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Rule-Based No-Reference

Video Quality Evaluation

Using Additionally Coded Videos

Tobias Oelbaum, Christian Keimel and Klaus Diepold

Abstract—This contribution presents a no-reference video
quality metric, which is based on a set of simple rules that assigns
a given video to one of four different content classes. The four
content classes distinguish between video sequences which are
coded with a very low data rate, which are sensitive to blocking
effects, which are sensitive to blurring, and a general model
for all other types of video sequences. The appropriate class
for a given video sequence is selected based on the evaluation
of feature values of an additional low quality version of the
given video, which is generated by encoding. The visual quality
for a video sequence is estimated using a set of features, which
includes measures for the blockiness, the blurriness, the spatial
activity and a set of additional continuity features. The way
these features are combined to one overall quality value is
determined by the feature class, to which the video has been
assigned. We also propose an additional correction step for the
visual quality value. The proposed metric is verified in a process,
which includes visual quality values originating from subjective
quality tests in combination with a cross validation approach.
The presented metric significantly outperforms PSNR as a visual
quality estimator. The Pearson correlation between the estimated
visual quality values and the subjective test results takes on values
as high as 0.82.

Index Terms—YVisual quality, AVC/H.264, no-reference quality
metric

I. INTRODUCTION

Most humans can subjectively judge the visual quality
of a processed and distorted video without ever watching
the reference video. Performing subjective tests for assessing
visual quality is time consuming, expensive, and cannot be
easily included as part of practical applications. Video quality
metrics are available, where a full reference video or a reduced
reference information is accessible. Those metrics can deliver
useful results. However, many systems or applications can not
provide access to the reference video, and therefore require an
evaluation without a reference video. In addition, the reference
video may not even exist. This is for instance the case in
applications where the user can select his own viewpoint on
the scene, and not all viewpoints correspond to video footage
recorded by a camera, but many of them correspond to views
where the images are interpolated.

No-reference (NR) video quality evaluation has been the
topic of many studies in the field of visual quality metrics.
The results which have been presented so far have a few
drawbacks. One of the major drawbacks of existing approaches
is that the results have not been sufficiently verified such
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that the results do not allow to draw conclusions, which are
meaningful beyond the set-up of the particular investigation
(e.g. [1]), since the studies used the same data for the design
as well as for the verification of the metric (e.g. [2], [3]).
Other problems are in the context of using bit rate as quality
indicator. There, one study uses only one encoder or just
one setting for the encoder (e.g. [4]). One popular approach
for no-reference quality evaluation is the use of watermarks
(e.g. [5]). But those methods need access to the reference
video, and therefore cannot be classified to be real no-reference
metrics. Methods to predict the Peak-Signal-to-Noise Ratio
(PSNR) from the coded bit-stream (e.g. [6]) have been shown
to work very well. However, such an approach is limited to the
prediction accuracy provided by the use of PSNR as a visual
quality estimator.

Our metric is built on a set of simple measurements to detect
certain features of a given video sequence. These features
include blockiness and blurriness, two typical artifacts for
video coding, spatial activity and a set of continuity features
consisting of predictability, edge-continuity, motion-continuity
and color-continuity. We extract those features from each
video and combine them using different models. Each model
corresponds to one of four different feature classes, to which
the video is assigned. The feature classes are designed to
capture video at very low rate (less than 100 kBit/s), video
that is highly sensitive for blurriness or video that is highly
sensitive blocking artifacts, and all videos that do not fall in
one of these three classes. The appropriate feature class is
selected using a low quality version of the video V' that should
be evaluated. This low quality version Vj,, is generated by
encoding the video V' at low bit rate, using a simple encoder
with a fixed quantization parameter. We choose the appropriate
feature class for V' in a reliable fashion by evaluating this
additional video Vj,,,. The following example illustrates the
problem of selecting the appropriate feature class: for a video
V' we measure a low blur value. This low blur value may result
from two different reasons:

1) The particular video content is not very sensitive to blur
(no matter at which quality level we encode the video,
we will never get a high blur value). This is for instance
the case for the video “Husky” used in our tests.

The particular video content is sensitive to blur, but was
coded at a high quality level. Therefore, we detect only
a low blur value.

2)

Without additional information it is not possible to decide
which of these two cases is present. This problem is solved by
evaluating the low quality version of the video(V},,,) such that
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we can easily detect if the video is sensitive to blur or not. We
can use the same idea for evaluating any other feature, such as
the level of detail (spatial activity) or the amount of blocking
that we measure in the video. We use the video V},,, also to
decide, if our quality estimation did over- or underestimate the
visual quality of the video, in order to adjust the value for the
estimated quality.

