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Zusammenfassung

In Kernfusionsexperimenten mit magnetischem Einschluss werden Plasmen mit lokalen Tem-
peraturen von mehr als 100 Millionen Kelvin erzeugt. Die Plasmarandschicht, die in direktem
Kontakt mit der Gefäßwand steht, ist hierbei von zentraler Bedeutung für die Qualität des
Plasmaeinschlusses und die Haltbarkeit der Oberflächenmaterialien. Um ihr Verhalten zu
untersuchen, werden neben Experimenten auch numerische Simulationen genutzt.

Diese Arbeit behandelt den Einsatz adaptiver Rechengitter und hierfür geeigneter numerischer
Verfahren für Randschichtsimulationen. Die resultierenden Algorithmen ermöglichen die dy-
namische Adaption von am Magnetfeld ausgerichteten Gittern zur präzisen Beschreibung des
stark anisotropen Energie- und Teilchentransports im Plasma. Die entwickelten Verfahren
werden schrittweise in den Multifluid-Plasmacode B2 integriert, mit dem Ziel, die Rechenzeit
der Simulationen zu verkürzen und den Anwendungsbereich des Codes zu erweitern.

Abstract

Magnetic confinement nuclear fusion experiments create plasmas with local temperatures in
excess of 100 million Kelvin. In these experiments the scrape-off layer, which is the plasma
region in direct contact with the device wall, is of central importance both for the quality
of the energy confinement and the wall material lifetime. To study the behaviour of the
scrape-off layer, in addition to experiments, numerical simulations are used.

This work investigates the use of adaptive discretizations of space and compatible numerical
methods for scrape-off layer simulations. The resulting algorithms allow dynamic adapta-
tion of computational grids aligned to the magnetic fields to precisely capture the strongly
anisotropic energy and particle transport in the plasma. The methods are applied to the
multi-fluid plasma code B2, with the goal of reducing the runtime of simulations and extend-
ing the applicability of the code.
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1. Introduction

1.1. Nuclear fusion

Nuclear fusion is the energy source of the stars. In the core of our sun, every second 564
million tons of hydrogen are fused to 560 million tons of helium. The mass defect occurs owing
to the higher binding energy of the helium nuclei and results in the release of energy. Since
the middle of the 20th century, fusion research has been pursued to establish this process as
a viable energy source on earth. It is particularly attractive because the needed resources
(hydrogen and lithium) are available in abundance and no CO2 is emitted in the process
[67].

To initiate the fusion process, nuclei have to come close enough together for the strong
nuclear force to overcome the repulsive Coulomb force due to their positive charge. The best
candidate for such a reaction is fusion of the hydrogen isotopes deuterium and tritium

D2 + T 3 → He4 + n1 + 17.6MeV. (1.1)

A gas consisting of these isotopes has a maximum reaction rate at a temperature of several
10s of keV1, i.e. more than 100 million degrees Celsius.

At such high temperatures electrons and nuclei separate and form a plasma. Because Coulomb
collisions between nuclei are much more likely to occur than fusion reactions, a high number
of collisions is required to achieve a sufficient energy yield. Therefore a good confinement of
the plasma is necessary. The condition for a self-sustaining D-T thermonuclear fusion plasma
is given by [120]

neTeτE ≥ 1021 keV s

m3
. (1.2)

The triple product contains the electron density ne, electron temperature Te and confinement
time τE = W/Pl (which measures how fast the energy content W of the plasma is lost at a
energy loss rate Pl).

1Plasma temperatures are commonly given in electron volts (eV). Conversion to Kelvin (K) is done using
the Boltzmann constant kB = 8.617343 · 105 eV

K
: 1eV/kB = 11604.505K.
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1. Introduction

1.2. Magnetic confinement fusion

Because gravitational confinement as present in the core of stars is technically impossible
in experiments, other ways to confine the plasma have to be used. Magnetic confinement
exploits the fact that the plasma species (ions and electrons) can be influenced by electric
and magnetic fields. The Lorenz force ~F = q( ~E + ~v× ~B) causes charged particles to follow a
gyration motion along magnetic field lines. This allows them to move freely along the field
line, but movement perpendicular to the field is suppressed. By constructing a magnetic field
configuration with closed field lines the plasma can be confined in a magnetic “cage”. The
challenge is to find a configuration with good confinement properties that is not susceptible
to instabilities.

    Toroidal
field coils

Central
Solenoid

Plasma

Toroidal

Poloidal

(a) Geometry of a tokamak device. Image: [2]

   

Field coils

Plasma

(b) Geometry of the Wendelstein 7-X stellarator.
Image: [1]

Figure 1.1.: Magnetic confinement experiment configurations

The two most advanced magnetic confinement concepts are the toroidal tokamak (figure 1.1a)
and stellarator (figure 1.1b) configurations. In a stellarator device the entire magnetic field is
formed by external coils. This allows operation in steady-state, but to obtain good confine-
ment properties a complex three-dimensional coil geometry is required. A tokamak device
generates only the toroidal component of the magnetic field with external coils. A poloidal
component is added by inducing a toroidal current in the plasma using a current ramp-up in
the central solenoid of the device, resulting in a combined field with helical field lines winding
around the torus. The current ramp-up brings the disadvantage of a pulsed operation mode,
making steady-state operation challenging. However, due to their simpler technical design,
development of the tokamak experiment line outpaced their stellarator counterparts.

Current tokamak experiments like ASDEX Upgrade [63] and JET [89] operate at a core
density of ne ≈ 1020 particles/m3, temperatures of Te ≈ 20keV and a confinement time of
τE ≈ 0.1s (ASDEX Upgrade) up to ≈ 1s (JET). The goal is to achieve a plasma with an
energy gain factor

Q =
Pfusion
Pheating

=
Fusion energy released

Heating energy required
> 1. (1.3)
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1.3. Edge physics

The first experiment which is expected to achieve this is the international experiment ITER
[92, 66, 6] (figure 1.2a), located near Cadarache, France and expected to commence operation
in 2019. Its goal is to reach Q ≥ 10 and Pfusion = 500MW. It will provide the physics basis
for the first real fusion power plant, DEMO [77], which will then demonstrate the feasibility
of magnetic confinement fusion as an industrial-scale power source.

1.3. Edge physics

The confinement of the plasma cannot be perfect. Due to collisions and turbulent processes
(so-called ”anomalous transport”) hot plasma is lost from the confinement region and hits
the walls of the plasma vessel, where the power has to be dissipated. Acceptable power fluxes
to the wall are in the range of 5MW/m2 for steady-state operations. Higher power loads can
damage the plasma facing components due to erosion, leading to the release of impurities
which cool the plasma. Controlling power exhaust is therefore of critical importance for
confinement quality and machine lifetime.

   

(a) Design sketch of the ITER tokamak
[6]. The position of the toroidal
plasma vessel is highlighted.

   

Divertor
plates

Separatrix

Scrape-off
Layer (SOL)

Core
Plasma

(b) Geometry of a poloidal cut
of the divertor tokamak
ASDEX Upgrade [15].

Figure 1.2.: Geometry of a divertor tokamak

An advanced design which avoids direct contact between device wall and core plasma is the
divertor configuration (figure 1.2b). The magnetic field is modified by control coils to form a
separatrix which separates the core region (with closed field lines) from the scrape-off layer
(SOL, the region of open field lines intersecting material surfaces). Plasma passing through
the separatrix is diverted towards the target plates at the bottom of the machine where it is
neutralized. This moves the region where plasma-wall-interaction is occurring away from the
core plasma, resulting in better impurity control and the possibility to reduce the heat flux
to the target plates using radiation losses.
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1. Introduction

The physics in this edge region is characterized by a complex interplay between plasma
and neutrals transport, atomic processes and plasma-wall interaction [106, 101]. Studying
this highly nonlinear system in its entirety requires sophisticated tools. This triggered the
development of comprehensive computational models during the last decades. At the time this
thesis is written, state of the art for SOL physics modeling in tokamaks are two-dimensional
models that exploit the toroidal symmetry of the devices. Collisionality in the SOL is usually
high enough to justify the use of a fluid model for the ionized plasma species, while the neutral
particles are commonly described with a kinetic model. An approach often adopted is to
couple a computational fluid dynamics (CFD) code with a kinetic Monte-Carlo code. Codes
in this category are B2-EIRENE (aka SOLPS) [102], EDGE2D-NIMBUS [94] and UEDGE
[98]. Three-dimensional codes of this type (EMC3/EIRENE [52], BoRiS [30], FINDIF [80])
are used to model stellarators and three-dimensional effects in tokamaks.

1.4. Motivation for this thesis

The SOLPS (Scrape-Off Layer Plasma Simulation) suite of codes combines the multi-fluid 2d
plasma code B2 [32] with the Monte-Carlo neutrals code EIRENE [96, 95]. Its development
is driven by an international collaboration, between the main partners IPP Garching, IEF-
4 (Plasmaphysik) FZ Jülich, LIMHP-CNRS Université Paris 13 and St. Petersburg State
Technical University. It is used in modeling efforts for several experiments around the world,
including design studies for ITER [72, 71, 70].

Recent work on SOLPS has focused on extending the physics model (e.g. inclusion of drift
physics [103, 100], improved treatment of kinetic effects in the fluid models [38], wall materials
modeling [28, 46]) and use of the code for increasingly complex applications (e.g. modeling of
high-Z impurities with a large number (≈ 100) of ion species [28], detachment front physics
requiring high spatial resolution [121], time-dependent ELM cycle modeling [44]). Common
to all these advances is a continuous increase of computational complexity, causing a growing
demand on computational resources and increasing the wall-clock time of simulations (for
some applications to an extent that they become infeasible). This can be compensated by
using more resources (i.e. parallelization of the code) or by using more efficient numerical
methods.

This work focuses on the fluid code B2 in its current version B2.5. A typical plasma solution
computed by B2 covering the SOL and a small part of the core is shown in figure 1.3. The fast
transport along field lines leads to an equilibration of density, temperature and momentum on
closed flux surfaces, resulting in an essentially one-dimensional situation in the core (in fact,
one-dimensional models are the de-facto standard for global plasma transport simulations of
the core region). It is mainly in the divertor region where, due to atomic physic and plasma-
wall interaction, the solution develops a pronounced two-dimensional structure. It would
therefore be highly attractive to be able to adapt the spatial discretization to the solution,
resulting in a reduction of the degrees of freedom needed to solve a given problem. This is
even more the case for the simulation of transient phenomena requiring high localized spatial
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1.4. Motivation for this thesis

(a) Ion density
ni(particles/m3)

(b) Parallel Ion velocity
u‖i(m/s)

(c) Electron temperature
Te(eV)

Figure 1.3.: Example results for a steady-state simulation performed with B2. The simulation domain
covers the SOL and an annulus of the core. Electron density ne and electron temperature Te show
an essentially one-dimensional structure along the field lines in the core and parts of the SOL and a
pronounced two-dimensional structure in the divertor

resolution in changing regions of the domain. For the B2 code this is particularly attractive
because its implicit discretization requires the solution of sparse linear systems, the dimension
of which is given directly by the number of cells in the domain.

Magnetic confinement exploits the strong anisotropy of particle and energy transport in mag-
netized plasma, with ratios of transport parallel vs. perpendicular to the field lines reaching
values of up to 108. This is particularly challenging in numerical simulations because approx-
imation errors can easily dominate effects of the model. In B2 this problem is solved by using
field-aligned grids to exactly separate the parallel and perpendicular transport direction. The
field-aligned computational grid is created in a pre-processing step. The data structure of
B2.5 only supports structured grids, resulting in a global coupling of grid resolution and lim-
iting the possibilities to customize grids for an anticipated solution. During the simulation
the grid is fixed, making it impossible for the code to react to changes in the solution.

The focus of this thesis is therefore to

• enable the B2 code to use unstructured field-aligned grids,

• provide mechanisms to adapt the grid to the solution during the simulations and

• reduce the computation time needed to achieve a given solution accuracy.

5



1. Introduction

1.5. Previous work

Adaptive algorithms for discretizations in space and time have been studied extensively in
theory and are nowadays in widespread use in many fields of computational science and
engineering. Especially in the area of computational gas and fluid dynamics schemes using
unstructured grids are steadily progressing since the 1980ies, resulting in the availability of
robust adaptive solvers for complex geometries (cf. [53, 7] and references therein).

In the area of plasma edge fluid codes a number of interesting approaches to adaptivity have
been developed and tested [109, 122, 21]. However, none of these projects resulted in a code
with a physics model as comprehensive as the existing edge modeling packages. An attempt
to introduce grid adaptation into SOLPS was started with the SOLPS6 project [27]. The
work in this thesis revisits the base grid/working grid approach developed in SOLPS6 and
combines it with a modern data structure, more flexible adaptation algorithms and numerical
schemes developed for unstructured grid CFD codes.

1.6. Thesis outline

The thesis is organized as follows. Chapter 2 gives a short overview of the B2 multi-species
plasma fluid model. The main part of the thesis is then structured into the following three
topics.

• Grids and data structures. Chapter 3 describes the base grid/working grid approach
and the new unstructured grid data structure. Adaptation algorithms for efficient ma-
nipulation of the grids are derived. An overview of adaptation criteria and feature
detectors is given. The chapter closes with a demonstration of applying the data struc-
ture and algorithms to tokamak grids.

• Numerical methods. Chapter 4 gives an introduction to the finite volume method and
its specific implementation used in the B2.5 code for structured grids. A high-resolution
method designed for use on unstructured grids is described in detail, including a short
overview of time discretizations. A comprehensive benchmark of the schemes for steady
and unsteady situations is presented in chapter 5.

• Implementation of the B2.6 code. The last two chapters cover the work done
to implement the components described in the previous chapters into the B2 code.
Chapter 6 gives an overview of the B2 algorithm and describes the steps necessary
for the transition to the unstructured grid. Chapter 7 describes a benchmark of an
intermediate step in this transition, the B2.6-structured code.

The thesis is closed by a summary and an outline of planned future work. The appendix
contains additional details concerning the numerical schemes, implementation and benchmark
cases.
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2. The B2 scrape-off layer plasma fluid model

The physics of scrape-off layer plasmas is characterized by a complex interplay of different
non-linear physical processes: transport of ionized and neutral particles, ion-ion and ion-
neutral interaction, radiation transport and plasma-wall interaction. Exhaustive overviews
of the field can be found in [106] and [101].

This complexity necessarily has to be reflected in comprehensive models of the scrape-off
layer and their numerical implementations. The SOLPS (Scrape-off layer plasma simulation)
code package (aka B2-EIRENE) [102] is an example for such a model. It combines the Monte-
Carlo neutrals transport code EIRENE [95] with the multi-species plasma fluid code B2 [32].
Typical applications of such a model include modeling of experiments based on diagnostics
measurements (mostly for steady-state analysis, but also for time-dependent phenomena),
qualitative studies of aspects of the physical system as well as predictive analysis for experi-
ment planning and engineering studies. An example of the latter is use of the SOLPS4 code
version to support the ITER design phase [72, 71, 70].

This thesis concentrates on the B2 code in its current version B2.5. In this chapter an
overview of the B2 plasma fluid model is given and the geometry of the model is established
to motivate the grid generation techniques described in chapter 3.

2.1. Model geometry and coordinate systems

2.1.1. Tokamak Equilibria

The magnetic field ~B in a Tokamak is formed by the superposition of an external field
generated by magnetic field coils (which determine the general plasma shape) and a field
component originating from currents in the plasma (which are driven mainly by induction
using a current ramp-up in the central solenoid). The resulting helical magnetic field lines
winding around the torus (cf. figure 1.1a) form nested magnetic or flux surfaces (cf. figure
2.1).

In the axially symmetric tokamak case the equilibrium magnetic field configuration balancing
magnetic force and plasma pressure is found as the solution of the Grad-Shafranov equation

−
(
R
∂

∂R

(
1

R

∂Ψ

∂R

)
+
∂2Ψ

∂z2

)
= µ0(2πR)2 dp

dΨ
+ µ2

0Ipol
dIpol
dΨ

. (2.1)
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2. The B2 scrape-off layer plasma fluid model

The flux function Ψ denotes the poloidal flux lying inside a magnetic surface. Equilibrium
reconstruction based on (2.1) is routinely performed for tokamak experiments using interpre-
tive codes (e.g. CLISTE [79]), with machine parameters (e.g. the coil layout) and various
measurements from diagnostics as input and solution constraints.

2.1.2. Coordinate Systems

Due to the strong field alignment of the plasma transport, models for energy and particle
transport are best formulated in appropriate field-aligned coordinate systems. Figure 2.1
shows the systems relevant for the B2 model.

¬ Cylindrical system (R,φ, z). R is the major radius, φ the toroidal direction/angle, z
is the height.

­ Parallel system (‖,⊥, r). The parallel direction ‖ is in the direction of the magnetic
field ~B, ⊥ is perpendicular to ~B in the flux surface (diamagnetic direction), r outward
normal to the flux surface.

® Poloidal system (θ, r, φ). θ is tangential to the magnetic surface in the poloidal
plane, r is normal to the flux surface in the poloidal plane, φ is the angle in the toroidal
direction.

Device geometry data is usually given in the global cylindrical system ¬. The transport
model uses the field-aligned curvilinear coordinates ­ and ®. Note that while figure 2.1a
only shows circular surfaces, the basis vectors of the poloidal and parallel systems depend
only on the local geometry and are thus defined for arbitrarily shaped surfaces, including
geometry singularities like X- and O-points.

The B2 model is derived in the poloidal system, which from now on will be relabeled as
(θ, r, φ) = (x, y, z) with orientations as shown in figure 2.1b. The coordinate mapping is
derived from the magnetic field ~B as obtained from the equilibrium reconstruction. ~B =
(Bx, 0, Bz)

T is the magnetic field vector in the poloidal system, the unit vector in the field
direction is

~b =

bx0
by

 =

Bx/B0
Bz/B

 , B =‖ ~B‖. (2.2)

Vector quantities given along the parallel direction (like the parallel velocities u‖a) are pro-

jected on the poloidal direction by ux = 1
bx
u‖ (bx is the magnetic field pitch). ~B is assumed

to be fixed (i.e. time-independent).

Relevant properties of curvilinear coordinates are outlined in appendix A.1. The metric
coefficients are hx = 1/‖∇x‖, hy = 1/‖∇y‖. Due to the rotational symmetry in the toroidal
direction hz = 2πR can be used with R being the major device radius (i.e. the distance from
the torus axis). All quantities are given in physical units, for vector quantities the physical

8



2.1. Model geometry and coordinate systems

 
surface
Flux 

(a) ¬ cylindrical, ­ parallel, ® poloidal

   

(b) B2 system convention

Figure 2.1.: Global and (local) field-aligned coordinate systems. The B2 model is formulated in the
poloidal system with coordinate directions given in sub-figure b, with a typical simulation domain
covered by the computational grid marked in orange.

components (i.e. the projection on on the unit basis vectors) are used instead of the co- or
contra-variant components.

2.1.3. Model geometry

The model is mainly applied to tokamak devices for which rotational symmetry in the toroidal
direction can be assumed. The simulation domain starts on a closed flux surface in the core
and usually extends radially outward up to the first limiter structure of the main chamber
vessel wall. In the poloidal direction the domain ends at the target plates. The toroidal
direction includes the entire torus. A typical simulation domain is shown in the poloidal cut
in figure 2.1b, the full three-dimensional domain is shown in figure 2.2. It can be extended
to include more of the core region. The cutoff is usually chosen as required for a robust
boundary condition definition.

9



2. The B2 scrape-off layer plasma fluid model

   

x

y

Figure 2.2.: Model geometry of the B2 code. The simulation domain covers an annulus of the core and
extends up to the first limiter structure of the wall in the radial direction, in the toroidal direction it
is periodic. A grid with 48 × 18 cells is shown in the plot. Plotted is the electron temperature from
the benchmark case in chapter 7.

2.2. B2 multi-fluid model

Under the assumption of high collisionality, a fluid model can be used to describe the plasma
in the scrape-off layer. The B2 fluid equations are derived from the Braginskii equations [34],
which in turn are obtained by forming moments of the kinetic transport equations. Starting
from the original B2 formulation in [31], major development steps of the equation system
were the incorporation of electric fields [16] and inclusion of drifts [100, 103, 33].

The multi-fluid model treats every ion species in the plasma as a single fluid phase. Due to
the alignment of transport along the magnetic field lines, only the velocity in the parallel
direction is kept as a dependent variable. A common temperature for all ions and a separate
electron temperature is assumed. The primary dependent plasma state variables are then the
particle density na[1/m

3] and parallel velocity u‖a[m/s] of every species a, the ion temperature
Ti[eV], electron temperature Te[eV] and the potential φ[V].

The equation system consists of coupled nonlinear parabolic partial differential equations of
advection-diffusion-reaction type. The general form is similar to the Navier-Stokes equations.

10



2.2. B2 multi-fluid model

Mass and momentum conservation is stated separately for the individual plasma species.
Inertia of electrons is neglected, and only an elliptic current continuity equation is kept.
Conservation of energy is stated in separate ion and electron energy equations. For reasons
of clarity the equations are given here in a rather general form. For detailed write-ups for
different versions of the equations, the full forms of the drift terms, coefficients and source
term models the reader is referred to [16, 33, 100, 103, 102, 47]1. Expansion of the equations
in curvilinear coordinates is also not covered here, a detailed treatment of this technical step
is given in [16].

B2 model equations

The continuity equation for species a is

∂na
∂t

+∇ · ~Γa = Sna (2.3)

with the particle flux density

~Γa = nau‖a~b+ na~Va −Da∇na −Dp
a∇pa. (2.4)

where ~Va contains drift and anomalous velocities, pa = na(Ti + ZaTe) is the partial pressure
and Da, D

p
a are anomalous diffusion coefficients. Sna is the particle source term.

The parallel momentum equation for species a (with ion mass ma) is

∂

∂t
(manau‖a) +∇ · ~Γma = −~b · ∇pa +

∑
b

Rab‖ +Rea‖ + FE + Sma . (2.5)

On the right-hand side are the pressure term, ion-ion friction Rab‖, ion-electron friction Rea‖,
force due to the electric field FE and momentum source terms Sma . The viscosity tensor
is simplified by omitting cross-field derivatives. The remaining viscosity coefficients ηa are
included in the parallel momentum flux density

~Γma = ma
~Γau‖a − ηa∇u‖a. (2.6)

The current continuity equation is
∇ ·~j = 0 (2.7)

with the effective current density

~j = ∇ · (σ ~̂E − αe∇Te) +~jd (2.8)

where σ is the conductivity, ~̂E = 1
ene
∇(neTe)−∇φ the modified electric field (e is the electron

charge) and αe the thermo-electric coefficient of the thermal force. ~jd includes additional drift
and viscosity terms.

1And the B2.5 source code.
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2. The B2 scrape-off layer plasma fluid model

The Electron energy equation is

∂

∂t

(
3

2
neTe

)
+∇ · ~Qe = −neTe∇ · (u‖e~b) + ~J · ~̂E −Qei + SHe (2.9)

with the electron heat flux density

~Qe =

[
3

2
,
5

2

]
~ΓeTe − neκe∇Te + αeTe ~̂E. (2.10)

The coefficient κe is the electron heat conductivity. The electron flux density and parallel
electron velocity are

~Γe =
∑
a

Za~Γa −
1

e
~j, u‖e =

∑
a

Za
u‖ana

ne
− 1

ene
~b · ~̂j (2.11)

where Za is the effective charge of species a, ne =
∑

a Zana the electron density and ~̂j the
current density with the ~jd term omitted. The square brackets express that the advective part
of the electron flux has a prefactor of 3

2 while the diffusive part has prefactor 5
2 . The terms

on the right hand side of (2.9) include electron velocity divergence, Joule heating, classical
electron-ion heat exhange term Qei and heat source SHe .

The ion energy equation is (ni =
∑

a na)

∂

∂t

(
3

2
niTi

)
+∇ · ~Qi =− niTi∇ · (u‖a~b) +

∑
a

η‖a(∇‖u‖a)2

+
∑
ab

Fab(u‖b − u‖a) +Qei + SHi

(2.12)

with the ion energy flux density (Γi =
∑

a Γa)

~Qi =

[
3

2
,
5

2

]
~ΓiTi − niκi∇Ti. (2.13)

As in the electron heat flux (2.10), the advective and diffusive components have different
prefactors. κi is the ion heat conductivity. The right-hand side includes terms for the ion
velocity divergence, friction heating terms including inter-species friction, the heat exchange
term and general heat sources.

The most important direct coupling mechanism are particle, heat and momentum exchange
due to atomic processes (which are included in the respective source terms, see below), pres-
sure, inter-species friction and the ∇u‖ heating terms. Influence of the electric field is es-
pecially important in simulation including drift physics. Proper treatment of these coupling
mechanisms is of critical importance in the numerical solution of the system.

Ion species

The number of ion species (and therefore the number of continuity and momentum equations)
depends on the situation being modeled. It ranges from 2 species (pure hydrogen plasmas,
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2.2. B2 multi-fluid model

e.g. D,D+) to typical cases including impurity species (carbon, neon, argon, . . .) with up to
30 charge states. The situation becomes more challenging for cases including impurities with
a high atomic number like tungsten (Za = 74), which is an attractive material for plasma
facing walls due to its high melting point [86, 58]. The code is reported to converge for such
cases. However, simulation times increase significantly. Recent work has concentrated on
introducing charge-state bundling to reduce the number effective species [28]. Per-species
parallelization as outlined in appendix D.2 can also efficiently address this problem.

Transport coefficients

For the exact form of the classical transport coefficients the reader is referred to [34, 17,
120]. In general the coefficients have a (in some cases strongly) nonlinear dependence on the
plasma state. The drift terms are covered extensively in [103, 102]. Some kinetic corrections
are required for the viscosity η and the parallel heat conductivity κ‖. Currently this is
addressed by the introduction of flux limiters, a more realistic kinetic model is currently
under development [43, 40]. In the radial direction experiments show significantly higher
transport levels than predicted by classical theory, which are attributed to complex turbulent
behavior of magnetized plasmas [120]. However, accurate turbulence models have to resolve a
5-dimensional phase space and require massively parallel codes to achieve sensible simulation
times. Transport models like B2 therefore use an anomalous transport ansatz with heuristic
models based on coefficients derived from turbulence simulations and experimental data fits.
A detailed discussion of this can be found in [68].

Source terms

The source terms Sa (particles), Sma (momentum), SHe (electron heat) and SHi (ion heat)
contain nonlinear models for the atomic processes ionization, recombination and charge ex-
change. They are also used to couple the code to neutrals transport codes (either a simple
internal fluid neutrals model or the Monte-Carlo code EIRENE with a comprehensive physics
model). Furthermore problem-dependent sources like plasma fueling, external heating and
impurity generation can be included.

Boundary conditions

A wide range of physical boundary conditions is used to provide flexibility in the modeling. At
the target plates the dynamics of the plasma is governed by the formation of an electrostatic
sheath, which accelerates the ions to their local sound speed. At the core boundary particle
and energy densities and/or fluxes are prescribed to match conditions for given core plasma
parameters, sometimes combined with feedback control to fix specific plasma quantities. At
the boundary towards the vacuum region between the simulation domain and the wall the
same approach can be taken, or decay lengths can be prescribed.
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2. The B2 scrape-off layer plasma fluid model

Boundaries of the simulation domain that do not end at a material surface often require ad-
hoc assumptions and pose big challenges for the modeler. Recent efforts aim at coupling the
B2 code to specialized transport models for the core and the vacuum region to address the
intrinsic uncertainties of this approach [108]. A general framework for this kind of code-code
coupling is currently being developed in the context of the Integrated Tokamak Modeling
(ITM) EFDA Task Force [5].
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3. Grids and data structures

The B2 model equations given in section 2.2 are expanded in the poloidal field-aligned coor-
dinate system to obtain a clean separation of strong parallel and weak radial transport. This
allows a robust numerical treatment of the strong transport anisotropy. The disadvantage is
that orthogonal field-aligned grids are required for the spatial discretization, making the task
of grid generation challenging.

This chapter begins with a description of the grids used by B2 and the grid generation chain
currently used to create them. Following this an approach to grid adaptation that maintains
field-alignment is presented. The data structure and algorithms needed for its implementation
and application are described, including examples to demonstrate their capabilities.

3.1. Grid generation and data structures in B2.5

3.1.1. Field-aligned grids

The spatial discretization of the B2 code exploits the toroidal axial symmetry of tokamak
devices to reduce the three-dimensional problem to two dimensions. The cells of the grid
extend around the torus in the toroidal direction and close on themselves. Projected on a
poloidal cut through the torus the cells are quadrilaterals with cell faces either aligned to
the magnetic flux surfaces or orthogonal to them. Accurate representation of the topology
is ensured by explicit placement of faces and vertices on the separatrix and the x-point. An
example grid for the benchmark geometry used in chapter 7 is shown in figure 3.1.
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3. Grids and data structures

   

(a) Flux surface structure projected to the
poloidal plane. The separatrix
is shown in red.

(b) Grid projected on the poloidal plane
(48x18 cells)

(c) The actual grid cells extend periodically
around the torus

(d) Grid in the divertor region. The x-point and
separatrix are resolved explicitly.

Figure 3.1.: Example grid for the ASDEX Upgrade discharge #16151 benchmark geometry.
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3.1. Grid generation and data structures in B2.5

3.1.2. The B2.5 grid data structure

The quadrilateral grid cells in physical space are mapped to unit squares on a Cartesian grid
in computational space using local field aligned coordinate mappings.

Depending on the magnetic field configuration the simulation domain is divided in regions.
Every region forms a contiguous block of grid cells in computational space. To simplify the
data structure, these blocks in computational space are required to be rectangular. Figure
3.2 illustrates the mapping for a so-called “single-null” topology. Similar mappings have been
devised for more complex topologies [47, 78].

The mapping allows information associated with cells to be stored efficiently in 2-dimensional
arrays, identifying every cell Ωi,j with its position (i, j) in the array. Inside every region the
neighbors of a cell can be implicitly identified as Ωi±1,j±1. However, the x-point singularity
leads to non-trivial neighborhood connectivity between cells at region boundaries, expressed
by “geometry cuts” in computational space. To simplify support for such nontrivial geome-
tries, the B2.5 code explicitly stores next-neighbor connectivity information for the individual
cells.

