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Zusammenfassung

Die vorliegende Arbeit behandelt ein Finite Elemente (FE) basiertes Festgit-
terverfahren zur Simulation von dreidimensionaler Fluid-Struktur-Interak-
tion (FSI) unter Berücksichtigung großer Strukturdeformationen. FSI ist ein
oberflächengekoppeltes Mehrfeldproblem, bei welchem Stuktur- und Fluid-
gebiete eine gemeinsame Oberfläche teilen. In dem vorgeschlagenen Festgit-
terverfahren wird die Strömung durch eine Eulersche Betrachtungsweise be-
schrieben, während die Struktur wie üblich in Lagrangscher Betrachtungs-
weise formuliert wird. Die Fluid-Struktur-Grenzfläche kann sich dabei un-
abhängig von dem ortsfesten Fluidnetz bewegen, so dass keine Fluidnetzver-
formungen auftreten und beliebige Grenzflächenbewegungen möglich sind.
Durch die unveränderte Lagrangsche Strukturformulierung liegt der Schwer-
punkt der Arbeit auf der methodischen Beschreibung des Festgitterverfah-
rens für inkompressible und viskose Strömungen.

Die Fluidformulierung ist in zwei Schritte unterteilt: Im ersten Schritt wer-
den fiktiven Fluidgebiete, das heisst Gebiete mit überlappenden Fluid- und
Strukturnetzen, von dem physikalischen Fluidbereich entkoppelt. Dafür wird
mit Hilfe der eXtended Finite Element Method (XFEM) die Fluiddiskreti-
sierung mit sprungartigen Diskontinuitäten erweitert. Die Verwendung der
XFEM erlaubt eine scharfe Trennung zwischen fiktiven und physikalischen
Strömungsgebieten und vermeidet unnötige Fluidfreiheitsgrade in dem fik-
tiven Fluidgebiet. Besondere Aufmerksamkeit erfährt auch die Zeitintegra-
tion im Hinblick auf zeitveränderlichen Diskontinuitäten, die durch die Be-
wegung der Fluid-Struktur-Grenzfläche entstehen. Den zweiten Schritt bildet
die Kopplung zwischen dem physikalischen Strömungsgebiet auf dem orts-
festen Netz und der in Lagrangscher Betrachtungsweise formulierten Struk-
turoberfläche. Für eine drei-dimensionale Kopplung wird eine parameterfreie
und auf Variationsprinzipien basierende Formulierung vorgestellt, welche
prinzipielle Vorteile gegenüber alternativen Kopplungsverfahren bietet.

Schließlich wird die Integration des Festgitterverfahrens in eine bestehen-
de, parallele Multiphysics-Software beschrieben. Für diesen Zweck wird ein
Ansatz vorgeschlagen, welcher ein unabhängiges Oberflächennetz zwischen
Fluid und Struktur einführt. Die dadurch entstehende methodische und algo-
rithmische Modularität ermöglicht es, etablierte monolithische und partitio-
nierte FSI-Lösungsverfahren zu verwenden. Dies führt unter anderem dazu,
dass alle in der Software bereits implementierten Strukturmodelle für FSI-Be-
rechnungen zur Verfügung stehen. Exemplarische, dreidimensionale FSI-Si-
mulationen demonstrieren die Genauigkeit sowie die Vielseitigkeit des vor-
geschlagenen Ansatzes.



Abstract

The present work describes a finite element based fixed-grid method for the
simulation of three-dimensional fluid-structure interaction (FSI) under con-
sideration of large structure deformation. FSI is a surface coupled problem
where fluid and structure have a shared interface. In the proposed formula-
tion, the material motion of the fluid is described using the Eulerian formula-
tion, while the structure deformation is described by the Lagrangian descrip-
tion. The fluid-structure interface can move freely on the spatially fixed fluid
mesh such that no fluid mesh deformation occurs and an arbitrary interface
movement is possible. The Lagrangian structure formulation is not affected
by this FSI approach, hence, the focus of this work is on the description of a
fixed-grid approach to incompressible and viscous flows.

The fluid formulation is derived in two steps: In the first step, the fic-
titious domains, i.e. overlapping regions of fluid and structure meshes, are
decoupled from the physical flow. For that purpose, the fluid approximation
is enriched with step-like discontinuous functions using the extended finite
element method (XFEM). The application of the XFEM allows a sharp separa-
tion between fictitious and physical fluid domain and avoids the introduction
of unnecessary fluid degrees of freedom in the fictitious domain. For moving
interfaces, also the time integration receives special attention. The second step
is concerned with the coupling of the physical flow on the fixed grid with the
Lagrangian structure surface. For a three-dimensional coupling, a parameter-
free and weighted residual based formulation is proposed, which provides
deciding advantages over alternative coupling approaches.

Finally, the integration of the fixed-grid approach into an existing paral-
lel multiphysics software is described. A coupling approach is proposed that
introduces a separate interface mesh between fluid and structure. The re-
sulting methodical and algorithmic modularity allows to apply established
monolithic and partitioned FSI approaches. Subsequently, all advanced struc-
ture models that are implemented in the multiphysics software are usable
for fixed-grid FSI simulations. Exemplary three-dimensional FSI simulations
demonstrate the accuracy and versatility of the presented fixed-grid method.
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xii Acronyms

Coordinate systems

x spatial coordinates
X material or reference coordinates for Lagrangian description
ξΩ domain element coordinates
ξΓ boundary element coordinates
ηΩ domain integration cell coordinates
ηΓ boundary integration cell coordinates

Domains

Ωf fluid domain at time t
Ωs structure domain at t
ΓN boundary with Neumann conditions
ΓD boundary with Dirichlet conditions
Γi boundary treated with XFEM enrichments
ΓFSI fluid-structure interface

Fields and associated parameters

Fluid
u velocity
a acceleration
p pressure

˜
γ strain rate

˜
τ viscous stress

˜
σ Cauchy stress
p̄ dual pressure fields in hybrid element formulations
¯
˜
τ dual viscous stress fields in hybrid element formulations
¯
˜
σ dual Cauchy stress fields in hybrid element formulations
ûD prescribed Dirichlet velocity
b̂ prescribed body forces
ĥ prescribed Neumann boundary traction
ρf density
µ dynamic viscosity
ν kinematic viscosity
Re Reynoldsnumber

τe
PSPG stabilization parameter

τe
SUPG stabilization parameter

τe
LSIC stabilization parameter
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hV
e , hu

e length scales for stabilization

Structure
ds displacement
us velocity
as acceleration

˜
F deformation gradient

˜
E Green-Lagrange strain tensor

˜
S 2nd Piola-Kirchoff stress tensor

˜
σs Cauchy stress tensor
¯
˜
σs dual Cauchy stress field in hybrid element formulation
d̂s

D prescribed Dirichlet displacement
b̂s prescribed body forces
ĥs prescribed Neumann traction
ρs density

˜̃
C 4th order elasticity tensor
Cijkl components of the elasticity tensor

˜̃
C

Es Young’s modulus for linear elastic materials
νs Poisson ratio for linear elastic materials

Interfaces
di displacement
ui velocity
λ fluid-interface traction/Lagrange multiplier
µ interface-structure traction/Lagrange multiplier

Heat conduction
c temperature
q heat flux
q̄ dual flux in hybrid element formulation
ĉD prescribed Dirichlet temperature
f̂ prescribed heat source in domain
ĥN prescribed Neumann boundary heat source
κdiff diffusion/heat conduction coefficient

Others
κ ALE-fluid-structure traction Lagrange multiplier
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Operators

Fluid
ru residual of momentum equation
rp residual of continuity equation
FM weak form of stabilized fluid momentum equation
FC weak form of stabilized fluid continuity equation

Structure
rds structure momentum residual
S weak form of structure momentum equation

Discretization

Sets
S unconstrained fluid DOFs
C constrained fluid DOFs along implicit FSI surface
B FSI surface structure DOFs
D interior structure DOFs

Time discretization
θ one-step-theta factor for fluid velocity
θi one-step-theta factor for interface displacement
Θ general time factor for fluid time discretization
β, γ Beta-Newmark factors for structure displacement

Summary of notation for three exemplary fields
u velocity field
δu virtual velocity field
uh discrete velocity field
δuh discrete virtual velocity field
u global vector with velocity unknowns
δu global vector with virtual velocity unknowns
∆u global velocity increment in Newton iteration
ue element vector with velocity unknowns

p pressure field
δp virtual pressure field
ph discrete pressure field
δph discrete virtual pressure field
p global vector with pressure unknowns
δp global vector with virtual pressure unknowns
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∆p global pressure increment in Newton iteration
pe element vector with pressure unknowns

¯
˜
σ dual Cauchy stress field
δ ¯

˜
σ virtual Cauchy stress field

¯
˜
σh discrete Cauchy stress field
δ ¯

˜
σh discrete Cauchy stress velocity field
σ̄ global vector with Cauchy stress unknowns
δσ̄ global vector with virtual Cauchy stress unknowns
∆σ̄ global Cauchy stress increment in Newton iteration
σ̄e element vector with Cauchy stress unknowns

XFEM
N(ξ) polynomial shape function
φ(ξ) enriched approximation function
ψ(x(ξ)) general enrichment function
¬
ψ(x(ξ)) void enrichment function
ψ̌(x(ξ)) jump enrichment function

Shape functions, continuity between neighboring elements
Ns structure displacement, C0-continuous
Ni interface variables, C0-continuous
Nu fluid velocity, C0-continuous
Np fluid pressure, C0-continuous
Nσ̄ fluid element Cauchy stress, C−1-continuous
Nτ̄ fluid element viscous stress, C−1-continuous
N p̄ fluid element pressure, C−1-continuous

Counter
n time step
i partitioned FSI iteration step
k Newton-Raphson iteration step
e element
c integration cell
q integration points

Linearized system matrices
F stabilized fluid
S structure
K domain integrals including dual element terms
G boundary integrals including dual element terms
C coupling matrix resulting from element-wise condensation
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M rectangular mortar matrix
D square mortar matrix

Discrete residuals and force vectors
r global residuum vector
c
r residual vector resulting from element-wise condensation
f force vector

Element types with polynomial shape functions
line2 2 nodes, 1d, P1, linear
line3 3 nodes, 1d, P1, quadratic

tri3 3 nodes, 2d, P1, linear
tri6 6 nodes, 2d, P2, quadratic
quad4 4 nodes, 2d, P1, bi-linear
quad8 8 nodes, 2d, Q(20)

2 , quadratic serendipity
quad9 9 nodes, 2d, Q2, bi-quadratic

tet4 4 nodes, 3d,P1, linear shape functions
tet10 10 nodes, 3d,P2, quadratic shape functions
hex8 8 nodes, 3d,Q1, tri-linear shape functions
hex20 20 nodes, 3d,Q(20)

2 , quadratic serendipity shape functions
hex27 27 nodes, 3d,Q2, tri-quadratic shape functions



CHAPTER 1
Introduction

1.1 Motivation

Fluid-structure interaction (FSI) is the interaction of movable, rigid or de-
formable structures with internal or surrounding fluid flow. It is among the
most important and, with respect to both modeling and computational is-
sues, most challenging multiphysics problems. The variety of fluid-structure
interaction (FSI) occurrences is abundant and ranges from tent-roofs to micro
pumps, from parachutes via airbags to blood flow in arteries.

The numerical simulation of FSI effects is relevant in many fields of en-
gineering as well is in the applied sciences. For engineers, numerical sim-
ulations support and verify experimental experience and they may help to
reduce or avoid expensive experiments. It also guides the engineer to ex-
trapolate known behavior towards new limits, where experiments are for ex-
ample too difficult or too expensive. Examples range from wind effects on
new bridge designs, gliding in mars atmosphere to stent placement in human
aorta. In applied sciences, the numerical simulation is used to gain more in-
sight into otherwise not obtainable or observable data, for instance the effect
of the blood flow phenomena on aorta wall stresses or the pressure distribu-
tion inside opening airbags.

Because of such potential benefits, the development and application of
FSI simulation techniques has gained great attention over the past decades.
Current research areas are usually one or several of the following: the ad-
vancement from special purpose or problem specific approaches to general
approaches; the ability to capture complex systems involving multiple fluid
phases and multiple thin or bulky structures; the treatment of new physical
effects in addition to FSI effects; the development of mathematical founda-

1



2 Chapter 1. Introduction

Ωf ΩsΓi

dsu, p

Figure 1.1: FSI as a surface coupled two-field problem: fluid field Ωf, structural field
Ωs and the shared interface Γi.

tions; and robust and efficient implementations and software frameworks in-
cluding mesh generation techniques.

The present work concentrates on the formulation of a general FSI ap-
proach, which shall then be extended towards more complex physical prob-
lems. The particular physical problem of interest is the interaction of incom-
pressible flow with deformable, compressible or incompressible structures
undergoing large nonlinear deformation. Examples at the Institute for Com-
putational Mechanics at the Technische Universität München, where this the-
sis work has been performed, are the study of biomechanical effects in cardio-
vaskular systems, trying to understand the properties of red blood cells dur-
ing diseases or using mesoscopic FSI simulations to develop tools for medica-
ment delivery [Mayer and Wall, 2010]. Large structure deformation may also
lead to contact between approaching structures, which is an example for the
extension of the general approach developed in this thesis towards incorpo-
rating more complex physics [Mayer et al., 2010].

Fluid-structure interaction is a surface coupled problem, where fluid and
structure are coupled along a shared interface Γi. A general fluid-structure
interaction problem statement consists of the description of fluid and solid
fields, appropriate fluid-structure interface conditions at the shared interface
Γi and conditions for the remaining boundaries of fluid and structure, respec-
tively. A sketch of this setup is shown in Figure 1.1.

1.2 Principal approaches to FSI simulations

FSI approaches can be distinguished by various differentiating factors, for ex-
ample by single field formulations, coupling schemes or discretization tech-
niques. Among these factors, a key aspect is the formulation to describe the
material motion in each participating single field. Hereby, the choice is be-
tween the Eulerian, the Lagrangian, and the arbitrary Lagrangian Eulerian
(ALE) formulation.
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For large deformation of structures, many finite element (FE) formulations
use the Lagrangian approach to describe the material movement. If severe
deformation occurs, an ALE structure formulation helps to delay remeshing
and is used, for example, in simulations dealing with plastic or visco-elastic
behavior. Reference [Belytschko et al., 2000, chap. 7] contains an overview on
such ALE approaches for structures.

The description of the flow field in deforming fluid domains in many re-
search and commercial codes is based on the ALE method, which is usually
used in combination with the FE method. This approach goes back to early
works like [Belytschko and Kennedy, 1978; Belytschko et al., 1980; Donéa
et al., 1977; Hirth et al., 1974; Hughes et al., 1981; Noh, 1964]. The ALE ap-
proach is also present in recent fixed-grid methods as in [Codina et al., 2009].
The essential feature of ALE-based methods is that the fluid field is formu-
lated and solved on a deforming grid. The fluid grid deforms such that the
grid surface is aligned with the fluid-structure interface, while the interior of
the fluid grid is smoothed to preserve the fluid element quality. The advan-
tage of ALE-based methods is that the fluid flow can be described in time tak-
ing the deformation of the observed fluid domain into account. The limiting
factor however is that severe fluid-structure interface movement can distort
the fluid mesh in such a way that remeshing is inevitable and subsequent
projections between meshes may deteriorate the accuracy of the simulation
of transient effects.

Combinations of ALE and Eulerian fluid formulation have been used,
where the fluid field is split into moving and non-moving grids. The de-
forming fluid grid is attached to the structure surface and the already men-
tioned ALE-fluid-structure coupling techniques are applied. Away from the
structure surface, the moving grid is coupled to the fixed grid, for which var-
ious strategies can be found in literature. An example for so called over-
lapping fluid decomposition approaches is the Chimera method, which was
originally introduced for the simulation of rigid body-fluid interaction and to
simplify mesh generation [e.g. in Houzeaux and Codina, 2003; Meakin and
Suhs, 1989; Steger et al., 1983; Wang and Parthasarathy, 2000]. An extension
to treat flexible structures is presented in [Gamnitzer and Wall, 2006]. An ex-
ample for non-overlapping approaches is the sliding mesh technique [Behr
and Tezduyar, 2001, 1999] and weak fluid-fluid coupling approaches based
on explicit surfaces [Bazilevs and Hughes, 2008; Gartling, 2005] or extended
finite element method (XFEM) techniques [Gerstenberger and Wall, 2008a;
Wall et al., 2008] (see also Section 6.5.2). The common property is that an ALE
grid around the structure can freely follow the structure deformation, hence,
smallest limitations to rotational and translational deformation modes apply.
However, the remaining ALE grid hampers a straightforward treatment of
large local structure deformation and the simulation of approaching or con-
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tacting objects.
The Lagrangian approach to fluid flow is used in meshfree methods like

the smoothed particle hydrodynamics (SPH) [Gingold and Monaghan, 1977;
Lucy, 1977; Monaghan, 1992, 1994] and the method developed in [Idelsohn
et al., 2003] as well as in mesh based methods like the particle finite element
method (PFEM) [Idelsohn et al., 2004, 2006]. These approaches are appealing
since complex phenomena like FSI as well as free surface and two-phase flows
can be treated with algorithmic ease. In Lagrangian fluid methods, field vari-
ables are approximated using nodal unknowns and meshfree kernels or FE
approximations are generated at each time instance. However, a constantly
changing approximation and changing mesh with an otherwise fixed set of
nodes leads to changing discrete velocity and pressure fields. Here, conser-
vation of momentum and mass and the related surface identification requires
special consideration.

Finally, so called fixed-grid methods use the Eulerian formulation to de-
scribe the fluid deformation. Prominent fixed grid methods for incompress-
ible flow include the immersed boundary (IB) method [Peskin, 1972, 1977;
Viecelli, 1969, 1971] and its many derivations as described in [Lee and LeV-
eque, 2003; LeVeque and Calhoun, 2001; Mittal and Iaccarino, 2005; Peskin,
2002; Wang and Liu, 2004; Zhang et al., 2004]. An FE approach with many
similarities to the IB method is the distributed Lagrange multiplier / fictitiu-
ous domain (DLM/FD) method [Baaijens, 2001; De Hart et al., 2000; Glowin-
ski et al., 1994, 1999; van Loon et al., 2005; Yu, 2005]. Other fixed-grid or
Cartesian-grid methods - often using finite difference (FD) or finite volume
(FV) methods - are, for instance, presented in [Arienti et al., 2003; Cirak and
Radovitzky, 2005; Enright et al., 2002; Fedkiw et al., 1999; Hong et al., 2007;
Löhner et al., 2004; Shi and Phan-Thien, 2005; Tseng and Ferziger, 2003]. Re-
cent reviews can be found in [Ingram et al., 2003; Löhner et al., 2008; Mittal
and Iaccarino, 2005]. The key point of fixed-grid methods is that the fluid-
structure interface can deform independently of any fluid element edges or
grid point locations. The fluid-structure interface divides the fluid domain in
a physical flow field and a fictitious field. The latter has no physical meaning
to the FSI problem and requires special treatments to avoid the introduction
of unphysical effects. For thin structure models like beams and shells, the
interface separates independent fluid domains such that pressure and stress
fields are discontinuous across the interface.

The techniques for coupling fluid and structure depend on the chosen sin-
gle field formulation, but can nevertheless be sorted into two groups, namely
monolithic and iterative couplings. Monolithic schemes consider the entire
fluid structure system and solve for all involved degrees of freedom in one
solver call. In contrast, iterative techniques allow to solve fluid and structure
fields separately and forces and surface displacements are exchanged itera-
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tively until an equilibrium state is reached. Both techniques belong to the
strong coupling schemes. In contrast, loose coupling schemes solve the fields
separately without iterating between the fields. For incompressible flow and
lightweight structures, only strong coupling schemes can be applied and are
exclusively used within this work. The fluid-structure coupling techniques
used in this work are covered in detail in [Förster et al., 2007; Küttler and
Wall, 2008, 2009; Wall, 1999].

1.3 Objective

For complex FSI problems, fixed grid methods have very inviting proper-
ties, namely the elimination of fluid mesh updates, fluid mesh distortion and,
eventually, remeshing of the fluid domain due to the fluid-structure interface
movement. More specifically, due to the independent interface description,
optimally shaped elements or computational grids can be used and no mesh
distortion occurs. In addition, the mesh generation is simplified, as any suf-
ficiently fine Cartesian (i.e. axis-aligned) mesh can be used as initial mesh
for an adaptive computation. However, a general and robust FE fixed-grid
formulation is still missing. Hence, a three-dimensional fixed-grid FSI imple-
mentation is sought within this thesis to allow the mentioned complex FSI
simulations.

1.3.1 Requirements

The following enumeration highlights requirements that arise when treating
fluid-structure surfaces independent of the fluid grid.

Thin and volume occupying Lagrangian structures The structure defor-
mation should be modeled using the Lagrangian formulation to allow reuse
of available structure implementations. The method should be able to deal
with both reduced structures like beams or shells and volume occupying
structures. For reduced structure models pressure and strain rate disconti-
nuities are present in the flow and need to be treated properly. In contrast
to this structures, volume occupying structures introduce a fictitious domain
that needs to be decoupled from the physical flow. The flow discontinuities
that are present in both kinds of application may be treated using unified
techniques.

Surface coupling Fluid-structure interaction is a surface coupled prob-
lem, where kinematic and force conditions are enforced only along the shared
interface. In general, a volumetric interaction between structure and fictitious
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domain limits the generality and accuracy of a fixed-grid method: First, the
incompressibility constraint from the fluid carries over to the structural do-
main such that only incompressible structures can be computed. Although
this might not be a limitation for biomechanical applications, where often
water-filled and therefore incompressible tissues are considered, it is a limi-
tation in many engineering applications, where materials and structures de-
form in a compressible way. Second, the double existence of fluid and struc-
ture requires the modification of the structure momentum equation to sub-
tract the fictitious inertial and viscous forces introduced by the fictitious flow
[see e.g. Wang and Liu, 2004; Yu, 2005; Zhang et al., 2004]. In other words, the
FSI algorithm requires the modification of the structure momentum equation
in the whole structure domain.

Volumetric interaction between fluid and structure also implies that fluid
and structure degrees of freedom (DOFs) are present in the FSI system, where
only structure unknowns should be present. If large portions of the computa-
tional fluid domain belong to the fictitious domain, the extra computational
solution cost can not be ignored. Hence, from efficiency and computer mem-
ory point of view, the computation of fictitious fluid unknowns should be
avoided. Removing fictitious fluid unknowns in turn implies surface cou-
pling.

Represention of kinematic/stress discontinuities For volume occupy-
ing structures as considered in this thesis, there is a sharp interface between
physical and fictitious domain. Hence, a discontinuity in the primary vari-
ables like pressure and velocity or in the derivatives like strain rate or viscous
stress exists. Such a discontinuity has to be modeled correctly, otherwise mo-
mentum and mass conservation in the fluid domain deteriorates. The sim-
ulation of shell-like structures separating two fluids, where only one fluid
is treated numerically, also requires a clear decoupling of the separate fluid
domains.

Advancing the interface in time Combining the Eulerian formulation
with moving boundaries requires special considerations, since the Eulerian
formulation implies a fixed domain with time-independent boundaries. This
discrepancy introduces numerical effects like unknown old time-step values,
if the moving boundary reveals nodes that have not been within the fluid
domain at the old time-step. The Ghost-fluid method as summarized in [Os-
her and Fedkiw, 2003] acknowledges many of the potential problems in the
context of FD methods. For comparison, the ALE fluid formulation in combi-
nation with classical finite difference time discretization allows a continuous
description of a moving reference independent of the material.
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Mesh size independence Approaches like the IB method often require
a certain ratio between fluid and solid mesh size at the interface to avoid ar-
tificial leakage through the impermeable structural surface. This effect has
also been reported when Lagrange multiplier techniques are inappropriately
used, for example without proper numerical integration. General and robust
methods should allow an independent mesh size for each of the simulated
fields. In addition, no limitations should apply to the thickness of the struc-
tures with respect to the fluid field grid size. This allows to model thin, but
volume occupying structures instead of reduced beam or shell models.

Most methods in literature do not address all these points together such
that the accuracy or the robustness of the FSI approach deteriorates. Some re-
sulting shortcomings are traded on purpose to achieve algorithmic simplicity,
which is sometimes inevitable to keep implementation and computation costs
within given time or financial constraints. Consider for instance the compu-
tationally demanding simulations reported in [Peskin, 1977] more than three
decades ago. With the introduction of faster computers with cheaper mem-
ory, it is possible to revisit many existing fixed-grid approaches and make
them more accurate and robust.

In the following, the above considerations serve as a guideline for the de-
velopment of a new fixed-grid approach.

1.3.2 Proposal for an XFEM and Lagrange multiplier based
fixed grid method

This thesis describes a surface coupled FSI approach between a standard La-
grangian structural description and an Eulerian formulation for the fluid. The
Lagrangian formulation for the structure is used as usual, such that the atten-
tion is on the fixed-grid fluid formulation and the combination with estab-
lished FSI schemes.

The fluid formulation is obtained in two steps: First, the fictitious fluid
domain is decoupled from the fictitious domain and, second, the remaining
physical flow is coupled to the fluid structure interface. The fictitious fluid do-
main is completely eliminated by using features of the XFEM. The XFEM was
originally introduced for the simulation of cracks and other discontinuities in
structures [Belytschko and Black, 1999; Moës et al., 1999] and has been, close
to the topic at hand, extended to problems of two-phase flow [Chessa and
Belytschko, 2003] and Stokes flow/rigid particle interaction [Wagner et al.,
2003]. The basic idea for the FSI problem is to use discontinuous velocity and
pressure fields to decouple mass and momentum balance of the physical and
fictitious flow regions. The XFEM approximation allows also to remove all
fluid unknowns from the fictitious fluid domain.
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The fluid-structure coupling takes place only along the shared interface
and only between the implicit surface of the physical flow and the surface
of the structure mesh. For this purpose, a new stress-based technique for
imposing constraints along implicit fluid boundaries has been developed,
which has been presented in [Gerstenberger et al., 2008] and [Gerstenberger
and Wall, 2010]. The weak coupling is applicable to three-dimensional prob-
lems, allows independent fluid and structure mesh sizes and requires no user-
defined parameters.

For time-discretization, classical finite difference schemes are employed.
Although space-time methods may provide a consistent way of describing
implicit interfaces in space and time as suggested in the context of XFEM
in [Chessa and Belytschko, 2004; Fries and Zilian, 2009] and more specifi-
cally for XFEM-based fluid-structure interaction (FSI) methods in [Zilian and
Legay, 2008], it essentially requires a partial or even a full rewriting of existing
FSI software towards 4D space-time discretization [see e.g. Behr, 2008]. This
conflicts with the goal of having a working fixed-grid FSI code by the time of
this writing, hence traditional time-stepping schemes have solely been con-
sidered.

The fluid-structure coupling is based on the monolithic and partitioned
FSI schemes presented in [Küttler and Wall, 2008; Wall, 1999]. The strict
surface coupling between fluid and structure allows to reuse coupling al-
gorithms that are originally developed and implemented for ALE based FSI
schemes. In a partitioned FSI framework, the fixed-grid fluid implementation
can be integrated into existing FSI codes as a replacement for ALE-based fluid
implementations. The proposed FSI approach is implemented in the multi-
physics code Baci that is developed at the Institute for Computational Me-
chanics at Technische Universität München. The parallel framework is based
on the Trilinos open source library [Heroux and Willenbring, 2003; Heroux
et al., 2005] that supports communications and computations on parallel dis-
tributed memory computers.

With this XFEM based fluid-structure interaction (XFSI) approach, in prin-
ciple all of the mentioned critical points can be addressed. Most prominently,
there is a sharp separation between physical and fictitious fluid domain, there
is no influence of the fictitious fluid domain on the FSI simulation, fluid and
structure are coupled only along the shared surface, and fluid and structure
discretization techniques and implementation are completely independent
with respect to material models, approximation and mesh sizes. For a suf-
ficient large fictitious fluid domain, most of the unnecessary fluid unknowns
can be removed and the linearized systems allow the application of iterative
solvers.
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1.4 Outline

The treatment of moving boundaries on fixed-fluid grids with consideration
of the subsequent coupling to the structure surface is the main research di-
rection of this thesis. The layout of this work is oriented towards increasing
complexity of the fluid formulation, starting from the fluid finite element for-
mulation and basic XFEM techniques and ending with moving boundaries
and the FSI formulation.

In Chapter 2, the governing equations for fluid and structure and the fluid-
structure coupling are reviewed. In addition, Section 2.1 and Section 2.2, the
fluid and structure discretization in space and time without consideration of
FSI are introduced. In Section 2.3, a fluid-structure formulation with an ad-
ditional interface mesh is proposed that allows to separately treat the fluid-
interface coupling and the interface-structure coupling in the remainder of
the thesis.

Chapter 3 concentrates on numerical techniques for domain decomposi-
tion and weak constraints that are used for the fluid in subsequent chapters.
In particular, the XFEM is reviewed using the Poisson equation as example.
Beyond the review of existing coupling techniques, a new method for enforc-
ing interface constraints is introduced. The method is developed for the spe-
cific needs of the Navier-Stokes (NS) equations, but can be applied to other
physical problems as well.

The treatment of implicit interfaces for the fluid is described in two steps:
the transient formulation for non-moving interfaces is introduced in Chap-
ter 4. Here, two principle techniques for adding constraints along implicit
fluid boundaries are derived and discussed. The chapter concludes with
an in-depth numerical analysis of the XFEM and Lagrange multiplier tech-
niques. Chapter 4 also highlights implementation details since considerable
modifications to established parallel FE codes are usually required. Primary
aspects are the interface treatment as additional mesh, the management of a
constantly changing number of unknowns and the effect of distributed par-
allelism on the fixed-grid FSI approach. The extension to moving boundaries
including the treatment of moving impermeable walls is given in Chapter 5.
In both chapters, only the fluid-interface system is considered to strictly sep-
arate structure and fluid formulation.

Chapter 6 combines fluid and structure fields into the coupled FSI equa-
tions. First, the structure-interface coupling using established Lagrange mul-
tiplier/Mortar techniques is described. Subsequently, the monolithic and par-
titioned FSI algorithms for both the classical Lagrange multiplier and the pro-
posed stress Lagrange multiplier are presented. Along, algorithms for the
numerical solution of the partitioned, linearized system are presented. Chap-
ter 6 also contains considerations on improving the flow solution near the
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fluid-structure interface by using h-adaptivity and boundary layer meshes.
The flexibility of the proposed fixed-grid approach is demonstrated on three-
dimensional FSI examples including an illustrative FSI contact problem.

The conclusion in Chapter 7 reviews the key steps necessary for an ac-
curate fixed-grid method. It also highlights requirements that are still not
treated properly and suggests improvements with respect to robustness and
performance, such that the fixed-grid method can be used for realistic simu-
lations.

Appendix A demonstrates, how the new stress Lagrange multiplier ap-
proach is applied to linear elastic problems. Although no computations have
been performed for linear elasticity, the elastic formulation was included to
support the transition from the scalar diffusion in Chapter 3 to the incom-
pressible Navier-Stokes equation in the Chapter 4. Appendix B demonstrates
the generation of the reference solutions for the Jeffery-Hamel flow, since the
required procedure requires the use of computer algebra systems and has not
been described in literature so far.



CHAPTER 2
Governing equations and finite

element formulations

Within this chapter, the modeled physics for fluid and structure field are in-
troduced. In addition, the FE formulations for fluid and structure without
consideration of FSI effects are given. The treatment of each single field
is presented in much more detail in standard finite element method (FEM)
literature to which references are given in each section. Subsequently, the
fluid-structure coupling conditions are introduced and a new fluid-interface-
structure formulation is proposed that allows a modular treatment of cou-
pling aspects in the subsequent chapters.

2.1 Fluid

2.1.1 Field equations

For the fluid domain Ωf with the position vector x, the conservation of mo-
mentum is

ρf D u
D t

= ∇ ⋅
˜
σ + b̂f in Ωf (2.1)

Here, the material time derivative of the fluid velocity u times the fluid den-
sity ρf is balanced by the divergence of the Cauchy stress tensor

˜
σ and exter-

nal, velocity independent forces b̂f. Mass conservation for an incompressible
fluid is expressed by

∇ ⋅ u = 0 (2.2)

11
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For incompressible, viscous flows, the Cauchy stress is split into pressure p
using the unit or identity tensor

˜
I and the deviatoric stress tensor

˜
τ given as

˜
σf = −p

˜
I +

˜
τ (2.3)

Within this work, the Newtonian material law is solely used, which defines
˜
τ

as

˜
τ = 2µ

˜
γ (2.4)

where µ denotes the dynamic viscosity and
˜
γ refers to the strain rate tensor

given by

˜
γ =

1
2
(∇u + (∇u)T) (2.5)

The also used kinematic viscosity is defined as ν = µ/ρf. Wherever the context
allows a clear distinction between fluid and structure variables, the super-
script ⋅ f is omitted on primary and derived field variables.

The specific form of the material time derivative depends on the choice of
the reference system that is employed to formulate the problem. The choice
of a specific reference system is dictated by the way the moving interface is
treated. There are basically three alternative reference systems: the Eulerian,
the Lagrangian and the ALE formulation. For the fixed background grid as
used in this work, the Eulerian formulation is used. In this case the material
time derivative becomes the sum of a partial time derivative and a convective
term

ρf ∂ u
∂ t

∣
x
= −ρfu ⋅ ∇u −∇p +∇ ⋅

˜
τ + b̂f in Ωf (2.6a)

∇ ⋅ u = 0 in Ωf (2.6b)

The partial time derivative is the acceleration a of the fluid material point and
is defined by

∂ u
∂ t

∣
x
= a (2.7)

Boundary conditions away from the fluid-structure interface are either of
Dirichlet type or Neumann type. They are defined as

u = ûD in Γf
D (2.8)

˜
σf ⋅ nf = ĥf in Γf

N (2.9)

The corresponding boundary sections are denoted by Γf
D and Γf

N, respectively.
The superscript ⋅̂ above a variable indicates a known and given field.
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2.1.2 Discretization

Time discretization

In this thesis, two different time discretization schemes are employed: the
one-step-theta (OST) method and the second order backward differencing
(BDF2) method.

In the OST method, the acceleration a is defined as a combination of the
acceleration at the new time step level n + 1 and the previous time step level
n

un+1 − un

∆t
= θan+1 + (1− θ)an (2.10)

No time derivatives are present for the pressure and stress fields, hence they
are unknowns at the new time step level only. Values from the previous time
step are not required. Sorting Eq. (2.10) for expressions at the new and the old
time step gives

un+1 −∆tθan+1 = un +∆t(1− θ)an (2.11)

The new acceleration an+1 is replaced by the right hand side of Eq. (2.6a) eval-
uated at the new time step n + 1

ρfun+1 +∆tθ[ρfu ⋅ ∇u +∇p −∇ ⋅
˜
τ − b̂f]

n+1
= ρfun +∆t(1− θ)ρfan (2.12)

in Ωf. Eq. (2.12) is divided by ∆tθ to avoid numerous repetition of the time
scaling factor ∆tθ in subsequent chapters

ρf

∆tθ
un+1 + ρfun+1 ⋅ ∇un+1 +∇pn+1 −∇ ⋅

˜
τn+1 − b̂f,n+1 =

ρf

∆tθ
un +

1− θ

θ
ρfan (2.13)

For the complete time-discrete strong form, the incompressibility is enforced
at the new time step

∇ ⋅ un+1 = 0 (2.14)

Once the new velocity un+1 has been computed, the corresponding new ac-
celeration an+1 is updated by

an+1 =
1

∆tθ
(un+1 − un)−

1− θ

θ
an (2.15)

The user-defined initial velocity field u0 has to fulfill the NS equations includ-
ing the incompressibility constraint. More specifically, a discrete divergence-
free initial velocity has to be ensured. The initial acceleration field a0 is for-
mally not required to be divergence-free. In this work, all transient compu-
tations are started with zero velocity and zero acceleration, hence, also the
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initial acceleration is divergence free. The right hand side of Eq. (2.11) is re-
ferred to as

uhist
θ = un +∆t(1− θ)an (2.16)

Using this short notation and omitting the superscript n + 1 for the new time
step, the time-discrete NS-equations are written as

ρf

Θθ
u + ρfu ⋅ ∇u +∇p −∇ ⋅

˜
τ − b̂f −

ρf

Θθ
uhist

θ = 0 in Ωf (2.17a)

∇ ⋅ u = 0 in Ωf (2.17b)

with Θθ = ∆tθ.
The BDF2 method requires two previous time step values and discretizes

the velocity time derivative as

un+1 − un

∆t
=

1
3

un − un−1

∆t
+

2
3

an+1 (2.18)

The time-discrete NS equations using the BDF2 method are given as

ρf

ΘBDF2
u + ρfu ⋅ ∇u +∇p −∇ ⋅

˜
τ − b̂f −

ρf

ΘBDF2
uhist

BDF2 = 0 in Ωf (2.19a)

∇ ⋅ u = 0 in Ωf (2.19b)

with ΘBDF2 =
2
3∆t and with the abbreviation uhist

BDF2 for all old time step (histor-
ical) values of the velocity defined as

uhist
BDF2 =

4
3

un −
1
3

un−1 (2.20)

Again, un and un−1 have to be divergence free. For the computations using
the BDF2 method, an initial one-step-θ step has been used.

