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Chapter 1

Introduction

Electrochemistry is a useful tool for the treatment of metal and semiconductor surfaces. The
anodic electrodissolution of silicon not only allows for smoothing of the surface via elec-
tropolishing but also for the tailoring of specific optical and physical surface properties. For
example, Rauscher et al. (1995) showed that by exploiting nonlinear instabilities smooth sili-
con surfaces can be prepared with a density of states much lower than when prepared by other
methods. Lewerenz et al. (2009) produced thin film photovoltaic cells by combining a dy-
namic instability of the electrodissolution of silicon with chemical etching and electrochemical
metal deposition.

The plethora of applications of the anodic electrodissolution of silicon has spurred many
studies of the kinetics of the anodic oxidation of silicon with various electrochemical methods
and techniques from surface science. Hence, a large body of fundamental studies exists. Yet,
as stressed by Zhang (2001) in a monograph on the electrochemistry of silicon, “many details
of the phenomena observed in the complex system of [the] silicon|electrolyte interface are still
not understood”.

In a typical electrodissolution experiment, a silicon wafer is immersed in a fluoride containing
electrolyte and an anodic bias is applied. The positive potential of the silicon electrode leads
to the electrochemical oxidation of the electrode. Simultaneously, the fluoride species from the
electrolyte etch the silicon oxide formed electrochemically. Since holes at the silicon surface
are necessary for the electrooxidation, an appreciable current density is only obtained with
p-type silicon samples. In the case of n-type silicon it is necessary to illuminate the sample.
With both types of silicon, current density oscillations are observed when a sufficiently high
voltage is applied.

Although the current oscillations were already discovered more than fifty years ago (Turner,
1958), fundamental questions remained unsolved. The first one concerns the physical mech-
anism causing the oscillatory instability, the second one relates to the possibility that the
temporal oscillations are accompanied by spatial pattern formation. Closely related to the
second question is the origin of the synchronization across the spatially extended system,
which results to observable macroscopic oscillations of the current density.

As for the physical mechanism, there are several suggestions in literature: (i) Lewerenz and
Aggour (1993) ascribe the oscillations to stress that results from the difference in molecular
volume between silicon and its anodic oxide. The stress induces cracks in the oxide that are
responsible for the current flow and at which etching occurs preferentially. Oxidation stops
when the oxide layer at bottom of the defect lines reaches a critical, so-called passivating
thickness. In contrast, (ii) Lehmann (1996) related the current density oscillations to mor-
phology changes of the silicon oxide with the oxide thickness and postulated that two oxide
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2 1. Introduction

morphologies are etched at different rates. (iii) In the so-called current burst model by Föll
et al. (2006), field-dependent ionic breakthrough events were postulated. The breakthrough
occurs at higher values of the electric field than the closure of the resulting pore, which in-
troduces hysteresis in the system that causes the oscillatory instability. Only the latter of
these three approach was cast in a mathematical model. The microscopic reaction steps were
simulated with a Monte Carlo ansatz limiting the modeling to electrode areas of 100 times
100 nm2 (Foca et al., 2007).

Thus, the existing models do not give an unambiguous picture of the oscillation mechanism.
Gerischer and Lübke (1988) stated two decades ago that “the appearance of oscillations
[...] can only be caused by nonlinear correlations between formation and dissolution of the
oxide”. Yet, a macroscopic model that can consolidate the existing microscopic approaches
and is sufficient to explain the oscillations is still missing. Furthermore, up to the present
the identification of bifurcations is missing. The determination of activator and inhibitor has
yet to be accomplished. The synchronization of the local oscillators is a spatial phenomenon,
therefore its analysis calls for a thorough investigation of possible pattern formation.

Spatially extended oscillatory systems are known to exhibit mesoscopic pattern formation as
well investigated in the Belousov-Zhabotinsky reaction (Zhabotinsky, 1991) or the heteroge-
neously catalyzed oxidation of carbon monoxide on platinum (Ertl, 1991). Pattern formation
during oscillatory electrochemical reactions has been investigated on metal working electrodes
(e.g. Krischer, 2003), but not on semiconductor electrodes.

Up to the start of the present investigations the possible spatio-temporal pattern formation
at the electrified silicon|oxide|electrolyte interface was essentially unexplored. Space averag-
ing methods probing the oxide layer thickness have been used to investigate the temporal
dynamics. The spatial patterning of the oxide layer was also investigated, but mostly with
ex situ methods that lack a resolution of the temporal dynamics.

All theoretical considerations assume local, i.e. microscopic, oscillating domains and try to
link macroscopic oscillations to the synchronization of these small domains. In this picture,
damped oscillations, which are often observed when the potential is stepped from open-circuit
potential to several volts, result from a synchronization of micro-oscillators due to the voltage
step and subsequent desynchronization due to small local differences of the surface properties
(e.g. Chazalviel and Ozanam, 1992; Grzanna et al., 2000a,b). In the case of the current burst
model, synchronization is ascribed to the concerted oxide formation at neighboring sites,
which may be desynchronized by the reduction of the electric field across the oxide layer in
the vicinity of an active pore (Carstensen et al., 1999).

It has never been discussed that the electric potential at the interface might lead to macro-
scopic oscillations, as it is the case in a classical oscillatory reaction-diffusion system. The
main objective of this thesis is to fill these gaps in the understanding of the oscillatory elec-
trodissolution of silicon. Therewith this thesis lies at the intersection between semiconductor
electrochemistry and nonlinear dynamics. Nonlinear dynamics is the study of the temporal
evolution of systems governed by equations where superposition fails (Strogatz, 1994), i.e.
whose activity is definable by a set of nonlinear equations, or relationships between active
variables and dependent functions. This includes oscillations of different periodicities and
chaos.

In this thesis, spatially and temporarily resolved in situ measurements of the oxide layer
thickness are used to investigate the synchronization and the pattern formation during the
electrodissolution of silicon. Measurements of the thickness of the anodic oxide layer on
the silicon electrode using ellipsometry were successfully conducted by Lewerenz (1992) and
Blackwood et al. (1992). Ellipso-microscopic surface imaging was used to study the dynam-
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ics of pitting corrosion of stainless steel (Rotermund et al., 1995). To monitor the oxide
layer thickness dynamics during the electrodissolution of silicon, ellipso-microscopy is set up,
adapted to the present purpose.

In Chapter 2 of this thesis, a description of the basic chemical and electrochemical concepts
necessary for the understanding of the electrodissolution of silicon is given. This includes a
summary of the state of the art of the understanding of the etch reactions, and of how the
oxidation reactions depend on the applied potential. In Chapter 3, the components of the
experimental setup are described in detail, as are sample preparation and data acquisition.

In Chapter 4, the response of the averaged ellipso-microscopic signal to potential scans and
potential step experiments is discussed. The functional relation of this signal to the oxide
layer thickness is investigated theoretically and oxide layer thickness and current density are
correlated during oscillations in the case of p-type silicon. In Chapter 5, an analysis of the
influence of parameters, such as the resistance in series with the silicon working electrode and
the applied potential, on the averaged dynamics of p-type silicon, follows. Combining the
results, an oscillation mechanism is derived.

In Chapter 6, the focus lies on spatially averaged oscillatory dynamics of n-type silicon. The
influence of the illumination intensity on the stability and the form of the oscillations is
studied and compared to the effect of stirring. In Chapter 7, spatial pattern formation is
discussed for p-type silicon and n-type silicon. Firstly, it is shown how the type of pattern
depends on applied potential, series resistance and illumination intensity. Secondly, observed
cluster patterns are analyzed in more detail using a frequency demodulation technique (Lin
et al., 2000) and their origin is discussed from the perspective of nonlinear dynamics. Finally,
the results obtained in this thesis are summarized in Chapter 8. The appendix compiles an
overview of the experiments, and contains a detailed glossary and the references.



4 1. Introduction



Chapter 2

Anodic Electrodissolution of Silicon

In this chapter, the basic mechanisms governing the electrodissolution of silicon in fluoride
containing electrolyte are reviewed. The interfacial region between bulk silicon and the elec-
trolyte is shaped by the interplay between oxide formation and etching. Silicon is electrochem-
ically oxidized in the direction of the silicon bulk (Fig. 2.1a). Simultaneously, the oxidized
species are chemically etched at their interface with the electrolyte (Fig. 2.1b). Depending
on the relative rates of these two processes, an oxide layer may form on the electrode surface.

In Sec. 2.1, the potential distribution is examined at the biased silicon|electrolyte interface
and silicon|oxide|electrolyte double interface. In Sec. 2.2, the dependency of oxidation and
etching reactions on the applied voltage and the fluoride concentration are discussed.

2.1 Potential Distribution

The understanding of the potential distribution across the entire interface region, i.e. the
region between bulk silicon and the bulk electrolyte, is vital for the understanding of the
oxidation of silicon. Usually, experiments are conducted in a classical three electrode setup
(Fig. 2.1c) under potential controlled conditions. Here, a voltage, U , is applied between the
silicon working electrode and reference electrode. Current flows between working electrode
and counter electrode. The voltage between working electrode and counter electrode, Upot, is
adjusted by the potentiostat in such a way that U is equal to a prescribed value.

(a) (b) (c)

Technische Universität München

Electrolyte

SiliconOxide

γ
e-

h+

OxEtchInterplay.pdf

EtchingOxidation

U
I

Silicon Platinum RE

NH4F
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Figure 2.1: During the electrodissolution of silicon in fluoride containing electrolyte, silicon is si-
multaneously (a) electrochemically oxidized and (b) chemically etched. In the case of n-type silicon,
illumination is necessary to create holes for the anodic oxidation. (c) A classic three electrode setup
with working electrode (silicon), counter electrode (platinum) and reference electrode (RE) is used.
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6 2. Anodic Electrodissolution of Silicon
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Figure 2.2: Energy-distance diagrams across the silicon|electrolyte interface. The vacuum energy
is depicted at the top part of each panel. In the bottom part, the Fermi energy, the energy of the
valence band and the energy of the conduction band across the p-semiconductor|electrolyte interface
are shown: (a) before contact, (b) at open-circuit potential, (c) under a cathodic bias, (d) under a
small anodic bias, (e) under flat band conditions, and (f) under a large anodic bias [adapted from
Miethe (2004)]. Energy levels at open-circuit conditions are indicated in white.

Firstly, the potential distribution across the silicon|electrolyte interface under open-circuit
conditions is discussed. Before silicon and the electrolyte are brought into contact, they have
different Fermi levels (Fig. 2.2a). When immersing silicon into the electrolyte, their Fermi
levels adjust, which leads to charge separation. The charge is distributed mainly across a
space charge layer in the silicon, because its charge carrier concentration is lower than the
one in the electrolyte. The formation of a space charge layer leads to the bending of valence
and conduction band. The much thinner charged region which forms on the side of the
electrolyte is referred to as Helmholtz double layer. It will be neglected in the following,
because it is very thin and the potential drop across it is much smaller than the one across
the space charge layer of silicon.

The band bending in the silicon electrode is accompanied by a dependency of the vacuum
energy, Evac, on position because the work functions neither in silicon nor in the electrolyte
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are affected by their contact.

Fig. 2.2b illustrates the distribution of the electrical potential at open-circuit potential, Uocp,
where the sum of the potential drop in the semiconductor, Φsc−ocp, and in the Helmholtz
layer, Φhh−ocp, is equal to ∆EF:

−e0 (Φsc−ocp + Φhh−ocp) = ∆EF (2.1)

Secondly, it is discussed how the potential distribution changes when a bias is applied. At
open-circuit potential, the band bending leads to a depletion of the majority charge carriers
of p-type silicon, i.e. holes, at the interface. Applying a cathodic bias increases Φsc, i.e. it
leads to a further depletion of holes (Fig. 2.2c). In contrast, applying an anodic bias decreases
the depletion of holes at the interface (Fig. 2.2d). At the flat-band potential, Ufb, the band
bending disappears altogether (Fig. 2.2e):

−e0 (Ufb − Uocp) = ∆EF (2.2)

At applied voltages larger than Ufb, holes accumulate in the space charge region (Fig. 2.2f).
This is also true for n-type silicon. Holes are minority charge carriers in the case of n-
type silicon, therefore here holes accumulate in the so-called depletion or inversion layer at
potentials larger than Ufb. In the case of n-type silicon, Ufb is larger than in the case of p-type
silicon, because of the their different Fermi level.

In the presence of an oxide and a continuous current flow as in the experiments discussed
below, the distribution of the potential drops is more complicated. In Fig. 2.3a an equivalent
circuit for the anodically biased silicon|oxide|electrolyte double interface is shown (Morrison,
1980). The silicon electrode is composed of the bulk, a space charge layer, surface states
and the back contact. The latter can be charged (Ccont) and has an ohmic resistance, Rcont.
The bulk can be described by an ohmic resistor, Rsample. The surface states consisting of
an ohmic resistor, Rss, and a capacitor, Css, in series, are connected in parallel with the
Faradaic impedance, ZF, and the capacitor of the space charge layer, Csc. An optional series
resistance, Rser, and the resistance of the electrolyte, Rsol, are connected in series with the
semiconductor. Furthermore, the chargeable oxide layer and the Helmholtz layer are also
connected in series each consisting of a resistor and a capacitor.

For the experiments in this thesis, several simplifications hold. The back contact is ohmic,
therefore Ccont can be neglected. The Helmholtz layer capacity, Chh, is usually very large
compared to Csc and Cox, and is also neglected. Rhh is set to zero, because of the lack of
an electrochemical reaction at the silicon oxide|electrolyte interface. The resulting simplified
equivalent circuit is depicted in Fig. 2.3b with the contributions to Rext resulting from the back
contact of the silicon electrode, Rcont, the sample resistance, Rsample, the solution resistance,
Rsol, and a possible external series resistor, Rser. All ohmic resistances are combined to Rext:

Rext = Rser +Rcont +Rsample +Rsol (2.3)

The additionally applied potential, U − Uocp, is divided into different potential drops:

U − Uocp = −
∆EF

e0
+ Φsc + Φhh + Φox + Φext (2.4)

with:

Φext = JARext (2.5)

and Φox being the potential drop across the oxide layer. This distribution is depicted in
Fig. 2.4. −∆EF/e0 is not a potential drop in the system, but rather a potential drop necessary
to overcome the difference of the Fermi levels at open-circuit potential.
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(a)

Technische Universität München
Equivalent Circuit

Rcont

Rsample

ZF

Rss

Rox Rhh

Rsol

ChhCox

Csc

Css

Rser

Rext

ZF

Rss

Rox

Cox

Css

Csc

Rext

Rox

Cox

(.a.) (.b.) (.c.)

Ccont

ZF

Optional Back Contact    Si Bulk         Si Space Charge      Oxide Layer  Helmholtz Layer     Electrolyte 
Layer

Surface States

(b)

Technische Universität München
potential drop setup with circuit bevor and after

φsc

φox

φext
U

EF

Rext

ZF

Rss

Rox

Cox

Css

Csc

Figure 2.3: (a) Equivalent circuit for a biased semiconductor with an oxide layer in an electrolyte.
(Morrison, 1980). (b) Simplified version of the equivalent circuit.
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Figure 2.4: Distribution of the additionally applied voltage, U − Uocp, over the potential drop in
the semiconductor, Φsc, the potential drop across the oxide layer, Φox, and the potential drop across
the ohmic resistances, Φext. The potential drop necessary to overcome the difference of Fermi level
energies at open-circuit potential, −∆EF/e0, is drawn in white. The potential drops are not drawn to
scale.

2.2 Chemical and Electrochemical Reactions

Fig. 2.5 depicts a typical J − U characteristic for p-type silicon in an acidic, ammonium
fluoride containing electrolyte. Under sufficient illumination, the J − U characteristic of n-
type silicon looks similar, apart from a shift in the applied voltage to more negative values
(Eddowes, 1990) that results from a different flat band potential. Thus the J−U characteristic



2.2. Chemical and Electrochemical Reactions 9

−1 0 1 2 3 4 5 6 7 8 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

J 
[m

A
/c

m
2 ]

U [V]

→

←
J

1
J

2

J
3

0 I II III

J
4

J
−3

J
−1

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

I [
m

A
/c

m
2 ]

displayalltimeseriesoneonlyj:  im035g00voltammoOnlyJ

22

24

26

28

30

32

ξ 
[]

200 400 600 800 1000 1200 1400 1600 1800

0

2

4

6

8

t [s]

t [
s]

Figure 2.5: A typical J − U characteristic during the anodic electrodissolution of silicon in acidic
ammonium fluoride solution with the two characteristic peaks, J1 and J3, the minimum between
them, J2, and the current density plateau, J4. This notation has been used in the literature for
several years (e.g. Zhang, 2001; Lehmann and Föll, 1988). The two characteristic peaks during the
backwards scan are indicated with J−3 and J−1. The domains indicated at the top of the graph
represent different reaction dynamics, namely 0: hydrogen termination, I: porous silicon formation,
II: ‘wet’ oxide formation, III: ‘dry’ oxide formation. Experimental conditions: p-type silicon with
Rext = 100 kΩ, A = 4.91 mm2, cNH4F = 0.05 mol/l, pH = 2.4, scan rate, vscan = 10 mV/s.

is mainly determined by (electro)chemical rather than electrical properties of silicon. The
J −U characteristic is characterized by two current density peaks, J1 and J3, in the positive
scan, and hysteresis between the forward and backward scan. It can be divided into four
domains (Blackwood et al., 1992) that are discussed after taking a closer look at the etching
fluoride species in solution.

At a sufficiently high anodic bias, silicon oxide forms on the electrode surface. This is etched in
acidic electrolyte solutions that contain ammonium fluoride. However, the etch rate depends
on the fluoride concentration and the pH. The species active in the etching process are not
F− ions, but HF molecules and HF2

− ions (Cattarin et al., 2000).

The dependency of the etch rate on the pH is exponential (Yahyaoui et al., 2003), because the
etch rate is affected by the dissolution equilibrium of ammonium fluoride. In dilute solutions,
three fluoride species, HF2

−, HF, and F−, exist in equilibrium.

HF � H+ + F− (2.6)
HF2

− � HF + F− (2.7)

In Fig. 2.6, the concentration profiles of the three fluoride species using the equilibrium
constants, K1 = 1.3 10−3 mol/l, and K2 = 1.04 10−1 mol/l (Judge, 1971) for reactions (2.6)
and (2.7), respectively, are shown as a function of the pH of the electrolyte solution.

The etching chemistry depends on the type of oxidized silicon present on the electrode surface.
The J − U characteristic in Fig. 2.5 reflects the interplay between electrochemical oxidation
and chemical dissolution steps. In domain 0, no current density is observed. Silicon is not
oxidized in this domain, therefore no etching takes place.

Below the critical current density, J1, and at low U, silicon dissolution is divalent in domain
I (Memming and Schwandt, 1966) where silicon electrooxidation is assisted by fluoride and
involves hole capture and electron injection:

Si + 2F− + νcaph
+ −→ SiF2 + νinje

− (2.8)
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−, HF, and F−, as a function of the pH in an electrolyte solution

with an ammonium fluoride concentration, cNH4F = 0.05 mol/l [from Miethe (2004)].

with νcap being the number of captured holes, and νinj being the number of injected electrons
during the oxidation of one silicon atom. The dissolution valency, ν = 2, being the sum of
νcap and νinj, is a measure for the number of charges contributing to the current density per
dissolving silicon atom.

The subsequent reaction steps with HF take place in solution (Memming and Schwandt,
1966):

SiF2 + 2HF −→ SiF4 + H2 (2.9)
SiF4 + 2HF −→ H2SiF6 (2.10)

The oxidation step (2.8) is rate determining and takes place at the silicon|electrolyte interface.
The dissolution of silicon involving fluoride species leads to the formation of a porous silicon
film, so-called porous silicon, on the electrode surface (e.g. Zhang et al., 1989), because silicon
is non-uniformly oxidized. The value of J1 depends on the fluoride concentration.

At current densities larger than J1, i.e. at higher U , silicon is oxidized involving hydroxide
ions in a tetravalent mechanism (domain II):

Si + 4OH− + νcaph
+ −→ Si(OH)4 + νinje

− (2.11)
Si(OH)4 −→ SiO2 + H2O (2.12)

with ν = 4.

A thin layer of so-called ‘wet’ oxide, is formed on the electrode containing a high percentage
of silicon hydroxide (Ozanam and Chazalviel, 1993). This can presumably be attributed to
an etch rate slower than reaction (2.11) and faster than reaction (2.12). Beneath the ‘wet’
oxide layer the surface is electropolished. The ‘wet’ oxide layer serves as a means to limit the
mass transport to the silicon surface, which is a prerequisite for electropolishing (Landolt,
1987).

According to Cattarin et al. (2000) the following minimum set of etch reactions can be for-
mulated:

SiO2 + 6HF −→ SiF6
2− + 2H+ + 2H2O (2.13)

SiO2 + 3HF2
− + H+ −→ SiF6

2− + 2H2O (2.14)

SiO2 + 2HF + 2HF2
− −→ SiF6

2− + 2H2O (2.15)
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with the etch rate of HF2
− being four times higher than that of HF (Judge, 1971).

At applied voltages higher than U(J3) a passivating ‘dry’ oxide layer forms on the surface
that contains a considerably lower silicon hydroxide percentage than ‘wet’ oxide (Ozanam
and Chazalviel, 1993). It can be assumed that as the overall oxidation rate increases, also
more silicon oxide is formed (reaction (2.12)). According to Schmidt and Ashner (1971), the
etch rate depends on the concentration of the hydroxyl ions in the oxide layer. A passivating
oxide layer is formed on the electrode surface (Eddowes, 1990), because the hydroxyl ion
concentration decreases with increasing oxide layer thickness. In this domain (III) oscillations
are observed.

In the description of the mechanism above, ν = 4 was assumed, however Eddowes (1990)
showed that ν is actually lower than 4, even for high U . In the case of p-type silicon, ν is
approximately 3.6 and in the case of n-type silicon, ν is even smaller, namely 2.2. This is
due to the reaction of a partially oxidized silicon species with protons, leading to hydrogen
evolution (Blackwood et al., 1992):

Si(OH)2 + 2H2O −→ Si(OH)4 + H2 (2.16)

In summary, the J − U characteristic reflects the oxidation chemistry for different anodic
applied voltages. In domain 0, the surface is hydrogen terminated, because the overpotential
necessary for anodic oxidation has not been reached. In domain I, silicon is divalently dissolved
according to reaction (2.8). At the first characteristic peak, J1, the fluoride concentration
becomes too small to support divalent silicon dissolution. Subsequently, in domain II, a ‘wet’
oxide layer is tetravalently formed according to reaction (2.11).

At the second characteristic peak, J3, the high oxidation rate leads to the formation of a
passivating oxide layer, i.e. ‘dry’ oxide. The ion conductivity of this oxide, more precisely its
conductivity for hydroxide ions and oxygen ions, O2−, is low. Hence, in domain III most of
the applied voltage drops across the oxide and the migration of ions through the silicon oxide
layer becomes rate determining. Therefore, the current density attains a plateau, J4.

Chazalviel et al. (1992) showed that in the case of p-type silicon without an additional series
resistor no sustained current density oscillations are observed. Time series at a constant
applied voltage exhibited oscillatory transients, but eventually the current density became
stationary. This suggests that the steady state is a focus. Adding a series resistance of at least
8.25 kΩ led to time series of sustained current density oscillations upon a small perturbation
of the system (Fig. 2.7).

As can be seen in Fig. 2.5, current density oscillations are observed also in the J − U cha-
racteristic. They are prominent during the backward scan, where the current density is lower
than on the forward scan. Furthermore, the characteristic peaks, J−1 and J−3, appear at
voltages 1 V lower than their equivalent peaks during the forward scan.

In this thesis, the focus is on understanding the origin of the current density oscillations,
therefore the oxidation of silicon in domain III is discussed in the following in more detail.
Part of the oxidation current results from hole capture of silicon atoms in a low oxidation
state, and the remaining part from electron injection of partly oxidized silicon species. The
rate of hole capture, in turn, depends on the existence of holes in the valence band of the
semiconductor. The first oxidation step consists of a silicon atom capturing a hole:

Si + h+ + OH− −→ Si(OH) (2.17)

with hydroxide ions migrating through the oxide layer to the silicon|oxide interface (Mat-
sumura and Morrison, 1983). The first hole capture step is assumed to be followed by elec-
tron injection from the partially oxidized species, Si(OH), into the conduction band of the
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Fig. 1. Current transients observed in response to a + 100 mV step-potential excitation, for an electrode 

with an externally added series resistor. The value of the added series resistance (kR) is indicated on 

the different curves. p-Si (NA= 2~ lOI cme3, (100) orientation, surface area 0.12 cm2)/0.025 M 

HF+0.025 M NH,F+0.95 M NH,Cl, rotating disk electrode 300 r.p.m. Initial electrode potential is 

set at +3 V (corrected for the ohmic drop in the added series resistance). Notice the decreased 

damping rate, as the series resistance is increased, and the change to a sustained oscillation between 

6.81 and 8.25 kR. 

electrolyte 0.025 M HF + 0.025 M NH,F + 0.95 M NH,Cl (fluoride concentration 
cr = 0.05 M, pH 3), well known for giving rise to damped oscillations with 
frequencies between lo-* and 10-l Hz [8,9]. A variable external resistor has been 
added in series with the working p-Si electrode. The damped or sustained 
character of the oscillations in this system has been tested in the following way: 
first a fixed potential was applied to the electrode (e.g. + 3 Vs,, in Fig. 11, then a 
stable current was obtained (i.e. no current oscillations), either by waiting for a 
sufficient length of time, or better by using an appropriate feedback, mimicking a 
negative capacitance in series with the interface [91 (this means that the applied 
potential must be increased when the current passes through its maximum, and 

Figure 2.7: Current transients observed after a +100 mV perturbation to a steady state at U −
JARser = 3 V. The value of Rser [kΩ] is indicated next to the different curves. As Rser is increased,
damped oscillations change to sustained oscillations [from Chazalviel et al. (1992)]

semiconductor:

Si(OH) + OH− −→ Si(OH)2 + e− (2.18)

The partially oxidized species, Si(OH)2, either reacts with water causing the formation of
hydrogen according to reaction (2.16), or injects two further electrons according to:

Si(OH)2 + OH− −→ Si(OH)3 + e− (2.19)
Si(OH)3 + OH− −→ Si(OH)4 + e− (2.20)

However, it is also possible that more than one hole capture step is involved in the anodic
oxidation of silicon. The exact mechanisms of electron injection and hole capture are not yet
known.

If p-type silicon is used, holes are readily available at sufficiently high anodic bias, because
they constitute the majority charge carriers. In contrast, n-type silicon samples require illu-
mination. Upon illumination, a photon, γ, with an energy larger than the band gap of silicon
is absorbed generating a pair of free charge carriers:

γ −→ h+ + e− (2.21)
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In summary, the four charges necessary to oxidize one silicon atom are split up between
electrochemical oxidation and chemical oxidation, the latter being accompanied by hydrogen
evolution. The charges necessary for electrochemical oxidation result from either hole capture
or electron injection. This is reflected in the overall oxidation reaction:

Si + νcaph
+ + νOH− + (4− ν)H2O −→ Si(OH)4 + νinje

− +
1
2

(4− ν)H2 (2.22)

In the case of n-type silicon the anodic oxidation is only possible under illumination, therefore
the quantum efficiency, Y , is important. The estimation of Y makes it possible to discern
captured holes from injected electrons in the current density. Assuming that each photon
that hits the electrode surface generates an electron-hole pair and that each hole generated
by a photon is used for silicon oxidation:

Y =
Nanod

Nγ
(2.23)

=
ν

νcap
(2.24)

with Nanod being the number of charge carriers contributing to the current density and Nγ

being the number of photons hitting the electrode surface in the same time interval.

The hydrogen evolution efficiency, ηH, is the ratio of the number of protons reacting to give
hydrogen, NH+ , to Nanod:

ηH =
NH+

Nanod
(2.25)

=
4− ν
ν

(2.26)

In the case of p-type silicon, the dissolution valency corresponds to ηH = 11% (Blackwood
et al., 1992). To oxidize one atom of p-type silicon, 0.2 molecules hydrogen are formed. In
the case of n-type silicon, the dissolution valency corresponds to ηH = 82% (Blackwood et al.,
1992). To oxidize one atom of p-type silicon, 0.9 molecules hydrogen are formed.
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Chapter 3

Experimental Setup

The measurement of the spatio-temporal dynamics during the electrodissolution of silicon
requires custom-built instrumentation. On the one hand, the experimental setup has to be
air-tight and resistant to ammonium fluoride. On the other hand, the oxide layer on the
electrode (1 to 50 nm) has to be imaged, data-processed and displayed together with the
measured electrochemical quantities. In this chapter, the custom-made experimental setup
and on-line data processing are described and explained.