Classification of B2.5 grids

To put the B2 grid in context to existing literature [119, 75], it can be classified as block-
structured with a globally unstructured topology. The individual blocks are structured
quadrilateral curvilinear grids in physical space that are coordinate-mapped to simple rect-
angular Cartesian meshes in computational space. The field-alignment can be understood as
an extension of boundary-fitting.

17



3. Grids and data structures

(a) Physical space (poloidal cut,
real geometry)

(b) Physical space (poloidal cut,
simplified geometry)

   
3 2b2a C1 C1C2 C2

1

S2S1 S3

x

y

T2T1

(c) Grid domain mapped into computational space

Figure 3.2.: Simulation domains in the poloidal cut of a single-null configuration (with one x-point)
and its mapping into computational space. The regions are 1. scrape-off layer (SOL), 2. private flux
region (PFR) and 3. core. The line segments S1-3 mark the separatrix, T1 and T2 are the inner
(left) and outer (right) divertor target plates. C1-2 are “geometry cuts” necessary for the mapping
into computational space due to the topology change of the flux surfaces. C1 marks the periodicity
boundary in the core, C2 connects the two halves of the PFR.
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3.1. Grid generation and data structures in B2.5

3.1.3. SOLPS grid generation workflow

For every magnetic field configuration, a specific grid has to be generated. The SOLPS
package provides a partially automated grid generation workflow (cf. figure 3.3) for this task.
A discretized equilibrium magnetic field configuration is obtained by import tools depending
on the data acquisition infrastructure of the experiment. A GUI editor (DG) is used to
combine the equilibrium and a model of the physical structure of he experiment vessel and to
set up input files for the grid generator. The actual grid generation is done by the CARRE
code [78]. When a satisfactory grid is obtained, the grid description is converted to the input
format expected by the B2.5 code.

Experiment
Connector

Geometry
Setup (DG)

Grid Generator
(CARRE)

Grid 
Preprocessor

Figure 3.3.: SOLPS grid generation workflow

The grid generation itself can be quite challenging. The generator must automatically iden-
tify the topology of the field lines and implement the field-alignment and orthogonality con-
straints. In addition to this, the limitation of the B2.5 data structure to rectangular blocks of
grid cells in computational space leads to problems at the target plates. In general, magnetic
field lines do not intersect the target plates at right angles (steep inclinations of the plates
are specifically used to increase the plasma contact area in the scrape-off layer). Some field
lines therefore terminate earlier than others, but the number of grid points along a line is
effectively fixed by the data structure. The grid generator has to relax the orthogonality
constraint close to the target plate controlled by user-defined parameters. For a given geom-
etry therefore different grids can be created. Two possible divertor solutions for the #16151
benchmark geometry are shown in figure 3.4.

(a) Strict orthogonality (b) Relaxed orthogonality

Figure 3.4.: Two possible solutions for the grid in the divertor region. Grid maintains orthogonality
but exhibits strong “bunching” of grid points close to the target plates. Grid b relaxes orthogonality
to partially avoid this.
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3. Grids and data structures

3.1.4. Approximation of geometric quantities

The geometry of the grid is defined by the position of the four vertices of every cell in physical
space and the magnetic field at these points (see figure 3.5). Approximations to all geometric
quantities required in the code are derived from this information.

Face areas and cell volume are computed taking the toroidal symmetry into account. The
scale factors are approximated as the face midpoint distances

hx = ‖−−−−→xWxE‖, hy = ‖−−−→xSxN‖.

The cell volume in the toroidally symmetric case is given by

|Ωi| = 2π cR AΩi ,

where cR is the radial distance of the cell centroid C to the torus axis and AΩi the area
of the quadrilateral x1x2x3x4. Efficient formulas of geometric quantities for quadrilaterals
are described in [119]. Additionally, correction factors are used in the code when computing
lengths in the radial direction to account for grid non-orthogonality.

   

xy

z

Figure 3.5.: Approximation of geometric quantities in coordinate-mapped grid cells.
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3.2. Adaptive field-aligned grids

3.2. Adaptive field-aligned grids

As outlined in the previous section, grid generation for B2 is a complex task usually requiring
user intervention, especially to judge and optimize grid quality. While the grid workflow
is very advanced with respect to support of varying experiment geometries, it is not well
suited to specifically adapt grids to individual solutions. Because grid generator and solver
are separate codes, this currently requires an iterative approach driven manually by the user,
with only a very limited number of parameters to influence the grid generator. Therefore an
alternative approach to grid adaptation is required.

3.2.1. The base grid / working grid method

The “base grid / working grid” method [27] reuses the existing grid generation workflow.
For a given geometry, a high-resolution base grid is generated. The actual simulation is then
performed on a working grid (adaptively) constructed at runtime by combining the cells of
the base grid into composite cells. An example is shown in figure 3.6.

A composite cell Ωi is defined by its stencil Si, which enumerates all cells in the base grid it
consists of. The restriction is imposed that every face of a composite cell is aligned along a
coordinate line, simplifying the shape of stencils to rectangles in the computational domain1.
A stencil can thus be written compactly as

Si = ((oix, o
i
y)(d

i
x, d

i
y)). (3.1)

Grids of this type are also called “logically rectangular”.

The approach offers two distinct advantages. First, the existing grid workflow (including
input/output routines and base grid data structure) can be reused. Second, field-alignment
of the working grid is automatically maintained. The disadvantage is that solver and grid
generator are still decoupled, making changes to the base grid impossible. This means that the
maximum possible resolution is fixed to the base grid level. Furthermore, any grid defects
present in the base grid directly carry over to the working grid. The maximum accuracy
obtainable is therefore still defined by the quality of the grids provided by the grid generator.

3.2.2. Working grid data structure

While the B2.5 data structure can still be used to store the base grid, its limitation to
structured grids is prohibitive to using it for storing adaptive grids. For the working grid a
more flexible data structure is required. With the restriction to logically rectangular grids,
construction of the working grid can be considered in the context of Cartesian grid adaptation,
a topic which has been covered extensively in the literature.

1This restriction is to reduce the complexity of data structure and adaptation algorithms. The finite volume
methods described in chapter 4 can handle arbitrarily shaped cells.
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x

y

(a) Physical space (b) Computational space with stencil

Figure 3.6.: Composite cell Ωi in physical space represented by stencil Si in computational space

Design goals

Recalling the motivations given in 1.4, a number of key requirements on the working grid data
structure emerge which can be summarized under the aspects flexibility and efficiency.

1. Flexibility

a) The multi-scale character of the physics requires rapid local variations in resolution,
spanning a wide range of resolution levels in one working grid.

b) The strongly anisotropic transport leads to pronounced differences in the solution
structure in radial and poloidal direction, requiring anisotropic grid adaptation.

2. Efficiency

a) Residual computation and system assembly in the finite volume solver require
efficient access to neighbor connectivity.

b) Local modifications of the grid should be relatively cheap.

Anisotropic grid adaptation

Anisotropic adaptation [22, 55, 84, 115] allows changes of the cell aspect ratio and thus
decoupling of grid resolution in the different coordinate directions, which is of key importance
to effectively reduce the number of grid cells when the dynamics of a system change depending
on coordinate direction. A well-known example for this is boundary layer formation in fluid
dynamics problems. Figure 3.7 visualizes the problem: the restriction to isotropic grids
inherently couples the grid resolution between spatial dimensions.
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y x

(a) Solution

   

y
x
(b) Isotropic grid

   

(c) Anisotropic grid

Figure 3.7.: Grids adapted to a boundary-layer type solution. The isotropic grid (with fixed cell aspect
ratio) inherently couples grid resolution between coordinate directions.

3.2.3. Data structure choice

Two suitable data structure designs are found in the literature. Specifically designed for
logically rectangular grids is the so-called AMR (Adaptive Mesh Refinement) method [24].
It uses nested patches of block-structured grids which are organized in a tree data structure.
Due to the simple structure of the individual patches AMR can be used to construct very
efficient explicit solvers. A disadvantage is that deducing connectivity information at patch
boundaries requires traversal of the hierarchy tree or explicit storage. Furthermore application
of AMR to anisotropic adaptation is nontrivial because for cells with varying aspect ratio no
unique grid hierarchy can be defined.

A more general approach is to assume that the working grid is completely unstructured, as
is e.g. commonly done for triangular grids. The individual components of the grid (cells,
faces, vertices) are identified explicitly using a numbering convention. Geometry and con-
nectivity information for all objects is stored in a data structure consisting of essentially
one-dimensional lists. This approach is abbreviated as “UG” (unstructured grid) data struc-
ture.

For this work the UG structure was chosen. The main point is trivial availability of the
face-cell connectivity information, which is very important due to the concentration of the
used finite volume discretization on face fluxes.

In terms of software development effort, while the UG structure is simpler in design than
AMR, atomic grid operations and the global adaptation algorithms are more complex (re-
flecting the higher flexibility of the structure). Local modifications to the grid also are cheaper
in AMR, as changes are ideally contained to subtrees of the grid, while a change of the UG
structure affects all connected grid objects. However, in the B2 code design the overhead
imposed by grid adaptation is negligible compared to the time spent in the solver (especially
for the steady-state case).

The use of complex data structures introduces performance penalties when compared to
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implementations using simple structured grids. This has to be compensated by advantages
of the adaptive discretization. Because the B2.5 code already explicitly stores connectivity
information to support complex magnetic topologies (c.f. section 3.1.2), in this case the
UG data structure does not add additional overhead (but may offer possibilities to optimize
memory access patterns, c.f. appendix B.4).

3.2.4. Unstructured grid data structure description

The grid T = (Ωi, ej , Vk) consists of cells Ωi, faces ej and vertices Vk. Objects are identified
by an index, which is subsequently used to store and access data associated with the objects.
The information stored for each object is split into the categories stencil, connectivity and
geometry.

Stencil

For every cell Ωi, the stencil Si = ((oix, o
i
y)(d

i
x, d

i
y)) as described in section 3.2.1 is stored. It

is important to note that when the stencil data is known, all connectivity and geometry data
can be recovered from the underlying base grid. This allows the remaining structure to be
reduced to the data necessary for the formulation of the adaptation algorithms and efficient
implementation of the solver.

Connectivity

For every grid object, lists are stored containing the indices of connected objects. For reasons
of efficiency the size of these lists is fixed, limiting the range of grids that can be represented
in the UG structure. Every cell is defined by its four corner vertices. Cell faces on each side
can be split into two sub-faces, i.e. a cell can have four to eight faces and face-neighbors. An
overview of the stored connectivity information is given in figure 3.8 and table 3.1.

Object Connectivity data

Cell Ωi: Indices of faces (eTop,1
Ω,i - eLeft,2

Ω,i ) and vertices (V A
Ω,i - V D

Ω,i).

Face ej : Indices of the cells in increasing (Ωinc
F,j) and decreasing (Ωdec

F,j) coordinate
direction, indices of start (V From

F,j ) and end (V To
F,j) vertices.

Vertex Vk: Indices of up to four incident faces (eTop

V,k . . . e
Left
V,k ) and cells (ΩA

V,k . . .Ω
D
V,k).

Table 3.1.: Connectivity information stored in the UG data structure for individual objects

Individual entries of the cell, face and vertex connectivity lists can stay undefined depending
on the grid structure. In cases where connectivity information can be stored in more than one
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a) cell connectivity

b.1) y-face connectivity

b.2) x-face connectivity

c) vertex connectivity

Figure 3.8.: Object connectivity stored in the UG data structure

list entry, to avoid ambiguities only the entry for the object closer to the coordinate origin is
set.

Geometry

The main geometric quantities are given in table 3.2. Face areas and cell volumes for the
composite objects are computed by simply summing up the base grid quantities. The scale
factors are computed as a harmonic average

hcx =
1

dcx

√√√√√|Ωc|

ocy+dcy−1∑
j=ocy

ocx+dcx−1∑
i=ocx

(
h2
x,(i,j)/|Ω(i,j)|

)−1

−1

. (3.2)

All other distance measures are then derived from the scale factors and the stencil sizes. All
geometric quantities are stored in physical units, vectors are given in physical units relative
to the field-aligned unit base vectors. For the faces a simplification is introduced exploiting
the field alignment. Instead of the normal vector of the face an orientation flag is stored
which indicates whether the face is aligned along a x(poloidal)- or y(radial)-coordinate line.
A face aligned to an x-coordinate line is called x-face, a face aligned to an y-coordinate line
is called y-face.

In addition to the main connectivity and geometry information, extended properties of grid
objects are stored. These include ghost cell and boundary flags, persistence flags (marking a
face irremovable) and region numberings to identify sub-blocks of the grid.
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Object Geometry data

Cell Ωi: Volume |Ωi|, scale factors hix, hiy, magnetic field vector ~Bi
Face ei: Area |ei|, Orientation flag (x or y aligned), vector from face midpoint to cen-

troid of cell in increasing (~minc
i ) and decreasing (~mdec

i ) coordinate direction
normal to face, vectors connecting centroids of incident cells ~ci

Table 3.2.: Geometry information stored in the UG data structure for individual objects

3.2.5. Atomic grid operations

Definition 1 (Atomic grid modifications). A grid modification consists of a set of atomic
grid operations. An atomic operation is either a cell split/face insertion or a cell merge/face
deletion. A set of cells that coalesces into one parent cell is called a merge group, the resulting
cells of a split operation are called a split group.

An atomic grid operation affects several grid objects simultaneously. The range of possible
atomic operations determines how complex the change done to the grid in one modification can
be and therefore how many modifications are necessary to reach a given grid configuration.

The atomic operations possible for the UG structure are summarized in figure 3.9. Both
isotropic operations a,d and anisotropic operations c,e can be combined in the same grid
modification. Operation b was included to allow more efficient coarsening for anisotropic
unstructured grids2.

2While every isotropic operation can in principle be performed by a succession of anisotropic operations,
such an approach requires successive grid modifications to execute one isotropic grid operation, severely
complicating algorithm implementation.

   
Isotropic

Anisotropic

RefinementCoarsening
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e)
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A B
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C D

A B
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A

R

Figure 3.9.: Possible atomic grid operations for the UG data structure. The modifications are pre-
sented qualitatively, all operations can be performed for their rotated equivalents and cells with
arbitrary aspect ratios
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Figure 3.10.: Example of a locked (non-admissible) grid

3.2.6. Representable and admissible grids

The fundamental limitations of the UG data structure are summarized in the following defi-
nition.

Definition 2 (Representable grid). A grid is called representable (i.e. can be represented
in the UG data structure) if it satisfies the following rules.

1. Cell shape rule:
Cells are logically rectangular with a minimum stencil size of (dix, d

i
y) = (1, 1).

2. Sub-face rule:
Every cell has a maximum of two neighbors / sub-faces in every direction.

However, this definition allows grids incompatible with the design of efficient and robust grid
adaptation algorithms. Figure 3.10 demonstrates the problem. Grid 1a is representable, but
merging cells in the y direction leads to non-rectangular cells and therefore direct coarsening
in the y-direction is not possible. To reach grid state 1e with atomic operations, a combination
of coarsening and refinement operations is necessary. Unless the adaptation algorithm can
plan several grid modifications at once (making it excessively complex), the grid is stuck in
this state.

Grid hierarchies

Problematic situation like the one in figure 3.10 can occur whenever the stencils of connected
cells do not align on at least one boundary perpendicular to their common face. This can be
avoided by imposing an additional global cell alignment rule. A simple but effective rule is
given by the following definition.

Definition 3 (Admissible stencils and grids). Let Si = ((oix, o
i
y), (d

i
x, d

i
y)) be the stencil

of cell Ωi. Both stencil and cell are called admissible if the following statements hold:

1. The stencil sizes are powers of two, i.e.

(dix, d
i
y) = (2a, 2b), with a, b ∈ N.
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Figure 3.11.: Grid spacing hierarchy in one dimension defining admissible and non-admissible cell
stencils.

2. The stencil origin in a dimension is a multiple of the stencil size in this dimension, i.e.

(oix − 1, oiy − 1) = (αdix, βd
i
y), with α, β ∈ N.

Otherwise it is called non-admissible. If the stencils of all cells Ωi in a grid are admissible,
the grid is called admissible. Furthermore, atomic operations and grid modifications resulting
in an admissible grid are likewise called admissible.

Admissible grids effectively impose a hierarchy of nested grid spacings in every coordinate
direction with a resolution ratio of 2:1 between consecutive hierarchy levels (see figure 3.11)
by prescribing the possible alignments for a cell with a given stencil size.

Refining/splitting a cell in one direction creates two child cells with half the stencil size in
that dimension. For a split in the y direction as sketched in figure 3.9e, splitting cell R in
cells A+B, this can be written as

SR = ((oRx , o
R
y ), (dRx , d

R
y ))

y split−→
{
SA = ((oRx , o

R
y ), (dRx , d

R
y /2))

SB = ((oRx , o
R
y + dRy /2), (dRx , d

R
y /2))

The stencils for anisotropic splits in the x direction and isotropic splits are derived likewise.

For a set of cells Ω1 . . .Ωn being merged, the stencil of the parent cell ΩR is given by

ΩR((oRx , o
R
y ), (dRx , d

R
y )) =((⌊

oix
2dmin

x

⌋
· 2dmin

x + 1,

⌊
oiy

2dmin
y

⌋
· 2dmin

y + 1

)
,
(
2dmin

x , 2dmin
y

))
. (3.3)

where b·c is the floor function and dmin
x/y is the minimum stencil size involved in the respective

dimension, defined by
dmin
x = min

i = 1. . . n
dix, dmin

y = min
i = 1. . . n

diy.

A merge operation can only be performed if for all involved cells (3.3) resolves to a common
parent cell (this fact is actually used later in the adaptation algorithm to identify merge
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3.2. Adaptive field-aligned grids

groups). Adhering to this rule imposes the power-of-two hierarchy on the working grid in
every coordinate direction. Choosing dmin

x/y to define the hierarchy level makes sure that only
cells with the same stencil size in the merge direction are combined. The rule works for all
three merge cases a)-c) in figure 3.9.
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3.3. Grid adaptation algorithms

3.3. Grid adaptation algorithms

The grid adaptation process is controlled by adaptation criteria (denoted by C) which are
designed to eventually produce a grid that is optimized for a certain purpose. At the same
time, only modifications to the grid that a) can be cast into atomic operations and b) result
in an admissible grid can be performed, which severely restricts the range of possible mod-
ifications. It is the task of the grid adaptation algorithm to find a grid modification that
matches the intention of the criteria. The resulting grid modification is summarized in a list
of action flags M = (aicv, a

j
fc), where

aicv =


empty
x-split
y-split
x+y-split

∀ cells Ωi and ajf =

{
keep
remove

∀ faces ej . (3.4)

The general procedure for a grid adaptation cycle is given by algorithm 1.

Algorithm 1: Grid adaptation cycle

Input: Grid Tin, Criteria values C
Output: Grid Tout, grid modification M
M = Evaluate action thresholds( C, strategy )
M = ExtendCellSplits ( Tin, M, strategy )
M = ExtendFaceRemovals ( Tin, M, strategy )
Tout = Apply modification( Tin, M )

3.3.1. Criteria values

Criteria are conceptually understood to measure a local error that can be reduced by locally
increasing the grid resolution, i.e. spitting cells. The criteria evaluation assigns criteria values
to the cells and faces, producing a criteria value list C = (cic,x/y, c

i
f).

For cells, one value is defined per coordinate direction (designated cic,x and cic,y for cell Ωi in
the x- and y-direction respectively). For faces, only one value (designated cif for face ei) is
given.

Grid modification actions are derived from the criteria using thresholds. Action thresholds
define for what value ranges an action is required: cells with a high “error” are marked to
be split, faces with a low “error” are marked to be removed. Additionally a veto threshold
can be used to veto the same actions: cells with a low “error” must not be split, faces with
a high “error” must not be removed. For objects with criteria values between the action
and veto thresholds, the adaptation algorithm can choose to apply actions if necessary. The
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3. Grids and data structures

Object Rule Action

Cell cic,x ≥ Cs
c,x mark for split in x direction

cic,y ≥ Cs
c,y mark for split in y direction

Cv
c,x ≤ cic,x < Cs

c,x allow split in x direction

Cv
c,y ≤ cic,y < Cs

c,y allow split in y direction

cic,x < Cv
c,x veto split in x direction

cic,y < Cv
c,y veto split in y direction

x-Face cif ≤ Cr
f,x mark x-face for removal

Cr
f,x < cif ≤ Cv

f,x allow removal of x-face

cif > Cv
f,x veto removal of x-face

y-Face cif ≤ Cr
f,y mark y-face for removal

Cr
f,y < cif ≤ Cv

f,y allow removal of y-face

cif > Cv
f,y veto removal of y-face

Table 3.3.: Object action rule definitions. A x-face is aligned along a x-coordinate line, a y-face is
aligned along a y-coordinate line.

detailed threshold rules are summarized in table 3.3, but are clearer to understand when
looking at histograms of criteria values as shown in figure 3.12. Obviously Cv

c,x/y ≤ Cs
c,x/y

and Cr
f,x/y ≤ C

v
f,x/y have to be satisfied. Furthermore, to give meaningful results, the intention

of face and cell criteria must not contradict. For closely related face and cell criteria sharing
a common normalization, this means Cr

f,x/y < Cs
c,x/y.

   

veto 
split

request
split

allow 
split

# cells

(a) Cell criterion histogram with x/y split
thresholds

   

request
removal

veto
removal

allow
removal

# faces

(b) Face criterion histograms with face re-
moval thresholds

Figure 3.12.: Criteria histograms with action thresholds. Some remarks on the dynamics of error his-
tograms following a sequence of grid modifications and their implications for the design of adaptation
strategies can be found in [8].

How split requests for cells are set can be influenced by choosing a cell split strategy. The
possible choices are:
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3.3. Grid adaptation algorithms

• Anisotropic cell split strategy: the rules in table 3.3 are followed, splits in x and y
direction are requested separately.

• Isotropic cell split strategy: an isotropic split (in both x and y direction) is requested
already if a cell exceeds the split threshold in one direction only.

3.3.2. Adaptation algorithm

An action resulting from evaluation of the action thresholds has to be tested, anticipating
the changes it causes to see whether it can be performed by atomic operations and results in
an admissible grid. If not, depending on a given strategy the adaptation algorithm can add
actions to the modification in a modification extension step to make it admissible. If this fails
the action is rejected.

To simplify the algorithm, analysis of cell and face actions is done in separate steps. The order
of these steps is important, because only the analysis done in the second step can take the
results of the first step into account. The choice made here is that cell splits take precedence
over face removals. This is motivated by the fact that (assuming that high grid resolution
correlates with low errors) ensuring sufficiently high grid resolution takes precedence over
reducing the number of grid objects (and thus the computational complexity of the solver).

In the following algorithms a shorthand notation is used to identify groups of objects defined
by the local connectivity. Some examples are given in table 3.4. Some repeating and non-
essential parts of the algorithms are omitted for brevity.

Shorthand Meaning

FΩ,i All faces connected to cell Ωi

FTop

Ω,i All top faces connected to cell Ωi

Fx-aligned
Ω,i = ∂Ωj All x-aligned faces connected to cell Ωi

CV,k All cells connected to vertex Vk
VΩ,i All vertices connected to cell Ωi

Table 3.4.: Examples for shorthands used in the adaptation algorithm listings

Extending cell splits

Splitting a cell into sub-cells can lead to connected cells with more than 2 sub-faces/neighbors
on one side (figure 3.13a), requiring a split of these cells. Two cell split extension strategies
(not to be confused with the cell split strategy) are possible:

• Isotropic split extension: only isotropic splits are performed (figure 3.13b).
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3. Grids and data structures

• Anisotropic split extension: splits of connected cells are performed only in the same
coordinate direction as the split causing them (figure 3.13c).

   

a) b) c)

isotropic split extension anisotropic split extensionsplit request

Figure 3.13.: Cell split extension strategies. a) non-admissible modification creating a cell with three
sub-faces on one side. b) modification made admissible through additional isotropic split. c) modifi-
cation made admissible through additional anisotropic split.

The additional splits introduced are possibly non-admissible themselves, leading to the re-
cursive algorithm ExtendCellSplits (algorithm 2) to resolve the global consequences of a
split. The entry point is a linear search for all cells marked to be split. The cell split strategy
is again of importance here. In the isotropic case, for a requested x+y-split the splits in both
directions must succeed for the combined action to be possible, whereas for the anisotropic
cell split strategy a failed split in one direction does not affect the other direction, allowing
separate consideration.

Algorithm 2: ExtendCellSplits

Input: Modification M, Criteria C
Output: Modification M
for i = 1 . . . Ncv do

if (aicv =x+y) and (Isotropic split strategy) then
# Isotropic split strategy

possible = AnalyzeCellSplit(Ωi, M, x+y split)
M = PropagateCellSplitDecision(Ωi, M, possible)

else
# Anisotropic split strategy

for (every split direction d in aicv) do
possible = AnalyzeCellSplit(Ωi, M, d)
M = PropagateCellSplitDecision(Ωi, M, possible)

The analysis step is done in AnalyzeCellSplit (algorithm 3). It does not directly update
M as the final decision whether the action is possible can only be made after the recursion
is completed and all consequences have been evaluated. Instead, preliminary ”considered”
or ”impossible” action flags (which are also used to avoid loops and redundant tests in the
recursion) are recorded and a boolean possibility result is returned. At any point in Ana-
lyzeCellSplit when a split is decided to be impossible, any further analysis can be skipped
(the corresponding pseudo-code has been omitted for reasons of clarity).
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3.3. Grid adaptation algorithms

Algorithm 3: AnalyzeCellSplit

Input: Modification M , split directions d
Output: Modification M , boolean possible flag

# Step 1: what directions have to be tested

test x/y split = ( x/y direction is in d )
if (test x/y split) and (direction has already been tested or is considered) then

# Skip tests and reuse existing result

test x/y split = false; x/y split possible = existing result

# Step 2: perform necessary tests

if (test x split) then
Mark Ωi as considered for x split
# Stencil limit? Criterion above veto threshold?

x split possible = ( dix > 1 ) and not ( cic,x < Cv
c,x )

# Is direct split possible? First do top/north direction

if (|FΩi
Top| = 2 ) then

# Top face already split

x split possible = true
else

# Check neighbor/sub-face rule for top neighbor Ωj

Get top neighbor Ωj

if (|FΩj

Bottom| = 1) then
# Sub-face rule not violated for Ωj by x split of Ωi

x split possible = true
else

# Sub-face rule will be violated for Ωj. Try to split it.

if (Isotropic split extension strategy) then
x split possible = AnalyzeCellSplit(Ωj , M, x+y split)

else if (Anisotropic split extension strategy) then
x split possible = AnalyzeCellSplit(Ωj , M, x split)

# Do the same test for the bottom/south direction (FΩi
Bottom)

...
if not (x split possible) then Preliminary mark x split impossible for Ωi

if (test y split) then
Do the equivalent tests/recursion for y direction

...

# Step 3: combine test results

if (Isotropic split strategy) then
# All the directions have to be splittable

possible = (x split possible) and (y split possible)
if ( not possible ) then Preliminary mark x+y split impossible for Ωi

else if (Anisotropic split strategy) then
# The requested direction has to be splittable

possible = x split possible or y split possible
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3. Grids and data structures

After completing AnalyzeCellSplit, PropagateCellSplitDecision travels the recursion
again and transforms the preliminary flags into final decisions depending on the result. The
exact description of PropagateCellSplitDecision is omitted here, the basic idea is very
similar to AnalyzeCellSplit.

Extending face removals

Like a cell split, a face removal can lead to violation of the sub-face rule. Additionally,
if anisotropic cells are allowed, cells that are not logically rectangular can occur. Face re-
movals are more complicated to analyze than splits, as depending on the chosen removal
strategy a face often cannot be removed individually but only as part of a face group which
is removed simultaneously to form an atomic operation. While the general design of the
face removal analysis algorithm is similar to the split extension, one recursion level now
consists of two steps: face group analysis (AnalyzeFaceGroupRemove) and face analysis
(AnalyzeFaceRemove).

The starting point of the face removal analysis (algorithm 4) is again a linear search over all
faces. For faces marked for removal the corresponding face group is analyzed.

Algorithm 4: ExtendFaceRemoval

Input: Modification M, Criteria C
Output: Modification M
for i = 1 . . . Nfc do

if (aifc = remove) then
possible = AnalyzeFaceGroupRemove(M, C, ei)
PropagateFaceRemoveDecision(M, possible)

Face group analysis

The first task in a face group analysis is finding the face group for the input face ei, the
definition of which depends on the coarsening strategy. Possible choices are:

• Isotropic coarsening strategy: allow only coarsening steps resulting in isotropic cells
(aspect ratio 1:1).

• Anisotropic coarsening strategy: allow all admissible coarsening steps.

Figure 3.14 shows the possible face group configurations (up to symmetry and omitting similar
cases). In all cases, the cells that are to be merged must resolve to a common parent cell in
the next coarser hierarchy of the grid, which can be tested by evaluating equation (3.3). For
the isotropic merge strategy (figure 3.14a), this is already enough to find the correct group,
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3.3. Grid adaptation algorithms

Algorithm 5: AnalyzeFaceGroupRemove

Input: Modification M, Criteria C, face ei
Output: Modification M, boolean groupPossible flag

if (Face ei already tested) then return existing groupPossible result

# Find and analyze faces in group

Gi = GetFaceGroup(ei)
if (|Gi| = 0) then groupPossible = false

forall (Face ek in Gi ) do
facePossible = AnalyzeFaceRemove(M, ek)
# If a face fails, the group fails.

# What this means for the individual faces depends on the group

type.

if ( not facePossible ) then
if (Isotropic coarsening strategy) then

# If one face fails, none can be removed

Mark all faces in Gi preliminary impossible
else if (Anisotropic coarsening strategy) then

# Effect depends on face group type

switch |Gi| do
case 1

# Single face ei = ek, case figure 3.14a

Mark ei as preliminary impossible
case 3

# Three face (T) case, case figure 3.14b

Mark failed face ek and input face ei preliminary impossible
Mark all faces in Gi that are sub-faces preliminary impossible

case 4
# Four faces, case figure 3.14c

Mark input face ei preliminary impossible (leave others untouched)

Return groupPossible = false

and with this strategy removal of any face in the group will lead to the removal of the entire
group unless the action is vetoed for one of the faces.

