
AN ALGORITHM FORMAXIMIZING A QUOTIENT OF TWO HERMITIAN FORM
DETERMINANTS WITH DIFFERENT EXPONENTS

Raphael Hunger, Paul de Kerret, and Michael Joham

Associate Institute for Signal Processing, Technische Universität München, 80290 Munich, Germany
Telephone: +49 89 289-28508, Fax: +49 89 289-28504, Email: {hunger,joham}@tum.de

ABSTRACT

We investigate the maximization of a quotient of two determi-
nants with different exponents under a Frobenius norm con-
straint, where each determinant is taken from a matrix-valued
Hermitian form. The optimummatrix that constitutes the Her-
mitian forms is shown to be a scaled partial isometry. For
the special case of vector-valued Hermitian forms, the opti-
mality condition turns out to be an implicit eigenproblem and
we derive an iterative algorithm where in each step the prin-
cipal eigenvector of a matrix has to be chosen. In addition,
we prove monotonic convergence of the iterative algorithm,
which means that the utility increases in every step.

Index Terms— Rate region, iterative eigenproblem

1. INTRODUCTION

The maximization of the weighted sum rate in the MIMO
broadcast channel under linear filtering becomes tractable in
the high power regime, where under certain antenna config-
urations even closed form solutions are available, see [1].
When the base station does not have enough antennas for full
multiplexing, a tall precoder matrix (less columns than rows)
must be found that maps the data streams to the antenna el-
ements of the user that does not apply full multiplexing. All
other variables like power allocation and covariance matrices
of fully multiplexing users are already completely determined
such that the weighted sum rate solely depends on this tall
precoder matrix. As the particular choice of the precoding
matrix defines the subspace in which the transmitted signals
lie, it has also a considerable impact on the achievable rates of
the other users via the generated interference. This coupling
leads to the fact that the weighted sum rate utility can be for-
mulated as the maximization of a quotient of two Hermitian
form determinants where the one in the numerator is raised to
an exponent larger than one. The same framework that we de-
rive in this paper for the maximization of the quotient can also
be extended to find the beamforming vector that constitutes
the asymptotic rate region in a two user MIMO broadcast sys-
tem, cf. [2]. Finally, we would like to mention reference [3],
where the trace operator is applied to the matrix-valued Her-
mitian forms instead of the determinant operator. However,

for scalar arguments, i.e., for vector-valued Hermitian forms,
both operators lead to the same outcome. In contrast to our
contribution, only two discrete exponents (namely one and
two) in the numerator of the Hermitian form are treated in [3]
and the authors come up with algorithms only for those two
special cases by means of majorization.

2. PROBLEM FORMULATION

The maximization of the quotient of two determinants with
different exponents has the form

maximize
X∈CM×N

⎪⎪⎪⎪XHBX
⎪⎪⎪⎪α⎪⎪⎪⎪XHAX
⎪⎪⎪⎪ s.t.: ‖X‖2

F = N, (1)

where A ∈ S
+
M is positive definite and B ∈ SM is non-

negative definite with rank(B) ≥ N . The optimization vari-
able X ∈ CM×N is constrained to have a squared Frobenius
norm N , where M ≥ N clearly has to hold. The real-valued
scalar α is assumed to be larger than or equal to one. Spe-
cial attention will be paid to the vector-valued variant of (1),
which reads as

maximize
x∈CM

(xHBx)α

xHAx
s.t.: ‖x‖2

2 = 1, (2)

since for this maximization, we will derive an iterative al-
gorithm with monotonic convergence. For the matrix-valued
variant in (1), we derive structural properties of the optimum
matrix X .

3. STRUCTURAL PROPERTIES OF MATRIX-
VALUED HERMITIAN FORM DETERMINANTS

3.1. Special Case: Same Exponent

For the less relevant case, when α = 1, the Frobenius norm
constraint in (1) is only weakly active as a scaling of X does
not influence the objective. In this case, the optimization
can be regarded as unconstrained since the Frobenius norm
constraint ‖X‖2

F = N can afterwards always be assured
without changing the objective. The optimum matrix X̌

follows from choosing the N principal eigenvectors of the
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matrix A−1B belonging to the N largest arbitrarily scaled
eigenvalues and afterwards rescaling them jointly such that
‖X̌‖2

F = N , whereas the optimum objective is given by the
product of those N largest eigenvalues. This can be shown
as follows: Let X = Q′R′ denote the QR-decomposition of
X , where R′ ∈ CN×N is a full-rank upper triangular matrix
and Q′ ∈ CM×N satisfies Q′HQ′ = IN . Then,⎪⎪⎪⎪XHBX