An overview of the setup, consisting of the electrochemical cell and the ellipso-microscope, is
depicted in Figs. 3.1a, 3.1b and Fig. 3.1c, respectively. The cell and the electrochemical setup
are discussed in detail in Sec. 3.1. Ellipso-microscopy and the optical setup are described
in Sec. 3.2. In Sec. 3.3, the pretreatment of the silicon samples and the cell are discussed.
The synchronized acquisition of the electrochemical and optical data, and their display are
described in Sec. 3.4.

3.1 Electrochemical Setup

The electrochemical cell has to meet the diverse demands of the experiment. It has to with-
stand the electrolyte containing hydrofluoric acid, allow for sample illumination, enable imag-
ing of the sample, accommodate a three-electrode electrochemical setup, permit the removal
and exclusion of oxygen from the electrolyte during the experiment and allow for precise po-
sitioning of the sample. In the following, the details of the electrochemical cell are discussed.

Fig. 3.1a shows an illustration of the entire cell including the silicon working electrode, the
platinum counter electrode and the argon inlets for purging oxygen with argon from the
electrolyte solution. In Fig. 3.1b, the interior of the cell is depicted, further including the
reference electrode.

Most commercial and custom made electrochemical cells are made from glass. However, glass
is not fluoride resistant. Teflon is fluoride resistant and is therefore used as the cell material.
By comparison, Teflon can be easily handled in a workshop.

Optical glass windows are needed to permit undisturbed sample illumination and imaging.
The cell was built in such a way that the optical glass windows could be exchanged upon
damage from the electrolyte. Experiments were carried out in diluted (0.05 − 0.2 mol/l)
solutions of ammonium fluoride. In some of the experiments, borosilicate glass (Linos) and
for the remaining experiments, synthetic sapphire (Linos), are used. Fig. 3.2a shows a 3D
image of the cell and holders for the optical glass windows.

15
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(a) (b)

Technische Universität München

cell setup with illumination

WE

CERE ArArAr WE

hν

Electrolyte

Ar atmosphere

IlluminationImaging

(c)
Technische Universität München

optical setup

70°

WE

Glan Thompson Prism
Glan Thompson Prism

Lens

Lens

Diaphragm

Filter

LED

Quarter Plate

Camera

PC
Lens

Diaphragm

LED

Illumination
Imaging

Figure 3.1: Custom-built instrumentation for the measurement of spatio-temporal dynamics dur-
ing the electrodissolution of silicon. (a) The electrochemical cell with the silicon working electrode
(white), the platinum counter electrode (red), and the argon inlets for purging oxygen from the elec-
trolyte solution (orange). (b) Cross-section of the electrochemical cell including working electrode
(WE), counter electrode (CE), reference electrode (RE) and argon inlets (Ar). The imaging and the
illumination light paths are indicated with arrows. (c) The optical setup depicting the imaging light
path at an angle of incidence, αi = 70◦, and the sample illumination path at αi = 0◦, both with light
emitting diodes (LED).

A construction made of two o-rings and a holder is used to keep the optical glass window leak
proof in each of the three bore in the Teflon cell (Fig. 3.2b). Four braces are used to keep
each holder in place.

Cell Body

The angle between the first and middle, as well as between the middle and third optical
window, is 70◦. The middle window is used for perpendicular sample illumination. The other
two windows are used for the imaging of the sample at an angle of incidence, αi = 70◦.

The cell holds an electrolyte volume of 400 ml. The inside diameter and height are chosen
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(a) (b) Technische Universität München
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Figure 3.2: Integration of the optical glass windows into the cell body. (a) The Teflon cell body
(red) with the optical windows held in place by holders (orange) and braces (yellow). (b) Two o-rings
prevent the optical windows from leaking.

in such a way that all other parts of the electrochemical setup can be accommodated eco-
nomically. A groove at the top of the cell contains a large o-ring to ensure air-tightness of
the closed cell. The cell was cut from a block of Teflon (workshop of E19 in cooperation with
the central workshop, Physik Department, Technische Universität München).

The Teflon cell is fixed inside a holder attached to a large z-table (lab jack) in the experimental
setup. A magnetic Teflon coated stirrer can be introduced at the bottom of the cell. The
continuously variable stirring device is embedded in the cell holder on the z-table.

Working Electrode

The silicon working electrode is constructed in such a way that a defined area of silicon is in
contact with the electrolyte. Silicon with a single crystal surface (111) and a charge carrier
density of 1015 cm−3, i.e. a resistivity of 10-20 Ω cm in the case of p-type silicon (doped with
phosphor) and of 1-2 Ω cm in the case of n-type silicon (doped with boron), is used.

It is important to ensure an ohmic contact at the back of the silicon wafer. A nonlinear and
asymmetric behavior of the resistance, i.e. a Schottky contact, would lead to a loss of control
over the system. The Fermi energy of the back contact metal has to be smaller than the
Fermi energy of the n-type semiconductor and larger than the Fermi energy of the p-type
semiconductor. The energy barrier, ΦB, for the charge carriers at the contact is minimized by
using an aluminum back contact in the case of n-type silicon (ΦB = 0.50 eV) and a gold back
contact in the case of p-type silicon (ΦB = 0.34 eV) (Ruge, 1975). Both contacts are tested
for ohmic behavior using samples with two metal contacts at the front of the wafer. The back
contact metals were vapor phase deposited at the Helmholtz-Zentrum Berlin by first dipping
the wafers into a solution of 2% hydrofluoric acid, then sputtering it with 400 nm aluminium
(n-type silicon) or 330 nm gold (p-type silicon), and finally cutting it into small pieces with
approximate areas of 30 to 50 mm2.

During the experiments, the working electrode is attached to a holder on the multi-functional
Plexiglas lid. It enables fine adjustment of the sample position and electrical contact to the
potentiostat (Fig. 3.3a). Fig. 3.3c shows how the working electrode is assembled from a Teflon
blank, a piece of wafer and epoxy sealing. A banana jack and gold wire are fitted to ensure
electrical contact. A piece of wafer is glued to the gold wire that protrudes 0.1 mm from
the hole on the front surface of the Teflon blank, with conducting silver epoxy glue (Plano



18 3. Experimental Setup

(a)

(b)

(c)

Technische Universität München
working electrode

Gold
Wire

Silicon
Conducting

Glue

Banana Plug

Expoxy Sealing

Teflon Blank

Figure 3.3: Construction of the working electrode. (a) Photograph of the working electrode attached
to its holder on the Plexiglas lid. The lid with gas inlets, reference electrode and working electrode
held above the cell. (b) Enlargement of the sealed sample area. (c) Illustration of the assembly of the
working electrode. A banana jack and gold wire are fitted into the Teflon blank to ensure electrical
contact. The wafer is glued to the gold wire with conducting silver epoxy glue. Finally, a layer of
silicone rubber is applied with a brush.

GmbH). The wafer is thus positioned flat on the front surface of the Teflon blank. Silicone
rubber, Scrintex 901 (Ralicks GmbH), seals the surface area of the electrode except what is
intended to be in contact with the electrolyte. The sealing is applied with a small size, regular
painting brush and is left for 4 to 6 h at room temperature to cross-link. A sample area of
4 to 10 mm2 is left without sealing. Fig. 3.3b shows an enlargement of the sealed sample
area. An overview of the electrode sizes used in the experiments can be found in Tab. A.1
(Appendix A).

Plexiglas Lid

The Plexiglas lid (Figs. 3.4a and 3.4c) fits air-tight onto the Teflon cell and is fastened to the
cell with braces similar to those used to fix the optical glass windows. The electrolyte solution
is degassed using argon entering the electrolyte through glass frits. During the experiment, the
gas enters the cell above the electrolyte to avoid argon bubbles obstructing the camera image
and ensuring a small argon overpressure to prevent air from entering the cell. A “bubbler”
filled with water is used as gas outlet. The glassware was made by J. Höhn (Glasbläserei,
Garching). One of the braces includes a holder for fastening a charge-coupled device (CCD)
sensor on top of the Plexiglas lid. This CCD sensor monitors the sample illumination during
the experiments.
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The working electrode holder on the underside of the Plexiglas lid is connected to a vernier
adjustment unit on top of the lid. With this unit, the sample can be tilted and rotated
(Fig. 3.4b). The tilt angle is adjusted with a bolt pressing against the vertical metal rod in
the center of the lid. This rod is fitted into a rubber septum and fixed at a point just above
the lid. The working electrode at the bottom of the rod can be tilted towards and away from
the middle window. The tilt adjustment rotates the working electrode around the vertical
axis. The vernier adjustment unit enables the adjustment of the sample position from the
outside of the cell during the experiments. The mechanics of the vernier adjustment unit
were designed in cooperation with M. Haß and J. Dörbecker (E19 workshop). The technical
drawings were prepared by G. Roth. The entire cell can be moved in the horizontal direction
by moving the z-table, adjusting the sample position in the z-direction.

A banana connection is used to keep the electrode from sliding from the holder and to ensure
an electrical connection. The banana plug is installed in the working electrode and a banana
jack in the holder. An electrical cable passing through the hollow axis to the BNC connector
at the top of the vernier adjustment allows for its connection to the potentiostat.

Vernier adjustment necessary to focus the imaging light beam on the camera enables tilting,
rotating, and vertical movement of the sample, as shown in Fig. 3.4a.

Potential Control

A standard three electrode setup is used consisting of the working electrode, a counter elec-
trode and a reference electrode. All three electrodes are attached to the multi-functional
Plexiglas lid (Figs. 3.3a and 3.4c). A saturated Hg|Hg2SO4 reference electrode is inserted
through the lid into the electrolyte.

The counter electrode is made from 0.5mm thick, 50cm long, 99.99% platinum wire (Chempur)
fused into a hollow glass rod. A short piece of platinum is left at one end of the rod for
connection to the potentiostat. The long piece at the other side is woven into a ring electrode
with a diameter a little larger than the windows in the electrochemical cell. The glass rod is
fitted into a holder that is attached to the lid via ground glass joints. The counter electrode
ring is positioned between illumination window and sample.

The anodic potential is applied using a FHI-2740 potentiostat that was built by the electronic
laboratory of the Fritz-Haber-Institut in Berlin by M. Dinzel-Graef, P. Zilske and G. Heyne.
The potentiostat regulates the current between working electrode and counter electrode in
such a way that the voltage between working electrode and reference electrode is kept constant
or changes with time according to a voltage ramp.

3.2 Optical Setup

Fig. 3.1c shows an overview of the ellipso-microscopic optical setup, consisting of two light
paths. The working electrode is positioned vertically in the middle of the cell facing the
middle window. This window is used for the illumination light path. The other two windows
are used for imaging. In this imaging light path at an angle of incidence of 70◦, the temporal
variations of the spatial distribution of the oxide thickness on the silicon are monitored by
analyzing the change of the ellipse of the light upon reflection from the sample.
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Figure 3.4: Multi-functional Plexiglas lid and vernier adjustment unit. (a) Side view of the multi-
functional Plexiglas lid with the vernier adjustment on top with set screws for tilting and rotation
adjustment. The working electrode is attached to its holder via a banana jack-plug connection. The
sample can be moved vertically, (I), in the z-direction with a z-table (not depicted), tilted out of a
position perpendicular to the lid, (II), and rotated around the vertical axis, (III). (b) Top view of the
vernier adjustment unit. (c) Top view of the Plexiglas lid with braces to fit the lid air-tight on the
cell. One of the braces is exchanged for a bracing device that is used for fastening a CCD sensor on
top of the lid. Bore holes in the lid are used for the ground glass joints of reference electrode (RE),
counter electrode (CE), argon inlets into the electrolyte (Arin), argon inlet on top of the electrolyte
(Artop) and an argon outlet (Arout).

Illumination

Sample illumination is necessary in the case of n-type silicon, since holes, which are the
minority charge carriers, are necessary for the anodic oxidation of silicon. A diaphragm and
a lens with a focal length of 50 mm are used to homogeneously focus light from a red (typical
wavelength λillu = 630 nm) light emitting diode, LED (Linos), onto the electrode. The LED
is fixed in a micro bank holder (Linos).

The intensity of the sample illumination is measured with a CCD sensor fastened to the top
of the Plexiglas. An amplification circuit with a defined output resistance provides a defined
load to the CCD sensor. The circuit diagram of the amplification circuit is described in more
detail by Heinrich (2009). Thus the sensor is supplied with a stable voltage proportional to
the sample illumination. A linear dependency of the light power density, L, on the voltage of
the CCD sensor, Uccd, is assumed. L is calculated from the difference between the maximum,
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Umax
ccd , and the minimum, Umin

ccd , of the photo detector voltage:

L = Lmax Uccd − Umin
ccd

Umax
ccd − Umin

ccd

(3.1)

The maximum light power density of the red LED, Lmax, was measured with a calibrated
Watt-meter, LaserCheck (Coherent). The measurement was conducted inside the cell without
electrolyte. Lmax = 1.53 mW/cm2 with an estimated error of 5%. Umax

ccd and Umin
ccd are

measured again for each experiment to account for the influence of light pollution from the
surroundings.

During the experiments, a blue LED is used to image the electrode as will be discussed below.
The contribution of the blue LED to L is negligibly small. It has less power than the red
LED by specification. Its intensity is further reduced by several factors: by being operated at
only 40% of maximum power; by the polarizer and the quarter plate in its light path; by the
light approaching the sample at an angle of incidence of 70◦ (66% reduction). The total light
power intensity from the blue LED does not exceed 10 µW/cm2, which is small compared to
the estimated error of L, ∆L = 76 µW/cm2.

Ellipso-microscopic Imaging

The optical components in the imaging and the illumination light path are depicted in
Fig. 3.1c. Elliptically polarized light approaches the silicon electrode at an angle of inci-
dence close to the Brewster angle. The ellipticity of the light is changed upon reflection at
the working electrode, whereby the change of polarization sensitively depends on the thick-
ness of the oxide layer. The reflected light is passed through an analyzer and an imaging
lens, finally reaching the camera. The intensity image on the camera mirrors local changes
of oxide thickness and refractive indices at the interface. A similar setup has been used by
Rotermund et al. (1995) in a different system.

The ellipso-microscopic light path is built with optical components assembled in a micro-
bench system from Linos. Light with a typical wavelength of λimag = 470 nm from a blue
LED (HighLED, Linos) is homogeneously focused on the electrode using a lens with a focal
length of 50 mm and a diaphragm. Before reaching the sample, it is linearly polarized with
a Glan Thompson prism positioned at an angle between the transmission axis and the plane
of incidence, αP. Circularly polarized light is obtained with a zeroth order quarter plate
(λ = 488nm) positioned at an angle between the fast axis and the plane of incidence, αC = 45◦.

After being reflected from the electrode surface, the light is imaged onto the camera (JAI CV-
A50) with an imaging lens (100mm). The enlargement thus obtained is 2.5. The resolution is
limited by the pixel size of the camera and amounts to 25µm in the x-direction and 10µm in
the y-direction. Before reaching the camera, the light passes the analyzer, a Glan Thompson
prism, positioned at an angle between the transmission axis and the plane of incident, αA. In
this way, differences in the polarization state are converted to intensity differences. The red
filter, DCRed (Linos), prevents stray light from the red LED reaching the camera. Polarizer,
quarter plate and analyzer were bought from B. Halle Nachfl. GmbH, Berlin.

Brewster Angle

To obtain the largest possible contrast when imaging the oxide thickness, the angle of inci-
dence, αi, is chosen close to the Brewster angle, αB, where the ratio of the absolute values of
parallel to perpendicular component of the reflection coefficient, |r̂p|/|r̂s|, is minimal and the
contrast maximal.
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For a two-layer system, r̂p, vanishes at αi = αB. All light is transmitted and none is reflected,
because it cannot be radiated by the oscillating electric dipoles at the interface. Electromag-
netic radiation emitted from the oscillating dipoles in the second medium is responsible for
reflection. Emission is not possible in the direction of the dipole oscillation, which would be
the direction of reflection in the case of p-polarized light at αB. Light with perpendicular
polarization, i.e. s-polarized light, is reflected at all angles of incidence, because it oscillates
parallel to the interface. For a one-interface system, αB can thus be calculated with Snell’s
law (Hecht, 2002):

αB =
n2

n1
(3.2)

with n1 and n2 being the refractive indices for the two domains separated by the interface.

For a film covered surface, such as silicon oxide on silicon in a water based electrolyte, r̂p

does not reach zero except for very thin oxide layers. This is due to several reflections and
transmissions at the two interfaces. αB is defined as the minimum of |r̂p|/|r̂s|. The reflection
coefficients in a two-interface system are calculated with the Drude equation (Born and Wolf,
1964) representing the phase delay due to the film on the surface (Muller, 1991):

r̂p =
r̂p−H2O|SiO2

+ r̂p−SiO2|Si exp(−iD)
1 + r̂p−H2O|SiO2

r̂p−SiO2|Si exp(−iD)
(3.3)

r̂s =
r̂s−H2O|SiO2

+ r̂s−SiO2|Si exp(−iD)
1 + r̂s−H2O|SiO2

r̂s−SiO2|Si exp(−iD)
(3.4)

(3.5)

with

D =
4π
λimag

zLn̂SiO2 cosαt (3.6)

using the wavelength of the reflected light in vacuum, λimag, the thickness of the oxide layer,
zL, the refractive index of silicon oxide, n̂SiO2 , and the angle of transmission at the first
interface αt. The Fresnel coefficients for the interface between the electrolyte and silicon oxide,
r̂p−H2O|SiO2

and r̂s−H2O|SiO2
, and for the interface between silicon and its oxide r̂p−SiO2|Si and

r̂s−SiO2|Si, are obtained from the Fresnel equations (Muller, 1991):

r̂p−H2O|SiO2
=
n̂SiO2 cosαi − n̂H2O cosαt

n̂H2O cosαt + n̂SiO2 cosαi
(3.7)

r̂p−SiO2|Si =
n̂Si cosαi∗ − n̂SiO2 cosαt∗
n̂SiO2 cosαt∗ + n̂Si cosαi∗

(3.8)

r̂s−H2O|SiO2
=
n̂H2O cosαi − n̂SiO2 cosαt

n̂H2O cosαi + n̂SiO2 cosαt
(3.9)

r̂s−SiO2|Si =
n̂SiO2 cosαi∗ − n̂Si cosαt∗
n̂SiO2 cosαi∗ + n̂Si cosαt∗

(3.10)

with n̂Si being the refractive index of silicon and n̂H2O being the refractive index of water
used for the electrolyte solution. αi is the angle of incidence on the silicon oxide covered
electrode. αt = αi∗ is the first angle of transmission and therefore the angle of incidence
at the silicon|oxide interface. αt∗ is the second angle of transmission. The latter two are
calculated with Snell’s law.

αB is estimated by calculating and plotting |r̂p(αi)|, |r̂s(αi)| and |r̂p(αi)|/|r̂s(αi)| versus αi,
respectively. The reflective coefficients are calculated using Eqs. (3.3) and (3.10) and plotted
in Fig. 3.5. An angle of incidence, αi = 70◦, is used for the optical setup, because it is the
position of the minimum of the ratio of the reflection coefficients.



3.3. Chemical Pretreatment and Experimental Preparations 23

bai4_calc_the_brewster_angle:  U:\1000GB\Server\doctorate\analyzeData\brewsterresultsCorrected\Thesis470Brewstercomplexn012040Corr.pdf

brewster= 70.784° , 70.714° , 70.78° , 

n
e
= 1.342

n
x
= 1.46

n
s
= 3.85+0.02i

layer= 40 nm

λ= 470 nm

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

|^
r|

α
i
 [°]

|^r
p
| (1 nm)

|^r
s
| (1 nm)

|^r
p
|/|^r

s
| (1 nm)

20 nm
40 nm

60 62 64 66 68 70 72 74 76 78 80
0

0.05

0.1

0.15

0.2

|^
r|

α
i
 [°]

|^r
p
| (1 nm)

|^r
s
| (1 nm)

|^r
p
|/|^r

s
| (1 nm)

20 nm
40 nm

Figure 3.5: The Fresnel coefficients for a reflection of electromagnetic radiation with λimag = 470 nm
at the silicon|oxide|silicon double interface as a function of the angle of incidence, αi, for three different
layer thicknesses of the oxide: 1 nm (black), 20 nm (gray) and 40 nm (red). Fresnel coefficients in p-
direction are dotted, in s-direction are dashed and their quotient is drawn as a solid line. The following
refractive indices were used for the calculations: n̂SiO2 = 1.46, n̂Si = 3.85+0.02i, n̂H2O = 1.34 Lewerenz
et al. (1989).

3.3 Chemical Pretreatment and Experimental Preparations

All glassware used for the chemical pretreatment and during the experiment is cleaned with
refluxing nitric acid (65%, Merck, extra pure). After 20 hours of steaming, all organic con-
taminations are oxidized and the glassware is rinsed with water. Ultra-pure water is produced
with a combination of a Millipore Elix 5 and a Millipore Milli-Q Gradient A10 system.

The optical glass windows of the Teflon cell are exchanged for Teflon discs during the cleaning
process. The cell is filled with 600 ml Caroic acid, consisting of one part 30% hydrogen
peroxide (Merck, p.a.) and one part 95 − 97% sulfuric acid (Merck, p.a.). The cleaning
solution is stirred in the cell for 10 hours and discarded. The cell is rinsed with water. In
the meantime the optical windows are cleaned with n-isopropanol (Merck, p.a.). Finally, the
windows are re-installed in the cell.

The working electrode is immersed in organic solvents and then in an etching solution prepared
from 14 g ammonium fluoride (Merck, p.a) and 35 ml water. The whole procedure, including
rinsing steps, is outlined in Tab. 3.1. The preparation method was adapted from the one
used by Jakubowicz (2003). The chemical oxidation with Caroic acid is omitted to avoid
undercutting under the epoxy sealing. No extra care is taken to purge oxygen from the
water, used to prepare solutions. This is not necessary because the sample stays in the
etching electrolyte solution for at least 60 minutes prior to starting the experiment, which
removes a possible native oxide film on the sample.

The counter electrode is immersed in Caroic acid for 2 to 3 hours and subsequently rinsed
with water. The reference electrode is rinsed with water immediately before inserting it into
the electrolyte solution for the experiments.

The electrolyte solution is freshly prepared on the day of the experiment. For the standard
solution, 0.927 g ammonium fluoride and 0.7 ml 96% sulfuric acid (Merck, ultra-pure) are
dissolved in water to 500 ml. This leads to an ammonium fluoride solution with a concentra-
tion of 0.05 mol/l and a pH of 2.3. Solutions with higher concentrations and higher pH were
prepared for some of the experiments (Tab. A.1 in Appendix A).
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Duration Treatment
[min]

10.0 Immersed in acetone (100%, Merck p.a.)
0.1 Rinsed with ethanol (100%, Merck p.a.)
10.0 Immersed in ethanol
1.0 Rinsed with water
1.0 Dried with argon
10.0 Immersed in ammonium fluoride etching solution
1.0 Rinsed with water
1.0 Dried with argon

Table 3.1: Chemical pretreatment steps for the working electrode.

The pH is measured with pH testing strips (Lyphan): L653-8 (pH 1.8− 3.2) and L656-8 (pH
3.0 − 4.4). They allow for a resolution of 0.2 units of the pH. Other solutions are prepared
in the same way adjusting the concentration by adjusting the amount of ammonium fluoride,
and adjusting the pH by adjusting the amount of sulfuric acid.

The Teflon cell is filled with the electrolyte solution to a level just above the optical windows.
After assembling the cell, oxygen is purged from the electrolyte solution with argon for at
least 60 minutes.

3.4 Data Acquisition and Online Processing

Different kinds of data are synchronously digitized, processed and ultimately saved. Fig. 3.6
shows an overview of the data flow. The camera images are digitized with the frame grabber,
PCI-1405 (National Instruments). The signal for the current, a voltage from the potentiostat,
the signal for the applied voltage, a voltage from the potentiostat, and the signal for the
illumination light power density, a voltage from the CCD sensor, are digitized with the data
acquisition board, PCI-6221 (National Instruments). An amplification circuit is used between
CCD sensor and acquisition board, because a defined load for the CCD sensor is needed to
prevent interference with the other signals.

A control code written in LabView 8.2 (National Instruments) manages the synchronized
acquisition of all four signals. It also processes, displays and ultimately saves the data. The
processed data is displayed on-line during data acquisition in the graphic user interface (GUI).

The camera can operate at a speed of 25 Hz. During each control loop, the chosen region
of interest, ROI, of one frame is grabbed, loaded to the image buffer, processed and, when
in recording mode, saved to the disc. Currently, processing and saving limit the maximum
sampling rate to 5 Hz. Long time series of oscillations with long periods are recorded at lower
sampling rates. A trigger signal from the frame grabber is used to initiate data acquisition
at the acquisition board.

An image of the GUI of the acquisition software is displayed in Fig. 3.7. The parameter
tab panel is used to adjust a variety of parameters for the display of the experimental data,
including background subtraction and the representation of the camera image.

The image tab panel displays the camera image. Light is reflected from the electrode at αi =
70◦ and the camera is positioned perpendicular to the light beam. Due to this positioning,
the image of the camera is compressed in the direction perpendicular to the plane of incident,
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Figure 3.6: Overview of data production, acquisition and processing.

i.e. in the y-direction. The compression factor is cosαi = 0.342. Thus the size of the pixel in
the y-direction was multiplied by an expansion factor of 3.

The data tab panel displays the time series of averaged quantities. Fig. 3.8a shows another
tab that gives more insight into the spatio-temporal dynamics by displaying the temporal
evolution of a cross section of the electrode. It is displayed together with the time series of
the current, I, the applied voltage, U , the illumination signal, Uccd and the averaged ellipso-
microscopic signal, ξ. Other tabs display I(U) and ξ(U) in a representation useful for cyclic
voltammograms (Fig. 3.8b) or a phase space representation of ξ(I) and U(I) in one plot
(Fig. 3.8c). Additionally, the numerical values of all monitored signals, i.e. I, U , time, t,
Uccd, and ξ, are displayed at the top text to the image tab panel.

Image data, ξ(t, x, y), are saved to an .avi file frame by frame during each acquisition loop
in the record mode. The frame number, t, I, U , Uccd and ξ are saved to an .ascii file when
leaving the record mode. Snapshots of the GUI are saved to .jpg files for documentation
purposes.
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Figure 3.7: Screen shot of the graphic user interface, GUI, used for data acquisition, processing and
saving.
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(a)

(b)

(c)

Figure 3.8: Additional tabs from the data tab panel. (a) Time series of averaged quantities and the
time evolution of a cross section of the camera image. (b) Voltammogram representation with I(U)
and ξ(U). (c) Phase space representation, ξ(I).
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Chapter 4

Correlations between Current
Density and Ellipso-microscopic
Signal

Understanding the correlations between current density, J , and averaged ellipso-microscopic
signal, ξ, is vital to understanding the chemical, electrochemical and dynamical features of
this oscillatory electrochemical system.

In this chapter, the spatially averaged signals, J and ξ, from experiments with p-type silicon
are analyzed. In Sec. 4.1, a general overview of the dynamics when scanning the applied
potential, U , is given. In different anodic domains, the J−U and the ξ−U characteristics are
compared. In Sec. 4.2, the oscillatory domain is investigated using voltage step experiments.
In Sec. 4.3, the etch back of the passivating oxide layer at open-circuit potential is analyzed.
Finally, a functional relationship between J and ξ during oscillations (Sec. 4.4) is discussed.

4.1 Voltage Characteristics of Current Density and Ellipso-
microscopic Signal

The typical J − U characteristic of the electrooxidation of silicon, providing an overview of
the different dynamical domains, was discussed in Sec. 2.2. The J −U characteristic and the
ξ−U characteristic depicted in Fig. 4.1a were obtained with a series resistance, Rser = 100kΩ,
because this guaranteed a stable limit cycle, i.e. sustained oscillations (Chazalviel et al., 1992).
Because of the ohmic voltage, Φohm = JARser, only part of U contributes to the effective
voltage across the silicon|oxide|electrolyte interface, Φeff :

Φeff = U − Φohm (4.1)

with the other ohmic resistances being neglected. Φeff is relevant for the electrochemical pro-
cesses at the silicon|electrolyte interface (at low applied U) and at the silicon|oxide|electrolyte
interface at more positive values of U . In Fig. 4.1b, both voltage characteristics are corrected
for the ohmic voltage drop by plotting J and ξ versus Φeff .