In the anisotropic case (figure 3.14b), the situation is more complicated because simultaneous
removal of two faces with differing alignment from an isotropic face group (which are by itself
admissible) leads to L-shaped cells (figure 3.15). In the case of a ”T”-shaped face group
(figure 3.14b 4,5) this can happen if a sub-face is removed (in this context a sub-face is a
face that does not cover the entire side of one of the cells it is connected to). This has to
be avoided by extending the face group accordingly. If a face cannot be removed due to grid
hierarchy alignment rules, the face group for this face is empty (as e.g. shown in figure 3.14a
1,2, b 1,2). Also note that due to the grid cell alignment rule, face group selection is never
ambiguous.
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a) isotropic coarsening strategy

1)

1)

2)

3)

4)

5)

= face remove action (due to 
 criteria threshold evaluation)  

= denied remove action

= face remove action (due to
 face being part of a group,
indicated by connection line)

b) anisotropic coarsening strategy cases

2)

1. Coarsening Request 2. Face group 3. Coarsened grid

1. Coarsening Request 2. Face group 3. Coarsened grid

Figure 3.14.: Face group case differentiation for isotropic and anisotropic coarsening strategy.

   

a) 

b) 

Figure 3.15.: L-shaped cells with anisotropic coarsening. The face group has to be extended to result
in an admissible atomic operation.
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Algorithm 6: GetFaceGroup

Input: Modification M, face ei
Output: Face group Gi
if (Isotropic coarsening strategy) then

# Case figure 3.14a. First look at start vertex of face V From

F,i

Get cells CV From
F,i

connected to start vertex V From
F,i of face ei

if (All cells in CV From
F,i

resolve to same parent cell) then

Return group Gi = FV From
F,i

of faces connected to V From
F,i

# Do the same for the end vertex V To

F,i

Get cells CV To
F,i

if (all cells in CV To
F,i

resolve to same parent cell) then

Return group Gi = FTop

V To
F,i

else if (Anisotropic coarsening strategy) then
# Case figure 3.14b

if (ei is a sub-face) then
Find (T-shaped) face group (either FV From

F,i
or FV To

F,i
)

by testing for common parent cell
if (FV From

F,i
or FV To

F,i
is face group) then

Return the group

else Return empty group Gi = ∅
else if (ei is not a sub-face) then

if (cells Ωdec
F,i and Ωinc

F,i connected to face ei resolve to same parent cell) then

# Cells can be merged. Have to extended group? (figure 3.14b

3-5)

if (cells CV From
F,i

coarsen to same parent cell) then

if (No face in FV From
F,i

is marked as impossible to remove) and (A face

in FV From
F,i

with different orientation than ei is marked for remove) then

Return Gi = FV From
F,i

Do the same test for cells CV To
F,i

and faces FV To
F,i

connected to V To
F,i

...
# If no group found yet, no group extension necessary

Gi = {ei}

# If no group was found, face ei cannot be removed. Return an empty

group.

Gi = ∅
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Face analysis

If the face group found for a face is not empty, the algorithm tests for every face in the group
whether removing it is possible using the function AnalyzeFaceRemove. A group can only
be removed if all individual faces can be removed. However, the reverse argument that if a
group fails, none of the individual faces can be removed, is not true in general and depends
on the chosen coarsening strategy.

The central concern in AnalyzeFaceRemove is violation of the sub-face rule in the parent
cell resulting from the merge. If the rule is violated, AnalyzeFaceRemove identifies coars-
ening actions necessary to avoid it, finds the faces that have to be removed to perform them
and tests the possibility of by calling AnalyzeGroupRemove for these faces.

   

a) b)

c)

=primary face remove
=secondary face remove

Figure 3.16.: Possible cases for extending removal of face ei towards
the right neighbours (see algorithm 7)

   

= primary face remove
= secondary face remove

(remove)

(remove)

(follow)

(follow)
(remove)

= follow face

Figure 3.17.: ”Follow”
flags for face recursion

As in the cell split recursion, loops and redundant tests are avoided by recording preliminary
result flags. Again, the detailed pseudo-code for these tests and the PropagateDecision
algorithm are mostly omitted for brevity, as they do not contribute new essential parts to
the algorithm. The only complications to be mentioned for the face recursion is that in order
to follow the entire path of faces involved in a global face remove extension, some faces that
are not marked for removal have to be followed. They are marked using a ”follow” flag, as
shown in figure 3.17.

3.3.3. Criteria threshold and strategy choices

Summarizing the parameters controlling the adaptation algorithms, the user has to specify
the action and veto thresholds and three strategy settings (either isotropic or anisotropic):
the cell split strategy that defines how the action thresholds are interpreted, the cell split
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Algorithm 7: AnalyzeFaceRemove

Input: Modification M, Face ei, Face group Gi
Output: Modification M, boolean facePossible flag

if (ei is persistent) then return facePossible=false
# Evaluate veto threshold (depending on face orientation)

if (cif > Cv
f,x/y) then return facePossible=false

# The parent cell is also in tested GetFaceGroup, repeated for clarity

Get cells Ωk = Ωdec
F,i, Ωl = Ωinc

F,i connected to ei
if not (Ωk,Ωl coarsen to same parent) then return facePossible=false
# Is a connected cell marked to be split (split precedence)?

if (akcv 6= none) or (alcv 6= none) then return facePossible=false

if (ei is x-aligned) then
if (ei is rightmost face in group Gi) then

# Check sub-face rule on the right side.

Collect right neighbors CTop, CBottom (figure 3.16)
# Case figure 3.16c: only one neighbor cell

if (ΩT1 = ΩB1) then return facePossible = true
# Case figure 3.16a,b: check for simultaneous splits

if (a cell in CTop or CBottom is marked for split in y-direction) then
Return facePossible = false

if (|CTop| = 2) then
# Case figure 3.16a

Find face eTop connecting ΩT1 and ΩT2

facePossible = AnalyzeFaceGroupRemove(M, C, eTop)

if (|CBottom| = 2) then
Find eBottom connecting ΩB1 and ΩB2

facePossible = AnalyzeFaceGroupRemove(M, C, eBottom)

else if (ei is leftmost face in group Gi) then
Do the equivalent test with the neighbor cells and faces on the left side.

...

else if (ei is y-aligned) then
Do the equivalent tests with neighbor cells and faces on top and bottom side.

...
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extension strategy controlling necessary grid refinement actions and the coarsening strategy
governing face removals.

The exact choice of criteria thresholds obviously depends mainly on how the adaptation
criteria are defined and normalized, for which some examples are described in the next section.
Independently of this, some general observations can be made.

Global vs. local extensions

The presented recursive action extension algorithms enable local grid modifications to cause
global changes. This is usually intended, and unwanted excessive coarsening can be contained
using the veto thresholds. When pushing the veto mechanism to its logical extreme by setting
the veto threshold equal to the corresponding action threshold

Csc,x/y = Cvc,x/y, Crf,x/y = Cvf,x/y, (3.5)

only actions will be performed that are explicitly requested by the criteria. This changes the
character of the algorithm from global to local, reducing it to a grid structure sanity check.
While such a configuration makes no sense for complex dynamical criteria, it can be used for
strict enforcement of static criteria like fixed grid resolution patterns.

Threshold choice

In non-time-dependent simulations, the grid is expected to converge to a steady state together
with the solution. In this situation sensitive criteria can cause values for an object to jump
directly from the refinement to the coarsening range, resulting in the grid alternating between
two states. This can be partially avoided by choosing the action thresholds Csc,x/y, C

r
f,x/y

sufficiently far apart. A more effective fix is to choose an appropriate (possibly nonlinear)
normalization of the criteria.

Fully isotropic vs. fully anisotropic strategy

While any combination of strategies is supported and might make sense in specific situations,
the most common scenarios are fully isotropic or fully anisotropic adaptation. Anisotropic
adaptation offers higher flexibility and thus potentially allows grids with lower cell and face
counts. The disadvantage is that cells with very high aspect ratios and steep changes in grid
resolution can occur (c.f. figure 3.18), which must be taken into account when designing
criteria. For isotropically adapted grid the cell aspect ratio is fixed, and the coupling between
dimension due to the sub-face rule limits the resolution change between neighbor cells to 2:1.
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   (a) Isotropic strategy    (b) Anisotropic strategy

Figure 3.18.: Grid resolution jumps for different adaptation strategies.

3.4. Adaptation criteria

Adaptation criteria are the defining element driving grid evolution. Their goal can be de-
scribed concisely to optimize a grid w.r.t. the numerical approximation error.

• For a given global error bound, find the grid with the lowest cell count, or

• for a given cell count, find the grid delivering the lowest possible global error.

Despite the clear definition of the objective, deriving criteria to meet it is not straightforward.
The main obstacle is that determining the approximation error of a numerical method (in this
case the finite volume method (FVM)) is a hard task already for simple model equations like
the advection-diffusion equation, let alone nonlinear equation systems like the B2 equations.
But even when reliable error estimates for individual quantities are available, efficient use of
this information depends on the problem. For example, approaches that try to equidistribute
the error can be inefficient when the interest is an optimal approximation of a specific output
functional. Overall, criteria design is highly problem specific.

3.4.1. Error estimators

Due to the high interest in efficient schemes, a-posteriori estimation of discretization errors
is a topic covered extensively in the literature, and various approaches have been developed.
Starting from the derivation of the numerical scheme, estimates for the local truncation error
(LTE) (4.22) can be given, and depending on the model equations can be used directly to
estimate the global error (4.20). A general approach to determine the LTE is Richardson or τ -
extrapolation. Two approximations with differing accuracy (either computed using different
grid resolutions or using two numerical schemes with different consistency order) are solved
and the solutions are combined to estimate the LTE. While this can be done straightfor-
wardly for rectangular grids forming a grid hierarchy as studied in this work, problems occur
for unstructured grids where the local truncation error depends strongly on cell geometry,
potentially suffering from inaccuracies near refinement interfaces [8]. This effect is observed
in the benchmarks discussed in chapter 5.

43



3. Grids and data structures

Another common theme is exploitation of the strong theoretical foundation of the Finite
Element Method (FEM). The FVM and FEM are linked by the close relationship of high-
order FVMs to Discontinuous Galerkin (DG) methods in Petrov-Galerkin form, allowing
application of ideas and results from FEM error analysis to the FVM. This resulted in the
derivation of a number of error estimators [111, 18, 62, 37] for the global error, which for B2
can be applied directly to the individual linearized equations.

More advanced schemes consider user-defined output functionals (e.g. lift and drag for aero-
dynamic simulations) and relate the sensitivity of these quantities to the solution via an
adjoint problem [18, 85]. Combined with an approximation of the global error, this relation
can then be used to directly correct the output functional and drive the grid adaptation
to specifically optimize the discretization for the functional of interest. As most modeling
tasks using B2 revolve around accurate predictions for certain key quantities (e.g. power flux
density on divertor and wall), the adjoint-based approach holds great promise.

While criteria that are aware of the global error are ultimately most desirable, their theory can
be complex and they often only work reliably for smooth grids and solutions. For unstructured
grids and solutions exhibiting strong features like shocks, they can become hard to use and
often have to be combined with heuristic criteria to stabilize the adaptive algorithm.

3.4.2. Feature detectors

A general class of heuristic criteria are feature detectors. They are based on the observation
that the LTE is usually high in regions with high data variation (like steep gradients or
shocks) and overall solution accuracy can be improved by adapting the grid to accurately
resolve them. Criteria of this type have been applied with good results in various fields and
are still in widespread use due to their simplicity and robustness. Also, an advantage that
should not be underestimated is easy accessibility, as their straightforward connection of cause
and effect enables the modeler to customize the feature detectors to generate grids based on
his intuition and experience. However, careless use of feature detectors can be dangerous
[118]. The fundamental limitations of this approach must be kept in mind at all times.

Some simple feature detectors

Some general design guidelines for feature detectors are detailed in [8]. The main point is
that criteria should mimic the qualitative behavior of the local truncation error, i.e. cchild <
(1/2)pcparent after a split for a p-th order scheme. Therefore approximations of derivatives
(that ideally do not change when modifying the grid resolution) are unsuited as criteria.

In the following examples, two types of feature detectors are used. Type 1 simply measures
variation of a given grid function φi at every face ek by computing a simple absolute undivided
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difference

ckf = |φi − φd| with Ωi = Ωinc
F,k,Ωd = Ωdec

F,k (3.6)

and therefore triggers refinement in regions of steep gradients and coarsening for flat regions.
Type 2 measures the variation of the gradient in the direction normal to the face (e.g. from
least-squares reconstruction)

ckf = |(∇φ)i − (∇φ)d|, (3.7)

resulting in coarsening where the solution varies linearly and refinement in regions where it
changes slope. Unlike the criteria in [8], both criteria behave like the LTE of a first-order
scheme.

A simple normalization is to rescale the criteria to the interval [0, 1]:

ck,∗f =
ckf

maxi=1,Nfc
cfk
. (3.8)

Note that this normalization changes at each grid modification cycle. For a steady-state
solution, the grid will nevertheless converge to a fixed state, but the resulting grid resolution
and cell count for a specific threshold choice depend on the solution and are therefore hard to
predict, requiring some initial tests and adjustments. Adaptation parameter scans can then
be done by scaling the thresholds. More predictable results can be achieved by choosing a
fixed global criterion normalization at the beginning of the simulation.

Cell criteria in every coordinate direction are derived from the face criteria by averaging the
values of the faces normal to the respective coordinate direction

cic,x =

∑
ej∈Fy-aligned

Ω,i
cjf

|Fy-aligned
Ω,i |

, cic,y =

∑
ej∈Fx-aligned

Ω,i
cjf

|Fx-aligned
Ω,i |

. (3.9)

Similarly, face criteria can be derived from cell criteria using maximum or averaging opera-
tors.

3.5. Grid adaptation examples

The following examples serve the purpose of demonstrating the capabilities and flexibility
of the adaptation algorithm and highlighting some of the issues mentioned so far. In this
section only steady-state situations are shown, a time-dependent benchmark using adaptive
grids is discussed in section 5.2. It must be stressed that in the following examples the model
equations are not solved, the focus is entirely to test the adaptation algorithms using given
converged B2.5 solutions.
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(a) Base grid (128x64) (b) Te reference

Figure 3.19.: Base grid and Te reference solution in physical space. An enlarged view of the grid in
the divertor region is shown in figure 3.24a.

3.5.1. ASDEX Upgrade discharge #16151 benchmark solution

This example is based on the B2 steady-state standalone benchmark case for ASDEX Upgrade
discharge #16151 as used in chapter 7. A base grid with a resolution of 128x64 cells3 in the
simulation domain is used. The grid is adapted to a fixed converged electron temperature Te
solution (see physical domain plot in figure 3.19b) using two feature detectors:

• Criterion C1: data variation (3.6) with global normalization (3.8).

• Criterion C2: gradient variation (3.7) with global normalization (3.8).

The goal is to obtain grids that offer a good solution representation while reducing the
number of cells and respectively the grid resolution. Initial action thresholds are chosen as
listed in table 3.5 and scaled linearly with a common factor to produce a series of threshold
sets that result in grids with varying resolution. For every threshold set, starting from the
finest possible (base) grid, adaptation cycles with both fully isotropic and fully anisotropic
adaptation strategies are performed. Depending on parameters, 3-10 iterations are necessary

38192 cells in the simulation domain, 8580 cells including ghost cells.
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Cv
c,x Cs

c,x Cv
c,y Cs

c,y Cr
f,x Cv

f,x Cr
f,y Cv

f,y

C1 0.00 0.70 0.00 0.70 0.10 0.30 0.20 0.30
C2 0.00 0.35 0.00 0.40 0.10 0.20 0.15 0.40

Table 3.5.: Cell and face action thresholds for the #16151 benchmark grid adaptation algorithm test.
They are rescaled with a factor λ ∈ [0.1, 1.4] to obtain a range of grids.

until the working grid reaches a fixed state. While in principle this number is bounded by
the range of resolution levels in the grid, in these examples it also depends on how fast
the normalization of the criteria settles. In some cases oscillation around the final state is
observed. This effect is strongest for anisotropic grids with high cell numbers and can be
avoided with a more sophisticated normalization. As the problem only affects a very small
number of cells in all cases, this is omitted here for reasons of simplicity.

After every adaptation cycle the Te solution is transferred from the old to the new grid using
linear reconstruction as described in section 4.4.2 for all interpolation steps. The error of the
solution representation on the final working grid is determined by transferring the solution
back to the base grid and computing the deviation from the original solution. For the error
computation the volume-averaged measure (4.26) denoted Ep is used.

Comparison of criteria and strategies

The error vs. cell count relations obtained by this resolution scan are first plotted individually
for the two criteria in figures 3.20a and 3.20b. Every data point represents one threshold set
and the resulting final grid. As desired, for both criteria the error drops with increasing grid
resolution.

G2

G1

(a) Criterion C1 (b) Criterion C2

Figure 3.20.: E1 and E2 error of Te for varying grid resolution and strategies
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G2

G1

(a) C1 vs. C2, E1 error (b) C1 vs. C2, E∞ error

Figure 3.21.: Error comparison criteria C1 vs. C2, isotropic and anisotropic strategies. C1 (data
variation) clearly outperforms C2 (gradient variation).

The anisotropic strategy consistently requires less grid cells to achieve a given accuracy,
especially for coarse grids. This is illustrated by comparing the grids labeled G1 and G2 in
figure 3.20a. Both achieve a E1 error of ≈ 0.17eV . G1 is an isotropic grid with 1505 cells,
G2 is anisotropic with 470 cells. Plots in the computational domain are presented in figures
3.22 and 3.23, the physical view of the grids in the divertor region is shown in figures 3.24b
and 3.24c. The criterion forces the grid to high radial(y) resolution in the core region where
at the same time the solution is constant in the poloidal(x) direction. The fixed cell aspect
ratio enforced by the isotropic strategy leads to an excessively high poloidal resolution in this
region, significantly increasing the total cell number. With the anisotropic strategy, the grid
effectively reduces to a one-dimensional discretization in the core.

To compare the performance of the criteria, the E1 and E∞ errors of both criteria are plotted
in figures 3.21a and 3.21b. In this example criterion C1 based on data variation clearly
outperforms criterion C2 based on gradient variation. What also becomes clear from the
E∞ and E2 errors is that the behavior of isotropic grids is more consistent in decreasing the
error, while grids resulting from anisotropic adaptation exhibit local increases in error when
increasing the grid resolution. Looking at the grid in figure 3.23 shows that the aspect ratio
of cells in anisotropic grids obtained in this resolution scan can be very high, with much more
rapid variation of the grid spacings especially for coarse grids. In this situation the criteria
can react much stronger to grid modifications than for grids which have smooth transitions
of resolution (as is the case for the isotropic grids), resulting in such non-smooth behavior.
A solution to this is to limit the allowed aspect ratio of cells (both in computational and
physical space, possibly depending on local parameters or grid region), forcing the algorithm
to produce smoother grids.

To provide more insight into the performance of criterion C1, the absolute and relative errors
of the solution representation on grid G2 with respect to the reference solution are shown in
figures 3.25 and 3.26. While the absolute error is distributed equally over the whole domain,
the relative error is localized to the low-temperature regions close to the walls and targets.
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Figure 3.22.: Grid G1 (computational space plot, cf. figure 3.2): Criterion C1, isotropic strategy, 1505
cells, adapted to Te (The scales in figures 3.22 and 3.23 deviates slightly from figure 3.19b because
plots in computational space include ghost cells). The isotropic strategy leads to excessively high
grid resolution in the core.

Figure 3.23.: Grid G2 (computational space plot, cf. figure 3.2): Criterion C1, anisotropic strategy,
470 cells, adapted to Te. The one-dimensional situation in the core is correctly resolved.
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(a) Base grid (b) Grid G1 (Criterium C1, Isotropic)

(c) Grid G2 (Criterium C1, anisotropic) (d) Grid G3 (Criterium C3, anisotropic)

Figure 3.24.: Plots in physical space of grids in the divertor region. Criterium C3 increases the reso-
lution at the target plates.

This is to be expected: criterion C1 only considers absolute data variation, and the global
normalization weighs all deviations equally.
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(a) Physical domain plot (b) Computational domain plot

Figure 3.25.: Absolute error of the Te approximation on grid G2 compared to the reference solution.
Criterium C1 leads to similar absolute deviations in the whole domain.

(a) Physical domain plot (b) Computational domain plot

Figure 3.26.: Relative error of the Te approximation on grid G2 with respect to the reference solution.
High relative errors are located in areas with low temperature.
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Combining criteria

The example above only considers one state variable (Te). Usually a code stores and solves
multiple quantities on the working grid, and in general these exhibit differing qualitative be-
havior. To take all relevant quantities into account, either multiple criteria or an appropriate
proxy quantity have to be used to drive grid adaptation. A straightforward approach is to
compute separate criteria with comparable normalizations and combine them into a single
criterion which is then passed to the adaptation algorithm.

This approach is demonstrated for the same benchmark case used before. Figure 3.27a shows
again the grid resolution scan, this time plotting the error introduced for the electron density
ne on the the anisotropic grids created with the C1 criterion. The C1 criterion does not
consider ne, and while the E1 error behaves satisfactory, the E2 error reveals a high localized
error that only improves slowly when increasing the resolution. A new criterion C3 is defined
by applying a criterion of type C1 also to ne and combining the criterion values resulting from
Te and ne using the max operator. The combined criterion reduces the ne error (also plotted
in figure 3.27a) at the same rate previously observed for Te. The solution approximation of Te
(figure 3.27b) is mainly unaffected. Compared to criterion C1, only the cell number for coarse
grids is increased, but the effect vanishes quickly with increasing cell count. To illustrate the
difference, figure 3.28 shows a plot in computational space of the grid marked G3, which like
G1 and G2 has an E1 error for Te of ≈ 0.17. The grid shows how additional cells are used to
resolve the density feature in the inboard and outboard divertor. The corresponding divertor
plot is shown in figure 3.24d.

It must be kept in mind that the aim of this example was to study the performance of the
adaptation algorithms. They were used to find grids that offer a favorable balance between
cell count and approximation quality for a given solution grid function, but the grids were
not used to solve for these solutions. In fact, whether the grids obtained using the feature
detectors are particularly suited for the numerical solution of the B2 model equations is not
obvious and has to be studied separately.
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(a)

G3

(b)

Figure 3.27.: Comparison criterion C1 (only Te) vs. criterion C3 (combined Te and ne)

Figure 3.28.: Grid G3 (760 cells), adapted to Te and ne with criterion C3 (anisotropic strategy),
plotted in computational space. The resolution at the target plates is increased to match the electron
density. The corresponding plot of the divertor region in physical space is shown in figure 3.24d.
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3.5.2. Grid hierarchy generation

Next to solution-driven grid adaptation, the adaptation algorithm can be used to force the
grid resolution to a preset configuration by defining artificial criteria. An application for
this is the creation of grid hierarchies needed for multigrid algorithms. This example uses a
base grid created for the ASDEX Upgrade discharge #15320 with disconnected double null
topology. Starting from a working grid adapted to a ne solution (figures 3.29a and 3.30a) a
hierarchy of nested grids with a stencil aspect ratio of 4 : 1 is created by forcing coarsening
of cells smaller than the resolution of the current hierarchy level. In this case the stencil size
was used as a criterion, but the physical cell size could be used as well. The process stops
when the coarsest possible grid is reached, with every sub-block of the grid being covered by
one cell only (figures 3.29e and 3.30e). Note that the sub-blocks of the base grid used don’t
have cell dimensions that are powers of two, demonstrating the algorithm’s capability to use
sub-block hierarchies and achieving maximum possible coarsening (see appendix A.3.2).

(a) (b)

(c) (d)

(e)

Figure 3.29.: Grid hierarchy for a double-null grid (plotted in computational space). The highest-
resolution grid (a) is adapted to the electron density. Subsequent grids in the hierarchy are created
by forcing the adaptation algorithm to remove cells above a certain refinement level. Grid (e) is the
coarsest possible grid.
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(a) (b) (c)

(d) (e)

Figure 3.30.: Grid hierarchy for a double-null grid (plotted in physical space)
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B2.5 solves the nonlinear coupled model equations given in section 2.2 by sequential solution of
linearized equations and relaxation of the plasma state (cf. chapter 6). The linear equations
thus obtained are advection-diffusion equations with source terms. This chapter discusses
finite-volume methods for their solution on structured and unstructured grids.

4.1. The advection-diffusion-equation

Let φ : Rn×R+ → R, φ = φ(~x, t) be a conservative scalar quantity, e.g. energy, mass density
or momentum. In a fixed volume Ω ⊂ Rn then holds the conservation law for φ

d

dt

∫
Ω
φdΩ +

∫
∂Ω

~f · ~n d∂Ω =

∫
Ω
sdΩ. (4.1)

The flux vector ~f : Rn × R+ → Rn, ~f = ~f(~x, t) gives the rate of transport (or flux density),
~n is the outward normal vector and s : Rn ×R+ → R, s = s(~x, t) denotes a source term. The
conservation law states that the change of the quantity φ in Ω is accounted for by the flux
through the volume boundary ∂Ω and sources.

In the context of fluid modeling the total flux is a result of advection (synonymously called
convection) and diffusion. The advective flux

~fa = ~uφ (4.2)

describes transport of the quantity φ due to a velocity field ~u : Rn × R+ → Rn, u = u(~x, t).
The diffusive flux

~fd = −D∇φ (4.3)

is driven by the gradient of the quantity φ, resulting in transport from regions of high con-
centration to regions of low concentration. D : Rn × R+ → R+,n×n

0 , D = D(~x, t) is a matrix
of positive diffusion coefficients. The combined advection-diffusion flux is then

~fad = ~uφ−D∇φ. (4.4)

Applying the divergence theorem (assuming the required smoothness for ~f , i.e. f ∈ C1(Rn×
R+)) to (4.1) and observing that the equation holds for any volume Ω ⊂ R, one can reformu-
late the integral equation into the differential equation

∂φ

∂t
+∇ · ~fad =

∂φ

∂t
+∇ · (~uφ−D∇φ) = s. (4.5)
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If φ is time-dependent and D 6= 0, (4.5) is of parabolic type. In the limit case of no advection
(~u = 0), the diffusion or heat equation is obtained. In the other limiting case of no diffusion
(D = 0), the advection equation in conservative or divergence form is obtained, which is
of hyperbolic type. This change of type is referred to as a singular perturbation. In the
steady-state case (∂φ∂t = 0), (4.5) is of elliptic type.

The problem for the unsteady situation is defined as follows.

Definition 4 (Initial-value problem). Find φ : Ω× [0, T ]→ R so that

∂φ
∂t + Lφ = s in Ω× (0, T ],

Bφ = g on ∂Ω× (0, T ],
φ(~x, 0) = φ0(~x)

(4.6)

where the operator L = ∇·~fad is the flux divergence. B and g describe the boundary conditions.
It is completed by specifying an initial value φ0 and suitable boundary conditions.

Likewise, the steady-state boundary value problem is defined by

Definition 5 (Boundary-value problem). Find φ : Ω→ R so that

Lφ = s in Ω,
Bφ = g on ∂Ω.

(4.7)

Existence and uniqueness of solutions to problems (4.6) and (4.7) are studied in the context
of general first- and second-order partial differential equations [50].

4.1.1. Boundary conditions

To obtain a well-posed problem, a consistent set of boundary conditions has to be defined.
For the parabolic and elliptic case we consider the conditions (with ~n the outward normal
vector of Ω)

φ = gd on ∂Ωd Dirichlet condition, and (4.8)

~n · ∇φ = gn on ∂Ωn Neumann condition. (4.9)

On every part of the boundary one condition must be specified

∂Ωd ∪ ∂Ωn = ∂Ω, ∂Ωd ∩ ∂Ωn = ∅. (4.10)

If only Neumann conditions are specified, the compatibility condition∫
∂Ω
fadd∂Ω = −

∫
Ω
sdΩ (4.11)

has to be fulfilled, and the solution is not unique.

In the hyperbolic case, the definition of inflow and outflow conditions has to be consistent with
the characteristic curves of the problem. Dirichlet conditions are set on inflow boundaries,
and appropriate Neumann conditions on outflows.
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4.1.2. Expansion in curvilinear coordinates

In the presence of a time-independent coordinate mapping T : Ωξ → Ωx, ~x = ~x(~ξ), (4.5) can
be expanded to

∂φ

∂t
+

1
√
g

 n∑
i=1

∂

∂ξi
(
√
guiφ(~x(~ξ)))−

d∑
j=1

∂

∂ξj

(
√
g djj

∂φ(~x(~ξ))

∂ξj

) = s. (4.12)

where the transport coefficients are used in contra-variant form ui, dii. Properties of the coor-
dinate mapping and the metric coefficient

√
g are detailed in appendix A.1. In an orthogonal

system (4.12) simplifies to

∂φ

∂t
+∇ · ~f =

∂φ

∂t
+

1
√
g

∑
i

∂

∂ξi

√
g

(
uiφ− dii ∂φ

∂ξi

)
=
∂φ

∂t
+

1
√
g

∑
i

∂

∂ξi

√
g

(
1

hi
ũiφ− 1

h2
i

d̃ii
∂φ

∂ξi

)
= s

(4.13)

with ũi [m/s] , d̃ii
[
m2/s

]
being the transport coefficients relative to the covariant basis in

physical units.

4.1.3. The Péclet number

The character of the transport is described by the dimensionless Péclet number, which is
defined as the ratio of advective vs. diffusive transport

Pe =
UL

D
, (4.14)

where L[m] is a typical length scale of the flow, U [m/s] the velocity and D[m2/s] the diffusion
strength. At a point ~x, for a flow along the direction given by the unit vector ~n, the Péclet
number can be defined as

P~n =
~n · ~u(~x) L

‖D(~x)~n‖
. (4.15)

For advection-dominated flow |Pe| → ∞, for purely diffusive flow Pe = 0.

