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1. Introduction

1.1. Physical context

Stars more massive than 8 solar masses end their hydrostatic evolution with a supernova
explosion. The remnants of such events are either a black hole (BH) for the most massive
progenitor stars or a compact star, commonly referred to as neutron star (NS). The true
nature of the latter has remained a mystery since the discovery of these objects. Besides
a composition of mainly neutrons, more exotic phases have been proposed to occur in
compact stars [59, 66]. There may even be the possibility that these objects are in reality
quark stars. According to the strange matter hypothesis [25, 164] a mixture of up, down
and strange quarks may form the true and absolute ground state of matter and if this
hypothesis were true, compact stars would be so-called strange stars (SSs) consisting of
this high-density strange quark matter rather than NS matter [59, 66]. It turns out that
SSs are in many ways similar to NSs, for example in the mass range and compactness,
and therefore they can be considered as an alternative to NSs in accordance with the
observed properties of known compact stars [3, 59, 65, 66, 160]. Throughout this thesis
the term compact star refers to either a NS or a SS.

Theoretical considerations cannot exclude the strange matter hypothesis and thus the
existence of SSs because of uncertainties on the equation of state (EoS) of high-density
matter and the phenomenon of quark confinement [59, 66, 159, 160]. Also, the EoS of
ordinary NS matter above nuclear saturation density, ρ ≈ 2.7 · 1014 g/cm3, is uncertain
because of many difficulties in treating the nuclear many-body problem [66, 89, 159].
Furthermore, several nuclear parameters, which are used in theoretical descriptions, are
not well measured. These observational data are determined at densities which are
accessible by laboratory experiments, but at higher densities relevant for NSs they can
only be extrapolated. Because of this ignorance of the nature of the true high-density
EoS many different EoSs were proposed, employing different microphysical models and
adopting various experimental data.

To constrain the uncertainties of the physics of compact stars, astronomical observa-
tions provide a unique possibility and open the fantastic avenue to study nuclear and
particle physics at celestial objects as an interplay between various fields of research.
Some masses of compact stars are known very well by timing the arrival of radio signals
of pulsars as members in binary systems [150]. All other stellar properties are rather un-
certain, including radius measurements. This is unfortunate, because for instance only
one well determined point of the mass-radius relation, which is entirely given by the
EoS, would put tight constraints on the EoS and would eventually also decide whether
SSs exist [66, 89].
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1. Introduction

Figure 1.1.: Cumulative shift of the periastron demonstrating the orbital decay of the
binary pulsar 1913+16 due to the emission of GWs. In Newtonian gravity no such effect
is predicted (horizontal solid line). Figure taken from [161].

This thesis is intended to explore the astrophysical consequences of different high-
density EoSs in the context of compact star mergers including models that describe
absolutely stable strange quark matter. In particular, it is examined if the mergers of
SSs could yield observational signatures that allow one to distinguish them from colliding
NSs.

At the time of writing this thesis about ten binaries composed of two compact stars are
known in our galaxy (see the compilation in [117, 150]), among them the famous Hulse-
Taylor pulsar [161]. The observation of this binary proved for the first time indirectly
the existence of gravitational waves (GWs) (see Fig. 1.1), which were predicted by
Einstein already in 1918 [44] but are still waiting for their direct detection [33]. The
orbital parameters in the double compact star systems can be measured very precisely
by radio telescopes, and it is found that the orbits of these binaries decay in a way
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1.2. Observational consequences

predicted by general relativity [86, 95]. This is due to the emission of GWs, which carry
away energy and angular momentum. The decrease of the orbital separation on a time
scale of about 100-1000 Myrs finally leads to the merging of the two stars. Because
of observational selection effects many more than ten binaries are expected to exist in
our galaxy. Accordingly, e.g. in [84] the merger rate in our galaxy is estimated to be
about 3-190 per one million years. Extrapolating these numbers to the local universe one
obtains a merger rate of about 100-1000 Gpc−3 yr−1. Other references like [18, 19, 83]
give similar numbers with similar uncertainties.

1.2. Observational consequences

1.2.1. Gravitational-wave signals

Although not directly observed in the electromagnetic spectrum, the mergers of compact
star binaries in the local universe are of particular interest for current and upcoming GW
detectors [33, 78]. As the orbit decays, the inspiral process proceeds faster and faster
and the produced GW signal becomes stronger. The wave amplitude is approximately
given by the second time derivative of the mass-quadrupole moment of a source [33, 35].
Since the signal is caused mainly by the orbital motion of the binary, also the GW
frequency increases and finally reaches values of about 1000 Hz during the last orbits
before the merging. After the final plunge the outcome of a coalescence may either be a
rapidly, differentially rotating object, which is stabilized transiently against gravitational
collapse mainly by rotation, or a BH, which forms shortly after the stars have come into
contact. In fact, the last stages of the inspiral and the subsequent postmerger phase
are among the most promising sources for ground-based GW detectors constructed as
laser interferometers [33]. Detectors of this type currently in operation exist at sites in
the USA (LIGO), Italy (VIRGO), Germany (GEO600) and Japan (TAMA). However,
until now no direct detection of GWs has been achieved. Nevertheless, for the advanced
LIGO detectors going in operation in 2013 a compact star merger rate of about 20 yr−1

is expected [18].

It is one of the main topics of this thesis to examine the GW signal of compact star
mergers and to explore the effects of different high-density EoSs. The focus is put on the
latest phases of the inspiral, the final plunge and the postmerger phase, all of which can-
not be described analytically and therefore require hydrodynamical simulations. Only
these stages of the binary evolution are affected by the EoS. This study addresses the
particular question whether GW measurements of compact star mergers can be used to
decide on the existence of SSs and thus on the strange matter hypothesis. Moreover, we
explore whether one can derive specific properties of the EoS from these measurements.

The systematic investigation of the imprint of the EoS on the GW signal is still in
its infancy. Most studies consider simplified ideal gas EoSs with a polytropic pressure-
density relation P = κρΓ with κ,Γ constant, and try to explore the chances to measure
some general compact star properties like the stellar radius (e.g. [123, 168]). It is not
clear whether a decision on the strange matter hypothesis could be made on the basis
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1. Introduction

of such measurements alone, because the compactness of SSs can be in the same range
as that of NSs. First attempts of exploring the consequences of microphysical EoSs,
including non-zero temperature effects in a relativistic treatment, necessary for reliable
results (see appendix B), have been made by [110]. Also fully relativistic studies have
been conducted, in which temperature corrections were approximated by an ideal gas
component added to a zero-temperature microphysical EoS (e.g. [141] and preceding
works).

Strange stars as sources of GWs have been considered in a rotational equilibrium
approach investigating the (final phase) of the inspiral of SS binaries [60, 93]. Quasi-
equilibrium orbits were constructed to determine the innermost stable circular orbit
(ISCO). It was found that the frequency of the GWs at the ISCO depends on the
compactness of the SSs. Moreover, the signals from various instabilities of rotating SSs
have been worked out in [8, 61, 99] (see also references therein). In [57] it was reported
that the frequencies of the g-mode in newly born SSs are significantly lower than those
of NSs. Differences of the fundamental pressure modes were discussed in [20] where a
discrimination was found to be possible only if additional information like the mass was
available. Nevertheless, it is not clear whether these discriminating features are relevant
because the corresponding GW signals might be too weak to be measured.

1.2.2. Gamma-ray bursts

Besides the importance of compact star coalescence events as GW sources and the impli-
cations for nuclear and particle physics, the mergers of compact stars are also discussed
in other astrophysical contexts.

Under the assumption that the strange matter hypothesis is not correct and compact
stars are indeed NSs, binary systems of NSs or NS-BH systems are currently considered
as the most likely progenitors for short hard gamma-ray bursts [107, 127]. This subclass
of gamma-ray bursts, defined as all events with an intense gamma-ray emission of a
duration shorter than 2 seconds, is distributed isotropically on the sky and can be
detected by gamma-ray satellites like the recent SWIFT mission. Short gamma-ray
bursts turned out to be events that take place far away in the extragalactic space with
a typical redshift of z=1. Considering the observed flux of high-energy photons and the
estimated distances, these events should release a tremendous energy of about 1050 erg
(assuming isotropic emission). NS-NS mergers or NS-BH mergers have the potential to
explain this energy release and a variety of other observational features of gamma-ray
bursts like the so-called afterglow or the host-galaxy properties.

The remnant of a coalescence collapses within some milliseconds to form a BH and
a hot accretion torus. This configuration can launch a relativistic polar outflow, which
produces the gamma-ray emission by internal shocks, and the afterglow, i.e. electro-
magnetic emission from X-ray to radio wavelengths, by traveling into the interstellar
medium. In this regard the torus mass remaining outside the BH after the merger rem-
nant has collapsed is an important quantity, because it could provide the energy and
conditions for accelerating the relativistic polar outflow. It can be estimated from the
simulations presented in this study. Typically, torus masses of about 0.1 M⊙ are found,

10



1.2. Observational consequences

depending on the exact binary parameters and the EoS. The rest of the matter forms
the BH, except for a small amount of material of the order of 0.01 M⊙ or less, which
becomes gravitationally unbound during the merging process.

Whether mergers of SSs could produce short gamma-ray bursts is not explored yet,
because it requires an examination of the neutrino cooling of the strange quark matter
torus. The models of SS coalescence discussed here and the properties of the merger
remnants may help to clarify at least the question whether interesting amounts of mass
can form the tori around the remaining BHs of such mergers.

1.2.3. Nucleosynthesis aspects

The matter that becomes gravitationally unbound from the merger site is of interest
by itself. For NS mergers these ejecta might contribute to the nucleosynthesis of the
so-called r-process elements, heavy, neutron-rich elements beyond the iron peak that are
formed by rapid neutron captures [42, 56, 90, 91]. It was shown that this formation
scenario could take place for the matter that is ejected from a merger event. Therefore,
the determination of the amount of ejecta for a certain binary configuration and certain
EoS is important for nucleosynthesis considerations. Adopting a model for the binary
parameter distribution (from a theoretical calculation like [18, 19]) one can estimate the
total rate of ejecta production by the integrated population of sources. This could serve
as a basis for estimates of the total production rate of heavy elements. The details of this
process still need to be explored on the nuclear physics side by studying the properties of
the involved nuclei and on the astrophysical side by analyzing the exact conditions like
density and temperature evolution and neutron-to-proton ratios in the ejected matter
[62].

1.2.4. Signatures of strange quark matter

Computing models of SS mergers offers the possibility to investigate the ejection of
strange quark matter as a distinguishing feature of the strange matter hypothesis sce-
nario and to assess the often used assumption that such events could be important
sources of the so-called strangelets. SS mergers are studied by numerical simulations in
this thesis for the first time. If the strange matter hypothesis were true, also smaller
lumps of strange quark matter with baryon numbers > 102, the strangelets, would be
absolutely stable and could be abundant in the cosmic ray flux. Strangelets are hypoth-
esized to be produced by collision events of two SSs [34, 98]. The contamination of the
Galaxy with such strangelets is speculated to convert all ordinary NSs into SSs, because
a strangelet in contact with ordinary NS matter causes an exothermic reaction convert-
ing nuclear matter to its real ground state, i.e. strange quark matter [97, 115]. It was
argued that all compact stars have become SSs in this scenario because already a tiny
amount of strangelets is sufficient to trigger the transformation of the whole NS popula-
tion [3, 115]. If this sequence of arguments were true, it is argued in references [34, 98]
that the unambiguous observation of a NS would rule out the strange matter hypothesis.
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1. Introduction

Previous estimates of the strangelet flux used results of (Newtonian) NS-NS merger
simulations [101], which are not necessarily reliable in the case of strange quark matter.
Since no detailed simulations of SS coalescence have been conducted so far, the actual
ejected mass is unknown. Only Newtonian simulations of SS-BH binaries, modeling the
BH with a pseudo-relativistic potential [119], were carried out by [85]. It was found that
from this kind of mergers no matter is ejected.

Therefore, the expectation that all NSs convert to SSs and that there is a measurable
flux of strangelets as cosmic ray component, relies on the assumption that SS mergers
(or another source) indeed eject strange quark matter in a sufficient amount. For this
reason it is unclear if an unambiguous detection of a NS or a vanishing flux of strangelets
can rule out the strange matter hypothesis. These questions are addressed in chapter 6
of this thesis by means of our hydrodynamical simulations, which allow us to estimate
the strangelet production rate per galaxy for a given EoS of strange quark matter.

Several current and upcoming experiments have the potential to detect the signatures
of strange quark matter, which manifests itself either as strangelets or as SSs. For
instance strange quark matter might be produced directly in the Large Hadron Collider
at CERN or in similar facilities [63, 138, 149]. Also cosmic ray experiments like the
Alpha Magnetic Spectrometer AMS-02 planned to be installed on the International
Space Station in 2010 are designed to capture strangelets [74, 137]. Several satellite
and balloon-borne experiments have tried to look for strangelets in the cosmic ray flux
so far without finding clear evidence (see e.g. [160] for a review). Furthermore, lunar
soil is considered to potentially contain strangelets because the moon is not shielded
by a magnetic field which may deflect strangelet bombardment and the geologically
inactive lunar surface allows for a longer exposure time. The same arguments motivate
the search in meteorites. Up to now no unambiguous detection of a strangelet has been
reported although there were candidate events. For a review of these experiments and
of additional strange quark matter searches see [54, 67, 160]. Also, the observation of
compact stars can indirectly help to decide on the strange matter hypothesis especially
by pinning down the mass-radius relation [59, 66, 160]. The interpretation of the isolated
compact star RX J1856-3754 as a SS has been questioned later because the initial radius
determination yielding an extraordinary small radius [41] has been corrected [156].

1.3. Modeling compact star mergers

The modeling of compact star coalescence requires three-dimensional hydrodynamical
simulations. Different groups have focused on various aspects of the scenario considering
exclusively NS matter or using ideal-gas EoSs. Some achieved to simulate NS mergers
in full general relativity and computed accurate GW forms ([10, 141, 143, 146]). These
calculations, however, were missing a detailed microphysical description of NS matter or
implemented only a simplified treatment of thermal effects. In practice, the authors of
[141, 146] added an ideal gas-like expression to microphysical EoSs at zero temperature.
The reliability of such an approach is a priori unclear, because the employed EoSs do not
include thermal effects. Within this thesis we discuss the viability of the approximate
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1.3. Modeling compact star mergers

temperature treatment by comparing the simplified approach with EoSs that incorporate
a fully consistent description of thermal effects.

Recently, fully relativistic studies which also include magnetic fields were published
[7, 58, 94]. While for field strengths of the initial stars below 1014 G magnetic fields are
negligible, the results of the different groups are contradictory for higher initial magnetic
fields. Since the effects of magnetic fields smaller than 1014 G on the merger dynamics
are relevant only on secular but not on dynamical timescales, they are not considered in
the present thesis.

Some authors considered microphysical EoSs but neglected general relativity. In par-
ticular some of the Newtonian simulations included an approximate neutrino trans-
port scheme or considered magnetic fields ([122, 128, 129, 134, 135]). Only little
work was done for the nucleosynthesis aspects [130] (for NS-BH mergers see [153]).
In [110, 111, 113] an approach was chosen that treats general relativity in an approx-
imate manner ([77, 163]) and that uses also a detailed microphysical treatment of NS
matter. By means of these methods the potential role of NS mergers for gamma-ray
bursts was discussed in [109]. A first step towards a systematic investigation of the
dependence of the outcome and the GW signal of a merger on the binary parameter and
the EoS was taken in [110, 113]. Other authors employed the same approximation as
in [110, 111, 113] or performed post-Newtonian calculations, but only considered simple
polytropic EoSs ([9, 47, 48, 50, 116, 163]).

This study aims at a systematic investigation of compact star mergers by means of
simulations. Such simulations should possess two features: the treatment of gravity
should go beyond Newtonian theory and detailed microphysical EoSs should be used
(see also appendix B). The former is necessary, because only a relativistic calculation
can for instance account for the correct radius of a NS. In Newtonian calculations NSs are
several km bigger and can have arbitrarily high masses in contrast to general relativity,
where beyond a maximum mass the gravitational collapse into a BH sets in. So relativity
influences the mass-radius relation of the initial stars and of the remnants and it decides
whether a BH or a massive NS is formed (see appendix B). In addition, the mass loss and
the interaction during the merging are different. Moreover, BHs as the potentially last
phase of NS mergers are purely relativistic objects, not existing in Newtonian theory.

As a second requirement we stated that such an investigation should include micro-
physical descriptions of the EoS instead of simple polytropic EoSs, which do not allow
for a good approximation of the low- and the high-density regimes simultaneously (see
also appendix B). In particular, temperature effects have to be included, because the
zero-temperature assumption does certainly not hold for a NS coalescence.

The approach chosen in [111, 113], which is also used in this study, fulfills both cri-
teria: imposing the conformal flatness condition (CFC) [77, 162, 163], the Einstein field
equations reduce to a coupled set of elliptical, nonlinear partial differential equations.
The hydrodynamics are treated by the smoothed particle hydrodynamics method (SPH)
(see chapter 2.1 for details), representing the stellar fluid by a sample of particles and
evolving the hydrodynamical quantities comoving with the fluid. Therefore, SPH adapts
to the object shape and resolves automatically the region of space where the matter is lo-
cated. The combination of these two approaches (CFC and SPH) possesses some further
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1. Introduction

advantages: the approximate treatment of relativity is computationally less expensive
than a fully relativistic simulation allowing for a high number of models to be run, which
is essential for a comparative study like in the present work. Furthermore, the “gridless”
method of SPH provides high resolution in the interesting regions of the computational
domain for relatively low computational costs compared to grid-based hydrodynamics.
This is again decisive for the performance of the simulations. In addition, no special
treatment of the vacuum outside the stars is necessary for SPH. Finally, the filigree high-
density spiral arms, which form during the merger of SSs (see chapter 4), can hardly be
treated with grid-based hydrodynamics, even considering the potential of adaptive mesh
refinement. From a practical point of view the use of SPH is also very advantageous for
determining the amount of ejecta from a coalescence, because the SPH particles allow
easily to track the properties of a given fluid element and thus to decide whether it
becomes gravitationally unbound.

1.4. Neutron star-black hole mergers

Obviously, one would like to make use of the mentioned advantages of the CFC approx-
imation and the SPH method also in the context of NS-BH mergers (or alternatively
SS-BH binaries), in particular as the “adaptive” properties of SPH seem to be well-suited
for resolving the different density regimes and various object shapes that develop during
such a merging process, where the compact star may eventually be tidally disrupted
depending on the binary setup and the EoS [81, 131]. Although no compact star-BH bi-
naries have been observed up to now, they might be nearly as frequent as double compact
star binaries [18]. As in the case of the latter, the GW emission drives the components
of the mixed binaries to merge. Also the motivation to study this kind of mixed systems
is essentially the same as for mergers of NSs or SSs. NS-BH mergers are considered to be
strong GW sources as well as potential progenitor systems for short gamma-ray bursts,
when under certain conditions the coalescence may produce a BH surrounded by a hot,
massive accretion torus formed by material of the tidally disrupted NS. And again, one
expects that the EoS has a sensitive influence on the merger dynamics and thus on the
observational features. In the case of SS-BH collisions, besides the GW characteristics,
one would also like to investigate if the merger events lead to gravitationally unbound
strange quark matter. As mentioned above, this question was already discussed in [85]
within a Newtonian treatment of the selfgravity of the SSs.

NS-BH mergers were initially investigated with grid-based Newtonian simulations by
[81, 133] and SPH calculations of [92, 131], some of which employed microphysical EoSs.
Only recently also fully relativistic models have become available, which, however were
only performed with simple polytropic EoSs [45, 46, 142, 147, 165]. Furthermore, the
different fully relativistic simulations did not yet yield results that agree about basic as-
pects like the mass remaining outside the BH horizon after the merging (see for instance
the summary and discussion in [147]). In addition, it is known that polytropic EoSs can-
not describe NS matter at all densities relevant for the merger of a NS-BH binary. To
date, there are no simulations available with microphysical EoSs in a relativistic treat-
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1.5. Goals and outline of the thesis

ment. As in the case of NS-NS coalescence both relativity and microphysics are essential
physical aspects of the process, in particular since BHs are intrinsic relativistic objects
emerging from a gravitational collapse which is unknown in Newtonian theory (see the
discussion in appendix B). For this reason relativistic simulations using microphysical
EoSs are highly demanded.

In this thesis we present a new approach for modeling NS-BH mergers within the
CFC approximation employing for the first time also microphysical EoSs in a general
relativistic treatment of gravity. The present work develops the theoretical background
for these simulations, and some test calculations are described, which illustrate the
possibilities of the method. The newly developed method is applied to NS-BH mergers
and for a comparison of the different dynamics of SSs and NSs swallowed by a BH.
However, a systematic exploration of NS-BH systems and the role of the EoS during
such processes is beyond the scope of this work.

1.5. Goals and outline of the thesis

At the end of this introduction we summarize the goals of this work and give an outline
of the thesis. The guideline of this study is the question whether observable signals allow
one to distinguish between SS and NS merging events. To this end relativistic hydrody-
namical simulations of compact star mergers are performed. Moreover, we investigate
the question if these features yield more detailed information about the high-density
EoS. In particular, the following questions will be addressed in this thesis:

• Is there a fundamentally different dynamical behavior of NS mergers in comparison
to SS mergers?

• Is the GW signal of a SS coalescence characteristic of this class of objects?

• How do characteristic features of the GW signal depend on binary system param-
eters like the total binary mass and the mass ratio of the binary components?

• How much mass becomes gravitationally unbound during the merging of two SSs
in dependence of the EoS of strange quark matter?

• Are there differences in the dynamics of NS-BH and SS-BH collisions?

• Do SS-BH systems eject matter and contribute to a potential flux of strangelets?

• Is the inclusion of thermal effects in the EoS essential for simulations of compact
binary star mergers?

• To which extent does an approximate treatment of non-zero temperature effects
influence the dynamics and the observational features of a NS merger?

In addition, a new method to simulate mergers of BHs and NSs (or alternatively
SSs) in general relativity using microphysical EoSs is described and applied. Some test
calculations are shown and some preliminary results are discussed.
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1. Introduction

The thesis is organized as follows. In chapter 2 the underlying physical model and
the code for simulating compact star mergers are described. The method for computing
mergers of mixed binary systems is also outlined there. Chapter 3 gives an overview of
the EoSs employed in this study and reviews some relevant aspects of the strange matter
hypothesis. Chapter 4 discusses the simulations of NS and SS mergers. The GW signal
produced by these events is analyzed and discussed in chapter 5. The mass ejection
of SS mergers is investigated in chapter 6 and the consequences of our findings are
summarized. Chapter 7 presents simulations of NS-BH and SS-BH binaries in addition
to some tests to validate the new method. Finally, in chapter 8 we summarize the
results, draw conclusions and mention some directions for future work. In appendix A
the reliability of an approximate inclusion of thermal effects in NS merger simulations
is addressed. Appendix B illustrates by means of mass-radius relations of compact
stars why a microphysical description of the EoS and a general relativistic treatment is
important for compact object merger simulations.

1.6. Conventions and notations

Throughout this thesis Latin indices run from 1 to 3 and Greek indices from 0 to 3
and Einstein’s summation convention is used, which means (unless stated otherwise)
that repeated indices are summed over all possible values. The signs of the spacetime
metric are (−,+,+,+). Furthermore, G = c = 1 is used in chapter 2. Differential
operators like the Laplace operator ∆ or the partial derivatives are taken with respect
to a flat three metric. Note that in order to be consistent with the literature, we use
a different definition of the mass ratio of two binary components for NS-NS and SS-SS
mergers on the one hand and for the case of mixed binaries including a BH on the other
hand. In the former case we use the small letter q for q = M1/M2, where M1 ≤M2 and
thus q ≤ 1. When a BH is involved the mass ratio is denoted by the capital Q with
Q = MBH/Mcompact star, which is larger than unity.
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2. Physical model and numerical

implementation

2.1. Relativistic smooth particle hydrodynamics and the

conformal flatness approximation

This chapter is devoted to introduce the underlying physical model for simulating merg-
ers of compact stars and to give a short overview over the numerical implementation,
which consists mainly of two parts. One part solves the relativistic three-dimensional
Euler equations giving the hydrodynamical evolution of the system. The other module
provides a solution of the Einstein field equations to yield the gravitational field in which
the fluid moves. The use of a general relativistic formulation is essential for describing
NSs, SSs or BHs because of the high compactness of these objects.

