye@éor CARTESIan product spaces.
For example, a basis for the weighting function space isioetafrom then{® + nd° basis
functions

NT . e 9 0 0
8 AN LT’;) e | Nfug o | 8 (3.115)
0 0 0 NT
The total number of non-IRICHLET degrees of freedom is defined as
n®" = nd + oo (3.116)
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3.4 Spatial approximation of the solution

Furthermore, the total number of degrees of freedom inalgithe prescribed RICHLET bound-
ary values is
1% =g + ndo'. (3.117)

The components of the basis representations are assowidkethe degrees of freedom of the
discretised problem. The vectors containing these degreéeedom will be denoted by an
underbar, for instance” for the vector of velocity degrees of freedom.

3.4.3 Time derivatives of discretised degrees of freedom

Similar to the data from the current time step introduced/aball data from previous time steps,
that is required for the time integration process, is alsailaile only in spatially discretised
form. For the computation of intermediate velocities ancederations, discrete data from the last
and the current time step has to be combined. This is stfargvdrd for EULERian approaches.
Since the domain does not change in time, the same set offbiastsons can be used for all
time steps. Thus, the equations (3.43)—(3.45) are equitvedesimple linear combinations of the
components of the basis representations.

At first view, the setting in the ALE case seems to be more caagd. Since the domain
is continuously deforming, basis functions in spatial cgufation are changing in every time
step. Fortunately, as indicated in equations (3.34)—)3tBé intermediate velocities and accel-
erations have to be computed with respect to the referencitho The basis functions defined
in spatial configuration can be seen as a push-forward o&lfasctions on the reference do-
main, a fact that has already been described for exampleeithésis by BziLEvs [11]. The
basis functions stated on the reference domain can be chasgpendent of the time step. Thus
all linear combinations corresponding to equations (3-@1lB6) can be equally realised by lin-
ear combinations of the components of the basis represamgatith respect to the reference
domain.

Let u""*! anda’"*! be the degrees-of-freedom vectors of the basis represamdaif the
velocity and acceleration with respect to the referencealomFurthermore, let.”" anda™"
be the respective representations of the previous time $tepabove-mentioned facts mean that
the equations corresponding to (3.34)—(3.36) and (3.83)5] can equally be expressed as

Eh,n-‘raF = Qap - _h7n+1 _'_ (1 — aF> . Eh’n (3.118)
gh,n-i—OtM =y - th"'H + (1 — aM) . gh,n (3119)
u" = w4 (1 —q) At - @™ + AL - @™ (3.120)

3.4.4 Resulting nonlinear system and solution process

On the finite dimensional subspaces, the variational fornthefboundary value problem is
reduced to a nonlinear system@®’ equations and unknowns:

5 (uhm—i-l’ph,n—i—l) ~ R, (uh,n+17ph7n+17NgZL> _0 (3.121)

&P

" (uh,n-l-l’ph,n-l-l) _ Rp <uh,n+17ph,n+1’ N,Z;’h) —0 (3.122)
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predictor up" = phmtl =
constant uhn phm
zero acceleration || u" + (1 — v) At - a™" p""
constant acceleration — u" + At - a"” ]_9’“”
constant increment 2. yhn — yhnl phn

Table 3.1: Predictors for velocities and pressure accgrdan ANSEN, WHITING and HUL-

BERT [132].
The equations fof = 1,...,n{" andx = 1,...,nd*" arise directly from the weak form (3.58).
The additional equations far = ndf + 1,... 79" are introduced to enforce thelRCHLET

boundary condition, i.ehey enforce

upmt =l forall 6 =nd 41, 0 (3.123)

Assuming a suitable choice of function spaces which pravgvability for the system, it
can be linearised and treated iteratively by a predictorembor iteration. For this iteration, it is
common to replace the basis representation of the new tglaéi**! by a basis representation
of the acceleration at the new time siep™*! according to the linear relationship (3.120). Thus
the actual unknowns in this procedure &g "+1, p""+1)T The solution process consists of
the following stages: -

e Predictor stage

For degrees of freedom which are not constrained byR@HLET condition, Table 3.1
provides several options for predictors to start the n@amiteration. For DRICHLET
constrained degrees of freedom, the predictor is simplyptiescribed boundary value.
The actual predictor for the acceleration is obtained fromvelocity predictor using the
linear relationship (3.120), i.e

hon+1 US""“ —uhm oy -1 h
a, " == — -a™m. 3.124

e Averaging stage

Averaged quantities are computed according to equatiatd§3and (3.119)

ﬂ?,n-i—aF = ap - g?,n"‘l + (1 _ aF) . uh,n (3125)

al”™t M = qy a4 (1 - ay) - a™n (3.126)

e System set-up and solution stage
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3.4 Spatial approximation of the solution

h,n+1

Given a prediction for pressup—? n+1 velocityuw ;""" and corresponding averaged quant-

itiesw/"" 7, @M from nonlinear iteration stef a linear system can be set up:
ORy Ry hn+1
<8ah,n+1 > . (aph,'rH»l > . Agz R'le
- 7 = (2 . = (3.127)
ORp 9Rp h,nt1
<8gh,n+1>i <8Bh,n+1>i AZ_?Z " &z

The sizes of the involved matrices and vectors are visuhliséhe following picture:

S
= —
PN
: —J L
| I —
—dof dof
ne’ ny° 1 1
The lines corresponding to indicés= nd" + 1,... 7% i.e. the DIRICHLET boundary

conditions from equation (3.123), are blanked with zerod get a one on the diagonal.
The corresponding entry on the right hand side of the systemeio. Other boundary
conditions influence this system as described in sectigharil 4.5.

Assuming unique solvability, updat(a&ah nt Aph "+1)T for the estimated solution val-
ues are computed from this linear system. The right hand sideguation (3.127) is
the residual of the last iteration step. The lower right maitock on the left hand side is
nonzero only for methods enhanced by stabilisation tereesttge discussion in section 3.5
and the significantly simplified matrix system for th&BNov-GALERKIN approach in
equation (3.134).

Nonlinear update stage

Solution variables are updated using the increments:

p?_ﬁ—’_l _ ph n+1 + Aph n+1 (3129)

For the velocities, a synchronised update formula is giwen b

wl = w4 (1) At- @™ AL @l (3.130)

This non-incremental update formula ensures that numegicars of accelerations and

velocities can not develop independently, and thus it makes that equation (3.120) is
satisfied exactly.
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3 Finite elements for incompressible flows — base algorithm

e Time update stage

After convergence of the nonlinear iteration, accelerajovelocities and pressure are

updated:
a"" —al! (3.131)
R (3.132)
Eh,n <_ph,n—i-l (3133)

—i+1

These stages are combined to an algorithm as describedurneR3gs.

Initialisation

Time loopn — n+1
Predictor

Nonlinear iteration ¢ — ¢ + 1

Averaging

System set-up and solution

Nonlinear update

Time update

Figure 3.8: Overall algorithm for a generalised-alpha tintegration.

Matrix equation for a B UBNOV-GALERKIN approximation, the LBB condition

For a BUBNOV-GALERKIN approach, the linear system (3.127) has the form

B e Aa!"t! R,
. - i (3.134)
apyAt-GT 0 Ag_)?’"“ R

=p,

The only matrix block which has to be updated during the madr iteration is

0B

and due to the symmetry of the inner product, the off-diafjbiaks can both be represented
using

oG _ (N T}
G = <W) . (G = <Nn V. <N5 ))WH) (3.136)
withd =1,....nd x =1,...,n%° One of the shortcomings of thedlBNOV-GALERKIN ap-

proach is that a suitable choice of function spaces for wgl@nd pressure is necessary for the
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3.4 Spatial approximation of the solution

matrix system (3.134) to have full rank. The requiremensiach a suitable choice is the\by-
SHENSKAYA-BABUSKA-BREZzI (LBB) condition which demands that for a positivec R the
inf-sup condition
V ) ,Uh7 qh n+1
inf sup ( 3 >i(t ) >c>0 (3.137)
ot €T} oporers 10"l - [l L2

holds. This LBB condition provides full row rank f&&”. If the LBB condition holds and it is
assumed thdB; is invertible, an algebraic counterpart to the pressuwesBON equation can be
formed:

=p,

(G"-Bi™'-G)-Aphtt = < R .—GT.B™ ~Eu,i) (3.138)

apyAt ‘

If the LBB condition is violated, as it is the case for equal@rinterpolation which will be used
in this thesisG” - B; "' - G will be rank deficient and thus spurious pressure modes willio
For the SOKES problem, the full row rank ofG” is a necessary and sufficient condition for
the unique solvability of the equation system correspogdn(3.134), sincdB; is symmetric
and positive definite. A proof for this unique solvabilityrche found for example in DNCEDAL
and WRIGHT [166]. A reference to an optimisation textbook might seempssing in this
place, but equation (3.134) is very similar to akUSH-KUHN-TUCKER matrix which appears
in optimisation of constrained quadratic problems. FotHar information on the treatment
of saddle point problems see for instanceNgi, GoLuB and LESEN [29] and for a further
discussion of the LBB conditions and examples for inf-sugbk pairs of function spaces see
BREZzzI and FORTIN [42].

Convection induced instabilities

To discuss another shortcoming of the@\Nov-GALERKIN approach, the differences between
problems based on a symmetric, positive definite bilineamfand problems of advection-
diffusion type will be studied more closely. The first clasdiich contains for instance linear
elasticity applications andd?ssoON problems, is perfectly suited for thedBNOV-GALERKIN
approach. For these problems, this approach provides tteapproximation on the finite di-
mensional subspace of trial functions with respect to therggnnormy|-||z introduced by the
underlying bilinear form. For a proof, the reader is refdrte the books by HGHES[116] and
KNABNER, ANGERMANN [141]. This statement also implies that the difference leetvexact
weak solution and BBNOV-GALERKIN approximation, i.ethe numerically unresolved part of
the solution, is orthogonal to the finite dimensional sulbspaf trial functions with respect to
the induced scalar product. This point is of special interdsen the method is examined from a
multiscale point of view.

Unfortunately, such a statement is not available for pnoisl®f advection-diffusion type. In
this case, the underlying bilinear form is not symmetric #ngs these problems do not provide
an intrinsic energy norm. The statement of the best appratan has to be weakened, yielding
the quasi-optimality of the BBNOV-GALERKIN solution for advection-diffusion problems as
described in EMAN, SILVESTER and WATHEN [68]. The computed solution recovers the best
approximation bound only up to a constant fadterPe, which is linearly related to theECLET
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number

_uc
=
In this definitionZ/ provides an upper bound for the norm of convective velodltis a measure
of the size of the domain and corresponds to the diffusion constant. Thus, thesBov-
GALERKIN solution is a bad choice for convection dominated problernere sharp boundary
layers are present. Although convergence can be obtairgel nmesh refinement, the quality of
the solution can still be poor for a finite resolution. Frore tinultiscale perspective, it can be
stated that for convection dominated problems the numlestoar associated with the unresolved
part of the solution is no longer orthogonal to the trial gpathus, the approach of seeking better
approximations in the solution space using stabilised ogthor more general methods which
try to account for the effect of the unresolved onto the restbiscales, is well justified.

Pe (3.139)

3.4.5 LAGRANGEan and isogeometric finite elements

According to the isoparametric concept, the basis funstiged for the spatial representation of
the solution have already been introduced in subsectiaf.3&3 previously pointed out in that
subsection, basis functions fomGRANGEan and isogeometric approaches have local support
and only a few basis functions are nonzero on a specific elerAsra consequence, the integrals
involved in the set-up of the linear system (3.127) can beedgament-based using only basis
functions and values associated with the specific elemestit & usually done for finite ele-
ments, all integrals are evaluated on the reference elensamy numerical quadrature. For both
approaches, the requiredcoBian of the element mapping, is defined by the isoparametric
approach, i.evia derivatives of shape functions and coordinates of noeggectively control
points of the element. The contributions of all elementsam®embled into the global system,
resulting in a sparse matrix system representation.

Isoparametric LGRANGEan finite elements can be considered to be a well establighed a
proach in the numerical solution of partial differentialuagjons. Applications are diverse and
range from structural analysis to fluid-structure intei@ctand other multiphysics problems.
Stability and convergence properties of the method are wedistigated, especially for elliptic
boundary value problems. For instance, the textbooksgNBIER and SOTT [41], STRANG
and Fx [196] and KNABNER and ANGERMANN [141] can be consulted for some error analysis
for isoparametric LGRANGEan finite element approaches, including the effects of jpuiated
boundary data, non-exact geometry representation andb&ct of numerical quadrature.

Isogeometric finite elements are a more recent developnratigted by GTTRELL et al
in [117]. The best overview of this topic is given in the recbook by GTTRELL et al [57].
The isogeometric analysis allows a convenient combinatfogeometrical design and mech-
anical analysis, a long-term objective in the developmérfinite element methods. See for
instance the earlier work by AGAN et al [137], in which B-spline functions as a basis for fi-
nite element analysis and design are investigated. Medaviswgeometric finite elements have
been applied to many problems, for instance to structutabtions in @TTRELL et al [58]. In
this paper, a superior representation of frequency spectegported for the isogeometric method
in comparison to classical higher order finite elementsgésonetric finite elements have also
been successfully applied to structural shape optimisdtyoNALL et al [216]. For these prob-
lems, the isogeometric approach establishes a link betgyeemetry description and numerical
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model. The possible smoothness of isogeometric shapeidnsatnakes them a valuable tool
for KIRCHHOFFLOVE shell formulations, see iENDL et al [140]. Although not requiring the
C'-continuity, good results were also reported forEIRSNERMINDLIN shells in BENSON et

al. [27]. Furthermore, successful applications to fluid-stuoe interaction have been reported
in BAzZILEVS et al [16, 17]. Multiscale formulations in fluid mechanics emphay isogeo-
metric finite elements have also been investigated, sea$tance AKERMAN et al [3] and
BAzILEVS et al [15]. Section 4.4 contains more information on the appiarabf isogeometric
finite elements in the residual-based variational multescaodelling of turbulence. An exten-
sion of isogeometric analysis to T-splines, allowing a laeinement, was given in ORFEL

et al [67] and BaziLEVS et al [14]. For elliptic boundary value problems, error estiroati
and stability analysis have been performed kzBEVS et al [13]. One of the main results is
that discretisations based on NURBS elements of grdeave the same order of convergence
with respect tai-refinement as classicallGRANGEan finite element approaches of polynomial
orderp. This means that under certain regularity assumptionssehéion of the isogeometric
problem convergences to the exact solutiorCash? in the ||-||,;; norm and ag” - h**! in the
||-|.= norm. For this statement, a sufficiently smooth solution assumed. The generic con-
stantC' depends on the distortion of the mesh, but not on the measétie element sizé. The
impact of quadrature in isogeometric analysis has also baetied. In HUGHES et al [124],
efficient quadrature rules for isogeometric analysis haentproposed which try to account for
the additional smoothness of NURBS basis functions acressent boundaries. Nevertheless,
the implementation in this thesis is based on a classicab##t AuUSS rule for each quadratic
NURBS volume element.

The algorithm which is used to set up the system matrix in tjglémentation used in this
thesis is displayed in Figure 3.9. It is optimised so thatdifferences between an isogeometric
multi-patch code and a classical finite element program anegnmised. For isogeometric finite
element analysis, this algorithm could be further simplifiy replacing the element loop by a
double loop over patches and corresponding elements adasibed in ©OTTRELL et al [57].
For such an implementation, the determination of the patdtlae element knot vector becomes
straightforward. For parallel implementations, it turnaat to be convenient and affordable to
keep the knot vectors redundant on all processors. Thigemnsoat each element has access to
its element knot vector which is required for the evaluatdishape functions and derivatives.
The weights involved in the shape function evaluation castbesd in the same way as the point
coordinates. In that case, the standard ghosting strategiepted from RGRANGEan finite
elements ensure that each element has access not only t® @ddigrees of freedom and point
coordinates, but also to the required weights for the shapetion evaluation.

Comparing isogeometric andAGRANGEan finite elements, some further similarities and
differences can be identified. For the interpolation of digtuous data, higher orderai-
RANGEan polynomials are well known to exhibit an oscillatory bebar. In contrast, NURBS
possess variation diminishing properties, making themréepetool for the representation of
sharp boundary layers as they appear for example in hipfNRLDS number flows. The num-
ber of degrees of freedom associated with a NURBS elemenegregp is equivalent to the
number of degrees of freedom of aGRANGEan element of ordes. Nevertheless, the support
of a NURBS basis function is larger than the support ofsssRANGEan basis function of the
same order. Figure 3.10 displays these properties for adonensional example with quad-
ratic NURBS and quadraticAGRANGEan basis functions. For the one-dimensional example, a
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Loop elements e

Determine (3, j, k, Npaten) from e

Acquire element knot vector w, in patch npatch

Determine ny, weights wy required for shape function evaluation
h,n+1 h,n+1

Acquire geometry information ; and solution data p,;" ", u;" ",
h, h, ) S - . .
wy"T ap "t for all Ny, nonzero basis functions of local index [

Loop GAUSS points £,

Evaluate shape functions and derivatives in &g,

(Requires u, and wy)

Interpolate required solution data to GAUSS point

Compute and add contributions of GAUSS point to element

matrix and residual vector

Assemble contributions of element into global matrix and residual

Figure 3.9: Set-up for linear system (3.127). The highkghgrey parts are special for iso-
geometric implementations, the white parts are shared doyeismetric and AG-
RANGEan finite element implementations.

guadratic NURBS basis function can be nonzero on three eltsnghile a LAGRANGEan basis
function of the same order has a support of one element fdecendes and two elements for
corner nodes. This, interms of elements, larger suppohelbasis function has no severe impact
on the sparsity pattern of the matrix. In the one-dimendierample, a NURBS basis function

N, NURBS N Lagrange
L 1.2
ERRRRREEE

08f | 191001000 & 0 0.8

o5 VN VNNV YV VN 06

0480 A A A A A AN A 0.4
T T T i 0

| L S S S N N N N 09
0 02 04 06 08 x 1

Figure 3.10: Comparison of quadratic NURBS andGRANGEan basis functions. The ele-
ment boundaries are indicated by dashed vertical linesh Boproaches have three
nonzero basis functions per element. The grey dots on topeothape functions
mark the basis functions which are connected to the shamtidmof correspond-
ing colour.
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interacts with five basis functions. For the same examphd&sRANGEan basis functions are also
connected to five shape functions in the case of corner n@tdg.the LAGRANGEan basis func-
tions in the interior of the element are connected to onlgelshape functions. Another more
general example for the impact of the formulation on the sipapattern will be given later in
section 5.3. Further important differences between highéer LAGRANGEan and isogeometric
approximations can also been seen in Figure 3.10. For the samber of basis functions, the
isogeometric approach generates a larger number of eleméhis fact has to be considered
when the amount of work required for the integration of theneénts is estimated. On the other
hand, for the same number of elements, the isogeometrioapprwill lead to a much smal-
ler matrix system. In this sense, it can be considered asyaefécient choice. By definition,
NURBS basis functions are always positive in contrastAGRANGEan basis functions which
can also be negative. According to their definition, NURBSi®dunctions do in general not
have a pointwise interpolation property. This will affelsetimposition of DRICHLET boundary
conditions as well as post-processing, a matter that witebesited in subsection 3.7.1.

3.5 Residual-based stabilisation techniques

As pointed out before, the BNOV-GALERKIN formulation has severe drawbacks for incom-
pressible and convection dominated flows. Residual-basédised methods provide a remedy
for these shortcomings. In this section, three classicaitival-based stabilisation techniques
will be reviewed, the pressure-stabilising FRoOv-GALERKIN (PSPG) method allowing equal
order interpolation, the streamline upwind FRov-GALERKIN (SUPG) for convection domin-
ated problems and the least-squares incompressibilitylis&tion (LSIC or grad-div) enhancing
local mass conservation for flows with a higlE RVOLDS number.

Other residual-based approaches likeLEGRKIN-least-squares (GLS) and the unusual stabil-
ised finite element method (USFEM), serANCA and FREY [82], are not considered in this
section but they will be briefly revisited in section 4.4. Roreview on residual-based stabilisa-
tion techniques and some other recent stabilisation appsesa the reader is referred teBACK
et al [39].

As described in HGHES [115] as well as in the review article by UHES et al [126],
residual-based stabilised methods can be derived from istale perspective. The multiscale
point of view allows several enhancements of the stabilisedulation. Nevertheless, the dis-
cussion in this section will be restricted to stabilisedhiatations in the traditional sense. Ex-
tension to time-dependent subgrid-scale stabilisatiehrasidual-based variational multiscale
modelling of turbulence will be discussed later in subgett.4.

3.5.1 PSPG, SUPG and LSIC stabilisation

The stabilised counterpart of equation (3.99) reads as\visl

B (uh,n—&—l’ ,vh) -G <ph,n+17 ,Uh) +D (uh,n—&—l’ qh) +
+ Z (TMp . ,,J]Lw (uh,n+17ph,n+1) ;th)ﬂe +
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+ Z (TM . 7’}54 (uh,n-l-l’ph,n-l-l) : (Ch,n-l-aF . V) ’Uh)

+ Z (Tc ) 'r’g (uh,n+1) V- vh)Q

o T

—F(v") =0 (3.140)

[

Here,r", represents the residual obtained by insertion of the nuralegipproximation into the
strong form of the advective momentum equation. For comveend conservative lH ERian
formulations, this means that

’I"}Jf/[ (uh,n+17ph7n+l) — uh,n+aM + (uh,n-i-ocF . v) uh,n+OlF + lvph,n-i-l_
— 29V - € (uh,n—i-ap) o bh,ﬂ-‘rOéF’ (3141)

and for ALE formulations this implies that

1{(4 (uh,n+17ph,n+1) _ &h7n+a1\4 + (Ch,n+aF . v) uh,n+aF + lvph,nﬂ_
— 20V - g (uhrter) — phrter, (3.142)
The residual of the continuity equation,
ré (ut) = vt (3.143)

is obtained by insertion of the discretised velocity inte 8trong form of the incompressibil-
ity constraint (3.33).7mp, 7w, 7c are element-specific algebraic stabilisation parameties
definitions will be provided below. By definition, all additial stabilisation terms vanish for the
exact solution. Thus consistency is ensured for the rebigaged approach. The residual of the
momentum equation’,, which is required for this technique of stabilisation, tains second
derivatives of shape functions. Especially for lower orfiite elements, these second derivat-
ives are not reasonably represented. A reconstructioresitBecond derivatives, as proposed in
JANSEN et al [131], is possible but not considered in the implementaitiaihis thesis.

The PSPG stabilisation terms in the second line of equaBdi¥Q) are motivated by con-
siderations for the 80KES problem, see HGHES et al [120]. They allow the LBB condition
to be circumvented and thus enable equal order interpolatiooking at rates of convergence
for stable and stabilised &4ERKIN formulations, as it has been done for instance ERGES
and SHOTZAU [90], it becomes apparent that equal order interpolatiomdeed a desirable
property since it provides an optimal rate of convergence.

The SUPG stabilisation terms in the third line of equatioi4®) are based on considerations
for the advection-diffusion equation which date back to akNny BROOKkS and HUGHES[43].
Concerning the rate of convergence for advection-diffagpcoblems, SUPG stabilised meth-
ods are reported to have common features wipodtimal methods in HGHES and S\NG-
ALLI [125]. The combination of both approaches in applicatioth® NavIER-STOKES equa-
tions was termed SUPG/PSPG bgZDUYAR et al [207]. For problems on moving meshes, the
advective velocitye™"** in the SUPG weighting functiofic”"™r - V) v" is the ALE con-
vective velocity, see equations (2.16) and (2.17) for a defimof the ALE convective velocity
and equation (3.41) for the discrete representation oféhaired intermediate grid velocity. An
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analysis of a stabilised finite element approximation forAdrE formulation of the transient

convection-diffusion equation can be found inBA and GODINA [6]. Furthermore, investiga-

tions of the performance of stabilised methods for the/IHR-STOKES equations on distorted

meshes can be obtained from®RsTERet al [81]. For EuLERian formulations, the ALE con-

vective velocity in the weighting function in line three afweation (3.140) is actually equivalent
to the fluid velocity, and thus the weighting function redsioe (w27 . V) v".

The LSIC stabilisation in line four of equation (3.140) istatslisation procedure of least-
squares type. This term is adopted from the stabilised ftatimn proposed by WNSBO and
SzePESSY[109]. It provides an enhancement for discrete mass coasery as it is exemplified
in LINKE [156]. However, this improved discrete mass conservationes along with numerical
dissipation. Among other things, this artificial dissipatiwill be investigated in section 5.6 in
the context of turbulent flow simulations. As similarly pteéd out in Q SHANSKII et al [168],
LSIC stabilisation will always be a trade-off between mamsservation and stability on the one
hand and energy conservation on the other hand.

3.5.2 Stabilisation parameters

The computation of stabilisation parameters is requirethduhe evaluation of element integrals
in equation (3.140). Since all integration is performed eudoally, values for the stabilisation
parameters are needed in the integration points of the elfesmeStabilisation parameters are
not defined as global constants, but depend on element aatiosol In the following, three
element and solution-specific contributions to the paransetill be listed. Afterwards examples
for stabilisation parameter definitions will be provided.l Aefinitions will be given for the
EULERIian case. A generalisation to the ALE case will be briefly added at the end of this
subsection.

Element length definitions

All stabilisation parameter definitions depend on a meastiedement sizén,. For problems
in two or three spatial dimensions, the definition of thisnedat ‘length’ is not unique. In the
following, several possible choices for will be provided.

e Variant based on a volume-equivalent diameter

2 (% Jo. 0l:1:>:i
V3

In this definition, the element length is chosen as two times the radius of a sphere with
the same volume as the element divided\y. The choice is purely geometrical, i.e
solution independent.

h, = (3.144)

e Choice as stream length
2

he (3.145)

& h
E?n:pl |u— ' VNI

uh
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72

This definition estimates the element length in directiothef fluid velocity. Usually, it
is used in the context of convection stabilisation, whilegeessure and continuity stabil-
isation the geometrical approach above is preferred, seeVaALL [215] and references
therein.

Gradient-based definition 5

T

I=1 Hde

(3.146)

This choice is very similar to the definition based on theastrdength above. The only
difference is that the direction in which the size of the edaitis estimated is replaced by

3. oul
b (3.147)
Z 8:132 8:132 ’ '

This quantity is assumed to be large in the direction of laggkition gradients. In a
boundary layer mesh of a turbulent flow, this definition wilexct the minimum edge
length close to the wall, a property that has proven benéficthe turbulent channel flow
simulations that will be shown in section 5.5. This obsaorats also in agreement with
observations by MTAL [161], who reports that for large aspect ratio elements,faide
tion based on minimum edge length results in better solationthe transient laminar test
problem investigated in that reference.

Choice based on the metric tensor

In some definitions of the stabilisation parameter, a mesfsurelement length is included
implicitly using the second rank covariant metric tensor

8(Xe_1)k 8(Xe_1)k -
o, O "om; @7

]

Gij(x) =

et (aﬁ? (" ("”))) - (aa;g (x.' (w))) B (3.148)

ki kj

1

w |

The derivatives of mapping, from the reference element 0. are computable using
equation (3.92). From this covariant metric tensor, a pugelometric element length can
be obtained as

3 -
(G:G) i = (ZZ ) (3.149)
as well as an analogon to the stream length
1 1 3
[ uh - (Guh) = T D) ulGiul (3.150)
i=1 j=1
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Stabilisation parameter definitions based@rcan be found for instance inAYLOR et
al. [198] and BaziLEVS et al [15]. The latter reference also introduces the quantity

a(Xe_l)k

NE

g:(@) =Y =t ()
k=1 t
3 —1
B OXe (. _
N k=1 ( BE (Xe 1 (w»)kzz ’ (3151)

and uses its norm for a definition of element lengthdn

Especially for distorted elements, the different choicas iesult in significantly different values
of h.. This influence is investigated in detail in subsection Bi5the example of a boundary
layer mesh with high aspect ratios in a turbulent channel 8ovwlation. Unfortunately, it is
not possible to determine an optimal choice among the optidnove. For instance the choice
which leads to the best results in subsection 5.5 lacks thgnexl robustness in the simulations
of section 6.2.1.

Shape function dependence

In addition to the dependence bp, there is also a dependence on the type of the element shape
functions through a constant,. Following FRANCA and VALENTIN [83], this parameter can
be determined by

1
me == Hlln {g, Cinv} (3.152)
with a constant’i,, from the inverse estimate

Cinv = Y02+ (Av, Av)g < (V; V)i (3.153)

which must hold for all functions in the space generated by the basis functiips

The reason why this inverse estimate enters the paramdieitida is related to the proof of
error bounds for the convection-diffusion problem. In artteensure the required coercivity of
the stabilised bilinear form on the finite dimensional spafogeighting functions with respect to
the so-called streamline diffusion norm, the stabilisaparameter has to be bounded%}f—g.
Such a proof can be found for instance in the book INAENER and ANGERMANN [141].

As it is usually done, the implementation used to generaentimerical results in chapters 5
and 6 is based on a constant choicemgfas listed in Table 3.2. The values are chosen such
that they are in good agreement with example values for gmigiments, which can be found in
HARARI and HUGHES[110].

Nonlinearity introduced by velocity dependence

Finally, the stabilisation parameter also depends on ntikrelocity. In an implementation, this
can be either the velocity at the integration point at tiffie*s or the corresponding velocity at
time¢t"*!. For classically stabilised methods, the impact of thisitamithl nonlinearity is small
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element type né | me

trilinear LAGRANGEaN 8

1
3
trilinear NURBS 8 %
1
2

triquadratic serendipity | 20

—_

triquadratic LAGRANGEan | 27 | &
triquadratic NURBS | 27 | &+

—_

Table 3.2: Number of shape functions per elemeptand values foin, for different types of
elements.

and it is not necessary to account for the velocity deperglehthe stabilisation parameter in
the linearisation process. As we will see later in subsactid.3, the situation might change for
a time-dependent subgrid approximation.

Scaling laws for stabilisation parameters

The stabilisation parameterg andny, define intrinsic time-scales while parameterhas the
unit of an artificial viscosity. The various choices f@, mp can be grouped into definitions that
do include a time-step-dependent, reactive contributimh @efinitions that do not. The latter
will be marked by an index’*©4t, time-step-dependent versions by an ind&é4t. All para-
meters associated with the residual of the momentum equakiey certain scaling rules as they
are depicted in Table 3.3. The scaling lanh,) for 7c in the convective limit is also charac-

T,}A/XGAt T&/X@At

convective limit O (h.) O (h.)
viscous limit O (h2) O (12
small-time-step limit no At-dependence O (At)

Table 3.3: Scaling of stabilisation parametgf$~~! andry*®2!. The same scaling with poten-
tially modified element length definition applies 4 ©** and 7> *‘. The small-
time-step limit is meant for unchanged element sizes.

teristic for all versions ofc. Nevertheless, the different choices exhibit significaffetences

in the viscous and small-time-step limit. For the six cheicé stabilisation parameters given
below, these scalings are summarised in Table 3.4. Allfolg parameter definitions fog are
provided for equal order elements. For inf-sup stable etemalifferent choices are suggested
in OLSHANSKII et al [168].
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viscous limit| small-time-step limit
TILBAL O(1) O(x) —
TILOAL O(1) constant
T8O (h?) constant
O8O (h?) constant
TIIOAL O (1) O(x) —
TIIOA O(1) constant

Table 3.4: Scaling of stabilisation parametegdor various parameter definitions.

Stabilisation parameter choices

e Choice of stabilisation parametegi/1 & At)

The most straightforward formula faty, is adopted from a definition of a stabilisation
parameter for advection-diffusion-reaction problemstasun be found in ©DINA [52]:

1.0
TVieAt _ VieAt _ . (3.154)
P 142 [[urTer || I S
v-At me he me h2

The version given here includes a transient, reactive idmriton dependent on the time
step size. It is motivated from the temporally semi-digeeat system, in which an ap-
proximation of the acceleration yields a reaction-typenteContributions related to the
convective and viscous limit case can easily be identifiethassecond and third sum-
mand in the denominator of this definition. The stabilisap@arameter can be derived for
instance by asymptotic scaling arguments OURIER analysis as in GDINA [53]. This
reference also provides a definition fay,

2
vigar _ Me he

e Choice of stabilisation parametéi/1l © At)

This parameter definition is equivalent({d1 & At) without a reaction-type contribution
from time integration:

1.0
V1At V1eAt .
T =T = 3.156
M Mp 2 . Huh,n+aF|| + 4 v ( )
me he me h2

The definition ofr¢ is done accordingly:

2
VicA me hy
TC OAt = E . 77_&/19At (3157)

75



3 Finite elements for incompressible flows — base algorithm

Parameter definitions of this kind are perfectly suited fatisnary problems as well as
for stabilisation using the time-dependent subgrid-saglgroach by ©DINA et al [55].
Preferably, it is used with element length definition (3.144

e Choice of stabilisation parametgi/2 & At)

This choice is a mixture of a parameter designed for advedalifusion-reaction problems
by FRANCA and VALENTIN [83] and a parameter developed for thed&ES problem by
BARRENECHEAand VALENTIN [8].