4.2. Finite volume discretization

A vast number of schemes is found in the literature for the numerical solution of conserva-
tion laws of type (4.1). One class of schemes which exactly maintains conservation is the
finite volume method (FVM) [51, 20, 74]. This property and its relatively straightforward
implementation made it very popular in the field of computational fluid dynamics.
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4.2.1. General finite volume scheme

The first basic idea in the derivation of the FVM is to discretize the domain Ω into cells (or
control volumes) Ωj (cf. figure 4.1). For every cell, the cell average of the solution φ

φj(t) = Ahφ|Ωj ≡
1

|Ωj |

∫
Ωj

φ(~x, t)dΩ (4.16)

is defined. Ah : L2 → V 0
h , φh = Ahφ is called the averaging operator. The solution approxi-

mation φh ∈ V 0
h is then a step function (or “grid function”), and

V 0
h =

{
v | v|Ωj ∈ χ(Ωj) ∀Ωj ∈ T

}
(4.17)

is the space of piecewise constant functions with χ(Ωj) being the set of characteristic functions
in the control volume Ωj . T denotes the space discretization (cf. section 3.2.4).

   

Figure 4.1.: Central elements of a finite volume discretization: cells (control volumes) Ωj , Ωk, face
ejk, face flux Fjk

Starting from the integral equation (4.1), the second step to derive a semi-discrete form
is approximation of the boundary fluxes through the cell faces ejk with numerical fluxes
Fjk : V 0

h → R, Fjk = Fjk(φh) ∫
∂Ω

~f · ~n d∂Ω ≈
∑

∀ejk∈∂Ωj

Fjk.

The integral face flux Fjk is oriented along the outward normal of Ωj , i.e. a positive flux is
from Ωj to Ωk. Combined with an approximation to the source term volume integral

Sj ≈
∫

Ωj

s(~x, t)dΩj (4.18)

the semi-discrete scheme

d

dt
φj(t) +

1

|Ωj |
∑

∀ejk∈∂Ωj

Fjk︸ ︷︷ ︸
=:Lh(φh)

=
1

|Ωj |
Sj (4.19)

is obtained, where Lh is the discrete approximation to the operator L = ∇ · ~f . The resulting
system of ordinary differential equations can be marched forward in time using the vertical
method of lines in combination with an appropriate time-integration scheme.
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4.2.2. Global and local errors

A spatial or temporal discretization introduces approximation errors. This section concen-
trates on the errors in the steady-state situation. Definitions of time discretization errors are
given in appendix B.2. Of central interest is the (global) spatial discretization error.

Definition 6 (Global spatial discretization error). For a given grid T let φ∗h ≡ Ahφ ∈ V 0
h

be the grid function of the exact solution φ and φh ∈ V 0
h a numerical approximation to it.

The global error is then defined as
εh = φ∗h − φh. (4.20)

The (local) spatial truncation error of an operator is defined as the difference between the
exact value and the result when substituting the exact grid solution φ∗h into the numerical
approximation of the operator.

Definition 7 (Spatial truncation errors). The spatial truncation error τFjk of the flux
approximation Fjk at face ejk is defined as

|ejk| τFjk =

∫
ejk

~f ~ndS − Fjk. (4.21)

The spatial truncation error τLj of the discrete approximation Lh to the operator L in the cell
Ωj is defined as

|Ωj | τLj =

∫
Ωj

LφdΩ− |Ωj |Lhφ∗j =

∫
Ωj

LφdΩ−
∑

∀ejk∈∂Ωj

Fjk(φ
∗
h). (4.22)

The definition of τLj reflects the fact that the finite volume method does not evaluate L point-

wise but as a volume integral. The idea is that Lφ = Lhφ
∗
h + τLh . For a linear equation, the

relation between εh and τLh can be shown to be [53]

Lhεh = −τLh . (4.23)

The local truncation error acts as a source for the discretization error, which in this case is
advected and diffused by Lh. For non-linear equations, the relation is not as simple. If the
error is small enough, a local linearization around the solution is feasible, allowing to apply
the same concept. Knowledge about the truncation error allows the estimation of the global
error via equation (4.23).

Definition 8 (Consistency and convergence order). A scheme is called consistent of
order q if

‖τLh ‖ = O(hq) for h→ 0

where h is a measure of the grid spacing, e.g. h = max∀Ωj
(∆x,∆y). A scheme is convergent

of order p if
‖εh‖ = O(hp) for h→ 0.
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The coefficients p, q are derived by substituting a Taylor expansion of φ into the scheme and
determining the error terms directly, or alternatively by numerical grid refinement experi-
ments. On coarse grids the high-order error terms can dominate the error, and thus the
convergence rates suggested by the order of the scheme are only realized on sufficiently fine
grids where monotonic convergence behavior is observed.

4.2.3. Error measures

When quantifying errors and residuals, the choice of norms is important. A common approach
is to use an average of the absolute values to some power p

‖εh‖p =

 1

N

∑
j

|εpj |

1/p

(4.24)

where mostly p = 1, 2,∞ are considered. Additional care has to be taken on nonuniform
grids. Consider a solution-adaptive algorithm that increases the grid resolution in parts of
the domain with a high error measure (e.g. steep gradients or shocks) where O(1) errors
occur. This localizes the error in (possibly many) small cells, but as all cells have the same
weight in eq. (4.24), the error measure might not decrease. Therefore, as pointed out in
[110], some sort of volume weighting must be applied. Possible choices are the analogues to
function-space norms given in [74]

‖εh‖p =

∑
j

|Ωj ||εj |p
1/p

(4.25)

or the similar volume-averaged measures presented in [110]

‖εh‖p =

(∑
j |Ωj ||εj |p∑
j |Ωj |

)1/p

. (4.26)

4.2.4. Numerical flux functions

Central to the design of a consistent finite volume scheme is the approximation of face fluxes.
Because the scheme only keeps track of the cell averages φj , the solution is not continuous
but multi-valued at cell faces. In general, the flux density f is replaced by a numerical flux
function F : R×R→ R, F = F (φ−, φ+), which computes the flux density depending on the
solution state φ± to both sides of a face (in the case of higher-order schemes, the state might
also include further quantities like the derivatives, e.g. F = F (φ−, φ+, (∇φ)−, (∇φ)+).

The total flux Fjk through face ejk is then computed using a numerical quadrature rule

Fjk =

Q∑
q=1

ωqF
(
φ−jk(xq), φ

+
jk(xq)

)
(4.27)
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where xq ∈ ejk are the quadrature points and ωq the associated quadrature weights. The
accuracy of the scheme obviously depends on the order of the quadrature rule. Its choice is
strongly influenced by the approximation accuracy of solution states at the quadrature points
and the geometry description [36].

Central requirements for the numerical fluxes are consistency and conservativeness.

Definition 9 (Consistent and conservative numerical flux). A numerical flux is called
consistent if

Fjk =

∫
ejk

~f(φ) · ~njkdS for constant φ. (4.28)

It is conservative if

Fjk = −Fkj . (4.29)

Consistency states that if the solution state on both sides of the face is identical, the original
flux ~f is obtained. This guarantees that the scheme correctly approximates the original flux
f . Conservation states that the contribution of Fjk to the flux balance equations of Ωj and
Ωk cancels exactly, ensuring exact conservation of the quantity φ over the whole domain Ω.

4.2.5. Positive schemes

Consistency and conservation of the numerical flux is not enough to ensure convergence of
the numerical solution φh. A common problem observed in the discretization of conservation
laws is the occurrence of unphysical solution oscillations even in steady-state computations.
This is not a sign of instability of the scheme (as the concept of stability relates boundedness
of the solution to perturbations in the input data) but shows that that the discretization
does not reproduce maximum principles present in the original equation. This is especially
problematic for strictly positive quantities like densities and temperatures. Therefore schemes
are designed that reproduce these maximum principles in discrete form. Such schemes are
often called monotone or of positive type. This section sums up the central results establishing
positivity for the finite volume methods discussed in section 4.3 and 4.4.

Theorem 1 (Maximum principle for the advection-diffusion equation [93]). Consider
the stationary advection-diffusion equation (cf. (4.5))

∑
i

ui
∂φ

∂xi
−
∑
i,j

dij
∂φ

∂xi∂xj
= s, ~x ∈ Ω ⊂ Rn (4.30)

with s ≤ 0. Let ∂Ω be smooth and for all outward derivatives on ∂Ω′ ⊂ ∂Ω hold ∂φ/∂~n ≤ 0.
Then either local maxima occur only on ∂Ω\∂Ω′ or φ = const in Ω.

Proof. See [93].
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An equivalent minimum principle is obtained by reversing the sign of φ. A discrete equivalent
(in one dimension to simplify notation) is stated by the following theorem.

Theorem 2 (Discrete maximum principle [119]). Let ci and xi ∈ R, i = 1, . . . , N satisfy

N∑
i=1

ci = 0, ci < 0 for i > 1 and
N∑
i

cixi ≤ 0.

Then
xi = x1 for i = 1, . . . , N or x1 < max{xi : i > 1}.

Proof. See [119].

Equivalent statements hold for the time-dependent case [119]. The following theorem estab-
lishes the maximum principle for scheme (4.19) combined with forward Euler time-stepping.

Theorem 3 (Local extremum diminishing (LED) scheme [18]). Consider the fully
discrete scheme

φn+1
j = φnj +

∆t

|Ωj |
∑

∀ejk∈∂Ωj

cjk(φ
n
h)(φnk − φnj ). (4.31)

If the coefficients cjk satisfy
cjk(φ

n
h) ≥ 0 ∀ejk ∈ ∂Ωj (4.32)

and the time step is restricted by

1− ∆t

|Ωj |
∑

∀ejk∈∂Ωj

cjk(φ
n
h) ≥ 0, (4.33)

the scheme exhibits the local space-time discrete maximum principle on the time interval
[tn, tn+1]

min
∀ejk∈∂Ωj

(φnj , φ
n
k) ≤ φn+1

j ≤ max
∀ejk∈∂Ωj

(φnj , φ
n
k). (4.34)

Proof. See [18].

Theorem 3 establishes the necessary conditions for global boundedness of the solution in the
time-dependent case and a discrete maximum principle in the steady-state case. Requirement
(4.32) can alternatively be formulated by writing the scheme in the form

Lhφh = A · φh =
∑
i

∑
j

aij(φh)φj , A ∈ RN×N . (4.35)

The operator Lh is said to be of positive type if

aij < 0 for i 6= j,
∑
j

aij = 0 (4.36)
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4.2. Finite volume discretization

holds. Particularly attractive due to their simple implementation also for implicit discretiza-
tion are schemes that result in a linear operator Lh. However, the following negative result
bounds the accuracy of linear discretizations of the advection equation.

Theorem 4 (Godunov order barrier [56]). Linear one-step second-order accurate numer-
ical schemes for the advection equation

∂φ

∂t
+ c

∂φ

∂x
= 0, t > 0, x ∈ R, c ∈ R (4.37)

cannot be monotonicity preserving, unless |c|∆t∆x ∈ N.

Proof. See [56].

The stated restriction of the Courant number is not practical for general applications. This
result extends to multi-step schemes and multiple dimensions. To overcome it, nonlinear
schemes have to be used. Total variation diminishing (TVD) schemes have been designed for
this purpose, however they are limited to first-order accuracy in the multi-dimensional case
[57]. A class of schemes that can realize high-order accuracy in the multi-dimensional case
and generalizes to unstructured grids are nonlinear positive coefficient schemes satisfying the
conditions in theorem 3. The limited linear-reconstruction high-resolution scheme described
in section 4.4 falls in this category.

Theorem 5. (Maximum principle for linear reconstruction FVM on unstructured
grids [18]) Let φminj be the minimum and φmaxj be the maximum solution cell averages for
cell Ωj and all adjacent cells, i.e.

φminj ≡ min
∀ejk∈∂Ωj

(φj , φk) and φmaxj ≡ max
∀ejk∈∂Ωj

(φj , φk). (4.38)

The fully discrete finite volume scheme

φn+1
j = φnj +

∆t

|Ωj |
∑

∀ejk∈∂Ωj

Fjk ∀Ωj ∈ T (4.39)

with Fjk given by equation (4.27) with nonnegative quadrature weights, Lipschitz continuous
flux function F and linear reconstruction to quadrature points

φ−jk(~x) ≡ lim
ε↓0

R0
1(x− ε~njk(~x);φh), ~x ∈ ejk, φh ∈ V 0

h (4.40)

φ+
jk(~x) ≡ lim

ε↓0
R0

1(x+ ε~njk(~x);φh), ~x ∈ ejk, φh ∈ V 0
h (4.41)

(where the reconstruction operator R is given by definition 10 and ~njk is the outward normal
of ejk) exhibits for every Ωj ∈ T the local space-time maximum principle

min
∀ejk∈∂Ωj

(φnj , φ
n
k) ≤ φn+1

j ≤ max
∀ejk∈∂Ωj

(φnj , φ
n
k). (4.42)
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if the linear reconstruction satisfies for the flux quadrature points ~xq ∈ ejk, q = 1, . . . , Q, ejk ∈
∂Ωj

max(φmin,n
j , φmin,n

k ) ≤ φ−,njk (xq) ≤ min(φmax,n
j , φmax,n

k ). (4.43)

and the time step is restricted by

1− ∆t

|Ωj |
Γgeom

∑
∀ejk∈∂Ωj

1≤q≤Q

sup
φ1∈[φmin,n

j ,φmax,n
j ]

φ2∈[φmin,n
j ,φmax,n

j ]

∣∣∣∣∂Fjk∂φ+
(~njk(~xq);φ

1, φ2)

∣∣∣∣ ≥ 0 (4.44)

with Γgeom a factor depending on cell geometry (Γgeom = 2 for rectangles). In steady-state
under the same assumptions the local spatial maximum principle

min
∀ejk∈∂Ωj

φk ≤ φj ≤ max
∀ejk∈∂Ωj

φk (4.45)

holds.

Proof. See [18].

4.3. Classical finite volume schemes

Current versions of the B2.5 use a variant of the linear finite volume scheme described in [90].
It continues to form the basis discretization in B2.6-structured (cf. chapter 6) and is used as
a low-order approximation in defect correction procedure used in the HR FVM described in
section 4.4.

4.3.1. The Patankar hybrid scheme

The Patankar scheme [90] uses a central difference approximation for the diffusion flux (4.3).
The advection flux (4.2) approximation combines the central (CDS) and upwind (UDS) dif-
ference scheme depending on the local numerical Péclet number (details on the CDS and
UDS scheme can be found in appendix B.1). The goal is to avoid the unfavorable first-order
accuracy of the upwind scheme where possible while using its positivity properties where
needed to satisfy the positive coefficient condition of theorem 3.

To derive the scheme, the dimensionless flux density

f∗ = Pφ− ∂φ

∂x

is considered in the simplified geometry given in figure 4.2. P is the Péclet number for the
flux along ~n given by (4.15). The solution value φ at the face is assumed to be a linear
combination of φd and φi, while the gradient is a multiple of φi − φd. Thus

f∗ ≈ B(P )φd −A(P )φi
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4.3. Classical finite volume schemes

Figure 4.2.: Geometry for 1d flux (4.46)

with A,B dimensionless coefficients depending on P . Using a symmetry argument and ex-
ploiting the fact that f = ~uφd = ~uφi for a constant solution φd = φi, the coefficients can be
simplified to

A(P ) = A(|P |) + J−P, 0K, B(P ) = A(−P ).

with J·, ·K = max(·, ·). The combined numerical advection-diffusion flux is then

Fdi = |edi| [(DdiA(|Pdi|) + JF adi, 0K)φd − (DdiA(|Pdi|) + J−F adi, 0K)φi] . (4.46)

F adi =‖~udi~n‖ is the advection flux and Ddi the diffusion coefficient at the face. The numerical
Péclet number at the face edi is

Pdi =
~udi~nLdi
Ddi

with Ldi =
∆xd + ∆xi

2
(4.47)

Choice of function A(|P |)

To complete the scheme A(|P |) has to be defined. A choice of functions is presented in table
4.1 and figure 4.3. UDS and CDS (cf. appendix B.1) are included as special cases. The
exponential scheme recovers the exact solution for (4.5) in the one-dimensional homogeneous
case (for constant u, D and Dirichlet boundary conditions). The hybrid schemes are motivated
by a search for computationally less expensive replacements for it. The B2.5 hybrid scheme
defines the discretization currently used in the B2.5 code. In practice the schemes perform
very similar.

Scheme A(|P |)

Upwind difference (UDS) 1
Central difference (CDS) 1− 0.5|P |
Hybrid J0, 1− 0.5|P |K
B2.5 hybrid

√
1 + 1

4 |P |2 −
1
2 |P |

Exponential |P |/(exp(|P |)− 1)

Table 4.1.: Choices of switch functions A(|P |) for the Patankar flux (4.46)
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Figure 4.3.: A(|P |) functions for the Patankar flux (4.46) given in table 4.1

Application to multidimensional domains

The linear flux function (4.46) is derived for the one-dimensional situation shown in figure
4.2. For certain grids the generalization to the multi-dimensional case is straightforward, as
long as the geometry assumptions made in the derivation are not violated.

First, the central difference approximation assumes a linear profile of the solution along
the line xjxk connecting the cell centroids. This line has to be orthogonal to the face,
i.e. xjxk⊥ejk. Second, midpoint quadrature is assumed. Therefore the intersection point
xjk = xjxk ∩ ejk has to coincide with the face midpoint.

Structured Cartesian (figure 4.4a) and logically rectangular coordinate-mapped grids (figure
4.4b, as used in B2) satisfy these constraints. For unstructured grids with more complex
cell geometry (figure 4.4c) this is not the case. Violation of the assumptions degrades the
accuracy of the approximation. This might be acceptable within some tolerances. The effect
is studied in the numerical benchmark presented in chapter 5.

4.3.2. Flux balance equations

Assembling the flux balance for the control volume Ωj by summing the contribution from the
individual face contributions yields the algebraic equation∫

∂Ωj

~f · ~ndΩ ≈
∑

ejk∈∂Ωj

Fjk =
∑

ejk∈∂Ωj

ajk,jφj + ajk,kφk =
∑
i∈Sj

aiφi = Sj (4.48)

where Sj is an approximation of the source volume integral
∫

Ωj
SdΩ and Sj is the the stencil

of control volume j, which is a set of indices {j, k|ejk ∈ ∂Ωj} of Ωj and its neighbors.
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(a) Structured Cartesian grid

   

(b) Curvilinear logically
rectangular grid

   

(c) Unstructured grid

Figure 4.4.: Flux balance for multidimensional situation: grid geometries

The linear coefficients ai are prescribed by the choice of numerical flux function. For the
Patankar flux (4.46) they are for cell Ωj

ak = −
(
DjkA(|Pjk|) + J−F ajk, 0K

)
∀k ∈ Sj , k 6= j (4.49)

aj =
∑

k∈Sj ,k 6=j

(
DjkA(|Pjk|) + J F ajk, 0K

)
=

∑
k∈Sj ,k 6=j

(−ak) −
∑

k∈Sj ,k 6=j
F ajk (4.50)

where the identity J−F, 0K = JF, 0K− F was used.

The linear equation system

Stating the linear flux balance equation 4.48 for all n control volumes Ωj ∈ T results in a
linear system

A~φh = ~Sh, A ∈ Rn×n. (4.51)

The matrix A is sparse with O(n) nonzero entries depending on the stencil size. Its structure
is given by the connectivity of the grid T . For structured grids with lexicographical ordering
this leads to band matrices which can be stored efficiently. This simple structure is lost when
using nontrivial connectivity or unstructured grids (see appendix B.4 for examples).

Solution methods for linear systems are not in the central focus of this thesis. Some notes on
the solver used in the implementation are given in appendix B.3.
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4.3.3. Boundary conditions

Boundary conditions for scheme (4.50) can be imposed using vanishingly small ghost cells
at the outside boundary of the simulation domain Ω. This simplifies algorithms by allowing
to treat boundary faces in most cases exactly like interior faces. Dirichlet conditions are
implemented by prescribing the solution value d in the ghost cell, Neumann conditions by
fixing the central difference approximation between ghost and interior cells to the prescribed
value g. For the simplified geometry in figure 4.2 this means (with Ωi being the interior, Ωd

the ghost cell)

φd = d (Dirichlet) and
2(φi − φd)
∆xd + ∆xi

= g (Neumann). (4.52)

In general, the flux balance equation for ghost cells differs from interior cells and requires
special treatment1 when assembling system (4.51). Furthermore, due to the vanishingly small
volume of the ghost cells, (4.52) is equivalent to using one-sided differences with an O(∆x)
truncation error. This does not affect the performance of second-order schemes [53, 119].

4.4. High-resolution finite volume schemes

The Patankar scheme presented in the previous section has two drawbacks. First, as a linear
scheme it is limited to first order accuracy for advection-dominated flows. (cf. theorem
4). Second, the central diffusion approximation breaks down for general geometries like
unstructured grids. The solution to the first problem is to introduce nonlinear schemes,
which are often referred to as high-order or high-resolution (HR) finite volume schemes. The
second problem calls for a truly multidimensional approach.

4.4.1. Reconstruction schemes

The first central property of the general finite volume scheme outlined in section 4.2.1 is the
solution representation using cell averages defined by equation (4.16), or written with the
averaging operator Ah : L2 → V 0

h , φh = Ahφ as

φj = Ahφ|Ωj =
1

|Ωj |

∫
Ωj

φ(~x, t)dΩ.

Starting from this cell average representation, a general approach to the design of high-
resolution schemes is solution reconstruction. The idea was first introduced as an extension
to the Godunov scheme in [114], leading to the MUSCL scheme for structured grids. The idea
was then extended to unstructured grids [19]. The following section mainly follows [18].

1In iterative solvers like the B2.5 algorithm this is avoided by prescribing modified linearized source terms
for the ghost cells (”strongly conditioned method”). However, this approach is not applicable for general
solvers.
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4.4. High-resolution finite volume schemes

Definition 10 (Reconstruction operator [18]). A reconstruction operator

R0
p : V 0

h → V p
h , R0

p = R0
p(~x, φh) (4.53)

recovers a piecewise p-th order polynomial in every cell from the cell-average solution repre-
sentation φh. It is called p-exact if it recovers polynomials of order p exactly (R0

pAh|Pp = I,
Pp being the space of polynomials of degree at most p). Furthermore the mean value in the
cell has to be conserved, i.e.

1

|Ωj |

∫
Ωj

R0
p(~x, φh)dΩ = φj . (4.54)

or AhR
0
p = I.

In general, the reconstruction is discontinuous at cell faces. R0
p acts as an approximate inverse

to the cell-average operator Ah and can be used to reconstruct the solution state at quadrature
points to increases the accuracy of the flux approximations used in (4.19).

Various reconstruction methods are discussed in the literature. The Essentially Non-Oscilla-
tory (ENO) method in its weighted or unweighted form [87, 104] selects an optimal stencil with
the aim of reducing oscillations in the reconstruction to the level of the local discretization
error. Green-Gauss integral path reconstructions form a face path around the reconstruction
point and use the divergence theorem to find an approximation of the gradient [11, 42].
Least-square-methods construct an optimal fit for the coefficients of the multidimensional
polynomial by solving a least-square problem for every control volume.

An important property for all these schemes is compactness, i.e. minimizing stencil size due
to accuracy, stability and efficiency considerations. A p-th order polynomial in n dimensions
has

(
p+n
n

)
degrees of freedom, requiring a minimal set of neighbor cells of this size in the

reconstruction stencil. With growing stencil size the data used for the reconstruction comes
from increasingly distant cells. This decreases the robustness of the scheme, necessitating
some form of data weighting [11, 12]. Furthermore, efficiency starts to suffer. Especially
on unstructured grids, finding neighbor cells beyond the next-neighbor connectivity is either
time-consuming or requires some sort of pre-processing and associated stencil storage.

4.4.2. Linear reconstruction on unstructured grids

The simplest reconstruction operator R0
1 recovers a piecewise linear function

R0
1(~x;φh)|Ωj = φj + (∇φh)Ωj · (~x− ~xj) (4.55)

in every control volume Ωj . An example for the reconstruction is shown in figure 4.5. Combin-
ing R0

1 with the flux functions given in section 4.4.3 results in a scheme with a truncation error
of O(h2), where h is a representative grid spacing. This is verified by numerical experiments
in section 5.1.
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(a) Cell averages (b) Linear reconstruction

Figure 4.5.: Solution representations for the benchmark problem given in section 5.1

Compared to more accurate higher-order reconstructions (p > 1), linear reconstruction offers
two advantages. First, only one neighbor cell per dimension is required and therefore next-
neighbor connectivity information is sufficient for stencil selection. Second, when choosing
the centroid ~xj = ~xcj of the cell as support point for the linear function2, constraint (4.54) is
trivially fulfilled. This property also extends to coordinate mapped grids for a proper choice
of ~xcj . For higher-order reconstructions (p > 1) this has to be enforced explicitly (see e.g.
[88]).

Least-square gradient reconstruction

Linear reconstruction reduces to gradient reconstruction at the cell centroid. An approxima-
tion of (∇φh)Ωj has to be computed in the centroid ~xcj of every cell Ωj . This work focuses on
the least-square method for gradient reconstruction. It can easily be applied to arbitrary grids
while maintaining favorable robustness and accuracy properties. It is also easily extended to
recover higher-order polynomials [88].

The least-squares system for control volume Ωj is assembled by projecting the gradient
(∇φh)Ωj onto the vector connecting the centroids to obtain

(∇φh)Ωj · (~xk − ~xj) = φk − φj ∀ejk ∈ ∂Ωj

for all neighbor cells of Ωj . Renumbering the cell indices locally (see figure 4.6) so that
Ωj = Ω0 and Ωi, i = 1, . . . , N its neighbors and defining (∆xi,∆yi) = ∆~x0i = ~xj − ~x0, this
gives the system  w1∆x1 w1∆y1

...
...

wN∆xN wN∆yN

 (∇φh)Ω0 =

 w1(φ1 − φ0)
...

wN (φN − φ0)

 . (4.56)

2This can be understood as a cell-centered finite volume method.
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4.4. High-resolution finite volume schemes

or with shorthands [
~L1

~L2

]
(∇φh) = ~d. (4.57)

Note that ~L1,2 only contain geometry information and can be precomputed. Additionally,
the individual equations are multiplied with weights wi for stability reasons. A common
prescription is wi = 1/‖∆~x0i‖, giving a higher weight to data at points closer to ~x0 [12, 11].

   

Figure 4.6.: Local geometry of the stencil used for least-square gradient reconstruction in cell Ω0

Except in special cases (e.g. boundary cells), the linear system (4.57) is overdetermined
and has to be treated as a linear least-squares fit problem. This problem is in general
ill-conditioned, especially for non-smooth solutions where the contributions from different
neighbors diverge. Instead of using the direct solution approach via the normal equations,
the more robust method of Householder transformations and QR factorization is advocated
[18, 88].

In the simple case of gradient recovery, the explicit solution

∇φ =
1

l11l22 − l212

(
l22(~L1 · ~d)− l12(~L2 · ~d)

l11(~L2 · ~d)− l12(~L2 · ~d)

)
(4.58)

to (4.57) can be given [18], where lij = ~Li · ~Lj .

Face-based implementation

As noted in [18], when using the stencil given by the face-neighbors of a cell, (4.58) can be
implemented efficiently using an algorithm iterating over the faces of the grid. Algorithms of
this type benefit from the face-based UG data structure described in section 3.2.2. Returning
to the global face numbering, for every space dimension two coefficients per face ejk have
to be computed, representing the contribution of the face difference ∆φjk = φk − φj to the
gradients of cells Ωj and Ωk. For N = 2 dimensions, the coefficients are

cj,xjk = λjw
2
jk

(
lj22∆xjk − l12∆yjk

)
ck,xjk = λkw

2
jk

(
lk22∆xjk − l12∆yjk

)
(4.59)

cj,xjk = λjw
2
jk

(
lj22∆xjk − l12∆yjk

)
ck,xjk = λkw

2
jk

(
lk22∆xjk − l12∆yjk

)
, (4.60)
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(a) Unlimited reconstruction exceed-
ing solution minimum at
cone base

(b) Limited reconstruction

Figure 4.7.: Limiting for the time-dependent benchmark in section 5.2

with coefficients

λi =
1

li,11li,22 − l2i,12

and

(
∆xjk
∆yjk

)
=

(
xk − xj
yk − yj

)
. (4.61)

After pre-computing the coefficients, the reconstruction step can then be implemented as a
linear loop over the faces which only needs the face→ cell connectivity, as shown in algorithm
8. Note that the sign skip ∆~xjk = −∆~xkj is canceled by ∆φjk = −∆φkj .

Algorithm 8: Face-based least squares gradient reconstruction

Pre-compute cj,xjk , c
j,y
jk , c

k,x
jk , c

k,y
jk

foreach cell Ωj do

(∇φ)j = ~0

foreach face ejk do
∆φjk = φk − φj

(∇φ)j = (∇φ)j +

(
cj,xjk
cj,yjk

)
∆φjk, (∇φ)k = (∇φ)k +

(
ck,xjk
ck,yjk

)
∆φjk

Limiting

The solution reconstruction R1
0 can introduce unwanted artificial extrema as e.g. shown in

figures 4.7 and 4.8. This violates condition (4.43) of theorem 5 and results in a non-positive
scheme. To avoid this the reconstruction is modified using limiters. A general theory of flux
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limiters exists for one-dimensional schemes on structured grids [112]. A diffusive first-order
flux like the hybrid flux (4.46) is combined with a higher-order flux to form

Fi+1/2 = F lowi+1/2 + ψ(r)F highi+1/2, r =
φi − φi−1

φi+1 − φi
. (4.62)

If the flux limiter function ψ(r) satisfies conditions commonly summarized in the Sweby di-
agram [112], the resulting scheme is total-variation diminishing (TVD). More natural for
reconstruction schemes are slope limiters that do not modify the resulting flux but the re-
construction directly (cf. figures 4.7, 4.8). The modified reconstruction is

R̃0
1(~x;φh)|Ωj = φj + λΩj (∇φh)Ωj · (~x− ~xj) (4.63)

with λΩj a scalar gradient limiter in cell Ωj . On structured grids, a direct relation be-
tween flux and slope limiters exists [105], allowing reuse of known limiters. However, the
formulation (4.62) using forward and backward differences breaks down on nonuniform and
unstructured grids [23], requiring a more general approach. A well-known general limiter for
linear reconstruction schemes on unstructured grids is the Barth-Jespersen limiter.