For this study a version of the general relativistic SPH code described in [108, 111–
113] is used and the reader is referred to these publications for details. As in grid-based
Eulerian relativistic hydrodynamics schemes we introduce a set of so-called conserved
quantities (ρ∗, ûi, τ), the conserved rest-mass density, the conserved specific momentum
and the conserved energy density, which relate to the primitive quantities (ρ, vi, ǫ), the
rest-mass density, the coordinate velocity and the internal specific energy, via

ρ∗ = ραu0ψ6, (2.1)

ûi = hui = h(vi + βi)ψ4u0, (2.2)

τ = hW −
p

ρW
−

√

1 +
ûiûjδij

ψ4
. (2.3)

Here the Lorentz factor is defined by W = αu0 = (1 + γijuiuj)
1/2, u0 and ui are the

time and space components of the eigenvelocity, h = 1 + p/ρ+ ǫ represents the specific
relativistic enthalpy, and the metric potentials α, ψ and βi are introduced below, where
γij = ψ4δij is the spatial part of the spacetime metric with the Kronecker delta δij .

The evolution of these conserved quantities can be expressed in a Lagrangian manner,
e.g. comoving with the fluid (see [108, 111–113, 125, 144]). Then the hydrodynamical
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evolution equations read

d

dt
ρ∗ = −ρ∗∂iv

i, (2.4)

d

dt
ûi = −

1

ρ∗
αψ6∂ip− αû0∂iα + ûj∂iβ

j +
2ûkûk
ψ5û0

∂iψ, (2.5)

d

dt
τ = −

ψ6

ρ∗
(vi + βi)

(

1 −
hW

ω

)

(∂ip)

−ψ6 p

ρ∗
∂i(v

i + βi)

−6ψ5 p

ρ∗
(vi + βi)(∂iψ)

−
ûi
ψ4

(

1 −
hW

ω

)

(∂iα)

+
1

ψ4

(

1

hW
−

1

ω

) [

ûiûj∂jβ
i −

1

3
ûiûi∂jβ

j

]

, (2.6)

where d
dt

= ∂t + vi∂i and ω =
√

1 +
ûiûjδij

ψ4 . Note that the energy equation (2.6) slightly

differs from the form presented in the above references, but it can be derived easily from
those equations. The given formulation turns out to be numerically more stable.

As the basic idea of SPH the fluid is represented by a number of particles with constant
rest mass mi and coordinates ri (see e.g. [21, 111, 112, 125]). The particles themselves
are considered not to be pointlike but being spread out over a small spatial domain. This
is described by the so-called kernel function W (r − ri; h), which peaks at a particle’s
position and decreases with the distance from the particle’s center r− ri. In our specific
implementation a spherically symmetric spline kernel [106]

W (r − r′, h) =
1

πh3











1 − 3
2
d2 + 3

4
d3, for 0 ≤ d ≤ 1

1
4
(2 − d)3, for 1 < d ≤ 2

0, for d > 2

(2.7)

with d = |r − r′|/h is used. The extension of the kernel function and so the particle is
characterized by the smoothing length h. As can be seen, W (r) is normalized, continuous
and differentiable and it has compact support. Having at hand a Lagrangian formulation
of relativistic hydrodynamics the discretization according to the SPH method can be
done in a straightforward manner (see e.g. [112, 148]) by defining a smoothing operator

〈A(r)〉 =

∫

A(r′)W (|r − r′|; h)d3r′ (2.8)

for any quantity A(r). Representing the fluid by a sample of particles with fixed rest
masses ma the above integral can be approximated by a summation

〈A(r)〉 ≈
∑

a

A(ra)
ma

ρ∗a
W (|r − ra|; h) (2.9)
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2.1. Relativistic smooth particle hydrodynamics and the conformal flatness approximation

with the sum running over neighboring particles. For instance the conserved density
reads

ρ∗(r) =
∑

a

maW (|r − ra|; ha). (2.10)

This representation has the advantage that spatial derivatives can be expressed by means
of an integration by parts in equation (2.8) as derivatives of the kernel function, which
are analytically given. Therefore no finite differencing of the hydrodynamical quantities
is needed to approximate their spatial derivatives. With this ansatz the relativistic
hydrodynamical equations (2.4)-(2.6) result in a set of ordinary differential equations
instead of partial differential equations as in an Eulerian treatment. In this way an
initial value problem for the conserved rest-mass density, the conserved momentum and
the relativistic energy is formulated (see for instance [112]), which can be solved with
the classical fourth order Runge-Kutta method. Note that the derivatives of the metric
potentials are evaluated on an overlaid grid and mapped onto the particles. In the current
code an adaptive time step is used to obey the Courant-Friedrichs-Levi condition [24].
The essential idea of the SPH approach can be summarized as follows. All quantities
are represented by their values at moving interpolation points, the particles, which
corresponds to a Lagrangian view of hydrodynamics, and the time evolution of the
hydrodynamical quantities is computed “on the particles”.

Finally, an EoS P (ρ, Ye, ǫ) describing the thermodynamics of the stellar fluid closes
the system of hydrodynamical equations and is discussed in chapter 3. The EoS is given
in a tabulated form, but also simple analytical models can be employed. The initial
electron fraction Ye of the cold stars is defined by the condition of beta-equilibrium
and is assumed to be advected with the fluid (dYe

dt
= 0) because the timescale of lepton

number transport is long compared to the dynamical timescale.
In addition, there is an time-dependent artificial viscosity scheme [105, 126] imple-

mented to handle hydrodynamical shocks. This model solves a local Riemann problem
given by the two states of neighboring particles and adds corresponding contributions
to the conserved momentum and the conserved energy evolution equations. Details can
be found in [113].

In contrast to standard Newtonian SPH, gravity cannot be implemented within the
particle picture (e.g. with a tree method [24]). Instead, the Einstein field equations
have to be solved, for which we use the 3+1 formalism, also called ADM formalism, to
foliate the spacetime into spacelike hypersurfaces with constant coordinate time t (equa-
tion (2.11)). For a review on this method and the derivation of the equations see e.g.
[4, 35, 145, 162]. Within this approach the Einstein field equations split up into a set of
constraint equations and a set of evolution equations and therefore a Cauchy problem is
formulated. The dynamical variables are the spatial metric of the time-slices γij and the
extrinsic curvature of the hypersurfaces Kij . In order to solve the system of equations
one needs to provide initial data by means of a solution to the constraint equations,
where one distinguishes the momentum and the Hamiltonian constraint. (Constructing
physically meaningful and numerically stable initial data is one of the major tasks and
challenges in numerical relativity (see e.g. [4, 38] and references therein.) Then the
initial data are evolved according to the evolution equations. Due to the Bianchi iden-
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tities the constraints are fulfill during the evolution, which, however, is not guaranteed
numerically and constraint violations develop in simulations. All current studies use a
so-called free evolution scheme (in contrast to a fully constrained formalism) meaning
that after the constraint equations were solved once for the initial data, during the fur-
ther evolution the constraints are just monitored instead of solved. Numerically, fully
relativistic studies typically require the solution of elliptic equations for the initial data
and hyperbolic equations for the evolution. The choices of the formulation of the initial
value problem, of the evolution equations and of appropriate gauge conditions besides
many other difficulties (like boundary conditions, GW extraction schemes, the concrete
numerical implementation, the treatment of singularities and so on) can be considered
as the major challenges in numerical relativity and only recently significant progress has
been made [4, 120].

Instead of being faced with all these different numerical and conceptual issues, the CFC
approximation provides a much simpler approach, which still captures the essentials of
general relativity. As an alternative to solving the full system of equations, the CFC
approximation restricts itself to solve the initial value problem repeatedly. This includes
the constraint equations and the trace of one evolution equation. The time evolution
of the spacetime is then provided by the evolution of the fluid which provides “new”
matter source terms for the initial value problem.

Adopting the 3+1 foliation of the spacetime the metric reads

ds2 = (−α2 + βiβ
i)dt2 + 2βidx

idt+ γijdx
idxj , (2.11)

where we assume that according to the CFC the spatial part of the metric can be
approximated as

γij = ψ4δij (2.12)

with the conformal factor ψ and the Kronecker delta δij [77, 163]. Here α is the lapse
function and βi is the shift vector. Employing this approximation, the Einstein field
equations reduce to a set of five coupled nonlinear elliptical partial differential equations
with non-compact source terms (the derivation is presented in [13, 145, 162]):

∆ψ = −2πψ5E −
1

8
ψ5KijK

ij, (2.13)

∆(αψ) = 2παψ5(E + 2S) +
7

8
αψ5KijK

ij, (2.14)

∆βi +
1

3
∂i∂jβ

j = 16παρWûi + 2ψ10Kij∂j

(

α

ψ6

)

≡ Sβ. (2.15)

Here E is defined as E = ρhW 2 −P and S = ρh(W 2 − 1)+3P . The extrinsic curvature
is given by

Kij =
ψ4

2α

(

δil∂jβ
l + δjl∂iβ

l −
2

3
δij∂kβ

k

)

. (2.16)

To derive these equations from the 3+1 equations the maximal slicing gauge condition
K ≡ tr(Kij) = Ki

i = 0 was used. The equations for the shift vector can be transformed
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2.1. Relativistic smooth particle hydrodynamics and the conformal flatness approximation

to a more convenient expression by defining βi = Bi − 1
4
∂iχ. Inserting this definition in

equation (2.15) one obtains the Poisson-like system

∆Bi = Sβ, (2.17)

∆χ = ∂iB
i, (2.18)

which can be solved iteratively. These equations are discretized on a grid covering a
domain around the binary, respectively the postmerger remnant, and are solved with a
full multigrid method (see e.g. [31]). The boundary conditions are given by a multi-
pole expansion of the source terms in spherical harmonics up to the quadrupole order
([111, 162]). This expansion scheme is also used for estimating the values of the metric
components beyond the grid if particles leave the region covered by the computational
domain of the metric solver. Because equations (2.13)-(2.15) are coupled and nonlinear,
they are solved iteratively until convergence.

The time evolution of the whole system is achieved by the coupling of the two mod-
ules described above, the hydrodynamics solver and the metric solver. This is done by
the successive evolution of the hydrodynamical equations through the SPH scheme and
the solution of the elliptical partial differential equations, which do not contain an ex-
plicit time dependence. Thus the matter distribution determines the gravitational field
through the solution of the field equations. With this gravitational field the fluid can
be evolved for the next time step by the Runge-Kutta method providing an updated
matter distribution for the subsequent time step.

Since GWs are neglected by this ansatz for the metric (eq. (2.11)), a scheme simulating
the backreaction of the GW emission has to be implemented in order to account for the
loss of energy and angular momentum carried away by the gravitational radiation, which
drives the binary to inspiral and to finally merge. Following the ideas of [23, 53] this
is done in a post-Newtonian framework and requires the solution of additional elliptical
partial differential equations, which provide corrections to the metric potentials. For
details of the implementation of the GW backreaction see [113]. There one also finds
the expression for the quadrupole moment Qij in the post-Newtonian formulation, from
which one can calculate the GW amplitudes by

hij =
2G

c4R
Pijkm(~n)

d2Qkm

dt2
. (2.19)

R denotes the distance to the source and ~n is the unit direction vector from the source
to the observer, which defines the projection tensor

Pijkm(~n) = (δik − nink)(δjm − njnm) −
1

2
(δij − ninj)(δkm − nknm). (2.20)

Note that in formula (2.19) we wrote the gravitational constant G and the speed of light
c explicitly to illustrate the “weakness” of gravitational radiation.

The code is parallelized with OpenMP for shared memory architectures and runs effi-
ciently on 8 to 16 CPUs for SPH particle numbers of about 500,000 and typical grid sizes
of 1293. Besides the two modules and methods described above, a couple of additional
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routines are implemented like mapping routines from the particles to the grid and vice
versa, a procedure to compute a list with the neighbors of the particles, interpolation
methods for the EoS table, a scheme to determine the primitive hydrodynamical quan-
tities from the conserved quantities and several diagnostic tools like the GW extraction.

A further optimization of the code may be achieved by a reduction of the calls of the
neighbor search routine, or by employing a sort algorithm that orders the particles in a
way that physical neighbors of particles are stored relatively close in the data arrays and
thus reducing the communication within different memory blocks of the shared memory
machine. Despite an initially regular setup of the SPH particles that is also maintained
during the inspiral phase, a disorder of particles occurs in the merger and postmerger
phase. First attempts with a simple pie slice-like sorting exhibit a significant speedup.

SPH is successfully used also for other applications in astrophysics like the simulation
of planet formation, star formation, supernovae, accretion discs, galaxy formation and
evolution.

The CFC approximation is also employed in other astrophysical situations like stellar
collapse simulations, where it yields excellent agreement with fully relativistic approaches
[118]. The reason for this may be the approximate spherical symmetry of the problem.
In the case of binary mergers, rigorous comparisons of CFC with fully relativistic studies
face serious technical and conceptual problems like the different hydrodynamics treat-
ment, the gauge conditions and the preparation of the initial data. Therefore, only
general comparisons can be employed showing good qualitative and overall agreement
[113].

2.1.1. Initial data

The preparation of the initial data is done with a version of the same code as used for
the evolution. Two individually hydrostatic stars are set up in a close orbit and a certain
angular velocity and velocity field of the entire stars are chosen. This binary is evolved
without the effects of the GW backreaction to find the corresponding quasi-equilibrium
state of the configuration. The binary is freely evolved and if the stars start to approach
each other a higher angular velocity is imposed or if they depart from each other a lower
angular velocity is used. Furthermore, the SPH particle distribution, which is initially
slightly off equilibrium, is relaxed by means of an additional artificial damping force.

The time during the inspiral of a compact star binary is not sufficient to yield tidally
locked systems because the shear viscosity is too low [22]. (The shear viscosity of strange
quark matter is estimated to be comparable to that of NS matter [64]). Therefore, the
initial velocity profile is assumed to be irrotational. Also because of time arguments it
is reasonable to start with initially cold stars in beta-equilibrium.

2.2. Simulating neutron star-black hole mergers

In this section the fundamental concepts to simulate mergers of NSs (or alternatively SSs)
and BHs are introduced on the basis of the methods and modules presented in section 2.1.
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2.2. Simulating neutron star-black hole mergers

The implementation of the BH spacetime, which has to be embedded into the framework
of the Runge-Kutta method for evolving the system using the CFC approximation and
the corresponding gauge and coordinate choices, can be considered as the main task.

As will be briefly addressed below, the most obvious attempts to incorporate a BH
fail for various reasons and only by means of a reformulation of the metric equations
the divergences occurring in a BH spacetime can be handled. After a short review of
the different possibilities to deal with BHs in numerical relativity, the essential ideas of
the new approach will be outlined. Basically it relies on a coupling of different methods,
many of which are well established in numerical relativity. For the details the reader is
therefore referred to the respective literature that discusses many aspects which cannot
be presented here (see e.g. [4, 30, 38, 39, 87, 120, 162] and references therein). The key
ingredients are the puncture method, the conformal transverse traceless (CTT) decom-
position of the extrinsic curvature leading to an alternative form of the CFC equations,
and the Bowen-York solution to the momentum constraint equations. However, com-
bining these concepts requires to consider some less obvious aspects. This includes for
instance the meaning of the puncture mass during the evolution. Furthermore, several
other conceptual and technical issues like the motion of the BH, accretion, the GW back-
reaction and the construction of the initial data will be described. Although parts of
this approach were already presented in the literature, for instance to construct NS-BH
initial data [87], and the alternative formulation of the CFC equations was employed
before in the context of stellar collapse (without simulating the forming BH) [136], the
method introduced here for describing BHs is used for the first time in a dynamical
simulation. Our work may suggest to apply it also to other astrophysical problems like
core collapse leading to BH formation, BH accretion discs or white dwarf-BH mergers.
In this way one could profit from the particular advantages of the CFC approximation
like the computational simplicity and numerical stability also in other astrophysical sit-
uations. A couple of tests, which show the reliability of the new method to treat BHs
within CFC, will be summarized in chapter 7.

2.2.1. Black holes in numerical relativity

In section 2.1 a method to treat relativistic hydrodynamical problems within the CFC
approximation was introduced, which also implies the use of isotropic coordinates and
the maximal slicing condition. In addition, simulations of NS-BH binaries require to
handle the gravitational interaction of the BH with the fluid. Within relativity, gravity
acts entirely via the metric potentials, thus via the spacetime the matter is moving in.
Therefore, the BH needs to be represented by means of the spacetime structure. In
numerical relativity there are basically two methods to treat BHs and to handle the BH
singularities, which may be pure coordinate singularities caused by an “inappropriate”
coordinate choice or real physical singularities in the center of BHs. These singularities
and the associated infinities are the problems that a numerical description of a spacetime
cannot deal with.

The excision of the spacetime singularities provides one possibility to avoid these
troubles. Within this approach an inner boundary is introduced in the computational
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domain excising the singular region of the spacetime. Since the horizon of a BH rep-
resents a causal boundary, it is clear that the interior cannot affect the outside and an
excision of the troublesome regions should not matter. Numerically this statement does
not need to be true. Furthermore, the excision technique has some intrinsic drawbacks.
First, it needs to be ensured that the inner boundary is always located within the horizon.
Therefore, one has to implement a horizon finder, which requires additional numerical
effort. (More precisely, the boundary has to be inside the event horizon, which can only
be determined from the global spacetime, thus after the simulation. However, assuming
that cosmic censorship holds, the apparent horizon is located inside the event horizon.
The apparent horizon can be computed on every time-slice, so it is known during the
simulation (see the e.g. [4] for details).) Furthermore, with choosing an excision surface
inside the horizon one cannot handle possible problems across the horizon. Another
problem is the technical implementation of an approximately spherical excision surface
on a cartesian grid. In particular for a multigrid method as it is used in the available
code, the construction of inner boundary conditions is technically rather complicated.
Furthermore, the major drawback is connected to the choice of appropriate boundary
values, and this may introduce additional equations to be solved [82]. In summary,
all these issues make the excision method very unattractive, in particular if existing
code modules (like the hydrodynamics solver and the multigrid solver for elliptic partial
differential equations) should be used.

As an alternative to excising, the puncture method ([30]) has become very popular
in numerical relativity. If the behavior of a singularity is analytically known, it can be
factored out from the solution, which is the main idea of the static puncture approach.
Originally the puncture method was used to construct initial data for binary BH coa-
lescence, but it was realized that it can be used also for evolving the spacetime (moving
puncture method) leading to the remarkable breakthrough in numerical relativity in
2005, allowing for the first time the simulation of several orbits of a double BH binary
and the subsequent merger (see e.g. [4, 120] for a review).

A puncture in the initial data represents an Einstein-Rosen bridge, so a wormhole
connecting two asymptotically flat universes. The outside of the wormhole describes
exactly the exterior gravitational field of a BH. One universe is compactified by a coor-
dinate transformation and located within the “horizon of the BH”. The puncture itself
represents spatial infinity of the compactified universe. (Despite this meaning of the
puncture, in the present thesis we will also adopt the term “center of the BH” for the
puncture). When initial data containing a puncture are evolved with the moving punc-
ture method using the Baumgarte-Shapiro-Shibata-Nakamura formalism (see e.g. [4])
the spacetime settles down to another equilibrium state, a so-called trumpet, which does
not any longer contain spatial infinity of the compactified universe [32, 70–72]. How-
ever, for the model used in this study, the evolution of the system is provided by the
matter evolution and the metric of the spacetime is given in every timestep as newly
constructed initial data, see section 2.1. The following subsections describe how to im-
plement a puncture within the CFC approach and introduce some additional concepts
for simulating the mergers of a compact star and a BH. The use of existing code modules
(including the already existing implementation of microphysical EoSs) and the relative
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(computational) simplicity are the main advantages of this specific method.

2.2.2. Puncture black hole in the conformal flatness approach

Let us denote the radial Schwarzschild coordinate with r̃. Then the famous Schwarzschild
metric in Schwarzschild coordinates (t, r̃, θ, φ), so a spherical symmetric, stationary so-
lution to the Einstein equations, reads

ds2 = −

(

1 −
2M

r̃

)

dt2 +

(

1 −
2M

r̃

)−1

dr̃2 + r̃2
(

dθ2 + sin2 θdφ2
)

, (2.21)

and describes the spacetime of a BH with mass M . For r̃ = 2M the lapse function

α =
(

1 − 2M
r̃

)1/2
vanishes (compare with (2.11)), which corresponds to the event horizon

of the spacetime. One can see that the metric has a singularity on a sphere with α = 0
and for r̃ = 0. While the former is a pure coordinate singularity, the latter represents a
physical singularity.

Solution (2.21) can not be used as an ansatz for a puncture because it employs
Schwarzschild coordinates (t, r̃, θ, φ) instead of isotropic coordinates (t, r, θ, φ). How-
ever, by means of the coordinate transformation

r̃ = rψ2 ≡ r (1 +M/2r)2 , (2.22)

r =
1

2

(

r̃ −M +
√

r̃(r̃ − 2M)
)

, (2.23)

one can derive the Schwarzschild solution in isotropic coordinates. With the conformal
factor ψ = 1 +M/2r it is written as

ds2 = −

(

1 −M/2r

1 +M/2r

)2

dt2 + ψ4
(

dr2 + r2(dθ2 + sin2 θdφ2)
)

. (2.24)

In these coordinates the spacetime is regular at the horizon, which is located at r =
M/2. From the coordinate transformation one also finds that r → ∞ as well as r →
0 correspond to r̃ → ∞, so spatial infinity. Therefore, one can interpret the region
0 ≦ r ≦ M/2 as second asymptotically flat universe on the other side of a wormhole. In
isotropic coordinates this second universe is compactified and located within the horizon
of the BH. The point r = 0, which corresponds to spatial infinity, is a pure coordinate
singularity. The region 0 ≦ r̃ ≦ 2M in Schwarzschild coordinates cannot be covered by
isotropic coordinates.

The interpretation of (2.24) as a wormhole also called an Einstein-Rosen bridge is
discussed excessively in text books like [4, 40, 104, 152]. Note that the Einstein equations
determine the curvature of the spacetime but not the topology.

Expression (2.24) has exactly the form that one would like to factor out from a space-
time solution in isotropic coordinates to avoid the singular behavior of a BH. Note that
the use of equation (2.24) instead of the familiar solution (2.21) in Schwarzschild co-
ordinates is crucial in order to use the same coordinates as the CFC approximation is
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employing. However, equations (2.13) to (2.15) are not appropriate to be solved within
the puncture framework because in the noncompact source terms of the equations for ψ
and αψ, which are nonzero in the whole computational domain, factors of ψ5

α2 and ψ5

α
,

respectively, occur. These terms become infinity on a sphere with α = 0 not coincident
with the puncture, and at the puncture itself, where ψ → ∞. Besides this irregular
behavior, the terms become very large close to these points and a numerical treatment
breaks down.

Recently, it has been shown how within the 3+1 approach from a fully constrained
formulation of the Einstein equations [27] the CFC approximation can be recovered [39].
This formulation shows many advantages compared to the classical CFC equations as
introduced in section 2.1, for example it guarantees the uniqueness of the solution and
a further decoupling of the system of equations. On the other hand, this formulation
requires the solution of an additional elliptical equation for an auxiliary vector potential
Ŵ i, which determines the conformal extrinsic curvature in the CTT decomposition by

Âij = ∂iŴj + ∂jŴi −
2

3
∂kŴ

k. (2.25)

Note that constructing the conformal extrinsic curvature from the vector Ŵ i involves a
further approximation, because this relation implies a vanishing transverse part of Âij .

However, this part was shown to be small in [39]. Note that indices of Ŵ i and Âij are

raised and lowered solely by the Kronecker delta and that Âij is related to the extrinsic

curvature Kij of the physical metric γij (equation (2.16)) by Âij = Âij = Âij = ψ10Kij =
ψ6Ki

j = ψ2Kij [4, 38].
After introducing the conformal extrinsic curvature by equation (2.25), the final sys-

tem of equations to be solved reads

∆Ŵ i +
1

3
∂i∂jŴ

j = 8πψ6ρWûi = 8πρ∗ûi, (2.26)

∆ψ = −2πψ5E −
1

8
ψ−7ÂijÂ

ij , (2.27)

∆(αψ) = 2παψ5 (E + 2S) +
7

8
αψ−7ÂijÂ

ij, (2.28)

∆βi +
1

3
∂i∂jβ

j = 16παρWûi + 2Âij∂j

(

α

ψ

)

, (2.29)

with E and S as defined in section 2.1. Now the extrinsic curvature term is computed
from Ŵ i instead of an evaluation of the shift vector as in the system (2.13)-(2.15). The
procedure to solve the system (2.26)-(2.29) is considerably simpler than obtaining a
solution of the equations (2.13)-(2.15), which requires several iterations between the dif-
ferent elliptical equations to account for the nonlinearities and the couplings among the
equations. Here one starts with solving the equation for Ŵ i, which can be transformed
by a decomposition into four linear elliptical equations as it is done for the shift vector
in section 2.1. Given the auxiliary vector Ŵ i the extrinsic curvature Âij can be com-
puted. Then the conformal factor ψ is determined from equation (2.27) and afterwards
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the solution for αψ can be obtained from equation (2.28). Finally the equation for the
shift vector needs to be solved by means of the same decomposition as in section 2.1.
Note that these equations do not require to iterate through the whole system because
they couple only to metric potentials whose solution was obtained one step before.