1.
T POAL — 0 . (3.158)

‘ h,n+o¢F” 4

4 v 1 Tt | R S
max(me e A)—i—max(Z e i~ h§>

This parameter contains all important scaling laws. It shats between the different re-
gimes using thenax-operator. Forry?®~!, a choice ofh, as stream length is common.
The second parametezr,,‘jﬁ@m is deflned by the same equation, but usually based on a
purely geometric definition of element length (3.144). la tmplementation used in this
thesis, this parameter definition is combined with the esgimn

hon+1|| 1y hnt1| . [
vesar _ K% y Ihe . (u%o (3.159)
1%

for the missing least-squares continuity stabilisatiogai, as it is done in WLL [215],
the element length definition (3.144) is used for this patame

e Choice of stabilisation parametei/2 © At)

The definition corresponding t&/2 & At) without a reactive contribution reads

SV26AL _ V26At _ 1.0 (3.160)

M - 'Mp - h,n+a :
4 v wtrrer| o 4y
me b2 + max <2 e om0

Since this parameter definition is usually used in the cdrdéiime-dependent subgrid-
scale approximations, it does not distinguish betwgff* andr;2°**. Consequently,
both choices are defined using the same purely geometnceetel&ngth definition. The
third parameter 2°4! that is usually combined withy,?>~* is identical to the one from
equation (3.159).

e Choice of stabilisation parametei/3 & At)

A parameter choice based on an implicit element length deimusing the covariant
metric tensor (3.148) is given in®&ILEVS et al [15]:

V3€BAt VS@At
= Mp
-1

(\/@ + yhntaor . (Guh’”“‘F) + rln_2y2 (G : G)) (3161)
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3.5 Residual-based stabilisation techniques

Although it contains a square root, it still shows the cari@symptotic behaviour. This
parameter includes a term of reactive type. The paramet@cehs completed by the
definition

A — (P (g g)) (3.162)

Here, vectol from equation (3.151) is used.

e Choice of stabilisation parametéi/3 © At)
Finally, the counterparts to parameters 83\t without the reactive contribution are

rVseAt _ pVseAt _
12 -
= <\/uh’”+°‘F - (Guhntar) + al/2 (G: G)) (3.163)

and |eaSt-SquareS contir IUity stabilisation paran eter
-1
TVS@At (T&/3®At <g . g>) ) (3.] 64)

This list of possible choices for the stabilisation paraané$ not meant to be complete, it is
just a selection of parameters which were actually used dtzutations in this thesis. Other
options to determine stabilisation parameters would brdn&iance, estimation by an extension
of the variational GRMANO identity, as it is proposed in €ERAI and WANDERER [167], or
element-vector-based definitions of stabilisation patarseas introduced by BzDUYAR and
OsAwA [208].

For problems on deforming domains, the velocity in defimtd3.154)—(3.164) is replaced
by the ALE convective velocity” at the corresponding time level. The same statement applies
to the computation of solution-based element length dedimst (3.145), (3.146) and (3.150).
Another possible modification, designed to improve theibtalof the method on contracting
elements, was proposed bpRSTER[78]. It is based on the inclusion of a generalised reaction
coefficient into the stabilisation parameter for the ALE lpeon. AssumingV - u""+r =~ 0,
this generalised stabilisation parametgf® reads

TAE = min (VXO4¢ ) (3.165)

with

YA - (1 + %At min <V : ug’"JrO‘F)) for (V-ul"t") <0

7= A f hn+ap >
At or V.- ug; >0

(3.166)

Small-time-step deficiencies

Shortcomings of residual-based stabilisation approaahesmall time step sizes have been in-
vestigated in several publications, see@HEV et al [33], FORSTER[78] and Hsu et al [114]
amongst others. The major facts will be reviewed in the nexagraphs since they are of great
importance for the interpretation of results in chapter 5.
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3 Finite elements for incompressible flows — base algorithm

All definitions 7,,*®2! that include a reactive, time-step-dependent contributave obvious
shortcomings for the small-time-step limit. The stabtiisa parameter,,*®~! vanishes in that
limit, causing a quasi unstabilised behaviour. In additiomost of the definitions of YA
tend to infinity, see Table 3.4, and stationary solutionshef NaviER-STOKES equations ex-
hibit a significant unphysical dependence on the time stap Jihe shortcomings of parameter
definitions 7y * 2" without a At contribution are not as obvious but nevertheless even more
severe. They do not occur in the context of pure advectiéfusion problems, see for instance
BoCHEV et al [34] and Hsu et al [114]. However, they can appear for a@<EsS problem in
the small-time-step limit. For this problem, the stabilisa parameter has to scale @y At)
in order to ensure velocity-pressure stability. This ctiodiwas derived in another publication
by BOCHEV et al [32] and is clearly violated by the parameter choic:é’é@m. The severity
of this deficiency can be seen in the example of turbulentmélediow computations based on a
fixed spatial resolution as it is commonly used for this kifiéypplication. For decreasing time
step sizes, the solutions indd et al [114] are reported to diverge rapidly for parameter choices
TwXSALOn the contrary, solutions for a parameter chai¢€®~! are reported to perform bet-
ter, i.e more robust, in that publication. This observation was alsafirmed by computations
performed within the context of chapter 5, see alsoMBITZER et al [85].

In classical stabilised methods, the above mentioned sistancies can only be avoided if
spatial and temporal discretisations are refined accolygjing. an mequalltyAt > « holds for a
fixed, sufficiently largex > 0. For many practical problems, a sufficient spatlal refinetmeenot
affordable. For this reason, the equally not optimal buterobust choicey,* “~ is preferred in
this thesis. An exception to this statement is the appbeoadit definitionsry,* 4 in the context

of time-dependent subgrid approximations, as it will bedssed in sectlon 4.4.

3.6 Imposition of initial conditions

According to the discussion in subsection 3.4.3, all dabanfiprevious time steps including
the initial flow field has to be available in spatially discsetd form. Thus the imposed initial
condition has to be compatible with the finite dimensional subspace, i.eonly initial fields
of the formu, = u are admissible. In general, this assumption will not besiatl exactly
and thus a slightly modified initial condition will be used tbe numerical solution. For a given
initial field uq, a good approximation can be computed using the least-as|panblem

2

min |25 (NG (@) - uls) = wo (@)

L2 . (3.167)
Uo
This minimisation problem is equivalent to a linear problem
o
3 ( NSt Ng:z) . uls = < NSt uo) s (3.168)

6=1

for k = 1...7%°" The system matrix in this problem is of sparse ‘mass’-matpe, and thus
the linear system could be solved efficiently using an iteeasolver. Problem (3.168) is of
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3.7 Basic boundary conditions

comparable size to the linearised problem (3.127), butsttbebe solved only once. Thus this
way to impose initial conditions can be considered affote@bterms of computing time.

For LAGRANGEan finite elements, an alternative approach is to imposenitialicondition
pointwise at the nodes. A similar procedure in the contexsofjeometric analysis would be
to evaluate the initial condition at the control points andstibsequently assign the resulting
values to the corresponding degrees of freedom. Since thieB8Jbasis functions do usually
not interpolate all control points, this procedure will det a slightly smeared representation
of the initial condition. For many cases the result might beusate enough, but initial fields
obtained by (3.167) will provide a better approximationleatst in an integral sense.

From the physical point of view, proper initial fields can loe instance a zero-flow field or
solutions from a stationary1™®KES problem on the same domain.

3.7 Basic boundary conditions

As already mentioned in the statement of the initial and lblamy value problem in subsec-
tion 2.1.5, the way to impose boundary values is closelytedl#o the numerical method which
is actually used. In this section, several basic variantsifmse boundary conditions for flows
will be discussed.

3.7.1 DIRICHLET boundary conditions

As it was already discussed in subsection 3.4.RIOHLET velocities are assumed to have a
basis representation (3.105). Based on this basis repatigen the solution process including
the choice of the predictor and necessary matrix modifioatiwere described in section 3.4.4.
The remaining problem is to specify values for the composme@f@“ of the basis representation.

A natural choice for AGRANGEan finite elements is to require the Iiftim_:ﬁ;’”rl to interpolate
the prescribed boundary condition at theRICHLET boundary nodes of the discretisation. Due
to the interpolation properties oAGRANGEan basis functions, this is equivalent to the condition

uf[L),ZL;+1 _ (uD (w?,n+17tn+1))j

(3.169)

for the DIRICHLET degree of freedomd associated with node numbeand direction; from
equation (3.103).

For higher order isogeometric elements, such a formulasioften not feasible since the basis
functions do not interpolate in general. In NURBS discedimns, control points associated with
a DIRICHLET boundary can be located outsidelt$(¢"'). Furthermore, a boundary value in
one point is always defined by several basis functions andabeesponding components. Thus
an alternative strategy to prescribeRDCHLET boundary values is required. Following the idea
from subsection 3.6, RICHLET boundary degrees of freedom can be determined according to
the following least-squares optimisation problem:

. mdof Sh 1 nt 1y |2
win [ g (V5 (@) ") —wn @ (3.170)

up h,n+1
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3 Finite elements for incompressible flows — base algorithm

For this approach, a coupled system for all unknowrRIDHLET degrees of freedom has to
be solved to provide an appropriate approximation to thgiwal boundary condition. The
approximation can not be expected to be pointwise exactit itl be optimal in an integral
sense. Since only IRICHLET degrees of freedom are involved in the ‘mass’-matrix proble
corresponding to the minimisation problem (3.170), it carabsumed to be small in comparison
to the linear system associated with the linearised prolf8i?7).

Nevertheless, there are some special cases in which eqyatis9) can be applied even in
isogeometric analysis. One of these special cases is tlyeceenmon choice of no-slip D
RICHLET conditions. Due to the zero boundary condition it will workea for complex, curved
boundaries. Furthermore, in geometries with rotationatranslational symmetries, suitable
boundary conditions with corresponding symmetries can bbs defined in a pointwise sense
using a similar formula to (3.169). For curved boundariég prescribed boundary velocity
in (3.169) has to be replaced by another appropriate sganation that is defined also at the
control points. See the example in section 6.1, where bayraaditions along a circular cyl-
indrical surface are prescribed.

The non-interpolatory character of isogeometric elemariteduces further problems in the
context of slip boundary conditions. For these boundaryd@mns, only the velocity in wall-
normal direction has to be constrained. IndRANGEan finite elements, the imposition of slip
boundary conditions is straightforward. In this case, rarand tangential degrees of freedom
can be easily decoupled using local coordinate system®indbes. Such a simple, node-based
procedure is not possible for isogeometric representatdicurved boundaries. For this kind of
boundary condition, a weak imposition of the wall-normaRIZHLET condition, as it will be
discussed in section 4.5, appears to be a more promisingagipr

When prescribing IRICHLET boundary conditions on the inflow, it is advisable to avoid
impulsive starts by using a kind of ramp function to slowlgrigase the inflow in the domain.
Otherwise, convergence problems in the nonlinear itemadie likely to occur.

3.7.2 NEUMANN (traction) boundary conditions

Classical NNUMANN boundary conditions are often termed natural boundary itiond. They
allow to specify a traction according to equation (2.56) @ael v (t" ) of the boundary which
is not constrained by [RICHLET conditions:

Ty (tnth)

Ry (w1t phr it ol = — % (t;0") =0 (3.171)

These (normalised) traction boundary conditions do noeddpon the current iteration value
of the solution, i.ethey have to be evaluated only once per time step. A commoiteho
fluid problems are so-called do-nothing zero traction b@amaonditions. Furthermore, trac-
tion boundary conditions can be used to approximately ddfieedistribution of pressure on
[y (t"*1). Obviously, the quality of this ‘pressure’ boundary coiwatitwill depend on the mag-
nitude of viscous stresses on the surface.
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3.7 Basic boundary conditions

3.7.3 A consistency term for conservative formulations

The type of boundary condition described in this subsedti@pecial for the weak form associ-
ated with the conservativelt ERian equation (2.52). The partial integration of the conwect
term in that equation gives rise to a consistency term thatitdoe included in the residual of
the weak form of the momentum equation:

Ru (ulh,n—|—17ph,n+17 Uh) —

= ... (uhrrer o gl 'vh)r(tn+1)\FD(tn+1) =0 (3.172)
It is required onl" (") \I'p(¢"!), i.e. the whole part of the boundary that is not associated
with a strong DRICHLET condition. Thus this consistency term is required for ins&aon a
NEUMANN boundary as well as on a weak®dCHLET boundary which will be discussed later
in section 4.5.

3.7.4 Stabilised outflow boundary conditions

One of the weaknesses of theEERian description of flows is that appropriate outflow condi-
tions have to be provided. Usually, these outflow boundanditns will be of traction type.
Unfortunately, the required tractions are not known abianitHence, the boundary condition
on the outflow, frequently a do-nothing condition, will nefflect the true distribution of pres-
sure and viscous stresses along the outflow. This lack ofistensy is well known to cause
stability problems, especially for flows at higfeERNOLDS humbers with vortex separation that
induces a recirculation across the outflow boundary. To ecéatability of the fluid formula-
tion, BAZILEVS et al [18] propose a modification of the weak form. Assuming a fixatflow,
this formulation reads

R, (uh,n+1 ph,n+1 ,vh) —
+ ({uh,n—i-aF . n}_ 7 ulmtar ,Uh)roumow =0. (3.173)
The function f
r forz <O
{}_..R—>R, z+~ { 0 fore >0 (3.174)

is zero on the part of the expected outflow that is in effect atflav and non-zero in places
of a recirculation across the outflow boundary. This modifiedindary condition can not be
expected to be more or less physical than a do-nothing donddr the outflow. Nevertheless, it
often allows to perform computations on comparably smathdims without running into severe
stability problems. Otherwise, the only way to counter&etse stability problems is to extrude
the computational domain further downstream and to hoptedina to the extended length, the
vortices are sufficiently damped so that the do-nothing t@mrdbecomes an acceptable outflow
condition again.

3.7.5 Periodic boundary conditions

Homogeneous flows will be approximated on periodic domdmthis subsection, the numerical
implementation of the required periodic boundary condsiavill be discussed. For simplicity,
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3 Finite elements for incompressible flows — base algorithm

the periodic domain is assumed to be a box of §izé,] x [0; ¢,] x [0; £,], and the procedure for
the imposition of a periodic boundary conditionatrdirection, i.e

w(0,y,2) \ _ [ w(ls,y,2)
( (0, 2) ) = ( (o y. 2) ) forall0 <y </,and0 <z </, (3.175)
will be described.

First, it will be assumed that the boundary of the periodimdm is interpolated by the finite
element basis functions. This is the case, for instancd, AGRANGEan finite elements. In this
example, the periodic boundary conditions can simply baldished on runtime by assigning
the same degrees of freedom to two points on opposite boyisdéiaces which coincide along
a periodic direction, viz

h h

if w?+€x-ex:m2then<ufl ) = (;’;j) (3.176)
By the connection of these degrees of freedom, the total eurabdegrees of freedom will
be reduced in comparison to the unconstrained problem. ,Tleasimbering will usually be
required in order to maintain a consecutive numbering ofdibgrees of freedom. For parallel
implementations, it will be important to keep coupled psionh a common processor to be
able to assign unique degrees of freedom to both of them. éCpestly, a redistribution of
points among processors is usually necessary before theategf freedom can be assigned.
This redistribution affects the initial load balancing,lgcoming that can be improved by an
additional call to a graph-partitioning software, lIRARMETIS by KARYPIS et al [139], based
on a weighted graph that associates connections betwegtedquoints with a higher weight.

A generalisation of this approach to obtain periodic boupdanditions in several directions
is straightforward. The major difference to the couplingire direction is that points associated
with periodic boundary conditions in several directiond ivave an increased number of coupled
counterparts. For instance, a point associated with twimgierdirections will be connected to
three partner points.

In case of isogeometric analysis, a more elaborate couplmgbe required if higher order
basis functions based on periodic knot vectors (3.62) ap@rad. In this case, several layers of
control points have to be coupled in the way described alsmesthe illustration in Figure 3.11.

The imposition of periodic boundary conditions as desatibbove is reconcilable with the
specification of a pressure drop

Ap=p(0,y,2) —p(ls,y, 2) (3.177)

along the periodic domain. To do this, an auxiliary presgure:, y, =) is introduced according
to

T

Using this auxiliary pressure, the pressure gradient inNh@IER-STOKES equations can be
restated in the form

Ap

Ap - Lep
Vp(fc,y>Z):V(P(x,y>Z)+ 22 x) —p| 0 | =Vp (z,y,2)—p-b". (3.179)

@ 0
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extension of periodic domain
in knot space
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extension of periodic domain

NURBS basis functions,

component, in periodic direction

in physical space

Figure 3.11: In order to establish periodic boundary caods for second order NURBS basis
functions, the degrees of freedom associated with the reldbdéue basis func-
tions/circles have to be coupled. The figure on the right shthve respective
coupled control points in physical space.

Thus the solution of the NVIER-STOKES equations for velocity and pressupebased on a
given pressure drop (3.177) and periodic boundary congstior the velocity is equivalent to
the solution of the MVIER-STOKES equations for velocity and auxiliary pressyreusing the
additional body force per unit-mass tebh This solution is now based on the simple periodic
pressure condition

u (0,y,2) ) < u(ly,y,2) )
= forall0 <y </,and0 < z </, . 3.180
(p*(O,y,Z) P (e, y,2) =Y=" == ( )
The initial pressure can then be recovered by a single post-processing stepditcgdo equa-
tion (3.178).

To sum up, degrees of freedom associated with a periodicdayyrare not considered as real
boundary degrees of freedom anymore. They can be ratheglibofias normal interior degrees
of freedom. Thus problems involving periodic boundary dtinds can result in systems that
do not have a physical outflow, i.eystems that are purelyIRICHLET constrained. Solution
procedures for this case will be discussed in appendix E.
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4 Turbulence modelling with a focus
on residual-based large-eddy
simulation

Assuming a sufficient resolution of the computational damtie algorithm presented in chap-
ter 3 can be used to compute a solution of the/[RR-STOKES equations. Such an approach
is referred to as direct numerical simulation (DNS). Unfioiditely, as already anticipated in the
discussion of the multiscale-character of turbulence lssation 2.2.3, the required resolution
is not affordable in many large B*NOLDS number applications. Section 4.1 is designated to
highlight the potential and limitations of this approach.

The lack of resolution for high RrNoLDS number flows poses several problems which can
be of physical or numerical nature. Concerning flow physasunder-resolution of the flow
implies that the energy cascade introduced in subsectB &5 truncated at a certain stage.
Energy cannot be passed on to smaller eddies at this levaln sioconsistency in the energy
budget occurs. Furthermore, the unrepresented turbulesises associated with the unresolved
turbulent fluctuations cause erroneous predictions of the flThis inadequate physical repres-
entation has to be accounted for by a suitable turbulenceehimodrder to get the best prediction
possible out of a given finite resolution. Section 4.2 désgitwo basic strategies to restate the
equations in order to obtain a more meaningful physicaltgmiu The REyNOLDs-averaged
NAVIER-STOKES (RANS) approach will be touched upon only very briefly in sedtson 4.2.1
in order to be able to point out the differences to the lad@yesimulation (LES) approach
which will be discussed in subsection 4.2.2. This LES apghaa the approach focused on in
the current chapter and the rest of this thesis. In addibdhe physical part, as we have seen in
chapter 3, the finite resolution can also cause numericdll@nas, for instance by convection-
induced instabilities. They have to be accounted for byaslgt stabilisation procedures such as
the ones from section 3.5.

The numerical formulation and the physical representatemmot be considered as separate
problems. The numerical algorithm including discretisatscheme, stabilisation procedures and
mesh definitions interacts with physical entities like @néd energy and represented stresses.
A special emphasis will be put on this relationship in thedssion of residual-based variational
multiscale methods in section 4.4, which evolves from aaevof the origins of variational
multiscale modelling in section 4.3. The last section 4.5haf chapter finally addresses a way
to incorporate physically motivated wall laws in the franoelv of residual-based variational
multiscale modelling of turbulence. Such laws for fully ééped flow close to boundaries were
described in subsection 2.2.5 and will be incorporated imm@ationally consistent way using
weak DRICHLET conditions. The implementations presented in the currbapter form the
basis for the investigations in the following chapters.
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4 Turbulence modelling with a focus on residual-based LES

4.1 Limitations of direct numerical simulation

A direct numerical simulation of a turbulent flow requirespmsal and temporal resolution that
is sufficiently high so that the impact of the unresolved sgain the resolved scales can be
neglected. The number,, of grid points required in this case can be estimated basetale
ratios for eddy sizes as are given in Table 2.2:

3

T ~ (5) ~ Rel (4.1)

n

In order to get a rough estimate for the number of time stepsequired for a sufficient temporal
resolution, it is convenient to assume a time step propuatito the characteristic length scale,
as it would be required for explicit time integration acaogito the @URANT-FRIEDRICHS
LEwY (CFL) condition [59]. Combining spatial and temporal regmn requirements, an over-
all estimate for the computational costs

3
Nnp * NAE ~ (5) : (5) ~ Re? (4.2)
n n

arises. Keeping in mind ®*NoLDS numbers from the examples in Table 2.3, itis clearly evident
that a direct numerical simulation of many real-life prahkeis pointless.

Nevertheless, as pointed out in the review article on dinecherical simulation of turbulent
flows by MoiN and MAHESH [162], DNS has become an important research tool for theldeve
opment of turbulence models. For moderateyRoLDS numbers, DNS databases comprising
values for mean flow quantities, fluctuations and otherdiaél data of interest are available
for many canonical flows. Examples are the database for lembeghannel flow by MSER
et al [163], the DNS data for AYLOR-COUETTE flow by DONG [66] and the comprehensive
AGARD collection [2], which includes results for channeMigpipe flow, boundary layer flow
and many more. The DNS reference solutions can be used lradtpfoori and a posteriori test-
ing of a turbulence model’s performance. In a priori tedtg, approximation of the unresolved
stresses is assessed directly. In an a posteriori approaththe quality of resulting statist-
ical quantities like mean values and fluctuations is comseitleFor a posteriori testing, results
from DNS are an indispensable supplement to results olutdimen experiments. It is possible
that models perform poorly in a priori tests, but nevertbslgield quite acceptable results in a
posteriori tests.

Most commonly, DNS results are obtained by using finite d#fifee or spectral schemes.
Nevertheless, stabilised methods as described in chagtave&also proven to be feasible for
DNS computations. An example for a DNS performed using ailsgéald method can be found
in TROFIMOVA et al [209].

4.2 Approaches for modelling turbulence

Depending on the complexity of the turbulent flow and the latdity of sufficient computing
resources, different approaches to turbulence modellamgle applied. The first variant that
will be discussed in subsection 4.2.1 is based on tEgN®LDS-averaged MVIER-STOKES
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equations (2.63) and is therefore termed RANS approachhi$nrRANS technique, the quant-
ities which are solved for are not the original unknowns laiher their averaged values. The
average can be thought of as an ensemble, time or space everageriodic direction. The
second approach, large-eddy simulation, will be reviewedubsection 4.2.2. For large-eddy
simulation, the averaging of the RANS method is replaced bliyesing procedure. In contrast
to the REYNOLDS averaging, filtering allows to separate scales of diffestrds. This enables a
restricted modelling in the LES approach. The model is oplyli@d to the smaller scales while
in the RANS method a model has to account for all scales aoedain a flow.

Concerning resolution properties, there are clear diffees between the approaches. Table 4.1
provides sketches for the different ways of looking at thevfldhe direct numerical simulation

DNS LES RANS
resolved filtered URANS | time-avg.

ﬁijﬂ\g (/ (o — ¥ Qﬂ\o <ﬂ\o
e 1| S || N || N

AN g SN g T N | pe—
Dsi{/m\v/ D:\j B N

Table 4.1: Sketches for computed flow patterns in a driveitycéow (top) and a flow around
a square cylinder (bottom). DNS resolves all required scal€eS approaches cor-
rectly represent most of the energy-containing large scamall-scale motions are
filtered out and their impact on the large scales is accoufoteldy a model. RANS
approaches include the highest degree of modelling. Theyige results only for
averaged quantities.

will resolve the motions of all necessary scales. For the BAdyproach on the other hand,
results are only obtained for averaged quantities. Thasaeable results can only be expected
if the averaging procedure chosen to state teeRoLDS-averaged MVIER-STOKES equations
matches the physical properties of the flow. For instancdldars that are not statistically sta-
tionary, like the turbulent flow around a square cylindeg #pplication of a RANS approach
based on time-averaging will lead to poor results as theysket¢ched in Table 4.1. For a de-
tailed investigation of this issue, the reader is referredhe paper by ACCARINO [128], in
which results from unsteady RANS (URANS) calculations arkNS calculations based on
time-averaging are compared. Large-eddy simulation isagéd in between DNS and RANS.
This statement applies to both resolution properties amdpeational costs. Large-scale mo-
tions are resolved using the LES technique and thus commexféatures can be represented
accurately.

According to an estimation byd®1 [180], RANS methods will be needed and used for many
years to come in engineering calculations. However, inaaies must be accepted for complex
flows involving separations and if it is affordable from thengputational cost point of view, LES
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provides a more general and better suited approach thatdraagpotential for representing this
type of flows.

4.2.1 RANS closures

Approaches based on theeRNOLDS-averaged MVIER-STOKES equations have to provide

a closure for the unknown B'NOLDS-stress tensor (2.64). In this subsection, some basic

strategies will be listed that can be used to construct a hfodéhe REYNOLDS-stress tensor

respectively its deviatoric part. For a deeper insight R&NS approaches, the reader is referred

both to the well-known reference by Mcox [222] and the overview article by IAONSI [4].
RANS approaches are usually categorised in two classésiléumt viscosity and RYyNOLDS-

stress models. Models based on the turbulent viscositythgs®s assume

3
T?§yv/p =(u®u)— % > (uu) = —2u - £ ((w). (4.3)
i=1

The turbulent viscosity can be interpreted as a product ahixihg length’ scale/mx and a
velocity scaleuy,,.
Viur = Lrnix - Utur (4-4)

Algebraic mixing length models for simple shear flowzrdirection with (u) = (u,) (v) - e,
assume

0 (ug
Ur = gmix # (4-5)
Y
This corresponds toBRANDTL’S mixing length hypothesis
0 (uy
Uur = £I'2T]IX . ' éy > (4.6)

Such a local model can be implemented rather easily. Neslesh, it has severe drawbacks. For
instance, it requires a problem dependent mixing lengtindieih and no history effects are in-
cluded in this model. A slight improvement to algebraic medge one-equation models. They
include a transport equation for the turbulent kinetic ggér, which provides some non-local
and history effects and yields a velocity scale. An empimexing length scale is still required
for one-equation models. A slightly different one-equatapproach, popular in aerodynamics
applications, is the SALART-ALLMARAS model which is based on a single transport equation
for turbulent viscosity. Finally, two-equation modelsdithek-¢ model solve two transport equa-
tions for turbulent kinetic energly and dissipation rate This approach is complete in the sense
that the two quantities provide both a length and a velo@#aes Other variants liké-w models
are also possible. Like all approaches based on a turbuigesity hypothesis, two-equation
models have deficiencies for complex flows causimy ROLDS-stress anisotropies.

For such problems, RrNoLDs-stress models can provide better solutions. They involve
transport equations for all RryNOLDS-stress components as well as a transport equation for the
dissipation-rate. Among the RANS models, they are the mgseémsive models but are said
to show the best performance for complex flows. StilEYRoOLDS-stress models cannot be
considered universal.
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4.2 Approaches for modelling turbulence

4.2.2 Large-eddy simulation

Large-eddy simulation is a promising alternative to dinegmerical simulation. In LES, the
larger scales of turbulent flows are resolved. Only the impéthe smaller, unresolved scales
is accounted for by a model. According toKMOGOROVs hypotheses, which were discussed
in subsection 2.2.3, these smaller scales exhibit a moxersal character in all fully-developed
turbulent flows. This simplifies the modelling process ardved for models which are applic-
able to a broader range of flows. For the modelling of subgrales, various techniques have
been established. The most exhaustive overview on suchoaettan be found in the book by
SAGAUT [186]. The computational cost of LES is still high but it isosantially lower than for
DNS.

As indicated before, the LES problem is stated only for thienarvn large scales. Thus, in
order to formulate an LES equation, a separation of scalsegdbe introduced. In traditional
LES approaches, as described, argSAGAUT [186], this is done by explicit or implicit filtering,
respectively. An example for an explicit filtéf is the box or top-hat filter

3
Gx—2)=]]Gi(x:— ) (4.7)
=1
with
Gi(x;—x;) =q A ‘ =2 4.8
(@i — &) { 0 otherwise (4.8)

The resolution properties of a filter are defined by the filtéittvA. For instance for the box
filter introduced above) is determined by the componentsAf Other filters such as the sharp
spectral cutoff filter, Qussian filters etc can also be used. See the books lmpP[174] and
SAGAUT [186] for a discussion. The application of the linear filtgreoator generated by the
filter kernel G defines a filtered velocity field

ﬂ(w,t):///é(w—:%)~u(:%,t)d:%. (4.9)

The filtered fieldu (x, t) represents the large-scale content of the velocity field. afoillus-
tration, Figure 4.1 provides an example for box-filteredteexbased on cross-stream and wall-
normal velocity from the turbulent channel flow exampleadtnced in Figure 2.4. The norm of
the vectors is visualised for a cross section orthogonah¢éoniean stream-wise flow direction
which is assumed to be aligned with thexis. The projections are computed according to the
operatorP,, () = O — (O e,) e,. Filters do not necessarily have to be defined using an
explicit filter kernel functionG. They can also result implicitly as a ‘grid filter’ from the fia
mesh representation, from the employed numerical scherimeraran intrinsic cutoff length as-
sociated with a subgrid model. From the point of view of theatsonal multiscale approach for
modelling turbulence, the filtering operation above cqrmexls to a GLERKIN projection into

an a priori defined subspace of resolved scales. This proeedil be discussed in more detail
in section 4.3. For the following explanations, the imglgniid filter associated with a stabilised
finite element approach is used in the same way as a traditropécit filter, i.e.

w=u" (4.10)
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4 Turbulence modelling with a focus on residual-based LES

Py () Py (u —u) E 03

Figure 4.1: Visualisation of in-plane projected velogtia turbulent channel flow. From left to
right: Projected velocity, projected filtered velocity gmjection of their difference
corresponding to the sub-filter scale.

[rem wojjoq

The filter width for a GQ\LERKIN projection is taken as the element size
A=h,. (4.11)

A definition forh, can be obtained from equation (3.144).