We verify the present approach using video sequences at
CIF resolution and which we encode using a codec that
complies to the AVC/H.264 [7] standard. We take special care
to perform a proper verification of this new rule-based no-
reference quality metric. The verification uses data from sub-
jective tests which were carried out using a high number of test
subjects and following the international recommendations for
such subjective tests. In addition, we used a cross-calibration
approach, which ensures that the quality prediction for a video
is calculated using a model that was trained with a data set
that does not contain this video.

The contribution is organized as follows. In Section II we
give a short introduction to previous work, which forms the
basis for the our approach. The new metric itself is described
in Section III. The verification of the metric is discussed in
Section IV. Section V presents some results, and concluding
remarks are given in Section VI.

II. STATE OF THE ART AND PREVIOUS WORK

In this section we give a short introduction to no-reference
video quality evaluation, and our previous work. So far, a
relatively small number of no-reference quality metrics for
video has been proposed. Most of the proposed metrics have
not been sufficiently verified.

A. No-reference quality metrics

The first no-reference quality metric for video concentrated
on measuring blocking artifacts. This method did not take into
account other artifacts [8]-[10]. One of the first approaches,
which did not focus on blocking artifacts was introduced by
Gastaldo ef al. in 2001 [11]-[13]. Gastaldo et al. propose not
to process the decoded video, but to extract features from the
compressed bit-stream, and to combine those features into one
quality value using a neural network. The features that are
extracted from the bit-stream include the number of bits per
frame, information about the quantizer scale, and the motion
vectors. Unfortunately, they do not provide information if
they used different encoders to generate the bit-streams, or
if they varied the encoder settings. Therefore it is difficult
to judge the effectiveness of this approach in a more general
context. The idea of using parameters from the compressed
bit-stream was also used in [14], where bit-stream parameters
are extracted in addition to features from the pixel domain.
However, the article does not contain details about which
features are extracted from either of the domains. Ries et
al. propose to only use bit rate and frame rate to predict the
quality of a video after having assigned a video to one special
content class, such as sports or news. This study only uses
one special encoder with fixed settings such that the results
are of limited use if the encoder settings are changed, or if a
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different encoder is used [4], [15]. In addition, verification of
this last proposal is done on very few different sequences only.
For four different content classes only five different sequences
were used for verification, and only ten people evaluated the
video used for this verification.

Most recent no-reference metrics combine a set of parame-
ters that are extracted in the pixel domain. Typical representa-
tives for those metrics are [1]-[3], [16]-[18]. In [3] the authors
also use the bit rate of the compressed streams in addition
to features extracted from the pixel domain. Again, only one
encoder with fixed settings was used, which limits the more
general usage of this metric.

The use of data hiding methods for the evaluation of
visual quality was proposed in [5], [19], [20]. There, instead
of extracting features from the bit-stream or the decoded
video, the methods evaluate to which extent an inserted
watermark can be recovered at the receiver. The distortion
of this watermark is then set in relation to the visual quality.
As those methods need access to the original video to insert
the watermark in the video, they cannot really be classified
as no-reference methods. Data hiding methods are also used
to transmit properties of the original video within the video
data stream, allowing to use this information at the receiver to
calculate a quality prediction [21]. Again, this method requires
access to the original video and hence this method should
better be classified as a reduced-reference metric, where the
reduced-reference data is transmitted within the video.

As indicated, the above mentioned metrics were not suf-
ficiently verified. Weaknesses in the verification process are
in procedures to perform the subjective tests, which did
not follow international recommendations, and where a high
number of votes was removed from the tests results [4], [15],
or where only parts of the results were presented [1]. Only
three methods were verified using data sets which differ from
the data sets used for calibrating the quality metrics: [1],
[4], [17]. We will show in Section V that using the same
data for calibration and verification leads to over-optimistic
conclusions about the prediction capabilities of the quality
metrics. The no-reference metric that has been verified in an
accurate way and where the complete results of the verification
were presented, delivers a limited prediction accuracy [17].
The method provides a Pearson correlation value of 0.65 to
measure the relationship between the computed predictions
and the results of subjective tests. This values is comparable
to the correlation that is accomplished by using plain PSNR
values.

A special type of no-reference metric estimate the PSNR
values from the compressed bit-stream [6], [22], [23]. Obvi-
ously, those methods provide the same accuracy as a visual
quality estimators using standard PSNR values.

B. Reduced-reference metrics

In [24], we introduced a reduced-reference (RR) video
quality metric for video that has been compressed using an
AVC/H.264 compliant video codec. The approach presented
in [24] uses a set of features to predict the visual quality of a
compressed video. This RR quality metric can be summarized
as follows:
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o A value to express the visual quality is computed as a
weighted sum of a set of simple no-reference feature
measurements. The main features to be used in this metric
are: ’blockiness’, “blurriness’, ’spatial activity’ and a set
of ’continuity measures’.

o The weights of the individual features are calculated
using a principal component analysis (PCA) and a partial
least squares regression (PLSR) method. No special mod-
els for the human visual system are taken into account.
The impact of the measured features to the subjectively
perceived visual quality is determined using data mod-
elling methods.