The implementation of the extrinsic curvature term by means of Âij has the crucial
advantage that now the puncture method can be applied to this set of equations, because
factors of ψ and α appear in powers so that the noncompact source terms remain small
also in the vicinity of the BH. The positive exponents of the metric function in the
matter sources (first terms on the right-hand side of equations (2.26)-(2.29)) do not
cause a problem, because these source terms vanish in the vacuum. When solving the
equations (2.26)-(2.29) by the puncture method for describing a BH in the spacetime,
one introduces two additional fields η(x) and µ(x) by

ψ(x) = 1 +
mBH

2rBH
+ η(x), (2.30)

α(x)ψ(x) = 1 −
mµ

rBH

+ µ(x), (2.31)

assuming that a BH is located at the puncture xBH with rBH = |x − xBH|. Comparing
with the line element (2.24) one can see that η(x) and µ(x) describe the deviations
of the spacetime from the Schwarzschild solution. The singularities of the spacetime
are absorbed by the analytical contribution and one is left with solving numerically for
η(x) and µ(x), which are sufficiently regular everywhere. The only singular point, the
puncture itself, is not “seen” by the numerical grid, because it practically never coincides
with a grid vertex. By means of this ansatz for the metric potentials, one can replace
equations (2.27) and (2.28) by inserting (2.30) and (2.31) on the left hand side, and one
obtains

∆η = −2πψ5E −
1

8
ψ−7ÂijÂ

ij , (2.32)

∆µ = 2παψ5 (E + 2S) +
7

8
αψ−7ÂijÂ

ij. (2.33)

Now all source terms remain finite and “small” and admit a numerical solution also close
to the puncture or when the lapse function becomes zero.

For a single BH at rest the parameter mBH of equation (2.30) can be identified as the
ADM mass of the BH [30]. In the case of a conformally flat metric the ADM mass is
given as (see e.g. [4])

MADM = −
1

2π

∮

r→∞

∂jψdS
j. (2.34)

It can be seen easily that in the vacuum case one recovers the Schwarzschild solution
(2.24) from (2.26), (2.32), (2.33), and (2.29) by setting η(x) = 0 and µ(x) = 0 and that
mBH indeed corresponds to the ADM mass of the BH.

However, for a moving BH, which is not in isolation, mBH parametrizes the BH mass,
but does not agree with the BH mass MBH any longer [4, 72]. Therefore, it is important
to realize that for the correct evolution of the system, the puncture mass mBH is a
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2. Physical model and numerical implementation

parameter that has to be changed in order to describe the same astrophysical BH during
the whole simulation. The puncture mass mBH is adjusted in a way that the total ADM
mass of the system is conserved. One should keep in mind that definition (2.34) does not
include the energy emitted by GWs during the merging, so the actual total ADM mass
decreases slightly during the evolution, which, however, is a very small effect, below one
percent (see e.g. [147]).

The constant mµ in equation (2.31) is fixed in a way that the Komar mass

MKomar =
1

2π

∮

r→∞

∂j(αψ)dSj (2.35)

equals the ADM mass, which should hold for stationary and asymptotically flat space-
times [158]. The spacetime can be considered to be approximately stationary at least
during the inspiral phase of the binary. Basically mµ can be chosen freely as it corre-
sponds to the choice of the lapse function at spatial infinity in the compactified universe
[68, 69].

In the adopted CTT decomposition of the extrinsic curvature, solutions to equation
(2.26), which is derived from the momentum constraint, are known even analytically
in the case of a conformally flat metric and the maximal slicing condition [4]. These
solutions describe BHs with linear and angular momentum. For simplicity we do not
consider any angular momentum of the BH throughout this thesis, although the im-
plementation is similar to the one presented for the linear momentum. Restricting to
non-rotating BHs one can show that

Ŵ i = −
1

4r

(

7P i + ninjP
j
)

(2.36)

represents a solution with linear momentum P i, which leads to the so-called Bowen-York
extrinsic curvature [28, 29]

ÂijBH =
3

2r2

(

niP j + njP i + nkP k(ninj − δij)
)

. (2.37)

The physical interpretation of the vector P i as momentum becomes clear when comput-
ing the ADM momentum (see e.g. [4])

P i
ADM =

1

8π

∮

r→∞

Ki
jdS

j (2.38)

for the maximal slicing condition K = 0 and isotropic coordinates.
Since in the chosen gauge the momentum constraint equation and therefore equation

(2.26) are linear, the analytical expression ÂijBH can be added to another solution for

Âij , which can also describe matter. Therefore, it offers a possibility to add a BH with
linear momentum to a spacetime containing matter. In the present code, after solving
equation (2.26) the analytical solution ÂijBH is added to the extrinsic curvature terms,
which enter the source terms of equations (2.32), (2.33) and (2.29).
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2.2. Simulating neutron star-black hole mergers

In order to determine the linear momentum P i
BH of the BH one assumes that the total

linear ADM momentum of the system vanishes. Therefore one needs to compute the
contribution to P i

ADM from the matter and the corresponding noncompact source terms.
Then the BH momentum is given as

P i
BH = −

1

8π

∮

r→∞

Ki
jdS

j = −

∫

ρWûiψ
6dV. (2.39)

Here the surface integral was transformed into a volume integral by means of the Gauss
theorem and by using the momentum constraint equations [4, 87]. Similarly, when
evaluating the expression for the ADM mass (2.34) and the Komar mass (2.35), the
contribution from the puncture mBH and mµ, respectively, are given analytically and can
be added to the contribution of the matter and the noncompact source terms (including
also the contribution from the momentum of the BH), which are computed by a volume
integral using equations (2.27) and (2.28) (see also [11]).

The puncture massmBH for equation (2.30) is chosen at the beginning of the simulation
as one of the binary parameters, which describes the mass of the BH. In particular for
large orbital separations the “bare” puncture mass mBH approximates the astrophysical
mass of the BH sufficiently well (within some percent). Keeping this discrepancy in mind
we use the initial mBH,initial to denote the actual BH mass MBH,initial. Determining more
accurately the true mass of the BH would require addition numerical effort, for instance
to compute the apparent horizon of the spacetime [4, 87]. Then, as mentioned, mBH is
adjusted by imposing a constant total ADM mass to describe the same astrophysical
object during the evolution of the system, and the difference between mBH and MBH

can be expected to become larger. For more information on these issues see also the
discussion of the evolution of the puncture mass in section 7.3.

The “puncture mass” mµ of (α(x)ψ(x)) is determined by equating the ADM mass
(2.34) and the Komar mass (2.35). After computing the different contributions numeri-
cally, one can solve for mµ. However, the values of mBH and mµ are similar as discussed
in chapter 7.

2.2.3. Further aspects of simulating black holes

If the mass of the BH in a binary is not significantly larger than the one of the compact
star, one expects the BH to show non-negligible motion around the center of mass of
the system. (Note that there is no clear definition of the center of mass in general
relativity.) The motion of the BH has to be implemented in parallel to the advance of
the hydrodynamical quantities in the Runge-Kutta scheme before computing new initial
data of the spacetime. In the puncture framework the position of the puncture can be
tracked by solving the equation (see e.g. [4])

dxiBH

dt
= −βi(xjBH). (2.40)

Therefore, during the evolution the shift vector βi(xiBH) at the position of the puncture
is determined by an interpolation and equation (2.40) is solved within the Runge-Kutta
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2. Physical model and numerical implementation

scheme for the evolution of the whole system. Note that it is exactly the meaning of
the shift vector to describe how the spatial coordinates are moved from one t=constant
hypersurface to the next.

This method of moving the BH turns out to yield very good results as will be shown in
chapter 7, for instance it yields circular orbits and the procedure to construct initial data
gives angular velocities in agreement with values found in the literature. The viability
of this procedure will be addressed in chapter 7 also in the context of head-on collision.

A further important aspect of simulating NS-BH systems is the implementation of
the GW backreaction, which drives the inspiral. As in the case of NS-NS or SS-SS
mergers, GWs are neglected by the conformally flat description which was imposed
for the spatial part of the metric when deriving equations (2.26)-(2.29). For the GW
backreaction one can use the same scheme as reported in [113] and briefly summarized
in section 2.1. It determines corrections of the metric potentials in the non-vacuum
region of the spacetime within a post-Newtonian approximation. The effects of the BH
are taken into account by its gravitational field acting on the NS and mainly by its
contribution to the total quadrupole moment of the system, which enters the equations.
Therefore, in an approximate manner the BH is considered as a point mass in the source
terms of the hierarchical set of elliptical equations of this scheme (see [113]). Since the
equations are linear, the delta distribution at the place of the puncture can be added
easily. Furthermore, the contribution of the BH to the quadrupole moment is given
analytically when treating the BH as a point mass.

In principle, the GW backreaction will also change the spacetime close to the BH
and thus affect its motion, which is given by the shift vector as described above. This
influence can be considered to be very small because corrections to the shift vector enter
only in higher post-Newtonian orders, which are neglected in the current implementation.
Dominantly, the GW backreaction acts indirectly on the motion of the BH by means of
the imposed momentum conservation (equation (2.39)).

The accretion of matter onto the BH has to be treated approximately, too. In principle,
matter approaching the BH is frozen in its evolution because the lapse function α goes
to zero on a 2-surface around the puncture. (The lapse function α determines how the
eigentime of an observer is related to the coordinate time t, the time of an observer
at infinity, which is also the time evolved by the numerical scheme.) Numerically, the
accretion process causes problems because more and more matter accumulates in a small
coordinate region of the computational domain close to the α = 0 sphere. Although
this region represents a relatively large eigenvolume ψ6d3x, the region is badly resolved
and the simulation crashes. For this reason SPH particles that approach the BH are
removed from the simulation. Although one would like to drop a particle only after
it has crossed the horizon of the BH (see discussion in subsection 2.2.1), the criterion
for excision is simply a sufficiently low lapse function α to avoid the computationally
complex determination of the horizon. In practice a value of α = 0.1...0.2 turns out to
be a good choice and it can be shown that the exact value does not affect the global
evolution.

Since the code conserves the total ADM mass of the system by construction, the
puncture mass of the BH is increased automatically when a SPH particle is removed.
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2.2. Simulating neutron star-black hole mergers

However, in order to support the adaption mechanism, a guess value of the mass increase
is computed. The increment of the BH mass mBH is given by the restmass of the SPH
particle multiplied by a factor MNS

ADM/M
NS
0 . MNS

ADM is the gravitational mass of the NS
in isolation and MNS

0 is the rest mass of the star.
The initial data for NS-BH simulations are constructed similarly to the case of NS-

NS and SS-SS binaries. One sets up the BH and the star on an orbit with a certain
orbital separation and a guess value for the angular velocity of the star. The BH reacts
accordingly on the motion of the star mediated by the shift vector. Then the orbital sep-
aration is monitored and eventually the angular velocity of the star is adjusted including
a reset of the binary to the original orbital separation. Furthermore, the SPH particle
distribution is relaxed by means of an artificial damping force. Basically, the initial data
are found by an evolution without the action of the GW backreaction. The fact that
the code is able to adjust to the “right” quasie-quilibrium state of the binary can be
considered as an important validation of the method, because the relaxation procedure
uses already the essential modules of the simulation. Here the “right” solution is defined
by the results of special techniques to construct quasi-equilibrium orbits [154]. Details
on this will be given in chapter 7.
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3. Equation of state of high-density

matter

As summarized in the introduction, the EoS of high-density NS matter as well as of
potential strange quark matter is uncertain because of insufficient constraints by labo-
ratory experiments and astronomical measurements. Also the theoretical approaches of
describing high-density matter are ambiguous. Therefore, for astrophysical simulations
one relies on various models for the EoS and tries to explore the different consequences.
In this chapter the underlying microphysical models to derive the EoSs, which are used
in this study, are briefly reviewed and the resulting thermodynamical properties are pre-
sented. Furthermore, the characteristics of the stellar objects described by a given EoS
are illustrated.

3.1. Nuclear equations of state

A large variety of EoSs describing cold supernuclear matter in neutrino-less beta-equi-
librium (fixing the electron fraction at its equilibrium value for a given density) are
available, while only a few consider also thermal effects and a variable electron fraction.
For astrophysical applications there are currently two models for nucleonic matter that
are widely used: there is the EoS of Lattimer & Swesty [88] and the one of Shen et al.
[139], for which in the following the abbreviations LS EoS and Shen EoS will be used.

The Shen EoS employs two different methods to compute the pressure, the energy den-
sity and the entropy as a function of the baryon density, the temperature and the electron
fraction. For densities below ∼ 1/3 nuclear saturation density the Thomas-Fermi ap-
proximation is used to describe a unit cell containing a heavy nucleus, alpha-particles,
protons and neutrons, while electrons are considered as non-interacting particles. The
regime of densities higher than ∼ 1/3 nuclear saturation density is assumed to be uni-
form and a relativistic mean-field model is adopted to describe a phase of neutrons and
protons, where interactions are mediated by meson fields. Electrons are again treated
independently.

The starting point of the relativistic mean field theory used for this high-density
regime is a Lagrangian containing kinetic, mass and interaction terms of the baryons
and mesons. The particular model used in [139] includes also nonlinear meson self-
interactions. Then the equations of motion are derived and assuming infinite matter
the meson fields are approximated by their mean fields. Thermodynamic quantities are
expressed by integrals containing Fermi-Dirac distribution functions of the baryons and
the mean-fields of the mesons. Finally free parameters of the model like the coupling
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3. Equation of state of high-density matter

constants and mesons masses are fixed in order to reproduce the known properties of
nuclear matter at saturation density.

The LS EoS employs the compressible liquid drop model for nuclei. It minimizes the
free energy of a unit cell containing electrons, positrons, photons, free neutrons, free
protons, alpha particles and a representative heavy nucleus. For a given baryon number,
temperature and proton fraction a minimization procedure determines the thermody-
namically most favorable state as a function of the distribution of the different phases. A
number of nuclear parameters are entering the various contributions to the free energy.
Some of these parameters are not well determined and need to be chosen reasonably like
for instance the incompressibility modulus, which is set to K0 = 180 MeV. Also free
parameters of the nuclear interactions are adapted to reproduce nuclear properties. For
details see [88].

Both of these EoSs, the Shen EoS and the LS EoS, are available in a tabulated form,
which gives the pressure, the energy density, the speed of sound and the entropy as
a function of the baryon density, the temperature and the electron fraction. Within
the code a linear interpolation scheme is used to compute the dependent quantities for
arbitrary input values.

Besides the LS and the Shen EoS one can also use tabulated cold EoSs in beta-
equilibrium, where all thermodynamical quantities only depend on the baryon density.
Either one neglects thermal effects completely, which corresponds to the extreme and
unrealistic case of a perfectly efficient cooling that carries away all thermal energy instan-
taneously, or one approximates thermal effects by adding an ideal gas-like contribution.
Originally introduced in [80] this approach is also used in fully relativistic studies to
incorporate cold microphysical EoSs [141, 146]. In this case the pressure and the specific
internal energy are written as

P = Pcold + Ptherm (3.1)

ǫ = ǫcold + ǫtherm. (3.2)

The “cold” contributions are taken from the tabulated microphysical EoS, and are func-
tions of the baryon density ρ. The baryon density ρ and the specific internal energy
ǫ are given by the evolution of the hydrodynamical quantities (equations (2.4)-(2.6)).
For a given ǫ one defines the specific thermal energy by ǫtherm = ǫ − ǫcold(ρ). Then the
thermal contribution to the pressure is computed by

Ptherm = (Γtherm − 1) ρǫtherm. (3.3)

The adiabatic constant is typically set to Γtherm = 2 [141, 146]. The reliability of
this approach in the context of NS mergers is not yet explored and will be addressed in
appendix A. Choosing a constant Γtherm to account for the thermal behavior in the whole
density range relevant for NS coalescence seems at least questionable. However, this
treatment allows the simple implementation of a large variety of available microphysical
EoSs with various properties.

Furthermore, NS matter can be described approximately by ideal-gas EoSs, which are
also implemented in the code. The pressure

P = (Γ − 1)ρǫ (3.4)
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is given analytically as a function of the rest-mass density and the specific internal energy
with the adiabatic index Γ. A closely related ansatz is the polytropic EoS

P = κρΓ (3.5)

with the adiabatic index Γ = const. and κ = const., which is consistent with the first
law of thermodynamics for adiabatic processes of an ideal gas. However, it violates
this thermodynamical constraint in the presence of shocks. Therefore, it can be used for
constructing initial data, but it cannot be employed during the merging of NSs. Because
of their simplicity, these EoSs are very popular for doing fully relativistic simulations
(see also appendix B).

3.2. Strange quark matter equations of state

The EoS of strange quark matter is derived within the MIT bag model [37, 52], which
provides a phenomenological way to treat the deconfinement of quarks. The densities
reached in NS or SS cores are too low for perturbative quantum chromodynamics (QCD)
calculations to be valid. Initially developed to describe mesons and baryons, the appli-
cation of the MIT bag model to bulk quark matter is rather simple. In a certain volume,
the so-called bag, the quarks can move freely and are considered as a free Fermi gas. The
masses of the up and down quarks can be neglected, while for the strange quark mass a
value of mS = 100 MeV is adopted [43]. The confinement of the quarks is modeled by
the bag constant B giving the difference in the energy density inside the bag compared
to the ordinary vacuum outside. In this way the confinement is simulated by a non-zero
pressure of the vacuum outside onto the bag. In the case of a SS the whole star is con-
sidered to be a “giant bag”. The bag constant is a free but constrainted parameter of
the model. The lower limit is given by B = 57 MeV/fm3. For a smaller value of B, two-
flavor quark matter consisting of up and down quarks would be energetically favorable
compared to nuclear matter, but a spontaneous conversion of nuclei into strange quark
matter is not observed. On the other hand, in order to obtain an energy per baryon of
strange quark matter lower than the one of ordinary nuclear matter the upper bound of
B equals 84 MeV/fm3. Otherwise strange quark matter would not be absolutely stable.
The range of B can differ slightly for other choices of mS or if one includes interactions
among the quarks. These limits for B correspond to an energy per baryon lower than
that of nuclear matter (E/A = 930 MeV) and therefore they account for absolutely sta-
ble quark matter, i.e. the true ground state of matter. In this study we use the values
B = 60 MeV/fm3 (E/A = 860 MeV) and B = 80 MeV/fm3 (E/A = 921 MeV) and
refer to these EoSs as MIT60 and MIT80. Potential extensions of the model could for
instance account for the effects of color superconductivity or interactions between the
quarks. In order to have a clear parameter dependence we omitted the inclusion of such
corrections, which anyway could be absorbed in an “effective bag constant” [55].

Assuming a Fermi gas of quarks the expressions for the thermodynamical quantities,
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the pressure P , the energy density e, and the baryon number density ρ, read [59]

P =
∑

f

1

3

γf
2π2

∫

∞

0

k
∂ǫf (k)

∂k
[n(k, µf) + n(k,−µf )] k

2dk −B (3.6)

e =
∑

f

γf
2π2

∫

∞

0

ǫf (k) [n(k, µf) + n(k,−µf)] k
2dk +B (3.7)

ρ =
∑

f

1

3

γf
2π2

∫

∞

0

[n(k, µf) − n(k,−µf)] k
2dk (3.8)

where ǫf (k) = (m2
f+k

2)1/2 and the Fermi distribution function n(k, µf) = (exp ([ǫf(k) − µf ] /T ) + 1)−1

for a temperature T is used. Note that we set c = ~ = 1. The sum extends over all quark
flavors with the degree of freedom γf = 2 × 3 for two spin states and three color states.
Since the masses of top, bottom and charm quark exceed 1.5 GeV, only up, down and
strange quarks contribute to the sum. A factor of 1/3 in the density expression occurs,
because there are three quarks per baryon. Furthermore, one recognizes the influence of
the bag constant, which as vacuum energy creates a negative pressure.

These equations can be solved analytically in two limits: For massive quarks and
zero temperature, or alternatively for massless quarks with non-zero temperature [59].
However, in this study a massive strange quark is assumed and thermal effects are
supposed to play a role during the merging process of SSs and therefore the above set
of equations needs to be solved numerically. Additionally, the conservation of electric
charge and baryon charge and the condition of electric charge neutrality leads to a set
of constraints for the chemical potentials under which the above equations are solved.
Tables of the EoSs for the parameter set of MIT60 and MIT80 were provided by Giuseppe
Pagliara and Irina Sagert in the same format as for the NS matter EoSs.

In principle SSs can carry a small nuclear crust whose maximum density cannot exceed
the neutron drip density. At this density of about 4.3 ·1011g/cm3 nuclear matter is made
of a lattice of neutron-rich heavy nuclei embedded in an electron gas and it becomes
energetically favorable for some neutrons to drip out of the nuclei and form a neutron
gas. While ions cannot be absorbed by the quark phase because they are repelled by a
strong electric field (see the comments in section 3.4), the neutrons do not feel this barrier
and can join the quark phase to reach their ground state. For this reason the density of a
nuclear crust cannot be higher than the neutron drip density and accordingly, the mass
of the nuclear crust is only of the order of 10−5 M⊙ [59]. Therefore, it is neglected in the
simulations of SS mergers, because it is not essential for the dynamics of the system.

3.3. Thermodynamical properties and stellar structure

Figure 3.1 shows for all EoSs used in this study the pressure as a function of the rest-
mass density ρ = mNnB (nB is the baryon number density, mN the atomic unit mass)
for representative temperatures of 0.1 MeV, 10 MeV and 30 MeV, which are typically
reached during a compact star merger. For the EoSs of strange quark matter one can
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Figure 3.1.: Pressure as a function of rest-mass density ρ = mNnB for the MIT60,
MIT80, LS and Shen EoSs, and for different chosen temperatures. The EoSs for strange
quark matter can be easily recognized by their rapid decrease of the pressure below a
certain density. The electron fraction for the nuclear EoSs is set to 0.05 and for the
quark matter EoSs to 2.5 · 10−5.

clearly see the drop of the pressure towards zero at densities well above nuclear density.
For the MIT80 EoS this occurs at a significantly higher density of 6 · 1014g/cm3, while
the minimum density of the MIT60 EoS is about 4.5 · 1014g/cm3 so still above nuclear
saturation density. One also recognizes that for the same density MIT60 has a higher
pressure (note the logarithmic scale). Moreover, in the case of strange quark matter,
except for a narrow range of densities close to this minimum density, the temperature
has only a minor influence on the pressure. This is due to the fact that strange quark
matter is forming a degenerate Fermi gas of ultra-relativistic particles.

Also for the nuclear EoSs thermal effects become more important the lower the density
is. At a density of 1014 g/cm3, so about one third of the nuclear saturation density, the
increase of the temperature from 0.1 MeV to 30 MeV leads to a pressure increase of about
one order of magnitude. Comparing the two nuclear EoSs one finds that in general for
a given density the pressure of the LS EoS is lower than the one of the Shen EoS.

The consequences of these differences in the EoSs for the stellar structure can be
seen by solving the Tolman-Oppenheimer-Volkhoff equations, i.e. solving the general
relativistic equations for hydrostatic equilibrium (see e.g. [35]). As examples, in Fig. 3.2
the energy density profiles for stars with a gravitational mass of 1.3 M⊙ described by all
four EoSs of Fig. 3.1 are plotted. The most obvious feature is the steep density fall-off
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Figure 3.2.: Energy density profile of NSs and SSs with a gravitational mass of 1.3M⊙ for
the Shen, the LS, the MIT60 and the MIT80 EoSs. The radius is given in Schwarzschild
coordinates. Also the density profile of a strangelet described by the MIT60 EoS is
sketched. For comparison, the nuclear saturation density of about 2.7 · 1014g/cm3 is
indicated, too.

at the surface of the SSs, which can already be guessed from Fig. 3.1. As the pressure
drops to zero towards the surface of the star, the density remains at a value well above
nuclear density. In this diagram also the density profile of a strangelet for the MIT60
EOSs is indicated, which shares the sharp density-edge of the SSs. Furthermore, the
stars with EoSs that have a lower pressure for a given density (LS and MIT80) have
a steeper density gradient and the stars are more compact. Note that the structure of
the outer crust of the NSs with a thickness of some 100 m is hardly visible in this plot
because of the linear density scale.