The forward scan starts at open-circuit potential with a hydrogen terminated surface. J and
ξ are constant. This domain 0 ends at Φeff = −0.45 V, where J starts increasing as silicon
is dissolved and porous silicon is formed with a divalent mechanism (domain I). A porous
silicon layer is formed on silicon with a different refractive index, leading to a change in ξ. ξ1

29
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Figure 4.1: Typical voltage characteristics for p-type silicon. (a) The J −U characteristic (red) and
the ξ − U characteristic (black). (b) The J − Φeff characteristic (red) and the ξ − Φeff characteristic
(black). Experimental conditions: Rext = 100 kΩ, A = 4.91 mm2, cNH4F = 0.05 M, and pH = 2.4.

marks the maximum thickness of the porous silicon layer. At J1 (Φeff = −0.28 V), divalent
oxidation starts leading to the formation of ‘wet’ oxide and electro-polishing of the surface
(domain II). ξ first decreases as the porous silicon is dissolved and the ‘wet’ oxide is formed.
The minimum of the current density, J2, is observed at lower values of U than the minimum
of ξ , ξ2.

Beyond the second characteristic peak, J3, at Φeff = 1.2 V, tetravalent oxidation leads to
the formation of a ‘dry’ oxide layer (domain III). The transition from ‘wet’ to ‘dry’ oxide is
accompanied by a very shallow peak of ξ, ξ3. In domain III, J and ξ reach their plateau values,
J4 and ξ4, respectively. Here, current density oscillations are accompanied by oscillations of
ξ, both showing a small amplitude with respect to their average value. At Φeff = 5.5 V, ξ
increases above its plateau value. This suggests an increase in the thickness of the ‘dry’ oxide
layer, because a change of the refractive index of the oxide or the formation of another layer
is not to be expected in this region.

During the backward scan, both signals deviate considerably from the forward scan at respec-
tive voltages leading to pronounced hysteresis in the J − U and ξ − U characteristics. The
oscillations of J are more prominent in the backward scan, i.e. the oscillation amplitude is
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large, but the absolute value is smaller than on the forward scan. The lower value of J results
in a decrease of ξ, because the oxide formation rate falls below the etch rate.

As the ‘dry’ oxide layer thickness, zL, decreases, Rox decreases, which in turn leads to a
decrease in Φox. This results in an increase of Φsc and a growing J . This growth ends at
J−3, because the applied voltage is continuously reduced. Between J−3 (ξ5) and J−1 (ξ6),
the oxidation switches back to a divalent mechanism and ‘wet’ oxide is formed. Beyond this
domain, oxide formation is replaced by silicon dissolution in combination with porous silicon
formation. At open-circuit potential, ξ after the voltage scan differs from ξ before the scan,
because a layer of porous silicon is present beneath the hydrogen terminated surface.

The ξ − U and the ξ −Φeff characteristics illustrate that ξ is very sensitive to the properties
of the interface region, i.e. the layer thicknesses and their refractive indices.

4.2 The Domain of Dry Oxide

In the following, a closer look is taken at the oscillatory dynamics in domain III. The cor-
relation between J and ξ is investigated at constant applied voltages. Firstly, voltage step
experiments from open-circuit potential into the oscillatory domain are discussed, providing
insights in the phase relationship between J and ξ. This is a widely used technique to initi-
ate sustained oscillations (Chazalviel et al., 1992). Secondly, the etch back of ‘dry’ oxide at
open-circuit potential is analyzed, further elucidating the contrast of the ellipso-microscopic
setup.

U is stepped from open-circuit potential to a constant value of U that lies in domain III.
Fig. 4.2a depicts simple oscillations that result from the excitation due to the increase of
the voltage. Upon raising the voltage to U = 5.35 V, the current density increases rapidly
to J = 0.7 mA/cm2 and then decreases again. During this initial peak, ξ grows close to
its long-time mean value. This indicates the initial formation of the passivating oxide layer.
After this transient, oscillations with a time average of J = 0.25 mA/cm2 are established.
As discussed in detail in Sec. 2.2, sustained oscillation are only obtained in the presence of
a series resistance. Here Rext = 100 kΩ is used. As can be seen in the magnification of two
oscillation cycles in Fig. 4.2d, J and ξ oscillate with a constant phase difference. The extrema
of J coincide with the points of inflection of ξ, and the extrema of ξ coincide with the points
of inflection of J .

At higher Rext, high-amplitude oscillations (Fig. 4.2b) with double the oscillation amplitude
of low-amplitude oscillations are observed. The high-amplitude current density oscillations
stabilize after 100 s, with minima at 0.1mA/cm2 and maxima at 0.6mA/cm2. ξ stops drifting
after 300 s and oscillates around a constant mean value. The character of these oscillations
is more relaxational compared to the nearly sinusoidal character of the low-amplitude oscil-
lations. At the same Rext and a higher U , complex modulated low-amplitude oscillations
(Fig. 4.2c) are established. High-amplitude and complex low-amplitude oscillations also show
that the extrema of ξ coincide with the points of inflection of J , and vice versa (Figs. 4.2e
and 4.2f).

In conclusion, the analysis of the times series shows that during oscillations J and ξ have
a fixed phase relationship to each other. The agreement of the extrema of one with points
of inflection of the other suggests that one behaves like a derivative of the other. The case
of complex low-amplitude oscillations illustrates the fact that even small details in one time
quantity are matched by equivalent details in the other (Fig. 4.2f).

At this point, two hypotheses are established. Firstly, it is assumed that ξ in domain III,
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Figure 4.2: Typical time series following upon stepping the voltage from open-circuit potential
to a voltage inside domain III. (a,d) Stable simple low-amplitude oscillations for U = 5.35 V and
Rext = 100 kΩ. (b,e) Stable simple high-amplitude oscillations for U = 7 V and Rext = 200 kΩ. (c,f)
Damped high-amplitude oscillations followed by complex low-amplitude oscillations for U = 8.5 V and
Rext = 200 kΩ. Experimental conditions: (a,d) cNH4F = 0.05 M, pH = 2.4, and A = 7.65 mm2. (b,e)
cNH4F = 0.05 M, pH = 2.4, and A = 4.26 mm2. (c,f) cNH4F = 0.05 M, pH = 2.4, and A = 7.65 mm2.
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Figure 4.3: Etch back at open-circuit potential after sustained low-amplitude oscillations. The
initial slope of 0.07 s−1 of the etch back is indicated in gray. The vertical lines in the upper part
indicate typical values of ξ during damped high-amplitude oscillations (gray) and stable low-amplitude
oscillations (black).

i.e. for effective voltages Φeff > 3 V, is solely attributed to changes in the thickness of the
‘dry’ silicon oxide layer. Secondly, it is proposed that the relationship between the oxide layer
thickness, zL, and ξ is linear. This approach is tested in the following, analyzing the etch
back of anodically formed ‘dry’ oxide.

4.3 Etch Back

Every experiment starts at open-circuit potential, at which the electrode is kept for several
minutes. Therefore, all oxide on the surface is etched and the surface is hydrogen terminated.
During the experiment, oxide is formed when a voltage corresponding to a value inside domain
III is applied. Since the electrolyte contains ammonium fluoride, the oxide is continuously
chemically removed. Hence in this domain, oxide is continuously formed and etched with
an oxide layer being present on the electrode. At the end of the experiment, the potential
is switched back to open-circuit potential. No current flows and the oxide layer thickness
depends solely on the etch rate, which is controlled by the diffusion of the etching fluoride
species. Therefore, the relaxation of an oxide covered surface to an hydrogen terminated
surface at open-circuit potential is called etch back.

After returning to open-circuit conditions, ξ at first decreases linearly. The etch rate decreases
until all oxide is etched. The ellipso-microscopic signal is linear for those values of ξ where
oscillations take place. This is depicted in Fig. 4.3. ξ is at least linear during the first 15 s. ξ
depends linearly on the oxide layer thickness, zL, suggesting a constant etch rate.

The dependency of ξ on zL can be calculated theoretically assuming a layer of oxide on silicon
in a water-based electrolyte. The ratio of the light intensity at the camera, ξcalc, to the light
intensity of the light source is defined (Azzam and Bashara, 1977) according to:

ξcalc =
Ê† Ê

(EP)2 (4.2)

with EP being the electrical field strength transmitted by the polarizer, Ê being the electrical
field strength at the detector, and Ê† being its Hermitian adjoint, i.e. the complex conjugate
of the transpose of Ê.

Ê results from the interaction of the light, emitted from the light source, with the optical
components (Fig. 3.1c) and with the sample interface. The light intensity that reaches the
camera depends on the positions of the optical components, the properties of the sample, and
the angle of incidence. During a single experiment the properties of the optical setup are kept
constant, but the optical properties of the sample interface change.
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Figure 4.4: ξcalc(zL) calculated with Eq. (4.5) with αP = 175 ◦, αC = 45 ◦, and αA = 20 ◦. (a) For
the entire range of expected oxide thicknesses. (b) For oxide thicknesses expected in the oscillatory
domain III.

Assuming a constant refractive index, the intensity of the reflected light can be calculated
from the oxide layer thickness, only. The derivation of an explicit equation to calculate the
ellipso-microscopic signal, ξcalc, is described by Linke and Merkel (2005). The electromagnetic
wave is represented by the complex Jones vector, and the effect of the optical components on
light is represented by their respective Jones matrices:

Ê = R−αATαARαATr̂R−αCTλ/4RαC−αP

(
EP

0

)
(4.3)

with:

TαA =
(

1 0
0 0

)
Tr̂ =

(
r̂p 0
0 r̂s

)
Tλ/4 =

(
1 0
0 i

)
Rα =

(
cosα sinα
− sinα cosα

)
(4.4)

with α being the angle between the fast axis of the optical component and the plane of inci-
dence, TαA being the Jones matrix for polarization, Tr̂ being the Jones matrix for reflection,
Tλ/4 being the Jones matrix for retardation, and Rα being a matrix for rotation. Expanding
the Jones matrices leads to:

ξcalc = cos (2αA)
(
f1r̂
∗
pr̂p − f2r̂

∗
s r̂s

)
+ 2 sin (2αA) Re

(
f3r̂
∗
pr̂s

)
+
(
f1r̂
∗
pr̂p + f2r̂

∗
s r̂s

)
(4.5)

with the following abbreviations:

f1 = cos2(αC − αP) cos2 αC + sin2(αC − αP) sin2 αC

f2 = cos2(αC − αP) sin2 αC + sin2(αC − αP) cos2 αC

f3 = sinαC cosαC

(
cos2(αC − αP)− sin2(αC − αP)

)
− i sin(αC − αP) cos(αC − αP)

(4.6)

The Fresnel coefficients calculated with Eqs. (3.3) to (3.10) are used with the constants listed
in Tab. B.3. The plot of ξcalc in Fig. 4.4a shows a monotonous increase for experimentally
relevant values of zL. For oxide layer thicknesses between 10 nm and 20 nm, where current
density oscillations take place (Chazalviel et al., 1998; Yahyaoui et al., 2003; Lehmann, 1996),
ξ(zL) is, to a very good approximation, linear (Fig. 4.4b).

To convert the measured intensity ξ to an absolute value of the oxide layer thickness on the
electrode a linear functional relation between the two is assumed. The imaged area is larger
than the electrode area. Therefore, the spatial average, ξ(t), contains contributions from the
electrode area, ξelec(t), and from the inactive surroundings ξsur:

ξ(t) = ξelec(t) + ξsur (4.7)
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In the case of an oxide free hydrogen terminated electrode, the notations ξref(t) and ξ
ref
elec(t)

are used for the average of the entire camera image and the average of the electrode area,
respectively:

ξ
ref(t) = ξ

ref
elec(t) + ξsur (4.8)

For reference, the value ξ before the experiment, i.e. of the hydrogen terminated electrode, is
used. The average oxide layer thickness, zL, is a function of the difference between ξ of the
electrode, with and without oxide:

f(zL(t)) = ξelec(t)− ξ
ref
elec(t) (4.9)

Using Eqs. (4.7) and (4.8) one obtains:

f(zL(t)) = ξ(t)− ξref(t) (4.10)

Under the assumption of the linearity of this functional relation, it is extended to:

zL(t) = copt(ξ(t)− ξ
ref) (4.11)

with the proportionality constant, copt. Aggour et al. (2007) measured the oxide layer thick-
ness variations with FTIR. The form of the oscillations of the oxide thickness and the phase
shift with respect to J closely resemble the measurements depicted in Fig 4.2e. This is a
further indication that the the initial assumption of linearity is valid. Hence, the experi-
mental observations during etch back and the ellipsometric calculations are indications for
the suggested linearity. A quantitative interpretation of the ellipso-microscopic signal seems
possible. Such a quantitative approach is investigated in the next section.

4.4 Analytic Relationship between Ellipso-microscopic Signal
and Current Density

Assuming that a capacitive current density can be neglected, J stems only from the electro-
chemical oxidation of silicon. Furthermore, assuming that the etch rate of the oxide, żE, is
constant, J is a linear function of the time derivative of ξ, ξ̇(t), as changes of ξ depend solely
on the oxide formation rate. Therefore J can be calculated from ξ̇(t) and correspondingly, ξ
is a linear function of the integral of J thus it can be calculated from the measured J .

To discriminate between the directly measured current density and the one calculated from ξ,
the latter is denoted by Jξ. Correspondingly, the notation ξJ is used for the ellipso-microscopic
signal obtained from J . For the following discussion it is useful to introduce a number of other
quantities. The oxide layer thickness on the electrode is denoted by zL(t), the oxide thickness
etched between t0 and t by zE(t), and the oxide thickness that is produced by the anodic
current density between t0 and t by z(t). As above, the spatially averaged oxide thicknesses
are indicated by vertical bars. The averaged oxide formed by the anodic current density on
silicon is the sum of the increase of average oxide on the electrode and the decrease that
results from etching:

zL(t) + zE(t) = z(t) (4.12)

with the time derivative:

żL(t) + żE(t) = ż(t) (4.13)
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and ż being the oxide layer continuously produced by electrochemical oxidation, which is
calculated from the overall quantity of formed silicon oxide:

z(t) =
M

ρA
nSiO2(t) (4.14)

A being the electrode area, M = 60.2 g/mol the molar mass of silicon oxide, ρ the density of
silicon oxide, and nSiO2 the amount of moles of silicon oxide formed anodically. The density,
ρ, of anodic oxide formed in a water-based electrolyte differs from that of thermal oxide. ρ
is estimated with the Lorentz-Lorens equation (Pliskin, 1977) using the refractive index of
silicon oxide, n̂SiO2 (Tab. B.3), and the constant K = 8.0461 (Hung et al., 1991):

ρ = K
(n̂SiO2)2 − 1
(n̂SiO2)2 + 2

= 1.69 g/cm3

(4.15)

The Anodic Charge

The time derivative of the amount of moles of silicon oxide, ṅSiO2 , is directly related to the
current density, J :

J(t) =
1
A
q̇(t) (4.16)

=
Fν

A
ṅSiO2(t) (4.17)

with F = 96485.3 As/mol being the Faraday constant, ν being the oxidation valency, and q
being the amount of charges necessary to electrochemically oxidize silicon. In the case of p-
type silicon in the oscillatory voltage domain III, the oxidation valency is ν = 3.6 (Eddowes,
1990). From Eqs. (4.17) and (4.14) it follows that:

J(t) =
Fνρ

M
ż(t) (4.18)

using the time derivative of ż from Eq. (4.13) yields to:

J(t) =
Fνρ

M

(
żL(t) + żE(t)

)
(4.19)

Thereafter the time derivative of Eq. (4.11) is inserted:

Jξ(t) =
Fνρ

M

(
coptξ̇(t) + żE(t)

)
(4.20)

Knowing the values for the etch rate, żE, and copt, the current density calculated from ξ, Jξ,
can be compared to J .

Period Averaged Etch Rate

J and ξ can also be related to each other via the integral of J . Integrating Eq. (4.20) results
in the following expression:∫ t

t′
J(τ)dτ =

Fνρ

M

(
copt

∫ t

t′
ξ̇(τ)dτ +

∫ t

t′
żE(τ)

)
(4.21)

=
Fνρ

M

(
coptξ(t)− coptξ(t′) + zE(t)− zE(t′)

)
(4.22)
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Figure 4.5: The integral of the current density,
∫
J (top panel), the current density, J , and the

averaged ellipso-microscopic signal, ξ , (both bottom panel), displayed between two maxima of ξ. The
period averaged etch rate, żE = 0.25nm/s, is obtained from the slope of the linear fit of

∫
J (top panel)

and calculated at the maxima of ξ . Experimental conditions: U = 4V, Rser = 100kΩ, cNH4F = 0.05M,
pH = 2.3, and A = 4.26 mm2.

In the case of sustained oscillations, the etch rate averaged over one oscillation period is
constant and equal to the oxide formation rate averaged over one period. In Fig. 4.2a, it can
be observed that the extrema of ξ in the oscillatory time series have the same value. During
one oscillation period, equal amounts of charge, q, flow in the circuit, q being equal to the
time integral of J , which is displayed in the top panel of Fig. 4.5. The integral resembles
a “staircase” in shape, which results from the oscillatory formation rate. This integral of J
evaluated at the maxima of ξ lie on a straight line. In fact, all sets of points separated in
time by multiples of one oscillation period, P, form a straight line.

A variation of the etch rate, żE(t), during one oscillation period cannot be ruled out. Instead,
the period averaged etch rate, żE, which is constant, will be used in the following. The
last term in Eq. (4.22) can be rewritten, integrating between two time instances which are
separated by t− t′, a multiple of the oscillation period:∫ t

t′
J(τ)dτ =

Fνρ

M

(
coptξ(t)− coptξ(t′) + (t− t′)żE

)
(4.23)

The equation can be rearranged as a function of J :

ξJ(t) =
M

Fνρcopt

∫ t

t′
J(τ)dτ + ξ(t′)− t− t′

copt
żE (4.24)

with ξJ being ξ calculated from J , once żE, copt, and ξ(t′) are determined from experimental
data.

The objective is to extract żE from the integration of J . Therefore the time derivative of
Eq. (4.22) is considered:

d

dt

∫ t

t′
J(τ)dτ =

Fνρ

M

(
coptξ̇(t) + żE

)
(4.25)
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Figure 4.6: Low-amplitude current density oscillations: the oxide layer thickness, zL (top panel),
the measured current density, J , the calculated current density, Jξ, (both middle panel), and the
difference, J −Jξ (bottom panel). Experimental conditions: Rext = 100 kΩ, U = 4 V, żE = 0.25 nm/s,
A = 4.26 mm2, cNH4F = 0.05 mol/l, and pH = 2.4. Smoothing: k = 1. Fitting: copt = 1.30.

The time derivative of ξ at the maxima t = tmax is zero:

d

dt

∣∣∣∣
tmax

∫ tmax

t′max

J(τ)dτ =
Fνρ

M
żE (4.26)

Hence, żE is proportional to the slope of the integral of J evaluated at the maxima of ξ
(Fig. 4.5):

żE =
M

Fνρ

d

dt

∣∣∣∣
tmax

∫ tmax

t′max

J(τ)dτ (4.27)

Fitting

By fitting J to Jξ, copt is obtained using Eq. (4.20):

copt =

M

Fνρ
J(t)− żE

ξ̇(t)
(4.28)

This equation indicates that copt is determined by ν and żE. If there are discrepancies between
the values of these quantities and the values used, they are contained in copt. Temporal
variations of the values are not contained in copt and therefore visible in Jξ(t) and ξJ(t).

ξ is smoothed before differentiation to reduce the noise level. A central moving average over
2k + 1 points is used according to:

ξ(t)smooth =
k∑

i=−k

ξ(t+ i∆t)
2k + 1

(4.29)
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For k = 0, no smoothing is applied. For most of the calculations, k = 1 or k = 2 are used.

In Fig. 4.6, zL(t), J(t) and Jξ(t) are displayed. The agreement of Jξ(t) with J(t) is very good
and the oxide thickness oscillates in a similar range as found by Böhm et al. (2001). Thus,
the assumptions and the approach itself are justified. A good fit is also obtained for complex
low amplitude oscillations in Fig. 4.7.

There is, however, a small systematic discrepancy. The maxima of Jξ are ahead of the maxima
of J(t) by approximately 1 s. The difference J − Jξ(t) is of the order of 50 µA/cm2, i.e. 12%
of J .

In contrast, in the case of the high-amplitude current density oscillations, the difference
between J and Jξ is significant (Fig. 4.8). This creates problems fitting copt. Consequently,
copt fitted for low-amplitude oscillations under the same optical conditions, i.e. positions of
the polarizer, analyzer and quarter plate, and the light intensity of the LED, is also used for
high-amplitude oscillations.

4.5 Discussion and Outlook

The analysis of oxide etch back experiments at open-circuit potential strongly suggest that
ξ depends linearly on the oxide layer thickness. The good fit of the data based on that as-
sumption further supports this ansatz. In the oscillatory domain III, two types of oscillations
are observed in the case of p-type silicon, low-amplitude and high-amplitude. The fit is ex-
cellent in the case of low-amplitude oscillations, but shows significant deviations in the case
of high-amplitude oscillations. The values for the oxide thickness range and the etch rate
calculated during the fitting procedure reproduce what is known from IR measurements of
the oxide layer dynamics in the literature (Yahyaoui et al., 2003). This further supports the
assumption that changes in the refractive index of silicon oxide can be neglected.

The discrepancies in the fit point to, so far, undiscovered elements in the oscillatory mech-
anism. They possibly arise from a non-negligible charging current density, variations in the
valency, ν, the etch rate, żE, or in the amount of partially oxidized silicon in the oxide layer.
One of these sources may serve as the sole explanation for the discrepancies, but a mixture
of two or more also has to be considered.

Capacitive Current Density

The difference, J−Jξ, may be interpreted as capacitive current density responsible for charg-
ing the interfacial region. This would imply that the charge stored in this region changes
periodically during the oscillations. The interfacial capacity has to be sufficiently high to
give rise to the observed current density discrepancy. As can be seen in the top panels of
Figs. 4.9a and 4.9b, positive charge is released from the interface during the ascending flanks
of J , while it is stored again during the descending flanks. This is indicated by the shaded
areas in Fig. 4.9b. This effect is observed to a smaller extent in the case of low-amplitude
oscillations and to a larger extent in the case of high-amplitude oscillations.

The charge density, ∆σ, transported back and forth can be calculated by integrating J − Jξ:

∆σ(t) =
∫ t

t′

(
J(τ)− Jξ(τ)

)
dτ (4.30)

∆σ is displayed in the bottom panels of Fig. 4.9. In the case of low- and high-amplitude
oscillations, 0.15 mC/cm2 and 0.9 mC/cm2 have to be stored and released, respectively.
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Figure 4.7: Complex low-amplitude current density oscillations: the oxide layer thickness, zL (top
panel), the measured current density, J , the calculated current density, Jξ, (both middle panel), and
the difference, J − Jξ (bottom panel). (a) Experimental conditions: Rext = 100 kΩ, U = 7.35 V,
żE = 0.26 nm/s, A = 7.65 mm2, cNH4F = 0.05 mol/l, and pH = 2.4. Smoothing: k = 2. Fitting:
copt = 1.89. (b) Experimental conditions: in Fig. 4.2c. Smoothing: k = 1. Fitting: copt = 1.30.
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Figure 4.8: High-amplitude current oscillations: the oxide layer thickness, zL, (top panel), the
measured current density, J , and the calculated current density, Jξ, (both middle panel), and the
difference, J − Jξ, (bottom panel). Experimental conditions: in Fig. 4.2b. Smoothing: k = 1. Fitting:
copt = 1.30.

The charge could be either stored in the space charge layer of silicon or in the oxide layer
where positive charges are stabilized in the lattice of partially oxidized silicon oxide. In both
cases, the counter charges would be expected in the electrolyte near the interface. The latter
hypothesis is supported by the measurement of the free carrier absorption in the oxide layer
using electro-modulated in situ IR spectroscopy (Chazalviel et al., 1998). The absorption
is at a maximum directly before and at a minimum directly after the current density peak.
Negatively charged species are the charge carriers in the oxide as illustrated in Fig. 4.9.

The estimation of the capacity responsible for the charge storage is not simple, because the
capacity of the oxide layer is expected to depend on the oxide layer thickness. Values for
the capacity of the oxide, Cox = 1 µF/cm2 and for the capacity of the space charge layer,
Csc = 0.1 µF/cm2, were estimated in impedance experiments by Kim et al. (1999), much too
low to explain the difference between J and Jξ.

Partially Oxidized Silicon

As described in Chapter 2, the anodic oxidation of silicon results from a combination of hole
capture and electron injection steps. The first oxidation step could be shown to be always
a hole capture step and to be rate determining. This suggests a very low concentration of
partially oxidized silicon, because the ratio of the hole capture reaction rate to the reaction
rates for the following electron injection is large. However, the hole capture rate depends on
the band bending. As it changes in the course of one oscillation cycle, the reaction rate ratio
changes as well.

Assuming that the refractive index of partially and fully oxidized species are similar, the
discrepancy between J and Jξ would indicate that the amount of partially oxidized silicon in
the interfacial region changes during one oscillation cycle. The lower the oxidation number
of a silicon species, the lower the amount of charge necessary for its formation. Irrespective
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Figure 4.9: Discrepancy fitting the current density, J−Jξ (top panel), and the corresponding charge
density variations, ∆σ(t) (bottom panel). (a) Low-amplitude current density oscillations. Conditions:
in Fig. 4.6. (b) High-amplitude current density oscillations. Conditions: in Fig. 4.2b.

of its oxidation number, the oxide species is always part of a the oxide layer measured with
ellipso-microscopy. Hence, additional current density, not reflected in ξ, could result from the
completion of the oxidation of partially oxidized species.

This suggests that while J is increasing, the concentration of partially oxidized silicon in-
creases, due to an increase in the hole capture rate or a decrease in the electron injection rate.
The opposite is the case while J is decreasing, i.e. the concentration of partially oxidized
species decreases.

Matsumura and Morrison (1983) proposed an abrupt change from silicon to silicon oxide,
with partially oxidized species being present only at the interface, but the roughness of this
interface can extend to several monolayers. A silicon (111) surface has a surface atom density
of 8 · 1014 cm−2 (Allen and Gobeli, 1962). One monolayer of Si(OH) corresponds to a stored
charge of 0.38 mC/cm2. The observed charge density variations have the same order of
magnitude. The first and second panel of Fig. 4.10 illustrate the variations of the thickness of
the layer of partially oxidized silicon in the case of high-amplitude oscillations. The effect is
smaller in the case of low-amplitude oscillations (Fig. 4.11). Due to the smaller amplitude of
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Figure 4.10: High-amplitude current density oscillations: time series of ξ and ξJ (both top panel),
the difference, ξ − ξJ (second panel), the time dependent dissolution valency, ν(t) (third panel), and
time dependent etch rate, żE(t) (bottom panel). Conditions: in Fig 4.8.

the current density oscillations, a smaller amplitude of Φsc, and therefore a smaller variation
in the reaction rate ratio, is expected.

Valency Variation

Variations in the oxidation valency, ν, are connected to variations in the hydrogen evolution
rate (Sec. 2.2). Blackwood et al. (1992) investigated hydrogen evolution in situ during current
density oscillations. They observed maxima in the hydrogen evolution and minima in the oxide
layer thickness simultaneously during the increasing flanks of J . The larger the contribution
of hydrogen evolution to the overall oxidation, the lower the oxidation valency, ν.

In the fitting approach of this chapter, ν was assumed to be constant. To estimate how the
discrepancy between the calculated and the measured time series translates into a variation
of ν, the latter was calculated from Eq. (4.20):

ν(t) =
M

Fρ

J(t)

coptξ̇(t) + żE

(4.31)

ν(t) being displayed in the third panel of Figs. 4.10 and 4.11 for high and low-amplitude
oscillations, respectively. In the case of high-amplitude oscillations, ν(t) takes on values
larger than 4, which cannot be physically explained. Instead, this either results from the
fitting of copt, or it stems from other effects described in this discussion. However, the overall
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Figure 4.11: Low-amplitude current density oscillations: time series of ξ and ξJ (both top panel),
the difference, ξ − ξJ (second panel), the time dependent dissolution valency, ν(t) (third panel), and
time dependent etch rate, żE(t) (bottom panel). Conditions: in Fig 4.6.

trend observed by Blackwood et al. (1992) is observed with hydrogen evolution being larger
when the oxide layer is thinner.

