TECHNISCHE UNIVERSITAT MUNCHEN
Max-Planck—Institut fiir Quantenoptik

Entanglement Distribution
in Quantum Networks

Sébastien Perseguers

Vollstandiger Abdruck der von der Fakultéat fiir Physik
der Technischen Universitat Miinchen
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender :  Univ.-Prof. J. J. Finley, Ph.D.

Priifer der Dissertation : 1. Hon.-Prof. I. Cirac, Ph.D.
2. Univ.-Prof. Dr. P. Vogl

Die Dissertation wurde am 25.02.2010 bei der
Technischen Universitat Miinchen eingereicht und
durch die Fakultat fiir Physik am 15.04.2010 angenommen.






Fvery great and deep difficulty bears in itself its own
solution. It forces us to change our thinking in order
to find it.

— NI1ELs BOHR






Abstract

This Thesis contributes to the theory of entanglement distribution in
quantum networks, analyzing the generation of long-distance entangle-
ment in particular. We consider that neighboring stations share one par-
tially entangled pair of qubits, which emphasizes the difficulty of creating
remote entanglement in realistic settings. The task is then to design local
quantum operations at the stations, such that the entanglement present
in the links of the whole network gets concentrated between few parties
only, regardless of their spatial arrangement.

First, we study quantum networks with a two-dimensional lattice struc-
ture, where quantum connections between the stations (nodes) are de-
scribed by non-maximally entangled pure states (links). We show that
the generation of a perfectly entangled pair of qubits over an arbitrarily
long distance is possible if the initial entanglement of the links is larger
than a threshold. This critical value highly depends on the geometry of
the lattice, in particular on the connectivity of the nodes, and is related to
a classical percolation problem. We then develop a genuine quantum strat-
egy based on multipartite entanglement, improving both the threshold and
the success probability of the generation of long-distance entanglement.

Second, we consider a mixed-state definition of the connections of the
quantum networks. This formalism is well-adapted for a more realistic
description of systems in which noise (random errors) inevitably occurs.
New techniques are required to create remote entanglement in this set-
ting, and we show how to locally extract and globally process some error
syndromes in order to create useful long-distance quantum correlations.

Finally, we turn to networks that have a complex topology, which is
the case for most real-world communication networks such as the Inter-
net for instance. Besides many other characteristics, these systems have in
common the small-world feature, stating that any two nodes are separated
by a few links only. Based on the theory of random graphs, we propose
a model of quantum complex networks, which exhibit some totally unex-
pected properties compared to their classical counterparts.
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Introduction

Any sufficiently advanced technology is indistin-
guishable from magic.

— ARTHUR C. CLARKE

Nature is a perpetual source of wonder for mankind. It has been daz-
zling human beings since their very origin, and there is no doubt that this
astonishment will never cease. However, before serving man, new phenom-
ena have always been accompanied by incredulity and fear. Thousands
of years of civilization taught us how to apprehend such discoveries, and
mystical interpretations of Nature have been replaced by rational expla-
nations. It is nevertheless a fact that man feels very uncomfortable when
doubt is cast on his perception of the world he lives in. History has been
shaken many times by scientific revolutions, and each improved the well-
being, and hopefully the wisdom, of humanity. It is generally agreed that
modern science finds its roots back in 1543 with the work of Nicolaus
Copernicus, and since then many illustrious physicists, as Galileo Galilei,
[saac Newton or James C. Maxwell to name just a few, radically modified
our conception of the universe. Acceptance of new theories is nonetheless
a long-term process, not only for the general public but also among the
experts in the field. Experimental observations of their predictions play a
crucial role in that respect, and usually engineers close the discussion by
making new and “magic” technologies out of them.

Quantum mechanics has revolutionized our daily lives, and it is no
surprise that its confrontation with the general relativity of Albert Ein-
stein and with the information theory of Claude E. Shannon, the two
other major scientific achievements of the 20th century, has raised deep
and fundamental questions about our world. The most famous example
of the tension existing between these theories is certainly the Einstein-
Podolsky-Rosen paradox, a Gedankexperiment arguing that quantum me-
chanics cannot be a complete and realistic physical theory [EPR35]. Some
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thirty years later, John S. Bell proved that there exist certain experimen-
tal settings that would contradict such a classical picture of reality [Bel64].
However, the debate among physicists remained passionate until the first
experiments revealed the true nature of our world [FC72, ET76, AGR81,
ADRS2|: the statistical predictions of quantum mechanics, as originally
formulated in the late 1920’s, were confirmed. (Actually, there were some
loopholes in the experiments, but a detailed discussion would bring us
much too far from the scope of this introduction.)

Besides the fundamental and, to some extent, philosophical questions
raised by quantum mechanics, some more pragmatic researchers saw in
it a source of formidable possibilities, which initiated a “second quan-
tum revolution” [Bel04, p. xix]. For instance, in contrast to classical
encryption protocols, the possibility of using genuine quantum character-
istics of light to achieve unconditionally secure communication between
two distant parties was pointed out by Stephen Wiesner in the 1970’s
[Wie83]. This was rediscovered and popularized as quantum cryptography
by Charles H. Bennett and Gilles Brassard [BB84]. In their work, they
showed that a perfectly secure key distribution is possible by using quan-
tum particles, since no one can eavesdrop without leaving a trace. This
comes from one basic property of quantum physics which has been, and
still is, a source of antagonistic interpretations: no measurement can be
performed on a system without perturbing it. Some years later, Artur K.
Ekert designed another scheme for quantum cryptography [Eke91]. In his
Letter, he proposed to utilize the quantum entanglement (“spooky action
at a distance” [Ein71]) that lies at the very heart of the EPR paradox and
a generalized Bell theorem, known as the Clauser-Horner-Shimony-Holt
inequalities [CHSHG69], to test for eavesdropping. Quoting the introduc-
tion to [GRTZ02|, these developments really show that the old and weird
viewpoint considering quantum physics, due to its contrast with classical
physics, as a set of negative rules stating things that cannot be done! was
finally turned positive.

Entanglement turns out to be a wonderful resource for many commu-
nication protocols, such as superdense coding [BW92], quantum telepor-
tation [BBC'93], or distributed quantum computation? [CEHM99], just

'For example, one cannot determine both the position and the momentum of a
particle with arbitrarily high accuracy, or duplicate an unknown quantum state.

2Quantum computation is another revolutionary field of quantum physics [Fey82,
Deul5, [Sho94, DiVI5, [Gro96]. However, the role played by entanglement in the quan-
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(a) SECOCQ Project, Vienna 2008 (b) A quantum network

Figure 1: (a) The fiber ring connecting four buildings in Vienna and one
in St. Pélten, a city about 85 km distant from the station BREIT. (b) In
general quantum networks, links represent entangled pairs of particles and
any local quantum operations can be performed at the stations, which are
located at the vertices of the graph.

to name a few. The implementation of these concepts requires an extraor-
dinarily careful preparation of non-classical states, which are extremely
fragile against any perturbation, but the control of physical systems at
the quantum scale has been impressively increased over the last few years.
Advanced technologies relying on entanglement are indeed being actively
developed, and quantum key distribution systems in particular have ma-
tured to real-world application. For example, quantum cryptography was
used to protect voting ballots casts in Geneva (Switzerland) during parlia-
mentary elections on October 21, 2007. Another example is given by the
network consisting of five stations and seven quantum connections that
has been built recently in Vienna [PPMOS8|, see Fig. 1a. This setup op-
erates in a point-to-point modus, which means that the stations behave
classically: quantum correlations are created between neighboring stations
but cannot be transmitted farther. It is nonetheless very reasonable to
predict that genuine quantum networks (Fig. 1b), that is, sets of stations
sharing entangled pairs of particles that can be manipulated ad libitum,
will appear in the near future.

Currently, remote entanglement is best created between atoms by send-
ing single polarized photons, or beams of squeezed light, through optical
fibers® [CZKM97, Kim08]. While local operations on the quantum systems

tum speed-up over classical computers is not clear at the moment [LBAWO0S, IGFE09).
3A direct transmission of entangled photons over free-space links is also possible
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are performed more and more reliably [MHPCO06, HSP10], one major chal-
lenge in quantum communication remains the generation of entanglement
over a large distance. In fact, the imperfections of the quantum channels
limit the maximum distance to about fifty to hundred kilometers. The
two main reasons for this limited reach are the inevitable depolarization
of the photons and the intrinsic loss in optical fibers [GRTZ02]. Fortu-
nately, theoretical proposals showed that this limitation may be overcome
by means of quantum repeaters [BDCZ98, DLCZ01]. In these protocols,
the quantum channel is divided into smaller sections of about the size of
the coherence or absorption length of the optical fibers, and entanglement
is propagated by a generalized quantum teleportation called entanglement
swapping [ZZHE93]. Actually, the scheme is slightly more subtle since one
cannot clone nor amplify the particles (qubits) carrying the quantum infor-
mation without destroying their quantum nature [WZ82|. Although the
implementation of large quantum repeaters remains an ambitious task,
the essential elements needed to their realization are already established
[PGUT03, YCZT08|, converting the magical thought of a perfectly secure
communication between distant parties into an accessible technology.

In this Thesis, we study the distribution of entanglement in quantum
networks in general, analyzing the generation of long-distance entangle-
ment from an arrangement of short quantum connections in particular. We
consider that neighboring stations share initially some partially entangled
pairs of qubits, which emphasizes the difficulty of creating remote entan-
glement, and the task is then to design local quantum operations such
that the entanglement present in the whole network gets concentrated be-
tween a small number of chosen stations. We will see that the geometry of
the network plays a crucial role in this problem, but the real leitmotiv in
this Thesis is that the best results are obtained if one “thinks quantumly”
not only at the connection scale, but also from a global network perspec-
tive. In this respect, finding powerful entanglement-distribution strategies
deeply depends on our knowledge of multipartite entanglement properties,
that is, the characteristics of entangled states of more than two particles.

The first part of the Thesis deals with a pure-state description of the
quantum networks. In Chap. 1, we start by analyzing carefully the basic
quantum operations that allow one to propagate or concentrate the entan-

[FUHT09], but the relevance of this method highly depends on atmospheric conditions
and thus may not be appropriate in hostile environments such as cities.
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glement present in the links of the network. We review the entanglement-
swapping procedure and introduce some figures of merit to quantify its
efficiency (Sec. 1.1). Then, we characterize the quantum measurements
that optimally achieve this task, which leads to an interesting statement:
already for systems in which only two entanglement swappings are per-
formed, projecting onto partially-entangled states may yield better re-
sults than considering a basis of maximally-entangled pairs of qubits, see
Sec. 1.2. Finally, we justify the model of the quantum connections by
showing that the optimum success probability of entanglement genera-
tion between two distant stations in one-dimensional system decays expo-
nentially with their distance (Sec. 1.3). In fact, this corresponds to the
existence of an absorption (or depolarization) length in real optical fibers.

In Chap. 2, we turn to two-dimensional networks, in particular to
lattices in which neighboring nodes share some pure-state entanglement.
The goal is to generate an entangled pair of qubits between two distant
stations, and the presence of many different paths between two nodes of
the lattice greatly helps in this task. In fact, if the entanglement of the
connections is larger than some critical value depending on the network
structure, then it can be propagated over an arbitrarily large distance. We
generalize some previously known results about entanglement percolation,
showing that, in some cases, quantum measurements on the nodes can
increase the efficiency of the strategy (Sec. 2.2). The idea of preprocess-
ing the entanglement percolation by a judicious choice of local quantum
operations, namely a projection onto multipartite entangled states, is fur-
ther developed in Sec. 2.3. This leads to a systematic improvement of the
creation of entanglement over a large distance, lowering the entanglement
threshold regardless of the lattice geometry.

Introducing the concept of quantum complex networks (Chap. 3), we
temporarily leave the problem of long-distance entanglement generation in
lattices to focus on networks of richer topology. Three main properties of
real-world communication networks, that are absent in regular lattices, are
a small-world, clustering and scale-free behavior. The first mathematical
model describing networks with the small-world property is the random
graphs of Erd6s and Rényi (Sec. 3.1.1), and in Sec. 3.1.2 we propose a
natural extension to the quantum domain. The following sections aim
to show that, mainly due to the superposition principle, the quantum
complex networks behave completely distinct from their classical cousins.

The pure-states formalism brings a deep insight into the broad range
of possibilities, but also the restrictions, of entanglement manipulation
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in quantum networks, However, realistic settings are best described by
mixed states, since considering such quantum mixtures expresses our lack
of control over all degrees of freedom of the system. The aim of Chap. 4
is twofold. First, it makes the transition between the two parts of this
Thesis by showing how the results collected so far still apply for certain
kinds of errors, or noise, that perturb any experiment (Sec. 4.1). Second,
it briefly reviews the quantum-repeater protocols, which are proposed to
create remote entanglement in noisy settings, drawing attention to their
limitations (Sec. 4.2.1). In particular, the need of reliable quantum mem-
ories to store the qubits for a long time is one of the most severe problems
they have to face.

A new scheme for generating long-distance entanglement in quantum
networks subject to general noise is presented in Chap. 5. Making full use
of the geometry of two-dimensional square lattices, we combine a classical
and a topological error-correcting codes into one efficient quantum proto-
col. All operations are performed fault-tolerantly and, equally important,
simultaneously (Sec. 5.2). Therefore, the qubits have to be preserved from
decoherence for a short time only, which relaxes the requirement of good
quantum memories. Moreover, the overhead of local resources increases
very slowly with the distance, while the tolerable error probability stays
on the order of one percent for any realistic network size, making our
proposal favorable for quantum communication.

Finally, in Chap. 6, we prove that entanglement can be established
between two infinitely distant qubits of a three-dimensional network if the
noise of the connections is not too strong. To that end, we first trans-
form the quantum state that describes the initial network into a cluster
state, which is a highly-entangled multipartite state (Sec. 6.1). Then, it is
shown how the information gained by measuring the qubits at each sta-
tion allows one to correct most errors affecting the links of the network
(Sec. 6.2). Since only a constant overhead of qubits is required per sta-
tion, this strategy further lessens the physical resources that are needed
for long-distance communication in quantum networks.

The various results presented in Chaps. 1 and 2 have been published
in [PCAT08], except those of Sec. 2.3 which are to be found in [PCL™10].
The results of Chaps. 3, 5, and 6 and the related discussions in Chap. 4
have been published in [PLACI0], [PJST08|, and [Per10], respectively.
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Pure states

Making the simple complicated is commonplace.
Making the complicated simple, awesomely simple,
that’s creativity.

— CHARLES MINGUS






CHAPTER 1

Entanglement manipulation in
basic networks

The first part of this Thesis is devoted to quantum networks in which
connections are described by two-qubit entangled pure states of the form

|0} = V20 [00) + Vipr [11), (1.1)

with ¢+ 1 = 1 and where our convention is to choose ¢y > ¢1. Setting
this last inequality to be strict reflects the fact that remote entanglement
cannot be generated perfectly in realistic settings. On the contrary, we
consider that all stations have a complete and perfect control over their
particles, so that no restriction is put on the quantum operations they can
perform locally. For instance, we permit the use of ancillary qubits, and
no error occurs while manipulating, storing, or measuring the quantum
system at a station. This may seem to be a crude approximation, but it
allows one to get a deep insight into the way entanglement can be manip-
ulated in general quantum systems. In this chapter, we study the basics of
entanglement manipulation in communication networks in the very spirit
of [BVK9S8, HS00]. The aim is to investigate and derive optimal local
measurement protocols for networks consisting of few qubits only. The
results obtained for these simple situations will then be used as building
blocks for more elaborated schemes in larger networks.

In Sec. 1.1, we start by describing the operation that propagates entan-
glement over a larger distance in a quantum network, namely the entangle-
ment swapping [ZZHE93| at a node that is referred to as an entanglement
swapper (or a quantum relay, see [AIRMTT04]). This quantum operation
involves a joint measurement on two qubits and is optimally performed in
a basis of maximally entangled states. Depending on the figure of merit
quantifying the efficiency of this procedure, however, we show that differ-
ent bases (local rotation of the qubits) are to be used.

In Sec. 1.2, we consider quantum systems that consist of two entan-



10 Entanglement manipulation in basic networks

glement swappers, and we find that projecting onto maximally-entangled
states does not maximize, in general, the various figures of merit. In fact,
the measurements at the middle stations are best performed in a basis
of partially entangled states. This result, besides being rather surprising,
will have some importance in the entanglement distribution protocols of
the next chapter (Sec. 2.3.2). Then, we describe another useful quan-
tum operation to manipulate the entanglement of pairs of qubits: while
the entanglement swapping transfers (but inevitably decreases) the en-
tanglement from one node to another, the distillation of several entangled
states can concentrate it into one pair only. These two antagonistic effects
will find a direct application in the deterministic creation of long-distance
entanglement in quantum networks, see Sec. 2.1.

Finally, in Sec. 1.3, we consider arbitrarily large chains of entanglement
swappers. The probability to successfully generate an entangled pair of
qubits between the extremities of the chain decreases exponentially with
its length, which is a well-known result that is easily derived in our formal-
ism. We then determine the exact value of the average entanglement for
a specific choice of the measurement bases; it will be shown in Sec. 2.3.1
how this formula is related to the probability of creating some multipartite
entangled states.

1.1 Entanglement swapping

In this section, we show how the entanglement present in single connec-
tions can be propagated over a larger distance. We introduce some figures
of merit to quantify the efficiency of the procedure and describe the quan-
tum operations yielding the optimum results. These constructions will be
then extensively used to design powerful protocols for much larger sys-
tems.

1.1.1 Joint measurement at the middle station

It is a well-known result that any two-qubit entangled pure state can be
transformed into the state described in Eq. (1.1) by performing a local
basis rotation, which defines its Schmidt decomposition with coefficients
o and 1. We refer the reader to [NCO0], for example, for the elementary
definitions and notions related to quantum information theory, so that
only the strictly necessary notation has to be introduced here. In Fig. 1.1a,
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Figure 1.1: Examples of the entanglement-swapping procedure in quantum
networks. (a) Entanglement can be generated between two previously
unconnected stations A and C' by an entanglement swapping at the middle
station. We call the station B an entanglement swapper or a quantum
relay. (b) Same consideration, but with two intermediate nodes.

we depict one of the most primitive networks, but nevertheless important,
that can be imagined. In this configuration, the central station applies
a joint measurement on its two qubits, so that the extremities A and C'
become entangled. For instance, the station B can perform a measurement
described by n positive operators F,, satisfying the completeness relation
S E, =14, in which case the resulting (non-normalized) state of the

m=1 m
outcome m reads

Pm = trbb’ ((12 &® Em & 12) “)‘ﬁx&ﬁ‘ )

and appears with probability p,, = tr(p,,). Restricting to projective mea-
surements only, that is, setting E,, = |pm)ftm| for some normalized state
| [Em> = Zzl i—0 Mmij |17), one verifies that the smallest Schmidt coefficient
of pm is

. 1 4 det(pl,)
= o N ==(1—4/1 - —2m/ 1.2
)\m Drm min {e1gva (pm)} 92 ( p%L )7 ( )

with pl, = tr.(pm). This formula can be written in a more compact way
by considering the following map from the space of two-qubit pure states
to that of 2 x 2 complex matrices:

vy =Y wylij) = P= Z vij [iXJ]- (1.3)
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In fact, pf, is now given by M, M with M,, = a i¥, 3, and the quantities
of interest read:

_ 2| det(M,,)| Voo B

Cm - C m)s 1.4a
o o (1) (1.4a)
)\m:%(l—\/l—(],?n), (1.4b)
1
Pm = Z a;3; ‘,um,z'j|2u (1.4c)
i,j=0

where we have introduced the concurrence, a measure of entanglement for
general states of two qubits [Wo098|. For pure states, the concurrence is
defined as C'(a) = 2|det(a)|. In this setting, the prototype of projective
measurements is clearly the entanglement swapping, which teleports the
qubit b to ¢ by consuming the connection |5). The measurement of the
qubits b and ¥’ is performed in a Bell basis, which we define as follows.
Starting from the computational basis { |0), [1)}, we define two new or-
thogonal bases { |1), [{)} and {|®T), |®7), |U), |[¥™)} for one and two

qubits, respectively:
Y _ 7 (10
<u>) _U<|1>>, (1.50)
with U € U(2), and

N ER Y oo [T £ D)

) A =) = A

The latter four vectors are known as the Bell states if no local rotation is

performed, i.e., if U = 1, for both qubits. In this case, |1) and |]) are

the eigenvectors of the Pauli matrix Z, and we call the basis indistinctly

the Bell or the ZZ basis. Another two-qubit basis plays a key role while

manipulating entangled states: the XZ basis, in which the first unitary

corresponds to the Hadamard matrix, so that |1) and ||) are the eigen-

vectors of the Pauli matrix X for the first qubit. Explicitly, the ZZ and
XZ bases are given by the columns of the matrices

(1.5b)

1 1 0 0 1 1 1 -1
1 o o 1 111 -1 1 1
Mzz_ﬁ 0 0 1 1| @dMe=51, | 4 ;| (16

1 -1 0 0 11 1 1
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1.1.2 Figures of merit

We describe now three figures of merit that are used to evaluate the use-
fulness of an entanglement distribution protocol: the singlet conversion
probability (SCP), the worst-case entanglement (WCE), and the average
concurrence. These figures of merit take value in the interval [0, 1] and are
somehow related to each other, but they present some subtle differences
nonetheless. Because they are intimately related to the transformation of
bipartite pure states under local operations and classical communication
(LOCC), we first recall the connection between the Schmidt coefficients
and majorization theory, which will naturally lead to the definition of our
figures of merit.

LOCC transformations and majorization theory

Consider two pure states |«) and |f) in a bipartite system. Can |a) be
transformed into |5) by LOCC in a deterministic way? The solution to
this question was found in 1999 by Nielsen [Nie99], who noticed a con-
nection between this problem and majorization theory. Based on this
relation, Vidal extended the results to obtain the optimal probability for
LOCC conversion between states whenever a deterministic transformation
is impossible [Vid99]. We briefly review these results here since this for-
malism is widely employed in many of the protocols described in the next
sections. The interesting reader is referred to [NVO1] for more details.

