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Abstract

In this thesis I present a new technique for the spatially resolved investigation of the magnetic properties
of bulk samples. Standard one dimensional neutron depolarisation analysis is combined with neutron
radiography to a method we call Neutron Depolarisation Imaging (NDI).

The experimental setup which was installed at the neutron radiography beam line ANTARES at FRM II
consists of a double crystal monochromator, neutron polariser, spin flipper, polarisation analyser and a
position sensitive CCD detector. A comprehensive discussion of the requirements for these components
is given and the limitations of the method are shown. The maximum spatial resolution which can be
achieved with a neutron radiography setup is determined by the collimation of the neutron beam and
the distance between sample and detector. In this context it is most important for the components of
the setup to maintain the collimation of the beam. Furthermore, the polarisation analyser after the
sample should be as compact as possible in order to decrease the distance between sample and detector.
Different types of polarisers have been tested and their advantages and disadvantages are discussed.

A double crystal monochromator and a new type of polariser employing polarising neutron supermir-
rors based on the principle of an optical periscope were developed and tested during this work. The
construction of these components is shown and a detailed analysis of their performance in NDI is given.

Furthermore, NDI measurements on various samples of the weakly ferromagnetic materials Pd1−xNix
and Ni3Al are presented. These experiments prove that NDI is an extremely powerful tool to assess the
quality and homogeneity of ferromagnetic samples. This is especially important for the material systems
studied here since their magnetic properties depend crucially on the concentration of their constituents.
Neutron depolarisation radiography and tomography measurements were conducted with a spatial reso-
lution as high as 0.3mm on Pd1−xNix and Ni3Al samples. The results prove that samples of high quality
are extremely rare. Even samples which have already been used in neutron scattering experiments and
were found to be of high quality by residual resistivity measurements were found to show strong varia-
tions of the ordering temperature. This fact may have lead to a misinterpretation of the neutron scattering
data.

The feasibility of NDI experiments under hydrostatic pressures up to 10kbar was shown on a sample
of Ni3Al using a modified Cu:Be clamp cell. A decrease of the ordering temperature by 2K under
hydrostatic pressure was determined from the NDI measurements and shows the potential of the method
for further high pressure experiments.

Additionally a method was developed which in principle allows to obtain the intrinsic dependence of
the ordering temperature TC on the ordered moment Ms from NDI measurements on inhomogeneous
samples containing regions with different ordering temperatures. This dependence reveals whether the
phase transition remains second order for TC → 0, implying a quantum critical point in the system
or changes to first order instead. This procedure was tested on one Pd1−xNix sample and the results
were compared with simulations of the temperature dependence of the neutron beam depolarisation by
an inhomogeneous sample. However, for this particular sample it is not possible to unambiguously
deduce the intrinsic behaviour of the sample from the measurements mainly due to the lack of regions
in the sample showing very low ordering temperatures. Furthermore, the counting statistics need to be
increased.

As a result from these simulations a criterion was developed to assess the amount of heterogeneity in
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a sample from the shape of the temperature dependence of the beam polarisation after transmission
of the sample. It is found from simulations that increasing the heterogeneity in the sample leads to
a rounding of the signature of the phase transition in the depolarisation data. With this criterion NDI
can in the future be developed into a valuable tool to test whether the presence of heterogeneities in
a sample is responsible for the formation of new magnetic order in systems close to ferromagnetic
quantum criticality.

NDI has several advantages compared to other techniques which can yield similar information about the
sample. Most importantly, NDI is a non-destructive technique which can be performed on large samples
without the need of time consuming preparation of samples of a defined shape or size. Furthermore, the
measurement of the distribution of the magnetic properties over the entire sample in a single measure-
ment, yielding a large amount of data on a small length scale, makes NDI a very fast method. In contrast
to that, standard bulk measurement methods require time consuming subsequent measurements of the
magnetic properties on small samples prepared from a large and inhomogeneous sample.
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Zusammenfassung

In dieser Arbeit stelle ich eine neue Technik zur ortsaufgelösten Untersuchung von magnetischen Ei-
genschaften großer Proben vor. Gewöhnliche eindimensionale Neutronendepolarisationsanalyse wird
hierbei mit Neutronenradiographie zu einer Methode kombiniert, die wir Neutron Depolarisation Ima-
ging (NDI) nennen.

Der experimentelle Aufbau, der an der Neutronenradiographie Beam Line ANTARES am FRM II in-
stalliert wurde, besteht aus einem Doppelkristallmonochromator, Neutronenpolarisator, Spin Flipper,
Analysator und einem ortsauflösenden CCD-Detektor. Es wird eine umfassende Diskussion der Anfor-
derungen an diese Komponenten und der Grenzen der Methode durchgeführt. Die maximale Ortsauf-
lösung, die mit einem Neutronenradiographie-Aufbau erreicht werden kann, wird von der Kollimation
des Strahls und der Distanz zwischen Objekt und Detektor bestimmt. In diesem Zusammenhang ist es
besonders wichtig, dass die Komponenten des Aufbaus die Kollimation des Strahls erhalten. Außerdem
sollte der Analysator nach der Probe so kompakt wie möglich sein, um den Abstand zwischen Probe
und Detektor zu verkleinern. Es wurden verschiedene Arten von Polarisatoren getestet und deren Vor-
und Nachteile werden diskutiert.

Ein Doppelkristallmonochromator und ein neuartiger Polarisator basierend auf dem Prinzip eines op-
tischen Periskops wurden im Rahmen dieser Arbeit entwickelt und getestet. Es wird die Konstruktion
dieser Komponenten aufgezeigt und eine detaillierte Analyse ihrer Leistungsfähigkeit durchgeführt.

Außerdem wurden NDI Messungen an verschiedenen Proben der schwach ferromagnetischen Mate-
rialien Pd1−xNix und Ni3Al vorgestellt. Diese Experimente beweisen, dass NDI eine wertvolle Me-
thode zur Beurteilung der Qualität und Homogenität von ferromagnetischen Proben darstellt. Diese
ist für die hier untersuchten Materialsysteme besonders wichtig, da ihre magnetischen Eigenschaften
empfindlich von der Konzentration ihrer Bestandteile abhängen. Es wurden Neutronendepolarisations-
Radiographie und -Tomographie Messungen mit einer Orstauflösung von bis zu 0.3mm an Pd1−xNix
und Ni3Al Proben durchgeführt, deren Ergebnisse beweisen, dass Proben von hoher Qualität extrem
selten sind. Selbst Proben, die bereits in Neutronenstreuexperimenten verwendet wurden, und für die
Aufgrund von Restwiderstandsmessungen eine hohe Qualität festgestellt wurde, zeigten starke Varia-
tionen in der Ordnungstemperatur. Diese Tatsache hat möglicherweise zu einer Fehlinterpretation der
Neutronenstreudaten geführt.

Die Machbarkeit von NDI Messungen unter hydrostatischem Druck von bis zu 10kbar wurde unter
Verwendung einer modifizierten Cu:Be Druckzelle an einer Ni3Al Probe demonstriert. Es wurde eine
Erniedrigung der Ordnungstemperatur um 2K unter hydrostatischem Druck aus den NDI Messungen
bestimmt, was das Potential der Methode für zukünftige Experimente unter hohem Druck zeigt.

Des weiteren wurde eine Methode entwickelt, die es prinzipiell ermöglicht, die intrinsische Abhän-
gigkeit der Ordnungstemperatur TC vom geordneten Moment Ms aus NDI Messungen an inhomogenen
Proben zu erhalten, die aus Regionen mit unterschiedlicher Ordnungstemperatur bestehen. Diese Abhän-
gigkeit zeigt, ob der Phasenübergang für TC→ 0 zweiter Ordnung bleibt und deshalb einen Quantenkriti-
schen Punkt in dem System impliziert, oder ob er statt dessen zu einem Übergang erster Ordnung wird.
Diese Vorgehensweise wurde an einer Pd1−xNix Probe getestet und die Ergebnisse mit Simulationen
der Temperaturabhängigkeit der Depolarisation des Strahls durch eine inhomogene Probe verglichen.
Jedoch ist es, hauptsächlich wegen des Fehlens von Bereichen in der Probe mit sehr niedrigen Ord-
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nungstemperaturen, für diese spezielle Probe nicht möglich, eindeutig auf ihr intrinsisches Verhalten zu
schließen. Außerdem müsste die Zählstatistik verbessert werden.

Als Ergebnis dieser Simulationen wurde ein Kriterium entwickelt das es ermöglicht, die Stärke der
Heterogenität einer Probe anhand der Form der Temperaturabhängigkeit der Strahldepolarisation nach
Transmission der Probe zu bestimmen. Simulationen zeigen, dass Heterogenitäten in der Probe zu einer
Verrundung der Signatur des Phasenübergangs in den Depolarisationsdaten führen. Mit diesem Krite-
rium kann NDI in Zukunft zu einer wertvollen Methode entwickelt werden um zu überprüfen ob das
Vorhandensein von Heterogenitäten in einer Probe verantwortlich ist für die Entstehung neuer magneti-
scher Ordnung in Systemen in der Nähe ferromagnetischer Quantenkritikalität.

NDI hat mehrere Vorteile gegenüber anderen Methoden, die ähnliche Informationen über die Probe
liefern können. Am Wichtigsten ist, dass es sich bei NDI um eine zerstörungsfreie Methode handelt,
die an großen Proben ohne die Notwendigkeit einer zeitaufwändigen Präparation von Proben mit de-
finierter Form oder Größe durchgeführt werden kann. Außerdem liefert die Messung der Verteilung
der magnetischen Eigenschaften über die ganze Probe eine Vielzahl an Datenpunkten auf einer kleinen
Längenskala, was NDI zu einer sehr schnellen Methode macht. Im Gegensatz dazu benötigen normale
Bulk-Messmethoden zeitaufwändige, aufeinanderfolgende Messungen an kleinen Proben, die aus der
großen und inhomogenen Probe präpariert werden müssen.
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Chapter 1

Introduction

1.1 Motivation: Quantum Phase Transitions and Quantum Criticality

Conventional phase transitions like the melting of ice or the more complex transition from the ferroma-
gnetic to the paramagnetic phase are driven by temperature induced fluctuations. Therefore, these are
generally known as thermal phase transitions. In the past 20 years phase transitions driven by quantum
fluctuations have become a topic of great physical interest. These transitions can be controlled via non-
thermal parameters like pressure p, magnetic field B or compositional doping x. To account for their
non-thermal nature, such phase transitions are called quantum phase transitions (QPT).

All phase transitions can be distinguished by their order n in the Ehrenfest classification, which is equi-
valent to the order of the derivative of the free energy which is discontinuous. In the case of a second
order phase transition (n = 2) the order parameter (magnetisation in the case of a ferromagnet) vanishes
continuously whereas for a first order phase transition (n = 1) it vanishes discontinuously. A second
order quantum phase transition at T = 0 is called a quantum critical point (QCP).

Let us consider a system in the vicinity of a second order quantum phase transition, where the order
parameter vanishes continuously as shown in Fig. 1.1.1. Approaching the phase boundary at T = 0
from the disordered side leads to an increase of the correlation length ζ of the fluctuations of the order
parameter. This correlation length ζ diverges with ζ ∝ rν , where ν is the critical exponent and r is the
dimensionless distance from the quantum critical point. At the same time, the correlation time τc of the
fluctuations diverges with the dynamical critical exponent z as τc ∝ ζ z ∝ rνz [1, 2].

Therefore, at a quantum critical point, the correlation length as well as the correlation time are diverging,
making a simple mean-field theory like the Stoner-model for ferromagnets inapplicable. Furthermore
at T = 0 spatial and temporal fluctuations can no longer be separated and completely new physical
behaviour arises. Quantum fluctuations do not only play a role at low temperatures. Above the QCP,
extending to high temperatures, a region in the phase diagram in Fig 1.1.1 arises, where the energy of
the quantum fluctuations h̄ω is higher than the thermal energy kBT .

Hertz [1] and Millis [2] showed that systems close to a QCP can be treated with an effective dimension
deff = d + z, where d is the spatial dimension of the system and z is the dynamical scaling exponent
introduced above. For deff > 4 it is possible to treat the fluctuations in an effective mean-field theory.
This is always the case for cubic ferromagnetic metals since d = 3 and z = 3 for clean systems and z = 4

9
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Figure 1.1.1: Schematic phase diagram for a three dimensional magnetic quantum critical point (QCP)
in a metal. A QCP is a second order phase transition at T = 0, which is driven by quantum fluctuations.
At finite temperatures, the phase transition is driven by classical thermal fluctuations and the phase
boundary lies within the Ginburg-regime, which has a width given by the thermal energy kBT .

for disordered systems. Therefore, a self consistently renormalised Ginzburg-Landau (SCR) theory is
used, which will be discussed in 1.2.2.

In contrast, magnetic phase transitions at finite temperatures can not be described by mean field theories,
because deff = 3. Classical thermal fluctuations dominate the behaviour of the system in a region of width
kBT around the phase transition, which is called the Ginzburg-regime. These fluctuations slow down
the more the system approaches the ordered state, which leads to the classical critical slowing-down
(c.f. critical opalescence). Renormalisation group theories are necessary to describe the behaviour of a
system in the Ginzburg-regime. The width of the Ginzburg-regime, however, collapses at T = 0.

Most metals can be described in a Fermi liquid theory (FL) which allows to make predictions about
the bulk properties of the material. For a paramagnetic system one obtains a linear increase of the
electronic heat capacity Cel with temperature Cel = γT and a quadratic increase of the electronic part of
the resistivity ρel = AT 2, as well as a constant susceptibility χ = const. The material specific parameters
A and γ depend on the effective mass of the conduction electrons and their scattering cross section,
respectively.

Close to a QCP, both the correlation length ζ and the correlation time τc are diverging which also
leads to a divergence of A and γ as well as the effective mass of the electrons and their scattering cross
section. This is in conflict with the fundamental assumptions of the Fermi-liquid theory. Consequently
any behaviour of a system that is not consistent with the expectations of the Fermi-liquid theory is called
non-Fermi-liquid (NFL) behaviour.

The phenomenological SCR model introduced by Lonzarich, Taillefer [3] and Moriya [4] and described
in 1.2.2 yields the following predictions for a system in the vicinity of a three dimensional ferromagnetic
QCP:

• a logarithmic divergence of Cel/T ∝− logT ,
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• a diverging susceptibility ∆χ ∝ T−4/3

• a 5/3 power law for the specific resistivity ρ ∝ T 5/3.

Clearly, QCPs can exist in non-magnetic substances, as well. However, magnetic systems turn out to be
very convenient to study QCPs, since magnetisation – which is the order parameter of a ferromagnetic
QPT – is an experimentally easily accessible property of the systems, which is often decoupled from the
lattice degrees of freedom. In several antiferromagnetic systems QCPs have been found [5], however
there is up to now, no doubtless evidence for a ferromagnetic QCP. Ferromagnetic QCPs were proposed
in several systems but in all pure systems studied to date, the phase transition was found to be first-order
instead of second-order. The most prominent examples are ZrZn2 [6], UGe2 [7], CoS2 [8] and Ni3Al [9].
For all of these substances, which will will be discussed in more detail in 1.3, the ordering temperature
was found to vanish discontinuously as a function of applied hydrostatic pressure.

It has been a great challenge for researchers in the past 20 years to find a ferromagnetic system, which
shows a second order quantum phase transition at T = 0 (i.e a QCP). Measurement techniques involved
in solving this problem were mainly bulk techniques like heat capacity, electronic transport and ma-
gnetisation measurements as well as neutron scattering studies to identify the spin fluctuations in the
ferromagnetic systems. All of these techniques imply an averageing process over the sample volume.
Especially in neutron scattering experiments, large samples are used to increase the scattered neutron
flux. At this point, quite naturally the question about the quality and homogeneity of the samples arises.

In this thesis, we will present a new method which uses the combination of neutron radiography and neu-
tron depolarisation to obtain spatially resolved information about the magnetic properties of a sample.
This method will in the following be called Neutron Depolarisation Imaging (NDI). Measurements
made with this newly developed technique during this thesis show that many ferromagnetic samples
which have been used for bulk and neutron scattering measurements to investigate the properties of
QPTs turn out to be highly inhomogeneous on a macroscopic scale.

The inhomogeneity of the samples directly raises the question whether the conclusions drawn from
bulk and neutron scattering measurements on these samples represent the true physical behaviour of
the sample or might rather arise from averageing over regions with different magnetic properties within
a sample. Especially an observed second order phase transition may indeed be an intrinsic first order
phase transition, which becomes smeared by inhomogeneities of the sample. In this context NDI may
be developed into a valuable tool for the investigation of quantum phase transitions.

Neutron depolarisation imaging has been developed during this thesis as a new method to investigate
ferromagnetic samples. On the one hand it can be used to obtain information about the homogeneity
and therefore the quality of the sample. However, on the other hand, neutron depolarisation imaging
also offers the possibility to obtain information about the distribution of magnetic properties over an
inhomogeneous sample. This information may eventually be equivalent to the information obtained by
performing time consuming bulk measurements on a large number of small and homogeneous samples,
which could be prepared from an inhomogeneous sample. Thus, NDI has the potential to be of great
help in the proval or disproval of the existence of a QCP in many substances.
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Structure of this Thesis

This thesis is organised in six chapters. In this first chapter a theoretical introduction to quantum phase
transitions and quantum criticality is given. Since weakly ferromagnetic systems are in many ways
ideal to study the effects of quantum critical phenomena, section 1.2 gives an overview of the observed
magnetic properties of this material class and shows the current theoretical approach to describe these
properties in the framework of a mean field theory. In the last section of this chapter an overview of
the current status of research on weakly ferromagnetic materials is given, with special emphasis on the
systems Pd1−xNix and Ni3Al, which have been extensively studied in this thesis.

The second chapter deals with the theoretical background of the employed experimental techniques. An
introduction to standard neutron radiography is given as well as to the standard neutron depolarisation
technique. It is furthermore shown how to combine both techniques to the newly developed neutron
depolarisation imaging method in order to obtain spatially resolved information about the magnetic
properties of a sample.

Chapter 3 is focused on the components of the experimental setup for neutron depolarisation imaging
measurements, some of which have been specially built during this thesis, and others have been adapted
as to meet the requirements also discussed in this chapter. First, an overview of the entire setup is given
and subsequently the components of this setup and their performance are discussed.

Chapter 4 explains the general measurement procedure for the determination of the spatially resolved
depolarisation of a neutron beam after transmission of the sample and shows how the data can be evalua-
ted. Furthermore, an overview of the various setups that have been used for the measurements described
in this thesis is shown and the advantages and disadvantages of each setup are discussed.

Our experimental results are shown and discussed in chapter 5. First, proof-of-principle measurements
made on a neutron scattering instrument at FRM II are shown. The second part of this chapter focuses on
measurements on the weakly ferromagnetic substances Pd1−xNix and Ni3Al on which extensive studies
have been performed. In addition to the standard NDI measurements, tomographic measurements were
made on Pd1−xNix, and pressure studies using a Cu:Be clamp cell were performed on Ni3Al.

In chapter 6 a conclusion is drawn from the experimental results and an outlook towards further deve-
lopment of the experimental method as well as further possible applications of the technique developed
in this thesis is given.

1.2 Weak Itinerant Ferromagnetism

The class of weak itinerant ferromagnetic compounds shows magnetism on a very small and well defined
unique energy scale, which makes them an interesting group of substances to study the fundamentals of
ferromagnetism. Weak itinerant ferromagnets have the following typical properties:

• a low Curie temperature TC of the order of several 10K or below,

• a small ordered moment ms of only several tenths of µB, which shows the following temperature
dependence below TC:

m2
s (T ) = m2

s (0)

(
1−
(

T
TC

)2
)
, (1.2.1)
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Figure 1.2.1: Pair correlation function σρρ for two electrons with spins parallel and antiparallel as a
function of their distance r. (a) shows the correlation ignoring and (b) accounting for the Coulomb
repulsion.

• a strongly unsaturated field dependence of the magnetisation M (T → 0,B), which shows a linear
behaviour in plots of B/M (T,B) vs. M2(T,B) (called Arrot plots [10]) over a wide temperature
and field range,

• a Curie-Weiss behaviour of the susceptibility over a wide temperature range above TC with an
effective Curie-Weiss moment mcw, which is much larger than the ordered moment (mcw/ms� 1).

Weak itinerant ferromagnetism can qualitatively be understood as a result of the coaction of the Coulomb
repulsion and the Pauli-principle of the conduction electrons, which have a high mobility in metals. Let
us first consider only the Pauli-principle and neglect the Coulomb repulsion. The Pauli principle leads to
a repulsion of electrons with parallel spins, since it tends to arrange Fermions with their spins being anti-
parallel. This repulsion leads to a pronounced minimum in the pair correlation function of two electrons
with parallel spins at a distance r = 0. In contrast, electrons with antiparallel spins can occupy any posi-
tion with equal probability (see Fig. 1.2.1 (a)). Thus, electrons with parallel spins have, on the temporal
average, a larger distance from each other. Their larger distance automatically leads to a reduction of
their potential energy in the Coulomb potential. As a result, it is energetically favourable for electrons
to arrange their spins in parallel with each other due to the reduction of their energy in the Coulomb
potential. However, the Coulomb repulsion also acts on electrons with antiparallel spins, which reduces
the energy gain of the parallel arrangement compared to the antiparallel one (see Fig. 1.2.1 (b)). Further-
more, since the total number of electrons is conserved, the number of quantum states is also conserved.
This means that the parallel electrons have to occupy states with higher quantum numbers in k-space
which have a a higher kinetic energy. This energy loss competes with the energy gain due to the Pauli
principle and the Coulomb repulsion. The difference in energy between the two possible orientations of
two electrons is small, which makes it difficult to calculate it numerically. However, there exist pheno-
menological models which account for the correlation between all electrons that allow to successfully
describe the properties of ferromagnetic materials. We will discuss these models in more detail in the
following sections.
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1.2.1 Stoner Model

The Stoner model [11], which was developed in the 1930s, is a phenomenological model that is an
extension to the molecular field model developed by Pierre Weiss [12]. It was elaborated to describe
metallic band ferromagnets like iron, nickel and cobalt and is based on the description of the interaction
of a single conduction electron with all other conduction electrons in the material via a molecular field
λM inherited from the Weiss model. Here, λ is a temperature-independent coupling constant resulting
from the exchange interaction and M is the magnetisation. The conduction band is spin-split by the
molecular field and one treats excitations from one band to the other as excitations of uncorrelated
particle-hole pairs in the molecular field λM. This way one can write the electronic free energy as1

F (M) = F0 (M)+∆F (M) . (1.2.2)

Here F0 (M) is the free energy resulting from the one-particle density of states N (E) without interaction
with the other electrons. A correction to the free energy resulting from the interaction with the molecular
field is introduced by

∆F (M) =−1
2

λV M2 + . . . , (1.2.3)

where V is the volume of the material. For small magnetisations M, the first term of the free energy in
(1.2.2) can be expanded in powers of M [13]. Time inversion symmetry requires that only even powers
of M appear in this expansion:

F0 (M) = F0 (0)+
1
2

Va0M2 +
1
4

b0M4 + . . . (1.2.4)

The parameters a0 and b0 are given by

a0 =
1
χp

(
1+ sF

T 2

T 2
F
+ . . .

)
(1.2.5)

b0 =

(
µ2

B
2χ3

p

){(
N′F
NF

)2

− N′′F
3NF

}
, (1.2.6)

where the factor sF is the sign of the expression in brackets on the right-hand side of (1.2.6):

sF = sgn

((
N′F
NF

)2

− N′′F
3NF

)
. (1.2.7)

The parameter a0 furthermore contains the Pauli-susceptibility χp at T = 0:

χp =
2µ2

BNaNF

V
. (1.2.8)

NF = N (EF) is the density of states at the Fermi-energy per spin per atom, Na is equal to the number of
atoms, N′F and N′′F are the first and second derivative of the density of states at the Fermi-energy and TF

is the Fermi degeneracy temperature which may be approximated as TF ≈ EF/kB for a parabolic band

1Following the publication of Lonzarich and Taillefer [3] all equations will in the following be based on the cgs unit system.
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structure. More accurately it is given by

TF =

∣∣∣∣∣16π
2k2

B

((
N′F
NF

)2

− N′′F
3NF

)∣∣∣∣∣
−1/2

. (1.2.9)

In any case T � TF holds, which is why (1.2.5) and (1.2.6) have only been expanded to first order in T .
The parameter a0 is always positive for a ferromagnetically ordered system. In case b0 < 0 one has to
consider higher order terms of M in (1.2.4) to obtain a magnetically stable state.
With the parameters introduced above one can obtain a magnetic equation of state from the free energy
defined in (1.2.2) as

B =
1
V

∂F (M)

∂M
= (a0−λ )M+b0M3 + . . . , (1.2.10)

which yields the linear behaviour in the Arrot plots B/M vs. M2 observed over a wide temperature and
field range. One can define:

A(T ) = a0−λ =
1−λ χp

χp

(
1+

sFT 2

T 2
F

(
1−λ χp

) + . . .

)
(1.2.11)

Here S =
(
1−λ χp

)−1 is known as the Stoner factor with a dimensionless parameter λ χp, that defines
the magnetic state of the system. In the case of λ χp > 1, A(T ) becomes negative and the material is
ferromagnetic with a spontaneous magnetisation in zero-field

M (T,0) =
(
−A(T )

b0

)1/2

. (1.2.12)

For λ χp < 1 and thus A(T )> 0 the system is paramagnetic with a susceptibility given by χ = 1/A.