The filter introduced above will now be applied to theWER-STOKES equations in order
to obtain an equation for the filtered solution field. The sguent explanations are based on
the conservative ELERian form of the MVIER-STOKES equations (2.52). In analogy to the
application of a RYNOLDS averaging as in equation (2.59),

88—1;+V- (m+—-1—2ys(ﬁ)> =b

V-u=0 (4.12)
is obtained. Due to linearity properties ©fthe filtered strain rate tensor was obtained as
e(u) =€ (u). (4.13)

Furthermore, it was assumed that differentiation and fiitecommutate. Similar to the proced-
ure applied for the RANS equations, a resolved stress tenar w can be separated from the
filtered nonlinear term in equation (4.12)

pruRQu=p-uutp (uRu—-—uRU). (4.14)
The remaining residual (subgrid) stress tensor,
To=p (UQuU—-uURU), (4.15)

is obtained in analogy to theERNOLDS stress tensor (2.64). Based on this residual stress tensor,
the filtered version of the NVIER-STOKES equations is given by
ou

E+V~(u®u+

I3

1 _
-1—2us(ﬂ)+;-‘r§s) =b
V.a=0. (4.16)
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4.2 Approaches for modelling turbulence

This is the base equation for large-eddy simulation, in Wik residual stress tensor has to be
substituted by a turbulence model.
Several approaches do not model the residual stress tésaslbibiut only its deviatoric part

Tl 1 (Z T§S“> . (4.17)

The trace of the residual stress tensor used in this definiiyy_ | Ty denotes two times the
residual kinetic energy per unit volume. In order to be ablesstate equation (4.16) using the
deviatoric part of the residual stress tensor, a modifiedgue

3
1
P =D+3 (Z rgs“) (4.18)

i=1

is introduced. Using this pressure, an equivalent versfadhefiltered NavIER-STOKES equa-
tions can be stated:

ou

1
— + V.
8t+ <u®u+p

d ﬁdev .
res,dev — ) _
Tx +7-1—2ys(u))—b
V.w=0 (4.19)

The structure of equations (4.16) respectively (4.19) iy wemilar to the structure of the
REYNOLDS-averaged equations (2.63). Nevertheless, the LES eaqsatice obtained by fil-
tering, not by averaging. Thus, the closure problem existy tor the residual stress tensor
representing the small scales, not for theYRoLDs-stress (2.64) containing information on all
scales.

With regard to the energy spectrum, the filtering appliedhtouelocity field changes the spec-
tral amplitude of the kinetic energy as sketched in Figuge Bor LES, the filtered velocity field
should resolve all large, energy containing scales. Thesehergy spectrum will be truncated
near a cutoff wave number in the inertial range. The shapéetriuncated energy spectrum
shows that energy has to be dissipated from the resolvedssoakr the cutoff wave number.
In comparison to the initial spectrum, the inertial rangd Wwe shortened and the dissipation
range in the energy spectrum is shifted to the cutoff wave bemof the filter. The view on
this truncated energy spectrum explains that an imporeguirement for a turbulence model
is that it must be able to extract a sufficient amount of endrgm the large scales close to
the cutoff wave number in order to obtain an energy spectmam the solution of the filtered
equation (4.16) or (4.19) respectively which is similartie filtered exact energy spectrum from
Figure 4.2.

LES modelling approaches can be categorised into two grdupstional and structural ap-
proaches. Functional modelling, which will be pursued i thesis, tries to provide a correct
representation of the impact of the unresolved scales orewdved scales. Special emphasis is
put here on a correct reproduction of dissipation propsidiethey were discussed above. Clas-
sical examples of a functional modelling approach are edslgesity type models. A review of
these models, including the discussion ofA&ORINSKY-type models which allow to inhibit
the eddy viscosity in transitional regions, can be found #sIEUR and METAIS [154]. For the
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log E (k)

exact spectrum

— — = spectrum filtered with
sharp spectral cutoff filter

spectrum filtered with
smooth filter

Figure 4.2: Impact of filtering on the energy spectrum, addftom S\GAUT [186].

convenience of the reader who is not familiar with such meshthe most important properties
of SMAGORINSKY-type models are summarised in appendix C.1. In this apgeadietailed
presentation of a finite element implementation of such aehed it will be used in chapter 5 as
a state-of-the-art physically motivated LES model for camgon, will be given. Eddy-viscosity
models can also be used in the framework of variational isedte models. Section 4.3 will
provide some more information about this topic. The funwilomodelling is not necessarily
applied explicitly. In implicit diffusion LES (ILES), the odelling is based on the assumption
that the impact of the subgrid scales on the resolved scaktgétly dissipative and that this dis-
sipation can be provided as numerical dissipation by therelisation scheme. A well-known
example for an ILES method is the MILES approach proposed briB et al [37] based on
monotone computational fluid dynamics algorithms. Anothgtion for an ILES approach is
based on adaptive flux reconstruction as proposed bymMs, HICKEL et al [1, 112]. In this
approach, the weighted essentially non-oscillatory (WEBE@proach, seetfy [190], of adapt-
ive deconvolution is extended in such a way that by adjustiagretisation parameters implicit
models for LES are obtained. The residual-based varidtionéiscale modelling of turbulence
that will be presented in section 4.4 and investigated inniln@erical examples later on also
belongs to the class of functional approaches.

For completeness, two examples of structural modellingrigpies, which are based on an
approximation of the residual stresses directly, shall bationed here as well. They are the ap-
proximate deconvolution model byr6Lz and AbAMs [195] and the BRDINA scale similarity
model [7]. More details on similarity subgrid models can baerfd in the review article by &
NEVEAU and KaTz [160]. Mixed models combining the advantages of structanal functional
modelling approaches are possible.
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4.3 The original formulation of VMM in turbulence modelling

4.3 The original formulation of variational multiscale
methods in turbulence modelling

A conceptual step in an LES approach is separation of scal@saditional approaches, as they
were discussed in subsection 4.2.2, separation of scabesexl on a filtering operation which is
often not projective. In contrast, scale separation inateonal multiscale methods (VMM) is a
priori based on variational projection. The origins of aional multiscale methods date back to
early works by HUGHES [115] and HUGHES et al [119], where it was established as a general
framework for multiscale modelling in computational megits. Applications to large eddy
simulation of the incompressibleANIER-STOKES equations were first reported inddHES et

al. [121]. Early examples for successful applications in LEBofeed, for instance the LES of
homogeneous isotropic turbulence iveHES et al [122] and the LES of turbulent channel flow
in HuGHES et al [123]. For these applications, a two-scale decompositias achieved by a
sharp cutoff in spectral space. AMEGORINSKY model was applied only to the smaller scales
in order to maintain consistency on the coarse scales. k& Wwas picked up and developed
further in the context of three-level approaches byLCs et al [56], see subsection 4.3.2 for
more information. An application to compressible turbaléows can be found in KoBusand
FARHAT [146]. More recently, an alternative concept of residuatdxd variational multiscale
modelling of turbulence was introduced imQo [45]. For an overview article, the reader is re-
ferred to GRAVEMEIER [96] for the fluid context and furthermore toRBVEMEIER et al [99] for
multiscale methods in general. A side-by-side presentaifd/MM-based LES and traditional
LES can be found in@HN [133]. Furthermore, a review of recent developments inatarnal
multiscale methods for turbulent flows is available iaNBNITZER et al [86].

In general, variational multiscale modelling can provid#honumerical stability and an in-
clusion of physical effects from unresolvable scales ibulent flows. This section will give an
overview of available variational multiscale approachEse necessary scale separations are in-
troduced as well as basic equations and solution concegtsr @n, in section 4.4, the focus will
be turned to residual-based modelling of turbulence, pliag details on the implementation of
the approach and then used in subsequent computations.

4.3.1 Two-scale separation with explicit solution or appro Ximation
of the unresolved-scale equation

In a variational approach, the restriction of trial and weigg function spaces to finite dimen-
sional subspaces, as it was described in section 3.4, porids to an a priori definition of a
space that contains all resolved scales. A resolved-septesentatiorﬁuh, ph) for an arbitrary
pair (u, p) of velocity and pressure trial functions can be obtained dlgcting a continuous
linear projector fromS,, x S, onS,, x 8. This projector is a surjective function

P:Sux8,— ShxS (4.20)
(u,p) — P (u,p) (4.21)
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4 Turbulence modelling with a focus on residual-based LES

with P o P = P. P can be thought of as arfL.or H!-projector, see the remark inABILEVS et
al. [15]. For each fixed choice of the projector, the resolvealescepresentation

(uh,ph) =P (u,p) (4.22)

is unique. The projector furthermore introduces a spacencésolved-scale velocity and pres-
sure trial functions by

I=P): Sy xS, — Sy xS, (4.23)

For each fixed choice of the projector, the unresolved sdales) separated fronju, p) are
defined uniquely by

(w,p) = (u,p) — P (u,p). (4.25)

Unlike the space of resolved scales, the space of unresebadds is not uniquely defined but
rather depends on the choice Bf Furthermore, although the space of resolved scales is in-
dependent of the projector, the resolved-scale repre:ixmmtéuh,ph) of (u,p) will vary for
different projectors.

An analogous scale separation based on the projeétican be performed for the space
of weighting functions, giving rise to a direct sum decomipos of all pressure and velocity
weighting and trial function spaces as is summarised indheving equation:

Su=8"esS.,, S =8aS,, (4.26)

T.=T'eT,, T,=T1'e1,. (4.27)

The subspaces of unresolved scales are infinite dimensiDoal to the direct sum decomposi-
tion, each trial and weighting function has a unique decasiijmm into a resolved-scale and an
unresolved-scale part, viz

uv=u"+7u, p=p"+7, (4.28)

v=0v"+7, ¢=q¢"+q. (4.29)

Using the scale decomposition of the solution function284.the weak form of the N/IER-
STOKES equations (3.58) can be restated as a combined system faasthleed and unresolved
scales. For this purpose, the definitions

Bl (uh,n-i-l7 an-ﬁ-l’ v) — §B (uh,n-i-l te- an-ﬁ-l’ v) (430)
€ e=0
and
B2 (an-i-l ’U) _ 1 8_23 (uh,n-i-l te- an-ﬁ-l v) (4 31)
’ 2 9e? L, '
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4.3 The original formulation of VMM in turbulence modelling

are introduced in order to be able to separate the influent¢keotinresolved scales from the
nonlinear operatoB ( R T ) SinceB is only quadratic in the unresolved velocities,
the NAVIER-STOKES equations (3.58) can be identically expressed as

B (uh’"+1,v) + B (’uh””l,'f],mrl ) + B, ( ntl ’U) —
- G <ph,n+17 'U) . G (j)ﬂ—i-l’ 'U) +
+D (u"" q) + D (u".q) — F (v) = 0. (4.32)

It should be pointed out that although equation (4.32) itedtanly in the unknown velocities
and pressures of the new time step it is still based on a tirmeretisation according to the
generalised-alpha approach. Thus, discrete represamgatif the time derivatives of resolved
and unresolved-scale velocity are still contained in equaf4.32). Since both resolved and
unresolved-scale time derivatives emerge from the same teseems reasonable to treat them
analogously when tracking the unresolved scales in tineg tat in section 4.4.

Incorporating an additional split of the weighting functgaccording to equation (4.29) in-
duces two equations, a resolved-scale and an unresoladelesfuation. The momentum part of
this resolved-scale equation reads

B (uh,n+17 ,Uh) -G (ph,n+1 'vh) _F (,vh) _
= — [B) (u"" @™ o) + By (" 0") - G (", v")] (4.33)
and the continuity equation for the resolved scales is gbyen
D (u""' ¢") = -D (u"*', ¢") . (4.34)

The left hand side of equations (4.33) and (4.34) corresptmthe G\LERKIN residual of equa-
tion (3.101). The right hand side of these equations reptegbe impact of unresolved velocity
"™ and pressur@™*! on the resolved scales. The unresolved pressure in thisieqususu-
ally replaced by a heuristic scaling in the style of a LSI(hatsation. This will be discussed
further in subsection 4.4.1. The remaining unknown unsesblelocity scales are defined by
the second part of the equation system, the unresolved-scagiation. Its momentum patrt is

given by

B (uh,n-i-l’%) + Bl ( h,n+1 an-ﬁ-l’%) + B2 (un-i-l’%) _
_G(hn+1~) G( +1 )_
—F(v)=0. (4.35)
It is usually assumed that the contribution of the unresblpeessure in this equation can be

neglected, see for instanceR@/EMEIER [94] and GALO [45]. By this simplifying assumption,
the unresolved-scale momentum equation can be rearramngjeiy

Bl (uh,n-i-l’an-i-l ~) + B ( n+1’5) _
=—[B (u"" ) - G (p"",0) - F(v)] . (4.36)

The ‘source term’ on the right hand side of this equation &gponds to the projection of the
residual of the resolved scales on the space of unresohaelsscThus, the unresolved velocity
scales can be considered to be driven by the residual of Hoévetl scales.
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4 Turbulence modelling with a focus on residual-based LES

Another assumption that is usually made in the context aatianal multiscale modelling of
turbulence is that unresolved velocity scales vanish ometg boundaries, i.¢hat

f'd”“\me = 0 for all elements: . (4.37)

This localisation property is common in stabilised finiteraknt methods and closely related to
the idea of residual-free bubbles, see for instaneav&MEIER [94]. From the physical point
of view, this assumption reflects the idea that smaller saala turbulent flow have a localised
sphere of influence. In the following, two strategies willdescribed to solve the nonlinearly
coupled set of resolved and unresolved-scale equations.

Numerical residual-free bubble approximation of unresolv ed scales

One approach is to approximate the unresolved-scale Yielediy residual-free bubble func-
tions. The solution process for this approach involves thet®n of subproblems representing
the unresolved-scale problem. This can be done for instanoeerically on an element local
subgrid in the sense of a two-level finite element method. rElsalting combined bubble ap-
proximation for the solution of the unresolved-scale peoblon all elements is then inserted
into the resolved-scale equation, yielding a closed sy$terthe resolved scales. Cases where
an additional model term is included in the unresolvedespabblem, as it is done for instance
in the original approach by BicHES et al [121], implicitly introduce a third level of scales. At
this point, the transition to three-scale approaches is¢imd he interested reader is referred to
the overview article by GAVEMEIER [96] and references therein for more information.

Approximate analytical solution of the unresolved-scale p roblem

Another approach termed residual-based modelling of tartme was introduced in the thesis by
CALO [45]. Itis based on the idea to systematically approximiagesolution of the unresolved-
scale equation in terms of resolved scales. Unlike for theerically approximated residual-free
bubble approach described above, no explicit subprobldatisons for unresolved scales are
involved here. The approximation is rather done by locatbigic scalings. The most common
approach is to account for the impact of unresolved scaledbgal scaling of the resolved-scale
residual as it is known from stabilised finite elements. Thec#fic implementation depends
on whether the equations are stated in conservativeERian, convective HLERian or ALE
form. Furthermore, it depends on whether time derivatiiesnvesolved scales are taken into
account in the sense of a time-dependent subgrid-scalexpyation as introduced in @DINA
et al [55] or not. Section 4.4 will provide a detailed discussidnhe different variants.
Residual-based modelling of turbulence using a conveatidosure was applied to fully de-
veloped turbulent channel flow and isotropic turbulence byIBEVS et al [15], showing an
excellent performance in the context of isogeometric fieleament analysis. An LES of trans-
itional flow based on a time-dependent subgrid-scale apption can be found in ANCIPE
et al [176]. Furthermore, GMNITZER et al [85] performed an LES investigation of fully
developed turbulent channel flow using a time-dependengrgl#scale approximation. The
corresponding results will be summarised in chapter 5 apglemented by investigations of
the dissipative properties of the approaches implementedombination of time-dependent
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4.3 The original formulation of VMM in turbulence modelling

subgrid-scale approximation and isogeometric analysasis contained in this thesis, see the
respective results in chapters 5 and 6.

4.3.2 Three-scale approaches keeping consistency onthela rge
resolved scales

Three-scale methods were introduced byLCis in [56]. They are based on an additional sep-
aration of resolved velocity scales into large resolvedescand small resolved scales, denoted
by a superscript’ or * respectively. The three-scale separation introduces tamé®&d direct
sum decomposition

Su=8"os8"asS, T,=T"eT!eT, (4.38)
%7_/ T
Su o

of the velocity weighting and trial function spaces. Acdagly, trial and weighting functions
have a unique decomposition

u=u +ul+u v =v" 40" 47, (4.39)
a’,_/ A),—/
ul vl

In general, three-scale methods allow modelling to be cedfio the smaller of the resolved
scales, and hence to preserve consistency with respece tartder resolved scales identified
with the index’.

Approaches to separate resolved scales

The required scale separation for resolved scales can leel fasinstance on hierarchical ap-
proaches and bubbles as they were already mentioned)®HIHS et al [121]. Another suc-
cessfully applied approach to separate the scalegitype explicit L>-projection-based scale
separation as it was proposed lmyHN and Kaya [134], see ®HN and KINDL [135] for further
results based on this approach. Furthermore, a partiticstalies can also be obtained using
multiple grids. In this approach, the scale separationti®tluced by a scale separating operator

T (A (4.40)
u” = &) (u) (4.41)
u = (I-6)) (u") (4.42)

consisting of a sequential application of restriction amdigngation operators, seeRAVE-
MEIER [95]. In a finite element context, the prolongation could lo@el for instance by linear
interpolation and the restriction by injection. Purelyethgaic multigrid operators for scale sep-
aration have also recently been explored in the algebraiati@nal multiscale-multigrid method
proposed by ®AVEMEIER et al [97]. The scale separation in that approach is done on ayurel
algebraic level using matrix representations of restrietwd prolongator which were generated
using plain aggregation algebraic multigrid (PA-AMG).
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4 Turbulence modelling with a focus on residual-based LES

A monolithic system of equations for the three-level approa ch

The additional separation of scales decomposes the ressbade equation into two sub-equa-
tions, a large resolved-scale momentum equation

B (uh,n—i-l’,vH) e (ph,n+1 ,UH) _F (,UH) _
— [Bl (uh,n—l—l’an-l-l ) + B (~7L+1 ’UH) _ G (’ﬁ'ﬂ-ﬁ-l’vH)} (443)

and a small resolved-scale momentum equation

B (uh,n—i—l’ véh) el (ph,n+1 6h) _F (vah) _
- _ [Bl (uh,n—i-l’,l’zn-i-l ) + B (;&TL—FI 'Uéh) e (ﬁﬂ+1,v6h)] ) (444)
This split allows modelling assumptions to be introducegbsately on different scales. In the

large resolved-scale equation (4.43), the impact of utwvedcscales is neglected based on the
assumption that their respective influence is relativelpkve

B (vt o) — G (pPH o) = F (v) =0 (4.45)
In contrast, the impact of the unresolved scales on the gemdlved scales in equation (4.44)

is taken into account. For instance, it can be representeddoyall-scale BAGORINSKY-type
model

B (uh,n-i-l’ v&h) -G (ph,n-i-l7 ,Uéh) +
+ 2v (€ (u™) & (")) iy — F (07) =0 (4.46)

with a subgrid viscosity " defined as

Var = (Csmaghe)” - /& (u") : € (uh). (4.47)

Such a small-scale constant-coefficiemASORINSKY model is known to perform well even
in wall-bounded flows. Nevertheless, the model’s constantaiso be determined dynamically.
See for instance RAVEMEIER et al [100, 101] for an implementation in the context of a three-
level finite element method.

4.4 Residual-based modelling of turbulence

In this section, the approximate analytical solution of timeesolved-scale problem in the two-
level approach introduced in subsection 4.3.1 will be dbedrin detail. In a first subsec-
tion 4.4.1, three different subgrid velocity closures ancasure for the subgrid pressure will
be provided. Then, the closed resolved-scale equationsrivective ALE and conservative
EuLERIian form will be given.
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unresolved-scale equation local algebraic scaling
[(. . ;5)9(%1)} in integration point

u ~ L aper, drop orkeep (1)
X (ch,n+aF ) V) aer - ||[Ch’":F].p|| Lanser (C)
+ (@™ ) a4 drop (D)
+ (a"rer . v) whnter — drop (D)
—2vV - € ( "+°‘F) = ~ h—lé TS (V)
_ —"“7v1 (uh,n+17ph,n+1) _ [r}](/[ (uh,n+17ph,n+1)}lp

Table 4.2: Unresolved-scale momentum equation and itsoappate closure in terms of
resolved-scale quantities by local algebraic scaling iegration points.

4.4.1 Subgrid closures

In order to motivate a representation for the subgrid véjoici terms of resolved-scale quantit-
ies, equation (4.36) is expanded in the left column of Talite Bor every term in this column, a
corresponding scaling is provided in the second columns@&lsealings are used to approximate
the partial differential unresolved-scale equation by aafeordinary differential or algebraic
equations in the integration points. The residual of the mioimm equatiom”, that governs the
right hand side of the unresolved-scale momentum equatitaken from equation (3.142). The
approximation of the unresolved-scale velocity in thegnétion points is collected in a vector
u""*F, The notatior}-] , indicates that a quantity is evaluated in the respectiegiation point.
All algebraic scalings in the second column of Table 4.2 carcdmbined to one scaling para-
meter which can be identified with the inverse stabilisaparameter introduced in section 3.5.
Table 4.2 and the scalings therein are based on a formulatithre NaviER-STOKES equations

in ALE form. The corresponding scalings for th& E=Rian form can simply be obtained by set-
ting the grid velocity to zero. There are several commentsetmade on the scalings introduced
in Table 4.2:

(I) Time-derivative in the unresolved-scale momentum equoatio

One option for treating the time derivative in the unresdhgeale equation is to in-
clude aﬁ contribution in the scaling parameter definition. This casgesponds to
the choicery*®4! for the stabilisation parameter from section 3.5.

A purely algebraic closure can also be obtained by dropgiegitne derivative com-
pletely. This yields the approach termed quasi-static 8dksgale approximation by
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4 Turbulence modelling with a focus on residual-based LES

CoDINA et al [55]. This case corresponds to the choigg“~! for the stabilisation
parameter.

Finally, it is possible to keep the time derivative in the egpqimated unresolved-scale
equation as proposed indDINA et al [55]. This approach turns the unresolved-scale
equation into a decoupled system of ordinary differentéalagions at the integration
points. It is known as a time-dependent subgrid-scale ajpation.

(C) Convective term in unresolved-scale momentum equation

In the convective limit, the algebraic scaling introducedlus term provides the well-
known <he/ HuH)-scaIing for the stabilisation parameter.

(D) Nonlinear and reactive term

In conventional stabilised methods, these terms are ysdaedpped. In general, a
different treatment as provided inACo [45] is also possible. In this reference, the
scaling is applied to unresolved-scale contributions imsymptotic series approxim-
ation of the unresolved-scale momentum equation, yieldorginear approximations
of subgrid velocities. Nevertheless, the implementatiothis thesis is based on the
more common approach to neglect these contributions.

(V) Viscous term

This term provides the WeII-knowéhg/ V) -scaling of the stabilisation parameter in
the viscous limit.

All following closure equations are evaluated at the in&ign points IP.

Conventional subgrid velocity closure

In the conventional closure, the subgrid velocity at everggration point is assumed to be
proportional to the residual at that point:

1

VX QAL

~ntap h h,n+1 _h,n+1
o [ (u P )]

.EIP =

o (4.48)

Hence, equation (4.48) can be used to eliminate all conioibs of unresolved-scale velocities
in the resolved-scale equation.

Quasi-static subgrid velocity closure

The quasi-static approach can be seen as a special caseatibaq4.48) using a stabilisation
parameter independent of the time step size:

1

VXSAL
™

(4.49)

~ntap o [ h (uh’n+1,p

b _ rt, h,n+1>]

P
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4.4 Residual-based modelling of turbulence

Time-dependent subgrid velocity closure

The time-dependent subgrid-scale approximation wasdaoted in @DINA et al [55] from the
viewpoint of a stabilised method. The closure equationtierinresolved-scale velocities in the
integration points reads
nta 1 ~n4a

+oam tarp [,',J]t/[ (uh,n+1’ph,n+1):|

Up “VXoa: Up
™

with =, taken from equation (3.141) in theUEERian case. The extension of this equation for
the ALE case reads

Lntan 1 ~nta h (2 h

. F _ n+1l _hntl

Up  tuxear WP = [y (u" ")
M

with r%, taken from (3.142) and a modified version of the stabilisagiarameter. In this thesis,
these ordinary differential equations for the subgrid eéipin the integration points are treated
with the same generalised-alpha time integration schentieea®solved scales, i.& analogy
to the results of subsection 3.4.3 the equations

@n—l—alr

- (4.50)

- (4.51)

:(1—0(}7)'@”—‘—0(}7-’(’1%’_1

= (1 —OéM) -@"+aM-6"+1

W ="+ At (1—7)-@" + Aty -a"t! (4.52)

are obtained. This time discretisation yields the follogvexpression for the unresolved-scale
velocity at the new time level
Gt _ (o —7) - At o G
=P Q- T,\\erAt +ap -y At =IP
- TA\ZXGN +(1

VXGAL
an Ty O+ ap -y - At

VXOAL
v At Ty h ( hyn+1
u b

anr - TRy At [
It depends on the history of subgrid velocitie and accelerationd . Thus, these additional
variables have to be stored for every integration point.llc@nputations shown in this thesis,
the subgrid quantities are initialised to zero in the bemigrof a computation. The storage of
data at integration points is quite expensive in terms of mgnFor that reason, an alternative
variant of the method, in which the data is transferred frbmintegration points to the nodes,
was proposed by GDINA and RRINCIPE [54]. However, the additional memory requirements
turned out not to be crucial for the type of flows under consitlen in this thesis, so the imple-
mentation used here does not use this extension.

én-i-oc]\,{

_O‘F)’)/At ~n

+ “Up—

h,n+1):| (453)

p P -

A closure for the unresolved pressure

The closure equation for the unresolved pressure is addmedstabilised methods. According
to the implicit treatment of the incompressibility congtitat is evaluated at the new time level:

1
— b == ([Vou" ) (4.54)

Ue
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4 Turbulence modelling with a focus on residual-based LES

4.4.2 The resolved-scale continuity equation

The local scaling is not suitable to represent spatial dévies of unresolved-scale velocities in
the resolved-scale equation. Hence, several terms onghehand side of the resolved-scale
equations (4.33) respectively (4.34) have to be integrayeparts on every element in order to
shift the derivatives to the resolved-scale weighting fioms. For the continuity equation (4.34)
this results in

Rp( h,n+1 hn+l )

(V ! q i +Z .~"+1 Qe —

= (V cuhn qh)Q(th) — Z (u"“; Vg )Qe =0 (4.55)

e

Boundary terms in this partial integrations are neglectexbaling to bubble property (4.37).
For a conventional subgrid velocity closure (4.48), thisiatpn obviously recovers the PSPG
stabilisation term in equation (3.140). Hence equatiobX¥provides LBB stability as usual in
stabilised methods.

4.4.3 Resolved-scale equation in advective ALE form
A similar partial integration on element domains using @y (4.37) has to be applied to the

resolved-scale momentum equation as well. For the comeeptrt, this partial integration is
simplified using the incompressibility constraint as falk

(((uh,n+aF + 7&"+O‘F fén-l-OtF) . V) an-l-OtF; vh) _
Qe

(7 @ o), -
Qe
. ((V X (uh,n-i-ap + ;van-i-ap)) ;van-kaF ) +

<<V ufén—i-aF) an—l—a}: ’Uh>

() ) ), -
+

_ (an—i-aF; (an-‘rap X V) )

+ <<V . ugn+aF> ,an—l-aF; ,vh> (456)
Qe
The resulting resolved-scale equation

Ru (uh,n—‘rl’ph,n-i-l’ ,vh) — RS,aI (uh,n-i-l h n+1 + Z |:| (457)
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4.4 Residual-based modelling of turbulence

splits into a GQ\LERKIN part

Gal hn+1 _hn+l A\ __
R, (u P , U )

)

— (5ontan. 00
- (’LL ;U )Q(tn+1) Q(tn+1) +

() )
Q(tn+l)

20 (e (") e (6)) s, — (BT 0")

o % (ph,n-i-l’ vV - vh)

(4.58)

Q(tn+1 )

and element-specific subgrid contributions

D= (57 ) |+ ((Veurrer) @) 4
e Qe

+ (~n+ap V) hn—i-ap;,vh)ﬂe_

() ), -
Qe

(an-i-oép (~H+OCF . V) vh) 0~

1
~5 (", v - vh)Qe —2w (@ Ve (v h))Q : (4.59)

An interpretation of these subgrid contributions is donthmfollowing list in combination with
some remarks on their treatment:

e Time derivative of subgrid velocity in resolved-scale etipra
(iz”*a”’; 'vh) ) (4.60)

This term is dropped in combination with a conventional oagjtstatic closure. For the
time-dependent subgrid closure, this term is cancelledoaly if orthogonal subscales
are used, as they were introduced byNA [53]. The approach chosen in this thesis is
not to use orthogonal subscales and thus this term does nishivaConsequences of this
fact for the nonlinear character of the resolved-scale gouavill be briefly described in
subsection 4.4.4.

e Divergence of grid velocity term
+ <(V . ugn+aF) ,an—l-aF; vh)Q (461)
For a conventional subgrid closure, this term is very simitaa reactive stabilisation
contribution. Assuming for simplicity a spatially constativergence of the grid velocity,
a constant stabilisation parameter and a solesn&HLET bounded domain, the sum over

all terms (4.61) can be restated in the form of a scaled&&KIN residual

_pVXeat, <V _ ui(l;,n-i-ocF) L RS (gt phntd hy (4.62)
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104

Thus, according to these assumptions, the impact of this ¢tan be represented using a
rescaled ‘effective’ stabilisation parameter

VX DAL
Y

VX DAL hntap)

ALE VX DAL
T&/X@At ™ VXD —

(4.63)

Assumingry*®A! . (V : u’g”+aF) to be sufficiently small, a AYLOR series expansion
yields

VX DAL
™

VX @A hontap)

o
n
_ _VX®At VX@BAL h,n+ar -
= T E(TM '(V‘UG )) =

n=0

= VXA (1 | pxear <V _ ulgjn-i-aF)) . (4.64)

In the small-time-step limit whergl*®2’ ~ At, the asymptotic behaviour of the general-
ised stabilisation parameter definition (3.165) WyRSTER([78] is recovered. In practice,
the divergence of the grid velocity times the stabilisati@mameter will often be suffi-
ciently smaller than one, allowing to drop this term for mokthe applications.

Cross-stress term
4 ((an—‘rap . V) uh,n-i—ozp; Uh)Qe (465)

This subgrid term is not available in conventional stabilisnethods. It enables conserva-
tion properties for the advective form of the incompressiNhvIER-STOKES equations,
see HUGHESsand WELLS [127] or the related work for the scalar advection-diffusegua-
tion by HUGHES et al [118].

SUPG term
— (ﬁ”+°‘F; <(uh’”+°‘F - ug”JraF) : V) vh) o (4.66)

For the conventional closure, this term corresponds to 1P stabilisation term. It
ensures stability in the convection-dominated regime.

REYNOLDS-stress term
. (;van+aF; (ﬁn+aF . V) ’Uh) o (467)

Similar to the cross-stress term, th&YNoLDs-stress term arising from the nonlinear
convective term is not available in conventional stabdiseethods. Usually, this term is
small since it is quadratic in the unresolved-scale guantit

Subgrid pressure term
1

= A AR (4.68)

Qe

Based on the subgrid model (4.54), this term is equivaletited_SIC stabilisation term.
It is strictly dissipative, provides additional stabilitgr high REYNOLDS number flows
and enhances local mass conservation, see section 3.5.



4.4 Residual-based modelling of turbulence

e Viscous stabilisation terra (fvh)

—2v (ﬂ"+O‘F; V-e ('vh))Qe (4.69)
For a conventional subgrid closure, this viscous contrdsutorresponds to the second
order derivative part of an USFEM stabilisation operatar. this thesis, it is neglected
in the resolved-scale equation. This procedure is standaekidual-based modelling of
turbulence, for instanceA&xILEVS et al [15] also omit this term in their implementation.
For lower-order elements, the second order derivativesiuad in this operator are not
sufficiently represented. Aside from this, a recent work RETER[78] indicates that

this term can be problematic for applications on distorteghes.

4.4.4 A comment on the nonlinear character of the time-depen dent
subgrid-scale approximation

The consideration of time derivatives of subgrid veloait{é.60) adds to the nonlinearity of the
resolved-scale equation. To understand this, subgridicdo@l.51) is rewritten in the form

2 ntay 1 ~n+a h h

- __ . F _ n+1 __hn+l

Up = —VXSAT Up [ (u P )]
M

- (4.70)

If this representation of the time derivative of the subgrédocity is included in the resolved-
scale equation evaluated by quadrature, the second sumirarttie negative residual of the
strong advective form, will cancel out all of theaGERKIN terms which have not been integrated
by parts. The cancelled terms are now contained impliaitlshie representation of the subgrid
velocity in the first term on the right hand side of equatiory(}. The terms which have been
integrated by parts, i.¢he viscous and the pressure term will not introduce aduktidifficulties.
Nevertheless, the first term is equivalent to a contribution

Z 1 -
N ( VXSAE 'un+aF;,Uh) @.71)
B ™ Q

e

to the nonlinear system. In this contribution, the inversdbiisation parameter introduces a
significant nonlinearity with respect to its dependencet@velocity. This can be illustrated
using the stabilisation parameter (3.156). For this patamene obtains

12 fubnter|| 4y

- = = + N
2
T'\\ZleAt m, he m, he

(4.72)
and thus (4.71) is equivalent to
2 Huh’n—HIF H ~nto h 4 V' ~nta h
—E(E'T‘u F,'U Qe—; He‘h—z‘u F,'U Qe. (473)
Once more, the second term in this equation will not be probtéc. Nevertheless, the first term
contains the nonlinear contribution

||uh,n+aF|| . 1’1”“1‘0{}7‘ (474)
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4 Turbulence modelling with a focus on residual-based LES

Figure 4.3: Laminar flow through a plane channel which willised to investigate the influence
of the time-dependent subgrid representation on the neality of the resolved-
scale equation.

which can be expected to have a significant impact becauseaf t-scaling. The possibility
of a linearisation of the nonlinear term (4.74) is limitedthy fact that the norm of the velocity
|u"+er|| is not differentiable for"tor = 0.