Etch Rate Variation

It is also possible that the discrepancy between J and Jξ results from periodic changes in the
etch rate. A negative current density discrepancy, i.e. J − Jξ < 0, would indicate an etch
rate smaller than the period-averaged etch rate and vice versa. The variation of the etch rate
resulting from the discrepancy between the calculated and the measured time series, żE(t), is
also calculated using Eq. (4.20):

żE(t) =
M

Fνρ
J(t)− coptξ̇(t) (4.32)

The time series of żE(t) compared to the period averaged values, żE(P ), are displayed in the
last panel of each of Figs. 4.10 and 4.11. The temporal evolution of the etch rate is discussed
in more detail in the next chapter.

Summary and Outlook

In this chapter it could be shown that the ellipso-microscopic signal is sensitive to the prop-
erties of the interface between silicon and the electrolyte, with and without an extra oxide
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layer on top of the silicon surface. The domains of porous silicon formation (I), ‘wet’ oxide
formation (II), and ‘dry’ oxide formation (III), can be distinguished, because of changes in
the refractive index and layer thickness.

Furthermore, a linear dependency between the spatially averaged ellipso-microscopic signal
and the spatially averaged oxide layer thickness could be established during the current density
oscillations in domain III. A period averaged etch rate is assumed and the proportionality
constant for the ratio of the oxide layer thickness to the ellipso-microscopic signal, copt, is
obtained from fitting Jξ to J .

At the end of this chapter several questions remain unsolved. On the one hand, the propor-
tionality factor has to be evaluated quantitatively. On the other hand, the possible origins
for the discrepancy between J and Jξ have to be tested in order to ascertain which of them
is responsible for the discrepancy. Several experimental routes for obtaining information to
help answer these questions are proposed in the following. Furthermore, the role of etch rate
variations is discussed in more detail in Chapter 5, with regard to experiments and to the
setup of a mathematical model

It has been shown above that in domain III the data can be evaluated quantitatively, provided
the proportionality factor is known. copt was estimated by fitting Jξ to J , but it would be
desirable to measure copt independently. This can be achieved by the inclusion of standard
ellipsometry in the setup. The oxide thickness and refractive index of the oxide layer could
be obtained with long exposure times when the system is in a steady state and be compared
to the measured values of ξ.

Combining the ellipso-microscopic setup with an infrared setup measuring the absorption of
the silicon oxide bonds would provide a possibility to estimate the amount of partially oxidized
silicon in the oxide layer. The simultaneous use of both methods using total reflection infrared
spectroscopy at the back of a silicon prism would provide insights into phase relations between
the amount of partially oxidized silicon, the oxide layer thickness and the current density.

To obtain insights into the phase relations between hydrogen evolution and current density,
the hydrogen concentration could be measured in situ in the vicinity of the electrode to
elucidate a possible correlation with the discrepancy between Jξ and J .

As more than a single effect might be at work, further investigations to gain insight into their
interplay have to be undertaken.
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Chapter 5

Spatially Averaged Dynamics on
p-type silicon

Understanding the spatially averaged dynamics of p-type silicon is the first step towards an
understanding the dynamics of the electrodissolution of silicon. The analysis of the com-
plication of spatial phenomena is postponed to Chapter 7. The necessity of illumination in
the case of n-type silicon, also brings additional complications that are addressed in a later
chapter (Chapter 6).

In Sec. 5.1, the dependency of the anodic electrodissolution on experimental parameters, such
as external resistance, applied voltage and electrolyte concentration, is investigated.

In Sec. 5.2, a model consisting of ordinary differential equations is proposed, which is numer-
ically simulated and compared to the experimental findings.

5.1 Parameter Dependency

In Sec. 4.2, it was shown that different types of oscillations establish depending on the fi-
nal voltage in potential-step experiments. In particular, low-amplitude oscillations with and
without complex dynamics, and high-amplitude oscillations were distinguished. Fig. 5.1 gives
examples of non-oscillatory dynamics, where the system attains a steady states after a tran-
sient time. Two different kinds of steady states are observed, namely nodes (Fig. 5.1a) and
foci (Fig. 5.1b), which show monotonous and oscillatory behavior, respectively, when the tra-
jectory approaches the steady state. The character of the steady state depends on the applied
voltage and the series resistance. Nodes are observed for low voltages, more specifically for
low effective voltages, Φeff < 2 V, independently of the value of the series resistance. Foci are
observed at an effective voltage larger than 2 V and low series resistances, Rser < 30 kΩ.

A semilogarithmic parameter space plot giving an overview of the different dynamical states
and their dependency on the applied voltage and the applied resistance is shown in Fig. 5.2.
In addition to steady states, the parameter space plot includes oscillatory dynamics. For
simplification, Rext is assumed to be the sum of the Rser and Rcont, all other contributions
considered in Eq. 2.3 are neglected. From sheet resistance measurements Rcont could be
estimated to be approximately 15.5 Ω.

Sustained low-amplitude oscillations are observed for a sufficiently high resistance. High-
amplitude oscillations are stable only at a very high resistance and a large applied voltage.
They are damped in other regions of the parameter space. Damped high-amplitude oscilla-

47
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Figure 5.1: Typical transients in the steady state region. (a) Stable node at U = 1.35 V. (b)
Stable focus at U = 2.35 V. Experimental conditions: Rext = 0 Ω, cNH4F = 0.05 mol/l, pH = 2.4, and
A = 7.65 mm2.

tions can be part of the transient leading to stable low-amplitude oscillations (Fig. 4.2c).

The damped current oscillations are accompanied by an overall drift of ξ to larger values. It
is important to note that ξ is a sensitive indicator for the stationarity of the dynamics. Even
if J has settled to a constant value, in the case of steady states, or to a constant average
value, in the case of oscillatory dynamics, ξ is often still changing which indicates that the
dynamical system is still drifting.

Fig. 5.3 shows phase space presentations of part of the data from the parameter space presen-
tations (Fig. 5.2). In Fig. 5.3a, ξ is plotted versus J . The phase space trajectories all appear
in a similar range of J , but ξ changes significantly. Trajectories of foci, high-amplitude
oscillations (larger limit cycles) and low-amplitude oscillations (smaller limit cycles) are in-
terspersed. The plot of ξ versus Φeff (Fig. 5.3b) reveals that ξ monotonously increases with
Φeff . This increase is nearly linear for small and intermediate Φeff .

Assuming that the potential drop across the space charge layer is much smaller than the
potential drop across the oxide layer, i.e. Φeff ≈ Φox, Fig. 5.3b suggests that the electric field
within the oxide layer, E, is independent of the applied voltage and the external resistance.
In Fig 5.3a, the constant current density is consistent with the presumption that the current
density is limited by the migration of charge carriers through the oxide layer.

In the following, the interference of selected parameters, i.e. applied voltage, resistance and
ammonium fluoride concentration, with the dynamics is discussed in detail. The experiments
are conducted slightly differently from the ones discussed so far. After an initial potential-
step from open-circuit potential to the operating voltage at a specific external resistance, the
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Figure 5.2: Resistance-voltage parameter plane obtained from voltage step experiments on p-type
silicon at cNH4F = 0.05 mol/l.
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Figure 5.3: Phase space plots of data at different values of U and Rext (for one sample electrode
with A = 4.26 mm2) for p-type silicon with cNH4F = 0.05 mol/l. (a) ξ versus J . (b) ξ versus Φeff .

parameters are adjusted step by step without returning to open-circuit potential in between
the experiments. This reduces the transition time before the system has reached a stationary
behavior.

Influence of the Effective Voltage

To get a better understanding of the influence of Φeff , phase space trajectories with a constant
series resistance are compared. In contrast to Fig. 5.3, in Fig. 5.4 the ξ − Φeff plot and the
ξ − J plot show only data at Rext = 100 kΩ for different values of U . Fig. 5.4a shows a
linear dependency of ξ on Φeff . Fig. 5.4b shows that all trajectories are centered around the
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Figure 5.4: Hopf bifurcation upon changing the applied voltage, U. (a) ξ versus Φeff . (b) ξ versus
J . Experimental conditions: Rser = 100 kΩ, A = 4.26 mm2, and cNH4F = 0.05 mol/l.

same current density value, J ≈ 0.24 mA/cm2. With increasing applied voltage the dynamics
changes from a stable fixed point (focus) to stable oscillations. As U is further increased, the
limit cycle grows in size. This behavior indicates a supercritical Hopf bifurcation.

A Hopf bifurcation, i.e. a small amplitude limit cycle bifurcating from a fixed point branch,
is the bifurcation through which oscillations most frequently arise. The amplitude of the
limit cycle grows as the bifurcation parameter departs from the bifurcation point into the
oscillatory region. The bifurcation is called supercritical when a stable fixed point becomes
an unstable fixed point and a stable limit cycle emerges. Fig. 5.4 shows exactly the behavior
indicative of a super-critical Hopf bifurcation. The bifurcation point for the Hopf bifurcation
at Rser = 100 kΩ lies between U = 3.3 V and U = 3.5 V.

Effective Voltage and Etch Rate

The effective voltage has an influence on the dynamics of the system, as seen in the previous
section, where it was established that with increasing Φeff the oxide layer thickness increases.
In this section it is investigated, whether it also affects the etch rate. The latter can be
calculated in different ways, depending on the experimental conditions. A different calculation
method is used for oscillations, for etch back at open-circuit potential, and for steady states.
Two of the methods are introduced in Chapter 4. The period-averaged etch rate during
oscillations,

(
żE

)
osc

, is obtained from the integral of the current density with Eq. (4.27).
When the system is at a steady state (ss), ξ is constant. It follows that the oxide formation
rate equals the oxide etch rate: (

żE

)
ss

=
(
ż
)

ss
(5.1)

with the formation rate given by Eq. (4.18):

(
żE

)
ss

=
M

Fνρ
J (5.2)

The etch rate at open-circuit potential,
(
żE

)
ocp

, is calculated by multiplying the initial rate
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Figure 5.5: Dependency of the etch rate, żE, on the effective voltage, Φeff , for p-type silicon with
cNH4F = 0.05mol/l. (a) (żE)ss is linearly fitted with a slope, cinc = 0.041nm/sV, and an axis intercept,(
żE

)
0

= 0.13 nm/s. (b) The values for (żE)osc and (żE)ocp from Tab. 5.1 in comparison to the fit from
(a).

Uosc

(
żE

)
osc

copt

(
ξ̇
) (

żE

)
ocp

Uocp

[V] [nm/s] [nm] [1/s] [nm/s] [V]

7.35 0.26 1.89 0.07 0.13 -0.60
5.35 0.25 1.54 0.07 0.11 0.10
7.17 0.29 1.33 0.12 0.16 -1.20
8.50 0.29 1.30 0.12 0.16 -1.00
3.50 0.25 1.30 0.09 0.12 -0.60
12.35 0.53 1.78 0.12 0.21 -0.54
11.35 0.43 1.99 0.09 0.17 -0.49

Table 5.1: Comparison of etch rates during oscillations,
(
żE

)
osc

, and at open-circuit potential,(
żE

)
ocp

.

of change of the averaged ellipso-microscopic signal,
(
ξ̇
)

init
, with copt estimated from inde-

pendent experiments in the oscillatory domain according to Eq. (4.28):(
żE

)
ocp

= copt

(
ξ̇
)

init
(5.3)

In Fig. 5.5a, the etch rates of the steady states as obtained from Eq. 5.2 are plotted versus the
effective voltage, Φeff . Only steady states that lie in domain III of passivating oxide, which
are all foci, are plotted (Fig. 5.2). They show a linear dependency on Φeff according to:(

żE

)
ss

= cincΦeff +
(
żE

)
0

(5.4)

cinc = 0.41 nm/sV being the etch rate increment and
(
żE

)
0

= 0.13 nm/s being the etch rate
at Φeff = 0 V.(
żE

)
osc

and
(
żE

)
ocp

are obtained in pairs for the same experimental conditions, and are
therefore directly comparable (Tab. 5.1).

(
żE

)
osc

is one to three times larger than
(
żE

)
ocp

.
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Figure 5.6: Dependency of the etch rate, (żE)osc, on the electric field, Φ∗ox/zL, for p-type silicon.
Experimental conditions: in Fig. 5.5b.

Their voltage dependency is similar to that observed in the case of the steady states. The
etch rates during oscillations and during the subsequent etch back are displayed in Fig. 5.5b
together with the linear fit of the steady states (Eq. 5.4). They agree well with each other.

In summary, the etch rates of steady states and of oscillations show a distinct linear de-
pendency on Φeff . This dependency could be responsible for a feedback in the oscillation
mechanism. It also explains the stability of steady states at a variety of applied voltages,
because the increase in the etch rate can balance an increases in the oxide formation rate.

In Fig. 5.6, the etch rate is plotted versus the electric field in the oxide layer. The latter is
approximated by assuming that Φsc −∆EF/e0 ≈ 2 V and:

Φ∗ox = U − JAR− 2 V (5.5)

with zL being obtained with the method described in Sec. 4.4.

Fig. 5.6 shows that under different conditions, the trajectories oscillate around a values of the
approximated field, Φ∗ox/zL = 0.3 V/nm.

Influence of the External Resistance

A resistor in series with the working electrode is essential to obtain sustained current density
oscillations. Upon increasing Rser, a supercritical Hopf bifurcation is observed at constant U
(Fig. 5.7a), as it was found for increasing U at constant Rser. A stable focus changes to an
unstable one and a stable limit cycle emerges. The size of the limit cycle initially increases
when increasing Rser. The system moves out of the oscillatory regime through a second
Hopf bifurcation at very high values of Rser. This can be seen from the small limit cycle at
Rser = 100 kΩ. Fig. 5.7b shows that again all phase space trajectories are centered around
an average current density value, J ≈ 0.24 mA/cm2. At U = 3.5 V, the critical value of the
bifurcation parameter Rser lies between 5kΩ and 15kΩ. The Hopf bifurcation is supercritical.

Influence of the Concentration of Ammonium Fluoride

The concentration of ammonium fluoride has a large influence on the dynamics, because,
in combination with the pH, it changes the concentration of the etching species (Sec. 2.2).
Figs. 5.8b and 5.8a show data from experiments conducted under similar conditions. The
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Figure 5.7: Hopf bifurcation upon changing the series resistance, Rser. (a) ξ versus Φeff . (b) ξ
versus J . Experimental conditions: U = 3.5 V, A = 4.26 mm2, and cNH4F = 0.05 mol/l.

former is conducted at a four times higher ammonium fluoride concentration leading to a
current density that is four times larger than in the former case.

During one oscillation period, the average etch rate balances the average formation rate. It is
thus not surprising that the latter increases to the same degree as the former: In the case of
a higher electrolyte concentration, more oxide is etched. As more oxide is etched, the current
density is higher, because more oxide can be formed, as oxide formation is limited by the
thickness of the oxide layer on the electrode. At the same time the oxide formation rate is
limited by the current density, because the effective voltage, Φeff decreases due to the increase
of the ohmic potential drop. It decreases as the current density increases. The rate of oxide
formation depends on Φeff and below a critical value, the oxide formation falls below the etch
rate and zL decreases. At high currents, Φeff is lower, therefore shorter oscillation periods, P ,
are anticipated and indeed observed. P = 4.2 s (cNH4F = 0.2 mol/l) is considerably smaller
than P = 56.4 s (cNH4F = 0.05 mol/l).

ξ is also affected by the increase in cNH4F. At cNH4F = 0.2 mol/l, the amplitude of ξ, ξmax −
ξ

min = 0.34, is three times smaller than at cNH4F = 0.05 mol/l. The increase of the oxide
formation compensates the increase in oxide etching, but the shorter periods lead to a much
smaller amplitude of ξ. The averaged signal, ξ, can still be resolved, but the resolution
of the local dynamics, which is important for investigations of spatial pattern formation, is
problematic. In the case of cNH4F = 0.2 mol/l, the local oscillation amplitude of ξ is close to
the amplitude of the noise. In Fig. 5.9, the local dynamics of ξ for both concentrations are
compared.

Furthermore, hydrogen blisters are observed during oscillations at cNH4F = 0.2 mol/l. The
blisters increase their size over the course of the experiments, as can be seen in Fig. 5.10. The
increased concentration leads to a higher current density and therefore to a higher hydrogen
evolution rate. Instead of dissolving into the electrolyte solution, as in the case of the lower
concentration, the hydrogen forms gas bubbles at the edges of the electrode surface.
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Figure 5.8: Influence of the ammonium fluoride concentration on the oscillations. At (a) cNH4F =
0.05 mol/l the oscillation period is P = 56.4 s, and at (b) cNH4F = 0.2 mol/l the oscillation period
is P = 4.2 s. The ranges of J and ξ are equal in both panels. The time axes are scaled differently.
Experimental conditions: (a) U = 9.65 V, Rser = 100 kΩ, cNH4F = 0.05 mol/l, pH = 2.3, and
A = 4.91 mm2; (b) U = 8.65 V, Rser = 100 kΩ, cNH4F = 0.2 mol/l, pH = 3.5, and A = 4.66 mm2.

Concentration and Complex Dynamics

The concentration also has a strong influence on the complexity of the dynamics. At the lower
concentration, i.e. cNH4F = 0.05mol/l, period-1 and complex period-2 oscillations are observed
(Fig. 4.2). A time series exhibiting simple period-2 oscillations is displayed in Fig. 5.11a. In
addition, at the higher concentration, i.e. cNH4F = 0.2mol/l, period-3 oscillations (Fig. 5.11b)
and irregular oscillations (Figs. 5.11c and 5.11d) are observed.

Fig. 5.12 displays the J − ξ phase space plots of oscillations with differing periodicity. In the
case of period-1 oscillations, only one loop is observed (Fig. 5.12a). The phase space plot of
the period-2 oscillations from Fig. 5.11a in Fig. 5.12b exhibits also only one loop, which is
however deformed. Thus the minimal phase space dimension of these period-2 oscillations is
still two. In contrast, the trajectory of the time series in Fig. 4.2c intersects itself in the J − ξ
phase plane (Fig. 5.12c). Thus, the minimal phase-space dimension is three.

The phase space trajectory for the period-3 oscillations shows two distinct loops and a broad
band of low amplitude (Fig. 5.12d). Fig. 5.12e shows no more separate loops but a broad band
structure. The phase space trajectory in Fig. 5.12f shows a very high degree of irregularity.

Next-maximum mapping (Fig. 5.13) is used to investigate the periodicity more closely and
to elucidate the existence of chaos. In a next-maximum map, one maximum, Jmax(n+ 1), is
plotted versus the previous maximum, Jmax(n), which reduces the continuous dynamics to
a two-dimensional time-discrete map. The next-maximum map of period-1 oscillations is a
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Figure 5.9: Local time series of the ellipso-microscopic signal, ξ (gray) smoothed with a central
moving average with k = 10 (black) for (a) cNH4F = 0.05mol/l and (b) cNH4F = 0.2mol/l. Conditions:
Fig. 5.8.

(a) (b)

Figure 5.10: Hydrogen blisters at the edge of the electrode area in the plot of ξ for the whole
electrode at two maxima of ξ at (a) t = 460 s. (b) At t = 775 s, the size of the blisters has increased.
Experimental conditions: U = 12.49V, Rser = 10kΩ, cNH4F = 0.02mol/l, pH = 3.5, and A = 4.66mm2.
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Figure 5.11: Complex dynamics at low (a) and high (b-d) ammonium fluoride concentrations. Dots
indicate the maxima of the current density oscillations. Maxima that are not resolved are indicated
by ↓. (a) Damped high-amplitude oscillations followed by low-amplitude period-2 oscillations. (b)
Period-3 oscillations. (c,d) Irregular oscillations. Experimental conditions: (a) Rext = 100 kΩ,
U = 7.35 V, cNH4F = 0.05 mol/l, pH = 2.4, and A = 7.65 mm2. (b-d): cNH4F = 0.2 mol/l, pH = 3.5,
and A = 4.66 mm2. (b) U = 12.49 V, Rser = 150 kΩ. (c) U = 12.49 V, Rser = 10 kΩ (d) U = 10 V,
Rser = 40 kΩ.
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Figure 5.12: J − ξ phase space for different oscillation dynamics. (a) Period-1 oscillations. Experi-
mental conditions in Fig. 4.2a. (b) Period-2 oscillations. Experimental conditions in Fig. 5.11a. (c)
Period-2 oscillations. Experimental conditions in Fig. 4.2c. (d) Period-3 oscillations. Experimental
conditions in Fig. 5.11b. (e) Quasi-periodic oscillations. Experimental conditions in Fig. 5.11c. (f)
Chaotic oscillations. Experimental conditions in Fig. 5.11d.
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Figure 5.13: Next-maximum maps for the different oscillations in Fig. 5.12. (a) Period-1 oscillations.
(b) Period-2 oscillations. (c) Period-2 oscillations. (d) Period-3 oscillations. (e) Quasi-periodic
oscillations. (f) Chaotic oscillations.
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Figure 5.14: Rext − U parameter space. Experimental conditions: cNH4F = 0.02 mol/l, pH = 3.5,
A = 4.66 mm2.

single point, because the trajectory returns to the same point at each maximum (Fig. 5.13a).
The next-maximum map of the period-2 oscillations displays two distinct areas of recurrence
(Figs. 5.13b and 5.13c). In the case of the period-3 oscillations, three loops in phase space
are represented by three areas of recurrence (Fig. 5.13d). The areas of recurrence discussed
in these four examples are not points but rather clusters of points. The spreading out of the
points results most probably from noise in the signals. Quasi-periodicity manifest itself as
closed curve in the next-maximum map (Fig. 5.13e). Accordingly, the time series in Fig. 5.12e
shows a certain amount of periodicity, but no repetitive pattern can be observed.

In contrast, the next-maximum map of the data in Fig. 5.12f can to a first approximation be
described by a one-dimensional curve exhibiting two maxima, one at Jmax(n) = 3.5 mA/cm2

and one at Jmax(n) = 4mA/cm2 (Fig. 5.13f). Obviously, the curve is significantly broadened,
which most likely stems from noise. The quasi one-dimensional map therefore suggests that
the dynamics is deterministically chaotic and thus lives in a low dimensional phase space.

An overview of the dynamics at a concentration, cNH4F = 0.2 mol/l, is given in Fig. 5.14. The
experimental data show a large diversity of dynamics. No obvious scenario for the onset of
complex oscillations can be observed. Nevertheless, complex dynamics at intermediate Rext

are enclosed by steady states at higher and lower resistances. Chaotic dynamics are enclosed
by less complex dynamics.

5.2 Oscillation Mechanism

In this section, the experimental results described in the previous section and literature data
are used to derive a mathematical model that captures the oscillatory behavior and enables the
essential feedback loops that cause the oscillatory instability to be determined. As described
in the first section of this chapter, during the electrodissolution of silicon oscillations emerge
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from a Hopf bifurcation when either the applied voltage or the resistance in series with
the silicon working electrode is changed. Furthermore, oscillatory dynamics always requires
a nonzero value of Rser > 0. This shows that electrical quantities are important for the
oscillatory instability, i.e. that a purely chemical mechanism cannot be sufficient to describe
the system.

Therefore, first the evolution equations for the potential drops across the oxide layer, Φox,
and the space charge layer of silicon, Φsc, are derived. Then a mass balance equation for the
oxide layer thickness is set up.

The pH at the oxide|electrolyte interface is assumed to be constant, because of the buffer
capacity of the ammonium fluoride electrolyte. Simulations showed that concentration of the
etching species never deviate considerably from their bulk values. Therefore, they are kept
constant in the further expansions of the model.

Derivation of the Mathematical Model

The evolution equations for Φsc and Φox follow from the simplified equivalent circuit (Fig. 2.3b).
Φox can be expressed through the specific capacitance of the oxide, Cox:

Φox =
q

CoxA
(5.6)

=
q zL

A ε ε0
(5.7)

assuming that Cox can be described by the capacitance of a plate capacitor, ε = 3.75 being
the relative permittivity of silicon oxide (Demierry et al., 1994), and ε0 = 8.85418 10−14 F/cm
being the vacuum permittivity. q is the charge in the oxide layer located at the two interfaces.
zL and q are both time dependent during current density oscillations. Accordingly, the time
derivative of Φox is given by:

Φ̇ox =
1

A ε ε0
(zLq̇ + q żL) (5.8)

The time derivative of the charge, q̇, results from the difference between the total current
density, J , and the migration current density through the oxide, Jmig. With Eq. (5.7) this
can be rewritten as:

Φ̇ox =
zL

ε ε0
(J − Jmig) +

Φox

zL
żL (5.9)

Jmig depends on the electrical field, E, which is assumed to be constant across the oxide layer,
i.e. Φox is assumed to drop linearly over zL:

Jmig = κ E (5.10)

Jmig = κ
Φox

zL
(5.11)

with κ being the conductivity of the oxide layer.
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When the surface states at the silicon|oxide interface are neglected, charge balance results
in the following equation for the time derivative of the voltage drop across the space charge
layer in silicon, Φ̇sc:

Φ̇sc =
1
Csc

(J − JF) (5.12)

with JF being the Faradaic current density. In the simplest case, JF can be expressed as
exponentially dependent on Φsc (Gellings and Bouwmeester, 1997):

JF = ν e0 ksc exp (fΦsc) (5.13)

with e0 = 1.60219 10−19 C being the elementary charge, ksc being the rate constant of the
oxidation reaction and f = 19.5 V−1 being the usual exponential coefficient.

The overall current density can be expressed through the voltage drop across the resistor
combining Eq. (2.4) with Eq. (2.5) and assuming a negligible small potential drop across the
Helmholtz layer:

J =
U − Φsc −

∆EF

e0
− Φox

ARext
(5.14)

After having defined the time derivatives of the electrical variables in the system, the time
derivative of the chemical variable zL, żL(t), is derived. A change in the oxide layer thickness
is given by the difference between the oxide formation rate and the etch rate as discussed in
Sec. 4.4:

żL = ż − żE (5.15)

żL =
M

Fνρ
JF − żE (5.16)

Furthermore, a dependency of the etch rate on the potential drop across the oxide layer was
found in the experiments (Fig. 5.5). Parkhutik (2001) pointed out that an accumulation of
stress in the oxide layer increases its conductivity. If this stress is reduced, possibly at higher
fields, the conductivity decreases.

Since no functional dependency of κ on E is known from experimental data, some function
has to be assumed. Therefore, a sigmoidal dependency of the conductivity, κ, on the electric
field in the oxide layer, E, is postulated:

κE = κ0 + κ∆

[
1
2
−

1
π

arctan

(
4(E − E0)

E∆

)]
(5.17)

with κE being the equilibrium conductivity at a specific electric field, κ∆ being the difference
between the two sigmoidal branches, and κ0 being an offset value accounting for the minimum
possible value of κE . Furthermore, E0 is the inflection point of the function and E∆ is the
range of values for E where the inflection takes place. This field dependency of κE is displayed
in the upper panel of Fig. 5.15. It results in a field dependent migration current density, Jmig,
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Figure 5.15: Dependency of the conductivity, κE (upper panel), and the migration current density,
Jmig (lower panel), on the electrical field, E. Simulation conditions: Tab. 5.2.

of the hydroxide anions through the oxide layer (Eq. (5.10)), which is nonlinear (Fig. 5.15).
The conductivity adjusts to the field with the rate constant kκ:

κ̇ = kκ (κE − κ) (5.18)

An increase in E is connected to a decrease in κ, which in turn results in an N-shaped
Jmig−E characteristic with a negative differential conductivity branch. This is reminiscent of a
negative differential resistance which is part of an N-shaped dependency of the current density
on the electrode potential which is observed in many oscillatory electrochemical systems. It
may also induce bistability, which is not observed in the system at hand.

It is important to note that the dependency of κ on E induces autocatalysis in the model
(upper loop in Fig. 5.16). An increase of κ leads to an increase of Jmig, which causes a higher
potential drop across the external resistor. This decreases the potential drop across the oxide
layer also decreasing E, which in turn increases κ.

Finally, a last feedback has to be considered. Silicon oxide with a high concentration of
hydroxide ions is etched faster, because hydroxide functions as a nonbridging oxide in the
silicon oxide network which enables the attack of the etchants (Schmidt and Ashner, 1971).
This is supported by the experiments discussed in Sec. 5.1, which relate the etch rate to the
electrical field. Diggle (1973) explained that the dependency of the etch rate on the electrical
field results from the polarizing force applied to the oxide by the field which enhances the
dissolution. For simplicity, a linear dependency between the etch rate and the conductivity
is assumed:

żE = żE0 +
żE∆

κ∆
κ (5.19)

with żE∆ regulating the difference between minimal and maximal żE, and żE0 being an offset
value accounting for the minimum possible value of żE. This function is plotted versus E in
Fig. 5.17.