Definition 11 (Barth-Jespersen (BJ) Limiter [19]).

λΩj = min
xq∈XL


φmax
j −φj

R0
1(~xq ;φh)|Ωj

−φj
if R0

1(φq;φh)|Ωj > φmax
j

φmin
j −φj

R0
1(~xq ;φh)|Ωj

−φj
if R0

1(φq;φh)|Ωj < φmin
j

(4.64)

with the local minima and maxima

φmin
j = min

(
φj , min

Fjk∈∂Ωj

φk

)
φmax
j = max

(
φj , max

Fjk∈∂Ωj

φk

)
and XL ⊂ ∂Ωj a set of limiting points

For a positive scheme it is sufficient to choose XL to contain the flux quadrature points. To
obtain a positive reconstruction in the whole cell, the limiter is applied to the cell vertices
XL = VΩ,j .

The limiting function λ is necessarily non-linear. For explicit schemes, implementation of
the resulting nonlinear flux is straightforward. Implicit schemes using limited reconstructions
result in nonlinear equation systems, requiring iterative solution. Also, as is the case for the BJ
limiter, the limiter function can be non-smooth, possibly causing problems with convergence
in iterative schemes. To improve BJ-type limiters in this respect, smooth modifications have
been proposed [82, 83, 116, 117].

4.4.3. Flux functions

The reconstruction polynomial is used to recover more accurate solution and derivative ap-
proximations at flux quadrature points. In the case of linear reconstruction, for a face ejk,
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(a) Unlimited reconstruction (b) After limiting

Figure 4.8.: Effect of limiting at local extrema. The unlimited reconstruction a) exceeds the maximum
cell averages at the cone tip. The limiter sets the gradient in the cells at the tip to zero to avoid this.

let ~dj = ~xq−~xj be the vector from the cell centroid xk to the to the quadrature point xq (see
figure 4.9). The reconstructed values are then

φ− = φj + ~dj · (∇φ)j , (∇φ)− = (∇φ)j , (4.65)

φ+ = φk + ~dk · (∇φ)k, (∇φ)+ = (∇φ)k. (4.66)

For the advection term the upwind flux (cf. the UDS scheme in appendix B.1)

F ajk =
~u · ~n

2
(φ− + φ+) +

|~u · ~n|
2

(φ− − φ+) =

{
~u · ~nφ− for ~u · ~n ≥ 0
~u · ~nφ+ for ~u · ~n < 0

(4.67)

is used with the reconstructed values instead of the cell averages. For the diffusion flux

F djk = Dq(∇φ)q · ~nq (4.68)

an approximation of the gradient (∇φ)q at the quadrature point is required. The following
two schemes are considered:

• Averaged gradient with jump correction. The reconstructed gradient on both
sides is averaged with weights α±. To avoid inconsistency in the presence of limiting,
an additional term correcting for the discontinuity of the reconstructed solution at the
face is introduced. ∆l is the gradient length at the face, here ∆l = ‖~dj‖+ ‖~dk‖ is used.
The complete gradient approximation is then

(∇φ)q =
(
α−(∇φ)− + α+(∇φ)+

)
+
φ+ − φ−

∆l
. (4.69)
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The weights are set using a parameter λ ∈ [0, 1], α− = λ, α+ = (1 − λ). The simplest
choice is arithmetic averaging, i.e. λ = 0.5. Setting λ = ‖~dj‖/(‖~dj‖+ ‖~dk‖) (linear in-
terpolation) recovers the central difference scheme on structured grids with nonuniform
grid spacing. A similar scheme (without jump correction) is used in [88]. The jump
correction is similar to the diffusive fluxes with penalty terms used in the Discontinuous
Galerkin methods [14, 41].

• Orthogonal reconstruction with central differencing. Following [53], the solution
is reconstructed to points on a line x−x+ orthogonal to the face and passing through
the quadrature point (marked red in figure 4.9). The gradient is then obtained as a
central difference

(∇φ)q =
R(x+)−R(x−)

‖~x+ − ~x−‖
. (4.70)

A comparison of the performance of the different diffusion flux choices is presented in section
5.1.3.

   

Figure 4.9.: Geometry for solution reconstruction at face flux quadrature points. Objects in red color
are used for the orthogonal face gradient reconstruction (4.70).

4.4.4. Iterative solution procedure

The flux balance is assembled for every cell as done for the linear FVM in (4.48). For steady-
state solutions and implicit time integration schemes for the HR scheme, instead of a linear
system a nonlinear system

A~φh = ~Sh. (4.71)

is obtained. It has to be solved using an iterative algorithm. The Newton method can be
used, however, the Jacobian has to derived manually for every flux/limiter combination or
has to be approximated using finite differences. Furthermore, compared to the system for
the linear scheme (4.51), the Jacobian matrix contains a high number of nonzero entries3.
Therefore a simpler defect correction (DC) approach is chosen.

3Linear reconstruction leads to the flux balance of a cell to depend on second-neighbor information, resulting
in stencil sizes from 13 on structured rectangular grids up to 29 on unstructured grids (cf. appendix B.4)
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Defect correction

Defect correction (DC) [107, 91, 53] is a method to improve the accuracy of a numerical
scheme. Assume that for a given boundary value problem two discretizations

Llφl = Sl and Lhφh = Sh

are given, with Lh offering higher accuracy than Ll and Ll having lower computational cost
and/or better stability properties. The discretizations can use different numerical schemes
or represent the same scheme on grids with different resolutions. The accuracy of the dis-
cretization Ll can then be improved using the iterative procedure

Llφ
(0)
h = Sl

Llφ
(n)
h = Sl − Lhφ

(n−1)
h + Llφ

n−1
h .

(4.72)

The discretization Lh is only computed for known intermediate solutions to apply a correction
to the right hand side. If Ll has consistency order O(∆x) and Lh has O(∆x2), on structured
grids already after the first iteration φ1

h has second order accuracy [119]. The method also
works for nonlinear discretizations and integrates naturally into multi-grid schemes [59].

In the solver used for the benchmarks in chapter 5 the Patankar scheme (4.50) is combined
with the HR flux functions from section 4.4.3 (cf. algorithm 9). The algorithm is then similar
to the simplified Newton method (or “Chord-Newton-Process”) using the flux linearization
resulting from the Patankar scheme as an approximate Jacobian.

4.4.5. Implementation of boundary conditions

Some care is required when implementing boundary conditions for the HR scheme. The solu-
tion values in ghost cells (cf. section 4.1.1) may or may not have influence on reconstruction
and limiting depending on the boundary conditions. Introducing systematic errors at this
stage can severely affect the accuracy, especially for in- and outflow conditions. Here, the
approach is adopted that values of ghost cells (i.e. the boundary conditions) have no influence
on interior cells in the solution reconstruction step. If required by the boundary condition,
the reconstruction is modified in a separate step. In the limiting step the ghost cell values are
included again4, therefore at this stage they must be initialized properly. The full solution
procedure for the HR scheme with boundary treatment is shown in algorithm 9. Another
option is to include the boundary conditions treatment directly in the reconstruction step
[25].

4This is due to a technical limitation. Limiting involves reconstructing to cell vertices, for which it cannot
be decided easily whether they are on a boundary
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Algorithm 9: Defect correction (with boundary conditions)

Assemble linear system Ll (including boundary conditions)
Compute low-order solution:

Llφ
(0)
h = Sl

for i = 0, 1, . . . do
begin Reconstruction and limiting

Compute reconstruction R1
0 (algorithm 8)

Modify reconstruction to match boundary conditions
Set ghost cell according to boundary conditions
Apply limiter (4.64) to reconstruction

end

Compute correction:

CiΩk
=

∑
ekl∈∂Ωk

F l
jk(φ

(i))− F h
jk(φ

(i))

Solve for corrected RHS:

Llφ
(i+1)
h = Sh + Ci

4.5. Time discretizations

After performing the discretization in space, the semi-discrete scheme (4.19) can be considered
as an initial value problem for a system of ordinary differential equations (ODEs)

φh(0) = φh,0 (4.73)

φ′h(t) = F (t, φh(t)) (4.74)

with t ∈ (0, T ] and initial value φ0 ∈ RN . The right hand side F : R × RN → RN contains
the spatial discretization and source terms. To obtain a fully discrete scheme, a suitable time
discretization has to be chosen. A vast number of schemes exists, see e.g.[60, 61]. This section
describes some schemes commonly used in fluid dynamics and outlines their properties. The
emphasis is on methods of low order, matching the spatial discretization. More details are
given in appendix B.2.

79



4. Numerical methods

Linear one-step methods

One-step methods use only information from the last time-step φn to compute the next
time-step φn+1. We consider Runge-Kutta methods of the form

φn+1 = φn + ∆t

s∑
i+1

biF (tn + ci∆t, φn,i), (4.75)

φn,i = φn + ∆t
s∑
j=1

αijF (tn + cj∆t, φn,j), i = 1, . . . , s. (4.76)

The methods evaluate F at intermediate time-points and compute a linear combination with
coefficients αij , bi and ci =

∑s
j=1 αij . Order conditions for the coefficients can be derived,

resulting in an entire class of schemes. Explicit methods result if αij = 0 for j ≥ i. The
simplest example is the explicit or forward first-order Euler method

φn+1 = φn + ∆tF (tn, φn). (4.77)

An explicit method of second order is the one-step midpoint rule

φn+1 = φn + ∆tF (tn +
1

2
∆t, tn +

1

2
∆tF (tn, φn)). (4.78)

An important implicit scheme is the implicit or backward Euler method

φn+1 = φn + ∆tF (tn+1, φn+1). (4.79)

Linear multi-step methods

Multi-step methods not only use data from the current time-step φn, but also from previous
time-steps. A linear k-step methods has the general form

k∑
j=0

αjφn+j = ∆t
k∑
j=0

βjF (tn+j , φn+j), n = 0, 1, . . . . (4.80)

The advantage over single step methods is that only one evaluation of F is required per time
level. If βk = 0, the method is explicit, otherwise it is implicit. A class of schemes often used
in computational fluid dynamics are BDF (backward differentiation) schemes. The two-level
BDF-1 scheme is the same as the implicit Euler method (4.79). The general three-level BDF
method is

3

2
φn+2 − 2φn+1 +

1

2
φn = θ∆tFn+22(1− θ)∆tFn+1 − (1− θ)∆tFn (4.81)

Choosing θ = 1 yields an implicit scheme (commonly called BDF-2 ), θ = 0 the related explicit
scheme (extrapolated BDF-2 ). An approach that mixes the explicit and implicit variant by
locally varying θ is described in [64].
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4.5. Time discretizations

In general, multi-step methods require special attention during the first k−1 time-steps. For
this startup phase an alternative scheme has to be used. To avoid reduction of the order of the
multi-step scheme, the startup values have to be approximated with the same approximation
order.

4.5.1. Discussion of time-stepping schemes

The efficiency of the time integration schemes depends critically on the step size allowed when
taking stability and positivity considerations into account. For pure advection problems,
explicit schemes commonly perform better as they are faster to compute than their implicit
counterparts, which require solution of large linear systems. However, for diffusive problems
the step size restriction due to the inverse square relation to the grid size in equation (B.16)
is much more severe. Thus for diffusive and stiff problems implicit methods are preferred. A
central problem to all schemes is positivity, which can impose a time step restriction also for
implicit schemes.

The B2 code currently employs the implicit Euler scheme, which has optimal stability and
positivity properties, but only first-order accuracy. The implicit BDF-2 method is an at-
tractive way to improve on this. The time step restriction it introduces can be acceptable
depending on timescales present in the physics.
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5. Numerical benchmarks

This chapter covers three topics. The first is to verify the implementation of the high-
resolution finite volume method presented in chapter 4 using a steady-state benchmark prob-
lem. The same problem is then used to study the behaviour of the scheme on unstructured
grids. Finally, a time-dependent benchmark problem is solved to gain insight into combining
the Patankar hybrid and HR spatial discretization with the timestepping schemes listed in
section 4.5.

5.1. Steady-state solver verification

5.1.1. Verification procedure

The benchmark case considered here is derived using the method of manufactured solution.
The exact solution considered is φ : R2 → R,

φ(x, y) = y sin(2πx). (5.1)

Plots of the solution on the unit square are shown in figure (5.1). It is substituted into the
advection-diffusion equation (5.2) to obtain the source term (5.3). The benchmark problem
is then:

Benchmark problem 1 (General steady-state advection-diffusion problem). Solve

∇ · (~uφ−D∇φ) = s. (5.2)

on the unit square Ω = [0, 1]× [0, 1] with ~u =
(
u1
u2

)
, D =

(
d11 0
0 d22

)
and the source term

s(x, y) = 2u1πy cos(2πx) + u2 sin(2πx) + 4d11π
2y sin(2πx). (5.3)

Dirichlet, in- or outflow conditions are prescribed on ∂Ω depending on ~u and D.

From (5.1), (5.2) and (5.3) the exact expression for the cell averages φi and source integrals
Si in cell Ωi and the total flux Fjk through face ejk are derived (see appendix C.1). Three
cases with the following transport coefficients and boundary conditions are considered.
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5. Numerical benchmarks

• Case 1: Isotropic diffusion.

~u =

(
0
0

)
, D =

(
1 0
0 1

)
(5.4)

Dirichlet conditions set to φ on all boundaries.

• Case 2: Diagonal advection

~u =

(
1
1

)
, D =

(
0 0
0 0

)
(5.5)

Inflow conditions set to φ on west and south, outflow condition on east and north
boundaries.

• Case 3: Anisotropic transport

~u =

(
1
0

)
, D =

(
0 0
0 10−8

)
(5.6)

Inflow condition set to φ on west, outflow on east boundary. Dirichlet conditions on
south and north boundaries.

Case 1 and 2 are used to separately study the performance for purely diffusive and purely
advective transport. Case 3 reproduces the strongly anisotropic coordinate-aligned transport
commonly encountered in the B2.5 code.

(a) Surface plot (b) Contour plot with 162 grid

Figure 5.1.: Plots of the reference solution (5.1). φ is a sinus wave along the x and linear along the y
coordinate.

The exact solution data is used in two steps to verify the solver. First, for a given grid T the
exact cell averages φ∗h are prescribed and the flux and operator approximations are computed.
The truncation errors of the scheme for the operator τLh (4.22) and flux τFh (4.21) are then
obtained by comparison with the exact values.
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5.1. Steady-state solver verification

In the second step, the exact source term S∗h and boundary conditions are prescribed and
solved for. The global error εh can then be computed directly by (4.20).

The benchmark is performed for two spatial discretizations:

• The linear Patankar hybrid scheme as described in section 4.3, which reduces to
first-order upwind for the pure advection case and second-order central differencing for
the pure diffusion cases. The switch function A(|P |) = |P |/(exp(|P |) − 1) resulting in
the exponential scheme is used.

• The high-resolution (HR) scheme using limited linear reconstruction as described in
section 4.4. Limiting is performed using the scalar Barth-Jespersen (BJ) limiter (4.64).
The nonlinear scheme is solved with defect correction (algorithm 9), using the Patankar
hybrid scheme as low-order approximation.

A note on error measurement

In this chapter, all errors are computed using the volume-weighted average formula (4.26), for
which the notation Ep is introduced (with p = 1 or ∞ (maximum norm)). As weight the cell
area |Ωj | is used. The exception to this are the flux density truncation errors, where as weight
the face area |ej | is used. Ghost cells are not included in the error measurements. Most error
plots contain reference lines for O(h) and O(h2) error reduction for easier comparison. In
this context, h is an equivalent grid spacing for a two-dimensional structured grid with the
given number of cells.
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5. Numerical benchmarks

5.1.2. Structured grids

First, the convergence behaviour of the Hybrid and HR scheme is verified using a series
of structured grids. Starting with a grid that covers the unit square with 162 square cells
(h = ∆x = ∆y = 1/16, indicated in figure 5.1b), the resolution is increased by isotropic
refinement, resulting in the grid series 162, 322, 642, 1282, 2562. All grids are structured (every
cell has one neighbour per side). On every resolution level the truncation and global errors
are measured as described above.

Case 1: Isotropic diffusion

In the pure diffusion case, on uniform structured grids the hybrid scheme and all diffusion
fluxes for the HR scheme described in section 4.4.3 reduce to central differences (CDS). The
operator and flux errors are shown in figure 5.2a, as expected they show O(∆h2) behaviour.
The same holds for the global error shown in figure 5.2b. Both the hybrid and HR scheme give
identical results. In contrast to the advection flux studied in the next section, the diffusion flux
approximations are by design unaffected by the limiting, and no defect correction iterations
are necessary for the HR scheme.

102 103 104 10510−5

10−4

10−3

10−2

10−1

100

# grid cells

E
rr

or

O(∆ x2)

Hybrid/HR flux, E1
Hybrid/HR flux, E

∞
Hybrid/HR operator, E1
Hybrid/HR operator, E

∞

(a) Flux and operator truncation errors
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Figure 5.2.: Test case 1 (isotropic diffusion), structured refinement 162 → 2562. Every point represents
one grid resolution, i.e. one resolution level.
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5.1. Steady-state solver verification

Case 2: Diagonal advection

In the pure advection case the hybrid scheme reduces to the first order upwind scheme.
Truncation and global error drop as expected with O(∆h) (figures 5.3a,b).

For the HR scheme, the E1 measures of truncation and global error show the expectedO(∆h2)
behaviour. The effect of limiting on accuracy is noticeable already in this example. Figures
5.3a and 5.3b include additional error data for the HR scheme without limiting. Limiting
increases the operator truncation error. This is reflected in the maximum norm of the global
error, which is degraded to O(h). In this example the limiter has the biggest effect on the
north boundary due to the boundary condition implementation with ghost cells, which causes
the flux truncation error locally to drop to roughly O(h). The global E1 error of the HR
scheme is practically unaffected by this. Both the limited and unlimited scheme produce
nearly identical results (only the E1 global error for the limited scheme is plotted in figure
5.3b).

Convergence of the defect correction iterations for the HR scheme is shown in figure 5.4a. The
first iteration is equivalent to the solution of the hybrid scheme. Second order convergence
of the global error is obtained already after the second iteration. Figure 5.4b shows the
convergence history for the individual grids (grid 1 is 162, grid 5 is 2562). The number of
iterations needed increases with resolution, with a maximum of 4 iterations needed until
convergence.
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Figure 5.3.: Test case 2 (diagonal advection), structured refinement 162 → 2562: truncation and global
error for the Hybrid and HR scheme. The plots include data for both the limited and unlimited variant
of the HR scheme to demonstrate the effect of limiting.
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Figure 5.4.: Test case 2 (diagonal advection), structured refinement 162 → 2562: convergence of defect
correction iterations for the HR scheme.
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Case 3: Advection + Diffusion

In the anisotropic transport case the grid-aligned transport results in a situation of weakly
coupled one-dimensional advection problems. The obtained error behaviour (figure 5.5) is
nearly identical to the pure advection case. Convergence of the iteration scheme (figure
5.6) is faster, requiring up to 3 iterations. Second order accuracy is again obtained after 1
iteration.
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Figure 5.5.: Test case 3 (anisotropic transport), structured refinement 162 → 2562: truncation and
global errors
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Figure 5.6.: Test case 3 (anisotropic transport), structured refinement 162 → 2562: convergence of
defect correction iterations

89



5. Numerical benchmarks

5.1.3. Unstructured grids

After establishing the behaviour of the schemes on structured grids, the same benchmark
cases are solved on unstructured grids. Starting again from a 162 grid covering the unit
square, the grid is refined four times by randomly selecting 25% of the cells for isotropic
refinement. Then the grid is driven to the maximum resolution of 2562 by refining all cells,
for which a maximum of four refinement steps are required.

A detail view of a representative sequence of unstructured grids obtained by this process is
shown in figure 5.7. Figures 5.7a-d show the grid state after the four random refinement
steps. Figure 5.7e shows the first grid for which all cells were refined. The following grids
5.7e,f show that this quickly results in a grid with simple structured connectivity. The data
plotted on these grids is explained in the discussion of case 2.

The error plots for all three cases below were generated for the same grid sequence (this
“reference random grid sequence” shown in figure 5.7 is obtained by prescribing the random
number generator seed). To make sure that the results are robust, all cases were run on
further random grids series obtained by varying the refinement probability between 0.1 and
0.3. Overall, ten random grid series with up to 9 intermediate grids are created. The errors
measured for these grid scans are shown in figures 5.10b, 5.13b and 5.15.
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5.1. Steady-state solver verification

(a) (b)

(c) (d)

(e) (f)

Figure 5.7.: “reference random grid sequence”. Plotted data is the absolute error for benchmark case
2 (diagonal advection), showing clear patterns of global errors originating at refinement interfaces.
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Case 1: Isotropic diffusion

On unstructured grids the gradient approximations at the faces given in section 4.4.3 differ in
approximation accuracy. In a first step their performance is compared. The gradient average
(4.69) is abbreviated as AJP for λ = 0.5 (arithmetic average) and AJC for λ = ‖~dj‖/(‖~dj‖+

‖~dk‖) (linear interpolation). The orthogonal reconstruction (4.70) is abbreviated as REC.
Figure 5.8 shows the E1 and E∞ error of the converged HR scheme solution for the three
diffusion fluxes computed on the reference grid series. While all three show similar behaviour
and roughly second order convergence, the AJP scheme consistently produces the lowest
error. It is therefore adopted as the reference diffusion flux in the following benchmark. The
hybrid scheme reduces again to central differences and is affected by the problems described
in section 4.3.1.
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Figure 5.8.: Comparison of different diffusion flux approximations

Figure 5.9a shows the development of the local truncation errors. Especially the operator
errors (which are even increasing with higher grid resolution) shown in this plot have to be
interpreted carefully. They reflect the fact that when the local geometry of a cell changes
from essentially structured (one neighbour per side) to unstructured (more than one neighbour
per side), the truncation error increases abruptly. With increasing cell count also the relative
number of such irregular cells increases. They occur at resolution jumps, thus when refining all
cells in the grid their number grows linearly while the overall cell count grows quadratically.

To obtain a clearer picture on the truncation errors, plot 5.9b show the diffusion flux trun-
cation error for a variation of the random refinement grid sequence. Instead of four only one
random refinement step is performed, after which the resolution is again increased isotropi-
cally for all cells. The hybrid/central difference scheme clearly shows no dependence on grid
spacing (i.e. O(1)) for the flux approximation error and O(h) reduction of the E1 flux error.
For the HR scheme O(h) and O(h2) is observed respectively.

However, despite the negative results for the truncation errors, the global error shows a better
picture. Figure 5.10 shows the global error for both schemes, 5.10a on the reference grid series
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Figure 5.9.: Test case 1 (isotropic diffusion), unstructured refinement 162 → 2562: operator and flux
truncation errors

and 5.10b on the grid scan obtained by varying the refinement probability. Furthermore,
figure 5.10b shows the reference convergence behaviour obtained for both schemes on the
structured refined grids presented before, which bounds the optimal convergence rate. The
hybrid scheme (which in this case is equivalent to central differencing) even increases the error
when deviating from a structured grid, which is to be expected due to the drop in consistency
order observed for the local truncation errors.

Overall, on the unstructured grids the hybrid (central difference) scheme shows roughly O(h)
error reduction. As the grid becomes increasingly structured again, the error is reduced very
fast until at 2562 it again coincides with the HR scheme.

Behaviour of the HR scheme is significantly more robust, with error reduction close to O(h2).
Because the diffusive flux (4.69) is less sensitive to limiting due to the jump correction, the
convergence behaviour of the DC iterations (see figure 5.11) is robust, with good convergence
already after 2 iterations.
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Figure 5.10.: Test case 1 (isotropic diffusion), unstructured refinement 162 → 2562: global errors
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Figure 5.11.: Test case 1 (isotropic diffusion), unstructured refinement 162 → 2562: convergence of
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Case 2: Diagonal advection

For the diagonal advection case, when studying the local truncation error (figure 5.12) the
same limitations apply as mentioned in the pure diffusion case 1. However, as the flux
truncation errors for the grid series with only one step of random refinement plotted in figure
5.12b show, the advection flux approximations behave much more robustly (O(h) in E1 and
E∞ norm for the hybrid/upwind scheme, O(h2) in E1 and O(h) (due to the limiting) in the
E∞ norm for the HR scheme).
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Figure 5.12.: Test case 2 (diagonal advection), unstructured refinement 162 → 2562: local truncation
errors

Considering the global error shown in figure 5.13a, the first-order upwind scheme shows its
robustness and does not deviate far from the reference behaviour obtained with structured
refinement. The plot contains again the reference convergence behaviour previously obtained
for structured refinement. The HR scheme again maintains close to O(h2) convergence, with
faster error reduction as the grid becomes more structured again. The effect of limiting is
barely noticeable in the E1 norm of the global error, but can be seen in the maximum norm
show in figure 5.13a. With limiting the maximum error stays at a high level even on the
structured 2562 grid.

Where this case deviates from the observations made so far is in the convergence of the defect
correction iterations. With increasing grid resolution convergence slows down significantly.
It is slowest (in excess of 20 iterations necessary) for the second-to-last grid, which contains
mostly cells with structured connectivity (one neighbour per side). This is not surprising, as
the rate at which the iteration propagates the corrections throughout the grid depends on the
eigenvalues of the iteration matrix, which in turn depend on the grid spacing. Convergence
on the final 2562 grid is then fast again, accounting for the fact that with the transition from
unstructured to structured grid high local truncation errors caused by non-structured cells
vanish.
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Figure 5.7 shows the global error for the converged solution of the HR scheme overlaid on the
reference grid series. The propagation of high local truncation errors originating at resolution
jumps along the diagonal convection direction is clearly visible. This demonstrates the error
propagation behaviour predicted by (4.23).
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Figure 5.13.: Test case 2 (diagonal advection), unstructured refinement 162 → 2562: global errors
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Figure 5.14.: Test case 2 (diagonal advection), unstructured refinement 162 → 2562: convergence of
DC iterations. Convergence slows down significantly on unstructured grids with small cells.
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Case 3: Advection + Diffusion

Performance of the schemes in the anisotropic transport case is again very similar to the pure
advection case, therefore plots of the local truncation error are omitted. The main difference
is that for this simpler (essentially one-dimensional for the advective flux) situation the DC
iterations converge much faster than in the diagonal advection case, with good results after
6 iterations for all grids. The global errors obtained in the grid scan and the iteration
performance on the reference grid series is shown in figure 5.15 and 5.16.
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Figure 5.15.: Test case 3 (diagonal advection), unstructured refinement 162 → 2562. Global error,
grid scan
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Figure 5.16.: Test case 3 (diagonal advection), unstructured refinement 162 → 2562: convergence of
DC iterations. Compared to case 2, convergence is fast on all grids.
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5.1.4. Coordinate-mapped grids

An equivalent verification was performed in the presence of an orthogonal curvilinear map-
ping. The benchmark grid (cf. figure 5.18) is given by the conformal mapping [54]

x(~ξ) =

√√
ξ2

1 + ξ2
2 + ξ1

2
, y(~ξ) =

√√
ξ2

1 + ξ2
2 − ξ1

2
. (5.7)

The solution φ(~ξ) = ξ1 + ξ2 is prescribed, which is linear in ~ξ and therefore nonlinear in ~x.
For this situation, analytic derivation of exact source terms and fluxes is significantly more
complicated. The reference quantities as described in section 5.1.1 are therefore computed to
a sufficient accuracy using adaptive numerical quadrature1.

Figure 5.18 shows the reference solution and an unstructured curvilinear grid. Error reduction
behaviour for benchmark case 1 (isotropic diffusion) is shown in figure 5.17 (cf. figure 5.11a
for the non-mapped case). The results obtained on the mapped grids are very similar to
those for non-mapped grids. The main differences are slight variations in the errors due
to additional geometry approximation effects. Detailed analysis of the individual cases is
therefore omitted.

1Routines from the NAG library [4] are used.
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Figure 5.17.: Test case 1 (isotropic diffusion) on coordinate-mapped grid, unstructured refinement
82 → 1282: global E1 errors of DC iterations.

Figure 5.18.: Reference solution for verification on mapped grids. White lines are countours of φ.
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5.2. Time-dependent benchmark

The purpose of this benchmark is to a) study combination of the hybrid and HR FVM with
the time stepping schemes given in section 4.5 and b) apply the adaptation algorithms to a
dynamic situation. The problem is taken from [104] and was originally stated in [48].

Benchmark problem 2 (Unsteady circular advection). Solve the advection equation

∂φ

∂t
+ ~u · ∇φ = 0 (5.8)

on the unit square Ω = [0, 1]× [0, 1] and t ∈ (0, π] for the circular velocity field

~u(x, y) =

(
1
2 − x
y − 1

2

)
(5.9)

and starting value

φ(~x, 0) =

{
− 1

0.01((x− 3
4)2 + (y − 1

2)2) + 1 for 1
0.01((x− 3

4)2 + (y − 1
2)2) + 1 < 1

0 otherwise
(5.10)

Inflow with φ = 0 and outflow conditions are imposed according to the velocity field.

The starting value is a cone centered at (0.75, 0.5) with diameter 0.1 and height 1 (see figure
5.19a). It is rotated by 180◦ (figure 5.19b). The problem is solved on an adaptive grid with
a maximum resolution of 1282 cells, i.e. ∆x = ∆y = 1/128. The numerical solution is
compared to the exact solution at t = π using the same error measures as in section 5.1.

(a)

   

(b)

Figure 5.19.: Benchmark problem 2: initial value with adapted grid (isotropic strategy)
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(a) Shortly after start (b) t = π/2 (c) t = π

Figure 5.20.: Intermediate grids for the time-dependent benchmark case (isotropic adaptation strat-
egy). The contour line marks φ = 0.1.

(a) Shortly after start (b) t = π/2 (c) t = π

Figure 5.21.: Intermediate grids for the time-dependent benchmark case (anisotropic adaptation strat-
egy). The larger cells cause faster smearing at the fringe of the cone compared the isotropic strategy
(figure 5.20). This leads to a larger area covered by fine cells at t = π.

5.2.1. Grid adaptation

Grid adaptation is performed after every timestep using a simple feature detection criterion.
Cells with φ > 0.001 are marked for refinement, everywhere else all faces are marked for
removal. This forces the grid adaptation algorithm to keep the resolution as high as possible
at the position of the cone, while keeping the resolution as coarse as possible everywhere else.
The grid at t = 0 is indicated in figures 5.19a and 5.19b.