Let us introduce the concept of majorization by considering two d-
dimensional real vectors, v = (vg,...,v4-1) and w = (wy,...,w4_1),
whose components are positive, sum up to one, and are sorted in de-
creasing order. Then v is said to be majorized by w, which is denoted by
v < w, if the inequalities

Zvi Szwz‘ (1.7)

hold for all [ € {0,...,d — 1}. The beautiful connection to entangle-
ment manipulation between bipartite pure states is that |a) can be trans-
formed into |5) with unit probability whenever ¢ < 3, where « is the
vector of Schmidt coefficients of |a) (and similarly for 8). Moving now
to non-deterministic transformations, the optimal probability for LOCC
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conversion 1s

pla — B) :mlin{%zgz}. (1.8)

SCP, WCE and concurrence

A direct application of Eq. (1.8) is that a two-qubit state |a), as defined
in Eq. (1.1), can be converted into a singlet, or more generally into a Bell
pair, with optimal probability

S(a) = prob (|a) — [¥7)) = 2a;. (1.9)

Explicitly, this result (also known as the “Procrustean method” of entan-
glement concentration [BBPS96]) is obtained by performing on one of the
qubits a generalized measurement defined by the operators

a1 11—
M1 = @o 0 and M2 = @0 0 . (110)
0 1 0 0

Returning to the one-swapper configuration in which the central station
applies some measurement operators FE,,, we define the corresponding av-
erage SCP as

SP(a,8) = o S(bm) =2 P S (1.11)
m=1 m=1

where p,, is the probability that |¢,,) is generated. This equation can be
generalized to a system of N —1 entanglement swappers, in which case the
figure of merit is denoted by S™); if the context is clear, however, we sim-
ply write S. One can also be interested in maximizing the entanglement
for all outcomes, which is characterized by the WCE:

W = min{S(¢m)} (1.12)

Finally, in the same spirit, we define the average concurrence of the mea-
surement to be

C=) pmCn. (1.13)
m=1

In these equations, the figures of merit are defined for one measurement
only, but the generalization to larger systems is straightforward: one has
just to let the sum run over all possible outcomes of the various measure-
ments.
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1.1.3 Optimal measurements

The power of the protocols described in the next chapters depends cru-
cially on the efficiency of the entanglement swappings, and the choice of
the measurement basis is thus of special interest. In that respect, although
the Bell basis could be parameterized by four angles describing two one-
qubit rotations, it turns out that calculations are much easier when done
in the “magic basis” [HW97]

([21), [@2), |D3), [4)) = (|@T), =i [@7), =i [UT), [¥7)).  (L.14)

In this basis, in fact, the concurrence of a state |v) = Z?Zl v; |®;) sim-
ply reads C(v) = }Z?Zl v?|. Since the concurrence of a Bell state is
one, it follows that its components in the magic basis have all the same
phase. Thus, they can be restricted to take value within the set of the
real numbers. Let { |u)} be a set of four orthogonal such states. Then

the outcome probabilities given in Eq. (1.4c) read

P = Pnin (o1 + fi2) + P (Hos + 1504) (1.15a)
with
Pmin = —04051 ; 1/ and  Prax = —QOBO ; alﬁl. (1.15b)

It has to be emphasized that, given |a) and |3) and for C'(p,,) = 1, these
probabilities fully characterize a Bell measurement since, from Eq. (1.4),
the Schmidt coefficients of the resulting states depend on p,, only:

1 a1 BB
Ay == |1 —4 /1 — —"F"—=]. 1.1
- ( . (116

Remark that any measurement in the Bell basis yields four values p,, that
lie in the interval [puin, Pmax), and let us now state and prove a reverse
proposition that turns out to be very useful while maximizing the SCP:

Proposition 1.1 (Bell measurements and outcome probabilities)

Let {x,,} be a set of four real numbers that add up to one and that lie
in the interval [Pmin, Pmax]- Then there exists a Bell measurement whose
outcome probabilities p,, are equal to x,,.
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Proof  First, remark that the conditions on {x,,} are clearly necessary
since it describes a probability distribution, and because p,, = pmin Km +
Pmax (1 — k) for some &, € [0, 1], see Eq. (1.15a). The degenerate situa-
ti0N Pryin = Pmax = 1/4 is trivial since it only arises if both |«a) and |3) are
maximally entangled. In this case, all Bell measurements yield the same
outcome probabilities p,, = 1/4. We thus consider pupin < Pmax, and with-
out loss of generality we sort the x,, by increasing value: z; < x;,1. Let
us now denote by {u,,} the four vectors describing the Bell measurement
in the magic basis. Since they are orthogonal, one of them is completely
determined (up to a sign) by the three others; let p, be this vector. We
parametrize the first three vectors as

B, = (VEm €08(01), v/Em SIn(0,), V1 = Ky, c08(win), VI = Ky sin(wyy))

with K, = (Pmax — Tm)/ (Pmax — Pmin), SO that they are normalized and sat-
isfy p,, = x,,. The remaining task is to prove that there always exist some
angles 6,, and w,, leading to an orthogonal basis. This is straightforward
if K, € {0, 1} for some m, but let us write the orthogonality conditions as

cos(bh — 0y) = —mmy cos(wy — wo),
cos(0; — 03) = —mn3 cos(wy — ws), (1.17)
cos(fy — 03) = —man3 cos(wy — ws),

with 7,, = /(1 — K;n)/Km. In this system, only four angles are relevant:
0, =01 —05, 0, =0, — 03, w, = w; —wsy and w, = wy — w3, which can be
freely chosen in the interval [0, 7]. There are, however, some constraints
on these variables. In fact, x; > k41 and >, k; = 2, so that mn, < 1
and mn3 < 1. Therefore we have 0, € [0} ,, 7 — 0], with 07, € [0, 7]
such that cos(0?) = mmn. and cos(6;) = mns. It follows that cos(fy — 03)
is limited to the range [— cos(6% + 6;), 1], and one can check that there
always exists at least one solution to the orthogonality conditions except
if cos(0% + 0;) < —nans, which however never happens. In fact, this last
inequality can be written in terms of k1, ko and k3 only, which leads, after
some tedious algebra, to k1 + kg + k3 > 2. But the sum of the x’s equals
two, and thus there always exists an orthonormal basis of Bell vectors

leading to the probability distribution {x,,}. O

We have now all the tools to find the quantum operations that maxi-
mize the figures of merit of an entanglement swapping. Let us state the
results in the following three propositions:
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Proposition 1.2 (Measurement optimizing the SCP)

The measurement that maximizes the SCP after one entanglement swap-
ping is the Bell measurement in the ZZ basis, and

Smax = 2 min{ay, 41 }. (1.18)

Proof  Two kinds of outcomes appear when performing a Bell measure-
ment in the ZZ basis: two of the outcome probabilities are equal to ppax,
while the other two are equal to py,. Inserting these values into Eq. (1.4),
one finds the corresponding smallest Schmidt coefficients:

min{aof1, a1fo}

2 Pmin

A(Prmax) = afy (1.19)

A min) — — ’
<p ) 2pmax

whence Szz = 2 min{ay, 51 }. Consider now that we are allowed to jointly
perform an arbitrary operation not only on b and ¥, but also on a. We are
in the presence of a bipartite system, such that the results of majorization
theory apply: the SCP of this system is at most 23;. A similar construc-
tion for the qubits b, &’ and c tells us that the SCP is at most 2a, so that
the final SCP cannot exceed twice the minimum of oy and f. O

Remark that the SCP does not decrease after one entanglement swap-
ping if we set o = . This is the “conserved entanglement” described in
[BVK99.

Proposition 1.3 (Measurement optimizing the WCE)

The measurement that maximizes the WCFE for a one-swapper configura-
tion is the Bell measurement in the XZ basis:

Whax = 1 — /1 — 16 agar fo 3. (1.20)

Proof  Supposing that the best measurement is done in the Bell basis,
the result directy follows from Prop. 1.1 and Egs. (1.6) and (1.16). In
fact, one has to find a measurement that leads to four identical outcome
probabilities p,, = 1/4, which is achieved in the XZ basis. Now, let
us prove the proposition by contradiction. Suppose that there exists a
measurement described by the operators {E,, = |ty )(tm| }_,, with n >
4, such that Wg > Wxyz. Then each A, has to be strictly greater than the
smallest Schmidt coefficient of the outcomes in the XZ basis. Thus, from
Eq. (1.2),

det(pn) > p2, 4apa oy Vm. (1.21)
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Since det(py,) = oy oS | det (T, )]?, summing over m the square root of
this last equation yields

i | det ()] > 2. (1.22)

We know that the concurrence of a (normalized) state is smaller than
or equal to one, hence 2|det(@,,)| < |lun|[*>. Taking the trace of the
completeness relation for the operators E,, further implies Y " |lun,||* =
4. Therefore, we have )" _, | det(u,,)| < 2, which is in contradiction with
Eq. (1.22) and thus concludes the proof. O

Proposition 1.4 (Measurement optimizing the concurrence)

Any Bell measurement maximizes the average concurrence of one entan-

glement swapping:
Cmax =2 V 0400416061- (123)

Proof Itisclear from Egs. (1.4a) and (1.13) that the maximum average
concurrence is obtained for C'(p,,) = 1 for all outcomes, which describes,
by definition, a Bell measurement in any basis. O

1.2 Bases of maximally-entangled states are
not always optimum

Entanglement is known to lie at the root of quantum communication and
is often argued to be at the origin of any speed-up for quantum compu-
tation. Therefore, it seems that maximally-entangled states should be,
in some sense, always the best ones to perform any basic quantum task.
We have proven that this is indeed the case for one entanglement swap-
ping, where bases of Bell pairs are used to optimize the various figures
of merit. In this section, however, we show that this statement is not
true in general. To that end, we investigate some systems that consist of
two entanglement swappings only. An analogous result has been reported
recently by Modlawska and Grudka [MGOS§|, who have demonstrated that
non-maximally entangled states can be better for the realization of mul-
tiple linear optical teleportation in the scheme of Knill, Laflamme and
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Milburn [KLMO1]. Similarly, in the context of universal quantum compu-
tation, the authors of [GFEQ09] conclude that entanglement must “come
in the right dose”.

1.2.1 Two consecutive entanglement swappings

We consider here a system of three collinear states on which we perform
two consecutive measurements, as depicted in Fig. 1.1b. In what follows,
we describe the measurements that maximize the figures of merit intro-
duced in the previous section.

The maximization of the WCE and the concurrence is somehow trivial
for a two-swapper configuration. First, any Bell measurement maximizes
the average concurrence of the results of the two measurements. This
will be generalized and proven in Sec. 1.3.1 for an arbitrary number of
entanglement swappings. Second, in order to maximize the WCE, we
simply perform a X7 measurement at the two central nodes. In fact, if
one performs any other measurement on the first quantum relay, then at
least one resulting state |¢,,) is less entangled than the corresponding
XZ results. This further reflects in the WCE of the second measurement,
which has to be a Bell measurement in the XZ basis from Prop 1.3.

Let us now turn to the more interesting problem of maximizing S,
the average SCP of a chain of three entangled pairs of qubits and two
quantum relays. The first measurement yields some states |¢,,) with
outcome probabilities p,,, while from Prop. 1.2 we already know that the
second measurement has to be done in the ZZ basis. Hence, we have
to find for the first quantum relay the measurement operators F,, that
maximize

SO(a, 8,7) =2 pm min{eom, 1} (1.24)

We first maximize this quantity over the set of Bell measurements® and
then present some numerical results showing that non-Bell measurements
sometimes yield higher values of the SCP.
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h(p) S® (e, 8,7)
2vp* p--------- X 0.4---------------ooa-
f non-Bell
f(N iy
Bell
/. : | | | .5
Pmin p* Pmax % P S* S* 1 (a)
(a) Graph of h, defined by S®) = (b) Optimum SCP for S(B) =
> MPm) S(y) =04

Figure 1.2: SCP after two consecutive entanglement swappings. (a) Func-
tion h(p) = min{f(p),g(p)}, and definition of p*. (b) Optimal SCP
as a function of the entanglement of |a). Numerical results show that
there exists a better strategy than the Bell measurements (thin line) for
S(a) €]5*,5*[. The values S* and S* are such that p*(a*) = pmin(a™)
and p*(a%) = (1 = pae(0*))/3.

Bell measurements

We fix the states «, [, and v and consider the SCP as a function of the
outcome probabilities only:

SO ({pn}) = S min{F(pn). 9pn)} = 3 hlpn). (1.25)

where f(p) = 2vip and g(p) = p — \/P?* — apa1 SoB1. One can easily verify
that g(p) is strictly decreasing and convex for any states o and :

2

d d
%g(p) <0 and d—pQg(p) >0 \V/p € [pmina pmax]'

A typical example of h(p) is plotted in Fig. 1.2a, and the value p* at which
the two functions f and g cross each other is given by:

1
r=; | 2001 oy (1.26)
YoM

It is sufficient to maximize the function S® over the set of all possible
probability distributions, since Prop. 1.1 ensures the existence of a Bell

LAs we will see, this is the best strategy for a wide range of entanglement in the
connections «, 8 and 7.
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P versus puin and Prax {pm} maximizing S©) strategy
p* S Pmin {pmim Pmin; Pmax; pmax} ZZ

Pmin < p* < %(1 - pmax) {p*v p*a Pmax, 1- Zp* - pmax} non-Bell
51— Pmax) <p* < g {, v, v, 1= 3p7} Bell
P> i35 3 X7

Table 1.1: Maximization of S® over the set of Bell measurements (2nd
column), or performing arbitrary measurements (3rd column).

measurement leading to any such distribution. At this point, let us give
three conditions that have to be satisfied by the best probability distribu-
tion:

(i) Obviously, pm € [Pmin, Pmax) for all outcomes m, and ) p,, = 1.

(ii) If the set {pm,} maximizes the SCP, then all probabilities lie either
to the left or to the right of p*. In fact, suppose for example that
p1+ 26 < p* < py — 2¢ and choose p; = p; + ¢ and py = py — &,
with 0 < € < 1. The constraints on these new probabilities are still
satisfied, but a better SCP is found.

(iii) Since g is convex, if p; and py are such that p* + 2 < p; < py <
Pmax — 2€, then the choice p; = p; —¢e and ps = po +¢ yields a strictly
greater SCP.

From these considerations, it is now very simple to maximize S®, and one
sees that the value p*, with respect to pmin and puax, plays a crucial role
in the choice of the optimal measurement. In fact, we have to distinguish
four cases, as described in Tab. 1.1. Note that ZZ measurements lead to
the maximum SCP whenever p* < punin, while the XZ basis is the best
strategy when p* > 1/4. So far, we have maximized the SCP after two
entanglement swappings supposing that the first measurement had to be
done on the states a and 5. But what happens if we start from the right
extremity of the chain? It appears that the maximum SCP depends, in
general, on the order of the measurements, and that performing the first
measurement on the most entangled states yields better results.
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General measurements

The question that has still to be answered is whether or not considering
bases of non-maximally entangled states leads to a better SCP than the
Bell measurements. Since the concurrence of the states used for the en-
tanglement swapping takes now any value between 0 and 1, we cannot
consider S® as a function of the outcome probabilities only. But for a
fixed concurrence C' < 1 we have:

G(C,p) =p— VD> — a1 o1 C? < g(p) V.

Marking with a bar all variables of the general measurements, we have p* <
p*and g(C, p*) < g(p*). Therefore, one checks that the Bell measurements
are indeed optimal except when pyin < p* < (1 — pmax)/3. The key
fact about the Bell measurements in this case is that the three outcome
probabilities cannot be chosen to lie on p*, since the fourth one would
be greater than p.... But the range of possible outcome probabilities
depends on the concurrence: for example, from Eq. (1.4c), we have that
Pm € o1, appo) for C(u,,) = 0, or more generally:

Pm € [Pmax> Pmin] 2 [Pmaxs Pmin)- (1.27)

Hence, a better strategy is to perform a measurement such that three
outcomes probabilities are equal to p* and such that the concurrences of
the states are the largest ones satisfying pp.x = 1 —3 p*. This is confirmed
by a numerical optimization of the first measurement, see Fig. 1.2b, and
therefore it is sometimes advantageous to use a basis of non-maximally
entangled pairs of qubits to perform the entanglement swappings.

1.2.2 A single square network

We study in this section a square whose borders are four identically en-
tangled states, see Fig. 1.3. This is clearly one of the simplest possible
two-dimensional networks, and thus it is a first step towards larger sys-
tems. The task is to entangle the two opposite nodes A and D, which is
done in three steps. First, the station B performs a measurement on its
two qubits, and a state |3,,) is created on the diagonal. Second, the sta-
tion C' measures its qubits in a basis that depends on m, gets a random
outcome n, and therefore connects A and D with another state |v,,.,).
Third, the entanglement of these two states is concentrated into one two-
qubit system, a procedure which is called distillation, yielding the state
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Figure 1.3: Operations on a single square network to obtain an entangled
pair on its diagonal: measurements are performed at the two middle nodes,
and the resulting states are distilled.

|mn). The goal is of course to optimize the average entanglement of
the final state, given the initial entangled links |p). To that end, let us
proceed backwards, starting with the optimization of the distillation.

Distillation

We temporarily fix the outcomes m and n, and without loss of general-
ity we ask the corresponding Schmidt coefficients to satisfy Gy > 7o (all
formulas that follow are symmetric). A straightforward application of ma-
jorization theory gives us the conditions to distill the maximum amount
of entanglement from S and v in a deterministic way:

(Bovos Bovis Bivo, Pii) < (Yo, 1, 0, 0), (1.28)

and the only non-trivial inequality that arises from Eq. (1.7) is S0 < %o.
Therefore, the greatest Schmidt coefficient of the final state reads

Yo = max{%a 5070}- (1.29)

Optimal measurement at the station C

The arguments used for the maximization of the WCE and the concurrence
of a two-swapper configuration still hold here, so that X7 measurements
are optimum for these two figures of merit. Applying such a measurement,
we notice that a maximally entangled pair is obtained with unit probability

if By < (283)7", where

1+v1—-( 2
g = + 2( Pop1)® (1.30)
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Entanglement of |p) {pm} maximizing S" strategy
Po = @5 {P", P, Pmax, 1 = 2p" — Pmax}  mon-Bell

©5 < o < ¢ {p*, p*, ", 1=3p"} Bell

%o < gpa {ia %7 %7 i} X7

Table 1.2: Bell measurements at the station B that maximize S”, depend-
ing on the amount of entanglement in the connections |¢).

Concerning the SCP, we consider a given outcome m at the station B and
write the function to maximize as

SA(@?B) = Zan (1 - max{%, BO’Yn,O})
Bo — B
)
= S5(8) + Bo S (0, 0,8, (1.31)

=281+ (2 an min {%,17

with 3) = (28,)"!. Consequently, all results of Sec. 1.2.1 apply here too,
and the important quantities introduced in that section read puni, = @op1,

1
Pmax = 2 Pmin; and

« __ Po¥ — Bo (1.32)

Y ams VR

Since p* is larger than py;, for all B and ¢, it follows that S is reached

by Bell measurements except when p* < (1 — pyax)/3, see Tab. 1.1.
Optimizing the first measurement

Following the best WCE strategy, one finds that the largest Schmidt co-
efficient of the final state is given by 1y = max {1 /2, 632}. Therefore, a
perfect Bell pair can be generated between A and D if 35 < 1/v/2, that

is, if
1+\/1—,/2(\/§—1)
2

©o < 908 ~ (.6498. (133)
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If this last inequality does not hold, one has to find the measurement at
B that maximizes the function

S@) = S b S, ), (1.34)

where f3,, is related to ¢ via Eq. (1.4). Now, we proceed exactly as for
the two-swapper configuration: on the one hand we maximize S™ over the
set of Bell measurements, and on the other hand we show that there exist
some measurement bases yielding better results for certain states |¢). In
the case of Bell measurements, we write S© = > h(p,), exactly as in
Eq. (1.25), and we optimize the function over the probabilities distribu-
tions {p,,}. Here we make a slight abuse of notation since we denote by
the same character h two different functions, which however share many
similar mathematical properties. In particular, the convexity arguments
used in Sec. 1.2.1 still hold in the present case. The quantity p* is now
given by Eq. (1.32) by setting £ to *, and therefore depends on ¢ only.
In order to distinguish the various measurement strategies according to
the amount of entanglement in the network, let us introduce the critical
value ¢ ~ 0.664 such that p* = (1 — pmax)/3. With all these definitions,
one finds the optimal measurements described in Tab. 1.2, and the sim-
ilarity with Tab. 1.1 is immediate. Finally, numerical results attest that
Bell measurements are suboptimal in the whole range ¢y > ¢, 4.e., in the
regime of weak entanglement. Remark, however, that measuring in the
77 basis for nearly separable states |p) approaches the optimal strategy,
see Fig. 1.4.

1.3 An infinite chain of quantum relays

Let us conclude this first chapter by considering a chain of N entangled
pairs of qubits attached to NV —1 nodes, which is the archetype of quantum
communication networks since it connects arbitrarily distant stations in
the most straightforward fashion. However, this one-dimensional system
suffers an extremely severe limitation on the reachable communication
distance: for partially entangled states, the probability of successfully
generating a Bell pair between the two extremities of the chain decreases
exponentially with V. Since this is one of the fundamental problems that
are addressed in this Thesis, we carefully prove this statement in what
follows. Moreover, the SCP after N entanglement swappings in the ZZ
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Figure 1.4: Maximum SCP of the single square network. Bell measure-
ments (thin line delimiting the shaded area) are suboptimal for the whole
range of entanglement S(p) < S* ~ 0.672, while a perfect singlet is ob-
tained by performing X7 measurements if S(¢) > S* ~ 0.7. Bell mea-
surements in the ZZ basis (thin dashed line) are optimal in the regime of
vanishing entanglement.

basis is explicitly calculated for all NV, a result that will be used in Sec. 2.3.1
for more advanced strategies in two-dimensional networks.

1.3.1 Exponential decay of the entanglement

For simplicity, let us consider that all connections have the same amount
of entanglement, such that the initial chain is given by the state [p)®.
A direct generalization [VMDC04] of Egs. (1.4a) and (1.13) yields the
following result for the average concurrence of the final state:

CN) = "2 det (M) |, (1.35)

with My, = @iy, @ .. fiy,._, @, and where the states |py,,) are associated
with the measurement result m; of the i-th node. With these definitions,
the maximization of C") over the measurements M = { |i,,,)} reads:

mj\z}lx {C(N)} —9 | det(@)|N mj\z}lx { Z ’ det(ﬂml .. .ﬁmel)}}

= 2 det(3)[", (1.36)

which holds for any bases of Bell pairs, i.e., if |2det(fiy,,)] = 1 Vm,.
Therefore, for non-maximally entangled connections |¢), the concurrence
decreases exponentially with V:

C(N) = (4 cpogol)N/z. (137)

max
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Figure 1.5: Resulting states |<p(m)> after n consecutive entanglement swap-
pings in the ZZ basis. (a) Weighted and directed tree, in which the nodes
describe the labels m. (b) This tree can be made symmetric, with its root
at n = —1, using the fact that p(o) = pS?) =1/2.

Since the concurrence of a two-qubit pure state is always larger than or
equal to twice its smallest Schmidt coefficient,? it follows that the other
two figures of merit, namely the WCE and the SCP, also decay (at least)
exponentially with N. For instance, a straightforward calculation shows
that Wiax behaves asymptotically as (4pgp1)” if one performs all mea-
surements in the X7 Bell basis. This result is easily understood from the
following observation: after many swappings, the entanglement of most
outcomes becomes very weak, in which case the concurrence of the long-
distance entangled pairs is proportional to the square root of their smallest
Schmidt coefficient, leading to W ~ C%. We do not have an exact for-
mula for the maximum SCP (in the case of two entanglement swappings
we already had to use numerics), but let us derive in the next section an
explicit formula for the ZZ strategy.

1.3.2 Asymptotic behavior of the SCP under ZZ
measurements

Measurements in the ZZ basis have been shown to maximize the SCP
after one entanglement swapping (Prop. 1.2) and to be close to optimality
for two quantum relays and for the single square network in the regime
of weak entanglement, see Tabs. 1.1 and 1.2. It is therefore natural to
consider this startegy for an infinite chain of entangled pairs of qubits,
and let us compute the average SCP of the system after N swappings.

2In fact, one has C(yp) = 2,/Pop1 > 21 since @ > 1.
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First, even if the number of outcomes grows exponentially with the length
of the chain, one can keep track of all of them in an compact way. In fact,
any state resulting from n < N entanglement swappings in the ZZ basis
has the form (up to local unitaries)

VT 100) + VT 1)
™y = NG m € N. (1.38)

This is proven by induction on n, the case n = 0 corresponding to the
initial state m = 1. Suppose that the result holds and that we get the
state |©™) after n < N swappings. It is simple to show from Eq. (1.19)
that a ZZ measurement on |¢™) @ |¢) yields the state | V) with

|t

probability p7™ = (@I 407+ /(e +¢7") and |el™ 1) with probability
p(,m) =1- p(m Then, let us calculate the variation of the SCP due to one

swapping, considering that the set {(p;, [™)), i = 1,...,1} describes

the outcomes of the first n measurements. Denoting by Agi” ) the smallest
Schmidt coefficients of |¢™*!), the new SCP reads

S = 3 A 4 )

= S<" — (po — 1) PO, (1.39)

where p) stands for the probability of getting the state @) = |®F)
after n measurements. Since this probability is non null for odd n only,
it results that the SCP decreases after every second swapping only. In
the case n = 1, this is the “conservation of entanglement” pointed out in
Prop. 1.2. The quantity pﬁ?) is calculated from Fig. 1.5: it is the weighted
sum over all possible paths I" that go from the root of the oriented tree
to the node m = 0 at position n. We notice that the path weights,
denoted by w,,, depend on n only and not on the paths themselves. This
is indeed the fact since psr )p(m+1) = o1 for all m, and because the
paths I' start and terminate at the same level m = 0. Thus, for odd n we
have w, = (pop1)"/2, and using basic combinatorial analysis one finds
) = (Qkk) (¢otp1)¥, with k = 1(n+ 1) € N. Finally, the average SCP after
N entanglement swappings in the ZZ basis reads

[N/2]

50 =1 (=) 3 (7 ) Geun) (140

k=0
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where [x] denotes the integer part of x. This last equation behaves as
(4p01)N/? //N for N tending to infinity, and consequently, measurements
in the ZZ basis yield much better results than the XZ strategy.