For a further illustration of this problem, the results forery simple test case will be presen-
ted. A laminar flow through &° element channel with no-slipiIRICHLET boundary conditions
on the top and bottom wall and periodic boundary conditiomalb other sides is considered,
see Figure 4.3. The flow is driven by a constant pressuregmnadnd started from a zero initial
velocity field. Due to the symmetry of the problem, the expddolution is a parabolic velocity
profile. All vectors are oriented im direction, the nonlinear convective term in tha&RKIN
part vanishes. Solved with a conventional subgrid closinejteration behaviour clearly indic-
ates the vanishing nonlinearity in theaGERKIN part, i.e. for each time step the residual of the
nonlinear iteration is smaller thai—¢ after the first nonlinear iteration step. This is visualised
in Figure 4.4. For the time-dependent subgrid closure, ittee is different. In order to be able
to trace back the introduced nonlinearity to the velocitpeleence of the stabilisation para-
meter, the parameteﬁf@m from equation (3.160) was chosen. In the beginning, thecitgio
in this test problem is so small that the velocity dependeridbe parameter is deactivated by
themax operation involved in its definition. For the parameter cleaiinder consideration, this
was observed to happen for steps one to four. In all follovateps, the velocity contribution
was active. Looking at the numbers of iterations requiresidioe the nonlinear system in each
time step, as they are displayed in Figure 4.4, a suddendserean be observed as soon as the

m time-dependent
m conventional

— N W .

Figure 4.4: For a time-dependent subgrid approximatioa,niimber of iterations required to
solve the nonlinear problem in each time stejncreases as soon as the velocity
dependence in the stabilisation parameter gets active.
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4.4 Residual-based modelling of turbulence

velocity dependence gets active in the stabilisation patam

A consequence for practical computations is that compartatusing a time-dependent sub-
grid approximation require a slightly smaller time step tm rstable than the corresponding
problems based on a conventional subgrid approximation.

4.4.5 Conservative E ULERIan resolved-scale equation

For the conservative _ERian form, the counterpart to equation (4.57) can as well parsged
in a GALERKIN part

Rial (Uh’n+1,ph’n+l, ,vh) —
- )y = 3 (T )

_ (uh,n-i-ozF; (uh,n+aF i V) ’Uh)

Q(ent1)

SRR

Q(tn+1) _|_

+2v (e (u"r) 1 e (vh))ﬂ(tnﬂ) — (b"For; ) Qi) (4.75)
and element-specific subgrid contributions
D= (37 e @9 )
= (@ () ) = (@ (@ V) o),
1
- v - ,Uh) o (4.76)

Compared to the subgrid expressions of the convective fareguation (4.59), the cross-stress
term

. (uh,n-i-ap; (an-i-OtF . V) vh)

has changed. As in the convective case, the viscous terngisated and thus not included in
equation (4.76) anymore. Furthermore, the time derivaiiie subgrid velocity is considered
only for the time-dependent subgrid approximation.

o (4.77)

4.4.6 Implementation

The solution process for the resolved-scale equation isthas the nonlinear predictor-corrector
scheme which was introduced in subsection 3.4.4. The rigghd Iside of equation system (3.127)
now consists of the discretised residual of the resolvedesquations for momentum (4.57) and
continuity (4.55):

o hn+1 hn+l
[(Ru)(l)] 3.(A-1)+k - Ru (u(z) 7p(i) ) NAek’> (478)
()], =l @9
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4 Turbulence modelling with a focus on residual-based LES

For the approximation of the corresponding tangent masexgeral strategies can be applied.

(N) NEwTON-like strategy

For this approach, the whole discretised residual is lisedrexcept for the stabilisation
parameters which are treated in a fixed-point manner. Thisisputationally the most
expensive way to set up the linear system. Neverthelesaniges the best approximation
to the tangent and thus the highest rate of convergencedorhlinear iteration. Although
NEWTON's iteration is well-known to have only local convergenceperties, convergence
problems were not encountered for the chosen time stepsiprttblems considered in
this thesis.

(F) Fixed-point-like strategy

In addition to the stabilisation parameter contributiotiss approach omits all tangent
contributions that are reactive type linearisations ofvemtive expressions.

(M) Minimal linearisation strategy

The minimal approach is a fixed-point-like strategy for whedditionally all linearisa-
tions of subgrid terms involving the viscosity are droppé€His is by far the cheapest way
to set up a system matrix. If the user is interested only imatdéid accuracy, the viscos-
ity is very small and the problem is computed at a small tinep sthis strategy is very
efficient.

Appendix D contains a detailed listing of all matrix contritons for the three schemes.

4.5 Weak DIRICHLET boundary conditions in
residual-based variational multiscale modelling of
turbulent flows

In turbulent flows, the resolution requirements close tdsvate especially high. Thus, a com-
mon approach in LES is to use known empirical relations ferriear-wall velocities in order to
improve the quality of the solution for a given finite resadut The framework of variational
multiscale modelling of turbulence provides a straightfard possibility to include such wall
laws in a variationally consistent way using wealRIZHLET boundary conditions.

The type of method that will be used here to impose these weakcBLET boundary con-
ditions dates back to a work byINsCcHE [165] in 1971. It can be understood as a special
choice for a stabilised formulation of sAGRANGE-multiplier approach as it was introduced by
BABUSKA [5]. A discussion of this close relation between the two apphes can be found in
STENBERG[194]. As it is pointed out in WERTA and FERNANDEZ-MENDEZ [75], this method
of imposing essential boundary conditions can be undedsésoa consistent improvement of
a penalty method. In contrast to aa&RANGE-multiplier approach, no additional degrees of
freedom for multipliers and corresponding weighting fuoos have to be introduced in this
formulation.
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4.5 WeakDIRICHLET boundary conditions in residual-based VMM

The weak imposition of no-slip RICHLET boundary conditions in the tangential direction
for wall-bounded fluid flows was encouraged byaBLEVS and HUGHES in [19]. The formu-
lation provided in that publication was modified to incorgi@ a wall model, i.eSPALDING’S
law (2.104), for wall-bounded turbulent flows imBILEVS et al [21]. In the simulation of flows
about rotating components imBILEVS and HUIGHES[20], the formulation was extended to in-
clude weak conditions also in boundary-normal directiorddiionally, HANSBO et al [108]
invoked a weak coupling based onTSCcHES method for fluid-structure interaction problems
using a space-time finite element approach.

4.5.1 Required extensions to the weak form

Let 7 be a suitable element-specific stability parameter thabsitlefined below angl,gn. = 1
the constant that defines the adjoint consistent approaatthefmore, lefp yea(t" ™) define
the DIRICHLET boundary on which the conditions have to be imposed weakignTthe exten-
ded weak form of equation (3.99) with a weak imposition oORIZHLET boundary conditions
reads

hn+1 _h n+1 o
Ru ( 7p -

+ ( h n+1 )
1—‘D weak(thﬁ1

_ 2]/( ( hn+OcF) n;v )FDweak(t”+1) _

h,n+o h,n+oafF h
—21/wwdbc<u F—up 7s(v ) n) —
1—‘D,Weak(thﬁl)

n—‘,—(](Fv h 1L+(YF' +(1F
I D,weak(t ' )

(7 (whorter — o) ot ~0 (4.80)

1—‘D.,vveak(tn+ ! )

for the momentum part and

R, (uhm-i-l’ph,n-i-l’ qh) _

_ hontl h,n+1> ‘ h) —0 4.81
((u up n,q b e+ ( )

for the continuity part. All additional inner products ingbe equations are evaluated by integ-
ration overl'p wea(t" ). The function{-}_ defined in equation (3.174) is used to restrict the
enforcement of IRICHLET boundary conditions in the hyperbolic limit to the part oé thound-
ary with an inflow. In contrast to BziLEvs and HUGHES[20], this formulation uses the ALE
convective velocity in the fifth line of (4.80). This is not ardradiction since the approach in
that reference is designed for rigid body mesh rotationsrotitar domains, in which the mesh
velocity is always tangential to the boundary by definition.

The summands in the second and third line of equation (4.88% &om partial integration
during construction of the weak form. They are required famgistency. The corresponding ad-
joint consistency terms are located in line two of equat#B1) and line four of equation (4.80),
respectively. These adjoint consistency terms can be atetivby the fact that the Awss di-
vergence theorem is applicable only to the interior of thendim, since the difference between
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weakly imposed boundary velocity and prescribe®I@HLET velocity can be interpreted as a
jump in the trial function which has to be accounted for by @céal source term on the boundary
for the integral balance equations. Finally, line six of atipn (4.80) contains a penalty-like term
that is required for the stability of the approximation. Bibte choices for the penalty parameter
75 Will be provided in the following.

4.5.2 Definition of 75

The most straightforward definition for the penalty, seability, parametery is given in Bazi-

LEVS and HUGHES[19]: c
=2 (4.82)
hp
The element length in the direction normal to the boundargsismated using the boundary
normaln and the covariant metric tensor from equation (3.148) by
2
hp = ————r (4.83)
n-(Gn)
(g is a positive constant related to the local boundary investenate. In the implementa-
tion of this thesis, the constant is taken@ = 4.0 as suggested in the example contained in
BAaziLEvs and HUGHES[19]. Nevertheless, this constant can also be estimatedgtance as
the maximum eigenvalue of a generalised eigenvalue probkeinwas motivated by REBEL
and SSHWEITZER [104], see also HERTA and FERNANDEZ-MENDEZ [75].

Wall-law-based extension

In the following, a brief review of the results ofAILEVS et al [21] concerning the incorpora-
tion of a wall law will be given. This formulation is designéat the BuLERian description of a
wall-bounded flow with no-slip IRICHLET conditionu = 0 on the wall. The no penetration
conditionwu - n on the wall is included as a strong®CHLET condition, only the tangential
components are enforced weakly. The strong enforcemeiedbdundary condition in normal
direction implicates several redundant terms in the weak$a4.80) and (4.81). The equations
can be rewritten as

Ru (,u’h,n—i-17ph,n+17 ,vh) = ...+
— 2 (E (uh,n+04F) ‘n; vh)FD’Weak(t”“) _

— 2% wdbe (Uh’n+aF§ € (vh) : n) +

1—‘D,weak(thF1 )

N uh,n-‘rap N
(g - Jutmrer])) (_7> v ) 0
(( ) ||uh7n+o¢F || ’ I b wear 1)

Rp (uh,n-‘rl’ph,n-i-l’ qh) =0. (484)

For the incorporation of a wall law, the penalty term in equai4.84) is identified with a wall
shear stress that is normalised by the density. Insteadtofgstrong DRICHLET conditions at
the boundary, the weak formulation will set a boundary taacterived from a wall law via this
term.
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4.5 WeakDIRICHLET boundary conditions in residual-based VMM

The induced boundary stress is obviously acting paralleltét®r on the weak DRICHLET
boundan p wea(t" ™). Its magnitude is given as

i w2, =g ||utmrer| (4.85)
In this equation, the friction velocity (2.86) was used. Bajiven estimate of the mean velocity
and a given estimate for the thickness of the unresolved denyriayer, this traction and thus
the stabilisation parametep are defined implicitly using BALDING’s law (2.104).
The estimatey for the thickness of the unresolved boundary layer is chasehe order of
magnitude of the distance of the first node to the walzBEVs et al [21] suggest

I
= 4.86
v=c, (4.86)
and thus using equations (4.85) and (2.89)
hB U, hB
2w _ 2 Nuhontar]| | 4.87
V=G Ty Ve e (4.87)

Furthermore, in that referencﬁguhv"“@ H is taken as an estimate for the mean velocity yielding

the approximation
hn+ap / h,n+ap
UTW B

The combination of equations (4.87), (4.88) anehING's law (2.104) finally results in a
single nonlinear equation for the unknown stabilisatiorapgeterrz. This scalar equation has to
be solved by a BwTON procedure in every integration point on the wealk[@HLET boundary
every time the linear system (3.127) is set up.

Decoupling of wall-normal and tangential penalty term

In a generalisation of equation (4.80), the penalty paramet can be extended to a matrix
valued quantity

TB — TB = TB tangential’ (1 —n n) ~+ 7B normal* (n ® n) . (489)

This idea, which can also be found imBILEVS et al [22], enables a separate treatment of
tangential and normal components of the penalty term.

For instance, the matrix valued extension allows to use blaatbased definition of 5 1angential
in tangential direction while in wall-normal direction,etpart of the penalty term which can-
not be associated with a wall shear stress can be treateé wstial way using an appropriate
constant values nomar

4.5.3 Nonlinearity, implementation issues

Weak DRICHLET conditions are setimplicitly, i.e¢he actual values ofp wea(t" ') are defined
by the solution of the nonlinear system (4.80), (4.81). Tlibe extra terms in these equa-
tions will correspond to extra modifications of the systentrniraand of the right hand side
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of equation system (3.127). Since derivatives of weighting trial functions are involved in
these extra terms, the modifications are not restrictedaa#grees of freedom associated with
I'pwea(t"™!) but also affect adjacent degrees of freedom. Furthermlioeggrm in the fifth line
of equation (4.80) introduces another nonlinearity inte Weak form of the MVIER-STOKES
equations. Since this nonlinearity involvés}_, a non-differentiable function at = 0, it is
hard to deal with in the context of aB\TON'’s iteration which is used to solve the nonlinear
system set up by equations (3.121) and (3.122). For higge&NRLDS number applications, it
is often recommended to drop the matrix contribution asgedi with this non-smooth term, i.e
to perform a fixed-point type iteration with respect to th@nhnearity. Compared to a iNv-
TON-type linearised formulation based on stronqRIZHLET boundary conditions, the rate of
convergence of the weak approach will be reduced. Nevextsethe fixed-point type treatment
of the non-smooth term is often required for the stabilityled nonlinear procedure in the case
of weak DRICHLET boundary conditions. In the simplified setting of equati®84), this prob-
lem naturally disappears due to the strong imposition ofrtbie-penetration condition which
eliminats the additional nonlinearity.
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5 Residual-based time-dependent
subgrid-scale modelling of plane
channel turbulence

In this chapter, turbulent flow through a plane channel iglusenvestigate basic properties of
residual-based variational multiscale models for turboée The flow, which was already used
as an illustrative example in Figure 2.4, is well suited favdel evaluation for the following
reasons: The two homogeneous directions allow a convecaenputation of averaged quantit-
ies, the flow includes wall effects, DNS data is availableseveral RYNOLDS numbers, and
the theory of these flows is well understood. See also subgez2.5 and references therein.

The residual-based models used in this chapter will moglpdsed on the convective form
of the equations. Only the investigations of section 5.6 bélbased on the conservative form.
In general, the computations were done using the minimehlisation approach, as it can be
found in subsection 4.4.6. For the comparably small timp sizes used in the computations of
this chapter, this turned out to be a good choice.

The chapter is structured as follows. At the beginning, ttediem setup for all investigated
test cases will be provided in section 5.1. Afterwards, theeaging strategies applied to compute
mean quantities are described in section 5.2. The thirdosebt3 is intended to provide some
further information on the nature of isogeometric finitensét implementations and on the per-
formance of serendipity elements for turbulent channel fomputations. Section 5.4 summar-
ises the improvements due to a consideration of the timestigncy of the subgrid scales and
shows which properties remain unaffected. The performafe@rious element length defini-
tions and choices of stabilisation parameters for stretéfo@indary layer meshes is examined in
section 5.5. The chapter is concluded by a section on thgsiaalf modelled turbulent dissip-
ation in section 5.6, paying special attention to the déffersubgrid approximations and to the
influence of the element type.

5.1 Problem setup

The infinitely extended plane channel is represented by eactaistic box-shaped domain of
sizel, x £, x £,. In the homogeneous, streamwisg @nd spanwisez{ direction, periodic
boundary conditions are assumed. On the top and bottom m@&lip DIRICHLET boundary
conditions hold. The flow is driven by a constant pressureligra which is applied as it is
described in subsection 3.7.5.

The domain sizes and material parameters used for the t&s$ ese given in Table 5.1. All
DNS data which will be used as a reference for the resolvatesguantities is taken from
MosEeRet al [163]. Note that in theRe, = 395 case, the geometry deviates slightly from
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5 Time-dependent subgrid-scale modelling of plane chatamitilence

Re, | Rec | lp |0, =201, v P (Vp),
180 | 3300 | 27 2 %ﬂ 0.000357 |1.0| 0.00413
395 | 8000 || 27 2 %ﬂ 0.0001472 | 1.0 0.00337204
590 | 12600 || 27 2 m | 0.001694915 | 1.0 1.0

Table 5.1: Channel geometry, material parameters andnigrgy pressure gradient in stream-
wise direction(Vp)_ . Rec is the REyNoLDS number defined using the channel half-
height and the centre-line velocitiRe, is the REYNOLDS number based on the wall
shear stress and the channel half-height.

the one in MbseER et al [163]. The spanwise length for this case was chosen to betable
compare the results to other existing LES computationsAxB=vs et al [15].

All computations were carried out on structured meshes. Pehyolic mesh stretching ac-
cording to
tanh (Cstretch‘ y)

tanh (Cstretch)

was applied in order to get a sufficient refinement of the banywthyer mesh close to the wall.
Its characteristics are shown in Figure 5.1. For eight-dottidéinear HEX8) elements, the

h:[-1,1] — [-1,1], yrh(y) = (5.1)
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Figure 5.1: The unstretched mesh on the bottom is transfbinte the stretched boundary layer
mesh on the right by a hyperbolic mesh stretching functign.

stretching was applied to thecoordinate of all nodes. For twenty-noded serendigitizX20)
elements, the stretching was only applied to nodes locdteédeacorner of an element. In-
terior nodes were placed in the middle between the corneesyoals usual. Application of a
mesh-stretching in the context of second order NURRSRBS27) elements means that the
stretching is applied to the knot vector associated withathk-normal direction.

All investigated discretisations are listed in Table 5.heTable contains detailed informa-
tion on the mesh stretching which can have a certain influemcthe results, seeodiN and
ROLAND [136] for a comparison of cosine and hyperbolic mesh stieggh In addition to the
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5.2 Averaging procedures

element
Re, Nele Mnp Cstretch nyﬁst

type
180 HEX8 323 | 35937 2.1 1.6
HEX8 643 | 274625 | 1.7 1.3
HEX20 163 | 18785 24 1.2
HEX20 323 | 140481 | 1.9 1.1
NURBS27 | 25% | 19683 2.1 1.1

395 HEX8 323 | 35937 | 275 | 14
NURBS27 | 323 | 39304 2.3 1.3

590 HEX8 643 | 274625 | 2.5 1.3

Table 5.2: Investigated spatial discretisationge is the number of elements,,, is the number
of nodes respectively control pointSsyercnthe mesh stretching constant agjgl, the
distance of the first node to the wall.

mesh stretching constattyewn the quantityy;:, is listed for all meshes. FA1EX8 elements
it is equivalent to the height of an element next to the watlr FEX20, it corresponds to the
position of the first interior node, i.dnalf of the first element’s height. Finally, {iNURBS27
elements, this quantity corresponds to the position of tisedontrol point away from the wall.
For LES, a value of, sufficiently close to one is desirable, a requirement thiamaishes
employed fulfil.

All computations were started from a randomly perturbediahiaminar flow profile. For
computations based on time-dependent subgrid scalesitajtid quantities were initialised to
zero in the beginning.

5.2 Averaging procedures

All results will be reported in the form of statistics whicleaobtained after a statistically steady
state has been achieved. Exploiting the symmetries of thiglgmm, statistical data for a sample

valueX is obtained by a sequential averaging process in spage .and time(.) ., i.e.
<X>space,time: <<X>space>time : (5.2)
5.2.1 Time averages
The time average is computed as the arithmetic meandwarnsecutive time steps
1 N
<X>space,time: N Z <Xn>space' (5-3)
n=1

N is chosen such that the sampling period corresponds to & \mdtween 15 and 45 flow-
through times. Usually, flows with a low B'NOLDS number are associated with a longer
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5 Time-dependent subgrid-scale modelling of plane chatamitilence
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Figure 5.2: Mean streamwise velocity and root-mean-squalges of velocity fluctuations in
wall coordinates for integration-based (int) and poinevpoint) spatial averaging
for 322 HEX8 elementsRe, = 180.

sampling time in order to obtain meaningful statistics. Bochoice of the time step size in
the order of magnitude that was proposed byaCand MoiN [47] for numerical simulation of
turbulent flow, N = 5000 was found to be a reasonable value.

5.2.2 Spatial averaging for resolved-scale quantities

Spatial averaging of resolved-scale quantities at any lawe is done by integration over wall-
parallel planes

1
<X">space: W /Xn dxdz . (5.4)

The integrals are evaluated numerically usinguSs quadrature, a procedure that is equally
applicable ttHEX8, HEX20 andNURBS27 elements.

In contrast, the widely-used approach to compute spateiages as the arithmetic mean of
nodal values is not feasible f(fEX20 andNURBS27 elements. FOHEX20 elements, this
statement is based on the observation that the finite elesodution in a cutting-plane normal
to they-axis in the middle of an element depends not only on the gatdi¢he nodes in that
plane but also on values of the remaining nodes. N\ORBS27 approaches, the nodal values
correspond to control point values which have to be tramséaf first into a physical meaningful
quantity by interpolation using the shape functions.

Although being consistent for all element types considetied integration-based averaging
procedure will predict slightly smaller fluctuations thdretones computed by nodal averaging,
even in theHEX8 case. The reason for this is that the second-order mometite iquadrature
points are calculated using the interpolated velocity.uregs.2 exemplifies this fact by com-
parison of results for both pointwise (point) and integratbased (int) spatial averaging. The
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5.3 Size and sparsity of system matrices in residual-basésll vV

results in Figure 5.2 belong to the identical turbulent eterflow computation aRe, = 180 on

a 322 HEX8 mesh. As expected, there is no difference for the mean \glddevertheless, the
quadrature/integration-based averaging exhibits diigbtver values for the root-mean-square
value (rms) of the fluctuations. For a sufficiently high gresolution, both procedures will
converge to the same result. A priori, we cannot expect ortbehveraging procedures to be
more accurate than the other. However, the difference kastwlee averaging procedures gives
an indication about the size of a ‘significant’ differencevibeen the results of two simulation
approaches.

5.2.3 Spatial averaging for unresolved-scale related data

Spatial averages for subgrid related data like stabibsapiarameters, residuals, subgrid-scale
velocities and accelerations are computed by an averagesauvess-point values in a complete
wall-parallel layer of elements. The results are displagiedg the wall-normal direction of the
channel. For this purpose, the value of each element laysssisciated with the-coordinate

of the layer’s centre plane, see Figure 5.3 for an illustrati

N N

T

Figure 5.3: Spatial averaging of resolved-scale quastieperformed in wall-parallel planes
along element boundaries (left). All obtained results dott@d against the distance
of the plane to the wall in wall units. Averaging of quantitiassociated with the
unresolved-scale approximation is done over volume s(itglst). These results are
plotted against the distance of the elements centre to thenwaall units.

5.3 Size and sparsity of system matrices in
residual-based variational multiscale modelling of

turbulence
In this section, the sparsity structure arising from an emwygetric representation, as it was
already dealt with in subsection 3.4.5, will be revisitedor fhis purpose, three spatial dis-

cretisations are compared. A meshodf HEX8 elements, a mesh 623 HEX20 elements and
a mesh consisting af22 NURBS27 elements.
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5 Time-dependent subgrid-scale modelling of plane chatamitilence

5.3.1 Matrix structure

All three discretisations yield matrix representationsvidiich the number of non-zeros is be-
tween0.6 - 10% and1.2 - 10%, see Table 5.3. The structure of the sparse matrices indatvihe

element type| 64° HEX8 | 323 HEX20 | 323 NURBS27
nnz 1.138-10% | 1.235- 108 0.672- 108
ndof 1064 960 536 576 139264
e 106.8 230.1 482.4

Table 5.3: Number of non-zeros on matrix (nnz) and ratio leetwnnz and number of unknowns
(ndof). The quotien%‘azf can be seen as a kind of measure for the degree of sparsity
of the matrix. Note that in comparison to serendipity eletagtmiquadratic elements
would have a larger number of degrees of freedom.

three discretisations is completely different. T NURBS27 mesh yields a matrix in which
the number of rows is much smaller than for the other two apgines.HEX8 elements have
the lowest connectivity, yielding the least dense systenmixnaf all approaches considered. In
comparison to the trilinear mesh or a corresponding trigaidc mesh, the use of serendipity
elements in the2®> HEX20 case decreases the number of degrees of freedom by neayly fift
percent. The level of sparsity is situated in the middle &f ¥alues obtained foNURBS27
andHEX8 matrices. Based on the resulting number of non-zeros on #igxna matrix-vector
multiplication in the323 HEX20 case can be expected to be only about twice as expensive as
in the 322 NURBS27 case. Since matrix-vector multiplications have a significzontribution

to the amount of work required in an iterative solution prhoe, see section E, it turns out that
from the computational effort point of vie#2® HEX20 discretisations are competitive wig?
NURBS27 discretisations.

In order to provide the reader with more information on thiugon behaviour of the linear
system in the three cases, this subsection will be conclbgesbme practical remarks on the
iterative behaviour of the three approaches in the linelrtiom process. Although the number
of non-zeros in the trilinear case is nearly as large as irsérendipity case, the iteration was
found to converge at a faster rate in practice. HieX20 as well as theNURBS27 case are
much more demanding with respect to the choice of a good pdétioner. In these cases, the
best choice among the methods mentioned in subsection Eelfaend to be multi-level pre-
conditioners using symmetricA&Ss-SEIDEL smoothers with excessive relaxation on the finer
levels. Finally, a comparison 6flURBS27 andHEX20 problems showed that théEX20 prob-
lem required more iterations to reach the required tolexahan its isogeometric counterpart.
Thus, theNURBS27 version can be said to be more efficient thankieX20 approach, but the
difference is by far not as significant as it would be for taguatic elements.
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5.4 Benefits of a time-dependent subgrid representation

5.3.2 Resolved-scale results for the investigated discret isations

Having compared the system matrices and the required éffioatsolution of the corresponding
linear problem, this subsection provides a comparison efrttean velocity and the velocity
fluctuations afRe, = 180. The results for the2> NURBS27 case are taken from the paper
by AKKERMAN et al [3], where a comparison to &3 triquadratic finite element discretisation
was performed. The results for thEX20 andHEX8 case can be understood as an add-on to
the work of GRAVEMEIER et al [98] with a higher resolution and an updated sampling preces
according to section 5.2. THeEX8 and HEX20 computations were performed using a time
step size of

u2
AtT = At ™ =07 (5.5)

14

which is in the range that was suggested byoCand MoiIN [47]. They are based on a con-
ventional subgrid closure using the stabilisation parameefinitionsry>*2 and 72°%4!, see

subsection 3.5.2 for a definition.

The results can be found in Figure 5.4. The numerical valu&fo obtained in theHEX20
case wasl80.3 and 180.2 for the HEX8 setting. The results show that assuming a correct
sampling and a sufficient resolution, serendipity elemanéscapable of reaching the accur-
acy of isogeometric approximations with a computationdréthat is only slightly higher due
to the increased solver time.

5.4 Benefits of a time-dependent subgrid
representation

In this section, the main results ofAGINITZER et al [85] will be summarised in order to point
out advantages of a time-dependent subgrid represent&mothis purpose, a comparison to the
conventional approach with respect to resolved-scaletgieswill be performed in subsection
5.4.1. Results will be presented for three¥RioLDS numbersRe, = 180 (32° HEXS8, 163
HEX20), Re, = 395 (323 HEX8) andRe, = 590 (64% HEX8). ForRe, = 395, an investigation
of the behaviour for a series of time step sizes will be penfed. Although the impact of the
time-dependent subgrid representation on resolved-sgedatities can be observed to be very
small, subsection 5.4.2 shows that it allows a much morestt@presentation of unresolved-
scale velocities with respect to a variation of the time siep.

All conventional residual-based variational multiscabenputations in this section were per-

formed using stabilisation parameten$®~’ and 7272*2! according to equations (3.158) and

(3.159). The time-dependent subgrid counterparts werepated usingr, 2~ and722°4" =

TQ’Z@N according to equations (3.160) and (3.159). Throughouwt $bction, results obtained
with conventional residual-based models will be assodiatih a blue colour and the abbrevi-
ation ‘rV’, results obtained by a time-dependent subgridieiting will be associated with a red

colour and the abbreviation ‘td’.
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Figure 5.4: Results for mean streamwise velocity and veidliictuations in streamwise, wall-
normal and cross-stream direction. The resultssforHEX8 and 323 HEX20 ele-
ments are compared to the computation byk&RMAN et al [3] on 323 NURBS27

elements and the DNS data bydderet al [163].

5.4.1 Mean resolved-scale quantities

In the first part of this subsection, solutions for problemhsn@derate time step sizés7 <
AtT < 0.9 will be considered. A variation of the time step size is domehe second part.
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5.4 Benefits of a time-dependent subgrid representation

Results displayed will be mean velocity and velocity flutimas. In addition, the obtained
numerical values foRe, will be provided. A significantly incorrect value of this quigty usually
indicates numerical problems with the solution such as ruegiendent oscillations. These can
be hard to detect in the mean velocity due to the spatial gueggprocess. As already anticipated
above, all results in this subsection do not show signifidéférences for a time-dependent and
a conventional subgrid approximation.

Results for moderate choices of the time step size

First, results for simulations dte, = 180 on 323 HEX8 and16® HEX20 meshes are presented
in Figure 5.5. They can be considered part of a refinemenystucombination with the results
from Figure 5.4. The computations are based on a time stepa$iA:™ = 0.7. Numerical
values obtained foRe, are 180.5 (rV) and 179.1 (td) for the HEX8 discretisation and 79.6
(rV) and 180.1 (td) for the HEX20 mesh. ForRe, = 590, results for a computation on a
642 HEX8 mesh using a time stefitt = 0.9 are shown in Figure 5.6. Numerical values for
Re, corresponding to these results a83.1 (td) and590.8 (rV). The last REYNOLDS number
caseRe, = 395, is displayed in Figure 5.7. It provides an additional congmm of residual-
based turbulence models to a dynamica8ORINSKY model as it is described in appendix C.1.
The fluctuations in the dynamicMB\GORINSKY (ds) computation are significantly damped in
comparison to the residual-based cases, yielding infeegults especially for the cross-stream
component. Nevertheless, at the investigated time step’siz = 0.7, all three computations
led to acceptable values Bk, namely394.9 (rV), 393.8 (td) and394.1 (ds).

A variation of the time step size

To investigate the model performance for more extreme gatiig¢he time step size, two com-
putations atAt™ = 3.4 andAt* = 0.05 were performed. The higher value fit™ was taken
close to the maximal time step which still ensures converger the nonlinear solution proced-
ure. The lower value\i™ = 0.05 was selected such that the number of time steps required to
obtain a meaningful statistical result is still affordabldne results in Figure 5.8 show only small
differences. Once more, a clear superiority of the timeeshej@nt approach cannot be observed.

For the conventional model, the mean velocity for the sméilhee step size was found to be
slightly closer to the reference solution than for the latjme step size. This observation is in
contrast to observations made bystiet al [114], who found that the quality of the solution
deteriorates with decreasing time step size. This diso®paan be attributed to the different
choices of the stabilisation parameter. The parameter lisezlis not as accurate for moderate
time step sizes but obviously provides more robustnessreghect to small time steps. See also
the discussion in section 5.5.