From multiple solutions of the stellar structure equations one obtains the mass-radius
relations for bare SSs and for NSs where equilibrium with respect to weak interactions
and zero temperature is assumed. Figure 3.3 shows the corresponding results with M
referring to the gravitational mass (ADM mass) in isolation and R being the radius in
Schwarzschild coordinates. First of all, one recognizes the typical inverse mass-radius
relation for the NS models, which is much different from that of SSs. The maximum mass
of MIT60 and MIT80 is 1.88M⊙ and 1.64M⊙, respectively. Remarkably, the maximum
mass of LS is 1.83M⊙, thus comparable to the one of MIT60, while the Shen EoS
supports stars with masses up to 2.24M⊙. More massive non-rotating objects collapse
to BHs. Note that the inclusion of rotation increases these maximum masses because
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Figure 3.3.: The stable branches of the mass-radius relations for compact stars with the
MIT60, MIT80, LS and Shen EoS. M refers to the gravitational mass in isolation and
R is the radius in Schwarzschild coordinates. The black curves display the mass-radius
relations for T = 0 whereas the red curves show them for isentropic stars with an entropy
per nucleon of 1.1 kB for the Shen EoS (right curve) and 1.5 kB for the LS EoS (left
curve). For the strange quark matter EoSs the differences due to thermal effects are
significantly less than one percent even for the chosen entropy of 3.2 kB in the cases of
the MIT60 EoS and 3.1 kB for the MIT80 EoS.

of the additional centrifugal forces. Rigidly rotating stars more massive than these
maximum non-rotating objects are called supermassive, while differential rotation, which
increases the maximum mass further in comparison to uniform rotation, allows for so-
called hypermassive stars exceeding the maximum mass of supermassive stars [14]. The
particular properties of the EoSs are reflected in the mass-radius relation as for instance
the radii of stars described by the LS EoS are smaller than the one of the Shen EoS.
As mentioned, in order to reach the same pressure the LS EoS needs a higher density
in comparison to the Shen EoS leading to more compact NSs, where the compactness
is defined as C = GM/c2R. In general, SSs are more compact than NSs, and MIT80
yields smaller stars than MIT60. Also this is evident from Fig. 3.1 because of the lower
pressure (except for a small density range where the pressure of the MIT60 EoS is
higher than the one of the LS EoS) and in addition the feature of a minimal density for
strange quark matter. In principle, the solutions for the SSs extend all the way down
to microscopic objects (strangelets) and the influence of gravity on the stellar structure
becomes gradually less important (Fig. 3.2). Neutron stars on the other hand have a
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minimal mass (see e.g. [16]).

In order to illustrate the effects of non-zero temperature, we also plot the mass-radius
relations for isentropic stars with non-zero entropy. The entropy is fixed by the value
obtained when matter at about three times nuclear saturation density is chosen to have
a temperature of 30 MeV, which are typical temperature and density values reached
during a binary merger. This corresponds to an entropy per baryon of 1.1 kB for the
Shen EoS and 1.5 kB for the LS EoS. The same criterion gives an entropy per baryon of
3.2 kB for the MIT60 EoS and 3.1 kB with the MIT80 EoS. One can see that thermal
effects increase the maximum mass of NSs only slightly. However, the influence on the
NS radius is bigger the smaller the masses. Especially at lower densities thermal effects
become important as mentioned above (Fig. 3.1). For lower masses the gravitational
attraction of the NS core is not compressing the low-density region as extreme as in
the high-mass case. Therefore, the low-density regime with its particular properties (see
Fig. 3.1) can contribute relatively more to the overall structure of the star. Remarkably,
using a non-zero temperature strange quark matter EoSs yields mass-radius curves that
are hardly distinguishable from those for T = 0, which is also understandable from
Fig. 3.1.

One should stress the fact that strange quark matter as a small nugget but also
as a SS is selfbound by QCD interactions (and a disintegration of the constituents is
energetically not favorable). As the pressure goes to zero the density at the surface of a
SS (or a small nugget of strange quark matter) adopts a value of the order of the nuclear
saturation density (see Fig. 3.1). It implies that this type of matter cannot become
arbitrarily dilute. This also means that for the binding of a SS gravity is not essential,
it only compresses the star additionally. In contrast, an ordinary NS is solely bound by
gravitation and would “explode” without the effect of gravity. Pictorially spoken, strange
quark matter behaves hydrodynamically like a liquid with surface tension. Neutron star
matter on the other hand can be considered as a gaseous.

3.4. Some comments on strange quark matter

As already discussed in the introduction, the strange matter hypothesis cannot be ruled
out by means of theoretical considerations or observational data. Details about this
discussion can be found in text books and review articles like [59, 66, 159, 160]. Non-
theless, we comment briefly on two aspects of the strange matter hypothesis, which at
first glance seem to contradict daily experience (for more information see also the above
references).

One might argue that if strange quark matter as absolute ground state of matter is
energetically favorable compared to ordinary nuclear matter, why ordinary nuclei do
not decay spontaneously into strange quark matter. However, in order to convert a
nucleus with baryon number A into strange quark matter, a simultaneous transforma-
tion of roughly A up and down quarks into strange quarks has to occur, because the
transformation of only one or a few quarks into a strange quark will yield a state which
is energetically higher. The probability for a simultaneous conversion to happen is ex-
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tremely low as it is described by the weak interaction coupling constant to the power of
A. Therefore, nuclei are metastable with a very long lifetime and a spontaneous conver-
sion will practically never occur. A transformation of nuclei with a low baryon number
is prohibited by finite-size effects of strange quark matter.

Thereafter, one might argue further that if there is already strange quark matter for
instance in form of a strangelet, this may enable the successive conversion of nuclear
matter when it comes into contact with strange quark matter. But as was already
argued by Witten in his original article [164], a nugget of strange quark matter will have
a surface positive charge. The electrostatic potential will repel ordinary nuclear matter
and therefore prevent it from joining the quark phase. And Witten is concluding that
“quark matter is in this respect no more dangerous than oxygen”. For these reasons the
presence of ordinary nuclei does not contradict the consequences of the strange matter
hypothesis. However, neutrons as free particles or as NS matter do not experience the
electrostatic repulsion and will be converted to strange quark matter immediately.
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4.1. General overview

The mergers of SSs fall into two categories similar to the case of NS coalescence. For
high total binary masses the remnant of the merging stars cannot be supported against
gravitational collapse and a BH forms shortly after the stars have come into contact.
The forthcoming appearance of a BH is indicated by a steep increase of the central
density exceeding more than twice the maximum central density of non-rotating SSs
accompanied by a steep decrease of the lapse function, both on a timescale smaller than
the sonic time scale. This can be seen in Fig. 4.1 (dotted line) for a symmetric binary
with two 1.8 M⊙ stars described by the MIT60 EoS. On the other hand, a merged object
with a sufficiently low total mass can be stabilized temporarily mainly by differential
rotation; a corresponding hypermassive object forms when the total mass exceeds the
maximum mass of supermassive stars [14]. This object will also collapse to a BH after
angular momentum redistribution.

For an overview of the simulated SS binary mass configurations and their outcome
see Fig. 6.2 in chapter 6. Filled circles indicate prompt collapse to a BH while open
circles correspond to the formation of a hypermassive object. M1 and M2 refer to the
gravitational masses of the SSs in isolation. The models of our simulations are chosen
such that they cover the whole potential mass range of compact star binaries. The
gravitational masses of the stars vary between 0.9 M⊙ and roughly the maximum SS
mass for each strange quark matter EoS (see Fig. 3.3). The simulations start after a
relaxation phase from a quasi-equilibrium orbit about two revolutions before the actual
merger.

Figure 4.2 shows the different stages of a SS merger, which finally leads to the forma-
tion of a hypermassive object. The stars have a mass of 1.2 M⊙ and 1.35 M⊙ and they
are described by the MIT60 EoS. The orbital period of the counterclockwise rotating bi-
nary shortly before the merger is of the order of 2 ms (upper left panel). Subsequent loss
of angular momentum and energy due to GW emission during the inspiral phase leads
to a shrinking orbit until the stars finally merge with a relatively big impact parame-
ter (upper right panel). An initially deformed but finally approximately axisymmetric
differentially rotating hypermassive object forms, which is stable for more than 10 ms
(lower panels) (for a discussion of the delay time τdelay to BH collapse see [124] and sec-
tion 5.4). After several revolutions of the merger remnant tidal arms form and matter
from the tips of these tails becomes gravitationally unbound and so contributes to the
cosmic ray flux of strangelets. The implications of this aspect will be discussed in chap-
ter 6 (see also [17]). Most of the matter in these spiral arms ends up in orbits around
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Figure 4.1.: Time evolution of the maximal rest-mass density (upper panel) and the
minimal lapse function (lower panel). Note that we added a time shift of -4.5 ms to the
1.2M⊙+1.35M⊙ model and of -6 ms to the others to avoid overlapping curves.

the remnant and forms a geometrically thin accretion disk (see Figs. 4.2 and 4.4).

One can also see that the matter that is not part of the hypermassive object forms
clumps, which is a consequence of the fact that strange quark matter is selfbound.
NS mergers instead form dense remnants surrounded by inflated halos with toroidal
structures and a smooth density distribution (see Figs. 4.3 and 4.4).

Since we want to discuss in this thesis how to discriminate between SS mergers and
NS mergers we will concentrate in the following on a selection of models for the LS
and MIT60 EoSs and consider general features to reveal fundamental differences. The
reason to focus on these two EoSs is that LS as nuclear EoS and MIT60 as strange quark
matter EoS are very similar at densities around 1015 g/cm3 and lead to compact stars
with similar radii for M & 1.5 M⊙ (see Figs. 3.1 and 3.3). The Shen EoS and the MIT80
EoS exhibit bigger differences and therefore one expects that the distinguishing features
are more pronounced. In total, we have computed more then 70 models and discuss in
more detail 6 simulations of the 9 listed with their properties in Table 4.1. The choice of
three of these binary configurations is motivated by the fact that population synthesis
studies [19] predict a “mean” binary with a total mass of about 2.7 M⊙ and a mass ratio
close to unity, which is consistent with the masses of the well measured compact star
binaries [150]. In addition, we include asymmetric systems with 1.2 M⊙ and 1.35 M⊙ to
investigate the effects of mass ratios unequal to unity. We choose relatively low masses
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EoS M1 M2 fmax fpeak fgap

[M⊙] [M⊙] [kHz] [kHz] [kHz]
LS 1.2 1.35 1.57 (1.53) 3.04 (3.16) 2.34
MIT60 1.2 1.35 1.80 (1.74) 3.14 (3.01) 2.59
Shen 1.2 1.35 1.28 2.04 1.67
LS 1.35 1.35 1.75 (1.83) 3.22 (3.52) 2.76
MIT60 1.35 1.35 1.92 (1.98) 3.45 (3.37) 2.69
Shen 1.35 1.35 1.42 2.22 1.94
LS 1.8 1.8 2.16 - -
MIT60 1.8 1.8 2.20 - -
Shen 1.8 1.8 1.62 - -

EoS M1 M2 τdelay Mtorus Mejecta Tmax

[M⊙] [M⊙] [ms] [M⊙] [M⊙] [MeV]
LS 1.2 1.35 >13.1 0.14 (0.19) 0.008 93
MIT60 1.2 1.35 >17.0 0.08 (0.14) 0.004 57
Shen 1.2 1.35 >22.0 0.15 0.015 63
LS 1.35 1.35 >12.0 0.04 (0.05) 0.002 104
MIT60 1.35 1.35 4.37 (>16.4) ∼0.09 (0.07) 0.001 65
Shen 1.35 1.35 >18.1 0.1 0.003 71
LS 1.8 1.8 0.42 < 10−5 0.0001 270
MIT60 1.8 1.8 0.48 < 10−5 < 10−5 87
Shen 1.8 1.8 0.90 0.004 0.0002 221

Table 4.1.: Models that are discussed in the text. M1 and M2 refer to the individual
gravitational masses in isolation of the two components of the binary. fmax, fpeak and
fgap are characteristic frequencies of the GW signal (see text for definitions). τdelay is
the delay time between the merging and the formation of a BH. Note that in the cases
where the BH collapse does not occur during the simulation, we give a lower limit for
τdelay, this value is determined by the finite simulation time and may differ significantly
from the true value (see [124]). Mtorus and Mejecta are the torus and ejecta masses at
the end of the simulations. Note that the torus masses of models LS 1.35M⊙+1.35M⊙

and Shen 1.35M⊙+1.35M⊙ are still increasing at the end of the simulations. In the
cases we find a vanishing torus mass or ejecta mass we provide the upper bound of this
quantity given by the mass resolution of our simulations. Tmax denotes the maximal
temperature reached during the evolution. For the 1.8M⊙+1.8M⊙ configurations the
presented temperatures are given by the last dump step during the simulations. The
actual maximal temperatures during the merging process shortly before the horizon
formation are expected to be higher. Table entries in parentheses correspond to models
where zero temperature was imposed.
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Figure 4.2.: Evolution of the rest-mass density in the orbital plane of a merging SS binary
with 1.2 M⊙ and 1.35 M⊙ components for the MIT60 EoS. The plots were created with
the visualization tool SPLASH [121].

because only in these cases hypermassive objects can form. Finally, we consider a binary
configuration in which the two components have approximately the same radius for the
LS and MIT60 EoSs, i.e. we take the stellar masses to be close to the maximum mass
for the LS and MIT60 EoSs (see Fig. 3.3). We will discuss for these models the general
dynamics and outcome of the merging phase, the ejecta and torus masses, the influence
of thermal effects, and in chapter 5 the features of the GW signals. In particular in the
cases where a hypermassive object forms, the GW emission from the postmerger phase
yields characteristic information about the EoS of matter at very high densities.

In Table 4.1 we also list results for the Shen EoS without discussing these models in
much detail, because the mergers described by this EoS behave qualitatively similar to
the ones with the LS EoS. The comparison between different EoSs of NS matter was
reported in [113]. We refrain from presenting results for the MIT80 EoS, because all
binary configurations considered in Table 4.1 promptly form a BH when computed with
the MIT80 EoS. However, we will address results with this EoS extensively in chapter 5.
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Figure 4.3.: Evolution of the rest-mass density in the orbital plane of a merging NS
binary with 1.2 M⊙ and 1.35 M⊙ components for the LS EoS. Note the logarithmic
scale of the rest-mass density in contrast to Fig. 4.2. The plots were created with the
visualization tool SPLASH [121].

4.2. Binaries with 1.2 M⊙ and 1.35 M⊙

The two 1.2M⊙+1.35M⊙ binaries with the LS and MIT60 EoS both form hypermassive
objects. The general dynamics of the SS model were described above. Figure 4.3 shows
several stages during the merging of the NS binary to be compared with Fig 4.2. Dif-
ferent from the SS case, the less massive star is stretched during the final stage of the
coalescence and directly forms a massive spiral arm (upper right panel), which means
that the lighter star is tidally disrupted during the merging. Continuous mass shed-
ding from this spiral arm feeds an extended torus-like halo around the remnant (lower
left panel). The quark stars in contrast, coalesce as entire stars without the prompt
formation of such a feature (see Fig. 4.5).

The structure of the surface layers of the merging stars and of their remnants is
fundamentally different. In the case of the LS EoS, matter is also squeezed out from the
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Figure 4.4.: SPH-particle distributions projected onto the x-z-plane perpendicular to
the equatorial plane. The left panel shows the SS merger remnant of a 1.2M⊙+1.35M⊙

binary described by the MIT60 EoS, the right panel the corresponding NS merger rem-
nant described by the LS EoS. Rest-mass densities are ascribed to the individual particles
and color-coded, but note that due to projection effects foreground particles dominate
the visible density structure in the core of the merger remnants. Note the logarithmic
scale of the rest-mass density for the NS merger remnant. The displayed times corre-
spond to the last panels in Fig. 4.2 and Fig. 4.3, respectively. The plots were created
with the visualization tool SPLASH [121].

contact layer, which does not happen for MIT60. Additionally, shortly after the first
contact matter streams off from the whole surface of the remnant and fills the diffuse
halo (Fig. 4.4).

In contrast, during the complete merging process of the SSs first the stars then the
merged object retain their sharp boundary, no matter is spread into the surroundings.
Recall the liquid-like behavior of strange quark matter. Only relatively late after about
two revolutions gas is stripped off from the remnant due to the formation of two filigree
but very dense spiral arms. This process is constrained to the close vicinity of the
equatorial plane (see Fig. 4.4) and subsequent fragmentation leads to a disk consisting
of clumps of strange quark matter orbiting the compact remnant. Only a small amount
of matter from the tips of the tidal tails can escape from the merger site. Remarkably,
we find a gap between the merger remnant and the disk-like structure (which due to
the projection of the particle positions onto the x-z plane is not visible in Fig. 4.4).
To our knowledge such a distinct feature is unique to SS mergers. The differences of
the coalescence and the evolution of the merger remnant can be understood by means
of the higher compactness and self-binding of strange quark matter. We suspect that
the reason for the gap is the occurrence of an ISCO outside the surface of the central
remnant. An ISCO larger than the stellar radius is known as generic for slowly as well as
rapidly uniformly rotating SSs, in particular for supermassive configurations [151, 166].
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Therefore, we expect that this holds also for hypermassive differentially rotating objects.
Note that the omission of a possible nuclear crust of the SSs does not change this picture
because the crust would contain only very little mass. A halo fed by this material would
be much more dilute than the one in the NS case.

In addition, with the LS EoS the central lapse function decreases during the ringdown
of the hypermassive object, while with MIT60 it reaches quickly a nearly constant value
as can be seen in Fig. 4.1. This behavior is compatible with the central density, which
increases for the remnant consisting of nuclear matter described by the LS EoS (see
Fig. 4.1).

Two quantities can be extracted from our simulations for characterizing the mass
shedding during the merging: One is the amount of matter that becomes gravitationally
unbound, the other is the mass of a torus that will remain after the remnant has collapsed
to a BH. The determination of these two quantities is described in [113] (a short summary
of the ejecta criterion will be given in chapter 6). Both quantities have direct physical
relevance because the ejecta mass is important for nucleosynthesis contributions from NS
mergers and for strangelet injection to cosmic rays in the case of SS mergers as discussed
in chapter 6 and in [17]. On the other hand, the torus is a potential energy reservoir
for powering gamma-ray bursts. The implications of a strange quark matter disk or
torus for explaining gamma-ray bursts has not been explored yet. A discussion of this
question is beyond the scope of the present paper because it requires an understanding
of the neutrino cooling and viscous evolution of the strange quark matter disk.

We find a torus mass of 0.14 M⊙ for LS and 0.08 M⊙ for MIT60 (see Table 4.1).
The differences can be understood by the different dynamical behavior of the merging
stars, where tidal disruption favors the formation of a more massive torus. For a detailed
discussion of the torus masses and their dependence on the NS merger dynamics we refer
the reader to [109]. To clarify this point we show the evolution of the torus mass for both
EoSs in Fig. 4.5. As one can see by the arrows indicating the merging time (defined as
the moment when the GW amplitude becomes maximal), the rapid increase for the LS
EoS is due to the tidal disruption of the lighter star (compare with Fig. 4.3). In contrast,
the torus mass of the quark star remnant increases relatively late in the evolution by
redistribution of angular momentum to the outer parts of the remnant (compare with
Fig. 4.2).

The ejecta masses are 0.008 M⊙ for LS and 0.004 M⊙ for MIT60 (Table 4.1). The
smaller values in the latter case can be explained as a consequence of the different
dynamical behavior due to the higher compactness and the self-binding of the SSs, also
impeding the ejection of strange quark matter from the contact layer. This is confirmed
by Fig. 4.6 showing the time evolution of the ejecta masses. While during the NS merging
matter becomes unbound shortly after the first contact (compare with Fig. 4.3), in the
SS case the ejecta mass starts growing only about 2 ms after the plunge when the spiral
arms form (Figs. 4.2 and 4.5). Note that not all SPH particles that formally fulfill the
ejecta criterion (dashed black curve in Fig. 4.6) are finally able to escape to infinity
because they interact with other particles. Here again the “stickiness” of strange quark
matter as self-bound fluid manifests itself. By applying an additional distance criterion
we estimate the true amount of ejecta (solid black curve in Fig. 4.6)
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Figure 4.5.: Time evolution of the amount of matter fulfilling the torus criterion for the
1.2M⊙+1.35M⊙ binary mergers with the MIT60 EoS (black) and LS EoS (red). The
time labels of Figs. 4.2 and 4.3 correspond to the time measurement on the horizontal
axis. The arrows mark the merging time defined as the moment when the GW amplitude
becomes maximal (black for the MIT60 EoS; red for the LS EoS).

4.3. Binaries with 1.35 M⊙ and 1.35 M⊙

The merging of two stars with 1.35 M⊙ and 1.35 M⊙ proceeds differently from the
asymmetric case for the nuclear LS EoS. In contrast, in the case of quark-star binaries
the merging of symmetric and asymmetric systems is similar, i.e. the stars collide as
whole objects with only slight deformations (no tidal disruption). Since the stars possess
the same mass, the coalescence and remnant dynamics are symmetric with respect to
the two stars. A double-core structure forms and the cores oscillate against each other
until the remnant settles to an axisymmetric hypermassive object. However, after about
5 revolutions and several bounces of the two high-density cores, the SS merger remnant
collapses to a BH. The time τdelay between the plunge (time when the GW amplitude
becomes maximal) and the collapse is 4.37 ms. The formation of spiral arms begins after
about 2.5 revolutions and ends shortly before the collapse.

Again the way matter is shed off from the merged object is remarkably different. While
in the SS case prominent, fine spiral arms develop that are constrained to the vicinity
of the equatorial plane, in the NS merger case matter is stripped from the whole surface
of the remnant. The spiral arms of the SS merger remnant appear again relatively late
and only via these tidal tails matter is carried away from the merger remnant before the
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Figure 4.6.: Time evolution of the ejecta masses for the 1.2M⊙+1.35M⊙ binary mergers
with the MIT60 EoS (black) and LS EoS (red). The time labels of Figs. 4.2 and 4.3
correspond to the time measurement on the horizontal axis. In the case of the SS merger
some SPH particles fulfill the ejecta criterion without being able to leave the merger site.
The dashed line gives the total amount of matter fulfilling formally the ejecta condition.
The amount of strange quark matter that finally escapes from the merger site is shown
by the solid line, where we apply as additional criterion that the SPH particles have a
distance of more than 370 km from the remnant. The arrows mark the merging time
defined as the moment when the GW amplitude becomes maximal (black for the MIT60
EoS, red for the LS EoS).

latter collapses to a BH. In contrast, the merging NS binary does not develop clearly
visible spiral arms.

The estimated torus and ejecta masses are given in Table 4.1. The torus mass with
the LS EoS is significantly lower (0.04 M⊙) than the torus mass with the MIT60 EoS,
but it is still increasing at the end of the simulation. The torus mass of the SS merger
is not reliable because the collapse to a BH occurs in a phase where stationarity has not
been achieved. The value should be considered only as a rough estimate.

The amount of matter that becomes gravitationally unbound from the merger site is
0.002 M⊙ for the NS coalescence and 0.001 M⊙ in the case of the SS binary. The differ-
ences are plausible in view of the higher compactness of SSs and the special properties of
strange quark matter, where additional energy is required to overcome the self-binding.
In comparison to the asymmetric binary configurations discussed above, the torus masses
as well as the ejecta masses are lower for symmetric mergers.
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4.4. Binaries with 1.8 M⊙ and 1.8 M⊙

The last binary configuration that we include in this detailed discussion consists of two
stars with the same gravitational mass of 1.8 M⊙ and the same radius for both EoSs
(about 10.5 km). Both merging binaries collapse promptly into a BH after the stars
have come into contact (see Fig. 4.1 for the model with the MIT60 EoS). The delay
times for that to happen are of the order of half a millisecond (Table 4.1). The stars
approach each other symmetrically and they become only slightly deformed before they
touch. Note the central decompression phase as reaction to the tidal fields during the
merging shortly before the central density increases rapidly (shown for the MIT60 EoS
in Fig. 4.1). Also if we cannot follow the complete collapse to a BH, we are able to
give an estimate of the torus masses (see [113]). For both EoSs we find a vanishing
torus mass. This agreement is reasonable because the mass and radius of the compact
objects with both EoSs are the same and the stars are only slightly deformed prior to
the collapse. With the LS EoS we find about 0.0001 M⊙ that fulfill the criterion for
gravitationally unbound matter, but we stress that this number is very uncertain. These
ejecta originate from the contact layer between the two stars. In contrast, we do not
find any ejecta for MIT60 as during a SS coalescence no matter is squeezed out from
the region between the stars. Strange matter becomes only unbound from the tips of
tidal tails that form only after several revolutions of the merger remnant. In the case of
a prompt collapse, however, this origin is excluded.