CHAPTER 2

Long-distance entanglement in
planar graphs

The previous chapter concluded with the impossibility of generating long-
distance entanglement in a chain of non-maximally entangled pairs of
qubits. In fact, the optimum measurements lead to an exponentially small
probability of success with the number of required entanglement swap-
pings, see Sec. 1.3. However, extending the quantum network to a system
of higher (spatial) dimension grandly impacts on this probability. In this
chapter, we indeed show that a Bell pair can be generated over a long
distance in quantum networks with the topology of planar graphs.! More
precisely, we propose some measurement strategies which yield a strictly
positive probability of entangling two arbitrarily distant qubits, provided
that the entanglement S(¢) of the elementary connections |¢) is larger
than a critical value S.. These strategies are of two kinds, deterministic
or purely statistical. While the former makes use of distillation methods,
the latter exploits ideas of percolation theory. Both strategies are based
on the same (and simple) observation, nevertheless: there exist plenty of
weakly entangled paths between two distant nodes in a two-dimensional
lattice, but only one chain of singlets is necessary to generate a Bell pair
between these two nodes.

In Sec. 2.1, we apply the results of the previous chapter, in particu-
lar optimal entanglement swappings and distillation procedures, to two-
dimensional networks of large size. We start by considering some hierar-
chical graphs, that is, networks that iterate certain geometric structures,
so that at each level of iterations the number of nodes, or the number of
neighbors, changes (Sec. 2.1.1). In particular, we discuss the “diamond”
graph, for which we prove that for sufficiently large initial entanglement,

!Basics of graph theory are supposed to be known by the reader and can be found
in any textbook. For instance, we refer the reader to [Die05] for a very good but easily
accessible book on this topic.
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one can establish perfect entanglement on large scales (i.e., on some lower
levels of iteration) in a finite number of steps. A similar result holds for
a double binary tree, in which each iteration step branches every bond
into two. For such graphs, if the initial entanglement is large enough,
perfect entanglement can be established at each level of iteration. Then,
in Sec. 2.1.2, we turn to genuine two-dimensional lattices. Using distilla-
tion techniques, we show that, for the square lattice, one can convert the
connections of a sufficiently broad strip into a backbone of perfect singlets.

Percolation strategies for infinite lattices are considered in Sec. 2.2. For
instance, we reconsider the hexagonal lattice with double bonds described
in [ACL07] and then discuss the case of a triangular lattice with distinct
bonds. In the first of these examples, quantum measurements lead to a
local reduction of the SCP but change the geometry of the lattice, which
increases its connectivity and thus the classical entanglement percolation
threshold corresponding to a straight conversion into singlets of all the
links of the lattice. We call this effect quantum entanglement percolation.
In the second example, we use the measurements optimizing the SCP to
transform the original lattice into a double-size triangular lattice with a
higher probability of getting a singlet on the bonds. We also describe a
different type of strategies, where a square lattice is transformed into two
disjoint square lattices of double size but with the same average SCP. In
this case, we prove that the probability of connecting a pair of neighboring
nodes to another such pair is strictly larger than in the original protocol.

While the advantage of quantum entanglement percolation over the
classical protocols has been found for some specific lattices only (Sec. 2.2),
we propose in Sec. 2.3 a strategy that beats the classical entanglement
percolation for all the lattices that we considered. This strategy is based
on the creation of multipartite entangled states, see Sec. 2.3.1. It improves
not only the entanglement threshold, but also the success probability of the
protocol for any amount of entanglement in the connections (Sec. 2.3.3).

Finally, in Sec. 2.4, we briefly discuss the optimality of the various pro-
tocols proposed for generating a long-distance entangled pair of qubits. In
particular, while any percolation threshold defines a sufficient condition,
it is still an open and very interesting question to determine whether or
not there exists a necessary amount of entanglement to achieve this task.
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2.1 Deterministic methods

In this section, we consider graphs in which entanglement can be generated
between arbitrarily distant nodes by making us of entanglement swappings
and distillations. In fact, for some graphs and if the entanglement of
the connections is large enough, it is possible to compensate the loss of
entanglement due to the swappings with an entanglement concentration
procedure. Clearly, the distillations require that several pairs of entangled
qubits are created between two nodes, which is one of the basic reasons
why graphs spanning the plane are so interesting in comparison to one-
dimensional systems.

2.1.1 Hierarchical graphs

Let us first study the generation of entanglement over large scales in graphs
that have a hierarchical geometry. These are graphs that iterate certain
geometric structures, so that at each level of iteration the number of nodes
(or neighbors) changes. Unfortunately, optimal strategies are not known
for such graphs; we restrict our considerations to showing that one can
generate perfect entanglement in a finite number of steps at some itera-
tion level. This entanglement is further swapped to the lowest levels of
iterations, i.e., to the largest scales, which can be considered as the largest
geometrical distances.

“Diamond” graph

In this section, we consider the so-called “diamond” graph, which is ob-
tained by iterating the following operation, see also Fig. 2.1a: a single
bond (one entangled state of two qubits) is replaced by four bonds form-
ing a diamond shape. After k iterations, the nodes A, B,C, D have 2F
links, the nodes on the next level 2¥71, etc. We now prove that for suf-
ficiently large initial entanglement, one can establish Bell pairs on large
scales in a finite number of steps.

We assume that the graph is formed by many iterations and that all
bonds correspond to the entangled state |p). Our aim is to perform
some measurements in a recursive way, showing that, for sufficiently high
S(p), it is possible to generate perfect entanglement on the lowest level
of the iteration hierarchy, that is, between the “parent” nodes A and
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Figure 2.1: (a) The first two iterations of the diamond graph. (b) Recur-
sion relating S on the higher level of iteration to S’ at one lower level of
iteration.

B. In order to keep the form of the network unchanged by the recursive
measurements, we apply the WCE strategy to the nodes analogue to C
and D, starting from the highest iteration level. The two entanglement
swappings in the X7 basis yield, with unit probability, two identical pairs
of entangled states which can then be distilled into a state [¢) with larger
entanglement. Remark that we are exactly in the situation of the single
square network discussed in Sec. 1.2.2. From Egs. (1.20) and (1.29), one
finds

Yo = max {%, i(l +4/1 - (4%901)2)2} ; (2.1)

and denoting the SCP of |p) and [¢) by S and ', respectively, we write
the recursion relation as

S2(2 - §)?
2

which has to be smaller than or equal to one, of course. This recursion has
one unstable fixed point S, ~ 0.349 and two stable fixed points S = 0 and
S =1, see Fig. 2.1b. The latter is achieved in a finite number of steps,
provided that the initial entanglement satisfies S > S.. Note that S, is
strictly smaller than S* = 2(1 — ¢f) ~ 0.7, see Eq. (1.33), and that for
S > S* the maximum entanglement S’ = 1 is achieved in one step only.

S =1+ — /1 -82(2-9)2, (2.2)

Double binary tree

Similar results hold for the graph union of two binary trees, also called
3-Cayley trees, whose leaves are joined in the center, see Fig. 2.2a. Let
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Figure 2.2: (a) Two binary trees facing each other. (b) Sequence of XZ
measurements and distillation leading to a recursion relation for the SCP
of the bonds.

us denote the initial SCP of all bonds |¢) by Sy and perform a WCE
measurement at all nodes in the middle of the tree. This prepares two two-
qubit states between the neighboring nodes, which can be distilled into
the pair of qubits [¢) given in Eq. (2.1). We now describe the recursion
strategy, see also Fig. 2.2b: first, an entanglement swapping in the XZ
basis is performed at one of the middle nodes, which yields a state with
SCP equal to S = Sxz(S0,S) = 1 — /1 —Sp(2— S)S(2 — S). Then,
the WCE swapping is applied to the remaining pair of bonds, leading to
S = SXZ(S Sp). Finally, the optimum entanglement distillation is applied
to the pair of S bonds obtained from the two different (but neighboring)
branches of the tree. The recursion relation reads:

S' = S'(S, Sp) = min {1, 2(1— (1-5/2)?) } (2.3)

This recursion depends explicitely on Sy, and three distinct cases have to
be distinguished, as depicted in Fig. 2.3:

(i) Sop < Se: if the derivative of the recursion function is smaller than
unity at the origin, then there exists only the trivial (and stable)
fixed point S = 0. Explicitly, S. is found by solving the equation

A
dS| 4,

Therefore, for small values of Sy, entanglement cannot be generated
over a large geometrical distance.

S'(S,5.) =2(S.2-5)) =1 = S.~0.459.

(i) S. < Sp < S*: in that case, one stable and non-trivial fixed point
appears. Remark that this fixed point depends on Sy and can reach
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Figure 2.3: Recursion relation for the SCP of the double binary tree, deter-
mined by Eq. (2.3). Depending on Sy, three cases have to be distinguished.
The fixed point of the recursion is highlighted by a bullet.

the whole interval |0, 1[. The value S* is found by solving S’(1, S*) =
1 and is exactly the same as for the diamond graph: S* ~ 0.7.

(iii) Sp > S*: if the entanglement of the bonds is large enough, then a
Bell pair between distant nodes is generated in a finite number of
iteration steps.

Note that these considerations can be qualitatively understood from the
discussion of the diamond graph, since the two constructions are quite
similar and because the WCE does not increase the SCP.

2.1.2 Regular lattices

In the previous section, we have shown that entanglement can be generated
over a large distance in graphs with a hierarchical structure, if the entan-
glement of the bonds if larger than a critical value S.. The self-similarity
of these graphs allows one to design natural sequences of entanglement
swappings and distillations but suffers a physical limitation: either the
length of the bonds or the number of qubits per node grows exponentially
with the iteration depth. From now on, we therefore consider regular two-
dimensional lattices, that is, periodic configurations of nodes throughout
the plane that have a finite number Z of neighbors. In what follows, we
describe a deterministic strategy for lattices which have a coordination
number Z strictly larger than three. In particular, we show how two in-
finitely distant nodes can be entangled with unit probability in the square
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Figure 2.4: (a) “Centipede” with its “legs” and “spine”. Remark that
some bonds are not used. (b) Recursive measurement scheme; this method
can be applied in higher dimensions too.

lattice (Z = 4), provided a sufficiently high entanglement in the connec-
tions. The generalization to other lattices of high connectivity, such as
the triangular lattice (Z = 6), is straightforward.

A “centipede” in the square lattice

As another example of the recursive measurement method developed in
the previous section, we consider a wide stripe of a square lattice and
the “centipede” figure within, see Fig. 2.4a. Let us denote the initial
entanglement by Sy and the entanglement at the end bond of a “leg” by S.
We sequentially shorten the legs of the centipede, gradually concentrating
the entanglement of the links such that we eventually get a perfect singlet
at its “spine”. Concretely, we perform on the extremity of each leg the
X7 measurements depicted in Fig. 2.2b, with the difference that one of
the paths has only one bond Sy and not three. The last step of the
iterative procedure is then to distill two states of entanglement Sy and
S = SXZ(S’, So), with S = Sxz(50, 5), yielding the recursion relation
S'(S, Sp) = min {1, S+5-— %} (2.4)
This situation is very similar to the case of the double binary tree, but
there is a small difference, nevertheless. In fact, the current recurrence
relation depends explicitly on Sy and has always a non-trivial stable fixed
point. This fixed point, however, is strictly smaller than unity when Sy is
small. In this case, although we do concentrate more entanglement along
the spine of the centipede, we still have to face the problem that the spine
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Figure 2.5: (a) Horizontal centipedes of finite width can be connected at
the borders of the lattice to form a giant centipede spanning one third of
all the nodes (in the limit of infinite lattice size). (b) This proportion is
raised to one-half by considering a spiral construction. In this case, all
links of the lattice are used.

is a one-dimensional system and thus exhibits an exponential decrease of
the SCP with the number of entanglement swappings that are required.
On the other hand, if Sy is larger than the critical value S, ~ 0.649, then
the fixed point is a maximally-entangled state. This point is reached in a
finite number of iteration steps; note that S, is simply the smallest value
such that S’(1,S.) = 1.

The construction of the centipede, as proposed in Fig. 2.4a, implies
that only the nodes lying on the (one-dimensional) spine can get entangled.
It may therefore seem a huge waste of physical resources, since the ratio
between the number of final Bell pairs and the consumed ones approaches
zero for a lattice size tending to infinity. However, this observation is
pertinent only close to the critical point S.. In fact, for sufficiently large
entanglement in the initial bonds, the width of the centipede, which is
equal to twice the length of its legs, is very small. For instance, one
can check that only one iteration step is necessary to get a maximally
entangled pair if Sy > S* ~ 0.684, which is the solution of S’(S5*,S*) = 1.
In that case, many narrow centipedes can be created and, more important,
connected together, as depicted in Fig. 2.5a. It follows that the resulting
“giant” centipede spans a non-vanishing proportion of all the nodes, which
tends to one third in the limit of infinite lattice size. Remark that this
ratio is further increased to one-half by considering a slightly different
measurement, pattern, see Fig. 2.5b.
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2.2 Strategies based on bond percolation

The strategies that have been proposed so far to achieve long-distance
entanglement in two-dimensional networks are based solely on two prop-
erties of the pure states. First, entanglement can be propagated (at high
cost) through the lattice with the help of entanglement swappings. This
is equivalent to performing a sequence of teleportations having each a
non-unit probability of success: one station prepares locally an entangled
pair of qubits, one of which is sent from node to node until it reaches
its destination. The second ingredient is that multiple connections be-
tween two nodes can be distilled, compensating (or even surpassing) the
loss of entanglement due to the swappings. Thus, the minimum require-
ment for generating long-distance entanglement with this strategy is that
a “backbone” of Bell pairs is created in the lattice. This is possible if
the initial entanglement of the bonds is larger than a critical value S,
and if the nodes that belong to the backbone have at least four neighbors
each: two connections are part of the backbone, while the other two are
used to distill the former. Since deterministic strategies typically create a
one-dimensional chain of Bell pairs by using only a stripe of finite width
from the lattice, they do not seem to exploit the full potentiality of two-
dimensional networks. These considerations raise at least two important
questions: how can one deal with lattices of small connectivity (as the
honeycomb lattice for example), and can the critical value S, of the de-
terministic methods be lowered by using other strategies? An affirmative
answer to these questions was given [ACL07], bringing ideas of percolation
theory to the context of quantum communication networks.?

In Sec. 2.2.1, we present the basics and some well-established results of
classical percolation theory and recall the entanglement percolation pro-
tocols proposed in [ACL0O7]. Those are of two types: first, the so-called
classical entanglement percolation (CEP) protocols, in which the quantum
links |p) of the lattices are converted into singlets with optimum probabil-
ity p = S(p). This defines a (classical) percolation problem where bonds

?Note that the probabilistic nature of quantum physics makes percolation theory a
particularly well-adapted toolbox for the study of quantum systems subject to measure-
ments for instance. Ideas of percolation theory are for example useful in the context
of quantum computing with non-deterministic quantum gates [KRE07]. The inter-
ested reader is referred to pp. 287-319 in [SBC09] for an overview of the application of
percolation methods to the field of quantum information.
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Figure 2.6: Classical bond percolation: bonds are open (present) with
probability p and closed otherwise, and groups of nodes connected by
open bonds are called clusters. In these examples, the largest cluster is
highlighted: typically, it is small and bounded for p < p. but spans a finite
proportion of the lattice for p > p. (the critical value p,. is equal to 50%
in infinite square lattices). In the latter case, the largest cluster is written
C and is called the giant cluster.

are inserted with probability p in the lattice. Second, in Sec. 2.2.2; we de-
velop the ideas of [ACL07] showing that CEP strategies can be surpassed,
in some cases, by quantum entanglement percolation (QEP) protocols. In
this scenario, joint measurements are previously performed at the nodes of
the lattice. In particular, the fact that the average SCP does not decrease
after one entanglement swapping allows one to define a bond percolation
problem in a new lattice that has a favorable geometry. Such structural
transformations have been further elaborated in [LWL09] and expanded
to complex networks [CC09] and to bipartite mixed states [BD.J09].

2.2.1 Classical entanglement percolation

Classical percolation is perhaps one of the most fundamental examples of
critical phenomenon, since it is a purely statistical one [Gri99]. At the
same time, it is very universal, since it describes a whole variety of physi-
cal, biological or ecological processes; see [SA91] for a nice introduction to
percolation theory. In bond percolation, we typically consider a regular
lattice of nodes connected by random bonds, the probability of having a
bond between two neighboring nodes being p, see Fig. 2.6. For a given
infinite lattice, one would like to know whether an infinite open cluster
exists, that is, whether there is a path of connected nodes of infinite length
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through the lattice. It turns out that an unique giant cluster appears if,
and only if, the connection probability p is larger than a critical threshold
Pe, which depends on the lattice. Few lattices have a threshold that is
exactly known; among them we find the important honeycomb, square,
and triangular lattices [SE64]:

pO =1—2sin(x/18), p? =1/2, and p° = 2sin(7/18).

In this chapter, we extensively use such results of percolation theory, and
we refer the reader to the above-cited books or to [BR06] for mathematical
definitions and rigorous proves.

Suppose that we want to generate entanglement between two distant
stations A and B in a quantum lattice, where each connection denotes
a non-maximally entangled state |p). Classical entanglement percola-
tion runs as follows [ACLO7|: every pair of neighboring nodes optimally
converts its two-qubit state |¢) into a Bell pair, which succeeds with prob-
ability S(p), see Eq. (1.9). If this value is larger than the threshold p. of
the lattice, .e., if S > S. = p., then a giant cluster C appears, and the
probability that both A and B belong to C is strictly positive. In that case,
one can find a path of singlets between the two nodes and perform the
necessary entanglement swappings such that A and B become entangled.
Note that this path is randomly generated by the measurement outcomes
at the nodes, which contrasts with the deterministic methods described in
the previous section.

At this point, let us be a little more precise and define the quantities
characterizing long-distance entanglement. A quantity of primary interest,
very related to the percolation threshold, is the percolation probability

O(p) = P(A € (), (2.5)

being the probability that a given node A belongs to the giant cluster.
Clearly, 6(p) = 0 for p < p,, while 8(p) > 0 for p > p.. In quantum com-
munication, we are interested in the probability P(A o— B) of creating
a Bell pair between two nodes A and B separated by a distance L. For
p < pe, this probability decays exponentially with L/&(p), where the cor-
relation length £(p) describes the typical radius of an open cluster. Above
the critical point, the two nodes are connected only if they are both in
C. In the limit of large L, the events {A € C} and {B € C} are indepen-
dent, which, together with translational invariance, reduces the problem
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Figure 2.7: Each bond of the honeycomb lattice consists of two copies
of the state |¢). (a) The dashed nodes perform three optimal entangle-
ment swappings according to the SCP. (b) A triangular lattice of identical
average SCP is obtained, and classical entanglement percolation is now
possible in this new lattice.

to studying 6(p):
P(Ao—B) = 0*(p). (2.6)

2.2.2 Quantum entanglement percolation

A natural question one may ask is whether the thresholds S, defined by
classical percolation theory are optimal. In fact, entanglement percolation
represents a related but different theoretical problem, where new bounds
may have to be obtained. This is of course equivalent to determine if the
measurement strategy based on local SCP is optimal in the asymptotic
regime. Here, we construct several examples that go beyond the classical
percolation picture, proving that the classical entanglement percolation
strategy is not optimal. The key ingredient for the construction of these
examples is the measurement strategy obtained for the one-swapper con-
figuration that maximizes the SCP, namely the entanglement swapping in
the ZZ basis (Prop. 1.2).

Honeycomb lattice with double bonds

The first example, which was already discussed in [ACL07], considers a
honeycomb lattice where each pair of neighboring nodes is connected by
two copies of the same two-qubit state |¢), see Fig. 2.7a. The CEP
strategy converts in the best possible way all bonds shared by two parties
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into one singlet. Majorization theory tells us how much entanglement can
be distilled from each double bond in case of weak entanglement, namely
S(|p)®?) = 2(1—p3), see Eq. (1.29). We choose this conversion probability
to be equal to the percolation threshold for the honeycomb lattice, which
results in an entanglement threshold S, for the state |¢):

O
S, =2 (1 Y-k ) —9 (1 : +sm(18>> ~0.358.  (2.7)

Now, we show that there exists a QEP strategy yielding a better percola-
tion threshold: half the nodes perform on their qubits three entanglement
swappings in the ZZ basis, mapping the honeycomb lattice into a trian-
gular lattice as depicted in Fig. 2.7b. The important ingredient of this
construction is that the SCP of the new bonds is exactly the same as the
SCP of the initial state |p). We set its entanglement to be pZ, and a lower
threshold is found:

S, = p’ = 2sin (%) ~ 0.347. (2.8)

This proves that CEP is not optimal since it cannot generate long-distance
entanglement if 0.347 < S(p) < 0.358, while the proposed QEP strategy
achieves it with a strictly positive probability.

Asymmetric triangular lattice

A second example, although less symmetric, is generic and has a totally
different character than the previous one. For simplicity, we show the
argument in the case of a triangular lattice, but the same reasoning can be
applied to other geometries. Consider the asymmetric triangular lattice
depicted in Fig. 2.8a. A solid line corresponds to the two-qubit pure
state |p), while a dashed line represents a less entangled state |@), i.e.,
S > S (with obvious notation). We choose the first state such that its
amount of entanglement satisfies p> < S < /p2. If |@) = |¢), the
classical entanglement percolation strategy works. However, we tune the
entanglement of the second state such that its SCP is small enough to
make the classical entanglement percolation impossible. Such a tuning
always exists. In fact, we note that when S — 0, these states can simply
be removed from the lattice, and classical entanglement percolation fails
since we have S? < p2 and because the links of the new lattice consists
of two consecutive states |p). It is now straightforward to construct a
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Figure 2.8: An asymmetric triangular lattice. (a) The lattice consists of
two different entangled states |¢) and |@), drawn in solid and dashed
lines, respectively. The less entangled states |p) are discarded, and some
of the nodes perform an entanglement swapping in the ZZ basis. (b) A
new triangular lattice is obtained, solely governed by the SCP of |p).

successful QEP strategy: the states |@) are discarded and the optimal
SCP strategy for one entanglement swapping is performed, see Fig. 2.8b.
The lattice is transformed into another triangular lattice, in which all links
have the same amount of entanglement S > p2, so that CEP can now be
successfully applied.

Doubling the square lattice

The final example has yet another character and deals with a square lattice
in which all bonds are identical and described by the state |p). Here, we
replace every second pair of horizontal bond by a single one performing an
entanglement swapping in the ZZ basis; let us recall that this operation
does not decrease the average SCP of the bonds (Prop. 1.2). The same
is done with every second pair of vertical bonds, and we consequently
replace the original square lattice by two disjoint lattices having a lattice
constant that is twice larger than the original one, see Fig. 2.9. Now, we
are interested in establishing long-distance entanglement between A or A’
and B or B’. The nodes A and A’ (B and B’) are next-nearest neighbors
in the original lattice but belong to different double-size lattices.

