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ABSTRACT

The most important step in the development process of a video qual-
ity metric is its verification with regards to the subjective quality
experience. Even though guidelines in the form of standards and rec-
ommendations are well known, there are still quite often shortcom-
ings in the verification process of many metrics. In this contribution
we revisit these rules, point out important details and review contri-
butions to video quality metrics for typical shortcomings. We will
highlight in detail five steps that should be followed in order to im-
prove the overall quality of the verification process of video quality
metrics: using a large and diverse data base, planing and conduct-
ing subjective tests carefully, using different data for calibration and
verification of a metric, avoiding unnecessary data fitting steps, and
a clear and meaningful presentation of the results. Also we will pro-
vide short examples how an improper verification might affect the
results of a video quality metric.

Index Terms— Visual quality, video quality metric, cross veri-
fication

1. INTRODUCTION

Video quality metrics (VQM) have been a subject of research for
quite some time. A remarkable number of different metrics have
been proposed so far that aim at producing results similar to the
perception of human observers. Still, the problem of predicting
the quality of distorted video well enough has not been completely
solved and only few VQMs are used in real-life applications and
products.

We can only verify VQMs by using data gained from subjec-
tive tests, as a mathematical proof is not possible. How this should
be done is well known and has been intensively studied by the ITU
and also the Video Quality Experts Group (VQEG). Guidelines are
given in the form of standards or recommendations. The most promi-
nent one is ITU-R BT.500 [1], others are [2-5]. Unfortunately, the
verification for many VQMs does not comply completely with the
recommendations outlined in these documents. The main reason is
certainly the high effort that is needed for such a verification, another
that people developing VQMs do not necessarily have experience in
conducting subjective experiments and thus are unable to produce
trustworthy data. If data bases with results from subjective tests were
publicly available, this problem could be solved. So far, however, the
only data base publicly available is the rather old VQEG Phase I data
base [6] for standard definition TV (SDTV). Also no data base for
current coding technologies is available up to now. This insufficient
verification may very well be one reason for the low acceptance of
the VQMs, as it does not allow to determine the real prediction capa-
bilities of a metric. This also makes it nearly impossible to compare
the accuracy of different metrics only by analyzing literature.

In this contribution we highlight the most important steps in the
verification process in order to gain a solid verification of VQM:s.
These steps are: using a large and diverse data base, planing and con-
ducting subjective tests carefully, using different data for calibration
and verification of a metric, avoiding unnecessary data fitting steps,
and finally a clear and meaningful presentation of the results. We
will discuss common errors in the verification process, and explain
possible pitfalls in each step by providing examples of our own or
from other contributions. We will see that the most common prob-
lems are insufficient data bases, consisting of only very few videos,
subjective tests, not done properly and therefore not delivering valid
results, and using the same data for calibration and verification of a
metric. Also the presentation of the results may not be clear enough.

The remainder of this contribution is organized as follows: in
the sections 2 to 6 we highlight the steps of a proper verification
process, but also describe often made mistakes and how they affect
the verification before we conclude in section 7.

2. VERIFICATION DATA BASE

The data base used for the verification of a VQM consists of a set of
source video sequences that are processed using a set of hypotheti-
cal reference circuits (HRC) and should be large enough. The HRCs
can be realized using video encoders, (error prone) transmission sys-
tems, or even by adding a artificial distortion e.g. noise to the video.
Thus we can increase the size of the data base by either increasing
the number of source videos or HRCs.

2.1. Verification video sequences and HRCs

During the VQEG Phase I tests, 20 different source video sequences
were used [6], for the VQEG Phase II tests, 26 different videos were
used [7]. For testing the coding efficiency of a newly developed
video codec in a verification test, the Moving Picture Experts Group
(MPEG) used 15 different videos for the verification of SVC [8],
and 14 different videos for the verification of AVC [9]. Using less
than ten different videos for the verification probably results in a
verification set that includes only a very limited subset of all possible
videos. Thus the generality of the presented results is limited. The
used videos should cover a wide range of content. They should have
different properties and represent different levels of detail, motion
and color.