For a discussion on startup procedures see e.g. [Gresho and Sani, 2000] or
[Donéa and Huerta, 2003]. The subscript for the OST and BDF2 methods is
dropped in the following as both schemes result in identical matrix structures
with only the terms uhist and Θ being different.

Spatial discretization

For spatial discretization, the FEM is applied. The time-discrete strong form
in Eq. (2.19) is a pure spatial differential equation in Ωf. For the FEM, the
strong form is brought into its weighted residual form. For this purpose, the
residuals ru(u, p) and rp(u) are defined as

ru(u, p) =
ρf

Θ
u + ρfu ⋅ ∇u +∇p −∇ ⋅

˜
τ(u)− b̂f −

ρf

Θ
uhist (2.21a)

rp(u) = ∇ ⋅ u (2.21b)
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The residuals vanish, if the correct solution that fulfills the partial differen-
tial equations is inserted. Without consideration of moving interfaces, the
weighted residual form of the NS equations is established by testing the resid-
uals with arbitrary velocity and pressure test functions δu and δp

0 = (δu, ru(u, p))
Ωf − (δu,

˜
σ ⋅ nf − ĥ)

Γf
N

(2.22a)

0 = (δp, rp(u))
Ωf (2.22b)

which is equivalent to writing

0 = ∫
Ωf

δu ⋅ ru(u, p)dx −∫
Γf

N

δu ⋅ (
˜
σ ⋅ nf − ĥ)dx (2.23a)

0 = ∫
Ωf

δp rp(u)dx (2.23b)

The operator (⋅, ⋅)
Ωf denoting the inner product of two quantities is used

throughout this work.
Within the weighted residual, the term containing the Cauchy stress is

integrated by parts to lower the continuity requirement of the required ap-
proximation function

(δu,∇ ⋅
˜
σf)

Ωf = (δu,
˜
σf ⋅ nf)

Γf − (∇δu,
˜
σf)

Ωf (2.24)

Dirichlet and Neumann conditions are applied as usual. The test function
approximation is chosen such that the discrete test function is zero at Dirichlet
boundaries. For Neumann conditions, Eq. (2.9) is used, where ĥ equals the
surface traction. After integrating the stress term by parts, the weak form
becomes

BM(δu, u, p) = 0 (2.25a)
BC(δp, u) = 0 (2.25b)

with

BM(δu, u, p) =(δu,
ρf

Θ
u)

Ωf + (δu, ρfu ⋅ ∇u)
Ωf + (∇δu,−p

˜
I +

˜
τ)

Ωf

− (δu, b̂f)
Ωf − (δu, ĥf)

Γf
N
− (δu,

ρf

Θ
uhist)

Ωf (2.26a)

BC(δp, u) =(δp,∇ ⋅ u)
Ωf (2.26b)

The time-discrete equations combined with the already defined boundary
and initial conditions are discretized in space using shape functions Nu(x)
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and Np(x):

uh,n+1(x) =∑
I

Nu
I (x)un+1

I (2.27a)

δuh(x) =∑
I

Nu
I (x)δuI (2.27b)

ph,n+1(x) =∑
I

Np
I (x)pn+1

I (2.27c)

δph(x) =∑
I

Np
I (x)δpI (2.27d)

Hereby, the superscript ‘h’ indicates the discretized field function. Approxi-
mations for the unknown functions and the corresponding test functions are
identical, which results in the Bubnov-Galerkin method. In addition, velocity
and pressure approximations are also identical (Nu

I (x) = Np
I (x)), for which

the term ‘equal order velocity-pressure interpolation’ is often used in litera-
ture.

The resulting discrete nonlinear system has a shape as

1
Θ
Mu + fconv(u)+Gp +Ku = fb̂ + fN + f hist (2.28a)

GTu = 0 (2.28b)

The velocity and pressure unknown vectors are denoted as u and p, respec-
tively. The source terms on the right of Eq. (2.28a) are the result of the inte-
grals with volumetric forces, Neumann conditions and old time step values
as defined in Eq. (2.26a). For the employed Newtonian fluid with constant
viscosity, the only source of nonlinearity is the convection term fconv(u).

2.1.3 Stabilization

In this work, linear and quadratic equal order shape functions for velocity
and pressure space discretization are used. Such a formulation is known to
be unstable for two reasons: (inf-sup) unstable pairs of velocity and pressure
shape functions and dominating convection. As a remedy, stabilized meth-
ods are employed; for an overview on stabilized methods for fluids, see for
example [Hughes et al., 2004]. In this thesis, the stabilization given in [Tezdu-
yar and Osawa, 2000] has been used, where the momentum and continuity
operators are defined as

FM(δu, u, p) = BM(δu, u, p)−∑
e

τe
SUPG(u ⋅ ∇δu, ru(u, p))

Ωf
e

+∑
e

τe
LSIC(∇ ⋅ δu,∇ ⋅ u)

Ωf
e

(2.29a)

FC(δp, u, p) = BC(δp, u)−∑
e

τe
PSPG(∇δp, ru(u, p))

Ωf
e

(2.29b)
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The stabilization parameters are defined per element, hence, a summation
over element integrals is used in Eq. (2.29). The abbreviations for the stabiliza-
tion terms are as follows: Streamline upwind Petrov Galerkin (SUPG), Least
square incompressibility condition (LSIC) and Pressure-stabilized Petrov Ga-
lerkin (PSPG).

There are several popular definitions of the stabilization parameters in
fluid mechanics literature and a discussion of advantages and disadvantages
is beyond the scope of this thesis. The definition used exclusively in this work
follows [Barrenechea and Valentin, 2002; Codina and Blasco, 2002; Franca and
Valentin, 2000; Wall, 1999], where two stabilization parameters τe

M and τe
C for

each element e are given as

τe
M(he) = min

⎡
⎢
⎢
⎢
⎢
⎣

∆t,
he

2 ∣uh∣L2

,
meh2

e ρf

4µ

⎤
⎥
⎥
⎥
⎥
⎦

(2.30)

τe
C(he) =

∣uh∣L2
he

2
min(Ree(he), 1) (2.31)

Here, the term ∣uh∣L2
denotes the L2 norm of the velocity field. The element

Reynolds number Ree(he) is defined as

Ree(he) =
me ∣uh∣p=2 heρf

2µ
(2.32)

For linear shape functions, the constant me is defined as me = 1/3, for quad-
ratic shape functions it is me = 1/12. The necessary element dimension he can
be chosen based on the element volume Ve as

hV
e =

3
√

Ve (2.33)

or the approximate stream-length approach, where the stream-length hu
e is

evaluated at each integration point in the element parameter space ξΩ by

hu
e (ξΩ) =

2

∑I ∣
u
∣∣u∣∣ ∣ ⋅ ∇NI(ξΩ)

(2.34)

as given in [Tezduyar et al., 1992c] and [Wall, 1999]. here, operator ∣ ⋅ ∣ denotes
the absolute value of the individual vector components. Using τe

M and τe
C, the

stabilization parameters τe
SUPG, τe

PSPG, and τe
LSIC are computed based on the

following element sizes

τe
SUPG = τe

M(hu
e ) (2.35)

τe
PSPG = τe

M(hV
e ) (2.36)

τe
LSIC = τe

C(hu
e ) (2.37)
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The stabilization introduces second order spatial derivatives, which linear
and bi-linear elements are unable to represent completely. Hence, quadratic
elements have initially been favored in this thesis to avoid spoiling the numer-
ical analysis of the XFEM and Lagrange multiplier techniques. Nevertheless,
linear approximations have shown no problems with respect to stability and
robustness and have also been used as indicated in the numerical examples.

2.1.4 Linearization and solution

The discrete nonlinear system of equations is defined as

δu ru(u,p) = FM(δuh, uh, ph) = 0 (2.38a)

δp rp(u,p) = FC(δph, uh, ph) = 0 (2.38b)

For the solution, a Newton-Raphson method is employed. For this purpose,
the system is linearized by applying a Taylor expansion to Eq. (2.38). The
residual at iteration step k + 1 is given as

[
ru
rp

]
k+1

= 0 = [
ru
rp

]
k
+

⎡
⎢
⎢
⎢
⎢
⎣

∂ ru
∂ u

∂ ru
∂ p

∂ rp
∂ u

∂ rp
∂ p

⎤
⎥
⎥
⎥
⎥
⎦k

[
∆u

∆p
]+h.o.t. (2.39)

where h.o.t. abbreviates higher order terms. The derivatives lead to the tan-
gent matrix of the linearized system. In the subsequent chapters, the lin-
earized fluid system of equations is written in an easier to read notation as

[
ru
rp

]
k+1

= 0 = [
ru
rp

]
k
+ [

Fuu Fup
Fpu Fpp

]
k
[
∆u

∆p
]+h.o.t. (2.40)

If higher order terms of the Taylor expansion are omitted, the linear system
that needs to be solved to obtain the improved solution at k + 1 is given as

[
Fuu Fup
Fpu Fpp

]
k
[
∆u

∆p
] = − [

ru
rp

]
k

(2.41)

After solving the linear system, velocity and pressure are updated as

[
u

p
]

k+1
= [
u

p
]

k
+ [

∆u

∆p
] (2.42)

and the process is repeated until a user-defined convergence criteria is met.
Only the convective term is linearized, for which the linearization pro-

cess has been presented in many FEM books for fluid mechanics, for example
in [Donéa and Huerta, 2003, chap. 6.7]. Note that although the stabilization
parameters are velocity dependent, they are not linearized; instead, they are
computed from the velocity of the last Newton-Raphson iteration step.
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The application of Dirichlet conditions is implemented without changing
the size of the global system. The known Dirichlet values are set at the be-
ginning of Newton step k and then all element matrices and residuals are
calculated and assembled into the global system. Here, the corresponding
residuals to the Dirichlet DOFs are set to zero; the system matrix is modified
by zeroing out off-diagonal terms in corresponding rows. Then the system
can be solved including the Dirichlet DOFs.

2.2 Structure

2.2.1 Field equations

In most applications, the structure in Ωs is described using a Lagrangian de-
scription, where the material time derivative becomes a simple partial deriva-
tive with respect to time, such that

ρs ∂2 ds

∂ t2 = ∇ ⋅
˜
σs + ρsb̂s in Ωs (2.43)

with the displacement ds defined as the difference between the current po-
sition x and the initial position X and b̂s being an external acceleration field
acting on the structural domain. The structural velocity us and acceleration
as are defined as

as =
∂ us

∂ t
=

∂2 ds

∂ t2 (2.44)

For large structural deformations it is common to describe the constitutive
equation using a stress-strain relation based on the Green-Lagrange strain
tensor

˜
E and the 2. Piola-Kirchhoff stress tensor

˜
S(

˜
E) as a function of

˜
E. The

2. Piola-Kirchhoff stress can be obtained from the Cauchy stress
˜
σ as

˜
S = J

˜
F−1 ⋅

˜
σ ⋅

˜
F−T (2.45)

Here, J denotes the determinant of the deformation gradient tensor
˜
F, which

itself is defined as

˜
F =

∂ x
∂ X

(2.46)

The Green-Lagrange strain tensor
˜
E is given as

˜
E =

1
2
(
˜
FT ⋅

˜
F −

˜
I) (2.47)

The equation of motion is usually expressed in the reference configuration,
which can be found in text books on nonlinear FE for structures. The overall
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behavior can be nonlinear as large deformation and rotation of the structure
is allowed. For the numerical results presented in this article, St.-Venant-
Kirchhoff and Neo-Hookean material laws are employed. The former de-
scribes a linear relation between

˜
S and

˜
E, the latter a nonlinear relation.

The complete strong form can be given by

ρs ∂2 ds

∂ t2 = ∇ ⋅
˜
σs + ρsb̂s in Ωs (2.48a)

˜
σs ⋅ ns = ĥs in Γs

N (2.48b)

ds = d̂s in Γs
D (2.48c)

Initial conditions for the structural displacements and velocities are given as

ds(X, t = 0) =ds,0 (2.49)

us(X, t = 0) =us,0 (2.50)

The weak form of the structural momentum equation from Eq. (2.53) with-
out FSI interface condition reads as

0 = (δds, ρsd̈s)Ωs − (δds,∇ ⋅
˜
σs)Ωs (2.51)

Integration by parts of the stress term gives

− (δds,∇ ⋅
˜
σs)

Ωs = −(δds,
˜
σs ⋅ ns)

Γs + (∇ ⋅ δds,
˜
σs)

Ωs (2.52)

For Dirichlet boundary conditions, the surface integral vanishes due to the
vanishing test function. Neumann conditions are applied by letting

˜
σs ⋅ ns =

ĥs. The weak from after integration by parts without consideration of the
fluid-structure coupling is

S(δds, ds) = (δds, ρs ∂2 ds

∂ t2 )
Ωs

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
δWinert

+ (∇δds,
˜
σs)

Ωs

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
δWint

− (δds, ĥs)
Γs

N
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

δWN

= 0 (2.53)

2.2.2 Discretization

For structural time integration, a β-Newmark scheme [Belytschko et al., 2000;
Hughes and Liu, 1978] is employed with parameters set to β = 0.25 and γ = 0.5
making it an implicit time integration scheme

an+1 =
1

β∆t2 (dn+1 − dn)−
1

β∆t
un −

1− 2β

2β
an (2.54)

un+1 = un +γ∆tan+1 + (1−γ)∆tan (2.55)
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With the definition of time history contributions as

dhist = dn +∆tun + (
1
2
− β)∆t2an (2.56)

the time discrete form of Eq. (2.53) can be written as

S(δds, ds) =
ρs

β∆t2 (δds, ds − ds,hist)
Ωs

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
δWinert

+ (∇δds,
˜
σs)

Ωs

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
δWint

− (δds, ĥs)
Γs

N
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

δWN

= 0 (2.57)

The spatial discretization of the structure displacement is performed using
shape function Ns

I (x)

ds,h =∑
I

Ns
I (x)ds

I and δds,h =∑
I

Ns
I (x)δds

I (2.58)

In this, tri-linear hexahedral (hex8) solid elements have been used exclusively.
Hence, the structural surface is a piecewise bi-linear surface.

Note that above, only a displacement based formulation is given. In the
large deformation examples given in subsequent chapters, the structure is
discretized in space using various (hybrid-mixed) element techniques [e.g.
Belytschko et al., 2000; Bischoff et al., 2004; Pian and Wu, 2006]. Ignoring
incompressible structure material with separate pressure unknowns, most
techniques result in improved stiffness matrices with only displacement un-
knowns in the final system. Hence, the following linearized system can ex-
emplary be taken for a wide range of FE implementations for structures and
no further reference on complex structural material is made throughout this
thesis.

2.2.3 Linearization

For nonlinear material laws and large deformation including large strains,
the equations for the internal work need to be linearized before they can be
solved numerically. Additional linearization is required, if deformation de-
pendent external forces are involved. Linearization can be performed on the
continuous system or the discrete system. In the following, the discrete sys-
tem is linearized.

Due to the arbitrariness of the test function, the nonlinear discrete system
with the global displacement vector d s and the corresponding global residual
r s
ds and nodal forces f s,int, f s,ext and f s,dyn can be written as

r s
ds(d

s) =
1

β∆t2Md
s + f s,int(d s)− f s,ext(d s)− f s,dyn (2.59)
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If the total Lagrangian formulation is used, e.g. in [Belytschko et al., 2000], a
constant mass matrix is obtained that is denoted asMs. The force vector f s,dyn

resulting from old time step values is denoted as

f dyn =M (
1

∆t2d
s,n +

1
β∆t

us,n +
1− 2β

2β
as,n) (2.60)

The global velocity us,n and acceleration as,n have to be stored to be used in the
next time step. In the following the superscript ⋅ n+1 is implicitly assumed and
only old time steps are marked with superscript ⋅ n. Adopting the notation
introduced for the fluid formulations, the above discretized weak form is also
denoted as

δd sr s
ds(d

s) = S(δds,h, ds,h) (2.61)

The nonlinear discrete system can be solved using a Newton-Raphson it-
eration as follows: To get the improved solution d s

k+1 at step k + 1, the discrete
nonlinear system needs to be linearized at step k using a Taylor expansion

r s
ds(d

s
k+1) = 0 = r s

ds(d
s
k)+

∂ r s
ds(d s)

∂d
∣
k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Sdsds

∆d s +h.o.t. (2.62)

If higher order terms (h.o.t.) are omitted the linear system with ∆d s as un-
knowns becomes

[Sdsds]k [∆d s] = − [r s
ds]k (2.63)

After solving the linear system for the displacement increments ∆d s, displace-
ments at the new iteration step k + 1 are updated as

d s
k+1 = d

s
k +∆d s (2.64)

The iteration stops when a user-defined convergence criterion is reached.

2.3 Coupled fluid-structure system

A general fluid-structure interaction problem consists of the description of
fluid and structure fields, appropriate conditions at the shared interface and
conditions for the remaining boundaries away from the fluid-structure in-
terface. A schematic sketch of the general problem is shown in Figure 2.1a,
where the interface Γi separates the structural domain Ωs from the fluid do-
main Ωf.

FSI is a surface coupled problem, where the interaction of the two continua
takes place only along the shared interface Γi. If the simulation approach con-
forms to this physical fact it is usually much simpler to independently replace
one structure formulation with another or to replace e.g. a compressible with
an incompressible flow solver.
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Ωf ΩsΓi

dsu, p

(a) Coupled FSI problem

Ωs

ns

Ωf

nf

dsu, p

(b) Individual fields with surface normals

Figure 2.1: FSI two-field setup and individual fields: fluid field Ωf, structural field
Ωs and the shared interface Γi.

2.3.1 Fluid-structure interface conditions

The main conditions at the interface are the dynamic and kinematic coupling
conditions. In this work, impermeable structure surfaces are assumed such
that no mass flow occurs across the interface. Consequently, the normal ve-
locities at the interface have to match as

u ⋅ nf = −
∂ ds

∂ t
⋅ ns in Γi (2.65)

Note the opposite signs due to the different normal vectors nf and ns for fluid
and structural domain, respectively (Figure 2.1b). If viscous fluids are consid-
ered, there is usually also a matching condition for the tangential velocities,
which can be combined with the equation above to obtain the ‘no slip’ bound-
ary conditions as

u =
∂ ds

∂ t
in Γi (2.66)

The force equilibrium requires the surface traction to be equal as

˜
σf ⋅ nf = −

˜
σs ⋅ ns in Γi (2.67)

The position of Γi is varying with time and is only defined through the inter-
action of both fields.

2.3.2 Three-field formulation of the FSI system

The interface conditions have to be applied along a moving surface, which
is defined by the Lagrangian description of the structure surface. For the
fluid field, ALE methods were established that allow the fluid mesh to be
attached to fluid-structure interface at all times. In a pure Eulerian description
for the fixed fluid grid, there is no moving fluid surface mesh to which one
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Ωf Ωs

nf
ns

ni

Γf,FSI Γs,FSIΓi

dsdiu, p

Figure 2.2: FSI three-field setup: fluid field Ωf, interface Γi and structural field Ωs

along with respective domain normals and variables.

could couple the moving structural surface. Instead, the structural surface
intersects the fluid element at arbitrary positions. Consequently, to re-use
established surface-surface coupling approaches available for ALE methods
— weak surface-surface coupling or even node-matching —, an extension of
the fluid-structure system is necessary.

For maximum flexibility with respect to the choice of approximation func-
tions, mesh size and solution techniques, a three-field setup is proposed. In
the three-field setup, fluid and structural fields and an independent interface
field are treated separately. Such a setup – along with the respective variables
living on these fields or interfaces – is shown in Figure 2.2. In a continuous
setting, the interface Γi and the FSI surfaces of fluid and structure, namely
Γf,FSI and Γs,FSI, respectively, are identical. However, they may be discretized
independently from each other. The most general case occurs, if neither fluid
nor structural discretization match the interface mesh. Then three non-fitting
meshes need to be coupled together. If, however, two surfaces share identical
discretizations, the interface mesh can be removed from a monolithic FSI sys-
tem and no extra interface displacement unknowns are present in the linear
system.

The interface deformation is described by the Lagrangian formulation us-
ing the interface displacement di(X, t). Then, for the three-field setup, the
interface condition Eq. (2.66) is split into two conditions as

u =
∂ di

∂ t
in Γi (2.68)

di = ds in Γi (2.69)

In other words, if the velocity of both fields is constrained independently to be
the same as the interface velocity, the original matching condition (Eq. (2.66))
is still fulfilled. Let λ and µ be two traction fields on the interface Γi such that

˜
σf ⋅ nf = λ in Γi (2.70)

˜
σs ⋅ ns = µ in Γi (2.71)
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Then the interface traction balance (Eq. (2.67)) can be written in an alternative
way as

λ = −µ in Γi (2.72)

The interface is discretized using linear or quadratic FE approximations

di,h =∑
I

Ni
Id

i
I (2.73)

The interface mesh consists therefore of triangular or quadrilateral elements.
If the interface displacement or the corresponding velocity are part of the so-
lution, the appropriate test function δdi,h is discretized as

δdi,h =∑
I

Ni
Iδdi

I (2.74)

This setup has several features that are elucidated and exploited through-
out this thesis. First of all, it is possible to treat the coupling of the single fields
to the interface independently from each other. This prevents to mix struc-
tural and fluid concerns in the mathematical derivation and the implementa-
tion process, if no field gets information from beyond the interface. Finally,
the proposed three-field setup allows a straightforward re-use of partitioned
FSI schemes including their implementation as described in Chapter 6.

Note that similar concepts for coupling two fields using an intermediate
reference surface have been presented in [Park et al., 2001] and references
therein. The basic motivation of the ‘localized Lagrange multiplier method’,
namely the separation of coupling concerns, is identical to the present thesis.
Also, the coupling between structure and interface follows the established
rules of surface-surface coupling and is reviewed in Section 6.1. However,
the weak coupling of the fixed fluid grid to the interface presented in the
following chapters is different and is one of the major contributions of this
thesis.





CHAPTER 3
Introduction to the XFEM and weak

constraints

The following chapter demonstrates key steps that are necessary, when using
the XFEM and Lagrange multiplier techniques to treat implicit interfaces on
fixed meshes. The principle ideas are demonstrated for the heat conduction
problem, which is characterized by the Poisson equation. This scalar problem
can also be used to become familiar with XFEM in general, however, only
topics relevant for the final goal of implementing a fixed grid FSI scheme are
discussed - for further information the reader is referred to the given litera-
ture. For this chapter, the interface position is assumed to be spatially fixed.

3.1 Governing equations

The steady state heat conduction equation in Ω+ is given as

∇ ⋅ q = f̂ in Ω+ (3.1)

The heat flux q is defined as

q = −κdiff∇c in Ω+ (3.2)

where c denotes the temperature field and κdiff denotes the constant diffusion
or heat conduction coefficient. A temperature-independent heat source term
is denoted by f̂ .

Assume a Dirichlet boundary condition (DBC) on parts of a boundary of
a physical domain Ω+ as depicted in Figure 3.1a. This setup is reformulated
as an embedded Dirichlet problem, where an internal interface Γi divides
a larger domain Ω into a physical and a fictitious domain named Ω+ and

27
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n

DBC

Ω+

Ω

(a) Physical Domain with
DBC

Ω Γi

Ω+ Ω−

(b) Enriched Physical Domain with
embedded DBC

Figure 3.1: The physical domain with DBC is shown in Fig. (a) and Fig. (b) illustrates
the transition from an explicit to an embedded boundary.

Ω−, respectively. The part of the boundary with the DBC becomes now an
internal interface Γi to the domain Ω as shown in Figure 3.1b. The location
of the interface may be given, for example, by an analytic function, the zero-
contour of a level-set function or by a boundary mesh. This setup is also
referred to as one-sided discontinuity since there is only a physical field on
one side of the discontinuity. For easier writing, two additional names for the
boundary Γi are defined, namely Γ+ and Γ−, depending on whether functions
are evaluated approaching Γi from Ω+ or Ω−, respectively. Thus, writing c
evaluated at Γ+ is equivalent to writing c+ evaluated at Γi.

Using the implicit description of the domain surface, the temperature field
can be seen as a discontinuous field with a jump in c between the physical
values c+ and the void (c−)

JcK = c+ − c−
®
=0

in Γi (3.3)

In an one-sided problem, the value of c− is completely irrelevant for the solu-
tion in Ω+. Then the jump height equals the value of c at Γ+ and one can pose
the kinematic constraints for c+ along Γi as

c+ − ĉi = 0 in Γi (3.4)

where the interface temperature ĉi is given. Likewise, one can identify a jump
discontinuity in the flux field q

Jq ⋅ nK = q+ ⋅ n − q− ⋅ n
²
=0

in Γi (3.5)

The complete strong form including Neumann and Dirichlet conditions
that are applied at remaining boundaries and under consideration of the ma-
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terial law in Eq. (3.2) is given as

∇ ⋅ q − f̂ =0 in Ω+ (3.6)
c − ĉD =0 in ΓD (3.7)

q ⋅ n − ĥN =0 in ΓN (3.8)

c − ĉi =0 in Γ+ (3.9)

The prescribed heat source along the Neumann boundary is denoted as ĥN
and the prescribed Dirichlet value is denoted as ĉD.

The weak form, first without consideration of the interface constraint in
Eq. (3.9), is constructed by multiplying the strong form with a weighting func-
tion δc such that

0 = (δc,∇ ⋅ q − f̂ )
Ω+ + (δc, q ⋅ n − ĥN)

Γ+ (3.10)

Integration by parts of the first term gives

0 = −(∇δc, q)
Ω+ − (δc, ĥN)

ΓN
− (δc, f̂ )

Ω+ (3.11)

Eq. (3.11) with c as the unknown field is the basis for the subsequent finite ele-
ment formulation. The remaining boundaries of Ω+ coincide with the surface
of the finite element mesh and are treated as in the standard FEM.

3.2 XFEM formulation

Describing domain boundaries independent of finite element boundaries has
been proposed in methods like the XFEM [Belytschko and Black, 1999; Moës
et al., 1999], the generalized finite element method (GFEM) [Strouboulis et al.,
2000] and the partition of unity finite element method (PUFEM) [Babuška
and Melenk, 1997]. The basic idea is to allow the user to add known solution
behavior to the discrete approximation functions. If a principle solution is
known, for example the singular stress field near a crack tip or a discontinu-
ous stress field due to changing material properties, the local approximation
can use the principle solution instead or in addition to standard polynomi-
als. As a result, the coarse mesh accuracy as well as the convergence are
improved, as shown in the given literature.

Applied to the temperature field, an enriched temperature approximation
is defined as

ch(x) =∑
I

NI(x)c0
I +∑

J
NJ(x)ψ1(x)c1

J

+∑
K

NK(x)ψ2(x)c2
K

+ . . . (3.12)
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The standard nodal DOFs at node I are represented by c0
I , while additional

DOFs are denoted as c1
I and c2

I . The additional DOFs are multiplied by prop-
erly chosen enrichment functions ψ1(x) and ψ2(x), respectively. Any number
of overlapping enrichments can be applied to certain regions of the compu-
tational domain. The standard FE shape functions are denoted as NI(x). In
the present work, shape functions are either polynomial nodal shape func-
tions, which are C0 continuous over inter-element boundaries or polynomial
element shape functions, which are discontinuous over inter-element bound-
aries.

Choosing appropriate enrichments is one of the key decisions the user of
XFEM has to make. Figure 3.2 shows the different enrichment scenarios used
in this thesis. The different ways of enriching the solution are all applied to
the FE mesh shown in Figure 3.2a.

For the given one-sided problem, the material surface of Ω+ could be seen
as a step-like change of the temperature field as introduced in Eq. (3.3). Using
an appropriate step-like enrichment will allow the FE approximation to rep-
resent such steps on an arbitrarily mesh without aligning the element edges
with the material surface. The appropriate enrichment is the step function
¬
ψ(x) as discussed in [Daux et al., 2000; Sukumar et al., 2001]

¬
ψ(x) =

⎧⎪⎪
⎨
⎪⎪⎩

1 in Ω+

0 in Ω− (3.13)

The enrichment function
¬
ψ will subsequently be called void enrichment func-

tion. For non-moving interfaces, as assumed in this chapter, the enrichment
function

¬
ψ is independent of time. Figure 3.2b shows how a single enrichment

and standard DOFs are applied to model a physical domain Ω+ that ends in
the middle of element (3). Within Ω−, c will remain zero at all times and no
unknowns beyond element (3) are required. The resulting discrete equations
are identical to the equations obtained from approaches, where integration is
performed only over the physical part of an element [see e.g. Hansbo and
Hansbo, 2004; Tezduyar, 2006], because omitting the integration over the fic-
titious part of the element is the same as integrating over

¬
ψ(x)N(x) in Ω−.

Two void enrichments are necessary to model two independent physical
domains Ω+

1 and Ω+
2 shown in Figure 3.2c. The case without a gap between

Ω+
1 and Ω+

2 is usually called a two-sided problem. Two-sided problems with
a strong discontinuity can be represented either by two void enrichments as
shown in Figure 3.2d or by one jump enrichment as shown Figure 3.2e. In the
latter case, two unknowns are added to the continuous approximation field.
The jump enrichment function for two-sided problems without gap is given
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Ω

Ω(1) Ω(2) Ω(4)Ω(3)Ω(0) Ω(5)

(a) Mesh with FE nodes and element domains Ω(e)

Ω+ Ω−

(b) One-sided problem using one void enrichment

Ω+
1

Ω+
2

Ω−

(c) Two one-sided problems (with gap) using two void enrichments

Ω+
1

Ω+
2

(d) Two-sided problem (no gap) using two void enrichments

Ω+
1

Ω+
2

(e) Two-sided problem (no gap) using one jump enrichment

Figure 3.2: Enrichment strategies for the one-dimensional Poisson equation: Stan-
dard DOFs are denoted by symbol ○, void enrichment DOFs by ◇ and ◽
and jump enrichment DOFs by symbol ×.
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as

ψ̌(x) =
⎧⎪⎪
⎨
⎪⎪⎩

+1 in Ω+

−1 in Ω− (3.14)

Figure 3.2d and Figure 3.2e highlight the equivalence between two void en-
richments without gap and one jump enrichment. The equivalence is also vis-
ible in the identical number of unknowns required for these two cases. Ana-
logue to one-side problems, two-sided problems can also be modeled with
methods as described in [Hansbo and Hansbo, 2004].

In XFEM terminology, the presented void and the jump enrichments lead
to strong discontinuities, where the primary variable is discontinuous. Weak
discontinuities, where only the derivatives of c have a step like behavior, are
not required for this thesis and will not be discussed any further.

For compact notation and also implementation, Eq. (3.12) is generalized
by defining an enrichment function ψ̃(x) for all standard DOFs as

ψ̃(x) = 1 (3.15)

Then, even standard degrees of freedom have an enrichment function at-
tached, such that one can write for all degrees of freedom

ch(x) =∑
I

NI(x)ψ0(x)c0
I(t)+∑

J
NJ(x)ψ1(x)c1

K(t)+ . . . (3.16)

=∑
L

NL(x)ψL(x)cL(t) (3.17)

=

nL

∑
L

φL(x)cL(t) (3.18)

Here, φL(x) denotes a general approximation function that may include dis-
continues solution components. The corresponding unknown is denoted by
cL(t) and nL is the number of unknowns or parameters that influence the so-
lution at x. Similarly to meshfree methods, nL varies spatially. If the approx-
imation is used in the FE context, the approximation function can be written
as function of the element coordinates ξ as

ch
e (ξ, t) =∑

I
NI(ξ)ψ0(ξ, t)c0

I(t)+∑
J

NJ(ξ)ψ1(ξ, t)c1
K(t)+ . . . (3.19)

=∑
L

NL(ξ)ψL(ξ, t)cL(t) (3.20)

=∑
L

φL(ξ, t)cL(t) (3.21)

If the enrichment function can be expressed as a function of ξ – e.g. if level-
set functions are used – then ψ(ξ) can be used directly. For the FSI interface
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discussed in later chapters, the enrichment function is a global function de-
pending on x. For elementwise integration, x is computed from element coor-
dinates such that ψ(x(ξ)). Note that no superscript is introduced to formally
differentiate φL(x) from φL(ξ) to avoid cluttering the notation.

Derivatives of ch are calculated by using the chain rule

∂ ch
e (x)
∂ x

=∑
L

∂ φL(x)
∂ x

cL(t)

=∑
L

∂ NL(x)ψL(x)
∂ x

cL(t)

=∑
L

(
∂ NL(x)

∂ x
ψL(x)+ NL(x)

∂ ψL(x)
∂ x

) cL(t) (3.22)

For the fixed-grid FSI scheme presented in the next chapters, only one or mul-
tiple void enrichments are used to model the fluid surface independently of
finite elements surfaces. The derivative of the void enrichment function in Ω

is zero, since
¬
ψ is constant everywhere in Ω. Hence, Eq. (3.22) simplifies to

∂ ch
e (x)
∂ x

=∑
L

∂ NL(x)
∂ x

ψL(x)cL(t) (3.23)

The shape function derivative with respect to x is computed as usual

∂ NL(x)
∂ x

=
∂ NL(ξ)

∂ ξ

∂ ξ

∂ x
°

˜
J−1

xξ

(3.24)

with
˜
Jxξ being the Jacobian between the coordinate systems x and ξ.

Along Γi, both temperature and flux field are discontinuous and enriched
with

¬
ψ(x). The complete discretization for trial and test functions is given as

ch(x) =∑
L

φc
L(x)cL (3.25)

δch(x) =∑
L

φc
L(x)δcL (3.26)

This approach is still a Bubnov-Galerkin method, since test and trial functions
are discretized with the same approximation.

As mentioned before, Figure 3.2 illustrates how at different positions in
space a varying number of discrete unknowns is used to approximate the
field. For instance, in Figure 3.2c, element (1) has two unknowns, element (2)
has three unknowns and element (3) four unknowns. Consequently, if ele-
mentwise numerical integration is performed, the element matrices are two-
by-two, three-by-three and four-by-four matrices, respectively. For instance,



34 Chapter 3. Introduction to the XFEM and weak constraints

the discrete temperature in element (2) can be written (and implemented) as

ch
e (ξ) = φ c =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

φ1
φ2
φ3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c1
c2
c3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

N1ψ̃0

N2
¬
ψ1

N3
¬
ψ2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c1
c2
c3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

N1
N2

¬
ψ1

N3
¬
ψ2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c1
c2
c3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(3.27)

The unknown c1 represents a standard unknown and c2 and c3 represent ad-
ditional unknowns from two distinct void enrichments belonging to two dis-
tinct surfaces. The discrete derivative with respect to x is therefore

∂ ch
e (ξ)

∂ x
= φ,x c =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ φ1
∂ x
∂ φ2
∂ x
∂ φ3
∂ x

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c1
c2
c3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ φ1
∂ x ψ̃0

∂ φ2
∂ x

¬
ψ1

∂ φ3
∂ x

¬
ψ2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c1
c2
c3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ φ1
∂ x

∂ φ2
∂ x

¬
ψ1

∂ φ3
∂ x

¬
ψ2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c1
c2
c3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(3.28)

After construction of the discrete approximation φ and its derivatives, the
FE algorithms can use the new approximation instead of standard FE shape
functions. Instead of looping over a number of nodes, the loops are over a
number of parameters that influence a certain integration point. For instance,
the entry into the element stiffness matrix resulting from (δc,x, κdiffc,x)Ωe can
be written as

(δch
,x, κdiffch

,x)Ωe = δce ∫
Ωe
φ,xκdiffφ,xdxce (3.29)

In summary, the XFEM extends the approximation function locally, e.g.
near an interface or surface. The strong discontinuities model a sharp surface
of the physical domain. For the remainder of this chapter, one-sided problems
using one void enrichment are exclusively used. The next section illustrates
how boundary conditions are applied along such implicit boundaries.

3.3 Enforcement of interface constraints

The weak enforcement of constraints or, as a subset, of Dirichlet conditions
along boundaries has been an active research topic within the last decade. Be-
yond the use in fixed-grid methods, weak constraints are also present when
applying conditions in meshfree methods that lack the finite element interpo-
lation property, or for general mesh tying.

In the following, four principle approaches for applying constraints to the
continuous Galerkin (CG) method (C0 continuous temperature approxima-
tion) are presented and a brief discussion of their properties is given. In par-
ticular, the approaches are analyzed for the applicability to the three-dimen-
sional NS equation. The first and the fourth approach are later implemented
for the incompressible NS equations. Recent approaches based on residual
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free bubbles as introduced in [Dolbow and Franca, 2008; Mourad et al., 2007]
and the approach proposed in [Codina and Baiges, 2009] have not been re-
viewed and considered in detail, but should be mentioned here for complete-
ness.

The strong form of governing equation including the interface condition
at Γi reads as

−∇ ⋅ (κdiff∇c) = 0 in Ω (3.30)

c+ − ĉi = 0 in Γ+ (3.31)

The volume heat source as well as Dirichlet and Neumann conditions away
from Γi are ignored in the following to concentrate on the weak Dirichlet
condition treatment.