Intermediate grids from the simulations are shown in figure 5.20 (isotropic strategy) and
figure 5.21 (anisotropic strategy). The high-resolution region follows the cone and the adap-
tation algorithm efficiently removes the fine cells after it passed. As the cone spreads due to
numerical diffusion in the spatial discretization, the refinement region grows. This is more
pronounced for the anisotropic case due to the larger cells present in the grid.
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5.2.2. Comparison of spatial and temporal discretizations

A note on timesteps

The behaviour of the time discretization error was studied by scanning a range of timesteps.
For all schemes the expected behaviour was observed when exceeding the stability or positivity
boundaries (i.e. solution blow-up when exceeding the Courant limit and negative values when
exceeding the positivity limit). For the second-order temporal discretizations the timestep
has a negligible influence, the error is dominated by the spatial discretization. For the first-
order schemes, the influence of the timestep is slightly more pronounced but of low overall
importance. All simulation results below were obtained (if not otherwise stated) for a timestep
of ∆t = 1/128, which is below the Courant and positivity limit of all involved schemes.

First-order upwind spatial discretizaton

As detailed in appendix B.1, the first-order upwind difference scheme introduces strong nu-
merical diffusion. This is clearly visible in figure 5.22. Table 5.1 summarizes the minimum
and maximum values observed for φ(t = π) and the E1 error w.r.t. the exact solution. All
schemes maintain positivity exactly and show nearly idential maximum cone heights and
errors. The slightly better performance of the explicit Euler is explained by cancellation of
temporal and spatial error (this is known as the Courant-Isaacson-Rees-scheme)[65].

Scheme Maximum Minimum E1 Error

Explicit Euler 0.28608 0.0 0.018646
Implicit Euler 0.26040 0.0 0.019611
Midpoint RK 0.27212 0.0 0.019158
Explicit BDF-2 0.27207 0.0 0.019159
Implicit BDF-2 0.27222 0.0 0.019156

Table 5.1.: Hybrid spatial discrization (first-order upwind) combined with various time discretizations.
Listed are the maximum solution value (cone height), minimum value and E1 error at t = π.

High-resolution spatial discretizaton

In combination with the HR spatial discretization, all second-order time discretizations pro-
duce very similar results. Both cone height (table 5.2) and shape (figure 5.23b) are maintained
significantly better than for the hybrid scheme. Behaviour of the first-order time discretiza-
tions differs. In the case of the implicit Euler scheme, the lower first-order accuracy is obvious
(5.23a).

The explicit Euler method exhibits an effect known as ”compression”, i.e. a steepening of the
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Figure 5.22.: Hybrid spatial discretization (first-order upwind, UDS) + implicit BDF2. The other time
discretizations show equivalent behaviour. The cone deformation is caused by the strong numerical
diffusion of the UDS scheme.

cone which is clearly visible in figure 5.24. It originates from interaction between the time
discretization and the nonlinear limiter and can distort the solution as shown in figure 5.24a.
This combination is therefore not recommended.

The most important observation here is the positivity violation of the implicit schemes. The
negative values indicated in table 5.2 occur because the defect correction algorithm applied in
each timestep did not solve the nonlinear system (4.71) exactly. Tests show that by increasing
the number of defect correction iterations (algorithm 9) the negative values can be brought
in the range of machine accuracy, but cannot be fully avoided. This has to be kept in mind
when designing algorithms that rely on exact positivity.

Scheme Maximum Minimum E1 Error

Explicit Euler 0.88318 0.0 0.0027219
Implicit Euler 0.73674 -1.1362e-09 0.0067140
Midpoint RK 0.81369 0.0 0.0045211
Explicit BDF-2 0.81327 0.0 0.0045754
Implicit BDF-2 0.81420 -2.2921e-09 0.0044634

Table 5.2.: High-resolution discretization combined with the listed time-stepping schemes (cf. table
5.1).
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(a) Implicit Euler (O(∆t) accuracy) (b) Implicit BDF-2 (O(∆t2) accuracy)

Figure 5.23.: HR spatial discretization + implicit timestepping methods.

(a) ∆t = 1/64 (b) ∆t = 1/128

Figure 5.24.: HR spatial discretization + explicit Euler timstepping. Steepening of the cone occurs
due to interaction of the nonlinear slope limiter with the time discretization and possibly leads to
unwanted deformations.
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The numerical methods, algorithms and data structures discussed so far were designed and
tested to form the basis of an adaptive version of the current B2.5 code, subsequently called
B2.6. This chapter first starts with an overview of the B2.5 algorithm and then details the
steps necessary to integrate the new components. The final B2.6 code then consists of two
new solvers representing different stages of the code conversion process: B2.6-structured and
B2.6-unstructured.

6.1. Overview of the B2.5 code

B2.5 is a compressible multi-fluid code. Its spatial discretization is based on the cell-centered
linear finite volume scheme described in section 4.3 and field-aligned block-structured grids
as described in section 3.1.2. All plasma state variables are stored colocated1, the resulting
risk of checkerboard pressure oscillations is controlled using Rhie-Chow velocity interpolation
[97, 53]. The discretization is fully implicit, as time discretization the forward Euler scheme
(4.79) is used.

6.1.1. Iterative solution algorithm

The nonlinear coupled system of fluid equations given in section 2.2 is solved by iterative
sequential relaxation of linearized equations. One time step consists of three nested iteration
loops separating atomic rate coefficient, source term and transport coefficient updates. An
outline of the core solver structure is given in algorithm 10.

6.1.2. Inner iteration

In this context the term “inner iteration” does not refer to one iteration of an iterative linear
system solver, but to a complete set of sequential relaxations of all equations as outlined
in algorithm 11. The individual equations are solved in turn in linearized form. Couplings
between equations are implemented by simultaneous consistent updates to the plasma state.

1I.e. velocities are stored on cells and not on a staggered grid centered on faces.
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Algorithm 10: B2.5 algorithm: time step and iteration loops

Solver initialization
while t ≤ T do

Outer iteration
Compute atomic rate coefficients
Intermediate iteration

Compute source terms
(EIRENE coupling)
Inner iteration
→ algorithm 11

t = t+ ∆t
Solver finalization

Algorithm 11: B2.5 inner iteration

Compute transport coefficients
Momentum block

foreach species a do
Solve momentum equation (2.5) → ∆u‖a

Solve total momentum equation → ∆u‖t
Relax u‖a for all species

Continuity block
foreach species a do

Solve pressure correction equation → ∆pa
Relax u‖a, na

Potential block
Update potential following ne change
while Rφ > εp do

Solve potential equation (2.7) → ∆φ
Relax φ

Energy block
Solve ion energy equation (2.12) → ∆Ti
Solve electron energy equation (2.9) → ∆Te
Solve total energy equation → ∆Tt
Relax Te, Ti, φ and u‖a for all species

General solution approach

For the solution of individual equations all coefficients and plasma quantities except the
quantity under consideration ϕ(~x, t) : Rn × R → R are kept fixed and the corresponding
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equation is solved for a correction ∆ϕ. For this the advection-diffusion form

∂

∂t
(ρϕ) +∇ · (ρϕ~u−D ∇ϕ)︸ ︷︷ ︸

~f(ϕ)

= S̃(ϕ) (6.1)

for ϕ(~x, t) : Rn × R → R (explicitly including the density ρ(~x, t) : Rn × R → R) is rewritten
as

D(ϕ) := ∇ · ~f(ϕ)−
(
S̃(ϕ)− ∂

∂t
(ρϕ)

)
︸ ︷︷ ︸

:=S(ϕ)

. (6.2)

The flux density ~f contains all terms that can be written as a flux divergence, all other
terms are included in the source term S. For the solution ϕ then holds D(ϕ) = 0. The
current approximation ϕ∗ yields the residual D(ϕ∗) = R∗. A correction ∆ϕ is wanted so that
D(ϕ∗ + ∆ϕ) = 0. For the source S(ϕ) a linearization of the form

S(ϕ)
.
= S0 + S1ϕ+ S2ρ+ S3ρϕ (6.3)

with constant coefficients S0,1,2,3 is used. Linearization of (6.2) around ϕ∗ then yields the
correction equation

∇ · ~f(∆ϕ)− (S1 + S3ρ)∆ϕ = −R∗. (6.4)

It is solved using the hybrid linear finite volume scheme given in section 4.3. The solution is
then updated to

ϕ = ϕ∗ + αϕ∆ϕ. (6.5)

with an under-relaxation factor 0 < αϕ < 1.

Time discretization

The implicit Euler time discretization (4.79)

∂

∂t
(ρϕ) ≈ ρϕn+1 − ρϕn

∆t
, (6.6)

is included in the source term S by modifying the source coefficients (6.3) to

S′0 = S0 +
ρϕn+1

∆t
, S′3 = S3 −

1

∆t
. (6.7)

The time-dependent term is also included in steady-state simulations. The time step then
acts as an additional relaxation factor.
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Coupling terms

The sequential decoupled solution approach requires (in contrast to Newton-like simultaneous
solution of the entire system) explicit treatment of the coupling terms. Coupling due to atomic
processes is included in the source linearization. To improve convergence and enforce exact
cancellation of the friction terms in the momentum equations an additional total momentum
equation is solved. The same approach is used for the energy exchange terms of the energy
equations, requiring the solution of a total energy equation.

Coupling of the velocity to the pressure gradient is taken into account by recasting the
continuity equations into pressure-correction equations. The pressure corrections are used to
update the densities via the equation of state for the partial pressure pa = na(Ti + ZaTe).
Velocity corrections are constructed by exploiting the linear discretization of the momentum
equation following the SIMPLE algorithm [90, 53]. A similar approach is used to update
the velocities following the temperature correction. Additional potential updates are applied
following changes in electron density and temperature. More details on the coupling algorithm
are given in appendix A.2.
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6.2. Development of the B2.6 code

6.2.1. Implementation challenges

The proposed changes (replacement of the data structure and the spatial discretization)
have two common properties: they are pervasive and at the same time invisible from the
outside. Their implementation touches virtually all parts of the code, but the new code
B2.6 is expected to be able to exactly reproduce the results of B2.5. The only immediate
change visible to the user are additional options for the numerical solver that control the grid
adaptation algorithm.

Besides the new data structure and numerical methods required for the adaptive solver, from
a software development point of view the following challenges present themselves.

Code size. The entire B2.5 code2 currently amounts to roughly 150000 lines of Fortran
code3. The core solver which includes all relevant components of the numerical algorithm
(excluding initialization/finalization) is estimated at 35000 lines. In addition to this, the
SOLPS package contains an extensive amount of pre- and post-processing infrastructure4

which is often tied tightly to the internal structure of B2.5.

Physics model content. A central feature of the B2.5 model is the comprehensive physics
model it represents, which was verified and validated extensively both in code-code and code-
experiment studies [45, 40, 29, 39]. This has to be maintained by a new code version to be
attractive to users, and is a strong reason why an evolutionary approach appears to be best
despite the additional technical challenges it poses.

Regression testing. Structural changes to the code that should not alter its behavior have
to be checked against the original code using regression tests to avoid errors and diverging
code behaviour. Failing to do so is a recipe for disaster and effectively requires a complete
re-verification of the new code.

User interface. Existing data and input definitions for simulations performed with the
B2.5 code are expected to work with the new code without changes. The alternative would
be to provide a conversion tool for input files, which is a task of considerable complexity and
relatively error-prone.

To keep the transition manageable, the code modification was split into two blocks: data
structure replacement and spatial discretization implementation. The resulting code B2.6
offers three choices (“code paths”) for the core numerical solver: the original B2.5-standard
solver, an adaptive solver restricted to structured grids (B2.6-structured) and a solver for

2Including I/O routines, some code-related pre- and post-processing programs and the b2plot visualization
tool, but no external codes like CARRE or EIRENE.

3Mostly Fortran 77-style fixed source form with use of some Fortran 90 features.
4This includes a wide range of tools, ranging from shell scripts to an MDSPlus database for simulation results.
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fully unstructured grids (B2.6-unstructured).

6.2.2. The B2.6-structured code

The central change in B2.6-structured is the replacement of the old B2.5 data structure with
the UG data structure (cf. section 3.2.2). The following section describes the main aspects
of this conversion.

Required new infrastructure components

Grid initialization. To read the base grid the existing B2.5 input routines and data struc-
ture are re-used. The working grid is then assembled in the UG data structure from this
data. If the code is to be started with a previous working grid configuration, the associated
stencil has to be supplied and is used to directly assemble the specified grid.

Boundary data structure. The boundary and wall property definitions of B2.5 are reused,
i.e. boundary areas are defined by identifying the associated ghost cell blocks on the base
grid. A separate boundary data structure for the working grid is introduced which stores face
lists of boundary segments and can be modified to follow grid changes.

Plasma state data structure. All primary and derived plasma state variables are stored
in one-dimensional lists, using the face and cell ordering of the grid. Input/output of the
plasma state is done via the base grid using the existing routines.

The data structures are implemented using Fortran derived data types with dynamically
allocatable components. This allows the code to easily work with multiple copies of the
central data structured when required (cf. appendix A.4).

Input/Output

Plasma state, model parameters and further code configuration parameters are read and
written with the existing B2.5 routines, using the B2.5 data structure as a transfer buffer.
The same approach is taken for runtime diagnostics (residuals, traces, restart checkpoints).
This allows to immediately reuse the rich pre- and post-processing tool-chain of B2.5 and the
SOLPS package and completely avoids changes in the simulation input files. The downside
is a significantly increased memory demand for B2.6. This can be avoided by only allocating
the B2.5 data structure for solver initialization and finalization and selectively replacing the
I/O routines used for runtime diagnostics.
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Conversion of solver components

With the required data structures in place, the biggest block of work is to convert the central
solver components (computation of coefficients, sources and fluxes, linear system assembly
and solution) to use the new grid and plasma state data structure. This results in different
“code paths” which effectively do the same computation but use different infrastructure and
partially differing algorithms. A two-step approach is used in the conversion as outlined in
figure 6.1.

First step: conversion. The new B2.6-structured code path using the UG structure is
included in the same source files as the original B2.5-standard code path. At runtime the code
then effectively performs all computations twice, both on the B2.5 and B2.6 data structure.
This enables very detailed comparisons of the results of both code paths (using the internal
variant of the testing framework described in section 6.3) and allows rapid development
iterations during code conversion.

Second step: separation. The B2.5 and B2.6 code paths included in the same source file are
split again, both retaining any previously shared control code. The B2.5 source files contain
the same code as before the B2.6-structured conversion, plus additional instrumentation for
the testing framework. After the split the two code paths are not executed within the same
scope anymore. Therefore instead of the internal now the external testing framework has to
be used for regression testing.

   

B2.5 code path

B2.6-structured
 code path

Test checkpoint
(internal)

Subroutine b2...

Entry checkpoint
(set state)

(a) Step 1: conversion

   

B2.5 code path

Subroutine b2...

B2.6-structured 
code path

Subroutine b2n...

Test checkpoint (external)

Test instrumentation Test instrumentation

Entry checkpoint (set state)

(b) Step 2: separation

Figure 6.1.: Conceptual two-step code conversion process. a) Duplication of code inside an execution
unit (e.g. a subroutine) where extremely detailed tests between the code paths are possible. b)
Separation of the source code into standalone units containing instrumentation for regression testing.
The actual test is then deferred to a test checkpoint external to both units.

The control flow of the B2.5-standard and B2.6-structured code paths are essentially iden-
tical. The biggest change in the algorithms is switching from loops over cells (computing
contributions for left and bottom faces) to loops over faces (computing contributions to the
connected cells). Larger changes are introduced at the level of linear system assembly to
achieve a stronger separation of numerics and physics. Also the boundary condition imple-
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mentation requires major changes due to the more complex boundary data structure. Direct
testing of individual intermediate quantities in these code regions is still possible and done
within the external testing framework.

Merging changes from the B2.5 development line

Separating the code paths has one additional benefit. The source files containing the B2.5
code path are nearly identical to the main B2.5 development trunk, except for additional
statements due to the test instrumentation. The modifications are small enough to allow
automatic merging of changes from the B2.5 trunk into the B2.5 source files contained within
the B2.6 code branch. Modifications done due to ongoing extensions of the main B2.5 devel-
opment line can therefore be included without manual intervention. The necessary updates
to the B2.6 code paths are then done manually with support of the testing framework.

Physics model

In the first step the “classical” part of the B2 model was converted. Drift terms and some
specialized transport coefficients, extended wall models and boundary conditions were omitted
due to time constraints. However, the conversion approach described above allows fast and
reliable conversion of missing pieces. In case of the drift terms, B2.6-structured should take
recent progress into account which resulted in a more robust numerical treatment [99].

Spatial discretization

B2.6-structured keeps the existing hybrid finite volume spatial discretization of B2.5. As
shown by the negative results in the numerical benchmarks, the performance of this scheme
degrades significantly on unstructured grids. The code is therefore artificially limited to
structured grids (i.e. no cells with complex connectivity are allowed, only one neighbor per
side). This is enforced during grid adaptation by averaging adaptation criteria in the poloidal
and radial direction over the entire domain. An additional advantage of this is that existing
interpolation schemes can be reused, which significantly speeds up code conversion.

Grid adaptation mechanism

B2.6-structured already includes all components necessary to enable grid modifications at
runtime, resulting in algorithm 12. Adaptation is currently triggered at preset adaptation
time steps. Criteria can be computed or collected at any point during the computation.
The effective atomic grid operations are also used to modify the boundary data structure.
Transfer of the plasma state to the new grid is done by first transferring it to the base grid
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(using conservative interpolation based on linear reconstruction as described in 4.4.2) and
then computing cell averages for the new grid.

Algorithm 12: B2.6 algorithm including grid adaptation

Solver initialization
Initialize working grid T 0

Initialize plasma state P0

Initialize boundary structure B0

while t ≤ T do
Outer iteration

...
(equivalent to iterations in algorithm 10)
...

t = t+ ∆t
if (adaptation time-step) then

Grid adaptation
Evaluate criteria C on grid T i
Create new grid T i+1 (→ algorithm 1)
Create new plasma state Pn+1 and boundary structure Bn+1

Destroy old structures T i, P i, Bi

Solver finalization

Status of the B2.6-structured code

The regression testing framework enabled fast code conversion while establishing agreement
between the B2.5 and B2.6-structured code paths to within very tight tolerances (the default
relative error threshold for the tests is 10−10) when running them on the same grid. At this
point the B2.6-structured code path can replace the B2.5-structured solver completely, as
demonstrated in chapter 7. Some parts of the B2.5 physics model are missing but can be
added efficiently as needed. The separation of the code paths is only partially completed,
meaning that in some sections both are executed (with the results of B2.5-structured being
ignored). Furthermore no serial optimization of B2.6-structured was done yet, making direct
performance comparisons difficult.

The entire grid adaptation mechanism is in place, and the code is demonstrated to perform
flawlessly when running with grid adaptation in the benchmark given in chapter 7. However,
due to known limitations of the hybrid spatial discretization it is restricted to structured
grids (hence the name B2.6-structured). Convergence behavior of B2.6-structured on adapted
structured grids is equivalent to B2.5 (see figure 6.2 for an example residual trace).
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Figure 6.2.: Residual time trace of B2.6-structured running with grid adaptation enabled. The code
starts from a flat (unconverged) initial solution. Every 1000 time-steps a grid adaptation cycle is
performed, marked by jumps in the residuals. At time-step 3000 the grid settles into its final state.

6.2.3. The B2.6-unstructured code

The B2.6-unstructured code path is created by replacing the numerical scheme in the B2.6-
structured path with the high-resolution FVM presented in section 4.4. In contrast to B2.6-
structured, which mainly keeps the control flow and spatial discretization of B2.5, the changes
required for B2.6 are of a different and more complex nature.

Spatial discretization

Replacement of the spatial discretization requires modifications in the following areas.

Coefficient computation. In B2.5, the transport coefficients of the model are computed
using two approaches: computation on cells and use of generalized interpolation routines to
obtain approximations at the cell faces, or use of ad-hoc interpolation at various places in the
code. Most of these interpolations directly include geometric coefficients, and most of them
break down for the more complex geometry of unstructured grids. This situation is similar
to the problems described for the hybrid spatial discretization in section 4.3.1. At the same
time the choice of interpolations can have a strong impact on both accuracy and convergence
behavior. The combination of these issues requires some attention and makes conversion of
the coefficient computation time-consuming.
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6.2. Development of the B2.6 code

Flux computations. The flux computations required for the residual in (6.4) are replaced
with HR fluxes based on linear reconstruction. The flux linearization is assembled using the
hybrid scheme. Using two spatial discretizations side-by-side requires changes to the transport
coefficient definition, which must drop some geometric quantities previously included.

Defect correction iteration. Solution of the linear correction equations (6.4) is changed
to use the defect correction algorithm 9.

Boundary conditions. For the hybrid scheme the existing boundary condition code can
be re-used (the algorithm change to use the new boundary data structure was already done
in B2.6-structured). The high-resolution fluxes require additional boundary condition speci-
fications as described in section 4.4.5.

Conversion process

All necessary data structures and related infrastructure were already completed in the B2.6-
structured conversion and are used in unchanged form for B2.6-unstructured. Implementation
of the B2.6-unstructured starts by extending the B2.6-structured code path with the new HR
solver components. The general control flow remains unchanged. The definition of some
variables is changed w.r.t. the inclusion of geometric coefficients. This is taken into account
in the testing framework by performing appropriate conversions.

Because both B2.6 code paths use the same data structures, internal in-scope comparisons
are not possible. Instead, the external testing framework is used directly to compare B2.6-
unstructured to B2.5-standard. Due to the significant changes in the numerical scheme,
these comparisons are very different to the comparison done for B2.6-structured. Systematic
differences in the approximations have to be taken into account, leading to much higher
tolerances required for the tests. However, as the different codes still approximate the same
physical quantities, the approach is still feasible, even for verification of B2.6-unstructured
running on unstructured grids.

Status of the B2.6-unstructured code

Due to time constraints, the B2.6-unstructured code is only partially completed and currently
cannot be used as a stand-alone solver. The explicit flux computations are largely converted to
the HR scheme. The biggest block currently being worked on are the coefficient computations,
where more general interpolation routines based on linear reconstruction are being developed.
The implementation of boundary conditions is currently missing completely. Unfortunately
the internal dependencies of quantities inside the code (e.g. heat fluxes build on particle fluxes,
which in turn include a range of coefficients) prohibit separation of the implementation into
work packages for the individual equations.

However, the choice to introduce separate code B2.6-structured and B2.6-unstructured code
paths allows the continued development of aspects of the code benefiting from the new
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data structures in the scope of B2.6-structured. Due to the shared infrastructure, B2.6-
unstructured directly benefits from these changes. Most of the planned modifications listed
in section 8.1 can therefore be developed and exploited while the work on B2.6-unstructured
is still in progress.

6.3. Internal regression testing framework

During the code conversion, testing only global output quantities and relying on standard
debugging techniques (e.g. run-time symbolic debuggers and selective instrumentation) to fix
differences is not time-efficient considering the size of the code. Regression tests between the
different code paths necessarily have to be done at a very fine-grained level. The regression
testing framework described here was designed to allow fast code conversion from B2.5 to
B2.6.

6.3.1. Internal testing

For the conversion to B2.6-structured calls to internal test routines are inserted to directly
compare variables within the same scope (usually a subroutine). This test instrumentation
is permanent (i.e. once put in, the testing code stays in place and can be centrally disabled).
When running with tests enabled, on entering a code block to be tested the B2.5-standard
state is transferred to B2.6 to establish the same input for both code paths. Inside the code
block test calls comparing the output of the two code paths are placed as needed. When
running the code, failing tests are recorded and stop the code at pre-specified checkpoints.
Additionally, the diverging data sets are written out for analysis and visualization. The
approach proved to be very efficient in the identification of coding errors during the B2.6-
structured conversion. As default error criterion a maximum relative deviation of 10−10 is
allowed. Complications arise for quantities passing through zero, for which specific absolute
error thresholds have to be used.

6.3.2. External testing

Separation of the code paths removes the possibility of in-scope testing. The test calls are
therefore changed to output data to an external testing framework. The standard approach
used for this is to stream individual objects (mostly arrays) at test checkpoints to a file and
tagging them with an unique identifier and meta-data (e.g. acceptable error tolerances). An
external tool then automatically compares the output from different code paths and reports
differences. The same data stream files are used to set the state at entry checkpoints (as done
in the internal tests). The approach is sketched in figure 6.3. It enables direct comparison
between B2.5-standard and either B2.6-structured or B2.6-unstructured. This external test
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6.3. Internal regression testing framework

mechanism can easily be integrated into a build framework to provide automated regression
testing.
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Figure 6.3.: Conceptual structure of the external testing framework. Entry checkpoints are used to
read the state provided by the B2.6-standard code path into the B2.6 data structures. The results of
a code block are then written out at test checkpoints and compared to the B2.6-standard results with
external tools.
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7. B2.6-structured adaptation benchmark

The B2.6-structured solver supports grid modifications at runtime, enabling the use of solution-
driven grid adaptation under the restriction of structured grid connectivity. The following
benchmark demonstrates adaptive simulations using feature detectors as adaptation criteria.
A detailed comparison of key quantities to a reference solution gives some insight in the
accuracy of the adaptive solution method.

7.1. Benchmark procedure

This steady-state benchmark case is a 2-species (pure deuterium plasma) scenario which is
based on the ASDEX Upgrade L-mode discharge #16151. The same base grid as in the
adaptation algorithm tests in section 3.5 is used (128× 64 cells, shown in figure 3.19a).

Simulations are performed for two series of grids with varying resolution. The first set of grids
represent a resolution scan to evaluate what errors can be expected when changing the grid
resolution without taking the solution state into account. From these simulations, six “best
case” grids with the best overall performance in terms of error vs. cell count are selected
for comparison with the adaptive runs. A detailed overview including errors of the primary
plasma quantities for this grid series is given in appendix C.2.1. The second grid series is
generated using automatic adaptation as described in the next section.

Lacking an exact analytical solution, the converged solution on the base grid is used as the
reference solution φref. To compute the deviation of the solution obtained a working grid
from the reference solution, the plasma solution φbg on the base grid is reconstructed from
the solution φwg on each working grid using the linear reconstruction method described in
section 4.4.2. The relative deviation is then computed as

εrel =

∣∣∣∣φbg − φref

φref

∣∣∣∣ (7.1)

and the measure (4.26) denoted Ep is computed (c.f. section 5.1.1), using the cell volume as
weight. The only exception is the parallel ion velocity u‖i, where instead of (7.1) the deviation
relative to the local ion sound velocity is used

εrel,u‖i =

∣∣∣∣u‖i,bg − u‖i,ref

cs

∣∣∣∣ , with cs =

√
kTi
mi

. (7.2)
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7.1.1. Adaptive simulations

The second set of grids is obtained using solution-driven grid adaptation. The adaptation runs
start with the converged reference plasma state on a working grid with base grid resolution.
One grid adaptation cycle is performed every 50 outer iterations (including the first iteration).
The adaptation cycles stops after the fifth adaptation step (i.e. after 200 time steps), which
is sufficient for the grids to settle into their final state. The solution is then converged on the
resulting final grid.

Adaptation criteria

An adaptation criterion combining feature detectors for the primary plasma quantities ion
density ni, parallel ion velocity u‖i, ion and electron temperature Ti, Te and potential φ is
used. For every quantity the data variation (3.6) at faces is computed, normalized by (3.8)
and transferred to control volumes using the average (3.9). The criteria are combined to

c = max
(

0.3cni , 0.8cu‖i , 0.4cTi , 0.65cTe , 0.75cφ

)
. (7.3)

The additional weighting coefficients are chosen to balance the individual criteria.

To force the grid adaptation cycles to only produce grids with essentially structured connec-
tivity, the combined criteria are averaged along coordinate lines. Cell criteria cc,y (controlling
splits in the y direction) and face criteria cf for x-aligned faces are averaged along the poloidal
direction. Likewise, cell criteria cc,x (controlling splits in the x direction) and face criteria
cf for y-aligned faces are averaged along the radial direction. An example for the combined
cell criterion value cc,x before and after averaging is shown in figure 7.1. As in the resolution
scan, the grid resolution at the target plates is forced to the highest level.

The action thresholds used for the benchmark are listed in table 7.1. As in the grid adaptation
algorithm examples (section 3.5), the thresholds are multiplied with a linear factor (ranging
from [0.6 . . . 5]) to obtain a range of grids with varying solution. An example grid obtained
in the adaptive runs is shown in figures 7.2-7.4. Detailed error plots for this specific grid are
included in the following sections.

Cv
c,x Cs

c,x Cv
c,y Cs

c,y Cr
f,x Cv

f,x Cr
f,y Cv

f,y

0.000 0.030 0.000 0.025 0.004 0.180 0.009 0.180

Table 7.1.: Cell and face action thresholds for the B2.6-structured adaptation benchmark. They are
rescaled with a factor λ ∈ [0.6, 5] to obtain a series of adapted grids with varying resolution.
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7.1. Benchmark procedure

(a) Combined cc,x criterion value without averaging. At the target plates the
criterion is fixed to force refinement.

(b) Combined cc,x criterion value after averaging along the radial direction.

(c) Regions marked by active criterion.
Blue = ni, cyan = u‖i, Ti = green, Te = red, φ = yellow

Figure 7.1.: Combined criterion for structured adaptation. Feature detectors are evaluated for the
primary plasma quantities. The combined criterion (figure a) is constructed by selecting the maximum
value computed by the feature detectors for the individual criteria. The averaged combined criterion
is shown in figure b. Figure c shows which criterion produced the maximum cc,x value in individual
grid cells.
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7. B2.6-structured adaptation benchmark

   

Outer target
Inner target

Figure 7.2.: Full grid (adapted, 1476 cells)

(a) Divertor region
(base grid, 8192 cells)

(b) Divertor region
(adapted grid, 1476 cells)

Figure 7.3.: Divertor plots

   

Figure 7.4.: Adapted grid with 1476 cells (+196 ghost cells), plotted in computational space (cf. figure
3.2 for the mapping). Plots of this grid in physical space are shown in figures 7.2 and 7.3b.
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7.2. Results

7.2.1. Errors in primary plasma quantities

The average relative deviation of the primary plasma quantities for the two grid series is
shown in figure 7.5. They are well below 10% already for low cell counts, showing that for
this benchmark example low-resolution grids are already sufficient to obtain a good solution
approximation. The grids created by the adaptation process a) manage to steadily decrease
the error with increasing cell count and b) match or outperform the best-case grid selected
from the resolution scan. An exception to this are the u‖i and Ti deviations on coarse grids
(< 1000 cells).