The HRCs should also represent real world scenarios. To this
end, we can use typical settings for video encoders in practical ap-
plications e.g. broadcasting or video conferencing. Also one could
use a simulated transmission system including video encoders, trans-
mission channels, transcoders etc. Using HRCs which are generated
by adding artificial distortions, e.g noise or blur, to the video may be
a good approach during the the development of VQMs. But results
based on such HRCs are probably of limited use for the evaluation
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Table 1: Pearson correlation coefficients for small data bases

Data points PSNR Bit rate
All data 56 0.67 0.64
Single videos 3-7 0.87-1.0 0.73-0.98
Subset 1@ 24 0.95 0.70
Subset 2%/ 19 0.60 0.82

(@ City, Crew, Football, Foreman, Head
®) Bus, City, Crew, Harbour, Husky, Ice

of the capabilities of a VQM in a real world scenario. Thus such
HRCs should not be used for the final verification of a VQM. The
HRCs should also be diverse enough to show that the VQM is in-
dependent of a certain technology or codec. Although it may be
sensible to build VQMs that are desigend for certain video codecs,
they should still be verified using different encoders or at least dif-
ferent encoder settings. This should include different quality levels,
prediction structures or rate control strategies. Varying the bit rate or
frame rate only is not enough, if only one encoder is used, especially
if the VQM uses bit stream parameters to calculate the visual quality
of the video. The HRCs should be chosen to deliver a broad range of
quality levels, ranging from bad to very good visual quality. Prefer-
ably, the resulting data points should be equally distributed across
the whole quality range.

2.2. Too small data bases

Often the verification data base is far too small to draw reasonable
conclusions. Only one single source video is used in [10]. In [11-13]
results are presented for two videos only, three different videos are
used in [14] . [15] uses five very similar videos, all showing some
outdoor nature scenes. In [16-18] it is proposed to use different
models for different content. However, only five different videos are
used to verify five different models for five different content classes.

Only very few contributions present results using different en-
coders or at least different encoder settings apart from varying bit
rate. This is especially critical for [16-23], as these contributions
use the bit rate or other bit stream parameters without testing differ-
ent prediction structures or encoders.

We can demonstrate the problem of using only a very small data
base by using the subjective data gained in [9,24]. Combining the
CIF datasets from these two tests results in 13 different videos and 56
different data points. The overall Pearson linear correlation between
the PSNR and subjective ratings is 0.67. If we select only one video,
the prediction accuracy for PSNR varies between 0.87 and 1.0. Even
if we select set of five different videos, the prediction accuracy of
PSNR can be as high as 0.95 (see Table 1). This shows that the
real prediction accuracy can be far below compared to what can be
achieved with a very small data base. The same can be seen if we use
bit rate as a quality predictor. Here, the overall correlation is 0.64,
for single source videos the prediction accuracy varies between 0.73
and 0.98 and if six different videos are selected, a Pearson correlation
coefficient of 0.82 can be achieved, using bit rate as the only quality
measurement. Of course the selected subsets are hand-picked, but
the numbers show that if we do not use a data base that is large
enough, this may result in overestimating the prediction accuracy of
a VQM.

3. SUBJECTIVE TESTING

A first step to test the design of a VQM could be an objective evalu-
ation that basically checks, if the output of the metric changes when
different encoding parameters are used. However, a final verification
can only be done using the results from subjective tests. Therefore
the subjective tests must be conducted very carefully, and the test
documentation should contain all information needed to reproduce
the tests. Subjective testing is not an easy process and requires accu-
rate execution of every single step, as otherwise the subjective results
can be meaningless.

3.1. Test methodology

Initially one has to decide whether to use a double stimulus (DS)
method that uses a explicit reference, or a single stimulus method
(SS) that only shows the distorted videos. The decision which test
method should be used depends on the application area, the qual-
ity level of the videos, and the number of different data points to
be evaluated. DS tests are thought to be less sensitive for contex-
tual effects and are preferred, if high quality videos should be evalu-
ated. SS methods are preferred, if no common reference exists, or if
videos at a comparably low quality should be evaluated. The use of
a SS method in the case of comparably low quality videos is moti-
vated by the idea that showing a high quality reference, all distorted
videos will be perceived as equally bad, and no distinction between
different levels of low quality will be made by the observers. The
used continuous or discrete rating scale should be detailed enough
to allow discrimination between small quality differences, and easy
enough to be used in a meaningful way. Recent tests within MPEG
made extensive use of a discrete scale with eleven grades ranging
from 0 to 10, which provided stable results.