3.3.1 ‘Classical’ Lagrange multiplier

A standard method for weak imposition of constraints is the use of Lagrange
multipliers that are described in many text books on the FE, e.g. in [Hughes,
1987, chap 4.2.1]. The corresponding weighted residual equation is given as

0 =(∇δc, κdiff∇c)
Ω+ − (δc, λ)

Γ+ (3.32a)

0 =− (δλ, c − ĉ)
Γ+ (3.32b)

This weak form is the basis for the FE discretization. After integration by
parts of the first integral in the first equation, the weighted residual equations
are obtained

0 =(δc,−∇ ⋅ (κdiff∇c))
Ω+ − (δc, λ − κdiff∇c ⋅ n)

Γ+ (3.33a)

0 =− (δλ, c − ĉ)
Γ+ (3.33b)

from which the Euler-Lagrange equations are obtained

−∇ ⋅ (κdiff∇c) = 0 in Ω+ (3.34a)
c − ĉ = 0 in Γ+ (3.34b)

λ − κdiff∇c ⋅ n = 0 in Γ+ (3.34c)

The weighted residual form is related to the following functional Πdiff
λ :

Πdiff
λ = (∇c,

1
2

κdiff∇c)
Ω+ − (λ, c − ĉ)

Γ+ (3.35)

The variation of Πdiff
λ with respect to the two primary unknowns c and λ leads

to Eq. (3.32a) and Eq. (3.32b). The resulting discrete system is of the form

[
Kcc Mcλ

Mλc 0
] [

c

λ
] = [

0
f ĉ
λ

] (3.36)
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where the saddle point structure of the problem is clearly visible.
When above approach is applied to implicit interfaces crossing elements,

finding inf-sup stable pairs of c and λ is the first challenge to be approached.
Based on such pairs, an appropriate interface mesh has to be generated. This
is a challenging task already for two-dimensional problems and can still be
considered an open problem for three-dimensional implementations, see for
example the discussions in [Ji and Dolbow, 2004; Moës et al., 2006]. in con-
trast, arbitrary choices of Lagrange multipliers can be employed when addi-
tional stabilization is introduced, such that the inf–sup condition is circum-
vented. This is the approach first advocated in [Barbosa and Hughes, 1992].
In that case, proper stabilization has to be defined depending on the phys-
ical problem. Beyond the stability issue, the Lagrange multiplier requires a
surface mesh in addition to the background mesh. Generating such interface
meshes is a geometrically complex task for three-dimensional implementa-
tions. Hence, methods that avoid the generation of an interface mesh solely
for the Lagrange multipliers promise to be much easier to implement and
such methods are considered in the following.

An approach with properties that are between the classical Lagrange mul-
tiplier and the following methods is the distributed Lagrange multiplier ap-
proach proposed in [Zilian and Legay, 2008]. Here, the Lagrange multiplier
unknowns are placed directly onto the fixed background grid. Applied to
the present Poisson problem, the ‘distributed’ Lagrange multiplier is dis-
cretized with domain shape functions and the unknowns of λ reside on the
nodes of the background mesh. However, the Lagrange multiplier is still only
present in boundary integrals. The additional number of Lagrange multiplier
unknowns without additional equations are likely the reason, why the dis-
tributed Lagrange multiplier method requires a stabilizing term and a user-
defined stabilization parameter.

3.3.2 Nitsche’s method

Nitsche’s method [Nitsche, 1971] has recently gained great attention in the
context of implicit interfaces modeled by the XFEM [Dolbow and Harari,
2009], but also as general technique for the imposition of constraints along
non-matching surface grids [Bazilevs and Hughes, 2008; Becker et al., 2003;
Hansbo and Hansbo, 2002; Hansbo et al., 2004; Sanders et al., 2009; Stenberg,
1995] or for meshfree techniques [Fernández-Méndez and Huerta, 2004]. In
the context of the incompressible NS equations, it has been used for coupling
non-matching grids [Bazilevs and Hughes, 2008; Hansbo et al., 2004]. It has
been shown in [Stenberg, 1995] that Nitsche’s method [Nitsche, 1971] could
be derived as a special case of the Lagrange multiplier stabilization as men-
tioned above.
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Applying Nitsche’s method to the heat conduction problem, the weak
form is given as

0 =(∇δc, κdiff∇c)
Ω+ − (δc, κdiff∇c ⋅ n)

Γ+ − (κdiff∇δc ⋅ n, c − ĉ)
Γ+ − (αδc, c − ĉ)

Γ+
(3.37)

where α is some stabilization parameter to be defined. After integration by
parts the weighted residual form is

0 =− (δc,∇ ⋅ (κdiff∇c))
Ω+ − (κdiff∇δc ⋅ n, c − ĉ)

Γ+ − (αδc, c − ĉ)
Γ+ (3.38)

from which the Euler-Lagrange equations are recovered

−∇ ⋅ (κdiff∇c) = 0 in Ω+ (3.39)
c − ĉ = 0 in Γ+ (3.40)

The method is consistent and leads to symmetric discrete systems. The
most appealing feature is that Nitsche’s methods does not require the ad-
ditional Lagrange multiplier field as the classical Lagrange multiplier tech-
nique. Hence, Nitsche’s method requires the least implementation effort com-
pared to all other methods reviewed in this section, since no boundary meshes
and no additional variables are introduced.

On the other hand, the method inevitably leads to an unstable problem
such that a least-square stabilization using α or similar measures are required.
However, the definition of the stabilization parameters is still a research topic,
which especially for incompressible and convective flow requires further re-
search.

3.3.3 Generalized Hellinger-Reissner principle

The Hellinger-Reissner (HR) principle [Hellinger, 1914; Reissner, 1950] is a
hybrid or two-field formulation that introduces the additional flux q̄ as an
independent and dual field to the primary temperature field c. The bar over
the flux indicates that the flux is now an independent field as opposed to the
flux field q(c) that is a function of the temperature. The HR principle applied
to the heat-conduction problem can be written as follows

0 = (∇δc, q̄)
Ω+ − (δc, q̄ ⋅ n)

Γ+ (3.41a)

0 = −(δq̄,
1

κdiff q̄ −∇c)
Ω+ − (δq̄ ⋅ n, c − ĉ)

Γ+ (3.41b)

The above form is the generalized HR formulation, where Dirichlet condi-
tions are enforced weakly using the additional flux variable. Integration by
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parts of the first integral in Eq. (3.41a) gives

0 = −(δc,∇ ⋅ q̄)
Ω+ (3.42a)

0 = −(δq̄,
q̄

κdiff −∇c)
Ω+ − (δq̄ ⋅ n, c − ĉ)

Γ+ (3.42b)

from which the Euler-Lagrange equations emerge as

−∇ ⋅ q̄ = 0 in Ω+ (3.43)

q̄ − κdiff∇c = 0 in Ω+ (3.44)
c − ĉ = 0 in Γ+ (3.45)

Flux and temperature are discretized independently such that Eq. (3.44) has to
be weakly enforced as shown in Eq. (3.41b). The discrete q̄h is approximated
elementwise discontinuous (see also Eq. (3.53)) and can be condensed at the
element level. The linear system before condensation is of the form

A
e

[
0 Ke

cq̄ +G
e
cq̄

Ke
q̄c +G

e
q̄c Ke

q̄q̄
]A

e
[
ce
q̄e

] =A
e

[
0
f ĉ,e
q̄

] (3.46)

where Ge
cq̄ and Ge

q̄c represent the boundary integrals. Before the assembly of
the global linear system, the modified element stiffness matrix K∗,e

cc and force
vector f ∗,e

c are computed by

K∗,e
cc =− (Ke

cq̄ +G
e
cq̄) (Ke

q̄q̄)
−1 (Ke

q̄c +G
e
q̄c) (3.47)

f ∗,e
c =− (Ke

cq̄ +G
e
cq̄) (Ke

q̄q̄)
−1 f ĉ,e

q (3.48)

such that the condensed discrete system is

A
e

[ K∗,e
cc ]A

e
[ ce ] =A

e
[ f ∗,e

c ] (3.49)

One of the primary applications of the HR method is the construction of
low-order elements without locking. For an overview on such multi-variable
formulation for solid mechanics see e.g. [Pian and Wu, 2006, chap 1.3]. The
useful feature for the problem at hand is that after condensation, interface
conditions are treated weakly without additional Lagrange multiplier un-
knowns. An application of the HR method to weak interface conditions in
the context of XFEM has been presented recently in [Zilian and Fries, 2009].
The drawback is that the element stiffness matrix is modified for all or at
least for all intersected elements. That would eventually require a completely
new element formulation for the intended application on the stabilized NS
equations. Hence, a modified version of the HR method is proposed in the
following.
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3.3.4 Flux-based Lagrange multiplier

If the first integral in Eq. (3.41a) is replaced with its original form in Eq. (3.11),
which is solely based on the temperature and its test function, then the fol-
lowing weak form is obtained

0 = (∇δc, κdiff∇c)
Ω+ − (δc, q̄ ⋅ n)

Γ+ (3.50a)

0 = −(δq̄,
1

κdiff q̄ −∇c)
Ω+ − (δq̄ ⋅ n, c − ĉ)

Γ+ (3.50b)

Again, temperature c and flux q̄ are independent variables and the temper-
ature gradient based on each primary variable is coupled weakly. However,
the flux enters Eq. (3.50a) only via the boundary integral, where Dirichlet con-
ditions are enforced weakly.

The usual integration by parts of the first integral in Eq. (3.50a) gives

0 = −(δc,∇ ⋅ (κdiff∇c))
Ω+ − (δc, q̄ ⋅ n − κdiff∇c ⋅ n)

Γ+ (3.51a)

0 = −(δq̄,
q̄

κdiff −∇c)
Ω+ − (δq̄ ⋅ n, c − ĉ)

Γ+ (3.51b)

from which the Euler-Lagrange equations are recovered

−∇ ⋅ (κdiff∇c) = 0 in Ω+ (3.52a)

q̄ − κdiff∇c = 0 in Ω+ (3.52b)
c − ĉ = 0 in Γ+ (3.52c)

q̄ ⋅ n − κdiff∇c ⋅ n = 0 in Γ+ (3.52d)

The temperature shape functions Nc
I (x) are chosen as piecewise contin-

uous polynomials, that are C0-continuous at inter-element boundaries. The
shape functions for the flux unknowns N q̄

K(x) shall also be polynomial func-
tions inside each element, however, they shall be C−1 discontinuous at inter-
element boundaries. For the XFEM approach, both temperature and flux field
are discontinuous across the interface and appropriately enriched along Γi.
The complete discretization for trial and test functions is

ch(x) =∑
I

φc
I(x)cI (3.53a)

δch(x) =∑
I

φc
I(x)δcI (3.53b)

q̄h(x) =∑
K

φ
q̄
K(x)q̄K (3.53c)

δq̄h(x) =∑
K

φ
q̄
K(x)δq̄K (3.53d)

with φ
q̄
K(x) = N q̄

K(x) ¬
ψ(x).
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For the examples given at the end of this chapter, temperature and flux
have the same order for their shape functions. Adopting the notation from
[Gresho and Sani, 2000], the approximation for temperature and flux could be
termed as Q1Q−1 for trilinear, Q(20)

2 Q(20)
−2 for quadratic serendipity and Q2Q−2

for full triquadratic shape functions. Likewise, the approximation for linear
and quadratic tetrahedrons can be defined as P1P−1 and P2P−2, respectively.
Other element shapes like pyramids and wedges should approximate the flux
in an analogous manner. Note that a mathematical proof for stability is still
missing. Within the present work, only numerical experience with the new
approach and the original HR method gives confidence that stabilization is
not necessary.

The linear system corresponding to Eq. (3.50) is of the form

A
e

[
Ke

cc Ge
cq̄

Ke
q̄c +G

e
q̄c Ke

q̄q̄
]A

e
[
ce
q̄e

] =A
e

[
0
f ĉ,e
q

] (3.54)

MatrixKe
cc is the original stiffness matrix for the unconstrained system, which

is also present in Section 3.3.1 and Section 3.3.2. The upper right-corner con-
tains only boundary terms (Ge

cq̄). The remaining terms are the same as in the
HR-formulation.

This formulation decouples the flux equation from the primary weak heat
conduction equation, if no boundary crosses the element. Hence, the stan-
dard (or one-field) FE formulation is valid for all non-intersected elements; at
the same time, all intersected elements have flux unknowns defined on the
element. Due to the elementwise-discontinuous flux approximation, these el-
ement fluxes can be condensed on the element level and a modified element
stiffness matrix is produced with only temperature unknowns as

A
e

[ Ke
cc +C

e
cc ]A

e
[ c e ] =A

e
[ f e

c ] (3.55)

The additional matrix Ccc and vector fc entries are computed by

Ce
cc =−G

e
cq̄ (Ke

q̄q̄)
−1 (Ke

q̄c +G
e
q̄c) (3.56)

f e
c =−Ge

cq̄ (Ke
q̄q̄)

−1 f ĉ,e
q̄ (3.57)

Splitting the assembled system Eq. (3.55) into nodes affected by boundary
integrals with constraints (set C) and remaining nodes (set S), it becomes clear
that the additional terms Ce

cc and f e
c contribute only to nodes belonging to

intersected elements.

[
KSScc KSCcc
KCScc KCCcc +CCCcc

] [
cS

cC
] = [

0
f Cc

] (3.58)
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The matrix Ccc is generally asymmetric. The asymmetric nature of a formerly
symmetric problem may be seen as drawback, however, for the intended ap-
plication – the NS equation with its asymmetric convection term – this prop-
erty does not complicate the solution of the discrete system.

Approaches for constraints in discontinuous Galerkin (DG) methods [see
e.g. Hemker et al., 2003; Lew and Buscaglia, 2008; Mergheim et al., 2004] have
not been considered in detail, because the topic of this thesis is a CG method
for the NS equation. Nevertheless, the research performed on discontinu-
ous Galerkin (DG) methods may improve the understanding of CG methods.
For example, reference [Lew and Buscaglia, 2008] remarks that either the pri-
mary variable c or the dual variable λ should be discontinuous. While the
DG method lowers the continuity requirement for the primary variable, the
proposed approach lowers the continuity of the Lagrange multiplier variable
q̄. Hence, the proposed scheme supports the finding in [Lew and Buscaglia,
2008].

In summary, the newly proposed method in Section 3.3.4 combines the
following desirable features: (i) it requires no interface mesh for Lagrange
multipliers; (ii) it is based on weak form techniques; (iii) it can be added to an
existing weak forms and element formulations; (iv) its Lagrange multiplier
can be condensed locally; (v) it avoids the saddle point structure of classical
Lagrange multiplier methods; and (vi) it is stable without user-defined stabi-
lization parameters. The application of this method to the three-dimensional
incompressible NS equations largely benefits from the sum of these features.

3.4 Numerical integration

During the numerical integration of the weak form, the integration of ele-
ments containing discontinuous approximations requires a special treatment.
Using standard integration rules to integrate across the discontinuity leads
to reduced accuracy and often to rank deficient matrices. An accurate, but
geometrically complex approach is the subdivision of the intersected element
into integration cells to represent integrals on each side of the interface. Such
subdivision is suggested in most publications that allow the inclusion of weak
and strong discontinuities, see e.g. [Dolbow et al., 2000; Moës et al., 1999;
Strouboulis et al., 2000] and is the standard technique in the context of XFEM.
A similar treatment is required to perform boundary integrals due to inter-
face constraints. The applied numerical integration schemes are discussed in
the following.

In the classical FEM, domain integrals over a domain Ω of function f are
usually split into non-overlapping element integrals Ie over element domains
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Ωe such that

I = ∫
Ω

f dx

=∑
e
∫

Ωe
f dx

=∑
e

Ie (3.59)

Each element integral Ie is integrated numerically in the element parameter
space ξ using, e.g. efficient Gauss-Legendre integration, where the integral is
replaced with a sum evaluating c at integration point ξq and multiplying with
an integration weight wq as

Ie = ∫
Ωe

f (x)dx

= ∫
Ωe

f (ξ) ∣
˜
Jxξ ∣dξ

≈∑
q

f (ξq)wq (3.60)

where q is the integration point counter. The Jacobian
˜
Jxξ is defined as

˜
Jxξ =

∂ x
∂ ξ

(3.61)

and ∣
˜
Jxξ ∣ denotes the determinant of the Jacobian matrix.

In the XFEM with strong discontinuities, all non-intersected elements –
even if partially enriched – are integrated using Eq. (3.60). Intersected ele-
ments are subdivided into subdomains, such that no subdomain is crossed by
a discontinuity. These subdomains are called domain integration cells or sim-
ply domain cells in the following. The interface Γi is subdivided into bound-
ary integration cells to perform the numerical integration of surface integrals.
Boundary cells are necessary, since kinks in the surface mesh as well as weak
and strong discontinuities at edges and faces of each background element are
present. In Figure 3.3, an element intersected by a piecewise linear interface
Γ+ is depicted. The six resulting domain cells are shown in Figure 3.3a, while
the two required boundary cells are depicted in Figure 3.3b. It can be seen,
how boundary cells respect both the interface kink and the background ele-
ment edges.

Figure 3.4 shows the associated coordinate systems for a two-dimensional
problem. Integrals in the physical coordinates x are transferred into domain
and boundary element coordinate systems ξΩ and ξΓ, respectively. Boundary
elements are present, if the interface is an additional mesh or as part of the
structure surface. Each integration cell has its own coordinate system: ηΩ for
domain cells and ηΓ for boundary cells, respectively.
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Figure 3.3: Integration cells for an element intersected by a piecewise linear interface.
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For the FE formulation, the shape function is typically a function of the
element coordinates ξ. Hence, f and derivatives with respect to xi can be
expressed as a function of ξ as

f h =∑
I=1

NI(ξ) f I and
∂ f h

∂ xi
=

NN

∑
I=1

∂ NI(ξ)

∂ ξ j

∂ ξ j

∂ xi
f I (3.62)

The domain integral in an element using integration cells can be expressed as

Ie = ∫
Ωe

f h(ξ) ∣
∂ x
∂ ξ

∣dξ (3.63)

=∑
c=1
∫

Ωc
f h(ξ(η)) ∣

∂ x
∂ ξ

∣ ∣
∂ ξ

∂ η
∣dη (3.64)

Numerical integration with quadrature points ηq and weights wq defined for
each integration cell is then performed as

Ie =∑
c=1
∑
q=1

f h(ξ(ηq)) ∣
∂ x
∂ ξ

∣ ∣
∂ ξ

∂ η
∣wq (3.65)

Integration of derivatives in element and cell coordinates is performed
similarly

Ie = ∫
Ωe

∂ f h(ξ)

∂ ξ j

∂ ξ j

∂ xi
∣
∂ x
∂ ξ

∣dξ (3.66)

=∑
c=1
∫

Ωc

∂ f h(ξ(η))

∂ ξ j

∂ ξ j

∂ xi
∣
∂ x
∂ ξ

∣ ∣
∂ ξ

∂ η
∣dη (3.67)

Above equation illustrates that derivatives of approximation functions are
with respect to ξ as in standard FE implementations. The only additional
tasks are the computation of the coordinate ξ(η) and the Jacobi matrix ∣∂ξ/∂η∣.
Algorithm 3.1 summarizes the key steps when performing domain integrals.
The necessary translations between physical, element and cell coordinate sys-
tems are included, too.

Boundary integrals are performed in a similar way. Along the boundary,
no derivatives of variables with respect to surface coordinates are required,
which removes the need for spatial derivatives. However, more coordinate
transformations are required, if a discretized interface meshed for the La-
grange multiplier λ is used. Then boundary element shape function Ni in-
cluding the corresponding coordinate transformations are required. If the
interface mesh contains the prescribed interface value ci,h, the value is inter-
polated to the integration point using shape function Ni. The required steps
for performing boundary integrals are summarized in Algorithm 3.2.
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Algorithm 3.1 Integration of element domain integrals

for domain integration cell cΩ do
for integration point q at position ηΩ

q do
position in fluid element coordinates ξΩ(ηΩ

q )

nodal shape function NI(ξΩ) and derivatives w.r.t. ξΩ

shape function derivatives w.r.t. x
enriched approx. function φI(ξΩ) and derivatives w.r.t. x
integration factor wq ∣

˜
JxξΩ ∣ , ∣

˜
JξΩηΩ ∣

integration point values ch
q , ∂ch

q/∂x using φc
L(ξΩ)

integration point values q̄h
q using φ

q̄
I (ξΩ)

weak form integrals
end for

end for

Algorithm 3.2 Integration of element boundary integrals

for boundary integration cell cΓ do
for integration point q at position ηΓ

q do
position in boundary element coordinates ξΓ(ηΓ

q )

position in background element coordinates ξΩ(ηΓ
q )

nodal shape function Ni
I(ξΓ) for boundary element

shape function derivatives w.r.t. x for boundary element
enriched approx. function φI(ξΩ) in background element
integration factor wq ∣

˜
JxξΓ ∣ ∣

˜
JξΓηΓ ∣

integration point values ch
q using φc

I(ξΩ)

integration point values q̄h
q using φ

q̄
I (ξΩ)

integration point values λh
q using Ni

I(ξΓ)

integration point values ci,h
q using Ni

I(ξΓ)

integrate weak form integrals
end for

end for
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Table 3.1: Exemplary shape functions for employed 3D elements.

Element type Abbr.§ Shape function N1(ξ) of corner node 1

tet.
linear P1 1− ξ1 − ξ2 − ξ3
quadr. P2 (1− ξ1 − ξ2 − ξ3)(2(1− ξ1 − ξ2 − ξ3)− 1)

hex.
linear Q1

1
8(ξ1 − 1)(ξ2 − 1)(ξ3 − 1)

quadr. Lagrange Q2
1
8(ξ1 − 1)(ξ2 − 1)(ξ3 − 1)ξ1ξ2ξ3

quadr. serendipity Q(20)
2

1
8(ξ1 − 1)(ξ2 − 1)(ξ3 − 1)(ξ1 + ξ2 + ξ3 + 2)

§ Abbr. = Abbreviation as used in [Gresho and Sani, 2000]

In practice, the construction of these integration cells is a geometrically
complex task. The construction depends on the way the interface is given.
The approach used in this work allows for higher order interfaces intersect-
ing higher-order volume elements and has been published recently in [Mayer
et al., 2009]. For three-dimensional problems, a triangulation of the intersect-
ing surface into boundary integration cells is first generated. Subsequently,
an constrained Delaunay tetrahedralization is performed in each intersected
background element such that no domain cell is intersected by any interface
Γi. Both cell types are implemented like elements using linear or quadratic
shape functions and cell node coordinates. However, cells do not carry any
nodal or element unknowns. For two-dimensional problems, the boundary
cells are linear or higher order lines, while the domain cells are linear or
higher order triangles.

How many integration points are required to compute the exact integral?
Two answers to this question are given: the number of integration points for
exact evaluation of integrals and the number of integration used in practice.
For illustration of exact number of integration points, Table 3.1 gives exam-
ples for the five approximation functions used in this work, where an arbi-
trary nodal shape function is chosen. For transient problems in later chap-
ters, the mass matrix contains the highest polynomial order, since here the
two shape functions from the test and the trial functions are used without
derivatives. Hence, the mass matrix represents the worst case requiring the
highest number of integration points.

The domain integration cell can be arbitrarily oriented in the background
element. For linear tetrahedral elements, the FE shape function along the cell
boundary is linear for any cell orientation. Likewise, for quadratic tetrahe-
drons with piecewise plane interface elements, the shape functions remains
quadratic. However, for trilinear hexahedral elements the trilinear shape
function leads to cubic terms along some edges or faces of the tetrahedral
integration cell. For the aforementioned mass matrix, a linear, Cartesian hex-
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ahedral element with constant Jacobian ∣∂x/∂ξ∣ requires to integrate a sixth
order polynomial. A triquadratic hex27 element would require a twelfth or-
der integration rule. A positive exception is the hex20 element with quadratic
serendipity functions, where no polynomial with higher order than fourth or-
der occurs. Here, the integral for the mass matrix needs integrations rules for
eighth order polynomials. This leads to 24, 45 and 343 integration points per
cell for hex8, hex20 and hex27 elements.

For testing and verification, high order Gauss rules for integrating poly-
nomials of degree 16 (729 integration points) in tetrahedrons and of degree
15 (64 integration points) for triangles following [Peano, 1982] were imple-
mented and applied. More efficient integration rules, although only avail-
able for certain polynomial orders, can be found in [Engels, 1980]. For an
exhaustive overview including example code and integration points tables,
see [Burkardt, 2010]. The testing supports the exact limits given above. Using
lower order rules, exact integrals can not be computed.

This exact integration is only valid if undistorted background elements are
considered, where the Jacobian between element and physical coordinates is
piecewise constant in space for each element. In addition, only piecewise pla-
nar boundaries are allowed. For all other cases, Jacobians between physical
and element coordinates as well as between element and integration cell coor-
dinates become linear or higher order polynomials or even rational functions
for the relation between physical space and boundary elements and cells.

The second answer is related to the practically needed number of inte-
gration points per cell. For coarse meshes, the discretization error may be
higher than the integration error and a reduced integration is possible with-
out noticeable deterioration of accuracy. Here adaptive integration may lead
the optimal number of integration points, which has been used for enriched
approximations for example in[Strouboulis et al., 2000]. If the number of inte-
gration cells is high enough, it is possible to reduce the number of integration
points per cell down to an one-point integration rule. Hereby, the reduced
integration results in higher integration errors on a given mesh, however, the
convergence properties remain unchanged.

A critical lower limit is hit, if a further reduction the overall number of
integration points per element leads to rank deficient element matrices. For
instance, if one single domain integration cell determines the value of an in-
tegral, reduced integration leads to rank deficiencies in the element matrix.
Such cases with only one integration cell occur quite frequently when void
enrichments are combined with moving boundaries. For one integration cell,
the exact integration rules plus additional order for linear or higher order Ja-
cobian determinants have been used as the lower limit to obtain element ma-
trices of full rank. In practice, the number of integration cells can be checked
such that full integration rules are used if the number of cells is below a given
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limit. Preliminary testing [Örley, 2009] revealed an optimal number of inte-
gration points depends on specific weak form integral terms. Sometimes a
high-order rule with as few as possible integration cells or low order rules
with high number of integration cells lead to a minimal number of overall
integration points.

For curved interfaces and the resulting quadratic integration cells as in-
troduced in [Mayer et al., 2009], exact integrals can not be computed due to
the involved rational Jacobian determinants. Nevertheless, preliminary stud-
ies showed that it is generally beneficial to use higher order integration cells
with curved boundaries. This conclusion is supported by recent studies in
[Cheng and Fries, 2010]. For a given accuracy, domain cells with quadratic
shapes required less overall integration points than using a higher number
of linear tetrahedral cells with less points per cell. However, generating such
higher order integration cells in three-dimensions is a complex geometrical
task as it has been shown in [Mayer et al., 2009]; hence, linear integration
cells may be preferred for increased robustness of the cell generation process.
In this context, adaptive integration schemes as used in [Zlotnik and Dı́ez,
2009] may guide the riangulation for curved interfaces.

As there are many components influencing the accuracy of the reduced
integration, the required exact polynomial order is used for all results in this
thesis. Thus, no rank deficiency occurs and the integration accuracy is com-
parable to standard FE integration in non-intersected elements.

Taking the overall number of integration points per element as a crite-
rion, the integration cost for subdivided elements including exact integration
is many times higher than for non-intersected elements with standard FE in-
tegration. For instance, a plane cut through the trilinear element in an one-
sided problem generates at least five or six tetrahedral cells. Multiplying 6
cells with 24 integration points per cell gives 144. Compared to the eight
integration points necessary for standard FE integration, 18 times more in-
tegration points are required for such intersected element. For complicated
intersection patterns and quadratic background element shape functions, the
factor can increase to 100 and more. In contrast, intersecting linear tetrahedral
elements does not increase the polynomial order due to the missing ξΩ

1 ξΩ
2 ξΩ

3 -
terms in the shape functions.

The runtime for exact integration could be improved by using alternative
integration schemes as suggested in [Mousavi et al., 2010; Natarajan et al.,
2009]. Here, an integration scheme for the polyhedron is constructed by min-
imizing the difference between the integral obtained by subdivision into in-
tegration cells and an integratal obtained by direct integration of the polyhe-
dron. Hereby, one polyhedron represents each side of the intersected element
volume. These alternative schemes still represent exact integrals, but the final
number of integration points can be controlled and reduced to a chosen error
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limit. Hence, precomputing a special integration rule for each intersected el-
ement may reduce the time required for the repeated integration of the weak
form.

In practice, the relative cost may not increase the overall runtime as dra-
matically as above numbers suggest. First, intersected elements are present
only along the interface and, therefore, the relative cost between intersected
and non-intersected elements reduces for increasing number of elements in
the simulation. If h-adaptivity is applied and element subdivision is concen-
trated along the interface to resolve boundary features in the solution, then
the relative cost decreases at a smaller rate than for uniform subdivision. Fi-
nally, for large systems, the solution of the linearized system often dominates
the overall run time such that the increased cost for intersected elements be-
comes negligible. Hence, the effect of exact integration on the overall run
time is considerable high for small simulations like the patch tests presented
in later chapters, but is less dominant for large, realistic problems.

For parallel computations, an exception to this relative cheapness occurs,
if most intersected elements are located on only few processors of a parallel
simulation. Since the parallel layout is optimized based on node and element
connectivity, it may happen, that the intersection and the element integration
occurs on only few processors. For such situations, the parallel balancing
may be extended to include information on the intersection situation. Even
different parallel layouts for integrating the elements and solving the global
linear system may be considered to minimize the overall run time of the sim-
ulation. It should also be noted that such layouts may change over time, if
the interface moves as in the transient FSI simulations presented in subse-
quent chapters. For this thesis, no attempts have been made to implement
rebalancing.

3.5 Numerical examples for the heat conduction

The following three examples demonstrate that the proposed flux based La-
grange multiplier works for plane and curved boundaries in three-dimen-
sional problems. In each example, the interface is given by a number of pla-
nar quad4 surface elements. Hence, for plane surfaces, no geometric error
disturbs the optimal convergence rate. For the curved surface in the third
example, the surface is refined along with the domain refinement. However,
suboptimal convergence rates are expected for the quadratic domain approx-
imations due to the linear interface description.

For all three cases, an exact solution is constructed either by computing
a source term from an assumed solution (examples in Section 3.5.1 and Sec-
tion 3.5.2) or by analytically solving the heat equation (Section 3.5.3). For all
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convergence graphs, the L2 norm defined as

∣∣ch − cexact∣∣L2 = εc
L2
=

√

∫
Ω+ ∣c

h − cexact∣2dx (3.68)

is used. Note that in the graphs, sometimes the symbol T is used to denote
temperature boundary conditions.

3.5.1 2D heat conduction in a rectangular domain

Solutions for the stationary heat conduction on rectangular domains as shown
in Figure 3.5a can be constructed by superposition of one-dimensional solu-
tions. For the two dimensional example, the chosen solution is

cexact
2D (x, y, z) = sin(

πx
a

) sin(
πy
b

) (3.69)

which results in the following source term

f̂2D = (
1
a2 +

1
b2 )π2 sin(

πx
a

) sin(
πy
b

) (3.70)

Using above heat source and homogeneous Dirichlet conditions along the
boundary, cexact shall be computed. Since three-dimensional elements are
used for computation, zero Neumann conditions are applied on planes nor-
mal to the z-axis.

The background grid is rotated around the z-axis using various angles in-
cluding the case of interfaces being parallel to the background mesh. The so-
lution for a 20○ rotation of the background mesh and the corresponding con-
vergence rates are shown in Figure 3.5b and Figure 3.5c, respectively. For any
angle, quadratic convergence for the hex8 and cubic convergence for hex20
and hex27 elements is obtained.

3.5.2 3D heat conduction in a rectangular domain

The second test case is a real three-dimensional problem, where the following
exact solution is sought for

cexact
3D (x, y, z) = sin(

x
a

π) sin(
y
b

π) sin(
z
c

π) (3.71)

The corresponding domain is depicted in Figure 3.6a and the corresponding
source term is given as

f̂3D = (
1
a2 +

1
b2 +

1
c2 )π2 sin(

πx
a

) sin(
πy
b

) sin(
πz
c

) (3.72)
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(a) 2D Setup (b) Solution on 2. refinement level (h = 0.05).
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Figure 3.5: Convergence study of rectangular domain. The background grid is ro-
tated about 20○ around the z-axis.
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Figure 3.6: Convergence study of rectangular domain.

All boundaries are Dirichlet boundaries with zero temperature applied using
the proposed embedded DBC approach.

For the convergence test whose results are plotted in Figure 3.6b the back-
ground mesh is first rotated by 20○ around the x-axis and the resulting mesh
is rotated 10○ around the z-axis. Again quadratic convergence for the hex8
and cubic convergence for hex20 and hex27 elements is obtained.

3.5.3 Heat conduction between concentric cylinder surfaces

The last example for the diffusion equation is the heat conduction between
two concentric cylinder surfaces. The setup and the applied temperature con-
ditions are shown in Figure 3.7a. The solution for this problem reduces to an
one-dimensional solution with respect to the radius r and can be computed
analytically. The exact solution is given as

cexact
cyl (r(x)) = ci − (ln(r)− ln(ri))

ci − ca

ln(ra)− ln(ri)
(3.73)

The two cylinder surfaces are aligned with the z-axis, hence the cylinder ra-
dius is defined as

r(x) =
√

x2 + y2

Again the grid is refined in x- and y-direction to estimate the spatial con-
vergence rates given in Figure 3.7c. Reducing the element size of the interface
with the same rate as the domain elements yields approximately quadratic
convergence for the hex8 elements. However, the geometric error dominates
the convergence of the serendipity and triquadratic elements, such that only
reduced convergence rates between quadratic and cubic are obtained.
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The source of the reduced convergence rate is most likely the bi-linear
interface discretization along which the temperature is prescribed. Using
smooth functions like level-set functions for interface representation, optimal
(cubic) convergence rates are expected also for the hex20 and hex27 elements.

Ω+

y

x
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(a) 2D Setup (b) Solution on 2. refinement level
(h = 0.05)
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Figure 3.7: Setup and example solution for heat conduction between concentric
cylinder surfaces.





CHAPTER 4
Stationary implicit fluid surfaces

The key element of the proposed FSI approach is the proper definition of im-
plicit interfaces on a fixed Eulerian fluid grid. This chapter illustrates, how
the XFEM can be used to model implicit surfaces and how boundary condi-
tions can be applied along such implicit boundaries. Moving interfaces and
the FSI formulation are treated in the subsequent chapters.

4.1 Definition of the fluid problem

In standard FE simulations, the observed domain is filled with elements, such
that element edges and element surfaces are aligned with material or do-
main boundaries. The XFEM allows to model such domain boundaries as
discontinuities by enriching the finite element approximation, such that do-
main boundaries can arbitrarily cross element surfaces. It is therefore possi-
ble to create a computational mesh without considering where the surface is
located. This property of the XFEM is exploited by first defining a computa-
tional domain and then describing the fluid surface implicitly, i.e. indepen-
dent of any fluid element boundary.

The introduction of the three-field setup in Section 2.3.2 allows to concen-
trate on the fluid flow and its interaction with an explicitly given interface
Γi. No knowledge is assumed on what is beyond the interface, such that de-
pendencies between fluid and structure fields are avoided. The interface is
given as a Lagrangian mesh and no other means of locating the interface, e.g.
level-sets, are required.

The first step is the replacement of the explicit fluid surface description
(Figure 4.1a) with an implicit description (Figure 4.1b). For this purpose, do-
main Ω is defined that contains the fluid domain Ωf completely and extends

55
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(a) Explicit fluid surface Γf,FSI

Ω Γi

Ω−Ω+ = Ωf

Γ+ = Γf,FSI

u, p u
i

(b) Implicit fluid surface Γ+

Figure 4.1: Fluid part of the FSI problem: Γi divides the computational fluid domain
Ω into a physical fluid domain Ω+ = Ωf and a ‘fictitious’ fluid domain
Ω−.

into the structural domain Ωs. The interface Γi between fluid and structure
is an internal interface that separates Ω into two subdomains Ω+ and Ω−,
where Ω+ corresponds to the physical fluid domain Ωf and Ω− is the remain-
ing domain filling Ω. The flow field in Ω− is entirely fictitious with no physical
meaning to the FSI problem. In the XFEM literature, this setup is sometimes
referred to as one-sided problem, where the field of interest – here the physi-
cal fluid in Ωf – is on one side of the interface only. The other side is denoted
as void.

The jump in the velocities JuK between the physical values u+ and the void
(u−) can be expressed as

JuK = u+ − u−
¯
=0

in Γi (4.1)

In other words, the jump height JuK equals the value of u+ along the interface,
since u is zero within the void. Consequently, the kinematic fluid-interface
coupling from Eq. (2.68) along Γi becomes

JuK = u+ = uf = ui in Γi (4.2)

Likewise, one can identify a jump discontinuity in the stress field

J
˜
σ ⋅ nfK =

˜
σ+ ⋅ nf −

˜
σ− ⋅ nf

´¹¹¹¹¸¹¹¹¹¹¶
=0

in Γi (4.3)

The kinematic condition between fluid and interface from Eq. (2.70) then be-
comes

J
˜
σ ⋅ nfK =

˜
σ+ ⋅ nf =

˜
σf ⋅ nf = λ in Γi (4.4)

The term
˜
σ+ ⋅ nf = λ denotes the surface traction, which is the ‘reaction force’,

if velocity constraints are enforced along the interface. The initial conditions



4.2. XFEM formulation 57

for the fluid domain Ωf are given as

u(x, t = 0) = u0 in Ω+ (4.5)

p(x, t = 0) = p0 in Ω+ (4.6)

As shown in the following section, the XFEM allows to sharply separate phys-
ical and fictitious domain and no flow is computed in Ω−. Consequently, no
initial or boundary conditions are required for Ω− and its boundaries. Fluid
body forces, if present, are only applied to Ω+. Hence, for the one-sided dis-
continuity, the values on the + side are equal to the physical values such that
no extra notation needs to be kept to distinguish + side and − side of the
discontinuity. The enforcement of conditions along the discontinuity is de-
scribed after the XFEM formulation is presented in the subsequent section.