Let us first consider the QEP strategy for which calculations are simple.
The pairs (A, B) and (A’, B’) belong to two disjoint lattices, and the
probability that one of these pairs belongs to the percolating cluster is
asymptotically equal to 6%(p), with p = S(¢). The probability that at
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Figure 2.9: (a) Measurements doubling the lattice constant of the square
lattice: the dashed nodes perform an entanglement swapping along the
vertical and horizontal directions. (b) Two disjoint square lattices with
double lattice constant are created, and we want to establish an entangled
pair of qubits between A or A’ and B or B’ (not shown).

least one of the pairs belongs to the giant cluster is thus
Popp =1 — (1 -6 = 6% (2 - 6?). (2.9)

This probability has to be compared with the CEP probability that
at least one of the pairs (A, B), (A', B), (A, B’) or (A, B") belongs to the
giant cluster in the original square lattice. Asymptotically, it is given by
Pcgp = 72, where 7 is the probability that A or A’ (or equivalently B or
B’) belongs to the giant cluster:

7=PAVA €C)=PAeC)+P(AeC) —P(ANA €C). (2.10)

In order to estimate the last term in the above expression, we use the cel-
ebrated Fortuin—Kasteleyn—Ginibre (FKG) inequality [FKGT71]. To that
end, we first recall the following definition: an event described in terms of
a percolation configuration is said to be increasing if it has the property
that, once it holds for a certain bond configuration, it holds for all config-
urations obtained by adding bonds to the initial one. The FKG inequality
then states that any two such events are positively correlated. The events
{AeC}and {Aoo A"} (“A and A’ are connected by a path of maximally
entangled bonds”) are clearly increasing, and since their intersection is
the event {A A A’ € C}, it follows that

P(ANA €C) > P(A€C) P(Ao—oA). (2.11)
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Denoting P(AAN A’ € C) by 7, we verify that 7 < (2 — 7), and therefore
doubling the square lattice is a better strategy than the classical percola-
tion, i.e., Pqrp > Pcpp, whenever

2-7)2<2-0% (2.12)

Let us show that this inequality holds when p lies just above the threshold
pZ = 0.5. In that case, 6 tends to zero, and we thus have to show that
T > 2—+/2~ 0.586. We may try to estimate 7 from below by considering
the six shortest trajectories connecting A and A’: the most direct ones
(two paths of length two), and the two pairs of four-bond paths around
the adjacent squares. This leads to 7 > 2¢ — ¢?, with ¢ = p? + 2p* — 2p°.
Unfortunately, for p = 0.5, this estimate is too small and thus not sufficient
to our purpose. In fact, it gives only 7 > 0.527. One can improve the
estimate analytically by adding further paths connecting A and A’. This
procedure becomes, however, technically tedious, and we therefore turn to
a standard numerical Monte Carlo simulation for calculating the transition
probability from A to A’”. The method we use generates the shortest paths
(like the ones used for calculating the above estimate) automatically, while
the longer ones are introduced by the Monte Carlo sampling. For p > pZ,
the convergence is exponential: if we plot a subsequent estimate of 7
as a function of the maximum cluster size allowed in the Monte Carlo
sampling, it approaches the final value exponentially fast for large clusters.
As expected, the convergence is algebraic at p = pZ: the estimate of 7
approaches its final value as a power of the cluster size. A power law fit
and a comparison with the values just above the percolation threshold
give, with a very good accuracy, 7 ~ 0.687. This proves that quantum
mechanical measurements can improve the classical percolation strategy.
In this example, the QEP protocol does not lead to a better threshold
but yields a higher probability of generating a long-distance Bell pair for
p approaching pY from above. Note that the inequality Pqrp > Pcrp also
holds for all p €]p2, 1], as recently shown in Sec. IIIC of [LWL09].

2.3 Multipartite entanglement percolation

In the previous section, we have shown how CEP can be enhanced by
previously applying some quantum operations at the nodes. All examples
given so far consist of transforming the quantum lattices by a sequence
of entanglement swappings in the ZZ basis, thus conserving the average
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entanglement of the bonds. These examples are, however, restricted to
pure geometrical transformations, and apply to some specific lattices only.
In this respect, it is not clear whether or not the CEP strategy, and
particularly the corresponding threshold, can be improved in the simple
square or triangular lattices for instance.

In this section, we introduce a powerful class of QEP strategies that
exploit multipartite entanglement. In contrast to the protocols designed
in Sec. 2.2.2, which solely employ entanglement swappings and conversions
into singlets, we make full use of both the classical and quantum aspects
of a quantum network: connectivity of the nodes and multipartite entan-
glement, respectively. The interplay of geometrical lattice transformations
and entanglement manipulations is in fact a key ingredient in surpassing
CEP.

In Sec. 2.3.1, we generalize the usual entanglement swapping to the case
of three or more qubits. This quantum operations naturally introduces the
Greenberger-Horne-Zeilinger (GHZ) states
10)8n 4 |1)@n

\/§ )
which are the generalization of the Bell pair [®*) to n qubits. Then, in
Sec. 2.3.2, we describe how GHZ states can percolate in a quantum lattice,
leading to a site rather than a bond percolation process. Finally, we show
in Sec. 2.3.3/that this multipartite strategy systematically outperforms the
CEP method, regardless of the initial entanglement of the bonds and of
the lattice geometry. If in the previous section it was difficult to contrive
an example where CEP can be surpassed, it is now hard to find an example
that does not admit any improvement. Indeed, multipartite entanglement
percolation leads to higher connection probabilities for all the lattices that
were considered.

IGHZ,,) = (2.13)

2.3.1 Generalized entanglement swapping

The basic quantum operation that creates entanglement between the ex-
tremities of two entangled pairs qubits is a measurement of the middle
qubits, as discussed in Sec. 1.1.1 (see also Figs. 1.1a and 2.10a). The main
and simple (but powerful) idea of this section is to replace the complete
measurement at B by a generalized measurement B with operators

Bo = |0)00] + [1)11],

2.14
By = [0Y01] + [1)(10], (2.14)
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(a) (b)

Figure 2.10: Generalized entanglement swapping. (a) Two partially en-
tangled pairs of qubits are probabilistically converted into a GHZ state of
three qubits. (b) Two (or more) GHZ states can be merged into a larger
structure. Here, we depict the operation |GHZ3)®? — |GHZs).

which satisfy the completeness relation ZLO lS’iT B; = 1,. The second out-
come leads to a perfect GHZ state among the three nodes (after a bit-flip
X at C), but with probability ©Z + 7 the first outcome yields the (unnor-
malized) state ¢o |000) + ¢y [111). As for a pair of qubits, the latter state
is transformed into |GHZ3) with probability 22 /(2 +¢?). Summing the
two possibilities, we find that two copies of |p) are converted into one
GHZ state of three qubits with optimal probability 2¢;. The multipar-
tite method derives its power from the fact that, while the value of this
probability is the same as for the two-qubit swapping used in previous
entanglement percolation protocols, we now have three entangled qubits
rather than two.

The above procedure can be generalized to construct GHZ states of n+
1 qubits starting from n copies of |p) sharing a common node. In this case,
we apply 2! measurement operators E,, of the form |0Xm| + |1)m],
where m is the complement of m written in base 2. With a little thought,
one sees that this generalized measurement is equivalent to a sequence of
n — 1 entanglement swappings in the ZZ basis, exactly as for a chain of
n partially-entangled states. It follows that the probability of creating a
GHZ state of n + 1 qubits is given by Eq. (1.40) with N = n — 1, that is,
P(GHZ, 1) = SV, Remark that this construction is optimal for n = 3
only, and that higher success probabilities can be found by considering
different measurement bases, as discussed in Sec. 1.2.1. Suppose now that
two perfect GHZ states of size n and m have been created in the lattice,
and that they share one common node, say B. One can then build a larger
GHZ state on n +m — 1 nodes with unit probability by performing the
generalized measurement B on the two qubits of B and by applying some
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bit-flips X depending on the outcome (see Fig. 2.10b):

prob=

Finally, let us remark that, given a GHZ state of any size, a perfect Bell

pair is created between any two of its qubits by measuring all other qubits
in the X basis.

GHZ states, CEP, and classical pathfinding algorithms

Before turning to multipartite entanglement percolation, let us show that
the creation of GHZ states can also be useful in the last step of the CEP
protocols. In fact, after the conversion into singlets of the bonds of the
lattice, we have to find a path between the two distant nodes A and B
that want to share a Bell pair (we consider that both belong to the gi-
ant cluster). Then, every node lying on this path has to behave as an
entanglement swapper. There exist efficient classical algorithms to find
the shortest path between two nodes in a graph, as the one proposed by
Dijkstra in [Dij59], but the time required to solve this problem scales with
the size of the lattice. It follows that, right after the singlet conversion,
the nodes do not know if they further have to perform an entanglement
swapping on some of their qubits. Instead of waiting for this information
to come, every node but A and B can apply a GHZ measurement on the
qubits that belong to a successfully converted Bell pair. These local oper-
ations create a “giant” GHZ state spanning the lattice, which is done in
a time that does not scale with the lattice size. Hence, quantum correla-
tions between A and B are already available before the (time-consuming)
classical processes occur, which may be favorable in the context of quan-
tum key distribution for instance [GRTZ02]. Remark that the outcome
results of all sites that belong to the giant cluster are still required (at
some later time) to deduce which of the Bell states was used for creating
the quantum correlations between A and B.

2.3.2 An illustrative example

Let us consider a honeycomb lattice whose bonds are given by the partially
entangled state |p). In what follows, we first show how the multipartite
strategy improves the entanglement threshold, which is related to a natural
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(a) (b) (c)

Figure 2.11: From bond percolation in the honeycomb lattice to site per-
colation in the triangular lattice. (a) In the honeycomb lattice £, half the
nodes apply a GHZ projection on their qubits. (b) GHZ states of four
qubits (triangles) are created with probability p each. (c¢) The entangle-
ment threshold is related to the site percolation threshold in a new lattice

A

L (here, the triangular lattice).

site percolation process.> Then, we carefully describe how the efficiency
of CEP is compared with that of the multipartite protocol.

Entanglement threshold: from bond to site percolation

Each second node of the honeycomb lattice £ performs a generalized en-
tanglement swapping on its three qubits, as depicted in Fig. 2.11a, which
creates a state |GHZ,) with probability” p = P(GHZ,). We then define a
new lattice 2, in which the vertices represent the GHZ states, and where
two vertices are connected by a bond if the corresponding GHZ states
share a common node in £, see Figs. 2.11b and 2.11c. Adopting the usual
terminology, we say that a site is open in L if the GHZ transformation
succeeded and closed otherwise. Since two GHZ states sharing one com-
mon node can be merged into a larger connected structure, it is easy to
see that long-distance entanglement is possible if the corresponding site
percolation leads to a giant cluster in L. In the present case, L is the
triangular lattice, whose site percolation threshold is equal to one-half,

3Note that bond percolation can always be “artificially” mapped to site percolation.
4For clarity, all percolation parameters marked with a circumflex, such as p or 6,
refer to multipartite entanglement protocols.
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see [BROG| for instance. Therefore, a giant GHZ state appears if
ply) > (L), (2.15)

In the present example, performing the generalized entanglement swap-
ping in the computational basis is not sufficient to beat the CEP threshold.
In fact, since it corresponds to two consecutive swappings in the ZZ ba-
sis, one finds from Eq. (1.40) that the entanglement threshold S, for this
multipartite strategy, which is found by solving

5e") = 6(61)? — 4(61)° = 5 = P (D), (216)
is exactly equal to the CEP threshold S. in the original lattice: S, = 27 =
1 —2sin(n/18) = p>rd(0) = S.. It is in fact a pure coincidence that both
S. and pPo™(0) are solution of the algebraic equation 1 — 322 4 23 = 0,
which, in the latter case, arises from the so-called star-delta transforma-
tion [SE63, SE64]. However, we know from Sec. 1.2.1 that the bases for
the generalized entanglement swapping can be optimized, increasing the
probability p of creating the GHZ states. For instance, optimizing these
measurements over the Bell bases indeed yields S. & 0.6182, which is
smaller than S. ~ 0.6527. Finally, the entanglement threshold can be
made even smaller by considering non-Bell measurements, see Tab. 1.1: a
numerical optimization leads to S, ~ 0.6090, which clearly beats the CEP
strategy.

Long-distance entanglement above the percolation threshold

The minimum amount of entanglement necessary to create a long-distance
entangled pair is obviously a very interesting question, but it is also im-
portant to quantify the efficiency of the protocol for a given resource |¢);
in what follows, we shall assume that its entanglement lies above the per-
colation threshold. As discussed in the previous sections, the quantity
of interest is P(A o— B), which, for CEP, reduces to the study of the
percolation probability 6(p) through the equation P(A o—o B) = 0(p)>.
Since multipartite measurements change the topology of the underlying
lattice, one has to define carefully the corresponding quantity é(ﬁ), such
that P(A oo B) = 62(p) holds for very distant nodes A and B. In fact,
one cannot consider the usual percolation probability in the transformed
lattice, because the new vertices are not directly related to the nodes of
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the original lattice. For this reason, it is clearer to consider the creation
of the GHZ states in the original lattice, as depicted in Fig. 2.11b. We
then define é(ﬁ) to be the probability that a node is connected to the giant
GHZ state, or equivalently, that at least one of the GHZ connected to this
node is successfully created and belongs to the giant cluster. In terms of
the probability measure on the site percolation process on £, we have for
a node A: A

0(p) = P(Ui{A; € C)), (2.17)

where the union is over all the sites A, possessing a qubit that is also
in A. Note that 6(p) now depends on the choice of A, since the nodes
which did not perform any multipartite measurement are surrounded by
three GHZ states, while the others are connected to one GHZ state only.
For the multipartite strategy, we therefore restrict the two nodes to be
chosen only from those at which no generalized entanglement swapping
is to be made. More generally, both 6(p) and 0(p) depend on the sites
of the lattice, so that we consider only the nodes for which these values
are maximum. We denote by f and f the fraction of such nodes in £
and £, respectively, which allows a fair comparison between CEP and the
multipartite protocols. In fact, the latter strategy always consumes some
nodes for the creation of the GHZ states, and consequently we have f < f ,
in general. Finally, the percolation probabilities are calculated by Monte
Carlo simulations, showing that the multipartite strategy not only leads
to a better threshold than CEP but is also favorable in the whole range
S €[S, 1), see Sec. 2.3.3 (a different measurement pattern is used there,
however).

Percolation probability close to unity

Let us consider the regime in which the connections are highly entangled,
i.e.,p = 2¢1 = 1—e with ¢ < 1. In that case, clearly, we also have p = 1—¢
with € < 1, but one can verify that ¢ > ¢ for any GHZ measurement
involving more than two links. An analytical study of the percolation
probabilities becomes possible in this regime of entanglement, and we use
the perimeter method to compute high-density series expansions of 6(p)
and é(ﬁ) The reader is referred for instance to App. C in [LWL09| for a
description of this method, but for completeness let us explain it in the
present situation. From Fig. 2.11b, it is clear that at the lowest order
in £ one finds 6(p) = 1 — &3 + O(&*). In fact, since a node that did not
perform any measurement is connected to three GHZ states (those are
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created with probability p each), its probability not to be connected to
the giant cluster is, at this order, given by (1 — p)® = 3. One can further
compute the next non-trivial order of the percolation probability by the
following reasoning. Suppose that exactly one out of the three GHZ states
is successfully generated. Then the node is disconnected from the giant
cluster if the multipartite conversion failed for all neighboring nodes, which
occurs with probability (1 — €)£°% ~ £° Because this situation happens
independently three times, we finally get

~

0(p) =1—2> -3+ 0. (2.18)

2.3.3 The superiority of multipartite strategies

Now that the basic ingredients have been presented, we show that mul-
tipartite strategies outperform all previously known classical or quantum
strategies, regardless of the initial entanglement of the bonds and for ev-
ery lattice that we considered. From the above discussion on the perco-
lation probability close to unity, a necessary condition for this statement
to hold is that the measurement pattern does not comprise generalized
entanglement swappings on more than two links. We hence focus on the
measurements described in Eq. (2.14), such that p = p = 2¢;.

This section is structured as follows. First, we list the various lattices
that are considered, and we carefully describe the measurement patterns
that are applied on them. Second, we examine the thresholds and show
that p. < p. for each lattice. Then, we compute the expansions é(p) and
O(p) in the high-density (i.e., maximally-entangled) limit to prove that
é(p) > 0(p) as p tends to unity. Finally, using Monte Carlo techniques,
we show that P(Ao—oB) > P(Ao—oB) for all p > p,.

Lattice transformations and percolation thresholds

We start by considering the (4,8?) Archimedean lattice,” see [GS86] for
this notation. In the first panel of Fig. 2.12, we propose a measurement
pattern indicating on which qubits the generalized entanglement swapping
is applied: the new lattice is denoted by %(3% 6%) + '4(3,6,3,6), and its

SAn Archimedean lattice is a tiling of the plane by regular polygons, in which each
vertex is surrounded by the same sequence of polygons (here, one square and two
octagons).
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Bowtie Triangular

Figure 2.12: Lattice transformations under generalized entanglement
swappings. Some nodes (filled circles) perform one or more GHZ mea-
surements on their qubits, which are not drawn for clarity. Nodes where
no quantum operation is performed (empty circles) are used for comput-
ing the percolation probability 6. Finally, in the (3%,4,3,4) lattice, some
of the links (dashed lines) are simply converted into Bell pairs as in CEP.
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# Lattice Pe Pe A [%]
1 (4,8?) 0.6768  0.6499 4.0
2 | Hexagonal 0.6527  0.609(0) 6.7
3 Kagomé 0.5244  0.427(1) 18.6
4 Square 0.5000 0.392(8) 21.4
5 Dice 04755  0.375(5)  21.0
6| (3%,4,3,4) 04141  0.344(7)  16.8
7| Bowtie 04045  0.294(9)  27.1
8 | Triangular  0.3472  0.273(5) 21.2

Table 2.1: Improvement of the entanglement percolation thresholds using
a multipartite strategy, and relative gain A = 1 — p./p.. We performed
Monte Carlo simulations to calculate p. for the lattices 2-8. All other
values are to be found, with higher precision, in [Gri99, Par04, NMWO0S].

critical point is p. ~ 0.6499 [NMWO0S|. Since the original threshold is
pe ~ 0.6768 [SZ99], the proposed strategy yields an improvement over
CEP. It is interesting to note that the transformed lattice, arising from
simple quantum operations, is among the rather exotic examples consid-
ered in other studies. For example, this two-uniform lattice is considered
in [NMWO0S8], where a quantitative relation between percolation thresholds
and the Euler characteristic is demonstrated.

We studied many other lattices and found that multipartite entan-
glement percolation leads to better thresholds than CEP in every case,
which suggests that it may be a universal result. All the lattices that
were considered are depicted, together with the corresponding measure-
ment patterns, in Fig. 2.12. Many such patterns lead to an improvement
over the CEP strategy, but for simplicity we considered only periodic ones.
For the square lattice, for instance, one can pair the links in such a way
that two overlapping square lattices of double size are created. The key
advantage of the multipartite strategy, with respect to the construction
described in Fig. 2.9, is that we do not get disjoint lattices anymore, but
rather connected ones since the middle qubits can be used to propagate
the entanglement through the network.

We did not find published values of the site percolation thresholds in
the resulting lattices, mainly because they are non-planar or non-regular
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# 0 0 f
1| 1—-¢&®—4e* —11e° 1—¢e3—4et —4e° 1/4
2 1—¢e%— 3¢t 1—¢gd—¢t 1/4
3 1—e*—6e° 1—et —2e7 1/3
4 1—e* —4e° 1—et —4e7 1/2
5 1—e%—6e” 1— g8 —9et0 3/4
6 1—¢e®—5e8 1—¢g®—¢8 1/2
7 1—¢eb—4e8 1—eb —4e! 1/2
8 1—¢eb—6elt 1 — &b —2¢12 1/4

Table 2.2: Series expansions of 6(p) and f(p), forp =1—c and 0 < ¢ < 1.
These formulas are derived for a fraction f = d/d of nodes, where d (d) is
the density of nodes of higher connectivity in the original (transformed)
lattice. Note that d = 1 for the Archimedean lattices, since by definition
all their vertices are equivalent, while d = 1/3 for the dice and d = 1/2

for the bowtie lattices.

graphs, and thus we turned to Monte Carlo simulations. The values ob-
tained are summarized in Tab. 2.1: thresholds are not only better for all
lattices, but the gain is often significant, especially for lattices of high
connectivity.

Percolation probabilities above the thresholds

We have provided numerical evidences that multipartite entanglement per-
colation yields better thresholds than CEP, and therefore that the con-
nection probability between two widely separated nodes is increased when
the bond entanglement p(y) lies in the interval (p.,p.). In the opposite
regime in which connections are highly entangled, with p = 1 — ¢ and
0 < e < 1, we use the perimeter method exactly as in the example of
Sec. 2.3.2 to prove that the percolation probability é(p) is strictly larger
than 6(p). The two lowest non-trivial orders of the expansions are easily
calculated and are sufficient to show that the multipartite strategy leads
to an improvement over CEP for all lattices, see Tab. 2.2. Interestingly,
this improvement does not appear at the first non-trivial order since there
is no way to increase the number of independent connections at one node.
In fact, generalized entanglement swappings remove such connections, so
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Figure 2.13: Numerical determination of 60, showing that multipartite
percolation yields better long-distance entanglement for any initial entan-
gled state |¢), with p = 2p;. We plot here the results for the triangle,
square and hexagonal lattices (from left to right). Remark that the nu-
merical data agree perfectly with the high-density expansions (gray lines)
not only for p close to unity but also for much smaller values.

p

that only the nodes where no quantum operation is performed satisfy the
inequality 6(p) > 6(p).

The previous analyses show that the multipartite strategy works well
near the classical thresholds and near the ideal situation of perfect connec-
tions. We thus expect that our transformations give P(Ao—o B) > P(A oo
B) for all values of entanglement in the links of the quantum networks. We
performed Monte Carlo simulation for the eight lattices (using importance
sampling via the perimeter method in the high-density region), attesting
that 0(p) is indeed strictly larger than 6(p) for p € (p.,1). Numerical
results are shown for three lattices in Fig. 2.13.

2.4 On optimal protocols

It is now legitimate to wonder about the optimality of the protocols based
on multipartite entanglement percolation. First, it is not difficult to see
that they cannot be optimal for every value S of initial entanglement in
the links, at least for those lattices which admit a deterministic strategy.
In fact, we have seen in Sec. 2.1.2 that a long-distance perfect Bell pair
can be obtained with unit probability in the square lattice if S is larger
than the threshold S, ~ 0.649, which is possible in the multipartite pro-
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tocol only if S = 1. However, remark that the fraction f of connected
nodes with the deterministic strategy vanishes for infinitely large lattices.
This fraction tends to the non-trivial value f = 1/2, nonetheless, if one
considers the higher threshold S* ~ 0.684, see Fig. 2.5. On the other
hand, deterministic strategies fail completely if S lies between 0.5 and
S¢, and therefore do not even reach the classical entanglement percola-
tion threshold. Consequently, considering one strategy only for all values
of S is not sufficient, but finding the optimum one for a given amount
of entanglement in the links is a formidably difficult problem. In this
respect, multipartite entanglement percolation is well-suited to generate
long-distance quantum correlations regardless of the entanglement of the
links, since it yields high connection probabilities and low thresholds at
the same time.

Existence of a necessary amount of entanglement?

In what follows, we focus on the square lattice because it is the most “nat-
ural” one, but the arguments presented here apply to other lattices equally
well. First, one easily sees that the threshold S. &~ 0.393 given by the mul-
tipartite entanglement percolation strategy is not optimum. In fact, it can
be slightly improved by considering an iterative measurement scheme. In
the current protocol, one performs a generalized entanglement swapping
between two partially-entangled pairs of qubits, see Eq. (2.14), and gets
either a perfect GHZ state of three qubits or a weakly entangled one. The
latter state has less entanglement than previously, with ¢} = o1 /(@3 +¢?),
and is distilled into the perfect state |GHZ3) with probability 2¢, leading
to an overall conversion probability of 2¢;. Instead of distilling the weakly
entangled states, one can rather try to percolate entanglement within the
(double-size and partially filled) square lattices they form. In fact, it is
advantageous to create the state |GHZs) from two adjacent weakly entan-
gled states of three qubits, rather than converting them separately. This
procedure can be further iterated, creating quantum states that span 2/ +1
nodes at each level [ of the iteration. However, the probability that a GHZ
state is created at a level [ is approximatively equal to 2¢§2l_1), so that
only the very first levels improve the threshold for 2¢; ~ S.. For instance,
setting | < 3, one finds the new threshold

S, = 0.375(4), (2.19)
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which gives the lowest amount of entanglement allowing the generation of
Bell pairs over a large distance for all protocols known at the moment.