Next we have to consider the used equipment and viewing con-
ditions. Calibrated equipment and a well defined testing environ-
ment obviously deliver more accurate and reproducible results, than
if consumer grade equipment, arbitrary lighting and variable viewing
conditions were to be used. ITU-R BT.500 [1] specifies not only the
viewing conditions, including lighting conditions, background color,
viewing distance, viewing angle and more, but at least for SDTV also
the monitors to be used. Clearly, other monitors than professional
grade interlaced TV monitors may be used for subjective testing, es-
pecially if videos at different resolutions and scanning systems than
SDTV are to be evaluated, as suggested in ITU-T P.910 [3]. Still, the
selection and calibration of the monitor or projector has to be done
with much care. Displays should not be standard consumer prod-
ucts, but high class professional equipment. They should be color
calibrated, black level and gamma settings should be correct. In [25]
Tourancheau et al. showed, that CRT displays are still perceived to
deliver a better visual quality for video due to the superior reproduc-
tion of motion when compared to LCD monitors for the case of high
quality HDTV content. However, relative quality differences were
constant.

Lastly, we have to take into account our test subjects. In order
to reach statistical significance, at least 15 valid viewers should be
available. For competitive tests, it is proposed to have at least 20
test subjects to increase the stability of the results. But if too few
test subjects take part, results will possibly depend too much on one
single subject. A simple check if the number of participants is suffi-
cient can be done by dividing all participants into two equally large
groups: the results for these two independent groups should be very
similar. Naive viewers are preferred compared to experts viewers, as
these are usually paid for their participation in the tests, compared to



experts, as those quite often would prefer to do other things. This dif-
ference in motivation results in more reliable results if naive viewers
are employed. Due to better eye-sight younger people are preferred.
All viewers have to be screened for normal visual acuity and correct
color vision using standard test charts e.g. Snellen and Ishihara. In
addition, the test subjects should be able to completely understand
the task of the test and the comments made by the presenter during
the training phase.

3.2. Conducting the tests

Each tests consists of three main phases: training of the test subjects,
the actual test and processing of the results. The training phase aims
at making the test subjects familiar with the test procedure, the type
of video they will see, and the range of quality they can expect in the
test. It is probably the most important part of the whole test. The
training phase can be further split up into two parts: explanations
that are given to the test subjects and a (short) training session that is
similar to the actual test. The training session should not only use the
same testing procedure, but also the quality of the presented videos
and artifacts present in them should be similar to the quality that will
appear in the test. In particular, the lowest and the highest visual
quality that will occur in the actual test should be included. The
test itself should be split into several sessions of not more than 25
minutes each, having equally long breaks between single sessions.

After finishing the tests, the processing begins by removing the
outliers and checking if all subjects were able to carry out the test
sensibly. A formal assessment of the test subjects is proposed in
Annex 2 of ITU-R BT.500. Viewers that produce too many outliers
votes should be removed accordingly. Outliers can also be detected
by arbitrarily assigning the test subjects to different groups and com-
paring the results of these groups. To detect if the viewers are able
to reproduce their own results, several test cases should appear more
than once in one test. Viewers that are not able to assign (roughly)
the same vote to the same test case at two different time instances
should be removed. Finally, the votes have to be processed by cal-
culating a mean value for each test case and the 95% confidence
interval of the votes. The mean value is also known as mean opin-
ion score (MOS) and serves as quality value that is assigned to one
video. The size of the 95% confidence interval tells us how similar
the votes of different subjects for one video actually were and gives a
good indication about the accuracy of the tests. Whereas no general
rule can be given, the number of outliers that come from subjects that
are considered for the final results should be significantly below 5%.
The 95% confidence intervals themselves should not be above 0.1 on
a 0 to 1 range for every single test case. Additionally, an analysis of
variance (ANOVA) can be done.

3.3. Subjective testing problems

Although the above mentioned steps are well known, many con-
tributions neglect important aspects of subjective testing. Often
the number of people that took part in the tests is significantly too
low: [14] uses only three people for a test in a very informal envi-
ronment. Other contributions, where not more than ten people were
used are [16-18,26,27]. Also the tests are sometimes conducted
too inaccurately e.g. in [28] the subjective tests are done without
training the subjects and the video is captured from low quality VHS
tapes.

The danger of not using standardized methods, or not using ap-
propriate equipment becomes obvious analyzing the data from two
published tests. In [29] standard interlaced TV videos are first dein-

terlaced and then displayed using standard PC equipment. The au-
thors used 24 test subjects, but the reported confidence intervals are
higher than what would be expected. [16—18] are all based on the
same tests, where 26 test persons were used for the calibration data
base, but only 10 people rated the verification videos. Instead of
using high quality displays, test were done using a handheld PDA.
According to [17], the percentage of removed outlier votes is above
12%. This is a clear indication, that something went wrong either in
the design of the test, or in conducting the test itself.