4.2 XFEM formulation

4.2.1 Discretization

For non-moving fluid surfaces as assumed in this chapter, the Eulerian fluid
description is used. Time-discretization and stabilization due to equal order
shape functions and convective effects is identical to the techniques described
for the FE fluid formulation in Section 2.1. Hence, the semi-discrete, stabilized
Eulerian weak form given in Eq. (2.29) is used as the starting point for the
XFEM discretization.

The spatial approximation is changed from an explicit to an implicit sur-
face using enriched approximations. For example, adopting the notation from
Section 3.2, the discrete velocity in each element e can be written as

uh
e (ξ, t) =

nL

∑
L

NL(ξ)ψL(ξ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

φL(ξ)

uL(t) (4.7)

The enrichment function ψL(ξ) for unknown parameter L can be a constant
value or a special function like the Heaviside function. In the former case,
the approximation function φL equals the standard FE shape functions NL,
whereas in the latter case the approximation function has a jump-like behav-
ior. The number of unknowns nL for a scalar or vector component is indepen-
dent from the number of nodes nN. For non-moving interfaces, all ψL(ξ) are
independent of time.

The stabilized, equal order XFEM formulation employs the same prin-
ciples as the stabilized FE formulation given in Section 2.1. The Bubnov-
Galerkin method requires that trial and test approximations for each field
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are chosen to be equal. In addition, the shape functions for velocity and pres-
sure is equal, i.e. φu(ξΩ) = φp(ξΩ). Velocity and pressure are enriched in the
same way by using standard and void enrichment functions following the
rules given in the next section. Consequently, velocity, pressure and their test
functions all use the same approximation functions as

uh,n+1(x) =∑
L

φL(ξ)un+1
L (4.8a)

δuh(x) =∑
L

φL(ξ)δuL (4.8b)

ph,n+1(x) =∑
L

φL(ξ)pn+1
L (4.8c)

δph(x) =∑
L

φL(ξ)δpL (4.8d)

Higher order shape functions are incorporated without additional effort
making this approach capable for consistent low and high order finite element
approximations. Different shape function for pressure and velocity as used,
e.g. for the inf-sup stable Taylor-Hood element [Gresho and Sani, 2000], have
not been tested within this work. For additional information on applying the
XFEM to incompressible materials, see also [Legrain et al., 2008].

4.2.2 Enrichment strategies

The FSI problem requires one or several void enrichments in combination
with standard FE shape functions. So far, the void enrichment function

¬
ψ has

been defined with respect to a general interface. For fluid-structure interac-
tion, complex scenarios like contact and thin structures require to distinguish
multiple interfaces that intersect an element or the approximation function
support of nodal unknowns. A relatively simple rule governs all enrichment
scenarios that are discussed in the following: one void enrichment is needed
for each independent fluid domain within the shape function support of a
nodal or elemental degree of freedom (DOF).

For bulky structures, only one interface intersects a fluid element as de-
picted in Figure 4.2a. Here, all nodes belonging to intersected element are
enriched using the void-enrichment. All remaining nodes in Ω+ use the stan-
dard DOFs, while the remaining nodes in Ω− carry no DOFs at all. This sce-
nario corresponds to the one-dimensional example in Figure 3.2b. Only full
elements and integration cells located in Ω+ have to be integrated. This setup
resembles approaches, where integration is performed only on parts of an el-
ement to account for discontinuities [Hansbo and Hansbo, 2004; Tezduyar,
2006]. Although no enrichment concepts are introduced in these schemes, the
resulting linear system is identical. A principal example of such an enrich-
ment is given in Section 4.5.1.
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Ω+

Ω−

(a) bulky structure

Ω−

Ω−

Ω+

(b) approaching structures

Figure 4.2: Enrichment for bulky and approaching structures: The void enrichments
(◇) are applied to nodes of intersected elements. Standard DOFs (○) are
used in the remaining fluid domain.

Approaching submersed structures are algorithmically similar to the pre-
vious case. All structural domains Ωs

n together can be treated as one domain
Ω− such that Ω− = ∑n Ωs

n. Figure 4.2b shows the resulting enrichment pat-
tern. There are only four unknowns per node, since only one void enrichment
is required to model the fluid between the structure surfaces. An illustrative
simulation is presented in Section 6.6.6. From the view point of the XFEM
based fixed-grid method it is algorithmically easy to model approaching bod-
ies. However, the physics of fluid flow between contacting bodies is beyond
the scope this thesis. If the gap between the two bodies closes, then separated
fluid regions may appear and multiple local fluids have to be considered as
for thin structures treated next.

Thin structures require to locally distinguish separate interfaces. It can
be seen in Figure 4.3a, how for a certain node two fluids are present in its
approximation function support. Physically, the structure divides the fluid
domain into two independent fluid domains Ω+

1 and Ω+
2 . From the perspec-

tive of Ω+
1 , everything that is behind Γi

1 is a void, which also includes Ω+
2 .

Analog, for Ω+
2 , everything behind Γi

2 is void. To distinguish the two void en-
richments, an independent surface identifier or label for each discontinuity is
introduced. Each local void enrichment corresponds to its particular interface
i and since its value is determined by the local feature, it is termed

¬
ψloc

i (x). An
example computation showing the local enrichment is given in Section 4.5.1.

The most complex case occurs, if the FSI interface around a thin structure
is a closed surface. Then the strategy for thin structures leads to a point (2d)
or line (3d), where two interface labels join together. This problem exists only
in dimensions higher than one. For the treatment of this joint, two types of
void enrichment are distinguished: The first is the already introduced local
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(a) thin structure

Γ+
1

Γ+
2

Ωf
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joint

(b) thin structure with junction

Figure 4.3: Enrichment for thin structures: For thin structures, overlapping void en-
richments (◇ and ◽) represent the distinct discontinuities

¬

ψloc
1 and

¬

ψloc
2 .

Standard DOFs (○) are used for the remaining fluid domain. For connect-
ing distinct enrichments, an FSI void enrichment

¬

ψglob (∗) is applied at
junctions.

enrichment
¬
ψloc

i (x). In contrast, the FSI-void enrichment function
¬
ψglob sim-

ply distinguishes between being inside or outside of any structure domain
Ωs

i in the simulation. If a point is outside any structural domain, the fluid do-
main is assumed and the value of

¬
ψglob equals one. If an interface with label

i = 1 forms a closed boundary with large enough interior, the use of
¬
ψglob and

¬
ψloc

i becomes equivalent.
An exemplary enrichment pattern is given in Figure 4.3b. Two surfaces

with label 1 and 2 join at the right end of the structure. First the FSI void
enrichment (∗) is applied, where two connected interface labels cross the sup-
port. Subsequently, the remaining nodes are enriched as explained in the thin
structure case. On the lower left side, again two fluids can be distinguished
locally. Two example simulations for such thin structures are given in Sec-
tion 4.5.1.

In practice, the FSI void enrichments are applied first and subsequently,
each interface is enriched independently. Finally, the standard DOFs are ap-
plied in the remaining fluid domain. The specific order leads to extra effort,
when multiple processors are involved. This case is studied in a little more
detail in Section 4.4.3.

For all presented enrichment situations, if by mistake too many enrich-
ments are applied, linear dependent equations appear, where DOFs have ex-
actly the same approximation. Since the singular system is insolvable, such
‘over’-enrichment can be found easily. If however, insufficient enrichments
are applied, the approximation deteriorates without worsening the correct-
ness of the linear system. Such mistakes can only be found by carefully exam-
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ining the enrichment process and the solution for clearly defined examples.
Such examples are presented in Section 4.5.1 and Section 4.5.2.

4.2.3 Practical considerations

A well known property of the XFEM is that particular enrichment situations
lead to high condition numbers of the linearized system. For the particular
case of using void enrichment functions, small element fractions with non-
zero approximation functions behave similar to small elements that occur for
example when h-adaptivity is applied. In contrast to adaptivity, where the
minimal element size is bounded by constraining the maximal number of
subdivisions, the moving interface as introduced in the next chapter gener-
ates arbitrarily small non-zero supports for an unknown. The resulting high
condition number hampers the intended use of parallel and iterative alge-
braic multigrid (AMG) solution techniques.

As a first remedy, degrees of freedom with almost zero matrix entries are
omitted from critical nodes or elements. In this work, the criterion to stop en-
richment of DOFs is met, when the integral over the approximation function
is less than a given threshold. The threshold is usually problem dependent
and is found by trial and error. For more robust and user-friendly simula-
tions, this rather heuristic criterion needs to be improved. In addition, paral-
lel direct solvers are applied that are less sensitive to high condition numbers
than iterative solution techniques. In particular the solver package SuperLU
has been used through the Trilinos based research code. The SuperLU solver
allows direct solutions on distributed memory machines, but is effective only
up to 16 or 32 processors. If more processors and associated computer mem-
ory are required for complex three-dimensional transient fluid simulations,
advanced preconditioning techniques for the linearized system are required
before the present approach can be used for really large scale flow simula-
tions. Examples for such tailored preconditioning in the context of crack tip
enrichments can be found in [Béchet et al., 2005]. Applying the proposed
techniques to the NS equations should be a logical next step to improve the
global conditioning of the linear system.

Beyond the influence on the condition number, the effect of the element
subdivision on the fluid stabilization parameters may require further atten-
tion. If intersected elements with small physical (and therefore large ficti-
tious) fractions are interpreted as small elements, the element length scales
hV

e and hu
e used in the definition of the fluid stabilization parameters may re-

quire adaptation. For the presented results, the stabilization parameters are
computed at each integration point within each integration cell. For the defi-
nition of hV

e (Eq. (2.33)), the volume of the entire element has been used. For
the stream-length based length scale hu

e (Eq. (2.34)), the shape function N is
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replaced by the enriched approximation function φ and the physical veloc-
ity at the integration point is computed using the enriched approximation in
Eq. (4.8a). For the results in this thesis, optimal convergence rates are ob-
tained for stationary flow problems and stationary boundaries with above
definitions. In addition, no particular problems have been observed for in-
stationary problems. Additional theoretical work should clarify, whether is
numerical observation is valid.

4.3 Enforcement of interface constraints

The strong form of the NS equation in Eulerian formulation including the
interface condition at Γi reads

ru(u, p) = 0 in Ωf (4.9a)

rp(u) = 0 in Ωf (4.9b)

u − ui = 0 in Γi (4.9c)

u − ûD = 0 in Γf
D (4.9d)

˜
σ ⋅ nf − ĥ = 0 in Γf

N (4.9e)

Since Γi generally does not align with element boundaries, Dirichlet and cou-
pling conditions require special treatment. This topic is also referred to as
embedded Dirichlet problem [Dolbow and Franca, 2008; Ji and Dolbow, 2004;
Moës et al., 2006].

The task for this section is to formulate the coupling between the fluid
velocity of the background grid and the velocity on the interface mesh. The
interface mesh consists — in the three-dimensional case — of triangular or
quadrilateral elements, whereas the implicit surface of the physical fluid on
the background mesh does not have such surface elements. On the back-
ground mesh, the velocity and the stress along the surface are given only by
their interpolation from the tetrahedral or hexahedral domain elements. For
highlighting the surface coupling character, two sets are defined. Set C con-
tains all DOFs from nodes of intersected elements, while all remaining nodal
velocity and pressure DOFs are in set S . With the help of these two sets, the
stabilized fluid system can be split into the following form

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F SSuu F SSup F SCuu F SCup
F SSpu F SSpp F SCpu F SCpp
F CSuu F CSup F CCuu F CCup
F CSpu F CSpp F CCpu F CCpp

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆uS

∆pS

∆uC

∆pC

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

rSu
rSp
rCu
rCp

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

(4.10)

In the following, three methods to enforce interface constraints are pre-
sented and their applicability to the two-dimensional and three-dimension-
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al fluid problem is discussed. Stating the conclusion in advance, the La-
grange multiplier method described first is difficult to formulate and imple-
ment in three dimensions, hence only a two-dimensional implementation is
presented. The following two methods are applicable in one, two, and three
dimensions and are therefore implemented for three dimensional problems
as the most general case.

4.3.1 Traction based Lagrange multiplier

In the ‘classical’ Lagrange multiplier approach to constraints along bound-
aries, a traction field λ is introduced as independent unknown. The corre-
sponding weighting function is denoted as δλ. The fluid-interface condition
(Eq. (4.2)) is enforced weakly at tn+1 at the interface Γi by testing the condition
with a test function δλ(x)

0 = (δu, ru(u, p))
Ωf + (δu,

˜
σ ⋅ nf − ĥ)

Γf
N
+ (δu,

˜
σ ⋅ nf −λ)

Γi (4.11a)

0 = (δp, rp(u))
Ωf (4.11b)

0 = −(δλ, u − ui)
Γi (4.11c)

0 = (δui, λ)
Γi (4.11d)

The interface velocity is assumed to be unknown during this derivation. Con-
sequently, the term (δui, λ)

Γi is introduced. Since the interface does not intro-
duced any physical effects, λ is zero until further coupling to the structure is
introduced in later chapters. As in the finite element method, integrating the
stress term in the momentum equation Eq. (4.11a) by parts yields

− (δu,∇ ⋅
˜
σ)

Ωf = −(δu,
˜
σ ⋅ nf)

Γf + (∇ ⋅ δu,
˜
σ)

Ωf (4.12)

For Dirichlet boundary conditions along Γf
D, the surface integral vanishes due

to the vanishing test function. Neumann conditions are applied by letting

˜
σ ⋅ nf = ĥf along Γf

N. Along the XFEM boundary Γi, where velocities and
pressure jump from their physical values in Ω+ to zero in Ω−, the traction λ

corresponds to a real reaction force and is defined as

˜
σ ⋅ nf −λ = 0 in Γi (4.13)

The velocity matching condition along Γi is only enforced for the velocity
field in Ω+. When the volume of Ω− changes, no artificial pressure is gener-
ated within Ω− at any time, as no flow is modeled in Ω−.

As mentioned above, the fluid equations need stabilizing terms for dom-
inating convection and equal order interpolation as used in the following.
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Using the fluid momentum operator FM defined in Eqs. (2.29a) and (2.29b),
the stabilized weak equations can be written as

0 = FM(δu, u, p)− (δu, λ)
Γi (4.14a)

0 = FC(δp, u, p) (4.14b)

0 = −(δλ, u − ui)
Γi (4.14c)

0 = (δui, λ)
Γi (4.14d)

Neumann boundary integrals are already included in the stabilized fluid op-
erator FM. The continuity equation Eq. (4.14b) is unaffected by the Lagrange
multiplier formulation. No stabilization terms appear on the Lagrange mul-
tiplier expression (δu, λ)

Γi .
The Lagrange multiplier is discretized on the interface mesh. It is the slave

side of the weak fluid-interface coupling, if the naming conventions of Mortar
methods are adopted. Interface velocity ui and Lagrange multiplier λ use the
same approximation Ni

I as introduced in Eq. (2.73), such that

λh =∑
I

Ni
IλI and δλh =∑

I
Ni

IδλI (4.15)

The proper relation between fixed-grid field velocity approximation and La-
grange multiplier approximation has been the topic of recent research efforts,
see e.g. [Fernández-Méndez and Huerta, 2004; Flemisch and Wohlmuth, 2007;
Ji and Dolbow, 2004; Moës et al., 2006]. In particular, not all approximation
combinations are inf-sup stable. In this thesis, stable results have been ob-
tained in a two-dimensional implementation, if stabilized, equal-order, and
quadratic fluid elements (Q2Q2) have been used in combination with lin-
ear shape functions for the Lagrange multiplier interpolation. The linear La-
grange multiplier elements have been placed at the intersection of the given
interface with the fluid element edges as depicted in Figure 4.4. In the pic-
ture, the intersection points are derived from a smooth surface intersecting
the fluid elements. The intersection between fluid edges and discrete surface
mesh (the structure surface) is given in Chapter 6.

The discrete system to solve is

δu [ru(u,p)+ rλ
u (λ)] = FM(δuh, uh, ph)− (δuh, λh)

Γi (4.16a)

δp rp(u,p) = FC(δph, uh, ph) (4.16b)

δλ [ru
λ(u)+ rui

λ (ui)] = −(δλh, uh − ui,h)
Γi (4.16c)

δu rλ
ui(λ) = (δui,h , λh)

Γi (4.16d)

The discrete Lagrange multiplier unknown vector is denoted as λ. After lin-



4.3. Enforcement of interface constraints 65

Ω+

Ω−

Figure 4.4: Thick structures with traction Lagrange Multiplier: Lagrange multiplier
nodes (●) are added at intersection points between interface and fluid
edges.

earization, the discrete system at Newton step k is

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Fuu Fup Muλ 0
Fpu Fpp 0 0
Mλu 0 0 Dλui

0 0 Duiλ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆u

∆p

∆λ

∆ui

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ru + r
λ
u

rp

ru
λ + r

ui

λ
rλ
ui

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

(4.17)

The Lagrange multiplier matrices are gained from linearization, that is by
partial derivatives with respect to the discrete velocities u and ui as

δλ Mλu =−
∂(δλh, uh)

Γi

∂u
(4.18)

δλ Dλui =+
∂(δλh, ui,h)

Γi

∂ui (4.19)

and by usingMuλ =MT
λu andDλui =DT

uiλ
. The fluid matrices Fuu, Fup, Fpu and

Fpp are identical to those in Eq. (2.41).
If the interface velocity is given and prescribed as a Dirichlet condition

along the entire interface Γi, corresponding columns and rows of the sys-
tem matrix can be omitted and the known interface velocities only appear
in the residual for rui

λ (ûi) with ûi being the given interface velocity. To em-
phasize that only fixed-grid unknowns connected to intersected elements are
involved in the coupling, the fluid is split into the two sets as introduced in
Eq. (4.10)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F SSuu F SSup F SCuu F SCup 0
F SSpu F SSpp F SCpu F SCpp 0
F CSuu F CSup F CCuu F CCup MCuλ
F CSpu F CSpp F CCpu F CCpp 0

0 0 MCλu 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆uS

∆pS

∆uC

∆pC

∆λ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

rSu
rSp

rCu + r
λ,C
u

rCp

ru
λ + r

ui

λ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

(4.20)
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The above system has several features that hamper an efficient three-di-
mensional implementation. The most severe problem is to find an appro-
priate, inf-sup stable Lagrange multiplier approximation and defining the
proper location and structure of the Lagrange multiplier mesh. The problem
is complicated by using hexahedral fluid elements, where complex intersec-
tion pattern emerge between given interface position and fluid element edges.
Finally, the saddle point structure of the discrete system in Eq. (4.20) impedes
the iterative solution of the equation system. For large scale flow simulations,
such parallel, iterative solvers are mandatory. Hence, this approach has been
given up in favor of an alternative weak formulation.

4.3.2 Cauchy stress based Lagrange multiplier

In the following, a stress based coupling approach is proposed, which has al-
ready been discussed for the Poisson problem in Section 3.3. The key point
is that instead of using a traction vector field λ along the interface, an addi-
tional stress field ¯

˜
σ, that is approximated discontinuously between elements,

is introduced as additional primary unknown.
The main purpose of the stress field ¯

˜
σ is its usage as Lagrange multiplier

for the boundary constraints. Its test function δ ¯
˜
σ weakly enforces the velocity

constraint along the interface

(δ ¯
˜
σ ⋅ nf, u − ui)

Γi (4.21)

Hence, δ ¯
˜
σ ⋅ nf can be seen as the virtual traction force along the interface and

has the same units as the virtual Lagrange multiplier field in Eq. (4.14c). The
traction vector field λ along the interface is replaced with a symmetric tensor
field multiplied by the fluid normal as λ = ¯

˜
σ ⋅ nf.

For the six tensor components, a strain rate balance is added as

¯
˜
γ −

˜
γ =

˜
0 in Ωf (4.22)

that is tested with the stress test function δ ¯
˜
σ as

(δ ¯
˜
σ, ¯

˜
γ −

˜
γ)

Ωf (4.23)

The two strain rates ¯
˜
γ and

˜
γ are computed from the primary fluid unknowns

¯
˜
γ( ¯

˜
σ, p) =

1
2µ

( ¯
˜
σ + p

˜
I) (4.24)

˜
γ(u) =

1
2
(∇u + (∇u)T) (4.25)
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This strain rate balance properly defines the additional stress in the fluid do-
main. The resulting task is therefore: find u, p and ¯

˜
σ such that

ru(u, p) = 0 in Ωf (4.26a)

rp(u) = 0 in Ωf (4.26b)

¯
˜
γ −

˜
γ =

˜
0 in Ωf (4.26c)

u − ûD = 0 in ΓD (4.26d)

˜
σ ⋅ nf − ĥ = 0 in ΓN (4.26e)

u+ − ûi = 0 in Γi (4.26f)

¯
˜
σ ⋅ nf −

˜
σ ⋅ nf = 0 in Γi (4.26g)

The velocity-dependent stress tensors
˜
τ and

˜
σ in the fluid residual ru(u, p)

(Eq. (2.21a)) are computed as before

˜
τ = 2µ

˜
γ(u) (4.27)

˜
σ = −p

˜
I +

˜
τ(u) (4.28)

The combination of viscous stress
˜
τ and pressure p in the momentum equa-

tion Eq. (4.26a) is intentionally not replaced by the introduced Cauchy stress
field ¯

˜
σ. Hence, the stabilized fluid formulation remains unchanged and the

additional stress approximation enters the fluid momentum equation only via
boundary integrals resulting from partial integration of the stress term. Such
a replacement, however, might become an option, if complex fluid materials
are modeled as, e.g. in [Behr et al., 1993].

The weighted residual form is

0 = (δu, ru(u, p))
Ωf + (δu,

˜
σ ⋅ nf − ĥ)

Γf
N
+ (δu,

˜
σ ⋅ nf − ¯

˜
σ ⋅ nf)

Γi (4.29a)

0 = (δp, rp(u))
Ωf (4.29b)

0 = −(δ ¯
˜
σ ⋅ nf, u − ui)

Γi (4.29c)

0 = (δui, ¯
˜
σ ⋅ nf)

Γi (4.29d)

After integration by parts of the stress term within the fluid residual ru(u, p),
the stabilized fluid system including the additional stress field becomes

0 = FM(δu, u, p)− (δu, ¯
˜
σ ⋅ nf)

Γi (4.30a)

0 = FC(δp, u, p) (4.30b)

0 = −(δ ¯
˜
σ, ¯

˜
γ −

˜
γ)

Ωf − (δ ¯
˜
σ ⋅ nf, u − ui)

Γi (4.30c)

0 = (δui, ¯
˜
σ ⋅ nf)

Γi (4.30d)

Dirichlet and Neumann conditions away from the interface are employed as
usual. In particular, Neumann conditions and fluid body forces are already
included in FM(δu, u, p) as defined in Eq. (2.29a).
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In addition to the velocity and pressure discretization given in Eq. (2.27),
the elementwise discontinuous stresses are approximated as

¯
˜
σh(x) =∑

L
φσ̄

L(x) ¯
˜
σL (4.31a)

δ ¯
˜
σh(x) =∑

L
φσ̄

L(x)δ ¯
˜
σL (4.31b)

The stress field is enriched by the same enrichment functions as for nodal ve-
locities and pressures, however, elementwise discontinuous shape functions
Nσ̄,e

L (x) are applied. The stress approximation is therefore C−1-continuous at
inter-element boundaries. For the examples given at the end of this chap-
ter, velocity, pressure and stress use the same order for their shape func-
tions. Adopting the notation from [Gresho and Sani, 2000], the approxima-
tions for velocity, pressure, and stress are termed as Q1Q1Q−1 for trilinear,
Q(20)

2 Q(20)
2 Q(20)

−2 for quadratic serendipity and Q2Q2Q−2 for fully triquadratic
shape functions. Likewise, the approximation for linear and quadratic tetra-
hedrons are defined as P1P1P−1 and P2P2P−2, respectively. Other element
shapes like pyramids and wedges should approximate the stress in an anal-
ogous manner, however, such elements have not been tested and used in
this work. The approximation spaces are gained from experience with the
Hellinger-Reissner (HR)-principles for elastic materials and from the numeri-
cal experiments presented in Section 4.5.2. A rigorous mathematical analysis
is still missing.

The discrete system to solve is therefore

δu [ru(u,p)+ r σ̄
u (σ̄)] =FM(δuh, uh, ph)− (δuh, ¯

˜
σh ⋅ nf)

Γi (4.32a)

δp rp(u,p) =FC(δph, uh, ph) (4.32b)

δσ̄ rσ̄(u,p, σ̄,ui) =− (δ ¯
˜
σh, ¯

˜
γ( ¯

˜
σh, ph)−

˜
γ(uh))

Ωf

− (δ ¯
˜
σh ⋅ nf, uh − ui,h)

Γi (4.32c)

δui r σ̄
ui(σ̄) =(δui,h, ¯

˜
σh ⋅ nf)

Γi (4.32d)

Velocity and pressure nodal unknowns are denoted as u and p as before; The
newly introduced element stress unknowns are denoted by σ̄. The global
linearized discrete system including the additional stress unknowns is given
as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Fuu Fup Guσ̄ 0
Fpu Fpp 0 0

Kσ̄u +Gσ̄u Kσ̄p Kσ̄σ̄ Gσ̄ui

0 0 Guiσ̄ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆u

∆p

∆σ̄

∆ui

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ru + r
σ̄
u

rp
rσ̄
r σ̄
ui

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

(4.33)

The submatrices Fuu, Fup, Fpu and Fpp denote the discrete fluid system as be-
fore. The remaining submatrices result from the linearization of the boundary
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integral terms

δu Guσ̄ =−
∂(δuh, ¯

˜
σh ⋅ nf)

Γi

∂ σ̄
(4.34)

δσ̄ Gσ̄u =−
∂(δ ¯

˜
σh ⋅ nf, uh)

Γi

∂u
(4.35)

δσ̄ Gσ̄ui =+
∂(δ ¯

˜
σh ⋅ nf, ui,h)

Γi

∂ui (4.36)

δui Guiσ̄ =+
∂(δui,h, ¯

˜
σh ⋅ nf)

Γi

∂ σ̄
(4.37)

and domain integral terms

δσ̄ Kσ̄u =+
∂(δ ¯

˜
σh,

˜
γ(uh))

Ωf

∂u
(4.38)

δσ̄ Kσ̄p =−
∂(δ ¯

˜
σh, ¯

˜
γ(ph, ¯

˜
σh))

Ωf

∂p
(4.39)

δσ̄ Kσ̄σ̄ =−
∂(δ ¯

˜
σh, ¯

˜
γ(ph, ¯

˜
σh))

Ωf

∂ σ̄
(4.40)

Note that the boundary integrals are already linear relations. For the em-
ployed Newtonian material model with constant and uniform viscosity and
density, the domain integrals for the strain rates are linear as well.

As introduced during the stress discretization, the stress unknowns are
element unknowns, meaning that their shape functions are discontinuous at
inter-element boundaries. This allows to write separately for each element e:

Ke
σ̄σ̄∆σ̄e + (Ke

σ̄u +G
e
σ̄u)∆ue +K

e
σ̄p∆pe +G

e
σ̄ui∆u

i
e = −r

e
σ̄ (4.41)

Here, ∆ue, ∆pe denote the velocity and pressure nodal unknowns belonging
to the current element e and ∆σ̄e the element unknowns for the stress approx-
imation. The vector ∆ui

e contains all interface velocities belonging to interface
elements, which intersect the current fluid element e. For one fluid element
e, this setup is depicted in Figure 4.5. The boundary integrals are integrated
separately for each fluid element e using boundary integration cells.

The introduced stress field couples into the fluid and interface momentum
equation only via the boundary integrals along Γi, namely via Guσ̄ and Guiσ̄,
respectively. Hence, although the stress field is properly defined in all ele-
ments, the stress unknowns influence the velocity and pressure solution only
in intersected elements. This observation allows to conclude that (i) the ele-
ment stress equation can be omitted for non-intersected elements; and (ii) the
element stress unknowns can be condensed on the element level.

The first conclusion leaves element stress unknowns only in intersected
elements as shown in Figure 4.6. Since void enrichments are exclusively used,
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Ωe

Γ+

Γe+ = Γ+ ∩ Ωe

Figure 4.5: Definition of element boundary for boundary integrals.

Ω+

Ω−

(a) single enrichment

Ω+
1

Ω+
2

Ω−

(b) multiple enrichments

Figure 4.6: Enrichment for element stresses: stress unknowns are only present in in-
tersected elements. For multiple interfaces, multiple stress enrichments
indicated by multiple fill patterns are required as shown on the right.

the stress is approximated only by void enrichment functions and standard
or continuous enrichments are unnecessary.

The second conclusion allows the following condensation process for in-
tersected elements. The stress increments for Newton step k of element e can
be expressed as

∆σ̄e = (Ke
σ̄σ̄)

−1(−r e
σ̄ − (Ke

σ̄u +G
e
σ̄u)∆ue −K

e
σ̄p∆pe −G

e
σ̄ui∆u

i
e) (4.42)

Let the following element coupling matrices Ce for the fluid velocity un-
knowns be defined as

Ce
uu =−G

e
uσ̄(K

e
σ̄σ̄)

−1(Ke
σ̄u +G

e
σ̄u) (4.43)

Ce
up =−G

e
uσ̄(K

e
σ̄σ̄)

−1Ke
σ̄p (4.44)

Ce
uui =−G

e
uσ̄(K

e
σ̄σ̄)

−1Ge
σ̄ui (4.45)
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and, similarly, for the interface velocity unknowns as

Ce
uiu =−G

e
uiσ̄

(Ke
σ̄σ̄)

−1(Ke
σ̄u +G

e
σ̄u) (4.46)

Ce
ui p =−G

e
uiσ̄

(Ke
σ̄σ̄)

−1Ke
σ̄p (4.47)

Ce
uiui =−G

e
uiσ̄

(Ke
σ̄σ̄)

−1Ge
σ̄ui (4.48)

Let further the residual terms c
r e
u and c

r e
ui be defined as

c
r e
u =−G

e
uσ̄(K

e
σ̄σ̄)

−1r e
σ̄ (4.49)

c
r e
ui =−G

e
uiσ̄

(Ke
σ̄σ̄)

−1r e
σ̄ (4.50)

With these definitions, the condensed global system can be assembled (Ae)
from element entries as

A
e

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F e
uu +C

e
uu F e

up +C
e
up Ce

uui

F e
pu F e

pp 0
Ce

uiu Ce
ui p Ce

uiui

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

A
e

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∆ue
∆pe
∆ui

e

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= −A
e

⎡
⎢
⎢
⎢
⎢
⎢
⎣

r e
u + r

σ̄,e
u +

c
r e
u

r e
p
r σ̄,e
ui +

c
r e
ui

⎤
⎥
⎥
⎥
⎥
⎥
⎦k

(4.51)
From an implementation point of view, it can be useful to assemble the

coupling matrices Ce and the additional residual terms c
r e separately into

global sparse matrices C and residual vectors, respectively. The global system
will have modified entries only for fluid nodal unknowns belonging to inter-
sected elements. Splitting into constrained (set C) and unconstrained fluid
unknowns (set S), the global system is written as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F SSuu F SSup F SCuu F SCup 0
F SSpu F SSpp F SCpu F SCpp 0
F CSuu F CSup F CCuu +CCCuu F CCup +C

CC
up CCCuui

F CSpu F CSpp F CCpu F CCpp 0
0 0 Cuiu Cui p Cuiui

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆uS

∆pS

∆uC

∆pC

∆ui

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

rSu
rSp
rCu + r

σ̄,C
u +

c
rCu

rCp
r σ̄
ui +

c
rui

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

(4.52)

If all interface velocities are given as Dirichlet conditions, no interface ve-
locity increments are computed and the fluid system reduces to

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F SSuu F SSup F SCuu F SCup
F SSpu F SSpp F SCpu F SCpp
F CSuu F CSup F CCuu +CCCuu F CCup +C

CC
up

F CSpu F CSpp F CCpu F CCpp

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆uS

∆pS

∆uC

∆pC

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

rSu
rSp
rCu + r

σ̄,C
u +

c
rCu

rCp

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

(4.53)

Without the split into constrained and unconstrained degrees of freedom, the
short notation for Eq. (4.53) is

[
Fuu +Cuu Fup +Cup
Fpu Fpp

]
k
[

∆u

∆p
] = − [

ru + r
σ̄
u +

c
ru

rp
]

k
(4.54)
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Algorithm 4.1 Build global tangent stiffness matrix and residual

for each fluid element e do
if element intersected then

if stress condensation then
extract nodal values from global solution vector
recover element values using old solution and increment

else
extract nodal and element values from global solution vector

end if
build element matrix and residual
if stress condensation then

condense stress
store stress-related element matrices at element
assemble condensed system into global system

else
assemble uncondensed system into global system

end if
else

extract nodal values from global solution vector
perform domain integration for element matrix and residual
assemble element system into global system

end if
end for

Using an incremental Newton-Raphson iteration, the condensed element
stress requires a special update procedure. If system Eq. (4.54) has been
solved, the updated solution [uT pT]k+1 is computed as given in Eq. (2.42).
For the element stress update, the element stress increment is computed us-
ing Eq. (4.42) and the resulting stress increment is added to the stress solution
from iteration step k to obtain the improved element stress unknowns

σ̄k+1 = σ̄k +∆σ̄(∆u, ∆p) (4.55)

For this purpose, the element matrices required in Eq. (4.42) are stored at
intersected elements during the Newton-Raphson iteration. Algorithm 4.1
summarizes the evaluation of element integrals, when element stress conden-
sation is applied. For debugging purpose, the element stress in intersected
elements can be left in the global system. This is indicated by an additional
check, whether condensation should be performed or not. For the same rea-
son, the element stress can be applied to all elements instead of only to the
intersected elements. While both debugging features may influence the itera-
tive solution of the non-linear fluid system, they do not affect the converged
solution as discussed above and as shown in the example section.
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4.3.3 Viscous stress and pressure based Lagrange multipliers

In deviation from the previous hybrid approach, it is also possible to intro-
duce four primary unknown fields, namely u, p, ¯

˜
τ and p̄. This approach

applies the split of the Cauchy stress into pressure and deviatoric stress also
to the element based Cauchy stress. The additional pressure p̄ is then used
to enforce that the trace of the deviatoric stress ¯

˜
τ or the derived strain rate ¯

˜
γ

is zero, which is analogue to the incompressibility constraint for the velocity
field. The strong form for this four field problem is defined as

ru(u, p) = 0 in Ω (4.56a)
rp(u) = 0 in Ω (4.56b)
¯
˜
γ −

˜
γ =

˜
0 in Ω (4.56c)

−p̄ + p = 0 in Ω (4.56d)
tr( ¯

˜
γ) = 0 in Ω (4.56e)

u − û = 0 in Γi (4.56f)

˜
σ ⋅ nf − ĥ = 0 in ΓN (4.56g)

˜
σ ⋅ nf − ¯

˜
σ ⋅ nf = 0 in Γi (4.56h)

Velocity and pressure based values are computed as before, namely as

˜
σ(u, p) = −p

˜
I +

˜
τ(u) (4.57)

˜
τ(u) = 2µ

˜
γ(u) (4.58)

˜
γ(u) =

1
2
(∇u + (∇u)T) (4.59)

The element stress and element pressure based Cauchy stress ¯
˜
σ and strain

rate ¯
˜
γ are computed using

¯
˜
σ( ¯

˜
τ, p̄) = −p̄

˜
I + ¯

˜
τ (4.60)

¯
˜
γ( ¯

˜
τ) =

1
2µ

¯
˜
τ (4.61)

The stabilized fluid system after integration by parts including the addi-
tional stress field as given as

0 = FM(δu, u, p)− (δu,−p̄nf + ¯
˜
τ ⋅ nf)

Γi (4.62a)

0 = FC(δp, u, p) (4.62b)

0 = −(δ ¯
˜
τ, ¯

˜
γ −

˜
γ)

Ωf + (tr(δ ¯
˜
γ), p̄ − p)

Ω
− (δ ¯

˜
τ ⋅ nf, u − ui)

Γi (4.62c)

0 = (δ p̄, tr( ¯
˜
γ))

Ωf + (δ p̄nf, u − ui)
Γi (4.62d)

0 = (δui,−p̄nf + ¯
˜
τ ⋅ nf)

Γi (4.62e)
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In the previous, Cauchy stress based formulation, the Cauchy stress repre-
sents the full stress tensor. Due to the split into pressure and deviatoric vis-
cous stress, it is now necessary to enforce that the trace of the strain rate tr( ¯

˜
γ)

is zero. This is equivalent to the incompressibility constraint for the velocity
field. This additional constraint is enforced by the element pressure. Both
viscous stress and pressure are required for the surface integrals to obtain the
complete surface traction vector.