In order to prove the existence of a minimum threshold for propagating
entanglement over infinite distances, one would be tempted to have the
following reasoning (which is similar to the proof for bond percolation).
Suppose that all paths I' originating at one node are considered as being
independent, that is, a failure on one path does not affect the others.
Then, it is clear that the entanglement is confined to a finite region if the
inequality

S S <N S™ <3 el =3 (2pa/epr) " < 00 (2:20)
N N

N,Txn N

holds for N — oo, where ps < 2.679 is the self-avoiding walk connec-
tive constant of the square lattice [PT00], and where the intermediate
(in)equalities are derived in Sec. 1.3.1. This is the case if o1 < ¢} ~ 3.61%,
meaning that the minimum threshold would be lower bounded by the
value S* ~ 7.22%. But it is not clear at all to which extent the paths
can be treated independently, because their quantum nature may lead to
constructive interferences. In conclusion, while any percolation protocol
defines a sufficient condition in higher-dimensional systems, the question
whether there exists or not a necessary amount of initial pure-state en-
tanglement for generating long-distance entanglement is still open.






CHAPTER 3

Quantum complex networks

Complex networks describe a wide variety of systems in nature and soci-
ety [BS03, Wat04, NBW06]. They model, among other things, chemical
reactions in a cell, the spreading of diseases in populations, the predator-
prey relationships between species, or the connections between routers and
computers in the Internet; see, for example, [AB02] for a nice review. Due
to the increasing computing power and the emergence of large databases on
many real networks, they have attracted a lot of attention in the scientific
community in the past few years. Many measures have been suggested to
quantify some properties of their rich topology, but three concepts seem to
occupy a prominent place: the small-world [Koc89], clustering [WS98] and
scale-free [BA99] behaviors. The first approach to such networks was pro-
posed by the Hungarian mathematicians Paul Erdos and Alfréd Rényi in
the 1950’s and 1960’s. In a series of seminal papers [ER59, ER60, ER61],
they introduced probabilistic methods in the theory of regular graphs,
giving rise to the branch of random graphs. These graphs, which exhibit
the important and universal small-world property,! opened the way to the
study of complex networks. While many other models have been intro-
duced over the years, random graphs are still widely used as they provide
a reference for empirical studies in many fields.

In the introduction of this Thesis, we have seen that networks based on
the laws of quantum physics, which allow perfectly secure communication,
are expected to be developed in a near future. Since the actual commu-
nication networks, such as the Internet or phone-call networks, have a
complex topology, it is natural to address the possibility that quantum
networks will share this property too. Recently, in a somewhat different
context, some links between complex networks and the quantum world
have been made [JKBHO08, (CC09], and in this chapter we introduce a

'Tf the number of random connections is large enough, the shortest path length
between any pair of nodes varies typically as the logarithm of the network size:
)

l
(I) ~log(N).
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p=0.10 p=025 p=0.50

Figure 3.1: Evolution process of a random graph of size N = 10: starting
from isolated nodes, we randomly add edges with increasing probability
p, to eventually get the complete graph K, for p = 1.

model of quantum complex networks, a new class of systems that exhibit
some totally unexpected properties. Our model, described in Sec. 3.1,
uses the random networks of Erdos and Rényi as a first case study and
will certainly allow in the future the discussion of more complex archi-
tectures. Contrary to the other chapters of this Thesis, here we do not
investigate the problem of long-distance entanglement, since this very con-
cept does not make much sense in small-world networks. We thus turn
to yet another property of random graphs, namely the appearance of sub-
graphs according to the connection probability (Sec. 3.1.1), and obtain a
completely different classification of the behavior of quantum networks as
compared to their classical counterpart (Sec. 3.3).

3.1 The model

In this section, we first recall how random graphs are generated and then
propose an extension to the quantum world.

3.1.1 Random graphs

Let us now introduce the basics of random graph theory; the interested
reader is referred to the original articles [ER59, ER60, ER61] or to Chap. III
in [AB02] (and references therein) for a more detailed description of these
graphs and a rigorous discussion of their properties. The theory of random
graphs considers graphs in which each pair of nodes ¢ and j are joined by
a link with probability p; ;. The simplest and most studied model is the
one where this probability is independent of the nodes, with p; ; = p, and
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_ _ _3 2
z‘ 0 2 5 3

e = A A AO X

Table 3.1: Some critical probabilities, according to Eq. (3.1), at which a
subgraph F' appears in random graphs of N nodes connected with prob-
ability p ~ N?. For instance, cycles and trees of all orders appear at
z = —1, whereas complete subgraphs (of order four or more) appear at a
higher connection probability.

the resulting graph is denoted Gn,,. The construction of these graphs can
be considered as an evolution process: starting from N isolated nodes,
random edges are successively added and the obtained graphs correspond
to larger and larger connection probability, see Fig. 3.1. One of the main
goals of random-graph theory is then to determine at which probability p
a specific property P of a graph G, mostly arises, as N tends to infinity.
Many properties of interest appear suddenly, i.e., there exists a critical
probability p.(/N) such that almost every graph has the property P if
p > pe(N) and fails to have it otherwise; such graphs are said to by typi-
cal. In our case, we are interested in the appearance of subgraphs (some
specific patterns of links between the nodes) according to the connection
probability p.

Subgraphs

We define a subgraph F' = (V, E) of G, as a collection of n < N vertices
V' connected by [ edges E. We restrict F' to be connected and of finite
size. One can ask the question: for which value of p is the subgraph to be
found in a typical random graph? The answer was given in [Bol85], where
the critical probability p. for the appearance of F' was proven to be

pe(N) = e N, (3.1)

with ¢ being independent of N. It is instructive to look at the appearance
of subgraphs assuming that p(N) scales as N*, with z € (—o0, 0] a tunable
parameter: as z increases, more and more complex subgraphs emerge, see
Tab. 3.1. In particular, only trivial connections appear in the regime
z = —2.
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Degree distribution

It is clear that the number of links attached to a node 7, written m;, follows
a binomial distribution with parameters N — 1 and p:
— — <N — 1>' m N—-m—1
prob(m; = m) = TN =1 =) p™(1—p) . (3.2)
It is known that the degree distribution of a random graph is well approx-
imated by the distribution of independent nodes, which yields, for large
N, the Poisson distribution

m

(m) (m)
m!

prob(m) ~ e~ : (3.3)

with (m) = pN. This degree distribution is a specific property of the
random graphs and contrasts with the power law of the scale-free networks.
Setting p = ¢N~2, i.e., considering the first non-trivial random graphs,
one therefore finds that there are in average ¢™ N'=™ /m! nodes of degree
m. Consequently, for sufficiently large ¢ and for N tending to infinity,
the number of nodes with m = 1 can be approximated by a Gaussian
distribution of mean ¢ and standard deviation /¢, while no node with
m > 2 appears in the network.

3.1.2 Erdos-Rényi networks in the quantum world

We consider now the natural extension of the previous scenario to a quan-
tum context. For each pair of nodes, we replace the probability p; ; by a
quantum state p; ; of two qubits, one at each node. Hence, every node
possesses N — 1 qubits which are pairwise entangled with the qubits of
the other nodes, see Fig. 3.2a. As in the classical random graphs, we
consider that pairs of particles are identically connected, with p; ; = p.
Furthermore, we restrict ourselves to the simplest case of pure states of
qubits, that is, p = |@Xp|, since it already leads to some very intriguing
phenomena. Similarly to the previous chapters, we take these states to be

lp) = 1—§|00>+\/§\11), (3.4)

where 0 < p < 1 measures the degree of entanglement of the links. As in
the classical case, p scales with N and we write

|G p) = ® |0)ij (3.5)

1<j=1
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(a) (b)

Figure 3.2: An example of a quantum random graph on five nodes. (a)
Each node is in possession of four qubits which are entangled with the
corresponding qubits at the other nodes. All the connections are given by
the non-maximally entangled state |¢). (b) The quantum links can be
converted into Bell pairs with probability p = 2¢; (here, p = 0.25). This
strategy mimics the behavior of classical random graphs.

the corresponding quantum random graph. Expanding in the compu-
tational basis all terms of this last expression, one notes that |Gy,) is
nothing but the coherent superposition of all possible simple graphs on N
nodes, weighted by their number of links or “excitations” |11). For in-
stance, drawing a line? for the states |11) and nothing for |00) (the qubits
are not explicitly shown), the quantum state on three nodes reads:

Ga) = VB* 1) + oo v (A + L)+ 12.))
Fvaa (120 1A+ LA) +vE°|A). (36)

with @1 = p/2 and, as usual, pg = 1 — ¢1. The choice of these Schmidt
coefficients becomes clear if one considers the “classical” strategy in which
one tries to convert each link, independently and using LOCC only, into
the Bell pair |®T). From Eq. (1.9), we know that the optimal probability
of a successful conversion is p, and therefore the task of determining the
type of maximally entangled states remaining after these conversions is
mapped to the classical problem. In some sense, it corresponds to picking
out a random but typical graph from the coherent superposition of all
weighted graphs, but where a link designates now a Bell pair. Thus, we
obtain the results of Tab. 3.1, and for example for z > —2. the probability
to find a pair of nodes sharing a maximally entangled state is one, whereas

2Note that, depending on the context, a line between two nodes represents a sep-
arable state, a partially entangled one, or a Bell pair. For clarity, however, they are
drawn in different colors: green, blue, or purple, respectively.
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that of having three nodes that share three maximally entangled states is
zero unless z > —1.

From now on, we set p = 2cN 2, which is, as in the classical case, the
first non-trivial regime for quantum random graphs. In fact, for z < —2
the overlap of |Gy,) and the product state of all qubits in |0) approaches
unity in the limit of infinite lattices:

1

N(N-1)
2 —N=F2\
(ol 0= (1=5) 7 exp (——) ==

5 , (3.7)

N—oo

in which case no local quantum operation is able to create entanglement
between the nodes.

3.2 Joint measurements help

Allowing strategies which entangle the qubits within the nodes offers new
possibilities and brings powerful results. This is indeed a general statement
in the context of quantum networks, as illustrated in the various chapters
of this Thesis. In the current case, the constructions are based on the
incomplete measurement P,;, whose elements P, are projectors onto the
subspaces consisting of exactly m excitations |1) out of M qubits:

Pp=> m,10...0L...1X0...00...1|=, (3.8)
Tm M—-—m

m

where 7, designates a permutation of the qubits. Applied on a node of
the network, the measurement Py_; counts the total number m of (sep-
arable) links |11) attached to it, without revealing their precise location,
however. Remark that the value of the random outcome m is either 0 or
1 in the regime z = —2, since the probability to get larger values vanishes
exponentially with N. Moreover, applied on all nodes of the network, the
outcomes m = 1 follow the classical degree distribution: they approach
the normal distribution N (i, 0?) with g = 02 = ¢. In the rest of this
section, we describe how the operators P, can be used to extract some
multipartite states that are pertinent in quantum information theory, such
as the W and the GHZ states.
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1 n n+1 2n (L-1)n+1 Ln

Figure 3.3: Construction of |W,): one applies L times the measurement
P, on the qubits of a node A, which has M = Ln neighbors and was
previously projected onto the subspace consisting of one excitation |1).
This randomly selects a group of n qubits sharing the excitation, which
are thus in the state |W,).

3.2.1 Creation of W states

Starting from |Gy ,) with p = 2¢N~%, we show in this section how to
obtain the W state on n particles,

[10...0) + |01...0) + ...+ ]0...01)
W,) = 3
Vn

for any n < N. Restricting n to be much smaller than N is not strictly
necessary, but the picture of the situation is clearer and the generalization
ton < N is straightforward. The structure of this state is pretty related
to the one of the measurement P, so that it seems to be a natural starting
point for the construction of relevant multipartite quantum states. To
that end, let us sequentially apply the measurement operators P, on the
nodes of the network until we get the outcome m = 1 for some node
A. The fact that the outcomes m follow the normal distribution A (c, ¢)
ensures that, for sufficiently large (but constant) ¢, the node A is found
while M > n unmeasured nodes are still present in the network. Without
loss of generality, we assume that M is a multiple of n: M = Ln for
some integer L. In fact, we can always measure a small number of qubits
of A without detecting the excitation |1). Then, we discard all links
which are shared among the remaining M nodes, i.e., we measure in the
computational basis the qubits that are not connected to A. Finally, we
perform L times the measurement P, on the qubits of A, as depicted
in Fig. 3.3. Exactly one measurement outputs P, and the state of the
corresponding qubits reads:
1

fwn) = 2= (ID]10...0) + [2)01..0) 4.+ 1) 00.. 1)), (3.10)

(3.9)
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where the first ket of each term belongs to A (and has been relabeled for
convenience), while the other qubits are distributed among its n neighbors.
At this point, let us introduce the notation

d
1 2wy L .
|¢f’d>5\/826d]k|33---J>, kef{l,....dy,  (3.11)
j=1 l

for the Fourier transform of |®f) = |®%%), the GHZ state on [ particles of
dimension d. It is now a matter of fact to get |W,,) from |w,): first, we
measure A in the Fourier basis { |®%™)}, and second, given the outcome
k, we get rid of the possibly introduced phases by applying the unitary

1 0
(o) o1

on each of the remaining qubits, labeled by j.

3.2.2 Creation of GHZ states

As a second illustration of the advantage of joint actions on the qubits
of the nodes, let us show how GHZ states of n qubits can be created in
a quantum random graph. Contrary to the previous example, n has to
be finite, that is, independent of N, and without loss of generality we
consider even n only. In fact, a GHZ state of odd size n can be obtained
by measuring in the X basis one qubit of a GHZ state of size n + 1. The
construction proceeds in two steps. First, a highly-entangled multipartite
state is created from the quantum network with probability approaching
unity. Second, some qubits are measured in the computational basis, and
a GHZ state is obtained if all measured qubits were in the state |0). The
second step is therefore a probabilistic process, but as we will see, the
probability of a successful construction can be arbitrarily amplified in the
limit of infinite lattices.

Quantum perfect matchings in complete graphs

The first operation consists of performing the measurement Py_; at all
nodes of the quantum network |Gy,). For p = 2cN~2, we get the outcome
m = 0 at nearly all nodes, and these nodes factor out. This is because
the corresponding qubits are completely uncorrelated with the rest of the
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Figure 3.4: Graphical representation of |K.). A link denotes, here, the
separable state |11) while |00) is not drawn, and |K,) is defined as the
coherent superposition of all perfect matchings of the complete graph K..
In this example, an appropriate labelling of the states leads to |[K4) o
[1111) + |2222) + |3333), which is a GHZ state of four qutrits.

system (they are in the separable state |0)). All other outcomes are m = 1
in the limit N — oo, and for large enough ¢ we have seen that the number
of such outcomes is distributed according to the normal function N (c, c).
For creating GHZ states of size n, we need at least n outcomes m = 1,
which is achieved with a probability exponentially close to unity by setting
¢ Z n++/n. Suppose now that we get ¢ > n outcomes m = 1, i.e., we
have a quantum system that consists of ¢’ nodes sharing ¢’/2 excitations
|11); for clarity, let us simply write ¢ instead of ¢’ in what follows. Remark
that there is always an even number of outcomes m = 1, so that ¢/2 is an
integer. The remaining state is denoted by |K.), and each node possesses
exactly ¢—1 orthogonal states in which ¢ —2 qubits are |0) and one is |1).
Qubits that were originally entangled share the same state, and therefore
this state can be visualized as the superposition of all perfect matchings
of the complete graph K., see Fig. 3.4.

The size of |K.) can then be decreased in a deterministic manner: one
measures all qubits of a node i, and gets 0 for all outcomes except for a
random one, say j. In fact, exactly one excited link is attached to 4, and
it equally points to all other nodes. Hence, the nodes 7 and j factor out,
and the state is projected onto |K,._5). One can sequentially repeat this
procedure, which eventually produces the state |K,).

Construction of GHZ states and probability amplification

Let us show in this paragraph how |K,) can be probabilistically trans-
formed into a GHZ state of n qubits. Written in the computational basis,
the state |K,) has (n—1)!! distinct terms,® which corresponds to the num-

3The double factorial of a positive integer n is defined as n!! =n-(n—2)...3-1 for
oddn, and asn-(n—2)...4-2 for even n.
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Figure 3.5: Creation of the state |GHZ,) from |K,). (a) Measurement
pattern for n = 8: all inner links (dashed thin lines) are measured in the

Z basis (for clarity, the corresponding qubits are not explicitly drawn).
(b) If all qubit outcomes are 0, then one gets the state |GHZg).

ber of perfect matchings of K,,, while a GHZ state has only two of them.
We thus have to “remove” the unwanted quantum correlations that are
present in |K,), which is done by measuring in the Z basis n — 3 qubits
at each node, as depicted in Fig. 3.5. The construction is successful if all
outcomes are 0, so that the n/2 excitations |11) are still shared among
the n nodes. This happens with probability p, = 2/(n — 1)!!, and in this
case only two perfect matchings are possible in the underlying graph (a
loop of length n). Therefore, the two qubits of each node are either in
the state |01) or |10), and we project them onto the states |0) and |1),
respectively, which leads to the desired GHZ state.

The GHZ state is successfully generated if we get some specific out-
comes for the various measurements at the nodes, namely 0 for each qubit,
and therefore it appears with non-unit probability p,. But this is not a
problem because p,, does not depends on N, so that the process can be
arbitrarily amplified in the limit of infinite lattice size. The reason is that
we can always subdivide the N nodes of the original network into L sets
of N/L nodes, with L a constant much larger than 1/p,, and apply the
construction of the GHZ state on each set. These sets are treated as in-
dependent if we initially discard all links connecting different sets, i.e., if
we measure the corresponding qubits (in any basis). Consequently, the
GHZ states can be obtained with a probability that is arbitrary close to
unity. Because of this probability amplification, we do not try to optimize
the construction, which could, however, be essential for practical purposes
since p,, decreases exponentially with n.
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3.3 A complete collapse of the critical ex-
ponents

In the previous section, we have shown how to create some well-known
multipartite entangled states, namely the W and the GHZ states of n
qubits. These states do not have any classical counterpart, so let us now
turn to the creation of quantum subgraphs. We define a quantum subgraph
of a subgraph F' = (V| E)) composed of n vertices and [ edges as the state
|F') consisting of [ maximally entangled pairs |®) shared among n nodes,
according to E:

l
|F) = ® D) .. (3.13)

In Sec. 3.3.1, we consider the “A” subgraph, which consists of two edges
sharing one common node. In the classical random graphs, this subgraph
only appears for z > —3/2, see Tab. 3.1, but in what follows we present
a construction to get the corresponding quantum subgraph already in
the regime z = —2. This will give us some insights into the design of
larger quantum subgraphs, and in Sec. 3.3.2 we indeed present a general
construction to obtain any quantum subgraph of finite size from the state
|G N p) with p ~ N72. This is an unexpected result, as all critical exponents
of the classical random graphs collapse onto the first non-trivial value
z = —2 in the quantum context.

3.3.1 The A subgraph

Let us show how one can extract two Bell pairs on three nodes A, B and
C, as depicted in Fig. 1.1a, in the regime z = —2. Explicitly, we want to
create the state

) ape = (]00) +\/|§11>)AB o ([00) +\/|§11>)BC

(10000) + [0011) + [1100) + |1111))

_ B (3.14)

N | —

We start the construction by creating the state |Kg), as described in
Sec. 3.2.2. Then, we do not remove all inner links of the underlying
complete graph (by measuring their qubits in the Z basis) but only five
of them, see Fig. 3.6. With probability py = 4/15 all outcomes are 0,
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Figure 3.6: Construction of |A> from |Kg). The top figure depicts the
measurement pattern: the five dashed links are measured, while the other
qubits are left unaltered. If all outcomes are 0, we get the quantum su-
perposition of the four possible perfect matchings of the remaining graph.
The states at the nodes are labeled according to the qubit which is in the
state |1).

which results in the (unnormalized) state [111111)+ [122122)+ |333333)+
|444433) on A, B, ..., F. Then, we remove the nodes D, E and F by
a measurement in the Fourier basis { |®%*)}, and we correct the possibly
introduced phases such that we get the state

(3.15)

1
5 ([111) + [122) + [333) + [444))

The last step of the construction consists of relabeling the states of B,
with [1) — [00), |2) — [01), |3) — |10) and |4) — |11), and to project
A and C onto the subspace of one qubit by applying the operators

(3] + {4

N
2| + (4 (3.16)

N

aEe,

Pe = I ELZEL 4y

PAi - ‘O>

which satisfy the completeness relations PJHP T Pj‘,PA, = 14 and
P(];+ P +Pg, P._ = 14. Depending on the outcomes, some local unitaries

are applied on the state, such that it becomes the quantum subgraph |A)
given in Eq. (3.14). Since the probability py does not depend on N, the
construction can be repeated as many times as we want for N tending
to infinity, so that |A) is generated with a probability arbitrarily close to
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unity. Therefore, the classical critical exponent z = —3/2 is shifted to
2z = —2 in the quantum setting.

3.3.2 General subgraphs

We now turn to the main result of this chapter:

Proposition 3.1 (Collapse of the critical exponents)

Let |Gn,p) a quantum random graph with p = 2¢N~2. For N tending to
infinity, one can obtain, with probability approaching unity, the quantum
state |F') with the structure of any finite subgraph F' = (V| E) composed
of n vertices and l edges, as defined in Eq. (3.13).

This result implies that in the quantum case the structure of Tab. 1 com-
pletely changes, as all subgraphs already appear at z = —2. More pre-
cisely, for any subgraph F', there exists a quantum random graph with
p ~ N72 where F' appears. Note that the only restriction on F is that
both n and [ are independent of N. In particular, F' does not need to be
simple, as in the classical case.

PRrROOF The construction of |F) from a typical quantum random graph
mainly follows the creation of the A subgraph: one tries to obtain a GHZ
state of size n and of sufficiently large dimension d, as it was (nearly) the
case in Eq. (3.15), and then performs some projections at the nodes in
order to reveal the structure of F'. Without loss of generality, we consider
connected subgraphs only, such that [ > n — 1. Let us now detail the
construction, which we split in three steps.

First step. We create the state |K.) with ¢ = D +n, D = d? and
d = 2": n nodes will be kept to build the final state, while D additional
nodes are needed to establish the desired quantum correlations. This
state is obtained with unit probability by tuning the prefactor in p (and
not the exponent z = —2), as described in Sec. 3.2.2. Then, we remove
all connections shared between n nodes of |K.), i.e., we measure the
n(n — 1)/2 concerned links. The operation is successful if all outcomes
are 0. In that way, we build a state that is the coherent superposition of
all perfect matchings of the graph join of K and the empty graph K,,.
Counting the number of perfect matchings of K, and Kp + K, one finds
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that the success probability of this operation is

prob (1K) w |Kp + K)) = (D?!n)! . Eg;g:g:: (3.17)

which approaches one for large n (and consequently for large D since
D=2>nforl4+1>n> 2). We further measure the D nodes of Kp,
but this time in the Fourier basis { |®°™")} in order not to reveal where
the links |11) lie. Since the nodes can communicate their measurement
outcomes, we can correct the possibly introduced phases, and the resulting
state reads:

D —n)! D . .
T e Fin=1

Third step. We now want to transform |p?) into a GHZ state of
n particles of dimension d = VD. To that end, and because it is not
convenient to deal with sums whose indices are subject to constraints, we
develop Eq. (3.18) in order to let the sums freely run from 1 to D. For
example, the state on three nodes A, B, and C' is expressed as (up to a
normalization factor):

D D D
|0) ac o Z lijk) apc — Z (liig)+ liji)+ |jii)) apc + 2 Z |41%) aBC
g k=1 ij=1 i=1

3
=VD" |[07)a @ |07)5 @ |97)c = D (197)a5 ® |97)c
+ |2F)ac ® |20V 5 + |9F)pe @ |[®7)4) +2VD |9) anc.
More generally, this leads to a weighted and symmetric superposition of
states of the form @);_, |®Y) for all partitions? (Ay, Ag,..., A;) of n. We

want to remove all terms of this sum but the last one, which will allow us
to obtain |F"). To that purpose, we use the mathematical identity

@) = |®5,) = |5)%%, (3.19)

which holds for all m and d: we split each node into two subsystems of
dimension d and measure one of them in the Fourier basis. This operation

4A partition of a positive integer is a way of writing it as a sum of positive integers.
For example, the partitions of 4 are (4), (3,1), (2,2), (2,1,1) and (1,1,1,1).