One additional problem, that almost all contributions do have
in common, is that very little information about the subjective tests
is given. Only a few contributions report the percentage of removed
outliers or achieved confidence intervals, and often relevant informa-
tion about room or equipment is not provided. One example where
no information about the related subjective tests is given is [30].

4. CALIBRATION AND VERIFICATION

Nearly all VQMs combine parameters extracted from the videos into
one quality value. Careful research suggests to use different data for
calibration and verification. We have two options to calibrate or train
the metric: the use of different data sets for calibration and verifica-
tion or the use of the same data set for calibration and verification in
conjunction with a cross validation.

4.1. Cross validation

A cross validation for four videos A, B, C' and D is done by using
the data points from videos A, B and C for calibrating the metric
later used to verify the data points from video D and vice versa. The
cross verification approach allows using a bigger data base both for
calibrating and verifying the metric. But the calibration phase must
now be done separately for every video. Such a cross validation
step is used very rarely in the field of visual quality metrics. So far,
only two contributions apart from our own contribution [31] could
be identified: [32,33].

The importance of keeping the data used for calibrating the met-
ric separate from data used in the verification, is shown using data
from [9]. A subset of this data (calibration data) is used to build
a simple PSNR based FR VQM that delivers quality ratings in the
range of 0 to 1. We calculate a combined PSNR using a weighted
sum of the PSNR on all three color channels of the YCbCr color
space. This PSNR? metric can be calculated according to

PSNR® = 0.99+0.11%PSNRy —0.21«PSNR ¢, +0.11%*PSNR ..

oY)
According to the Pearson correlation coefficients as reported in Ta-
ble 2, the new PSNR? metric performs significantly better than stan-
dard luminance PSNRy . The same was also done for a second sub-
set of the original data (verification data). Correlation for these un-
known videos is only slightly higher than for standard PSNRy which
shows, that the PSNR® metric was tailored to the videos used for the
calibration step, but does not provide a real benefit for other videos.
Without verifying a new metric on previously unknown data, the
danger of having a metric that is fitted to special videos is quite high.
Unfortunately, the calibration and verification data is not always sep-
arated explicitly [10, 15,19,20,22,23,34-42].

Very similar videos are used for [15] questioning the generality
of the proposed metric and in [43] probably the same videos are
used for calibration and verification, but at least only small parts of
the videos are used for the calibration phase. Still, a cross validation
approach would better.



Table 2: Pearson correlation coefficients for PSNR?

Table 3: Calibration and validation sets for PSNR?

Verification Data

0.684
0.709

Calibration Data

0.644
0.953

PSNRy
PSNR?

4.2. Use of unknown videos and HRCs

In [44] Lubin pointed out, that there is a high correlation between
subjective quality and objective quality for single source videos,
even if only the mean squared error (MSE) is used to rate the visual
quality. Due to this linear relationship, it is relatively easy to pre-
dict the visual quality for a processed video, if this source video is
known. Therefore it is important to use previously unknown source
videos for the verification step. The importance of using unknown
source videos is also demonstrated in [28]. The authors do use dif-
ferent data for training and verification but compose the calibration
data base in two different ways: first in excluding a set of videos
and second in excluding a set of HRCs. The remaining part is then
used for verification. The prediction results for the case where the
source videos were unknown are significantly behind the results for
unknown HRCs.

If VQMs use parameters from the bit stream, it is insufficient to
only vary the bit rate to generate an unknown HRC. Instead, different
encoders, or at least different prediction structures and rate control
strategies should be used to generate new HRCs. In most cases dif-
ferent HRCs were generated only by varying the bit rate of a certain
encoder using fixed settings [16-23].

5. DATA FITTING

Fitting the output of the metric to the results of the subjective tests is
quite common in the field of objective visual quality evaluation, but
contrasts with reality where such a fitting step is not possible. Sig-
moid (or logistic) fitting was proposed in [6] and [7]. It was reasoned
that subjective tests themselves do not produce results that are linear
for the whole quality range. In subjective tests typically compression
appears at the very ends of the quality range and the extremes of the
quality scale are rarely reached. Hence the sigmoid fitting function
should be more or less constant for one subjective test and that there-
fore different metrics should have the same sigmoid fitting function.
Also differences between the fitting functions of different subjective
tests should be very small. It should have the following character-
istics: saturation toward the ends of the quality range with a large
middle section that is close to be linear. Examining the fitting func-
tions used for the metrics in [45] shows that only two out of eight
functions are similar to the required shape. This fitting step resulted
in a significantly reduced outlier ratio for all four metrics [46].