The complete fluid-interface system including the interface constraint be-
comes

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Fuu Fup Guτ̄ Gup̄ 0
Fpu Fpp 0 0 0

Kτ̄u +Gτ̄u Kτ̄p Kτ̄τ̄ Kτ̄ p̄ Gτ̄ui

Gp̄u 0 Kp̄τ̄ 0 Gp̄ui

0 0 Guiτ̄ Gui p̄ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆u

∆p

∆τ̄

∆p̄

∆ui

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ru + r
τ̄,p̄
u

rp
rτ̄
rp̄

r
τ̄,p̄
ui

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

(4.63)

The matrix structure is equivalent to the previous approach. Element pres-
sures and element viscous stresses are approximated elementwise discontin-
uously in exactly in the same way as the Cauchy element stress in the pre-
vious section. The approximations for velocity, continuous pressure, viscous
stress and element pressure are Q1Q1Q−1Q−1 for trilinear, Q(20)

2 Q(20)
2 Q(20)

−2 Q(20)
−2

for quadratic serendipity and Q2Q2Q−2Q−2 for full triquadratic shape func-
tions. Likewise, the approximation for linear and quadratic tetrahedrons are
defined as P1P1P−1P−1 and P2P2P−2P−2, respectively.

Additional pressure and viscous stress couple into the momentum equa-
tion only via boundary integrals along Γi. Hence, they can be omitted for
non-intersected elements without affecting the velocity and nodal pressure
solution. In addition, it is again possible to condense the element variables at
the element level

[
∆τ̄

∆p̄
] = [

Kτ̄τ̄ Kτ̄ p̄
Kp̄τ̄ 0

]

−1

(− [
rτ̄
rp̄

]− [
Kτ̄u +Gτ̄u
Gp̄u

]∆ue − [
Kτ̄p

0
]∆pe − [

Gτ̄ui

Gp̄ui
]∆ui

e)

(4.64)

Inversion of the matrix is performed using a direct solver (Amesos UMF-
PACK, [Heroux and Willenbring, 2003]) on the element level, where the zero
diagonal term does not pose particular problems. The algorithmic implemen-
tation is analogue to Algorithm 4.1. The condensed system has shown — at
least for low Reynolds number cases considered in this thesis — the same
optimal convergence properties as the Cauchy stress Lagrange multiplier.

In summary, the alternative approach has shown no particular advantages
or disadvantages compared to the first approach. Therefore the Cauchy stress
approach is used for all three-dimensional examples, since less element stress
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unknowns are present making the Cauchy stress approach less costly. How-
ever, if a mathematical analysis of the stress based Lagrange multiplier is un-
dertaken, the pressure-stress approach should receive attention, too.

4.4 Implementation and Algorithms

In the following, an overview on implementation aspects is given. The struc-
ture of this section loosely follows the tasks typically encountered, when
moving interfaces with given displacement are encountered: (i) generation of
interface mesh and integration cells, (ii) establishing DOF-distributions and
enrichment, (iii) numerical integration of element matrices, (iv) solution of
the assembled fluid system, (v) visualization of the computed results

The first two points represent the setup phase. It’s steps are detailed in Al-
gorithm 4.2. For transient problems with fixed boundary positions as consid-

Algorithm 4.2 XFEM setup phase

locate intersected elements using parallel search trees
generate boundary and domain integration cells
identify required enrichments and setup DOFs
allocate parallel vectors and matrices matching the DOF distribution
if interface moves then

extrapolate DOFs from old to new DOF distributionÐ→Algorithm 5.1
end if

ered in this chapter, this setup is performed before the fluid time loop starts.
Within the time loop, the nonlinear solution process is similar to the standard
FEM. The only difference is the modified element integration as indicated in
Algorithm 4.3.

The implementation is done in the multiphysics code Baci that is devel-
oped at the Institute for Computational Mechanics at Technische Universität
München. The parallel features are largely based on the Open-Source library
Trilinos [Heroux et al., 2005] on top of which element libraries and a parallel
mesh and unknown management are implemented.

4.4.1 Interface localization

One of the basic questions that has to be answered during XFEM computa-
tions is how a position x is located relatively to the interfaces Γi

i . The main
application is the evaluation of the enrichment function

¬
ψ(x) for each inter-

face.



76 Chapter 4. Stationary implicit fluid surfaces

Algorithm 4.3 Newton loop

for each newton step k do
apply Dirichlet conditions to solution vector [u p]T

k
compute residual and system matrix Algorithm 4.1
check convergence based on some norm of residual
if converged then

stop Newton loop
end if
apply Dirichlet conditions to residual and matrix
solve for increment [∆u ∆p]T

k
update solution vector
store old increment for stress update in elements

end for

The first task is to identify the position of the interface. In the proposed FSI
scheme, the structure surface serves as a Lagrangian interface marker. Hence,
no other means of locating the interface is required. This is in contrast to
applications like two phase flow or crack propagation, where the zero contour
of the level-set is the only information, where the interface is located. See
references [Belytschko et al., 2001; Chessa and Belytschko, 2003] for examples
of each application. The second task is the definition of inside and outside or
in front and behind the interface. For the FSI scheme, the surface normal of
the structure surface serves as the reference. For level-set functions, the sign
of the function identifies the regions.

For the present implementation, a parallel search tree is used to answer
introductory question. For partitioned FSI simulations, the three-dimension-
al fluid and structure meshes are distributed independently on the available
processors. This is exemplary shown for three processors on the left in Fig-
ure 4.7. A cut through the fluid mesh reveals the partitioning into three pro-
cessors. The structure surface mesh is mirrored on all processors, which as
depicted on the right in Figure 4.7. Note that for the given three-dimensional
example, the structure surface is closed. The interior volume elements are not
distributed. The mirroring happens only once at the beginning of the sim-
ulation, assuming that the structure surface mesh remains unchanged. For
subsequent time-steps, only the surface displacement has to be distributed to
all processors, which is efficiently done using the parallel vectors included in
the Trilinos library. In the case of structural mesh changes, the surface mesh
needs to be distributed again.

In summary, a level-set function is not required for the proposed FSI ap-
proach. Nevertheless, the level-set function can be used in addition to La-
grangian interfaces as proposed in [Legay et al., 2006]. Here the level-set is
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P2

P1

P0

Figure 4.7: Parallel distribution of 3d fluid mesh and FSI surface: The redundant
interface mesh allows completely parallel integration cell generation and
enrichment function evaluation.

generated based on the most recent interface position and is subsequently
used for defining separate regions. For parallel simulations, a practical prop-
erty is that level-set functions are present as discrete field on all processors
and thereby it is possible to identify the relative position with respect to an
interface even if the interface itself is located on another processor. However,
the complexity of managing level-sets increases, if multiple interface or con-
tinua are present. In addition, open boundaries requires additional level-sets
to locate the edges of open boundaries. Whether parallel search trees or par-
allel level-sets are more effective in terms of memory, parallel re-initialization
and parallel communication, remains an open question. In addition, load
balancing taking the nodal connectivity and the expensive integration of in-
tersected elements into account (see Section 3.4) has not been optimized, yet.

4.4.2 Integration cell generation

With the interface mesh and its updated position in time, the subsequent gen-
eration of integration cells is performed completely in parallel. The intersec-
tion processes is supported by a local search tree on each processor that cov-
ers all interface meshes plus the local fluid mesh. With the help of the search
tree, intersection candidates are found quickly and only a small number of
elements is really tested for possible intersection with the fluid-structure in-
terface [Mayer et al., 2009].
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(a) Setup

(b) Boundary Integration cells

(c) Domain integration cells

(d) Enrichment

Figure 4.8: Fundamental steps for generating integration cells and enrichment

The intersection process consists of two steps, which is illustrated in Fig-
ure 4.8. The setup for the isostatic pressure example given in Section 4.5.2
is used as an example. The fluid mesh and the intersecting quad4 boundary
element are shown in Figure 4.8a. In the first step, the boundary integration
cells are generated such that the cells are aligned with surface mesh elements
and that cell edges respect both the surface mesh element edges and the fluid
element edges and faces (Figure 4.8b). The positions of the cell corners are
stored in fluid element coordinates ξΩ. In the second step, domain integra-
tion cells are generated. The generation is based on a constrained Delaunay
tetrahedralization, which is implemented using the external library TetGen
[Si, 2010a,b]. The domain for tetrahedralization is the fluid element domain
in element coordinates ξΩ. The boundary cells represent the constraining
surface in the constrained Delaunay tetrahedralization (CDT3) such that no
domain cell is intersected by a boundary cell. The resulting tetrahedral do-
main cells are shown in Figure 4.8c. For a minimal number of integration
points, as few integration cells as possible are generated (see Section 3.4). If
higher order integration cells are required, the tetrahedralization is first per-
formed using linear boundary and domain integration cells. Higher order
nodes along tetrahedron edges are then moved onto the curved interface Γi

as described in [Mayer et al., 2009].
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In terms of computation time, the generation of both linear and quadratic
integration cells is much less costly than the numerical integration of the same
element. The critical part is the robustness of the implementation of the subdi-
vision scheme. The complex implementation requires rigorous testing, since
any complex intersection situation will occur with increasing likelihood, if
the number of nodes and elements increases.

4.4.3 Enrichment and unknown management

In the three-dimensional FE fluid formulation as described in Section 2.1,
there are four unknowns per node (three velocity components and the nodal
pressure) and no element unknowns at all times. Without adaptive mesh
refinement, the size of global and element vectors as well as the parallel dis-
tribution do not change. In absence of adaptivity, the mesh is written once for
output and subsequently, only the solution vectors need to be written to disk.

In contrast, the XFEM formulation with multiple interfaces introduces
more than the usual unknowns on some nodes or no unknowns on other
nodes. In addition, enriched element unknowns have to be treated that are
present in the stress based Lagrange multiplier formulation. Hence, the in-
troduction of fully and partially enriched fields requires to keep track of the
meaning of each node’s unknowns over time.

For this purpose, a special identifier termed DofKey is introduced. The
basic idea is that the tuple (NodeId,Field,EnrType,Label) uniquely defines the
meaning of a specific unknown. The NodeId is a global identifier that occurs
exactly once in the parallel simulation, i.e. it is unique across all processors.
The Field identifies the involved physical scalar quantities like temperature,
pressure and a velocity components. It can also contain tensor components
like τxy. Each Field is considered as a scalar field. Their individual meaning,
for example as a components of a vector or second order tensor field, will
only be manifested when evaluating the weak form. The EnrType defines
the kind of enrichment. As introduced in Section 4.2.2, standard as well as
interface and FSI void enrichments are required. The last identifier, the Label,
enumerates the involved interfaces in the simulation, if thin structures are
considered.

This concept is expressed in C++ using three classes as

(NodeId, (Field, (EnrType,Label)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Enrichment

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
FieldEnr

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
DofKey
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NodeId and Label are implemented using unsigned integers, while Field and
EnrType are implemented using C++ enumerates types (enums). Each class
implements the relational operators ‘equal’, ‘not equal’, ‘less than’, and ‘more
than’. This allows to use the classes within vectors, sets and maps as defined
in the C++ standard template library (STL). Subsequently, mathematical def-
initions on DofKey sets can be readily expressed using STL sets and maps.
The same DofKey class is used to manage element unknowns for intersected
elements.

In addition, the ability to serialize each DofKey object and distribute the
object on parallel machines is implemented. Such parallel communication
is necessary, if interfaces cross processor boundaries. Then the implemen-
tation of the enrichment processes described in Section 4.2.2 requires addi-
tional parallel communication to obtain matching enrichment situations on
each processor.

This concept of handling nodal and element unknowns has proven to be
applicable to all encountered complex enrichment situations. Although it is
difficult to measure source code readability and readability depends also on
personal taste, the resulting source code is easier to comprehend, as if the
same concept would be expressed with plain integers and arrays instead of
classes. Similar concepts have for example been described in [Tabarraei and
Sukumar, 2008].

4.4.4 Visualization

For visualization of complex flows, optimized sequential or even parallel
post-processors are required to manage the large data-sets that are generated
in transient computations. An example for such a program is ParaView (v3.4)
[Ahrens et al., 2005; Henderson, 2007] that has been used to visualize most of
the three-dimensional simulation results in this thesis.

Most current programs are unable to visualize the sharp, discontinuous
solution, because the information about the discontinuity cannot readily be
expressed in the post-processor software. In particular, the concept of inte-
gration cells is usually not present in current FE post-processors. However, a
sharp solution can be visualized only with integration cells or similar subdi-
vision and by using the enriched DOFs. A rather ad hoc treatment of cells as
elements without connectivity leads to a constantly changing mesh. For large
scale computation, such constantly changing meshes are impractical due to
the increased memory and computation costs. Nevertheless, the ability to
see integration cells and the sharp solution is useful in the implementation
and test phase. For that purpose, the research pre- and post processor Gmsh
[Geuzaine and Remacle, 2009] is used to display the changing meshes.
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For certain visualizations, it is sufficient to display smeared discontinu-
ities, i.e. the correct physical nodal values are interpolated linearly without
consideration of the discontinuity. In this work, a smeared output is gen-
erated in the simulation code such that only a fixed grid with a constant
number of unknowns is written to file in each time step. Then visualization
and animation features can then be applied as usual and the post-processing
performance is identical to standard the finite element methods. Problems
occur, if the post-processor computes derived quantities near the interface.
For instance, mass flow or impulse rate computations through implicit sur-
faces give incorrect results. Similarly, particle tracer receive wrong element
velocities near the interface such that particles may cross the moving FSI sur-
face and are stuck inside the structure. Such computations would have to
be moved into the actual simulation code, where the complete discontinuous
approximation is present. This leads to a tight coupling of simulation and
post-processing, since the entire computation has to be repeated, if a different
visualization is requested.

Consequently, existing post-processors have to be extended to allow in-
tegration cells and enriched approximations. This includes file formats to
exchange enriched data between simulation code and post-processor.

4.5 Numerical examples

In the following section, simulation results of stationary and instationary
fluid flow around embedded discretized structures are shown. The inter-
sected elements are shown using the triangular and tetrahedral integration
cells to properly display the sharp interface in visualized scalar fields as dis-
cussed in the previous section.

The results are computed using two different implementations. If not in-
dicated otherwise, the results are computed by a three-dimensional imple-
mentation, where the new stress Lagrange multiplier have been used exclu-
sively. With the three-dimensional code, also two-dimensional examples have
been computed by letting all velocities normal to the x-y plane be zero. A
two-dimensional implementation using equal order quad4 and quad9 fluid
elements allows to test the traction Lagrange multiplier method. Here, the
interface mesh is discretized by linear line elements.

4.5.1 Qualitative examples

The intention of these initial examples is to demonstrate the flexibility with
respect to structural shapes that can be used in the simulation. Coarse meshes
have been used to show essential features of the enrichment, integration cell



82 Chapter 4. Stationary implicit fluid surfaces

(a) Flow field

-0.168 8.364.11

p (pressure) physical

X

Y

Z

(b) Pressure field

Figure 4.9: Stationary flow around bulky structure

distribution and to demonstrate that the XFEM discontinuities and Lagrange
multiplier formulations work for arbitrary fluid mesh densities.

Flow against a bulky structure

The first example, shown in Figure 4.9, illustrates a flow around a structural
corner. The obstacle is located in the lower right corner. The inflow from
the left boundary (u = (0.05, 0.0, 0.0)T) and the wall boundary at the top are
standard Dirichlet boundary conditions. The remaining boundaries are of
Neumann (zero traction) type.

No fluid flow is computed within the structural domain in the lower right
corner. In addition, smooth velocity and pressure fields are computed using
the XFEM enrichment with fully integrated integration cells, although the
interface arbitrarily intersects fluid elements. The velocity along the fluid-
structure interface is zero as enforced weakly using the traction Lagrange
multipliers. The triangular integration cells in Figure 4.9b allow to visualize
the pressure discontinuity without smearing the solution.

Flow around a thin structure

In the second example, different flow fields develop around a thin structure.
Hereby, the structure thickness is smaller than the fluid element size. On
the left side, a horizontal parabolic inflow is applied, while diagonal inflow
enters the domain on the right side. Figure 4.10a and Figure 4.10b illustrate
that the velocity and the pressure of the flow right and left of the structure
are decoupled from each other and also from the small fictitious fluid domain
between them.
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(a) velocity (b) pressure

Figure 4.10: Flow around thin structure.

(a) ∑I NI(x)p̃I (b) ∑I NI
¬

ψ(1) ¬p(1)I (c) ∑I NI
¬

ψ(2) ¬p(2)I

Figure 4.11: Flow around thin structure: pressure enrichment. Bright dots indicate,
which nodes are used for a particular enrichment.

The pressure solution is composed of three distinct sets of degrees of free-
dom with their corresponding approximation function. The three sets of en-
richments given by

ph(x) =∑
I

NI(x)p̃I +∑
J

NJ(x) ¬
ψ(1)(x) ¬p(1)J +∑

K
NK(x) ¬

ψ(2)(x) ¬p(2)K

are visualized in Figure 4.11a-4.11c. The standard DOFs, depicted in Fig-
ure 4.11a occupy most of the domain. Near the surface the first and the sec-
ond enrichment overlap each other (Figure 4.11b and 4.11c). The sum of these
enrichments gives the pressure field as displayed in Figure 4.10b.

Flow around thin, closed structures

The following examples demonstrate how closed structures with thin parts
are simulated. The first example is shown in Figure 4.12. The structure is
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(a) Velocity field

(b) Velocity field (enlarged) (c) Pressure field (enlarged)

Figure 4.12: Flow around thin, closed structure: Example 1.
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approximately ten times thinner than the fluid element edge length. In the
center, the pressure jumps from the upstream side value to zero in the ficti-
tious domain and then to the low pressure on the downstream side. For the
shown coarse mesh, the coarse fluid mesh improperly resolves the pressure
discontinuity for such sharp ending of the structure domain. Nevertheless,
the principal decoupling of physical and fictitious domain is preserved. De-
spite of the unresolved thin endings, the wall boundary condition is appro-
priately enforced. Hence, such coarse setup could be the initial solution for an
h-adaptive simulation and flow features of interest can be resolved by mesh
refinement. The applied FSI enrichment is located at the top and bottom end
of the thin domain as discussed in Section 4.2.2.

The transition between FSI enrichment and enrichment for each interface
is smooth and therefore not visible in the final solution. This is demonstrated
in the second example shown in Figure 4.13. Here, the FSI enrichment is
applied at the upper and lower straight sides of the structure. The joints are
not visible in the resulting flow field.

Both examples are computed using hex20 fluid elements and condensed
stress Lagrange multiplier.

4.5.2 3D patch tests

Pure shear flow

The first example verifies the correctness of viscous stress computations and
interface forces. For this purpose, a shear flow with a linear velocity distri-
bution in the y-direction and consequently, a constant viscous stress σxy com-
ponent is simulated. The physical fluid domain has the dimensions 1.0 m ×

0.5 m×0.1 m and is modeled by a larger computational fluid domain, which is
intersected by an embedded plane wall at y = 0.5 m as shown in Figure 4.14a.

The fluid density is ρf = 1.0 kg/m3 and the kinematic viscosity is ν =

10−3 m2/s. At the top, the velocity in x-direction is prescribed as ux = 1.0 m/s;
the y-component is set to zero. On the left and right sides, the velocity com-
ponent in y-direction is set to zero to achieve a horizontal inflow. In addition,
no flow in z-direction is allowed at all nodes. The resulting velocity solution
is shown in Figure 4.14b.

The chosen setup results in a constant shear rate and constant viscous
stress in the fluid domain. The pressure and its gradient are zero. In ad-
dition, all Cauchy stress components but σxy (and, by angular momentum
conservation, also σyx) are zero. The analytic value of σxy is

σxy = τxy = ρfν(
∂ ux

∂ y
+

∂ uy

∂ x
) = ν(2.0 s−1 + 0.0 s−1) = 0.002 N/m2 (4.65)
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(a) Velocity field

(b) Pressure field

Figure 4.13: Flow around thin, closed structure: Example 2.
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Z X

Y

0.1 m

wall

0.5 m

1.0 m

(a) Setup: 9x9x1 hex8 fluid elements cut by
2x2 quad4 interface elements (green).

(b) Velocity field with linear distribution
of ux and uy = uz = 0 m/s

(c) Nodal forces at the 4 quad4 interface/wall elements. Integration is performed
over the intersection area (Γi) using boundary integration cells (green).

Figure 4.14: Shear flow with linear velocity distribution and constant viscous stress.

The computed value for σ̄xy in the intersected elements matches the analytic
value above up to numerical precision.

With the envisioned FSI approach in mind, the interface is given as a dis-
crete mesh consisting of four quad4 elements. The interface velocity ui and
its test function δui are discretized using the shape function Nui

K . The integral
(δui,

˜
σ ⋅ nf)

Γi yields the nodal forces for each node K at the interface mesh as

f i
K = ∫

Γi
Nui

K ˜
σ ⋅ nfdx (4.66)

The computed nodal forces and the boundary integration cells used for in-
tegration are shown in Figure 4.14c. The analytic value for the force in y-
direction on the ‘wet’ intersection area Ai = 0.1 m2 is Fy = σyx Ai = 0.2× 10−3 N.
Adding all y-components of the computed nodal forces of the interface mesh
(Figure 4.14c), the exact same value (up to numerical precision) is obtained.

Hydrostatic pressure

The next example verifies that linear pressure solutions can be represented
exactly and that the exact pressure solution leads to correct interface forces
due to the pressure acting on the wall. For this purpose, a body force b̂ =

ρf(1.0 m/s2, 0.0, 0.0)T applied to fluid in a channel leads to a hydrostatic pres-
sure field as depicted in Figure 4.15. Velocities in y and z direction are con-
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(a) Pressure solution.
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(c) Nodal forces at wall

Figure 4.15: Hydrostatic pressure distribution and resulting wall forces.

strained such that all velocities remain zero and therefore, no viscous stresses
are present in the solution.

The computational fluid domain Ω of the channel has the dimensions
2.0 m × 0.2 m × 0.1 m and is modeled with 19 × 2 × 1 hex8 fluid elements. The
intersecting wall consists of two quad4 elements and intersects the channel
length Lw = 1.75 m with the bigger part being the physical fluid domain Ωf.
The fluid density is ρf = 1.0 kg/m3. With the given body force b̂ and zero pres-
sure at the left-hand channel ending, the analytic pressure at the interface is
p = bxLw = 1.75 N/m2. The setup and the pressure solution are given in Fig-
ure 4.15a. The solution of the element stress component σxx in the intersected
element is plotted in Figure 4.15b, the resulting interface force is shown in
Figure 4.15c.

From the absence of viscous forces it follows that

p(x) = −σxx(x) = −σyy(x) = −σzz(x) in Ω+ (4.67)

To match the linear pressure distribution in this example exactly, at least a
(tri-)linear stress approximation is required. For elementwise constant ap-
proximation functions for the stress field, σxx can not be equal to 1.75 N/m2

along the interface and equal to the linear pressure distribution at the same
time. Consequently, the interface forces would be inexact even for this sim-
ple example. For the result shown in Figure 4.15, the same polynomial order
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is used for the stress shape functions as for the velocity and pressure fields
(Q1Q1Q−1). Hence, linear stress components can be exactly represented.

Conclusion

The linear pressure example and the shear flow example with constant vis-
cous stresses allow the conclusion that the stress approximation should be
chosen to be of the same or higher polynomial order as the pressure approx-
imation. At the same time, the stress approximation should have the same
or higher polynomial order as the velocity derivatives used for the viscous
stress computation. In the present implementation with equal order velocity-
pressure approximations, the pressure dictates the minimal polynomial or-
der for the stress approximation. For other elements, e.g. the Taylor-Hood
element, the velocity derivatives might dictate the minimal stress approxima-
tion. Future mathematical analysis should provide more understanding for
this ‘rule of thumb’.

4.5.3 3D benchmark computations

Jeffery-Hamel flow

In the following, the Jeffery-Hamel flow is used to study the convergence
behavior of the proposed weak Dirichlet constraint approach. The Jeffery-
Hamel flow is a flow between two converging walls, for which a two-dimen-
sional steady-state solution with only radial velocity components can be es-
tablished [Hamel, 1916; Jeffery, 1915; Rosenhead, 1940].

The radial velocity ur(θ) is given only implicitly as solution of a nonlinear
ordinary differential equation (ODE) of the radial velocity. The problem can
be expressed by ODEs with varying order and corresponding boundary con-
ditions, which also influence how analytic solutions can be computed. Here,
the discussion on solution strategies in [Corless and Assefa, 2007] is adopted,
where the following third-order ODE is used

u′′′r + 4u′r + 2u′rur = 0 , 0 ≤ θ ≤ α =
π

4
(4.68)

The boundary conditions are chosen such that a converging flow as shown in
Figure 4.16 is described. In particular, the setup in Figure 4.16a requires the
following boundary conditions

ur(0) = 0 ur(
π

8
) = −170, u′r(

π

8
) = 0

The solution is symmetric with respect to θ = π
8 and the maximum velocity at

the symmetry line at radius r = 1 is set to −170. With the kinematic viscosity
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(b) Velocity solution on 2.
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(c) Pressure solution on 2.
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Figure 4.16: Jeffery-Hamel flow: Setup and example solutions. Convergence study
using the two-dimensional Jeffery-Hamel flow solution. The actual com-
putation is performed using 3D hexahedral elements. All Dirichlet con-
ditions are applied using the hybrid embedded DBC approach.
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Figure 4.17: Jeffery-Hamel flow: convergence rates.

set to ν = 1, the Reynolds-number is computed by

Re = −
3
4 ∫

α

0
ur(θ)dθ

as defined in [Corless and Assefa, 2007]. For the given velocity boundary
conditions, the Reynolds number is approximately Re ≈ 85. The computation
of the reference solution is given in Appendix B.

All Dirichlet conditions are applied using the new stress Lagrange mul-
tiplier formulation. Since all boundaries prescribe velocities, it is necessary
to prescribe the pressure at an arbitrary node within the fluid domain. The
actual computation is performed using 3D hexahedral elements. The corre-
sponding approximation error for the velocity field is computed by

εL2 = ∣∣uh − uexact∣∣L2 =

√

∫
Ωf

∣uh − uexact∣2dx (4.69)

are shown in Figure 4.17. It can be seen that the error decreases with optimal
rates for all tested element types.

Special care is required for the computation of the stabilization parameters
for the NS equations, since refinement in two dimensions results in rectangu-
lar element shapes of the 3D elements. As stabilization parameter τe

PSPG of
the NS equation uses the volume based element length scale hV

e (Eq. (2.33)),
elements with changing aspect ratios will influence the optimal convergence.
Refining also in the third dimension (here z) or reducing the thickness of the
computational domain and correcting the decreasing volume by normaliz-
ing the domain thickness leads to the optimal convergence presented in Fig-
ure 4.17.
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Benchmark computations - 3D implementation

For further validation, the benchmark cases in [Schäfer and Turek, 1996] were
studied. Here, incompressible, laminar flows (Re = 20-100) over a cylinder
and a cuboid are computed. In particular, the stationary two-dimensional
case 2D-1, the instationary two-dimensional case 2D-3 and the three-dimen-
sional benchmark cases 3D-1Q and 3D-1Z were computed. The setup, bound-
ary conditions and results are taken without modifications from the original
publication, but will be repeated here for convenience.

Instead of defining the obstacles using Dirichlet conditions and boundary
aligned meshes, the cylinder/cuboid is discretized using a fixed number of
8-node hexahedral elements, which results in an interface mesh of quad4 ele-
ments. For each benchmark, the number of structural elements, and therefore
interface elements, is kept constant for all fluid refinement levels.

2D benchmarks The two-dimensional benchmarks—calculated using the
three-dimensional implementation—were used to demonstrate that the de-
veloped approach converges to the correct solution for linear and quadratic
element shape functions. Furthermore, it is demonstrated that stress conden-
sation leads to identical results with less unknowns.

The benchmark 2D-1 consists of a two-dimensional channel with no-slip
conditions at the upper and lower wall, a parabolic inflow with a maximum
velocity of 0.3 m/s and a zero-stress Neumann condition at the outflow. The
two-dimensional setup is modeled with one layer of hexahedral elements in
the third dimension. Refinement of the fluid mesh is performed only in the
first two dimensions1. An example solution is given in Figure 4.18.

The measure used for comparison are the lift (clift), the drag (cdrag), and
the pressure difference (∆p) between front and back side of the cylinder. Note
that the three measures may not converge monotonically in an adaptive com-
putation. The lift is especially sensitive since it is the sum of large opposing
forces in positive and negative y-direction, where the sum is close to zero as
shown in the following tables. Thus, small mesh variations in the not yet
converged solution may lead to relatively large variations around the refer-
ence solution. Similar effects can be observed also for the pressure difference.
Nevertheless, sufficient refinement leads to the reference solution for all pre-
sented examples. Note further, that the reference solution is a compilation of

1To make the number of unknowns comparable to the reference computations, the num-
ber of unknowns are multiplied by the factor 8/20, since three-dimensional (hex20) elements
instead of two-dimensional (quad8) elements are used. Likewise, a factor of 4/8 is needed to
compare the number of DOFs for the hex8 element with linear, quadrilateral quad4 elements
in [Schäfer and Turek, 1996].
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Figure 4.18: Benchmark case 2D-1: velocity field. Shown is the coarsest mesh with
hex8 elements.

several simulations in the reference publication, hence, no number of DOFs is
given as reference value.

The results of the computations are given in Table 4.1. For all element
types, the computed solutions agree with the given reference values. The
necessary number of unknowns to achieve this accuracy is within the range
of reference computations.

The main conclusion drawn from these results is that condensation of
stress unknowns does not change results as exemplary shown for hex8 and

Table 4.1: Results for the stationary benchmark case 2D-1.

element type NDOF
u,p NDOF

˜
σ cdrag clift ∆p/(N/m2)

hex8, ¯
˜
σ uncond.

12040 2832 5.6066 0.0093 0.1147
40416 5712 5.5893 0.0093 0.1149

146328 11376 5.5814 0.0105 0.1156

hex8, ¯
˜
σ cond.

12040 0 5.6066 0.0093 0.1147
40416 0 5.5893 0.0093 0.1149

146328 0 5.5814 0.0105 0.1156

hex20, ¯
˜
σ uncond.

14884 3840 5.5739 0.0063 0.1169
48020 7440 5.5766 0.0108 0.1159

166388 14880 5.5753 0.0107 0.1175

hex20, ¯
˜
σ cond.

14884 0 5.5739 0.0063 0.1169
48020 0 5.5766 0.0108 0.1159

166388 0 5.5753 0.0107 0.1175

Ref. lower bound - - 5.5700 0.0104 0.1172
Ref. upper bound - - 5.5900 0.0110 0.1176
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Table 4.2: Results for the instationary benchmark case 2D-3.

element type NDOF
u,p ∆t/s cdrag,max clift,max ∆p/(N/m2)

hex20, ¯
˜
σ condensed

3444 0.008 3.1828 0.3944 -0.1078
10488 0.008 2.7824 0.1308 -0.1141
30504 0.008 2.9273 0.4861 -0.1077

102504 0.008 2.9470 0.4733 -0.1093

Ref. lower bound - - 2.9300 0.4700 -0.1150
Ref. upper bound - - 2.9700 0.4900 -0.1050

hex20 elements. When comparing the condition number of condensed and
uncondensed global system matrices, the condensed matrices have a reduced
condition number for all results presented in this thesis. Since the compu-
tational cost of condensation is negligible when compared with numerical
integration, stress condensation is performed for all remaining examples.

The setup for benchmark 2D-3 is almost identical to case 2D-1. The only
difference is a dynamic inflow condition, where the parabolic inflow over the
height (y-direction) is given as

U(x = 0, y, t) = 4Umy(H − y) sin(πt/8 s)/H2, V = 0 (4.70)

with H = 0.41 m and Um = 1.5 m/s. The simulated time span is 8 s. Measures
are the maximum drag (cdrag,max) and lift values (cdrag,max) in this time span
as well as the pressure difference between front and rear end of the cylinder
at t = 8 s. For time discretization, the one-step-θ (θ = 0.66) and the second
order BDF2 scheme is applied.

The results of the instationary two-dimensional computations are given
in Table 4.2. Note that only the BDF2 results are given as they were more
accurate as expected from a second order scheme. Good agreement with the
reference results is achieved also for the instationary case.

3D benchmark The three-dimensional benchmarks 3D-1Q and 3D-1Z have
almost identical setups: the fluid domain is 0.41×0.41×2.5 with ‘no-slip’ con-
ditions on the upper, lower and side walls. A three-dimensional parabolic
inflow is applied using standard Dirichlet conditions and zero-traction Neu-
mann conditions are applied at the outflow. The cases 3D-1Q and 3D-1Z
differ in the shape of the immersed structure: a cuboid with dimensions
0.1 × 0.1 × 0.41 in case 3D-1Q and a cylinder with radius 0.05 and length 0.41
in case 3D-1Z. For illustration, example solutions for both cases are given in
Figure 4.19. The results of both three-dimensional computations are given in
Table 4.3 and Table 4.4.
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(a) Pressure field for case 3D-1Q in the cross-section.

(b) Velocity field for case 3D-1Z in the cross-section

Figure 4.19: 3D benchmark cases 3D-1Q and 3D-1Z

Most results match the reference values for drag cdrag, lift clift and pressure
difference between front and rear end of the structure ∆p within the given tol-
erances. The remaining disagreements are contributed to the insufficient spa-
tial resolution (due to limited computational resources) when compared to
the reference computations in [Schäfer and Turek, 1996]. Nevertheless, the ac-
curacy is comparable to results computed with similar numbers of unknowns.
Case 3D-1Q demonstrates that the method can deal with sharp corners of the
interface constraint, even though a pressure singularity exists at the two front
edges of the cuboid. Case 3D-1Z was used to test the new formulation on
hexahedral and tetrahedral element shapes. For all tested element shapes,
the solution tends towards the reference solution.

Figure 4.19 highlights again, that the fluid discretization does not con-
strain the element size of the interface mesh. The surface elements of the
cubical structure are two to four times bigger than the intersected fluid el-
ements. For the cylinder, these surface elements are smaller than the fluid
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Table 4.3: Results for benchmark case 3D-1Q.

element type NDOF
u,p cdrag clift ∆p/(N/m2)

hex20, ¯
˜
σ condensed

27936 7.5465 0.1926 0.1761
88036 7.5408 0.0759 0.1736

Ref. lower bound - 7.5000 0.0600 0.1720
Ref. upper bound - 7.7000 0.0800 0.1800

Table 4.4: Results for benchmark case 3D-1Z.

element type NDOF
u,p cdrag clift ∆p/(N/m2)

tet4, ¯
˜
σ condensed

66268 6.1534 0.0356 0.1645
240708 6.1533 0.0115 0.1744

tet10, ¯
˜
σ condensed

69724 6.1979 0.0506 0.1703
246780 6.1619 0.0064 0.1751

hex20, ¯
˜
σ condensed

28112 6.2093 0.1238 0.1645
89156 6.1572 0.0050 0.1664

hex27, ¯
˜
σ condensed

74936 6.2026 0.0736 0.1659
169592 6.1567 0.0067 0.1663

Ref. lower bound - 6.0500 0.0080 0.1650
Ref. upper bound - 6.2500 0.0100 0.1750

elements. The fine structure resolution is only needed in circumferential di-
rection to approximate the circular shape. The interface resolution in axial
direction had no influence on the lift and drag values, which are sums over
all nodal forces of the interface mesh. However, if the force distribution on
the surface is of interest, then a finer interface mesh in axial direction is nec-
essary as well. Such force distribution is required for FSI computations with
flexible structures. In combination with the examples in Section 4.5.2, the re-
sults indicate that correct surface forces can be computed and that no leakage
for any ratio of surface to fluid element sizes exists.



CHAPTER 5
Moving implicit fluid surfaces

This chapter introduces moving fluid boundaries into the developed XFEM
formulation. Introductory remarks highlight the specific difficulties when us-
ing an Eulerian formulation in combination with moving boundaries. Subse-
quently, a Ghost fluid method for moving boundaries is described, which is
then extended to include impermeable wall boundary conditions.

5.1 Introduction

In transient FSI problems, the position of the domain boundary Γi depends
on x and t. For fixed-grid methods with moving implicit interfaces, two time-
integration approaches to this problem can be found in literature: a (discon-
tinuous) FE space-time formulation or an Eulerian fluid formulation with tra-
ditional finite difference time-stepping. The latter approaches are sometimes
combined with a (local) ALE approach with repeated projections onto a fixed
Eulerian fluid grid.

A space-time method for implicit FSI interfaces has been recently pro-
posed in [Zilian and Legay, 2008]. The used stabilized space-time formulation
for the incompressible NS equations is based on works as [Hughes and Hul-
bert, 1988; Tezduyar et al., 1992a,b]. For general remarks on space-time tech-
niques, see also [Lew et al., 2003]. The space-time formulation provides a con-
sistent formulation of the evolving implicit interface in space and time. A key
property in the context of XFEM is that domain integration cells are aligned
with the interface in space and time. This avoids all ambiguities resulting
from traditional finite difference time stepping techniques as described in the
remainder of this chapter. However, space-time methods require more com-
putational resources than finite difference time stepping schemes with respect

97
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to both computation time and computer memory. The particular compli-
cation for space-time methods in combination with XFEM is the numerical
integration, which requires to ‘triangulate’ the four-dimensional space-time
domain. The three-dimensional space-time formulation — two space dimen-
sions plus one time dimension — presented in [Zilian and Legay, 2008] may
be relatively easy to extend to four dimensions from a mathematical point
of view. However, the four-dimensional implementation faces several prac-
tical problems. Many existing geometric algorithms, for instance for mesh
generation and triangulation, would require extensions or even a rewrite. In
addition, the structure field has also been treated with a space-time formula-
tion in [Zilian and Legay, 2008]. Since the initially stated goal of this thesis
is an implementation for three spatial dimensions without modifications of
the structure formulation, the present work concentrates on traditional time-
stepping methods.