For nearly ferromagnetic materials like palladium with λ χp < 1 and λ χp ≈ 1 the Stoner factor becomes
very large, which leads to an increase of the susceptibility and its temperature dependence. This is why
such a system is entitled as Stoner enhanced paramagnet with a susceptibility

χ (T ) = A(T )−1 = Sχp

(
1− sFST 2

T 2
F

+ . . .

)
. (1.2.13)

Under the assumption that λ is temperature-independent, that sF =+1, and T � TF one can calculate a
Curie temperature for a Stoner ferromagnet from A(T0) = 0, which is given by

T0 = TF
(
λ χp−1

)1/2
. (1.2.14)

However, this Curie temperature is typically an order of magnitude larger than the experimentally ob-
served ordering temperature. The Stoner model succeeds in qualitatively describing the temperature and
field behaviour for weak ferromagnets, however it fails in quantitative calculations like that of the Curie
temperature shown above.

1.2.2 Self-Consistent Ginzburg-Landau-Theory

The Stoner model discussed above fails to quantitatively describe the temperature dependence of the
susceptibility for most metals. An extension to this theory is a self-consistent Ginzburg-Landau-Theory
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(SCR) developed by Lonzarich and Taillefer [3], which additionally takes into account slow and long-
wavelength fluctuations of the magnetisation. Longitudinal and transverse fluctuations are treated sepa-
rately in this model. This phenomenological theory succeeds in quantitatively describing the experimen-
tally observed behaviour for weak ferromagnets making use of four material specific parameters, which
can be either determined from band structure calculations or from magnetisation and neutron scattering
measurements, respectively. These parameters are the inverse initial susceptibility a, the mode-coupling
parameter b, the spin-wave stiffness c, and the energy width of the spin fluctuations γ . In the following
we will discuss this theory following the article by Lonzarich [3].

We start by defining a slowly varying local magnetisation MMM+mmm(rrr, t), where MMM represents the statistical
average of the magnetisation and mmm(rrr, t) is its slowly varying fluctuation, which on the average is zero.
The power spectrum of this magnetisation is given by the fluctuation-dissipation-theorem [14]:

〈
|mν(qqq,ω)|2

〉
= 2h̄V Θ

(
1
2
+n(ω)

)
Imχν(qqq,ω) (1.2.15)

V is the (large) volume and Θ is the (long) time interval over which the given Fourier transform is

performed, n(ω) =
(

exp
(

h̄ω

kBT

)
−1
)−1

is the Bose factor and χν(qqq,ω) is the diagonal component of

the generalised dynamical susceptibility.
〈
|mν(qqq,ω)|2

〉
represents a quantum statistical average of the

ensemble, in which the term 1
2 covers the zero-point fluctuations and n(ω) are the thermally excited

contributions. In our case we can neglect the zero-point fluctuations since the thermally excited fluctua-
tions generally have small qqq inside the first Brillouin-zone, which leads to n(ω)� 1

2 . Thus, (1.2.15)
reduces to 〈

|mν(qqq,ω)|2
〉
= 2h̄V Θn(ω) Imχν(qqq,ω), (1.2.16)

where ν represents the component perpendicular (⊥) and parallel (‖) to MMM. We can integrate (1.2.16)
over ω and qqq since it represents the variance per unit wave number q/2π and unit frequency ω/2π and
obtain

〈
|mν(qqq)|2

〉
= 4h̄V

∫ dω

2π
n(ω) Imχν(qqq,ω) (1.2.17)

and

〈
m2

ν

〉
= 4h̄

∫ d3qqq

(2π)3

∫
∞

0

dω

2π
n(ω) Imχν(qqq,ω), (1.2.18)

where the integral over qqq goes over the first Brillouin-zone. The obtained mean-square value of the
fluctuation amplitude only depends on the Bose-factor and the imaginary part of the dynamical suscep-
tibility, which means that in equilibrium it is independent of t and for low temperature and in weakly
ferromagnetic materials it is also independent of rrr. The inclusion of the thermal variance of the local
magnetisation

〈
m2

ν

〉
is the main difference between the Stoner-model and this Ginburg-Landau model

and yields the temperature dependence of the parameter A.

We may assume that the local free energy f (rrr) is an analytic function of a small and slowly varying
classical order parameter MMM+mmmc (rrr), which is composed of the static magnetisation MMM and its fluctuation
mmmc (rrr) with zero mean. Thus it can be expressed in a series expansion as
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f (rrr) = f0 +
a
2
|MMM+mmmc (rrr)|2 + b

4
|MMM+mmmc (rrr)|4 + c

4 ∑
ν

|∇mmmc
ν (rrr)|

2 (1.2.19)

with
mmmc (rrr) =

1
V ∑

qqq
mmmc (qqq)eiqqq·rrr. (1.2.20)

Here mmmc (qqq) = mmm(qqq) as defined in (1.2.17) for q < qc and mmmc (qqq) = 0 otherwise, with an elaborately
chosen cut-off wave vector qqqc. The expansion coefficients a,b and c are the coefficients introduced
above, which are, for small MMM and a cubic lattice, independent of ν but in general depend on qqqc. The
fourth parameter γ defined above is essentially qc and will be given below.

Integration of the local free energy f (rrr)/V over the volume V yields the total free energy of one specific
spatial magnetic configuration:

F (MMM,mmmc (qqq))
V

=
∫

d3rrr f (rrr)/V =

= f0 +
a
2

M2 +
b
4

M4 +
1

2V 2 ∑
qqq
|mc

ν (qqq)|
2 (a+bM2 (1+2δν‖

)
+ cq2)

+
∫ d3rrr

V
b
4
|mmmc (rrr)|4 + . . .

(1.2.21)
where the vector product mmmc

ν (rrr) ·MMM in (1.2.19) yields δν‖ = 1 for the component parallel to MMM and 0
for the component perpendicular to MMM. Since we deal with a classical local order parameter, the joint
probability distribution of its Fourier components is proportional to

exp
(
−F (MMM,mmmc (qqq))

kBT

)
. (1.2.22)

The quadratic term b |mc
ν (qqq)|

2 M2 and the fourth order term in (1.2.21) lead to a a statistical dependence
in the joint probability distribution due to cross products, i.e. a coupling of the modes. We will first
neglect the fourth order term, which is possible for very low temperatures or a small mode coupling
parameter b only. The effect of this term will later be taken into account by a self-consistent renormali-
sation of the susceptibility obtained from the magnetic equation of state that will follow from (1.2.21).
Neglecting the fourth order term, we obtain a Gaussian probability distribution for each component
mc

ν (qqq) (not so for Mν ) with zero-mean 〈mc
ν (qqq)〉= 0 and a variance of〈

|mc
ν(qqq)|

2
〉
=V kBT χ

−1
ν (qqq) (1.2.23)

for q < qc, otherwise
〈
|mc

ν(qqq)|
2
〉
= 0. The inverse static susceptibility is given by

χ
−1
ν (qqq) = χ

−1
ν + cqqq2 (1.2.24)

χ
−1
ν = a+bM2 (1+2δν‖

)
. (1.2.25)

Since mc
ν (qqq) is a classical order parameter, the Kramers-Kronig relation states that (1.2.23) and (1.2.17)

are fully equivalent for q < qc, which is the basis for the self-consistency argument of this theory.

Integrating the joint probability distribution of (1.2.22) over all variables with qqq 6= 0 yields an expression
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for the free energy F (M)

F (M)

V
=

F (0)
V

+
a
2

M2 +
b
4

M4 +
kBT
2V ∑

ν ,q<qc

ln χ
−1
ν (qqq) , (1.2.26)

where F (0) is independent of M. Taking the derivative of the free energy with respect to the magnetisa-
tion M gives a magnetic equation of state for the magnetisation stabilised by an applied field B

B =
1
V

∂F (M)

∂M
= AM+bM3 (1.2.27)

which looks similar to the equation of state (1.2.10) obtained from the Stoner model, however here we
have a different definition of A:

A = a+b
(

3
〈(

mc
‖

)2
〉
+2
〈
(mc
⊥)

2
〉)

(1.2.28)

〈
(mc

ν)
2
〉
=

kBT
V ∑

q<qc

χv (qqq) (1.2.29)

Thus, for this model A depends on M and the first term in (1.2.27) may be of higher than first order in
M. For systems in the vicinity of the ferromagnetic instability (λ χp ≈ 1) and not too close to TC one
obtains a≈ a0−λ and b≈ b0 as defined above.

Having neglected the fourth order term b |mc (rrr)|4 in (1.2.21) leads to a difference between the suscep-
tibility obtained from (1.2.27) and (1.2.28) from the susceptibility in (1.2.25). In order to account for
this fourth order term the susceptibility in the latter equation has to be replaced self-consistently by the
following expressions

χ
−1
‖ =

∂B‖
∂M‖

=
∂B
∂M

= A+M
∂A
∂M

+3bM2 (1.2.30)

χ
−1
⊥ =

∂B⊥
∂M⊥

=
B
M

= A+bM2, (1.2.31)

where A is defined in (1.2.28). Equations (1.2.24) and (1.2.27) to (1.2.31) describe a complete set of
self-consistent equations that define the magnetic equation of state in terms of the four parameters a,b,c
and γ which has not yet been introduced but basically depends on qc. These four parameters can either
be obtained from calculations from the underlying band structure or – more reliably – be determined
experimentally. In this case a and b can be found from magnetisation measurements and c and γ can be
found from inelastic neutron scattering on magnons and paramagnetic scattering, respectively.

In contrast to the Stoner model, for which the entire temperature dependence comes from A(T ) and

is relatively weak, in the SCR model the additional term 3
〈(

mc
‖

)2
〉
+ 2
〈(

mc
⊥
)2
〉

in (1.2.28) is also

temperature dependent. The corrections introduced by this term, resulting from thermal spin fluctua-
tions, become important due to the only weak temperature dependence of A(T ). In this manner the
temperature dependence of the magnetic properties of weak ferromagnets can be explained

For further quantitative evaluation a specific from of the dynamical susceptibility has to be introduced.
In the Fermi-Liquid theory for a paramagnet, the dynamical susceptibility can be expanded in terms of
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the statical susceptibility χ−1
ν (qqq) (cf. (1.2.24))

χ
−1
ν (qqq,ω) = χ

−1
ν (qqq)

(
1− iω

Γν (qqq)

)
(1.2.32)

with a relaxation rate Γν (qqq) of a spin fluctuation with wave vector qqq given by

Γν (qqq) = γqχ
−1
ν (qqq) = γq

(
χ
−1
ν + cq2 + . . .

)
(1.2.33)

The energy width γ of the spin fluctuations is the fourth parameter of this model for weak ferromagnets
introduced above. For the parameter c and γ at T = 0 and for isotropic but not necessarily parabolic
bands in lowest order in

〈
m2
〉

one finds

c =
1

9χpk2
F

(
1− 3

2
nN′F
N2

F
+

9
8

(
nN′F
N2

F

)2

− 9
16

n2N′′F
N3

F

)
+ . . . (1.2.34)

γ =
2
π

χpvF + . . . , (1.2.35)

where kF =
(
3π2nNa/V

)1/3 is the Fermi wave vector and vF = 3n(2h̄kFNF)
−1 is the Fermi velocity.

In contrast to the Stoner model in this self-consistent Ginzburg-Landau model the temperature depen-
dence of the behaviour of weak ferromagnets can be determined quantitatively in good agreement with
experiment. For the Curie-temperature one obtains the expression

TC = 2.387cM3/2
0

(h̄γ)1/4

kB
, (1.2.36)

where M0 = (−a/b)1/2 is the spontaneous magnetisation extrapolated towards T = 0.

1.3 Ferromagnetic Quantum Criticality?

The self-consistently renormalised spin fluctuation theory (SCR) discussed above has been a major
breakthrough in the theoretical description of weakly ferromagnetic materials. It succeeds in quantita-
tively modelling the properties of many materials and the excellent agreement of the calculated Curie
temperatures with experimental values shows that the theory correctly incorporates the dynamics ac-
companying the ferromagnetic spin alignment in terms of exchange-enhanced spin fluctuations of the
conduction electrons. However, since at a quantum phase transition strong effects are balanced, effects
on weaker energy scales which are not included in the SCR theory may become significant.

As discussed in 1.1, QCPs have been identified in several antiferromagnetic systems [5], but the exis-
tence of QCPs in ferromagnets is up to now still an open question. Despite being proposed in various
weakly ferromagnetic materials, QCPs were never identified free of doubt. In contrast, the phase transi-
tions were found to be first-order instead of second-order for all pure systems studied to date.

These observations lead to a generic phase diagram for ferromagnetic QPTs which is currently being
discussed as shown in Fig 1.3.1. For sufficiently high temperatures it shows a second-order transition
with increasing order parameter δ . However at a certain temperature a tricritical point (TCP) is reached,
below which the phase transition becomes first-order. If additionally a magnetic field is applied, a
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Figure 1.3.1: Generic phase diagram for ferromagnetic quantum phase transitions. Below a certain
temperature the second order phase transition turns first order beginning in a tricritical point (TCP). The
application of an external magnetic field leads to a first order metamagnetic transition which ends in
critical endpoints (CEP) at T = 0.

metamagnetic transition is induced, which is first-order as well and which ends in critical endpoints
(CEP) for T → 0. This phase diagram suggests that in ferromagnetic systems no QCP can exist since
a second-order phase transition for T → 0 is not observed. Such a proposal was also made by Belitz
et al. [15] who showed in a theoretical analysis that at low temperatures the phase transition in weak
itinerant ferromagnets is generically first order in pure systems. This result comes from long-wavelength
correlations based on the underlying phase transition and it is independent of the band structure.

In the following we will discuss in some detail the experimental results obtained from several candidate
substances for a ferromagnetic QCP and show inconsistencies with the theoretical predictions.

1.3.1 ZrZn2, UGe2, MnSi

Historically these substances were the first promising candidates for a quantum critical point to be
studied. A huge body of investigation exists, revealing that all three substances show complex magnetic
behaviour and a first order phase transition for T → 0, which is in contradiction with the expectation for
a QCP. UGe2 was the first substances for which a coexistence of ferromagnetism and superconductivity
was observed. MnSi shows a similarly complex phase diagram due to its helical structure, which also
avoids a QCP.

ZrZn2

The itinerant ferromagnet ZrZn2, which crystallises in the cubic C15 structure, has for long time been
considered as the most promising substance to show ferromagnetic quantum criticality. The material
shows a low Curie temperature of TC = 28.5K and has an ordered moment of M = 0.17 µB/f.u., which
are both of typical magnitude for weak itinerant ferromagnets. Early high pressure studies on ZrZn2
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found the phase transition with increasing pressure to be second order, which is generally in agreement
with a QCP [16, 17, 18].

However, these studies were disproved by Uhlarz et al. [6] who reported high pressure magnetisation
studies on high purity single crystals of ZrZn2 showing that the magnetisation vanishes discontinuously
at a critical pressure of pc = 16.5kbar. In contrast to that, the magnetisation shows a second order phase
transition as a function of temperature at ambient pressure. By additional application of a magnetic
field, a first order meatamagnetic transition can be induced. All of these observations are consistent with
the phase diagram proposed in Fig. 1.3.1 and therefore not in agreement with a QCP. Furthermore the
authors report multiple first order QPTs between two different ferromagnetic phases at ambient pressure
as a function of applied magnetic field, which are consistent with de Haas van Alphen measurements
reported by Kimura et al. [19].

UGe2

UGe2 is a uniaxial ferromagnet with a strong magnetocrystalline anisotropy, which crystallises in the
orthorhombic (Cmmm) ZrGa2 crystal structure. The ordering temperature at ambient pressure is TC =

52K and an ordered moment of 1.4 µB/U along the a axis is observed. Furthermore, a first order phase
transition from a weakly (FM1) to a strongly polarised phase (FM2) is found at ambient pressure at
TX = 25K [7]. Application of pressure leads to a monotonic decrease of the ordering temperature,
which vanishes in a first order phase transition at pc = 15.8kbar [20] and is therefore not consistent with
the requirements of a QCP. Also the transition between the phases FM1 and FM2 is first order in the
low temperature limit and therefore also inconsistent with a QCP, which was proposed for this phase
transition [7].

Being the first ferromagnetic material for which a coexistence of ferromagnetism and superconductivity
was found [21, 22], the compound has attracted much attention. Superconductivity was observed in a
limited pressure range between px = 12.2kbar and pc with a maximum critical temperature of 850mK.
The origin of superconductivity in UGe2 has been extensively discussed after these findings.

Nishioka et al. [23, 24] found regular jumps in the magnetisation which they attributed to field-induced
tunnelling between quantum states and lead them to propose a magnetic domain size of the order of 40Å.
In contrast to that, the Cooper-pair correlation length ξ was estimated to be of the order of 130−200Å.
Such a ferromagnetic domain size which is very small compared to the correlation length would lead to
the cancellation of the magnetic field at the length scale of the Cooper-pair correlation. However, this
thesis was disproved by 3D neutron depolarisation analysis using the technique described in 2.4 yielding
a domain size of the order of 10 µm, which is much larger than the correlation length ξ [25].

MnSi

Another candidate, which was under consideration for a QCP is the transition-metal compound MnSi.
The magnetic properties of MnSi have therefore been extensively studied. The present understanding of
the complex phase diagram of MnSi shows that the compound exhibits very interesting and previously
unknown magnetic behaviour which is, however, not consistent with a QCP.
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MnSi is a helical ferromagnet in which interactions on three distinct, hierarchical energy scales coexist,
leading to a complex magnetic phase diagram. First, on the largest energy scale a ferromagnetic cou-
pling with an ordering temperature of TC = 29.5K and an ordered moment of 0.4 µB/Mn is observed.
The second and much weaker energy scale is the Dzyaloshinskii-Moriya (DM) interaction, which fa-
vours a perpendicular alignment of neighbouring magnetic moments [26, 27]. The competition of this
interaction with the stronger ferromagnetic ordering leads to an incommensurate helical structure of the
magnetic moments with a wavelength of λ ≈ 180Å. The third and weakest energy scale is the magne-
tocrystalline anisotropy resulting in a pinning of the propagation vectors k of the helices along the cubic
〈111〉 axes.

If an applied magnetic field exceeds these three energy scales, respectively, a different magnetic order
of the system is observed. Below TC and at lowest fields below Bc,1 ≈ 0.1T for T → 0, MnSi is in the
helical phase which shows a structure with four degenerate helices which are pinned along the cubic
〈111〉 axes [28, 29]. Increasing the field above Bc,1 leads to an unpinning of the helices and a preferred
alignment of their propagation vectors in parallel to the applied magnetic field in a regime, which is
called conical phase. A completely field polarised state is achieved at Bc,2 ≈ 0.6T for T → 0 [28].
Recently a third phase, called A-phase, occurring close to the transition temperature TC and at an applied
field of B ≈ 1

2 Bc,2 was identified to show a previously unknown magnetic order with topological knots
of the magnetisation, called a Skyrmion lattice [30].

Application of hydrostatic pressure leads to a reduction of the Curie temperature, which reaches TC = 0
at a critical pressure of pc = 15kbar. The phase transition changes from second order to weakly first
order at a pressure p∗ = 12kbar [31, 32]. Above this pressure p∗ a region of partial magnetic order is
found, which survives up to p > pc [33], where additionally an extended region of NFL behaviour is
observed for pressures as high as 30kbar and a temperature a large temperature range from several mK
to 12K [34, 35].

In conclusion, MnSi shows a very complex and exciting phase diagram which exhibits completely new
magnetic order but is not consistent with a QCP.

1.3.2 Pd1−xNix

Pd is a metal, which crystallises in a face centred cubic (fcc) structure. Pure Pd is paramagnetic, however
it shows a strongly Stoner enhanced paramagnetic susceptibility and in fact, the Stoner factor S for Pd
is the highest of all pure elements. In Pd, which is on the border of ferromagnetism, ferromagnetic
order can be induced by doping with small amounts of Ni. At a critical concentration of xc = 0.026
the material becomes ferromagnetic and shows a strong dependence of the Curie temperature TC on the
Nickel content x as shown in the diagram in Fig. 1.3.2, for which most of the experimental data obtained
up to 1999 was compiled by Nicklas et al. [36].

Pd1−xNix is a system for which a ferromagnetic quantum critical point was proposed at a critical concen-
tration2 of x = 0.025 [36]. The system is non stoichiometric and falls in the class of disordered weak

2The critical concentration for the QCP was proposed to be xc = 0.025± 0.002 by Nicklas et al., which gives the best
agreement with all their experimental data obtained with different bulk measurement techniques. The data of the concentration
dependence of the Curie temperature was best fit to xc = 0.026 by the authors. In the following we will use xc = 0.025 when
referring to this article.
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Figure 1.3.2: Concentration dependence of the ordering temperature for Pd1−xNix taken from [36]. Most
of the published experimental data available up to the year 1999 has been compiled in this diagram.
Nicklas proposed a critical concentration xc = 0.026.

ferromagnets. Historically Pd1−xNix has been extensively studied, and we will now give an overview of
the experimental results on the material.

First measurements on Pd1−xNix were reported by Gerstenberg [37] in 1958 who performed suscepti-
bility measurements on Pd doped with various transition metals and found an effective moment µeff =

4.79 µB for a Ni concentration of x = 0.03. These measurements were extended to temperatures as low
as 1.4K by Shaltiel et al. [38] in 1964 who investigated the susceptibility of various Pd1−xNix crystals
with x = 0.002 to x = 0.035 and found an effective moment of µeff = 7.0±0.3 µB for x = 0.035, with a
Curie temperature of TC = 45K. However, these authors admit that their samples might have contained
impurities.

For this reason Chouteau et al. [39] in 1968 reinvestigated samples in a very wide concentration range
from x = 0.002 to x = 0.1. Their susceptibility measurements show a maximum in the ratio of the
susceptibility of the alloy to the susceptibility of pure Pd at a Ni concentration of x = 0.025. An increase
of the saturation magnetisation is already found to take place from x > 0.015. In 1970 Aldred et al. [40]
used diffuse magnetic neutron scattering to determine the polarisation effect of various Ni concentrations
on the Pd matrix. The experiments were carried out at a temperature of T = 4.2K and revealed a long-
range polarisation of the Pd matrix by the Ni atoms. However only the excess amount of Ni above the
critical concentration seemed to contribute to this polarisation. The authors discussed the possibilities
that either a large distance between single Ni atoms prevents ferromagnetic ordering or that the Pd matrix
could only be polarised by clusters of Ni atoms.

Electrical resistivity measurements on samples close to the critical concentration were performed in
1974 by Tari et al. [41]. The temperature dependent resistivity was fit to the function

ρ (T ) = ρ0 +AT n (1.3.1)

and a deviation of the exponent from n = 2 was found. The critical concentration xc was determined
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from a pronounced peak of the parameter A(x) to be xc = 2.32±0.03%. These results were confirmed
by Murani et al. [42] in the same year on samples obtained from the same ingots as the ones used by
Tari. Murani furthermore performed magnetisation measurements on these samples and found strongly
curved Arrott plots [10]. The authors compared different methods to find the critical concentration
(electrical resistivity, specific heat, magnetisation and paramagnetic susceptibility) and found – within
experimental errors – the same critical concentration of xc = 0.023 for all methods. It was furthermore
pointed out in this article that the magnetisation close to the critical concentration seems to be highly
inhomogeneous on a microscopic scale.

Similarly curved Arrot plots below TC were observed by Beille et al. [43]. Above the ordering tempe-
rature the susceptibility was found to follow a Curie-Weiss behaviour. In 1975 Beille and Tournier [44]
studied the effect of pressure on the magnetisation of Pd1−xNix. From these measurements additional
proof was found of a theory of localised giant moments that are constituted of groups of 3 or more neigh-
bouring Ni atoms proposed by one of the authors – an idea already discussed in the article by Aldred in
1970. These measurements were extended by the authors to samples with higher Ni concentrations up
to x = 0.40 in 1976 [45] and further confirmation of the existence of giant moments was found.

Another article dating from 1976 by Fujiwara et al. [46] deals with the pressure dependence of the
Curie temperature for various Ni alloys. However, only higher concentration samples of Pd1−xNix with
x > 0.20 were investigated.

The question of the existence of giant moments was persued in more detail in 1978 by Sain and Kou-
vel [47] who compared their magnetisation measurements on paramagnetic Pd1−xNix samples with
concentrations x < 0.019 with theoretical calculations and found three or more Ni atoms forming clus-
ters with giant magnetic moments of 18 µB. Single Ni atoms and pairs of nearest neighbouring Ni atoms
were found to contribute only a temperature independent part to the paramagnetic susceptibility. The
measurements were made in a temperature range between 2.4K and 100K and in fields up to 56kOe.
Such measurements were extended to samples with Ni concentrations between 2% and 3%, i.e. also
above the proposed critical concentration by Cheung et al. [48] in 1981 for which they also found clus-
ters of three or more Ni atoms. These authors pointed out that the major part of the giant magnetic
moments of 17 µB for a cluster of three Ni atoms must come from the polarised Pd matrix surrounding
the cluster. However, since they only found spin values of S = 2, the polarisation of the Pd matrix must
be tightly coupled to the Ni cluster and have no independent degrees of freedom.