« The value for the predicted visual quality is corrected by
comparing the value for the visual quality pertaining to
the original video and the value for the visual quality
pertaining to a low quality instance of the video.

In [25] we extended this correction step to estimate the visual
quality of video in a more general setting. Our results showed
that this RR metric outperforms PSNR significantly, and that
it is slightly superior to two other full-reference (FR) metrics.
Another advantage of our RR metric is the low data overhead
of two bytes per sequence that needs to be transmitted along
with the video. This correction step consists of transmitting
additional quality-related information about the original video
to the receiver, describing how the visual properties of this
video will most likely change if it is compressed.

III. RULE-BASED NO-REFERENCE METRIC

The no-reference metric presented here consists of the same

three steps as the RR metric presented in [24], namely

1) Generate prediction models using a training data set and

applying data analysis methods for finding the weights
that are assigned to the different calculated features.

2) Calculate the features of the current video sequence and

weight the features using an appropriate model.

3) Correct the value of the quality estimation based on an

additional low quality version of the video.
We suggest two major modifications to our method in [24] to
arrive at a NR system, that is

e One single model is not able to describe video se-
quences having very different properties. Therefore, dif-
ferent classes of video content are built, and each video
sequence is assigned to one of those classes. Video
sequences belonging to different content classes are then
evaluated using different prediction models.

o The correction step is shifted to the receiver, where a low
quality video Vj,,, is generated by encoding the received
video V. Details, on how this low quality video Vi, is
produced, and on the correction step itself, are given in
Section III-D.

These steps are described in detail in the following sections.
The overall system for the presented NR metric is shown in
Fig. 1.

A. Feature selection

The following features were used for the NR metric (as
in [24]) such as blurriness, blockiness, spatial activity, tem-
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Fig. 1: Proposed no-reference video quality metric

poral predictability, edge-continuity, motion-continuity and
color-continuity.

The first three features are measurements performed on sin-
gle frames of the video. The other four measurements are inter-
frame features, later referred to as continuity measurements.
The continuity measurements describe what happens between
frames of a video. The introduction of these continuity mea-
surements is based on the observation that visual quality is
perceived differently if changes between neighboring frames
appear abruptly or smoothly and hence describe the temporal
aspects of video sequences. To calculate the value of a single-
frame feature (e.g. blurriness) for the whole video sequence,
the values for the individual frame are averaged. To reduce the
computational complexity of the algorithm, all features except
the color-continuity are calculated using the luma channel
only.

1) Blurriness: The method to compute the blurriness (or
blur) is described in [26]. The algorithm measures the width
of an edge, and calculates the blur by assuming that blur is
reflected by wide edges. As blur is something natural in a fast
moving sequence (motion blur), this measurement is adjusted
using a simple piecewise linear correction if the video contains
a high amount of fast motion. The range of the blur values lies
between 0, which indicates that only sharp edges appear in a
frame, and a theoretical upper bound that is only limited by
the size of the frame. For uncompressed frames the blur value
was found to be approximately 1. For coded video sequences
the detected blur values could be as high as 5.3.

2) Blockiness: For measuring the blockiness we use the
method introduced in [27]. This algorithm calculates the
horizontal and vertical blockiness by applying a Fourier trans-
form along each line or column of an image. The unwanted
blockiness can easily be detected in the frequency domain by
comparing the measured spectrum with a smoothed version of
it. Blockiness should appear as peaks in the spectrum located
at distinct frequencies, which correspond to the size of the
blocks. The frequency spectrum of a frame without blocks
should be more smooth, and should continuously decrease
with increasing frequencies. This blockiness measurement was
originally designed for still images and MPEG-2 encoded
video, where the size of the blocks does not change. Under
those conditions it is easy to determine a value for the feature
blockiness. In contrast, AVC/H.264 comprises different block
sizes and therefore does not have a regular block structure.



The value for the blockiness feature for the AVC/H.264 coded
video lies in a range between O - which is the theoretical lower
bound - and 2. These values are actually significantly lower
compared to the blockiness values detected using the same al-
gorithm for video encoded according to MPEG-2. For MPEG-
2, values up to 15 are detected. Even though the deviation of
the values for the blockiness feature for AVC/H.264 encoded
video is smaller, our experiments using AVC/H.264 encoded
video showed that the value for blockiness increases with
decreasing bit rate and decreasing subjective image quality.
This blockiness measurement can therefore be used as one
indication for the visual quality of the video, even if the video
itself does not have a regular block structure. Note that for
measuring the visual quality, it is not necessary to exactly
detect the location in the image where the blockiness appears,
but it is sufficient to measure the overall amount of blockiness.