) ) 3
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is successful if the outcomes are k = 1 at all nodes but the last one, which
should be k = d —n + 1. In fact, to see what happens to a state |®2), we
note that

IR iEm > 1,

k,d|F7,d\ __ %“I)mfl
(@77|977) = (3.20)

0jk otherwise.

Therefore, by sequentially measuring (®1|, a state |®%) shared among
any m < n nodes transforms as

@0) = @51 > |85 1) e [ ) 5 0

as long as d # m. But this is always the case because we consider con-
nected subgraphs, so that d > 2l > 2771 > n > m. Hence, all terms
|®P) = |®2)®2 with m < n vanish while measuring the first n — 1 nodes,
which results in the state |®4) @ |®97"*1) The state |®9~"*!) is finally
removed by the last Fourier measurement, so that we are left with the
GHZ state |®%).

Fourth step. The last step consists of transforming |®¢) into |F'). The
procedure is completely analogue to the last part of the construction of
the A subgraph, see Egs. (3.14) to (3.16). First, we expand and write
explicitly all the terms of |F') in the computational basis, and we group
the qubits according to the connections E. This leads to a sum of product
states of the form ®?:1 |y withi=1,...,2"and j = 1,...,n. Since we
have chosen d = 2!, we can apply the measurement element Zle i, X2l
on each node j of |®%), which achieves the desired transformation and
therefore concludes the proof. O






PART 11

Mixed states

The truth is rarely pure and never simple.

— OSCAR WILDE






CHAPTER 4

Towards noisy quantum
networks

In the first part of this Thesis, we have shown how pure-state entangle-
ment can be manipulated in noiseless networks to achieve tasks that are
impossible in one-dimensional settings (long-distance entanglement gener-
ation, Chap. 2) or to demonstrate surprising effects that are absent in the
corresponding classical model (sudden appearance of subgraphs in com-
plex networks, Chap. 3). This brings deep insights into the interplay of
the network geometry and the quantum operations at the nodes, empha-
sizing the predominant role of multipartite entangled states. In fact, both
the connectivity of the vertices and the spread of entanglement over the
nodes help in these tasks. The aim of this chapter is to determine to which
extent the results collected so far apply to the more realistic scenario of
noisy networks, and, eventually, to introduce some refined techniques to
tackle systems undergoing random errors.

At this point, let us briefly describe a possible setup for an implemen-
tation of a quantum network, where atoms store the quantum information,
and thus represent qubits, while photons are used to create remote entan-
glement. This is currently the most promising scenario for the realisation
of quantum networks [Kim08]. In particular, we consider the case where
continuous-variable entanglement contained in a two-mode squeezed light
is transformed into discrete entanglement between two atoms trapped in
distant high-quality cavities [KC04], see Fig. 4.1. Assuming perfect oper-
ations, one can drive the system so that its steady state reads:

n+1 n
= + 4/ 4.1
\@)AB o1 |99>AB on + 1 \€€>AB7 ( )

with |g) and |e) denoting the ground and excited atomic states, respec-
tively, and where n 2 1 is a squeezing parameter. This entangled state of
two qubits is equivalent to the pure state considered so far, but we want
now to include in the description of the links of the network some of the
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Figure 4.1: Two cavities A and B are simultaneously driven by a common
source S of squeezed light, and the two distant atoms get entangled in the
steady state of the system.

imperfections that are present in any real system.

If one source of errors is preponderant in the network, then the links
are well approximated by rank-two mixed states, 7.e., mixtures of two
two-qubit pure states (Sec. 4.1). In this case, the mathematical properties
of the noisy connections are not “too far” from those of the pure states,
so that most results of Part I still apply. For instance, entanglement
percolation is possible if the connections are subject to amplitude damp-
ing [BDJ09], and multipartite measurements can boost this process, see
Sec. 4.1.1. The description of the links by amplitude-damping channels
is valid if the main source of noise is a loss of energy from the quantum
system (as a spontaneous emission of one photon from the atoms, or the
scattering of the photons in the connections, see Sec. 8.3.5 in [NCO00]), but
many other scenarios can be imagined. For example, the light source in
Fig. 4.1 may fail to emit any squeezed light with a non-negligible probabil-
ity. This is an important but nevertheless not too severe source of errors,
since it does not alter, for instance, the properties of quantum complex
networks (Sec. 4.1.2).

In a more general setting, errors affect all components of the four-by-
four density matrices describing the links of the network, such that one
has to deal with mixed states of full rank (Sec. 4.2). It is particularly
important to use this description while studying the problem of long-
distance entanglement generation, since locally negligible errors may add
up to a complete loss of non-local quantum correlations. In Sec. 4.2.1, we
review the basic properties of full-rank mixed states, and then we briefly
describe the so-called quantum-repeater strategy (Sec. 4.2.2). In the last
two chapters of this Thesis, we then show how the high connectivity of
a general quantum network greatly improves the efficiency of these one-
dimensional protocols.
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4.1 Rank-two mixed states

In this section, we consider quantum networks that are exposed to one
type of errors only, i.e., the connections are described by a probabilistic
mixture of two pure states. As for pure-state networks, we suppose that
the quantum operations are not affected by the noise, so that they can be
applied perfectly at the nodes.

4.1.1 From pure to mixed states and vice versa

As a general but unrigorous observation, rank-two mixed states behave
quite classically, in the sense that one has to deal with one type of er-
rors only. For example, one may face (classical) bit-flip errors while the
(quantum) coherence of the state is undamaged. This observation is made
more concrete by the following statements: a two-qubit pure state can be
twirled to a mixed state of rank two [VWO01], and some rank-two mixed
states can be purified into Bell pairs [Jan02], starting from a finite number
of copies.! In that respect, most ideas of Part I can be used here, modulo,
of course, some adaptations of the formulas according to the setting under
consideration.

Transforming weak pure-state entanglement into bit-flip errors

Before turning to mixed-state networks, let us note that the twirl operation
[VWO01], which transforms the state |¢) = /@0 |00) 4+ /1 |11) into the
mixture

(m;@) petv. +<¢%—2V@ Y], (4.2)

can be used to generated long-distance entanglement in pure-state lattices.
In fact, we will see in Sec. 5.1 that useful quantum correlations between dis-
tant stations are maintained if the bit-flip error rate e, = (/o — /1)%/2
does not exceed 10.94%. This offers an alternative to the percolation
strategies, but it is a remarkable coincidence that both protocols lead to
the same entanglement threshold. In fact, setting ; = 10.94, one finds
that the critical amount of entanglement using mixed states is

S* = 2p7 ~ 0.3757, (4.3)

IFor two-qubit states of rank three or four, this is possible in the asymptotic limit
only, that is, if one possesses an infinite number of copies.
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which is equal (up to numerical errors) to the value given in Eq. (2.19).

Percolation with amplitude-damping channels

It is a well-known result that two mixed states of the form

p(e,7) = (1 =) leXel + v [01X01] (4.4)

shared between two parties, which describes the result of an amplitude-
damping channel with energy dissipation parameter 0 < v < 1 (see
Sec. 8.3.5 in [NC00]), can be purified into one Bell pair with a strictly
positive probability of success and using LOCC only [Jan02]. In their
recent paper [BDJ09|, Broadfoot et al. nicely showed that this opera-
tion leads to mixed-state entanglement percolation in certain quantum
networks. In what follows, we propose to incorporate the multipartite
measurements described in Sec. 2.3 into their protocol, yielding lower and
therefore advantageous entanglement thresholds. To that end, let us con-
sider a triangular lattice, where each bond consists of the two mixed states
p(®T,~) and p(p,7). This is a very specific example, but the multipar-
tite strategy clearly applies to more general situations. The protocol used
in [BDJO9| first tries to purify every double bond, which results in the
pure state |p) with probability (1 — v)?/2, and then it applies classical
entanglement percolation. For instance, setting v = 1%, long-distance
entanglement is possible if S(¢p) is larger than

2p2
(1—=7)?

Alternatively, one could apply a generalized entanglement swapping on
the bonds that are successfully purified, according to the multipartite
measurement pattern for the triangular lattice, see Fig. 2.12. One sub-
tlety arises here, however, since the lattice is not perfect but only partially
filled with bonds. For simplicity, and in the very same spirit as the last
part of Sec. 2.4, we do not adapt the measurement pattern to the random
lattice but rather perform a GHZ measurement only if the two correspond-
ing bonds are present. In that case, a numerical estimation of the new

threshold yields

S, = ~ 0.7087. (4.5)

S. = 0.684(1), (4.6)

which clearly beats the previous strategy.
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4.1.2 Quantum complex networks

Let us reconsider the quantum complex networks of Chap. 3 in a slightly
more realistic situation, where some errors are introduced into the system.
For instance, the quantum connections may be deteriorated by a source
of light that fails to emit squeezed states with some probability =, see
Fig. 4.1. Equivalently, this imperfect source produces the vacuum state
|00) with probability 7, so that the connections of the quantum network
are in the mixture

p=(1—=7)]eXel +~[00X00]. (4.7)

In what follows, we show that the construction of quantum subgraphs
described in Sec. 3.3.2is robust against this kind of noise in the connections
of the network. In the first step of the proof, the measurements Py_; are
not affected by the imperfect source since no extra excitation |1) is created
in the network: only the number of outcomes m = 1 slightly decreases from
¢ to (1 —7)c. But as already discussed, the connection probability p can
be increased to still get with certainty ¢ outcomes m = 1. Then, setting
¢ = 4 for instance, the remaining nodes are in a mixture of |K,) and some
completely separable states:

3
1 —
prea = a | K XK + Tx ; lidiaYiiii (4.8)

with z = (1 — 7)? for very large lattice size N. Despite the presence of
separable states, pg4 is useful for quantum information tasks since it is
distillable for all v < 1, i.e., the coefficient = can be brought arbitrarily
close to unity if one possesses a large number of such copies. However,
in the regime z = —2, it is impossible to get several copies of pg4 on the
same four nodes. But this is not a problem since, alternatively, one can
repeat the construction 1/z times so that any use of |Ky) is still achieved
with high probability. More generally, the state pg. is a mixture of the
desired state |K.) and some partially separable states, with x equal to
(1 — ~)¢/2. This structure is maintained throughout the construction of
the quantum subgraphs (steps two to four of the proof), so that with a
strictly positive probability = we create any quantum subgraph |F') in the
regime p ~ N2,
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4.2 Full-rank mixed states

From now on, we consider that the quantum connections between two
neighboring qubits of the networks are completely general, that is, they
are described by any valid density operator p. Such a four-by-four matrix
can be expanded in the Bell basis, and its fidelity

F=(@p|a") (4.9)

describes how close p is to the ideal connection |®T). This state can always
be depolarized to a standard form by applying random local unitaries on
the two qubits, which greatly simplifies the calculations [BBPT96]. The
resulting state, which is called a Werner state [Wer89], is diagonal in the
Bell basis:

1—F
Wp = F|®TY0T| + T(mﬁxqfﬂ + [@TXDT| + [UXT]),

and is entangled whenever F' > 1/2 [BDSWO96]. Note that the fidelity
F' is not altered by the depolarization procedure, and for convenience we
rewrite this state as

1 —
W, = 20N+ + ——

14, (4.10)

with = (4F — 1)/3. The latter definition emphasizes the fact that a
Werner state is a mixture of a perfect quantum connection and a com-
pletely separable state.

Most concepts and results of this section are already well established,
but their introduction here has two main purposes. First, it presents in a
compact way the various quantum manipulations that have to be assimi-
lated before turning to the last two chapters of this Thesis. This is done
in Sec. 4.2.1. Second, it gives a flavor of what kind of entanglement can
be extracted from the quantum connections. In particular, since LOCC
transformations cannot purify or distill a finite number of such connections
in a perfect manner, it can be anticipated that entanglement-percolation
protocols (at least in their current form) will have to be abandoned for new
strategies. In the last part of this chapter (Sec. 4.2.2), we finally review
the so-called quantum-repeater protocols, which allow a rather efficient
generation of long-distance entanglement in one-dimensional systems and
traditionally serve as a benchmark for any new protocol.
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4.2.1 Elementary operations on Werner states

In this subsection, we describe two basic quantum operations that al-
low one to manipulate the entanglement present in the Werner states,
namely the entanglement swapping and the (bipartite) purification pro-
cedure. Then, we show how a Werner state is brought into yet another
standard form (independent bit-flip and phase errors), which is the state
that is considered in the protocols of the upcoming chapters.

Entanglement swapping and purification

Since the Werner state is a (classical) mixture of a Bell pair and a com-
pletely separable state, it trivially follows that the entanglement swapping
described in Sec. 1.1.1'is optimally performed in any basis of maximally-
entangled states. The state that is created by entanglement swapping
between the two extremities of a chain of N Werner states W, is thus
given by N

1 —
W{L'(N) — SL’N |(I)+><(I)+| + z

14, (4.11)

so that the fidelity decreases exponentially with N. As expected, we
face the same problem as with the pure states while trying to generate
long-distance entanglement, and since the former was solved by means of
distillation procedures, it is natural to study these methods in the mixed-
state scenario. A lot of effort was furnished in this direction (see [DB07] for
a review on entanglement purification), but to our purpose it is sufficient
to notice that:

(i) At least two copies of a Werner state are needed to get, by LOCC
and with finite probability, a state of higher fidelity [LMP98].

(ii) Perfect Bell pairs can be distilled from N Werner states in the limit
N — oo only [Ken9§].

As an example of purification procedure, Bennett et al. presented a proto-
col to concentrate the entanglement of two states W, and W,, [BBPT96],
leading to a state W,» with
- w (4.12)
3+ 3xx
The resulting state is closer to the target state |®*) if both W, and W,
are entangled (that is, if z, 2’ > 1/3) and if z > 2’ > 2z/(1 + 4z — 32?).
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This procedure can be iterated, leading to a non-zero distillation rate, but
improved schemes exist, see [DEJT96] for example.

From Werner states to independent bit-flip and phase errors

Let us denote a Werner state Wpr by its components in the Bell basis

B = (®T, ¥ & ¥) so that Wr = (F,%,%,%)B. We want to
find a sequence of separable operations on Wy in order to get the mixed

state

plepep) = (1—e)(1—¢gy), (1 —ep), (1—ep)ep, evep)y  (4.13)

which can be thought of as the result of sending one qubit of the Bell
pair |®T) through a quantum channel that randomly introduces bit-flip
or phase errors with independent probabilities €, and ¢,, respectively. To
that end, we first define the two unitaries

H= % G _11) and H' — % (i 1) , (4.14)

and we verify that the operation H ® H applied on a Bell-diagonal state
switches its coefficients ®~ and WU, while the coefficients ®* and ¥~ are
unaltered. A similar result holds for H' ® H’, which only switches the
components ®T and U*. Suppose now that an entangled pair Wg, with
F =1 — 3¢&ugp, has been created between two neighboring nodes. This
already sets the coefficient ¥~ to the desired value e,e,. Then, apply
H' @ H' with probability p = (e, + &, — 4depep) /(1 —4depey) and 1o @ 1y
with probability 1 — p. This sets the fidelity of the resulting state to its
final value (1 — &,)(1 — ¢,), while the second and third components read
ey +€p — 3epep and ey6,, Tespectively. Finally, repeat the operation by
applying H ® H with probability p = ¢,(1 —2¢) /(s + €, — 4 €4€,), which
yields the desired result.

4.2.2 Quantum repeaters

The quantum repeaters decribed in [BDCZ98, [DBCZ99] offered a first
solution to the problem of quantum communication between distant par-
ties.? In this scheme, the time needed for the generation of entanglement

2Note that an anterior scheme based on concatenated quantum codes was proposed
in [KL96]. However, even if the physical resources scale only polynomially with the
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(a) 1st level (b) 2nd level

Figure 4.2: The nested purification used by the quantum repeaters. (a)
Elementary connections are continuously generated between neighboring
stations, and an entanglement swapping is performed at every second
node. The resulting states are weaklier entangled, but they are repeatedly
purified by entanglement pumping. (b) Once the states have a sufficiently
large fidelity, the procedure is iterated at a higher level, which eventually
creates an entangled pair of qubits between the two extremities of the
chain.

between the two extremities of a one-dimensional lattice of size N scales
polynomially with N, whereas only a logarithmic number of qubits is re-
quired per station. The underlying idea of the quantum repeaters is to use
a nested purification protocol, which intersperses entanglement swappings
and purification steps, see Fig. 4.2.

Though being very promising, the quantum repeaters raise several
technical problems, such as the difficulty to manipulate many qubits per
station, or maybe more fundamentally, the need for reliable quantum
memories [HKBD(7]. The former is surmounted in [CTSLO05], where a
constant number of qubits is required at each station. Alternatively, a
scheme involving optical instruments only, such as laser manipulation,
beam splitters, or single-photon detectors, was proposed in [DLCZ01].
Since then, various protocols improving the rate of long-distance quan-
tum communication in one-dimensional networks have been developed
[CZCT07, JTLOT, SAAT07, SSZT08, JTNT09]; see [SSARGOI] for a re-
view on this topic. However, either their running time scales polynomi-
ally with the distance, or they are based on rather complicated quantum
error-correcting codes involving many qubits per station.

length of the channel in that case, the large number of qubits at each station or the
high precision with which the various quantum operations have to be realized may be
out of reach for any practical implementation.
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4.2.3 Lower bound for long-range entanglement

The quantum repeater protocols were created for one-dimensional sys-
tems, and the purpose of the next two chapters is to design new and effi-
cient schemes for distributing entanglement in noisy quantum networks of
higher dimension. Before turning to this problem, however, let us first pro-
vide a bound on the fidelity of the connections under which no long-range
entanglement can be generated.

In Chap. 2, we have seen that ideas from percolation theory allow one
to set an upper bound on the minimum amount of pure-state entangle-
ment required to connect two infinitely distant nodes, whereas no non-
trivial lower bound is known at the moment (Sec. 2.4). Quite ironically,
the situation turns out to be the opposite for mixed-state networks: a
lower bound is easily derived from percolation considerations, whereas an
upper bound is found for three-dimensional networks only (Chap. 6). In
fact, suppose that the connections of the network are given by the Werner
state W, = p |TNDF| + (1 — p) 14/4, with p smaller than the (classical)
threshold p. for bond percolation in the corresponding lattice. The quan-
tum state describing the whole system is then a mixture of lattices whose
bonds are either perfect Bell pairs or completely separable states, but in
the limit of infinite size, none of these lattices possesses a giant cluster of
Bell pairs. This threshold leads to a lower bound, since, by definition, no
local quantum operation can create entanglement out of separable states.
In the square lattice, for instance, genuine quantum correlations cannot
be generated over arbitrarily large distances if p < pZ = 1/2, even though
all connections are entangled in the range p € (é, %) Remark that this
argument does not provide any interesting lower bound for the cubic lat-
tice, since its percolation threshold p,. ~ 0.2488 [LZ98] is smaller than one
third.



CHAPTER 5

One-shot entanglement
generation over large distance
in square lattices

The aim of this chapter is to establish a new theoretical scheme for gen-
erating long-distance entanglement in quantum networks, without rely-
ing on efficient quantum memories [HKBDO07] or on rather complicated
concatenated quantum error-correcting codes [JTNT09]. We consider a
N x N square lattice, where neighboring nodes are connected by noisy
quantum channels, and we show that a partially entangled pair of qubits
can be created between any two stations if the effective probability for
the quantum errors lies below a certain threshold. To that purpose, we
propose to combine ideas of quantum correcting codes [KL.96] with error-
recovery techniques developed in the context of topological quantum mem-
ory [DKLP02]. Our protocol is a “one-shot” process (the elementary en-
tangled pairs are used only once) involving one-way classical communica-
tion only, and therefore the qubits have to be preserved from decoherence
for a time that does not depend on the number of connections between
the two desired stations. Furthermore, the overhead of local resources
increases only logarithmically with N while the tolerable error probabil-
ity for the various quantum operations is of the order of the percent for
any realistic network size, making our proposal favorable for long-distance
quantum communication.

In Sec. 5.1, we start by considering that only bit-flip errors randomly
occur in the network. We show that most such defects can be suppressed
if their occurrence rate does not exceed 11%. To this end, we construct
a giant GHZ state that is distributed among all stations (Sec. 5.1.1), and
the high connectivity of the network allows us to compute the parity of
some pairs of its qubits, that is, to gain information on the location of the
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bit-flip errors,! see Sec. 5.1.2. Then, we show that a somewhat “classical”

encoding of the qubits prevents the phase errors from proliferating in the
network, which therefore preserves the coherence of the final quantum
state (Sec. 5.2). Finally, we emphasize the fault-tolerant aspect of our
protocol, relating the general model of errors that we use to some concrete
physical quantities, such as the decoherence rate of the individual systems,
or the loss of photons while generating the short-distance entangled pairs,
see Sec. 5.2.2.

5.1 Network with bit-flip errors only

The quantum network we consider throughout this chapter consists of
a N x N square lattice, where nodes represent the stations and edges
the quantum channels, see Fig. 5.1. Quantum states can be transmitted
through these channels, and entanglement, i.e., short-distance Bell states,
can be created between neighboring stations. We would like to use these
resources to generate a long-distance Bell pair |®1) between some chosen
destination stations A and B. We assume perfect classical communication
among all stations but imperfect quantum operations and noisy channels,
so that the local entangled pairs have limited fidelity; details of the error
model are given in Sec. 5.2.2.

Let us assume, for the moment, that only bit-flip errors occur in the
links of the network, with independent probability &:

p=(1—gp)|PTNDT| + ey |UHYTH. (5.1)

Phase errors are thus not considered yet, but they will be added in Sec. 5.2.
In what follows, we show that one can use the links of the lattice to
construct and propagate a large GHZ state through the lattice, so that a
long-distance entangled pair of qubits can be generated (Sec. 5.1.1). The
very special geometry of the network allows us to coherently check the
parity of some pairs of qubits of the propagating GHZ state, leading to
a pattern of parity syndromes. In the case of perfect connections, one
gets only even-parity outcomes, but bit-flip errors introduce some random
odd-parity results. However, we show in Sec. 5.1.2 that most bit-flip errors

!Since a GHZ state is the coherent superposition of the states [00...0) and
[11...1), the parity of any two qubits is even in a noiseless scenario. An odd par-
ity thus indicates that at least one bit-flip occurred in the network.
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Figure 5.1: The links of a square lattice are used to teleport a GHZ state
from the node O to the node C'. Two stations A and B coherently keep
one qubit of the propagating GHZ state, generating the long-distance Bell
pair |®T).

can be suppressed by a classical error correction based on the syndrome
pattern.

5.1.1 Propagating a large GHZ state

The first step of the procedure consists of creating a local state |®*) at
the corner station O, see Fig. 5.1. We then use the entangled pairs to
teleport the two qubits of |®T) to the right and to the top until they
reach C, in the following manner:

(i) Inner stations receive two qubits from their bottom and left neigh-
bors, and they teleport them farther to the top and to the right,
respectively.

(ii) Stations on a boundary do the same, but they either receive one qubit
and “duplicate” it (by applying a CNOT with an additional qubit in
the state |0) as target), or they receive two qubits and “erase” one
of them (by measuring it in the X basis and by communicating the
outcome result). The station C' erases the two qubits it receives.

(iii) The destination stations A and B save each an additional duplicated
qubit, which are used to create the long-distance entangled state.