For finite-difference time-stepping, the ALE formulation allows a refer-
ence movement that is independent of the convective fluid formulation. The
reference movement is necessary to let the fluid mesh follow the structure
surface. However, an overly strong deformation of the reference mesh even-
tually requires remeshing, which is one of the primary motivations for re-
search in fixed grid methods. An example for a combined fixed-grid / ar-
bitrary Lagrangian Eulerian (FG/ALE) approach has been described in [Co-
dina et al., 2009] and references therein. The implicit interfaces at time step
n can arbitrarily intersect fluid elements and integration cells are generated
accordingly. To advance to the new time step, fluid elements and integration
cells within a certain distance from the interface deform to follow the inter-
face using the ALE formulation. Away from the interface the mesh velocity
is zero and the ALE approach reduces to the Eulerian formulation. After so-
lution for the new time step values, velocities and accelerations are projected
from the deformed fluid mesh onto the undeformed background grid such
that the interface now intersects the next layer of fluid elements. The pro-
jection is combined with the additional constraint that the projected veloc-
ity uh,n

projected is discretely incompressible for the new interface configuration.
With the FG/ALE approach most of the fluid domain remains undeformed
and remeshing is avoided. However, projection between non-fitting meshes
is now required at every time step near the interface. Even though only a rel-
atively small domain along the implicit interface is affected, the introduced
error must be considered for the entire accuracy and stability of the transient
solution.

A purely Eulerian description of the flow field has a long tradition in FD
and FV methods. It is influenced by works as [Fedkiw et al., 1999; Sussman,
2003; Sussman et al., 1994] and references therein. Summaries can be found
for example in [Osher and Fedkiw, 2003; Sethian, 1999]. The key observation
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Figure 5.1: Deforming observed domain on a fixed fluid grid.

is that after time-discretization as presented in Section 2.1.2, the conserva-
tion equations are enforced at Ωn+1 without taking the deformation of the
observed domain from step n to n + 1 into account. From a continuum me-
chanics point of view, it is questionable to transform the integral equations
of mass and momentum conservation into their local or differential equation
forms, because the integral boundaries over the domain are time-dependent.
The differential equations, however, are required as a starting point for the
weighted-residual based finite element formulation.

For illustration, Figure 5.1 shows a deforming domain at two time in-
stances. The domain that is under observation at the old and at the new time
step is denoted as ΩEuler:

ΩEuler = Ωn+1 ∩Ωn (5.1)

The part that is under observation at the new time step n + 1 but was not
observed at the old time step n is denoted as

Ω+ = Ωn+1 ∖ΩEuler (5.2)

while the part that is not observed at time step n + 1 is denoted as

Ω− = Ωn ∖ΩEuler (5.3)

Fluid material movement in ΩEuler is properly described using the Eulerian
approach. Points in Ω− are not under observation anymore and hence may
not influence the solution. The critical point is that the discretization of partial
time derivatives at a spatial point x in Ω+ requires velocities and accelerations
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at the old time step level. However, the flow was not observed and computed
at the old time step, hence, no history values are present at newly observed
nodes. One possible solution to this dilemma is to guess or to estimate what
happened at the old time step.

Methods to estimate history values are described for example in [Hong
et al., 2007; Osher and Fedkiw, 2003] and references therein. The basic idea
is to extend the velocity field from the last position of the interface into a
larger Ghost-fluid domain until all previously unknown nodes are initialized
with history values. This guess is guided by mechanical and engineering in-
sight into the modeled problem. In addition, incompressible flow requires
an incompressible old flow field in the new interface configuration Γi,n+1.
To ensure discrete incompressibility, a projection step with incompressibil-
ity constraints is often added. The required projection as e.g. described in
[Houzeaux and Codina, 2001] is of the form: for a given ûguess,n, find un in
domain Ωn+1 such that

(δu, ûguess,n − un)
Ωn+1 =0 (5.4a)

(δp,∇ ⋅ un)
Ωn+1 =0 (5.4b)

For the two step BDF2 scheme, the velocity un−1 has to be treated accordingly.
Projections of old accelerations, as needed in the OST methods, have not been
tested, but may be necessary as well. If equal order shape functions for ve-
locity and pressure are employed, additional (PSPG) stabilization is required.
The quality of the guess and the applied projections are critical components
for stability and temporal convergence of the transient computation.

One key insight from existing estimates is that properties of separate do-
mains should not be mixed, i.e. the missing old values from one side of the in-
terface should not be used as history values for the other side and vice versa.
Applied to the FSI problem, it should be avoided to get any information from
the structural domain. It might be tempting to interpolate the structure ve-
locity onto the fluid mesh to get missing old velocities and accelerations. Al-
though this might work for special cases, where both continua have similar
properties, it generally leads to dependencies between the applied numeri-
cal schemes for each field. For instance, interpolating the velocity field of a
structure that changes its volume would produce a fluid velocity field that is
not divergence free. Such inherent coupling is present in methods like the im-
mersed finite element method (IFEM) [Zhang et al., 2004] or the distributed
Lagrange multiplier / fictitiuous domain (DLM/FD) [Yu, 2005], where for in-
compressible flows, only incompressible structures can be modeled. To avoid
such dependencies, relying on strict surface coupling guides the following
derivation.
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5.2 A Ghost-Fluid method for the XFEM

5.2.1 Setup

In the following, the Ghost-fluid method [Hong et al., 2007; Kang et al., 2000]
is adapted to the specific needs of the proposed fixed-grid FSI approach. The
techniques introduced in Chapter 4 allow to describe the implicit boundaries
of the observed fluid domain by enriched approximation functions. In ad-
dition, velocity conditions can be applied weakly along such interfaces. The
extension in this section is the introduction of the moving interface.

The following assumptions are made for this extension: (i) a pure Eule-
rian formulation is applied, (ii) the observed fluid domain may move inde-
pendently from any element boundaries, hence (iii) the fluid mesh exists re-
gardless of whether the flow at some point is observed, (iv) the fluid solution
is sought only in Ωf,n+1, and (v) a smooth movement of the surface of the ob-
served domain is assumed in time. The last point allows reasonable estimates
for old time step values of newly uncovered nodes.

5.2.2 Discretization

For moving interfaces, the enrichment function ψ(x, t) is a function of space
and time. Hence, the approximation function is also space and time depen-
dent as φ(x, t) = N(x)ψ(x, t). The computational domain, i.e. the fluid mesh,
does not change; the changing geometry of the observed domain is incorpo-
rated in the time dependent enrichment function.

If time is discretized first, a purely spatial problem has to be discretized in
space subsequently. This approach corresponds to the time-discretization as
introduced in Section 2.1 and is repeated here for the OST as

un+1(x)− un(x)
∆t

= θan+1(x)+ (1− θ)an(x) (5.5)

The semi-discrete strong form is tested and discretized in Ωn+1 using the
Bubnov-Galerkin method, i.e. test and trial functions are discretized with the
same approximation functions. Hereby, the solution is sought on domain
Ωf,n+1 at time step n + 1. The resulting velocity discretization is

uh,n+1(x) =∑
L

φn+1
L (x)un+1

L =∑
L

NL(x)ψn+1
L (x)un+1

L (5.6)

δuh,n+1(x) =∑
L

φn+1
L (x)δun+1

L =∑
L

NL(x)ψn+1
L (x)δun+1

L (5.7)

uh,n(x) =∑
L

φn+1
L (x)un

L =∑
L

NL(x)ψn+1
L (x)un

L (5.8)
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Since the whole residuum is tested with the same test function, the new and
the old time step have the same approximation function. As mentioned in
the previous section, this approach requires to estimate velocity unknowns
in Ωn+1

+ such that uh,n(x) can be approximated with the new test function.
Nodal pressures and element stresses ¯

˜
σh are also discretized using ψn+1. Hav-

ing only one enrichment per time step implies that the triangulation for the
numerical integration of the weak form respects only the position of the dis-
continuity at time-step n + 1.

In contrast to Eq. (5.8), reference [Fries and Zilian, 2009] suggests to use
the old enrichment function value to approximate the old velocity in space
such that

uh,n(x) =∑
L

φn
L(x)un

L =∑
L

NL(x)ψn
L(x)un

L (5.9)

For the OST method, the old acceleration requires the old time step approx-
imation, too. For the BDF2 scheme, the velocity un−1 would then require the
appropriate n − 1 enrichment function ψn−1. The unknown new velocity and
the test function are approximated as in Eqs. (5.6) and (5.7). The problematic
term in the weak form of the NS equation is

(δu, uhist)
Ωn+1 = (δu, un +∆t(1− θ)an)

Ωn+1 (5.10)

Using approximation Eq. (5.9), test approximation φn+1
L (x) and old velocity

approximation function φn
L(x) are different for moving interfaces. Both, new

and old time step approximations are present in the same term and fluid
elements are intersected by new and old discontinuous functions. For the
integral in Eq. (5.10), this would require to create integration cells respect-
ing both discontinuities, which was also acknowledged in [Fries and Zilian,
2009]. This form is used in other works on transient XFEM problems, too,
see e.g. [Chessa and Belytschko, 2003; Chessa et al., 2002]. Applying this
approach does not require guessing of old values un as the number of old
unknowns fits the number of old approximation functions.

In summary, two choices seem to exist to discretize velocity uh,n(x). The
first is comparable with the Ghost fluid method, since the old velocity uses the
new approximation and interface position only and requires an estimate for
old time step values. The second requires new and old previous interface lo-
cations, however, no estimates are required. The following one-dimensional
example shall show, whether both or only one of the two approaches can be
used for the envisioned fixed-grid approach.
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Figure 5.2: Moving domain boundary on an one-dimensional fixed fluid grid with
Eulerian description of the fluid material movement.

5.2.3 A one-dimensional example

Setup

The following one-dimensional example setup demonstrates that only the
Ghost fluid approach leads to a consistent solution for moving interfaces.
For that purpose, the three-dimensional NS equations are reduced to an one-
dimensional problem as

ρf ∂ ux

∂ t
= −

∂ p
∂ x

(5.11a)

∂ ux

∂ x
= 0 (5.11b)

Ignoring the required stabilization (due to equal order velocity and pressure)
for this thought experiment, the discrete weak form for this problem after
integration by parts is given as

ρf

Θ
(δuh

x , uh,n+1
x )

Ωf,n+1 − (δuh
x,x, ph,n+1)

Ωf,n+1 =
ρf

Θ
(δuh

x , uhist,h,n
x )

Ωf,n+1 (5.12a)

(δph, uh,n+1
x,x )

Ωf,n+1 = 0 (5.12b)

The one-dimensional equation is used to model a flow along the x-axis
as depicted in Figure 5.2. On the left, an inflow ûx(t) is prescribed using
standard Dirichlet conditions. On the right, the XFEM boundary with a zero-
Neumann condition is applied, where the flow can leave the observed do-
main Ωf. Fluid material velocity and interface velocity are independent of
each other. Putting the inf-sup condition and the resulting pressure stabi-
lization aside, the solution to differential equation is uniquely defined; the
velocity uh

x(x, t) in the entire domain is constant in space equaling ûx(t). For
a time-invariant Dirichlet value ûx, the solution uh

x(x, t) is constant in space
and time. The pressure field is spatially constant. For stationary flow, the
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pressure is zero due to the zero-traction condition on the right side; any flow
acceleration would result in a constant pressure gradient and, therefore, a lin-
ear pressure distribution with zero pressure on the Neumann boundary.

To compare the two approaches, the implicit surface moves with the con-
stant velocity ui in positive x-direction. The interface motion introduces the
problematic domain Ωn+1

+ , where no old velocity values are known. The two
time instances are shown in Figure 5.2. Pressure and velocity at the new time
step as well as the respective test functions are enriched using the new ap-
proximation φn+1 as in Eq. (5.6) and Eq. (5.7).

Comparison

Using the approach with old approximation functions (Eq. (5.9)) leads to the
following problem: in Ωn+1

+ , the integral Eq. (5.10) is zero, since

¬
ψn(x) = 0 in Ωn+1

+ (5.13)

This implies that the velocity in Ωn+1
+ accelerates from zero to ûx(t) within

one timestep, since the incompressibility constraint allows only a spatially
constant velocity field for the n + 1 solution. The pressure gradient balances
the missing old velocity in Eq. (5.11a) such that a linear pressure distribution
with zero pressure at the Neumann surface is generated. Since the pressure
gradient is proportional to un+1

x /∆t, decreasing time step sizes do not reduce
the problem. Using smaller time steps reduces the problematic domain, how-
ever, the flow in Ωn+1

+ accelerates in a shorter time span and an even higher
pressure gradient is generated. In other words, the error does not vanish for
decreasing time step sizes. Changing the spatial resolution does not affect
this conclusion.

In contrast, the Ghost-fluid method requires an estimate, what happened
in the previously unobserved domain. For the example problem, the old ve-
locity un in Ωf,n+1

Euler is used to initialize the missing fluid nodes values, since
this is the only allowed solution for the incompressible one-dimensional flow
at time step n. With this guess, no artificial pressure gradient is generated
for any time-step size and spatial resolution. The approach that has also been
used for three-dimensional computations is to extrapolate the fluid history
values from the interface in normal direction until every node that requires
old values has been initialized. After the necessary projection to ensure in-
compressibility, any time-integration scheme can be applied [Osher and Fed-
kiw, 2003]. In three-dimensional simulations, the extrapolation and projec-
tion may generate inaccurate history velocity and acceleration fields. Applied
to the one-dimensional example, a variation of the exact old velocity in Ωn+1

+
also introduces an artificial pressure gradient. However, the artificial pres-
sure gradient is independent of the time-step size, hence, the error reduces



5.2. A Ghost-Fluid method for the XFEM 105

linearly with the time step size. For smaller time step sizes, the interface
moves a smaller distance, such that the extrapolation error also reduces.

Both methods compute the same result, if the interface moves to the left.
At the new time step level, the test function δuh,n+1(x) with enrichment func-
tion

¬
ψn+1(x) does not cover the previously observed domain Ωn+1

− and, con-
sequently, no contribution from old time steps is computed in the abandoned
domain Ωn+1

− .

Conclusion

This example suggests that the Ghost fluid approach with appropriate esti-
mates is more suitable for moving boundaries on Eulerian grids than using
multiple enrichments. Beyond the convergence aspect, respecting multiple
discontinuities would also increase the implementation effort for generation
of integration cells.

It is emphasized again that the reason for this apparent choice is the in-
appropriate use of the Eulerian formulation for moving boundaries, not the
XFEM formulation. Such choice is also present in other XFEM implementa-
tions, see for instance the solidification problem presented in [Chessa et al.,
2002]. There, a Lagrangian formulations is used, while a moving interface
represents changing material properties. However, the strong form in La-
grangian description is established assuming a fixed reference in material co-
ordinates with time-invariant domain boundaries. It could be argued that the
computational domain is a fixed domain and a transient discontinuous func-
tion is described in a non-changing reference. However, most XFEM methods
use integrals that respect the discontinuity by using integration cells, hence,
a time-dependent integral boundary still exists and the argument does not
solve the inappropriate use of the Eulerian or Lagrangian method for mov-
ing interfaces. Hence, using the Lagrangian approach to interfaces that move
with respect to the material coordinates seems questionable in the same way
as using the Eulerian formulation for moving interfaces. Nevertheless, as
the following results and the results from the cited literature suggest [e.g.
Hong et al., 2007; Osher and Fedkiw, 2003], using the Eulerian formulation
still allows to implement a consistent numerical method, as long as reason-
able guesses for Ωn+1

+ are possible. Likewise, using only the new interface
possition for the approximation function and estimating old time step values
properly, the method presented in [Réthoré et al., 2005] leads to an converging
and energy conserving method for crack propagation in Lagrangian formula-
tion.

Sometimes, the discussed problems remain unnoticed, if the difference
between the fields on each side of the moving interface are relatively small.
Using old time step values from the other sides fluid, for example in two
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phase flow or for FSI problems involving thin structures with continuous nor-
mal velocities, the velocity difference between each side of the discontinuity
might be small enough such that above observations do not lead to such pro-
hibitive errors as in the presented one-dimensional example. However, the
incompressible NS combined with an one-sided strong discontinuity penal-
izes small inaccuracies with strong pressure oscillations. The pressure oscil-
lations hamper the intended FSI application, since the pressure contributes
strongly to the FSI forces applied on the structure surface.

Rigorous studies on conservation of mass and momentum that depend
on the projection and the extrapolation, are still missing. As an alternative,
the FG/ALE approach presented in [Codina et al., 2009] may—after the re-
quired projection—provide a better old time step value on the new domain
configuration Ωn+1. Eventually, enriched space-time methods provide mathe-
matically the cleanest way, but their implementation and computational extra
costs may still be to high for large scale computational fluid dynamics (CFD)
computations. Hence, the Ghost fluid approach is the preferred choice for
the present fixed-grid scheme and has been exclusively used. The numerical
experience is that stable solutions can be obtained for time-integration that
include numerical damping (BDF2 and OST with θ > 0.5).

5.2.4 Implementation

The algorithmic implementation is shown in Algorithm 5.1. The setup phase
for moving boundaries is given in Algorithm 5.2. Subsequently, the Newton-
Raphson iteration is performed as before (Algorithm 4.3).

The following pressure-stabilized Petrov Galerkin (PSPG) stabilization is
added to the projection in Eq. (5.4)

∑
e

τe
PSPG(∇δp,∇p)

Ωf,n+1
e

(5.14)

The value for the stabilization parameter τe
PSPG is the same as for the flow

computations, see Eq. (2.36).

Algorithm 5.1 Ghost-fluid update at beginning of timestep n + 1

allocate unknown vectors with number of DOF required at time step n+1
extrapolate uh,n, uh,n−1 and ah,n to all nodes without history values
select set of nodes that contribute to non-incompressible discrete velocities
project velocity u to incompressible space (Eqs. (5.4))
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Algorithm 5.2 XFEM setup phase for moving boundaries

XFEM setup phase Ð→ Algorithm 4.2
if interface moves then

extrapolate DOFs from old to new DOF distributionÐ→Algorithm 5.1
end if

5.3 Treatment of moving walls

In the previous section, movement of the fluid material and movement of
the interface had on purpose not been related to each other. The velocity
of the interface ui has been independent of the fluid material velocity uf at
the interface. Accordingly, the extrapolated fluid material velocity has been
independent of the speed of the interface itself.

Only when the interface represents an impermeable wall, the fluid mate-
rial velocity and the interface velocity are equal as requested in Eq. (2.66) and
Eq. (2.68).

5.3.1 Interface movement

The interface deformation is described by the Lagrangian formulation as in-
troduced in Section 2.3.2. In particular, the interface deformation is described
by a displacement di(X, t) and a corresponding velocity ui(X, t). For the La-
grangian formulation, the material time derivative ḋi = ui reduces to a partial
derivative

∂ di(X, t)
∂ t

= ui(X, t) (5.15)

The interface velocity ui is discretized in time by the one-step-θ method such
that

di,n+1 − di,n

∆t
= θiui,n+1 + (1− θi)ui,n (5.16)

With the help of Eq. (5.16), the interface velocity ui,n+1 can be expressed by
the given interface displacement d̂i,n+1

ui,n+1 =
1

∆tθi (di,n+1 − di,hist) (5.17)

with the old time step (or history) values defined as

di,hist = di,n +∆t(1− θi)ui,n (5.18)

In the presented simulations, the simulation starts from a resting state, that is
the initial interface displacement di,0 and the initial velocity ui,0 are zero.
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Note that θi can be chosen independently from the fluid time integration
factor θ. For second order accuracy, θi has to be chosen as θi = 0.5 resulting
in the undamped, second order trapezoidal rule. The combination of coarse
FE meshes and large time step sizes may introduce intermittent oscillations,
which have their source for example in inexact extrapolation of history values
as discussed in the previous section. In such cases, using θi = 0.66 or even
a Backward-Euler method (θi = 1) damps intermittent oscillations, but also
limits the overall temporal order to first order [Förster et al., 2006]. For the
presented simulation, θi = 0.5 has been used, if not indicated otherwise.

The spatial discretization of the interface mesh is given in Eq. (2.73).

5.3.2 Coupling of fluid velocity with interface displacement

Using Eq. (5.17) and Eq. (5.18), it is now possible to insert ui,n+1(di,n+1) into
the fluid residual equations Eq. (4.16c) and Eq. (4.32c).

Traction based Lagrange multiplier For the traction based Lagrange multi-
plier approach, the discrete system to solve is

δu ru(u,p)+ δu rλ
u (λ) = FM(δuh, uh, ph)− (δuh, λh)

Γi (5.19a)

δp rp(u,p) = FC(δph, uh, ph) (5.19b)

δλ ru
λ(u)+ δλ r di

λ (d i) = −(δλh, uh −
1

∆tθi (di,h − di,h,hist))
Γi (5.19c)

δd i rλ
di(λ) = (δdi,h , λh)

Γi (5.19d)

The linearization process is almost unchanged. The only difference is that the
interface displacement is now the interface unknown.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Fuu Fup Muλ 0
Fpu Fpp 0 0
Mλu 0 0 Dλdi

0 0 Ddiλ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆u

∆p

∆λ

∆d i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ru + r
λ
u

rp

ru
λ + r

di

λ
rλ
di

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

(5.20)

with Muλ =MT
λu as given in Eq. (4.18) and

Dλdi =
1

∆tθiDλui (5.21)

Ddiλ =Duiλ (5.22)

If the interface displacement is given and prescribed as a Dirichlet condition
for all interface displacement unknowns d , column and row of the system
matrix can be omitted and the known interface displacement and the time
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history terms only appear in the residual r di

λ (u, d̂ i) with d̂ i being the given
interface displacement. The resulting reduced system is then

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Fuu Fup Muλ

Fpu Fpp 0
Mλu 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∆u

∆p

∆λ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ru + r
λ
u

rp

ru
λ + r

di

λ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

(5.23)

Stress based Lagrange multiplier The discrete system is posed assuming
again that the interface displacement is unknown

δu ru(u,p)+ δu r σ̄
u (σ̄,d i) =FM(δuh, uh, ph)− (δuh, ¯

˜
σh ⋅ nf)

Γi (5.24a)

δp rp(u,p) =FC(δph, uh, ph) (5.24b)

δσ̄ r di

σ̄ (u,p, σ̄,d i) =− (δ ¯
˜
σh, ¯

˜
γ( ¯

˜
σh, ph)−

˜
γ(uh))

Ωf

− (δ ¯
˜
σh ⋅ nf, uh −

1
∆tθi (di,h − di,h,hist))

Γi (5.24c)

δd i r σ̄
di(σ̄) =(δdi,h, ¯

˜
σh ⋅ nf)

Γi (5.24d)

Linearization at Newton-Raphson iteration step k is performed with respect
to the discrete unknowns u, p, σ̄ and d i. With changing interface position the
interface normal changes as well. If the displacement is treated as unknown
field the dependency of the normal with respect to the displacement has to
be linearized accordingly. In particular, the boundary integral in the stress
residual is linearized

∂−(δ ¯
˜
σh ⋅ nf, uh − 1

∆tθi (di,h − di,h,hist))
Γi

∂d i

= −(δ ¯
˜
σh ⋅ nf,−

1
∆tθi

∂ di,h

∂d i )
Γi

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
δσ̄ G

σ̄di

−(δ ¯
˜
σh ⋅

∂ nf(di,h)

∂d i ∣k, uh
k −

1
∆tθi (di,h

k − di,h,hist))
Γi

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
δσ̄ Gn

σ̄di

(5.25)

The first matrix part is similar to the linearization in Eq. (4.36). The only
difference is the factor from the interface time discretization

Gσ̄di =
1

∆tθiGσ̄ui (5.26)

The second matrix part stems from the displacement dependent normal vec-
tor. All remaining boundary terms in Eq. (5.24a) and Eq. (5.24d) that contain
surface normals have to be linearized accordingly. The resulting tangent ma-
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trices are named Gn
udi and Gn

didi . The complete discrete system is therefore

A
e

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Fuu Fup Guσ̄ Gn
udi

Fpu Fpp 0 0
Kσ̄u +Gσ̄u Kσ̄p Kσ̄σ̄ Gσ̄di +Gn

σ̄di

0 0 Gdiσ̄ Gn
didi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

A
e

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆u

∆p

∆σ̄

∆d i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −A
e

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ru + r
σ̄
u

rp

r di

σ̄

r σ̄
di

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

(5.27)
For elementwise condensation, the stress increments of one element can

again be expressed as

∆σ̄e = (Ke
σ̄σ̄)

−1(−r di,e
σ̄ − (Ke

σ̄u +G
e
σ̄u)∆ue −K

e
σ̄p∆pe − (Ge

σ̄di +G
n,e
σ̄di)∆d i

e) (5.28)

As before, the element stress couples into the momentum equations for fluid
and interface only via the matrices Guσ̄ and Gdiσ̄, respectively. In preparation,
the following element matrices Ce are defined for the fluid velocity unknowns

Ce
udi =−G

e
uσ̄(K

e
σ̄σ̄)

−1(Ge
σ̄di +G

n,e
σ̄di)+G

n
udi (5.29)

and, similarly, for the interface displacement unknowns

Ce
didi =−G

e
diσ̄

(Ke
σ̄σ̄)

−1(Ge
σ̄di +G

n,e
σ̄di)+G

n
didi (5.30)

The corresponding residual terms based on the stress residual are defined as

c
r di,e
u =−Ge

uσ̄(K
e
σ̄σ̄)

−1r di,e
σ̄ (5.31)

c
r e
di =−G

e
diσ̄

(Ke
σ̄σ̄)

−1r di,e
σ̄ (5.32)

The remaining condensed matrices are defined in Section 4.3.2. The system
after stress condensation is then

A
e

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F e
uu +C

e
uu F e

up +C
e
up Ce

udi

F e
pu F e

pp 0
Ce

diu Ce
di p Ce

didi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

A
e

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∆ue
∆pe
∆d i

e

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= −A
e

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r e
u + r

σ̄,e
u +

c
r di
u

r e
p
r σ̄,e
di +

c
rdi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

(5.33)

If the interface displacement is explicitly given, the last column and row
of the system matrix can be omitted and all derivatives of the normal vector
with respect to the interface displacements vanish. The reduced system with
separately assembled fluid and condensed coupling matrices is given as

[
Fuu +Cu Fup +Cup
Fpu Fpp

]
k
[

∆u

∆p
] = − [

ru + r
σ̄
u +

c
r di
u

rp
]

k
(5.34)

This system is used for the partitioned FSI implementation in the following
chapter.
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Figure 5.3: Force solution for various time-integration schemes for ∆t = 0.05 s

5.3.3 Example

A simple example using the Ghost-fluid method and stress Lagrange multi-
plier verifies the correctness of the proposed scheme. The fluid domain setup
is shown in Figure 5.3 and is similar to the setup in Section 4.5.2. However,
no body force is applied, instead the interface including wall boundary con-
ditions is moved in an oscillatory way with prescribed interface displacement
given by

di
x(t) = −d̂i

x
1
2
(1− cos(2π

t
T
)) (5.35)

The oscillation amplitude is denoted by d̂i
x and the periodic time by T. The

resulting velocity ui
x and acceleration ai

x of the interface is therefore

ui
x(t) =− d̂i

x
1
2

sin(2π
t
T
)

2π

T
(5.36)

ai
x(t) =− d̂i

x
1
2

cos(2π
t
T
)

2π

T
2π

T
(5.37)

The channel size is again 2.0 m× 0.2 m× 0.1 m and the amplitude was chosen
as d̂i

x = 1.5 m. The initial position of the wall is again L0
w = 1.75 m, however

Lw is now a function of t as

Lw(t) = L0
w + d(t) (5.38)

The wet surface, that interacts with the fluid is therefore Aw = 0.2 m × 0.1 m.
The prescribed oscillation has a periodic time T = 1 s.

The left side of the channel is again a zero-traction boundary. The fluid is
pushed out of the channel and pulled in again by the moving wall. The flow
speed is constant in space and should be the same as the speed of the moving
wall. As the spatial solution can be represented exactly, no discretization error
occurs. The force on the moving wall is solely determined by the pressure as
given in Eq. (4.67) and the resulting wall force Fh

wall is computed from the
discrete interface nodal forces f i

K as

Fh
w =∑

K
f i
K (5.39)
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Figure 5.4: Force solution for three time-integration schemes for ∆t = 0.05 s

The interface nodal forces f i
K are computed as defined in Eq. (4.66). Since for

this example the acceleration is proportional to the pressure gradient only, an
analytic solution for Fw can be given as

Fexact
w (t) =∫

Γi ˜
σ ⋅ nfdx

=Awp

=Aw
∂ p(t)

∂ x
Lw(t)

=Awρfai
x(t)Lw(t) (5.40)

For starting the simulation, a backward Euler step (θ = 1.0) was used in the
first time step. The wall displacement was prescribed as given in Eq. (5.35),
however, the wall velocity was computed using Eq. (5.17) with θi = 0.5 instead
of the analytical velocity. For the initial step θi = 1.0 was used.

Three time-stepping schemes, namely the BDF2 scheme and the OST with
θ = 0.66 and θ = 1.0, have been tested for their convergence properties. Fig-
ure 5.4 shows the result of the computed wall force compared to the analytical
solution for time step sizes ∆t = 0.05 s. For smaller time steps, the three solu-
tions become indistinguishable. Thus, in Figure 5.5 the difference of the so-
lution to the analytical solutions for three different time step sizes have been
plotted.

Here, the lagging of the first order schemes behind the correct solution
is clearly visible. The initial wiggles due to the start up by a backward Eu-
ler method can be observed for θ = 0.66. These wiggles are subsequently
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Figure 5.6: Temporal convergence for three time-integration schemes

damped by the diffusive behavior of the damped OST scheme. It is also vis-
ible, that the second order BDF2 scheme converges faster than the first or-
der schemes, where the backward Euler scheme has the largest error when
compared with the other schemes. The convergence diagram in Figure 5.6
confirms the observed convergence behavior. For the temporal convergence
diagram, the maximal force difference between computed and exact solution
has been plotted over the time step size. The maximal force difference occurs
for each scheme differently in the range between t = 0.7 s and t = 0.8 s. Alter-
natively, the force difference at a fixed point in time for all three schemes can
be chosen, which results in the same convergence behavior.

It can be seen that all schemes converge with optimal order. For the OST
method, only θ = 0.5 would produce second order convergence. However,
θ = 0.5 removes numerical diffusion from the OST time integration and initial
errors introduced by the backward Euler step are undamped and eventually
lead to divergence. Using 0.5 < θ <= 1 performs better than a pure backward
Euler method, but only first order convergence is obtained. Thus for most
numerical results, the BDF2 has been employed. Note that the achieved sec-
ond order convergence depends also on the second order scheme that has
been used for the interface velocity (θi = 0.5). With a first order interface
displacement time discretization, the overall order would be limited to first
order. This finding is in agreement with the discussion on FSI time integration
schemes in [Förster, 2007].
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This example shows that temporal convergence is optimal, if the correct
old velocities have been estimated. A rigorous study that includes the effect of
erroneous estimates is still missing. More complex examples without analytic
solutions should be tested to show, whether the convergence is disturbed by
using faulty guesses for the old time-step fields.





CHAPTER 6
Coupled fluid-structure system

The fixed-grid XFSI system is the combination of the derived single field ap-
proaches and their coupling the additional interface mesh. For integrating the
single field approaches, first a weak interface-structure coupling using Mortar
techniques is introduced. Then the monolithic and partitioned FSI schemes
are described for both traction and stress Lagrange multipliers, where the
new stress Lagrange multiplier technique simplifies and improves both the
monolithic and the partitioned coupling, when compared with the traction
Lagrange multiplier approach. Finally, extensions towards improved fluid
solutions near the interface are presented and examples illustrate versatility
of the XFSI approach.

6.1 Interface-structure coupling

As the most general case, the interface mesh and the structure surface use
independent displacement approximations. Hence, a coupling mechanism
for non-matching boundary meshes is required. For this problem, the Mortar
methods for non-matching grids [Bernardi et al., 1993, 1994] is adopted.

In the Mortar method, the kinematic matching condition between inter-
face and structure surface in Eq. (2.69) is enforced weakly by using a Lagrange
multiplier field µ. The Lagrange multiplier corresponds to the surface trac-
tion µ defined in Eq. (2.71). The setup for the structure-interface coupling is
depicted in Figure 6.1. The strong form of the structural momentum equa-
tion including the interface condition in Eq. (2.69) with the three primary un-
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ΩsΓi

slave — master

di

µ

ds

Figure 6.1: Mortar coupling between structural surface and interface

knowns ds, di and µ is given as

rds(ds) =0 in Ωs (6.1a)

ds − di =0 in Γi (6.1b)

˜
σs ⋅ ns − µ =0 in Γi (6.1c)

ds − d̂D =0 in Γs
D (6.1d)

˜
σs ⋅ ns − ĥs =0 in Γs

N (6.1e)

Here the structure surface Γs is split into Γs
D with Dirichlet conditions, Γs

N with
Neumann conditions and Γi, where the FSI conditions are located.

The weighted residual form of Eq. (6.1) reads as

0 = (δds, rds(ds))
Ωs + (δd,

˜
σs ⋅ ns − ĥs)

Γs
N
+ (δd,

˜
σs ⋅ ns − µ)

Γi (6.2a)

0 = −(δµ, ds − di)Γi (6.2b)

0 = (δdi, µ)Γi (6.2c)

The interface displacement is assumed to be unknown, hence, a test func-
tion δdi is required. Since the interface does not add any physical effects,
the interface traction µ is zero as long as no fluid is coupled to the interface.
Integration by parts of the stress term in Eq. (6.2a) gives

−(δds,∇ ⋅
˜
σs)

Ωs =− (δds,
˜
σs ⋅ ns)

Γs + (∇ ⋅ δds,
˜
σs)

Ωs

With the structure weak form term S(δds, ds) as defined in Section 2.2, the
weak form with interface constraints is written as

0 =S(δds, ds)− (δds, µ)
Γi (6.3a)

0 =− (δµ, ds − di)
Γi (6.3b)

0 =(δdi, µ)
Γi (6.3c)

Neumann conditions and volumetric forces are included in S(δds, ds).
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The structural displacement is discretized in Section 2.2.2 and the inter-
face displacement is discretized in Section 2.3.2. The corresponding structure
and interface shape functions are denoted as Ns and Ni, respectively. Both
approximations are repeated here for easier reference:

ds,h =∑
I

Ns
I ds

I and δds,h =∑
I

Ns
I δds

I (6.4)

di,h =∑
I

Ni
Id

i
I and δdi,h =∑

I
Ni

Iδdi
I (6.5)

In the Mortar method, the Lagrange multiplier is discretized with the shape
functions and node set of the so called slave side. For the partitioned FSI
scheme presented later, the interface Γi has to be the slave side and the struc-
tural surface the master side. Consequently, trial and test functions of the
Lagrange multiplier field are discretized with the interface shape functions as

µh =∑
I

Ni
IµI and δµh =∑

I
Ni

IδµI (6.6)

If the interface is curved, then the structure surface elements may not co-
incide with the interface elements. Here, a projection Pµ is required to project
the discrete structure surface displacement onto the interface mesh to inte-
grate the weak interface condition. Such projection is a complex three-dimen-
sional task and is a critical ingredient in a robust Mortar implementation, see
e.g. [Puso, 2004; Puso et al., 2008; Wohlmuth, 2001]. Including the projection,
the discrete nonlinear system are given as

δd s [r s
ds(d

s)+ r
µ
ds(µ)] = S(δds,h, ds,h)− (δds,h, µh)

Γi (6.7a)

δµ [r ds

µ (d s)+ r di

µ (d i)] = −(δµh, Pµs,hds,h − di,h)
Γi (6.7b)

δd r
µ

di(µ) = (δdi,h, µh)
Γi (6.7c)

The virtual work defined in Eq. (6.7b) allows to define two coupling ma-
trices Mµds and Dµdi as

0 = δµI[∫
Γi

Ni
I PµNs

J dx
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Mµds

ds
J −∫

Γi
Ni

I Ni
Kdx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
D

µdi

di
K] (6.8)

The matrix Mµds is generally rectangular because of the non-fitting surface
discretizations, while Dµdi is a square matrix. The respective transposed ma-
trices are denoted as Mdsµ =MT

µds and Mdiµ =MT
µdi .

The mortar coupling introduces only linear relations such that the lin-
earization of the interface structure system does not pose particular problems.



120 Chapter 6. Coupled fluid-structure system

ΩsΩ Γi

Ω−

master — slave slave — master

Ω+ = Ωf

u, p di ds

µλ

Figure 6.2: Coupled FSI system with traction Lagrange multipliers.