3) Spatial activity: The spatial activity is measured by the
amount of details that appear in a video frame. To measure the
amount of details that are present in a video, the percentage
of turning points along each line and each row is calculated.
A turning point is given, if the sign of the intensity difference
given by I, — I,,_; is different to the sign of the intensity
difference given by I,,_1 — I,,_o, with [,, being the intensity
of the pixel located at position n. The two measurements
for horizontal and vertical spatial activity are averaged to
obtain one single value. This measurement is part of the BTFR
(British Telecommunications Full Reference) metric included
in [28]. As the amount of details that are noticed by an
observer decreases with increasing motion, the spatial activity
measurement is adjusted using a piecewise linear correction
function if high motion is detected in the video.

4) Temporal predictability: For measuring the temporal
predictability, a predicted frame is built. To this end a motion
compensation using a simple block matching algorithm is
performed, which is based on the approach presented in [29].
The motion compensation is done using the actual frame
and the previous frame, the difference between the predicted
frame and the actual frame is the residual error of the motion
compensation step. The same motion-compensated prediction
is used for calculating all the other continuity measurements.

To calculate temporal predictability, the actual frame and
its prediction are compared block by block. A 8 x 8 block is
considered to be noticeable different, if the Sum of Absolute
Differences (SAD) exceeds 384!. To avoid that single pixels
dominate the SAD measurements, both images are filtered
using first a Gaussian blur filter followed by a median filter.
The output of this process is the percentage of blocks that are
not noticeable different. This percentage gives an indication
of the temporal frame predictability.

5) Edge-continuity: The method to generate the edge-
continuity measurement compares the actual image and its
motion compensated prediction using the Edge-PSNR algo-
rithm as described in [30]. This measurement should reflect
how much the main structure of the image changes. The Edge-
PSNR metric produces output values between O and 1, where

I'This value was determined experimentally, and allows a mean difference
of 6 for each pixel

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. X, NO. X

the value 1 indicates that there is no difference between the
two adjacent frames.

6) Motion-continuity: We usually assume that physical
objects move along a smooth motion trajectory. However, there
are reasons for motion trajectories to be not smooth due to ob-
jects that move in a chaotic way or due to transmission artifacts
such as jitter. Changing the field order for interlaced video
also results in non-smooth motion trajectories. To determine if
motion is continuous throughout adjacent frames, two motion
vector fields are calculated, one field between the current
and the previous frame, and one field between the following
and the current frame. The percentage of motion vectors, for
which the difference between the two corresponding motion
vectors does not exceed 5 pixels (either in x- or y-direction),
determines a value for describing motion-continuity.

7) Color-continuity: The method for quantifying the feature
color-continuity calculates a color histogram with 51 bins
for each RGB channel for the actual image and its motion-
compensated prediction. The value for color-continuity is
given as the linear correlation between these two histograms.
This method allows gradual changes in color, as they appear
for illumination changes, but it will produce lower numerical
values for situations where artifacts such as color bleeding
appear.

B. Combining features

We used methods provided by multivariate data analysis
to examine the calibration data base and to build a stable
prediction model. This approach was proposed by Miyahara
in [31], and was used in [32]-[34]. Multivariate data analysis
is the method of learning to interpret a number of m input
sensory signals p;, ¢ =1,2,...m that contribute to a com-
mon output y. For the metric presented in this contribution,
the input signals x; are the feature measurements, which have
been introduced before. The visual quality of the video, that
has been determined by means of subjective visual tests serves
as the output y.

We use a principal component analysis (PCA) to calculate
a compact representation of the sequence description, and a
partial least squares regression (PLSR) to establish a linear
relationship between the principal components (PCs) and the
visual quality. We already showed in [24] that this method
leads to stable and useful prediction models.

Before building the prediction models, all m = 7 mentioned
features p; (i € [1...7] are first centered around their corre-
sponding mean values p,,, since the interesting information
does not lie in the absolute values, but in the variations of the
feature measurements across different sequences. In addition,
all feature values are scaled to have a standard deviation of 1,
to avoid that some feature measurements that have only small
absolute variations, are covered by some noise in features that
have bigger absolute variations.

The visual quality prediction ¥ is calculated as
y=by+p-b. (1)

where p is the feature vector of the single feature values
feature p;. The column vector b contains the individual
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TABLE I: Weights for the different feature classes (models
including all calibration sequences)

Low Blur Blocking General

Rate
Blur -0.019  -0.040 -0.060 -0.030
Blocking -0.046  -0.090 -0.114  -0.045
Spatial activity 0.024 0.078 0.060 0.067
Predictability 0.003 0.015 0.026 0.020
Edge Continuity 0.015 0.046 0.040 0.024
Color Continuity 0.006 0.029 0.014 0.019
Motion Continuity  0.034 0.031 0.022 0.074

estimation weights b; for each feature p; and by is the model
offset. A detailed description of PLSR can be found in Chapter
3.5 of [35].