In a noiseless network, these operations generate a GHZ state that orig-
inates at O, propagates along the OC-diagonal, and expands and then
shrinks in the perpendicular direction until it reaches C. During the ex-
pansion process, one indeed creates the state |GHZy:), where ¢ denotes
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Figure 5.2: Bit-flip error correction. (a) Parity checks associated with five
erroneous edges; nodes with odd parity are highlighted. (b) The corre-
sponding plaquette representation. (c) In this example, the plaquettes are
correctly paired but not all paths of errors are properly inferred. This cre-
ates a loop in the dual lattice, and stations lying inside this region apply
the wrong bit-flip correction.

the time at which the teleportations are performed. Two observations are
pertinent at this stage. First, one can include more qubits in the final
state, creating a large GHZ state among the nodes of the lattice and not
simply a Bell pair between only two stations. Second, more important,
all teleportations can be executed at once. This sequence of operations
is indeed only useful to visualize what is happening in the quantum net-
work, but it does not play any role in the protocol. In fact, the choice of
the local rotations that have to be applied on the final state, depending
on the outcomes of the Bell measurements of the teleportations, can be
postponed to the very end of the process; see also Fig. 5.4.

5.1.2 Network-based bit-flip error correction

A syndrome detection and a network-based error correction are now used
to suppress most bit-flip errors that occur while teleporting the entangled
state from O to C.

Parity checks and plaquette representation

The special geometry of the square lattice allows us to extract, without
damaging the coherence of the final state, some information about the
bit-flip errors. To this end, each station coherently computes the parity
of the two qubits it receives, as shown in Fig. 5.4, and outputs +1 if the
qubits have the same parity and —1 otherwise; we call this a syndrome.
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Since we are propagating a GHZ state, the presence of parity checks with
the result —1 indicates the presence of bit-flip errors in the network. Re-
mark that the stations at the bottom and left boundaries of the lattice
cannot perform any parity check, since they receive one qubit only. As we
will see in the next subsection, however, the fact that these syndromes are
missing does not play any role in the efficiency of the error correction, as
long as the stations A and B lie sufficiently far from the boundaries. For
simplicity, let us therefore assume that the boundaries are error-free.

Given all parity checks of the lattice, the task is then to determine
which are the edges responsible for the bit-flip errors. To this purpose, we
attach to each plaquette of the network, that is, to each vertex of the dual
lattice, a value that is the product of the four parity check outputs at its
corners. For example, we show in Fig. 5.2a a possible realization of the
protocol for a 6 x 6 lattice, in which only five teleportations flipped the
qubits; the corresponding plaquette representation is depicted in Fig. 5.2b.
One sees that single erroneous edges result in two neighboring plaquettes
labeled by “—17, so that they can be identified unequivocally as long as
they are isolated. However, having two (or more) such edges adjacent to
the same plaquette leads to some ambiguity, see Fig. 5.2c. At this point,
let us be more general and describe the optimal bit-flip correction. The
error recovery runs as follows:

(i) Find all configurations of erroneous links that lead to the pattern of
plaquette “—1” corresponding to the outcomes of the parity checks.

(ii) Randomly choose one of these configurations according to their prob-
ability of occurrence. Denoting by N. and Nz the number of erro-
neous links and perfect ones, respectively, this probability is simply
given by &, (1 — &),

(iii) Apply the bit-flip operator X on all qubits that are affected by the
erroneous links of the chosen configuration.

Since this procedure is very similar, not to say identical, to the error
recovery in surface codes (or more generally in topological quantum mem-
ories, see [DKLP02]), let us now compare both corrections and stress the
differences that appear in the quantum correlations of the final state.
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Comparison with the error recovery in surface codes

First, we consider the regime of small bit-flip error probabilities, so that
the most probable configurations leading to a given pattern of plaquettes
are the ones that contain the fewest errors. Because plaquettes appear in
pairs (they are located at the extremities of paths of errors in the dual
lattice, see Fig.5.2b), the most natural strategy is to find a coupling of
the syndrome plaquettes that globally minimizes the distance between
any two paired defects (plaquettes “-1”). In this way, one indeed finds a
minimum set of erroneous edges that match the syndrome pattern.? The
paired defects have then to be connected by a shortest path (in the dual
lattice), which is in general not unique. Since all such paths are equally
probable, the choice of the correct one is ambiguous, and loops of wrongly
inferred edges may be created, see Fig. 5.2c. In surface codes, if the error
probability ¢, is too large, these loops proliferate and eventually give rise
to a homologically non-trivial loop that stretches from one rough edge to
another, suppressing any long-distance quantum correlation. In an infinite
square lattice, this happens if ¢, is larger than the critical value

ef ~ 0.1094. (5.2)

This threshold is determined via a mapping to the two-dimensional random-
bond Ising model [HPP01] and corresponds to the optimum error correc-
tion. In our protocol, we do not deal with two opposite rough edges but
rather four, since the whole network boundary lacks some information on
the parity checks. This is the case because stations lying on the left and
bottom edges of the lattice cannot compute any parity check (they receive
only one qubit of the propagating GHZ state), while the links of the top
and right edges create only one syndrome plaquette (and not two). How-
ever, paths of errors due to these boundary effects enter only superficially
the lattice, such that the threshold for the error correction is not altered.
In fact, the probability that such paths penetrate a distance d into the
network decreases exponentially with d.

At this point, a basic difference between the two models has to be
pointed out: in the surface code, homologically trivial loops do not affect

2Remark that this strategy is not optimal, since the degeneracy of the configura-
tions with more errors may balance and even surpass their smaller probabilistic weight
[SB09]. However, it yields some results that are close to optimality, especially for very
small values of &p.
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the state used as a quantum memory, while non-contractible ones induce
a logical error. In our quantum network, however, a contractible loop also
affects the correlations of the final state if one of the destination stations
lies in its inside, since, in this case, the wrong bit-flip error correction is
applied to it. In that sense, the destination stations in our model can
be viewed as punched holes in the planar code, which are used to encode
logical qubits.

This observation removes part of the ambiguity concerning the choice
of the path connecting two defects: it has to follow (as well as possible) a
straight line. For the syndrome pattern shown in Fig. 5.2c, for instance,
one easily verifies that the path “«—]<«" (starting from the rightmost
plaquette) minimizes the average number n of sites that infer the wrong
error correction:

2
n(«J) = 3 (5.3a)
while we have for the two other possible paths of minimum length:
n({<) =n(«<«]}) =1 (5.3b)

Fidelity of the resulting state

We have seen that no long-distance entanglement can be generated if
€y > €3, so let us now study the fidelity F' of the final state for smaller
error rates. Since we assume bit-flip errors only, the quantum state shared
by A and B is a mixture of the two Bell pairs |®*) and |¥T):

pap = F|OTXOH| + (1 — F) [UHY 0. (5.4)

This mixed state is entangled if /' > 1/2 and can be distilled at a rate
E = 1 — Hy(F), which is called distillable entanglement [BBPT96] and
where the Shannon entropy H, is defined as

Hy(x) = —zlogy(x) — (1 — x) logy (1 — ). (5.5)

Based on Edmonds’ algorithms for finding a minimal weight perfect match-
ing of the syndrome plaquettes [Edm65a, Edm65b], Monte-Carlo simula-
tions were performed to compute the fidelity F'(g;), that is, the probability
P..(gp) to apply the same bit-flip correction at arbitrarily distant stations
A and B, see Fig. 5.3. For simplicity, and justified by the discussion on
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Figure 5.3: Monte Carlo simulations of the bit-flip error correction in a
N x N square lattice. An unknown (classical) bit is sent through the noisy
network, and a minimum set of erroneous edges leading to the correspond-
ing parity check pattern is found using Edmonds’ algorithm. In this plot,
we show the probability Py(ep) that two random sites infer the same value
of the bit if the bit-flip error probability is €;,. The extrapolated function
P, (gp) is plotted in bold line, while the dashed line represents its behavior
for small error rates.

the rough edges in surface codes, we considered periodic boundary condi-
tions for the network, so that syndrome plaquettes always appear in pairs.
The presence of a threshold around 10.5% is confirmed, and the numerical
results agree perfectly with the series expansion of F' for ¢, < 1:

F(e) =1—6¢; + O(c}). (5.6)

Measurement errors In practice, the parity check measurements are
imperfect and yield a wrong result with probability €., which lowers the
threshold ;. The value of the new threshold can be estimated in a simple
way by an entropy argument: each imperfect quantum channel introduces
an entropy Hs(ep) into the network, and each parity check extracts at
most 1 — Hy(e.) bit of information. Therefore, an ordered phase can be
maintained if

2H2(5b) < 2H2(€Z) =1- HQ(EC). (57)

Note that, for . = 0, one finds ; ~ 11%, which is very close to the real
threshold, see Eq. (5.2). We now try to get rid of the measurement errors
by repeating the parity checks 2r + 1 times and using the majority vote
to infer the correct syndrome. If the parity check measurements do not
perturb the qubits, repeating them can suppress the errors up to O(e71).
Even if additional errors are introduced into the system, three repeated
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measurements already help in correcting errors. In fact, a measurement
error can be treated as an effective contribution to the error in the channel,
see Sec. 5.2.2, which approximately becomes €, = ¢, + 3¢, and an ordered
phase is maintained whenever ¢, < ¢;.

Other lattice geometries Even if the square lattice is the best-adapted
one for our purpose, ideas of network-based correction can easily be gen-
eralized to other regular lattices. The triangular lattice, for instance, has
a slightly higher critical value: €; ~ 17%. This threshold is found by solv-
ing the equation 3Hs(e;) = 2 (similar entropy argument as for the square
lattice), or by considering the corresponding random-bond Ising model on
the triangular lattice [Ohz07].

5.2 A fault-tolerant protocol via encoding

We now propose a way of suppressing both bit-flip and phase errors that
are present in the quantum network. Moreover, we show that all quantum
operations can be performed fault tolerantly, that is, errors occurring on
the qubits may be considered as independent.

Each physical qubit considered so far is replaced by an encoded block
of qubits, and we also implement all quantum operations at the encoded
level. Phase errors are suppressed by the code redundancy, and bit-flip
errors are corrected exactly as explained in the previous section. The
subspace for the redundant code of n = 2t + 1 physical qubits is spanned
by the two logical GHZ states

D L o e il i
= =

This code can correct, by majority vote, up to ¢ phase errors in a block of
n qubits. However, it cannot correct any bit-flip errors, which we denote
by (tp, t») = (¢,0). This is a CSS code with stabilizers generated by
{X1 Xy, XoX5,..., X, 1X,}, and all the nice properties of such codes
can be used, as transversal CNOT gates or efficient measurements [Got98].
Furthermore, all the quantum operations discussed in the previous section
can still be applied, with some minor changes, however:

and |1 (5.8)

(i) Physical qubits are replauceii~ by er}goded qubits. In particular, we
use the encoded Bell pair |00) + |11) as elementary links.
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Figure 5.4: Local resources and quantum operations at each station (here,
without encoding). At least five qubits are needed: one for the parity
check measurement (dashed box), and four for the teleportations (dotted
boxes). The choice of the rotations R, depending on the outcomes of
the Bell measurements, can be tracked classically and thus no classical
communication is necessary between the stations during the process. The
interpretation of the parity checks can be determined in the end of the
protocol.

(i) The CNOT gate is implemented by a transversal CNOT gate be-
tween two encoded qubits.

(iii) Encoded Pauli operators X and Z are inferred by measuring all X
and Z operators on the qubits of the encoding block.

(iv) A classical error correction is performed to suppress up to t phase
errors.

It is important for the encoding process to fulfill the requirement of fault
tolerance: the probability to get errors on j physical qubits should be
of the order of eg) for all j < t. Efficient procedures to fault-tolerantly

prepare GHZ states are available, see [Kni05] and Sec. IX in [JTSLOT7],
and therefore we can treat errors on physical qubits as being independent.

5.2.1 Required physical and temporal resources

As illustrated in Fig. 5.4 in the case of the trivial encoding n = 1, each
station requires 4n qubits for the connections with its neighbors and n
qubits for the parity check measurements, which can also be used to store
the final Bell state. We therefore need approximately 5n qubits at each
station, and the goal of this section is to relate n, as well as the maximum
tolerable error rates € and €3, to the size N of the lattice.
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Tolerable error rates for a lattice of large but finite size

In order to estimate the fidelity of the long-distance entangled state that
is created using our protocol, one has to quantify the amount of errors
occurring at three different levels: let ¢ < 1 be the error probability at
the physical level, ¢ at the logical level, and € at the network level. In
Sec. 5.2.2, we find the approximation ¢ = ¢, = ¢, < 8.5 3, where [ is the
maximum error probability associated with the local two-qubit quantum
gates, the measurements, and the quantum memory. At the encoded
level, we have to distinguish the two types of errors, since the encoding
preferentially suppresses the phase errors, while it moderately increases
the bit-flip error rates:

2041
) 2+1\ . [(2A+1\ .,
Ep= E ( j )8]N<t+1)8 : (5.9a)

j=t+1

t
2t +1 -
Ep = Z < * ) et (2t +1)e. (5.9b)

= \2j +1

Phase errors accumulate as the 2N (N — 1) links of the network are con-
sumed for the teleportations, and the right bit-flip correction is applied
with probability Py(&,), see Fig. 5.3:

6 =1—(1—¢,)N0"D ~oN2%¢, (5.10a)
€p = 1-— PN(gb) ~1-— Poo(éb), (510b)

where the approximations hold for N > 1. This finally results in the
long-distance entangled state

pap=(1—&)(1 =€) |PTNPT| + (1 —¢,) [TTYTT
+ep(1—€) |[PXDPT| +epe, [TTXTT].

By fixing, for example, the distillable entanglement E(pag) = 1— Ha(ep) —
Hy(e,) of the final state, and under the conditions that ¢ is an integer
and that ¢, and ¢, are of the same order of magnitude, one can estimate
the required resources ¢t (number of qubits used for the encoding) and &
(tolerable error probability at the physical level) by solving Egs. (5.9) and
(5.10), see Tab. 5.1. The number n = 2t 4+ 1 of elementary links between
neighboring nodes scales only logarithmically with the size of the lattice,
and even though the maximum tolerable error rate ¢* decreases with IV,



100 One-shot protocol in square lattices

N 100 102 10®  10* 10°

e(E=0.75) 138 096 0.75 0.62 0.54
e*(E=050) 184 1.27 097 0.79 0.67
e*(E=025) 202 141 108 088 0.74

Table 5.1: Estimation of the resources that are required to create a long-
distance pair of distillable entanglement F in a N x N square lattice. The
size of the encoding is n = 2t 4+ 1, and £* represents the elementary error
probability (in percent) that can be tolerated. The total number of qubits
at each station is 5n ~ 15 + 10log;, (V).

it stays on the order of one percent for any quantum network of realistic
size. More precisely, setting n ~ log(/V), one finds that E(pap) tends to a
strictly positive value if ne ~ &, < 11%. In fact, phase errors at the level
of the network are completely suppressed in this case. It follows that &*
decreases only logarithmically with V.

Simultaneous measurements versus quantum memory

One key advantage of the proposed procedure is that all stations can
operate simultaneously: the quantum operations at each station (including
both Bell and parity-check measurements) can be made without knowing
the measurement outcomes from the other stations. The interpretation
of these outcomes, namely the choice of the local Pauli frames, is done
by using one-way classical communication. Since the goal is to produce
a Bell pair between the stations A and B, only the two concerned qubits
have to be kept in quantum memory while waiting for the measurement
outcomes to be collected and analyzed. At the same time, another round
of quantum communication in the network can already start.

A more favorable application of our protocol is the distribution of
quantum keys. To that purpose, all what is needed is the statistical cor-
relations associated with the Bell pair, rather than the pair itself. This
observation allows us to avoid any problem of decoherence of the qubits at
stations A and B, since they can be measured even before the reception of
all measurement outcomes. In fact, the two qubits are measured in one out
of two complementary bases (for example X and Z), which is randomly
chosen for each destination station, and the outcomes are secretly stored
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Figure 5.5: A one-dimensional quantum computer embedded in a lattice.
(a) Two teleportations transport the quantum computer between times ¢
and t + 1. (b) Two-qubit gates can be applied on neighboring qubits.

while the choice of the basis is publically announced. Once all measure-
ment outcomes are received, A and B can determine whether they chose
the same basis or not. This is the case with probability one-half, and
thus a raw key for cryptography is available. Even if the correlation is
not perfect due to various imperfections, we can apply the procedure of
privacy amplification before we obtain the final highly correlated secrete
key (see p. 186 in [GRTZ02]).

Universal computation on a line

A more general question is whether entanglement distribution in a two-
dimensional lattice, with a fixed local dimension and containing any kind
of errors, is possible at all or not. Here, we show that this question is
related to the existence of fault-tolerant quantum computation in a one-
dimensional setting (two parallel lines of qubits) restricted to nearest-
neighbor gates only.

Let us take one diagonal line of the lattice as a one-dimensional quan-
tum computer at time ¢t = 0, see Fig. 5.5a. We can translate this quantum
computer in the upper-right direction by teleporting all its qubits to the
right and then to the top. The quantum computer is now supposed to be
at time ¢t = 1, and the errors that occurred during the teleportations are
seen as memory errors from time ¢ = 0 to ¢ = 1. The line can be further
transported to reach any time ¢t. Any two-qubit gate between neighbor-
ing qubits @ and b can be implemented by slightly changing the path of
the teleportations, as depicted in Fig. 5.5b: one of the qubit is teleported
as usual, while the other is first teleported to the top and then to the
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right. In this way, the two qubits meet at the center station, at which
the gate is applied. What we get is a nearest-neighbor one-dimensional
quantum computation scheme with a simple error model, in which bit-flip
and phase errors occur randomly with probabilities €, and €,, respectively.

In conclusion, the spacelike challenge of teleporting a qubit in a two-
dimensional lattice is therefore replaced by the timelike task of preserving
a qubit in a one-dimensional quantum computer. Since there exist such
fault-tolerant quantum computation schemes using two qubits per site
[SFHOS|, quantum information can be transported over arbitrary distances
if one replaces all single-qubit links in our lattice by two-qubit links.

5.2.2 Towards a realistic scenario

In this section, we briefly study the different aspects of a possible imple-
mentation of our protocol. First, we explain how physical errors at the
level of the qubits are related to the error rates ¢, and ¢, of our model.
Then, we discuss the case of remote entanglement generated by photons,
where their loss in the optical fibers has to be explicitly taken into account.

Error model

Let us describe a general error model independent of the physical realiza-
tion of the system, in which the major errors are:

(i) The infidelity 1 — Fy of the elementary entangled pairs p, with Fy =
(@] p|DF).

(ii) A local two-qubit gate error probability 8 and a local measurement
error probability §.

(iii) A memory error pu ~ Ty for a storage time Tp, assuming Tj to be
the time scale for generating encoded Bell pairs between neighboring
stations.

We use the depolarizing channel for describing an error on a two-qubit
gate Old2l see Ref. [BDCZIS):

pr Ol = (1= A OE Pl + D n trnlp),  (5.11)
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while the following operators characterize an imperfect measurement on a
single qubit:

Pl = (1—26)|0Y0| +d[1X1], (5.12)
PS = (1 —6) |1X1] + 6 |0X0] . |

Equivalently, we can model an imperfect measurement on one qubit by
applying an effective depolarizing channel

OF[p] = (1= 20)p+ 01, ® try[p] (5.13)

followed by a perfect measurement. Even though the error probability for
this channel is 26, the probability to get a wrong measurement outcome
is only 6. Finally, the result of an imperfect memory is modeled by a
similar depolarizing channel with error probability p. If the initial fidelity
Fj is not very close to unity, we may use the idea of (nested) entanglement
pumping [DBCZ99] to efficiently pump the Bell pairs to a higher fidelity.
This is only limited by the imperfections of the local operations and by
the decoherence of the qubits and can lead to a fidelity Fjj ~ 1 —28 — 3y,
see [JTSLO7].

With the condition that all operations are performed fault tolerantly,
we can estimate the total error probability which is accumulated on an
individual physical qubit during the creation of the long-distance entan-
gled pair. First, the probabilities for bit-flip and phase errors® associated
with the entanglement purification, the local encoding, the CNOT gate
and the quantum teleportation is approximately given by 44 + 2§ + u/2.
Then, m repeated parity check measurements may introduce some bit-flip
and phase errors with probability m §/2. For m = 3 rounds, the effective
measurement error probability is about 5%/2 + 3(3 + §)%. Since one mea-
surement error is equivalent to two bit-flip errors in two connected edges,
the measurement error of order (3 + §)? can be conservatively counted
as a bit-flip error of order 5 4 §. Finally, if we assume § ~ § ~ u, we
find that the accumulated probabilities for the bit-flip and phase errors
are g, ~ g, S 8.5 0.

3We conservatively count errors associated with the Pauli operator Y as both bit-flip
and phase errors.
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Implementation with photons

At the moment, the most important scenario to implement our ideas is
the one in which photons carry the quantum information. Just to give an
example of how our scheme applies in that case, let us consider the setup
of [CCGFZ99, MMOT07|, where entanglement is generated between two
atoms by sending photons. The photons travel through optical fibers and
interfere at a 50:50 beam-splitter, with the outputs detected by single-
photon detectors. Post-selection on the detection events then ensures
that remote entanglement is generated. However, since this is a proba-
bilistic process, the time required to create all the links scales logarithmi-
cally with the size of the lattice,* so that efficient quantum memories are
needed. This last requirement can be relaxed in two-dimensional quantum
networks, nevertheless. In fact, one can fix a constant time (independent
of N) for the preparation of the links and then create the separable state
|+ )(+| ©2 4 |=X—=|®? = |®FTNDF| + |[FTXTT| wherever the entanglement
generation failed. Then, long-distance entanglement is successfully gen-
erated with our protocol by “forgetting” the location of the faulty links,
which results in a slightly higher bit-flip error probability only. Alterna-
tively, one can implement an error correction for surface codes suffering
loss and get better error thresholds, see [SBD09].

4Suppose that each attempt to prepare a link fails with probability q. After r
repeated attempts, this probability is reduced to ¢", and the L links of the network
are successfully created with probability (1 —¢")%, which is exponentially close to 1 for
r>In(L)/1n(1/q).



CHAPTER 6

Fidelity threshold for
long-distance entanglement in
cubic quantum networks

In this chapter, we investigate the problem of generating entanglement
over arbitrarily long distances in noisy quantum networks if the amount
of physical resources is fixed (i.e., it does not increase with the distance).
We focus on three-dimensional regular lattices, where edges are full-rank
mixed states of two qubits and where quantum operations can be ap-
plied perfectly. In contrast to the protocols designed for two-dimensional
systems, we prove that entanglement can be established between two in-
finitely distant qubits if the fidelity of the connections is larger than a
critical value F,.. Therefore, we show that a constant overhead of local
resources is sufficient to achieve long-distance quantum communication.
The protocol starts by creating a thermal cluster state from the noisy
links of the quantum network (Sec. 6.1). Then, in Sec. 6.2, we show that
useful quantum correlations between two distant nodes can be extracted
from the cluster state using LOCC only. To that end, all but the two
distant qubits are measured in a basis that depends on their position in
the lattice (Sec. 6.2.1). The measurement outcomes lead to a pattern of
error syndromes, and a classical error correction is applied on the long-
distance entangled pair, restoring the quantum correlations if the error
rate is not too high, see Sec. 6.2.2. We provide an analytical upper bound
on the maximum tolerable error rate, and in Sec. 6.2.3 we present a much
more accurate estimate (~ 2.27%) based on Monte Carlo simulations.

6.1 Quantum networks and cluster states

In the previous chapter, we have shown how a large GHZ state can be
created and propagated in a noisy square lattice. This state is robust
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against bit-flip errors if their rate is not too high, but it is very fragile
against phase errors. In fact, any phase error destroys the coherence of a
GHZ state. Therefore, an encoding of the qubits is required, which leads
to a logarithmic scaling of the physical resources per node. We are now
looking for a fidelity threshold in a lattice with single connections, that is,
we want to create a multipartite state that has the ability to correct both
bit-flip and phase errors. Three-dimensional cluster states thus arise as a
natural choice. In fact, they are known to possess an intrinsic capability
of error correction, so that long-range entanglement between two faces
of an infinite noisy cubic cluster state is possible [RBH05]. The protocol
described in this chapter is based on this very construction with two radical
differences, however. First, the settings are distinct, and second, we allow
only local quantum operations everywhere in the lattice.