Two-dimensional plots of the relative error in the physical domain as obtained on an adapted
grid with 1476 cells are shown in figures 7.6, 7.7 and 7.8. The temperatures and the potential
exhibit similar error patterns, with regions of high relative deviation concentrated in the
private flux region and around the x-point. For all quantities, it holds that regions with
relative deviations of more than 10% are very localized and usually located in areas with high
grid deformations (i.e. near the x-point and at the target plates). The deviations in the core
are low.

7.2.2. Errors in target plate profiles

Also of interest is the approximation of solution profiles of some key quantities at the target
plates (their position is shown in figure 7.2). Plots are given for the total energy flux on inner
and outer target (figure 7.9), the electron temperature (figure 7.10) and the electron density
(figure 7.11). The profile plots include a) the profile of the reference solution, b) the profile
obtained on the example adapted grid with 1476 cells (figure 7.2) and c) for comparison also
a profile on a grid from the resolution scan grid with 1188 cells (+172 ghost cells, effective
cell stencil size is (2, 4)).

The relative errors observed for the profiles are in general in a similar range as the errors
of the primary plasma quantities. Approximation of the qualitative shape of the profiles
is robust even on coarse grids. Again, the adapted solution matches or outperforms the
best-case solutions obtained in the grid scan.

Figure 7.9 also includes data on the error of the total energy flux integral over the entire
target plate area. The approximation of this quantity is very robust, to within 1% for grids
exceeding 1000 cells.
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7. B2.6-structured adaptation benchmark

(a) Ion density ni (b) Parallel ion velocity u‖i

(c) Electron temperature Te (d) Ion temperature Ti

(e) Potential φ

Figure 7.5.: Relative errors of the primary plasma variables for the converged solutions on both grid
series. Data from adapted grids is shown in color, data from the optimal resolution scan grids is shown
in black.
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7.2. Results

(a) Reference ion density ni(1/m
3) (b) Relative ni error

(c) Reference parallel ion velocity u‖,i(m/s) (d) Relative u‖i error

Figure 7.6.: Reference ni, u‖i solutions and relative errors on grid shown in figure 7.2.
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(a) Reference electron temperature Te(eV) (b) Relative Te error

(c) Reference ion temperature Ti(eV) (d) Relative Ti error

Figure 7.7.: Reference Te, Ti solutions and relative errors on grid shown in figure 7.2.
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7.3. Conclusions

(a) Potential φ(V) (b) Relative φ error

Figure 7.8.: Reference φ solution and relative error on grid shown in figure 7.2.

7.3. Conclusions

The behavior of B2.6-structured when running on adapted grids coarser than the base grid
resolution is very robust. The feature detection criterion, while being of rather simple form,
delivers surprisingly good results. The grids it produces match the results of hand-picked
grids with fixed cell-aspect ratios at all resolution levels, without the need to perform an
extensive resolution scan first. Already in this early development stage (with the capabilities
of B2.6-structured still limited to structured grids) this kind of solution-driven grid adap-
tation can be a useful tool for production-level simulations. The capability of the code to
automatically create grids with different resolutions proved to be very useful for performing
the grid resolution scan simulations. Scans of this type (which previously required manual
grid conversion) are routinely possible with B2.6-structured.

Both B2.5 and B2.6-structured use the same solution approach and exhibit identical conver-
gence behavior. However, grid adaptation cycles lead to large jumps in the residuals that
in general do not decay quickly to the residual level before the adaptation step (see figure
6.2). In general, the flux balances contain contributions from very large individual fluxes, and
even slight changes due to changing geometric coefficients or interpolation errors immediately
cause large imbalances.
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7.3. Conclusions

(a) Te, inner target (b) Te, inner target, relative E1 error

(c) Te, outer target (d) Te, outer target, relative E1 error

Figure 7.10.: Electron temperature Te on inner and outer target. Plots a and c show profiles for
individual grids, plots b and d show the profile deviation for the two grid series.

While the time required to complete an inner iteration drops as expected with decreasing grid
cell counts, the relation between grid resolution and convergence speed is more complicated.
In general, convergence speed of the runs performed for this steady-state benchmark case
remains largely unaffected, with roughly 5000-6000 iterations required to reach convergence
(not accounting for differing residuals after the adaptation phase). Some extremely coarse
grids (< 400 cells) exhibit slower convergence and require up to 12000 iterations to converge.
This is most likely related to the extreme difference in spatial resolution caused by forcing
the grid to high resolution at the target plates. To control this kind of effect, a better
understanding of the influence of grid resolution on the properties of the nonlinear iteration
scheme is required, especially for the use with multigrid methods. The general topic of
convergence behavior and acceleration, optimal choice of relaxation factors and optimization
of the iteration scheme was not studied in this work. B2.6 can be used for systematic studies
in this area.

For the moment, a good adaptation strategy is to adapt the grid during the starting phase
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(a) ne, inner target (b) ne, inner target, relative E1 error

(c) ne, outer target (d) ne, outer target, relative E1 error

Figure 7.11.: Electron density ne on inner and outer target. Plots a and c show profiles for individual
grids, plots b and d show the profile deviation for the two grid series.

of the iteration, during which the solution structure starts to emerge but the residuals are
still high. Later in the run, when the residuals dropped below a certain limit, adaptation is
suspended to avoid increasing the residuals again.

The code separation between B2.6-structured and B2.5 is currently not complete. This and
the fact that no serial optimization for B2.6-structured was done yet makes a clean comparison
of code timings impossible. However, some observations can be made. Matrix assembly
(coefficient and flux computation) scales linearly with cell count. The scaling of the solution
time for the linear system obviously depends on the solver. Measurements for the MUMPS
solver used in the benchmarks are presented in appendix B.3. For the relatively low-resolution
grids used in B2 it scales roughly linearly with cell count. This behavior is expected to carry
over to B2.6-structured and was approximately observed in the benchmark runs.
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8. Summary and outlook

The increased complexity of scrape-off layer simulations performed for the modeling of mag-
netic confinement fusion devices calls for efficient numerical tools. This motivated the ex-
tension of the multi-species plasma fluid code B2 to support adaptive grids presented in this
work.

Data structure and adaptation algorithms

The main challenge in the grid generation process for the B2 code is the strong anisotropy of
particle and heat transport in the magnetized plasma, requiring field-aligned grids. To exploit
the existing grid-generation workflow, adapted grids are built using a base grid / working
grid approach. Based on the requirements of the B2 code, a flexible grid data structure
was designed. It supports unstructured logically rectangular coordinate-mapped grids in 2
dimensions and is optimized for use with implicit finite volume spatial discretizations.

To enable efficient grid modifications the data structure is complemented by a global grid re-
finement and coarsening algorithm. It supports isotropic and anisotropic adaption strategies
and is controlled through user defined adaptation criteria and action thresholds. Flexibility
and robustness of the algorithms was demonstrated by adapting grids to converged B2 solu-
tions using feature detectors as criteria. Efficient adaptation (and especially coarsening) in
dynamic situations was shown for a time-dependent benchmark case.

Finite volume solver

Moving from structured to unstructured grids results in a more complicated cell geometry.
This has to be reflected in the choice of spatial discretization. A high-resolution (HR) finite
volume method based on limited linear solution reconstruction was considered as a replace-
ment of the current B2.5 hybrid scheme. Both schemes were implemented in a solver for the
advection-diffusion equation using the new data structure. Their performance on unstruc-
tured grids was compared using a steady-state benchmark case. As expected, the performance
of the hybrid scheme degrades on unstructured grids while the HR scheme maintains its prop-
erties. For computations on unstructured grids upgrading B2 to the HR scheme is mandatory
and has the additional benefit of providing second order accuracy for all flow conditions.
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8. Summary and outlook

B2.5 B2.6-structured B2.6-unstructured

Hybrid FVM 3 3 -

High-resolution FVM - e e

Grid adaptation - 3(structured) 3(unstructured)

Standard physics model 3 3 e

Drift physics model 3 5 5

Table 8.1.: Implementation status of the B2 code family. 5 = not started, e= partially completed,
3 = completed, - = not possible with this version.

Adaptive B2.6 code

The grid data structure, adaptation algorithms and finite volume solver form a self-contained
Fortran 90 library that was implemented and verified separately. The new components were
then introduced step-by-step into the B2.5 code, starting with conversion of the code to the
new data structure while maintaining the hybrid finite volume discretization. The resulting
B2.6-structured code contains all necessary components for criteria-controlled grid adapta-
tion, greatly extending its technical capabilities (including simultaneous handling of multiple
grids and plasma states). Owing to the continued use of the hybrid scheme, it is limited to
structured grids and so far not the complete physics model been converted (drift physics are
currently not included). A built-in regression testing framework is provided for verification
against the B2.5 code, establishing exact agreement of the results when running on the same
grid and allowing for easy implementation of the missing physics modules. The user interface
of the B2.5 code is retained, allowing a direct migration to the new code version.

A benchmark case based on an ASDEX upgrade discharge was used to study the capabilities of
grid adaptation in B2.6-structured using feature-detection criteria. The accuracy of solutions
obtained on solution-adapted grids with respect to a reference solution was compared against
solutions from a grid resolution scan. The adapted grids were shown to be as good or better
than the best solutions obtained in the resolution scan for any given grid cell count. Good
solution accuracy already for low cell counts and robust convergence was observed, resulting
in an overall reduction of computation time.

Furthermore, in the scope of this thesis development of the extended code version B2.6-
unstructured was started. It includes the HR finite volume method studied in this thesis.
Based on the experience gained with the numerical benchmarks and B2.6-structured, due to
the transition to a fully unstructured grid a further significant reduction of the grid cell count
and computation time for a given accuracy is expected. The implementation status of the
B2 code family is summarized in table 8.1.

Already in its present form B2.6-structured is a useful tool to improve the efficiency of scrape-
off layer simulations. B2.6-unstructured will further extend the capabilities of the adaptive
codes. Overall, the modernized software architecture of the B2.6 codes greatly extends the
possibilities for further advances.
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8.1. Future work

Further code development. The implementation of the HR scheme in B2.6-unstructured
has to be completed and verification against B2.5 (as done for B2.6-structured) has to be
performed. The physics model of both versions has to be extended to match the capabilities
of B2.5. Inclusion of the drifts treatment should take the latest progress in the field into
account.

Introduction into production use. The new code version has to be introduced into the
main SOLPS distribution and offered to users as an option for production runs, including
proper support and documentation. The focus of further improvements has to be based on
experience collected from use of the code on real problems.

Adaptation criteria. An immediate necessity for a production-quality B2.6 code is to
design and test set of robust ”standard” adaptation criteria based on the feature detectors
which enable users to take advantage of the new features with minimal effort. A challenging
longer-term project is the derivation of adaptation criteria based on error estimators and grid
optimization for output functionals.

Grid orthogonality. Due to limitations of the current B2.5 data structure, the grid gen-
erator has to relax the grid orthogonality constraint close to the target plates depending on
the device geometry. This has possibly adverse effects on the solution accuracy and requires
special attention in the discretization. An approach to avoid this problem entirely with the
new data structure is presented in appendix D.1.

Multigrid. The capability of the B2.6 code generation to handle multiple grids and plasma
states combined with easy access to grid hierarchies due to efficient coarsening (as demon-
strated in section 3.5.2) allows the implementation of geometric multigrid algorithms for
convergence acceleration with relatively little effort. Of particular interest is the so-called full
approximation scheme (FAS) for nonlinear problems, with the iterative relaxation of the cou-
pled equation system acting as a smoother. The anisotropy in the problem can be addressed
with semi-coarsening, i.e. changing the resolution depending on the coordinate direction.
This is now possible with the anisotropic adaptation strategy. The multigrid approach can
be combined directly with grid adaptation and the defect correction technique [59, 113, 69].

Parallelization. With the neutrals code EIRENE becoming available in a parallelized ver-
sion, parallelization of the B2 codes becomes important. Due to the structure of the sequential
relaxation algorithm and use of relatively low-resolution 2d grids, parallelization on the level
of the linear solver and use of domain-decomposition techniques is unfeasible. More promising
is parallelization on a per-equation basis. A first step is to distribute the solution computa-
tion of continuity and momentum equations to single cores. Some notes on this can be found
in appendix D.2.
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A. Notes on the B2 model and codes

A.1. Properties of curvilinear coordinates

This section outlines some basic properties of curvilinear coordinate mappings. A compre-
hensive reference (especially in the context of magnetic plasma confinement) is [49].

A coordinate mapping T : Ωξ → Ωx, ~x = ~x(~ξ) assigns to every point ~ξ in a set Ωξ ⊆ R3

(defined by the position vector ~ξ = (ξ1, ξ2, ξ3) in the ξ-coordinate system) a corresponding
point ~x in another set Ωx ⊆ R3 (defined by the position vector ~x = (x1, x2, x3) in the x-
coordinate system). The Jacobian of the mapping is

J ≡ J
(
~x
(
~ξ
))
≡
∂~x
(
~ξ
)

∂ξ1
·

∂~x
(
~ξ
)

∂ξ2
×
∂~x
(
~ξ
)

∂ξ3

 =

∣∣∣∣∣∣∣
∂x1

∂ξ1
∂x1

∂ξ2
∂x1

∂ξ3

∂x2

∂ξ1
∂x2

∂ξ2
∂x2

∂ξ3

∂x3

∂ξ1
∂x3

∂ξ2
∂x3

∂ξ3

∣∣∣∣∣∣∣ (A.1)

For the mapping to be invertible, J 6= 0 must hold in Ωx. If this is the case, the inverse
mapping is T ′ : Ωx → Ωξ, ~ξ = ~ξ(~x), and every point in the sets Ωx and Ωξ can be identified
uniquely with its coordinates in the x- or ξ-system.

The coordinate curves {~x(~ξ) : ξα, ξβ = const} for a system are obtained by holding two
coordinates fixed and varying the remaining coordinate. The coordinate surfaces {~x(~ξ) :
ξα = const} are obtained if one coordinate is fixed and the remaining two are varied. In the
simplest case of a rectilinear grid, the coordinate curves are straight lines. In the general
case of arbitrary formed coordinate curves the coordinate system is called curvilinear. If the
coordinate curves intersect in every point at right angles, the curvilinear system is called
orthogonal.

Co- and contra-variant basis vectors

At every point x ∈ Ωx two sets of basis vectors are defined. The covariant basis vectors
(written with superscript indices α) are defined as

~e (i) ≡
∂~x
(
~ξ
)

∂ξi
, i = 1 . . . 3. (A.2)
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They are tangential to the ξi coordinate curves. The second set are the contra-variant basis
vectors (written with subscript indices i)

~e(i) ≡ ∇ξi, i = 1 . . . 3. (A.3)

They are perpendicular to the coordinate surfaces. Co- and contra-variant basis vectors are
closely related: the vector sets are reciprocal, meaning ~e(i) ·~e(j) = δji , where δ is the Kronecker
symbol. The bases are local, they depend on position.

Any vector ~u = (ũ1, ũ2, ũ3) ∈ R3 can then be expressed as

~u =
3∑
i=1

ui~e
(i) =

3∑
i=1

ui~e(i). (A.4)

u(i) = ~u · ~e(i) are the covariant components of the vector (written with subscripts like the
covariant basis vectors) and ui = ~u · ~e(i) the contra-variant components (written with super-
scripts like the contra-variant basis vectors). When working with physical units, it should be
noted that ~e(i) and ~e(i) are not unit vectors and the co- and contra-variant components have
different units than ũi.

Metric coefficients

The metric coefficients are of central importance for working with curvilinear coordinates.
The covariant coefficients gij and contra-variant coefficients gij are defined as vector products
of the basis vectors

gij ≡ ~e(i) · ~e(j), gij ≡ ~e(i) · ~e(j) (A.5)

and form a symmetric matrix. They are related by

δki =

3∑
j=1

gkjgji. (A.6)

The determinant g of the covariant coefficient matrix [gij ] is related to the Jacobian J by

g ≡ det[gij ] =

∣∣∣∣∣∣∣
∂ x

1

ξ1 ∂ x
1

ξ2 ∂ x
1

ξ3

∂ x
2

ξ1 ∂ x
2

ξ2 ∂ x
2

ξ3

∂ x
3

ξ1 ∂ x
3

ξ2 ∂ x
3

ξ3

∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣
∂ x

1

ξ1 ∂ x
2

ξ1 ∂ x
3

ξ1

∂ x
1

ξ2 ∂ x
2

ξ2 ∂ x
3

ξ2

∂ x
1

ξ3 ∂ x
2

ξ3 ∂ x
3

ξ3

∣∣∣∣∣∣∣ = (J)2 (A.7)

or J =
√
g.

The scale factors hi = |~e(i)| are defined as the length of the tangential basis vectors. With

~̃e(i) = ~e(i)/hi (A.8)

being the tangential unit basis vectors, the metric coefficients can be rewritten as

gij = hihj~̃e(i) · ~̃e(j) = hihj cos^(~e(i), ~e(j)). (A.9)
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For the diagonal entries this gives gii = h2
i or hi =

√
gii. Conversion between covariant and

contra-variant components is then possible by

ui =
3∑
j=1

giju
j , ui =

3∑
j=1

gijuj . (A.10)

Orthogonal curvilinear coordinates

For an orthogonal system the off-diagonal entries gij , g
ij , i 6= j are zero. The expression for

the Jacobian then simplifies to
J =

√
(g) = h1h2h3. (A.11)

Furthermore the relation gii = 1/gii holds.

As already noted, the basis vectors are in general not unit vectors and therefore the co-
and contra-variant vector components have units. The vector components in the covariant
(tangential) direction are given in physical units (i.e. the real length of the projection on unit
basis vectors) by

ũi = hiui =
ui

hi
. (A.12)
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A.2. Sequential coupled relaxation in B2.5/B2.6

This section describes the explicit implementation of the sequential coupled relaxation algo-
rithm in the inner iteration (cf. algorithm 11) of B2.5 and B2.6.

Momentum equations and pressure coupling

The individual momentum equations are solved separately for the velocity updates δu‖a.
Exact cancellation of the inter-species friction terms Rab‖ is enforced by solving an additional
total momentum equation (obtained as the sum of the individual momentum equations) for
the total velocity update δu‖t. The momentum update is then

u‖a = u∗‖a + αu‖med(δu‖a, δu‖t, δu‖a + δu‖t) (A.13)

with u∗‖a being the previous approximation, med the median value and αu‖ the momentum
under-relaxation factor.

For compressible flow, both density na and velocity u‖a occurring in the particle flux Γa are
primary variables and must be updated consistently to correct the residual of the continuity
equation. To increase robustness in the presence of (effectively incompressible) low Mach
number flows a pressure coupling approach is used. A change in partial pressure δpa causes
the (linearized) corrections

pa = p∗a + αpδpa, na = kαpδpa, u‖a = u∗‖a − αpcbx
1

hx

∂pa
∂x

. (A.14)

The coefficient k = 1/(Ti+ZaTe) is given by the equation of state pa = na(Ti+ZaTe) with fixed
Te, Ti. The velocity update has to be chosen so that the momentum flux divergence and the
pressure gradient term in the momentum equation (2.5) cancel. As in the SIMPLE algorithm
[90, 53], the linear FVM discretization of the momentum equation is exploited directly by
choosing ci = 1/am,aii , where am,aii is the diagonal entry for cell Ωi of the corresponding
linear system (4.51). Substitution of the corrections (A.14) (without the αp factor) into the
continuity equation (2.3) and linearization yields the pressure-correction equation (expanded
in the poloidal coordinate system)

∂

∂x

[√
g

hx

(
(u∗‖a + Va,x)kδpa − (kDa,x +Dp

a,x + n∗acb
2
x)

1

hx

∂δpa
∂x

)]
∂

∂y

[√
g

hy

(
Va,ykδp− (kda,y +Dp

a)
1

hy

∂δp

∂y

)]
= −Rna . (A.15)

Rna is the residual of the continuity equation for species a. Due to compressibility, (A.15) is
in in advection-diffusion form and the pressure field is fixed (in the incompressible case only
the relative pressure is relevant, and A.15 would be a Poisson equation). Analysis of this
pressure coupling is best done in a distributive iteration framework [119].
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Potential equation iteration

The potential φ is modified to follow the change of the electron density by

φ0 = φ∗ +
Te
e

2(ne − n∗e)
ne + n∗e

, (A.16)

where n∗e is the value before ne after the density update. When the drift physics model is
used, an accurate solution of the potential equation (2.7) is required. It is therefore solved
iteratively for δφ to update φi+1 = φi + αφδφ, with a re-computation of the current after
every update. The iteration stops when the potential residual drops below a preset value.

Heat equation coupling

The electron and ion energy equations (2.9),(2.12) are solved for the temperature updates
δTe, δTi. The strong coupling of the energy equations through the exchange term Qei is
treated by solving a total energy equation (obtained by summing (2.12) and (2.9)) for the
total correction δTt. The temperature updates are then

Te = T ∗e + αT
δTe + δTt

2︸ ︷︷ ︸
δT ′

e

, Ti = T ∗i + αT
δTi + δTt

2︸ ︷︷ ︸
δT ′

i

. (A.17)

Furthermore the potential and velocities are updated to

φ = φ∗ + αT
δT ′e
e
, u‖a = u∗‖a − αT cT bx

1

hx

∂(neδT
′
e + niδT

′
i )

∂x
. (A.18)

The velocity updates are chosen to compensate for the pressure change due to the temperature
update. The coefficient cT is derived from the linearization of the total momentum equation
in a similar way as done for the pressure-correction equation.

A.2.1. General implementation notes

A number of techniques are used to stabilize the algorithm, with an emphasis on robust
convergence behavior in the presence of strongly nonlinear behavior of the model. Typical
values for the under-relaxation factor α in the code are 0.1 . . . 0.5. An additional equation-
specific under-relaxation is used that rescales the diagonal coefficient of the linear system
(4.51) with the local absolute residual.

Transport coefficients are mainly computed for cells and are then interpolated to faces using
varying interpolation methods (linear interpolation, volume-weighting, harmonic averages
where required for stability on coarse grids).
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Source terms are linearized to fit into (6.3), when necessary the linearization is modified to
maintain the positive coefficient condition (4.32). Source integrals are computed using the
midpoint rule. Boundary condition implementation is done by modification of the source
linearization in the ghost cells.

A.3. Notes on B2 grids

This section contains some notes on special extension of the UG data structure (cf. section
3.2.2) required to support B2 grids.

A.3.1. Special vertices

Special points like an x-point (shown in figure A.1) can have more than four incident faces
and cells, exceeding the capacity of the FV and ΩC index lists. These vertices can be in-
cluded in the UG data structure by leaving the lists empty (this convention is also used to
identify these vertices). Because the vertex-to-face connectivity information is only used in
the adaptation algorithms, (and special points by definition cannot be removed), this poses
no special problems.

   

Figure A.1.: X-point with more than four incident faces. Points like this can be included in the grid
but require special treatment in some parts of the algorithms.

A.3.2. Non-aligned grid blocks

Rule (3.3) aligns grid cells along a hierarchy in which the stencil origin of the biggest possible
composite cell covering the entire base grid is at (ox, oy) = (1, 1). For block-structured grids
the sub-blocks don’t necessarily have dimensions that are powers of two and therefore do not
align with the hierarchy. This is the case for most existing B2 grids. Faces at the boundary
of a block are persistent and cannot be removed. This effectively stops coarsening of cells at
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a certain level. Further coarsening of such grids (up to the coarsest possible grid with one
cell covering every block) can be enabled by

• using separate grid hierarchies within every sub-block (aligned to the origin cell of the
block) and

• partial relaxation of the conditions on cell stencils in a merge group at the boundary
of a block. This can be implemented by assuming cells to extend outside the block
boundary to match the stencil size of their interior neighbors. The same logic is used
to determine cell sizes when performing cell splits at the boundary.

An example where this extension is applied is shown in section 3.5.2 for a double-null geom-
etry.
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A.4. Data structure implementation

The data structure implementation uses the allocatable array extension of Fortran 95 (ISO/IEC
TR 15581, now included in the Fortran 2003 standard). It allows derived data types with
allocatable arrays as components. An example is the following reduced grid data structure
used in the solver (omitted lines are marked by dots).

type , public : : G2DEStripped
! Pointer to extended g r i d s t r u c t u r e
type ( Grid2dEdge ) , pointer : : master => n u l l ( )
! Po in ter s to s t e n c i l and base g r i d
type ( G2DEStencil ) , pointer : : s t => n u l l ( )
type ( Grid2dBase ) , pointer : : bg => n u l l ( )

...
integer ( iKind ) : : nCv = 0 ! ncv : number o f c o n t r o l volumes in g r i d

...
! Cv−f a c e c o n n e c t i v i t y . Dimensions :
! 1 : Decreasing (IDEC=1) or i n c r e a s i n g ( IINC=2) d i r e c t i o n
! 2 : Face index ( 1 : nFc )
integer ( i Index ) , dimension ( : , : ) , allocatable : : fcCv

...
! Faces connected to cv , in same ord er i ng as in Grid2dEdge ,

ControlVolume2d
! Dimensions : 1 − l o c a l f a c e index ( 1 : G2DE CV NFACE )
! 2 − cv index ( 1 : nCv )
integer ( i Index ) , dimension ( : , : ) , allocatable : : cvFc

...
! Area o f f a c e in p h y s i c a l space
real ( rKind ) , dimension ( : ) , allocatable : : aFc ! (nFc)
! Volume o f cv in p h y s i c a l space
real ( rKind ) , dimension ( : ) , allocatable : : vCv ! (nCv)

...
end type G2DEStripped

Allocatable components can be allocated inside a subroutine. For every data structure asso-
ciated constructor and destructor routines are provided.

subroutine createG2DEStripped ( g2de , g r id )
type ( Grid2dEdge ) , intent ( in ) , target : : g2de
type ( G2DEStripped ) , intent (out ) : : g r i d

...
! Transfer s t a t i s t i c s
g r id % nCv = g2de % nCv

...
! l i n k g r i d
g r id % master => g2de
g r id % s t => g2de % s t e n c i l
g r i d % bg => g2de % bGrid
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...
! a l l o c a t e arrays
allocate ( g r id % cvFc ( G2DE CV NFACE, g r id % nCv ) )
allocate ( g r id % fcCv ( 2 , g r id % nFc ) )

allocate ( g r id % aFc ( g r id % nFc ) )
allocate ( g r id % vCv( g r id % nCv ) )

...
end subroutine createG2DEStripped

subroutine destroyG2DEStripped ( g r id )
type ( G2DEStripped ) , intent ( inout ) : : g r i d

...
g r i d % nCv = GRID UNDEFINED

...
nul l i fy ( g r id % master )
nul l i fy ( g r id % s t )
nul l i fy ( g r id % bg )

...
! d e a l l o c a t e arrays
deallocate ( g r id % aFc )
deallocate ( g r id % vCv )

...
end subroutine destroyG2DEStripped

State variables are stored in one-dimensional lists. Timing tests with varying compilers
showed that using allocatable components has an negligible effect on array access speed.

! Primary plasma s t a t e v a r i a b l e s
type B2Plasma

integer ( iKind ) : : ns ! number o f s p e c i e s
! d e n s i t y and v e l o c i t y ( second index i s s p e c i e s )
real ( rKind ) , dimension ( : , : ) , allocatable : : na , ua
! p o t e n t i a l , e l e c t r o n temperature , ion temperature
real ( rKind ) , dimension ( : ) , allocatable : : po , te , t i

end type B2Plasma

Using this form of derived types a) significantly reduces the length of subroutine parameter
lists, b) dramatically improves code readability and maintainability and c) allows use of
multiple instances of the data structures in the code.
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B.1. Classical finite volume schemes

For the discretization of the advection term in (4.5), the hybrid finite volume described in
section 4.3 switches between the central and the upwind flux approximations depending on the
local Péclet number. To provide a clearer picture of the hybrid discretization, the following
section discusses these schemes separately. Good references for this are [90, 119].

B.1.1. Central differences

Figure B.1.: Simplified flux geometry

Assume that the line −−→xdxi between the centroids of the
two control volumes Ωd and Ωi connected by the face
edi passes through the midpoint xm of the face (see
figure B.1). In this case a linear profile of the solution
between the centroids can be assumed to derive (in
combination with the midpoint integration rule) the
flux approximation

F adi = |edi|udi((1− λdi)φd + λφi) (B.1)

for the advective flux and

F ddi = |edi|Ddi
φi − φd

1
2(∆xd + ∆xi)

(B.2)

for the diffusive flux. udi is the velocity and Ddi the diffusivity at the face. The coefficient
λ = ∆xd/(∆xd + ∆xi) defines the weights for linear interpolation. Due to the equivalence of
(B.2) and (B.1) to a central difference approximation of the first derivative, these fluxes are
often referred to as the central difference scheme (CDS).

Combining the two fluxes gives

F addi = |edi|

udi∆xi − 2Ddi

∆xd + ∆xi︸ ︷︷ ︸
ad

φd +
udi∆xd + 2Ddi

∆xd + ∆xi︸ ︷︷ ︸
ai

φi

 (B.3)
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Analyzing the scheme in the one-dimensional form (B.2) shows a discretization error of
O(∆x2), which also holds for non-smooth structured grids [119]. This behavior is observed
in the numerical benchmarks on structured grids presented in section 5.1.

Considering how this flux contributes to the flux balance equation for control volume Ωd, the
coefficient ai is positive as long as the numerical Péclet number is smaller than 2. Therefore,
according to theorem 3, the scheme does not maintain the maximum principle for all flow
conditions and is prone to develop unphysical solution oscillations.

A direct solution to this problem is to decrease the effective numerical Péclet number. This
can be done by either reducing the grid spacing ∆x (refining the grid in regions with a high
P ) or artificially increasing the diffusion.