Nicklas et al. [36] reported a ferromagnetic quantum critical point in Pd1−xNix at a concentration of x =
0.025±0.002. Evidence for this is drawn from measurements of the electrical resistivity, the magnetic
susceptibility and the specific heat on polycrystals with Ni concentrations between x = 0.00 and x =

0.10. The concentration dependence of the Curie temperature of these samples and of all other published
data was identified to follow the relation (x− xc)

3/4 for (x− xc) < 0.1, which is in agreement with the
predictions for a QCP. Furthermore the electrical resistivity exactly follows a T 5/3 law only in a very
narrow range around the critical concentration. A logarithmic divergence of the specific heat C/T ∝ ln T

T0

is found over a wider concentration range from x = 0.022 to x = 0.028, while the prefactor of the Non-
Fermi Liquid (NFL) contribution to the heat capacity peaks at the critical concentration. Finally the
article shows the DC susceptibility for several concentrations around the critical concentration. The
authors admit that these data are the least convincing of the data shown. And indeed, even though the
susceptibility follows a T 3/4 law for more than one decade, deviations are found for temperatures below
5K. All of the properties described above fulfil the predictions for a clean ferromagnetic QCP despite
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the inevitable existence of disorder in the system. Two of the samples used by Nicklas have also been
investigated in this thesis and the results will be discussed in 5.2.1.

Shortly after this publication in 2000 Yamada and Tanda also confirmed the existence of a ferroma-
gnetic QCP in Pd1−xNix in two short articles [49, 50]. They determined the dependence of the Curie
temperature on the Ni concentration for samples with a Ni content between x = 0.00 and x = 0.032 by
magnetisation measurements at temperatures between 2K and 400K. TC was obtained from Arrott plots
and a critical concentration of xc = 0.022 was found, which is slightly lower than what Nicklas reported.
NFL-behaviour of TC was found for (x− xc)< 0.1 with an exponent of zν = 1.6. For higher Ni concen-
trations (x− xc)� 0.1 the expected Fermi-Liquid (FL) behaviour TC ∝ (x− xc)

1/2 was confirmed. The
transition between NFL and FL behaviour is reported to take place at x = 0.10.

In the year 2003, theoretical predictions on the behaviour of the Grüneisen ratio upon approaching a
QCP were made by Zhu et al. [51]. The Grüneisen ratio Γ, which is the ratio of the thermal expansion
α to the specific heat cp, was found to universally diverge for any QCP as

Γ ∝ T−1/νz, (1.3.2)

where ν and z are the critical exponents introduced in 1.1. Measuring the Grüneisen ratio for a specific
system can consequently reveal details about the critical exponents and thus the dimensionality of a
system at a QCP.

These predictions were very recently used by Küchler et al. [52] in 2006 to test some systems for
which a QCP had been proposed for their compatibility with the divergence of the Grüneisen ratio.
Among the materials investigated by the authors was the same sample of Pd1−xNix with x = 0.024
investigated by Nicklas in 1999. The Grüneisen ratio was found to be constant within experimental
errors for temperatures below 2K, which is incompatible with a ferromagnetic QCP in Pd1−xNix.

A recent diploma thesis by Franz [53] dealt with more detailed magnetisation measurements on four
Pd1−xNix samples with nominal concentrations close to the critical concentration. The magnetisation
measurements were evaluated using Arrot plots (B/M vs. M2), which were found to be linear for high
fields and high temperatures. However, at low fields and low temperatures a region with deviations from
these linear Arrot plots was found, which suggests that there are additional terms to the free energy not
covered by the SCR theory of Lonzarich (cf. eq. (1.2.27)). The regions were found to extend to higher
fields and temperatures for samples with lower TC (i.e. samples closer to the critical concentration). A
phase diagram obtained from these results is shown in Fig. 1.3.3. The shaded areas show the regions
for which non-linear behaviour of the Arrot plots is observed for four different samples, respectively,
whereas outside of these areas linear Arrot plots are observed.

1.3.3 Ni3Al

The weak itinerant ferromagnet Ni3Al is a stoichiometric system which crystallises in the fcc Cu3Au-
structure. In contrast to Pd1−xNix where disorder might introduce physical behaviour which is not
incorporated in the SCR theory, the absence of disorder in Ni3Al makes it an ideal candidate to study
quantum phase transitions and to verify the predictions of the SCR theory. The phase transition from
ferromagnetism to paramagnetism can be tuned via hydrostatic pressure and was reported to reach TC = 0
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Figure 1.3.3: Phase diagram obtained by C. Franz for four different samples of Pd1−xNix. The coloured
areas are the regions for which a more complicated behaviour than what is described by the SCR theory
introduced by Lonzarich is found. The regions are larger for samples closer to the critical concentration.
Outside of these regions, linear Arrot plot are found.

at a critical pressure of pc ≈ 81kbar [9] as shown in Fig. 1.3.4 in contrast to an ambient pressure value
of TC = 42K.

At the same time compositional doping has a strong influence on the ordering temperature. It has been
found that only small amounts x = 0.4 of excess Al in Ni75−xAlx can reduce the ordering temperature to
zero. Therefore, both compositional doping and the application hydrostatic pressure are useful to tune
the ordering temperature of Ni75−xAlx.

Historically Ni3Al is one of the most extensively studied ordered weak itinerant ferromagnets for which
a large variety of experimental techniques has been used [54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,
65, 66, 67]. Chronologically, the concentration dependence of the magnetic properties of the material
have been investigated before their pressure dependence [64, 57, 9]. All of these results show that spin
fluctuations have to be taken into account to be able to theoretically describe the magnetic behaviour of
Ni3Al [68, 69].

There exist somewhat contradictory results on the composition dependence of the ordering temperature,
which may be attributed to the complex metallurgy of the material and consequently the exact way
the samples are prepared. Bremer et al. [70] performed a detailed analysis of the binary phase diagram
around the stoichiometric composition and it turned out to be difficult to grow extended crystals of Ni3Al
of a defined composition from a melt. The data on the phase diagram obtained by Bremer has been put
together with new data by Okamoto et al. [71] in a new phase diagram. However, the experimental
uncertainties are too large to exactly determine the position of the peritectic point of the system.

All published data of resistivity measurements are generally consistent in the temperature region from
1K to 30K in that a deviation from the T 2 behaviour expected from FL theory is found. As a result
from these measurements, the temperature dependence of the resistivity is to first order best described
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Figure 1.3.4: Pressure dependence of the ordering temperatue for Ni3Al taken from [9]. The Curie
temperature TC decreases monotonically with increasing pressure and was proposed to vanish at a critical
pressure pc = 81kbar.

by a power law with an exponent around 3/2. At temperatures below 1K, however, discrepancies
between the different publications are found. Steiner et al. [66] found variations in the low temperature
behaviour of the resistivity for different stoichiometric Ni3Al samples, which gives evidence that the
low temperature behaviour of the resistivity is extremely sensitive to the way the samples are prepared
and might consequently not reflect the behaviour of an ideally ordered sample. Fluitman et al. [56]
find that the exponent of 3/2 stays constant down to T = 200mK, whereas Niklowitz et al. [9] report
a T 2 behaviour of the resistivity below a characteristic temperature TFL, which has a negative pressure
dependence. As TFL remains finite at the critical pressure pc, the authors argue that the phase transition
might be first order and consequently not in agreement with a QCP.

1.3.4 CeSi1.81 and CePd1−xRhx

As discussed in the previous paragraphs all systems for which a QCP was proposed so far turned out
to show a first order phase transition for T → 0 after more detailed investigation. However, the search
for ever new systems which might exhibit quantum criticality goes on and a wide range of substances is
being studied for their low temperature behaviour.

CePd1−xRhx

Several f -electron based antiferromagnetic Kondo lattice (KL) systems have recently been shown to
exhibit a QCP by tuning of concentration or hydrostatic pressure [5]. In contrast to that, there exist only
a few ferromagnetic KL systems [72]. However, these systems are also candidates to show a QCP. For
this reason the magnetic properties of CePd1−xRhx have been studied close to T = 0.

Pure CePd orders ferromagnetically at a Curie temperature of TC = 6.6K. The transition temperature
can be decreased by doping with Rh and is found to vanish at xc ≈ 0.87 and the system crystallises in
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the orthorhombic CrBr structure independent of the Rh concentration. The TC (x) phase diagram shows
a change in curvature from negative to positive and a long tail for x→ xc, which might, however, be
caused by smearing of the phase transition due to the disorder present in the system as proposed by
theoretical calculations [73].

Pronounced NFL behaviour of the specific heat, thermal expansion, magnetisation and susceptibility are
found [74, 75], however, the Grüneisen ratio Γ does not diverge for T → 0 as would be expected for
the case of a QCP [75]. Instead a new type of ferromagnetic order appears near quantum criticality at
x≥ 0.65: A Kondo-cluster-glass, which embodies the formation of ferromagnetic clusters as a result of
the disorder in the system. These clusters undergo a glassy freezing at low temperatures and hence show
a magnetically inhomogeneous state at mesoscopic scales. It has been proposed that these clusters are
the manifestation of a quantum Griffiths phase [76].

CeSi1.81

Depending on the Si concentration x, the heavy fermion system CeSix changes from an antiferromagne-
tic ground state for x = 1 via a ferromagnetic ground state just below x = 1.85 to paramagnetism for
1.85 < x < 2 [77]. In the ferromagnetic regime CeSix crystallises in the orthorhombic structure, whereas
a transition to a tetragonal structure is found for x < 1.75 [78]. The magnetisation of single crystalline
samples of the ferrimagnetic CeSi1.81 has been studied by Drotziger et al. [79] and Löhneysen et al. [80].
At ambient pressure CeSi1.81 exhibits ferromagnetic order below 9.5K. By application of hydrostatic
pressure the ordering temperature can be reduced and is found to vanish presumably in a second order
manner at a critical pressure of pc ≈ 13kbar.

Of all systems discussed so far, CeSi1.81 is the only remaining candidate for a QCP. However, the pres-
sure studies discussed above have been performed at lowest temperatures of 1.7K which is – on the
energy scale of weak ferromagnetism – still far away from absolute zero. Lacking studies at lower tem-
peratures currently inhibit the doubtless identification of of a QCP. Furthermore, Löhneysen et al. [80]
report on step-like features in the hysteresis curves which vanish at higher temperature and higher pres-
sures. These features might indicate that the ferromagnetic order at low temperatures is more complica-
ted and shows another example of new magnetic textures.



Chapter 2

Theoretical Background of Experimental
Techniques

In this chapter a brief overview of the fundamental physical properties of the neutron and the resulting
interaction with matter will be given. One method that makes use of this interaction is neutron attenua-
tion radiography. In addition to the nuclear interaction the neutron has a magnetic moment, which gives
rise to a magnetic interaction of a polarised neutron beam with magnetic fields or magnetic samples.
We will discuss the principle of the neutron depolarisation technique - a method based on the analysis
of the polarisation of a neutron beam transmitted through a ferromagnetic sample. Combining the two
methods – neutron radiography and neutron depolarisation – will finally lead us to the neutron depolari-
sation imaging technique (NDI), which can give information on the variation of the magnetic properties
of a sample on a sub-millimetre length scale. By additionally rotating the sample one can furthermore
perform neutron depolarisation tomography, which will be shown at the end of this chapter.

2.1 Properties of the Neutron and its Interaction with Matter

The neutron is a spin-1/2 particle with a zero net charge, a mass of m = 1.67495 · 10−27 kg and a
magnetic moment of µn =−1.913 nuclear magnetons. Due to some favourable fundamental properties
– in particular the zero charge – neutrons are nowadays a widely established probe for the investigation
of condensed matter.

Neutron beams are typically produced in either research reactors or spallation neutron sources. Both
of these produce high energy neutrons in the MeV regime, which are then moderated down to thermal
or cold energies, where their kinetic energy is comparable to the thermal energy of particles with a
temperature of ≈ 300K or ≈ 30K, respectively. Thermal neutrons have a velocity v of typically several
thousands of metres per second, which can be calculated from their energy E by v =

√
2E/m. This

is slow enough to be monochromatised or chopped with mechanical devices like velocity selectors or
choppers, which will be discussed in (3.1.1).

Of even greater importance is the fact, that the deBroglie wavelength λ = h/mv = h
√

2mE of such low
energy neutrons is of the order of magnitude of the interatomic distances in condensed matter, giving
rise to interference effects in scattering experiments, which can help to reveal the structure of a sample.

29
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At the same time, dynamics (i.e. collective excitations like phonons and magnons) in condensed matter
often have the same energy scale as thermal neutrons. This makes neutrons an ideally suited probe for
the investigation of structure and dynamics of condensed matter.

As stated above, the neutron has a zero net charge, and consequently it does not interact with the Cou-
lomb potential of an atom, which leads to a high penetration of neutrons in many materials. In contrast
to that, photons – which also have zero charge – interact with the charge of the nucleus and the elec-
trons via their electromagnetic field. This interaction is based on scattering of the photons on the charge
density of the electrons around the nucleus. The scattering cross section of photons increases monotoni-
cally with increasing atomic number Z and is proportional to Z2. Therefore, the penetration of photons
decreases with increasing atomic number.

The interaction between the neutron and an atom via the nuclear interaction has a very short range
compared to the Coulomb interaction, which therefore leads to a high penetration depth of neutrons in
many materials. Furthermore, the absorption coefficient for neutrons rather depends on the constitution
of the nucleus than on the atomic number Z. As a consequence, the neutron absorption coefficient
shows strong variations even for isotopes of the same element. As an example, the neutron absorption
coefficient of hydrogen 1

1H for thermal neutrons is approximately 650 times larger than for deuterium
2
1H.

Even though the neutron does not have a net charge it consists of three charged quarks and consequently
has a nuclear magnetic moment. The interaction of this magnetic moment with the spins of the unpaired
electrons in magnetic substances can be used to reveal information about the magnetic properties of a
sample. Such information can either be obtained from polarised neutron scattering experiments or from
the alteration of the polarisation of a neutron beam after transmission of a sample.

Exponential Attenuation Law

The interaction of neutrons with matter leads to a decrease of the intensity in the direct beam transmitted
through the sample. Upon the transmission of an infinitesimally thin piece of matter a neutron beam of
intensity I will be attenuated by a factor dI, which is proportional to the incoming intensity and the
thickness dx

dI =−µ I dx. (2.1.1)

The factor µ , which depends on the isotope and the wavelength of the neutrons is called total attenuation
coefficient. Integrating this equation within the boundaries I0 to I and 0 to d one obtains the exponential
attenuation law, which relates the intensities of the beam before and after transmission of a sample

I = I0 exp(−µ d) . (2.1.2)

It follows that the intensity transmitted through the compound decreases exponentially with its thickness
in the most simple case.
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Total Mass Attenuation Coefficient

Relating the decrease of intensity to the mass, one can define the so called total mass attenuation coeffi-
cient, which is defined as µm = µ/ρ . With this coefficient the exponential attenuation law reads

I = I0 exp(−µmρ d) = I0 exp(−µm
m
Ad

d) = I0 exp(−µmρ f ), (2.1.3)

where A is the area of the cross section and ρ f =
m
A is the mass per area. This description has the

advantage that the mass attenuation coefficient is independent of the physical condition of the absorbing
material, i.e it does not matter whether it is in the gaseous or solid state or which temperature it has.

If the absorber is not a single isotope, the total mass attenuation coefficient is additively composed of
the contributions of the isotopes in the absorber. If a compound is composed of N isotopes, each isotope
i of which has a mass fraction αi of the compound, the total mass attenuation coefficient is

µm =
N

∑
i=1

αiµmi , (2.1.4)

with ∑
N
i=1 αi = 1.

The total mass attenuation coefficient of a single isotope is additively composed of the contributions of
different physical mechanisms of interaction. The most significant contributions for neutron radiogra-
phy are the scattering coefficient µsc and the absorption coefficient µabs, which again are composed of
different parts which depend strongly on the energy of the neutrons as well as on their polarisation. The
scattering coefficient consists of the nuclear and the magnetic scattering cross section, both of which
have a coherent and an incoherent part.

2.2 Neutron Imaging

Descriptively spoken, radiography is the recording of transmission images of an object under and ir-
radiation angle θ , where the object has a spatial distribution of the attenuation coefficient µ(x,y). By
recording a sufficient number of projections under different projection angles θ it is possible to recons-
truct a 2D model of µ (x,y). This technique is called tomography.

2.2.1 Attenuation Radiography

The resulting transmission of the neutron beam through a sample is given by the line integral of the
neutron attenuation coefficient along the transmission path through the sample.

Let us first consider the radiation to be monoenergetic, that is we neglect the energy dependence of µ .
Additionally we assume a parallel beam geometry. One measures the transmission I/I0 of the beam
along a straight line s through an object as shown in Fig. 2.2.1 (left). This can be calculated from the
integral of the attenuation of the beam along the trajectory s.

I
I0

= exp
(
−
∫

s
µ(x,y)ds

)
(2.2.1)
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Figure 2.2.1: The geometry for recording a projection pθ (t) under the angle θ in a parallel beam geome-
try along the line s (left). The Fourier Slice Theorem says that the 1D Fourier transform of this projection
corresponds to a line in the frequency domain of the 2D Fourier transform of the object property f (x,y)
(right).

Taking the logarithm of this formula, the measured value is the integral of the attenuation coefficient
along line s.

λ =− ln
I
I0

=
∫

s
µ(x,y)ds (2.2.2)

All points for which xcosθ +ysinθ = t applies, with θ being the angle between the beam and the x-axis
and t the distance of the beam from the origin, lie on this line. Measuring the value of λ for all values
of t for a certain projection angle θ yields the projection of the attenuation coefficient µ(x,y) under the
angle θ . Using the Dirac delta function this can be written as

pθ (t) = λ (θ , t) =
∞∫∫
−∞

µ(x,y)δ (xcosθ + ysinθ − t) dxdy. (2.2.3)

Of course this implies the loss of all information about the variation of the attenuation coefficient µ

along the line s. The expression on the right side of equation (2.2.3) is called radon transformation of
µ(x,y). Consequently the process of measuring a projection pθ (t) = λ (θ , t) is equivalent to performing
the radon transformation of the attenuation coefficient µ (x,y).

2.2.2 Attenuation Tomography

Tomography is based on the measurement of many projections pθ (t) of an object property f (x,y) under
different angles θ . As will be discussed in 2.6, this object property does not necessarily have to be
the attenuation coefficient µ (x,y). From the knowledge of an infinite number of projections pθ (t)
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under all angles θ the information about the variation of µ (x,y), which is lost by performing the radon
transformation, can be retrieved.

Mathematically this is based on the Fourier Slice Theorem, which correlates the projections under all
angles with the spatial distribution of the object property f (x,y) [81]. More accurately the Fourier Slice
Theorem reads:

The one-dimensional Fourier transform Pθ (w) of a parallel projection pθ (t) of an object property
f (x,y) under an angle θ represents a line in the two-dimensional Fourier transform F (u,v) of the
object property, which includes an angle θ with the u-axis.

This is shown more descriptively in Fig. 2.2.1 (right). This theorem means that if all projections under
all angles θ are known, then all lines under all angles in the 2D Fourier transform of the object property
are known as well. This is equivalent to the complete knowledge of this 2D Fourier transform. In
formulae the Fourier-slice-theorem reads:

Pθ (w) = F1D (pθ (t)) = F (u,v) = F2D ( f (x,y)) (2.2.4)

The spatial distribution of f (x,y) can thus be simply obtained by performing the inverse 2D Fourier
transform of Pθ (w).

f (x,y) = F−1
2D (F1D (pθ (t))) (2.2.5)

In a real experiment one can of course never measure an infinite number of projections. However, by
determining the value of the projections at a sufficient number of pixels and under a sufficient amount of
angles one can replace the Fourier transform in (2.2.5) by a discrete Fourier transform. Special care has
to be taken in this case when the coordinate transformation of the measured projections to a quadratic
grid is performed to account for the higher information density in the center of the coordinate system
shown in Fig. 2.2.1 (right), which represents low spatial frequency. This procedure is called filtered
back projection. A more detailed and very informative discussion of the fundamental principles of
computerised tomography can be found in [81].

2.3 Polarised Neutrons

The neutron is a particle with a spin quantum number s = 1/2. The spin can be described as a vector
operator ~s for which only one component along an arbitrary coordinate axis can be determined inde-
pendently. However, for a neutron beam composed of a large number of neutrons one can obtain the
expectation value 〈~s〉 of the neutron spin in all three spatial directions by successive measurement of the
three independent components. If this expectation value for a neutron beam differs from zero one calls
the neutron beam polarised. The polarisation vector ~P of the beam is then defined as the expectation
value of the neutron spin divided by its maximum value

~P =
〈~s〉
1/2

= 2
(
〈sx〉~ix + 〈sy〉 ~iy+〈sz〉~iz

)
, (2.3.1)

where~ix,~iy and~iz are unit vectors along the three coordinate axes of an arbitrary coordinate system. The
polarisation of a beam along one coordinate axis can be determined by measuring the intensities I+ of
the neutrons with a positive and I− with a negative spin component along this direction. The polarisation
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along this direction i is then given by

Pi =
Ii+− Ii−
Ii++ Ii−

. (2.3.2)

As a measure of the polarising efficiency of a polarised neutron setup without a sample in place one
frequently uses the flipping ratio, which is defined as

R =
1+P
1−P

. (2.3.3)

If a neutron passes through a homogeneous magnetic field ~B, the direction of the neutron spin is changed
and obeys the classical equation of motion of a magnetic moment in a homogeneous magnetic field

d~s
dt

= γ

(
~s×~B

)
, (2.3.4)

where γ is the gyromagnetic ratio of the neutron and is given by γ = gnµoµB = 1.83 ·108 s−1T−1. This
equation is also valid for the expectation value of the spin 〈~s〉 and thus also for the polarisation ~P

d~P
dt

= γ

(
~P×~B

)
. (2.3.5)

The solution for this equation of motion is a precession of the polarisation vector ~P around the direction
of the magnetic field ~B in the plane perpendicular to the magnetic field. This means that the component
of the polarisation vector which is parallel to ~B is conserved, while the component of ~P which is per-
pendicular to ~B rotates around the field vector in a plane perpendicular to the field. The neutron spin
precession is shown in Fig. 2.4.1 (left). The frequency ω of the precession is called the Larmor fre-
quency and is given by ω = γB. The solution for this differential equation, which gives the time and
field dependence of the polarisation vector reads

~P(t) = ~P(0)cosωt−
(
~P(0)×~n

)
sinωt +

(
~P(0) ·~n

)
~n(1− cosωt) . (2.3.6)

Here~n is a unit vector pointing in the direction of the magnetic field~n = ~B/B.

2.4 1D and 3D Neutron Depolarisation Technique

When a beam of polarised neutrons is transmitted through an unmagnetised, ferromagnetic material it
will generally be depolarised due to the Larmor precession of the neutron spin in the local magnetic
field inside the domains of random orientation within the sample. In polarised neutron scattering expe-
riments this depolarisation is an unwanted effect. However, important information about the magnetic
properties of a sample can be obtained by analysing the amount of depolarisation the beam suffers after
transmission of the sample. Halpern and Holstein [82] developed a theory already in 1941 which des-
cribes the depolarisation of a neutron beam due to the transmission through ferromagnets. The authors
only dealt with the analysis of the polarisation in one spatial dimension and predicted that the results
of such neutron depolarisation measurements would reveal information about the mean domain sizes
and the type of domain structure in the material. First experiments with this method were published by
Burgy et al. in 1950 [83].
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Figure 2.4.1: Schematic view of the precession of the beam polarisation ~P around a magnetic field ~B
(left). Descriptive picture of the neutron depolarisation on transmission of a ferromagnet with randomly
oriented domains (right). Each neutron sees a different field constellation during the transmission of the
material which leads to an effective precession angle. Spatially averageing over the different transmis-
sion paths leads to an effective depolarisation of the beam.

The depolarisation technique was extended to the analysis of the depolarisation of the beam in all three
spatial directions by Rekveldt et al. in 1973 [84]. Such 3D neutron depolarisation experiments additio-
nally provide directional information about the domain structure of the sample, i. e. the mean direction
cosines of the local magnetisation and the direction of a net magnetisation of the sample.

A descriptive picture of the effect of neutron depolarisation due to the transmission of a ferromagnetic
material with randomly oriented domains is given in Fig. 2.4.1. The polarised beam penetrates the
sample from left to right. In each domain the neutron spin precesses around the local magnetic field
vector. Along its transmission path through the sample, each neutron sees a particular field sequence
which leads to a certain precession angle of the neutron spin after the sample. Spatially averageing
over the various transmission paths results in an effective depolarisation of the beam as indicated at the
right-hand side of the bracket.

In the following we will first discuss the principle of the 1D neutron depolarisation technique, which is
the basis for the NDI technique introduced in this thesis. After that an overview of the 3D technique will
be given, which can generally be extended as well to provide spatially resolved information about the
sample. However this procedure would require very long experiment times due to the measurement of
the beam polarisation in all three spatial directions. Furthermore, the spatial resolution would be limited
by the minimum length of additional polarisation manipulators between sample and detector.