5.4.2 Averaged unresolved-scale quantities

In contrast to resolved scales, unresolved-scale questiie affected significantly by a time-
dependent subgrid modelling. This can be seen in Figurevhi&re a distribution of the averaged
subgrid velocity norm obtained for three time step sizegésented. The results belong to the
Re, = 395 (32° HEX8) computations described above.
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5 Time-dependent subgrid-scale modelling of plane chatamitilence

As a consequence of the (At) scaling of the stabilisation parameter in the conventional
model, as it can be observed on the right side of Figure 58 atreraged subgrid velocity
deteriorates with decreasing time step size. In contrhstatveraged subgrid velocity for the
time-dependent model remains in the same order of magnituddl time step sizes.

I‘mSU+ T T T

4r DNS — I

3.5
3
2.5
2
1.5

Figure 5.5: Mean streamwise velocity and velocity fluctoiagi in streamwise (u), wall-normal

(v) and cross-stream (w) direction 823 HEX8 and 163 HEX20 elementsRe, =
180.
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Figure 5.6: Mean streamwise velocity and velocity fluctoiagi in streamwise (u), wall-normal
(v) and cross-stream (w) direction for computationssah HEX8 elementsRe, =
590.

1 10 100 y

Figure 5.7: Mean streamwise velocity and velocity fluctoiagi in streamwise (u), wall-normal
(v) and cross-stream (w) direction for a mesh3af HEX8 elementsRe, = 395.
The green solution (ds) corresponds to a dynanM@&ORINSKY implementation.

A further insight into the time-dependent character of thlegsid velocities can be obtained
from Figure 5.10. This picture shows that all three time stigps investigated, even the largest
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5 Time-dependent subgrid-scale modelling of plane chatamitilence
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Figure 5.8: Mean streamwise velocity and velocity fluctomagi in streamwise, wall-normal and
cross-stream direction for computations3ai HEXS8 .

one, are small enough to resolve the dynamic character aiubgrid velocity. This observation
is in agreement with the fact that the stabilisation par@mesed for the time-dependent model,
which can be thought of as a characteristic time-scale fstibgrid velocities, is in the order
of the time step size applied, see Figure 5.9. Accordinglyassumption of quasi-static subgrid
scales, i.ethe usage of a stabilisation parameter not dependent oimtbestep size in combin-
ation with a conventional residual-based approach, isusiifijed for any of the three time step
sizes. In fact, I4uU et al [114] report convergence problems for quasi-static apjpnakons in
turbulent channel flow at small time steps. A test performdith the present implementation
confirmed this observation.

Keeping in mind the results for the unresolved-scale véakxin the conventional approach, it
is surprising how unaffected the resolved scales are wepeaet to changes in the time step size.
This phenomenon can be, at least partially, understood lmsarnvestigation of the dissipative
behaviour of the modelled turbulent dissipation. A disaussvill follow in subsection 5.6.1.

5.5 Influence of stabilisation parameter and element

length definition
This section contains an investigation of the impact of tabiisation parameter choice on the
results in turbulent channel flow computations. Knowledbeua these facts is important in

order to understand the differences between the resultsrshosection 5.4 and results from
other publications like BzILEVS et al [15] and Hsu et al [114].
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Figure 5.9: Distribution of the norm of the averaged subgehbcity over one half of the channel
in wall units (left). Graphs are shown for time-dependernt eanventional residual-
based subgrid scales. Distribution of the averaged ssafitin parameter (right).
The parameter for time-dependent subgrid approximatisnsdependent of\¢™,
the conventional parameters vary witit*. In order to allow a comparison of time
scales, the time step sizes are included as dashed lines.
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Figure 5.10: Ratio between the averaged norm of the timeatare of the subgrid velocity and
the averaged norm of the residual.
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5 Time-dependent subgrid-scale modelling of plane chatamitilence

All investigations in this section have been carried out ai2aHEX8 mesh atRe, = 395
and a time step size ak¢t™ = 0.7. In Figure 5.11, the distribution of different element l&mg
definitions along the height of the channel is displayed il waits. Huge differences in the
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+
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Figure 5.11: A comparison of various element length debngi The yellow line corresponds to
the distribution of the element height due to the mesh dtmetc(left). The second
graph displays the averaged mean velocity for several es@€ stabilisation para-
meter and element length (right).

impact of the boundary layer mesh stretching on the elenegth can be observed for the
different definitions. The stream length according to emquef3.145) is nearly constant along
the channel height. It corresponds to the element edgelengtreamwise direction. Close to
the channel wall, the definition based on the volume-eqgentadiameter (3.144) is significantly
larger than the definition using the gradient-based elefeagth (3.146) and the definition based
on the metric tensor (3.149).

The impact of this behaviour on the stabilisation paramederbe seen in Figure 5.12. While
metric tensor-based and gradient-based stabilisatianpeters decrease in the viscous sublayer
close to the wall, the parameter based on the volume-e@uzdlameter exhibits a completely
different behaviour. In this region, where the viscousiscpl- h—j of the stabilisation parameter
is dominant, the element length based on the volume-equvaiameter causes an unnatural
peak in the parameter distribution which can still be obséin the subgrid velocity distribution
of Figure 5.9.

The different choices of the element length do not only hawvargact on unresolved scales,
but they also have a significant impact with respect to resblcale quantities. This is ex-
emplified for the mean streamwise velocity on the right ofufgg5.11. The accuracy of the
results shown in BzILEVS et al [15] can only be achieved using the stabilisation parameter
definition 7y 3®2! given in equation (3.161). The gradient-based definition 3! according
to equation (3.158) is already a little less accurate, anefiaition based on volume-equivalent
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5.6 Modelled turbulent dissipation

diameter/stream length, as it was used in the last sec8avdn further off the reference solu-
tion. Unfortunately, the excellent performancerjf*~' seems to be closely related to the choice
of the time step size, seedd et al [114]. It is not possible to recover this accuracy with a time
dependent subgrid approximation us'rrﬁem. The results for the mean streamwise velocity
obtained were found to be arous@ higher than the respective conventional result at the agtim
time step size. Although far/>*2! the choice of an element length based on volume-equivalent
diameter/stream length was shown to be not as accurategntiseo shift the small-time-step
problem already observable fa}>**>! to even smaller values akt*. In addition, the ‘extra’
stabilisation close to the wall, as it is caused by the distion of the element length based on
volume-equivalent diameter/stream length, provided noloeistness for complex flows like the
flow around a square cylinder as it will be discussed in sa@i@.1.

5.6 Modelled turbulent dissipation

Further insight into the residual-based models can be dddby examination of the modelled
turbulent dissipation as it has been done by G [45] for simulations of bypass transition. For
a further spectral analysis of the dissipation of the reslidiased variational multiscale method
the reader is referred to AWG and (BERAI [218]. The element-averaged modelled turbulent
dissipation rate arising from the SUPG, cross amyRoLDS term can be computed by

ESUPG = —m (w; (u - V) u") o
Ecross = —m (Uh; (u-V) uh) Q. . (5.6)
ERey — —m (’I~L; (u-V) Uh)ﬂe

These definitions assume that the equations were statedsecative form. For the convective
form, a different sign would be obtained for the cross sttess due to the partial integration.

+
EMD T T T T T T T
35f V2[A t, vol.-equiv. diameter 1
3 V20At, vol.-equiv. diameter 1
25 V3IA t, metric tensor based—— i
5 | V2[A t, gradient based———- 1
AT=0.7 ——
157 1
1 - .
0.5k .
0 k 1 1 1 1 1 1 1

0 50 100 150 200 250 300 350 y°

Figure 5.12: Distribution of the averaged stabilisationapaeter for several choices of the ele-
ment length.
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5 Time-dependent subgrid-scale modelling of plane chatamitilence
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Figure 5.13: Mean, root mean square, minimum and maximuoegdor the SUPG dissipation
rate with respect to the distance from the wall in wall unBge Figure 5.14 for a
visualisation of(esypg) ON @ more suitable scale.

The terms are not strictly positive. This will be exemplified sypc normalised by wall units

€§UPG: u% " E€SUPG- (5.7)
Mean values averaged over wall parallel layers of elememiiscarresponding minimum and
maximum values in the respective layers are depicted inrEi§ul3. The results belong to
a computation using a time-dependent subgrid approximatio32®> NURBS27 element$ at
Re, = 395, At™ = 0.6. The stabilisation parameter definition used throughoistgbction is
v P4 for the conventional andy*®“! for the time-dependent subgrid case. It can be observed
that e{pg takes on positive and negative values. Fluctuations oeehich are one order of
magnitude larger than the averaged value. Neverthelessyveiraged dissipation rate caused by
the SUPG term was observed to be always positive.

Further quantities can be introduced corresponding togh®aming subgrid terms:

— 1 p h
fLsic = ~onan (%,V-u )Q
Etransient — —VOl(lﬂe) (’1’1, uh>Q (58)
EPSPG = ——Vol(lﬂe) (w; Vph)Qe

LAl computations on thi$23 NURBS27 mesh have been done during my stay at ICES, UT Austin, whegs| w
allowed to implement th&me-dependent subgrid model in the residual-based VMMaeh code available
at that institute. This support and the many helpful sudgestby V.M. CaLo, Y. BAzILEVS and T.J.R.
HuGHEsare gratefully acknowledged.
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5.6 Modelled turbulent dissipation

gLsic corresponding to the least-squares continuity stabidisas strictly dissipating, i.ealways
positive. The term arising from the PSPG stabilisatiggpg Was observed to be small compared
to the other terms, so it will not be investigated in more dlefBhe termegansientiS Obviously
only present for time-dependent subgrid-scale modelhagdis not based on orthogonal subgrid
scales. For implementations using a dynamicASORINSKY model, an additional, strictly
dissipative term occurs:

o — (e () e (), 59

5.6.1 Investigations for a series of time step sizes

An investigation of dissipation rates for conventional &éinte-dependent subgrid models is very
instructive with respect to the small-time-step behaviafuthe methods. In th&e, = 395, 323
NURBS27 element example, as it was already mentioned above, anyebadget for both
approximations was determined for four different time s¢gqes. The resulting distributions
for large time step sizes are shown in Figure 5.14. Figur® 8dntains distributions for two
smaller time step sizes. An immediate observation is thallinases, the RyNOLDS stress
term has no significant contribution to the total dissipatiate. The energy budget for the time-
dependent subgrid approximation is virtually unaffectgdHe time step size. At the largest time
step size, the red line corresponding to the total dissipatite in the time-dependent subgrid
approximation and the blue line corresponding to the tosdigation rate in the conventional
residual-based approximation are very similar. For smaiiee step sizes, the energy budget
in the residual-based case changes dramatically. Withedsitrg time step size, the dissipation
provided by SUPG and cross stress is more and more replacdiddigation associated with the
least-squares continuity stabilisation. The sum of alltigbations in the conventional case,.i.e
the blue line, can be observed to decrease only slightlyati@s mechanism.

Results for mean velocities obtained with the conventiapgroach at small time step sizes
can be found in 13U et al [114]. The mean velocity corresponding to the smallest step size
investigated in Figure 5.15 is slightly off the referencéusion but the difference is still small.
Keeping in mind the deteriorating behaviour of the subgeabbeities for small time step sizes, as
it was exemplified in Figure 5.9, the quality of the resultstil surprisingly high. Using Figure
5.14 and Figure 5.15, this can at least be partially expthimethe compensating dissipation
mechanism introduced by the least-squares incompragsidbilisation.

In accordance with the invariant energy budget for the tdependent subgrid model, no
change in the mean flow quantities was observed during thensasn flow-through cycles in-
vestigated.

5.6.2 Influence of isogeometric representation on subgrid
dissipation

This subsection contains a comparison of the modelled kembualissipation for different dis-
cretisations and subgrid models. All residual-based tianal multiscale computations in this
subsection correspond e, = 180, the applied time step size wasi™ = 0.7. The results
are summarised in Figure 5.16. Fair®* HEX8 elements, the total modelled dissipation in the
residual-based variational multiscale modelling usingreetdependent subgrid approximation
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Figure 5.14: Energy budget, i.eselected dissipation rates, for residual-based variation
multiscale modelling at large time step sizes. conventiamadelling on the left,
time-dependent subgrid modelling on the right.

is only slightly different from the dissipation associateih a stabilised finite element method
without cross and RYNOLDS stress terms. It is a little higher for simulations that gpgldy-
namic SMAGORINSKY model but does not show a distinct peak as it is present imddt®NS
solutions. The filtered DNS shown in Figure 5.16 is taken feopaper by ARTEL et al [111].

It belongs to a computation &, = 211 and the filtering corresponds to a resolutiorsdfx 32
grid points. The purpose of this curve in Figure 5.16 is ngbrtovide an exact reference solu-
tion but rather to give a rough idea of what a dissipation spet should look like. When the
grid is refined ta643 trilinear elements, the amount of numerical dissipaticsoammted with the
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5.6 Modelled turbulent dissipation

0.05 0.05
[t
0.04 - 0.04 td,transienl’(:|
.04+ + .04 r +
Brv,supdd o | Bsupdl
w — +
0.03 ; rV,cros@ 0.03 ? td,crosé:| T
.03+ + .03+ +
+Jl rV,ReyD -7 +a td,Re;}j_ -7
+ +
9| EysicO g, s1cH
0.02 - :VD 8 0.02 t+dD

- 0.01 H/

0.01 _
0 TN '_'_'_'-I_---;--_-;--_I--;-_,...-...I._........ 4 0 - - = T e
0 100 200 300 y' 0 100 200 300 y°
0.05 1 0.05 1
[ =t
0.04 r 0.04 td,transien@
.04 | + 1 .04 - + 7
w0 | Brv,supdl 10| Bgsupdd
N~ + ™ +
0.03 3 By crosdd ~ ~ 7 0.03 g e L
03 ; + T 031 + 7
j.’ By Rey ™ ~ - o By rey !~ ~ -
+— + +
3| Byisicl—— | Bgredd——
0.02 + : 0.02 B0 -
0.01 . 0.0 /" ]

Figure 5.15: Energy budget for residual-based variationaltiscale modelling at small time
step sizes. Conventional modelling on the left, time-delpan subgrid modelling
on the right.

modelled terms is decreasing. The picture is differentéf3?* HEX8 solutions are compared
to 252 NURBS27 solutions. From the accuracy point of view, the resolvealescesults associ-
ated with this discretisation are comparable toGli€ HEX8 discretisation, see Figure 5.17 and
Figure 5.4. Nevertheless, the amount of modelled dissipassociated with thHURBS27
discretisation is much more pronounced. Thus it can be coed that isogeometric finite ele-
ments do not only yield very accurate solutions for the nesdiscale quantities but also high
quality representations of the behaviour of the unresokaales. This makes them a valuable
tool for turbulent flow computations.
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Figure 5.16: Total dissipation associated with model aaflibsation terms for residual-based
time-dependent subgrid-scale modelling of turbulencéd? ®SUPG/LSIC stabil-
ised finite elements with and without an additional dynamia8ORINSKY model.
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Figure 5.17: Results for mean streamwise velocity and wgiflactuations in streamwise, wall-
normal and cross-stream direction belonging #haNURBS27 element discret-
isation,Re, = 180.
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6 Further examples of turbulent flow
computations

Two further examples of residual-based variational maitis modelling of turbulence using
iIsogeometric finite elements will be studied in this chaptéhe first one in section 6.1 is a
turbulent TAYLOR-COUETTE flow in a circular cylinder, highlighting the ability of thelWRBS-
based approach to exactly represent such geometries. Thadsexample in section 6.2 is a
physically more complex flow around a square cylinder. Amotiger things, it will be used to
evaluate the performance of weakRDCHLET boundary conditions with respect to their impact
on lift and drag.

6.1 Exact representation of circular geometries —
TAYLOR-COUETTE flow

All computations in this section are based on the consesv&birm of the governing equations.
A time-dependent subgrid-scale representation was appbkég a parametezrh‘f@“ as itis
defined in equation (3.163). For the relatively large timepstizes chosen, aBWTON-type
linearisation scheme with full linearisation of cross- &ElvyNOLDS stress terms proved to be a
very efficient choice.

The computational setup is taken from a paper bynB [66]. It consists of a fixed outer
cylinder of radiusk, which contains an inner cylinder of radidg. The inner cylinder rotates
about its axis at a constant angular velocity, see Figure 6.1. The space between the inner and
outer cylinder is filled with a fluid of kinematic viscosityand density = 1. Based on the gap
widthd = R, — R; and the magnitud&, = w - R; of the velocity at the inner surface, the flow
is characterised by alR’NOLDS humber

Re = Yod . (6.1)
1%
Boundary conditions applied to the inner and outer cylicalrsurfaces are of no-slipIRICHLET
type. In axis direction, periodic boundary conditions aselaned.

Spatial discretisation is performed using a mesh of quadNiRBS27 elements. For this
choice of elements, the smooth geometry of the boundariespresented exactly. In order to
obtain a better approximation of the boundary layers neacyfindrical surfaces, a hyperbolic
mesh stretching is applied to the knot vector in radial dicgc In all computations of the current
section, the mesh stretching function is based on a conStgat, = 2.3.

Since the boundary conditions have the same rotational ®tries as the geometry, they can
be prescribed analytically in this special case. The zemIdHLET boundary condition for
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6 Further examples of turbulent flow computations

resting ‘no-slip” outer wall
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Figure 6.1: Setup for aAvLOR-COUETTE flow around a rotating cylinder. The black triangle
is used to visualise the rotation of the cylinder.

the outer boundary is imposed simply by setting every comomnt value associated with the
outer surface to zero. In order to impose a constant targjergiocity on the inner surface, a
DIRICHLET value for each control pointassociated with the inner surface is prescribed as

h
—I, - €y

(up), =w- zh e, . (6.2)

Although the control point locations! are mostly not situated on the inner surface and hence
|(up),|| # wR; in general, the desired constant tangential velocity isioled on the cylinder
surface due to the interpolation using NURBS basis funstiddl computations are started from
an initial flow field

w@=| o (f-1-U=1-1) | (6.3)

which is set in a least-squares sense according to subs8&cioUnresolved-scale quantities are
initialised to zero, as usual.

Due to the choice of boundary conditions, therTOR-COUETTE problem investigated in this
section does not have an outflow boundary. This means thatéissure level is defined only up
to a constant and has to be set either bylrIPHLET condition in one point or by a projection
as it is described in appendix E.
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6.1 TAYLOR-COUETTE flow

6.1.1 Computations for selected R EYNOLDS numbers

For Re = 8000, the flow is reported by DNG [66] to be fully turbulent. In an experimental
setup, such a RyNoLDS number would be obtained for water, a gap width8afcm and an
angular velocity of ten rounds per minute. A computation wagormed on a mesh @0 x

50 x 50 elements inB-, r- an z-direction, respectively. Together with the very recergules

by BAzILEVS and AKKERMAN [12], this is one of the first LES computations reported for
this test case. As usual, all quantities that will be showthigs subsection have been obtained
after a statistically steady state has been reached. Theutation is based on a time step
size of At™ = 2.5. The value of the friction velocity required for the convers of the time
step size into wall units was determined numerically to agpnately 0.055. Based on this
value, the element sizes of elements next to the surfaceeahtter cylinder were found to be
approximatelyAr* = 1 in radial direction and\©* = Az* = 44 in azimuthal and periodic
direction, respectively. A first visualisation of the flomche found in Figure 6.2. It shows the
distribution of the absolute value of the current veloci#ar this picture, the solution on each
NURBS27 element was interpolated to eight hexahedral visualisagih-elements. This step
iS necessary to use a standard post-processing softwaoeniiication with isogeometric finite
elements.

In addition to this qualitative result, profiles of the meamauthal velocity and corresponding
fluctuations are compared to DNS results b@Nds [66] in Figure 6.3. These averages were
taken in space and time. The spatial averaging takes plageandz-direction. Time averaging
was performed over a period of time corresponding to tertimia of the inner cylinder. The
solution obtained is in excellent agreement with the refeeedata, only the fluctuations close to
the inner wall are predicted slightly higher.

The situation is different foRe = 1000, a REYNOLDS number for which NG [66] predicts
a laminar flow behaviour. The computation for thisNOLDS number was done on the same

—_
o

h||

S
o

Figure 6.2: Absolute value of instantaneous velocity foroavfat Re = 8000. Several cuts are
used to show the flow inside the fluid domain. The grid correggao a mesh of
hexahedral cells which are used to visualise the NURBS isolut
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6 Further examples of turbulent flow computations
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Figure 6.3: Mean azimuthal velocity and fluctuationsRat = 8000 (right). Corresponding
zr-velocities in a radial-axial plane (left). The colour legeis the same as in Fig-
ure 6.2.

mesh as before. The whole setting except for the viscosianmes unmodified with respect to
the first case. The obtained value for the friction velocgynow(0.089, the resulting time step
in wall units is0.8. Results obtained for the mean azimuthal velocity and spoading fluc-
tuations are shown in Figure 6.4. With respect to the DNS,dhtasolution obtained shows
much larger differences than in the higleRvOLDS number case. As it can be seen on the left
of Figure 6.4, these differences may be attributed in pattiédfact that the residual-based vari-
ational multiscale computation does not predict vorticegclv have as well-defined boundaries
as the ones shown indNG [66]. Regular flow structures are well observable, but threyrent as
smooth as the ones in the publication mentioned above. Ansgumblem can be related to the
extension of the computational domainzsdirection. As can be seen on the left of Figure 6.4
and in the plot of the pressure isosurface in Figure 6.5, the 8t Re = 1000 contains some
structures that can not be considered small with respedteg@xtension of the computational
domain in axis direction. Thus, the length of the domain carexpected to have some influ-
ence on the results obtained. Note that for the highey¥oLDs number case, flow structures
observable in Figure 6.3 and Figure 6.5 are much smalleicatidg that size effects should be
less problematic in that case.
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6.1 TAYLOR-COUETTE flow
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Figure 6.4: Mean azimuthal velocity and fluctuationsRat = 1000 (right). Corresponding
zr-velocities in a radial-axial plane (left). The colour legeis the same as in Fig-
ure 6.2.

Figure 6.5: Pressure isosurfages- —0.025 for Re = 8000 (left) andRe = 1000 (right).
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6 Further examples of turbulent flow computations

6.1.2 Advantages of a K RYLOV-projection-based solution method

In the current subsection, the advantages of the projetiased method to set the pressure level
will be highlighted for a computation &e = 8000 on a coarse test mesh i x 8 x 12 elements
in azimuthal @), radial ¢-) and periodic £) direction, respectively.

For that purpose, the first three time steps of four companatare investigated. The com-
putations differ in the choice of the preconditioner andway of imposing the pressure level.
The first preconditioner investigated is of algebraic nguitd type (ML), the second is a classical
incomplete factorisationl(U). For each choice of the preconditioner, the point-colirsdc D1 -
RICHLET version was compared to a solution of an unconstrained rslybte projection. For
all computations, a relative tolerancelaf—* with respect to the initial residual was required in
every linear solver call.

Figure 6.6 contains a comparison of the four variants wipeet to the performance of the
iterative GMRES solver used to solve the linear system @.&#sing in each nonlinear itera-
tion step. For all four variants, three or two nonlinearatéwn steps respectively were required

mmmmm projected projected
m point JML m— point ILU
. 40
c
S
g2 35
g§c
= S o 30
II'JI:J g 2584 000K
=85 20 84 8 B
Os8 010 40 1
o> [0
88 wi-obdlml - tHLl B}
EQ s iial bl )
c

timestep 1 timestep 2 timestep 3

Figure 6.6: Performance of the linear solver for two choioEthe preconditioner in the uncon-
strained (projected) and constrained setting, respdgtive

to reach the convergence criterion of the nonlinear iterain the first two time steps. In time
step three, only the combination of point-constrainediDHLET formulation andLU precondi-
tioner required a third nonlinear iteration step to reaahdbnvergence criterion. This behaviour
can be attributed to an inferior conditioning of the arisBygtem matrix, see the discussion in
the next paragraph. For tHeU preconditioner, the average number of iterations requiced
solve the linear system is decreasedby: for the choice of a projection-based definition of the
pressure level. For thielL preconditioner, the improvement By % is slightly smaller but still
significant.
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6.2 Turbulent flow around a square-section cylinder
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Figure 6.7: Estimated condition numbers for the precoadéd system matrix foxL andILU
preconditioners in the unconstrained (projected) and tcaimed setting, respect-
ively.

An overview over estimated condition numbers of the predamed matrices in the four
cases can be found in Figure 6.7. For both choices of the pdgttoner, the estimated condition
number was reduced by one order of magnitude in the case gbth&on of the unconstrained
system on a factor space.

6.2 Turbulent flow around a square-section cylinder

The flow around a square cylinder was selected as a furthiecdss for the following reasons:
It is characterised by relatively complex flow physics, fostance it contains separation. Ad-
ditionally a sufficient amount of experimental data as wslh@any LES computations by other
groups are available for comparison. Examples ap®Ret al [181], FARHAT and KOOBUS
[146] and HANKAR et al [192].

The test case will be used for a further careful evaluatiaimefperformance of residual-based
variational multiscale modelling using time-dependentval as conventional subgrid closures.
The stabilisation parameters used in the computationggéff%m from equation (3.159), and
WA from equation (3.158) ory?~~! from equation (3.160) respectively. All computations
are based on the convective form of the resolved-scale iequ#tL57). Three meshes have been
investigated, as well as the impact of a weak imposition e§liw boundary conditions on the
cylinder’s surface with special respect to the drag value.
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6 Further examples of turbulent flow computations

6.2.1 Setup
The geometry of the flow is given in Figure 6.8. All computasdave been done using a density
p = 1.0, a kinematic viscosity = m and an inlet velocity of nornfluinet| = 1. Based on

the edge length of the cylindér= 1, the resulting RYNOLDS number is given as

_ - ||Uin|et||

Re = 22000 . (6.4)
In an experimental setup using water, this corresponds towadfound a square cross-section
cylinder of edge length.2 cm with an inlet velocity of .

Spatial discretisation was performed ussgp00, 90000 and364500 quadratic NURBS ele-
ments. For this purpose, the computational domain wagtioaeid into five patcheS— which
are also shown in Figure 6.8. The simple geometry of eachhpats defined using linear
NURBS functions. An order elevation and a successive kre#riion yielded the three meshes
described in Table 6.1 and Table 6.2. In patches], a hyperbolic mesh stretching based
on a constanCyyeich = 2.5 was applied to the knot vector associated with the surfacezal
direction. According to the estimation ofdOBUS and FARHAT [146], who state tha0.05/
corresponds to approximately—80 wall units, the closest control point next to the cylinder’s
surface in the meshes from Table 6.1 is located in a distahé& 1.4 or 0.4 wall units.

In z-direction, periodic boundary conditions were appliedardang to subsection 3.7.5. The
top and bottom surface of the computational domain were eéfs slip surfaces, i.a DIRICH-
LET value is only set in thg-direction of the velocity in the associated control poifitke inlet
profile was set as a constantADCHLET condition as shown in Figure 6.8. For the finer meshes,
a stabilised outflow boundary condition according to sutise3.7.4 was required on the sur-
face atr = 24.0. For the coarsest mesh, a do-nothing boundary conditionswiigient. Due

Y
vy , 2,71
g 7 @ A
0.5= / =) @ ,,,,,,,,,,,,,,,,,,,,,, x

. J /i \

1

UWinlet = 0 |
0 4.5 4.5 15

0.5

Figure 6.8: Flow geometry and patchHés{] forming the discretisation.
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6.2 Turbulent flow around a square-section cylinder

patches]—]
number of elements in direction
case
surface-norma| surface-paralle[ z-parallel
33000 NURBS27 20 20 15
90000 NURBS27 30 30 20
364500 NURBS27 60 45 30

Table 6.1: Number of elements in patctieés(].

to the small value of the viscosity, this do-nothing coratitis very similar to a zero boundary
condition for the pressure. Figure 6.9 shows the impact@biiitflow boundary condition on the
pressure. In the wake of the cylinder, the pressure isosesfare convected downstream in two
separate lines. This structure disintegrates completalyeavery end of the computational do-
main. In the case of a do-nothing boundary condition, thegaree can be observed to drop from
the value in the domain to zero on the last element. The regunormous pressure gradient
can be related to the stability problems that enforce thgeauisd a stabilised outflow condition
at this point. Special attention has to be given to the bogndandition on the cylinder’s sur-
face. Results will be provided for a strong imposition of timundary condition in terms of a
zero DRICHLET condition. For the cases000 NURBS27 and90000 NURBS27, additional
results will be shown corresponding to a weak impositionhef boundary condition according
to section 4.5, see Figure 6.10 for an illustration. In them®putations, a constant value for the
parameterz according to equation (4.82) was chosen. Time step sizetogatpfor the differ-
ent subgrid approximations and boundary conditions arensamsed in Table 6.3. In general,
the time-dependent subgrid approximation required a méthe step than the conventional
subgrid approximation. This behaviour can be related taathgitional nonlinearity introduced
by the time-dependent subgrid approximation without aythreal subgrid scales as it was dis-
cussed in subsection 4.4.4. The time step size had to beaéducther if weak DRICHLET
boundary conditions were applied. The linearisation sgyatis usually NwTON-type. Only
for the weak boundary condition case, where the time stem&lsnd the convective boundary
term in the weak condition has to be treated fixed-point-dikgway, a reduced linearisation was
found to be more efficient.

patch]
number of elements in direction
case
z-parallel | y-parallel | z-parallel
33000 NURBS27 30 20 15
90000 NURBS27 30 30 20
364500 NURBS27 30 45 30

Table 6.2: Number of elements in patich
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6 Further examples of turbulent flow computations

Computations were started from a zero initial flow field. Inm@itial phase, they were run until
the vortex street was fully developed. All results shownhia tollowing sections were obtained
over a sampling period corresponding to approximately tatex sheddings after that point.

Figure 6.9: Pressure isosurfages- 0.005 andp = —0.005 for four time steps (coloured by the
norm of the velocity). The pictures once more highlight theee-dimensionality of
the turbulent flow in the cylinder wake34500 NURBS27 case)
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6.2 Turbulent flow around a square-section cylinder

Figure 6.10: A look through the square cylinder's hole in twmputational domain.

The

nonzero velocity distribution on the cylinder’'s surfacs,itaoccurs for a weak im-
position of the boundary conditions, is clearly observgbl®00 NURBS27 case).

subgrid boundary time step linearisafion
approximation condition size strategy
rv strong 0.05 (N)
td strong 0.025 (N)
rv weak 0.0125 (N)*

Table 6.3: Time step sizes for different subgrid approxiora and boundary conditions on the
cylinder’s surface. In the case of a strongRICTHLET boundary condition, a Ew-
TON-type linearisation scheme was found to be appropriatey ®nihe weak case,

REYNOLDS and cross stress terms were not included in the linearis@Ny .
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6 Further examples of turbulent flow computations

6.2.2 Mean streamwise velocity distributions

The first results shown are mean streamwise velocity digiohs computed in the planes indic-
ated by the dashed lines in Figure 6.8. The averages are ¢ecthputime and space with the
spatial averaging done along theaxis. The results will be visualised in graphs for the mean
velocity distribution on the centre plane of the cylindesrad thez-axis and a close-up of the
averaged streamwise velocity near the body along/thgis atz = 5.

In Figure 6.11, the results on the finest mesh are comparedt#otdken from the workshop
paper by RDI et al [181]. It shows that the residual-based modelling perfatraideast as well
as the approaches applied in that reference. The lengtle oétirculation zone is predicted quite
accurately, the near-wall behaviour is satisfactory. Thig enajor point of criticism is a severe
overprediction of the mean velocity further downstreamh# tylinder, as it was also observed
for other approaches, for instance iro&BUS and FARHAT [146]. It cannot be obviated that
this shortcoming is related to the finite size of the compaiteti domain, i.eto an insufficient
extension of the domain in- andy-direction.

Furthermore, Figure 6.12 and Figure 6.13 provide a comparis different subgrid approx-
imations and boundary conditions for the two coarser meshiesilar to the observations in the
channel flow setting, the mean streamwise velocity distidouin the centre plane is predicted
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Figure 6.11: Mean streamwise velocity distributions fonwentional residual-based modelling
(rV). On top, distributions on the centre plane, on the buott close-up near the
upper surface of the cylinder at= 5. Experiment and workshop data in this and
the following figures is taken from the paper byoR et al [181], see also the
references therein.