4.5. Thermal effects

It is known that thermal effects play a role during the merging and postmerging evo-
lution of binary NSs [113]. To which extent this is true in the case of SSs is a priori
not clear because of the different properties of strange quark matter in comparison to
NS matter (see Fig. 3.1). Temperature effects clearly become important in the contact
layer of the colliding stars, where compression is extreme and shocks occur. Because of
the differential rotation the hot sheared matter is spread over the entire star forming an
inhomogeneous temperature distribution in the remnant. For the MIT60 EoS the max-
imum temperature reached during the merging of the binary with 1.2 M⊙ and 1.35 M⊙

stars is about 57 MeV, while the symmetric binary with two stars of 1.35 reaches a max-
imum temperature of about 65 MeV. In comparison, NS mergers described by the LS
EoS yield maximum temperatures of about 93 MeV and 104 MeV for the same binary
configurations. For both kinds of matter the highest temperatures are obtained shortly
after the first contact of the stars, when the maximal densities peak for the first time
(see Fig. 4.1 and Fig. A.3). The higher values in the models with the LS EoS can be
understood by the shock heating and the compression of low density material from the
surfaces of the initial stars. The surface layers of SSs have already initially supernuclear
densities and therefore their relative compression is much smaller.

In order to check the influence of non-zero temperatures we performed simulations
setting T = 0 for the 1.2M⊙+1.35M⊙ binaries and the 1.35M⊙+1.35M⊙ binaries. This
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Figure 4.7.: Rest-mass density perpendicular to the orbital plane of a merging NS binary
with 1.2 M⊙ and 1.35 M⊙ components for the LS EoS. The left panel shows the results
of a simulation where a zero temperature constraint was imposed. The right panel gives
the rest-mass density of a simulation including thermal effects and corresponds to the
lower right panel in Fig. 4.3 and the right panel in Fig. 4.4. The plots were created with
the visualization tool SPLASH [121].

choice corresponds to the extreme and unrealistic case of a perfectly efficient cooling
that carries away all thermal energy instantaneously. A similar approach was chosen in
[10] with a polytropic EoS, because effectively, the use of P = κρΓ with κ,Γ = const
implies the same physical assumption (“isentropic case”), which was compared to results
obtained with an EoS of the type P = ρǫ including thermal effects (“ideal-fluid case”).
In reference [10] it was reported that due to the larger pressure support in the ideal-fluid
case non-zero temperature leads to a later BH formation than the isentropic treatment.
Moreover they found remarkable differences of the remaining tori after the BH collapse
had occurred. In particular, in the cases of neglected thermal effects the tori were
flat, disk-like structures, whereas the mergers described by an ideal-fluid EoS produced
inflated tori. For NS models these findings are confirmed by our simulations as displayed
in Fig. 4.7 showing the rest-mass density in the x-z-plane perpendicular to the orbital
plane for the 1.2M⊙+1.35M⊙ merger remnant with the LS EoS. In the left panel T = 0
was imposed, leading to a much smaller vertical extension of the outer remnant parts.
Note also that the density in the disk in the equatorial plane is higher by one order
of magnitude compared to the density in the “hot” torus (right panel). This leads to
the conclusion that the additional pressure support by thermal effects is essential for
the structure of the remnant. We find about 30% higher torus masses in our T = 0
simulation with the LS EoS. We attribute this finding at least partially to the decrease
of the gravitational mass due to “cooling losses”, which is about 0.035 M⊙ for this
configuration. Lowering artificially the gravitational mass in our torus criterion by this
amount of matter increases the estimate for the torus mass in our model with thermal
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effects. Qualitatively the same behavior is found for the 1.35M⊙+1.35M⊙ binary with
an increase of the torus mass of about 30% in the T = 0 simulation compared to the
T 6= 0 case.

Another interesting effect of the perfectly efficient cooling can be seen in the simulation
of the binary with two 1.35 M⊙ SSs for the MIT60 EoS. As described above, the merger
remnant of this configuration collapses to a BH after τdelay ∼4 ms. Choosing the same
binary setup and the same EoS but imposing the zero temperature constraint during
the evolution, the collapse does not occur within the simulation. The high sensitivity
of τdelay on the total mass of the system (see also [124]) suggests that this finding can
be explained by the lower gravitational mass of the “cold” model. The difference in
the gravitational mass is about 0.06 M⊙ when the remnant of the “warm” simulation
collapses. Thus, in contrast to NS mergers, where a longer delay timescale for the BH
formation was obtained when thermal effects were included [10], we see the opposite
effect in simulations with strange quark matter. This can be understood from the fact
that thermal energy adds significantly to the gravitational mass, but hardly affects the
pressure and the structure of SSs and their merger remnant (see Fig. 3.3), because the
objects are so dense that typical temperatures do not have a big impact (see Fig. 3.1).

These conclusions are confirmed by the structure of the hot merger remnants described
by the MIT60 EoS. The hypermassive object of the 1.2M⊙+1.35M⊙ model (see Fig. 4.2
and left panel of Fig. 4.4) looks very similar to the cold one (not shown) and qualitatively
similar to the resulting structure of the zero temperature remnants with the nuclear LS
EoS (left panel of Fig. 4.7). The central cores of the “cold” and the “warm” SS merger
remnant both have an equatorial diameter of about 20 km and a vertical diameter of
about 10 km, which is in accordance with Fig. 3.3, where warm strange quark matter
hardly changes the mass-radius relation of SSs. Both mergers end up with a vertically
flat disk structure similar to what is found for models of NS coalescence with thermal
effects neglected (left panel of Fig. 4.7). As in the NS merger simulations the estimated
torus masses are higher for the zero temperature simulations of merging SS (about 100%
for the 1.2M⊙+1.35M⊙ model; the comparison for the 1.35M⊙+1.35M⊙ model is not
meaningful because of the uncertainties associated with the early collapse of the “warm”
model).

A further discussion of thermal effects in NS mergers will be presented in appendix A.
In particular the viability of an approximate treatment of thermal effects will be ana-
lyzed, which is not necessary to use for the EoSs employed in this study, because they
provide the full temperature dependence.
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5.1. Characteristic features

In Fig. 5.1 and Fig. 5.3 the GW amplitudes of the plus polarization for SS mergers
(upper panels) and for NS mergers (lower panels) are shown as measured perpendicular
to the orbital plane at a distance of 20 Mpc. The signals were computed for the models
discussed in detail in chapter 4, thus for mergers of binaries with 1.2 M⊙ and 1.35 M⊙

stars and for mergers of 1.35M⊙+1.35M⊙ binaries, both with the MIT60 EoS and the
LS EoS. They can be considered as typical of the cases when a hypermassive object
forms. When the collapse to a BH sets in, our simulation needs to be stopped and the
GW signal cannot be tracked to its completion. However, simulations of NS mergers
that can follow the formation of the BH reveal that the wave signal is strongly damped
in comparison to the hypermassive object case. The only remaining signature after the
collapse is associated with the ringdown of the BH, which is fundamentally different, i.e.
it has higher frequencies, lower amplitudes and shorter damping times [10, 141].

The waveforms in Figs. 5.1 and 5.3 are extracted by an expression of the quadrupole
formula that takes into account post-Newtonian effects [23].

The inspiral phase showing an increase of the frequency and of the amplitude can be
clearly identified. Its basic signal properties can be easily understood by an analytical
model of orbiting point masses. The corresponding wave train of the cross polarization
looks similar but is phase-shifted by π/2. A characteristic quantity that can be extracted
from the inspiral phase is the maximum frequency at the end of this stage just before
the merging of the two compact stars. More precisely, we define fmax as the frequency
at the moment when the amplitude becomes maximal. Note that we shift the time axis
to match t = 0 at this point.

The final plunge produces a rather complicated wave pattern. After it has taken
place, one can see a quasi-periodic signal from the ringdown of the postmerger remnant.
This oscillation is reflected in the luminosity spectra. In Figs. 5.2 and 5.4 we show the
direction and polarization averaged luminosity spectra dEGW/df = 2π2D2f 2〈|h̃+|

2 +
|h̃×|

2〉 as computed from the Fourier transformed waveforms h̃ for both polarizations.
The very pronounced peak (or even multiple peaks) corresponds to the ringdown of
the postmerger remnant. This peak is located at a frequency fpeak. Together with the
maximum frequency during inspiral we now have at hand two characteristic features
of the GW emission of compact object mergers. For a discussion and introduction
of these quantities in the context of NS mergers, see [110], where also the prospects
of a detection and determination of these characteristics by GW detectors is briefly
addressed. Here we will explore to what extent these features can serve to distinguish
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Figure 5.1.: GW amplitudes for the plus polarization measured perpendicular to the
orbital plane at a distance of 20 Mpc for binary mergers with M1 = 1.2 M⊙ and M2 =
1.35 M⊙, using the MIT60 EoS (upper panel) and the LS EoS (lower panel).

NS mergers from SS mergers. It should be mentioned that the low-frequency part of our
spectra (. 1 kHz) is not reliable because our simulations start only a few orbits before
the plunge and therefore power in the low-frequency domain from the preceding inspiral
phase is missing. In the Newtonian limit the shape of the GW energy spectrum for the
inspiral phase is given by a f−1/3 power law.

Comparing the results for the binary with the 1.2 M⊙ and 1.35 M⊙ components one
finds that the maximal frequencies fmax that are reached during the inspiral are 1.80
kHz for MIT60 and 1.57 kHz for LS (Fig. 5.1). The lower value of the NS model appears
reasonable considering the lower compactness of the initial stars compared to the quark
stars. The ringdown signal after the merging decays more slowly for the nuclear EoS
(Fig. 5.1). We attribute this to the higher asymmetry of the merger remnant caused by
the tidal disruption and suspect that the persistent oscillations may be supplied by the
continued contraction of the remnant (Fig. 4.1). Note also that the amplitude shortly
after the merging is higher for the SS merger and one can clearly recognize a persistent
modulation of the signal. The origin of this low-frequency feature is unclear to us and
should be examined by a mode analysis of the postmerger remnant.

The spectra look qualitatively similar and in particular the peak frequencies of the
postmerger ringdown are very close, both about 3 kHz (3.04 kHz for the NS binary and
3.14 kHz for the SS binary). A remarkable difference is the pronounced gap below the
peak frequency in the spectrum of the case with the LS EoS. Also the reason for this
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Figure 5.2.: Direction and polarization averaged GW luminosity spectra for binaries with
M1 = 1.2 M⊙ and M2 = 1.35 M⊙ in the case of the MIT60 EoS (black) and the LS EoS
(red).

feature should be investigated in detail by a mode analysis. In general, a more detailed
analysis of the spectra should reveal some more, less obvious differences. However,
this would require a detailed understanding of the mode excitation during the merging,
which is beyond the scope of this work. It is also questionable whether such secondary
differences can be of observational relevance for detectors available in the near future.

In the case of symmetric configurations with two 1.35 M⊙ stars the maximal frequen-
cies during inspiral are 1.92 kHz for MIT60 and 1.75 kHz for the nuclear LS EoS, and as
before the GW amplitude shortly after the merging is higher for the MIT60 EoS, while
the signal for the LS EoS is weaker but decreases more slowly (Fig. 5.3). A low-frequency
modulation of the SS merger signal occurs similar to the waveform found for the asym-
metric SS binary. As mentioned above, the merger remnant for MIT60 collapses after
some revolutions and so the signal stops. Nevertheless, the GW spectrum for the SS
merger exhibits more power at high frequencies than the NS merger emission and as
in the asymmetric case the peak frequency of the SS merger is slightly higher. Again
one recognizes a deep trough in the spectrum of the model with the LS EoS. Although
present in all of our models with the LS EoS, it is unclear whether this is a universal
feature and if it can be used to distinguish SS mergers from NS mergers in general (for
the simulations employing the Shen EoS we also find a pronounced gap feature in the
spectra except for two binary configurations; mergers described by the MIT80 EoS only
form hypermassive remnants for Mtot ≤ 2.35 M⊙).

57



5. Gravitational waves

−5

0

5

x 10
−22

h +
 a

t 2
0 

M
pc

−4 −2 0 2 4 6 8

−5

0

5

x 10
−22

t [ms]

h +
 a

t 2
0 

M
pc

MIT60

LS

ringdown

ringdown

f
max

f
max

Figure 5.3.: GW amplitudes for the plus polarization measured perpendicular to the
orbital plane at a distance of 20 Mpc for binary mergers with M1 = 1.35 M⊙ and
M2 = 1.35 M⊙, using the MIT60 EoS (upper panel) and the LS EoS (lower panel).

Since the binaries containing two stars with 1.8 M⊙ collapse promptly to BHs for both
EoSs, one can only consider the maximal inspiral frequency as characteristic quantity.
For the LS EoS one finds fmax = 2.16 kHz, while for the SS binary the maximal frequency
is 2.20 kHz. Since the stars of this binary setup have the same radius for both EoSs,
the similarity of these values is not unexpected. In [123] it was suggested that the mass-
radius relation and thus the EoS of compact stars can be determined from deviations
of the GW signal from the point-particle behavior. However, this proposal relies on
the close relation between the signal properties and just the stellar radius as the crucial
stellar parameter, and neglects the potential influence of a different inner structure of
compact stars with the same mass and radius. The same values of fmax, one of the most
remarkable features of the inspiral phase of our 1.8M⊙+1.8M⊙ models, confirms that
the inner structure has indeed a minor influence even on the dynamics of the late stages
of the inspiral phase. Also in our study we find that the mass-radius relation is the EoS
property that most sensitively determines fmax, because for a NS merger with the stiffer
Shen EoS, where a 1.8 M⊙ NS has a 5 km bigger radius, we obtain fmax = 1.62 kHz. On
the other hand, a disadvantage of the insensitivity to the inner structure may be that
it requires several “radius measurements” to constrain the EoS, because one detection
may not provide unambiguous information about the EoS.
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Figure 5.4.: Direction and polarization averaged GW luminosity spectra for binaries with
M1 = 1.35 M⊙ and M2 = 1.35 M⊙ in the case of the MIT60 EoS (black) and the LS
EoS (red).

5.2. Binary parameter dependence

Figures 5.5, 5.6, 5.8 and 5.9 present in overview the characteristic frequencies for all
models that we computed with the MIT60 and MIT80 EoSs. The results are displayed
in dependence of the total binary mass Mtot = M1 + M2 and of the mass ratio q =
M1/M2. Note that the peak frequency of the postmerger ringdown is given only for the
configurations that form a hypermassive object.

For the maximum frequency of the inspiral we find a monotonic, but not exclusive,
dependence on the total mass of the binary as shown in Figs. 5.5 and 5.6. This trend
is also present when considering fmax as a function of the compactness of the initial
stars as given for all symmetric configurations in Fig. 5.7. The more compact the stars
are, the higher frequency is reached during the inspiral. Remarkably, fmax seems to
follow an approximately linear function independent of the EoS. This confirms that the
inner structure has a small effect on the inspiral phase. Only the relatively massive
configurations describe a kink that deviates from the nearly linear behavior. The mass
ratio also seems to have an influence, because in Figs. 5.5 and 5.6 fmax slightly decreases
for lower values of q. Qualitatively the same result was found for the mergers of NSs (see
[110]). Our findings for the maximum GW frequency for the inspiral phase of SSs are also
in agreement with [60], where symmetric binaries were considered in a hydrostationary
approach and a similar behavior was seen.
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Figure 5.5.: Maximal frequency during inspiral color-coded in kHz as a function of the
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Figure 5.7.: Maximal frequencies during the inspiral phase as a function of the compact-
ness of the initial stars for all configurations with a mass ratio of q = 1 and all EoSs
used in this study. The compactness is defined as the gravitational mass of a single star
in isolation divided by its radius in Schwarzschild coordinates.

61



5. Gravitational waves

q

M
tot

 [M
sun

]

MIT60

 

 

1.8 2 2.2 2.4 2.6
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

Figure 5.8.: Peak frequency of the postmerger ringdown color-coded in kHz as a function
of the total binary mass Mtot and of the mass ratio q for binary mergers with the MIT60
EoS.

q

M
tot

 [M
sun

]

 

 

2 2.1 2.2 2.3
0.75

0.8

0.85

0.9

0.95

1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

MIT80

Figure 5.9.: Peak frequency of the postmerger ringdown color-coded in kHz as a function
of the total binary mass Mtot and of the mass ratio q for binary mergers with the MIT80
EoS.

62



5.2. Binary parameter dependence

0.1 0.2 0.3 0.4 0.5 0.6
2

2.5

3

3.5

4

compactness

f pe
ak

 [k
H

z]

 

 

MIT60

MIT80

Shen

LS

Figure 5.10.: Peak frequencies of the postmerger ringdown as a function of the remnant
compactness for all EoSs considered in this study. While the surface of SS merger
remnants can be clearly determined, we define the size of NS merger remnants arbitrarily
by the isodensity surface with ρ = 1012 g/cm3. The mass of the remnant is approximated
by the total mass Mtot = M1 + M2. The compactness is then given as Mtot divided
by the remnant radius in the equatorial plane in isotropic coordinates at the end of
the simulation when an axisymmetric hypermassive object has formed. Note that the
differentially rotating remnant is highly deformed with an axis ratio of 2:2:1. For each
EoS an approximately linear relation between fpeak and the compactness is obtained.
The outliers are relatively massive configurations, which collapse to a BH during the
simulation time.

Figures 5.8 and 5.9 reveal that for both EoSs the frequency of the postmerger peak
increases monotonically with the total mass of the system. We interpret this dependence
as a consequence of the growing compactness of the hypermassive remnant (see Fig. 5.10),
which is determined by the total system mass. The compactness in turn determines the
rotational period and the frequency of oscillations of the deformed object that produces
the GW signal. Corresponding results for NS mergers have been reported by the authors
of reference [110], whose findings are confirmed by our additional NS merger simulations.

In addition, one observes that the mass ratio hardly affects the value of fpeak. As
mentioned above, the dynamics of the postmerger remnant are determined by the total
mass of the single object that forms in the merger and is therefore nearly independent
of the binary mass ratio.

63



5. Gravitational waves

5.3. Equation of state dependence and thermal effects

Obviously, a comparison of the influence of the different EoSs for strange quark matter
and for ordinary nuclear matter is of great importance. Figure 5.11 compiles the charac-
teristic frequencies for the MIT60, MIT80, LS, and Shen models. The SS EoSs exhibit
the tendency of being located in the upper right part of the plot, while LS and Shen give
relatively low fmax between about 1.1 kHz and roughly 1.8 kHz for the maximum values.
One should keep in mind that we did not compute the same sample of binary config-
urations for all EoSs, because the different EoSs support differently high masses and
determine the system properties for which a hypermassive remnant forms and fpeak can
be extracted. However, a comparison of the same binary setup for all EoSs is possible
in the cases of the colored symbols in Fig. 5.11 (blue: 1.35M⊙+1.35M⊙ configuration;
red: 1.2M⊙+1.2M⊙ configuration) and the trends visible are compatible with the rest
of the data.

Again the diagram can be understood by means of the compactness of the merging
stars and postmerger remnants: the more compact the stars or the merger remnants are,
the higher are fmax and fpeak, respectively (see Figs. 5.7 and 5.10 and compare also with
Fig. 3.3). Remarkably, MIT60 and LS show an overlap of fmax and fpeak values, which
means that they can not be distinguished by a determination of these characteristic
frequencies in GW measurements.

In this context we refer to the discussion in chapter 6 (also summarized in [17]), which
predicts an enhanced observable flux of strangelets in cosmic rays if the strange matter
hypothesis was true and quark matter was described by an EoS similar to MIT60. In
contrast, if the properties of strange quark matter caused SSs to be as compact as those
obtained with the MIT80 EoS, this should be clearly visible in the high characteristic fre-
quencies of the GW signal. On the other hand, a nuclear EoS like the Shen EoS appears
to be distinguishable from strange quark matter because the MIT60 EoS represents a
lower limit with respect to the compactness of SSs.

The comparison of the GW signals from “cold” and “warm” simulations confirms
the findings of the previous chapter that the additional pressure support by non-zero
temperature effects is important for NS mergers, while for the SS models the change of
the gravitational mass in the zero temperature simulations is the most relevant aspect
(see Table 4.1). As one might expect, fmax is very similar because thermal effects do
not play a role during the inspiral. In fact, the variation remains below the relatively
large uncertainties of about 0.1 kHz for fmax that are connected with the numerical
determination of the merging time.

Comparing the ring-down signals, one finds that for the models with the LS EoS fpeak

is higher in the “cold” than in the “warm” simulations (Table 4.1). Figure 5.12 provides
the explanation of this result. It displays the mass enclosed by ellipsoidal surfaces
with varied distance from the center of the remnant. One can see that for the nuclear
LS EoS the “cold” remnant is more compact because of the missing pressure support.
Consequently, the peak frequencies are higher.

In contrast to the NS models, we find lower peak frequencies in the “cold” SS merger
simulations. As visible in Fig. 5.12, in the case of SSs the “cold” remnants are less

64



5.4. Occurrence of a prompt collapse

2 2.5 3 3.5 4
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

f
peak

 [kHz]

f m
ax

 [k
H

z]

 

 

MIT60

MIT80

Shen

LS

Figure 5.11.: Maximal frequencies during inspiral and peak frequencies of the ringdown
of the postmerger remnant for all configurations that form a hypermassive object. Re-
sults for all EoSs used in this study are plotted. The blue symbols correspond to the
binary configurations with two 1.35 M⊙ stars, the red ones mark the frequencies for
merger events of two stars with 1.2 M⊙. Note that there is no blue symbol for the
MIT80 EoS because the configuration with two 1.35 M⊙ stars leads to an immediate
BH formation. The compilation includes data from [110].

compact due to the lower gravitational mass, while the remnant size is essentially un-
altered since the thermal pressure support is not important for strange quark matter.
The reduced compactness explains the lower peak frequencies for SS merger simulations
with T = 0.

5.4. Occurrence of a prompt collapse

The occurrence of a prompt collapse might be another feature that can be used to discern
SSs from NSs. From GW measurements the so-called chirp mass and most probably the
individual masses of the binary components can be deduced, and therefore the total mass
and the mass ratio. In addition, by analyzing the power at higher frequencies it should
be possible to judge from a measurement whether a hypermassive postmerger remnant
or a BH formed. This idea has already been brought forward in [140]. Therefore we
checked how the mass limit for a prompt collapse depends on the EoS. For the sake of
clarity we consider only equal-mass binaries, but we expect the analysis to hold also for
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Figure 5.12.: Enclosed gravitational mass within an ellipsoid with the semiaxes a = x,
b = x and c = x/2 for the 1.2M⊙+1.35M⊙ binaries. Shown are results with the LS EoS
and the MIT60 EoS including (red curves) and neglecting (black curves) thermal effects.
Note that within general relativity the gravitational mass is only defined in isolation.
Here Mgrav denotes the enclosed contribution to the ADM mass, neglecting the extrinsic
curvature terms. Using the enclosed rest mass yields a similar result. The distance x is
given in isotropic coordinates.

asymmetric systems.
For the LS EoS the minimum total mass Mcollapse for configurations that undergo a

prompt collapse instead of forming a hypermassive object is between 2.8M⊙ and 2.9 M⊙.
The corresponding mass limit for the MIT60 EoS is slightly higher than 2.7 M⊙, but
below 2.8 M⊙. As mentioned above, the symmetric binary with Mtot = 2.7 M⊙ does not
collapse promptly but only ∼ 4 ms after the hypermassive object has formed. Therefore,
by this property a marginal discrimination of these two EoSs is possible. For MIT80
we find Mcollapse . 2.5 M⊙, which distinguishes this EoS clearly from the majority of
nuclear EoSs, because the LS EoS represents a fairly extreme case in terms of softness,
NS compactness and Mcollapse. The threshold mass for the Shen EoS is about 3.5 M⊙.
For asymmetric systems we refer to Fig. 6.2, which shows the borderline between binary
configurations that result in a prompt collapse and those that lead to the formation of
a hypermassive object.