Neutron Depolarisation in one Dimension

In this paragraph the neutron depolarisation in one spatial dimension will be discussed following the
theory of Halpern and Holstein [82]. In their classical approach they treated the ferromagnetic sample
as a sequence of domains (1 . . . i . . .n), each of which has a local magnetic field ~Bi, which is constant
in direction and magnitude. As shown in 2.3 the classical equation of motion for a neutron spin ~s in a
magnetic field is given by

d~si/dt = γ~si×~Bi(~r) (2.4.1)

and describes the precession of the spin around the magnetic field inside the domain. This means that
the component of the spin ~s‖,i parallel to the magnetic field is conserved (~s‖,i =~s‖,i−1), whereas the
component ~s⊥,i of the spin perpendicular to the field rotates in a plane perpendicular to the magnetic
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field vector with the angular velocity ω = γBi. Here Bi =
√

~Bi~Bi. This rotation can be written as

~s⊥,i =~s⊥,i−1 cos(γBiti)+~s⊥,i−1×~Bi/Bi sinγBiti, (2.4.2)

where ti is the time the neutron spends in the ith domain. Writing

~s‖,i−1 = (~si−1 ·~Bi) ·~Bi/B2
i and ~s⊥,i−1 =~si−1− (~si−1 ·~Bi) ·~Bi/B2

i︸ ︷︷ ︸
~s‖,i−1

(2.4.3)

yields a simple expression for~si = Ai~si−1, with the dyadic Ai

Ai =
~Bi~Bi

B2
i

+

(
1−

~Bi~Bi

B2
i

)
cos(γBiti)− sinγBiti

~Bi×
Bi

. (2.4.4)

In order to find the resulting rotation of the spin ~s f after transmission of the sample along one specific
path, one has to calculate the effective rotation of the spin by the sequence of the domains (1 . . . i . . .n)
along this path. Using the dyadic formalism developed above this can simply be written as ~s f =

An . . .Ai . . .A1~s0. This only describes a rotation of the spin, whereas the magnitude of the spin is conser-
ved. The depolarisation of the beam results from averaging over the effective rotations of the spin along
different transmission paths through the sample (cf. Fig. 2.4.1). This averaging process can only be eva-
luated analytically if some assumptions on the domain structure are made. If one assumes that there is
no statistical interconnection between the different ~Bi in the domains and that they are randomly oriented
one can independently average over all Ai and finds

〈Ai〉=
1
3
+

2
3

cos(γBiti) = 1− 4
3

sin2(
1
2

γBiti) (2.4.5)

and
~s f = 〈An〉 · · · 〈A0〉~s0 = ∏

i

(
1− 4

3
sin2(

1
2

γBiti)
)
~s0. (2.4.6)

Now there exist two limiting cases for which eq. 2.4.6 can be solved analytically. These depend on the
domain sizes and therefore the precession angle of the spin within the single domains.

a) 1
2 γBiti� 1

In this case one can use the series expansion of the sine and obtains

∏
i

(
1− 4

3
sin2(

1
2

γBiti)
)
'∏

i

(
1− 1

3
γ

2B2
i t2

i

)
' exp

(
−1

3
γ

2
∑

i
B2

i t2
i

)
, (2.4.7)

which yields for the component of ~s f parallel to the analysing direction

s f = s0 exp
(
−1

3
γ

2 〈B2〉Tt
)
, (2.4.8)

where T is the total time spent in the sample and t is the average time the neutron spends in a single
domain. Rewriting this in terms of the transmission length d of the sample, the average domain size δ
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and the neutron velocity v this expression reads

s f = s0 exp
(
−1

3
γ

2 〈B2〉 dδ

v2

)
(2.4.9)

b) 1
2 γBiti ≥ 1

In this case the order of magnitude without regarding numerical factors is given by

s f = ∏
i

(
1− 4

3
sin2(

1
2

γBiti)
)

s0 '
(

1− 4
3

sin2(
1
2

γBiti)
)T/tAv

s0 '
(

1
3

)T/t

s0 ' e−d/δ s0. (2.4.10)

Halpern and Holstein state “The physical distinction between the two cases arises from the fact that,
when 1

2 γBiti � 1, the depolarisation is produced by a succession of small rotations the magnitude of
which is given by the quantity γBiti whereas, when 1

2 γBiti > 1, the rotation in each domain is so large
that the component of the initial spin perpendicular to Bi,~s⊥,i−1, averages out to zero, leaving only the
parallel component~s‖,i, the magnitude of which is independent of γBiti . Since the average of~s‖,i−1 over
all directions of the field is 1

3 si−1 the depolarisation factor is 1
3 per domain or 3−n = 3−d/δ for the whole

specimen.”

Neutron Depolarisation in Three Dimensions

Even though all measurements in this thesis were done with the one dimensional neutron depolarisation
technique, we will briefly discuss its extension to the determination of the neutron depolarisation in all
three spatial directions. This means that the initial beam polarisation before the sample must be aligned
parallel to all three coordinate axes, respectively by means of a polarisation rotator and the polarisation
after the sample is then analysed in all three spatial directions with a similar rotator. This method yields
a 3×3 depolarisation matrix from which much more detailed information about the magnetic properties
of the sample can be obtained than from the one dimensional method. However, for this method, one
needs a space consuming zero field region and polarisation rotators around the sample. As we will see in
section 2.5, the spatial resolution of our method is limited by the distance between sample and detector,
which would be drastically increased by the zero field region and polarisation rotators. Furthermore, for
the measurement of all elements of the 3× 3 depolarisation matrix, the measurement times would be
increased by a factor of nine.

The three dimensional neutron depolarisation technique was developed by T. Rekveldt in 1972 [85, 84]
and will be briefly introduced here1 following a discussion in [25].

The 3× 3 depolarisation matrix D gives the relation between the polarisation ~P0 before and ~P1 after
transmission of the sample:

~P1 = D~P0 (2.4.11)

As said above the polarisation rotators before and after the sample can turn the polarisation vector
parallel and antiparallel to each of the coordinate axes x,y and z respectively. The matrix element Di j

1It should be noted that this approach describes the depolarisation of the beam in terms of a classical precession of the neu-
tron spin within the domains in the sample. Another approach is to use a quantum mechanical description of the depolarisation
as a result from small angle scattering by magnetic inhomogeneities [86, 87]. Both approaches yield the same results and were
proven to be equivalent [88].
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(where i, j can be x,y or z respectively) of the depolarisation matrix can then be calculated from the
measured intensities with

Di j =
1
P0

IS− Ii j

IS
, (2.4.12)

where P0 is the polarisation measured without the sample in place and Ii j are the intensities measured at
the detector with the polarisation before the sample being rotated to the i-direction and being analysed
in the j-direction behind the sample. The so called shim intensity IS is the intensity of the unpolarised
beam, which can be determined from

IS =
Ii j + I−i j

2
. (2.4.13)

We will now discuss the relation between the measured elements Di j and the magnetic properties of the
sample. Therefore we define the correlation matrix

αi j =

〈∫ d

0
dx′∆Bi(x,y,z)∆B j(x′,y,z)

〉
, (2.4.14)

where ∆~B(~r) = ~B(~r)−
〈
~B
〉

is the variation of the local magnetic induction and the integral goes over the
transmission length d of the neutron through the sample. The angular brackets are a spatial average over
the sample volume and result from an averaging process comparable to the one used in (2.4.6). The cor-
relation functions αi j describe the mean correlation between ∆Bi(~r) and ∆B j(~r) along the transmission
path of the neutron through the sample averaged over the cross section of the beam.

If we assume that αi j = 0 for i 6= j (if this is not the case, α must be diagonalised first) we can further-
more define a correlation function ξ as the trace of α:

ξ = Tr(α) = ∑
i

αii. (2.4.15)

The correlation function ξ is proportional to the mean correlation length along the neutron path.

If
〈
~B
〉
= 0, which means that there is no macroscopic magnetisation of the sample, it can be shown that

the depolarisation matrix is diagonal and reads

Dii = exp
(
−(γ2/v2)d {ξ −αii}

)
, i = x,y,z (2.4.16)

with γ = 1.83 · 108 s−1T−1 being the gyromagnetic ratio of the neutron and v its velocity. This is of
similar form as the result obtained in (2.4.9) for the one dimensional case, where effectively only Dzz is
measured.

For the case of a non-zero net magnetisation of the sample
(〈

~B
〉
6= 0
)

, the polarisation vector additio-
nally undergoes a rotation in the plane perpendicular to the direction of the mean magnetisation. The
angle of rotation φ is obtained from the net magnetisation 〈M〉 by

φ =
γ

v
Lµ0 〈M〉=

γ

v
dµ0Ms 〈m〉 , (2.4.17)

where 〈m〉 is the reduced magnetisation of the sample, which is given by the ratio between the net
magnetisation 〈M〉 of the sample and the saturation magnetisation MS by 〈m〉= 〈M〉/MS. To explicitly
write down the matrix elements, let us now assume that the mean magnetisation of the sample 〈M〉
is aligned along the z direction. In this case and with assuming φ � (γ/v)2 |αxx−αyy|d/2 (the weak



2.5. NEUTRON DEPOLARISATION IMAGING 39

damping limit) the elements of the depolarisation matrix read

Dxx = Dyy =e−(γ
2/v2)d{ξ−(αxx+αyy)/2} cosφ

Dxy =−Dyx = e−(γ
2/v2)d{ξ−(αxx+αyy)/2} sinφ

Dzz = e−(γ
2/v2)d{ξ−αzz}

Dxz = Dzx = Dzy = Dyz = 0. (2.4.18)

With these measured values the angle φ of the rotation of the beam polarisation can be calculated from

φ = arctan
(

Dxy−Dyx

Dxx +Dyy

)
(2.4.19)

and ξ is obtained from
ξ =−v2 ln{detD}/2γ

2d. (2.4.20)

Another very important information that can be obtained about the sample from 3D depolarisation mea-
surements are the mean-square direction cosines γi (i = x,y,z) of the orientation of the magnetic induc-
tion vector inside the domains. This means that from these quantities a preferred orientation (i.e. an
easy axis) of the magnetisation in the domains can be found. These direction cosines can be calculated
from γi = αii/ξ and are given by

γi = 1−2lnDii/ ln{detD} . (2.4.21)

However, this equation only holds for those directions that have no net rotation of the beam polarisation.

The big advantage of the 3D depolarisation technique is that it can be applied to samples with a net
magnetisation and that a rotation of the spin can be distinguished from depolarisation, which is not
easily possible with the 1D method. Furthermore it yields more detailed information about the domain
structure of the sample, namely not only the mean domain size but also the mean-square direction
cosines of the orientation of the domains.

2.5 Neutron Depolarisation Imaging

We will now describe the setup of a standard neutron radiography facility and show how it can be
modified to allow for a spatially resolved measurement of the neutron depolarisation after transmission
of the sample. With this extension one can measure the attenuation and the depolarisation of the beam
at the same time.

As described in 2.2.1, neutron radiography is based on the measurement of the attenuation of a neutron
beam along a straight line through the sample in a parallel beam geometry. However, in a practical setup
one has to consider the fact that the neutron source, which is typically a reactor or a spallation source,
is a more or less homogeneous source with a broad divergence of the beam. To achieve a quasi parallel
beam with a reasonable intensity instead of a parallel beam, most facilities use a small pinhole close to
the neutron source in combination with a long flight tube for the neutrons. This is called collimation of
the beam. A schematic of a typical radiography setup is shown in Fig. 2.5.1 and consists of a collimator,
a flight path, the sample position and a position sensitive detector.
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Figure 2.5.1: Schematic of the typical components of a neutron radiography facility. The setup consists
of a collimator, a flight path, the sample and a position sensitive detector.
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Figure 2.5.2: A point P in the sample is imaged on an area d at the detector due to the finite size D of
the pinhole.

Due to the fact that a not perfectly parallel beam is used, a certain blurring is introduced in the transmis-
sion images recorded at the detector. As can be seen in Fig 2.5.2, a point P in the sample will be imaged
onto a circular area2 with a diameter d at the detector due to the finite diameter D of the pinhole. The
resulting blurring at the detector can easily be calculated to be

d = x/(L/D), (2.5.1)

where L is the length of the flight path between the pinhole and the sample, and x is the distance bet-
ween sample and detector. The term generally known as L/D-ratio is frequently used as a measure for
the collimation of the beam in a neutron radiography facility. Higher L/D-ratios mean better collima-
tion and thus less blurring at the detector. Typical L/D-ratios at current facilities are in the range of
400 . . .1000 [89, 90, 91, 92, 93]. One can see that the distance x between sample and detector must
be kept reasonably small in order to achieve good resolution. This will become important for polari-
sed neutron radiography, since a polarisation analyser and maybe even a polarisation rotator have to be
placed between the sample and the detector, thus limiting the minimum distance x.

In order to extend a radiography setup to perform one dimensional polarisation analysis as shown in
Fig 2.5.3, a neutron polariser, an analyser, a spin flipper and some guide fields have to be added. Ideally
none of these devices should have an influence on the beam collimation, however this is not possible
with most types of polarisers. The ideal choice of polarising and analysing devices will be discussed
in 3.2. Since the depolarisation formulae derived in 2.4 are wavelength-dependent, it may additionally
be desired to have a monochromatic neutron beam in order to obtain quantitative information about the
mean domain sizes. Therefore, a monochromator or a neutron velocity selector needs to be installed

2The area is actually only circular in the case of a circular pinhole.
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C FP S DM P AF

Figure 2.5.3: Schematic of a standard radiography setup extended for one dimensional polarisation
analysis. The components are C: collimator, M: monochromator, FP: flight path, P: polariser, F: spin
flipper, S: sample, A: analyser, D: detector.

before the polariser. This is the type of setup which was installed at the ANTARES beam line at FRM
II. If a dedicated beam line were to be built, one could try to polarise and monochromatise the beam
before the collimation. However, it must be considered that a polariser in the uncollimated beam leads
to a severe gamma contamination due to the absorption of more than 50% of the neutron intensity.
Furthermore, only a transmission polariser can be used since the structure of a reflection polariser would
be imaged on the detector due to the pre-collimation of the beam introduced by the polariser. Further
details on the polarisers will be discussed in 3.2.

With such a setup the intensities I+(x,y) and I−(x,y) of the neutron beam with polarisation parallel
and antiparallel to the incoming beam polarisation can be measured at each pixel of the detector. Here
I+(x,y) and I−(x,y) are the intensities measured with the spin flipper turned off and on, respectively.
The spatial distribution of the beam polarisation after transmission of the sample is then calculated to be

P(x,y) =
1

P0(x,y)
I+(x,y)− I−(x,y)
I+(x,y)+ I−(x,y)

, (2.5.2)

where P0(x,y) is the polarisation of the beam measured without the sample in place. From this equation
one can also determine the projection of the precession angle of the neutron polarisation in magnetic
fields on the analysing direction. This method was used by Kardjilov et. al [94] to measure the field
integral of the magnetic field of complex solenoids, as well as the precession of the neutron spin in
trapped magnetic flux in superconductors. In the present work mainly the depolarisation of the beam
due to the subsequent transmission of domains of different orientation in ferromagnetic materials was
measured. Herefore it is important to note that the formulae developed in 2.4 imply a spatial average
over the beam cross section. In the case of the NDI method this means that the cross section of one
pixel (over which the beam polarisation will be averaged in the measurement) must be much larger
than the average domain size. Such an averaging process is necessary to determine the depolarisation
of the beam. If the pixel size were of similar size as the average domain size in the sample, only a
rotation of the neutron spin but no depolarisation could be measured, since the depolarisation results
from the average over different transmission paths through the sample. This fact might eventually limit
the maximum spatial resolution, which is achievable with this method.

In principle it is also possible to extend the setup described above to a 3D depolarisation setup. As
discussed in 2.4, three dimensional polarisation analysis requires the beam polarisation to be set to
and analysed in all three spatial directions. Therefore, this technique additionally requires polarisation
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rotators before and after the sample instead of only one π spin flipper before the sample as for a 1D
setup. With these polarisation rotators the direction of the polarisation before the sample can be set
parallel or antiparallel to all three coordinate axes, respectively. The rotator after the sample allows to
analyse the polarisation in all three spatial directions. With these modifications, a spatially resolved
measurement of the entire 3×3 depolarisation matrix Di j from eq. (2.4.12) would be possible.

However, such a setup where the polarisation vector can have an arbitrary orientation with respect to
the coordinate system does not allow for the installation of a guide field to conserve the direction of the
beam polarisation as the neutrons travel through the instrument. This is not possible, since the neutron
polarisation would precess around the direction of a constant guide field as soon as this is not parallel to
the beam polarisation. Therefore, additionally a field free region around the sample and the polarisation
rotators is required, in which the direction of the neutron polarisation is conserved independently of its
orientation.

To measure all elements of this matrix, the required beam time would of course be increased by a factor
of nine. What is even more important is that the field free region around the sample together with the
polarisation rotators can at present not be built very compact for extended beam diameters. In practice
this means that the minimum distance from sample to detector would in such a setup be increased to
x≈ 0.75m (for a comparable setup see i.e. the MUPAD polarimeter [95]). Such a large object to detector
distance results in severe blurring of the images at the detector. With an L/D-ratio of 400 the blurring
would be d = 750mm/400 = 1.9mm.

2.6 Neutron Depolarisation Tomography

An extremely interesting application of polarised neutron tomography would be the possibility to re-
construct the orientation of all domains within a sample. In contrast to standard absorption tomography,
where a scalar quantity (the neutron attenuation coefficient) is reconstructed, this method requires the
reconstruction of a vector quantity. This is not easily possible since the rotations of the neutron spin wi-
thin the single domains do not commute, i.e. a different sequence of the same domains yields a different
total rotation of the neutron spin. However, a modified algebraic reconstruction technique algorithm
(ART) has been developed by Jericha et al. [96], which succeeds in reconstructing the orientation of a
limited number of domains of a pre-defined shape for simulated data. In practice a major problem of
this technique is that it requires the spatial resolution of the detector to be better than the domain size
(typically several µm). However, current radiography setups (especially with polarisation analysis) do
not fulfil this requirement.

In contrast to the reconstruction of the orientation of the domains within a sample, we will describe a
method which succeeds in reconstructing the spatial distribution of the neutron depolarisation density
ρ , which will be defined below and is a measure of the spin-flip probability. This technique does
not require such a high spatial resolution and does furthermore not show the mathematical problems
discussed above.

Standard neutron absorption tomography measures the integral of the neutron attenuation coefficient
along the trajectory of the beam through the sample under many different projection angles θ .

pθ (t) =− ln
I
I0

=
∫

s
µ(x,y)ds (2.6.1)
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Based on the Fourier-slice-theorem, which was discussed in (2.2.2), by the measurement of a sufficient
amount of projections of µ(x,y) one can retrieve the information about the variation of µ (x,y) along
the transmission path of the neutron. There exist standard algorithms which perform fast and accurate
reconstruction of the 2D information about µ (x,y) from a set of measured projections.

We will now show that neutron depolarisation information can be reconstructed with the same algorithms
if certain assumptions are made. Under the assumption that Eq. (2.4.9) is valid, the neutron beam
polarisation shows an exponential decrease with sample thickness d.

P = P0 exp
(
−1

3
γ

2 〈B2〉 δ

v2 d
)

(2.6.2)

By defining a neutron depolarisation density ρ (x,y) := 1
3 γ2
〈
B2
〉

δ

v2 (equivalent to the neutron absorp-
tion coefficient µ (x,y) in the case of neutron absorption tomography) this equation is similar to the
exponential attenuation law

P
P0

= exp
(
−
∫

s
ρ(x,y)ds

)
. (2.6.3)

Just as above a projection of the neutron depolarisation can be measured under a certain angle θ

pθ (t) =− ln
P
P0

= exp
(
−
∫

s
ρ(x,y)ds

)
. (2.6.4)

Therefore, the object property ρ (x,y) can be reconstructed from the measured projections in exactly the
same way as the neutron absorption coefficient. The main assumptions for the validity of Eq. (2.4.9)
were that the rotation within the single domains of the sample is much smaller than 360° and that the
orientation of the domains with respect to each other is random. However, the latter assumption is not
very crucial since e.g. the existence of an easing axis in the sample only changes the pre-factor in the
exponent in (2.4.9). Furthermore this equation contains a spatial average over the size of one pixel,
which needs to be much larger than the average domain size as discussed in 2.5.

The depolarisation density ρ (x,y) contains two variables. First, the average magnetic field inside the
domains and thus the Larmor frequency of the spin precession may change from domain to domain.
Second, the average domain size may vary over the sample volume, which in turn also influences the
precession angle inside the domains. Consequently, only the product of both properties can be recons-
tructed.

In standard absorption tomography measurements one has to avoid the condition of zero-transmission,
which happens when the intensity transmitted through the sample becomes too small to be detected. In
this case, information about the magnitude of the attenuation coefficient is lost, which leads to artifacts
in the reconstruction of the data. A similar condition occurs in neutron depolarisation tomography when
the transmitted beam polarisation is zero, leading to the loss of information about the magnitude of
the depolarisation density. In practice total depolarisation of the beam by the sample must therefore
be avoided under all projection angles. In the measurements described in 5.2.4, this has been achieved
by selecting a sufficiently high sample temperature, where the magnetisation ms of the sample is small
enough to avoid total depolarisation of the beam.
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Chapter 3

The Neutron Depolarisation Setup

In this chapter all components of the setup used for polarised neutron imaging will be shown and their
performance and application will be discussed. Most of the neutron depolarisation imaging experiments
described in this work were performed at the radiography beam line ANTARES, which is not optimally
suited for this type of measurements. A major problem at ANTARES is the high gamma contamination
of the primary beam, which gives a large background especially in the case of low intensity monochro-
matic and polarised neutron imaging. This background manifests in white spots on the CCD detector
which are mainly caused by scattered gamma radiation coming from the primary beam. The intensity of
secondary gamma radiation generated by the sample, detector and beam stop is negligible in comparison
to the primary gamma flux [97].

The ANTARES beam line consists of a collimator, which is partly inside and partly outside the biological
shielding of the reactor. It is followed by an evacuated flight tube, which serves as a flight path for the
neutrons to the sample position. This flight tube has a length of approximately 12m after which the
neutrons enter the sample area, where the sample manipulator and detector are installed. An overview
of the beam line and the installed components is shown in Fig. 3.0.1.

This setup was extended by several components to adapt it to the requirements for polarised neutron
imaging. A monochromator was installed in the remaining space of approximately 80cm between the
collimator and the flight tube. At this position several other instruments like beam filters, multi aperture
holes and an x-ray tube had already been installed, making the installation of the monochromator very
difficult due to the extremely limited space. The construction and performance of the monochromator
will be discussed in detail in 3.1.

The entire neutron depolarisation setup consists of polariser, analyser, spin flipper, cryostat and detector
and was installed inside the sample area (cf. Fig. 2.5.3 for a schematic of all components of the setup).
It would have been beneficial to install the polariser as close as possible to the monochromator and
install guide fields to the sample area, however, this could not be realised due to the limited space at
the monochromator position. The components of the neutron depolarisation setup will be discussed in
detail in 3.2 to 3.4.

45
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Figure 3.0.1: Technical view of the ANTARES beam line with opened shielding. The neutrons emerge
from the beam port to the right, pass the monochromator and the flight tube and enter the sample area,
where the entire neutron depolarisation setup with polariser, sample and analyser was installed as shown
in the inset.
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3.1 Monochromatic Neutron Radiography

Standard neutron radiography typically uses a polychromatic (“white“) thermal or cold neutron beam to
obtain high neutron flux and thus low exposure times [98]. This implies an averaging over the wave-
length dependence of the mass attenuation coefficient introduced in (2.1.3). However, some wavelength
dependent effects – like the strong variation of the neutron absorption cross section at Bragg edges –
only become visible with a monochromatic neutron beam [99, 100]. Furthermore, as shown in 2.4 the
depolarisation of a neutron beam after transmission of a ferromagnetic sample is wavelength-dependent
(most of the neutron depolarisation measurements described in this thesis have indeed been made with
monochromatic neutrons). So it was desired to have a monochromatic neutron beam of adjustable wa-
velength at the ANTARES beam line in order to perform neutron depolarisation measurements and to
reveal energy dependent effects in a sample. Such a monochromatisation of the beam is of course only
possible at the cost of losing a major part of the original beam intensity.

One further advantage of using a monochromatic neutron beam is to avoid the effect of beam harde-
ning [101], which comes from the variation of the mass attenuation coefficient of a sample over the
wavelength range used. The absence of beam hardening allows the quantitative measurement of mate-
rial thickness in radiographs. Additionally setting the wavelength to a point where the mass attenuation
coefficient has a local minimum for a given sample (i.e. above a Bragg edge) allows penetration of
samples of larger thickness without encountering the effect of zero transmission which can be extremely
harmful especially for tomographic reconstructions, where this effect leads to strong artifacts. It is also
possible to identify materials – even without acquiring a tomography – by locating their Bragg edge,
which depends on the lattice parameters and is therefore characteristic for every material.

3.1.1 Monochromatising Techniques

There are several requirements that have to be fulfilled to make a monochromator suitable for neutron
imaging. Most important at an existing facility is that the beam direction may not be altered. Neutron
radiography setups usually consist of a massive concrete shielding around a flight tube which can not be
moved easily [89, 91, 93]. Therefore, the monochromatic beam must go in the same direction as the pri-
mary, polychromatic beam. Additionally the monochromator must either conserve the beam collimation
or be installed far upstream from the sample position so as to act as a small pinhole source itself. The
design goals for the monochromator at ANTARES were to achieve a wavelength resolution ∆λ/λ < 5%
in a wavelength interval from 3.0Å to 6.0Å, a collimation ratio L/D ≥ 400 and a transmission for the
selected wavelength T ≥ 80%.