B.1.2. The first-order upwind scheme

Flux B.2 can be modified to give a scheme of positive type by changing the discretization of
the advective term to

F adi =
udi
2

(φd + φi) +
|udi|

2
(φd − φi) =

{
udiφd for udi ≥ 0
udiφi for udi < 0

, (B.4)

which chooses the value of φ at the face coming from the upwind side with respect to the
advective flow direction. It is often referred to as the upwind difference scheme (UDS).
Combining this with the central diffusion flux B.2 results in the flux approximation (again
given for the simplified situation of figure B.1 )

F addi = |edi|


(
udi + |udi|

2
− Ddi

1
2(∆xd + ∆xi)

)
︸ ︷︷ ︸

ad

φd +

(
udi − |udi|

2
+

Ddi
1
2(∆xd + ∆xi)

)
︸ ︷︷ ︸

ai

φi.


(B.5)

A negative contribution of the advective flux to the coefficient ai is prevented, yielding a
scheme of positive type for any Péclet number. The price for this favorable property is
indicated by theorem 4. Analysis of the one-dimensional form (B.5) shows an truncation
error of O(h) for purely advective flows [119].

For the advection equation, a clearer view on the error is obtained by deriving the modified
equation. A Taylor expansion is substituted into the numerical approximation and higher-
order terms of the truncation error are written out. For the UDS flux (B.4) this gives
(developing around the position of the face edi, assuming the upwind value is taken at the
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center the upwind control volume)

Fdi = |edi|udi(φ(xdi)− ∆x
2 φx(xdi) +O(∆x2)) for ux > 0

Fdi = |edi|udi(φ(xdi) + ∆x
2 φx(xdi) +O(∆x2)) for ux < 0

}
= uxφdi − |ux|

h

2
φx(xdi) +O(∆x2) (B.6)

This shows that the upwind flux is a second-order approximation to an advection-diffusion
flux with a diffusion coefficient depending on the grid spacing. This artificial increase of the
local Péclet number maintains the positivity of the scheme.

The O(∆x) truncation error of the upwind scheme necessitates the use of very fine grids
in order to achieve reasonable accuracy. This significantly increases runtime and memory
requirements of simulations. Therefore the use of at least second-order accurate schemes is
advised [73].

B.1.3. Role of the continuity equation

A common property of the linear flux balance equation (4.48) of a conservative scheme is

aj +
∑

k∈Sj ,k 6=j
ak = 0 ∀Ωj ∈ T (B.7)

i.e. the central coefficient aj exactly cancels the other coefficients of the flux linearization
[90]. Ignoring complications due to boundary conditions, this ensures that a constant solution
φ solves system (4.51). This condition is obviously not fulfilled by the coefficients given in
(4.50):

aj +
∑

k∈Sj ,k 6=j
ak = −

∑
k∈Sj ,k 6=j

F ajk︸ ︷︷ ︸
¬

(B.8)

Term ¬ contains only advective fluxes and corresponds to the discretization of ∇ · ~u, i.e. the
continuity equation. It disappears for a divergence-free velocity field ~u. This has consequences
depending on the type of flow under consideration.

• For incompressible flows, ∇~u = 0 must hold. Eliminating ¬ amounts to explic-
itly enforcing this constraint and makes the scheme more robust in the presence of
non divergence-free velocity fields (as might occur for intermediate steps of iterative
pressure-correction schemes). (B.7) is then satisfied exactly.

• For compressible flows term ¬ must be kept or treated explicitly.
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B.2. Properties of time-stepping schemes

This section summarizes key properties of time-stepping schemes, following [65].

B.2.1. Consistency and convergence order

Definition 12. Consistency order. Let φ(t) be the exact solution and φn+1 an approximate
solution at time-step n+ 1 after performing one time-step starting from φn = φ(tn). A time-
stepping scheme is said to have consistency order p if for the local error in one time-step
holds

φn+1 − φ(tn+1) = O(∆tp+1). (B.9)

Integrating over the time interval [0, T ] with a time-step ∆t, the local errors originating from
the T/∆t time-steps accumulate into the global error, which is then O(∆tp). Assuming
stability and a sufficiently smooth function F , the scheme is then said to be convergent of
order p.

B.2.2. A-Stability

The concept of stability describes the effect of perturbations in the input data on the solution.
It is commonly studied by considering the linear test equation

φ′(t) = λφ(t), λ ∈ C. (B.10)

Stability of one-step methods

Definition 13. A-Stability region for one-step methods. Let z = λ∆t. Applying a
one-step scheme (4.76) to (B.10) yields the recursion φn+1 = R(z)φn. R(z) is the stability
function of the method. The set

S = {z ∈ C, |R(z)| ≤ 1} (B.11)

is the stability region of the method. If S contains the left complex half-plane C−, the method
is called A-stable. If additionally |R(∞)| < 1 holds, it is called strongly A-stable, and L-
stable if also |R(∞)| = 0.
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A-Stability of multi-step methods

Let again z = λ∆t. Applying the multi-step method (4.80) to equation (B.10) yields the
recursion

k∑
j=0

(αj − zβj)wn+j = 0, n = 0, 1, . . . . (B.12)

The stability region S ⊂ C is the set of all z ∈ C for which the recursion (B.12) is bounded
for all starting sequences w0, . . . , wk−1. If 0 ∈ S, the method is called zero-stable. The
definitions for A- and L-stability from the one-step methods also apply directly to the multi-
step methods.

The stability region of a multi-step method is related to its characteristic polynomial. The
requirement for zero-stability limits the consistency order of explicit multi-step methods to
p = k and for implicit schemes to p = 2b(k + 2)/2c (first Dahlquist barrier). The second
Dahlquist barrier states that A-stable linear multi-step methods are at most of consistency
order p = 2. A relaxed criterion called A(α)-stability can be used to obtain methods of order
up to six (in practice four).

When using separate discretizations in space and in time, stability requires that z = ∆tλ ∈ S
for all eigenvectors λ of the spatial discretization, possibly imposing a limit on the time step
∆t. This limit is commonly expressed using the Courant number.

Definition 14. Courant Number. The Courant number for the 1d advection equation

φt + aφx = 0, a > 0 (B.13)

is defined as

ν =
∆t a

∆x
(B.14)

with ∆t the time-step and ∆x the spatial grid resolution. For the 1d diffusion problem

φt − dφxx = 0, d > 0 (B.15)

a similar number is defined by

µ =
∆t d

∆x2
. (B.16)

In the multi-dimensional case, the absolute Courant numbers of the individual dimensions are
added to

ν2d =
∆t |ax|

∆x
+

∆t |ay|
∆y

. (B.17)

Following [65], for the classical schemes in section B.1 the eigenvalue criteria z = ∆t λ ∈ S
are given in table B.1.

Of the methods listed in section 4.5, the Courant time-step limit only applies to the explicit
ones. The maximum Courant number for a given time-stepping scheme can be determined
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za,UDS = ν(e−2iω − 1) First order upwind advection
za,CDS = 1

2ν(e−2iω − e2iω) Second order central advection
zd,CDS = µ(e−2iω − 2 + e2iω) Second order central diffusion

Table B.1.: Eigenvalue criteria for classical schemes: z = ∆t λ ∈ S with ω ∈ [−1/2π, 1/2π].

Spatial discretization Expl. Euler One-step midpoint Expl. BDF-2

UDS Advection 1.0 1.0 0.66
CDS Advection 0 0 0
CDS Diffusion 0.5 0.5 0.33

Table B.2.: Courant limits for combinations of schemes when applied to (B.13) and (B.15)

experimentally (see [65] for detailed tables for common single- and multi-step methods). The
values for the methods considered here are summarized in table B.2.

Both the implicit backward Euler and the implicit BDF-2 scheme are A-stable, and are
therefore stable for arbitrarily large time-steps.

B.2.3. Positivity and Monotonicity

The concept of positivity was already discussed for the spatial discretizations. Positivity
can be violated during time integration even for positive spatial schemes, requiring special
attention when choosing the discretization in time. In general, requiring positivity can impose
a time step limit even for implicit methods.

Positivity for linear systems

Consider a linear ODE system of the form φ′ = Aφ(t), with the matrix A ∈ Rn×n satisfying

aij ≥ 0 for i 6= j and aii ≥ −α ∀i = 1, ..., n. (B.18)

The parameter α > 0 is problem-specific and A has no eigenvalues on the positive real axis.
Using again the stability function R of a one-step scheme, the approximation at time step
n+ 1 is

φn+1 = R(A∆t)φn.

The threshold factor γR is the largest real number so that R(x) > 0 holds for x ∈ [−γ, 0].
For the homogeneous linear system the scheme will then be positive if ∆t is limited so that
α∆t ≤ γR.

Of the single-step methods given in section 4.5, only the implicit Euler method maintains
positivity for arbitrary step sizes. For explicit Runge-Kutta methods with s = p ≤ 4 the
threshold is γR ≤ 1. A general result is that the consistency order of a scheme that is positive
for arbitrary time steps is at most one [26]. For multi-step methods, the startup phase also
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has to be considered. For the BDF2 method γR = 1
2 is obtained, a detailed analysis can be

found in [64]. Results for the inhomogeneous and nonlinear case be found in [65].

B.3. Solution of linear systems

The implicit discretizations discussed in chapter 4 require the solution of sparse linear equa-
tion systems. The matrices are square, have real entries and are in general unsymmetrical.
The dimensions N of the system is given by the number of cells in the spatial grid. Common
values for the benchmark discussed in this thesis range up to N = 105. The sparse matrices
are stored using a modified CSR-type data structure (derived from the SMLIB library [81])
which allows direct modification of diagonal entries in the assembled matrix.

The direct multi-frontal sparse matrix solver MUMPS [13, 3] running in serial mode was used.
It uses separate analysis, factorization and solution steps, allowing reuse of previous analysis
results to speed up repeated inversion of the same matrix. This makes it well suited for use
with the defect-correction method discussed in section 4.4.4.

To gain some understanding on the increase of computation time with increasing grid cell
count, timing measurements for the matrix analysis and factorization+substitution phase
were performed when running the benchmark cases. The results are presented in figures B.2
and B.3. Because different compute nodes were used for the verification problem and the B2
benchmarks, the absolute timing between figures B.2 and B.3 cannot be compared. Within
the plots the data is directly comparable. Of interest are not the absolute values but the
scaling trends.
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(a) Analysis (b) Substitution

Figure B.2.: Timings for the MUMPS solver as measured for the steady-state benchmark problem in
section 5.1. Every dot represents one grid. Colors indicate which benchmark case (cf. section 5.1.1)
was run: black = case 1 (diffusion), red = case 2 (advection), blue = case 3 (anisotropic transport).
For every dot the timing was sampled at least 30 times.

(a) Analysis (b) Substitution

Figure B.3.: Timings for the MUMPS solver as measured for the B2.6-structured adaptation bench-
mark in chapter 7. Every dot represents one grid. For every grid the timing was sampled at least
several hundred times. Exceptions are the points with the highest resolution (to the far right), here
no sampling was done and therefore the measurements are not reliable.
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B.4. Grid object orderings

Atomic grid modifications can be implemented in different ways, and while despite their
conceptual simplicity this can be quite involved due to the multitude of connections between
the objects, the details are not of interest here. What is relevant is the effect of object
insertions and removals on the ordering of the object lists. The ordering and grid connectivity
is reflected in the structure of the flux linearization matrices. It therefore has a direct impact
on the performance of the code, both in the matrix assembly and solution phase [35, 76].

The key concern here is data locality: data from objects that are close together in the sim-
ulation domain should be located close together in memory to maximize CPU cache reuse
when performing operations that loop over object lists. The strategy chosen in the present
implementation places newly inserted child objects directly next to their parent objects. This
maintains data locality to some degree. However, in unstructured grids non-locality unavoid-
ably occurs. This effect can be visualized by plotting the structure of sparse matrices resulting
from the different benchmark problems. Examples are shown in figures B.4, B.6, B.5 and
B.7. The matrix structures for next-neighbor connectivity (equivalent to a five-point-stencil)
and second-neighbor connectivity (equivalent to the stencil used for linear reconstruction) are
shown.

A straightforward solution to increase locality is object reordering, an approach that has
been discussed widely in the literature. The grid object lists are reordered to optimize their
memory layout with respect to the most common access patterns. Standard packages are
available for this task (some are used by the MUMPS solver). In the scope of this work no
serial optimization of this form was done, but care was taken that the design decision do not
inhibit later application of these techniques.
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(a) Next neighbor connectivity (b) Second neighbor connectivity

Figure B.4.: Matrix structure of the grid obtained at the end of the time-dependent advection test
with isotropic adaptation as shown in figure 5.20c.

(a) Next neighbor connectivity (b) Second neighbor connectivity

Figure B.5.: Matrix structure of the grid obtained at the end of the time-dependent advection test
with anisotropic adaptation as shown in figure 5.21c.
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(a) Next neighbor connectivity (b) Second neighbor connectivity

Figure B.6.: Matrix structure of the B2 grid obtained using anisotropic adaptation as shown in figure
3.28.

(a) Next neighbor connectivity (b) Second neighbor connectivity

Figure B.7.: Matrix structure of the grid obtained in the B2.6-structured benchmark as shown in figure
7.4.
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C.1. Steady-state advection-diffusion benchmark details

In this section the analytical prescriptions of the quantities used for the solver verification in
section 5.1 are stated. The exact solution considered is φ : R2 → R,

φ(x, y) = y sin(2πx).

Substituting it into 4.5 with ~u =
(
u1
u2

)
, D =

(
d11 0
0 d22

)
yields the source term

s(x, y) = 2u1πy cos(2πx) + u2 sin(2πx) + 4d11π
2y sin(2πx).

Let Ωi = {(x, y)|x ∈ [x1, x2], y ∈ [y1, y2]} ⊂ R2 be a rectangular cell, e
(y)
j = {(x0, y)|y ∈

[y1, y2]} ⊂ R2 a face aligned to the y-coordinate direction and e
(x)
l = {(x, y0)|x ∈ [x1, x2]} ⊂

R2 a face aligned to the x-coordinate direction for given x0,1,2, y0,1,2 ∈ R. From this the
quantities required for the solver verification can be derived.

Cell average of solution φ(x, y) in cell Ωi:

φi =
1

|Ωi|

∫ y2

y1

∫ x2

x1

f(x, y)dxdy = −
(
y2

1 − y2
2

)
(cos(2πx1)− cos(2πx2))

4π(x2 − x1)(y2 − y1)

Source integral in cell Ωi:

Si =

∫ y2

y1

∫ x2

x1

s(x, y)dxdy =
1

π
((y1 − y2) sin(π(x1 − x2))(u1π(y1 + y2) cos(π(x1 + x2))

+
(
u2 + 2d1π

2(y1 + y2)
)

sin(π(x1 + x2)))) (C.1)

Integral of the advection-diffusion flux ~fad (eq. 4.4) over faces e
(y)
j (flux in x-direction)

F xj =

∫ y2

y1

~f(x, y) ·
(

1
0

)
dy = d1π cos(2πx)y2

1

− 1

2
u1 sin(2πx)y2

1 − d1πy
2
2 cos(2πx) +

1

2
u1y

2
2 sin(2πx) (C.2)
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and over face e
(x)
k (flux in y-direction)

F yk =

∫ x2

x1

~f(x, y) ·
(

0
1

)
dy = −(d2 − u2y)(cos(2πx1)− cos(2πx2))

2π
. (C.3)

C.2. B2.6-structured ASDEX Upgrade #16151 benchmark details

C.2.1. Grid resolution scan

To put the accuracy of the solutions obtained on the adapted grids in chapter 7 into perspec-
tive, a grid resolution scan is performed. A series of structured grids is created consisting
of composite cells with stencil size (dx, dy) = (x, y), x, y ∈ [1, 2, 4, 8], resulting in a total of
15 grids. To reduce errors resulting from cell → face interpolation close to the targets, the
grid at the target plates and vacuum region boundary is kept at the highest resolution. This
proved to be important for accuracy of the target profile plots. A representative mesh for
this approach is shown in figure C.1.

   

Figure C.1.: Example grid used in the resolution scan. The base grid consists of 128 × 64 cells. The
working grid cells have a stencil of (dx, dy) = (8, 8). At the west, east and north boundary the grid is
forced to the highest resolution.

On every grid, the benchmark problem ... is solved to convergence. The following plots show
the average absolute L1 deviation (computed by equation (4.26)) with respect to the reference
solution for the quantities ni, u‖i for the ion species and Ti, Te, φ. To simplify interpretation,
the data is shown in three different ways:

• Fixed x resolution: the lines connect points for grids with a fixed x-resolution dx =
const, while the y-resolution dy ∈ [1, 2, 4, 8] is varied.

• Fixed y resolution: the lines connect points for grids with a fixed y-resolution dy =
const, while the x-resolution dx ∈ [1, 2, 4, 8] is varied.

• Fixed resolution ratio: the lines connect points for grids with a fixed resolution
relation dx/dy = const.
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(a) Ion density ni (b) Parallel ion velocity u‖i

(c) Electron temperature Te (d) Ion temperature Ti

(e) Potential φ

Figure C.2.: Absolute errors of main plasma quantities for the structured grid resolution scan on a log-
log plot. Lines connect data points with fixed grid stencil size/resolution along poloidal/x direction.
Data for the reference grid (stencil size (1, 1)) is not plotted.
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(a) Ion density ni (b) Parallel ion velocity u‖i

(c) Electron temperature Te (d) Ion temperature Ti

(e) Potential φ

Figure C.3.: Absolute errors of main plasma quantities for the structured grid resolution scan on a log-
log plot. Lines connect data points with fixed grid stencil size/resolution along poloidal/y direction.
Data for the reference grid (stencil size (1, 1)) is not plotted.
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(a) Ion density ni (b) Parallel ion velocity u‖i

(c) Electron temperature Te (d) Ion temperature Ti

(e) Potential φ

Figure C.4.: Absolute errors of main plasma quantities for the structured grid resolution scan on a
log-log plot. Lines connect data points with fixed grid stencil size relation. Points circled in green are
included in the ”best case” reference grid set used in chapter 7.
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Discussion

The resolution scan gives insight what behavior can be expected from the code when solv-
ing the #16151 benchmark example on varying grid resolutions. The wide error variation
observed for similar grid cell counts underlines the importance of a sensible grid resolution
choice.

Figure C.2 shows that error reduction slows down significantly after the radial/y stencil size
reaches dy = 4. As shown in figure C.3, grids with this radial resolution show the best
overall error reduction. On the other hand, for grids with fixed dy (figure C.3) increasing the
resolution in the poloidal direction leads to continuous reduction of the error. Obviously for
this benchmark poloidal resolution is more important than radial resolution, and consequently
grids with dx ≤ dy (represented with solid lines in figure C.4) perform best.

These statements hold for the quantities ni, u‖i, Te and φ. Behavior of the Ti error deviates
from the other quantities. For grids with dy > 1, error reduction slows down significantly
for dx < 4 . (for dy = 4 and dx < 4 the error even increases with increasing cell count). A
relatively low error is already achieved on the rather coarse grid with stencil size (4, 4).

The plots contain reference lines for convergence orders O(∆x) and O(∆x2), with ∆x being
an assumed reference grid spacing for both radial and poloidal direction. When comparing
error convergence rates to these reference values, it has to be kept in mind that in figures C.2
and C.3 the resolution is only varied in one coordinate direction along each line, resulting
in a linear increase of the cell count. A direct comparison is possible for figure C.4, where
along every line the resolution is simultaneously increased in both coordinate directions.
Convergence towards the reference solution with first to second order is observed, meeting
the expectation on the hybrid scheme. However, it has to be kept in mind that a) the reference
solution is not exact and b) especially the low resolution grids might not be in the asymptotic
convergence range.

As a reference ”best case” set for comparison with the adaptation runs, the grids with stencils
(1, 2), (1, 4), (2, 4), (4, 4), (4, 8), and (8, 8) are chosen. The corresponding points in figure C.4
are marked with green circles. This grid series is near-optimal for all quantities but Ti. The
optimal grids for Ti are (2, 1), (4, 2), (4, 4), (4, 8) and (8, 8). However, to maintain a consistent
set of data, the reference set is also used for Ti.
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D.1. Addressing grid non-orthogonality in B2.6

   

x

y

interior

exterior

Figure D.1.: Possible cut-cell configura-
tions for smooth boundaries

The problem of grid non-orthogonality close to the
target plates as described in section 3.1.1 is ultimately
caused by technical restrictions of the B2.5 grid data
structure. Introduction of the UG data structure in
B2.6 lifts these restrictions. It trivially supports vary-
ing numbers of grid cells in the radial or poloidal direc-
tion and allows a proper treatment of the nonorthog-
onality problem. A further benefit would be to allow
extension of the B2 grid towards the plasma vessel
wall.

An approach established widely in the literature to
combine Cartesian grids with complex geometries is
the cut-cell approach [10, 9]. In the B2 context it
can be applied by using the existing grid generators
to create grids that are fully orthogonal, ignoring the
bounding surfaces of the device geometry and the re-
quirement to align grid faces to match them. This creates cells at the boundary which are
“cut” by a material surface, resulting in a more complicated cell geometry.

Figure D.1 illustrates the situation for a smooth boundary, where cells are cut by only one
boundary segment. Assuming a given spacing of grid lines in the y direction, placing grid
points in the x direction without awareness for the boundary geometry leads to problematic
grid cell shapes. Three cases have to be considered.

• Quadrilateral cells of type ¬ with a non-field-aligned boundary face can be treated
exactly like in B2.5 by distinguishing between poloidal/parallel and wall contact area.

• Cells of type ­ which degenerate into triangles can be handled straightforward in the
UG data structures as quadrilaterals with no neighbor in one direction. However, the
cell volume and face areas of these cells can become very small relative to the rest of the
grid even for uncomplicated geometries, with negative effects on the numerical solver.

• Cells of type ® have 5 faces, which is supported in B2.6-unstructured by treating the
face incident to the boundary as an y-face (aligned to a y coordinate line). This is not
possible in B2.5-structured.
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Combining type ­ and ® cells into a composite type ¬ cell using grid adaptation is not
possible, as in general they do not coarsen into a common parent cell. These problems can
be avoided altogether by placing intersection points of x- and y-coordinate on the boundary
(points marked as red circles in figure D.1). This prevents creation of type ® cells and
alleviates the problem of excessively small type ­ cells. A grid constructed following this rule
is shown in figure D.3. Only type ¬ and ­ cells remain. The grid plot in computational space
shows the ragged region of interior cells. Note that the existing base grid data structure can
still be used, cells exterior to the simulation are stored but marked as inactive.

The situation is more complex for non-smooth boundary surfaces where grid cells can be cut
by more than two boundary segments (figure D.2a). This results situations like cell ¯ where
the grid-spacing in the y-direction under-resolves the geometry. The resulting cells are very
hard to fit into the UG data structure. This can be avoided by modifying the grid spacing
to match features of the geometry (cf. figure D.2b). Note that additional x-coordinate lines
are needed to match points where the y-coordinate lines intersect the targets a second time
(this can be anticipated easily).

   
x

y

(a) Geometry not resolved

   

(b) Geometry properly re-
solved

Figure D.2.: Non-smooth boundary case. Geometry-aware grid point placement in the y coordinate
direction is required to resolve the geometry.

D.1.1. Consequences for the grid generators

It is clear that while the cut-cell approach removes complexity from the grid generator (as
there is no need anymore to relax the orthogonality constraint in parts of the domain), more
care is required at choosing radial and poloidal grid spacings.

For geometries with smooth targets, selecting appropriate spacings in the poloidal direction
is straightforward. Grid points at the target plates are given by the intersection of the chosen
x-coordinate lines, but additional care has to be taken to ensure sufficient poloidal resolu-
tion. Note that inserting additional y-coordinate lines also requires insertion of additional
x-coordinate lines. This can already be taken into account when selecting the radial grid
spacing.

If more complex geometries with non-smooth target geometries are to be used an additional
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preprocessing step is required to identify features in the boundary and adjust the radial grid
spacings to match them.

Overall, some algorithmic changes are required in the grid generators which should be local-
ized to sections of the code that determine grid spacings. An additional advantage of such
an extension is improved awareness of the local boundary geometry. What also has to be
considered is that the grid generator output might have to be extended to contain additional
information about a) the cut cell geometry and b) which cells fall outside the simulation
domain.

D.1.2. Consequences for the adaptation algorithm

Dropping the restriction that base grid blocks have to be of rectangular shape in the compu-
tational domain requires revisiting the UG data structure and adaptation algorithm imple-
mentation, which is restricted to logically rectangular composite cells due to the cell stencil
definition (cf. section 3.2.1). While coarsening to logically rectangular grid cells is possible
to some degree even in the presence of a ragged boundary in computational space, it still
is very constrictive. In some regions the grid resolution is effectively pinned to the highest
possible (base grid) resolution, which is annoying due to the global effects for B2.6-structured
and prohibitive for the implementation of multi-grid type algorithms.

This problem can be overcome while maintaining the general design by allowing stencils to
include inactive cells outside the computational domain, as demonstrated in the composite
cell indicated in figure D.3. The main change required in the algorithms to support this is to
enable the stencils of cut cells to grow by adding inactive cells and to include special treatment
when deriving the geometry approximation of composite cut cells. These extensions do not
pose serious problems.

   

x

y

(a) Physical space

   
y

x
(b) Computational space

Figure D.3.: A composite cut cell at the boundary in physical and computational space. The stencil
includes both active interior (white) and inactive exterior (gray) cells. Cut cells are considered interior.
Fluxes over dotted faces are not discretized.
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Another technical point here is the construction of ghost cells. At the moment, ghost cells
are generated by the grid generator and passed to B2 , where (except in the adaptation
algorithms) they are generally treated like normal cells. Likewise, the concept of composite
cut cells can be extended to ghost cells. However, as the actual geometry of the ghost cells
does not matter by definition, it might be easier to generate them inside B2.6 instead of
relying on the grid generator to do this.

D.2. Notes on parallelization for B2

Due to the relatively low grid resolutions used in typical simulations (common grids are in
the range of 105 cells), standard approaches for parallelization of partial-differential equation
solvers like domain decomposition or parallelization of linear solvers are not feasible.

Due to the strong coupling between the equations there is also no obvious way how to par-
allelize the iterative solution algorithm (cf. section 6.1) itself. However, what can be done
rather easily is a partial parallelization by splitting the the continuity and momentum equa-
tion blocks.. Inside these blocks the equations for the individual species can be solved com-
pletely independent. This was verified by implementing deferred updates for these blocks in
the serial code. While this approach obviously will not result in good scaling, simulations
with a large number of species should still benefit significantly.

Considering the structure of the code, a sensible approach is to use OpenMP for the imple-
mentation and aim for typical cluster compute nodes with 8-16 cores. The main immediate
challenge is to find a suitable linear solver that can be used in such a setup. For further work
the task parallelism features recently added in the OpenMP v3.0 standard could be exploited
to try a further parallelization of the iterations.
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[51] R. Eymard, T. Gallouët, and R. Herbin. Finite volume methods. Handbook of Numerical
Analysis, 7:713–1018, 2000.

[52] Y. Feng, F. Sardei, J. Kisslinger, and P. Grigull. A 3D Monte Carlo code for plasma
transport in island divertors. Journal of Nuclear Materials, 241:930–934, 1997.

[53] J.H. Ferziger and Peric. Computational methods for fluid dynamics. Springer, 2002.

172



Bibliography

[54] R. P. Feynman, R.B. Leighton, and M. Sands. The Feynman Lectures on Physics, Vol.
2. Addison-Wesley, Redwood City, CA, 1989.

[55] L. Formaggia, S. Micheletti, and S. Perotto. Anisotropic mesh adaptation in compu-
tational fluid dynamics: Application to the advection-diffusion-reaction and the Stokes
problems* 1. Applied Numerical Mathematics, 51(4):511–533, 2004.

[56] S.K. Godunov. A difference method for numerical calculation of discontinuous solutions
of the equations of hydrodynamics. Matematicheskii Sbornik, 89(3):271–306, 1959.

[57] J.B. Goodman and R.J. LeVeque. On the accuracy of stable schemes for 2d scalar
conservation laws. Mathematics of computation, 45(171):15–21, 1985.

[58] O. Gruber, A.C.C. Sips, R. Dux, T. Eich, C. Fuchs, A. Herrmann, A. Kallenbach, C.F.
Maggi, R. Neu, T. Pütterich, et al. Compatibility of ITER scenarios with full tungsten
wall in ASDEX Upgrade. Nuclear Fusion, 49:115014, 2009.

[59] W. Hackbusch. Multi-grid methods and applications. Springer, 1985.

[60] E. Hairer, S.P. Nørsett, and G. Wanner. Solving ordinary differential equations I:
nonstiff problems. Springer, 1993.

[61] E. Hairer, S.P. Nørsett, and G. Wanner. Solving ordinary differential equations: Stiff
and differential-algebraic problems. Springer, 1993.

[62] R. Herbin and M. Ohlberger. A posteriori error estimate for finite volume approxima-
tions of convection diffusion problems. In Proc. 3rd Int. Symp. on Finite Volumes for
Complex Applications-Problems and Perspectives, pages 753–760, 2002.

[63] A. Herrmann and O. Gruber. ASDEX Upgrade - introduction and overview. Fusion
Science and Technology, 44(3):569–577, 2003.

[64] W. Hundsdorfer. Partially implicit bdf2 blends for convection dominated flows. SIAM
Journal on Numerical Analysis, pages 1763–1783, 2001.

[65] W. Hundsdorfer and J.G. Verwer. Numerical solution of time-dependent advection-
diffusion-reaction equations. Springer, 2003.

[66] K. Ikeda. Progress in the ITER physics basis. Nuclear Fusion, 47, 2007.

[67] M. Kaufmann. Plasmaphysik und Fusionsforschung. Vieweg+ Teubner Verlag, 2003.

[68] J.W. Kim. An analysis of the anomalous transport of the plasma edge in ASDEX
Upgrade. PhD thesis, Technische Universität München, 2002.

173



Bibliography

[69] B. Koren. Multigrid and defect correction for the steady Navier-Stokes equations.
Journal of Computational Physics, 87(1):25–46, 1990.

[70] V. Kotov, D. Reiter, and A. Kukushkin. Numerical study of the ITER divertor plasma
with the B2-EIRENE code package. Technical Report Jül-4257, Forschungszentrum
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