⎪⎪⎪⎪⎪⎪⎪⎪XHAX
⎪⎪⎪⎪=

⎪⎪⎪⎪Q′HBQ′
⎪⎪⎪⎪⎪⎪⎪⎪Q′HAQ′
⎪⎪⎪⎪,

which means that the utility only depends on the basis Q′ and
not on R′. Defining Y := A

1
2 Q′ and and using again the

QR-decomposition Y = QR and the fact that only the basis
Q governs the determinant quotient, we obtain

⎪⎪⎪⎪XHBX
⎪⎪⎪⎪⎪⎪⎪⎪XHAX
⎪⎪⎪⎪=

⎪⎪⎪⎪QHA− 1
2
,HBA− 1

2 Q
⎪⎪⎪⎪⎪⎪⎪⎪QHQ

⎪⎪⎪⎪ =
⎪⎪⎪⎪QHCQ

⎪⎪⎪⎪
with C := A− 1

2
,HBA− 1

2 . Subject to QHQ = IN , above
determinant is maximized when the columns of Q are the
N unit-norm principal eigenvectors of C belonging to the N
largest eigenvalues. We omit the proof due to lack of space.
In this case, the determinant corrsponds to the product of the
N largest eigenvalues of C = A− 1

2
,HBA− 1

2 . This utility
is also achieved when the columns of X are chosen to be
the N principal eigenvectors of the matrix A−1B, such that
BX = AXΛ, where the diagonal N × N matrix Λ con-
tains the N dominant eigenvalues of A−1B that are equal to
those of C. Inserting BX = AXΛ into the utility yields⎪⎪⎪⎪XHBX

⎪⎪⎪⎪/
⎪⎪⎪⎪XHAX

⎪⎪⎪⎪=
⎪⎪⎪⎪Λ

⎪⎪⎪⎪. So, choosing the columns of
X as the N principal eigenvectors of A−1B is optimal.

3.2. Special Case: Square Matrix

Given the special case with N = M , any unitary matrix
X̌ with squared Frobenius norm M maximizes the objec-
tive. This follows from the arithmetic-geometric inequality as
the utility can be decoupled into a constant times

⎪⎪⎪⎪XHX
⎪⎪⎪⎪α−1

which has to be maximized under the squared Frobenius norm
constraint ‖X‖2

F = N . Hence, the product of the eigenval-
ues of XHX has to be maximized while their sum is fixed
to N . As a consequence, all eigenvalues have to be identical,
and since they are real-valued, all of them are equal to one.
The eigenvalues of X̌ therefore may take arbitrary complex
unit norm values and thus, X̌ is unitary. With this choice, the
optimum objective simplifies to

⎪⎪⎪⎪B
⎪⎪⎪⎪α/

⎪⎪⎪⎪A
⎪⎪⎪⎪.

3.3. General Case: Different Exponents and Tall Matrix

In the general case, where α > 1 and N < M holds, the
Frobenius norm constraint is strongly active. Statements on
the structure of the optimum matrix X̌ are deduced from set-
ting the derivative of the Lagrangian function for (1) to zero:

L(X, μ) :=

⎪⎪⎪⎪XHBX
⎪⎪⎪⎪α⎪⎪⎪⎪XHAX
⎪⎪⎪⎪ − μ

[
tr(XHX) − N

]
(3)

The optimum Lagrangian multiplier μ̌ can be computed via

tr
[
X̌H ∂L(X, μ)

∂X∗

]∣∣∣
X=X̌,μ=μ̌

= 0

⇔ μ̌ = (α−1)

⎪⎪⎪⎪X̌HBX̌
⎪⎪⎪⎪α⎪⎪⎪⎪X̌HAX̌
⎪⎪⎪⎪ ,

(4)

which means that μ̌ is α − 1 times the optimum objective
and thus vanishes when α = 1 as mentioned in Section 3.1.
Moreover, the KKT condition which the optimum matrix X̌

has to fulfill follows from ∂L(X, μ)/∂X∗|
X=X̌,μ=μ̌ = 0

and reads by means of (4) as

αBX̌(X̌HBX̌)−1 − AX̌(X̌HAX̌)−1 = (α − 1)X̌. (5)

Noticing that the optimum Lagrangian multiplier μ̌ > 0
is positive, we can left-hand-side multiply the derivative of
L(X, μ) with respect to X∗ by X̌H and obtain

X̌H ∂L(X, μ)

∂X∗

∣∣∣
X=X̌,μ=μ̌

= 0 ⇔ X̌HX̌ = IN , (6)

so X̌ ∈ CM×N is a partial isometry and X̌X̌H is a projector.