There are many different ways to monochromatise a neutron beam. The probably most obvious method
is to determine the neutron’s velocity by measuring its time-of-flight. For a pulsed neutron source,
where all neutrons of one pulse are emitted nearly at the same time, this is a very practical method.
One only needs to measure the time the neutron travels from the source to the detector (the energy of
the neutrons transmitted through the sample is unchanged) to determine its wavelength. Especially for
radiography, where 2D detectors are used, this requires a very fast detector readout to make use of most
neutron energies within one neutron pulse with a typical duration of 100 µs. Using this technique at a
continuous source requires choppers to interrupt the neutron beam in order to form pulses, which leads
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Figure 3.1.1: (a) Photo of the rotor of a neutron velocity selector with a diameter of 290mm. The bent
channels through which the neutrons travel are clearly seen. To allow for high rotation speeds of up
to 29.000rpm this rotor is mounted in an evacuated case for operation. (b) Principle of operation of a
Double Crystal Monochromator. The polychromatic beam coming from the top hits the first monochro-
mator crystal and the selected wavelength is reflected towards the second crystal, where it is reflected
back into the original beam direction. The remaining polychromatic beam transmitted through the first
crystal is stopped by a beam stop.

to the loss of a major part of the beam intensity. For this reason, this method was not persued for the
ANTARES beam line at FRM II.

Another promising option, which is also based on a time-of-flight method, but has higher transmission
at a continuous source is a neutron velocity selector (NVS) [102, 103]. Such a device has already been
successfully used for energy selective neutron imaging [104, 105, 106]. A NVS is a rotating, turbine-
like device as shown in Fig 3.1.1 (a), which has channels through which only neutrons of a certain
wavelength band are transmitted, while the the neutrons with higher or lower wavelength hit the walls
of the channels and are absorbed. In order to obtain a reasonable beam size at the detector position, the
NVS has to be installed close to the pinhole aperture, where the beam is still small enough to fit into
the beam window of the NVS, which has typical dimensions of 80mm×50mm. The typical maximum
divergence of 1◦ which can be transmitted through a NVS is large enough to form a beam size of
approximately 25×25cm2 at a distance of 14m from the NVS. Within this area the collimation of the
beam will be conserved. A NVS yields a rather coarse wavelength resolution with a ∆λ/λ typically
ranging between 10% and 20% depending on the number of the lamellae and their skew angle (which
in turn is one of the limiting components for the minimum transmitted wavelength). A maximum of
144 lamellae, which is nowadays feasible, and a minimum wavelength of λmin = 3.5Å, limited by the
maximum rotation speed of the selector, yield a resolution ∆λ/λ = 11% for a beam divergence of 1°.
The peak transmittance is of the order of Tm ≥ 68% [103]. These characteristics lead to higher beam
intensities when compared to those obtained with crystal monochromators. However, for the study of
most effects of interest in radiography (e.g. the lattice distortion due to mechanical stress), the achieved
wavelength resolution is not fine enough. Additionally, due to the inclination of the absorbing blades
inside the NVS with respect to the beam direction, the mean wavelength depends on the position within
the beam.

A double crystal monochromator (DCM) uses a double Bragg reflection from two monochromator crys-
tals. The wavelength is selected with the first crystal and reflected out of the original beam direction.
In order to reflect the beam back into its original direction, a second crystal is additionally mounted on
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a linear stage. Setting it to the correct linear position and the same Bragg angle as the first crystal, a
zigzag reflection of the monochromatic beam is achieved with the outgoing beam shifted in parallel to
the original beam as shown in Fig. (b). The remaining polychromatic beam transmitted through the first
crystal is stopped by a beam stop. In order to obtain a sufficiently high neutron flux, crystals with a
mosaic spread adapted to the beam divergence have to be used. The reflection from a mosaic crystal,
however, increases the beam divergence. Thus, in order to obtain a well collimated beam, the mono-
chromator must be installed a long distance away from the detector position so as to act as a pinhole
source itself.

A certain wavelength band is reflected by the crystal as a result of the mosaic spread of the crystal and
the beam divergence. The reflected mean wavelength is given by Bragg’s law from the mean reflection
angle θB.

λ = 2d/nsinθB (3.1.1)

Depending on the mosaic spread of the monochromator crystal, one can obtain a very precise wavelength
selection, which results from differentiation of (3.1.1).

∆λ/λ = cot
(
θB
)

∆θB, (3.1.2)

where ∆θB results from the full width at half maximum (FWHM) of the incident and the outgoing beam
divergence α1 and α2, respectively and the mosaic spread β of the crystal [107]

∆θB =

√
α2

1 α2
2 +α2

1 β 2 +α2
2 β 2

α2
1 +α2

2 +4β 2 . (3.1.3)

High wavelength resolution can therefore be achieved by minimising the mosaic spread of the crystals
or by maximising the Bragg angle (i.e. ideally going to backscattering θB ≈ 90°).

The collimation of the beam will in fact be destroyed by the monochromator due to the large divergence
introduced by the mosaic spread of the monochromator crystals. However, mounting the device close to
the pinhole aperture results in essentially the same L/D ratio as without the monochromator.

3.1.2 Double Crystal Monochromator

Considering the advantages and disadvantages of the discussed options and also considering the financial
effort for the realisation of the monochromator (the monochromator crystals were available to us at no
cost) it was chosen to construct and install a DCM at the ANTARES facility [108]. In the following, the
construction of the monochromator and first test measurements will be discussed.

Two pyrolytic graphite (002) monochromator crystals with a mosaic spread of 0.7◦ and 1.0°, respec-
tively, and a size of approx. 6× 10cm2 were used to build the DCM. Both crystals have sufficient
thickness to give nearly 100% reflectivity in the desired wavelength interval. The mosaic spread of the
crystals was determined from rocking curve measurements on the diffractometer HEIDI at FRM II [109]
at different points of the crystals. The results of this measurement showed that the mosaic spread has
only small variations of less than 0.1◦ over the size of the crystals.

An overview of the installed monochromator is shown in Fig. 3.1.2. For protection, the crystals are
mounted in aluminium boxes with a front window thickness of 0.5mm on a rotary stage. The second
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Figure 3.1.2: The double crystal monochromator as installed after the aperture selection wheel before the
entrance to the flight tube of the ANTARES beam line. The beam path from the opening of the aperture
wheel over the two crystals is indicated in red. The two pyrolytic graphite crystals are contained in
aluminium cases, which are each mounted on a rotary stage. The second crystal is additionally mounted
on a linear stage, whereas the first crystal is mounted on a pneumatic cylinder to be able to move the
crystal together with the beam stop out of the direct beam if the monochromator is not in use. The flight
tube begins directly downstream of the setup to right hand side of the image.

rotary stage is mounted on a linear stage so that the second crystal can be moved into the beam reflected
by the first crystal. The first one is mounted on a pneumatic cylinder together with the beam stop for the
primary beam in order to allow to move this crystal completely out of the beam. Thus, no attenuation
of the beam occurs when the monochromator is not in use. The beam stop for the primary beam is
made of borated polyethylene of 10cm thickness and coated with a 5mm layer of borated rubber. This
is sufficient to stop all thermal neutrons, however, fast neutrons and gamma radiation are transmitted
through the beam stop. Therefore, the monochromatic beam has essentially the same gamma and fast
neutron background as the polychromatic beam. This leads to a significant decrease of the signal to
noise ratio (i.e. thermal neutrons to fast neutrons and gammas), since the thermal neutron flux is at the
same time decreased by a factor of approximately 150. However, since the neutron flight tube begins
directly after the monochromator setup it was not possible to build a more massive beam stop (i.e. of Pb
or Fe) to additionally shield the gamma and fast neutron background (cf. Fig 3.1.2).

The monochromator module was mounted only a small distance behind the collimator in front of the
entrance of the flight tube of ANTARES. No modifications to the flight tube were necessary, since it was
large enough to cover the monochromatic beam, which is shifted upwards by 105mm with respect to the
primary beam. With this setup, any wavelength between 2.7Å and 6.5Å can be selected. The resulting
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λ [Å] 2.7 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
∆λ/λ [%] 4.1 3.6 3.1 2.9 2.5 2.0 1.6 1.3 0.8

2nd order/1st order 0.07 0.09 0.18 0.24 0.45 0.61 0.90 1.43 2.34

Table 3.1: Results of the Time Of Flight Measurements at PSI for the different wavelengths given in
the first row. The second row gives the wavelength spread as determined from the FWHM of the peaks
fitted with a Gaussian and the third row gives the ratio of the area under the second-order peak to the area
under the first-order peak. It can be clearly seen that higher-order contamination increases drastically
with increasing wavelength.

beam size at the detector position is 20×20cm2.

3.1.3 Characterisation of the Double Crystal Monochromator

Time of Flight Measurements

Due to the good accessibility of the beam close to the pinhole aperture at the ICON facility [90] at Paul
Scherrer Institute, Switzerland (PSI), this instrument was chosen as a test bed for alignment and first
measurements with the DCM. ICON is a cold neutron radiography beam line with a spectrum which is
very similar to that of the ANTARES beam line [110], where the monochromator was eventually ins-
talled. The mechanics of the monochromator had to be slightly adapted to match the beam geometry
at ICON, where it was then installed some 2m after the pinhole aperture. After alignment of the setup,
Time of Flight (TOF) measurements were performed to measure the resulting wavelength spectrum of
the monochromatic beam in order to assess the wavelength distribution ∆λ/λ and the amount of higher
order contaminations (λ/2,λ/3, . . .) of the beam. The flight distance between the chopper wheel and
the detector was L = 6.35m. The spectra were measured for different wavelength settings in the range
between 2.7Å and 6.5Å and are shown in Fig 3.1.3 with Gaussian fits of the peaks. The results for
all measured wavelengths are given in Table 3.1. The second row shows that the measured wavelength
spread (FWHM) ranges between ≈ 4% at λ = 2.7Å and ≈ 1% at λ = 6.5Å, which is a good compro-
mise between beam intensity and wavelength resolution resulting from the choice of the mosaic spread
of the monochromator crystals. In the third row the area under the second order wavelength peak is
compared to that under the first order peak. One can see that for λ > 4Å the higher order contamina-
tion becomes severe and the intensity of the higher order peaks can be higher than the intensity of the
selected wavelength itself. This increase of the second order compared to the first order peak is due to
the steep decrease of the primary intensity at higher wavelengths. To avoid this effect, a Be filter is now
used at the ANTARES facility in combination with the DCM for λ > 4Å. This cuts down the intensity
of the spectrum below 4Å by at least a factor of 10 [111].

Intensity of the Monochromatic Beam

Further measurements were performed after installation of the monochromator at the ANTARES facility
at FRM II to assess the intensity of the monochromatic neutron beam and to compare it with the intensity
of the primary, white beam. The results provide a measure of the typical exposure times compared to
radiography with polychromatic neutrons. Furthermore, as discussed above, the gamma and fast neutron
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Figure 3.1.3: Measured spectra with the monochromator set to wavelengths from 2.7Å to 6.0Å. The
second-order peak at half wavelength, which becomes more pronounced with increasing wavelength,
can clearly be identified. Even a small third-order peak is observed for long wavelengths.
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flux is not attenuated by the monochromator. Therefore the loss of cold or thermal neutron intensity also
implies a decrease of the ratio of signal to background.

Since no counting detector was available for the experiment the standard CCD detector at ANTARES
was used to measure the beam intensity. This detector is not capable of counting single neutrons, but
the detected intensity (measured in grey levels) is on the average proportional to the light output of the
neutron sensitive scintillator. However, the sensitivity of the scintillator depends on the neutron velocity
v and generally shows a 1/v behaviour. Thus, it is not easily possible, without prior calibration, to
calculate a neutron flux from the detected intensity on the CCD detector. Therefore, we have only used
the intensity at the CCD detector as a measure of the beam intensity and not the neutron flux.

Flat field images at various wavelengths were acquired and the mean grey level values were calculated
over the same, homogeneous area for all images. Thus one can obtain the number of grey levels per
second (GL/s) as a measure for the beam intensity (see Fig. 3.1.4). The measurements were made with
two different pinhole sizes (L/D = 800 and L/D = 400) with and without a 10mm Pb filter in the beam.
The Pb filter is used as a low-energy gamma filter, which attenuates the neutron beam intensity by ap-
proximately 15%. We find that the intensity of the monochromatised beam observed with L/D = 400 is
approximately three times higher than for L/D = 800. In contrast to that, the primary intensity increases
by a factor of 4 when decreasing the collimation from L/D = 800 to L/D = 400. The smaller increase
of the intensity of the monochromatic beam occurs because the mosaic spread of the monochromator
crystals is too small to fully reflect the larger beam divergence at L/D = 400.

The maximum intensity is observed at a wavelength of 3.2Å with approx. 32GL/s. This maximum
occurs due to the combination of two effects: First, at lower wavelengths, the Bragg angles are very
small. Since the monochromator crystals are not big enough to cover the entire beam at these small
angles, only a part of the beam is reflected by the monochromator. This effect leads to an increase of
the intensity with increasing wavelength. Second, the intensity in the primary spectrum decreases with
increasing wavelength. Both of these effect together cause the maximum at 3.2Å. The step at λ = 4Å
occurs due to the use of the Be filter for λ > 4Å. An approximately linear decrease of the beam intensity
with increasing wavelength is observed for λ > 3.5Å, which results from the decrease of the primary
intensity. No simple explanation was found for the dip at λ = 3.0Å.

With the same detector setting, and after removing the monochromator from the beam, the intensity of
the polychromatic beam was measured to be approx. 4300GL/s for L/D = 400, which is a factor of 134
more than the maximum intensity observed with the monochromator. This already shows that in order
to have good neutron counting statistics in the monochromatic mode, very long exposure times and even
integration over several images are necessary.

Exposure times for monochromatic radiographs are of the order of 300s. Here the high gamma conta-
mination of the beam becomes a severe problem since it produces white spots on the CCD chip with an
intensity comparable to that of the neutron signal. These white spots can however be drastically redu-
ced by using a 10mm Pb filter in the primary beam before the monochromator to stop the low energy
gammas while at the same time attenuating the neutron flux by only approx. 15% (see Fig. 3.1.4, red
and green curves).

Since the amount of gamma spots produced in the images is relatively high, exposure times were limited
to 60s in most measurements. In this case≈ 5% of all detector pixels are affected by gamma spots, which
increase the intensity measured in these pixels. This is low enough to use a search & replace strategy to



3.2. POLARISER AND ANALYSER 54

Figure 3.1.4: Dependence of the intensity (in greylevels / s) on the wavelength measured using different
pinhole sizes (L/D = 800 and L/D = 400). The points on the right hand side (separate scale) give a
comparison with the intensity measured with the polychromatic beam.

replace the value of the affected pixels by the mean value of their neighbouring pixels. This procedure is
described in more detail in [112] and in 4.1. In order to obtain good neutron counting statistics, several
filtered images with short exposure times have to be summed up.

3.2 Polariser and Analyser

Of major importance for the success of polarised neutron imaging experiments is the choice of the
polarising and analysing devices. Here we will briefly discuss the requirements for these devices. Up to
now, most measurements with polarised neutrons have been performed using polarising equipment that
has been taken from neutron scattering experiments, where the homogeneity of the beam was no issue.
However, for neutron imaging polarisers with a high polarisation providing beams with a high spatial
homogeneity are mandatory. Moreover, after the sample, the polarising analysers should be as compact
as possible to reduce the blurring d of the images due to the increased sample to detector distance as
given by (2.5.1).

Since for the measurements at the ANTARES facility at FRM II, where most of the experiments descri-
bed in this thesis were made, the polariser had to be placed in the sample area after the flight tube, it was
an additional prerequisite for the polariser to conserve the beam collimation as much as possible. Ho-
wever, most standard polarising systems like neutron guides or benders destroy the initial collimation
by a large number of reflections, while at the same time introducing intensity inhomogeneities either
by the segment joints of a guide, by the multiple plate structure of a bender or by the waviness of the
substrates.

We have therefore tested various combinations of conventional polarisers and analysers as shown in
Fig. 3.2.1 to determine the ideal conditions, without special efforts to adapt these techniques to the
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Figure 3.2.1: Various setups for neutron imaging with polarised neutrons. The setups (a) and (b) invol-
ving 3He filters and setup (c) using solid state benders have been used at the ANTARES (FRM II) and
CONRAD (HZB) beam lines, respectively.

special requirements of the pinhole setup used in radiography. Furthermore a new type of polariser was
introduced. In the following we compare the properties of these setups for neutron imaging.

The basic setup used for all measurements consists of a neutron polariser, followed by a spin flipper,
a polarisation analyser, and a position sensitive CCD detector that records the image of a neutron sen-
sitive scintillator, which is placed behind the analyser. The sample was attached to the cold head of a
closed-cycle refrigerator and the depolarisation of the transmitted neutrons was measured for various
inhomogeneous ferromagnetic samples. The measurements using 3He spin filters were carried out at the
ANTARES beam line at FRM II, Munich, and those with solid state benders were made at the CONRAD
beam line at HZB, Berlin.

3.2.1 3He Spin Filter Cells

3He spin filters make use of the strong polarisation dependence of the neutron absorption cross section
of 3He gas. In order to use this method to polarise a neutron beam, the nuclei of the 3He gas have to
be polarised. At FRM II, the 3He gas is polarised at low pressure based on the Metastability Exchange
Optical Pumping (MEOP) method using the optical pumping facility HELIOS [113, 114]. After pola-
risation of the gas, it is filled into quartz glass cells. The polarisation of a neutron beam that can be
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achieved with such a spin filter cell is given by [115]

P = tanh(ηPHe) , (3.2.1)

while the transmission of the cell is found to be

T = T0e−η cosh(ηPHe) . (3.2.2)

Here PHe is the polarisation of the 3He gas used in the cell, T0 is the transmission of an evacuated cell
and η is an opacity parameter of the cell which can be calculated from the spin-dependent and spin-
independent part of the total cross section, the number of atoms per unit volume and the thickness of the
cell. At room temperature the opacity of 3He gas is

η = 7.32 ·10−2 p(bar)d(cm)λ (Å), (3.2.3)

with the pressure of the gas p, the transmission length of the cell d and the neutron wavelength λ . After
removing the 3He cell from the polarising facility the gas will start to depolarise as

PHe(t) = PHe(0) · e−t/τ (3.2.4)

with a relaxation time τ , which is strongly dependent on the homogeneity of the magnetic field over the
volume of the cell. Relaxation times of the order of 200h have been achieved with magnetostatic boxes
made from MuMetal, where the magnetic field is either produced with permanent magnets or solenoids.

Using 3He as a polariser has the advantage of leaving the beam collimation as well as the beam homo-
geneity unaffected, making it well suited for neutron imaging. However, the bulky magnetostatic box
required to create a homogeneous field surrounding the 3He cells leads to a large sample to detector
distance (SDD) dSD. Therefore, the spatial resolution is seriously reduced. A magnetic sample can not
be placed inside the box since the magnetic field homogeneity in the box would suffer from the influence
of the sample. To improve the setup, the non-magnetic scintillator was placed inside the box directly
after the 3He cell as discussed in 3.4, which decreases the SDD in our case to dSD ≈ 30cm.

The cells are transported from the filling station to the beam line and installed in the magnetostatic boxes.
Due to the relaxation of the gas polarisation, a regular exchange of the 3He cells is required. Using 3He
as a polariser and analyser as shown in Fig. 3.2.1(a) leads to a time dependence of the polarisation,
which can, however, be corrected for. Moreover, the transmission of the cells is also time-dependent,
leading to a loss in intensity with time. Currently, at the beam line ANTARES at FRM II the gas has to
be exchanged every 24−48 hours. For typical applications one generally maximises the term P2T from
equations (3.2.1) and (3.2.2), which yields a beam polarisation P of up to 80% and a transmission T of
≈ 25% for 3.2Å neutrons for a cell of 5cm thickness at a pressure of 1.6bar depending on PHe, which
is of the order of PHe = 70% for freshly polarised gas.

For most recent experiments, a RF spin flipper was integrated into the magnetostatic box that allowed to
select the polarisation of the 3He gas, thus allowing to use a broad wavelength band of neutrons, yielding
a high neutron flux. For the polychromatic measurements, a Be-filter was inserted to remove neutrons
with a wavelength λ < 4Å [111]. This way, the polarisation of the neutrons could be improved, i.e.
for a 3He polarisation of 80%, a flipping ratio (cf. eq. (2.3.3)) of 9.6 was obtained. The image shown
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Figure 3.2.2: (a) - (c) Transmission images of different samples taken with the setups (a) through (c)
shown in Fig. 3.2.1. The differences in image quality for the different methods are clearly visible. The
samples are: (a) a NbFe2 sample, (b) a Ni3Al sample (the position of the sample is indicated with a red
rectangle) and (c) a Pd1−xNix sample. The details of the measurements are explained in the text.

in Fig. 3.2.2a has been recorded using this setup yielding a resolution of ≈ 0.3mm. By reducing the
size of the magnetostatic box, the resolution could be improved further. Of course, for a quantitative
determination of the field integral as described in [94, 116], a polychromatic beam cannot be used. In
this case, the dependence of the neutron’s precession angle in the magnetic field on its velocity leads to
a depolarisation of the beam.

3.2.2 Standard Benders

Benders as described in [117] make use of the polarisation dependence of the reflection of a neutron
beam from a supermirror surface. Such a device is made from bent glass lamellae coated with a po-
larising supermirror such that there is no direct sight through the bender. Only neutrons with one spin
polarisation are reflected at the surface, while neutrons with the opposite polarisation are transmitted
through the coating and absorbed in a Gd layer below the supermirror coating. The reflected neutron
beam has a high polarisation of P≈ 0.96.

For a setup using a standard bender as a polariser for neutron radiography as shown in Fig. 3.2.1(b)
a poor spatial resolution is observed in the reflection plane, because the bender increases the beam
divergence through the reflection of the beam on the curved channels, delivering an L/D-ratio of the
order of L/D ≈ 60 similar to that of a standard neutron guide [118]. Hence, the images are smeared
in the horizontal direction. Moreover, the beam becomes inhomogeneous, showing a stripe structure.
With dSD ≈ 30cm, which was required by the 3He analyser, no satisfactory images could be obtained
(see Fig. 3.2.2(b)), i.e., the sample was completely smeared out in the horizontal direction. Even with
a shorter dSD, the image would still be severely blurred. A more favourable position for the bender
would be to place it closely behind or even before the pinhole. However, if using the latter position for
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the polariser, extreme care has to be taken to avoid imaging of the polariser structure onto the detector
according to the pinhole camera principle. Such a setup was not feasible at the ANTARES beam line
due to geometrical constraints. The divergence of the beam will still be increased but the cross section
of the exit of the bender then represents a pinhole source, which defines the collimation of the beam.

3.2.3 Solid State Benders

The length of a bender can be significantly reduced by using a stack of thin, bent Si wafers coated with
a polarising supermirror. The neutrons of one spin direction are guided through the Si, while neutrons
with the opposite spin direction are transmitted through the supermirror coating and absorbed in a Gd
layer below the coating as shown in the inset in Fig 3.2.1(c). Such a bender is mostly suited as an
analyser, since it can be relatively compact. All neutrons entering one of the channels will also exit the
same channel on the other side of the bender. If placed directly in front of the scintillator, the resolution
obtained with a bender is therefore given by the width of the channels in the horizontal direction. The
vertical component of the neutron direction is not altered by the reflection. Thus, the resolution in this
direction is given by the geometrical blurring due to the finite distance between sample and detector,
which is limited by the length of the bender. The secondary gamma radiation produced by the Gd layers
in the bender is, in such a low flux measurement, small compared to the intensity of scattered gammas
from the primary beam.

A setup using two such solid state benders as polariser and analyser was investigated at the radiogra-
phy facility CONRAD at HZB, Berlin (see Fig. 3.2.1(c)). The performance of the polarisers has been
evaluated as described in [119]. A high beam polarisation of ≈ 95% was achieved, however, the beam
profile was inhomogeneous exhibiting a pronounced stripe structure caused by imperfections of the
wafers in the benders. However, these stripes are fixed for a fixed detector and polariser position and
consequently they cancel out when the polarisation is evaluated from the raw images. For the benders
used in this experiment, the wafer thickness was 250 µm and the length was ≈ 80mm, yielding a reso-
lution of ≈ 0.5mm [94]. A radiograph taken with this setup is shown in Fig. 3.2.2(c). The resolution
of the analyser can be improved by using thinner Si wafers, which would also allow to build a shorter
polariser. This allows to decrease dSD as well. Of course, the optimum position of a solid state polariser
would be in front of the pinhole of the beam line.

3.2.4 Polarising Neutron Periscope

In the last few years significant advances have been made in increasing the critical angle of reflection
θmax of neutron supermirrors, which is typically expressed by a parameter m, giving the ratio of the
critical reflection angle of the supermirror compared to a Ni surface. The critical angle for Ni can be
calculated as [120]

θc = λ

√
h̄2 Nb

π
≈ λ [Å] ·0.1°, (3.2.5)

where N is the number density of the scattering Ni atoms and b their bound coherent scattering ampli-
tude. Thus, the critical angle θmax of a supermirror increases linearly with m and λ and can be written
as

θmax [
◦] = 0.1mλ [Å]. (3.2.6)
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Figure 3.2.3: Schematic of the principle of operation of a polarising periscope. The neutrons enter the
device from the right and are reflected from the first mirror towards the second mirror, which is parallel
to the first one. This mirror reflects the beam back into its original direction. The direct beam and its
gamma and fast neutron contamination can be stopped by a massive shielding behind the first mirror.

Therefore, higher m allows to reflect neutron beams of larger size with a given mirror size due to larger
reflection angles. Currently non-polarising mirrors with m-values up to m = 7 and polarising mirrors
with m = 4.5 are commercially available [121].