The criterion discussed here can be considered as very simple and straightforward
in its application to observational data. This makes it attractive for an analysis of
merger signals and for the determination of basic constraints on the EoS. A drawback,
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Figure 5.13.: Delay time to BH collapse as a function of the total binary mass Mtot for
the MIT60 EoS and the MIT80 Eos.

however, may be the fact that GW measurements for a larger set of events will be needed
to constrain the mass limit for the direct BH formation. Alternatively, the delay time
between the plunge, defined as the time when the GW amplitude becomes maximal, and
the collapse, which ultimately occurs for every hypermassive object, will be discussed
as a source of information in [124]. For the models described in detail in chapter 4, we
report the delay times τdelay in Table 4.1 for the cases where the collapse occurs during
the simulation. Otherwise the time until the end of the simulation gives an lower limit
on τdelay, but the true value may be significantly larger. For the models where the BH
formation occurs within the simulation the delay times are displayed in Fig. 5.13. One
clear identifies an approximately exponential dependence of the delay time on the total
mass of the binary. Remarkably, both EoSs show the same slope in the semilogarithmic
diagram except for a kink in the data of the MIT60 EoS. The interpretation of this
behavior will be addressed in [124].

5.5. Gravitational-wave luminosity

As argued above it is not possible in all cases to distinguish NS mergers from SS mergers
by extracting relatively simple characteristic frequencies from a GW measurement. If
the mass-radius relations of compact stars were similar even only in the most relevant
range of stellar masses, the frequencies fmax and fpeak may be in the same range of
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Figure 5.14.: Ratios of the GW energy emitted by the postmerger remnant within 5 ms
after the coalescence to the energy radiated during the last 3 ms of the inspiral as a
function of the peak GW frequency of the postmerger remnant. Shown are results for
the binary configurations with 1.2 M⊙ and 1.2 M⊙ (left datapoints of each EoS cluster),
with 1.2 M⊙ and 1.35 M⊙ (central datapoints), and with 1.35 M⊙ and 1.35 M⊙ (right
datapoints) for the Shen, LS, and MIT60 EoS.

values for different EoSs. A more detailed analysis may yield additional discriminating
information but will also require a higher quality of the signal determination.

Besides the method of matched filtering, which requires the knowledge of the signal
searched for, analysis pipelines of GW detectors have the ability to measure excess
power in time-frequency domains [1, 2], which allows to search for unmodeled signals.
Ratios of frequency-integrated energies in the luminosity spectrum, for example, can
be considered as signal characteristics that can be extracted from the observational
data without knowing the signals in detail. For instance one could consider the ratio
between the energy ∆Epm radiated away by the postmerger remnant within the first 5 ms
after merging and the energy ∆Ein emitted in the last 3 ms of the inspiral before the
coalescence. The time of merging is defined as the time when the GW amplitude becomes
maximal. This quantity was introduced for characterizing binary NS merger GW signals
in [110]. The energies can be determined either by an integral over the luminosity
spectrum or more easily by a time integral over the luminosity given directly by the
quadrupole evolution dE/dt = 1/5〈

...
Qij

...
Qij〉. Both ways of evaluation yield quantitative

agreement within 20% when applied to the results of our numerical simulations. For
simplicity we consider the latter expression.
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Figure 5.14 shows the ratio of ∆Epm to ∆Ein as a function of the peak frequency fpeak

of the postmerger ringdown for all possible binary configurations of stars with 1.2 M⊙

and 1.35 M⊙, and for the EoSs of Shen, LS and MIT60. Note that fpeak increases with
the total mass of the system as shown in Figs. 5.8 and 5.9, allowing for an unambiguous
identification of the three configurations in this plot (the least massive binaries are
located to the left of the EoS-clusters of datapoints). Clearly one can see that the ratio
∆Epm/∆Ein is a valuable measure to discriminate NS mergers described by the LS EoS
from SS mergers with the MIT60 EoS. One may suspect such differences already from
a comparison of the wave amplitudes during the postmerging phase plotted in Figs. 5.1
and 5.3.

Motivated by the differences in the time evolution of the GW amplitudes visible in
Figs. 5.1 and 5.3, we also computed the energy ratios for postmerging time intervals
∆tpm of 3 ms, 5 ms, and 10 ms. Figure 5.15 reveals a noticeable discrepancy between SS
mergers and coalescence events of ordinary NSs. Although the energy ratio is initially
higher for SS postmerging remnants, the luminosity of these objects decays much faster
and the value of ∆Epm/∆Ein saturates after about 5 ms. In contrast, this ratio increases
for NS mergers over emission times even longer than 5 ms after the coalescence. There-
fore, also the decay time of the postmerging emission should be considered as a feature
that can be used to discern the GW signal of SS mergers and NS mergers, in particular
in cases when the characteristic signal frequencies fmax and fpeak do not allow for an
unambiguous discrimination.

As visible in Figs. 5.2 and 5.4, the GW luminosity spectra of NS mergers employing
the LS EoS show a prominent gap at frequencies slightly lower than fpeak. This feature
occurs in all of our models with the LS EoS, while it is less pronounced in the cases of
mergers with the MIT60 EoS. The gap is also visible in the Fourier transformed waveform
and it occurs for each emission direction. This suggests the use of the gap to break the
degeneracy of the LS and MIT60 EoSs in fmax and fpeak (Fig. 5.11); we focus on these
two EoSs because the characteristic frequencies do not allow their discrimination as in
the cases of the other EoSs.

We introduce frequency intervals with a given width ∆f placed centered around fpeak

and fgap. The latter frequency is defined by the position of the local minimum that
defines the gap in the luminosity spectrum (Figs. 5.2 and 5.4). The values of fgap for the
more massive binary configurations are listed in Table 4.1, while for the 1.2M⊙+1.2M⊙

binary fgap equals 2.37 kHz for the LS EoS and 2.57 kHz in the case of the MIT60
EoS. Integrating the luminosity spectra in these frequency windows and comparing the
energies provides a characteristic quantity for a quantitative description of the gap fea-
ture of NS merger models with the LS EoS. This energy ratio ∆Epeak/∆Egap may be
deduced easily from observational data by analyzing the excess power in different fre-
quency domains [1, 2]. Figure 5.16 shows the ratio ∆Epeak/∆Egap of binary mergers
with the LS and MIT60 EoSs for different choices of ∆f . Equal colors correspond to the
same value of ∆f . For smaller frequency windows the difference in the ratios becomes
more enhanced as one expects from Figs. 5.2 and 5.4. One can clearly see that for all
choices of ∆f the ratio ∆Epeak/∆Egap allows to distinguish the GW emission of mergers
described by the LS EoS from the signal of the SS coalescence events with the MIT60
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5.5. Gravitational-wave luminosity
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Figure 5.16.: Ratios ∆Epeak/∆Egap of the GW energy emitted in a frequency window
∆f around the peak frequency to the energy emitted in a frequency window ∆f around
the gap frequency as a function of the peak frequencies of the postmerger ringdown. The
colors correspond to differently chosen frequency windows ∆f (see main text), therefore
lines of the same color are to be compared (blue: 250 Hz; red: 100 Hz; black: 50 Hz).
Note the logarithmic scale of the ratio. Shown are results for the binary configurations
with 1.2M⊙ and 1.2M⊙ (left datapoints), with 1.2M⊙ and 1.35M⊙ (central datapoints),
and with 1.35 M⊙ and 1.35 M⊙ (right datapoints) for the LS EoS (dotted) and MIT60
EoS (solid).
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6. Mass ejection of strange star

mergers

As outlined in the introduction, one of the astrophysical consequences of the strange
matter hypothesis is the abundance of strangelets, small lumps of strange quark matter,
in the cosmic ray flux. These strangelets are produced by merging events of SSs, where a
small amount of strange quark matter can become gravitationally unbound [34, 98]. As
charged particles strangelets can be accelerated in supernova remnants and detected by
cosmic ray experiments. For further details on strangelet acceleration and propagation
in the cosmic ray flux see [101].

Furthermore, it was argued that strangelets in the cosmic ray flux convert ordinary
NSs to SSs (see the discussion in introduction in chapter 1), why the unambiguous
detection of a NS would contradict the strange matter hypothesis if a SS population
lead to a sufficient flux of strangelets.

For these reasons the amount of gravitationally unbound strange quark matter ejected
during a SS merging process is of great interest, since up to now only rough estimates
based on NS mergers were available. Therefore in this chapter we consider the amount
of ejecta of SS mergers and how it depends on the binary setup of a given configuration
and on the EoS of strange quark matter.

To estimate how much matter becomes gravitationally unbound, we use a criterion
introduced in [113]. It considers the energy of a fluid particle in a comoving frame and
applies if pressure forces are small in comparison to gravitational forces, which is well
fulfilled for particles leaving the merger site. In this case particles move on geodesics.
Assuming a stationary spacetime one can derive a conserved expression for the total
energy per unit mass, which reads [111]

ǫstationary = viûi +
ǫ

u0
+

1

u0
− 1 (6.1)

with the same quantities as introduced in section 2.1. A SPH particle is considered to
be able to escape to infinity if ǫstationary > 0. Since some SPH particles formally fulfill
this ejecta criterion without leaving the merger site (see Fig. 4.6 and the discussion
in chapter 4), we apply an additional condition that particles are only considered as
unbound if they move further away from the remnant. We cross-checked the results
obtained by means of both conditions with the simple distance criterion only. The
ejecta estimates agree within a factor of less than two.

Ejecta originate from the tips of tidal tails that develop during the evolution of a
hypermassive remnant on timescales longer than the timescale of prompt collapse to
a BH. Usually these filigree spiral arms form only after about two revolutions of the
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6. Mass ejection of strange star mergers

Figure 6.1.: SPH particles distribution projected onto the orbital plane for a SS merger
described by the MIT60. The initial stars had a gravitational mass of 1.2 M⊙ and
1.35 M⊙. The plots were created with the visualization tool SPLASH [121].

postmerger remnant (see Fig. 4.2 the discussion in chapter 4). In the case of a prompt
collapse no angular momentum can be redistributed from the center to the outer parts
of the merged object because the matter in the inner part is swallowed quickly by the
BH [113]. Thus particles potentially forming an accretion torus around the BH have no
chance to end up in tidal tails and to gain enough energy to become unbound. For a
detailed discussion of the dynamics of SS mergers we refer to chapter 4 of this thesis.
However, in order to illustrate the formation and evolution of the spiral arms more
clearly than in the density plots of Fig. 4.2, Fig. 6.1 exhibits the distribution of the
SPH particles projected onto the orbital plane for a merging SS binary with 1.2 M⊙

and 1.35 M⊙ components for the MIT60 EoS. The upper left panel shows the merging
stars when the maximal density peaks for the first time (see Fig. 4.1). At this point of
the evolution the prompt collapse to a BH would occur if the total binary mass were
higher. Only after 1.5 ms, corresponding to roughly two revolutions of the remnant,
tidal tails start to form, from whose tips strange quark matter becomes gravitationally
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Figure 6.2.: Computed models for MIT60 and MIT80 in the M1-M2-plane of the gravi-
tational masses of the SS binaries. Filled circles denote prompt collapse to a BH, while
open circles indicate the formation of a hypermassive object.

unbound (upper right panel). Finally, the fully developed spiral arms (lower left panel)
start to fragment (lower right panel) and to form the clumpy disk-like structure visible
in Figs. 4.2 and 4.4.

Figure 6.2 displays, which models promptly collapse to a BH and in which simulations
a hypermassive remnant is formed and consequently the BH formation is delayed. As
discussed in the previous chapters, the prompt BH collapse occurs for high total binary
masses, clearly visible in Fig. 6.2. Furthermore, the threshold mass between prompt
and delayed collapse is located at lower total binary masses for MIT80, which is un-
derstandable from the fact, that objects described by this EoS cannot support as much
mass against gravitational collapse as MIT60 (see Fig. 3.3). One also recognizes that
the chosen binary configurations span the whole possible mass range of compact stars
for the given EoSs.

The estimated amount of unbound matter is shown in Fig. 6.3 for given mass ratios
q = M1/M2 and total binary masses Mtot = M1 +M2 computed for the models shown in
Fig. 6.2 for MIT60 and MIT80 by means of the ejecta criterion (6.1). Above a certain
Mtot value we cannot determine any amount of ejecta (see white lines in Fig. 6.3). If
Mtot is below this limit, we obtain a steep rise of the ejecta mass in a narrow region of
the Mtot-q-plane in both EoS cases for q . 0.85. For MIT60 the region where more than
0.01 M⊙ of matter become unbound is located around a total mass of about 2.5 M⊙. For
MIT80 significantly lower total masses are required to obtain unbound matter and the
ejected masses are lower as well. This dependence on the bag constant originates from
the fact that MIT80 leads to more compact stars with correspondingly smaller radii,
which impedes the tidal disruption.
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Figure 6.3.: Ejected mass per merger event, color-coded and measured inM⊙, as function
of the mass ratio q = M1/M2 and the total system mass Mtot = M1 +M2 of the binary
configurations for the MIT60 and MIT80 EoSs. The white line separates binary mergers
with and without ejecta.

Since the ejected mass is very low in comparison to the system mass, we found a
dependence on the chosen resolution and the initial setup of the SPH particles. The
values of the ejected mass are uncertain within a factor of ∼2. However, our conclusion
that some configurations do not eject matter relies on the occurrence of a prompt collapse
to a BH. This is a safe result of our simulations within the employed approximations.
Therefore, the border between systems that eject matter and those that do not can be
considered as well determined (see Fig. 6.3). Only for equal-mass binaries the borderline
includes configurations that do not collapse promptly and still do not eject matter,
because such systems do not form pronounced tidal arms.

Population synthesis studies like [19] provide probability distributions of compact star
binaries dependent on their system parameters (e.g. q and Mtot). Folding our results for
the ejecta masses with these probability distributions allows us to estimate the ejected
mass per merger event averaged over the whole population. These numbers can be used
to derive more accurately the expected flux of strangelets in a detector like AMS-02 [101].
Assuming that the results of [19] hold also for SSs and not only for NSs, we compute
for MIT60 a population-averaged ejecta mass of 8 · 10−5M⊙. The uncertainties due to
the limited resolution and the criterion for determining ejecta masses can change this
result up to a factor of ∼4, which is relatively small in comparison to other uncertainties
affecting the strangelet flux, like the merger rate (see below). For MIT80 we do not
find any ejecta because only configurations not present in the adopted population eject
matter.

For a rough assessment of the uncertainties associated with the theoretical popula-
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tion synthesis studies we employed a second data set based on observations of massive
progenitor stars in double systems [73]. Using theoretical results for the mass relation
between NSs and progenitor stars [167] and ignoring complications due to binary evo-
lution effects, we derive a probability distribution function of compact binaries. Taking
into account uncertainties in the determination of stellar masses, we obtain an average
ejecta mass per event of (1.4 ... 2.8) · 10−4M⊙ for MIT60 and again a vanishing ejecta
mass for MIT80.

The bag constant B is the only parameter varied between the EoSs and determines
the mass-radius relation of SSs as the crucial property for the merger dynamics [49, 113].
For intermediate values of B we expect smaller ejecta masses than MIT60 but higher
than MIT80. The borderline between models with and without ejecta would then be
shifted to an intermediate location as well.

Similarly one can estimate how other effects, which were neglected in the computation
of the EoSs, influence the ejecta masses. QCD perturbative corrections can be absorbed
in an effective bag constant that can be chosen to yield mass-radius relations which
agree well with the bag models we used [55]. Color superconductivity has only a small
effect on the EoS [5, 6]. However, quark interactions change the B-window for absolutely
stable strange quark matter [52, 66, 96, 100].

Our findings have important observational implications. The mass-radius relation (in
our study determined by the bag constant) strongly affects the amount of matter ejected
from SS mergers. Therefore a measured mass flux of strangelets would constrain this
relation if quark star mergers were the main source of strangelets. A relatively high flux
would be an indicator for less compact SSs, while no or only a low flux would only be
consistent with more compact SSs. This would also put limits on the bag constant and
so the binding energy of strange quark matter. Assuming a Galactic merger rate of SS
binaries of 10−5...10−4 yr−1 [19], our population-averaged ejecta mass of ∼10−4M⊙ for
MIT60 yields a Galactic strangelet production rate of Ṁ = 10−9...10−8M⊙ yr−1. Since
the flux of strangelets near the Earth depends linearly on Ṁ , we derive a 10 to 100 times
larger value than in [101].

Even more relevant are the consequences if there are no other production mechanisms
of strangelets. Our results for MIT80 imply that the strange matter hypothesis cannot
be ruled out but would only be compatible with compact SSs, if experiments like AMS-
02 could not find any evidence for a non-zero strangelet flux. A strangelet flux below
a critical limit would mean that no or not all NSs might have converted to SSs by
capturing a strange nugget. SSs might then still form by nucleation of strange quark
matter drops, e.g. during stellar core collapse and explosion or by mass accretion of
NSs in binaries when the central conditions reach some critical threshold for the phase
transition to quark matter [66, 114, 115, 160]. In this scenario there is a limiting mass
above which SSs are formed while NSs exist below (see also [26]). Thus in the case of a
large bag constant NSs and SSs could be in coexistence. In the light of our simulations
the unambiguous observation of a NS would not rule out the strange matter hypothesis
contrary to the suggestion in [34, 98].

We stress that these conclusions from our simulations hold only if SS mergers are the
only efficient sources of strangelet ejection. In fact, several other suggestions have been
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6. Mass ejection of strange star mergers

made, e.g. core-collapse supernova explosions [157] or the ejection by electric fields from
the surface of a SS [36] if strange quark matter nuggets were embedded in the crust
[79]. However, as will be argued in section 7.3, from SS-BH mergers no matter becomes
gravitationally unbound. Despite the remaining uncertainties of our simulations like the
approximate treatment of general relativity, which also does not allow us to follow the
formation of the BH, the limited mass resolution, the simplified EoS, and the omission
of magnetic fields and a nuclear crust, we expect that a more sophisticated approach will
only yield quantitative shifts, changing the exact values of the ejecta masses and possibly
insignificantly moving the border between configurations with and without ejecta.

Finally, the results presented in this chapter might also apply to other forms of self-
bound matter like pion-condensed nucleon matter [66, 103] provided the stellar properties
are similar.
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7. Simulations of mixed binaries

In this chapter we present some simulations of mixed binaries. The first section discusses
head-on collisions, which are intended to illustrate some general aspects and which are
supposed to verify the viability of our new approach. For the same purpose we consider
quasi-equilibrium orbits, where we can compare our findings with most recent results of
other groups using polytropic EoSs. Then, the merging of a NS and a BH is analyzed
for the Shen EoS, as it is the main advantage of our method to combine a relativistic
treatment with microphysical EoSs. Finally, we perform a comparison between the
dynamics of this coalescence with the merging of a SS and a BH, and we comment on
potential ejecta of SS-BH mergers.

7.1. Head-on collisions

Head-on collisions of a NS and a BH provide a useful testbed to illustrate and validate the
method for simulating NS-BH mergers as introduced in section 2.2. For this purpose a NS
and a BH are placed on the x-axis with a distance of 29.5 km and -29.5 km, respectively,
from the origin of a cubic grid for the metric solver with 1293 grid cells and a cell size
of 0.89 km. Both are assumed to have a gravitational mass in isolation of 1.3 M⊙ and
to be initially in rest. Clearly, this setup describes a physically unrealistic situation,
nevertheless it can be used to demonstrate some fundamental aspects. For the NS a
polytropic EoS is employed with a adiabatic index of Γ = 2 and a polytropic constant of
K = 85 (see appendix B). The same EoS is used in all currently available fully relativistic
studies of NS-BH mergers [45, 46, 142, 147]. These fully relativistic models can be
considered as a benchmark, although quantitative comparisons are difficult because of
gauge effects, the different hydrodynamics treatment and the lack of easily comparable
and extractable quantities. The star for the head-on collision is chosen to have a rest mass
of 1.4 M⊙. This corresponds to a radius in Schwarzschild coordinates of RNS = 13 km,
which gives a compactness of C = GMNS/c

2RNS = 0.145. The star is constructed from
the density profile of an isolated star in hydrostatic equilibrium. No relaxation of the
SPH particle distribution can be applied to this setup, because it does not describe an
equilibrium configuration, when placed together with the BH on the computational grid.

For a visualization of the basic principle of the puncture method (see section 2.2),
Fig. 7.1 shows the value of the conformal factor ψ in the x-y-plane for z = 0, i.e. a cross
section through the star and the inner region of the BH. The snapshot is taken shortly
after the simulation started. As one can see, the conformal factor peaks at the place of
the puncture. Close to the BH the solution is dominated by the Schwarzschild solution in
isotropic coordinates (2.24), which is analytically imposed through the puncture method.
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Figure 7.1.: Values of the metric function ψ on a cross section of the computational grid
for a head-on collision of a NS and a BH. Both objects have a gravitational mass in
isolation of 1.3 M⊙ and are setup at rest at xBH = −29.5 km and xNS = +29.5 km. Note
that the values of ψ are given by an analytical contribution 1 + mBH

2rBH

plus a numerical

solution η.

The deviations to the analytical BH solution, described by η (equation (2.30)), are shown
in Fig. 7.2, verifying that the spacetime close to the BH is indeed approximately the
Schwarzschild solution. At the position of the NS the deviations become larger, since
the numerically computed function η entirely accounts for the selfgravity of the NS.
Obviously, when choosing a more massive BH the spacetime is more and more dominated
by the analytical contribution from the puncture. Comparing Fig. 7.1 and Fig. 7.2 the
decisive advantage of the puncture method becomes clear, keeping in mind that ψ is
given by an analytical contribution plus a numerical solution (equation (2.30)). It is
evident that solving numerically for ψ would cause massive problems and it is in fact
impossible because of the peak feature and the steep gradients caused by the divergence
of ψ at the puncture. In contrast, the function η is much more well-behaved and can be
computed numerically.

As described in subsection 2.2.3, for determining the tracetory of the BH a vanishing
total momentum is assumed. While the NS evolves through space according to its
coordinate velocity, so a hydrodynamical quantity, the motion of the BH is mediated
solely by the shift vector, so a purely geometrical quantity. Therefore, it appears at
least questionable and requires an examination whether the interplay between these two
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Figure 7.2.: Deviations η from the Schwarzschild solution in isotropic coordinates on
a cross section of the computational grid for a head-on collision of a NS and a BH.
Both objects have a gravitational mass in isolation of 1.3 M⊙ and are setup at rest at
xBH = −29.5 km and xNS = +29.5 km. Note that the values of η are given by a purely
numerical solution of equation (2.32).

very different methods yields a consistent evolution of the whole system. The reason for
choosing the same gravitational mass in isolation for the NS and the BH was to perform
a test investigating this problem. For this particular setup the NS and the BH should
approach each other equally fast as long as finite-size effects of the NS are small and
it behaves essentially as a point mass. Furthermore, one should keep in mind that as
discussed in subsection 2.2.2 and as will also be addressed in section 7.3, the puncture
mass mBH, which coincides with the gravitational mass in isolation, does not exactly
equal the astrophysical BH mass MBH in the double system. So the two objects do not
have exactly the same gravitational mass.

Figure 7.3 displays the coordinate distance d of the BH and the NS to the origin as
function of the coordinate time t (black curves). Here the center of mass of the NS is
determined by the center of its rest-mass distribution. (Other definitions of the center of
the NS like the point with the highest density yield quantitatively the same result.) The
agreement of the trajectories of the BH and the NS proves the reliability of the puncture
evolution by means of the shift vector in these hydrodynamical simulations. Deviations
only occur when the NS is strongly deformed and already accreted by the BH.