The problem of data fitting after having done the subjective tests
is again shown by our PSNR?® metric from section 4. For the calibra-
tion data, the first order fitting line should have no offset and a slope
of 1.0, as this was the goal of the bilinear regression applied to find
the weights for the three PSNR values in (1). This is achieved for
the given example. In contrast, the fitting line for the set of valida-
tion videos has a offset of about 0.2 and the slope is not as steep as
desired (0.7). Thus, the error between the predicted quality and the
actual quality increases significantly if no final fitting step is allowed
(Table 3). A special case is given in [47]. Here the fitting is done
separately for each original video. This obviously increases the cor-

Mean Absolute Error

Test Set Slope  Offset datafitting no data fitting
Calibration ~ 1.00 0.00 0.05 0.05
Validation 0.70 0.22 0.10 0.13

relation values as we demonstrated in [48], where this step lead to a
correlation value of 0.99 for PSNR to the results of subjective tests,
whereas the real correlation value would be 0.67. If a fitting step is
to be included in the VQM, the consequences i.e. optimistic correla-
tion values should be pointed out e.g. [47]. Therefore we propose to
not apply any data fitting, as there are no clear advantages for using
such a fitting step, but the true prediction accuracy is hidden by the
use of a fitting step.

6. PRESENTATION OF THE RESULTS

6.1. Statistical representation

The statistical tool used most often to demonstrate the performance
of a visual quality metric is the Pearson correlation. It gives an in-
dication about the prediction accuracy of the metric. A similar task
is solved by the Spearman rank order correlation. This rank order
correlation gives an indication how much the ranking between the
videos under test changes for the metric’s values compared to the
subjective values (prediction monotonicity). Both statistical metrics
should be calculated for the whole verification data set, and not for
each video or each HRC separately. The results should be presented
in one common plot instead of providing different plots for differ-
ent source videos or HRCs. As neither these two give an indication
about the absolute error between the predicted and the actual val-
ues, they are supported by the MSE between the subjective data and
the objective values. Also an outlier ratio may give an indication
about the accuracy of a metric. Calculation of the outlier ratio may
be based on the confidence intervals of the single data points, e.g.
consider every data point that does not fall into the 95% confidence
interval as an outlier. For simplicity, also a fixed deviation may be
allowed.

6.2. Comparison metrics

Each new method should compare itself to the state of the art. Firstly,
however, it is hard in the absence of accepted standards to decide
what the state of the art in video quality evaluation is. As we have
shown so far, the verification for many VQMs is not completely suf-
ficient. This makes the selection of powerful state of the art meth-
ods even more difficult. Secondly, there are only very few public
available implementations of VQMs. Considering the complexity of
implementing such a metric, it is not feasible to implement a metric
only to generate comparison data. The metrics with public available
implementations are the SSIM [49], the VQM according to [50], and
the VQM developed by the NTIA [51].

Comparison from literature is also only possible to a small ex-
tend. The only available data base of videos and related subjective
ratings is the comparably old VQEG Phase I data base [6]. Apart
from the metrics tested there, only very few metrics were verified on
the complete data base [23,41,52,53].



Therefore a comparison with PSNR should be sufficient in most
cases, even if the limitations of PSNR to serve as a visual quality
metric are well known. PSNR still is the metric in this area most of-
ten used. Also experts in the field of visual quality metrics can judge
the capabilities of a new VQM if useful results are provided for the
new VQM and PSNR. PSNR may be a low quality anchor, but at
least it is a known anchor. The comparison to PSNR should be sup-
ported using the other metrics where implementations are available.

7. CONCLUSION

We have reviewed the basic steps needed to adequately verify video
quality metrics and discussed the important details to be considered
in every step in order to provide a proper verification. While none
of the proposed steps in this contribution is new in itself, we have
seen that details are nevertheless quite often neglected in the verifi-
cation process of many contributions. Regardless if too few video
sequences are used, the subjective testing is done poorly, calibra-
tion and verification data is mixed, misleading data fitting is applied
or no comparison to other metrics is given, the provided examples
show the possible consequences of a insufficient verification process
on the presented results.

Therefore we propose that the following five steps should be
considered in order to improve the overall quality of the verification
process in the research on video quality metrics:

1. Use a sufficiently large data base.

2. Use a public data base or perform extensive and good subjec-
tive tests.

3. Use different data for calibration and verification.
4. Use no subsequent data fitting.
5. Report useful and comparable results.

We strongly believe that without solid verification of new video qual-
ity metrics, only small steps toward efficient objective evaluation of
video quality will be made.
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