C. Four different feature classes

It is not possible to represent all different sequences which
were used for the calibration step and which exhibit corre-
sponding variation of visual quality with one single prediction
model. It turns out that in particular the sequences, which
are coded with a relatively low bit rate fit to the model only,
if a higher number of principal components (i.e., more than
four PCs) is included. To reach a stable model, it is desirable
to have a low number of PCs. Therefore, the low bit rate
sequences were not included during the calibration step. For
all sequences which are represented by a data stream with
a bit rate below 100 kbit/s we create a special model. This
particular model only needs two PCs to describe the variation
of visual quality for the low bit rate sequences sufficiently
well. The model which is built from the remaining sequences
is dominated by the characteristics of video sequences which
are either sensitive to blur or sensitive to blocking artifacts. For
this reason, the remaining model is further split up into three
additional models, namely, one model for the sequences with
high sensitivity to blurring, one model for the sequences with
high sensitivity to blocking, and a final model for all remaining
sequences (general model). Each of these three models does
not comprise more than two PCs, which leads to a compact
and stable representation of all sequences.

The different models differ only in the weights b; for
the features p;. The weights for the different features and
corresponding with the different feature classes are denoted in
Table I. These weights show the influence of the single features
on the visual quality. Negative weights mean, that if the value
for this feature increases, the visual quality decreases. This
is the case for the two features blurriness and blockiness.
This observation is in line with our expectation, which tells
us that increased blurring or blocking leads to a lower visual
quality. All other features show a positive value. We observe
this also for the feature ’spatial activity’. A high number of
details in an image should also result in a higher visual quality.
This finding also backs the assumption that we made for
inter-frame features. Increasing the similarity between adjacent
video frames leads to a better visual quality. The values also

) No
Rate < 100kbit/s?

Blur > thg,,?

Low rate model

Block > thg,q? General model

Bluriness model

Blockiness model

Fig. 2: Classification Process

show that the blockiness value is the most important value
for three out of the four models, as the weight for this
parameter has the highest absolute value. This observation is
true even for the model that is used to evaluate videos which
are sensitive to blurring. So even if the blocking artifacts are
significantly reduced by the use of a de-blocking filter, as in
AVC/H.264 [36], this artifact has still the highest impact on
visual quality for coded video.

For a given video sequence V/, the proposed method selects
the appropriate model by analyzing the features of a low qual-
ity version of the video, V},,,, which is produced by encoding
the actual video V using a high quantization parameter (QP).
Details on how to produce Vj,,, are given in section III-D.
Our method of a rule-based selection of the appropriate model
is shown in Fig. 2. The threshold values thp;,, and thpjock
refer to the blurriness and blockiness values of the low quality
instances V... Their values were selected as the mean values
Blur and Block over all video sequences included in the
calibration database.

A low value for the blurring feature indicates either a video
which is insensitive to blurring or a video sequence that is
sensitive to blurring and which is encoded at a high quality
level (i.e. high data rate). Using the low quality video V.,
which was generated by encoding the given video V, we can
gain information about the ‘sensitivity’ of the video to coding
artifacts. Instead of selecting the blurring model because we
can detect a lot of blur in the video V/, the blur model is only
selected if the video is sensitive to blur.

There is a high correlation between the values for the
blurring feature of the actual video V' and the corresponding
feature values for its low quality version Vj,,,. However, in
some cases our method selects a different model, if the model
decision is made based only on the data for V. A similar
statement is true for the feature blockiness and the selection
of the blockiness model. The advantage of including the data
for V},,, for the model selection process is shown in Fig. 3 and
in Fig. 4. For these figures, the values for the blurring feature
of the distorted video sequences have been centered around the
respective mean value. Obviously, distinction between video
sequences that are sensitive to blurring is much easier and
more robust using the low quality instances as here only very
few values close to zero can be observed.
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Table II shows the model which is applied for the different
sequences. As the low quality instances Vj,,, are very similar
for the same original video, and do not significantly vary for
varying quality of V, different models are selected for different
original video only, and this selection does not depend on the
quality of the received video. This is different if the model
selection process is done on the given video V.

D. Offset correction using the low quality video

The low quality video Vj,,, is used to support the selection
the appropriate feature class. In addition to this it is also
used to determine a correction term for the final visual quality
prediction.