144



6.2 Turbulent flow around a square-section cylinder

very similar for both subgrid approximations. A weak imgasi of the boundary condition

clearly improves the results in the near-wake of the cylindiée averaged streamwise velocity
distribution near the upper surface of the cylinder is thé/ gulace where a small difference
between the conventional and the time-dependent subgpibgmation can be observed. In
both computations, the time-dependent version exhibitkavar level of reverse flow next to

the surface.

rV, weak DBC td ——
experiment o v ——
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N N
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Figure 6.12: Mean streamwise velocity distributions on ¢katre plane for conventional (rV)
and time-dependent subgrid-scale (td) modelling. The twoputations based on
strong boundary conditions are visualised together witblat®n using weak D
RICHLET boundary conditions.

6.2.3 Mean pressure on the cylinder’s surface

In this section, the distribution of the time and space ayedadimensionless pressure coeffi-
cient(cp),

D — Dinlet

§ H'u'inletH2 ’

(6.5)

Cp =
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6 Further examples of turbulent flow computations
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Figure 6.13: Mean streamwise velocity distributions néer tipper surface of the cylinder at
x = 5 for conventional (rV) and time-dependent subgrid-scalgftodelling. The
two computations based on strong boundary conditions atelised together with
a solution using weak [RICHLET boundary conditions.

along the surface of the cylinder is investigated. Givenhhge differences between different
experiments and computations as they are shownaniRet al [181], the results obtained in
Figure 6.14 are quite satisfactory. A study of the resultsctmnventional and time-dependent
subgrid modelling in Figure 6.15 shows no differences ompilessure, a picture we are already
used to from the mean velocities. In comparison to compariatbased on a strong imposition
of the no-slip condition, the computations enforcing a wikalindary condition exhibit a lower
pressure drop along the cylinder.

6.2.4 Lift and drag

In fluid-structure interaction, forces acting on structume flows are of special interest. For
this reason, a closer investigation of the lift and drag ficiehts obtained by a residual-based
modelling of the flow under investigation can be very instives Using the forceF, on the
cylinder inz-direction and the reference ardacorresponding to the area of the cylinder’s front
face, the drag coefficient is defined as

F,
cp=—"5—.
%P HuinletHzf4

(6.6)

146



6.2 Turbulent flow around a square-section cylinder
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Figure 6.14: Distribution of mean pressure coefficient gltime cylinder’s surface. Results of
conventional residual-based computations are comparexgiperiments by BAR-
MAN and (BASAJU [23] (experiment 1) and EE [153] (experiment 2) as they are
included in the collection of LES results byoR! et al [181] (workshop).

Its distribution over time for the computation on the coatsaesh is displayed in Figure 6.16.
The results for the other meshes exhibit the same irreguflarttuating behaviour. The amp-
litude of the fluctuation as well as the mean value is deangasiightly with an increase in
the number of elements. More information on the mean draffic@mt can be obtained from
Figure 6.17. Time-dependent and conventional subgrid msadeld nearly identical values for
the drag coefficient. A significant improvement is obtaingdibing weak boundary conditions,
an observation which is in agreement with the reduced presiop observed before. On the
coarser meshes, the drag coefficient is overpredictedelgv€nly the results on the finest mesh
or on the medium mesh with weak boundary conditions are dlm$iee region that is reported
from experiments.
Finally, the distribution of the lift coefficient

Cr, = Fy (67)

%PHUinletH?A

is shown in Figure 6.18. In equation (6.7), denotes the vertical force on the cylinder. For a
fixed mesh, time-dependent and conventional subgrid madedid not show major differences
with respect to the frequency of the vortex shedding. Theltésr the weak boundary condition
deviates slightly, but no clear tendency towards a slowéaster vortex shedding is observable.

To sum up, the weak imposition of the boundary condition iovpd the quality of the results
significantly. Nevertheless, this comes along with a desgddime step size and a worsened
nonlinear iteration behaviour, i.e the setting described this improvement requires adukiio
computational expenses.
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6 Further examples of turbulent flow computations
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Figure 6.15: Distribution of mean pressure coefficient gloglinder surface, for conventional
(rV) and time-dependent subgrid-scale (td) modelling. ©more, the two compu-
tations based on strong boundary conditions are visualtggether with a solution
using weak DRICHLET boundary conditions.
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6.2 Turbulent flow around a square-section cylinder
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Figure 6.16: Fluctuations of the drag coefficient for therseat discretisation investigated.
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Figure 6.17: Time averaged values for the drag coefficiehie dotted lines indicate the range
of experimental results referenced by R et al [181] and KooBuUS and FAR-
HAT [146].
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6 Further examples of turbulent flow computations
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Figure 6.18: Oscillations in the lift coefficient for all cqutations investigated.
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/ An isogeometric residual-based
variational multiscale method for
modelling turbulence In
fluid-structure interaction

In addition to the numerical examples of chapters 5 and 6;lmvere mostly intended to validate
the performance and to gain insight into the nature of thielved-based variational multiscale
approach in the context of pure fluid problems, the curremtptér will extend the range of
use to applications in fluid-structure interaction. As athg anticipated in section 2.1 by the
statement of the governing equations of the fluid problenhwéspect to an ALE observer,
the fluid-structure interaction approach used in this th&gll be based on a deforming-grid
method. Fixed-grid approaches, as they are described $tanne in VKLL et al [217], are
not considered here. Additional solid and mesh subproblemgsired for the deforming-grid
method will be described in section 7.1. The coupling of thigggoblems as well as the coupled
solution process will be reviewed very briefly in section.7I& order to validate the residual-
based approach on a moving mesh, a simple test on a turbdlannel flow with prescribed
deformation will be shown in section 7.3. Finally, in seatib.4, an example of a fluid-structure
interaction simulation involving turbulent flow will be gin.

7.1 Additional subproblems in fluid-structure
interaction

In addition to the flow problem already discussed in detaflylly coupled fluid-structure sys-
tem consists of an additional structural and mesh motiopmldéem. Solid and mesh motion
subproblems are not in the main focus of this thesis, so thikp&dealt with only very briefly
in the current section.

7.1.1 Structure

The governing equations for the structural subproblem camlitained by the same laws of
continuum mechanics as the equations for the fluid problens dpecial about the structural
equations that they are usually stated usingAsRANGEan observer, i.ethe reference do-

main is chosen to equal the initial domain. This choice isweent to using a mesh mapping
identical to the particle mapping = . With this choice, the differential version of the linear
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7 Isogeometric residual-based VMM for modelling turbuleme FSI

momentum conservation equation in spatial representgfiet0) can be stated for thea-
RANGEan observer:

pela (@.1) % (@‘1 (@.1).1) = psly (.0)- (B],), (@.0) +

+Z 8% x,t) for k=123 (7.1)

Here, ps|,, is the spatial representation of the current structurasigrb| , a body force per unit
mass in spatial representatian|, the CAUCHY stress tensor in spatial representation aig
the particle displacements in material representationdhiced in equation (2.10). For structural
problems, the material law providing a connection betwegflorenation and occurring stresses
is usually not stated for theADCHY stress tensor directly but rather for a pull-backedf , the
so-called secondIBLA-KIRCHHOFF stress tensor

Sl (x,1) = [aet (52 ) (.0 (5 %, t>)_1 ol o0 (F%x t>)_T.

(7.2)

For simplicity, a INT-VENANT-KIRCHHOFF model

which is valid in the small strain regime is assumed. It staténear stress-strain relation based
on the GREEN-LAGRANGE strain tensor

Bl (X,t) = ((5; (X, t)) (g; (X, t))—l) (7.4)

and two model parameters, thel1 £ constants\s andu.s. These parameters are often replaced
by YOUNG's modulusEs and ROISSONS ratio vs,

HUs (3)\3 + 2/15) )\S
FEs = and Vg = ———8M8M .
S As + Us 572 (As+ ps)

To sum up, the conservation equation of linear momentum tern@representation using the
second FOLA-KIRCHHOFF stress tensor is given by

0 (dlx);,
ps|x —gm (X 1) = ps’| - (blx), (X 1)+

+28X ( 88% (X,t)-(Slj\X) (X,t)) for k=1,2,3. (7.6)

(7.5)

The densityps’| . in this equation is the material density. From equation)(7aveak form
can be obtained which is discretised in time and space iroggpab what was described in
chapter 3 for the fluid subproblem. For time discretisatiargeneralised-alpha approach ac-
cording to GHUNG and HULBERT [49] is a suitable choice. Spatial discretisation can besdon
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7.2 Fluid-structure interaction: coupled problem and solumethods

based on a GLERKIN approach. Thus, for structures which are not incompresstbke spa-
tial discretisation process is simplified significantly qmaned to the process for incompressible
fluids, which requires extra effort for convection induceudanf-sup-based instabilities as they
were discussed in subsection 3.4.4. Nevertheless, due twothlinearity contained in the strain
tensor for large deformations, the solution process forihienown displacements still requires
a similar predictor-corrector iteration. For more detatlse reader is referred to the textbooks
by BONET and WooD [36], HUGHES[116] or ZIENKIEWICZ and TAYLOR [226].

7.1.2 Mesh motion

In fluid-structure interaction, the computational fluid dam has to deform according to the
structural deformation. Strictly speaking, the struckuleformation governs only the motion
of the boundaries of the fluid domain. Its interior has to béodeed consistently with the
boundaries, but otherwise it can be updated ‘arbitrariNevertheless, approaches ensuring a
conservation of the element quality in the interior of themdon will be preferred in order to
maintain the solution’s accuracy. Thus, desired propgiiea mesh motion algorithm in the
current setting are to keep element distortion as small asiple and to preserve boundary layer
type meshes as they are common in turbulent flow applications

The most intuitive choices to define the mesh motion are psstrdcture approaches as they
are discussed in Y.L [215]. In these approaches, the computational fluid donsineiated
as a solid which is deformed according to the prescribedrdeftion of the boundaries. Other
options are structure analogies using spring models agideddn FARHAT et al [73, 72] or
LAPLACE smoothers as they can be found io#NER and YANG [157]. Furthermore, an exten-
sion to a hybrid fixed-grid/ALE method is also possible. Tépproach, which was proposed by
GERSTENBERGERand WALL [92], is also promising but not considered here.

7.2 Fluid-structure interaction: coupled problem and
solution methods

In fluid-structure interaction, spatially and temporaligatetised subproblems amount to a coup-
led nonlinear problem. The coupling of these subproblemss@g, i.ein general it is required
to equilibrate the interactions between fluid and strucairéne coupling interface in each time
step. Aloose coupling which abandons the exact equilibanthrather treats the coupling expli-
cit in time is problematic for incompressible flow in combiioa with light-weighted structures.
This is due to the inherent instability related to the anfi@dded mass effect, se®RSTER
et al [80] for a discussion. Thus, although it would be feasibleifigtance in suitable applica-
tions in aeroelasticity, the weak coupling will not be calesed here in more detail. Approaches
which are more appropriate for the solution of the fluid-stase interaction problem under con-
sideration will be listed below. For a more detailed ovenwend further references, the reader
is referred to KITTLER [148].

The first category are nonlinearly coupled|RICHLET-NEUMANN partitioned approaches
which are reviewed for instance by(KTLER and WALL [150]. In such methods, the fluid-
structure interaction problem is split into two separatbmoblems. The coupling takes place
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7 Isogeometric residual-based VMM for modelling turbuleme FSI

based on an exchange of boundary data on the common bourfdang @nd structure subdo-
main. The coupling conditions are updated in a staggeretive manner involving nonlinear
solutions on both subdomains in each step. A dynamicallptedarelaxation procedure is usu-
ally employed in order to enhance robustness and rate okcgemce. These approaches provide
full flexibility with respect to the choice of the individufld solvers, but include an often costly
iteration over the fields.

The second category are monolithic approaches which theahonlinearity of the whole
coupled problem by a singleBNvTON iteration. Such an approach in the context of isogeometric
analysis is presented inABILEVS et al [17]. The solution of the linear subproblems in this
iteration can be done either by a partitioned linear apgraacolving a sequential solution of
the linear subproblems or by a one-level solution of thedimgystem using a preconditioned
KRYLOV method.

From this list of available coupling algorithms, the motialt NEwWTON-KRYLOV method
turned out to be the most efficient solution approach for fktrdicture interaction problems in-
volving turbulent incompressible flows and thus was setbete the most suitable method. In
order to provide some more information on the chosen salyiiocess, the degrees of freedom
for each subproblem can be decomposed into interface degfdeesedom associated with an
indexI” and remaining interior degrees of freedom denoted by arxihidEor simplicity, match-
ing fluid and structure meshes are assumed at the interfameth& monolithic approach, the
kinematic coupling of fluid and structural degrees of fremdat the interface is given by

h,n+1 h,n h,n+1 h,n

= ) 7.7
At 2 (7.7)

Furthermore, the kinematic coupling for the mesh displasetat the interface is given by
d?’n+1 — dGIh,n-i-l ) (78)

In addition to the kinematic coupling, a kinetic couplingla¢ interface has to hold, yielding a
combined nonlinear equation system for all spatially amejgerally discretised subproblems:

n n n h,n
RFS (dh, 1 ghntl +1’dG +1> —0 (7.9)
For matching grids, the kinematic coupling conditions a thterface reduce the actual un-

knowns in equation (7.9) for instance to the structural ldispmentsd™"*!, the interior fluid

velocitieSu?’”“, the fluid pressurg”"*+! and the mesh displacements in the interior of the fluid

domaindg ;""*!. The resulting linearised system in eacBEWTON step is then solved for the
increments of these unknowns using a block-preconditidd®d._ov procedure as described in
KUTTLER [148], see also the references therein.

7.3 Preliminary study of residual-based variational
multiscale modelling of turbulence on a deforming
channel

For a three-scale variational multiscale modelJRSEKHARAN and FARHAT [177] already
reported successful applications to computations of fertitflow on moving meshes. In order
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7.3 Preliminary study of residual-based VMM on a deformihgmnel

Figure 7.1: Test case for turbulent channel flow on a defogngind.

to estimate the potential of residual-based variationdtisoale modelling of turbulence for such
applications, a preliminary study of the performance o$ tfwo-level approach will be done in
this section. The study is based on a simulation of turbuteannel flow aRe, = 395 on a
deformable mesh. The initial mesh and all material pararaete are taken from th823 HEX8
case from section 5.1. The applied mesh motion, defined as

P(Et)=€6+12-sin(t)- (1— (£ ¢)°) ey, (7.10)

leads to deformations as depicted in Figure 7.1. For sintplihis mesh motion is chosen such
that it preserves the distance between nodes and wallsallbngs a simple spatial averaging in
wall-parallel planes. The maximum of the grid velocity inéd by® is approximately equal to
the mean streamwise velocity. In Figure 7.2, results froendbmputation on a mesh deforming
according to equation (7.10) are compared to results on d fixesh taken from BzILEVS

et al [15]. For ease of comparison, the second order statistitheALE computations are

+
15 'msw ms o
1 R
05 rms V' 1
0 L M | L M | L L + O 1 1 1 +
1 10 100 y 0 100 200 300 y

Figure 7.2: Results for turbulent channel flow computatiams 323 trilinear elements at
Re, = 395. The solution on the deforming domain (ALE) is in excellegtgement
with the solution on the ELERian grid (fixed) taken from BzILEVS et al [15].
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7 Isogeometric residual-based VMM for modelling turbuleme FSI

based on pointwise spatial averaging, see section 5.2 fog netails on the averaging process.
Furthermore, the stabilisation parameter definitions asedhe ones from equations (3.161) and
(3.162). The results for the moving and fixed grid turned oubé almost identical. For future
work, it will be very interesting to see how the results changth respect to a mesh motion
which activates the divergence of grid velocity term fronuation (4.61).

7.4 Fluid-structure interaction for a turbulent pipe flow
with a flexible wall

The example that will be presented in this section is intdndelemonstrate the applicability of
residual-based variational multiscale modelling to flatdicture interaction problems involving
turbulent flows. The results of this section will combinelalilding blocks provided and valid-
ated in the previous chapters in the framework of a mondalithiid-structure interaction (FSI)
computation.

7.4.1 Computational setup
The geometry of the investigated circular pipe is definedigufes 7.3 and 7.4. Its lengthis)

2.0

Figure 7.3: Pipe geometry and®CHLET boundary conditions. Another cut orthogonal to the
z-axis is displayed in Figure 7.4.

and it has a diameter af0. The pipe wall of thicknes8.1 consists of an elastic material. It is
characterised by a material density = 1.2, a YOUNG's modulusEs = 3-10° and a ®I1SSONS
ratio vs = 0.3. The structure is fixed by alRICHLET boundary condition at the beginning and
end of the pipe segment. A fluid of densjpy= 1.0 and kinematic viscosity = 0.00015
flows through the pipe at an averaged velocitysdf, corresponding to a RrNOLDS number
of Re = 5.3 - 10*. The boundary condition on the inflow is oflRCHLET type, the outflow
boundary condition is of do-nothingeNJMANN type. The values for the turbulent inflow profile
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Figure 7.4: Pipe cross section defining pipe diameter, wmatkhess and the surface-orthogonal
loadingt (left). Visualisation of the five fluid patches (right). Thedydisplayed
corresponds to the visualisation cells used to post-psottess NURBS solution, as
usual.

are computed using a separate computation of turbulentffopeon a periodic domain identical
to the initial fluid domain described above. Starting fromaadomly perturbed initial profile,
the flow is computed foB2 time units until a turbulent flow profile has developed in thgep
Afterwards, a surface-orthogonal loading following a tioweve is applied to the outer surface
of the structure as described in Figure 7.4.

Temporal discretisation on the fluid side is done based ogeheralised-alpha approach using
the same parameter setting as for all other examples inlibsd. On the structural side, the
generalised-alpha parameters chosemsare0.25 andy = ar = ay; = 0.5. The computation is
based on atime step sizeAf = 0.01. For spatial discretisation, the fluid domain is decomposed
into five patches as it is indicated on the right side of Figluile For the structural domain, a
matching discretisation composed of four patches is usdtlpakches of fluid and structure
consist of second order isogeometltIRBS27 elements as it is shown in Table 7.1. In order
to improve the boundary layer representation in the fluid dioyna hyperbolic mesh stretching
based on a constafteich = 2.1 was applied to the knot vector in surface-normal directian o
the20 x 8 x 25 patches of the fluid domain.

Once more, the stabilisation parameter definitions usedHherresidual-based variational
multiscale modelling are the ones from equations (3.16d)(&62). The MwTON-type lin-
earisation scheme from subsection 4.5.3 was found to b@ppate for the fluid subproblem.
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fluid patches structure patches

&

—_—

v

u

20 x 8 x 25 8 X 8 X 25 20 x 8 x 25

Table 7.1: Number of elements in the patches of the disetétis for fluid and structure.
The pseudo-structure approach used to compute the meshmdgiion uses a mesh
identical to the fluid discretisation.

7.4.2 Results

The applied external loading causes a deformation of the gt is shown in the centre column
of Figure 7.5. The pipe cross-section in the middle of thensag changes from an initial
circular shape to an oblate ellipse at the peak of the eXtlrading. As it can be already seen in
the distribution of the absolute value of the fluid velocitytbe right of Figure 7.5, this change
of shape induces a separation of the flow on the part of thedaryrwhich is curved towards
the centre of the pipe. Note that even for the deformed stagéehoundary is still smooth due to
the NURBS representation. This ensures that for the separedused by this deformation the
break-off point is not determined by artificial kinks in thegh. The separation is also shown in
Figure 7.6, where absolute velocity distributions for hoeoss sections orthogonal to thaxis
are shown. The first cross section corresponds to the pbestBIRICHLET values at the inflow
of the pipe. The second cross section in the middle of the g@genent is the one that exhibits
the largest deformation. The last cross section at the eutflearly shows the predominantly
blue regions that correspond to the low-speed flow areantie¢he separation point.
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7.4 Fluid-structure interaction for a turbulent pipe flonthva flexible wall

Figure 7.5: Unscaled deformation of the structural domairfife characteristic time steps dur-
ing the load cycle32.0 < ¢t < 33.5 (left). The corresponding distribution of the
absolute value of fluid velocity on the deforming domain iegi for a cross-section
(right). A legend for the velocity values is contained in ig 7.6.
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Figure 7.6: Distribution of the absolute velocity for threets through the deformed pipe at
t=33.2.
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8 Summary and outlook

The ambition of this work was to combine several known mestand to extend them to a new
range of applications. The time-dependent subgrid scatgsopged by ©DINA et al [55] were
successfully applied to residual-based variational recdtie modelling of fully turbulent flows.
Furthermore, residual-based variational multiscale imdeof turbulence, GLo [45], and
isogeometric fluid-structure interactionABILEVS et al [16], were combined to allow turbulent
fluid-structure interaction computations in a monolitharhework according to KTTLER [148].
The first results obtained with this method are promising.

In order to reach these tasks, the residual-based var&tioultiscale framework was derived
in an ALE framework. The subgrid models including the timepdndent subgrid approximation
were included in a state-of-the-art generalised-alphacgmh capable of treating time derivat-
ives on deforming domains. The obtained algorithm was ueed fdetailed investigation of
the nature of residual-based LES approaches. The timeadepéesubgrid scales turned out not
to be more accurate for the resolved-scale results in pgotvhich seems to be disappointing
at first sight. Nevertheless, this is compensated by a mdmestaepresentation of unresolved-
scale quantities and the fact that a lot more insight intandaere of residual-based approaches
was gained with respect to the dissipation of the model tetine dependency of the subgrid
scales and their small-time-step behaviour. Furtherntbeeimpact of the isogeometric repres-
entation on the unresolved-scale quantities was studiesyiag that the improved performance
with respect to the resolved-scale results, se&BRMAN et al [3], comes along with a more
pronounced representation of the unresolved scales.

There are several issues that will require further consitilen in the future. The orthogonal
subgrid-scale approach bydDINA [52] should be tested. For this approachy@&HES and
SANGALLI [125] predict a non-local GEEN'S function, so a further assessment of its impact on
the quality of the subgrid approximation will be mandatdxgvertheless, the gains with respect
to the reduced nonlinear character of the resulting egoatimuld be significant and thus render
the time-dependent approach more competitive to the coiovet approach. The most valuable
contribution of the time-dependent approach is that it glates the dependency of the conven-
tional approach on the time step size. This will allow to ptse question for the ‘optimal’
stabilisation parameter or procedure independently othHusen time step. In a very simplified
way, this question was already dealt with in section 5.5 wieeking for an optimal element-
length definition close to the wall in boundary layer meshasthe moment, since the time-
dependent implementation introduces additional compjexid it did not improve the resolved-
scale results in all test examples contained in this thésésgonventional approach remains the
recommended one for large-scale applications. Furthexntbe residual-based LES on meshes
with pronounced volume change and distortion of elemerdsisibe investigated more closely.
The investigations could be conducted on the basis of pus\studies by BRSTER[78] on the
performance of stabilised methods on distorted mesheg. Afgh REYNOLDS number applic-
ations are also a field that needs further consideration. REhenOLDS stress term, which did
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8 Summary and outlook

not provide a significant contribution to any of the energgdpets shown in this thesis, might
play a more important role for these flows than the residaaleld model could provide. It is
possible that an additional subgrid viscosity or fine-s&lbgrid viscosity term is capable of
representing the effect of theERNOLDS stress much better. Such a procedure is advocated
by many researchers, in written form for instance byN#g and BERAI [218] based on res-
ults from spectral analysis, and byrR@&EMEIER et al [97], who are combining residual-based
stabilisation with an additional subgrid term based onladgie variational multiscale-multigrid
modelling. A necessity to test the established fluid-stmecinteraction framework for more
demanding settings, like thin structures in the wake of andgr, is also self-evident.

In addition to these straightforward enhancements antidurhvestigations, several new re-
search directions arise from the work presented in thisitheShe good performance of the
weak DRICHLET approach with respect to the computed lift and drag valugkenturbulent
flow around a square cylinder indicates that a lot of improgethtan be made by a more elab-
orate treatment of boundary conditions at fluid-structumerfaces. Thus, in a first step, an
incorporation of the weak [RICHLET boundary conditions in the monolithic fluid-structure in-
teraction framework can be considered. The weaRI®HLET boundary condition formulation
from BAzILEVS et al [21] is based on an empirical, problem-specific near-waldeio The
replacement of this model by a coupled URANS simulation giaes close to the walls would
be perfectly in line with the idea of an improved treatmentraf boundary conditions. Further
investigations will be required, as for example concer®®NS modelling on moving meshes.
Nevertheless, the approach seems to be extremely promi$img coupling of simulations on
different fluid domains of different resolution, as they Wtor instance appear in hybrid meth-
ods, see GRSTENBERGERand WALL [92], is a well-known problem in LES. An investigation
of this matter in the context of residual-based LES will ddeanteresting for future applications.
A completely different future direction concerns the pndjgs of iterative solvers and precondi-
tioners. The good performance of the multilevel precopndiéid GMRES, which was observed
for the NURBS discretisation in comparison to a comparabétersdipity discretisation, calls for
a closer investigation of the relationship between elesiant linear system. For instance, the
uniformity and smoothness of the shape functions might lze¢e@ to the good performance of
the linear solver.

Finally, other multiphysics applications lie ahead. Conabions of isogeometric analysis,
scalar transport, electrochemical processes and redidisald variational multiscale modelling
of turbulence are planned, applications to turbulent costibn seem possible. The smooth-
ness properties of the isogeometric approach, SEeT€ELL et al [57], are assumed to be very
beneficial for other, non-fluid types of multiphysics apptions as well. For instance, a com-
bination of structures and optics, exploiting the smootffiesie representations for the refraction
of light in deforming lenses etc., is a very interesting avéeesearch that did, at the best of my
knowledge, not receive much attention up to now.

162



A Mathematical tools and proofs for
the description of flows

In this appendix, several topics related to the governingaggns will be addressed. Section A.1
provides the RYNOLDS transport theorem that was used in section 2.1 to derive thedR-
STOKES equations in ALE and ELERian formulation. The subsequent section A.2 provides
a proof for the equivalence of the ALE mass conservation #guan reference and spatial
representation. This property was used in section 2.1 tvel#dne spatial representation of the
ALE form of the NavIER-STOKES equations. In addition to these topics related to continuum
mechanics, section A.3 is on the statistical descripticmdfulent flows. The material collected
in that section will be useful for the derivation of th&eRvOLDSs-averaged MNVIER-STOKES
equations and for the sampling procedures used in the noahenmputations of chapter 5 and
chapter 6. Section A.4 addresses a last topic. It is aboulafimental function spaces and inner
products required to convert the strong form of the equatitma weak, variational counterpart
as it was done in section 3.2.

A.1 REYNOLDS transport theorem

Let Y (=, ¢) be an arbitrary motion mapping with a positivecbsian determinant. Further-
more, letV (t) := Y (V (t,),t) be a ‘transported’ balance volume in the range of the motion
mapping at time and v|; := % the velocity induced by the motion mapping. Then the sub-
stantial change of a physical quantity, in this volume, i.ethe change of a quantity associated
with the particles that are currently in the volume, is nolyotue to the local change of the
quantity but also caused by a flux over the volume’s boundafénce the balance volume en-
closing the particles which carry the physical quantityrades in time according to the motion
mapping, the integral has to be transformed back to thealmdttmain using the transformation
theorem to be able to interchange integration and timereiffegation:
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A Mathematical tools and proofs for the description of flows
d fl, } (mr )
/V(to)[ﬁtu 0.0 et (2X =0
9 fly _ oY ,_
oY _
(2, ))] d= (A.1)

=%
d {d ' ( "
(A.2)

) dt
a(”‘E)j

+ fly (Y (8,
The time derivative of aAtoBlan determinant is given by the following equation, see for ex

ample the books by ENIGSBERGER[145] or CHORIN and MARSDEN [48]
T r (@00
] = ) 8‘_‘2

f‘?‘ (x. 1)+

—= (E,1)
Using this equation, the integral can be transformed bac¢kedalance volume and yields the

REYNOLDS transport theorem

31, Pt
_ Il )
~J G2 (o),
0<’U| ) )dx_

(A.3)

DDy e
£ ((le)j(x,ﬂ - f|X(x,t))> dx

+ fl, (

d fl
= (x:1)
The contribution from the local time derivative and from thex term can be easily identified in

the last Iir.1e o;‘ equation (A.3)

A.2 ALE mass conservation in spatial representation —
The point of departure for this proof is the ALE mass consgoveequation in reference repres-
entation (2.26). In the beginning, the reference densi(.)’z‘j%) ha:s to be expressed in terms of

(A.4)

ref‘E E t ,0|E (€ t) det <8£

(&,
Substituting this expression in the differential form o€tALE mass conservation equation in

a proof
the current density. For this purpose, equation (2.21)visiteen as
0
p ) (&.t)
reference representation (2.26) requires the computatiaeveral derivatives. The derivative
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A.2 ALE mass conservation in spatial representation — afproo

of the first term, related to the local change of the referesmesity, can be rephrased as fol-
lows using the time derivative of asdoBlan determinant similar to what has been used in the
derivation of the RYNOLDS transport theorem:

o ref o
=060 (2 6

+olg(en g (e (5 ) ) (€0 -

2R g.t)-er (52 ) )+

o€
0(u .
Folelen ae (50) €0 X0 @en.n )

Due to the product rule, three derivatives have to be conaiatethe flux term:

3 (lelen- (wle) (€n) -
_Z P\g (w\g)j(g,t) det (ag) (&) +

#rle(e0) 3 (wl), (€0 7 (4 (58 ) )€ o+

4

wl, )
oleen Y a;> €.0)-der () (€0 (A6)

~
>

The first term marked by can be rephrased in spatial representation using the ALzectine
velocity (2.16) as follows

0-Y" 3ﬂ|m(‘§£(]§,t)7t) _ (w|§> (&) =
e (€0 (ul) €0 -

€
=2 52 (@(&1),1) - (cl,); (P (&1),1) (A.7)

For the second term marked bythe partial derivative of theatoBlan determinant in a given
direction has to be computed. In analogy to equation (At partial derivative of this determ-
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A Mathematical tools and proofs for the description of flows

inant can be computed as

& (mn(23)) e
— 8;’5 (®(&,1),1)- 0 <a¢l (€, t)) det(ag)(ﬁ t) =

kil 8—53 &
00! 0 (0%, o 9
~ 2 w0 g (e t€0) -0 (G ) €0 -
N0 (0% e ot (2
=2 7 <a£ (@' ( ,t),t))(@(g,t) t) - dt< £)(£ t). (A.8)

From line two to line three, the sequence of partial difféisions was swapped and in the next
line, the chain rule was applied. Using this identitgan be restated:

o= Y (wl,); €00 o (e (@7 .0.0)) (@ (En).0-ae (G

) % ¢ ) €0

(A.9)

A further simplification of this expression is possible inngoination with termr>. For this
purposep> is converted into

0P -1 0P
_Z 8acl (& 1), 1) - 8€l(q) (@01, )det( z
(&)

) (&,1) (A.10)

using the chain rule. The sum of the equations (A.9) and (Palldws for the application of the
product rule

o= ¥ o (k) (G- @7 @) ) ) @ )y ee (52 ) 600 -

0
- Lk @ e e (57 ) (60 (A11)

and thus completes the transformation to the spatial reptason of the last missing terms.
Finally, the intermediate results from the transformedaldime derivative (A.5), the spatial
derivatives (A.6) incorporating transformations (A.7)3ai.11) are inserted into the ALE mass
conservation equation in reference representation (2.26¢ resulting equation is divided by
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A.3 Statistical description of turbulent flows

the nonzerodcoBlan determinant and results in

9 p|
0=—3 (27 (2(&:1).1) 1) +

0 ,
+p|w((1)(£vt)vt)'ZT(‘I)(Evt)vt)+

J

+Z‘3‘P| t),1)- (cl,), (®(€.1) 1) +
oS

Using equation (2.17), this can be rephrased as the ALE ntasseovation equation in spatial
representation (2.27) at poiat= ® (&, ). O

A.3 Statistical description of turbulent flows

Quantities like velocity or pressure in turbulent flows candescribed using statistical tools.
This implies that these quantities can be considered a®nandriables for a point and time
t. More precisely, they can be associated with random presesiace they are time-dependent
and even more precisely they can be treated as random fields #iey depend on time and
position in space. The randomness results from the factuhailent motions exhibit an extreme
sensitivity to perturbations in material parameters,jiahiand boundary conditions. Since such
perturbations are unavoidable in practice, the exact sfaesystem sufficiently far in the future
cannot be predicted. Nevertheless, statistical predistad flow quantities can be made.