4. ALGORITHMIC SOLUTION FOR
VECTOR-VALUED HERMITIAN FORMS

When N = 1, the matrix X reduces to a column vectorx and
the objective reduces to [cf. (2)]

f(x) :=
(xHBx)α

xHAx
. (7)

Thus, the determinant maximization problem in (1) simplifies
to the one in (2), and in turn, the Lagrangian multiplier in (4)
can be expressed as μ̌ = (α − 1)f(x̌). Similar to the matrix-
valued first order optimality condition in (5), the vector valued
version reads as

α

x̌HBx̌
Bx̌ −

1

x̌HAx̌
Ax̌ = (α − 1)x̌.

From the various ways to rearrange above nonlinear fixed
point equation, the following one has the nice property
that an iterative fixed point algorithm based on its particu-
lar eigenproblem-structure features monotonic convergence:

[
α(x̌HBx̌)α−1B−(α−1)(x̌HBx̌)α

I︸ ︷︷ ︸
=:M̌

]
x̌ = f(x̌)Ax̌. (8)

Given this fixed point equation, we can readily define the
fixed point iteration, which serves as the core of the algo-
rithm:

Mnxn+1 = λn+1Axn+1. (9)

Note that xn+1 must be chosen to have norm one due to the
constraint in (2) and that xn+1 is the principal eigenvector of
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the matrixA−1Mn belonging to the largest eigenvalueλn+1,
where Mn is defined via

Mn := α(xH
n Bxn)α−1B − (α − 1)(xH

n Bxn)α
I. (10)

Let x0 /∈ null(B) define an arbitrary unit-norm initialization
vector. With x0, the matrixM0 is composed and the principal
eigenvector of the matrix A−1M0 constitutes the vector x1

of the next iteration. After that, the matrix M1 is computed,
left-hand side multiplied with the inverse of A, and its unit-
norm principal eigenvector is chosen for x2 and so on. In
general, the eigenvalue λn+1 in iteration n + 1 reads as

λn+1 =
xH

n+1Mnxn+1

xH
n+1Axn+1

. (11)

A key observation is that the utility f(xn) in iteration n can
not only be expressed as a quotient of Hermitian forms where
the matrices A and B are involved as in (7), but also as a
function of the matrix Mn [cf. (8)]:

f(xn) =
xH

n Mnxn

xH
n Axn

. (12)

With this definition, we can now prove that the sequence
f(xn) is increasing in n as long as n < ∞, i.e., as long as
the algorithm has not converged yet. First of all, we observe
that the sequence f(xn) is bounded via

f(xn) ≤
(maxeig(B))α

mineig(A)
< ∞, (13)

since A is positive definite (its minimum eigenvalue is larger
than zero) and B has a finite Frobenius norm. Due to the fact
that xn+1 is chosen as the generalized principal eigenvector
of the matrix pair Mn and A, see (9), the Lagrangian multi-
plier λn+1 from (11) is always larger than the objective f(xn)
defined in (12) for finite n:

f(xn) =
xH

nMnxn

xH
nAxn

≤
xH

n+1Mnxn+1

xH
n+1Axn+1

= λn+1. (14)

Equality in (14) only holds for xn = xn+1, i.e., for n → ∞
when the algorithm has converged, or when the initial vector
x0 is chosen to lie in the nullspace of B, i.e., when x0 ∈
null(B). In this case, the matrix M0 in (10) is zero and both
the objective f(x0) and the Lagrangian multiplier λ1 are zero
according to (9). In the next step with n = 1, the vector x1

can be chosen arbitrarily as long as it has unit-norm, since
0 = 0 · Ax1 from (9) holds for any x1. This time, x1 should
be chosen not to lie in the null-space of B because otherwise,
the objective will remain zero whenever xn is chosen to sat-
isfy xn ∈ null(B). However, this can easily be detected and
avoided and we therefore exclude the case x0 ∈ null(B).
The difference between two consecutive objectives f(xn+1)

and f(xn) can be written as [cf. (12)]

f(xn+1)−f(xn) =
xn+1Mn+1xn+1

xn+1Axn+1
−

xnMnxn

xnAxn

≥
xn+1Mn+1xn+1

xn+1Axn+1
−

xn+1Mnxn+1

xn+1Axn+1

=
xn+1(Mn+1 − Mn)xn+1

xn+1Axn+1

=
(xH

n+1Bxn+1)
α − α(xH

n Bxn)α−1xH
n+1Bxn+1

xH
n+1Axn+1

+
(α − 1)(xH

n Bxn)α

xH
n+1Axn+1

,

where the first inequality is due to (14). With the substitute

β :=
xH

nBxn

xH
n+1Bxn+1

≥ 0,

we get

f(xn+1)−f(xn)≥f(xn+1)
[
1−αβα−1+(α−1)βα

︸ ︷︷ ︸
=:d(β)