This correction term uses the mean estimated quality
value %o, oOf the low quality version Vj,, of the video
sequences V' used for calibrating the model. In addition to this
we use the standard deviation of the set of calibration video
sequences of the single quality values %jow, Tjow. The set of

TABLE II: Models selected for the different sequences
Model”

Blur Crew, Foreman, Ice, Zoom
Blocking Football, Harbour, Husky
General Bus, City, Head, Mobile, Paris, Tempete

“Note, that one additional model is selected if the video has a very low
bit rate

Sequence
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TABLE III: Selected settings for the low qual-
ity AVC/H.264 encoder

Feature® Setting

Profile Baseline
Reference Frames 1

Entropy Coding CAVLC

R/D Optimization Off

Rate Control Fixed QP (QP 40)
Search Range 16

I-Frames every second
B-Frames 0

% See the reference software manual [38].

calibration video consists of all coded video sequences except
the ones that refer to one specific original video (this method
is known as cross validation or ‘leave one out’ validation).

To calculate the quality estimation ¥,,,, We consider the
same prediction model as for 7, even if V,,, has a very low
bit rate and if originally the low rate model is selected for V.
The quality prediction ¥, is first clipped to Yiow £ Tjow tO
avoid overcompensation and then a correction step

~

Y=Y~ (Ytow — Yiow) x 0.75 2)

is applied. The factor 0.75 was added to weight the original
prediction more when compared to the correction step intro-
duced by Vipy-

The idea for this correction step is that Vj,,, should always
have roughly the same low visual quality for different content
and different quality levels of the given video sequences V.
This is true, as the encoder used to generate Vj,,, uses a high
QP, and the resulting quality is therefore low, no matter if V'
already had a low visual quality, or if it had a high quality.
If 75, for one video is different from 7., the value for y
needs to be corrected. The resulting value 7, is found to be
very close to zero for all models.

The video Vj,,, is generated using a very simple fixed QP
encoder according to the AVC/H.264 video coding standard.
This encoder is constrained in the sense that is uses only one
reference frame, a prediction structure without B-frames, and
it does not perform any rate distortion optimization. Using
a very high value for the quantization parameter, QP = 40
say, ensures that the visual quality of Vj,,, is reasonably low.
For this task the we use the AVC/H.264 reference software
version 11.0 [37]. The encoder settings are given in Table III.
It has to be noted that the settings used to generate V},,, differ
significantly from the settings used to encode the video V/, that
were used for the verification process.

This correction step is not necessary if no cross validation
approach is applied, and the same data is used for calibration
and verification. Obviously, the information given by Vi,
allows to predict the quality of previously unknown sequences,
which in this case were the sequences omitted in the ‘leave
one out’ procedure. This is also reflected by the low prediction
accuracy that is reached if this correction step is not applied
(see Table V).
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TABLE IV: Verification sequences

Sequence Rates [kbit/s]

Bus 128, 256, 512

City 192, 384, 750

Crew 192, 384, 750

Football 96, 192, 256, 384, 512, 768, 1024
Foreman 96, 128, 192, 256, 384, 512, 768
Harbour 192, 384, 750

Head 96, 192, 384, 768

Husky 96, 192, 384, 768

Ice 192, 384, 750

Mobile 96, 192, 256, 384, 512, 768, 1024
Paris 96, 192, 384, 768

Tempete 96, 192, 384, 768

Zoom 96, 192, 384, 768

IV. METRIC VERIFICATION

Verification of a visual quality metric is done by comparing
the metric’s output to the results determined by subjective
tests. For the verification of the metric proposed in this work,
we use the results of two different subjective tests. The em-
ployed cross calibration/validation process avoided an overlap
between calibration and verification data. For comparison
purposes, we also provide results where no cross validation
approach was applied, and where exactly the same data is
used for the calibration step and for the verification step.

A. Calibration data base and verification test cases

The calibration data base consists of next to 300 video
sequences at CIF resolution, encoded according to AVC/H.264
using 15 different original video sequences. These video
sequences were generated using different encoders for
AVC/H.264, including the reference software [37] and several
proprietary encoders. The sequences were encoded to fit
for certain scenarios, such as broadcasting or conversational
applications.

The verification data consists of a subset of 56 video
sequences originated from 13 different video sequences, for
which accurate subjective test results were available. This
verification data base spans a wide range of bit rates ranging
from 96 kbit/s to 1024 kbit/s and includes sequences with
different frame rates, prediction structures, and coding settings.
The original video sequences are well known test sequences
such as ‘Foreman’ or ‘Mobile&Calendar’, representing dif-
ferent scenarios including sports, news, or conversational
applications. Again, we used different encoders to encode
these sequences. The visual quality covered by these sequences
ranges from 0.09 to 0.91 on a O to 1 scale. This shows
that we actually cover the whole reasonable quality range for
video at CIF resolution. Further details on the used sequences,
including the video coding tools, bit rates, and frame rates, can
be found in [39], [40]. Table IV provides an overview.