The field dependency of the etch rate induces a negative feedback loop that is indicated in
the lower loop in Fig. 5.16. An increase in the conductivity leads to an increase in the etch
rate, which in turn reduces the oxide layer thickness and therefore increasing the electrical
field across the oxide which reduces the conductivity. This loop has an inhibiting effect on κ.
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Figure 5.16: Positive and negative feedback loops in the mechanism. The autocatalytic feedback
loop is fast. The inhibitory feedback loop is slow.
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Figure 5.17: Sigmoidal żE − E characteristic resulting from a linear dependency of żE on κ.

This mechanism essentially describes a kind of activator-inhibitor system, which is known to
exhibit oscillations when the activator variable, here κ, is fast and the inhibitor variable, here
zL, is slow.

Numerical Simulations

The model described in the preceding section consists of four ordinary differential equations,
indicated by double frames. Other essential equations are indicated by single frames. In
the following, the results of the numerical simulations with SCIGMA are discussed and com-
pared to the experimental results from Sec. 5.1. The parameters used for the simulations are
displayed in Tab. 5.2.

Numerical simulations were performed using the integration software SCIGMA, which was
first developed by Taylor et al. (1989). The name stands for Stability Computations and
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Figure 5.18: Typical time series following upon starting the simulations at zL = 0.1. (a,d) Stable
oscillations for U = 8 V and Rext = 70 kΩ. (b,e) Focus for U = 8 V and Rext = 61 kΩ. (c,f) Node for
U = 4 V and Rext = 1 kΩ. Simulation conditions: in Tab. 5.2.
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Interactive Graphics for Invariant Manifold Analysis. The bifurcation package AUTO, a soft-
ware for continuation and bifurcation problems in ordinary differential equations, by Eusebius
Doedel [http://indy.cs.concordia.ca/auto] is part of the functionality of SCIGMA, which was
adapted for usage on a PC by R. Hölzel (Krischer group).

The typical time series of the potential step experiments are mimicked by starting the simu-
lations at an initial oxide layer thickness zL = 0.1 nm applying different values of U and Rext.
In Fig. 5.18a, oscillations reminiscent of experimental high-amplitude oscillations (Fig. 4.2b)
are observed under comparable conditions. The experimental current density oscillations and
the oxide layer thickness oscillations from the top panel of Fig. 4.6 are well reproduced by
the simulations. The oscillation period and the absolute values of current density and oxide
layer thickness are very similar to the experiment, even though the amplitudes of the latter
two are smaller in the experiments.

Comparing the enlarged experimental time series of J and ξ in Fig. 4.2e with J and zL

from the numerical simulations (Fig. 5.18d), however, reveals a phase-shift disparity between
the current density and the respective signal related to the oxide thickness. In the case of
the experiment, the maxima of the current density precede the maxima of the oxide layer
thickness at a fraction of the oscillation period. The maxima of J coincide with the inflection
point of the increasing slope of the oxide layer thickness. In contrast, the maxima of the
current density oscillations obtained from numerical simulations coincide with the inflection
points of the decreasing slopes of the oxide thickness oscillations.

The time series in Figs. 5.18b and 5.18e reproduce experimental time series of foci, e.g.
Fig. 5.1b. As with the experimental system (Fig. 5.1a), the model system shows nodes
(Figs. 5.18c and 5.18f). In Fig. 5.19, the dependency of the dynamics of the proposed mech-
anism on the external resistance and on the applied voltage is shown in a semilogarithmic
parameter space plot. As in the experimental parameter plot (Fig. 5.2), a significant external
resistance is necessary for the appearance of sustained oscillations, which are observed in a
smaller region of the parameter plane compared to the experiments. At low Rext, the system
relaxes to a steady state. In this region of the experimental parameter space, only foci were
observed. The numerical simulations show foci at intermediate Rext and nodes at low Rext.
At high Rext, the numerically simulated values for zL go below zero. The proposed mechanism
does not provide physical results in this region, because the assumption of an oxide layer on
the electrode cannot be fulfilled anymore. This corresponds well to the observed nodes at
high Rext in the experiments. The system moves out of domain III and settles to a steady
state in another reaction regime without a passivating oxide layer.

Hopf bifurcations are observed in the model system upon changing the parameters U or
Rext. In Fig. 5.20, trajectories in the Φeff − zL phase space show how a limit cycle emerges
from a focus as the external resistance is increased above the critical value Rext = 61 kΩ.
Fig. 5.20a shows that the simulations reproduce the trend from the experiment, meaning that
zL increases with decreasing Rext.

The corresponding bifurcation was observed in the experimental system in Fig. 5.7. Further-
more, the experimental system showed a Hopf bifurcation upon changing U (Fig. 5.4). This
is also observed in the simulations, except that here the limit cycle emerges from a focus
upon decreasing the bifurcation parameter instead of increasing it (Fig. 5.21). However, the
average oxide layer thickness increases with increasing U (Fig. 5.21a).

Two more aspects of the experimental oscillatory dynamics are reproduced. Firstly, the
average current density is the same for all values in the U −Rext parameter plane. Secondly,
the average oxide layer thickness grows linearly with the effective voltage.

Fig. 5.22 gives an overview of several time series of the numerically simulated model system
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Parameter Value

A 0.1 cm2

Csc 5 10−3 mF/cm2

E0 0.2 V/nm
∆EF/e0 0.4 V
E∆ 0.1 V/nm
ksc 1 10−7 1/cm2s
kκ 1 s−1

żE∆ 0.2 nm/s
żE0 0.15 nm/s
ε 3.75
κ0 1.6 10−8 cm/Vs
κ∆ 1.6 10−8 cm/Vs

Table 5.2: Parameters used in the numerical simulations of the mechanism
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Figure 5.19: Resistance-voltage parameter space obtained from numerical simulations.

and their dependency on the electrical field. Fig. 5.22a, shows that one period of the time
series of the electrical field can be divided into two fast branches (F1 and F2) and two slow
branches (S1 and S2). When the system is on the branches F1 and S1, the electrical field is
high and as long as it stays above a threshold value, the oxide layer is increasing in thickness
(Fig. 5.22c). While the system is on the branches F2 and S2, the electrical field is low and
zL decreases. zL, the slow inhibitor variable, exhibits no fast changes. In Fig. 5.22d, the slow
and fast dynamics are indicated in the zL − E phase space.

While the system is on the slow branches, the value of E, J and κ change slowly. Hence,
the system follows the curves of the equilibrium conductivity, κE (Fig. 5.22f), and of the
equilibrium migration current density, Jmig = κEE (Fig. 5.22h), both indicated as red lines.
During branch S2, E is slowly increasing. In the subsequent branch F1, E decreases fast until
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Figure 5.20: Hopf bifurcation upon changing the series resistance Rext at constant U = 8 V. (a) zL

versus Φeff . (b) zL versus J .
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Figure 5.21: Hopf bifurcation upon changing the applied voltage U at constant Rext = 70 kΩ. (a)
zL versus Φeff . (b) zL versus J .

the end of the region with a negative differential conductivity, because autocatalysis dominates
the dynamics. Then E is slowly decreasing during branch S1, and fast decreasing during
branch F2. The switch between fast and slow changes of E is responsible for the oscillatory
instability that results, because the trajectory is driven from the systems equilibrium curves.

Fig. 5.22b shows that Φsc changes only insignificantly during an oscillation cycle. It does not
constitute a degree of freedom of this system, because the current density is migration-limited
and not kinetically limited. Furthermore, Φox is also not a true degree of freedom. It drives
the autocatalytic feedback loop as depicted in Fig. 5.16, but because Φsc is constant it follows
J .

Hence, the ansatz of temporal variations of the amount of partial oxidized silicon due to
variations of the potential drop across the space charge layer (Sec. 4.5) is not included in this
mechanism.
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A second ansatz from Sec. 4.5 pertaining to etch rate variations is used to estimate the
applicability of the mechanism. Fig. 5.23a shows the experimental time series of J and żE

calculated from the discrepancy J − Jξ. These time series are phase shifted with respect to
each other, J slightly preceding żE. In the case of the simulations, the phase shift is equally
small, but here J lags behind żE (Fig. 5.23b).

5.3 Summary and Outlook

Studies of the parameter dependency of current density oscillations have revealed insights
into nonlinear dynamics and mechanistic aspects of the system. Nonlinear dynamical aspects
of the system include a Hopf bifurcation and the observation of complex oscillatory dynamics,
e.g. chaos at higher ammonium fluoride concentrations. Moreover, the observed dependency
of the etch rate on Φeff has mechanistic implications.

Thus, the etch rate dependency on the potential drop across the double interface of the
system also has to be included into any mechanistic approach. The observation of a significant
discrepancy between the etch rates during oscillations and during etch back at open-circuit
potential prompted a study of the dependency of the etch rate on the effective voltage drop.
Indeed, the much lower rates observed at open-circuit potential indicate a dependency of
the etch rate on the effective potential drop. In Sec. 5.1 it was shown that the etch rates
of steady states increases linearly with Φeff . The period averaged etch rates of oscillations
obtained from integrating J also lie on this line. This relationship results from a weakening
of the silicon-oxygen bonds in the oxide by the electric field in the oxide layer.

As either the external resistance or the applied voltage are varied, a supercritical Hopf bifur-
cation, i.e. a transition of the dynamics from a steady state to oscillations, is observed. This
suggests the existence of a negative differential resistance destabilized by a the resistance in
series with the working electrode. This hypothesis is supported by the model system presented
in this chapter. It offers an explanation for the origin of the oscillatory instability, which dif-
fers considerably from existing modeling approaches. The current density is a global variable
that affects the potential distribution in the system via the negative differential resistance,
resulting in global oscillations.

This supersedes the postulation of a next-neighbor synchronization of local oscillators with
a local coupling mechanism. Only nearest neighbors are affected by local changes in the
system. In the example of the current burst model (Carstensen et al., 1998), neighboring
sites synchronize their phases, because the current flow stops earlier at sites that have other
oxide producing sites in their vicinity. Local synchronization can spread across the entire
system when all oscillating sites synchronize locally.

The Hopf bifurcation observed in the experiments and the simulated model, explains also the
existence of damped oscillations, which are the result of a perturbation relaxing back onto
a focus, i.e. a steady state with a spiral characteristic in its vicinity in phase space. Thus
damped oscillations are not a result of one synchronized domain splitting up into smaller
desynchronized domains as described by all previous models. At the Hopf bifurcation, a
stable limit cycle emerges as the fix point becomes unstable.

In addition, complex oscillation dynamics are observed at higher electrolyte concentrations.
The concentration has a large influence on the dynamics of the oscillations. A high concen-
tration leads to a high oscillation frequency, to a small amplitude of ξ, and to a large current
density. At an ammonium fluoride concentration of cNH4F = 0.2 mol/l, a wide range of com-
plex dynamics is observed. The J − ξ phase space plot of time series at different parameters
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Figure 5.22: Overview of the oscillatory dynamics from the numerical simulations. (a,c,e,g) Time
series of the electrical field, E, the oxide layer thickness, zL, the conductivity, κ, and the current
density, J , respectively. (b) The potential drop in the space charge layer of silicon, Φsc remains nearly
constant during the oscillatory dynamics of the system. (d) zL − E phase space. (f) κ − E phase
space. (h) J − E phase space.
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Figure 5.23: Comparison of the etch rate variations, żE, to the current density, J , for (a) experiment
and (b) simulations. Experimental conditions: Fig. 4.6. Simulation conditions: in Tab. 5.2.

reveals the existence of period-1, period-2, period-3, and quasi-periodic oscillations. The
next-maximum map of the latter suggests the existence of deterministic chaos in connection
with a bimodal map. Complex dynamics, i.e. higher periodicity, quasi-periodicity and chaos,
live in a phase space with more than two dimensions. As the model approach possesses only
two degrees of freedom, it is not capable to model complex temporal dynamics.

The proposed oscillation mechanism reproduces the essential features of the oscillations during
the anodic electrodissolution of silicon, except for the phase relation between current density
and oxide layer thickness oscillations. The oscillations result from the interaction of the
autocatalysis of the conductivity, which is fast, and the slow inhibition caused by a feedback
via the etch rate. From the scheme in Fig. 5.16, it can be seen that a higher conductivity
enhances the growth of the oxide layer, which in turn, leads to an increase of the conductivity.
At the same time the etch rate is increased, which inhibits the growth of the oxide layer.

Outlook

The mathematical model is based on a sigmoidal functional dependency of the conductivity
on the electrical field. Independent, direct measurements should be undertaken to measure
the correlation between these two quantities.

Hiesgen et al. (2009) succeeded in nanoscopically resolving the conductivity of a Nafion mem-
brane with electrochemical atomic force microscopy. This novel method could be used to
further prove the absence of desynchronized domains in the case of damped oscillations.

Furthermore the dependency of the etch rate on the electrical field could be tested more
sensitively by preparing defined oxide layer thicknesses in the absence of etchants in solution
and consecutively adding ammonium fluoride to monitor the etching at different electrical
fields.



Chapter 6

Spatially Averaged Dynamics on
n-type silicon

In the case of p-type silicon, holes, which are necessary for anodic oxidation, are the majority
charge carriers. The amount of holes is high enough to allow for an appreciable oxidation
current density. In contrast, the anodic oxidation of n-type silicon is only possible under
illumination, as holes necessary for the electrooxidation of silicon are minority charge carriers.
They are formed as photons with sufficiently high energy interact with silicon. At high
illumination intensities, n-type silicon behaves similarly to p-type silicon. In Sec. 6.1, the
system is studied at different illumination intensities. The effect of stirring is discused in
Sec. 6.2. Stirring can affect the dynamics of the system by influencing the concentration of
etching species at the oxide|electrolyte interface.

6.1 Impact of Illumination

Illumination is especially important to the electrodissolution of n-type silicon. It was shown,
that at a sufficiently high light intensity, the current-voltage characteristic, and therefore
the dynamics, become indistinguishable from those of p-type silicon (Lewerenz et al., 2000).
However, the oxidation valency, ν, is different (Eddowes, 1990). Furthermore, there are hints
in the literature that the oscillatory behavior significantly changes as the light intensity of the
illumination is reduced (Rauscher, 2000). In the following, the impact of L is investigated in
a range between 0 and 2 mW/cm2.

Typical Time Series under Illumination Limitation

Firstly, typical time series resulting from a potential step from open-circuit potential to more
positive potentials is discussed. These time series illustrating the influence of L on the shape of
the current density oscillations are displayed in Fig. 6.1. Even without an external resistance,
Rext, stable oscillations can be obtained at an appropriate L, whereas in the case of p-type
silicon, only nodes and foci, but no sustained oscillations can be observed.

At low illumination intensity, L = 0.23 mW/cm2, after an initial current density peak the
system relaxes to a constant current density (Fig. 6.1a). Hence, the steady state is a stable
node, even though a high voltage of U = 8V is applied, and no series resistor is inserted in the
electrical circuit. In the case of p-type silicon, nodes are observed only at effective voltages
well below Φeff = 8 V (Fig. 5.2.

71
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Figure 6.1: Typical time series of n-type silicon at different values of the illumination inten-
sity. (a) Stable node with L = 0.23 mW/cm2. (b) Stable high-amplitude oscillations with
L = 0.37mW/cm2. (c) Stable focus with L = 0.81mW/cm2. (d) Damped high-amplitude oscillations
followed by stable low-amplitude oscillations with L = 0.64 mW/cm2. Experimental conditions: (a-c)
cNH4F = 0.05 mol/l, pH = 2.3, U = 8 V, Rser = 0 kΩ, and A = 8.11 mm2; (d) cNH4F = 0.05 mol/l,
pH = 2.3, U = 8 V, Rser = 100 kΩ, and A = 5.27 mm2.
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In the case of n-type silicon at low illumination intensities, the rate of oxide formation is
below the rate of oxide etching and no passivating oxide layer is formed, because of the
current limiting effect of the small L. This is revealed in the times series of ξ, which shows a
monotonous decline after a transient of 40 s, even though the current density is constant.

At higher illumination intensity, L = 0.37 mW/cm2, a larger initial peak current density
is observed. During the subsequent 150 seconds, J remains at a constant value while ξ is
growing (Fig. 6.1b). When ξ exceeds a threshold value several irregular oscillations appear,
followed by a new type of high-amplitude oscillation. Their characteristic shape results from
the current density limiting effect of L. This new type of high-amplitude oscillation shows
a broad plateau preceding the spike-like oscillation maximum, which is not observed in the
case of p-type silicon. The value of the plateau current density is similar to the value of the
constant current density in the transition region following the initial peak. The connection
between the plateau current and the illumination limitation will be discussed in a later part
of this section.

A few hints of this new type of oscillation at intermediate L can be found in the literature,
for example in the thesis by Rauscher (Fig. 6.2 in Rauscher (1993)), in the thesis by Aggour
(Fig. 4.7 in Aggour (1994)), and on very close inspection in Fig. 3 in a paper in Aggour et al.
(1995). However, a discussion of the phenomenon is missing.

It is striking that this type of high-amplitude oscillation is stable at zero external resistance.
In fact, high-amplitude oscillations on p-type silicon are stable only in a very small region
of the Rext − Φeff parameter space (Fig. 5.2). In the case of p-type silicon, the current
density is limited by the ohmic voltage drop, Φext = JARext. In the case of n-type silicon, the
current density can also be limited by the illumination, which results in stable high-amplitude
oscillations in a larger region of parameter space.

On increasing the illumination intensity to L = 0.81 mW/cm2, the oscillations lose stability
and the system relaxes to a stable focus (Fig. 6.1c). This behavior is similar to that observed
in the case of p-type silicon at U = 8 V and Rser = 0. In Fig. 6.1d, damped high-amplitude
oscillations are followed by stable low-amplitude oscillations when Rext = 100 kΩ. The bi-
furcation of a stable focus to sustained low-amplitude oscillations is thoroughly discussed for
p-type silicon in Sec. 5.1, where a careful investigation of the Rext − Φeff parameter space
reveals a Hopf bifurcation. A Hopf bifurcation is assumed also in the case of n-type silicon
under sufficient illumination.

Fine Structure of New Type of High-amplitude Oscillation

The new type of oscillation (Fig. 6.1b) shows a characteristic fine structure. Fig. 6.2 shows an
enlargement of two oscillation cycles. The shape of the high-amplitude current density oscil-
lations on n-type silicon differs greatly from those on p-type silicon (Fig. 4.2e). The smooth
oscillation minimum, a broad valley 0, is not followed by a smooth oscillation maximum, but
rather by a plateau III, and a large spike IV.

Between the increasing flank of J and the plateau, small steps I and a first spike II are
observed. The depth of the valley 0, and the height of the spikes and steps are sensitive to
the value of L. The second spike IV and the plateau are observed under most conditions,
whereas the first spike and the steps are observed only when the illumination intensity is
sufficiently high.

The phase shift between J and ξ is similar to the phase shift observed in the case of p-type
silicon. The minima of J coincide with the inflection points of the decreasing flank of ξ. The
minima of ξ coincide with the increasing flank of J following valleys. While J is on a plateau,
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Figure 6.2: Characteristic shape of the current density of high-amplitude oscillations on n-type
silicon under the conditions described in Fig. 6.1b. The shape of the current oscillations consists of
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Figure 6.3: Increasing the light density, L, until high-amplitude oscillations are observed in the
current density, J , and in the ellipso-microscopic signal, ξ. Experimental conditions: U = 8 V,
Rser = 0 kΩ, cNH4F = 0.05 mol/l, pH = 2.3, and A = 8.91 mm2.

ξ increases. The maxima of ξ show a small flat region before decreasing again.

Illumination Intensity as Bifurcation Parameter

In Fig. 6.3, L is increased until the system exhibits high-amplitude current oscillations. L is
changed stepwise and the response of J and ξ is analyzed.

Increasing the voltage from open-circuit potential to U = 8V at L = 0.46mW/cm2, an initial
current peak and a subsequent constant value of J are observed. ξ shows the same behavior.
The system relaxes to a node. On increasing L to 0.51 mW/cm2 and 0.75 mW/cm2, the node
prevails at higher values of J and ξ. Upon increasing L to 0.84 mW/cm2, ξ increases initially,
while J is constant. Here obviously, the oxide layer thickness increases because the oxide
formation rate is larger than the etch rate. Current density oscillations start as ξ exceeds a
threshold value. They are accompanied by oscillations of ξ.

Fig. 6.4 displays short time series of J and ξ for two (Figs. 6.4a to 6.4d) and four (Fig. 6.4e)
oscillation periods while decreasing L stepwise in a range from 0.65 to 0.25mW/cm2. Fig. 6.4f
gives an overview of the dynamics of the preceding plots in the J− ξ phase space plane. As L
is lowered, it can be observed that the oscillation frequency grows and the oscillation shape
changes. The limit cycle in phase space shrinks. Additionally, the width of the valley decreases
as the width of the plateau increases. The first spike grows and its height exceeds that of
the second spike in Fig. 6.4e. The valley of the oscillation disappears and the oscillations are
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Figure 6.4: Short time series of J and ξ illustrating the influence of the illumination intensity, L, on
the shape of the oscillations on n-type silicon. (a) L = 0.65 mW/cm2. (b) L = 0.52 mW/cm2. (c)
L = 0.41 mW/cm2. (d) L = 0.30 mW/cm2. (e) L = 0.25 mW/cm2. (f) J − ξ phase space plot of the
limit cycles of the oscillations from (a-e). The phase space plot of (e) is enlarged in the inset of (f).
Experimental conditions: U = 8 V, Rser = 0 kΩ, cNH4F = 0.05 mol/l, pH = 2.3, and A = 5.27 mm2.

dominated by spikes. Further increasing L leads to a steady state.

Starting at a steady state and increasing L, ξ does not change considerably up to L =
0.75 mW/cm2 (Fig. 6.3). For L ≥ 0.84 mW/cm2, the steady state is replaced by high-
amplitude oscillations at much higher ξ. First increasing and then decreasing L, hysteresis
of ξ is observed (Fig. 6.5a). The system displays high-amplitude oscillations for values of L
where steady states are observed on the increasing scan. In contrast, Fig. 6.5b illustrates that
no hysteresis is observed in J . The plateau current density, Jplat, and the current densities of
the steady state depend linearly on L, i.e. lie on a straight line.

Spike Dominated Oscillations

In order to obtain a better understanding of the spike dominated oscillations (Fig. 6.4e), a
transient leading toward these oscillations and a transient leading away from these oscillations
are studied in the following. During the transients, changes in the phenomenology of the spikes
can be tracked.

Fig. 6.6 displays the emergence of spike dominated oscillations. At L = 0.40 mW/cm2 and
Rser = 30kΩ, the system is at a steady state. At t = 155s, L is reduced to 0.25mW/cm2. Due
to the sudden parameter change, high amplitude oscillations are initiated. They are damped
to spike dominated oscillations. At t = 480s, Rser is decreased to zero. This parameter change
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Figure 6.5: Plot of J and ξ upon increasing and decreasing L. The data from Fig. 6.4 are marked
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(b) Linear dependency of the current density, J , on the light intensity, L. Experimental conditions:
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Figure 6.6: The emergence of spike dominated oscillations upon changing first L and then Rser. The
evolution of different features of the oscillations can be followed with colored spots. At t = 155 s, L is
decreased from 0.40 mW/cm2 to 0.25 mW/cm2 and at t = 480 s Rser is decreased from 30 kΩ to zero.
Experimental conditions: U = 8 V, cNH4F = 0.05 mol/l, pH = 2.3, and A = 5.27 mm2.

is negligible and does not show up in the shape of the spike dominated oscillations.

This transition can shed light on the origin of the spikes. At constant L, ξ changes from 56 to
40. The system passes through changes similar to those discussed in Fig 6.4, which shows the
behavior of the system at different values of L with ξ decreasing as the value of L is lowered.
In the case of the transient, the oscillation form changes as ξ decreases. This suggests that
the form of the oscillations is strongly influenced by ξ, which reflects the oxide layer thickness.

The different characteristic features of the spike dominated oscillations are marked with dots
of different color in Fig. 6.6 to make it easy to follow the changes of the time series. During
the transition, the first spike of the high-amplitude oscillations increases until it dominates
the dynamics, eventually showing period-2 oscillations. In contrast, the second spike of the
high-amplitude oscillations disappears. Furthermore, the valley, i.e. the minimum of the
high-amplitude oscillations, disappears fast and the width of the plateau slowly increases.

Fig. 6.7 shows a similar experiment of a sample with a slightly larger electrode size. At L =
0.39 mW/cm2, the system exhibits sustained high-amplitude oscillations. Spike dominated
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Figure 6.7: Transition from spike dominated oscillations to a steady state upon decreasing L from
0.39 mW/cm2 to 0.25 mW/cm2. Experimental conditions: U = 8 V, Rser = 0 kΩ, cNH4F = 0.05 mol/l,
pH = 2.3, and A = 5.66 mm2.
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Figure 6.8: Linear dependency of the limited current density, J , on the illumination intensity, L,
of high-amplitude oscillations, spike dominated oscillations, nodes and foci for three different n-type
silicon electrodes. Experimental conditions: U = 8 V, Rser = 0 kΩ, cNH4F = 0.05 mol/l, and pH = 2.3.

oscillations first emerge and then relax to a steady state upon decreasing L to 0.25 mW/cm2.
In this transition, ξ decreases continuously. The second spike decreases and eventually dis-
appears. The first spike increases and settles to period-2 pattern of alternating high and low
peaks starting at t = 750 s. It disappears at t = 1100 s, and therewith the oscillations.

Quantum Efficiency and Current Density Plateau

As is already apparent from Fig. 6.5b, Jplat and the current density at the steady state, Jss,
increase linearly with L. This is further examined by plotting more data points of Jplat and
Jss versus L (Fig. 6.8). There is indeed a linear dependency of Jplat on L for the entire
measured interval of L.

The quantum efficiency, Y , indicates how many charges are transfered to the semiconductor
for each generated electron-hole pair (Eq. (2.23)). Y is the ratio of the the particle flux
according to anodic oxidation, Nanod = Jplat/e, to the flux of photo-induced electron-hole
pairs, Nhγ , obtained from the light intensity, L. Eillu being the energy of the light used for
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Figure 6.9: Quantum efficiency, Y , versus illumination intensity, L, for the data in Fig. 6.8.

illumination Eq. (2.23) is convert to:

Y =
JplatEillu

eL
(6.1)

Y =
hcJplat

eLλillu
(6.2)

with h being the Planck constant and c the speed of light.

Fig. 6.9 shows that Y is constant and therefore independent of L. This confirms again that
the plateau current density results from the limited formation of electron-hole pairs. The
value Y ≈ 200% is close to the value Y = 220% obtained by Blackwood et al. (1992).

Eq. (2.24) can be rewritten in such a way as to obtain the ratio of captured holes to injected
electrons.

Y =
νcap + νinj

νcap
(6.3)

νinj

νcap
= Y − 1 (6.4)

(6.5)

The measured value of Y ≈ 2 implies that νinj/νcap ≈ 1. Furthermore the dissolution valency
ν = 2.2 (Eddowes, 1990) implies that the current doubling is due to the injection of 1.1
electrons into the conduction band for 1.1 holes that are captured. The ratio νinj/νcap is
equal to Jinj/Jcap. Accordingly, the ratio of Jinj to Jcap is constant within the plateau region,
but may vary outside of this region. Changes in this ratio can be estimated by comparing J
with Jξ.

Calculating the Current from the Ellipso-microscopic signal

Fig. 6.10 shows the current density, J , in comparison with the current density expected from
the changes in ξ, Jξ. While the current attains its plateau value, a large amount of partially
oxidized silicon is generated from silicon via hole capture and Jξ is much larger than J . During
the second spike the amount of oxide species formed from partially oxidized silicon increases
and Jξ is smaller than J .
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Figure 6.10: Current density time series, J , and Jξ, calculated from ξ, illustrating the influence
of the illumination intensity, L, on the shape of the oscillations on n-type silicon. Fit calculated
with a dissolution valency, ν = 2.2, and copt = 3.5744 obtained from low-amplitude oscillations with
Rser = 100 kΩ. (a) L = 0.65 mW/cm2. (b) L = 0.52 mW/cm2. (c) L = 0.41 mW/cm2. (d)
L = 0.30 mW/cm2. (e) L = 0.25 mW/cm2. Experimental conditions: in Fig. 6.4.
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Figure 6.11: The J − U characteristic at different illumination intensities, L. Experimental con-
ditions: Rext = 0 kΩ, A = 3.19 mm2, cNH4F = 0.05 M, and pH = 2.2. [provided by K. Schönleber
(Krischer group)]

Obviously the correlation approach from Sec. 4.4 can only be applied to illuminations high
enough to cause formation of a passivating oxide layer on the electrode surface. Fig. 6.11 shows
recently measured J − U characteristics at different values of L by K. Schönleber (Krischer
group). At L = 0.74 mW/cm2 and L = 1.53 mW/cm2 all three domains are resolved. At
L = 0.25 mW/cm2 and L = 0.40 mW/cm2 a plateau is observed when the current density
reaches a value inside domain II, where the electrode is covered with wet oxide. This plateau
results from the limitation of charge carriers.