To clarify the meaning of the expression random variable ftilowing terms and definitions
as they can be found in textbooks on stochasticsxa@®BLIs and RLLAI [170] or CHUNG [50]
are needed. An experimental outcome determined by the floallisd a sample. The set of all
possible samples is called sample spaceSubsetss of the sample space are called event if
they are elements of@&algebraX, i.e. elements of a set of sets which contains the sample space
(A.13) and which is closed under countable unions of its elets (A.15) as well as under the
complement operation df in the sample space (A.14).

Sex (A.13)
Eey = S\FeX (A.14)
Ee%ieN = |[JEex (A.15)

i=1

The o-algebra of all events is called event space. On the evecespgprobability functionP?
can be postulated. It associates each event with a nonnegadl number, the probability of the
event.

P(E)>0 (A.16)

One can think of this probability as the probability that abitary experimental outcome con-
tained in the event is obtained. Hence, it is reasonablegtufaie that the probability associated
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A Mathematical tools and proofs for the description of flows

with the sample space is one.
P(S)=1 (A.17)

Furthermore, the probability of a countable union of passvilisjoint eventg; is required to be
eqgual to the sum of the probabilities of these events:

P (U E) => P(E) if B;NE;=0fori#j (A.18)
i=1 i=1

This axiomatic definition of probability was introduced by KMOGOROV [142] in 1933, eight
years before his pioneering work on turbulence [144, 143].

A vector valued random variablg of dimensionn is now defined as a function which maps
the space of all samples R3* under the condition that for al € R” the sets

E.:={seS|U(s) € |—o0;r1] X ... X |—00;7,]} (A.19)

are elements of the event space. As a consequence, theseEgan products of intervals,
|—o0; 1] X ... x |—00;1,], can be associated with a probability, namely with the plodig of
their preimage under the mapping of the random variable:

Py(r)=P(F), U(E)=]—-00;r] X ...X]|—00;1,] (A.20)

The arising (cumulative) probability distributioR; (r) completely determines the statistical
properties of the random variablé. If possible, it is convenient to introduce the nonnegative
integrable probability density functign; by

)=o) o Put)= [ [ e dpede, A2)

Random variables of this type are called continuous.
Having random variables and probability density functiandiand, first order moments as

well as higher order moments can be introducedferl, ..., n:
W)= [ o) Uilo)dp, (A22)
(U?) = / pu(p)-Ui(p)-Ui(p) dp (A.23)

The first order moments are usually referred to as means @céxipons of the random variable.
The expectation of a new random variable, defined by a fungtid/) of a random variablé&/,
can be computed in terms of the probability density functbthe original random variabl&/,
see e.gPapPouULIS and RLLAI [170]:

F@)= [ (o) £ U () dp (.29

168



A.3 Statistical description of turbulent flows

Using this property, the expectations for products of flattins
gi ’ gj = (Uz - <U2>) ) (U] - <UJ>)’ Lj=1,....n (A25)

can be studied. According to equation (A.24), these secomelr amnoments of fluctuations can
be computed as follows:

(U, u)= [ ooie) U)- U, (p)dp -

~ [ o) W) - WD) U0 - WNdp (A26)

Fori = j the resulting quantities are termed variances. They reptethe average square
deviation from the expectation.

Var (U;) = (U?) = (U?) — (U,)*, (A.27)
Similarly, fori # j, covariances are defined by
Cov (U,,U,) = <gi : gj> —(U,-U,)—(U,)-(U,). (A.28)

The covariance reflects the correlation between the two comptsU . andU | of the random
variable of fluctuations. Mean values, variances and cawuags are often used to characterise
important properties of a probability distribution.

In practice, density functions as well as expectations huod variances and covariances can-
not be computed or measured but only be estimated/Let/?, . . . be a series of independent
identically distributed scalar random variables with ualm finite mean and variancer?.
One can think ot/* as a flow quantity observed in a turbulent flow experiment @tiémet at a
certain positione. This experiment is independently repeatgtmes under the same conditions,
giving rise to a whole series of measurements. The arittonedian

rrn . l - 7
U = n;U (A.29)

is called ensemble average overepetitions. According to the strong law of large numbers it
converges almost surely to the expected mean value

P({s

Being able to estimate expectations, the central limit toprovides further information on
the unknown distribution of the ensemble average. Nambly,density functiorpg. of the
standardised arithmetic mean,

. % Z?:l U'—w

lim 0" (s) = w}) —1, Qe lm0"*%g (A.30)

n—oo n—~o0

std - — O'/\/ﬁ ) (A31)
converges towards the densityg () of a standardised BJssian distribution,
(1) i= e (A32)
Pstd\T") ‘= 271'6 . .
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A Mathematical tools and proofs for the description of flows

It should be emphasised that this is not a statement comggtimeé density function of the identic-
ally distributed random variablg$’ but only a statement concerning the density function of the
ensemble average. Turbulent flow quantities cannot be &gdo be distributed @ssian,
only their ensemble averages will approachaGsian distribution for largea.

Computing the ensemble average in a practical applicasiaften not feasible. Fortunately,
many turbulent flow applications have additional propertnich allow the estimation of mean
values by ergodic processes. Animportant class are $tatlgtstationary flows. For these flows,
the statistical properties of the random processes desgribe flow properties are invariant
under a shift in time. This implies among other things that finst order density function of
the random process at times independent of. Hence, the expected valaewill be constant.
Furthermore, the joint second order density function ofrdreom variables at andt, + ¢ is
independent of,. For such flows, BUTSKY’s theorem, see e.gPAPOULIS and RLLAI [170]
or the book by RISCH [84], can be applied ensuring that if the integifll C£*®(¢) d¢ of the
two-time covariance function

CEo(t) = (U (to) — @) - (U (to + t) — @)) (A.33)

is finite, the time average of a single realisation convetgdbe expected valug in the mean
sense, i.etheir mean square deviation has zero expectatioff' fes oo

T

w = lim i/ U(t) dt (inthe mean sense) (A.34)
T—oo 2T _T

Note that the averaging in equation (A.33) is based on thetfjsecond order density function

and that the definition of'$'(¢) is independent of the actual choicetgfsince we are dealing

with a stationary process. A process is called mean-ergb(#c34) holds. The integral of the

time correlation function introduces a correlation time

Jo CP*(t) dt

tCOI’ = W . (A35)

For statistically stationary turbulent flow, it is an adnilids assumption that.,, is finite and
hence that the processes are mean ergodic. Equation (A.349d applicable to second order
moments which are stationary as well, allowing to estimatéawces and correlations. Note that
for these higher order moments, the correlation time is Ihsuauch higher than for first order
means and thus the sampling period will have to be much lotegerovide good estimates for
higher order statistics. The concept of ergodicity in statally stationary flows can be readily
extended to statistically homogeneous random fields. sStalily homogeneous in direction
ZThom Means that all statistical quantities are independent bifais directionzo,. Again, if the
integral over the spatial two-point covariance,

Cgom(xhom) = ((U (Zhomo — @)) - (U (Thomo + Thom) — @)) , (A.36)

is finite, the mean value can be estimated using spatial gwvera

1 Xhom .
w= lim / U (Zhom) dxnom (in the mean sense) (A.37)
KXhom—00 2Xh0m — Xhom
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A.4 Fundamental function spaces

Similar to the correlation time in equation (A.35) an int&grorrelation length can be defined:

fooo Cg};om (xhom) dZhom
Chom (0)

leor := (A.38)

This correlation length will be of importance when homogaine flows are approximated on
periodic domains, as it is done for example in turbulent clehflow computations. A choice of
a periodic box too small compared to the correlation lengthi@ad to a poor approximation of
the ensemble average. A generalisation of these resultsilttpie homogeneous directions is
possible.

This section will be concluded by a remark concerning thiedghtiation of expected values of
random processes. For random processes associated witketuirflows, it is a valid assumption
that the time derivative of the expected value exists antttieamixed second derivative of the
two-time covariance defined by

Cy (to, t) = ((U (to) — w(to)) - (U (to +t) — w(to +1))) (A.39)

exists and is continuous. In this context(t,) andw (¢, + t) denote the expected values at time
to andt, + t respectively. According toARZEN [171], these conditions allow to compute the
expected value of the derivative of a stochastic procesheasime derivative of the expected

value of the stochastic process, viz

d(Uy /AU
10 (a0, oy

Similar statements are possible for spatial derivativeaimdom fields.

A.4 Fundamental function spaces

The space of square integrable functions is defined by

/ fPdx < oo} . (A.41)
Q(tn+1)

By grouping functions which differ only on a set of meastya HILBERT-space of equivalence
classes, E(Q ("*1)), is derived fromZ? (2 (t"+1)). The scalar product of this IHBERT-space
is defined by

£2(Q (1)) = { FiQE) - R

(f,9)q (1) = /Q(MH) f-gdx. (A.42)

Extensions to product spaces of vector and tensor valuedifuns are straightforward. The
respective scalar products are defined by

3
( tn+1 = Z flvgz tn+1 (A43)

i=1
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and

3 3
(f:9) Q(tn+1) T ZZ(fij7gij)Q(tn+1)' (A.44)

i=1 j5=1
These scalar products immediately define integral normisarusual way, for example

-lle2 i= 4/ (5 gy (A.45)

on L2 (Q(t"*')). To be able to state the weak form, the introduction of a frtspace, the
SoBoLEV-space H (2 (t"*1)) is necessary:

(@ () = {7 e @ ()

This space is equipped with a scalar product

(g )

defining a nornj|-|| ;. in the usual way. Again, a generalisation of thig BERT-space for vector
and tensor-valued functions is straightforward based arR1ESian product spaces, e.g

8@

9 (o (t”*l)),izl,Q,S} (A.46)

(/s D ey = /

Q

[H" (© (t”“))}?’ = H Q) x H (Q (") x HY (Q (¢*). (A.48)
When introducing boundary conditions, a further spaceiredus the trace space
D4 (1) = {g & (L2 (007 )] g = Floser
fora f e [H' (2 ()]’ } . (A.49)

In this definition, the restriction of a solution to the domabundan$ (t"**) has to be under-
stood in the sense of a trace operator, see for instaneeBKER and ANGERMANN [141].
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B Additional information on
non-uniform rational B-splines

This appendix covers a number of topics related to B-splitresection B.1, knot insertion and
order elevation processes will be presented which can be fase-, p- and k-refinement in

isogeometric analysis. Furthermore, section B.2 contamexample for the construction of a
NURBS curve describing a segment of a circle by projectimagformation of a B-spline curve.

B.1 Knot insertion and order elevation for B-splines

Let }
CEsPine () .= Z B (u)- X8 (B.1)
=1

be a B-spline curve of orderwith [ control pointsX? € R” defined on the knot vector

w = (Ur, Ug, s Uigpya) - (B.2)

Several refinement strategies for this B-spline curve wilvrbe described. Naturally, these
strategies can as well be applied to surfaces and volumesspfiBes and NURBS.

Knot insertion

First, the process of knot insertion without changing a elggometrically or parametrically will
be explained. The new knate [u;; u;41| is inserted into the initial knot vector to provide a new,
extended knot vector

U= (Up, .oy Uiy Ty Ui 1y e vy Upp1) - (B.3)
This extended knot vector generates1 basis functions with corresponding control poiXs.
In order to maintain geometry and parametrisation todulfil

I+1
CEe(u) =y B (u)- X7 (B.4)
1=1

the new control points are defined according to the rule

XP=0; - X0+ (1—0ay)- X5, (B.5)

with parameters
1 1<jyj<i—p
;= uﬁ;ijuj t—pt+1<j<i . (B.6)

0 i+1<j<Il+1
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B Additional information on non-uniform rational B-splise

The knot insertion process preserves p + 1 control points.p control point values are new or
modified. Figures B.1 and B.2 show an example of a quadrasplBe curve with initial knot
vectoru = (0,0,0,0.5,0.7,1, 1, 1) and newly inserted knot at = 0.3.

Figure B.1: Knot insertion. B-spline curves and controlygains with and without the inserted

knot.

1 1 = -2
0sl\ot 5 & o\ " ) B; B Bof
0.6} B B o6l \ 22 Zs
0.4} , 0.4}

0.2} § 0.2L
’0 03 05 07 1 % 03 05 07 1

Figure B.2: Knot insertion, impact on basis functions. Thsib functions in the white area are
untouched by the knot insertion, and so are the correspgratintrol point values
in Figure B.1.

A special application of knot insertion is to decompose @BAag curve into piecewise BZIER
segments. This is done by inserting each inner knot untéstrultiplicityp. The resulting curve
can be split at the interpolated points inte BER segments which consist of open knot vectors
of length2p + 2. For the curve from Figures B.1 and B.2, the split intGZBER segments is
visualised in Figures B.3 and B.4.

Note that if a B-spline curve can be constructed from anotiweve by knot insertion, the
respective knots can be deleted from the curve without dhgrnte curve’s geometry. This is
done simply by inversion of the process described above ande used for order elevation of
B-spline curves as it will be described below.
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0.8

0.6

04

0.2

0 0.3 0.5 0.7 1

Figure B.3: Split of B-spline curve into & IER segments by knot insertion, corresponding basis
functions. The segment associated with the part of the conaked by the grey
colour corresponds to a knot vector3, 0.3, 0.3,0.5,0.5,0.5) of length2p + 2 = 6.

Figure B.4: The B-spline curve from Figure B.1 is split intauf BEZIER segments by three
additional knot insertions.

Order elevation

For a BEZIER segment, order elevation can be done simply by increasmgtiitiplicity of the
two knot values by one and by computing the new control pahies according to the formula

Xg = X3
Y?:(1_Zﬁ)-X?+Zﬁ-X?_1 for i=1,..,p
X8, = X© (B.7)

This equation is derived using basic properties @RRSTEIN polynomials which generate the
BEzIER spline. Thus, for an order elevation of a B-spline curve,dheve has to be split into a
set of BEZIER segments as it was described above. The single segments caddy elevated
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B Additional information on non-uniform rational B-splise

according to equation (B.7) and afterwards be reassemiblecisingle curve. Redundant knots
stemming from the decomposition intcEBIER segments can be finally removed by the knot
deletion procedure mentioned above. For the example cthmegesults of the order elevation
process are illustrated in Figures B.5 and B.6.

Figure B.5: Order elevated example curve from Figure B.le filked control points correspond
to the removable control points associated with thEzBR segments required for
order elevation. The remaining control points define theeplevated B-spline
curve.

176



B.1 Knot insertion and order elevation for B-splines

0.8
0.6 .
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0 0.2 0.4 0.6 0.8

Figure B.6: Basis functions corresponding to the piecewisler elevated BzIER (top) and B-
spline curve (bottom) from Figure B.5.
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B Additional information on non-uniform rational B-splise

k-refinement

The process to perform order elevation prior to knot inseris known as:-refinement. The
order of these operations is important since they do not cotata. Performing order elevation
first and knot insertion afterwards preserves a higher adegfeontinuity, see the illustrations
in Figure B.7. The number of basis functions generated byt kirsertion followed by order
elevation is higher compared to what is obtained in the chgerefinement.

1

0.8

o 0.6 , der elowat
knot insertion order elevation

0.4
0.2

o——. . .
0 02040608 1

e 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
(O S ST 0
0 02040608 1 0 02040608
order elevation knot insertion
) — 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
AN /ANVAN % oL N A
0 02040608 1 0 020406038

Figure B.7: Two linear B-spline basis functions are refinsthg knot insertion of three knots
0.3, 0.5, 0.7 and order elevation of one degreefrrefinement (right) and reverse
order (left).
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B.2 Construction of a circle segment using NURBS — an example

B.2 Construction of a circle segment using NURBS —
an example

Segments of circles in the two-dimensiongtspace can be exactly represented using projec-
tions of quadratic B-spline polynomials in three-dimemsibry z-space. This will be done here
for a quarter of a circle of radiu8.5 around the origin. The generating B-spline curve in this
example is defined using quadratic B-spline, in this cagglBr, basis functions on an open
knot vectoru = (0,0, 0, 1, 1, 1) with the three control points

X% = x5=1 L and X% = (B.8)

== O N
= = O

As itis shown in Figure B.8, the generating curve defines & aoith the apex in the origin.

B-spline curve

projected curve

cone

B-spline curve
control polygon

Figure B.8: Cone generated by a B-spline. The red line isritersection between cone and an
xy-parallel plane at = 1.

Based on the definition of the NURBS curve as the projectidgh@fjenerating B-spline curve
according to equation (3.76), it is defined as the intersaatf the cone and a plane orthogonal
to thez-axis atz = 1. This intersection is visualised as the red line in Figure& &d B.9. A
view along thez-axis, as it is depicted in Figure B.10, clearly shows theegated quarter of a
circle with radius).5 around the origin.

179



B Additional information on non-uniform rational B-splise

— B-spline curve
— projection
—— cone

~©~ B-spline curve control polygon

Figure B.9: Side view for the cone from Figure B.8.

z-projection of
B-spline curve

—— NURBS curve

— cone

z-projection of

B-spline control
polygon

X/ NURBS curve
control polygon

Figure B.10: Visualisation of the NURBS circle generatenhirthe B-spline curve in Figures B.8
and B.9.
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C Adynamic S MAGORINSKY
Implementation for comparison

In chapter 5 of this thesis, results from residual-basedhtianal multiscale modelling of turbu-
lence are compared to results obtained using a dynamixc®RINSKY model. Some funda-
mentals of this ‘classical’, filter-based LES model are praged in section C.1. The employed
finite element implementation is provided afterwards intisecC.2. Finally, some results high-
lighting basic properties of the method are shown in sedfidh

C.1 The (dynamic) S MAGORINSKY model

First a short introduction to eddy-viscosity subgrid madslll be given in subsection C.1.1, in-
cluding a brief discussion of the constant coefficiema8 ORINSKY model and its shortcomings
for wall-bounded flows. Afterwards, in subsection C.1.2 ¢xtension to the dynamic approach
will be presented.

C.1.1 Eddy-viscosity subgrid models

One of the important characteristics of turbulent flowselisin subsection 2.2.1 is their diffus-
ivity. Eddy-viscosity subgrid models are based on the agdiom that the effect of unresolved
scales onto resolved scales can be represented by an itreasecular diffusion. Accordingly,

the residual stress in equation (4.16) is assumed to equal

T 90 e () . (C.1)
It is always deviatoric according to the incompressibitigndition which implies a trace-free
filtered strain rate tensor. In contrast to the turbulentessty defined in (4.3), the subgrid
viscosityvs r accounts only for effects of unresolved, small scales. Agtion (C.1) allows to
restate equation (4.16) based on an updated ‘effectivedsisy

Vet = V + Vs wr, (C2)
Viz.
—dev
% + V- (ﬁ®ﬁ+p—1 —QI/eﬁE(ﬁ)) =b
p

V.a=0. (C.3)

Eddy-viscosity models are a functional modelling approagtthough the residual stress ap-
proximation (C.1) is usually of poor quality, they can pmia sufficient amount of model
dissipation to describe the energetic action of the unvesbécales.
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C A dynamicSMAGORINSKY implementation for comparison

The best known eddy-viscosity approach is the constanficeeft SUAGORINSKY mod-
el [191]. It determines the turbulent subgrid viscosity dzh®n an analogon toRANDTL’S
mixing length hypothesis (4.6), i.e

v = Camxlle @] = (Csmag- D) |l (@)]] (C.4)
and accordingly

res,dev

T = =2 (Csmag' A)’ || (@)|| € (@) . (C.5)

The norm of the filtered strain rate tensor used in definiti@g), (C.5) can be evaluated as

le @)|| = |2- ZE (w); € (w),; - (C.6)

3 3
i=1 j=1

)

In equations (C.4) and (C.5), the counterpart to the mixamgth is the 8AGORINSKY length
scalels mix. It is assumed to scale linearly with the filter widthof the applied filter:

fS,mix = C(Smag' Z (C7)

The proportionality factor is theNMAGORINSKY constantsmag A Value for this constant can be
derived from the LLLY analysis for homogeneous isotropic turbulence. Assuntiagthe filter
width is contained in the inertial subrange, a filter-depand/alue forCsy.gCan be obtained,
see the book by ®PE[174]. The sharp spectral cutoff filter, for example, copasds to a value
of Csmag= 0.17. This value often turns out to be too large in practice, sacthrestant is adjusted
within one order of magnitude to improve the results. By défin, the classical BAGORINSKY
model does not allow negative values for turbulent dissypatA representation of backscatter,
i.e. of energy transfer from unresolved to resolved scales ipassible within this model.

The constant coefficientMAGORINSKY model is developed for filter widths in the inertial
range of high RYNoLDS number turbulence. This requirement is not met in the viscub-
region in wall-bounded flows. Here, the constant coefficmbhGORINSKY model leads to an
incorrect nonzero turbulent subgrid viscosity and thusraa#ificial shear stress close to the
wall. In order to avoid this inconsistency, the1SGoRINSKY length scale can be damped in the
viscous near wall region usingvaN DRIEST damping function

_ ot
gs,mix = C(Smag' A <1 - 6’_'”) . (C.8)

In this equationA™ = 26 is a constant parameter apd denotes the distance from the wall in
wall units as it was introduced in subsection 2.2.5. In thiewang subsection, a dynamic variant
of the SMAGORINSKY model will be described. This extension is capable of autmaldy

determining an appropriate locaM8GORINSKY coefficient even in the near-wall flow regime.

C.1.2 GERMANO model

The dynamic SIAGORINSKY model was introduced by E&RMANO et al [91]. It will be presen-
ted in this subsection in the modified version by lly [155]. The GERMANO model uses a
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C.1 The (dynamicBMAGORINSKY model

second, coarser filteF associated with a filter widti\. This second filter is applied to the
already filtered equation (4.12) yielding

88—";+V <@+%-1—2ys(ﬁ)> -5

V-u=0. (C.9)

The succesAsive application ofA the filteFsand G in this equation can be interpreted as a com-
bined filter G with filter width A. The main idea of the ERMANO gpproach is that a part of

the unresolved, modelled scales associated with the cauilter G is actually resolved by
the finer filterG. This resolved part of the modelled scales is then used &ymate the model
parameter in the BAGORINSKY approach dynamically.

In the following, this process will be described in more deti starts by rewriting the non-
linear convective term filtered by the combined filter in tways. The first version is a split into
resolved and residual stresses corresponding to the cewhbiter in analogy to equations (4.14)
and (4.15):

p~m:p-ﬁ®ﬁ+p'(@—ﬁ®ﬁ>—p u®u+7‘fs (C.10)

In addition to this representation, the nonlinear convecsiresses can also be split with respect
to the filterG, obtaining aG-filtered version of equation (4.14):

p~u®u:p-ﬂ®ﬂ+p- u®u—ﬂ®ﬂ>—p u®u+7‘res (C.11)

By a combination of equations (C.10) and (C.11), the difieesbetween the residual stres%%S

and the filtered residual stregg@\S can be expressed in terms of filtered, resolved-scale diemnti
TES TES—p T U — P URT (C.12)

This equation is often termedERMANO identity. It expresses the resolved part of the turbu-
lent streSSTres in terms of known,G-filtered, resolved-scale quantities which are commonly

associated Wlth the tensor

L=UQu-u®u. (C.13)
The total unresolved stresses for both resolutions areamkrand have to be modelled. In the
GERMANO approach, this is done using the samea80RINSKY model for both resolutions:

2 o= (@) @ c1o
res,dev

T = —2C0h ||e (@)]| € (w) (C.15)

The paramete€hp,,, which corresponds t6’g,,,in the standard approach, will be determined
locally. Nevertheless, it is assumed that it can be treageal @nstant for the application of the
filter G, resulting in

—_—
res,de

IS V/ p= —2Coyh |le (@) & (). (C.16)
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C A dynamicSMAGORINSKY implementation for comparison

Using equations (C.14) and (C.16), the deviatoric part efidft side of equation (C.12) corres-
ponds to

d /.T
T ~ ! T—— ! J—

= 2oy’ ||a(ﬁ/)H\a(ﬁ)—<%> HE@)HE@) . (C.17)

Normalising this part of the modelled stresthiSIDynZ2 yields the tensor

M- ez @ - () [ (@)« (@) c19)

This tensorM is deviatoric, a property inherited from the filtered straitte e (w). Thus, it
allows to reexpress the contractionbfwith M by the contraction of.% with M

3 3
L:M= ZZ(LU Mzg) -
=1 j=1
3 3 3 3 1 3
= ZZ (L?jev Mw) + ZZ ((g Zka> 1;- sz) =
i=1 j=1 i=1 j=1 k=1
3 3
=> > (L -My)=L": M (C.19)
i=1 j=1
Based on the model for the unresolved stresses,
Ldev _ 1_;s,dev p— T§s,dev/p _ QCDynZ2M, (C.ZO)

this equation can be used to determine the ‘constasf, according to

2 Sy i (Lij - M)

C'DynA = - . (C.Zl)
230 Y0 (M- M)
The GERMANO model has a single parameter, the filter width ratio
A
an == (C.22)

included in the definition ofM. It has to be provided by the user, see the discussion in the
next subsection. The dynamiss8GORINSKY model is consistent in the sense that the subgrid
viscosity vanishes in laminar regions.
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C.2 Finite element implementation

C.2 Finite element implementation

The implementation used in chapter 5 is based on the workeohABA-MARTINEZ [199]. It
employs trilinear hexahedral elements for both pressure\astocity. Included stabilisation
terms are of PSPG, SUPG and LSIC type as they are describedtinrs 3.5.

In the finite element context, the filt&F corresponds to the implicit grid filter associated
with the stabilised GLERKIN approach. On the contrary, the second filters applied as an
explicit discrete spatial test filter based on quadraturthefoox filter. Letz" be a given node-
based scalar quantity amdhe index of a node in the interior of the computational danvaiith
neadj(t) adjacent elements with element indiegs. . ., Cnear)- 1NEN the filtered value for this
node is obtained as the volume average over all adjacentaksm

Ne,adf(t)
— 1 d
x_hL:H~ Ej/g 2" (x) dx (C.23)
—t =1 €

As usual in finite elements, the integratiorudfinvolved in this equation is performed element-

wise by quadrature and assembled into node-based gloktaksdor 2" . For this approach, the
volume of the support of the box filter,

”e,adj(L

)
vol, = Z/ ldx, (C.24)
=1 Q%‘

has to be precomputed for all nodes. Valuesbfon no-slip boundaries are set to zero. For
a more thorough discussion of these filters, the reader éreef to TEJADA-MARTINEZ and
JANSEN [200].

The required filtered quantities for theeBMANO approach are all components of the expres-
sions given in the following table:

filtered quantity u [ u @ u | |le (uh)] e (uh) (C.25)
number of vectors of size, | 3 9 9
Given these nodal quantities, the tensors
L=uou—uh@ub (C.26)
and
M = ||e (uh)|| e (uh) — an - Hs @)Hs (171) (C.27)

can be obtained on each element’s centre by interpolatidheohode-based filtered quantit-
ies (C.25) using the standard element shape functions. Ti&ewiidth ratio in equation (C.27)
was chosen to

an = 3. (C.28)
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C A dynamicSMAGORINSKY implementation for comparison

As described in EJADA-MARTINEZ and ANSEN [201], aa could also be determined dynam-
ically but the fixed value is kept here for simplicity. Basedtbe tensors (C.26) and (C.27), a
vaIueCDynZ2 can be obtained for each element according to equation YCE2t channel flow
problems, this equation is modified by an additional avergagif numerator and denominator in
wall-parallel plains:

_ L:M
CDynAZ _ < >plane (C29)

2 <M : M)plane

Furthermore, as in KEMAN et al [214], a clipping of negative values is performed.

—2

CDynZ2 + ‘CDWZ?‘
- CDynA (C.30)

2

This averaging and clipping is done in order to avoid nunaiitstabilities by eliminating negat-
ive values oCDynKQ. From the physical point of view, this procedure is equinate a complete
elimination of backscatter.

For every element, the vaIu@DynZ2 allows to determine a modified viscosity. This effective
viscosity is used in the computation of system matrix anaited contributions of the respective
element during the set-up of the linear system (3.127). Hedees not only have an impact on
the viscous GLERKIN term but also on stabilisation terms via the residual andtabilisation
parameter. An example for the distribution of the averagiekctve viscosity in a turbulent
channel flow can be found in section C.3.

It is important to remark that there is an interaction betwdgnamic model dissipation and
numerical dissipation arising from the stabilised finiteraent approach. This fact was studied
in detail by TEJADA-MARTINEZ and ANSEN [202]. They also proposed a modification of the
dynamic model in order to account for this interaction. Thgplementation used in this thesis
does not include such a modification.

C.3 Averaged distribution of effective viscosity in a
turbulent channel flow

Here, some basic properties of the dynamieASORINSKY approach are highlighted and it
is verified that the filtering process implemented is ablertmdpce reasonable distributions of
the effective viscosity. For this purpose, distributiorisroportant quantities are shown for a
turbulent channel flow computation. The setup for this cotaton can be found in section 5.1.
The distributions correspond to a channel flow simulate@lcat= 180 on 323 HEX8 elements.
Figure C.1 contains the averaged distribution of the effe@@VAGORINSKY constant,/Cpyn
along the channel height. As one can see in Figure C.1, thaemdignapproach is able to detect
the viscous sublayer region close to the wall, yielding a piagnof the effective BAGORINSKY
constant similar to &N DRIEST damping. Accordingly, the extra turbulent viscosity despd
on the right of Figure C.1 is decreasing to zero at the wafl|a@ring the superiority of a dynamic
SMAGORINSKY approach in comparison to a simple constant coefficient inode
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C.3 Averaged distribution of effective viscosity in a tuként channel flow

top top
\ )
CSmag : (1 — € 4+>
centre centre - -
— C(Dyn
bottom 5 bottom 8
0 CSmag =0.17 0 v

Figure C.1: Distribution of the parametgyCpy, and for comparison the distribution of the
SMAGORINSKY constant multiplied by &N DRIEST damping function (left). Dis-
tribution of averaged effective viscosity over the chartmabht (right). The circles
indicate positions of element centres. The extra turbulestosity corresponds to

the difference between effective and kinematic viscosity.
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D Linearisation schemes for
residual-based VMM

This appendix is designated to provide a detailed listintheflinearisation terms used for the
minimal (M), fixed-point-like (F) and BwToON-like (N) linearisation schemes introduced in
subsection 4.4.6. For easy reading, every matrix blockesguied by a picture which specifies
its position in the matrix system (3.127). All contributewill be listed with one entry per line.
They are connected to the lines of a table which indicatesdyyrdol x whether a term is active
in the respective linearisation scheme or not. In the siirepliinearisation schemes (M) and (F),
the nonlinearity introduced by cross and ¥NOLDS stress terms can often be treated completely
without a contribution to the tangent matrix. The symbwolndicates that in this case it is an
option to include these terms only on the right hand side had to neglect the respective linear-
isations. The definition of the constants required for thedrisations always follow the listing
of the block terms in a separate small table. These tablemicotihe constants for the time-
dependent subgrid approximation (td) on the left and forciveventional subgrid closure (rV)
on the right. Linearisations for the quasi-static subgtasuare can always be derived from the
conventional subgrid closure by replacing the stabil@aparameter,*®~ by its counterpart
w<OAt For ease of notation, some abbreviations for the curreration values of subgrid and
resolved-scale velocity, ALE convective velocity amt®Bian of the resolved-scale velocity
are introduced:

D.1 Convective ALE form

Linearisations of the momentum equation with respect to vel ocities

The first terms to appear on the velocity block of the momenraguation part of the matrix are
the GALERKIN terms. If a time-dependent subgrid approximation is usk@ ALERKIN terms
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D Linearisation schemes for residual-based VMM

which have not been integrated by parts are rescaled anddativadl linearisation of a viscous
term stemming from the subgrid acceleration term appears.