Principle

The neutron periscope is an arrangement of two parallel high-m supermirrors as shown in Fig. 3.2.3.
If the supermirrors are positioned such that a zig zag double reflection results, the beam leaving the
periscope is parallel to the incoming beam but shifted to the side. Also the beam geometry, i.e. the beam
collimation is conserved [122]. This is especially important if the periscope is used with a collimated
neutron beam for radiography and tomography experiments. In this case, the periscope can operate as a
device to stop most of the gamma and fast neutron contamination of a thermal neutron beam by shifting
the beam out of the direct sight to the beam nozzle and stopping the background radiation with shielding
material within the periscope. Nowadays, high-m polarising supermirrors with m = 4.5 are available.
This offers the possibility to build a neutron polariser with very high polarising efficiency P > 99% for
large beams, leaving the beam collimation unaffected [123]. In the following, we show the construction
of the polarising periscope and demonstrate its usability for radiography with polarised neutrons.

Construction

Four polarising FeSi supermirrors with m = 3.88 were used to build a first polarising version of the neu-
tron periscope. They are of 500mm×40mm2 size each and have a thickness of 2mm. The acceptance
angle of the periscope was designed for a mean wavelength of 3.2Å since, as discussed in Chapter 3.1.3,
at this wavelength the neutron flux of the monochromatic beam at the ANTARES facility has its maxi-
mum. The mirrors are inclined by an angle of 1◦ with respect to the incoming beam, allowing to reflect
a neutron beam with λ = 3.2Å and a divergence of 0.1◦. The periscope setup has an overall length of
approx. 180cm. An overview of the entire periscope assembly together with the massive Pb and borated
PE shielding as installed at ANTARES can be seen in Fig. 3.2.4. The magnetic field of 450G necessary
to magnetise the polarising supermirror coating was produced by 200 NdFeB permanent magnets which
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Figure 3.2.4: Technical drawing of the polarising periscope setup. The block on the right side is the
massive shielding made of Pb and borated PE to stop the primary beam with its fast neutron and gamma
contamination at the entrance of the sample area.

were arranged on both sides of the polariser housing, with their magnetisation pointing in the same di-
rection. The top and bottom parts of the periscope are made of iron, which guides the return field of the
permanent magnets to the space where the mirrors are mounted.

The unpolarised, collimated beam at the detector position of the ANTARES [92, 124] facility has a
size of 400mm× 400mm. Since the useable beam area of the periscope is much smaller, we used a
combination of borated polyethylene and Pb to stop the unused part of the primary beam, and thus
we could severely cut down the gamma, epithermal neutron and fast neutron background. This setup
significantly reduces the number of bright spots on the CCD detector which originate from gammas
directly hitting the CCD chip.

For adjustment the entire setup was mounted on a plate with ball casters. The end of the periscope which
is closer to the reactor is fixed by a pin around which the entire setup can be rotated using a linear stage
at the other end. This setup allows to adjust the angle of the periscope with respect to the beam.

In the future, the periscope will be installed further upstream of the neutron beam to allow for an expan-
sion of the beam dimensions due to its divergence when space becomes available during the ANTARES
upgrade in 2010 [125]. This will require for a guide field along the entire length of the flight tube, which
could, however, easily be realised by winding a longitudinal coil around the flight tube or by building a
transverse guide field using permanent magnets.
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Figure 3.2.5: The setup used for the measurements described in this chapter consists of a periscope
polariser and a 3He analyser. By placing shielding material behind the upper reflecting mirror, the direct
line of sight to the moderator can be interrupted.

Evaluation of the Beam Homogeneity

The conservation of the beam geometry is of great importance for radiographic experiments. To assess
the performance of the polarising neutron periscope, several measurements have been performed at the
ANTARES beam line at FRM II with a setup shown in Fig. 3.2.5 using a 3He analyser. Due to geo-
metrical constraints the periscope could only be installed close to the sample position, which restricted
the beam to an area of approximately 17.5× 40mm, where the height of the beam is only limited by
the height of the mirrors. Most of the following measurements were performed with a polychromatic
beam with a collimation ratio of L/D = 800, since the intensity of the monochromatic beam at 3.2Å is
very low, which leads to long exposure times with poor S/N ratio. The collimation ratio L/D = 800 was
preferred over L/D = 400 since the former yields better spatial resolution.

First, flat field images were taken with the periscope and – just as with the first version of the unpolarising
neutron periscope – we observed a pronounced stripe structure in these images (see Fig. 3.2.6 (left)). As
discussed below and in [122], this occurs due to a waviness of the mirror surface. As will be shown in
the next paragraph, a waviness of only 0.1mrad – the typical waviness of supermirrors on float glass –
can produce a stripe structure like the one we observed.

Fig. 3.2.7 shows a radiograph recorded with the unpolarised version of the periscope, which was nor-
malised to an image with no sample in the beam to correct for intensity fluctuations reported in [122].
This figure shows the image quality which can be achieved by reducing the waviness of the mirrors. The
polarising version did not yet reach the same perfection at the time of writing. A strong stripe structure
with variations of the beam intensity was observed. Normalising the radiographs to the flat field images
cancels the stripe structure but, due to the large intensity variations, the statistical noise is increased in
areas with poor counting statistics. The origin of the blurring of the radiograph of a printed circuit board
sample shown in Fig 3.2.6 (right) is mainly due to the large sample-detector distance of approx. 30cm.
This leads to an inherent blurring of approx 0.4mm at L/D = 800. This large distance was necessary
because of the bulky magnetostatic housing of the 3He analyser.
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Figure 3.2.6: An open beam image that shows a strong stripe structure due to the waviness of the mirrors
(left). Normalised radiograph of a printed circuit board (right).

Figure 3.2.7: Normalised radiograph of a hard disk drive motor recorded with an unpolarising version
of the periscope, with a distance of approximately 2cm between sample and detector.
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Figure 3.2.8: Results of the simulations for a waviness η = 2 · 10−4 rad (a) and η = 2 · 10−5 rad (b).
Furthermore the simple model for the mirror waviness as two triangles with base angles η is sketched
(c).

McStas Simulations of the Effect of the Mirror Waviness

To prove that the stripe structure observed in our measurements arises from the waviness of the super-
mirrors used in the periscope, a model of the polariser was simulated with the Monte Carlo simulation
software McStas [126, 127]. The instrument was simulated with parameters resembling those of the
real ANTARES facility as follows: The neutrons with a wavelength of λ = 3.2± 0.05Å emerge from
a pinhole with a diameter of 2cm at a distance 4.3m away from the source and follow a flight path of
13.8m from the pinhole to the entrance of the periscope. For the periscope, non-polarising supermir-
rors with m = 3.88 were assumed, since the polarisation is not of importance for the stripe structure.
The waviness of the mirrors on one side of the periscope was approximated by a profile composed of
two triangles with a base angle of 2 · 10−4 rad as sketched in Fig. 3.2.8 (c). This angle corresponds to
the typical waviness of standard supermirrors on glass substrates. In a second simulation, a waviness
η = 2 · 10−5 rad was used to assess the effect of using glass of higher surface quality (i.e. polished
borkron glass, which has optical quality).

The intensity observed at the position sensitive detector at the exit of the periscope for both simulations
is shown in Fig 3.2.8. We find a stripe structure that is in good qualitative agreement with the data
shown in Fig. 3.2.6. Intensity variations of a factor of ≈ 4 are observed for a waviness η = 2 ·10−4 rad.
Each of the triangles that was used for approximating the profile reproduces a sequence of regions with
high and low intensity. If the frequency of the undulations of the profile is increased, the number of
stripes increases as well. Actually, the wavelength Λ of the undulations of the profile is determined by
the length L of the substrates. Typically, it turns out that L/Λ = 0.5 or 1. By pushing the mirrors against
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Figure 3.2.9: Results of the simulations of the periscope for a waviness η = 2 ·10−4 rad (a) and η = 0rad
(b). For both simulations the periscope was placed 3.7m behind the pinhole allowing the beam to expand
on a flight path of 10.1m to the detector. The effect of the waviness of the mirrors is negligible at this
large distance from the periscope.

a flat support structure, it should be possible to reduce η to 2 ·10−5 rad leading to intensity variations of
≈ 25%, which is tolerable for neutron radiography. Using polished borkron glass, η can be reduced to
even below 1 ·10−5 rad, providing very homogeneous beams.

Further simulations with the periscope mounted closer to the pinhole were made to determine the resul-
ting beam size at the detector position and the effect of the long flight path on the stripe structure. For
these simulations, the periscope was placed 3.7m behind the pinhole, which gives a flight path of 10.1m
from the periscope to the detector. If the first part of the flight tube of the ANTARES beam line were
to be removed, the periscope could actually be installed at this position. The resulting beam size at the
detector position was found to be ≈ 10× 20cm. As expected, the stripe structure in the beam profile
was much diminished and the difference in variations between the two scenarios η = 2 · 10−4 rad and
η = 0rad was negligible.

The high image quality which can be obtained by positioning the periscope shortly after the collimator
was shown in an additional test experiment at the ICON beam line at PSI, where the area after the
collimator is easily accessible. The periscope was placed close to the collimator and 885cm away from
the sample position. For comparison two images with the same samples were acquired with and without
the periscope. The resulting, normalised images are shown in Fig. 3.2.10 and prove that there is no
visible difference in the image quality of both radiographs and no stripe structure is observed in the
image acquired with the periscope.
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Figure 3.2.10: Comparison of the image quality obtained with the full beam (a) and with the periscope
close to the collimator and 885cm away from the sample (b). Both images show similar resolution and
no stripe structure, which proves that the drawbacks of the periscope can be eliminated by positioning
the device as close as possible to the collimator.

Polarising efficiency

To assess the polarising efficiency of such a polariser, a depolarising iron shim of 0.6mm thickness,
which depolarises the beam to P< 1%, was put between polariser and analyser. The ratio of the intensity
at the detector without and with the iron shim in place was measured. This ratio, generally known as
shim-ratio R, determines the product of the polarising efficiency Pp and the analysing efficiency Pa by
Pp =

1
Pa
(1−R) [120]. Knowing that the polarising efficiency of the 3He analyser was Pa = 0.76 at the

time of the measurement, one can then calculate the polarising efficiency of the periscope. Fig 3.2.11
shows a plot of the beam polarisation behind the periscope along the white line shown in Fig 3.2.6 (left).
As seen in this plot, Pp lies roughly between Pp = 0.75 and Pp = 0.96 in most areas of the beam, with
the stripes of low intensity in the image also having lowest polarisation. The left part of the plot shows
significantly lower polarisation, which is probably a result of imperfect shielding of the primary and
unpolarised beam at the entrance of the periscope. Due to the divergence of the beam, these unpolarised
neutrons might transmit the periscope without reflection from the mirrors and thus contaminate the
polarised beam.

This lets us conclude that improving the flatness of the supermirrors will also increase the polarising
efficiency. From reflectometric measurements on the polarising mirrors used in the periscope we know
that the beam polarisation after a single reflection by such a mirror should be Pp ≥ 0.96. With two
reflections it should be possible to obtain Pp > 0.99. This goal should also be achieveable in the periscope
setup by improving the mirror alignment.

3.2.5 Summary & Conclusion

The results of our experiments demonstrate that the combination of two 3He cells, where the scintillator
is placed directly behind the analyser cell inside the magnetostatic box (see Fig. 3.2.1a)) yields a resolu-
tion of ≈ 0.3mm, which is the highest resolution of the setups tested so far. This resolution might also
be achieved with an optimised version of the periscope which was, however, not yet available at the time
of writing.

Our results indicate that an even higher resolution may be obtained if a 3He spin filter as a polariser is
combined with an optimised solid state bender as an analyser, if the setup has to be installed close to
the sample area of an existing beam line for radiography. In this case the polariser would not affect the
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Figure 3.2.11: Beam polarisation along the white line shown in Fig 3.2.6 (left). In the right part of the
plot, the beam polarisation varies between 75% and 96%, whereas in the left part it is significantly lower.
This is probably a result of the imperfect shielding of the primary, unpolarised beam which transmits
the periscope due to its divergence.

beam collimation and homogeneity at all and also the size of the magnetostatic box would not be crucial
for this application. A solid state bender analyser could be manufactured with a Si wafer thickness of
100 µm leading to an overall length of the analyser of only 5cm or even less. At a collimation L/D= 800
as available at FRM II Munich this would result in a geometrical blurring of < 100 µm in the vertical
direction and 100 µm in the horizontal direction due to the wafer thickness. This would be a great step
towards high resolution imaging with polarised neutrons.

If a dedicated beam line for polarised neutron imaging were to be built, the polariser should be installed
before or shortly after the pinhole. This setup would relax the restriction for the polariser to conserve the
beam collimation and thus would largely increase the choice of polarising devices. A good choice as a
polariser would then be to install a periscope with which the background would be reduced significantly.

3.3 Spin Flippers

To measure both the intensity I+ of the neutrons with spin in +z direction and I− with spin in −z
direction (see eq. (2.5.2)) it is necessary to rotate the polarisation of the neutron beam by 180°. This can
either be done before or after the sample, since only the probability for a spin flip (i.e. the depolarisation
of the beam) is measured. In order to decrease the distance between sample and detector as much as
possible, the spin flipper was always installed before the sample in our experiments. The effect of a spin
flipper on the polarisation P of a neutron beam can be written as a multiplicative factor

P∗ = P(1−2 f ), (3.3.1)

where P∗ is the final polarisation and f is the flipping efficiency, which should be as close as possible to
unity. Two different methods to change the polarisation direction of the beam were used.



3.3. SPIN FLIPPERS 67

Precession Coil Flippers

For the first measurements a precession coil spin flipper was used as introduced by Mezei [128]. This is a
device based on the Larmor precession introduced in 2.3. Two rectangular coils are wound perpendicular
to each other around an aluminium frame. Both coils produce a homogeneous field at their inside while
the field outside of the coils is only slightly affected. The first coil produces a field which is exactly
opposite to the guide field and results in an effective zero-field inside the flipper. The second coil
produces a field which is perpendicular to the polarisation direction of the neutron beam. The neutrons
enter the region inside the flipper non-adiabatically and start to precess around the magnetic field. The
precession angle of the neutron spin after transmission of the spin flipper is given by φ = γBL/v, where
γ is the gyromagnetic ratio, B is the magnetic field inside the flipper, L is the transmission length of
the device and v is the neutron velocity. By adjusting the current in the second coil, the magnetic field
can be tuned such that the precession angle φ inside the flipper is exactly 180° for a certain neutron
velocity v. As a result the neutrons exiting the flipper have a polarisation which is exactly opposite to
the incoming polarisation. From the dependence of φ on the neutron velocity it is easily seen that such a
spin flipper only works well for a monochromatic neutron beam. This was a main reason for installing a
monochromator at the ANTARES beam line. However, Hayter [129] showed that the flipping efficiency
of such a spin flipper is not very sensitive to a small wavelength spread. For the dependence of the
flipping efficiency f on the wavelength spread ∆λ/λ in case of a triangle-shaped wavelength distribution
Hayter finds

f = 0.5+(1− cosπδ )/(π2
δ

2), (3.3.2)

where δ = ∆λ/λ . A plot of this equation, shown in Fig 3.3.1, yields that e.g. at a wavelength spread of
∆λ/λ = 10%, which is typical for a velocity selector, a flipping efficiency f > 0.99 can be expected.

Figure 3.3.1: Flipping efficiency f of a precession coil spin flipper as a function of wavelength spread
∆λ/λ for a triangular wavelength distribution.

AFP Flippers

For the measurements after April 2009 a new magnetostatic box became available at FRM II, which has
an integrated RF flipper that allows to flip the polarisation of the 3He gas instead of the polarisation of
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Figure 3.4.1: Schematic drawing of the detector consisting of a cooled CCD camera, which records the
image on the scintillator via a single-lens reflex (SLR) camera lens and a 45° mirror.

the neutron beam [130]. This flipper is based on the AFP (adiabatic fast passage) technique, for which
a constant permanent magnetic field B0 is combined with an RF field B1 rotating in the plane perpendi-
cular to B0. By sweeping the frequency of the RF field for a duration of several ms, the polarisation of
the 3He gas can be flipped with a polarisation loss of less than 2×10−5 per flip. Flipping the polarisa-
tion of the gas has the big advantage that it is also possible to flip the polarisation of a polychromatic
beam. However, as shown in eq. (3.2.1), the polarisation of a neutron beam polarised with 3He depends
on the wavelength and decreases with decreasing wavelength. To obtain a high beam polarisation for
polychromatic measurements at ANTARES, a polycrystalline Be-filter was placed into the beam, which
cuts down the intensity of neutrons with a wavelength λ < 4Å by more than a factor 10 as described
in [111], resulting in a beam with λ > 4Å neutrons. With 3He filling parameters optimised for λ ≥ 3.2Å
as described in 3.2.1, the resulting beam polarisation was measured to be P≈ 90%.

3.4 Detector

The detector used for the experiments in this thesis is a standard CCD detector as generally used for
neutron imaging, which has been adapted slightly to meet the requirements for polarised neutron ima-
ging. A schematic of the detector is shown in Fig 3.4.1. The neutrons are detected on a scintillating
screen, which emits light in the green spectral range. The intensity of the emitted light is proportional
to the intensity of the neutron beam. This generates a 2D image of the transmission of the sample on
the scintillator, which is then recorded with a low noise CCD detector and digitally read out. The CCD
detector records the image via a standard camera lens which looks at the image on the screen under
reflection by a 45° mirror, allowing to place the CCD detector outside of the direct beam coming from
the reactor. The reason for this is that the scintillator has an efficiency in the range of only 20% for
thermal neutrons and the remaining neutrons transmitted through the scintillator would quickly destroy
the CCD detector if placed in the direct beam. In the following we briefly discuss the components of the
detector.

The scintillator used in this detector is a 6LiF/ZnS screen, which is probably the most common type of
scintillator for the detection of thermal neutrons. The neutrons are mainly absorbed by the 6Li nuclei
due to their high absorption cross section via the reaction

6Li+n−→ 3H+4 He+4.79MeV.
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The energy of 4.79MeV is transformed into kinetic energy of the tritium and the α particle. These
particles are then stopped in the scintillator, exciting the ZnS, which then emits approximately 1.77 ·105

photons in the green spectral range per detected neutron [118]. The mean range of the charged particles
in the scintillator and its thickness define the maximum resolution of the screen. Since this range is
typically larger than the thickness of the scintillator the resolution is mostly governed by the thickness
of the screen. For our experiments a 200 µm thick scintillator was used, which absorbs ≈ 20% of the
incoming neutrons.

The heart of the detector is an ANDOR DW436 16bit CCD camera with a CCD detector of 2048×2048
pixels, which can be thermoelectrically cooled down to −70°C, decreasing the CCD dark current and
noise to values which are absolutely negligible for this application. The CCD detector is a back illumi-
nated type with a peak quantum efficiency of > 96%, which lies in the green spectral range where the
scintillator has its maximum light output. One detected photon on the CCD chip produces approxima-
tely one electron-hole pair in the CCD chip, which is then digitised into approximately one grey level
(GL). This shows the high sensitivity of this CCD detector which is in principle capable of detecting
single photons (however, the noise level in the chip is typically larger than the signal obtained from a
single photon). The CCD chip is coupled to a high end Leica 100mm single-lens reflex (SLR) camera
lens with an F number of F = 2.8. The maximum optical resolution achieved with this lens in other
experiments was of the order of 30 µm, however, such high resolution was not necessary for polarised
neutron imaging due to the limitation of the geometric resolution of the beam to ≈ 300 µm. Conside-
ring the efficiency of the CCD chip, the lens and the mirror, one detected neutron produces a signal of
several ten GL in the digital image, which is read out from the camera. The exact value of grey levels
per neutron, however, depends strongly on the selected lens and the field of view of the camera.

For most of the measurements a 3He analyser was used, which has to be placed inside a bulky magneto-
static box as described in 3.2.1. To be able to place the scintillator directly behind the 3He-filled cavity
inside this box, an extension to the camera box containing the CCD detector was built which fits inside
the magnetostatic box and holds the scintillator.
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Chapter 4

Data Acquisition and Evaluation

For most measurements described in chapter 5, a common procedure of data acquisition and evaluation
has been used. This chapter focuses on the measurement procedure, the experimental setups used for
the measurements and the data evaluation. Where appropriate, we will refer to this discussion when
presenting the experimental results in chapter 5.

In 4.1 we will describe the general measurement procedure used to obtain the neutron depolarisation
after transmission of the sample from the measured intensities at the detector position. Furthermore
the process of data evaluation and the determination of the Curie temperature from the measured beam
depolarisation will be discussed.

Several different experimental setups have been used for the measurements described in chapter 5. An
overview of these setups and a discussion of their advantages and disadvantages will be given in 4.2.

In addition to the neutron depolarisation measurements, magnetisation measurements have been perfor-
med on several samples using a Quantum Design Physical Property Measurement System (PPMS). The
evaluation of the magnetisation data and the determination of the ordered moment ms and the ordering
temperature TC from these data will be described in 4.3.

Finally, a method was developed to determine the saturation magnetisation from the temperature depen-
dence of the neutron depolarisation. This offers the possibility to investigate inhomogeneous samples
in a single measurement without having to prepare several small and homogeneous samples for bulk
measurements. The determination of Ms from the depolarisation data will be shown in 4.4.

4.1 Measurement Procedure

The general principle of neutron depolarisation imaging (NDI) measurements is to determine the beam
polarisation after transmission of a sample as a function of position. To evaluate the effect of external
parameters like temperature T , hydrostatic pressure p or mechanical strain σ on the magnetic properties
of the sample, these parameters have to be tuned while the depolarisation of the beam is measured as a
function of these parameters. In this section we will discuss this procedure in a more technical approach
and go into further detail about the data evaluation and problems encountered during the measurements.

To determine the beam polarisation from the intensity observed at the detector there are in general two
possibilities. If a spin flipper is available, the most effective way to determine the beam polarisation is
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to measure the intensities I+ and I− of the beam at the detector with the flipper turned “off“ and “on”,
respectively1. The beam polarisation PB can then be calculated as

PB = (I+− I−)/(I++ I−) . (4.1.1)

If no spin flipper is available, which was the case for our first measurements carried out at HZB Berlin,
and the sample has a low Curie temperature, such that the sample can easily be heated to the parama-
gnetic state, the polarisation can also be determined from the measurement of the intensity I+ (T ) at
the desired temperature and an additional measurement of I+,PM in the paramagnetic state. The beam
polarisation is then calculated as

PB = 2(I+ (T )/I+,PM)−1. (4.1.2)

However, one has to assure that the sample is entirely paramagnetic for the measurement of I+,PM, which
was only achieved at room temperature for several of the investigated samples. In this case the large
temperature difference leads to a significant thermal expansion of cold head and sample, which has to be
corrected in order to maintain the correct position of each pixel on the sample. Consequently, whenever
possible, we used a spin flipper to determine the beam polarisation.

For all of the following experiments CCD detectors with a 16bit digitisation (i.e. 65535 possible grey
levels (GL)) were used. However, the intensity measured by a CCD detector is not immediately propor-
tional to the beam intensity. The built-in analog to digital converter (ADC) adds an offset value to the
measured value in order to avoid negative values in the digitisation process, which could occur due to
statistical noise. This offset depends on the readout speed and amplification set in the CCD detector and
is of the order of 1000GL. Furthermore, some additional pseudo-intensity is generated on the detector
by thermally induced particle-hole pairs in the CCD chip. However, at typical operating temperatures
of −70°C this effect is only very small (≈ 10−4 GL/s).

To account for both of these effects, additionally the intensity Idc with closed optical shutter of the
detector is determined, which is known as “dark current measurement”. To obtain the true intensity of
the neutron beam, this intensity Idc has to be subtracted from the measured intensity Im

I = Im− Idc. (4.1.3)

When the intensities I+ and I− are measured, for a polarised and sometimes even monochromatic beam,
one is confronted with a very low neutron beam intensity compared to a relatively high gamma back-
ground. This is especially the case at the ANTARES beam line since, in order to obtain a high beam
collimation and homogeneity, no neutron guides were used in the design of the facility [92, 93, 124]. As
a consequence the instrument has direct sight to the aluminium beam nozzle close to the reactor core,
which is an intense source of gamma radiation. As explained in 3.1.2 there was not enough space avai-
lable to construct a massive beam stop after the monochromator to stop this gamma contamination of the
primary beam. Consequently a monochromatic beam has much lower neutron flux than a polychromatic
beam but the gamma flux is only reduced by a small amount.

Despite the comparatively low sensitivity of the neutron scintillator to gamma radiation, scattered or
secondary gammas can cause bright spots directly on the CCD chip by ionisation. In a standard, un-

1In fact we are talking about a spatially resolved measurement of the intensities (i.e images) here. In the following we
will use a short notation for this, where e.g. I+ , I+ (x,y). All calculations discussed in the following therefore have to be
evaluated pixelwise as PB (x0,y0) = (I+ (x0,y0)− I− (x0,y0))/(I+ (x0,y0)+ I− (x0,y0)).
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polarised measurement with an exposure time of 7s and fully open beam channel, approximately 86%
of all pixels in the detector are affected by gamma radiation, which raises their intensity by more than
100GL. A typical histogram of a dark image with closed optical shutter of the detector but open neutron
shutter is shown in Fig. 4.1.1. The constant offset and dark current were subtracted from this histogram
to show only the gamma-induced intensity. From the histogram it can be seen that there is a pronounced
maximum of gamma spots with an intensity between 10GL and 100GL, however there exist some ultra
bright spots that come close to a value of 10000GL.

Being produced directly on the CCD chip, gamma spots are not blurred by the optical imaging procedure
of the lens and are sharper than the image recorded from the scintillator. This fact makes it relatively
easy to distinguish gamma spots from structure of the sample by their sharpness. There exist many
different techniques for filtering images and reducing the amount of spots. In this work a search &
replace algorithm was used, which identifies the gamma spots and replaces the value of the affected
pixel(s) with the mean value of its/their neighbouring pixels [112].