When there is no oxide present, the approach of calculating Jξ is no longer applicable. This
is illustrated by the significant difference between J and Jξ in Fig. 6.10e. In summary, spike
dominated oscillation are a phenomenon of domain II rather than domain III. From the
overview of the etch rates determined by fitting J to Jξ in Fig. 6.12a, it is obvious that the
etch rate is independent of L in domain III.

The dependency of the etch rate of n-type silicon on the effectiv voltage is documented in
Fig. 6.12b. The etch rates for various applied voltages are compared to the linear fit of etch
rates at steady states for p-type silicon (Fig. 5.5). The silicon dissolution rates on n-type
silicon fit the dissolution rates on p-type silicon (Fig. 5.5). A different oxidation valency was
used in both cases. The largest divergence from the p-type silicon fit can be seen in the case
of the etch back on n-type silicon.

6.2 Stirring

Stirring decreases the distance etchants have to diffuse from the bulk to the oxide layer. There-
fore, stirring increases the concentration of etching fluoride species at the oxide|electrolyte
interface. Stirring affects the system in the same way as a higher ammonium fluoride concen-
tration. Its effect on the dynamics should be similar to increasing the electrolyte concentration
in a stagnant electrolyte.

In the first part of this section, the stirring rate is changed during high-amplitude current
oscillations. In the second part, two voltage step experiments at the same conditions, apart
from the stirring rate, are compared.
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Figure 6.12: (a) Etch rates, żE, calculated for the time series in Figs. 6.4 and 6.10 by fitting J
to Jξ. (b) Dependency of the etch rate, żE, on the effective voltage, Φeff , for n-type silicon with
cNH4F = 0.05mol/l and pH = 2.3 in comparison to the fit for the etch rates of the foci of p-type silicon
(Fig. 5.5).

Stirring with Argon

The experimental conditions are changed by switching the argon flow from entering the cell
above the electrolyte surface to entering below the surface. Argon agitates the solution and
therefore has a stirring effect. Argon bubbles with a frequency of 0.15 Hz are produced in
the bubbler outside the cell. Fig. 6.13 shows the time series upon turning the stirring on at
t = 650 s and off at t = 1550 s. The irregularities in ξ are due to argon bubbles crossing
the light path of the optical imaging. The oscillation period decreases from P = 58.5 s
to P = 34.9 s. A higher oscillation frequency is expected when increasing the availability of
etching fluoride species. In the magnification of the time series in Fig. 6.14, it can be observed
that Jplat stays the same. This is not surprising, since the light intensity is kept constant at
L = 0.38 mW/cm2. In contrast, the current density values of the valleys and of the first spike
increase, and the current value of the second spike decreases when the electrolyte is stirred.

Fig 6.14c displays both cases in the J − ξ phase space plane. The changes in the trajectories
are comparable to those resulting from changing L. The trajectories (a) at L−0.65 mW/cm2

and (c) at L = 0.41 mW/cm2 in Fig. 6.4f are similar to the trajectory of the stirred and the
unstirred system at L = 0.38 mW/cm2 in Fig. 6.14c except for the average current density
level which is affected by the limitation of L. This indicates once more that the dynamics
are influenced by the ratio of oxide formation rate to etch rate, whereby the former can be
adjusted by L and the latter can be adjusted by the ammonium fluoride concentration in the
electrolyte or by the striring rate.

Magnetic Stirring

Instead of adjusting the stirring rate with argon, it is now adjusted with a magnetic stirrer.
The magnetically stirred experiment in Fig. 6.15, is conducted under the same conditions as
the unstirred experiment in Fig. 6.1c. The stirring leads to stable high-amplitude oscillations,
where otherwise a stable focus is observed. Indeed, high-amplitude oscillations are stable
without stirring at lower L (Fig. 6.1b). At higher L, the higher concentration of etching
fluoride species, obtained from stirring, is necessary for stable oscillations. In Fig. 6.1c, ξ
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Figure 6.13: Influence of stirring of the solution between t = 650 s and t = 1550 s on high-amplitude
oscillations on n-type silicon. Experimental conditions: L = 0.38 mW/cm2, U = 8 V, Rser = 1 kΩ,
cNH4F = 0.05 mol/l, pH = 2.3, and A = 9.64 mm2.
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Figure 6.14: Enlargement of the time series in Fig. 6.13 (a) without and (b) with stirring. (c) J− ξ
phase space plot of (a-b). The ragged edges in ξ are a result of gas bubbles loosened by the stirring
obstructing the optical path.
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Figure 6.15: Stable high-amplitude oscillations on n-type silicon in an stirred electrolyte. Experi-
mental conditions: cNH4F = 0.05 mol/l, pH = 2.3, Rser = 0 kΩ, U = 8 V, L = 0.81 mW/cm2, and
A = 8.11 mm2.

increases to 62, where oscillations are not stable. At a higher etch rate under otherwise
identical conditions, ξ does not rise above 54 and eventually oscillates around 50 (Fig. 6.15).
This clearly suggests that a certain oxide layer thickness is necessary to enable oscillations.
It has to be large enough to provide a limiting effect on the current in combination with the
resistance of the system. The system is driven out of the oscillatory regime when the oxide
layer thickness is too large.
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6.3 Discussion and Outlook

Current density oscillations occur in a certain interval of oxide layer thickness. The oxide
layer thickness can be adjusted by changing the oxide formation rate or by changing the etch
rate. In the case of n-type silicon, the former can be easily adjusted by limiting the current
density with the illumination intensity. The higher the value of L, the larger zL. For very
low values of L, the domain III, where a ‘dry’ oxide layer covers the electrode is not reached.
Fig. 6.4e gives an example of such a case. At high values of L, the observed dynamics on n-
type silicon are similar to those on p-type silicon and the oxide formation rate can be adjusted
by changing the applied voltage or the size of the series resistance in the system. What can
be considered a high value of L depends on the values for those two parameters.

An increase in the oxide formation rate at a constant etch rate leads to a thicker oxide layer.
Conversely, an increase in the etch rate at a constant oxide formation rate leads to a thinner
oxide layer. This can be seen in Fig. 6.13. Comparison of Fig.6.1c (unstirred) and Fig. 6.15
(stirred) indicates that a change in the oxide layer thickness as a result of changing the stirring
rate affects the dynamics, as oscillations are stable only in the stirred case.

At intermediate values of L, e.g. L = 0.40 mW/cm2, the J − U characteristic in Fig. 6.11
shows that the limited current density is higher than the unlimited current density in the
plateau region of domain III. At the same time it is smaller than the unlimited current
density of the second characteristic peak. This constitutes the origin of hysteresis depicted in
Fig. 6.5a. During potential scans and upon applying small potential steps one after the other,
not enough oxide is formed and the system stays in domain II due to the current density
limitation. In contrast, the system moves right to domain III when a large potential step
is applied at the same parameters, or when L is lowered stepwise starting at a state with a
sufficiently thick oxide layer. The system may exhibit sustained high-amplitude oscillations
or be in a steady state under the same experimental conditions due differing kinds of oxide
qualities, i.e. ‘wet’ or ‘dry’ oxide.

Understanding these parameters allows for fine tuning of the oscillations as low-amplitude
oscillations occur at larger oxide thickness as high-amplitude oscillations. In the case of n-
type silicon in contrast to p-type silicon, sustained oscillations, though only high-amplitude
ones, are observed even in the absence of a series resistance in the circuit. Low-amplitude
oscillations on n-type silicon are observed only under sufficient illumination and the same
conditions as for p-type silicon, i.e. intermediate applied voltages and sufficiently high series
resistances. Hence, it is likely that the oscillation mechanism is the same in both cases, except
for the source of the limitation.

High-amplitude oscillations exhibit marked differences between p-type silicon and n-type sil-
icon. They are clearly influenced by the illumination intensity in the case of an n-type silicon
electrode. The most prominent feature is a plateau in the current density encompassed by
two current spikes. The ratio of the size of one spike to the other depends on the value of L.

The behavior of high-amplitude oscillations on n-type silicon with the highest current density
plateau at high values of L is the one most similar to high-amplitude oscillations on p-type
silicon. An example is the transient high-amplitude oscillations depicted in Fig. 6.1d between
100 and 1100s. J shows a plateau, but no spikes. Fig. 6.16 shows zL, J and Jξ, the discrepancy,
J − Jξ, and the change in buffered charge, ∆σ, resulting from the discrepancy. The optical
proportionality constant, copt, was determined for sustained low-amplitude oscillations under
the same experimental conditions. These time series are similar to the ones obtained for
high-amplitude oscillations in the case of p-type silicon (Fig. 4.8 and Fig. 4.9). The different
characteristics of ∆σ can be attributed to the existence of the plateau in the case of n-
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Figure 6.16: High-amplitude current oscillations: oxide layer thickness, zL (top panel), the measured
current density, J , and the calculated current density, Jξ (both second panel), the difference, J − Jξ
(third panel), and the charge density variations, ∆σ (bottom panel). Experimental conditions: in
Fig. 6.1d. Smoothing: k = 0. Fitting: copt = 3.57.

type silicon. As L is decreased, the discrepancy between J and Jξ increases and the spikes
encompassing the plateau become more pronounced until only spikes survive. Presumably,
the spike before and the spike after the plateau have different origins.

The current spike following the current density plateau results from electron injection. Only
hole capture is affected by the limitation of charge carriers in the semiconductor. In contrast,
electron injection depends mainly on the amount of partially oxidized silicon species that are
able to inject electrons. Evidence for the connection of the spikes following the plateau to
electron injection is that the quantum efficiency increases during these spikes. In addition,
the time series from Fig. 6.4 show that the slope of ξ decreases during these spikes, even
though the current density is increasing. This also indicates electron injection from partially
oxidized species, because silicon species oxidized to different degrees cannot be distinguished
from one another in ξ.

The behavior of ξ results from the difference between the hole capture rate and the etch rate.
The higher the ratio of electron injection to hole capture, the less ‘visible’ oxide is formed per
charge flowing in the circuit. J is smaller than Jξ in the plateau region in Fig. 6.10. During
the decreasing flank, J is larger than Jξ, i.e. electron injection is above its average value and
hole capture is below the value dictated by the limiting effect of L.

The spike preceding the current density plateau may result from the hole capture of excess
holes not used during the increasing flank of J . Another possibility is changes in the re-
combination rate, which depends on the space charge voltage drop (Memming, 1964). Band



6.3. Discussion and Outlook 85

bending makes recombination possible as it increases the amount of holes at the surface. The
spike before the plateau is accompanied by a high ohmic voltage drop, and a high hole capture
rate. The high current density leads to a low expected recombination rate of electron-hole
pairs.

In the present ellipso-microscopic setup, it is not possible to distinguish between changes of ξ
stemming from ‘dry’ oxide from domain III, and ‘wet’ oxide or other interface layers from the
domains I or II. However, it can be expected that a completely different oscillation mechanism
is responsible for the spike dominated oscillations in the absence of a ‘dry’ oxide layer. The
present results give valuable further insight into the adjustment of different oscillation types,
as well as into the contribution of Jcap and Jinj to the current density.

The steady states at low values of L lie in a domain where silicon is not covered by passivating
‘dry’ oxide. Depending on the size of J , they either lie in domain I (divalent dissolution) or
in domain II (‘wet’ oxide). Scanning the J − L and the ξ − L characteristics could lead to
more insight into the influence of L, especially when comparing them to the J −Φeff and the
ξ−Φeff characteristics. This could also elucidate the origin of the spike dominated oscillations.
Furthermore, the application of in situ ellipsometry or another quantitative surface probing
technique could enhance the understanding of the processes at the interface.

Quantitative stirring speeds are not available in the current setup. The study of a wide range
of defined stirring speeds could also prove successful in advancing the understanding of the
system.
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Chapter 7

Spatial Pattern Formation

This chapter is concerned with the dynamics of the spatially extended system. By including
an imaging lens in the optical setup, the ellipsometric signal can be monitored as a function
of position. In this way it can be investigated if and how current density oscillations are
accompanied by spatial patterns in oxide layer thickness.

Apart from the measurement of the time evolution of the current density distribution of a
quasi-one dimensional ring electrode (Miethe, 2004), the spatio-temporal pattern formation
at the silicon|oxide|electrolyte double interface was essentially unexplored, because satisfac-
tory resolution, both in time and space, had never previously been achieved experimentally.
However, an investigation of the electroluminescence during the anodic oxidation of silicon
hinted at a variety of patterns dependent on doping level and illumination (Hasegawa et al.,
1988; Arimoto et al., 1988). These experiments were conducted at voltages of 200 V. The
oxide grew to a thickness of 100 nm, because it was not etched. Undoped and n-type silicon
showed pattern formation at small oxide thicknesses around 20 nm. Localized oxidation of
silicon in the form of concentric moving fronts, labyrinthine patterns, stripes and homogene-
ity at constant current densities were observed. The order of magnitude of the characteristic
wavelength of the patterns is similar to the one presented in this chapter. Equally important,
the oxide layer thickness of p-type silicon was always uniform apart from short transients.

In Sec. 5.1 it was shown that the temporal dynamics are greatly determined by the size
of the series resistance Rser. In the case of n-type silicon, the illumination intensity affects
the temporal dynamics as well. Both parameters also play a decisive role in the formation
of spatial patterns. An overview of the connection between temporal and spatial dynamics
influenced by Rser and L is given in Sec. 7.1. Both n-type silicon and p-type silicon, as well
as states with sustained and transient dynamics are investigated.

Complex spatial patterns during high-amplitude current oscillations on n-type silicon are
discussed in detail following the overview. In Sec. 7.2, a labyrinthine cluster pattern is de-
scribed with regard to phase locking and the superposition of the base frequency and its
subharmonics. Furthermore, the observed behavior is elucidated by means of a modified
complex Ginzburg-Landau equation. The focus of Sec. 7.3 are coexisting domains oscillating
at different frequencies, and the mobility of the walls between these domains.

87
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7.1 Temporal Dynamics and Spatial Pattern Formation

In a typical experiment, the electrode is left at open-circuit potential for some time such that
it is hydrogen terminated. Then a potential step to a desired applied voltage is applied and
the temporal evolution of ξ is measured as a function of space and time. It turns out that this
approach always leads to pronounced transient patterns for the first hundred seconds after
the potential step and then to sustained patterns or spatial uniformity.

Transient Pattern Formation

In the first few seconds, an initial passivating oxide layer is formed. The oxide formation
kinetics strongly depends on position. In the following, two representative examples are
shown. Fig. 7.1 shows a series of snapshots of ξ(x, y) an n-type silicon electrode where the
initial oxide formation is accompanied by the evolution of concentric waves. The time series
of J and ξ are plotted in the bottom plate with black dots indicating the particular times, ti,
of the snapshots.

The local value of ξ is coded by the coloring according to the color bar in the top panel. The
first electrode image is taken at a time close to the voltage jump. It shows spatial homogeneity.
The following image shows the initiation of two wave fronts, one at the top and one at the
bottom of the electrode, which propagate to the center of the electrode. A second concentric
wave front follows the one at the top of the electrode in the third snapshot. Another one is
created at the bottom of the electrode in the fifth snapshot. The movement of these wave
fronts is accompanied by an uniform increase of the oxide layer thickness across the entire
electrode. The overall increase of ξ is reflected in the time series of ξ(t). As will be shown
below, the superposition of a spatially heterogeneous pattern on spatial uniform oscillations
is typical for the electrodissolution of silicon.

In Fig. 7.2, another typical transient pattern, this time on p-type silicon, is depicted, where
plane wave fronts, parallel to the longer side of the electrode, propagate across the electrode.
The visibility of the stripe pattern in the snapshot is enhanced by subtracting a background
image, ξbg(x, y):

ξenh(t, x, y) = ξ(t, x, y)− ξbg(x, y) (7.1)

ξbg(x, y) being the temporal average over the displayed time range. In the first image of the
series of snapshots, the oxide thickness layer increases in a domain between y = 100 and
y = 200. The third image is similar. In the second image, a different domain (y = 300− 400)
shows the highest oxide thickness, which is similar to the one in the fifth image. In the fourth
image, the increase is observed between y = 100 and y = 300. The increase of ξ in a certain
domain compared to the rest of the electrode, is a sign of increased activity in this domain.
At the extrema of ξ, the activity of the electrode alternates between the domain in the center
and the domain at the fringes of the electrode.

More insight into the spatio-temporal dynamics of the electrode is obtained by plotting the
temporal evolution of a cross section of ξ at position xi or at position yj :

ξcross(t, y) = ξ(t, xi, y) (7.2)

or

ξcross(t, x) = ξ(t, x, yj) (7.3)
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Figure 7.1: A series of snapshots of the spatial distribution of the ellipso-microscopic signal, ξ, of an
n-type silicon electrode at the times indicated with • in the time series of ξ, displayed together with
the current density time series, J , (both bottom panel). The length of the horizontal red bar in the
left hand bottom corner indicates a length of 1 mm. Experimental conditions: cNH4F = 0.05 mol/l,
pH = 2.3, A = 8.11 mm2, Rser = 0 kΩ, U = 8 V, L = 0.52 mW/cm2, and n-type silicon.
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Figure 7.2: Transient cluster pattern followed by sustained spatially uniform oscillations. (Upper
plates) Snapshots of ξ(x, y) at six different times indicated by dots in the bottom panel. (Second
last panel) Time evolution of a cross section of ξ at x = 200 enhanced by background subtraction.
(Bottom panel) Time series of J and ξ. The cross section is smoothed using a central moving
average with k = 2. The length of the horizontal blue bar at the bottom indicates a length of 1 mm.
Experimental conditions: Rext = 100 kΩ, U = 9.65 V, cNH4F = 0.05 mol/l, pH = 2.4, A = 4.91 mm2,
and p-type silicon.
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Figure 7.3: Spatial homogeneity of low-amplitude oscillations on p-type silicon. (top panel) Time
evolution of a cross section of the local ellipso-microscopic signal, ξ, at x = 200 enhanced by background
subtraction. (bottom panel) Time series of J and ξ. Smoothing: k = 5. Experimental conditions:
in Fig. 4.2a, and p-type silicon.

In Fig. 7.2 in the panel below the snapshots, ξ(t, 200, y) and the time series of J and ξ are
displayed. The data of the cross section are also enhanced via background subtraction. The
time evolution of a cross section is particularly useful to obtain an overview of the dynamical
behavior of the electrode in time, and thus allows for the easy elucidation of pattern formation.

In Fig. 7.2, the transient pattern exists for 400 seconds, after which spatially uniform os-
cillations are established across the entire electrode. The transient alternation of increased
oxide layer thickness between the center and the fringes of the electrode at subsequent os-
cillation maxima is easy to see in the time evolution of the cross section between t = 150 s
and t = 300 s. This spatial pattern accompanies the transient high-amplitude oscillations.
They are followed by sustained low-amplitude oscillations which are associated with spatially
uniform oscillations. The occurrence of uniformly oscillating states is further discussed in the
next subsection.

Uniform Oscillations

In the case of p-type silicon, all spatial patterns are transient. Sustained current density
oscillations are always accompanied by a practically, uniformly changing oxide layer thickness.
Fig. 7.3 shows an example of quasi-uniform oscillation. The cross section reveals that the
local oscillators are not fully synchronized. Instead, a very fast wave front moves across the
electrode from y = 500 to y = 1. This is obvious at t = 700 s, where the local oscillators
for large y have already reached their maximum, but the local oscillators for small y are still
close to the preceding minimum. Because of the fast propagation velocity of the wave fronts,
the oscillations are called quasi-uniform.
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Figure 7.4: Spatially uniform damped oscillations on p-type silicon. (top panel) Time evolution of a
cross section of the local ellipso-microscopic signal, ξ, at x = 180 enhanced by background subtraction.
(bottom panel) Time series of J and ξ. Smoothing: k = 1. Experimental conditions: in Fig. 5.1,
and p-type silicon.
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Figure 7.5: Temporally chaotic low-amplitude oscillations on p-type silicon. (top panel) Time
evolution of the cross section of ξ at x = 200 enhanced by background subtraction. (bottom panel)
Time series of J and ξ. Smoothing k = 2. Experimental conditions: in Fig. 5.11d, and p-type silicon.
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Figure 7.6: Emergence of spatial homogeneity from spatial clusters at the onset of low amplitude
oscillations (n-type silicon). (top panel) Time evolution of the cross section of ξ at y = 400 enhanced
by background subtraction. (bottom panel) Time series of J and ξ. Smoothing k = 5. Experimental
conditions: in Fig. 6.1d, and n-type silicon.

Similarly, damped current density oscillations are accompanied by uniformly damped oxide
thickness oscillations (Fig. 7.4).

In Fig. 7.5, the chaotic oscillations from Fig. 5.11d also show spatial homogeneity. The
amplitude of ξ is small, therefore the signal to noise ratio is poor.

On n-type silicon in contrast to p-type silicon, high-amplitude current density oscillations ac-
companied by spatial pattern formation were observed. However, the low-amplitude current
density oscillations on n-type silicon, again go along with spatially uniform layer thicknesses.
Fig. 7.6 shows that the transient spatial pattern disappears when the stable low-amplitude
oscillations set in. Beyond t = 1400 s, all local oscillators of ξ oscillate synchronously and
in phase with ξ. A prominent feature of the cross section in Fig. 7.6 is the transient clus-
ter pattern that forms initially when the time series shows high-amplitude current density
oscillations. Sustained cluster patterns are discussed in the next subsection.

The spike dominated current density oscillations observed on n-type silicon at a low illumina-
tion intensity are also practically spatially uniform. The local oscillators in the cross section,
depicted in Fig. 7.7 show a high degree of synchronization, but there are some variations
across the electrode. The cross section and especially the two local time series of ξ, illustrate
how the local dynamics change from period-1 to period-2 dynamics depending on the spatial
position.
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Figure 7.7: Spike dominated oscillations on n-type silicon. (top panel) Time evolution of the cross
section of ξ at y = 400 enhanced by background subtraction. (second panel) Local time series at
y = 400 and x = 30. (third panel) Local time series at y = 400 and x = 200. (bottom panel)
Time series of J and ξ. Smoothing k = 5. Experimental conditions: in Fig. 6.4e, and n-type silicon.

Cluster Pattern on n-type silicon

Cluster formation may occur in spatially extended oscillating systems or arrays of globally
coupled oscillators where groups of synchronized states form. All oscillators within one group
are fully synchronized. Oscillators belonging to different groups lie on different limit cycles
in phase space (amplitude clusters), exhibit a phase shift (phase clusters) or a different fre-
quency (frequency clusters). The difference between phase and frequency clusters is subtle
and depends on the definition of phase. They are not distinguished here.

A non-transient cluster pattern develops on n-type silicon during high-amplitude current den-
sity oscillations only. Lower Rser are necessary than in the case of low-amplitude oscillations.
At intermediate Rser, an immobile-cluster pattern evolves with a characteristic spatial wave-
length between 200 and 500 µm. Fig. 7.8 shows four snapshots at consecutive extrema of ξ.
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A labyrinthine structure of the pattern is especially pronounced at the maxima of ξ, i.e. in
the first and third snapshot. Large parts of the electrode image appear inverted going from
one maximum to the next. Formerly blue areas appear red and vice versa. The features of
this cluster pattern are discussed in detail in Sec. 7.2.

At lower or zero Rser, the cluster domains are mobile. As illustrated in the time evolution of
the cross section in Fig. 7.9, domains with a larger characteristic wavelength move across the
electrode. Some of the domains exhibit period-3 oscillations and others period-1 dynamics.
This can be seen in the series of snapshots taken at consecutive maxima of ξ in the upper
part of Fig. 7.9, e.g. the domain in the top left hand corner of the electrode is active in every
third snapshot, i.e. in the third and the sixth. A detailed discussion of this moving-cluster
pattern is given in Sec. 7.3.

Fig. 7.10 shows that the characteristic wavelength of the moving domains is affected by the
stirring rate of the electrolyte solution. The solution is stirred between t = 650s and t = 1550s.
In this time interval, the pattern of the oxide layer thickness clearly has another characteristic
wavelength than the one in the stagnant electrolyte solution. Initially, the amplitude of the
cluster domains decreases. Then, the domains appear at different positions in space with a
smaller characteristic wavelength and a higher oscillation frequency. Upon switching off the
argon again, the initial moving domain pattern is restored. However, even as the solution is
stirred, the prominent period-3 character of the domains is maintained.

Lastly, an intermittent so-called plateau pattern is observed, that is not related to the change
of a system parameter. A typical example is given in Fig. 7.11. The experimental conditions
include no external series resistance, an applied voltage of U = 8 V and a high illumination
intensity, L = 1.21 mW/cm2. The plateau appears at t = 450 s and can be described as a
domain with period-1 dynamics that shows a higher average oxide layer thickness than its
surroundings which also have period-1 dynamics. This is reflected in the intermittent increase
of ξ. The edge of the plateau shows prominent period-2 dynamics. After 500 s, the plateau
disappears. At later points in the time series, the plateau pattern reappears in different areas
of the electrode.

In addition, the formation and disappearance of a plateau in the domain with period-1 dy-
namics is observed in coexistence with the moving domains.

High-dimensional Spatio-temporal Chaos

At a higher ammonium fluoride concentration, high-dimensional chaos is observed during
high-amplitude oscillations (Fig. 7.12). The chaotic current oscillations are accompanied by
chaotic local oscillations of ξ. The data are thus an example of spatio-temporal turbulence
in an electrochemical system.

In contrast, the chaotic current oscillations observed during low-amplitude oscillations at a
high Rser in the case of p-type silicon show synchronized local oscillators (Fig. 7.5). In the
next-maximum map of the spatially synchronized low-dimensional chaos (Fig. 5.13f), all data
points lie in a small quasi one-dimensional band suggesting that the chaotic behavior lives in
a low-dimensional phase space, i.e. that the chaos is low-dimensional.

A next-minimum map of the data from Fig. 7.12 is shown in Fig. 7.13. The data points form
a cloud-like structure, which is a strong hint that the dynamics lives in a high-dimensional
phase space. Fully developed spatio-temporal turbulence cannot be explained by a one or two
dimensional map (Schuster, 1988).



96 7. Spatial Pattern Formation

−0.5

0

0.5

1

J 
[m

A
/c

m
2 ]

100 200 300 400 500 600 700 800 900 1000
17.5

18

18.5

19

ξ 
[a

rb
. u

ni
ts

]

t [s]

100 200 300 400 500 600 700 800 900 1000
0.2

0.4

0.6

0.8

1

J 
[m

A
/c

m
2 ]

displaytypical40c2:  im040c02TTS40c2

17.5

18

18.5

ξ 
[]

100 200 300 400 500 600 700 800 900 1000

10

10.5

11

11.5

t [s]

t [
s]

Figure 7.8: Labyrinthine cluster pattern on n-type silicon. (upper plates) Snapshots of the spatial
distribution of the ellipso-microscopic signal, ξ, at the times indicated with dots in the bottom panel.
(second last panel) Time evolution of the cross section of ξ at x = 200 enhanced by background
subtraction. (bottom panel) Time series of ξ, displayed together with the current density time series,
J . The length of the horizontal red bar in the left hand bottom corner indicates a length of 1 mm.
Experimental conditions: cNH4F = 0.05 mol/l, pH = 2.3, A = 9.05 mm2, Rser = 30 kΩ, U = 11 V,
L = 1.19 mW/cm2, and n-type silicon.