The verification of the metric produces results by calibrating
one model using all data points except those that belong to

one certain original sequence, and later predicting the data
points, which have been left out using exactly this model
(cross validation or ‘leave one out’). Compared to the approach
of dividing the available data base into one part that is used
for calibration, and one part for verification only, this cross
validation approach provides the advantage, that all available
data can be used for verification. Therefore, the validity of the
verification is increased even for a limited data base.

B. Subjective testing

The subjective results that were used for the verification of
the proposed metric were generated for the verification tests on
AVC/H.264 [39] and the entry tests for the scalable extension
of AVC/H.264, SVC [40]. The tests were performed at the
Fondazione Ugo Bordoni (FUB) in Rome and the Institute
for Data Processing at the Technische Universitdt Miinchen in
Munich. The test method used for the videos at CIF resolution
was identical for both tests. Main attributes of these tests are:

e A room setup following ITU-R BT.500 [41].

e We use a DLP projector to display the progressive
scanned CIF videos at their native resolution.

o The test method is based on a Single Stimulus procedure
according to the Absolute Category Rating (ACR)(see
[42]). To be able to specify comparably small quality
differences we used an 11 grade discrete scale ranging
from O to 10. For this work the votes were later rescaled
to 0 to 1.

o At least 20 test subjects rated each single test case. All
test subjects were screened for visual acuity and color
blindness. The test subjects were students between 20
and 30 years old and all of them were naive test subjects
in the sense that none of them worked in the field of
video coding or visual quality evaluation.

« The test subjects received an extensive training on the
test method to guarantee stable results.

« To compensate contextual effects, which are known to be
present in a Single Stimulus environment, all test cases
were shown twice, and received two separate votes.

A Single Stimulus procedure was selected to allow the sub-
jects to distinguish between different quality levels even for
comparably low visual quality. As the test included video
sequences at comparably low bit rates, the ability to differ-
entiate between different levels of low visual quality would
be compromised if the high quality original is displayed as
a direct anchor. Displaying the CIF sequences using a DLP
projector provides two advantages compared to the use of
professional (interlaced) TV monitors or (LCD) computer
screens. First, no upsampling filters have to be used, and the
video sequences can be displayed at their native resolution.
Second, this method allows to fix the viewing distance in
relation to the height of the displayed video. Using computer
screens, even small movements of the viewers changes the
relative viewing distance significantly if the sequences were
displayed at their native resolution. In contrast, the projector
setup allows to easily fix the viewing distance to 6 times the
picture height.



This design of the subjective tests yields low confidence
intervals for the test cases. The 95% confidence intervals
lie between 0.03 and 0.08 on a O to 1 scale with a mean
confidence interval of 0.05. This shows that the results of the
subjective tests are reliable. More details on the subjective test
methodology can be found in [39], [40].

V. RESULTS

The performance of the proposed NR metric is measured
by comparing the results of the metric to the results of the
subjective tests. We make sure that the results for every
sequence are generated using a model that was calibrated using
a data base that does not contain this sequence by following
a cross validation approach. Using previously unknown data
for the verification step is of utmost importance when trying
to assess the prediction capabilities of a video quality metric.
Not using a cross validation approach, and using the same
data for calibration and verification leads to overoptimistic
prediction results. For comparison purposes we chose a PSNR
scale, as PSNR values can be estimated quite well in the no-
reference case, where the correlation between PSNR and the
estimated NR-PSNR takes on values of more than 0.95 [6].
Therefore PSNR can be taken as a benchmark for NR metrics.
Unfortunately, no implementation of other NR metrics was
available for generating comparison data.

A. Performance Metrics

The metrics most often used to measure the performance of
an objective quality metric are the Pearson linear correlation
coefficient (PLC), the Spearman rank order correlation coef-
ficient (SRO), and the outlier ratio (OR). The Pearson linear
correlation (Eq. 3) gives an indication about the prediction
accuracy of the model. The Spearman rank order correlation
performs a similar task (Eq. 4). The rank order correlation
gives an indication about how much the ranking between the
sequences under test changes for the model’s values compared
to the subjective values (prediction monotonicity), given by

P — S (s —9)(MOS, —MOS)
\/Zk (ax — 6)2\/Zk (MOS), — MOS)”

Here g, is the predicted value for the video under test, and
q is the mean value of all predictions. The symbols MOS},
and M OS represent the respective subjective values. For the
Spearman rank order correlation

D D C o1 )
VI O =02k (e~ 9

where 7%, xj is the rank of qx, and 7, is the rank of the
respective subjective value MOSg. The symbols Y and 7
denote the corresponding midranks.