The structure system is linearized in Section 2.2. The linearized interface-
structure system in incremental formulation is therefore given as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 Ddiµ 0 0
Dµdi 0 Mµds 0

0 Mdsµ SBBdsds SBDdsds

0 0 SDBdsds SDDdsds

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆d i

∆µ

∆d s
B

∆d s
D

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r
µ

di

r di
µ + r ds

µ

r s,B
ds + r

µ,B
ds

r s,D
ds

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

(6.9)

Here, the structure DOFs are split into two sets: set B contains all displace-
ment unknowns attached to boundary nodes on the structure FSI surface
Γs,FSI,h and set D contains all remaining structure DOFs. The split reveals
that only structure surface nodes are involved in the weak structure interface
coupling. After acknowledging this fact, the following shorter writing is used

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 Ddiµ 0
Dµdi 0 Mµds

0 Mdsµ Sdsds

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∆d i

∆µ

∆d s

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r
µ

di

r di
µ + r ds

µ

r s
ds + r

µ
ds

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

(6.10)

6.2 FSI system with traction Lagrange multipliers

The FSI approach using traction Lagrange multipliers is published in [Ger-
stenberger and Wall, 2008b]. The fully coupled FSI system using three dis-
tinct meshes in Ω, Ωs and Γi, respectively, is shown in Figure 6.2. The time-
discretization may be different for fluid, structure and interface variables and
has been presented separately in Section 2.1.2, 2.2.2 and 5.3.1. After fluid and
structure time discretization, the coupled fluid-interface-structure system in-
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Ωs

µ

Ω−

Ωf

projected structural surface positionstructural surface discretization

interface discretization

Ω+Ω+Ω+

Ωs

Figure 6.3: Interface construction using the discrete structural surface: On the left,
the structural surface and the fluid mesh is shown. Lagrange nodes (●)
are located on the intersection between structural surface and fluid edges.

cluding the fluid stabilization becomes

0 =FM(δu, u, p)− (δu, λ)
Γi (6.11a)

0 =FC(δp, u, p) (6.11b)

0 =− (δλ, u −
1

∆tθi (di,h − di,h,hist))
Γi (6.11c)

0 =(δdi, λ + µ)
Γi (6.11d)

0 =− (δµ, ds − di)
Γi (6.11e)

0 =S(δds, ds)− (δds, µ)
Γi (6.11f)

If the traction based Lagrange multiplier for fluid-interface coupling is
employed as described in Section 4.3.1, the fluid-interface coupling dictate the
interface discretization. In particular, the interface discretization was derived
from the intersection points of a smooth interface crossing the fluid element
edges. In the XFSI approach, the surface mesh of the Lagrangian structure
defines the location of the interface. Consequently, the interface is constructed
from the intersection of structural surface edges with fluid element edges as
shown in Figure 6.3. For moving structures, the interface mesh has to be
recreated in every nonlinear FSI step. The structural surface position is used
for the creation of integration cells.

In the fluid-interface-structure system, the interface hosts both Lagrange
multiplier fields λ and µ and the interface displacement d i. In other words,
the interface is the slave side for both, the fluid-interface coupling and the
structure-interface coupling. The three interface variables λ, di and µ have
the same number of nodes and use the same approximation functions Ni

I .
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Hence, matrix Ddiµ is identical to Ddiλ. The discrete equivalent of Eq. (2.72) is

Ddiλλ+Ddiµµ = 0 (6.12)

which reduces to

λ = −µ (6.13)

The linearized monolithic system is a combination of the linear systems in
Eq. (4.17) and Eq. (6.10) with all linearized matrix entries defined as before

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Fuu Fup Muλ 0 0 0
Fpu Fpp 0 0 0 0
Mλu 0 0 Dλdi 0 0

0 0 Ddiλ 0 Ddiµ 0
0 0 0 Dµdi 0 Mµds

0 0 0 0 Mdsµ Sdsds

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆u

∆p

∆λ

∆d i

∆µ

∆d s

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ru + r
λ
u

rp

ru
λ + r

di

λ
rλ
di + r

µ

di

r di
µ + r ds

µ

r s
ds + r

µ
ds

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

(6.14)

Correct scaling of coupling matrices using Eq. (5.16) allows to solve for ve-
locities in the fluid field and displacements on the interface mesh and the
structural domain in one monolithic system. The necessary scaling factors to
couple displacements and velocities are contained within the coupling matri-
ces Dλdi and the interface residual terms as shown in Section 5.3.2.

As discussed in Section 4.3.1, the traction Lagrange multiplier approach
between fluid and interface is difficult to extend to three-dimensional prob-
lems. Hence, the presented monolithic approach has been used only for two-
dimensional simulations as given in the example section. For three-dimen-
sional simulations, the new coupling approach is used in the following.

6.3 FSI system with stress Lagrange multipliers

The stress based Lagrange multiplier approach replaces the traction λ by the
hybrid stress formulation. Since the stress field is defined on the background
grid, the background fluid grid is termed the slave side of the fluid-interface
coupling1. This setup is shown in Figure 6.4. The corresponding weak form

1Even though the stress field approximation is different from velocity and pressure ap-
proximation, the element based shape functions are defined on the same grid as the fluid.
Hence, the term ‘slave side’ seems appropriate.
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ΩsΩ Γi

Ω−

slave — master slave — master

Ω+ = Ωf

u, p di ds

µ¯
˜
σ · nf

Figure 6.4: Coupled FSI system with proposed stress Lagrange multipliers.

after time discretization is

0 =FM(δu, u, p)− (δu, ¯
˜
σ ⋅ nf)

Γi (6.15a)

0 =FC(δp, u, p) (6.15b)

0 =− (δ ¯
˜
σ, ¯

˜
γ −

˜
γ)

Ωf − (δ ¯
˜
σ ⋅ nf, u −

1
∆tθi (di,h − di,h,hist))

Γi (6.15c)

0 =(δdi, ¯
˜
σ ⋅ nf + µ)

Γi (6.15d)

0 =− (δµ, ds − di)
Γi (6.15e)

0 =S(δds, ds)− (δds, µ)
Γi (6.15f)

Almost all ingredients of this weak from have already been defined in Sec-
tion 5.3.2 and Section 6.1. The only addition is the weak traction balance
Eq. (6.15d), which is introduced by testing the strong form in Eq. (2.72) with
the test function of the interface displacement δdi.

The monolithic system with condensed element stresses is given as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Fuu +Cuu Fup +Cup Cudi 0 0
Fpu Fpp 0 0 0
Cdiu Cdi p Cdidi Ddiµ 0

0 0 Dµdi 0 Mµds

0 0 0 Mdsµ Sdsds

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆u

∆p

∆d i

∆µ

∆d s

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ru + r
σ̄
u +

c
ru

rp
r σ̄
di +

c
rdi + r

µ

di

r di
µ + r ds

µ

r s
ds + r

µ
ds

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

(6.16)

The matrices C and coupling forces c
r stem from the stress condensation pro-

cess, which is described in detail in Section 4.3.2 and Section 5.3.2. Splitting
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Eq. (6.16) into surface and interior DOFs reveals the surface coupling:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F SSuu F SSup F SCuu F SCup 0 0 0 0
F SSpu F SSpp F SCpu F SCpp 0 0 0 0
F CSuu F CSup F CCuu +CCCuu F CCup +C

CC
up CCudi 0 0 0

F CSpu F CSpp F CCpu F CCpp 0 0 0 0
0 0 CCdiu CCdi p CCdidi Ddiµ 0 0

0 0 0 0 Dµdi 0 Mµds 0
0 0 0 0 0 Mdsµ SBBdsds SBDdsds

0 0 0 0 0 0 SDBdsds SDDdsds

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆uS
∆pS
∆uC
∆pC
∆d i

∆µ

∆d s
B

∆d s
D

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

rSu
rSp
rCu + r

σ̄,C
u +

c
rCu

rCp
r

µ

di + r
σ̄
di +

c
rdi

r di
µ + r ds

µ

r s,B
ds + r

µ,B
ds

r s,D
ds

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

(6.17)

In contrast to the traction Lagrange multiplier approach, the stress based
Lagrange multiplier poses no constraints on the interface discretization. Nu-
merical experience suggests, that any polynomial order and element size can
be used for the interface discretization. The interface mesh is therefore cho-
sen to be identical to the structure surface mesh. The advantage of identical
structure surface and interface meshes is that the projection Pµ in Eq. (6.8) is
not required anymore. It follows that

Dµ =Mµ (6.18)

and thus the computation of the interface displacement reduces to

∆d i =D−1
µ Mµ∆d s = I∆d s = ∆d s (6.19)

with I being the identity matrix. This essentially replaces the weak interface-
structure coupling with a matching-nodes coupling.

For the monolithic scheme, the identical surface discretizations remove the
need for an extra interface mesh. It can be removed from the global system,
which leaves the following system to be solved

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Fuu +Cuu Fup +Cup Cuds

Fpu Fpp 0
Cdsu Cds p Sdsds +Cdsds

⎤
⎥
⎥
⎥
⎥
⎥
⎦k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∆u

∆p

∆d s

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ru + r
σ̄
u +

c
ru

rp
r s
ds + r

s,σ̄
ds +

c
rds

⎤
⎥
⎥
⎥
⎥
⎥
⎦k

(6.20)
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with r s,σ̄
ds = r σ̄

di and c
rds =

c
rdi . In the implementation, the vectors r s,σ̄

ds and c
rds

and the corresponding tangent matrices Cdsu, Cds p and Cdsds are generated by
renumbering the DOFs from the interface numbering scheme to the structure
surface numbering scheme. Splitting the monolithic system again into inte-
rior and surface degrees of freedom, the surface coupling becomes visible:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F SSuu F SSup F SCuu F SCup 0 0
F SSpu F SSpp F SCpu F SCpp 0 0
F CSuu F CSup F CCuu +CCCuu F CCup +C

CC
up CCBuds 0

F CSpu F CSpp F CCpu F CCpp 0 0
0 0 CBCdsu CBCds p SBBdsds +C

BB
dsds SBDdsds

0 0 0 0 SDBdsds SDDdsds
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⎥
⎥
⎥
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⎥
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⎥
⎥
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⎥
⎥
⎥
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rSu
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ds +
c
rBds

r s,D
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⎥
⎥
⎥
⎥
⎥
⎥
⎦k

(6.21)

6.4 Iterative staggered strong coupling scheme

For the dynamic FSI problems involving incompressible fluid flow and light-
weight structures considered here, an iterative staggered scheme based on
[Küttler and Wall, 2008] has been implemented. Each field is solved implicitly
and an iterative procedure over the fields ensures convergence for the inter-
face conditions at the new time step level n + 1. It has been shown in [Förster
et al., 2007] that such strong, iteratively coupling schemes are necessary for
FSI involving incompressible flow and lightweight structures.

For a partitioned approach, the interface-structure coupling in the lower
right part of the matrix in both, Eq. (6.14) and Eq. (6.17) is replaced by an itera-
tive Dirichlet-Neumann scheme. In such scheme, the structural displacement
at the surface represents a Dirichlet condition for the interface-fluid system,
while the resulting fluid surface traction is applied as Neumann condition on
the structure.

For the traction Lagrange multiplier approach, the interface mesh is recre-
ated at every FSI iteration step i based on the latest structure surface posi-
tion. Hence, the interface velocity cannot be computed continuously in time,
since the interface mesh has different number of nodes at different steps i.
Therefore, the interface velocity us

FSI is computed on the structure surface dis-
cretization by using Eq. (5.17). Subsequently, the resulting structure surface
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velocity is transfered with the already established mortar matrices as

ui =D−1
µ Mµu

s
FSI (6.22)

Note that this does not mix structure and interface time discretization. With
the computed interface velocity, the fluid system is solved using Eq. (4.20).
The corresponding Neumann condition along Γi is derived from the integral
(δds, µ)Γi . The fluid interface system is solved as given in Eq. (5.23) with
the traction field λ as part of the solution. The interface force vector can be
written as

f s,FSI
Ii = ∫

Γi
PµNs

I Ni
Jdx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Mdsµ

µJi (6.23)

or, in matrix notation,

f s,FSI =Mdsµµ = −Mdsµλ (6.24)

Here, the identical size of λ and µ as defined in Eq. (6.13) is exploited.
For the stress based Lagrange multiplier approach, interface mesh and

structure surface mesh are identical. Furthermore, the interface mesh is un-
changed during the FSI simulation. and Eq. (6.22) reduces to

ui = us
FSI (6.25)

Instead of Eq. (6.25), the structure displacement can directly be copied to the
interface mesh as

d i = d s (6.26)

as derived in Eq. (6.19). After solving the fluid system by Eq. (5.34), the inter-
face nodal force due to the applied interface displacement as

δd i f i,FSI
di = (δdi,h, ¯

˜
σh ⋅ nf)

Γi (6.27)

based on Eq. (5.24d). For non-matching surface grids, Eq. (6.27) gives

f s,FSI =MdsµD
−1
µdif

i,FSI (6.28)

Since matching interface and structure surface meshes are used, the discrete
nodal force is computed by

f s,FSI = f i,FSI
σ̄ (6.29)

where just DOF renumbering is necessary to transfer data from the interface
mesh to the structure surface mesh. This removes the need for storing and
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applying the interface-structure Mortar matrices Dµdi , Ddiµ, Mµds , and Mdsµ

in the iterative coupling.
The structure Neumann problem for both, traction and stress Lagrange

multiplier, is summarized as

[
SBBdsds SBDdsds

SDBdsds SDDdsds
]

k
[

∆d s,B

∆d s,D ] = − [
r s,B
ds (d s)+ f s,FSI,B

r s,D
ds

]

k
(6.30)

The force vector f s,FSI,B is based on either Eq. (6.24) or Eq. (6.29), respectively.
As proposed in [Mok and Wall, 2001; Wall et al., 1999], the Aitken acceler-

ation scheme for vector sequences [Irons and Tuck, 1969] is applied to relax
the computed interface displacement. The relaxed interface displacement for
the next FSI step i + 1 is computed by

d s
i+1 = ωid

s,n+1
i+1 + (1−ωi)d

s
i (6.31)

The relaxation parameter ωi is computed as given in [Mok and Wall, 2001;
Wall et al., 1999]. The partitioned coupling procedures for both approaches
are summarized in Algorithm 6.1 and Algorithm 6.2.

Algorithm 6.1 Iterative FSI for traction Lagrange multipliers

for each new time step n + 1 do
for each FSI iteration i do

establish interface mesh, compute Dµ,Mµ Eq. (6.8)
Structure→ Fluid: Transfer displacement d i

i+1 =D
−1
µdiMµdsd s

i+1 Eq. (6.22)

Fluid: Solve for ui+1, pi+1 and λi+1 Eq. (4.20)
Fluid → Structure: Transfer reaction force f s,FSI

i+1 = −MT
µλi+1 Eq. (6.24)

Structure: Solve for d s
i+1 Eq. (6.30)

if converged then
stop FSI iteration

else
Relax displacements and restart iteration Eq. (6.31)

end if
end for

end for

In the implementation, the fluid-structure coupling information is only
exchanged between structure surface and interface mesh. The interface mesh
acts as an explicit fluid surface for the FSI algorithms, and the fluid-interface
system is algorithmically treated as one block. This allows to us the same
coupling implementation as an ALE based FSI scheme, where the structure
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Algorithm 6.2 Iterative FSI for stress Lagrange multipliers

establish interface mesh as copy of the structure surface mesh
for each new time step n + 1 do

for each FSI iteration i do
Structure → Fluid: Transfer displacement d i

i+1 = d
s
i+1 Eq. (6.26)

Fluid: Solve for ui+1, pi+1, f i,FSI
i+1 Eq. (5.34)

Fluid → Structure: Transfer reaction force f s,FSI
i+1 = f i,FSI

i+1 Eq. (6.29)
Structure: Solve for d s

i+1 Eq. (6.30)
if converged then

stop FSI iteration
else

Relax displacements and restart iteration Eq. (6.31)
end if

end for
end for

surface exchanges forces and velocities with the surface of the ALE based
fluid mesh.

The combination of stress based approach and the partitioned FSI scheme
allows to concentrate entirely on the fixed-grid fluid formulation and the FSI
coupling. The strict use of surface coupling allows to use all existing structure
models that are implemented in the simulation environment. Although this
has not been exploited in the examples shown at the end of this chapter, future
applications will certainly benefit from this feature.

6.5 Enhancement of flow solutions near the fluid
structure interface

For an accurate FSI simulation, it is crucial to properly resolve flow features
like boundary layers, flow separation and re-attachment that often occur near
the structural surface. An inaccurate resolution may corrupt the entire sim-
ulation and the coupled simulation will not be able to predict the physical
solution. However, for ‘pure’ fixed-grid methods, an adequate mesh cannot
be constructed beforehand, since the position of the fluid-structure interface
is usually not known a priori. Hence, for pure fixed-grid methods special care
is necessary to create an appropriate mesh that allows for reliable simulation
of complex problems.

In the following, two different techniques to improve this situation are
discussed. The first approach is based on local, adaptive mesh refinement and
coarsening combined with error-estimator and heuristics based refinement



6.5. Enhancement of flow solutions near the fluid structure interface 129

indicators. The second approach combines the enriched fixed-grid approach
with ALE techniques [Gerstenberger and Wall, 2008a]. It essentially adds a
surface layer of deformable fluid elements with an ALE formulation to the
structural surface. Such a fluid patch captures the near surface flow with
an appropriate fine mesh, which is then coupled to a coarse fixed Eulerian
background mesh. For demonstration, the techniques are introduced for two-
dimensional problems using the traction Lagrange multiplier approach.

6.5.1 Adaptive fixed-grid methods

The current work concentrates on h-adaptivity. Nevertheless, extensions to
hp-finite element [Babuška and Suri, 1990; Gui and Babuška, 1986] methods
seem possible, since the XFEM allows to use higher order approximations
consistently [Cheng and Fries, 2010; Laborde et al., 2005; Stazi et al., 2003].

An h-adaptive scheme essentially consists of two steps: finding an ap-
propriate refinement/coarsening indicator and modifying the computational
mesh accordingly.

A refinement indicator can be as simple as to refine all element within a
given distance from the interface and make a smooth transition of element
sizes towards coarser elements. This approach is useful, if for example the
size of the boundary layer can be predicted a priori. If flow features develop
away from the interface, such heuristics are not sufficient and refinement in-
dicators based on global or local error estimates are more general and prefer-
able. See [Oñate et al., 2006; Sahni et al., 2006; Zienkiewicz and Zhu, 1992a,b]
and references therein for a more complete overview on error estimates.

In the presented computations, a combination of refining by the interface
distance and a gradient based error indicator is applied. The error indicator
εe for each element e is computed from the integral of the absolute value of
the shear strain rate jump along the element boundaries Γe to estimate the
smoothness of the computed result

εe = ∮
Γe

∣[ux,y]∣dx (6.32)

Here, ux,y is the gradient of the fluid velocity field. For the results given in
the example section, this indicator captures boundary layers along explicit
and implicit boundaries satisfactorily.

After indicating, which area requires refinement and where coarsening
can be allowed, several choices exist for a refinement strategy, see e.g. [Stein
et al., 2004] for an overview on refinement techniques. For the presented
fixed-grid approach, local element subdivision with hanging nodes has been
adopted. Refining an element, but not its neighbors, introduces hanging
nodes. To obtain a compatible mesh, one can subdivide neighboring elements
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(a) unrefined elements (b) refined elements with hanging nodes

Figure 6.5: Refinement of quadratic elements using hanging nodes (indicated by di-
amonds).

such that no hanging nodes are left [Cougny and Shephard, 1999; Sahni et al.,
2006] or one can constrain nodes on the finer side such that a compatible so-
lution is recovered [see e.g. Wohlmuth, 2001]. The latter approach can also
be used for higher order hp-refinement and multiple hanging nodes, see e.g.
Solin2008.

For testing, a local refinement strategy based on hanging nodes has been
implemented into the two-dimensional code. The refinement procedure for a
9-node element is depicted in Figure 6.5. After refinement, there are 3 nodes
of a quadratic line element on the coarse side and five nodes of two quadratic
lines on the refined side. The two center nodes of the small elements cannot be
chosen freely, since that would introduce an incompatible velocity solution.
Instead, their values need to be constrained to the coarser solution.

The relation between unknowns on the refined side ufine
J and the coarse

side ucoarse
I can be expressed as the following matrix expression

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ufine
1

ufine
2

ufine
3

ufine
4

ufine
5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.0 0.0 0.0
0.375 0.75 −0.125
0.0 1.0 0.0

−0.125 0.75 0.375
0.0 0.0 1.0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ucoarse
1

ucoarse
2

ucoarse
3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(6.33)

Where nodes of the coarse mesh coincide with the fine mesh, the matrix con-
tains simply an one-to-one matching, otherwise, it is a sum of several entries.
The sum of all entries in one row has to be 1. For linear elements, the connec-
tivity matrix is even simpler

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ufine
1

ufine
2

ufine
3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1.0 0.0
0.5 0.5
0.0 1.0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[
ucoarse

1
ucoarse

2
] (6.34)

The matrices can be constructed from simple evaluation of line shape func-
tions or by using a local mortar approach along the interface between a coarse
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and two small elements Γadapt, where the matrix above corresponds to the
rectangular matrix

0 = ∫
Γadapt

Nfine
I Ncoarse

J dx ucoarse
J −∫

Γadapt
Nfine

I Nfine
K dx ufine

K (6.35)

or, written in matrix notation

0 =Dadaptucoarse −Madaptufine (6.36)

Hence, the values on the fine grid are calculated as

ufine =Dadapt,−1Madaptucoarse (6.37)

For simplicity of implementation, only one coarse element is allowed to be
connected to two finer elements.

In practice, hanging nodes do not carry unknowns and their values can be
established by interpolation from the coarse side. The integration of elements
containing hanging nodes remains unchanged compared to elements with-
out hanging nodes. Only the interpolation and assembly process needs to be
adapted. When an element containing a hanging node as one of its nine nodes
is processed, it first interpolates the nodal values from the coarser neighbor
element. It can then compute residual and tangent stiffness as usual. During
the subsequent assembly process, the entries of residual and stiffness matrix
belonging to the hanging node are added to the nodes on the coarse element
entries using Eqs. (6.33) and (6.34).

In summary, h-adaptivity based on local element sub-division provides a
general applicable way to improve the accuracy of fixed-grid methods. The
use of automatic error-estimator based refinement complements the idea of
fixed-grid methods, where not much predictions on the structural movement
can be made a priori.

For transient problems involving large motions of the structural surface,
mesh updates are frequently required to follow the implicit interface. If a to
small region around the structure is refined, the mesh update and error esti-
mation has to be performed frequently to follow the motion of the interface.
On the other hand, if to large regions are refined to reduce the frequency of
adaptive steps, the number of unnecessary elements can be prohibitive high.
In such cases it would be advantageous to have a small layer of fluid elements
along the structural surface such that a close to optimal boundary layer mesh
is kept at all times. Such an approach is presented in the next section.

6.5.2 A hybrid fixed-grid / ALE approach

The second approach to improve fixed-grid methods involves the addition
of a deformable fluid domain around the structural surface. Surface aligned



132 Chapter 6. Coupled fluid-structure system

fluid elements around the structure can efficiently resolve boundary layers,
because boundary layers have strong gradients usually only normal to the
FSI surface. State-of-the-art boundary layer elements may have large aspect
ratios (1×100 and more) and there seems to be no straightforward way to
get such an optimal boundary layer mesh by using element subdivision as
described in the previous section. For three-dimensional computations, this
advantage would be even more pronounced. The challenge of this approach
lies in the coupling of the flow on the embedded patch and on the background
grid.

Hybrid methods have been used before to enable rigid movement of struc-
tures in fluids based on the Chimera technique [Houzeaux and Codina, 2003;
Meakin and Suhs, 1989; Steger et al., 1983; Wall et al., 2006; Wang and Partha-
sarathy, 2000]. Recently, a Chimera like method was developed in [Gamnitzer
and Wall, 2006; Wall et al., 2008], which also allows thick and thin deforming
structures. In these approaches, the physical field on the fixed grid and ALE
grid overlap each other and are solved alternating using iterative schemes.
Related, non-overlapping approaches are, for instance, the sliding mesh tech-
nique proposed in [Behr and Tezduyar, 1999] and the weak coupling scheme
presented in [Bazilevs and Hughes, 2008]. The non-overlapping approaches
have the additional feature that the coupled fluid-fluid system can be solved
monolithically, which eventually may allow monolithic FSI coupling schemes
for the entire fixed grid fluid - moving grid fluid - structure system.

In this work, an XFEM based moving grid-fixed grid coupling is estab-
lished by using the already developed XFEM and Lagrange multiplier tech-
niques from the previous chapters. Here, the submersed patch Ωsubm is the
union of structural domain and the ALE patch domain Ωsubm = Ωs ∪Ωp. On
the fixed grid, no flow is computed in Ωsubm. Since the physical fields on
the different meshes do not overlap, the coupled fluid fields can be solved
monolithically. The primary unknowns on the patch and the fixed mesh are
velocity and pressure.

In the following, a partitioned FSI algorithm between structure on one
side and the combined moving fluid - fixed fluid system on the other side is
assumed. Figure 6.6 shows, how the intermediate ALE mesh is coupled to the
structure surface using the Lagrange multiplier field κ. Hereby, the structure
displacement is given as Dirichlet boundary condition to the moving fluid in
Ωp. The fixed fluid and moving fluid are treated together in a monolithic way
and the resulting FSI interface forces along the fluid-structure interface are
used as Neumann conditions for the structure as usual. Hence, the monolithic
fluid-fluid coupling is hidden inside the fluid formulation and does not affect
the overall partitioned FSI scheme.

The fluid-interface coupling in Eq. (4.11c) can be extended such that the
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ΩALEΩ Γi

Ω−

master — slave slave — master

Ω+

ΩsΓALE,FSI Γs,FSI

slave — master

u, p ui

µλ

dsuALE, pALE

κ

Figure 6.6: Hybrid approach: a fixed fluid grid and a deforming ALE fluid grid are
coupled using the XFEM/Lagrange multiplier approach. The moving
ALE grid is coupled to the structure field.

complete weak form is given as

0 = FM(δu, u, p)− (δu, λ)
Γi (6.38a)

0 = FC(δp, u, p) (6.38b)

0 = −(δλ, u − ui)
Γi (6.38c)

0 = (δui, λ + µ)
Γi (6.38d)

0 = −(δµ, up − ui)
Γi (6.38e)

0 = Fp
M(δup, up, pp)− (δup, µ)

Γi (6.38f)

0 = Fp
C(δpp, up, pp) (6.38g)

The stabilized fluid weak forms Fp
M(δup, up, pp) and Fp

C(δpp, up, pp) are based
on the ALE formulation as discussed in [Wall et al., 2008].

For a partitioned FSI scheme, the ALE mesh deformation and the interface
position between fixed and moving fluid domain are not part of the fluid
solution. Instead, the ALE fluid-structure interface is moved to the new time
steps position and the favorite mesh smoothing scheme can be applied to
smooth the ALE mesh. The corresponding mesh velocity is then given to the
ALE equations as a given mesh velocity field.

The time discretization for ALE fluid patch and Eulerian background fluid
are chosen to be the same. The linearization of both fluid fields is performed
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as in Section 4.3.1. The resulting matrix equation is then given

⎡
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⎢
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⎢
⎢
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⎢
⎢
⎢
⎢
⎢
⎢
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(6.39)

This discrete system is similar to Eq. (6.14). The coupling occurs only in the
momentum equations. For this approach, an example is given Section 6.6.2.

The stress Lagrange multiplier approach from Section 4.3.2 would gener-
ate a simpler matrix structure without saddle points and no additional inter-
face mesh. The construction of the linear system is analogous to the process
given in Section 4.3.2 and Section 6.3 and the final, monolithic system before
condensation is

⎡
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⎢
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⎢
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⎢
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Fuu Fup G 0 0
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0 0 Gupσ̄ Fupup Fup pp

0 0 0 Fppup Fpp pp

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆u

∆p

∆σ̄

∆up

∆pp

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ru + r
σ̄
u

rp
rσ̄
rup + r σ̄

up

rpp

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦k

(6.40)

After condensation, the monolithic system reduces to
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(6.41)

Preliminary results suggest the correctness of above stress based coupling
approach. A more in-depth analysis and numerical testing is still ongoing
and is therefore omitted from this work.

If the structural deformation is mainly rotational or translational with only
reasonable deformation of the structure, an attached fluid mesh around the
structure provides a reliable and potentially more efficient alternative to the
more general adaptive procedure presented in Section 6.5.1. For many ap-
plications like spinning rotors or large translational motions of objects, the
resulting deformation of the boundary layer mesh does not pose a limitation.
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6.6 Numerical examples

The following examples demonstrate both accuracy and versatility of the
fixed-grid approach.

6.6.1 Rotating cylinder

This example shows incompressible flows interacting with a rather soft, com-
pressible structure (Poisson ratio νs = 0.0) exhibiting large deformation. The
setup is a unit square with Dirichlet boundary condition at the top and bot-
tom of the square and zero Neumann conditions along the right and left side
generating a simple shear flow. A two-dimensional cylinder representation
is located in the center of the domain with the center node fixed. The vis-
cous forces enforce a rotation around its center. Additionally, the structure
deforms due to the fluid forces acting on the structural surface. This exam-
ple also represents a preliminary study to simulation of experiments as given
in [Pozrikidis, 2006; Watanabe et al., 2006, 2007; Zhou and Pozrikidis, 1995],
where mechanical properties are deducted from the shearing of red blood
cells.

The flow solution and the corresponding structural nodal forces are de-
picted in Figure 6.7. From the fluid point of view, this problem becomes
steady once the structure has reached the final shape as shown in the pictures.
However, the structure keeps rotating, making this a transient problem after
all. The rotation can go on indefinitely as no accumulating mesh deformation
as in ALE-based fluid formulations is present.

6.6.2 Resolution of boundary layers

The following example highlight the difference between resolving boundary
layers by Cartesian element subdivision and surface adapted boundary layer
meshes. As a test case, the stationary flow around a cylinder (benchmark case
2D-1 in [Schäfer and Turek, 1996]) is used again. Although the focus is on
fluid solution, the structure is simulated as well, as the approaches have been
developed for FSI and have been implemented in a respective environment.
Nevertheless, the structure is fixed in both examples such that no structure
deformation occurs.

h-adaptivity

The initial fluid mesh was built from 96 (4×24) bi-quadratic elements. The
mesh was refined five times; after each refinement the solution of the fluid
system was repeated. The final mesh consisted of 2740 fluid elements For the
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(a) velocity field u (b) pressure field p

(c) surface nodal forces f s,FSI

Figure 6.7: Flow field around a flexible, rotating cylinder.

refinement indicator, the strategy from Section 6.5.1 was used. In particular,
along the implicit interface, the refinement level was increased by one in each
adaptive step. In addition, a number of elements were refined, where high
gradients are observed.

The finest mesh and the final velocity solution is depicted in Figure 6.8.
The velocity component ux of the fluid solution is shown over the whole fluid
domain in Figure 6.8b and near the interface in Figure 6.9. Intersected ele-
ments are shown using the triangular integration cells. Figure 6.8a shows the
finest mesh that was used to study this problem. It consists of 284 linear La-
grange multiplier elements and 2740 quadratic 9-node fluid elements. With
this, good agreement with the averaged results given in [Schäfer and Turek,
1996] is obtained.

The benchmark also demonstrates, that is possible to compute accurate
FSI surfaces using the traction based Lagrange multiplier formulation. To
test the correct transfer of interface forces onto the structure surface, a fixed
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(a) Maximal refinement used in computation

(b) x-component of the velocity field

Figure 6.8: CFD benchmark: Finest mesh used to calculate lift and drag values on the
cylinder. The structure mesh is omitted.

Figure 6.9: x-component of the velocity field near the interface. The triangular struc-
tural mesh is displayed in the lower right corner. In the fluid domain, the
triangular integration cells are shown.

cylinder is simulated using the fully coupled, stationary FSI algorithm from
Section 6.4 in conjunction with a sufficiently stiff structure. The structure is
fixed at three points away from the FSI surface to prevent any motion. Fig-
ure 6.10 visually compares the solution of the Lagrange multiplier field λ with
the projected nodal forces f FSI on the structural surface nodes. Instead of us-
ing directly the fluid forces on the interface mesh, the transfered forces on the
structure are used to compute lift and drag values. The calculated values are
clift = 0.0054 for the lift and cdrag = 5.5624 for the drag, which are in agreement
with results given in [Schäfer and Turek, 1996].

Boundary layer meshes

The simulation with a boundary layer mesh uses the same setup as in the
first example. An initial refinement for all elements in the entrance part of
the channel is applied. Instead of further refining the mesh near the cylinder



138 Chapter 6. Coupled fluid-structure system

(a) Lagrange multiplier solution λ on Γi (b) Surface nodal forces f FSI

Figure 6.10: Lagrange multiplier field on interface discretization and structural sur-
face nodal forces on structural discretization.

(a) x-component of the velocity field (b) close up view

Figure 6.11: 2D CFD benchmark using the fluid-fluid coupling approach

surface as before, a boundary layer mesh is applied and the proposed fluid-
fluid coupling with ensures continuity between patch and background mesh.
The final solution can be seen in Figure 6.11. The velocity component ux of
the fluid solution is shown over the whole fluid domain in Figure 6.11a and
near the interface in Figure 6.11b.

The surface fitted mesh much closer resembles the boundary layer near
the cylinder surface and the boundary layer can be resolved more efficiently
than with Cartesian subdivision. For high Reynolds number flows, high as-
pect ratio elements can be used to resolve the high gradient in surface normal
direction, such that overall less elements and unknowns are required. Hence,
the boundary layer mesh allows to introduce engineering insight, that can
reduce the numerical costs of the simulation. As shown in Figure 6.11a, the
hybrid approach can be combined with the aforementioned h-adaptivity to
benefit from both automatic adaptivity and a priori knowledge on boundary
layers.
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(a) setup (b) principle solution

Figure 6.12: Setup and principle solution of compressible cylinder example.

6.6.3 FSI including a compressible structure

The next example validates the XFSI approach by quantitatively comparing
its results with computations performed by a state-of-the-art partitioned, it-
erative ALE-based FSI solver as described in [Küttler and Wall, 2008].

The principle setup of the example is depicted in Figure 6.12a. The struc-
ture is initially circular and is then deformed by the flow field. The material
parameters for a St.-Venant Kirchhoff material law are the Poisson ratio as
ν = 0.0 and the elastic modulus as E = 50. The fluids kinematic viscosity
and density are 1, respectively. For the given symmetric setup, a symmet-
ric flow field and a symmetric structure deformation with respect to the x-
and the y-axis is expected. The structure was fixed such that the rigid body
modes where constrained without constraining the expected symmetric de-
formation.

The fluid field in both solutions was discretized with equal order, bi-quad-
ratic 9-node elements. In the ALE approach, matching grids where used be-
tween fluid and solid surface and the structure was discretized with 2698
quadratic, triangular 6-node elements. In the XFEM computation, about 1294
linear triangular 3-node elements were used.

For the ALE approach, the FSI computation was performed on increas-
ingly fine meshes until convergence to the final structure deformation was
reached. Hereby, the meshes were refined in an external pre-processor. For
the XFSI approach, a steady state computation was performed, where after
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(a) adaptively refined XFEM mesh (b) ALE mesh

Figure 6.13: Final meshes used for comparison.

every second FSI iteration a refinement by subdivision of 20 % of the active
fluid elements was performed. The solution was transferred to the newly cre-
ated nodes and used as the starting field for the next two FSI iterations. Even-
tually, six refinement steps where performed until no changes in the structural
deformation between subsequent refinement levels were observable. The ini-
tial fluid mesh consisted of 16 (4×4) fluid elements. The final mesh consisted
of 17860 active elements counting only elements in the fluid domain or inter-
sected elements. The final number of unknowns — fluid velocity (u), pressure
(p) and Lagrange multipliers (λ) combined — is about 23000.

The final meshes for the XFEM and ALE comparison are shown in Fig-
ure 6.13. The maximal displacement was observed at the top and the bottom
(Point A) of the structure at x = 0.5. Point A moved by dA

y = −0.0379; and Point
B had a displacement of dB

x = 0.00663. ALE and XFEM computations differed
by less then 0.01 % in the maximal structure displacement. The area occu-
pied by the compressible structure changed by approximately 16.3 % when
compared with the undeformed area.

This example highlights the advantage of using surface coupling tech-
niques and a sharp separation of the physical flow from the fictitious domain.
The structure deformation may be modeled by any compressible or incom-
pressible material model without interfering with the fluid incompressibility
constraint or viscosity. In contrast, volume coupling the DLM/FD [Yu, 2005]
or the IFEM [Zhang et al., 2004] have no ability to turn of the fictitious flow
field and the schemes are therefore constrained to incompressible structures.
The use of surface coupling makes the proposed fixed-grid method as flexible
as ALE-based methods with respect to structure material choices.
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(a) Flow field (x-component)

(b) Pressure field

Figure 6.14: Stationary flow field through a channel with a flexible structure.

6.6.4 Channel flow over a bending beam

In this example, a flexible structure (Poisson ratio νs = 0.0, Young’s modulus
Es = 0.5) is deformed due to a flow through a channel. It is computed until
steady-state using fully coupled FSI equations and XFEM. Top and bottom
channel walls have zero (no-slip) velocity prescribed, the inflow from the left
is prescribed by a parabolic velocity condition. The outflow boundary (right)
is of Neumann (zero traction) type. The inflow and the wall boundary condi-
tions are standard Dirichlet boundary conditions.