Figure 4.1.1: Histogram of a dark image acquired with closed optical shutter of the detector but open
neutron beam and an exposure time of 7s. The dark current and offset were subtracted to only show
the gamma-induced intensity. The value of most pixels is raised by 10− 100GL. Furthermore, there
exist some ultra bright spots with intensities up to 10000GL. A total of 86% of all pixels are affected by
gamma spots.

Due to the even longer exposure times of typically 60s for polarised or monochromatic measurements,
essentially all pixels of the CCD detector would be affected by at least one gamma spot, which conse-
quently takes away the possibility of removing these spots with the search & replace strategy described
above.

The gamma flux at the detector position could, however, be significantly reduced by the installation of a
massive beam stop inside the entrance channel to the sample area at ANTARES. This channel has a cross
section of 40×40cm2, which was designed for experiments with large samples. Since the samples used
in our polarised neutron radiography experiments were comparatively small, the installed beam stop
transmits only a beam cross section of 7× 7cm2, while the remaining part of the beam is stopped in a
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shielding of 20cm of borated polyethylene and 30cm of lead. Thus, it was possible to reduce the amount
of gamma spots to a level that allows the application of a gamma spot filter even for an exposure time of
60s. However, to improve the neutron counting statistics, it is necessary to record several images with
this exposure time and sum up their intensities after spot removal.

Including the gamma filtering algorithm, the beam polarisation at the detector can thus be written as

PD =
∑i (G(I+,i)− Idc)−∑i (G(I−,i)− Idc)

∑i (G(I+,i)− Idc)+∑i (G(I−,i)− Idc)
, (4.1.4)

where I±,i are the single images with the spin flipper “on” and “off” and G(I) is the gamma filtering
function. To correct for the polarising efficiency of the polariser and analyser P0, the polarisation PD

can be measured in an area where the beam is not depolarised by the sample (i.e. an area outside the
sample). To reduce the statistical uncertainty of the value of P0, it is calculated as the mean value of PD

over a larger region in the image, where the beam polarisation is not altered by the sample.

P0 = mean
(
PD |nosample

)
(4.1.5)

This yields the final procedure from which the polarisation of the beam P after transmission of the
sample is obtained

P =
1
P0

∑i (G(I+,i)− Idc)−∑i (G(I−,i)− Idc)

∑i (G(I+,i)− Idc)+∑i (G(I−,i)− Idc)
. (4.1.6)

In all of the experiments described in chapter 5, this procedure was was used to calculate P from the
measured intensities.

It should be remarked that the polarisation dependence of the scattering cross section does not influence
the neutron beam polarisation of the transmitted neutrons as long as the sample is close to magnetic
saturation. In an unsaturated sample the polarisation of the nuclei is on the average equal to zero.
Therefore, the orientation of the magnetic moments of the atoms is random with respect to the neutron
polarisation, leading to an isotropic scattering of both polarisation components. As a consequence, the
beam polarisation is not affected by magnetic scattering.

Determination of the Curie Temperature

To determine the Curie temperature of the sample, for many of the experiments, the depolarisation of
the beam by the sample was measured as a function of temperature. Typically the sample was cooled
in a small guide field of ≈ 10G below the Curie temperature and then neutron depolarisation measure-
ments with increasing temperature were performed. In the following, the procedure to obtain the Curie
temperature from the neutron depolarisation measurements at different temperatures will be discussed
briefly.

Generally the beam polarisation is conserved on transmission of the sample if it is in the paramagnetic
state. Decreasing the temperature below the Curie temperature leads to the formation of magnetic do-
mains in the sample which depolarise the neutron beam. Due to the increase of the magnetic moment
M (T ) with decreasing temperature, the precession inside the domains increases, resulting in a stronger
depolarisation of the beam. Consequently the Curie temperature can be determined from the onset of
beam depolarisation. The typical dependence of the beam polarisation at one pixel is shown as a func-
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tion of temperature in Fig 4.1.2. Two methods were used to determine the temperature where the sample
starts to depolarise the beam.

Figure 4.1.2: Typical temperature dependence of the beam polarisation after transmission of a ferroma-
gnetic sample. Different methods of finding the Curie temperature of the sample are discussed in the
text and indicated by the fit and the dashed lines.

The first method is based on fitting the polarisation P(T ) for each pixel with an appropriate function and
finding the Curie temperature from this fit. As an advantage, this method is not so sensitive to statistical
errors in single data points. However, if the polarisation has not been measured over a sufficiently large
temperature interval, it is often difficult to find a good fit. Good agreement of the observed temperature
dependence of the beam polarisation was found with a step function. The data was fitted making use of
an error function as shown by the blue line in Fig. 4.1.2

P(T ) = P(0)+
A
2
(erf(σ (T −T10))+1) . (4.1.7)

Here, P(0) is the beam polarisation extrapolated to zero temperature, A the amplitude, σ a measure
for the steepness of the step function and T10 is the temperature at which the polarisation is reduced by
10%. These parameters were determined from a Levenberg-Marquardt least squares fit of the measured
temperature dependence of the depolarisation data for each pixel. The Curie temperature was defined
as the temperature at which the beam polarisation is reduced by 5% (i.e P = 0.95) as shown by the
dashed red lines in Fig. 4.1.2. This temperature is actually a little lower than the true Curie temperature,
however the fit function is very flat in the range between 90% and 100% and the uncertainty in the Curie
temperature by imperfect fits would be drastically increased by using a higher threshold for the Curie
temperature.

As a second and very simple method, the measured data was compared with a threshold value. The Curie
temperature was defined as the highest temperature at which the measured beam polarisation sinks below
a certain threshold value. This method is, however, sensitive to noise in single data points, but yields
more stable results if the beam polarisation is only measured in a small temperature interval around TC.
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In contrast to that, in the method discussed above, the small temperature interval would lead to severe
uncertainties in the steepness σ of an error function fit and therefore to large uncertainties in TC. An
example of this method is shown in Fig. 4.1.2 by the dashed black lines with a threshold of P < 0.9.
This method yields a slightly lower TC than the method discussed above. Furthermore, we were obliged
to use threshold values as small as 0.6 in several measurements with poor neutron counting statistics
(i.e. monochromatic measurements), leading to the determination of an even lower value for TC. This
was necessary because a higher threshold in the flat part of the P(T ) plot yields very inaccurate values
for TC for noisy data.

Stray fields

Especially around the edges of the samples, distortions of the magnetic guide field by the sample affect
the beam polarisation. The polarisation vector rotates around the locally distorted field, resulting in
areas around the sample showing decreased or even negative beam polarisation. This effect is strongest
very close to the edges of the sample. An example of this effect is shown in Fig. 4.1.3. The figure shows
two images of I+ at T = 24K and T = 59K of a Pd1−xNix sample. Especially at the positions indicated
by the arrows, the image at lower temperature shows significant distortions of the guide field around the
sample, which are not present at T = 59K, where the sample is paramagnetic. This effect was reduced
in later measurements by applying a small field in parallel to the guide field by a pair of Helmholtz
coils around the sample. These distortions of the guide field generally hinder the correct evaluation
of the Curie temperature of the sample especially at the edges of the sample. If field distortions are
present, the observed loss in beam polarisation can not be unambiguously attributed either to the effect
of depolarisation due to the domains in the sample or to the stray field effects around the sample.

4.2 Experimental Setups

Neutron depolarisation imaging is a new method which was developed during this thesis. Therefore,
different experimental setups – each of which has its advantages and drawbacks – have been tested
during the measurements described in this thesis. We will at this point give a brief description of the
employed setups and their particular properties. An overview of these setups in their chronological order
of application is given in Table 4.1, and they will be referenced in the further discussion by the numbers
given in the first column of this table.

Setup #1: Solid State Benders at HZB

The very first NDI measurements were performed on Pd1−xNix crystals I – IV by the author at HZB,
Berlin at the neutron radiography instrument CONRAD [91] in collaboration with N. Kardjilov and A.
Hilger.

For this beam time two solid state benders with a beam cross section of 25×50mm2 were available at
the instrument. A schematic drawing of the experimental setup is given in Fig. 3.2.1 (c). The benders
consisted of a stack of bent 250 µm thick and 75mm long Si wafers with an m = 2 supermirror coa-
ting [119]. The polarising efficiency was determined by the shim method to be Pb ≈ 95%. As discussed
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T=24K T=59K

Figure 4.1.3: Images of the intensity I+ at T = 24K (left) and T = 59K (right) for crystal I. The effect
of distortions of the guide field by the sample can be observed for the lower temperature at the positions
indicated by the arrows. The distortions are not present at the higher temperature, where the sample
is entirely paramagnetic. At the bottom of the images, the sample holder and at the top of the thermal
shield of the cryostat – both made of Al – are visible.

in 3.2.3, benders increase the beam divergence and thus deteriorate the spatial resolution of the radio-
graphy setup. However an L/D≈ 100 was achieved with the polariser being placed approximately 2m
before the sample. In combination with the analyser, the spatial resolution obtained with this setup was
≈ 0.75mm. A monochromatic beam with a wavelength of λ = 3.5Å was obtained with a double crystal
monochromator available at the instrument [99]. For the first measurements on crystals I, II and IV, no
spin flipper was used, but for measurements on crystals I and III a precession coil spin flipper was later
installed in front of the sample.

The sample was placed in a closed cycle cryostat reaching a base temperature of 5K. Due to the lack
of the possibility to address the cryostat from the instrument software which was used for the measure-
ments, the temperature of the cryostat had to be set on an external computer which had no possibility
to interact with the instrument control software. Temperature scans were realised by programming the
temperature steps (1K for most measurements) in the cryostat software in appropriate time intervals.
During the run of the temperature scans the detector continuously acquired data with an exposure time
of 296s per image and a readout time of 4s, which sums up to a total time per image of 300s. To account
for the time the cryostat needed to ramp from one temperature to the next and to afterwards stabilise
the temperature, depending on the temperature steps, the first one or two images at each temperature
were discarded in the data analysis. The remaining images were summed up to obtain better counting
statistics. One thermometer was mounted at the cold head of the cryostat and a second one was mounted
at the remote end of the sample. During the measurement a temperature difference between these two
thermometers of ∆T < 1K could be maintained. At temperatures below 20K this difference was even
below ∆T < 0.5K, even though the sample was not mounted in a closed container with exchange gas.
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Nr. Reactor Polariser Analyser
Wavelength

Flipper Res. Remarks
mono poly

1 HZB SSB SSB 3.5Å – – /PC 0.75mm
flipper not available
for all measurements

2
FRM

II
periscope 3He 3.2Å

√
PC 0.5mm

stripe structure due to
mirror waviness

3
FRM

II
3He 3He 3.2Å – PC 0.4mm

high beam
homogeneity, good

spatial res.

4
FRM

II

3He +
AFP

3He 3.2Å
√

AFP 0.3mm

polychromatic
measurements with Be

filter, very good
spatial res.

Table 4.1: Overview of the properties of the different experimental setups used for the neutron depola-
risation measurements. Res.: spatial resolution; PC: precession coil spin flipper; AFP: Adiabatic fast
passage (RF-flipper for 3He polarisation), SSB: Solid state bender

Setup #2: Periscope Polariser and 3He Analyser

The polarising periscope – a new type of polariser – is described in detail in 3.2.4 and the setup in
which it was applied for neutron depolarisation measurements together with a 3He analyser is sketched
in Fig. 3.2.5. Ideally, being used as a polariser, the periscope does not alter the beam geometry and the
beam collimation is conserved. However, due to the waviness of the mirrors used in the present setup,
a stripe structure arises, which on the one hand deteriorates the spatial resolution and on the other hand
turns out to affect the beam polarisation. Consequently, the achieved spatial resolution is only of the
order of 0.5mm.

Most measurements with this setup were made on Ni3Al samples using a polychromatic beam. In
combination with a precession coil spin flipper, which only works well with a monochromatic beam,
this could only be done due to the following two reasons: On the one hand, the periscope was designed
to reflect wavelengths larger than λ = 3.2Å, while smaller wavelengths are transmitted through the
supermirrors and absorbed in a beam stop inside the periscope. On the other hand, the intensity of the
primary beam rapidly decreases for λ > 4.0Å. The combination of these two facts leads to a pronounced
peak of the intensity in the wavelength interval between 3.2 and 4.0Å, resulting in a ∆λ/λ ≈ 17%.
According to Fig. 3.3.1, this yields a reasonably high flipping efficiency of f ≈ 0.98.

Setup #3: 3He Polariser and Analyser + Precession Coil Spin Flipper

In a further step of development the imperfectly functioning periscope was replaced by a 3He spin
filter. As discussed in 3.2.1 a setup using two 3He spin filter cells as shown in Fig. 3.2.1 (a) yields
very high spatial resolution of ≈ 0.4mm and excellent beam homogeneity. This setup was used with a
monochromatic beam of λ = 3.2Å only, since a precession coil spin flipper was used. In contrast to the
periscope, 3He spin filters also transmit small wavelengths and the use of a polychromatic beam would
thus lead to a broad wavelength band which severely affects the performance of the spin flipper.
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Setup #4: 3He Polariser with AFP Flipper and 3He Analyser

In the beam time in April 2009, for the first time a new 3He magnetostatic box with an integrated RF
spin flipper as described in 3.3 was available at FRM II. This spin flipper allows to flip the nuclear
polarisation of the 3He gas and consequently the beam polarisation. As a major advantage, this method
also works with a polychromatic beam. Since the polarising efficiency of a 3He cell depends on the
wavelength of the neutron beam and is smaller at lower wavelengths [115], in order to obtain a high
beam polarisation, the wavelength band of the neutron beam was restricted to λ > 4.0Å by means of a
polycrystalline Be filter which was placed in the beam shortly after the pinhole. With this setup and with
freshly polarised 3He gas, flipping ratios of R ≈ 10 could be achieved. Furthermore due to the larger
mean wavelength compared to a monochromatic beam of λ = 3.2Å and increasing depolarisation of
the beam with increasing wavelength (cf. eq. (2.4.9)), higher depolarisation of the beam by the sample
was observed. This was especially advantageous for the thin and low TC slices of Pd1−xNix that were
investigated and facilitated the determination of TC.

Most measurements were performed at L/D = 800, which results in a maximum possible spatial resolu-
tion of approximately 350 µm. This is significantly better than what can be obtained with a monochro-
matic beam, since the monochromator decreases the beam collimation.

4.3 Magnetisation Measurements

Magnetisation measurements on several Pd1−xNix and Ni3Al samples have been performed using a
Quantum Design Physical Property Measurement System. This instrument allows to measure the field-
dependence of the magnetisation in external fields of up to 9T. The data obtained have been evaluated
using Arrot plots [10] (B/M vs. M2).

As discussed in 1.2, for materials that comply with SCR theory, Arrott plots should be linear. This
behaviour follows from the magnetic equation of state (eq. (1.2.27) in 1.2.2)

B
M

= A+bM2 (4.3.1)

derived in SCR theory. Deviations from a linear behaviour suggest that there must exist additional
contributions to the free energy which have not been considered in the SCR framework, altering the
magnetic equation of state. Such contributions complicate the evaluation of the data by introducing
nolinearities in the Arrott plot.

From such Arrott plots, the ordered moment Ms as well as the Curie temperature TC can be determined.
Parameter A is given as the y-value of the intersection of a linear extrapolation of the initial slope of the
data towards M2 = 0. In the units used in this thesis, A represents the inverse susceptibility χ−1. The
Curie temperature can be determined as the temperature at which A = 0. The ordered moment M2

s (T )
can be determined from extrapolation of the low-temperature data towards the x-axis. Finally, b can be
found from the slope of the linear fit of the high field data. An example of the determination of these
parameters is shown for one data set in Fig. 4.3.1. In contrast to the evaluation of the NDI data shown
below, especially the ordered moment obtained from Arrott plots is an extrapolation of the high-field
behaviour towards low fields.
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Figure 4.3.1: Determination of the parameters A = χ−1, b, TC and Ms from Arrott plots.

4.4 Determination of Ms from Depolarisation Data

An extremely helpful application of NDI is to obtain a spatially resolved map of Ms vs. TC over an
inhomogeneous sample. This data can then be evaluated in a plot, giving all values of Ms and TC

over the entire sample in a single measurement. The dependence of Ms on TC provides information
on the nature of the underlying phase transition. Compared to bulk measurements where samples with
different magnetic properties have to be prepared in a time consuming procedure and experiments have
to be performed on all of these samples separately, the evaluation of Ms and TC from NDI data is an
elegant and time-saving method.

In this section we discuss the evaluation of the NDI data and the determination of the value of Ms from
these data. We furthermore show by means of simulations that inhomogeneities lead to a smearing
of the phase transition in the temperature dependence of the depolarisation and to an ambiguity in the
determination of dependence of the ordered moment Ms (TC). A comparison of simulated data with the
measured data is made and we find that we can reproduce and explain the shape of our measured data
plot from our simulations. It, however, turns out that the particular sample we have investigated is too
inhomogeneous to determine the intrinsic dependence of Ms on TC from our measured data.

Calculation of Ms from P(T )

The determination of TC from the neutron depolarisation data was already discussed in 4.1. Therefore,
we additionally tried to find a way to obtain the value of Ms from the depolarisation data. An advantage
of the determination of Ms from NDI data is that these data are acquired in low magnetic field (i.e. only
the applied guide field of approximately 10−3 T) and no extrapolation towards low fields has to be
made. In so far NDI offers a more direct possibility of determining the ordered moment. According to
eq. (2.4.9) the beam polarisation after transmission of a ferromagnetic sample with random orientation
of the domains is given by

P = P0 exp
(
−1

3
γ

2
µ

2
0 M2 dδ

v2

)
. (4.4.1)
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Here, d is the sample thickness, δ the average domain size, v the neutron velocity and M is the magne-
tisation inside the single domains. Using this relation, the value of M (T ) can be determined from the
beam polarisation as

M2 (T ) =− 1
α

ln
P(T )

P0
, (4.4.2)

where α := 1
3 γ2µ2

0 dδ/v2 is only independent of temperature in the case of constant domain size, which
was assumed for evaluation of the data.

If the temperature dependence of M (T ) is known, the value of Ms = M (T = 0) can be found as the
extrapolation of M (T ) for T −→ 0 derived from the depolarisation data according to eq. (4.4.2). The
intrinsic behaviour of M (T ) which is generally found for weak itinerant ferromagnets was given in
eq. (1.2.1) in 1.2 and is described by a quadratic temperature dependence of M2

s (T ):

M2 (T ) = M2
s

(
1−
(

T
TC

)2
)
. (4.4.3)

In contrast to this intrinsic behaviour, the experimentally observed temperature dependence of M (T ) of
our particular Pd1−xNix sample rather follows a linear dependence of M (T ) on T 2:

M (T ) = Ms

(
1−
(

T
TC

)2
)

(4.4.4)

In the following we show that the subsequent transmission of several fractions of a sample with different
Ms and TC, each of which show the intrinsic behaviour of M (T ) as described by eq. (4.4.3), yields exactly
the observed linear behaviour given in eq. (4.4.4). This will be of great importance for the interpretation
of the neutron depolarisation data acquired on Pd1−xNix.

To prove this statement, simulations of the resulting beam polarisation after transmission of these regions
were made. It was assumed that the observed beam polarisation is a product of the depolarisation
resulting from all regions traversed by the neutron beam2:

P =
N

∏
i=1

Pi = P0

N

∏
i=1

exp
(
−βM2

i (T )di
)
, (4.4.5)

where N is the number of regions, β = 1
3 γ2µ2

0
δ

v2 is assumed to be constant, di is the transmission length
of the ith region (which was assumed to be constant for all regions, i.e di = d/N) and M2

i (T ) is the tem-
perature dependent magnetisation of the ith region given by eq. (4.4.3). Additionally a linear dependence
Ms (TC) = bTC + c was assumed for each of the regions.

Effect of inhomogeneities on P(T )

Using these relations the resulting beam polarisation was calculated as a function of temperature for
different arrangements of regions with different magnetic properties in a sample. The schematic results
of this procedure are indicated in Fig. 4.4.1 for three subsequent regions. In panel (a) four different
configurations of regions named A to D are introduced. Here, the different magnetic properties are

2Note that this assumption is only valid if the size of the regions is much larger than the average domain size. This is
because only in this case, the depolarisation formulae are valid.
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Figure 4.4.1: Schematic description of the depolarisation of a neutron beam through an inhomogeneous
sample. In image (a) four different arrangements of regions A to D are defined consisting of three regions
with different ordering temperature. Figure (b) shows the depolarisation of the beam as a function of
temperature for each of the three ferromagnetic regions, respectively. The paramagnetic region (PM)
does not affect the beam polarisation. In image (c) the resulting total depolarisation of the beam for the
four different arrangement A to D are shown. All of these curves yield the same value for the ordering
temperature (TC = TC,3) but different values for P(T = 0) and therefore different values of Ms.
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symbolised by a colour code from white to black, where white depicts a paramagnetic region and black
a strongly ferromagnetic region with a high TC and therefore a high Ms. We will in the following call
a sample inhomogeneous if it consits of several regions with different TC values. In contrast to that a
homogeneous sample consists of only a single region with a single ordering temperature.

Panel (b) shows the schematic temperature dependence of the neutron beam polarisation after transmis-
sion of a single ferromagnetic region of thickness di = d/3 with Curie temperatures of TC,1 < TC,2 < TC,3.
Above TC the polarisation has a constant value of 1 and a sharp edge appears at TC, where the polarisa-
tion starts to drop with decreasing temperature and reaches a saturation value essentially defined by Ms

for T = 0.

As discussed above the polarisation after transmission of the entire sample containing three subsequent
regions is given by the product of the polarisations resulting from transmission of the single regions.
This result is depicted in panel (c) of the figure for the cases A to D defined above. The curve for case
A is drawn in blue. The two paramagnetic regions do not contribute any depolarisation of the beam and
the resulting polarisation is given by the single ferromagnetic region with TC,3. In contrast to this result,
a lower beam polarisation is observed for case D, which involves three strongly ferromagnetic regions
with the same TC,3. According to eq. (4.4.5) the resulting beam polarisation is the polarisation observed
for case A to the third power. These two curves already show that different polarisation is observed
for P(T = 0) for both cases even though an analysis of the high temperature depolarisation data will
yield essentially the same TC for both cases3. As the value of Ms can be determined from the value of
P(T = 0) according to eq. (4.4.2), an inhomogeneous sample composed of regions with different TC but
the same maximum TC,max will lead to different values of Ms for one value of TC = TC,max.

This fact is further illustrated for cases B and C, where regions of lower ordering temperature and
therefore also lower Ms contribute to the depolarisation of the beam at lower temperatures. Here the
neutron depolarisation data at high temperatures still yields a Curie temperature of TC,3 but the low-
temperature data gives intermediate values of Ms compared to cases A and D. This happens because the
observed odering temperature is always the highest ordering temperature of all regions contributing to
the depolarisation (i.e. only one region defines the value of TC). In contrast to that, the value of Ms is
defined by the contribution of all ferromagnetic regions for T → 0.

Furthermore a flattening of the polarisation curves with a higher value of P(T = 0) is observed for in-
homogeneous samples in comparison to a homogeneous sample with an ordering temperature TC,3. The
calculation of Ms from P(T = 0) therefore always leads to a lower value of Ms than for the homoge-
neous case. This ambiguity will be discussed in more detail below in the context of the evaluation of the
Ms (TC) diagram obtained from the depolarisation data on Pd1−xNix.

A simulation of the beam polarisation after transmission of an arrangement of 2000 regions with a
random distribution of ordering temperatures 0 ≤ TC,i ≤ 18K and a maximum ordering temperature of
TC,max = 18K is shown by the blue line in Fig. 4.4.2. For comparison, the green line in this plot shows the
beam polarisation as a function of temperature for the case of a homogeneous sample of equal thickness
consisting of a single region with a similar ordering temperature of TC = 18K. It is clearly observed that
the shape of the curve for the inhomogeneous sample is rounded and the phase transition is smeared out
by the inhomogeneity. It should be noted that in the case of a smaller number of transmitted regions

3The effect of the threshold which is used to define TC on the exact value of the ordering temperature will be discussed
below.
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Figure 4.4.2: Simulated temperature dependence of the beam polarisation after transmission of an in-
homogeneous sample consisting of 2000 subsequent regions with random ordering temperatures (blue)
compared with the depolarisation caused by a homogeneous sample (green) with an ordering tempera-
ture which is equal to the maximum TC found in the inhomogeneous sample.

(i.e. only 20 regions), the rounding of the curve is slightly decreased but the general shape of the curve
remains. This large number of regions was only used to smooth the curve.

The curve of the inhomogeneous sample resembles the shape of the measured curve for a Pd1−xNix
sample, which was shown in Fig. 4.1.2 much more than the curve of the homogeneous sample. On
the one hand, this justifies the use of an error function fit to determine the ordering temperature from
the depolarisation data. On the other hand and more importantly, this result shows that the measured
depolarisation results from the transmission of an inhomogeneous sample. Furthermore, this observation
allows to establish the rounding of the P(T ) curves as a measure of inhomogeneity in the sample.
Additionally the good agreements of the measured data with the simulations gives further proof that the
decrease of spin polarisation after traversal of the sample results from true depolarisation of the beam
an not from a rotation of the polarisation vector around locally inhomogeneous stray fields around the
sample.