Overview of Spatio-temporal Pattern Formation

An overview of the spatial pattern formation is given in Tab. A.3 in the appendix. The
character of the pattern depends, among other parameters, strongly on the doping of the
silicon. In the case of p-type silicon, the oxide layer thickness shows a spatially uniform
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Figure 7.9: Moving domain pattern on n-type silicon. (upper plates) Snapshots of the spatial
distribution of the ellipso-microscopic signal, ξ, at the times indicated with dots in the bottom panel.
(second last panel) Time evolution of the cross section of ξ at x = 100 enhanced by background
subtraction. (bottom panel) Time series of ξ, displayed together with the current density time
series, J . The length of the horizontal red bar in the left hand bottom corner indicates a length of
1 mm. Experimental conditions: cNH4F = 0.05 mol/l, pH = 2.3, A = 9.64 mm2, Rser = 1 kΩ, U = 8 V,
L = 0.4 mW/cm2, and n-type silicon.
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Figure 7.10: Influence of stirring between t = 650 s and t = 1550 s on the characteristic wavelength
of a moving domain pattern (n-type silicon). (top panel) Time evolution of the cross section of ξ at
y = 290 enhanced by background subtraction. (bottom panel) Time series of J and ξ. Smoothing
k = 5. Experimental conditions: in Fig. 6.13, and n-type silicon.

0

0.4

0.8

1.2

1.6

J 
[m

A
/c

m
2 ]

200 400 600 800 1000 1200
30

32

34

36

38

ξ 
[a

rb
. u

ni
ts

]

t [s]

200 400 600 800 1000 1200
0

0.5

1

J 
[m

A
/c

m
2 ]

displaytypical:  im041c00TTS

32

34

36

38

ξ 
[]

200 400 600 800 1000 1200

0

2

4

6

t [s]

t [
s]

Figure 7.11: Plateau pattern on n-type silicon. (top panel) Time evolution of the cross section
of ξ at y = 400 enhanced by background subtraction. (bottom panel) Time series of J and ξ.
Experimental conditions: cNH4F = 0.05 mol/l, pH = 2.3, A = 8.91 mm2, Rser = 0 kΩ, U = 8 V,
L = 1.21 mW/cm2, and n-type silicon.
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behavior, except for the transients that develop after applying a potential step from open-
circuit potential to a potential that lies in domain III. In the case of n-type silicon, current
density oscillations are accompanied by pattern formation in a certain region of parameter
space. During low-amplitude oscillations and spike dominated oscillations of the current
density the oxide layer thickness oscillates uniformly. In contrast, during high-amplitude
oscillations cluster patterns form on the electrode surface. The features of these patterns
depend on Rser. A pattern of moving clusters is associated with low Rser. This pattern is
discussed in detail in Sec. 7.3. The moving clusters may be accompanied by the formation of
plateaus. At intermediate Rser, the clusters are immobile and show an intricate labyrinthine
pattern, discussed in Sec. 7.2. Additionally, on n-type and p-type silicon, a variety of transient
patterns may form after a potential step.

7.2 Immobile, Labyrinthine Cluster Pattern

Of all patterns discussed in this chapter, the cluster patterns are the most striking. They
show phase clustering in the subharmonic mode that is superimposed on the spatially uniform
base mode of the oscillations.

The labyrinthine pattern of spatially immobile clusters is most prominent during the oscilla-
tion maxima of ξ. Snapshots of the electrode and the time evolution of a cross section illustrate
this (Fig. 7.8). The pattern arises during high-amplitude current density oscillations on n-
type silicon at intermediate Rser. It appears inverted from one maximum to the next. From
maximum to maximum, the bright and dark regions exchange their positions, suggesting that
the overall dynamics is not simply periodic with the period of the total current.

From the cross section, one obtains the impression that a uniform oscillation with the base
frequency, i.e. the frequency of the current density oscillations, is superimposed on an irreg-
ular pattern that changes with time. The irregular pattern has period-2 dynamics, i.e. the
electrode pattern is restored at every other maximum. This impression becomes even stronger
when looking at the local time series (Fig. 7.14). The local oscillation amplitude evolves ir-
regularly with time and is different for each of the three oscillators shown, but an alternation
between high and low maxima suggests underlying period-2 dynamics. However, the extrema
of ξ of all individual oscillators are locked to the extrema of ξ, though some of the extrema
may disappear due to a large modulation of the local oscillation. The envelope of the com-
plex dynamics of each individual oscillator contains harmonic contributions with half the base
frequency.

This subharmonic contribution can be clearly seen in the power spectrum, |a|2(ν), of the
local time series along a cross section from Fig. 7.8. In Fig. 7.15, it is apparent that |a|2(ν)
exhibits two pronounced peaks. One peak lies at the base frequency, f1 = 17 ± 1 mHz,
which is equivalent to the frequency of the current density oscillations. The second peak is
subharmonic and lies at half the base frequency, f1/2 = 9± 1 mHz. In contrast to the former
peak, its intensity varies along the cross section.

In order to obtain an understanding of the two-dimensional spatial distribution of these
modes, a frequency demodulation technique is used (Lin et al., 2000). The dominant modes
are extracted and the spatial distribution of amplitude, |a|2, and phase, arg(a), are analyzed
individually. In Fig. 7.16a, the spatial distributions of phase and amplitude are shown for
the base frequency. The amplitude for the base mode is uniformly distributed and all local
oscillators have the same phase.

This is also evident from Fig. 7.17a, where the distribution of the base mode is displayed in
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Figure 7.12: Spatio-temporal chaos on n-type silicon. (top panel) Time evolution of the cross
section of ξ at x = 200 enhanced by background subtraction. (second panel) Local time series of
ξ at x = 200 and y = 250. (third panel) Local time series of ξ at x = 200 and y = 400. (fourth
panel) Local time series of ξ at x = 200 and y = 560. (bottom panel) Time series of J and ξ.
The minima of J are indicated by dots. Experimental conditions: cNH4F = 0.1 mol/l, pH = 3.1,
A = 9.71 mm2, Rser = 0 kΩ, U = 8 V, L = 1.62 mW/cm2. Smoothing: k = 5.
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Figure 7.13: Next-minimum map of spatio-temporal turbulence. Due to the multi-dimensionality of
the chaos, the chaotic dynamics cannot be represented by a simple mapping. Experimental conditions:
in Fig. 7.12.
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Figure 7.14: Local time series of ξ during labyrinthine clusters. (top panel) x = 200 and y = 310.
(second panel) x = 200 and y = 320. (third panel) x = 200 and y = 380. (bottom panel) Time
series of ξ. Experimental conditions: in Fig. 7.8.
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Figure 7.15: Power spectrum from the Fourier transform of the cross section, ξ(y, t), shown in Fig. 7.8.
A spatially uniform peak is observed at the base frequency of the oscillation, f1 = 17 ± 1 mHz. The
peak at f1/2 = 9± 1 mHz, which corresponds to half the base frequency, is spatially non-uniform.

(a)

(b)

Figure 7.16: Spatial distribution of the amplitude and phase of the Fourier transformation for the
two main modes. (a) Base mode. (b) Mode at half the base frequency. Experimental conditions in
Fig. 7.8.
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Figure 7.17: Complex Fourier coefficient in phase space with a normalization factor 1500, and phase
histogram, i.e. histograms of the relative frequency density, ρosc, of the data in Fig. 7.16. (a) Base
mode, evaluated in the region of interest: x = 100 − 200 and y = 200 − 400. (b) Mode at half the
base frequency in the region of interest: x = 110− 130 and y = 270− 320.

the complex plane and in a phase histogram. In the phase histogram, the relative frequency
density, ρosc, is plotted versus arg(a). The former is calculated from the ratio between the
number of oscillators in a certain bin, Nbin, and the total number of oscillators, Ntot:

ρosc =
Nbin

Ntot∆ arg(a)
(7.4)

∆ arg(a) being the width of the bin. The behavior of the base mode is related to the locking
of the amplitude extrema of all local oscillators to the amplitude extrema of ξ.

The spatial distribution of amplitude and phase of the subharmonic Fourier mode at half the
base frequency is shown in Fig. 7.16b. Two domains having the same amplitude, but phase
values differing by π, are entangled in a labyrinthine pattern. The complex plane and the
phase histogram in Fig. 7.17b show that the local oscillators settle to one of two phase values.
These 2-phase clusters are phase-balanced, i.e. there is the same number of oscillators in each
phase. At the boundary between the domains, the amplitude drops down to zero as the phase
switches. This indicates domains separated by Ising walls.

Ising walls are well known in the context of magnetic domains in ferro-magnets, where they
form the boundary layer between domains of opposite magnetization neighboring domains
having parallel spins of opposite direction. In the case of the spatially extended oscillatory
system described in this thesis, neighboring domains are phase synchronized with regard to
their main mode and show a phase shift of π in a subharmonic mode. An Ising wall is
characterized by a sudden change in the phase (Fig. 7.18a). The amplitude drops to zero at
the phase discontinuity. Ising walls are immobile. This is reflected in typical features of the
phase space (Fig. 7.18b). In phase space, the oscillatory domains are positioned symmetrically
with respect to the origin. They are connected by a line intersecting the origin, representing
the domain wall with Ising character.

When maintaining a cluster pattern separated by Ising walls for several oscillation periods in
an experiment, the labyrinthine pattern is imprinted into the electrode surface. This results
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Figure 7.18: Clusters separated by Ising walls. (a) Variations of the modulus of the amplitude,
|a|2, and the phase, arg(a), along one spatial dimension. (b) Phase space plot of the complex Fourier
coefficient.

Figure 7.19: Microscope image of an n-type silicon electrode after 90 minutes of observing Ising
walls. Experimental conditions: in Fig. 7.8.

from the immobility of the Ising walls and the decreased activity in the area of the walls.
In the areas far from domain walls, a high oxide formation rate and a high etch rate can
be observed. In Fig. 7.19, a microscope image of the electrode after keeping the electrode
for some time at parameter values where immobile-cluster patterns are stable during current
density oscillations, stepping back to open-circuit potential and removing the electrode from
the solution after the oxide layer is etched. The electrode is covered with thin layer of native
oxide that does not obscure the silicon structures. The image shows the remnants of the
labyrinthine pattern.

Cluster Formation and the Modified Complex Ginzburg-Landau Equation

A cluster pattern resulting from the superposition of a spatially uniform main mode and a
spatially clustered subharmonic mode was observed in simulations and experiments which
include external forcing or feedback. Bertram and Mikhailov (2003) observed uniform os-
cillations, regular clusters with a subharmonic mode, and the coexistence of period-1 and
period-2 dynamics in one-dimensional simulations of the oxidation of carbon monoxide on
platinum under global delayed feedback. During periodic forcing of the oxidation of carbon
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monoxide on platinum in two dimensions, the formation of a regular subharmonic intertwined
labyrinthine cluster pattern was observed (Bertram, 2002; Bertram et al., 2003). Irregular
and regular clusters induced by subharmonic modes at one third and one quarter of the
base frequency were observed in the photosensitive Belousov-Zhabotinsky reaction-diffusion
system by applying a global photochemical feedback in simulations (Yang et al., 2000) and
experiments (Vanag et al., 2000).

In contrast, Varela et al. (2005) described clusters in the electrooxidation of hydrogen on a
quasi 1D platinum ring electrode in the absence of external feedback or external parametric
forcing. Neither subharmonic phase clustering was discussed there, nor was a frequency
demodulation applied, but the time evolution of the system show similar features to the ones
discussed in this section. As in the case of the electrodissolution of silicon, the forcing or
feedback is internal to the system.

In the case of the anodic oxidation of n-type silicon, no external feedback or forcing is applied.
However, the concentration of holes at the silicon surface is oscillating in time. If it is assumed
that this electrical quantity is always uniformly distributed, it can act as a harmonic forcing
that is intrinsic to the system. The illumination strength limits the number of available holes,
and thus poses a constraint on the maximum current.

Furthermore, it is known that a resistor in series to the working electrode introduces a global
coupling (Krischer, 2003). In Sec. 5.1, the influence of Rser on the temporal dynamics of
the system is illustrated. The experiments discussed here reveal that Rser has a considerable
influence on the pattern formation on n-type silicon.

In cooperation with V. Garćıa-Morales (Krischer group), these aspects were integrated into
the complex Ginzburg-Landau equation (CGLE) and numerically simulated. The CGLE is
modified (MCGLE) in such a way that both types of global influence on the dynamics are
captured. The CGLE is an amplitude equation valid for diffusively coupled oscillators near
the Hopf bifurcation. The dynamics of the system are described in terms of the modulus of
the amplitude and the phase in the frame work of normal form theory (Kuramoto, 1984). The
observation of a Hopf bifurcation (Sec. 5.1) justifies the use of this approach. Even though the
experimental system has anharmonic contributions and operates at some distance to the Hopf
bifurcation point, the MCGLE can give valuable predictions that are qualitatively correct.

The modification incorporates the intrinsic self-forcing and the global coupling due to the
external resistor into the normal form equation:

∂tW = W + (1 + ic1)∂2
xW − (1 + ic2)|W |2W +B (7.5)

with B constituting the modification term:

B = γ − (1 + iω0)〈W 〉+ (1 + ic2)〈|W |2W 〉 (7.6)

W being a complex amplitude and 〈...〉 denoting spatial averages. The real part of W , Wr,
can be compared to the dynamics of the interfacial oxide thickness. 〈W 〉 is a periodically
oscillating function similar to ξ observed in the experiments.

The first summand in Eq. (7.5) accounts for a linear exponential growth, which has a destabi-
lizing effect on the dynamics; the second summand contains the diffusive local next neighbor
coupling; the third summand provides a nonlinear saturation of the limit cycle, i.e. a stabi-
lizing effect on the dynamics.

The modification term, B, consists of γ, that describes a 1 : 1 forcing, and an expression of
the global coupling, where ω0 specifies the frequency of the uniform oscillation. The latter
represents an expansion of the negative global coupling to the third order. The cubic term is
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(a) (b)

(c) (d)

Figure 7.20: One dimensional simulations using the modified complex Ginzburg-Landau equation.
(a) Spatio-temporal evolution of the real value of the complex amplitude, Wr, obtained from Eq. (7.5)
for c1 = −10, c2 = 1.5, γ = 1.55 and ω0 = 3.1. (b) Representation of a in the complex plane, at base
frequency, a1 (left), and at half the base frequency, a1/2 (right). (c) Local time series of Wr for three
individual oscillators, Wr,1, Wr,2 and Wr,3, and the time series of the spatial average 〈Wr〉. (e) 1D
distribution of the phase, arg(a1/2), and the amplitude, |a1/2|, at the subharmonic mode at half the
base frequency. [provided by V. Garćıa-Morales (Krischer group)]

motivated by analogous studies of phase ordering describing a global conservation law Conti
et al. (2002). Neither the parametric force-like term nor the global-feedback-like ones in
Eq. (7.6), correspond to an experimental time-dependent manipulation of the system, but
rather arise intrinsically from its dynamics, i.e. these terms are self-induced in the system.

Simulations for this model are displayed in Fig. 7.20. The essential features of the experimen-
tal system in two dimensions are reflected in a cross section, such that a 1D model system
can be considered for simplicity. x denotes the spatial direction.

The spatio-temporal evolution of Wr is depicted in Fig. 7.20a, which shows an irregular cluster
pattern similar to the one in Fig. 7.8. Fig. 7.20c shows that any local oscillator has compli-
cated modulations in the amplitude that render the spatial pattern irregular. Nonetheless, all
extrema are locked to the ones of the average signal, 〈Wr〉, possessing the same base period-
icity. In the simulation, the complexity of the spatial pattern results from the superposition
of the subharmonic mode and the base mode. This kind of superposition is also observed in
the local time series of the experimental data (Fig. 7.14).

Performing a Fourier analysis of the simulated time series for each oscillator, two main peaks
are observed in the power spectrum, one for the base mode at the main frequency, f1, and
the other for the subharmonic mode at half the base frequency, f1/2. In Fig. 7.20b, the phase
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space plot for f1 on the left hand side shows spatial homogeneity in amplitude and phase. The
locking of all oscillators to the base frequency is also observed in the experiments (Fig. 7.17a).
At f1/2, a cluster pattern with Ising walls similar to the walls depicted in Figs. 7.16 and 7.17b
is observed. Local oscillators in two different domains have a phase difference of π (Fig. 7.20d).
At the walls separating the clusters from each other, the amplitude of the subharmonic mode
drops to zero as the phase switches to the other value (Fig. 7.20d). The clustering is even
more apparent in the phase space representation for f1/2 on the right hand side of Fig. 7.20d.
Phase balance is observed, with the same amount of oscillators in either phase (Fig. 7.20b).
Phase balance in the subharmonic mode at half the base frequency results in the absence
of a period-2 modulation of the averaged signals. The simulations reveal that the nonlinear
global coupling is responsible for all oscillators being locked at their extrema, while the 1:1
resonance, γ, which is intrinsic to the silicon oxidation dynamics, contributes to the observed
subharmonic 2-phase clustering.

7.3 Moving Clusters and Coexistence of Oscillations with Dif-
ferent Frequencies

Fig. 7.9 at the beginning of this chapter shows the evolution of a cluster pattern consisting
of moving cluster domains with period-3 dynamics in the upper part of the electrode in
coexistence with period-1 oscillations in the lower part of the electrode. The first panel of
Fig. 7.21 depicts a respective local time series of ξ with period-1 oscillations. All local time
series are phase locked to ξ at the maxima. Period-1 oscillations are similar in appearance
to ξ displayed in the bottom panel. Period-3 oscillations can be distinguished by modulation
of the amplitude. The period of this modulation amounts to three times the period of ξ, i.e.
the base period. The local times series in the second and third plate exhibit such a period-3
pattern. The phase shift between them corresponds to one period of the oscillations of ξ.
The oscillations in the fourth panel show period-3 oscillations during the last 600 seconds.
The fifth plate displays a time series at another position on the electrode that exhibits more
complicated dynamics, e.g. between t = 0 s and t = 1150 s, a period-6 pattern is discernible.

From the series of snapshots in Fig. 7.9, two of the period-3 domains, both at the top of the
electrode, can be easily distinguished. The domain on the right has its high maxima always
one base period before the domain on the left. As for the labyrinthine pattern, a frequency
demodulation technique is used to elucidate the characteristics of this mobile domain pattern.
The use of the fast Fourier transform of the local time series is problematic in the case of
moving domains, as the local dynamics close to the domain walls will be in different domains
during different periods of time. As the domain walls move slowly, the Fourier transform may
still be used to analyze short parts of the time series.

The local power spectra depicted in Fig. 7.22 for the data of the cross section shown in
Fig. 7.9 displays three prominent peaks. The peak at the base frequency of the oscillation
(f1 = 17.1 ± 0.6 mHz) stretches across the entire cross section, analogous to the base mode
in the case of the Ising clusters. The subharmonic peaks at one half (f1/2 = 8.5 ± 0.6 mHz)
and at one third (f1/3 = 5.5± 0.6 mHz) of the base frequency have a negligible amplitude in
part of the cross section and exhibit a nearly spatially uniform distribution in the other part
of the cross section.

Fig. 7.23 shows amplitude and phase distributions of the Fourier coefficients of the base mode,
the second subharmonic mode and the third subharmonic mode of the entire electrode. As
anticipated from Fig. 7.22, the distribution of amplitude and phase of the mode at the base
frequency is uniform (Fig. 7.23a). A significant contribution of the second subharmonic mode
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Figure 7.21: Local time series in different domains in the moving cluster pattern illustrating the
coexistence of dynamics of different periodicity at different places on the electrode [x, y]: period-1 at
[100, 200], period-3 at [120, 560], [190, 550] and [45, 340], and period-6 at [190, 430]. The last panel
shows the times series of the space averaged ellipso-microscopy signal, ξ. Experimental conditions: in
Fig. 7.9.

(Fig. 7.23b) is restricted to a very small part of the electrode. In the case of the third
subharmonic mode, a significant contribution is found in the upper half of the electrode
(Fig. 7.23c). The distribution of the phase is only plotted for the regions where |a|2 > 1500.
Here, three large domains can be distinguished, one in the top left hand corner (arg(a) ≈ 1.7),
one below and to the right hand (arg(a) ≈ −0.4), and another below (arg(a) ≈ −2.5). The
phase changes by 2π/3 when switching from one domain to another. The characteristics of
the domain walls can be deduced from the complex Fourier coefficient in phase space and from
the phase histogram (Fig. 7.24). As is the case with Ising clusters, the uniform distribution
of amplitude and phase of the base mode manifests itself in a localized point cloud in the
phase space representation (Fig. 7.24a). The cluster formation arises in a subharmonic mode.
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Figure 7.22: Power spectrum from the Fourier transform of the cross section, ξ(y, t), shown in Fig. 7.9.
The three main peaks are observed at the base frequency of the oscillation, f1 = 17.1±0.6mHz, at half
of the base frequency of the oscillation, f1/2 = 8.5± 0.6 mHz, and at one third of the base frequency
of the oscillation, f1/3 = 5.5 ± 0.6 mHz, under the conditions described in Fig. 7.9. The peak at
11.6± 0.6 mHz is a higher harmonic of the one at one third of the base frequency.

In Fig. 7.24b the phase space representation and the histogramm are given for the third
subharmonic mode. The histogram shows the clustering of the local oscillators at three
different phases separated from each other by 2π/3. In contrast to what is observed for Ising
clusters, in the phase space representation in the left panel of Fig. 7.24b, the connection
between the domains does not intersect the origin, but moves in a circle around the origin.
This is a typical indicator for Bloch walls separating the domains.

A Bloch wall is, as an Ising wall, a boundary layer between two domains of different phase.
However, in contrast to passing an Ising walls, when passing a Bloch wall the amplitude does
not go through zero, but remains constant, and the phase changes continuously. Fig. 7.25
illustrates these characteristic features of Bloch walls. The phase space representation of the
complex Fourier coefficient of the experimental data only show two domain connections in
Fig. 7.24b, because the three domains are separated by only two domain walls, as can be seen
in Fig. 7.23.

Another crucial difference between Ising and Bloch walls is the immobility of the former
and the mobility of the latter. The motion of Bloch walls is surprising, because they separate
symmetric states. Non-variational effects are responsible for chirality at the interface between
the domains which induces the motion (Coullet et al., 1990). Depending on the system
parameters, the velocity of Bloch walls may be very small.

The behavior of the phase is a result of motion of the domain walls. In the case of moving
domains, the Fourier transform of local domains can only give limited insight into the overall
dynamics. This becomes obvious from the shape of the phase space plot and the phase
histogram at the three characteristic frequencies discussed so far (Fig. 7.24).

The contribution to the dynamics of the mode at half the base frequency, f1/2 = 0.0085 Hz,
is limited to a very small region on the electrode (Fig. 7.23b). Within this region the phase
is uniformly distributed. The active region coincides with a region where the mode at one
third of the base frequency is active as well. This superposition leads to period-6 oscillations,
an example of which is displayed in the fifth plate of Fig. 7.21. The cross section in Fig. 7.9
suggests that this is the result of the movement of the domain walls.

Lin et al. (2000) investigated the features of domains separated by Bloch and Ising walls.
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(a)

(b)

(c)

Figure 7.23: Spatial distribution of the amplitude and phase of the Fourier transformation for the
three main modes. (a) Base mode. (b) Mode at half the base frequency. (c) Mode at one third of
the base frequency. Experimental conditions: in Fig. 7.9.

In the case of the periodically forced Belousov-Zhabotinsky reaction, a labyrinthine pattern
is connected to a 1:2 resonance with the forcing frequency. The forcing is twice as fast
as the oscillation of the system, which locks to the forcing in two different phases. The
patterning appears in the base mode of the system as the forcing is external. In the case of
the electrodissolution of silicon, the subharmonic character of the pattern is a direct result of
the intrinsic character of the forcing and the assignment of the self forcing to the base mode.

Reducing the light intensity of the parametric forcing changes the features of the standing
wave pattern. Additionally, the character of the domain walls changes from Ising walls to
Bloch walls. This qualitative change in the character of the walls is called non-equilibrium



7.3. Moving Clusters and Coexistence of Oscillations with Different Frequencies 111

(a)

−1 0 1
−1

−0.5

0

0.5

1

Im
(a

)
−2 0 2

0

1

2

3

4

5

ρ os
c

−1 0 1
−1

−0.5

0

0.5

1

Im
(a

)

−2 0 2
0

5

10
ρ os

c

−1 0 1
−1

−0.5

0

0.5

1

Im
(a

)

Re(a)
−2 0 2

0

1

2

3

4

5

ρ os
c

arg(a)

−1 0 1
−1

−0.5

0

0.5

1

Im
(a

)

−2 0 2
0

1

2

3

4

5

ρ os
c

−1 0 1
−1

−0.5

0

0.5

1

Im
(a

)

−2 0 2
0

5

10

ρ os
c

−1 0 1
−1

−0.5

0

0.5

1

Im
(a

)
Re(a)

−2 0 2
0

1

2

3

4

5

ρ os
c

arg(a)

(b)

−1 0 1
−1

−0.5

0

0.5

1

Im
(a

)

−2 0 2
0

1

2

3

4

5

ρ os
c

−1 0 1
−1

−0.5

0

0.5

1

Im
(a

)

−2 0 2
0

5

10

ρ os
c

−1 0 1
−1

−0.5

0

0.5

1

Im
(a

)

Re(a)
−2 0 2

0

1

2

3

4

5

ρ os
c

arg(a)

−1 0 1
−1

−0.5

0

0.5

1

Im
(a

)

−2 0 2
0

1

2

3

4

5

ρ os
c

−1 0 1
−1

−0.5

0

0.5

1

Im
(a

)

−2 0 2
0

5

10

ρ os
c

−1 0 1
−1

−0.5

0

0.5

1

Im
(a

)

Re(a)
−2 0 2

0

1

2

3

4

5

ρ os
c

arg(a)

Figure 7.24: Complex Fourier coefficient in phase space with a phase space normalization factor
15000, and phase histogram, i.e. histograms of the relative frequency density, ρosc, of the data from
Fig. 7.23. (a) Base mode, evaluated in the region of interest: x = 70 − 150 and y = 300 − 500. (b)
Mode at one third of the base frequency in the region of interest: x = 70 − 100 and y = 350 − 580.
Distribution of the Fourier transformation of the local oscillators in phase space for certain modes
and the respective histograms of the relative frequency density, ρosc, under the conditions described
in Fig. 7.9.
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Figure 7.25: Clusters separated by Bloch walls. (a) Variations of the modulus of the amplitude,
|a|2, and the phase, arg(a), along one spatial dimension. (b) Phase space plot of the complex Fourier
coefficient.

Ising-Bloch transition (NIB). It arises in oscillatory systems in 1:2 resonance with a paramet-
ric forcing (Esteban-Martin et al., 2005). The name alludes to the equilibrium Ising-Bloch
transition observed in the case of ferromagnets. In the NIB bifurcation, a immobile Ising front
looses stability to two counterpropagating Bloch fronts as the forcing amplitude is decreased.
This pitchfork bifurcation is illustrated in Fig. 7.26.

A NIB can be expected in the electrodissolution of silicon as well. The forcing amplitude in
this system can be adjusted by experimentally changing the external resistance or by using
different values of γ in the simulations of the MCGLE. The phase space diagrams of the
subharmonic mode and the front velocities will prove the existence of such a bifurcation.
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represents nonlinear frequency correction, and � represents
the forcing amplitude �proportional to ��. Exact forms for
these parameters have been derived for specific models such
as the Brusselator and the FHN models.24,25

According to Eqs. �2� stable stationary solutions of the
amplitude equation �3� describe frequency-locked or reso-
nant oscillations. Uniform solutions of this kind exist for
���b, where26

�b =
�� − �
�
�1 + 
2

. �4�

In the next two sections we show that nonuniform solutions
may restrict or extend the boundaries of resonant response.

IV. NONRESONANT FRONT DYNAMICS

A. The NIB bifurcation

Within the tongue boundaries, �b, of the 2:1 resonance,
front structures shifting the oscillation phase by � exist. We
use the forced CGL �FCGL� equation �3� to study the corre-
sponding front solutions. We recall that stationary solutions
of Eq. �3� correspond to resonant oscillations at � f /2. Reso-
nant oscillations are therefore destroyed when front dynam-
ics set in; the oscillation frequency at a given point changes
when a moving front is passing by. One mechanism which
induces front dynamics is the nonequilibrium Ising-Bloch
bifurcation. This is a pitchfork bifurcation in which a station-
ary “Ising front” loses stability to a pair of counterpropagat-
ing “Bloch fronts” as the forcing strength decreases below a
threshold �NIB. A NIB bifurcation diagram for Eq. �3� is
shown in Fig. 3. For the special case 	=
=0, the threshold
is given by27

�NIB = ��2 + ��/3�2. �5�

Figure 4 shows the tongue boundaries of the 2:1 resonance,
calculated from Eq. �4�, and the NIB bifurcation threshold
�5�. The NIB threshold splits the 2:1 resonance tongue into
two parts, a Bloch part, �b��NIB, and an Ising part, �
��NIB. When 	 is nonzero and positive �negative� the NIB
boundary ��=�NIB� shifts to the right �left� tongue boundary.
The NIB boundary for the FHN model is shown in Fig. 2.