Let us now describe the quantum network that is studied in this chap-
ter. We consider a cubic lattice that consists of N* sites and where neigh-
boring nodes share one quantum connection subject to independent bit-flip
and phase errors. For simplicity, we choose the error rates to be equal,
i.e., the bonds are described by the mixed states given in Eq. (4.13) with
€ =¢€p=Ep:

p=(1—e)[@TNDT| +e(1—&)(|TTYTH| + [ XD |) + &[T YT .

In this setting, the nodes possess six qubits each (except the ones lying on
the sides of the cube), on which arbitrary local quantum operations can be
applied perfectly. We also assume that all classical processes (communica-
tion and computation) take much less time than any quantum operation.
This last requirement is not crucial for the generation of long-distance en-
tanglement, but it guarantees that the protocol runs in a time that does
not scale with the network size.

Physical implementations of three-dimensional lattices have been pro-
posed in the context of quantum information processing and distributed
quantum computation [BCJD99, TM09]. For practical reasons, however,
it may be advantageous to realize the proposed construction in two di-
mensions, using a “slice-by-slice” generation similar to the techniques de-
veloped in [RHOT7]. In that case, however, note that the time required to
run the protocol scales linearly with V.
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Figure 6.1: Non-local control phase on two qubits a and b using a Bell
pair |(I>+>a’b’-

6.1.1 A mapping to noisy cluster states

A cluster state, which is an instance of graph states, can be constructed
by inserting a qubit in the state |+) at each vertex of the graph and by
applying a control phase between all neighboring pairs [HDR*06]. In our
setting, we cannot perform these control phases since they are non-local
quantum operations, but we can add an ancillary qubit and perform joint
measurements at each node such that the result is a cluster state. This
method was described in [VC04] in the case of perfect links, which can be
interpreted as the virtual components of a large valence-bond state, and
was then generalized to imperfect connections in [RBH05]. Nevertheless,
let us describe here an explicit (and slightly different) construction, mainly
for completeness sake but also for relating precisely the error rate in the
quantum networks with that in the noisy cluster state.

At each node, we add a qubit |+) and use the noisy links p to indirectly
perform the control phases. Let us first describe how this is achieved if
all connections are perfect, i.e., if they are in the state |®*). We consider
two neighboring nodes A and B of the lattice, with two qubits a and b in
the states |a) = /ag|0) + /a1 |1) and |8) = v/Bo|0) + /Bi]1), and a
connection |®1) between two qubits @’ and ¥', see Fig. 6.1. We start by
applying, on the qubits of A, the measurement operators

Ao = |0>a<00| aa’ T |1>a<11| aa’ )

0.1
Ay = [0)a{0L] ar + (10 (10] o, (61)

with 321 AlA, = 14, which are followed by a bit-flip X on ¥ if the
outcome is A;. The resulting state on a and V' reads \/ag |00) + y/ay |11).
We then apply a second measurement

By = 10)(+0[ yp + [1)s{=1] w,

6.2
By = [0)5(—0]pp + [1)6(+1]ers, (62)

followed by the matrix Z on the qubit a if we get B; as outcome. Finally,



108 Fidelity threshold in cubic quantum networks

the qubits a and b are left in the (entangled) state

‘Ca[g) =/ Oé()ﬁo ‘OO) + v/ Oéoﬁl ‘Ol) + 04160 |10> — \/ Oélﬁl |11>,

which is the result of a control phase between |a) and |3). Clearly, if
la) = |B) = |+), the state |C,p) is the cluster state on two qubits. Now,
let us determine which errors occur if one blindly performs the very same
operations but using another Bell state. It is straightforward to verify
that one gets:

T > 1,® Z |Cu),

|07) — Z ® 1y |Cup), (6.3)

V=) — Z® Z |Cup).

Since the matrices Z commute with the control phases, it follows that
errors do not propagate while constructing a (noisy) cluster state pcg
from the quantum network. Moreover, because bit-flip and phase errors
occur with independent probability € in the links of the network, Z errors
in the cluster state appear independently too. Since a node of the cubic
lattice has degree six at most, and because two Z errors cancel each other,
the vertices of pog suffer a Z error with probability smaller than or equal

to
6 52i+1<1 - 8)572i. (64)
21+ 1

This expression reduces to p & 6¢ in the regime of small error rates. There-
fore, we are exactly in the setting of [RBH05], where thermal fluctuations
in the cluster state induce independent local Z errors with rate p. Remark
that each node is now in possession of exactly one qubit.

2
p —=
=0

6.2 Long-distance entanglement generation

In this section, we mainly follow the construction and the notation pro-
posed in [RBHO05], in particular the measurement of the qubits of pcg
according to a specific pattern of local bases. The outcomes of the mea-
surements are random, but the choice of the bases establishes some parity
constraints on them. Any violation of these constraints indicates an error,
and a classical processing of all collected syndromes allows one to reliably
identify the typical errors. This correction works perfectly for small error
rates, but it breaks down at p. ~ 3.3% [OAIMO04]. The difference between
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Figure 6.2: Mesurement pattern for the cluster state. a) Bases in which
qubits in the bulk of a cluster state are measured; in this example N = 5.
b) Slightly different measurement pattern for the faces £ and R: the
central qubit is kept intact and all qubits that lie in the shaded area
are measured in the Z basis, except the ones with coordinates (e, e, 1) or
(e,e, N), which are measured in the X basis.

the present method and that given in [RBHO05| is that we do not allow any
non-local quantum operation. This obliges us to design a more elaborated
error correction, leading to a different type of long-distance entanglement.
In fact, we are not going to create a pure and perfect Bell pair of logical
qubits, but rather a mixture of two entangled physical qubits.

6.2.1 Measurement pattern and quantum correlations

Let us define a finite three-dimensional cluster state on the cube
C= {u = (u17u27u3) 1 S Uz, U2 + ]_,Ug S N},

and select two distant nodes A and B centered in two opposite faces £ and
R. Their coordinates are (uf,u3, 1) and (uf,us, N), with uf = uj + 1 =
(N+1)/2. For areason that will become clear soon, we consider lattices of
size N =1 (mod 4), so that u] is odd and uj even. Let us also introduce
two disjoint sublattices T, and T, with double spacing, where o and e
stand for odd and even, respectively. Their vertices are

V(T,) = {u=(0,0,0)} CC,

V(T.) = {u=(e,e,e)} CC, (6:5)
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and their edges are given by the sets

E(T,) = {u = (0,0,¢),(0,¢e,0),(e,0,0)} CC,

6.6
E(T,) = {u = (e.,0), (¢.0,¢). (0,€,¢)} C C. (66)
We also define the planes
(uz)
Ty ={u=(o,uq9,0)} CT,,

T8 = {u = (uy,e,e)} C To,

and denote by T% and T the planes that contain A and B. These planes
will be used to derive the Bell correlations of the future long-distance
entangled state |¢)ap (we first consider that no error occurs and then
extend the results to noisy cluster states). Qubits that belong to the
vertices of T, and T, are measured in the Z basis, while all other qubits
are measured in the X basis, see Fig. 6.2. There are, however, some
exceptions in £ and R. First, the central qubit is not measured, since
it will be part of the long-distance entangled state. Second, qubits with
coordinates u; = uj are measured in the Z basis in order to create the right
quantum correlations, as explained in the following paragraph. Finally, we
measure in the Z basis all qubits whose first two coordinates are (e, 0) or
(0, e) and which lie in the shaded areas; these outcomes will be important
for the error correction.

To compute the effect of the measurements on the quantum correla-
tions between A and B, we use the fact that a perfect cluster state |C)
obeys the eigenvalue equation K, |C) = |C) for all u € C, where K, is
the stabilizer

K,=X, [[ %. (6.8)
vEN(u)

and where N (u) stands for the neighborhood of w. If we let the products
of stabilizers HueT;} K, and HueT; K, act on the cluster state, we find
that A and B are maximally entangled:

XaXp |Yap) = Ax [Yag),

ZaZp |YaB) = Az |YaB), (6.9)

with Ax, Az € {—1,+1}. The eigenvalues Ax » are calculated from the
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measurement outcomes z and z:

AX: H e H Loy

X
(6.10)
)\Z - H Ry H HOT
uEQ(ZZ) ueQ(z)
where the sets of vertices Qg?? are given by
Q%fi = T\ {4, B}, Q%(; - T%“ii
QZ:B :T§7 QZZ :Tzl U{(u;evl%(u*{vev‘]\f)}\{AvB}'

6.2.2 Error correction and fidelity of the final state

As already mentioned, the measurement outcomes are random but not
independent. It is in fact possible to assign to most vertices u; € T;, with
t = o or e, the parity syndrome

s(u;) = H K, = H Ty H Zuws (6.11)

vEN(u;) vEN(u;) w €N (us)

where NV;(u;) designates the neighborhood of u; in T;. Since this equation
arises from a product of stabilizers, we have that s(u;) = 1 if no error
occurs on the qubits of NV;(u;). The key point of the construction is that
a Z error on any edge of T; changes the sign of the two syndromes at
its extremities. This is due to the fact that Z errors do not commute
with X measurements, while outcomes z are not affected by them. The
sublattices T, and T, are treated separately, but in a similar way.

Syndrome-based error correction

We refer the reader to [DKLP02, RBHO05] for a detailed discussion of
the error recovery and present here only the basics to understand our
protocol; remark that this error correction is essentially the same as the
one described in the previous chapter. In the case of perfect and complete
syndrome information, one knows exactly where all paths of Z errors
start and end in each sublattice: the path extremities are located at the
syndromes s = —1. In the regime of small error rate p, it turns out that
a good recovery strategy is to pair these syndromes such that the total
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length of all pairings is minimized. Then, one connects any two paired
syndromes by a path of minimum length and artificially introduces Z
“errors” along these paths. This creates loops of errors in the cluster state,
which, however, do not cause any damage to the long-distance quantum
correlations. In fact, these loops either do not intersect the planes 7% and
T or cross them twice and consequently do not modify the eigenvalues in
Eq. (6.9).

Problems arise because some syndromes are not known. For instance,
consider the edges that have only one extremity in V(7,) or V(7T,): their
coordinates are (0,0,0) and (0, N —1,0) in T,, and (1,e,¢e) and (N, e, e) in
T., see Fig. 6.3. These are the rough faces described in [RBH05], and errors
on these edges change the sign of only one syndrome (and not two) in the
corresponding sublattice. An equivalent viewpoint is that both extremities
of these edges indeed belong to T, or T, but that we do not have access
to their outer syndrome. The consequence of this lack of information is
that some paths of errors are not closed anymore, but rather originate
from a missing syndrome and terminate at another. Typically, these open
paths enter only superficially the lattice if the error rate p is small, but
they start stretching from one side of the cube to another as soon as
p 2 3.3%. In the latter case, paths of errors cross an odd number of times
the planes of correlations, which results in a complete loss of long-distance
entanglement in the limit N — oo.

In contrast with [RBHO05], and besides the rough faces present in any
surface code, we also suffer a lack of syndrome information in £ and R.
In fact, we cannot have a perfect and complete syndrome pattern for
both T, and T, in these faces. For this to happen, one should be able
to measure both z and z eigenvalues of the concerned qubits, which is
impossible, or apply non-local quantum operations, which we do not allow.
Actually, useful long-distance quantum correlations can still be created if
one performs the measurements depicted in Fig. 6.2c: half outcomes are
used to gain information on 7T,, and symmetrically for T,, see Fig. 6.3.

As an example of the effect of the unknown syndromes in £, let us
consider that an error occurred at the center station A, and that all other
qubits did not suffer any error. Since we do not know the syndromes of
T, that lie directly below and above T%, we are not able to restore the
X correlation. This occurs with probability px = p + O(p?). From this
observation, one finds that the final state on A and B is a mixed state of
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tq

(a) sublattice T, (b) sublattice T,

Figure 6.3: Missing syndromes in the sublattices. a) In red (dark disks),
missing syndromes at the vertices of T,, in £ and R (known syndromes
are drawn in light gray). Rough faces lie on the top and the bottom of this
lattice. A new coordinate system (¢, to, t3) is introduced for the vertices of
the sublattice. b) Same considerations for the Z correlation: the missing
syndromes create additional rough surfaces in 7,.

the form

PAB = FXFZ |(I)+><(I)+| +pxFZ ‘\I/+><\I/+|
+ Fxpz |27 XP7| +pxpz ¥ XV |, (6.12)

with F'x =1 —px and Fz =1 — pz. This state is known to be distillable,
and thus useful from a quantum information perspective, whenever its
fidelity Fup = FxFy is larger than one-half, see Sec. 4.2. This can be
achieved when the error rate p is smaller than a threshold p.. In the next
paragraphs, we first prove a lower bound on this value: p, > 1.17 x 1073,

Then, in Sec. 6.2.3, we present numerical results showing that the real
threshold is indeed much larger: p. 2 2.27%.

~Y

Effect of the missing syndromes on the fidelity Fap

Let us first consider the correlation loss due to the missing syndromes in
T,. Paths of errors, which we generically denote by I', have a non-trivial
effect on the X correlation if they cross the plane 7% an odd number of
times, as depicted in Fig. 6.4. Moreover, the number [ of errors which
actually occur on a path T' is at least L/2, where L denotes its length.
This is the case because our error correction always leads to a minimum
pairing of the syndromes s = —1. We now follow Chap. V in [DKLP02] to



114 Fidelity threshold in cubic quantum networks

Figure 6.4: Some paths of errors that have a non-trivial effect on the
long-distance entanglement: any path stretching from one shaded area to
another and crossing the plane 7% an odd number of times degrades the
X correlation between A and B. The shaded areas, which partially wrap
the cube, are of two types: the top and bottom ones are the usual rough
surfaces present in (three-dimensional) surface codes. The left and right
shaded areas represent the unknown syndromes in T, see Fig. 6.3a. The
situation for T, is very similar (the picture is rotated by 90° around the
AB axis), with the difference that all shaded areas are rough surfaces in
that case.

find an upper bound on the probability px of inferring the wrong quantum
correlation:

px <2 Zprob(Fu;) + Z prob(I'zr)

Tre Per

+ Z prob(I'r5) + 4 Z prob(I'rz), (6.13)

I'rs Lre

where B and T stand for the bottom and top faces, respectively. Note
that we already took into account the symmetries of the problem in this
expression. For convenience, let us introduce a new coordinate system
(t1,ta,t3) for the vertices of T,, such that —N, < t; < N,, =N, < t3 < N,,
and 0 < t3 < 2N,, with N, = (N — 1)/4, see also Fig. 6.3. In this
coordinate system, paths of errors [';, travel a distance L > N, and
can start from N? distinct missing syndromes in T, (lower triangle in £).
Because for each vertex there are, in a cubic lattice, at most 5/2 self-
avoiding walks pointing upward, we find the following bound on the last
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term of Eq. (6.13):

Sorob(tre) <M Y 5 S (P)da-p e

Trc L>N, = 1=[L/2]

where [L/2] denotes the smallest integer not less than L/2. The sum
over [, together with the binomial coefficients, counts all possible paths of
errors that appear in a given walk. One can check that the bound tends
to zero in the limit N, — oo if 104/p(1 —p) < 1, i.e., if p < 1%. The
same result holds for the paths I'zz and I'75; note that this value is about
three times smaller than the real critical point for thermal cluster states
in three dimensions. Similar considerations for the paths ', finally yield,
for p < 1%:

px <2 prob(Tzy)

Tee
<2 26 ) 5 > L p' (1 —p)- (6.15)
~ 2 9 l . .
t2>1 L>ts I>[L/2]

This bound never tends to zero but still converges to a small value if p
is small enough. Before computing a threshold for F4p, however, we first
have to consider the errors made in the other sublattice.

The loss of correlation in T, is treated very similarly, since the mea-
surement pattern is symmetric. Nonetheless, there is a subtle difference in
this case: the missing syndromes do not lie on the vertices of the sublattice
but rather on its outer edges £ and R. This creates additional parts of
rough faces in T.. It follows that the corresponding paths of errors have
their first and last edges pointing in the t3 direction, so that a slightly
better bound for the error py is derived:

ZEE) BT DI Dl () FUIES LA )

t1>1 L>t1+2 I>[L/2]

5L72

Combining the two bounds on py and py, we find:
pS1L17Tx107° = Fap > 1/2, (6.17)

which corresponds, via Eq. (6.4), to an error rate ¢ < 1.95 x 107 in the
initial connections. This value is quite small, mainly because our counting
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of paths of errors is very crude. Note that there are only few such paths
of small length, and therefore this analytical bound could be increased by
carefully computing its smallest orders in p. For instance, let us consider
the series expansions of px at first order in p. One sees that only three
edges of £ may degrade the X correlation: these are the bonds in 7T, that
cross T% and whose first coordinate ¢; belongs to {—1,0, 1}, see Fig. 6.3a.
At second order, one can check that the probability to infer the wrong
X correlation due to the missing syndromes in £ is p% = 3p + 48p>.
Therefore, by symmetry, the fidelity Fy =1 — p%(1 — pR%) — pR(1 — p%)
reads

Fx =1—6p—78p* + O(p?). (6.18)

It is easy to see that a single error in 7, cannot damage the Z correlation,
and a careful counting of all configurations with two errors yields p% =
19p%. Consequently, we find

Fy=1-38p* + O(p?). (6.19)

At this point, however, we prefer to turn to Monte Carlo simulations to
find a much better estimate of the error threshold, while Egs. (6.18) and
(6.19) will be used to validate the algorithm.

6.2.3 Numerical estimation of the fidelity threshold

The situation is very similar for the two sublattices T, and T,, so let
us consider the situation in which errors occur independently on each
edge of a lattice with probability p, and where each vertex is assigned
the value +1 if it is connected to an even number of erroneous edges
and —1 otherwise. The latter vertices are referred as syndromes. As in
Sec. 5.1.2, the error correction is based on the original algorithms by Ed-
monds [Edm65a, Edm65b] to find a minimum-weight perfect matching of
the syndromes. Here, however, one has to take into account the effects
of the boundaries (missing syndromes) on the error correction and cannot
simply assume them to be error-free. In fact, the distance between the
nodes A and B and their closest missing syndromes does not increase with
N but rather stays constant. The usual way to deal with unknown syn-
dromes is to include them directly into the perfect matching algorithm,
as follows (see also Chap. 4 in [WESHQ9]). Let G = (V, E) be a weighted
graph, where V is the set of syndromes and FE is the set of edges con-
necting the vertices with a weight given by their distance in the lattice.
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First, we connect each vertex v of V' to a new vertex v’, which corresponds
to its nearest missing syndrome. Second, we create zero-weight edges be-
tween all vertices v’, so that when two vertices are paired, their respective
missing syndromes can be paired at no cost. Then, an optimum per-
fect matching of the resulting weighted graph can be found efficiently, see
[CR99] for a more recent algorithm than Edmonds’. While optimized al-
gorithms [She96] based on the Delaunay triangulation can greatly reduce
the cardinality of E for two-dimensional surface codes (with |E| o |V/|
instead of |E| o< |V|?), which is very important for the efficiency of the
perfect matching algorithms, it is not clear at the moment how this can
be generalized to our three-dimensional setting. Presently, the number of
edges in G scales as O(N®), and therefore this method is not so “efficient”
in practice.

In the following section, we propose a slightly different approach to
the error correction with missing syndromes. First, given a syndrome
pattern, we infer the value 1 of the unknown syndromes. Second, we
proceed with the original matching algorithm. The advantage is that the
weights between the syndromes satisfy now the triangular inequality (for
which Edmonds’ algorithm can be optimized), which is not the case with
the general method.

Inferring the missing syndromes

We propose a very simple way of assigning the value +1 or —1 to the
missing syndromes, so that a good approximation of the optimal configu-
ration is found. To that end, it is helpful to consider a typical realization
of a noisy cluster state in the regime of small error rates, as depicted in
Fig. 6.5. The algorithm reads:

(i) Initialize all unknown syndromes to +1.

(ii) Using nearest-neighbor site percolation, find all clusters C; of syn-
dromes —1. Keep the clusters of odd size only, and for each compute
the minimum distance d; to a closest unknown syndrome s;.! We
denote by n the number of such clusters. Note that we do not con-
sider clusters of even size, since good pairings can be found for them,
individually.

!Several such syndromes may exist. In that case, choose the one lying in the plane
parallel to Ty or T that contains C;. This avoids unnecessary crossings of the plane
of correlation.
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f &

0:Cy

(a) Steps (i) to (iv) (b) Step (v)

Figure 6.5: An example of how unknown syndromes, which lie on the
boundaries in this example, are assigned the value +1. a) All odd-size
clusters C; of syndromes —1 are paired by increasing distance. b) For
each pair of clusters P, = {C;, C;}, we check if it is favorable to add some
new syndromes —1. Here, this is the case only for P, and Ps.

(iii) Calculate the distance d;; between all pairs of clusters C; and Cj,
i.e., the length of the shortest path connecting C; to Cj.

(iv) Find the indices a and b such that d,, = min{d;;}, and create a
pair P, = {C,,Cy}. Remove C, and C} from the list of clusters and
repeat the procedure until no cluster is left. In case of odd n, add
one extra pair {C};, C;} for the remaining cluster, with d;; = oo. This
creates the list {Py,..., Py}

(v) For each P, = {C;,C}}, check if d;; > d; + d;. If this inequality
holds, inverse the value of the corresponding missing syndromes:
s; < (—s;) and s; < (—s;).

Error recovery

We now use Edmonds’ algorithm to find an optimum pairing of the syn-
dromes. The pairing is optimum in the sense that the total length of
all pairs is minimized, that is, the fewest number of Z errors leading to
the syndrome pattern is inferred, but note that certain matchings have a
higher degeneracy than others, which may be taken into account, see the
discussion in Sec. 5.1.2 or Ref. [SB09]. The error correction is successful
if the parity of paths of errors crossing the plane of correlation is even.
Simulations of the error corrections are performed for various lattice sizes
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Figure 6.6: Monte Carlo simulations. a) Fidelity F'x in the limit N, — oo
for a fixed error rate p. We use the function F)((OO) +ae Mo to fit the data
computed from lattices consisting of (2V, + 1) x (2N,) x (2N, + 1) nodes.
At least 10° simulations were run for each value of N,. In this example, the
error rate is p = 2.2% and the fit yields F)((OO) = 0.699 £ 0.003. b) Fidelity
Fap = FxFz as a function of the error rate p (in percent). The value
Fap = 0.5 is reached at p. = 2.27 4+ 0.03 [%]. The upper curve represents
the probability of success F; of the error correction in 7., while the middle
one is the function Fx. Corresponding series expansions for p < 1 are
plotted with dashed lines.

(up to = 153 nodes) and for both X and Z correlations. The extrapo-
lation to infinite lattices is done by fitting the data with an exponential
function, see Fig. 6.6a. Final results are plotted in Fig. 6.6b: long-distance
entanglement is achieved for error rates smaller than

pe ~ 2.27%, (6.20)

or equivalently, €. ~ 3.86 x 1072 for the original lattice. Let us now briefly
comment on these thresholds:

(i) The values of the unknown syndromes are not optimally inferred
in our algorithm, and therefore a higher value of p. may be found.
However, the series expansions plotted in Fig. 6.6b show that the
proposed algorithm is optimal in the regime of very dilute errors,
and it is clear that p. cannot exceed the critical error rate of the
usual three-dimensional thermal cluster states, so that in any case
one finds p. < 3.3%.

~Y

(ii) One could get a higher threshold e. by computing directly Fap as
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(iii)

(iv)

a function of . In fact, errors in the faces £ and R do not appear
with probability p ~ 6¢, but with probability p ~ 5¢ only.

Our measurement pattern puts the sublattices T, and 7, on the same
footing (Figs. 6.2 and 6.3), but it could be profitable to get more
information on the unknown syndromes of 7, since the X correlation
is more sensitive to errors.

As suggested in [RBHO05|, lattices of size log(N) x log(N) x N may
also be appropriate for generating long-distance entanglement. This
result also holds in our setting, because additional errors only appear
in the faces £ and R and not in the bulk of the lattice.
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