(o) ] M| E|N
9a"m ) ) 3-(A—1)+k,3-(B—1)+1
= Csaccaal| o (N, NA)Q(tn+l) X | X | X
+Csacccaic Okt ((€+ V) Np, Na)gniry X | x| x
+CsaccGal,c (N Ji, Na)gnr) X (D.1)
+Cgap ot (VNp; VN4 )qniry X | x| x
+Caalp (VN5 -er), (VNa-€))guniny | X | X | X
+Csace,d (;j}gﬁl : NA> ) X | %
+Csaccd O (Z] a;iv?B,NA)Q(th) X | X

The required constants are:

td rv
. apyAt
C'saccGaI,I Qg aM-r,\\zxeAt—i-apfyAt Qg
apyAt
CsaccGaI,C aF’YAt : aMTRA/XGAt-i—aF’YAt aF’YAt (D.2)
CGalp vapyAt vapyAt
A 7_vxeAt /
. M
Csacc,D vopopyAt aA{TRA/XGAt-i-aF’YAt

The LSIC (grad-div) stabilisation acts on the same matrockl

OR,,
<7ﬁ+1) M| F|N
0a" "/ (D.3)

3-(A—1)+k,3-(B—1)+l
+=Cisic ((VNp-€),(VNy- ek))Q(thrl) X | X | X

It is essentially the same in the conventional and time-déeet approach.

td rv

CLSIC ’}/At . T(\:/XGAt ’}/At . T(\:/XEBAt

(D.4)

Further contributions to the first matrix block arise from PG stabilisation.
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D.1 Convective ALE form
OR,,
(aah,nH) ‘ ] M1 FIN
= (D] 3.(A-1)1k,3-(B—1)+1
+ = Csupc) Ok (Np,(c-V) NA)Q(t7L+1) X | X | X
+Csupec Ou ((€- V) Np, (e V) Na)guniry | X | X | X
D.
+Csupc,c (NpJui, (€ V) Na)ggnsny X (D.5)
9*N
~Cspsp (2%, (c- V) Ny) s x | x
—Csupep Oul (ZJ a;TN;, (c-V) NA) Qi) X | X
—Csupe,T (W, N (VN4 - €1))ggnsn X
The required constants are collected in the following table
td rv
o AL YXOAL
Csupe, | - ath\ertAt“_”mMAt ang -y A
aF'yAt-T,tA/xeAt VX PAL
Csupc,c| apYAt- P e — apyAt - Ty (D.6)
o AL VXOAE
Csupc,p| vapyAt - aMf,\\%etAt,\—Al—aF'yAt vapyAt - 78
Csupe,T apyAt apyAt
Note that for the time-dependent approach, the stabitisgiarametery,*®~! of the conven-

tional approach is simply replaced by the quotient

VXSAL
Y

VXOAL
ayty O+ apyAt

apyAt -

(D.7)

which has the same asymptotic behaviour. The first half ofittearisation of the RYNOLDS
stress term is of a similar form.

),

OR,
agh,n-l-l

(

+ = CRey,I
+CRey,C
+CRey,C

- CRey, D

- CRey, D

5kl

(A=1)+k,3-(B—1)+1
Np, (@ V) Na)gnsy

(c-V)Np,(u-V) NA)Q(tn+1)

)Q(tn+1)

82NB ~

8xk8xl’<u V)
9*Np
J 8:(:? )

)Q(th)
(u-V) NA)

Q(tn+1)

(D.8)
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D Linearisation schemes for residual-based VMM

It can be implemented easily using an enriched SUPG testitumc

The remaining terms are:

(),
agh,n-l-l Q)

+ = CRey,I (ukv

3-(A-1)+k,3-(B—1)+l
(VNA el))Q(tn+1) &®

(ug, ((w-V)Ng)- (VN4 - el))Q pt1) ®

+CRrey,c

+Chrey,c <uk
_CRey,D <uk7 <
—C Rey,D <u

All constants in that equation are equivalent to the cowadng constants of the SUPG linear-

isation terms.

AR (VNa-e))))
k> <Z] 82555) (VNy - el))

((c+%) - V) Na.

(Z Ji- (VN4 - ej))>

tn+1

Q(tn+1 )

Q(tnt1)

td rv
CRey,l ap - a;f&éi:fjﬁ: N ang - T&/X@At
Creyc| aryAt- Mjfvléiffff = | apyAt- i O
Creyp | vapyAt - af%&%@lfﬁf x| Yo FYAL - T, vx BAL

Linearisations of the cross stress terms are given in theviolg.

_Ccross,l
_Ccross,C
_Ccross,C

+Ccross,D

+Ccross,D
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(a2),)
agh,n-l-l Q)

3-(A=1)+k,3-(B—1)+1
+ = Ccross,GT 5kl ((’E : V) NB; NA)Q(tn+1)

(JklNBv NA)Q(tn+1)

b2y

J (u V) NBaNA> Q(tn+1)

(
(Np (X It * Jkm) s Na)gny

9 ]¥B> ki, NA)
m Bm Q(tn+1)

(©
(Ch

m Bmma:pl

Ton) )
Q(tnt1)

(D.9)

(D.10)

(D.11)

(D.12)



D.1 Convective ALE form

Again, the constants equal the values from the SUPG terms.

td rV
Ccross,GT OéF’yAt OéF’}/At
Ccr055,| Q- a;f’tﬂ/ngZﬁXijAt o - 7_’}/I/XGBAzt (D.13)
Ccross,C O[F’}/At ' awf%/lgzzﬁxaeFA’:At OéF’}/At ' 7-I>/I/X oAl
Ccross,D VOKF’)/At ] aAj:,\\zléZ:f-XaeFA;At VO‘F'VAt ) 7_l\\/I/XGBAt

Linearisations of the momentum equation with respect to pre ssure

The terms to appear in the pressure block of the linearisaifdthe momentum equation are

given by

= —Cop
—Clsacc,p
+Csupc,p
—Clross,p
+CRey,p
+CRey,p

( ORy, ) ]
h,n+1
B )

3-(A—1)+k,B

(VN3 -e), NA)Q(th)
(

(VN -ep),(u-V) NA)Q(th)

ﬁku (VNB ' VNA))Q(tn+1)

(

(

((VNg-ex),(c-V) NA)Q(tn+l) X | X
(=i (VNB - €m) Jim, Na) g1y
(
(

M| F
X | X
X | X

RNI® | ®
RNI® | ®

(D.14)
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D Linearisation schemes for residual-based VMM

Constants are given by

td rv
CG,p 1 1
C T’tﬂ/xem /
a .
sacc,P M aMT,\\erAt—kaF*yAt
Aty OB VXBAL
C ! T
SUPG,P OC]MTRA/XGAtJFOCF'YAt M
C apy At o8t LN
cross,P aA{TRA/XGAt+aF’YAt M
C apy At o8t LN
Rey,P aM-r,\\zxeAt+anyAt M

Linearisations of the continuity equation with respect to v

The linearisation of the continuity equation with respectelocities yields

elocities

OR,
auh,n—i-l ) M FIN
= D1 A3.(B-1)+
= Cg,cont (VNB - €y, NA)Q(tn+1) X | X | X
+Cpspa,| (Np; (VN4 - ez))Q(th) X | X | X
—|—Cpsp(;‘c ((C : V) NB, VNA . el)Q(th) X | X | X
+Cpspac  (Np (X, Jmt) s VNA) gmiy X
— _ 32NB> . . )
CpspG,p (E] oa? ) VN4 - ¢ Q) X | X
—Cpspep  _: ( PNp (W Ny - e-)) X | X
' J axja‘rl7 J Q(tn+1)
with constants
td rv
CGycont ’yAt ’}/At
INBEVEN
Cpspa, | o - aM:h\A/xteANlJramAt ang - Ty EA
Ap. VXOAL
Cpspa,c| apyAt- aM:MxeAMtMMAt apyAt - 7 @A
At IXOAL
Cpspc,p| vapyAt - ab’{:&/xgﬂwﬂm vapyAt - T8t
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D.2 Conservativé&EULERIan form

Linearisations of the continuity equation with respect to p ressure

The system matrix is completed by the linearisation of thetioity part with respect to the
pressure.

< a& ) M|F|N
Ophn+l ol 4z (D.18)

= Cpspg,p (VNB;VNA)Q(tnﬂ) X | XX

This part is related only to the PSPG stabilisation. TheeaeBge constant reads

td rv
D.19
e ALY OAE VXBAL ( )
PSPG,P aMT,\\jxeAt+aF“/At M

D.2 Conservative E ULERIan form

The conservative form differs from the convective form oimya slight modification of the
weak form of the momentum equation, see subsections 4.45an3. Thus, linearisation
terms related to the continuity equation do not change wapect to the expressions given
in section D.1. They can simply be taken from that sectionwitichot be repeated here again.
Linearisation terms for the momentum part in the conseredtrm are defined in the following.

Linearisations of the momentum equation with respect to vel ocities

The first terms to appear on the velocity block of the momenaguation part of the matrix are
of GALERKIN type. If a time-dependent subgrid approximation is usety, i inertia term can
be treated by a rescaling, all other terms have been inesjlgt parts and do now appear with a
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D Linearisation schemes for residual-based VMM

GALERKIN and a subgrid acceleration contribution.

(ﬁ) ] M| F|N

dalml ()] 3.(A=1)+k,3-(B—1)+1

= Csaccaall Okt (NB, Na)ggni) X | X | %
—Coac O (N, (u-V) NA)Q(tn+l) X | x| X
—Cgalc ((u : ek) , Np (VNA : ez))Q(th) X
—Csaccc O ((w- V) Np, NA)Q(th) X | x| X (D.20)
—Csacec (N Jki, Na)ggner X
+Cap O (VNB; VNa)gini) X | x| x
+Cgap (VNp-e),(VNa-e))gpnny | X | X | X
+Csace,D (f;mil )Q(tnﬂ) X | x
+Csaccp Ok (Zj a;TN?B, NA> o) X | x

Constants are given in the following table:

td rv
. apyAt
CsaccGal,l am - BT — Qn
Cagaic apyAt apyAt
a8t / (D21)
M
Csace,c apyAt - an XA L A
CGalp vapyAt vapyAt
C A ny /
v .
sacc,D | VapapyAt X LAt

The LSIC (grad-div) stabilisation is the same as for the egtive case.

( 0L, ) M|F|N
damt J (D.22)

3-(A—1)+k,3-(B—1)+1
+=Clsic ((VNp-e),(VNy- ek))Q(tnﬂ) X | X | %

The required constant is essentially the same in the coioveaitand time-dependent approach.

td rv

CLSIC ’)/At i TgX@At ’}/At i Té/XEBAt

(D.23)
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D.2 Conservativé&EULERIan form

Further contributions to the first matrix block arise from BG stabilisation.

ORy,
dahn+l | MIFIN
= (D] 3.(A=1)+k,3-(B—1)+1
+=Csupc) 0w (N, (U V) Na)ggnin X | X | x
+CSUPG,C 5kl ((u . V) NB, (u . V) NA)Q(th) X X | X
+Csupc,c (NgJgr, (u - V) NA)Q(th) > (D.24)
9°N
—CSUPG,D (Waiz’ (U, . V) NA)Q(tn+1) X X
9N
_CSUPG’D 6kl (Z] a’”?B’ (u . V) NA) Q(tn+1) "
—Csupa,T (uk, Np (VNA el))Q(thrl) X

They and the following RYNOLDS stress terms are equivalent to the terms in the convective
approach. The required constants are collected in theWoilptable.

td rv
a A TVX@At
CSUPG,I Qpg - aMfV’Z(GZt_i_a At Qg e TRA/XQBM
a A TVX@At
CSUPG,C OéF’}/At . aMFvP;etAt_i_a Y OéF’}/At VXEBAt (D25)
@ A TVXeAt
Csupe,p| vapyAt - aAIFV’Z(etAt_’_a e vapyAt - Ty At
Csupc,T apyAt apyAt
The first half of the linearisation of theERNOLDS stress term is
OR.,
(aah,n-l-l) ] M| F
= ] 3.(A=1)+k,3-(B—1)+1
+ = CReyI 5kl (NB7 (’E; ' V) NA)Q(tn+l) ®|®
+Creyc Ou ((€- V) Np, (- V) Na)guiy | ® | ® (D.26)
+CRey,C (NBJk’l) (a : V) NA)Q(tn+1)
92N ~
—CReyD (axkagl NA) o ®
_ 9*Np
Creyp 0 ( jo0x3 (%-V) NA)Q(tn+1) ®
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D Linearisation schemes for residual-based VMM

The remaining terms are

ORu

aah,n—i-l ) M F

= D1 3.(A=1)+k,3-(B—1)+

—|——CRey| (ukaN (VNA el)) Q(tn+l) e
+Creyc  (ur; ((w- V) Np) - (VNa-€))ggniy | @ | &
+CReyC <u1€,NB‘ (E] le VNA ej)))g(tn+l
92N

—CRreyp (uk’ (EJ 3%5}; (VN e ))Qt"+1 ®
~Croyo (T, (3, %) (VN ey )mnﬂ ®

(D.27)

Required constants are equivalent to the constants of tiR&GSlnearisation terms, as usual.

td rv
C Rey, Qg e a;fvléi:faef v Qe TI\\ZX DAL
Creyc| arpYAt- aFviétA:_v:jFA; x| @ FYAL - T ®At
CRey,p | VapYyAL - aFvlgtA::ijf ~ | varyAt - TR BAL

Linearisations of the cross stress terms have changed argivan in the following:

(),
agh,n—i-l Q)

+ = _Ccross,GT 5kl
"‘Ccross,l
"‘Ccross,c
+Ccross,C

_Ccross,D

_Ccross,D
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3-(A=1)+k,3-

(B—1)+

(N3, (@ V) Na)gguony

(ug, Ng (VNa - el))Q(t”+1)

(wk, (w- VNg) (VN4 - el))Q(th)

<uk, Np (Z zgﬁg))mtm)
<Ulmzm *Ng aNA)

OxmOx; Oxm Q(in+1)

82Np ON 5
Uk, Zm 0x2, ) ( ox; Q(nt1)

&
&

(D.28)

(D.29)



D.2 Conservativé&EULERIan form

Once more, the constants equal the values from the SUPG.terms

td rV
Coross,GT apyAt apyAt
Clross, ang - a;fﬂé’g:xjgm Qpp - TUX@AL
C(cross,C O‘F'YAt : aFvlgtA:ixaeA’:At aF'YAt TVX DAL
Cerossp | vapyAt - AQFJ@ZT_V:CY@A; — | vapyAt - oAt

Linearisations of the momentum equation with respect to pre

ssure

(D.30)

The terms to appear in the pressure part of the linearisaticdhe conservative form of the
momentum equation are given by

= —Cgp
—Clsacc,p
+Csupc,p
+Clross,p
+CRey,p
+CRey,p

( ORy, ) ]
h,n+1
B )

3.-(A—1)+k,B
Np, (VN4 - €r))qun

(
((VNp - er), Na)gn+)
(
(
(
(u

u-en), (VNg - V) Na)guosn)
VNB ek) (u . V) NA)Q(tn+l)
uy, (VNg - VNA))Q(M+1)

(
(VNg-ex), (uw- V) Na)guniry | X | X | X
(
(

RNI® | ®
RI® | ®
X

(D.31)
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D Linearisation schemes for residual-based VMM

The only modified contribution is the one connected to thessiress term. Constants are given
by

td rv
Cep 1 1
C SYXSAL /
oy - M
sacc,P M aMTh\AlxeAt-i-aF’yAt (D.32)
At IXOAL
C ARYALTy 7_VX PAL
SUPG,P aM-r,\\jxeAt—i-apfyAt M
C ap’yAt-T,:A/xeAt 7_VX DAL
cross,P (X]\,{T,\\ZXGAt-i-OAF’yAt M
C ap’yAt-T,\\zxeAt 7_VX DAL
Rey,P Oczxfﬂ,tn/xeAt-FOtF’yAt M )

as before.
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E Iterative solution of the linear
problem

A central part of the finite element approximation procesa @fiid problem is the solution of
the linear system (3.127). Although this linear system @rsg, it is usually very large. An
efficient way to compute solutions for such problems is toitesative solvers in combination
with suitable preconditioners. An overview of contempgraerative solution procedures can
be found in 3AD andvAN DER VORST[185].

The iterative method used for the solution of nonsymmetrabfems within this work is a
KRYLOV subspace method, the generalised minimal residual apgp(@GdRES) by 3 AD and
ScHULTZ [184]. Compared to other methods, like the bi-conjugateligrat stabilised method
(Bi-CGSTAB) by vaN DER VOsST [213], the GMRES approach has certain disadvantages con-
cerning memory consumption and computational cost. Neekss, it provides a more robust
method and thus is preferred for applications as they arsidered in this thesis. Section E.1
will provide a short introduction to the GMRES approach.

An obvious requirement for the applicability of a convenid GMRES method is that the
linear system (3.127) is not singular. Unfortunately, fargdy DIRICHLET bounded problems as
they are discussed in chapter 5 and section 6.1, this wilbathe case using the standard choice
for SI’} according to equations (3.108) and (3.109). In the same walyeacontinuous pressure,
the discrete pressure increment will be defined only up torstamt. Nevertheless, as already
noted in section 3.2, the continuous pressure is uniqudigekbon a factor space for the pressure
as given in (3.54). On its discrete counterpsft™s" the equivalence class of the discrete
pressure is also defined uniquely, and thus the projectidheofinear equation system into the
corresponding factor space & has full rank. In section E.2, a modified preconditioned
GMRES procedure for the iterative solution of the projectad the linear system (3.127) will
be described. The solution procedure is based on the fadh&ernel of the system matrix is
known to be spanned by the vector

[0 forl <k <npd

(Q)H = { 1 forﬁiof+ 1<k< ﬁiof+ ngof (E.1)

The basis vector in equation (E.1) is one only for pressuggests of freedom and zero for all
other degrees of freedom. The modifications to the standardtive solution procedure are
encouraged by a paper byoBHEV and LEHoOuCQ [31] on the solution of the pure BUMANN
problem. Modified iterative solvers of this type are apgdieanot only to this special class
of fluid problems, but also for instance to insufficiently popged static structural problems.
The main advantage of this approach is that the effectivelibton number of the nonsingular
projected system is smaller than the condition number ofreesponding problem with the
singularity removed by the imposition of aRCHLET condition on the pressure in one point.
See the comments in the reference given above and the rassitbsection 6.1.2.
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E Iterative solution of the linear problem

E.1 A preconditioned GMRES procedure

In this section, a short overview of the basic principlesta preconditioned GMRES method
will be given. This overview is not meant to be complete, ibidy intended to provide the
necessary information to understand the modificationslihbe described in the following
section. The exact preconditioned GMRES implementati@d urs the computations presented
in this thesis is the one from th&ZTEC package [212] in combination with preconditioning
procedures provided by thdL package [89].

The following explanations will refer to a generic, nonsystnc, linear system in residual
form,

r=b-A.-xz=0. (E.2)

For the moment, the system matdxof size N x NV is assumed to be nonsingular. For an initial
estimate of the solutio®,, a corresponding initial residual

ro=b—-A.zx, (E.3)
can be computed. Based on this initial residual, a seriesafessive IRYLOV subspaces
K'=span{ry,Arg,..., A" 'ry} (E.4)

can be defined.

E.1.1 The GMRES method

The iterative GMRES method determines the approximatetisolw, = x, + z, in iteration
step: such that the incremegt;, minimises the norm of the residua) = b — A - x, on thei-th
KRYLOV subspace, i.ez, is determined as the minimum of the optimisation problem

. 2 . 2
min - r)?= min fr, - Az E5)
z, € K' z, € K' ' '

In the GMRES approach, the optimisation problem (E.5) itatesl as an equivalent minimisa-
tion problem onR? using an appropriate basis representatiodKéf This basis representation
is successively generated by an orthonormalisation psogssally referred to as ®NOLDI'S
method. The process is started with .

=0

l7oll
Given a KRyLov subspaces<’ with orthonormal basiw,, ..., v,, the new basis vector is de-
termined according to

(E.6)

v,

Vi =AY — Z (E;FA yi) Y, Viyg = Zit1 . (E.7)

Jj=1

The coefficient§H’), , = v A v, define an x i matrix. Due to the orthonormal construction
of the basi,, ..., »; and the definition of the KyLov subspace (E.4JH'),, = 0 holds for
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E.1 A preconditioned GMRES procedure

j > k+1,i.e the matrixH® is of HESSENBERGtype. Moreover, due to the orthonormality of
the basis functions, the scalar product of equation (E.) thie new basis vectar,_ , yields the
identity

Qi+1H = 2z‘T+1AEi = (Hiﬂ)

(E.8)

AR R

A hierarchy for the HEsSSENBERGMatricesH' and the definition of an extendedEHSENBERG
matrix H’ can be found in Figure E.1. In every iteration, the orthonalrbasis can be further-

Hi F\ Hi+1

AT (B, =(H) | =il

Figure E.1: The lSSENBERGMatrix H' of iteration: enlarged with an extra row containing the
only nonzero entry ﬁz‘+1H is called the extended #6SENBERGH". It constitutes
the first: columns of H .

more gathered in a matrix

vy | ... v, | RV (E.9)

= = =1

and everyz,; € K can be reexpressed using this basis and a coordinate refatisey, € R
z, = V'y, (E.10)

The optimisation problem (E.5) can now be restated as a$epstres problem for the coordin-
ates with respect to the orthonormal basis in the form

min |llz,]] - v, — A Vi)’ E.11
y, R’ . (E.11)

Using the matrix-equivalent to equation (E.7),
AVi=VHH (E.12)
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E Iterative solution of the linear problem

and the notation
zoll - vy = [zl - VT e, (E.13)

with the vectore, defined as the first column of thie+ 1) x (i + 1) identity matrixT+D>x+1)]
equation (E.11) is furthermore equivalent to

min ||z -1~ Hy, (E14)
y; R’
Here, the orthonormality of the basis functions was use@ onere in the form
(Vi+1>T Vitl — JE+Dx(+1) (E.15)

System (E.14) can be solved very efficiently by orthogorais¢formation using GENS ro-
tations. These rotations do not alter the norm of the expeds be minimised, but allow to
eliminate the entries dfi* below the diagonal oH’, so that the minimal solution can be de-
termined by a simple backward substitution. See for ing&8iwARz [188] for an algorithm.
Fromy,, the increment; and finallyz, can be recovered.

One of the drawbacks of the GMRES method which was alreadytiomed in the begin-
ning is the requirement to store theriKLOV basis vectord/¢, a process which is quite costly
in terms of memory. Furthermore, the computational cosstirup and solution of the least-
squares problem increases with the number of basis veetmisat the same time, the quality of
the orthonormalisation generated byrRoLDI's method diminishes due to round-off problems.
Thus, in practice, it is reasonable to limit the admissilte sf the KRYLOv subspace to a small
number of about 25-125. When reaching this iteration cahetcurrent KRyLov subspace is
dropped and rebuilt on the residual of the last iteratiome@all his procedure is known as restar-
ted GMRES. It decreases the robustness of the method, berttheless it is required to limit the
memory consumption of the algorithm. For these small dinmrssof the KRyLOv subspace,
the computational costs for the matrix-vector multiplioas involved in the computation of the
basis vectors and the determination of theS3ENBERGentries will be significant.

The GMRES method without a restart is guaranteed to termiatier N steps. Important
for practical application is that iA possesses an appropriate eigenvalue spectrum, a sufficient
convergence can be obtained in very few steps.

E.1.2 Preconditioned version

In order to improve the speed of convergence of the itergieeedure, the system can be trans-
formed into an equivalent system with a more favourable reigkie spectrum using a linear
preconditioning operatoM. Based on a RHARDSON iteration with relaxation factoejax,
this preconditioner is sufficient for the construction ottarsl-alone, iterative solver:

Ly =Xy + WrelaxVI ™" (b—Az,) (E.16)

Thus, the combination of preconditioning and the GMRES wettan not only be understood
as an accelerated version of the GMRES procedure but alsn ascalerated version of this
preconditioner-based solution process.
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E.2 Treatment of singular systems with known kernel

The following explanations are restricted to the case dfitrigreconditioning, the case that
is used in the computations of chapters 5—7. The right piditioned system corresponding to
equation (E.2) reads

(AM™)z=b orequivalenty r=b—- (AM )& =0. (E.17)

The solutionr can be recovered from the solutienof equation (E.17) by the application of the
inverse preconditioner, i.e

z=M"1z. (E.18)

In general, a preconditionévl can be considered as an approximation to the system matrix
A, for which the application of its inversel—! to a vector can easily be computed. A survey of
some preconditioning techniques for large linear systentdyding incomplete factorisations,
can be found for instance ineizI [28]. For high performance preconditioners, techniques
like incomplete factorisations or ASs-SEIDEL procedures are often employed as smoothers
in the framework of an algebraic multigrid preconditionEar a basic introduction to algebraic
multigrid, the reader might consulaEGouT [71], and for further explanations and references
KUTTLER [148].

Concerning the GMRES algorithm described above, the cleaimgeduced by the precon-
ditioning are very local. For the right-preconditioned t&ys, the KRYLOV subspaces are now
built using A M~! instead ofA, resulting in

K' = span {zo, (AM ™)z, (A M—l)“zo} . (E.19)
This definition is based on the initial residual
ro=b—-(AM")z,. (E.20)

Throughout the whole iterative & Lov procedure, only the inverse of the preconditioner is
required. This holds true for the wholerAIOLDI process (E.7) as well as for the recovery
of  from equation (E.18). Although the inverse preconditiohas a matrix representation,
it is usually not evaluated explicitly. The complete preditioned algorithm is summarised in
Figure E.2.

E.2 Treatment of singular systems with known kernel

As indicated before, the variational problem based on aefidimensional solution subspace
Sh x ngfes”i“e‘j corresponds to an equivalent problemR&R° /span {c}. The basis vectat is
required to satisfy the kernel property

Ac=0. (E.21)

Furthermore, the right hand side of the system, which cansseaated with a forcing, is as-
sumed to be orthogonal to the kernel
c’b=0. (E.22)
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E Iterative solution of the linear problem

1. Initialisation:

Choosex, and compute, =b — Az, andv, = ||""10H Ty -
2. lterate:
Fork =1,...,m and not converged do:
Do ARNOLDI process:
Forj=1,...,kdo:
(H),, = of (AM'yy)) fori=1,....5
Dy = AM ) - YL, (HY), v,

Qj+1H

-1
- Tk
v, = V.- (H )
Y1 Y1
I I < J+1,j

Solve the least-squares system

N 2
min|llroll - en — F'g, |
U, € R”

N 2
if H||£o|| ‘e — Hkka < TOLERANCE set converged

if converged otk = m

z, =z,+M " (Vi)

If converged exit with resulk,, else set

1

ml

and restart from beginning.

Figure E.2: Restarted GMRES algorithm. Note that theNALDI process can be simplified
according to the hierarchy described in Figure E.1.

The matrix and inverse preconditioner applications in théRES procedure above will now be
modified such that the algorithm computes a representatitteecequivalence class that solves
the variational problem o8” x ngfes“'de". This representative is selected such that the pressure
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E.2 Treatment of singular systems with known kernel

satisfies a certain algebraic condition, i.e

2w = ("), (p")" ) w =0. (E.23)

The weight vectow in this condition is honzero only for pressure degrees addmm, and it is
required to satisfy

cw #0. (E.24)

Possible choices for the weight vectar will be discussed below. Equation (E.23) is a linear
equality constraint on the pressure. An overview of potgritierative solution methods for this
kind of problem can be found inASNT-GEORGESet al [187]. The method that is preferred in
this work is to solve the system in an unconstrained settaiggua subspace projection method.

E.2.1 Choices for the weight vector

Equation (E.23) can be interpreted as a zero mean pressnd&ioo. The weight vector spe-
cifies the way this mean is evaluated. Several options asndielow.

e One possibility to define the weight vector is to define itssptge components as the
integral of the pressure basis functions over the completeain:

Sh . .
fQ(th) N ﬁﬁiof () de fornd'+1 <k <pdof 4 ngOf

K

0 for 1 < x < mdof
(w), = (E.25)

Due to the local support of the basis functions, the veatocan be evaluated and as-
sembled element-wise as it is usually done in finite elemeniss choice of the weight
vector constrains the integral mean of the discrete pressuzero:

_ N (@) (p") | de = " (x) d E.26
Lo |28 @ @), ) ta= [ e €20

¢ Another possibility to define the weight vector is to chodsdentical to the kernel basis
vector, i.e to set

w=c. (E.27)

This leads to point-based component averaging of the pressgtor:

dof
Tp

0=a"w = ("), (") )e=3 ("), (E.28)
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E Iterative solution of the linear problem

o A further option is to allow exactly one nonzero entry in theight vector:

b —dof —dof dof
(w), = { 1 foronesx withnS® +1 <k <70l + npo (E.29)

u
0 else

For this choice, the value at the corresponding node is sadrtm

0=2"w= (")’ (")) e= ("), (E.30)

u

Although this condition is identical to the imposition of ara DIRICHLET condition in
that point, it is still imposed within the subspace projestmethod and thus inherits the
advantages of this approach.

E.2.2 Projector definitions

The required discrete projectors are defined by

Pz)=2z - (f;f)g (E.31)
and
T
P (z) =z — éTi)w : (E.32)

Important properties of these projectors (E.31) and (Ea3@)

e c defines the kernel of the projectbr,

cw
P(Q):Q—(QTQ)Q—Q—Q—Q, (E.33)
and thusP projects out the kernel of matriX.
e The space spanned Bz is orthogonal to the weight vectas, i.e.
T T
T T _TTw T, LW
w' (P(z))=w <§ TTQ)Q) A P 0. (E.34)

In other words, if the projector is applied to a vectorthe result automatically satisfies
the linear algebraic constraint (E.23).

¢ w defines the kernel of the projectBr’,

w=0. (E.35)

cTw=0. (E.36)
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E.2 Treatment of singular systems with known kernel

E.2.3 Projected system of equations

Using these projectors, the projected version of the urgpréitioned system can be stated:

PTAPx =P"p.

(E.37)

The structure of this equation is very similar to a left arghtipreconditioning of the original
linear system. This allows to include the projector and thedposed projector very easily in
the framework of a preconditioned GMRES method by a moditicadf the preconditioner and
matrix call. The ‘forcing’ on the right hand side of the projed equation is orthogonalised to
the kernel according to projector property (E.36). Funthere, applying® beforeA makes sure
thatP” A P ¢ = 0 according to property (E.33). These properties restoraistency even in
cases in which the exact satisfactionof = 0 andb” ¢ = 0 is not provided due to numerical
problems in the set-up ok andb.
The corresponding preconditioned equivalent to the ptegeequation reads

P'r=P"b— (PPAPM )2 =0 (E.38)
with
z=PM . (E.39)

The projector in (E.39) in combination with property (E.3¥)sures that the result computed
by the preconditioned algorithm satisfies the linear etqyquabnstraint (E.23). For the projected
system (E.38), the KyLov subspaces are constructed based on the projected precoadit
matrix, i.e

K' = span {PTEO, (PTAPM™) P'ry, ...,
L (PTAPM ) PTEO} . (E.40)

This causes every vector in theRKLOV subspaces to be orthogonal to the kerpeh {c} of A
according to property (E.36). Thus, the minimisation peoh$ (E.5) and (E.14) are well-defined
and have a unique solution for the projected system evergththe matrixA is singular.

To sum up, the preconditioned GMRES procedure can be usextéonine a unique solution
of the projected problem as it is shown in Figure E.3. Thetsmhuwill be characterised by the
linear constraint (E.23). In a post-processing step, thaioed pressure can be shifted by an
arbitrary constant to obtain any other member of the reggeetjuivalence class. For an imple-
mentation, it is convenient to associate the applicatiothefprojectorP with the application
of the inverse preconditionévI~! and the application of the transposed proje@drwith the
application of the matribA. Although both projectors have a matrix representatiors, &dvis-
able to apply them as series of scalar products and vectos agrimdicated in equations (E.31)
and (E.32).
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E Iterative solution of the linear problem

1. Initialisation:
Choosez, and comput®?r, = P'b — PTAP z, andv, = m -PTr,.

2. lterate:
Fork =1,...,m and not converged do:

Do ARNOLDI process:

Forj=1,...,kdo:
(HY), = of (PTA(PM 'u,)) fori=1,...,;

Vj = PTA(PM'v)) -3, (Hk)iJQi
(), =
J+1j

-1
| o | (1
Vi Yin Py

Solve the least-squares system

2J’+1H

min [[[PTro|| - en — g |

g, € RY
~ 2
if [[|P7r|| - €1 — 'y, | < TOLERANCE set converged

if converged ok = m

z,, =z, +PM™ (Vi)

If converged exit with resulk,, else set

1
-PTp

z,=z,, P'r,=P'b-P"APz,, v, = B b n
T

and restart from beginning.

Figure E.3: Restarted GMRES algorithm for the solution & finojected problem. Again, the
ARNOLDI process can be simplified according to the hierarchy desdrib Fig-
ure E.1.
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