In one space dimension, the NIB bifurcation threshold
designates a sharp transition from resonant stationary Ising
patterns at high forcing strengths, to nonresonant traveling
Bloch waves at low forcing strengths.12,28 In two space di-
mensions the transition is not necessarily sharp; an interme-
diate range of turbulent dynamics can appear in the vicinity
of the NIB boundary when a transverse front instability de-
velops.

B. Bloch-front turbulence

Ising and Bloch fronts in bistable systems can go
through transverse front instabilities.29 Far into the Ising re-
gime transverse instabilities often lead to stationary labyrin-
thine patterns through fingering and tip splitting. Close to the

FIG. 2. �Color online� The resonance tongue boundaries for the 2:1 response
of the periodically forced FHN equations �1�. The horizontal axis spans the
ratio of the forcing frequency � f to the Hopf frequency, �0�0.83, of the
unforced system. Within the tongue boundaries the system oscillates at ex-
actly half the forcing frequency. The green curve marked as �NIB is the NIB
boundary; above are stationary Ising patterns and below are traveling Bloch
wave patterns. The red circle marks the parameter values of standing waves
found outside the resonance tongue. The parameters in the FHN equations
are �=1, �=4.0, a1=0.5, a0=0.1.

FIG. 3. �Color online� The nonequilibrium Ising-Bloch �NIB� bifurcation
for the forced CGL equation �3�. For ���NIB there is a single stable Ising
front with zero speed. For ��NIB the Ising front is unstable and there are
a pair of stable counterpropagating Bloch fronts. The insets show the shape
of Re�A� �solid blue curve� and Im�A� �dashed green curve� across the front
position. Parameters: �=1.0, �=0.01, 
=	=0.0.

FIG. 4. Resonance tongue diagram for the forced CGL equation �3�. Inside
the tongue-shaped region bounded by the solid lines �= ��� �for 
=0� uni-
form solutions are frequency-locked �resonant�. Above the dashed curve �
=�NIB resonant standing-wave patterns �stripes, labyrinths, and spots� are
found while below �NIB nonresonant Bloch-front spiral waves prevail.
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Figure 7.26: Illustration of the nonequilibrium Ising-Bloch (NIB) bifurcation, where a single stable
Ising front becomes unstable at the bifurcation point, γNIB, and a pair of stable counterpropagating
Bloch fronts emerges, whose front speeds increase as the forcing amplitude, γ, is decreased. The insets
show the shape of the real part (blue curve) and the imaginary part (dashed green curve) of the
complex valued amplitude [from (Marts et al., 2006)].

7.4 Discussion and Outlook

Using imaging ellipsometry, it could be demonstrated that oscillations of the current density
of the anodic oxidation of silicon may be accompanied by spatial pattern formation includ-
ing stripes, concentric circles, clusters with subharmonic entrainment and spatio-temporal
turbulence. The appearance of patterns strongly depends on the applied parameters. Most
strikingly, sustained patterns are observed only on n-type silicon and never on p-type sili-
con. In fact, the existence of sustained spatial patterns is closely related to the limitation of
the charge carriers generation by sample illumination, which seems to introduce interactions
between different parts of the electrode that are essential for the emergence of the patterns.

If fluctuations or local heterogeneities locally introduce a higher reaction rate, holes are used
up during the ensuing reaction. Making the plausible assumption that the characteristic time
of lateral diffusion of the holes in the silicon is fast compared to the characteristic reaction
time, the hole concentration remains spatially uniform at all times, because differences in
the hole concentration are readily equalized. In this way the hole-concentration dynamics
constitute a global coupling.

Cluster patterns characteristically develop in the presence of a global coupling. This is in
accordance with the above interpretation. However, several questions still remain. Firstly,
another global coupling is introduced by the resistor in series with the working electrode,
both, on n-type silicon and p-type silicon. In this case the coupling results from a global
reduction of applied potentials, because the sum of increases in the local current results in an
increase of the ohmic voltage drop affecting the entire electrode. Why does the influence of the
illumination result in pattern formation, whereas the influence of the series resistance is not
sufficient? Understanding this seems to be the key to understanding the different dynamics
of p-type and n-type silicon.

The discussions in the literature on the mechanistic origin of sustained current density oscilla-
tions revolves around the spatial synchronization of local oscillators. The basis for, both, the
self-oscillating domain model (Chazalviel and Ozanam, 1992) and the current burst model
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(Carstensen et al., 1999) are self-oscillating domain that are either synchronized leading to
sustained oscillations, or desynchronized leading to damped oscillations.

This synchronisation approach can be invalidated, specifically because spatially patterned
sustained oscillations according to many figures in Sec. 7.1, and uniformly damped oscillations
are observed. An example of the latter is displayed in Fig. 7.4, which shows that the local
time series of a cross section are concertedly damped similar to the averaged signal ξ. On a
mesoscopic level, no splitting up into out of phase domains is observed.
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Chapter 8

Summary

Electrochemical reactions usually proceed far from the thermodynamic equilibrium and have
nonlinear reaction kinetics. These features constitute the basis for self-organized spatial and
temporal phenomena, which are abundant in electrochemical systems. Hence, the elucidation
of the nonlinear dynamics of these systems is essential for the understanding their behavior.
This thesis focused on the electrified silicon|oxide|electrolyte interface and on two fundamen-
tal questions of its dynamics: (i) The physical origin of the oscillatory instability was studied
combining tools of semiconductor electrochemistry and nonlinear dynamics. (ii) Synchroniza-
tion between local sites on the spatially extended electrode was investigated. Closely related
to this is the question whether the temporal oscillations are accompanied by spatial pattern
formation.

An ellipso-microscopic imaging setup was built to study the spatio-temporal dynamics of the
anodic electrodissolution of silicon. The first spatially and temporally resolved in situ mea-
surements of the oxide layer thickness were presented here, demonstrating that the temporal
oscillations can be indeed accompanied by spatial pattern formation. A theoretical and an
experimental analysis of the ellipso-microscopic signal revealed that the measured light in-
tensity relates linearly to the oxide layer thickness in the region of interest. This allowed for
the correlation between oxide layer thickness and coulometrically determined current density.
Concurrent measurements of these two quantities were carried out with n- and p-type silicon.
Despite many similarities, the two types of electrodes also showed different behavior that was
explored in detail.

The investigation of the parameter dependencies for p-type silicon was more straightforward
than for n-type silicon, because illumination is not necessary for its anodic oxidation. Stable
oscillations required a minimum voltage and series resistance and emerged in a Hopf bifurca-
tion. This led to a new interpretation of the oscillatory instability from a dynamical point of
view. In addition to these low-amplitude oscillations, which have a sinusoidal characteristic,
relaxational high-amplitude oscillations were observed. At high ammonium fluoride concen-
trations, not only simple periodic, but also complex dynamics, such as quasi-periodicity or
chaos were observed.

An increase of the applied voltage led to an increase of the oxide layer thickness and the
voltage drop across the interface, while the ratio of the two remained constant or oscillated
around a constant average value. Assuming a linear potential drop across the oxide layer,
the electrical field is constant. This fact was also reflected in the constant or the constant
average current density suggesting that the current density is limited by migration through
the oxide layer. These results constitute one building block for the physical mechanism of the
oscillations. A second building block was obtained from measurements of the etch rate under

115



116 8. Summary

various conditions. The difference between the etch rate at open-circuit potential and the one
at applied anodic voltages indicated its dependency on the electrical field in the oxide layer.

Based on the above mentioned experimental results and literature data, a mathematical
model was derived. It consists of four ordinary differential equations. The variables of the
model are the potential drops across the oxide layer and across the space charge layer in the
semiconductor, the conductivity and the oxide layer thickness. The latter two represent the
activator and the inhibitor variable, respectively. Crucial for the existence of the oscillatory
instability was is the dependency of the conductivity in the oxide layer on the electrical field.
This ansatz is supported by literature data. Furthermore, the field dependency of the etch
rate had to be accounted for. For lack of functional relationship between electrical field and
etch rate in the literature, it was assumed to be a linear function of the conductivity.

The numerical simulation of the model reproduced sustained oscillations, foci and nodes in
parameter regions comparable to the ones of the experiments and could even quantitatively
capture the experimental values of the current density, the oxide layer thickness and the
etch rate, while the phase relation between oxide layer thickness and current density of the
numerical simulations does not match the experimentally measured one.

The analysis of the model system revealed the nature of the positive and negative feedback
that are responsible for the oscillatory instability. The conductivity is the activator variable
introducing a positive feedback loop that involves also the electrical quantities current density
and potential drop across the oxide layer. The oxide layer thickness constitutes the inhibitory
variable in this mechanism. The potential drop across the space charge layer does not change
significantly, and the one across the oxide layer adjusts nearly instantaneously to changes in
the current density. These two variables do not constitute true degrees of freedom. Therefore,
the model system is quasi two-dimensional. One more degree of freedom is necessary to
describe complex dynamics, such as quasi-periodicity and chaos, therefore these dynamical
features are not captured by this model.

The electrodissolution of n-type silicon requires sample illumination and exhibited consider-
ably different dynamical behavior. Sustained current density oscillations are observed also at
zero series resistance at intermediate illumination intensities. This novel type of relaxational
oscillations is characterized by clear current plateau arising from the illumination limitation
superimposed by a fine structure with current density spikes, stemming from electron injec-
tion. It could be shown that this type of oscillation is connected to a bistability. Depending
on the initial conditions, the system settles down to a steady state (‘wet’ oxide) or on a limit
cycle (‘dry’ oxide). To capture this new type of oscillations the model has to be expanded
taking into account the illumination intensity limiting the hole concentration at the surface
of the semiconductor.

Spatially resolved experiments showed that this new type of relaxational oscillations on n-type
silicon, and only this, is accompanied by sustained pattern formation. During the oscillations
the oxide layer thickness forms unusual subharmonic cluster patterns. The base mode of the
local oxide layer thickness oscillations being phase-locked to the current density oscillations is
spatially uniform and superimposed with non-equilibrium Ising and Bloch clusters from the
subharmonic modes. The former cluster show immobile labyrinthine patterns, and the latter
cluster domains moving across the electrode.

The cluster patterns could be interpreted with the help of a modified complex Ginzburg-
Landau equation. The combination of a 1:1 entrainment and a global coupling led to the
reproduction of the Ising domains numerically simulated in one spatial dimension. It is
feasible to assume that the entrainment results from the illumination and the global coupling
from the series resistance. A mathematical model based on these physical ideas has yet to
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be set up to verify this approach and provide a bridge between the experiments and the
normal-form interpretation of the origin of this novel type of pattern.

In summary, this thesis combines the perspective of semiconductor electrochemistry with the
one of nonlinear dynamics, thereby shedding new light on the mechanism and the dynamics
of the electrodissolution of silicon.



118 8. Summary



Appendix A

Overview of Experiments

In the following two tables give an overview of the figures in this thesis. Tab. A.1 contains all
samples used and Tab. A.2 recapitulates the experimental conditions presented in a figure.
The experiment code in the last column indicates the sample in its first five digits (first
column of Tab. A.1). In the third table (Tab. A.3), the figures are arranged according to the
observed spatial phenomenon.

Preliminary experiments, not presented in this thesis, were essential for the setup and success
of the presented experiments. Part of these experiments were conducted with M. Frigieri
within the framework of his Master’s thesis (Frigieri, 2007).

Part of the presented experiments on n-Si, were conducted in cooperation with A. Heinrich
within the framework of his Bachelor’s thesis (Heinrich, 2009).

Table A.1: Sample parameters and experimental conditions.

Sample cNH4F pH A Material Back Fig.
[mol/l]

[
mm2

]
Contact

ah002 0.05 2.3 5.27 n-Si(111) Al
ah003 0.05 2.3 8.11 n-Si(111) Al
ah005 0.05 2.3 4.31 n-Si(111) Al
ah006 0.05 2.3 5.66 n-Si(111) Al
im035 0.05 2.4 4.91 p-Si(111) Au 5.2
im036 0.20 3.5 4.66 p-Si(111) Au 5.14
im037 0.10 3.1 9.71 n-Si(111) Al
im039 0.05 2.3 9.64 n-Si(111) Al
im040 0.05 2.3 9.05 n-Si(111) Al 7.19
im041 0.05 2.3 8.91 n-Si(111) Al
im042 0.05 2.3 7.65 p-Si(111) Au 5.2
im045 0.05 2.3 4.26 p-Si(111) Au 5.2, 5.3
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Table A.2: Experiment parameters. In the fourth column the annotations indicate whether the
solution was stirred (S), the experiment started with a potential step starting at open-circuit potential
(O), or the applied voltage was scanned (V).

U R L Annot. Fig. Experiment

[V] [kΩ]

[
mW
cm2

]
p-Si
0.63 0 0.00 V 3.8b im035a00
1.35 0 0.00 O 5.1a im042z03
2.35 0 0.00 O 5.1b im042z02
3.30 100 0.00 5.4, 5.5, 5.6 im045h03d
3.50 1 0.00 5.5, 5.6, 5.7 im045h05c
3.50 5 0.00 5.7 im045h05b
3.50 15 0.00 3.8c, 5.7 im045h04d
3.50 30 0.00 3.8c, 5.7 im045h04c
3.50 50 0.00 3.8c, 5.7 im045h04b
3.50 100 0.00 5.4 im045h03c
3.50 100 0.00 3.8c, 5.7 im045h04a
4.00 100 0.00 4.5, 4.6, 4.9a, 4.11, 5.4, 5.5, 5.6 im045h03b
4.50 100 0.00 5.4 im045h02c
4.50 100 0.00 5.4 im045h03a
5.00 100 0.00 5.4 im045h02b
5.35 100 0.00 O 4.2a, 4.2d, 5.12a, 5.13a, 7.3 im042s00
6.00 100 0.00 5.4 im045h02a
6.50 100 0.00 5.4 im045h01b
7.00 200 0.00 O 4.2b, 4.2e, 4.8, 4.9b, 4.10 im045h00a
7.17 200 0.00 O 5.5, 5.6 im045c00
7.35 100 0.00 O 4.3, 4.7a, 5.11a, 5.12b, 5.13b im042p00
8.50 200 0.00 O 4.2c, 4.2f, 4.7b, 5.5, 5.6, 5.12c, 5.13c im045d00
8.60 100 0.00 V 2.5, 4.1 im035g00
8.65 0 0.00 O 5.5a im035d01
8.65 10 0.00 O 5.5a im035d02
8.65 100 0.00 5.8b, 5.9b im036d01
9.65 100 0.00 O 5.8a, 5.9a, 7.2 im035d03
10.65 40 0.00 5.11d, 5.12f, 5.13f, 7.5 im036d06b
12.49 10 0.00 5.10, 5.11c, 5.12e, 5.13e im036e00d

n-Si
8.00 0 0.13 6.5 ah002b00b
8.00 0 0.19 6.5 ah002b00h
8.00 0 0.23 O 6.1a, 6.8, 6.9 ah003c00
8.00 0 0.25 6.4e, 6.4f, 6.5, 6.10e, 6.12a, 6.12b, 7.7 ah002d00c
8.00 0 0.25 6.7, 6.8, 6.9 ah006e00c
8.00 0 0.26 6.8, 6.9 ah006e01d
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U R L Annot. Fig. Experiment

[V] [kΩ]

[
mW
cm2

]
8.00 0 0.27 6.5 ah002b00c
8.00 0 0.28 6.8, 6.9 ah006e01c
8.00 0 0.30 6.4d, 6.4f, 6.5, 6.10d, 6.12a, 6.12b ah002b00g
8.00 0 0.31 6.8, 6.9 ah006e01b
8.00 0 0.37 O 6.1b, 6.2, 6.8, 6.9 ah003d00
8.00 0 0.39 6.8, 6.9 ah006e00b
8.00 0 0.41 6.4c, 6.4f, 6.5, 6.10c, 6.12a, 6.12b ah002b00f
8.00 0 0.42 6.5 ah002b00d
8.00 0 0.46 O, S 6.3 im041e00a
8.00 0 0.49 O 6.8, 6.9 ah005b00
8.00 0 0.49 O 6.8, 6.9 ah003b00
8.00 0 0.51 S 6.3 im041e00b
8.00 0 0.52 6.4b, 6.4f, 6.5, 6.10b, 6.12a, 6.12b ah002d00b
8.00 0 0.52 O 6.8, 6.9, 7.1 ah003f00
8.00 0 0.54 O 6.8, 6.9 ah006e00a
8.00 0 0.55 6.8, 6.9 ah006e01a
8.00 0 0.56 O 6.8, 6.9 ah005a00
8.00 0 0.64 O 6.8, 6.9 ah006b00
8.00 0 0.65 6.4a, 6.4f, 6.5, 6.10a, 6.12a, 6.12b ah002b00e
8.00 0 0.67 O 6.8, 6.9 ah003g00
8.00 0 0.75 S 6.3 im041e00c
8.00 0 0.81 O 6.1c, 6.8, 6.9 ah003h00
8.00 0 0.81 O, S 6.8, 6.9, 6.15 ah003k00
8.00 0 0.84 S 6.3 im041e00d
8.00 0 1.16 O, S 2.5 im041h00
8.00 0 1.21 O, S 7.11 im041c00
8.00 0 1.30 O, S 3.8a im041a00
8.00 0 1.62 7.12, 7.13 im037d01
8.00 1 0.40 7.9, 7.21, 7.22, 7.23, 7.24 im039f01
8.00 1 0.40 6.13, 6.14a, 6.14c im039f02a
8.00 1 0.40 S 6.13, 6.14b, 6.14c, 7.10 im039f02b
8.00 1 0.40 6.13 im039f02c
8.00 100 0.64 O 6.1d, 6.12b, 7.6 ah002f00
9.00 30 0.25 6.6 ah005e01b
9.00 30 0.56 O 6.12b ah005e00a
9.00 100 0.87 6.12b ah005e01d
10.00 1 0.36 O 6.12b im039e00
11.00 30 1.19 S 7.8, 7.14, 7.15, 7.16, 7.17 im040c02
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Table A.3: Overview of spatial pattern formation during different temporal dynamics.

Temporal Pattern Parameters Spatial Pattern Fig.

p-Si
low-amp. osc. high Rser uniform 7.3
chaotic low-amp. osc. high cNH4F uniform 7.5
high-amp. osc. low Rser uniform
transient changing U stripes or uniform 7.2, 7.3

n-Si
low-amp. osc. high Rser uniform 7.6
high-amp. osc. low Rser moving clusters 7.9, 7.10, 7.11

intermediate Rser plateau pattern 7.11
intermediate Rser immobile clusters 7.8

chaotic high-amp. osc. high cNH4F turbulent 7.12
spike dom. osc. low L uniform 7.7
transient changing U clusters and concentric fronts 7.6, 7.1



Appendix B

Glossary

The glossary gives an overview of the acronyms (Tab. B.1), the physical constants (Tab. B.2),
and the experimental parameters (Tab. B.3), and the symbols (Tab. B.4) used in this thesis.

Table B.1: Overview of acronyms used in this thesis.

Acronym Explanation

AFM Atomic force microscopy
CCD Charge coupled device
CE Counter electrode
CGLE Complex Ginzburg Landau equation
e− Electron
GUI Graphic user interface
h+ Hole
LED Light-emitting diode
MCGLE Modified complex Ginzburg Landau equation
NIB Nonequilibrium Ising Bloch bifurcation
OCP Open circuit potential
RE Reference electrode
TEM Transmission electron microscopy
WE Working electrode
γ Photon
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Table B.2: Overview of the physical constants used in this thesis.

Constant Explanation

c = 2.99792 · 108 m/s Speed of light
e0 = 1.60218 · 10−19 C Elementary charge
F = 9.64853 · 104 As/mol Faraday constant
h = 6.62607 · 10−34 Js Planck constant
k = 1.38066 · 10−23 J/K Boltzmann constant
K = 8.0461 Constant for Lorentz-Lorens equation (Hung et al., 1991)
K1 = 1.3 · 10−3 mol/l Equilibrium constants for ammonium fluoride
K2 = 1.4 · 10−1 mol/l dissolution
M = 60.2 g/mol Molar mass of silicon oxide
NA = 6.02204 · 1023 1/mol Avogadro constant
R = 8.31451 J/Kmol Universal gas constant
ε0 = 8.85418 · 10−14 F/cm Vaccum permittivity

Table B.3: Overview of system parameters used in this thesis.

Parameter Explanation

c1 = −10 Constant in the MCGLE
c2 = 1.5 Constant in the MCGLE
Rcont = 15.5 Ω Resistance of the silicon back contact
n̂H2O = 1.342 Refractive index of the electrolyte (Lewerenz et al., 1989)
n̂Si = 3.85 + 0.02i Refractive index of silicon oxide (Lewerenz et al., 1989)
n̂SiO2 = 1.34 Refractive index of silicon (Lewerenz et al., 1989)
αA = 20 ◦ Angle between the transmission axis of the analyzer and the

plane of incidence
αC = 45 ◦ Angle between the fast axis of the quarter plate and the

plane of incidence
αi = 70 ◦ Angle of incidence
αP = 175 ◦ Angle between the transmission axis of the polarizer and the

plane of incidence
γ = 1.55 Global forcing term in the MCGLE
λillu = 630 nm Typical wavelength of the light used for sample

illumination
λimag = 470 nm Typical wavelength of the light used for sample imaging
ω0 = 3.1 Hz Frequency of the uniform oscillations in the MCGLE
ρ = 1.69 g/cm3 Density of silicon oxide obtained from Eq. (4.15)
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Table B.4: Overview of symbols used in this thesis.

Symbol Unit Explanation

A
[
m2
]

Area
|a|2 Amplitude in the Fourier analysis
arg(a) Phase in the Fourier analysis
∆ arg(a) Width of a phase bin
B Modification term in the MCGLE
Ccont

[
F/cm2

]
Capacity of the silicon back contact

Chh

[
F/cm2

]
Capacity of the Helmholtz layer

Cox

[
F/cm2

]
Capacity of the oxide layer

Csc

[
F/cm2

]
Capacity of the space charge layer

Css

[
F/cm2

]
Capacity of the surface states

c [m/s] Speed of light
c1 Constant in the MCGLE
c2 Constant in the MCGLE
cinc Etch rate increment of the linear fit
cNH4F [mol/l] Bulk ammonium fluoride concentration
copt Proportionality factor
D Exponent of the Drude equation
E [V/m] Electrical field in the oxide layer
EF [J] Fermi energy
∆EF [J] Difference between Fermi energies of silicon and electrolyte

before contact
Eillu [J] Energy of the sample illumination
EP [V/m] Electrical field after the polarizer
Evac [J] Vaccum energy
Ê [V/m] Electrical field at the camera
e0 [C] Elementary charge
F [As/mol] Faraday constant
f1 [Hz] Frequency of the base mode
f1/2 [Hz] Frequency of the second subharmonic mode
f1/3 [Hz] Frequency of the third subharmonic mode
h [Js] Planck constant
I [A] Current
J

[
A/m2

]
Current density

JF

[
A/m2

]
Faradaic reaction current density

Jmig

[
A/m2

]
Migration current density across the oxide layer

Jplat

[
A/m2

]
Current density of the plateau

Jss

[
A/m2

]
Current density at the steady state

Jξ
[
A/m2

]
Current density calculated from ξ

K Constant for Lorentz-Lorens equation (Hung et al., 1991)
K1 [mol/l] Equilibrium constants for ammonium fluoride
K2 [mol/l] dissolution
ksc

[
1/m2s

]
Rate constant of the oxidation reaction

kκ [1/s] Rate constant of the adjustment of κ
k [J/K] Boltzmann constant
L

[
W/m2

]
Power density of the illumination light

continued
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continued

Symbol Unit Explanation

M [g/mol] Molar mass of silicon oxide
Nanod Number of charge carriers contributing to the current

density
Nbin Oscillators in a certain bin
Nγ Number of photons hitting the electrode surface
NH+ Number of protons reacting to give hydrogen
Ntot Total number of oscillators
n1 Refractive index of a first domain
n2 Refractive index of a second domain
NA [1/mol] Avogadro constant
nSiO2 Amount of silicon oxide
n̂H2O Refractive index of the electrolyte
n̂Si Refractive index of silicon
n̂SiO2 Refractive index of silicon oxide
P [s] Oscillation period
q [C] Charge
R [J/Kmol] Universal gas constant
Rcont [Ω] Resistance of the silicon back contact
Rext [Ω] Sum of all ohmic resistances
Rhh [Ω] Resistance of the Helmholtz layer
Rox [Ω] Resistance of the oxide layer
Rsample [Ω] Resistance of the silicon sample
Rser [Ω] Series resistance
Rsol [Ω] Resistance of the electrolyte solution
Rx Matrix for rotation
r̂p Parallel component of the reflection coefficient
r̂s Perpendicular component of the reflection coefficient
Tr̂ Jones matrix for reflection
TαA Jones matrix for polarization
Tλ/4 Jones matrix for retardation
t [s] Time
tmax [s] Discrete time instances of the maxima of ξ
U [V] Voltage applied between WE and RE
Uccd [V] Voltage of the CCD sensor
Ufb [V] U at flat-band conditions
Uocp [V] U at open-circuit potential
Upot [V] Voltage applied between WE and CE
vscan [mV/s] Scan rate
W Complex amplitude in the MCGLE
〈W 〉 Spatial average of W
Wr Real part of W
Y Quantum efficiency
zL [m] Uniform oxide layer thickness (Mechanism)
z [m] Spatially averaged formed oxide layer thickness
zE [m] Spatially averaged etched oxide layer thickness(
żE

)
0

[m/s] Etch rate at Φeff = 0 of the linear fit(
żE

)
ocp

[m/s] Initial etch rate during etch back(
żE

)
osc

[m/s] Period averaged etch rate during oscillations(
żE

)
ss

[m/s] Etch rate during steady states

continued
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continued

Symbol Unit Explanation

ZF [Ω] Faradaic impedance
zL [m] Spatially averaged oxide layer thickness
αi [◦] Angle of incidence
αt [◦] Angle of transmission
αA [◦] Angle between the transmission axis of the analyzer and

the plane of incidence
αB [◦] Brewster angle
αC [◦] Angle between the fast axis of the quarter plate and the

plane of incidence
αP [◦] Angle between the transmission axis of the polarizer and

the plane of incidence
ε Relative permittivity
ε0 [F/cm] Vacuum permittivity
ηH Hydrogen evolution efficiency
γ Global forcing term in the MCGLE
κ [m/Vs] Conductivity of the oxide layer
λillu [nm] Typical wavelength of the light used for sample

illumination
λimag [nm] Typical wavelength of the light used for sample

imaging
ν Number of charges contributing to the current density

per silicon atom
νcap Number of captured holes contributing to the current

density per silicon atom
νinj Number of injected electrons contributing to the current

density per silicon atom
ω0 [Hz] Frequency of the uniform oscillations in the MCGLE
Φ [V] Potential drop
ΦB [eV] Energy barrier for the semiconductor charge carriers
Φeff [V] Applied voltage corrected for Φohm

Φext [V] Potential drop across Rext

Φhh [V] Potential drop across the Helmholtz layer in the
electrolyte

Φohm [V] Ohmic potential drop due to Rser

Φox [V] Potential drop across the oxide layer
Φsc [V] Potential drop across the space charge layer, i.e. band

[V] bending in the semiconductor
ρ [g/m] Density of silicon oxide
ρosc Relative frequency density of the phase histogramm
∆σ [C/m] Change in charge density from Eq. (4.30)
ξ [arb.units] Ellipso-microscopic signal
ξ [arb.units] Spatial average of the ellipso-microscopic signal
ξbg [arb.units] Background ξ of the electrode
ξcalc Calculated ratio of the light intensity at the camera to

the light intensity transmitted by the polarizer
ξcross [arb.units] Time evolution of a cross section of the electrode
ξelec [arb.units] Contribution to ξ from the electrode
ξ

ref
elec [arb.units] ξelec of the hydrogen terminated electrode
ξenh [arb.units] Enhanced ellipso-microscopic signal

continued
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concluded

Symbol Unit Explanation

ξJ [arb.units] ξ calculated from the current density
ξ

ref [arb.units] ξ
ref of the hydrogen terminated electrode

ξelec [arb.units] Contribution to ξ from the electrode surroundings(
ξ̇
)

init
[arb.units/s] Initial rate of change of ξ during etch back
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