Another important aspect of the head-on collision is to check the influence of the
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Figure 7.3.: Trajectories during a head-on collision of a BH and a NS described by a
polytropic EoS. Both objects have a gravitational mass in isolation of 1.3 M⊙ and were
setup initially at rest at xBH = −29.5 km and xNS = +29.5 km. The solid curves show
the distance of the BH to the origin x = 0, while the dashed curves display the distance
of the center of mass of the NS to x = 0. Note that the center of mass of the NS was
determined by means of the rest mass. The black curves are taken from a simulation,
where mµ is determined by the condition of the equality of the ADM mass and the
Komar mass. The blue lines correspond to results where mµ = mBH is used, and the red
curves refer to a simulation with mµ = 0.

specific choice for mµ, the puncture mass for the ψα field. As mentioned in section 2.2,
it is determined by the equality of the ADM mass and the Komar mass. When applying
this condition, mµ is comparable to the puncture mass mBH of the metric potential
ψ. The blue curve in Fig. 7.3 displays the evolution, when imposing mµ = mBH to be
compared with the black line where the equality of the ADM mass and the Komar mass
is used. As one can see, the different choices for mµ do not affect the dynamics. Small
differences occur only when the NS is very close to the BH. Therefore, this condition
can be used as an alternative choice for the puncture ansatz. And even setting mµ = 0
as an extreme case, the system still evolves similarly (red curves).
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7.2. Quasi-equilibrium orbits

7.2. Quasi-equilibrium orbits

Another important test for the present model is the construction of initial data for
NS-BH mergers. As described in subsection 2.2.3, this is done with the evolution code
itself. Because the CFC approximation neglects GWs, the binary components should
in principle orbit around each other forever if the additional GW backreaction scheme
(see section 2.2) is disabled. (In reality, numerical dissipation would cause the orbit to
shrink at some point.) This particular property of the CFC approximation is used to
construct circular quasi-equilibrium orbits. By a “trial and error” method an angular
velocity is imposed on the stellar fluid and from time to time adapted if the binary
components start to depart from a chosen circular orbit of a given separation. This
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Figure 7.4.: Evolution of the angular velocity of NS-BH binaries during the relaxation
phase to construct circular quasi-equilibrium orbits. The BH has a gravitational mass
of 3.9 M⊙ and for the NS a gravitational mass in isolation of 1.3 M⊙ was chosen. The
star is described by a polytropic EoS (see text). The red and the blue curves display
Ω for a given binary separation of 41.5 km and for different grid resolutions of the
metric solver (first value: number of gridpoints in each direction; second number: grid
spacing in km). The black curve shows the evolution of the angular velocity for a orbital
distance of 54.8 km. The black horizontal lines are taken from [46] and indicate the
angular velocities for the same binary setups and the same orbital separations. The
green horizontal lines correspond to the Newtonian values of the angular velocity for the
given binaries assuming point particles, for both separations located at higher angular
velocities.
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procedure is applied until the BH and the NS move freely on the given orbit with the
imposed orbital distance. In this way the evolution code “finds” the angular velocity for
a given binary separation. The velocity field of the NS is chosen to be irrotational (zero
spin). Figure 7.4 shows the evolution of the angular velocity during such a relaxation
phase for a NS-BH binary with a mass ratio of Q = 3 and a NS gravitational mass
in isolation of MNS = 1.3 M⊙ described by a polytropic EoS (the same star with the
same EoS as in section 7.1 is used). As one can see, in the course of the evolution,
the angular velocities converge against the results given by [46]. These were obtained
with the so-called conformal thin sandwich formalism in hydrostationary equilibrium
(see [4, 38, 46] and references therein for details and alternative approaches). The initial
deviation is a consequence of the guess value for the initial angular velocity at t = 0.
One should bear in mind that the formulation of the initial value problem is ambiguous
in general relativity and that the discussed quantities are in principle gauge dependent.
For instance the angular velocity for the same binary setup differs between [46] and [45]
by about one percent. Therefore, one would not expect a perfect match between the
horizontal lines and the evolved angular velocities in Fig. 7.4. However, the very good
agreement demonstrates the capability of the present model and its implementation.
In particular, it also proves the viability of the method to move the BH via the shift
vector. Furthermore, the chosen grid resolution can be considered to be sufficient, since
the curves for different grid setups (blue and red curves) converge to the same angular
velocity.

In Fig. 7.4 also the Newtonian limit for point masses is plotted (green lines), where the

angular velocity is given by the Kepler law ΩNewton =
√

G(MBH+MNS)
a3

with the orbital dis-

tance a. It is evident from the comparison with the relativistic results that a Newtonian
description of NS-BH binaries in this stage of the evolution is inappropriate. The New-
tonian values are in general higher than the relativistic ones. One also recognizes that
for the smaller binary separation the deviations from general relativity become larger,
thus a Newtonian treatment fails more and more as the binary components approach
each other. However, one should keep in mind that a comparison has only a limited
meaning and that an intuitive understanding of these findings is difficult, because for
instance in the Newtonian theory velocities are not limited by the speed of light, and in
general relativity the considered quantities are gauge dependent.

7.3. Merging compact star-black hole binaries

A system of a NS and a BH emits GWs as NS-NS binaries also do. (The same discussion
applies also to SS-BH mergers, which will be addressed below.) As a reaction to this
emission the orbit shrinks and finally the two components merge. For the merging
process itself and the outcome of a merger, two scenarios can be distinguished: Either
the NS is swallowed completely by the BH, or the NS is tidally disrupted and a fraction of
the NS matter remains outside the BH and forms an accretion torus [155]. For the latter
effect it is important to determine whether and when the tidal disruption of the star sets
in, because in general relativity a compact gravitating object possesses an ISCO. At the
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Figure 7.5.: Inspiral trajectories of a NS (blue curve) and a BH (black curve) during
a simulation of a binary merger with a 1.3 M⊙ star and a BH with 2.6 M⊙. The NS
is described by the Shen EoS and the center of the star is defined by the center of the
rest-mass distribution. The divergence of the NS inspiral orbit at the end is due to the
disruption of the star by the BH.

ISCO the specific angular momentum of a test particle on a stable circular orbit has a
minimum. For a Schwarzschild BH for instance, this orbit is located at r̃ISCO = 6MBH (in
isotropic coordinates this position corresponds to rISCO = 4.949MBH as can be computed
from formula 2.23). Within this distance a test particle cannot have a stable circular
orbit and will be quickly accreted onto the central object. The existence of an ISCO
is a purely relativistic effect, unknown in Newtonian physics where point masses can
be brought into arbitrarily close orbits. (For selfgravitating, extended bodies the ISCO
cannot be given analytically, however, the phenomenon itself remains [12, 102, 154, 155])
As a consequence of the existence of an ISCO, a torus can only form during the merging
if the so-called mass shedding occurs outside the ISCO [15, 51, 155].

The question of tidal disruption is in particular interesting when discussing NS-BH
mergers as potential progenitors of short gamma-ray bursts, where a relativistic outflow
is suspected to be launched from a BH-torus system. For investigating this scenario it is
important to understand the conditions for the formation of such configurations and in
particular how they depend on the initial binary parameters and the EoS. For example,
one is obviously interested in the precise properties of the accretion torus like its mass
and the density and temperature distribution. A detailed discussion of these questions
is beyond the scope of this work and will be subject of future investigations, as well as
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an analysis of the GW signals of these events. Instead we only present the very first
simulations that are achieved to finish to highlight the differences between a NS-BH
merger and a coalescence of a SS with a BH, which fits the subject of this thesis.

Hydrostationary studies like [155] (and the first available fully relativistic hydrody-
namical simulations) suggest that the outcome of a merger is mainly determined by the
mass ratio Q = MBH/MNS of the components and the compactness C = GMNS/c

2RNS of
the NS. These calculations were done for polytropic EoSs. According to these references
torus formation is favored for low mass ratios Q and low NS compactness C, which is
intuitively clear because tidal disruption can be understood as the competing effect of
differences of centrifugal forces and gravitational attraction by the NS and by the BH
on different sides of the object.

Considering these findings we concentrate on a simulation of a binary with a BH mass
of MBH = 2.6 M⊙ and a NS with a gravitational mass of 1.3 M⊙. Since we want to
discuss in particular the torus formation, the stellar fluid is described by the Shen EoS
and for comparison with the LS EoS. The former EoS results in less compact stars and
should therefore enhance the torus formation process. The compactness of the NS with
the Shen model is found to be C = 0.131 (see also Fig. 3.3). For the Shen EoS the
maximal mass that can be supported against gravitational collapse, is 2.24 M⊙ (see
Fig. 3.3). Since the BH mass should exceed this limiting mass, the chosen mass ratio of
Q = 2 can be considered as a relatively extreme case. Again, the reason for focussing
on a low mass ratio is the higher potential for mass-shedding. For this binary setup and
compactness, the hydrostationary approach by [155] predicts a tidal disruption of the
star.

Figure 7.5 illustrates the tracetory of the NS (blue curve) and of the BH (black curve).
The position of the NS is defined as the center of the rest-mass distribution, while the
BH position is given by the location of the puncture. The inspiral behavior of the binary
components is clearly visible as both objects move around the common center counter-
clockwise. One can also see that the BH and the NS approach each other increasingly
faster. The final plunge of both objects is indicated by the BH tracetory, which at some
point moves towards the center rapidly as a consequence of the momentum conservation
when the bulk mass of the NS falls into the BH. The orbit of the NS does not show this,
because the trajectory follows the center of the remaining stellar gas mass that moves
away from the BH while the majority of NS material is accreted by the BH. For the sake
of clarity we do not show the “return” of the NS trajectory to the center of the system
after the torus has developed.

The different stages of the NS-BH merger are illustrated by the evolution of the rest-
mass density in the orbital plane shown in Fig. 7.6. The BH is visualized by a black circle
with radius mBH/2. For an isolated BH at rest, this sphere coincides with the horizon
of the BH, which cannot be determined with the current code because a horizon finder
is not yet implemented. However, the surface r = mBH/2 with r being the distance to
the center of the BH can be considered as a rough estimate.

In the first phase of the merger the NS and the BH orbit around each other and the
star starts to be tidally deformed (upper left panel). As the binary components approach
each other further, mass transfer from the NS to the BH sets in, while the star is still
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7.3. Merging compact star-black hole binaries

Figure 7.6.: Evolution of the rest-mass density in the orbital plane of a NS with 1.3 M⊙

described by the Shen EoS, merging with a BH with a mass of 2.6 M⊙. The plots were
created with the visualization tool SPLASH [121].
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Figure 7.7.: Amount of matter remaining outside the BH for a merger of a BH and a
NS described by the Shen EoS (black curve) and by the LS EoS (red curve). The initial
masses of the BH and the NSs are 2.6 M⊙ and 1.3 M⊙, respectively. Note that both
models have different durations of the relaxation phases, and so the time lag between
both evolution tracks has no physical reasons.

on its orbit (upper right panel). About half an orbit later more matter is falling into
the BH and the tidal disruption starts (middle left panel). In the middle right panel
the tidal disruption continues and a spiral tail forms, in which some matter moves away
from the BH. The inner part of the tidal arc moves faster around the BH (lower left
panel) and collides with the tidally stretched, orbiting matter of the outer part to finally
form a hot accretion torus around the BH (lower right panel). Typical densities in the
remaining torus are about 1012 g/cm3. The further evolution of this structure cannot be
followed in detail for a longer time because most SPH particles are accreted so that the
hydrodynamical resolution is relatively low. In addition, on secular timescales effects of
magnetic fields and neutrino emission processes become increasingly important, which
are currently not included in the model.

Comparing the upper panels with the lower plots one realizes that the size and thus
the mass of the BH is growing during the accretion phase. Remarkably, at the end of the
evolution, when most matter has been swallowed, the BH comes to rest at the center
of the coordinate system validating the momentum conservation of the code and the
method to move the BH (see also Fig. 7.5).

The amount of matter remaining outside the BH in terms of the rest mass is displayed
in Fig. 7.7. When an approximately stationary configuration is reached (lower right
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panel in Fig. 7.6), the accretion torus has a mass of about 0.05 M⊙. This value may on
first glance appear relatively low compared to typical masses remaining outside the BH
found in Newtonian simulations (see e.g. [131], and [132] who use a phenomenological
BH potential [119] to mimic the existence of an ISCO) having also in mind that the
chosen configuration should strongly favor the disk formation. However, our results are
in very good agreement with the most recent fully relativistic simulations by [46, 147].
Since these calculations employ only simple polytropic EoSs with an adiabatic index of
Γ = 2, our model with the Shen EoS has to be compared with the “closest” configuration
in these publications. (Merger simulations with polytropic EoSs were not yet performed
with our code, but are planned in the future for a detailed comparative study.) In
reference [147] a torus mass of 0.01 M⊙ is reported for a binary with a mass ratio of
Q = 2 and a NS compactness of C = 0.145, which is the configuration most similar
to our choice. Considering the fact that the NS described by the Shen EoS is less
compact, our findings are in reasonable agreement with the published fully relativistic
simulations. The consistency between the torus masses and also the agreement of the
general dynamical behavior of the mergers show the reliability of our new approach to
simulate NS-BH mergers within the CFC approximation as presented in section 2.2. (A
comparison with the results of [46] is not meaningful, because in this reference only
binaries with mass ratios of Q = 1 and Q = 3 were considered. However, it should be
mentioned that the fully relativistic results of [46] and [147] disagree in the torus masses
for a mass ratio of Q = 3.)

For comparison we provide in Fig. 7.7 also the result of a merger described by the LS
EoS using the same binary setup. For this EoS the NS is more compact with C = 0.157.
As one can see in Fig. 7.7, the remaining torus mass is much lower compared to the
simulation with the Shen EoS, although the general dynamics of both coalescence events
are similar. The lower torus mass of about 0.0015 M⊙ is understandable by the higher
compactness of the star with the LS EoS, which hampers the tidal disruption. Moreover,
the less massive relic mass is again in agreement with the fully relativistic study by [147],
where for the less compact star with a polytropic EoS, 0.01 M⊙ of matter remain outside
of the BH. However, in particular this simulation with the LS EoS resulting in a very
low torus mass should be checked for convergence by using a larger SPH particle number
in a high resolution model.

The evolution of the puncture mass mBH of the Shen model is shown in Fig. 7.8. As de-
scribed in section 2.2 the puncture mass equals only approximately the actual mass MBH

of the BH and it is chosen in a way to conserve the total ADM mass of the system. (The
true mass MBH of the BH cannot be determined from the simulation, because this would
require the implementation of a horizon finder.) At the beginning of the evolution when
the NS approaches the BH and the momentum of the BH increases, the puncture mass
slightly decreases. In this situation the extrinsic curvature source terms grow in the
vicinity of the BH (see equation (2.32)). (For instance the BH momentum also enters
these summands.) Consequently, the numerical contribution from the BH to the total
ADM mass increases. As a consequence of this, the puncture mass has to decrease in
order to conserve the total ADM mass. At about 14 ms the accretion onto the BH
starts to dominate the evolution of the puncture mass. Since SPH particles are taken
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Figure 7.8.: Evolution of the puncture mass for a NS-BH merger with the Shen EoS
(black curve) and a SS-BH merger with the MIT60 EoS (green curve) for a mass ratio
of Q = 2. The initial binary masses of the compact stars and the BH were chosen to be
1.3 M⊙ and 2.6 M⊙, respectively. Note that both models have different durations of the
relaxation phases. Therefore, the time lag in the evolution does not have any physical
reasons.

out from the simulation, the puncture mass has to account for this loss and has to rise
accordingly to keep the total ADM mass constant. As can be seen in Fig. 7.7, at about
16 ms most of the NS matter is swallowed by the BH and the puncture mass saturates.
Since there is only little mass remaining in the torus outside the BH, the puncture mass
is the dominating contribution to the total ADM mass and since the BH is not moving
very fast, the spacetime is approximately the Schwarzschild solution. Now the puncture
mass can be assumed to describe well the gravitational mass MBH of the BH. At the
end of the simulation the puncture mass is slightly above 3.9 M⊙, the sum of the initial
puncture mass of mBH,initial = 2.6 M⊙ and the initial NS gravitational mass of 1.3 M⊙.
The difference is understandable by the fact that mBH,initial does not exactly equal the
astrophysical BH mass at the beginning of the simulation, because the BH was moving
and it was not in isolation. The total ADM mass, which is constant throughout the
whole evolution, is about 4 M⊙. Assuming that at the beginning the NS contributes
1.3 M⊙ to the total ADM mass, one can estimate the true initial BH mass MBH,initial

to be about 2.7 M⊙. This explains why the final gravitational mass of the BH reaches
roughly 4 M⊙.

The evolution of the merging of a SS with a BH is shown in Fig. 7.9. The binary setup
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Figure 7.9.: Evolution of the rest-mass density in the orbital plane of a SS with 1.3 M⊙

described by the MIT60 EoS merging with a BH with a mass of 2.6 M⊙. Note the
logarithmic scale of the rest-mass density in contrast to Fig. 7.6, furthermore, a smaller
section of the orbital plane than in Fig. 7.6 is visible. The plots were created with the
visualization tool SPLASH [121].

is the same as for the NS-BH coalescence described above, i.e. a 1.3 M⊙ star and a BH
with a mass of 2.6 M⊙. (This value is adopted for the initial puncture mass, bearing
in mind the mentioned discrepancies, see above.) The SS is described by the MIT60
EoS, the EoS that yields less compact quark stars (see section 3.3). As one can see
in comparison to Fig. 7.6, the SS-BH merger proceeds fundamentally differently from
the NS-BH collision. While in the NS case a deformation of the star can be clearly
recognized at an orbital distance of 34 km in the upper left panel of Fig. 7.6, hardly
any deformation of the SS is visible at the same orbital separation (upper left panel in
Fig. 7.9). In the further evolution the star gets tidally stretched, but no tidal disruption
occurs (upper right panel). Finally, the star is swallowed as entire object by the BH
(lower panels) and no matter remains outside the BH. Note that the small rest of visible
matter in the lower right panel is located far within the ISCO of 4.949MBH and will be
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absorbed by the BH in fractions of a millisecond.
Again the final BH is located at the center of the coordinate system. As in Fig. 7.6, the

displayed BH size is determined by the puncture mass mBH, which only approximately
gives the true gravitational mass of the BH. This also explains why the BH seems to be
small in the lower left panel of Fig. 7.9, while the growth of the BH is obvious at the
end of the simulation (lower right panel). As discussed above, the puncture mass needs
to decrease when the star approaches the BH in order to describe the evolution of the
system consistently. Since the star is not tidally disrupted and falls completely into the
BH, the effect is more extreme (see Fig. 7.8). However, as for the NS-BH merger the
final puncture mass agrees with the true BH mass very well. Because there is no matter
left outside the BH, the spacetime is entirely given by the analytical contribution from
the puncture mass. Note that the rotation and possible spin-up of the BH was neglected
during the whole simulation, so the total angular momentum is not conserved during the
evolution, when SPH particles are removed from the computational domain. In addition,
one can see in Fig. 7.9 that the matter is excised at a positive lapse function α slightly
outside the black circle (lower right panel). The large gap in the lower left panel is an
artifact of the very small puncture mass in comparison to the true BH mass.

The different dynamical behavior of the quark star merging with a BH can be un-
derstood as a consequence of the higher compactness of the SS and the selfbinding of
strange quark matter, which both impede the tidal disruption. This phenomenon was
already found in the simulations of SS-SS mergers in comparison to collision events of
two NSs. For the compactness of C = 0.186 of the 1.3 M⊙ SS and the mass ratio of
Q = 2, reference [155] predicts within a hydrostationary approach a tidal disruption
outside the ISCO. However, this study was employing a polytropic EoS, and thus the
results do not need to apply to SSs with a completely different EoS. Furthermore, for the
given compactness a plunge into the BH without mass-shedding is predicted to occur
for a slightly higher mass ratio of about Q = 2.5, and it may well be that for such a
close proximity to the critical limit the approximative hydrostationary method looses its
predictive power.

In order to investigate the question whether strange quark matter can become gravita-
tionally unbound by a SS-BH merger and thus contribute to a possible flux of strangelets
in the cosmic rays (cf. chapter 6), we performed an additional simulation with a SS hav-
ing a very low gravitational mass of 1.15 M⊙ and thus a relatively low compactness of
C = 0.169. The BH was chosen to have a mass of 2.3 M⊙, which gives a mass ratio
of Q = 2. A BH with a lower mass is unlikely to exist, considering the fact that the
maximum mass of a non-rotating SS described by the MIT60 EoS is about 1.9 M⊙ (see
Fig. 3.3) and that rapid rotation increases the maximum mass by some 0.1 M⊙ (see
e.g. [66]). Therefore, this binary setup can be considered to be the configuration which
is most favorable for the tidal disruption and thus a possible mass ejection. However,
the dynamics of the merging are basically the same as for the SS-BH merger discussed
above. The star is completely swallowed by the BH and no mass-shedding from the stel-
lar surface is observed. Just the tidal stretching of the star is more pronounced, which
is reasonable considering that the star is less compact and less massive in comparison
to the 1.3 M⊙ companion. This leads to the conclusion that SS-BH mergers can be
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excluded as a potential source of strangelet injection into the cosmic ray flux, unless
BH rotation is important. The same result was already found in Newtonian simulations
by [85] mimicking relativistic effects of the BH by a pseudo-potential [119] and using a
different strange quark matter EoS. We did not conduct simulations of SS-BH mergers
employing the MIT80 EoS, because this EoS results in more compact stars than MIT60
(Fig. 3.3) and the tidal disruption becomes even more unlikely. Hence, the implica-
tions of the results discussed in chapter 6 like the consequences of a vanishing flux of
strangelets for the MIT80 EoS are confirmed by the simulations of the mixed binaries.
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8. Summary, conclusions and outlook

The main goals of this thesis were to explore whether SS mergers yield observational
features that distinguish them from collisions of NSs and whether in this way a decision
on the existence of absolutely stable strange matter can be made. In this context we
focussed on two experimental aspects: GWs and strangelets in the cosmic ray flux.
Moreover, we investigated whether these observables provide more specific information
on the properties of compact stars and the character of the EoS of high-density matter.
For this purpose we performed relativistic three-dimensional hydrodynamical simulations
of the merging process using microphysical EoSs for strange quark matter as well as for
NS matter. For our comparison the EoSs were chosen in a way to cover a reasonably
broad range of NS and SS properties.

We found that the dynamical behavior of SS mergers is fundamentally different from
NS coalescence events, which can be understood by the higher compactness of SSs and
their merger remnants, the selfbinding of strange quark matter and the different influ-
ence of thermal effects on strange matter and nucleonic matter. For instance the tidal
disruption of a less massive companion in asymmetric binary systems, which is observed
for NSs, is suppressed in the case of colliding SSs. While NS mergers form a dilute halo
or torus-like structure around a dense, hypermassive, differentially rotating remnant,
the remnant of merging SSs is bounded by a sharp surface like the initial stars were.
Only by the formation of thin tidal arms relatively late in the evolution of the remnant,
matter gets shed off the central object and forms a fragmented thin disk in the equatorial
plane. A small amount of this material at the tips of these tidal tails has enough energy
to become gravitationally unbound from the merger site and so can contribute to the
cosmic ray flux of strangelets.

In order to estimate the importance of thermal effects during NS and SS mergings
we compared our models with simulations where zero temperature was imposed by
extracting the thermal energy as perfectly efficient cooling would do. For both kinds
of stars we observed a sensitive dependence of the dynamics of the system on thermal
effects, affecting for instance the development and structure of the outer remnant parts
of NS mergers. While the estimated relic torus mass after collapse of the remnant to a
BH is in general higher if thermal effects were neglected, a non-zero temperature of NS
matter leads to an inflated, dilute halo-like torus in contrast to a much thinner, more
disk-like structure for T = 0. For SS mergers with T 6= 0 we found a shorter time
delay for the BH formation, whereas in the case of NSs this time interval is stretched as
reported in [10]. This difference can be understood as a consequence of the additional
gravitating effect of the thermal energy, which in the case of the very dense SSs is not
overcompensated by thermal pressure effects (different from the NS case).

The analysis of the GW signals emitted by SS mergers revealed that already by means
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of relatively simple characteristic features of the signal it may be possible to decide
whether a SS or NS merger produced the emission. In particular, we found that the
maximal frequency during the inspiral and the frequency of the ringdown of the post-
merging remnant are in general higher in the case of SS mergers in comparison to NS
mergers. Whether this criterion can be used to finally decide on the strange matter
hypothesis depends on the particular stellar properties associated with the EoS of high-
density matter. For a similar mass-radius relation within a certain mass range, meaning
relatively compact NSs or less compact SSs (the LS-MIT60 scenario), the determination
of these frequencies might not be decisive. However, taking additional characteristics of
the GW luminosity into consideration will allow for a discrimination. For this purpose
we discussed the occurrence of a prompt collapse, the ratio of the GW energy emit-
ted in the postmerger phase to the energy radiated away during the inspiral phase, the
growth rate of the energy emission associated with the postmerger ringdown signal, and
the appearance of a prominent low-luminosity window (“gap”) in the GW luminosity
spectrum.