]
. (15)

The derivative of the polynomial d(β) can be classified into
three parts

∂d(β)

∂β
= α(α−1)(β−1)βα−2

⎧⎨
⎩

= 0 for β = 1
> 0 for β > 1
< 0 for 0 < β < 1

since we assumed that α > 1. For β = 0, the derivative is
either equal to zero (when α > 2), negative (when α = 2),
or −∞ (when 1 < α < 2). The minimum value of d(β)
with β ≥ 0 is obtained for β = 1 with d(β = 1) = 0, since
the possibly second root of the derivative features the value
d(β = 0) = 1 which obviously is not the global minimum of
d(β)with β ≥ 0. So, d(β) ≥ 0 holds. Based on the inequality
f(xn+1) − f(xn) ≥ f(xn+1)d(β) in (15) and using the fact
that f(xn+1) is nonnegative and d(β) ≥ 0, we finally obtain
the result

f(xn+1) − f(xn) ≥ 0, (16)

where equality only holds whenxn is equal to xn+1, since we
excluded the case xn ∈ null(B). This equivalence of xn+1

and xn is true only for n → ∞ when the algorithm has con-
verged, since xn+1 is the generalized principal eigenvector of
the matrix pair Mn and A which is therefore the optimizer of
the quotient of the two Hermitian forms involving Mn and
A. As a consequence, the sequence f(xn) is increasing for
n < ∞ and since the sequence itself is bounded, see (13),
monotonic convergence is proven.

In the same way, we can show that the utility f(xn+1) in
step n + 1 is always larger than or equal to the Lagrangian
multiplier λn+1. Using (11) and (12) yields

f(xn+1) − λn+1 =
xH

n+1(Mn+1 − Mn)xn+1

xH
n+1Axn+1

= f(xn+1) · d(β) ≥ 0.

(17)
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Again, d(β) is larger than or equal to zero and therefore, the
difference f(xn+1)−λn+1 is nonnegative and equal to zero
only when d(β) = 0, i.e., when β = 1.

A pseudo-code algorithmic implementation is shown in
Algorithm 1. In Lines 1-3, the iteration counter n is initialized
and the relative accuracy ε is defined. Inside the loop, Lines
6-8 first set up the matrix Mn and afterwards compute the
principal eigenvector of the matrix product A−1Mn to have
unit norm. As a termination criterion, the relative change in
the utility is checked against the threshold ε in Line 10.

5. SIMULATION RESULTS

For the simulation results, we used the problem dimen-
sion M = 5 and randomly picked the two positive definite
complex-valued matrices A and B. The initialization vec-
tor x0 was chosen randomly as well and the threshold for
the relative change in the utility that serves as a termination
criterion was set to ε = 10−4 as used in Algorithm 1. A
large scale view on the utility f(xn) and the eigenvalue λn

versus the iteration counter n is shown in Fig. 1. The dashed
curve corresponds to the utilities starting at n = 0 whereas
the solid one shows the eigenvalues starting at n = 1. We
observe that the initialization vector x0 achieves a very low
utility but only a single iteration increases the utility almost
to its maximum. In addition, we verify the interlacing prop-
erty f(xn) ≤ λn+1 ≤ f(xn+1) from (14) and (17). The
vertical plot with the circle marker denotes the iteration in-
dex at which the relative change in the utility is smaller than
the threshold ε which corresponds the to iteration index n at
which the algorithm terminates. Fig. 2 shows the absolute
error f(x̌) − f(xn) versus the iteration index n. Its linear
characteristic in the semilogarithmic figure indicates a linear
speed of convergence. Due to finite word-length precision,
the curve saturates, and the circle marker denotes the smallest
n for which the relative error is at most ε.

6. CONCLUSION

In this paper,we derived an algorithm for the maximization of
a quotient of two Hermitian forms with different exponents
under a Frobenius norm constraint. It is based on an iterative
computation of the principal eigenvector of a matrix that de-
pends on the eigenvector of the previous iteration and we have
shown that it monotonically converges to a local optimum.
For the matrix valued case where the determinant operator is
applied to the matrix-valued Hermitian forms, we found out
that the optimum matrix is a partial isometry.
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