For outlier calculation, the individual 95% confidence in-
tervals cij of the subjective votes were obtained. The quality
estimation for one video sequence is defined to be an outlier
if

3)

r

; “4)

|MOSk — ri| > Clg (®)]

is satisfied.
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For our proposed method no data fitting was applied during
outlier calculations, whereas first order data fitting was applied
for PSNR (fitting has to be applied for PSNR as otherwise
the outlier ratio can not be calculated). A subsequent data
fitting is often applied for the presentation of visual quality
metrics. Data fitting is the method of finding the function
qx = f(MOS}), which minimizes the distance between the
vector g, which contains all predicted values g, and the vector
MOS, which contains all subjective quality values M OSk.
First order data fitting was chosen to fit the predicted values
to the actual given data. Although higher order fitting is
sometimes proposed for this purpose [28], higher order fitting
always carries the danger of over-fitting the model to the
actual data, and jeopardizing the predictability of the model
for unknown data.

B. Prediction accuracy

If we drop the cross validation step, the Pearson correlation
coefficient between the model’s output and the subjective
ratings turns out to have a values of 0.88. For this case the
correction step, which has been described in Section III-D is
not necessary. If a proper verification is done, this high value
for the correlation is significantly reduced. For this case, the
Pearson correlation between predicted quality and actual visual
quality drops to 0.63 and the prediction accuracy is even below
the value that we achieve using PSNR (correlation for PSNR
is at 0.67). Introducing the correction step as described in
Section III-D, the value for the correlation increases back to
0.82. The reader can find more detailed results in Table V,
Table VI and Fig. 5 to Fig. 8.

TABLE V: Prediction results for the verification
video sequences

PLC? SRO” OR¢
NR, no cross validation (.88 0.85 0.54
NR, no correction step  0.63 0.62 0.77
NR, as proposed 082 075 0.5
PSNR 0.67 0.65 0.75

4 PLC: Pearson linear correlation
b SRO: Spearman rank order correlation
¢ OR: Outlier ratio

The high prediction accuracy for the case of no cross
validation in combination with a low prediction accuracy for
the case when cross validation is used, but the correction
step is skipped, shows that the pure NR model (without the
correction step) can only predict the quality of sequences
included in the calibration data base. Introducing the correction
step only allows to accurately rate the quality of previously
unknown sequences. This demonstrates the importance of this
comparably simple correction step.

Comparing Fig. 6 and Fig. 7 reveals that with the help
of this correction step the number of quality ratings with a
large prediction error (predicted quality is far too low or far
too high) is reduced. This is also reflected in Table VI. Here
the percentage of data points is given where the prediction
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Fig. 5: Prediction results for the proposed NR metric - no cross
validation
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Fig. 6: Prediction results for the proposed NR metric - no
correction step

error exceeds a certain threshold. Reducing the number of
data points where there is a large prediction error, is of special
importance for practical applications, as those cases would be
especially noted either by the consumer (who would get a low
quality, whereas the quality metric used by the provider would
indicate a high quality), or the provider (who spends additional
data rate on a video that is rated to have low quality, whereas
in fact the visual quality would be already sufficient).

The outlier ratio is identical for PSNR and the proposed NR

TABLE VI: Percentage of data points where the prediction
error exceeds a certain threshold

Threshold:* 0.1 02 03
NR, no cross validation 38% 11% 4%
NR, no correction step 64% 39% 23%
NR, as proposed 50% 13% 0%
PSNR 55% 21% 4%
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Fig. 7: Prediction results for the proposed NR metric - no data
fitting
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Fig. 8: Prediction results for PSNR - fitted regression line

metric, although the overall prediction quality is significantly
lower for PSNR. This shows that for some sequences PSNR
actually does deliver good results. But even for the NR model
where the correction step is skipped, the outlier ratio is within
the same range. This shows that the outlier ratio does not
tell too much about the prediction capabilities of the different
metrics in this case. The low significance of the outlier ratio
may be caused by the small confidence intervals already
present in the results of the subjective tests that we used to
determine the prediction accuracy of PSNR and our proposed
NR metric.

VI. CONCLUSION

We present a no-reference video quality metric that is based
on a set of features, which are extracted from the pixel domain
of a given video. The measured features are combined using
different models, which have been calculated using a large
calibration data set of video sequences. The selection of the
appropriate model is done using an additional version of the
video sequence, which is coded to exhibit a lower visual
quality and is based on features of the video, not on its content.



We showed that even in a no-reference environment, a
correction of the predicted visual quality is possible by in-
troducing an additional coded instance of the video. This
correction is not as powerful as in the case where two instances
with known quality are available, but allows a simple, yet
important correction. We showed that this correction is of
essential importance for predicting previously unknown se-
quences. Without this correction step the prediction accuracy
is significantly reduced.

To the best of our knowledge, this is the first NR video
quality metric for AVC/H.264 that was verified on a compa-
rably large data base, and that explicitly takes care to avoid
overlaps between data used for training and verification. The
results show that a high prediction accuracy can be reached,
and a clear advantage compared to PSNR is achieved.
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