Furthermore, our simulations showed that the maximal frequency during inspiral and
the frequency of the postmerger remnant oscillation depend strongly on the total mass
of the system, i.e. for a higher total binary mass these frequencies are in general higher.
On the other hand, the initial mass ratio of the binary components has a smaller in-
fluence on the GW features. These findings can be understood as consequences of the
compactness of the initial stars and the compactness of the central remnant forming
after the coalescence, which are higher for more massive objects.

Complementary to the exploration of the GW signals, we computed the ejecta of SS
mergers to estimate the Galactic strangelet production rate. Our models uncovered a
clear dependence of the potential flux of strangelets on the mass-radius relation of SSs
and thus the properties of strange quark matter. Compared to previous assumptions
[101] we predict an enhanced abundance of strangelets in cosmic rays for strange quark
matter EoSs resulting in less compact SSs. On the other hand, for strange quark matter
properties that yield relatively compact stars, we found a vanishing flux of strangelets.
As a consequence of this result, the strange matter hypothesis could not be ruled out if
cosmic ray experiments like AMS-02 did not find any evidence for strange quark matter
in the cosmic ray flux. In addition, in such a scenario the conversion of the NS population
into SSs by capturing strangelets would be impossible if there were no other source of
strangelets. Consequently, an unambiguous identification of a NS cannot exclude the
strange matter hypothesis, in contrast to previous claims [34, 98]. Thus, NSs and SSs
could be in principle in coexistence.

The findings for the strangelet production rate are in particular important in combi-
nation with the results for the GW emission. Especially in the case when GW signals
are not conclusive as in the LS-MIT60 scenario, cosmic ray experiments like AMS-02
can yield information about the strange matter hypothesis and could clarify the situ-
ation. Therefore we expect that despite the rather uncertain event rate the upcoming
advanced GW detectors LIGO and VIRGO have a perspective to provide valuable data
to decide about this long-standing question, and it appears likely that one will thus
gain fundamental information about the properties of high-density matter. Moreover,
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future GW detectors like the Einstein telescope [76] and the DUAL detector [75] will
have a higher sensitivity in the high-frequency domain above 1 kHz, where characteristic
features occur. Signals measured with these future instruments will therefore allow for a
more detailed analysis. In summary, our results suggest that by means of a combination
of cosmic ray experiments and GW measurements a decision about the strange matter
hypothesis should be possible.

Several improvements and extensions may supplement this first study of SS mergers,
as well as the investigation of NS collisions in the future. Besides refinements in the
methodical approach like a fully relativistic treatment and the inclusion of magnetic
fields (only important during the merging phase if very strong, but must be expected to
grow afterwards and affect the ringdown phase) and neutrino losses, one would also like
to explore other microphysical models. For strange quark matter this includes the effects
of quark interaction and color superconductivity, to consider models beyond the MIT
bag model or to discuss other forms of selfbound matter. Considering the huge variety of
NS EoSs, future studies should incorporate more than the two commonly used ones of LS
and Shen. In this context it is important to realize the consequences of our investigation
of thermal effects in NS merger simulations as presented in appendix A, where we studied
the viability of a widely used approximative approach. The striking differences in the
observables like the GW signal when working with a simplified temperature treatment
instead of the fully consistent inclusion of thermal effects, show the need of simulations
with EoSs that provide the full temperature dependence. For this purpose suitable
high-density EoSs have to become available to the astrophysical community.

However, already the current models can be employed for some further analysis. A
determination of the modes excited in the merger remnants may be a promising way to
develop a better understanding of the origin of the characteristic properties of the GW
spectra. Future work should also explore the conditions for nucleosynthesis processes
in the ejecta of NS mergers. Finally, the electromagnetic counterparts of coalescence
events have not yet been addressed in detail.

Besides studying NS and SS mergers in this thesis, we worked out the conceptual
background for simulating binary mergers including a BH within the CFC approxima-
tion to general relativity. We described the implementation of the new approach and
presented test calculations validating the method. The basic idea relies on the use of
the puncture method for solving a reformulated system of the CFC equations, which
employs the CTT decomposition of the extrinsic curvature. This particular technique
also allows to describe the momentum of a BH.

In line with the intentions of this thesis the new code was used for a comparison
between NS and SS merging with BHs. Again, the course and the outcome of these
events can be understood by the particular properties of strange quark matter on the
one hand and NS matter on the other. Due to selfbinding and their relatively high
compactness, SSs approaching a BH are accreted as a whole, while for the same binary
configurations NSs are tidally disrupted. A sizable fraction of the NS matter can remain
outside the BH to form an accretion torus. The results of our simulations are compatible
with recent fully relativistic studies and hydrostationary calculations.

By performing additional simulations of SS-BH mergers we exclude these events as
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sources of strangelet ejection into the cosmic ray flux at least according to our model,
which still neglects the possible rotation and spin-up of BHs. However, even with the
most promising binary configuration there is no indication of a tidal disruption of the
star and no matter becomes gravitationally unbound during the merging process. These
findings support our conclusions above for the case of a vanishing strangelet flux.

The presented model for simulations of mixed binaries offers many possibilities for
future work. The dynamics and torus properties of a NS-BH merger depend sensitively
on the EoS (see Fig. 7.7). Therefore, a systematic investigation of the influence of
the EoS is of great importance, in particular since our implementation allows for the
first time the treatment of microphysical EoSs within a general relativistic approach.
Main goals of a future detailed study will be a clarification of the effects of different
microphysical EoSs on the GW signals of NS-BH merger events and the relic accretion
tori. Characteristic GW frequencies during the merging, which may be affected by the
EoS, are in general lower than those of NS-NS mergers, which makes them interesting
sources for ground-based laserinterferometric GW detectors, that are most sensitive
below 1 kHz.

Moreover, the new code developed here may also be used to study other astrophysical
problems involving BHs. For instance, it may be possible to follow the formation of a
BH in the hypermassive remnant forming during a NS coalescence. A similar problem
is the core collapse of massive stars, where BHs are created from the more massive
progenitor stars. Also BH accretion disks may be studied with this tool. In the binary
context, the code may be generalized for simulating mergers of BHs and white dwarfs,
or to investigate main-sequence stars on an interaction orbit with a supermassive BH.
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A. Thermal effects in neutron star

merger simulations

This appendix is intended to discuss some aspects of thermal effects in NS mergers.
This topic was already partially addressed in chapter 4 and 5 and it was shown that the
inclusion of thermal effects is crucial for the dynamics and the shape of the postmerger
remnant also influencing observables like the GW signal and affecting the delay time
until BH formation and the torus mass after BH collapse. First the temperature phe-
nomenology is briefly presented and then we focus on the viability of an often employed
approximate temperature treatment, which was summarized in chapter 3.

A.1. Temperature phenomenology

Figure A.1 shows the temperature distribution in the orbital plane for a NS merger
described by the LS EoS with 1.2 M⊙ and 1.35 M⊙ stars. The snapshots correspond
to the plots of Fig. 4.3. During the inspiral phase the stars are very cold since they
were set up with zero temperature at the beginning of the simulation. Only numerical
dissipation heats the stars to some MeV at the highest densities, which does not affect
the dynamics of the system because the temperature increase is too low to change the
pressure significantly. After the first contact of the stars due to shock heating and the
subsequent compression, the temperature rises in particular at the contact layer. The
differential rotation creates an inhomogeneous temperature distribution throughout the
remnant. Also the spiral arms and the surrounding halo are heated by shocks, which form
at the surface of the rapidly rotating axisymmetric remnant when it interacts with the
ambient, shed low-density material. Shocks also occur in the halo itself by collisions of
the spiral arms (for details see [113]). Since shocks are treated by an artificial viscosity
scheme, their presence can be recognized easily by the amplitude of a dimensionless
parameter K, that determines the strength of the artificial viscosity (for the definition
of K see [105, 113, 126]). Figure A.3 displays K in the orbital plane for the described
simulation shortly after the stage of the evolution shown in the lower left panels of
Figs. 4.3 and A.1. Clearly visible is the shock heating in the spiral arms and at the
remnant surface.

The evolution of the temperature is illustrated in Fig. A.3, where the first panel
shows the maximal temperature, the center panel gives an averaged temperature, which
can be compared with the evolution of the maximal density in the lower panel. The
averaged temperature is defined as an average of all SPH particles within a sphere of
7 km around the center of the remnant. One can see that the highest temperatures are
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Figure A.1.: Temperature in MeV in the orbital plane of a merging NS binary with 1.2
M⊙ and 1.35 M⊙ components for the LS EoS. The displayed times correspond to the
snapshots shown in Fig. 4.3. The plots were created with the visualization tool SPLASH
[121].
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Figure A.2.: Strength of the artificial viscosity described by the dimensionless parameter
K (see [105, 113, 126]) in the orbital plane of a merging NS binary with 1.2 M⊙ and
1.35 M⊙ components for the LS EoS. The plot was created with the visualization tool
SPLASH [121].

reached shortly after the first contact of the stars when the maximal density exhibits a
peak. While the maximal temperature decreases in the further evolution, the averaged
temperature remains approximately constant, which can be understood by means of the
further compression of the remnant as visible in the maximal density, which increases
while the remnant settles down.

In general, the temperatures for the more massive configurations are higher although
the maximal densities are lower in the first phase after the merger. However, the highest
temperatures do not come along with the highest densities. In the 1.2 M⊙+1.35 M⊙

model with the LS EoS the highest density is found in the relic core of the more massive
star, while the highest temperatures occur outside this core at the contact layer with
the tidally disrupted less massive companion. On the other hand, the dynamics of the
binaries with a mass ratio of q = 1 are completely different. The binary components
collide symmetrically without being disrupted and form two dense cores, which oscil-
late against each other (see also the discussion in chapter 4). The different dynamical
behavior of the symmetric configurations can explain the higher temperatures of these
models: the stellar collision is more violent, instead of leading to a tidal disruption and
the subsequent “accretion” of the massive spiral arm formed by the lighter star onto the
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Figure A.3.: Evolution of the maximal temperature, the averaged temperature and the
maximal rest-mass density for the 1.2 M⊙+1.35 M⊙ models (black curves) and the
1.35 M⊙+1.35 M⊙ models (green curves) for the LS EoS (solid lines) and the Shen EoS
(dashed lines).
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more massive companion. Because of this there is stronger shear at the dense contact
interface between the symmetric binary components, and finally the remnants are also
more compact due to the higher mass.

Furthermore, one recognizes that mergers described the LS EoS yield higher tem-
peratures than the collisions with the Shen EoS. Following the evolution of the high-
temperature SPH particles one finds that in the case of the LS EoS the compression of
matter is much more extreme compared to the Shen EoS models, which is reasonable
considering that the LS EoS is softer in comparison to the Shen EoS (see chapter 3).
In addition we assume that the higher compactness of the initial stars leads to a more
violent clash and a stronger shearing, because the inspiral phase takes longer, which
increases the relative velocity differences.

A.2. Approximate treatment of thermal effects

Many high-density EoSs consider only the ground state of matter that means at zero
temperature and in equilibrium with respect to weak interactions. Therefore, these EoSs
are supplied by an approximate treatment of temperature effects when used for simu-
lations of NS mergers [141, 146]. (For the concrete implementation of this ideal-gas
like expansion see section 3.1.) Since a consistent prescription of the thermal effects is
missing for these EoSs, the viability of such an approximate inclusion of temperature is
unknown. For this reason we performed additional simulations for the Shen EoS and the
LS EoS, where the full temperature dependence is known. By employing the approxi-
mate temperature treatment for these two EoSs, it is possible to assess the limitations
connected to this ideal-gas like expansion when comparing the results to the fully consis-
tent simulations. For the adiabatic index Γtherm, which models the influence of thermal
effects on the pressure (see section 3.1), values of 1.5 and 2 have been chosen.

On the one hand, Γtherm = 2 is the typical choice made in the literature and as we
want to judge on the reliability of the approximate approach we used this value. On
the other hand, this choice is also motivated by an analysis of the EoS tables of the
Shen and the LS models from which one can derive the true value of Γtherm for a given
baryon density ρ, temperature T and electron fraction Ye. The adiabatic index Γtherm is
computed according to its definition (see 3.1)

Γtherm =
Ptherm

ρǫtherm
+ 1 (A.1)

=
P (ρ, T, Ye) − P (ρ, 0, Ye)

ρ [ǫ(ρ, T, Ye) − ǫ(ρ, 0, Ye)]
+ 1, (A.2)

where the electron fraction of the zero-temperature EoS in beta-equilibrium is used. For
different characteristic temperatures Γtherm is shown in Fig. A.4 for both EoSs.

We examine configurations with two 1.35 M⊙ stars for the LS EoS and the Shen
EoS, because binaries with these mass components are very abundant in theoretical
predictions of the binary mass distribution by population synthesis studies [19]. Before
analyzing the results of our simulations, we stress that for each set of models based either
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Figure A.4.: Adiabatic index Γtherm as a function of the rest-mass density for the Shen
EoS and the LS EoS for typical temperatures. See text for the definition of Γtherm.

on the Shen EoS or on the LS EoS we used exactly the same initial data and the same
numerical resolution. Hence, deviations among these calculations are entirely caused by
the different treatment of thermal effects.

In Fig. A.5 we compare for the LS EoS the evolution of the amount of matter fulfilling
the criterion for forming a accretion torus after the merger remnant has collapsed to a
BH. As one can see, the approximate treatment of thermal effects yields torus masses,
which are about 0.01 M⊙ too low for Γtherm = 2 and about 0.04 M⊙ too high for
Γtherm = 1.5. Assuming that Γtherm = 2 overestimates and Γtherm = 1.5 underestimates
temperature effects, as one observes in Fig. A.4, the discrepancies can be explained by a
different dynamical behavior caused by the different strength of the thermal contribution
to the pressure and the different resulting structure of the remnant. The model with
Γtherm = 1.5 allows for a higher compression of the merging stars and the forming
remnant, which is also visible in the compactness of the hypermassive object at the end
of the simulation. This can be seen in Fig. A.6 by the amount of enclosed matter within
ellipsoids around the center of mass. The dynamics finally lead to a significantly lower
ADM mass in the Γtherm = 1.5 model (equivalent to a higher binding of the remnant),
which explains the higher torus mass, because roughly spoken the ISCO is located further
inside the remnant.

The steep increase of the torus mass of the Γtherm = 1.5 model is an artifact caused
by the onset of a BH collapse of the remnant. For the other two models the collapse
does not occur within the simulation time. This behavior is consistent with the findings
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Figure A.5.: Time evolution of the amount of matter fulfilling the torus criterion for the
1.35M⊙+1.35M⊙ binary mergers with the LS EoS using the full temperature dependence
(black curve) and an approximate description of thermal effects with Γtherm = 1.5 (red
curve) and Γtherm = 2 (green curve).

in [10] that a (higher) thermal pressure contribution leads to a delayed BH formation.

Comparing the torus masses of the Shen EoS models, one finds again that for Γtherm =
1.5 the highest value is obtained. But in contrast to the LS EoS, the full EoS simulation
yields the lowest torus mass. The deviations of the approximate treatment are about
0.01 M⊙ and 0.02 M⊙, respectively.

As one can see from Figs. A.8 and A.9 the estimates of the ejecta mass are very un-
certain when simulating a NS merger with the approximate inclusion of thermal effects.
It is also evident from Fig. A.4 that the approximation fails in particular for low-density
matter like ejecta material.

From the observational point of view the consequences of an approximate treatment on
the GW signal are of great interest in order to know the limitations of this approach when
it is applied to cold microphysical EoSs where the temperature behavior is unknown.
In particular one expects the emission from the postmerger remnant to be influenced
most, because in this stage high temperatures occur. To characterize the GW signal
in this phase in chapter 5 the frequency fpeak was introduced as the location of a very
pronounced peak structure in the GW luminosity spectrum. This peak corresponds to
the oscillation of the hypermassive object, which can be identified also in Fig. A.10
showing the GW luminosity spectra for the three models described by the LS EoS. The
peak frequencies of the Γtherm models differ by about 200 Hz from the result of the
simulation using the full EoS. These deviations can be compared with the differences
between models of different total binary masses. For instance the model with 1.2 M⊙
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Figure A.6.: Enclosed gravitational mass within an ellipsoid with the semiaxes a = x,
b = x and c = x/2 for the 1.35M⊙+1.35M⊙ binaries. Shown are results with the LS EoS
using the full temperature dependence (black curve) and an approximate description of
thermal effects with Γtherm = 1.5 (red curve) and Γtherm = 2 (green curve). Note that
within general relativity the gravitational mass is only defined in isolation. Here Mgrav

denotes the enclosed contribution to the ADM mass, neglecting the extrinsic curvature
terms. Using the enclosed rest mass yields a similar result. The distance x is given in
isotropic coordinates.

and 1.35 M⊙ components yields a peak frequency of 3.04 kHz, which differs from the
reference model with the full EoS (black curve in Fig. A.10) by 180 Hz (see also Fig. 5.11).
Therefore, the uncertainties caused by the Γtherm-approximation can be considered to be
rather large, because they are of the same order as if one would choose an about 0.2 M⊙

lower total binary mass.

The deviations for the simulations using the Shen EoS are about 50 Hz, thus lower than
for the LS EoS. This seems reasonable because the models described by the Shen EoS
do not reach as high temperatures as the mergers employing the LS EoS (see Fig. A.3).

Adopting the interpretation of the results of chapter 5 that the contribution of ther-
mal effects to the pressure influences the compactness of the postmerger remnant and in
this way the peak frequency, one also understands that the Γtherm = 1.5 models result
in higher peak frequencies compared to the full temperature treatment, while the simu-
lations using Γtherm = 2 yield lower frequencies (see the discussion in section 5.3). The
compactness of the different models can be clearly identified in Fig. A.6, which displays
the enclosed mass in the merger remnants.

Furthermore, it is evident from Figs. A.10 and A.11 that the different modeling of
thermal effects influences mostly the postmerger phase reflected in the high-frequency
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Figure A.7.: Time evolution of the amount of matter fulfilling the torus criterion for the
1.35M⊙+1.35M⊙ binary mergers with the Shen EoS using the full temperature depen-
dence (black curve) and an approximate description of thermal effects with Γtherm = 1.5
(red curve) and Γtherm = 2 (green curve).

part of the spectra, where deviations among the models occur. The emission at low
frequencies is dominated by the inspiral phase where temperature effects are negligible,
and consequently the spectra coincide at this part of the frequency domain.
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Figure A.8.: Time evolution of the amount of matter fulfilling the ejecta criterion for the
1.35M⊙+1.35M⊙ binary mergers with the LS EoS using the full temperature dependence
(black curve) and an approximate description of thermal effects with Γtherm = 1.5 (red
curve) and Γtherm = 2 (green curve).
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Figure A.9.: Time evolution of the amount of matter fulfilling the ejecta criterion for the
1.35M⊙+1.35M⊙ binary mergers with the Shen EoS using the full temperature depen-
dence (black curve) and an approximate description of thermal effects with Γtherm = 1.5
(red curve) and Γtherm = 2 (green curve).
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Figure A.10.: Direction and polarization averaged GW luminosity spectra for binaries
with M1 = 1.35 M⊙ and M2 = 1.35 M⊙ described by the LS EoS using the full temper-
ature dependence (black curve) and an approximate description of thermal effects with
Γtherm = 1.5 (red curve) and Γtherm = 2 (green curve).
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Figure A.11.: Direction and polarization averaged GW luminosity spectra for binaries
with M1 = 1.35 M⊙ and M2 = 1.35 M⊙ described by the Shen EoS using the full
temperature dependence (black curve) and an approximate description of thermal effects
with Γtherm = 1.5 (red curve) and Γtherm = 2 (green curve).
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stars

Within this thesis we employ several times the argument that the combination of a
microphysical treatment of the EoS and the inclusion of general relativistic effects is
crucial to capture the essential physics of a merging event, where a compact star is
involved. To strengthen this point we compute the mass-radius relation of NSs under
various assumption (see Fig. B.1). The black solid line gives the mass-radius relation for
the microphysical LS EoS calculated with the general relativistic equations of hydrostatic
equilibrium (see e.g. [35]). NSs in a binary with a relatively large orbital separation,
where tidal forces are small and the selfgravity of the star dominates, will be fairly well
approximated by these solutions. This family of solutions can be compared with the
stellar structure within a Newtonian treatment (dashed black curve). As one can see for
low masses the Newtonian approximation agrees with the relativistic solution, which is
understandable because these objects are less compact and relativistic corrections are
small. On the other hand, for more massive stars the deviations become increasingly
larger. In particular, a Newtonian description does not yield an inverse mass-radius
relation. Besides the overestimation of the radius, this is has important consequences
for instance for mass transfer which may take place in NS-BH binaries. While in a
relativistic treatment a star loosing mass would become larger and eventually enhance
this process, in Newtonian gravity the stellar fluid reacts to mass loss in the opposite
way. We also stress at this point that in simulations using a pseudo-potential to mimic
the presence of an ISCO [119], the selfgravity of the NS is computed within a Newtonian
framework so not accounting for the special features cause by general relativity.

Furthermore, Fig. B.1 suggests that also the structure of a postmerger remnant will
not be reproduced correctly by Newtonian gravity. For instance in such an approximate
treatment there exists no maximum mass of NSs, and consequently no collapse of a
hypermassive object can occur, because arbitrarily high masses can be supported against
gravitational collapse.

In addition, in the compilation of Fig. B.1 we include the mass-radius relation of NSs
described by a polytropic EoS obtained with the relativistic stellar structure equations.
For cold NSs the relation between energy density e and pressure P is implicitely given
by

P = κρΓ (B.1)

e = ρ+
P

Γ − 1
(B.2)

with κ = 85 and Γ = 2. This EoS is currently employed for the initial data in all
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Figure B.1.: Mass-radius relations for NSs computed within general relativity (black
solid curve) and within Newtonian gravity (black dashed curve) employing the micro-
physical LS EoS. The red curve displays the mass-radius relation of stars described by a
polytropic EoS with κ = 85 and Γ = 2, obtained from a relativistic treatment of gravity.

published relativistic simulations of NS-BH mergers, except for the study presented in
this thesis. While the high-mass range of this polytrope is similar to microphysical EoSs
(see e.g. [66, 89] for mass-radius relations of compact stars for various microphysical
EoSs), one recognizes striking differences for low-mass objects, where the radii remain
relatively small. (Other choices for κ and Γ yield qualitatively similar results.) This
finding is a consequence of the fact the a polytropic EoS cannot describe the whole
density range of compact stars, and since the parameters are chosen to match the high-
density regime, they necessarily fail at low densities leading to the remarkable differences
at low masses. The EoS at low densities can be expected to be important e.g. during
the tidal disruption of a NS when merging with a BH.

In summary, these simplifying arguments show the need for a simultaneous consider-
ation of microphysical EoSs and relativistic effects, highlighting the special advantages
of the particular models for compact star mergers and compact star-BH mergers used
in this thesis.
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Murchadha. Where do moving punctures go? Journal of Physics Conference
Series, 66(1):012047, 2007.

117



Bibliography

[71] M. Hannam, S. Husa, D. Pollney, B. Brügmann, and N. Ó. Murchadha. Geometry
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[72] M. Hannam, S. Husa, and N. Ó Murchadha. Bowen-York trumpet data and black-
hole simulations. ArXiv e-prints, gr-qc/0908.1063, Phys. Rev. D accepted, 2009.

[73] M. M. Hohle et al. in preparation, 2009.

[74] http://ams.cern.ch/.

[75] http://www.dual.lnl.infn.it/.

[76] http://www.et gw.eu/.

[77] J. Isenberg and J. Nester. Canonical Gravity. In A. Held, editor, General Relativity
and Gravitation, one hundred Years after the Birth of Albert Einstein, page 23,
1980.

[78] Hough J. and Rowan S. Gravitational wave detection by interferometry (ground
and space). Living Reviews in Relativity, 3(3), 2000. URL http://www.

livingreviews.org/lrr-2000-3.

[79] P. Jaikumar, S. Reddy, and A. W. Steiner. Strange Star Surface: A Crust with
Nuggets. Phys. Rev. Lett., 96(4):041101, 2006.

[80] H.-T. Janka, T. Zwerger, and R. Moenchmeyer. Does artificial viscosity destroy
prompt type-II supernova explosions? Astron. Astrophys., 268:360–368, 1993.

[81] H.-T. Janka, T. Eberl, M. Ruffert, and C. L. Fryer. Black Hole-Neutron Star
Mergers as Central Engines of Gamma-Ray Bursts. Astrophys. J. Lett., 527:L39–
L42, 1999.

[82] J. L. Jaramillo, E. Gourgoulhon, I. Cordero-Carrión, and J. M. Ibáñez. Trapping
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