The Reynolds number based on the mean inflow velocity and the channel
height is 16. The stationary equilibrium solution is shown in Figure 6.14. It
is possible to overlap standard Dirichlet boundary conditions and Lagrange
multiplier conditions along the interface as long as the enforced velocity is the
same. This can be seen at the bottom side of the channel, where the structural
surface connects to the channel bottom.
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Figure 6.15: Stationary channel flow interacting with a flexible structure.

6.6.5 Channel flow over a deforming thick plate

In a similar but three-dimensional setup, a flexible structure (Poisson ratio
νs = 0.48, Young’s modulus Es = 90 N/m2) interacts with flow in a chan-
nel. The channel has the dimensions 0.5 × 1.0 × 3.0m. The FSI simulation is
performed until steady-state is reached. Top and bottom channel walls have
zero (no-slip) velocity prescribed, the inflow from the left is prescribed by a
parabolic velocity condition. The Reynolds number based on the mean inflow
velocity and the channel height is 16. The stationary equilibrium solution is
shown in Figure 6.15.

6.6.6 Contact of submerged structures

The last example deals with contact of submerged structures and is an out-
look towards future applications of the fixed grid method rather than a fully
developed FSI contact formulation. Contact of submerged structures can be
observed in many FSI problems. For instance, in bio-physical applications,
closing valves, collapsing veins, interaction of blood cells are a few examples,
where numerical tools could provide valuable insight. With ALE-methods,
the deforming mesh essentially does not allow two objects to come into full
contact (with no fluid between the structures); a minimal distance is required
to keep a minimal quality of the fluid mesh, see e.g. [Sathe and Tezduyar,
2008; Tezduyar and Sathe, 2007]. Fixed-grid methods, on the other hand,
have no deforming mesh between such objects and potentially open up an
entire new field that can be treated by numerical tools. Recent examples for
fixed-grid FSI simulations including contact of submerged structures can be
found in [Astorino et al., 2009; Diniz dos Santos et al., 2008; van Loon et al.,
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(a) setup (b) close up views

Figure 6.16: Setup of contact example and three snapshots of the first contact be-
tween a soft body and a relatively stiff block.

2006].

In [Mayer et al., 2010], the presented XFSI approach is combined with a
contact formulation based on dual-Lagrange multipliers and a primal-dual
active set strategy for contact constraint enforcement as described in [Popp
et al., 2009]. From an algorithmic point of view, the key element of the contact
formulation is the complete condensation of the contact Lagrange multipliers
within the structural formulation. Consequently, the structure block can be
extended with a contact formulation without interfering with the FSI formu-
lation.

An preliminary example of such FSI contact is shown in Figure 6.16. A
body force pulls a little, soft block towards a large stiff block, that has a fixed
bottom surface. At the same time, a growing inflow at the top of the fluid
domain pushes the little block additionally in x-direction towards the wall.
Two exits at the lower end of the channel allow the flow to exit the domain.
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The three small pictures show: how the fluid is pushed out of the closing
gap between the little and the large block, the moment of largest deformation
of the little block at first contact, and the bouncing back of the small block.
The same simulation without fluid flow (not shown here) allows the block
to bounce back many times to approximately the same height from where it
started. Including the FSI simulation, the movement is damped by the fluid
viscosity, such that it comes to rest on the lower block quickly. Since no fric-
tional contact between both objects is employed, eventually, the little block
is pushed sideways out of the fluid domain. Note that no special wet or dry
contact physics is employed and that this simulation is not properly resolved
to get quantitatively accurate results. Nevertheless, the qualitative behavior
demonstrates the increased flexibility that comes with fixed grid methods for
FSI.



CHAPTER 7
Summary and conclusion

7.1 Summary

The focus of the presented work was the development and implementation
of a finite element based fixed grid method for the interaction of incompress-
ible viscous flow with structures undergoing large deformations. The pri-
mary motivation was to circumvent the main bottleneck of ALE-based meth-
ods, namely the fluid mesh distortion and the associated need for remesh-
ing. Since FSI is a complex physical phenomenon, hence, complex (but not
complicated) algorithms can be expected. The theme for this work was to de-
rive a general method without trading algorithmic simplicity with theoretical
soundness.

The first step was to add a separate interface discretization between fluid
and structure and from there on describe the coupling of each field towards
this interface. For the fluid description this interface separates the compu-
tational fluid domain into a physical and a fictitious part. In the fictitious
domain, the structure is modeled using a Lagrangian formulation and a sep-
arate mesh. Hence, no fluid computations are necessary and therefore should
be avoided. The XFEM has been used to model the jump between physical
flow and the void by adding strong discontinuities into the FE approximation
of velocity and pressure. The result is a sharp interface representation inde-
pendent of any fluid element boundary. In addition, no degrees of freedom
are required in the fictitious fluid domain.

A new method has been developed to couple the physical flow with the
interface discretization. In contrast to classical traction based Lagrange mul-
tiplier, an element stress field is introduced in intersected elements that are
used to enforce the interface conditions. The new method (i) requires no sep-
arate interface mesh for the Lagrange multiplier; (ii) allows for a complete La-
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grange multiplier condensation on the element level; (iii) is applicable to any
linear or higher order element shape; (iv) leaves the stabilized, equal-order
velocity-pressure formulation for the Navier-Stokes equations unchanged;
(v) produces saddle point free discrete systems; and (vi) is stable without
user-defined and potentially problem specific stabilization parameters. The
combination of these facts provides a sound variational foundation for a par-
allel, three-dimensional implementation and for parallel solution techniques
including iterative solvers. Since such duality between velocity and stress
variables can be found in many physical problems, this Lagrange multiplier
approach may be useful for other physical problems as well. An application
to heat conduction and linear elasticity was shown.

For moving interfaces, initial considerations showed that a pure Eulerian
approach is formally not appropriate for moving interfaces. The separate
time and space discretization leads to apparent choices on how the fluid field
should be enriched: For classical finite difference treatment of time deriva-
tives, one can conclude that either several discontinuities exist at the same
time (spatial discretization first) or one enrichment exists at the new time step
(time discretization first). The latter approach requires to guess old time step
values near the interface, but has been shown to converge optimally for de-
creasing time step sizes. In contrast, the former approach requires no guess,
but leads to wrong FSI interface forces and does not converge for decreasing
time step sizes. It can be concluded, that time discretization has to be per-
formed first. Based on this finding, the remaining task is to study in more de-
tail the required extrapolation process for complex three-dimensional fluid-
structure surfaces.

The clear separation of fluid and structure concerns eventually allowed
a straightforward fluid-structure coupling based on established monolithic
and partitioned FSI algorithms. The structure implementation is based on
the commonly used Lagrangian formulation and any compressible or incom-
pressible material can be used without affecting the fluid implementation. No
mesh size dependency exists between fluid and structure mesh. Both fields
can be arbitrarily distributed on parallel processors. For partitioned FSI ap-
proaches, only the interface discretization is kept redundant on all processors,
which allows subsequently an almost completely parallel evaluation of ele-
ment matrices. The Lagrangian structure surface identifies the fluid-structure
interface position at all times. Processor-local search trees provide means to
efficiently treat the three-dimensional interface localization.

Beyond the use in FSI algorithms, the proposed XFEM/Lagrange multi-
plier approach can be used for a general non-overlapping domain decompo-
sition approach. This has been demonstrated for flow problems using the
classical traction Lagrange multiplier in two dimensions. Initial results show
that the new stress based Lagrange multiplier improves this technique and
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allows a monolithic, stabilization- and saddle-point-free domain decompo-
sition technique. For the flow problems, boundary layer meshes with po-
tentially high element aspect ratios can be added around structures, which
provides an efficient way to improve the flow resolution near the fluid struc-
ture interface. Alternatively, or in combination with boundary meshes, spatial
adaptivity based on hanging nodes allows for a fluid mesh refinement with-
out deterioration of the fluid mesh quality. Here, both heuristic and/or error
based refinement indicators have been used.

7.2 Outlook

Several open tasks remain to make the approach both more robust and more
efficient as required for real world applications.

The results indicate that the use of integration cell techniques and full inte-
gration provides an accurate, stable and optimally convergent method. How-
ever, the generation of integration cells is a geometrically complex problem.
A non-robust implementation jeopardizes large scale simulations, since any
geometrically complicated intersection case will occur with increasing likeli-
hood, if the number of elements increases and the time-step size decreases.
Here, the future effort should be directed to harden the cell generation algo-
rithms or to find alternative ways of integrating the weak form.

The relative high cost of numerical integration in intersected fluid ele-
ments becomes an issue, if the fluid-structure interface intersects fluid ele-
ments on only some processors in a parallel computation. Here, automatic
parallel rebalancing strategies are required that respect the geometric loca-
tion of intersected elements. This avoids that many processors wait for few
processors, where the few processors manage intersections and expensive nu-
merical integration. Likewise, processors that contain only nodes without any
degrees of freedom should to be avoided. Potentially, different parallel lay-
outs are required for element integration and solution of the linear system.

Another obstacle that hampers large scale computations is that iterative
solution techniques suffer from the large condition number of the system ma-
trix. The moving interface inevitably generates tiny element fractions with
physical fluid, which lead to arbitrarily small entries in the linearized sys-
tem. The heuristics to switch off the enrichment, if too small portions of an
enriched shape functions are non-zero, needs to be explored further. Precon-
ditioning techniques for the linear system, that are tailored to specific enrich-
ments may further improve the performance of iterative solution techniques.

The thoughts on the time integration show that the Eulerian formulation
can successfully be applied to moving, implicit interfaces and optimal tempo-
ral convergence can be achieved, if a proper estimate for old time step values
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is applied. Nevertheless, the extrapolation process requires a more in-depth
analysis with respect to conservation properties than the one given in this
work.

With such improvements on robustness and efficiency, the proposed XFSI
approach has all necessary features to be a useful and competitive tool for
solving complex FSI problems.



APPENDIX A
Stress Lagrange multiplier for

linear-elastic continua

In the following, the steady, linear momentum equation for a linear elastic
material (small displacements and small strains) shall serve to highlight again
the core features of the proposed method to weakly enforce Dirichlet condi-
tions. The main differences compared to incompressible NS-equations are the
lack of an extra pressure unknown and that for this linear problem no incre-
mental formulation and Newton-Raphson iteration is required. The follow-
ing discussion can be found with slightly different notation in [Gerstenberger
and Wall, 2010].

A.1 Problem definition

The steady state conservation of momentum in Ωs is

−∇ ⋅
˜
σ = 0 in Ωs (A.1)

Here,
˜
σ denotes the Cauchy stress tensor. The displacement field is denoted

as d. The Cauchy stress
˜
σ is related to the strain

˜
ε via the linear, fourth order

elasticity tensor
˜̃
C as

˜
σ =

˜̃
C ∶

˜
ε (A.2)

˜
ε =

1
2
(∇d + (∇d)T) (A.3)

For brevity, volumetric forces have been omitted. The superscript for struc-
ture variables is omitted in this section, since no other fields are present. The
interface variables are denoted as usual with superscript ⋅ i.
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n

Ωs

DBC

d

(a) Physical Domain with
DBC

Ω Γi

Ω−Ω+ = Ωs

d di

(b) Enriched Physical Domain with em-
bedded DBC

Figure A.1: Figure A.1a shows the physical domain with Dirichlet Boundary Condi-
tions (DBC), while Figure A.1b illustrates how the DBC problem trans-
lates to the embedded Dirichlet problem. Physical field Ωs and interface
Γi along with respective domain normals and variables are shown.

The domain setup including an one-sided discontinuity, where the com-
putational domain is split into a physical part and a fictitious part is iden-
tical to the fluid description, but is repeated here for convenience. Assume
a Dirichlet Boundary Condition (DBC) on parts of a boundary of a physical
domain Ωs as depicted in Figure A.1a.

The jump in the displacements JdK between the physical values d+ and the
void (d−) can be expressed as

JdK = d+ − d−
¯
=0

in Γi (A.4)

The jump height JdK equals the value of d+ at Γi and one can pose a kinematic
constraint for d+ along Γi as

d+ − d̂i = 0 in Γi (A.5)

where the interface displacement d̂i is given. Likewise, a jump discontinuity
exists in the stress field, which results in a surface traction vector field λ as

J
˜
σ ⋅ nK =

˜
σ+ ⋅ n −

˜
σ− ⋅ n
²
=0

= λ in Γi (A.6)

In case of modeling a void,
˜
σ+ ⋅ n = λ is the surface traction—the ‘reaction

force’—due to the displacement constraint along the interface.
The jump discontinuities are modeled by a void enrichment [Daux et al.,

2000; Sukumar et al., 2001] using the XFEM [Belytschko and Black, 1999; Moës
et al., 1999]. Nodes and elements are generated independent of the interface
position and then an enriched approximation of intersected elements is ap-
plied using the void enrichment Eq. (3.13). The strong form of this one-sided
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problem including the interface condition at Γi reads as

−∇ ⋅
˜
σ = 0 in Ωs (A.7a)

d − d̂D = 0 in Γs
D (A.7b)

˜
σ ⋅ n − ĥ = 0 in Γs

N (A.7c)

d − d̂i = 0 in Γi (A.7d)

In the one-sided problem, the domain Ω− is of no interest. Hence, the notation
for the structure domain, namely Ωs instead of Ω+ is used in the following.

A.2 Weakly enforced Dirichlet conditions

A.2.1 Traction Lagrange multiplier

The ‘classical’ Lagrange multiplier method for conditions along surfaces has
been abandoned for the fixed grid fluid implementation. Nevertheless, it is
repeated here to contrast it with the newly developed stress Lagrange mul-
tiplier method. In the Lagrange multiplier method, a Lagrange multiplier
field λ(x) is introduced along the boundary to weakly enforce the constraint
Eq. (A.7d). The resulting weighted residual equation is

−(δd,∇ ⋅
˜
σ)

Ωs + (δd,
˜
σ ⋅ n − ĥ)

Γs
N
+ (δd,

˜
σ ⋅ n −λ)

Γi
− (δλ, d − d̂i)

Γi = 0 (A.8)

where δd and δλ denote the displacement and the Lagrange multiplier test
functions, respectively. Integration by parts of the stress term yields

− (δd,∇ ⋅
˜
σ)

Ωs = −(δd,
˜
σ ⋅ n)

Γ
+ (∇δd,

˜
σ)

Ωs (A.9)

Dirichlet and Neumann conditions away from the embedded interface are
treated as usual. The resulting weak form is then

(∇δd,
˜
σ)

Ωs − (δd, ĥ)
Γs

N
− (δd, λ)

Γi − (δλ, d − d̂i)
Γi = 0 (A.10)

For completeness, the corresponding strong form is given as

−∇ ⋅
˜
σs =0 in Ωs (A.11a)

d − d̂D =0 in ΓD (A.11b)

˜
σ ⋅ n =ĥ in ΓN (A.11c)

d =d̂ in Γi (A.11d)

˜
σ ⋅ n =λ in Γi (A.11e)

The primary difficulty for this formulation is to find an appropriate Lagrange
multiplier space on the interface for three-dimensional problems. Resulting
problems are the saddle point structure of the discrete system and the addi-
tional number of unknowns that have to be solved.



152 Chapter A. Stress Lagrange multiplier for linear-elastic continua

A.2.2 Cauchy stress based Lagrange multiplier

The key point of the stress based Lagrange multiplier is that instead a vector
traction field λ along Γi an additional primary stress field ¯

˜
σ is introduced in

intersected background elements. Hence, δ ¯
˜
σ ⋅ n instead of δλ is used along

Γi to weakly enforce the interface constraint Eq. (A.7d). The stress field is
embedded into the intersected background element as explained in the fol-
lowing.

The two primary unknowns are the displacement d and the Cauchy stress
¯
˜
σ. Their corresponding test functions are δd and δ ¯

˜
σ, respectively. Along the

interface, the stress field is used to constrain the displacement field as

(δ ¯
˜
σ ⋅ n, d − d̂i)

Γi (A.12)

where δ ¯
˜
σ ⋅ n is the virtual traction along the interface.

Eq. (A.12) provides only three equations for six unknowns of the sym-
metric stress tensor ¯

˜
σ. Having two primary unknowns in Ω, an additional

equation closes the set of equations in Ω by matching the strains computed
from both unknowns

¯
˜
ε −

˜
ε =

˜
0 in Ω (A.13)

The two strains are defined in terms of the primary unknowns d and ¯
˜
σ as

˜
ε =

1
2
(∇d + (∇d)T) (A.14)

¯
˜
ε =

˜̃
C−1 ∶ ¯

˜
σ =

˜̃
S ∶ ¯

˜
σ (A.15)

The fourth order tensors
˜̃
C and

˜̃
S represent the material and compliance ten-

sor, respectively. The new task is then: find d and ¯
˜
σ such that

∇ ⋅
˜
σ = 0 in Ω (A.16a)

¯
˜
ε −

˜
ε =

˜
0 in Ω (A.16b)

d − d̂D = 0 in ΓD (A.16c)

˜
σ ⋅ n − ĥ = 0 in ΓN (A.16d)

d − d̂i = 0 in Γi (A.16e)

˜
σ ⋅ n − ¯

˜
σ ⋅ n = 0 in Γi (A.16f)

The Cauchy stress
˜
σ is computed from the displacement unknowns via

˜
ε us-

ing Eq. (A.2). The resulting weighted residual equation is

− (δd,∇ ⋅
˜
σ)

Ωs − (δ ¯
˜
σ, ¯

˜
ε −

˜
ε)

Ωs

+ (δd,
˜
σ ⋅ n − ĥ)

Γs
N
+ (δd,

˜
σ ⋅ n − ¯

˜
σ ⋅ n)

Γi − (δ ¯
˜
σ ⋅ n, d − d̂i)Γi = 0 (A.17)
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Integrating by parts using Eq. (A.9), the final weak form is given by

(∇δd,
˜
σ)

Ωs − (δ ¯
˜
σ, ¯

˜
ε −

˜
ε)

Ωs − (δd, ĥ)
Γs

N
− (δd, ¯

˜
σ ⋅ n)

Γi − (δ ¯
˜
σ ⋅ n, d − d̂i)

Γi = 0

(A.18)

Along Γi, both displacement and stress field are discontinuous and en-
riched with

¬
ψ(x). The complete discretizations for trial and test functions are

given as

dh(ξΩ) =∑
L

φd
L(ξΩ)dL (A.19)

δdh(ξΩ) =∑
L

φd
L(ξΩ)δdL (A.20)

¯
˜
σh(ξΩ) =∑

L
φσ̄

L(ξΩ) ˜̄
˜
σL (A.21)

δ ¯
˜
σh(ξΩ) =∑

L
φσ̄

L(ξΩ)δ ˜̄
˜
σL (A.22)

The approximation functions are the usual combination of shape functions
and appropriate enrichment functions

φL(ξΩ) = NL(ξΩ)ψ(ξΩ) (A.23)

The displacement shape functions Nd
I (x) are chosen as piecewise continuous

polynomials, while being C0-continuous at inter-element boundaries. The
shape functions for the stress unknowns Nσ̄

K(x) shall also be polynomial func-
tions inside each element, however, they shall be C−1 discontinuous at inter-
element boundaries. Hence, stress unknowns are element DOFs and the dis-
continuous stress approximations fit the elementwise discontinuous strains
based on derivatives of the C0 continuous displacement shape functions.

The global system is assembled from element stiffness matrices based on
Eq. (A.18) as

A
e

[
Kdd Gdσ̄

Kσ̄d +Gσ̄d Kσ̄σ̄
]

e
A

e
[
d

σ̄
]

e
=A

e
[

fN
Gσ̄di d̂ i ] (A.24)

The nodal displacements for this element are denoted as d , element stress
unknowns as σ̄ and discrete forces resulting from Neumann conditions as fN.
If the interface is discretized, the prescribed interface displacement is denoted
with d̂ i. The element matrices K correspond to operators evaluated on the
element domain Ωe, while all G matrices are related to boundary integrals
over that part of the interface, that crosses the element domain, namely Γe+ =
Γi ∩Ωe. The element matrices relate to the weak form integrals as

Kdd ∶ − (∇δd,
˜
σ)

Ωe (A.25)

Kσ̄d ∶ + (δ ¯
˜
σ,

˜
ε)

Ωe (A.26)

Kσ̄σ̄ ∶ − (δ ¯
˜
σ, ¯

˜
ε)

Ωe (A.27)
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and

Gdσ̄ ∶ − (δd, ¯
˜
σ ⋅ n)

Γe+ (A.28)

Gσ̄d ∶ − (δ ¯
˜
σ ⋅ n, d)Γe+ (A.29)

Gσ̄di ∶ − (δ ¯
˜
σ ⋅ n, d̂i)Γe+ (A.30)

One can now distinguish between element tangent stiffness matrices for
intersected and not intersected elements. For intersected elements, due to the
elementwise discontinuous flux approximation the element flux unknowns
can be expressed as

σ̄ = K−1
σ̄σ̄(−(Kσ̄d +Gσ̄d)d +Gσ̄di d̂ i) (A.31)

This allows the condensation of the stress unknowns at the element level and
leaves only displacement unknowns as

[ Kdd −Gdσ̄K
−1
σ̄σ̄(Kσ̄d +Gσ̄d) ] [ d ]e and [ fN −Gdσ̄K

−1
σ̄σ̄Gσ̄di d̂ i ]e (A.32)

For elements that are not intersected by Γi, no boundary integrals exist
and element tangent stiffness and right-hand side vector reduce to

[
Kdd 0
Kσ̄d Kσ̄σ̄

]
e

and [
fN
0

]
e

(A.33)

It follows that the solution of d is independent of the stress solution in such
an element and only nodal displacement are left as

[ Kdd ]e and [ fN ]e (A.34)

Hence, all stress unknowns in non-intersected elements can be omitted with-
out effect on the global displacement solution.

The model problem in this section has not been implemented, hence it is
only possible to speculate on the proper shape function order for the stress
field. Based on the experience with the Poisson equation and the incompress-
ible NS equations, the stress shape function should be of the same order as the
displacement derivatives or higher. Future mathematical analysis may clarify
the optimal choice of shape functions.

In summary, the constraining Lagrange multiplier field is shifted from the
interface to the background domain by replacing λ and δλ with ¯

˜
σ ⋅ n and

δ ¯
˜
σ ⋅ n, respectively. No interface mesh is required to discretize a Lagrange

multiplier field. The two primary fields in Ωs, namely displacement and
Cauchy stress, are weakly coupled by matching the strain tensors computed
from each of the two fields. Hence, the stress is defined by its relation to the
displacement even without an interface integral present in a particular ele-
ment.
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A.3 Relation to the HR variational principle and
Nitsche’s method

As already discussed in Section 3.3, the variational equations have many sim-
ilarities with hybrid/mixed types of element technology, for example based
on the Hellinger-Reissner principle. These methods introduce additional un-
knowns to improve the stress and/or strain approximations, for example to
fight locking phenomena [Pian and Wu, 2006]. In the following, the rela-
tion of the proposed weak form to the HR variational principle and Nitsche’s
method is discussed to point out some differences and commonality between
these approaches.

The hybrid/mixed weak form from Eq. (A.18) was given as

(∇δd,
˜
σ)

Ωs − (δ ¯
˜
σ, ¯

˜
ε −

˜
ε)

Ωs − (δd, ĥ)
Γs

N
− (δd,

˜
σ ⋅ n)

Γi − (δ ¯
˜
σ ⋅ n, d − d̂i)

Γi = 0

(A.35)

Replacing
˜
σ(d) with the primary stress unknown ¯

˜
σ only in the first integral,

the following variational form

(∇δd, ¯
˜
σ)

Ωs − (δ ¯
˜
σ, ¯

˜
ε −

˜
ε)

Ωs − (δd, ĥ)
Γs

N
− (δd, ¯

˜
σ ⋅ n)

Γi − (δ ¯
˜
σ ⋅ n, d − d̂i)

Γi = 0

(A.36)

is obtained. This symmetric weak form corresponds to the variation of the
HR functional for linear elasticity. For an overview on such multi-variable
formulations see e.g. [Pian and Wu, 2006, chap 1.3]. The corresponding matrix
structure is

A
e

[
0 Kdσ̄ +Gdσ̄

Kσ̄d +Gσ̄d Kσ̄σ̄
]

e
A

e
[
d

σ̄
]

e
=A

e
[

fN
Gσ̄di d̂ i ] (A.37)

and in condensed form

[ −(Kdσ̄ +Gdσ̄)K
−1
σ̄σ̄(Kσ̄d +Gσ̄d) ] [ d ]e and [ fN −Gdσ̄K

−1
σ̄σ̄Gσ̄di d̂ i ]e (A.38)

Both the condensed and uncondensed system are symmetric. For details on
the HR formulation, see for example [Pian and Wu, 2006].

Nitsche’s method [Nitsche, 1971] does not introduce additional primary
variables. Writing Nitsche’s method in a form similar to Eqs. (A.35) and (A.36)
gives

(∇δd,
˜
σ)

Ωs − (δd, ĥ)
Γs

N
− (δd,

˜
σ ⋅ n)

Γi − (δ
˜
σ ⋅ n, d − d̂i)

Γi − α(δd, d − d̂i)
Γi = 0

(A.39)

Here, all stress terms are based on nodal displacements. The method is re-
ported to be stable only if an additional stabilization or penalty term along
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the boundary is introduced. For choices of the user-defined parameter α, see
e.g. [Dolbow and Harari, 2009], for an application of Nitsche’s method to elas-
ticity problems, see e.g. [Fernández-Méndez and Huerta, 2004].

Comparing these three approaches, all of them result in element stiffness
matrices with only displacement unknowns. No interface mesh and interface
unknowns are present, which completely removes the need for an interface
discretization. However, only the HR-approach and Nitsche’s method result
in symmetric formulations — provided the physical problem itself is sym-
metric. For elastic problems or Poisson’s equation as used in heat conduction
problems, switching to asymmetric solvers might be regarded as a subop-
timal choice. For asymmetric problems like solving the NS equations, this
asymmetry does not present additional difficulties.

Furthermore, the HR approach and the proposed mixed/hybrid form is
free of user-defined parameter, however, more computational work for inter-
sected elements is required to condense the stress unknowns in intersected
elements. Without an in-depth mathematical analysis, one can only speculate
on the stability properties of the proposed approach. Here, as well as for the
HR formulation, it seems that a proper pair of function spaces leads to a sta-
ble formulation, whereas Nitsche’s formulation is reported to be stable only
with proper choices of parameter α. For the approximations spaces as given
in Section 3.3.4 and Section 4.3.2, no stability problems have been observed in
any simulations.

Finally, Nitsche’s method and the stress Lagrange multiplier approach
leave the virtual elastic energy (∇δd,

˜
σ)

Ωs untouched. Hence, the boundary
constraints could be added to other advanced existing element formulation.
When choosing an appropriate method for applying weak Dirichlet condi-
tions to the incompressible NS equation, both approaches leave the fine-tuned
equal-order velocity-pressure formulation intact, whereas an equivalent to
HR would require at least a partial rewrite and modification of the element
formulation and implementation.



APPENDIX B
Reference solution for the

Jeffery-Hamel flow

The function ur(φ) as solution for the differential equation Eq. (4.68) can not
be computed explicitly. Hence, before this particular flow field can be used for
a convergence study, an explicit approximation of the solution is required. As
a remedy, a numerical solution was sought using the commercial computer
algebra system (CAS) Mathematica 6.0 [Inc., 2007]. Note the helpful discus-
sion on specific properties of the ODE presented in [Corless and Assefa, 2007].
The numerical solution has subsequently been fitted to a polynomial, which
has then been used as reference solution in the C++ code. The required com-
mands for Mathematica are summarized below. The angle φ is replaced by
variable x to simplify the notation. Removing any semicolon at the end of a
line produces intermediate output that is otherwise suppressed.

First, the numerical solution is sought by specifying the differential equa-
tion, three boundary and symmetry conditions, the solution variable u[x],
the range where the solution is sought and the solution algorithm

us = Flatten[
NDSolve[
{

u’’’[x] + 4 u’[x] + 2 u’[x] u[x] == 0,
u’[Pi/8] == 0,
u[0] == 0,
u[Pi/8] == -170

},
u,
{x, 0, Pi/4},

157
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Method -> "Adams"
]

]

The resulting solution for u[x] can not directly be used in C++ code, hence
a polynomial fit has to be generated first. The next commands generate a
polynomial that is symmetric with respect to π/8 and has polynomial order
32.

indmax = 16;
ufittemp[x_] =

Sum[
k[i]*(x - Pi/8)ˆ(2 i), {i, 0, indmax}

];

The general polynomial ufittemp is fitted to the numerical solution us us-
ing 1001 sample points by

var = k /@ (Range[indmax + 1] - 1);
numsp = 1000
sp = Pi/4/numsp*(Range[numsp+1] - 1);
fitsol =

FindFit[
Thread[{sp, u[sp] /. us}],
{ufittemp[x]},
var, x

];

and the resulting k[i] in the array fitsol is inserted into the general poly-
nomial ufittemp as

ufit[x_] = ufittemp[x] /. fitsol;

Plotting the fitted polynomial is done by the following command

Plot[
ufit[x], {x, 0, Pi/4}, AxesOrigin -> {0, 0},
AxesLabel -> {Phi, Subscript[u, r]},
Ticks -> {{0, Pi/16, Pi/8, (3 /16) Pi, Pi/4}},
PlotStyle -> {Thick},
LabelStyle -> {FontSize -> 14}

]
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Following [Corless and Assefa, 2007], the Reynolds number for this setup is
about 85 and is computed by

Reynoldsnumber =
-3.0/4.0 NIntegrate[ufit[x], {x, 0, Pi/4}]

An syntactically almost correct C code is generated by using

ufit[x] // CForm

The fitted function is used as reference solution and boundary condition
for inflow and outflow in Section 4.5.3. Below, the function to compute the
radial velocity depending on the angle α is given as C++ code

double JefHamRadialVelocity(
const double& theta
)

{
if ( -1.e-8 < theta or theta < ((M_PI/4.0) + 1.e-8))
{

cout << "Angle out of range! ";
cout << "Must be between 0 and PI/4")" << endl;
exit(1);

}

const double alpha = theta - (M_PI/8.0);

// generated by Mathematica 6
return -169.99995631379676

+ 51.72093368870616* pow(alpha, 2)
+ 1453.2480022627062* pow(alpha, 4)
+ 15469.249826734282* pow(alpha, 6)
+ 153515.23050166125* pow(alpha, 8)
- 3.1393239563288596e6* pow(alpha,10)
+ 1.3791074955303007e8* pow(alpha,12)
- 3.9054873809559045e9* pow(alpha,14)
+ 8.064960114312076e10* pow(alpha,16)
- 1.2314175442399622e12*pow(alpha,18)
+ 1.3952367263056582e13*pow(alpha,20)
- 1.1694967181678298e14*pow(alpha,22)
+ 7.149819830278836e14* pow(alpha,24)
- 3.0970644442180215e15*pow(alpha,26)
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+ 9.001387683687223e15* pow(alpha,28)
- 1.5737446665792184e16*pow(alpha,30)
+ 1.250536015803445e16* pow(alpha,32);

}

Here, θ is the angle starting from the x-axis. The polynomial is given as sym-
metric function such that θ is first transformed to α by subtracting π/8. The
resulting profile at radius r = 1 over θ is plotted in Figure B.1.

The x and y velocity components based on the radial velocity are then
computed by

const double x = physpos(0);
const double y = physpos(1);

const double theta = atan(y/x);
const double u_theta = JefHamRadialVelocity(theta);

const double u_exact_x = (u_theta/(x*x+y*y))*x;
const double u_exact_y = (u_theta/(x*x+y*y))*y;

if (1.0 < x and x < 2.0 and 0.0 < y and y < x)
{

const double eps_x = (gpvelnp(0) - u_exact_x);
const double eps_y = (gpvelnp(1) - u_exact_y);

L2squared += (eps_x*eps_x + eps_y*eps_y)*fac;
}

Here, physpos contains the coordinates of the integration point in physical
coordinates x and fac represents the product of integration weights and Ja-
cobi determinants. The interpolated velocity uf,h at the integration point is
stored in gpvelnp. After a loop over all integration points in all XFEM inte-
gration cells and all elements, L2squared contains the squared L2 norm as
defined in Eq. (4.69).
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Figure B.1: Jeffery-Hamel flow: Profile of radial velocity ur(θ) at r = 1.
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I. M. Babuška and J. M. Melenk. The partition of unity method. International
Journal for Numerical Methods in Engineering, 40(4):727–758, 1997.

H. J. C. Barbosa and T. J. R. Hughes. Circumventing the Babuška-Brezzi condi-
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E. Béchet, H. Minnebo, N. Moës, and B. Burgardt. Improved implementa-
tion and robustness study of the X-FEM for stress analysis around cracks.
International Journal for Numerical Methods in Engineering, 64(8):1033–1056,
2005.

K. W. Cheng and T.-P. Fries. Higher-order XFEM for curved strong and weak
discontinuities. International Journal for Numerical Methods in Engineering, 82
(5):564–590, 2010.

J. Chessa and T. Belytschko. An extended finite element method for two-
phase fluids. Journal of Applied Mechanics, Transactions ASME, 70(1):10–17,
2003.

J. Chessa and T. Belytschko. Arbitrary discontinuities in space-time finite el-
ements by level sets and X-FEM. International Journal for Numerical Methods
in Engineering, 61(15):2595–2614, 2004.

J. Chessa, P. Smolinski, and T. Belytschko. The extended finite element
method (XFEM) for solidification problems. International Journal for Nu-
merical Methods in Engineering, 53(8):1959–1977, 2002.

F. Cirak and R. Radovitzky. A Lagrangian-Eulerian shell-fluid coupling algo-
rithm based on level sets. Computers & Structures, 83(6-7):491–498, 2005.

R. Codina and J. Baiges. Approximate imposition of boundary conditions in
immersed boundary methods. International Journal for Numerical Methods in
Engineering, 80(11):1379–1405, 2009.

R. Codina and J. Blasco. Analysis of a stabilized finite element approxima-
tion of the transient convection-diffusion-reaction equation using orthogo-
nal subscales. Computing and Visualization in Science, 4(3):167–174, 2002.

http://people.scs.fsu.edu/~burkardt/datasets/quadrature_rules_tet/quadrature_rules_tet.html
http://people.scs.fsu.edu/~burkardt/datasets/quadrature_rules_tet/quadrature_rules_tet.html


166 BIBLIOGRAPHY

R. Codina, G. Houzeaux, H. Coppola-Owen, and J. Baiges. The fixed-mesh
ALE approach for the numerical approximation of flows in moving do-
mains. Journal of Computational Physics, 228(5):1591–1611, 2009. ISSN 0021-
9991.

R. M. Corless and D. Assefa. Jeffery-Hamel flow with maple: a case study
of integration of elliptic functions in a CAS. In ISSAC ’07: Proceedings of
the 2007 international symposium on Symbolic and algebraic computation, pages
108–115, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-743-8.

H. L. D. Cougny and M. S. Shephard. Parallel refinement and coarsening of
tetrahedral meshes. International Journal for Numerical Methods in Engineer-
ing, 46(7):1101–1125, 1999.
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E. Oñate, J. Arteaga, J. Garcı́a, and R. Flores. Error estimation and mesh adap-
tivity in incompressible viscous flows using a residual power approach.
Computer Methods in Applied Mechanics and Engineering, 195(4-6):339–362,
2006.

K. C. Park, C. A. Felippa, and R. Ohayon. Partitioned formulation of inter-
nal fluid-structure interaction problems by localized Lagrange multipliers.
Computer Methods in Applied Mechanics and Engineering, 190(24-25):2989–
3007, 2001.



174 BIBLIOGRAPHY

A. Peano. Gauss-Lobatto integration of high precision tetrahedral elements.
International Journal for Numerical Methods in Engineering, 18(2):311–313,
1982.

C. S. Peskin. Flow patterns around heart valves: A numerical method. Journal
of Computational Physics, 10(2):252–271, 1972. ISSN 0021-9991.

C. S. Peskin. Numerical analysis of blood flow in the heart. Journal of Compu-
tational Physics, 25(3):220–252, 1977.

C. S. Peskin. The immersed boundary method. Acta Numerica, 11(1):479–517,
2002.

T. H. H. Pian and C.-C. Wu. Hybrid and incompatible finite element methods. CRC
Series: Modern Mechanics and Mathematics. Chapman & Hall/CRC, 2006.

A. Popp, M. W. Gee, and W. A. Wall. A finite deformation mortar contact
formulation using a primal-dual active set strategy. International Journal for
Numerical Methods in Engineering, 79(11):1354–1391, 2009.

C. Pozrikidis. Finite deformation of liquid capsules enclosed by elastic mem-
branes in simple shear flow. Journal of Fluid Mechanics Digital Archive, 297
(-1):123–152, 2006.

M. A. Puso. A 3D mortar method for solid mechanics. International Journal for
Numerical Methods in Engineering, 59(3):315–336, 2004.

M. A. Puso, T. Laursen, and J. Solberg. A segment-to-segment mortar contact
method for quadratic elements and large deformations. Computer Methods
in Applied Mechanics and Engineering, 197(6-8):555–566, 2008.

E. Reissner. On a variational theorem in elasticity. J. Math. Phys., 29:90–95,
1950.

L. Rosenhead. The steady two-dimensional radial flow of viscous fluid be-
tween two inclined plane walls. Proceedings of the Royal Society of London.
Series A, Mathematical and Physical Sciences, 175(963):436–467, 1940. URL
http://www.jstor.org/stable/97501.
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