Effect of inhomogeneities on Ms (T )

The effect of inhomogeneities on the determination of the temperature dependence of M (T ) from the
depolarisation data according to eq. (4.4.2) was studied in more detail. As discussed above, the intrinsic
behaviour of weak itinerant ferromagnets shows a M2 (T ) ∝ −T 2 dependence, whereas the measured
dependence of our Pd1−xNix samples is in good agreement with a M (T ) ∝ −T 2 dependence. It can
be verified from our simulations, that the transmission of an inhomogeneous sample yields exactly
this result. Using eq. (4.4.2), Ms was calculated from the simulated depolarisation data as a function
of temperature and plotted in Fig. 4.4.3 for a homogeneous sample (green) and an inhomogeneous
sample again consisting of 2000 random regions (blue). In the inset we show the linear behaviour of
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Figure 4.4.3: Simulated temperature dependence of M (T ) for an inhomogeneous sample consisting of
2000 subsequent regions (blue) and a homogeneous sample (green). The inset shows the intrinsic linear
behaviour of M2

(
T 2
)

for a homogeneous sample. In contrast to that the inhomogeneous sample is in
good agreement with a linear behaviour of M

(
T 2
)
, which is also consistent with the measured data on

Pd1−xNix.

the homogeneous sample in a M2 (T ) vs. T 2 plot. Such a linear behaviour – however, with a random
distribution of Ms values – was also assumed for all regions of the inhomogeneous sample. It is nicely
observed in the main panel of the plot that the inhomogeneous sample yields a linear behaviour when
plotting M (T ) vs. T 2.

Dependence of Ms on TC

A major goal of our NDI experiments was to find a way to obtain the intrinsic dependence of Ms on
TC for Pd1−xNix. This dependence, which is to date not exactly known, yields valuable information on
the underlying phase transition. If the ordered moment Ms – which is the order parameter of the phase
transition – vanishes discontinuously for TC→ 0, the phase transition is first order and no QCP can exist
in the material. For a QCP one would expect the ordering temperature to track the ordered moment Ms

down to zero, providing evidence for a second order phase transition. Therefore we have tried to obtain
spatially resolved information on the distribution of the values of Ms and TC for an inhomogeneous
sample.

As discussed above, the value of Ms was determined from the extrapolation of the ordered moment
obtained from the depolarisation data towards low temperature using eq. (4.4.2). During the evaluation
of the data we found that the observed M (T ) behaviour complies with eq. (4.4.4) rather than with
eq. (4.4.3), which is why a linear dependence of M on T 2 was assumed for the extrapolation towards T =

0. However, as shown above, this behaviour gives evidence for inhomogeneities along the transmission
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T : P < 0.95C

T : P < 0.80C

T : P < 0.90C

T : P < 0.70C

T : P < 0.50CT : P < 0.60C

(a)

(c)

(e) (f)

(d)

(b)

Figure 4.4.4: Dependence of the ordered moment Ms on the ordering temperature TC for slice #1 of our
Pd1−xNix samples evaluated from the NDI data. Figure (a) was evaluated with a threshold of 0.95 for
the determination of TC. Decreasing this threshold leads to a shift of the data towards lower TC which
might lead to the false identification of a first order phase transition in Pd1−xNix.
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path of the neutrons through the sample. A plot of all extrapolated values of Ms and their corresponding
TC values is shown in Fig. 4.4.4 (a). Here each point represents a pixel in the depolarisation images, for
which the ordered moment as well as the ordering temperature were determined. The value of TC was
in this case determined with the threshold method described in 4.1 using a threshold of P < 0.95. This
threshold was chosen in the following way. The standard deviation σ of the polarisation above TC was
measured and the threshold was set to Pthr = 1−3σ .

The image shows that no obvious relation between Ms and TC is observed at a first glance for this sample
and that there exists a large bandwidth of Ms values for one TC value. Most of the observed ordering
temperatures lie between 15K and 20K. There are only a few points which extend upwards of this
region to a maximum TC of 28K in this sample. The lowest temperature in the measurements was 4K,
which is therefore also the lowest ordering temperature we could detect. For this reason, the plot is cut
off towards lower temperatures. Similar to the high temperature end of the plot there exists a smaller
number of points at the low temperature end.

Simulation of the Ms (TC) plots

The simulations already used to obtain the temperature dependence of the depolarisation and the ordered
moment can also help to understand and interpret these data. Let us again use the schematic picture
introduced in Fig. 4.4.1 where we already showed that in the case of an inhomogeneous sample the
extrapolation of the depolarisation data for T → 0 can yield different polarisation values, and therefore
also different values of Ms for one TC value. The intrinsic Ms corresponding to the measured TC will
only be found in case D, where the sample is homogeneous. In this case the lowest polarisation for
T → 0 of all possible cases with the same TC will be measured. The value of Ms calculated from
this polarisation using eq. (4.4.4) will therefore yield the highest of all possible Ms values for this TC.
All inhomogeneous cases will yield a lower Ms. For a given TC the highest of all Ms values therefore
represents the homogeneous case and consequently the intrinsic behaviour. In the plot in Fig. 4.4.4 (a)
the highest Ms values for each TC are found at the right edge of the cloud of points.

To further illustrate the effect of inhomogeneities on the resulting plots, additional simulations were per-
formed. Two different possible intrinsic dependencies of Ms on TC were assumed in these simulations.
The plots shown in Fig. 4.4.5 were obtained using an intrinsic quantum critical dependence

Ms (TC) = aTC, (4.4.6)

whereas the plots in Fig. 4.4.6 are based on the non quantum critical dependence

Ms (TC) = bTC + c, (4.4.7)

where a, b and c are positive constants. These intrinsic relations are indicated by the red lines in all of
the plots. For both figures the sample was simulated as a sequence of two regions with random TC and
corresponding Ms

4. The temperature dependence of the beam polarisation was simulated for a large
number of random arrangements (up to 106) of these two regions. The ordered moment was determined
from the value of P(T = 0) using eq. (4.4.2) and the value of the ordering temperature was found as the

4The effect of assuming a larger number of transmitted regions leads to a broadening of the plots which will be discussed
below. The overall shape of the plots remains, however, unaffected.
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T : P < 0.999C

T : P < 0.95C

T : P < 0.99C

T : P < 0.90C

T : P < 0.60CT : P < 0.80C

(a)

(c)

(e) (f)
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(b)

M (T )=aTs CC

Figure 4.4.5: Simulated relation between Ms and TC for an inhomogeneous sample consisting of 2
regions with random ordering temperatures. An intrinsic quantum critical relation indicated by the red
line was assumed for each of the regions. The variation of the threshold to determine TC was studied in
images (a) to (f). A shift of the curves towards lower values of TC is observed especially at the low-TC
end of the plot, which increases the resemblance of these plots to the non quantum critical plots shown in
Fig. 4.4.6. This effect eventually hinders the determination of the intrinsic behaviour from our measured
data.
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T : P < 0.999C

T : P < 0.95C

T : P < 0.99C

T : P < 0.90C

T : P < 0.60CT : P < 0.80C

(a)

(c)

(e) (f)

(d)

(b)

M (T )=bT  + cs CC

Figure 4.4.6: Simulated relation between Ms and TC for an inhomogeneous sample consisting of 2
regions with random ordering temperatures. An intrinsic non quantum critical relation indicated by the
red line was assumed for each of the regions. The variation of the threshold to determine TC was studied
in images (a) to (f). A shift of the curves towards lower values of TC is observed especially at the low-TC
end of the plot. However, this effect is smaller than for the quantum critical relation shown in Fig. 4.4.5.
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temperature for which the beam polarisation falls below a certain threshold. The effect of changing this
threshold from 0.999 to 0.60 is shown in the different plots of the figures.

Let us first assume that the ordering temperature can be determined very accurately, which is equivalent
to using a very high threshold value. This has been done in the panels (a) of both figures, where the thre-
shold for the determination of TC was set to P < 0.999. In this case both assumptions yield the intrinsic
behaviour only if both regions have the same ordering temperature (i.e. if the sample is homogeneous).
For all other cases where one region has a lower ordering temperature than the other, a lower value of
Ms is found. As stated above, the intrinsic behaviour – which corresponds to the red line – is found at
the right hand edge of the point cloud. It is worth noting that a sharp edge is also observed at the left
side of the plot, which results from the case where one of the two regions is paramagnetic (i.e. TC = 0).
The width of of the plot increases with increasing number of regions in the sample and will be discussed
below.

Effect of changing the threshold to determine TC

The effect of using a smaller threshold was studied in the simulations shown in panels (b) to (f) in
Figs. 4.4.5 and 4.4.6. It can be seen that decreasing the threshold has the effect of shifting the points
towards smaller TC values. This effect is most prominent for very flat P(T ) curves, i.e. curves with a
very small value of Ms (c.f. curve A in Fig. 4.4.1 (c)). Here, the choice of a smaller threshold leads to
the determination of a much smaller TC. In contrast to that, the effect of employing a smaller threshold
on curve D in the figure is not so strong, since the curve is steeper. This means that especially low-TC

curves are affected. As a result of this effect the point clouds in the Ms (TC) plots are shifted towards
lower TC values, especially at the lower end. Furthermore the shape of the clouds for the quantum
critical behaviour in Fig. 4.4.5 becomes more and more similar to the shape of the non quantum critical
clouds in Fig. 4.4.6. This resemblance prevents the exact determination of the intrinsic behaviour from
the measured data, since for thresholds of 0.95 or smaller, the quantum critical plots indicate a first order
phase transition.

Effect of the number of regions

We furthermore studied the effect of the number of subsequent regions the beam transmits on the shape
of the Ms (TC) plots. For these simulations the sample thickness was held constant and the sample was
divided into different numbers of regions. The results in Fig. 4.4.7 were obtained using a threshold of
0.95 for the determination of the ordering temperature. We find that increasing the number of transmitted
regions from 2 to 5 as shown in panels (a) to (d) increases the width of the plot. Furthermore, the edges
of the plot become less sharp, which can be explained as a statistical effect. Using a larger number of
random regions dramatically decreases the probability of obtaining the extreme cases of a completely
homogeneous sample (right edge of the plot) or a sample where only a single region is ferromagnetic
and all other regions are paramagnetic (left edge of the plot). No further increase of the width of the plot
was observed for a number of regions larger than 5. However, this result may as well be attributed to the
same statistical effect which decreases the probability of the extreme cases defining the boundaries of
the plot. Comparing our data in Fig. 4.4.4 with these simulations we can say that our Pd1−xNix sample
consists on the average of more than 5 subsequent regions.
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(a)

(c) (d)

(b)2 regions 3 regions

5 regions4 regions

Figure 4.4.7: Simulation of the effect of a variation of the number of transmitted regions of different
ordering temperature in an inhomogeneous sample on the relation between Ms and TC. Increasing the
number of regions increases the width of the plot. Furthermore the probability of obtaining a completely
homogeneous sample (right edge of the plot) and a sample consisting of only one ferromagnetic region,
while all other regions are paramagnetic (right edge) decreases with increasing number of regions. This
leads to a decrease of the point density at the edges of the plot.
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Conclusions

To conclude, these simulations have shown that all features of the Ms vs. TC plot obtained from the
NDI data can be understood in terms of (i) inhomogeneities of the sample along the transmission path
and (ii) the threshold for the determination of TC. We have shown that the width of the plots increases
with increasing number of traversed regions with different ordering temperature. Furthermore we have
proven that the decrease of the threshold value used to determine the ordering temperature leads to a
shift of the data points towards lower TC values especially at the low-TC end of the plot, which may
indicate a first order phase transition even though the sample is intrinsically quantum critical.

Tests of changing the threshold for TC were performed with the measured data as shown in Fig. 4.4.4 (a)
to (f). Here the noise in the data prevented the choice of a threshold larger than 0.95. Decreasing
this threshold leads to a similar shift of the points towards lower TC values as for the simulations shown
above. Especially the fact that there are not many data points with very low TC for this particular sample,
circumvents the exact determination of the low temperature behaviour of the sample from the right edge
of the point cloud. One might as well see a quantum critical behaviour as indicated by the red line in
Fig. 4.4.4 (a) as a non quantum critical one as suggested by the green line. However, we can deduce
from our simulations that the sample consists on the average of at least five different regions along the
sample thickness of 1mm.



Chapter 5

Experimental Results

This chapter is dedicated to the presentation and discussion of the experimental results obtained with
the neutron depolarisation imaging (NDI) technique developed in this thesis.

In section 5.1, first proof of principle measurements performed at the instrument MIRA, FRM II will be
shown. This instrument was already equipped with a position sensitive detector and polarisation ana-
lysis. Spatially resolved measurements of the magnetisation of Ni and Fe samples in different external
fields will be shown.

Section 5.2 will present results obtained on the weakly ferromagnetic materials Pd1−xNix and Ni3Al.
The first experiments were performed at the CONRAD beam line at HZB, Berlin. However, most of the
presented data was obtained with a neutron depolarisation setup installed at the ANTARES beam line at
FRM II.

5.1 First Proof of Principle Measurements on MIRA

To prove the feasibility of radiographic measurements with polarised neutrons, the instrument MIRA
at FRM II was used as a test bed. Being located at the end of a neutron guide, MIRA was already
equipped with a polarising bandpass supermirror, delivering a wavelength λ ≈ 10Å and a polarisation
of P = 0.94. Inside the monochromator shielding a pinhole can be set to define the beam collimation.
Furthermore, a highly efficient position sensitive counting detector with a spatial resolution of ≈ 2mm
was available at the instrument. Together with spin handling equipment like spin flippers, guide fields,
etc. all prerequisites for first spatially resolved proof of principle measurements with polarised neutrons
at low spatial resolution were fulfilled.

Setup

In this experiment the instrument MIRA was used to measure the beam polarisation transmitted through
a ferromagnetic sample composed of Ni and Fe. An overview of the setup is shown in Fig. 5.1.1. All
the experiments were carried out at a wavelength of 10Å where no Bragg scattering in the materials Ni
and Fe is possible, which also eliminates the effect of magnetic Bragg scattering. The aperture installed
directly after the monochromator was set to a size of 5×5mm2, which – together with a flight path length
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to the sample of L≈ 280cm – yields an L/D ratio of 560 (see 2.5). The resulting geometrical resolution
of 1.4mm at the detector position is well matched to the 2mm spatial resolution of the position sensitive
detector (PSD) available on MIRA. Using a position sensitive detector to image the depolarisation of
the beam over the area of the sample yields 2D information about the macroscopic magnetisation of the
sample.

Figure 5.1.1: Photo of the setup used for the first proof of principle measurements on MIRA showing the
monochromator housing, the guide fields, the Helmholtz magnet at the sample position and the housing
of the 3He analyser. The spin flipper in front of the sample position was not yet installed.

Between the aperture and the detector, guide fields were installed to conserve the beam polarisation.
Furthermore, a spin flipper was used to change the sign of the beam polarisation. As a polarisation
analyser a 3He cell was used, which did not affect the geometrical resolution of the instrument. However,
the bulky magnetic housing of the 3He cell required a sample to detector distance of dsd ≈ 800mm.

At the sample position a pair of water cooled Helmholtz coils was available. These could produce
fields up to ≈ 3kG parallel to the direction of the neutron polarisation. The maximum field used in the
experiment was, however, only 1.4kG since higher fields produced severe stray fields outside the sample
area that depolarised the beam. The incoming beam polarisation was determined to be P = 0.94. The
flipping efficiency f of the spin flipper was found to be f > 0.99 and will therefore be neglected in the
further discussion.

Experiments

As a sample, a Ni slab of 3.5mm thickness which had a smaller slab of iron of 3mm thickness mounted
on its side was used as shown in Fig. 5.1.2 (left). The sample could be magnetised with the Helmholtz
magnet. Since the permeability µ of iron is much bigger than that of Ni, a major part of the magnetic
flux is bypassed through the iron slab in the middle of the sample. This leads to a lower magnetisation
M in the Ni slab in this region. Iron, however, does not come close to saturation in the applied fields.

Magnetising the sample in external fields of different magnitude made it possible to vary the local
magnetisation in the sample. The state of magnetisation was then imaged by recording the beam polari-
sation transmitted by the sample for different applied magnetic fields.
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The sample was magnetised in four different external fields from 400G < B < 1400G. The beam
polarisation PS transmitted through the sample was calculated from I+ and I− for each of these fields
with

PS =
1

PPA

I+− I−
I++ I−

, (5.1.1)

where PA is the analysing efficiency. Due to the small pinhole aperture and the long neutron wavelength
of 10Å the flux at the detector was very low. This made it necessary to integrate the intensities on the
PSD for several hours (typically 10h for one image of the polarisation PS). During this time, due to
the relaxation of the 3He gas polarisation, the analysing efficiency PA was continuously decreasing. In
contrast, P was constant, since a supermirror was used to polarise the beam. To minimise the errors
introduced in the measured beam polarisation, single images of I+ and I− with 900s exposure time were
recorded. The polarisation was calculated from each of these images, which were then averaged after
correction for the variation of PA. The analysing efficiency was monitored in an area where there was
no object in the beam, making it possible to correct for the relaxation of the 3He polarisation in the data
analysis.

Results and Discussion

The resulting beam polarisation is shown in false colour images in Fig. 5.1.2 for the different fields.
The rounded edges at the top of the images at 400G and 1100G are due to the circular 3He cells which
were used for these images, in contrast to the rectangular cells used for the other two images. The Fe
slab at the left side completely depolarises the beam in all of the four applied fields. For the Ni slab the
beam polarisation after the sample strongly depends on the applied field. At the lowest field of 400G the
transmitted beam polarisation is approximately 25% above and below the position of the Fe slab, while
at the position of the Fe slab the beam is still completely depolarised. The polarisation in both regions
increases with applied magnetic field and reaches a maximum of 80% in the bottom region and 75% at
the side of the Fe slab.

Let us consider two extreme cases to explain the results we observed. First let the sample be completely
demagnetised. In this case the magnetisation of the different domains is randomly oriented, which leads
to a complete depolarisation of the beam at the given sample thickness.

Second, if the sample is fully saturated there exists only one macroscopic domain which is magnetised in
the direction of the neutron polarisation. In this case the component of the magnetisation perpendicular
to the neutron beam polarisation vanishes and therefore the polarisation after transmission of the sample
is conserved.

The images shown are in agreement with the expectation that the Fe slab on the left side bypasses
a certain part of the magnetic flux due to its higher permeability µ . As a result the magnetic flux
density in the Ni slab and therefore its magnetisation at this position decreases. This decrease of the
magnetisation leads to a higher depolarisation of the beam. What can also be seen is that the lower the
external magnetic field, the lower is the magnetisation of the bulk material above and below the Fe slab,
which also leads to a higher depolarisation of the beam. As said above, iron is far from saturation even at
an external field of 1400G. This is why it completely depolarises the beam in all images. In Fig. 5.1.3,
vertical plots of the polarisation after transmission of the Ni sample along the red arrow indicated in the
image on the right-hand side are shown for different applied magnetic fields. These plots also show the
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Figure 5.1.2: Beam polarisation after transmission of the sample in false colours (see colour bar) at
different magnetic fields from B = 400G to B = 1400G at the sample position. As seen in the top left
image, the rectangle on the left side is the Fe slab, which depolarises the beam completely at all applied
fields. The slab to the right is made of Ni for which the depolarisation of the beam depends on the
applied magnetic field.

increasing beam polarisation with increasing field strength due to the preferred alignment of the domains
parallel to the applied magnetic field and therefore also parallel to the beam polarisation.

Conclusion

This first experiment has proven the feasibility to image the depolarisation of a neutron beam by a fer-
romagnetic sample. Spatially resolved information about the magnetisation of the sample was obtained,
which makes this technique extremely useful to characterise material properties over the whole sample
in a single measurement.
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Figure 5.1.3: Beam polarisation after transmission of the Ni slab along the red arrow (from top to
bottom) indicated in the right image at different external magnetic fields.
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5.2 Measurements on Weakly Ferromagnetic Materials

In the following sections, experiments on the weakly ferromagnetic materials Pd1−xNix and Ni3Al will
be presented. As discussed in 1.3, both of these substances have been subject to detailed investigation
for many years. In the beginning the intention of our NDI measurements was to verify the homogeneity
of the samples, which were to be used for bulk measurements and neutron scattering experiments. Ho-
wever, NDI has proven to be a helpful tool not only for the determination of the sample quality but also
for the determination of magnetic properties of the samples as a function of temperature and hydrostatic
pressure.

5.2.1 Pd1−xNix

In the following experiments, several Pd1−xNix samples were studied. Four crystals were obtained
from the company Mateck [131] with nominal Ni concentrations of 3.14% (crystal I), 2.67% (crystal
II), 3.24% (crystal III) and 2.59% (crystal IV)1, all lying close to the critical concentration of xc =

2.6% [36, 49, 50]. Consequently all crystals except crystal IV should order ferromagnetically at a
sufficiently low temperature. Crystal IV should be very close to the critical concentration. However,
the nominal concentrations of the samples were determined from the amount of Ni in the Pd melt and
are therefore not representative for the true concentration of the sample. The final concentration may
depend on the growth conditions like growth velocity, temperature, or special features (i.e. peritectic
points) in the phase diagram of the material. The crystals were grown by the Czochralski technique and
have a diameter of ≈ 10mm and lengths of 26−35mm. A photo of the samples is shown in Fig. 5.2.1.
Neutron diffraction measurements on the single crystal diffractometer RESI at FRM II [132] revealed
that only one of the four crystals, namely crystal IV with x = 2.59%, is a single crystal, while the other
samples are polycrystalline.

Figure 5.2.1: Photo of the four Pd1−xNix crystals from Mateck grown by the Czochralski technique.
These samples have a cylindrical shape with a diameter of ≈ 10mm and lengths between 26mm and
35mm. The crystals will in the following be referenced by their numbers I to IV.

Two slices of 1mm thickness were cut out of the middle of crystal II along the cylinder axis after in-
vestigation of the whole crystal. These two slices have a size of 1× 10× 26mm3, each and are shown
in Fig. 5.2.2. It was chosen to cut crystal II because this crystal is very inhomogeneous and contains
a wide range of regions with different Curie temperatures, which gives the possibility to investigate

1The crystals will in the following be referenced by their numbers I to IV.
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Figure 5.2.2: Photos of slice 1 (a) and slice 2 (b) cut out of the middle of Pd1−xNix crystal II along the
cylinder axis by spark erosion. After cutting and polishing, the samples were placed between two Al
plates which were held together with Al tape (c). This setup was mounted in the sample container filled
with He exchange gas and placed in the cryostat.

different magnetic properties within a single sample. Both slices were investigated with neutron depola-
risation techniques, and afterwards, ten small samples of 1mm3 were cut from slice 1 for magnetisation
measurements in a Quantum Design Physical Property Measurement System.

Furthermore, depolarisation measurements were made on two polycrystalline samples from the Uni-
versity of Augsburg, which have been prepared by A. Krimmel by arc melting in argon in exactly the
same way as the samples investigated for the publication by Nicklas et al. [36]. These samples, which
have a Ni concentration of 2.5% (sample A2.5) and 5.0% (sample A5.0) respectively, were used for
comparison of the homogeneity of our Czochralski grown crystals with polycrystalline material.

An overview of all experiments on these samples together with a summary of the obtained results is
given in Table 5.1

First experiments at HZB, Berlin

The very first NDI measurements were performed on Pd1−xNix crystals I – IV by the author at HZB,
Berlin at the neutron radiography instrument CONRAD [91] in collaboration with N. Kardjilov and A.
Hilger. The object of this experiment was to assess the quality and homogeneity of the four crystals
obtained from Mateck. Some of these samples had already been characterised by X-ray Laue imaging
and found not to be single crystals. Crystal IV had at that time not yet been characterised by any other
method, however, was later found to be the only single crystal.

Since the Curie temperatures of the samples were not exactly known, a coarse measurement with tem-
perature steps of 5K or 10K was made before each measurement to roughly determine the Curie tem-
perature of the sample and thus the appropriate temperature range for the scans. A spin flipper was not
available for all measurements. In the measurements performed with a spin flipper, only a narrow tem-
perature range below TC was investigated, since the measurement time doubled due to the measurement
of both I+ and I−. The maximum temperatures used in these measurements were below the ordering
temperature of the samples at several positions, which prevents the determination of TC from these data.
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Table 5.1: Overview of the experiments and results on Pd1−xNix samples. The setups are described in
more detail in 4.2 and their numbers are defined in Tab. 4.1.
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However, the experiments without a spin flipper have been performed up to higher temperatures and
therefore, the beam polarisation after transmission of the sample was determined as shown in eq. (4.1.2)
from calibration to the paramagnetic state of the sample.

A spatially resolved evaluation of the Curie temperature of the samples was done according to the
discussion in 4.1 by locating the highest temperature at which the beam polarisation falls below P = 0.8.
This rather low threshold which definitely yields a TC lower than the true value was necessary due to the
high noise in the acquired data. The resulting TC maps are shown in Fig. 5.2.3 for all four samples. For
each image, the colour code is displayed to the right of the image and the sample positions are indicated
by red rectangles. Especially in the TC images, the effect of stray fields outside of the sample is clearly
observed, since these let the algorithm find a Curie temperature even outside of the sample due to the
depolarisation of the beam.

Results

These first measurements revealed that all four crystals are highly inhomogeneous in their magnetic
properties. Crystal I was investigated in a temperature range from 24K to 59K and shows variations
of TC between 45K and 55K. An additional measurement with a spin flipper was made, however, the
temperature range from 44K to 53K was too narrow to determine TC.

The measurements on crystal II were made without a spin flipper at temperatures from 5K to 40K
and the obtained TC varies from 6K to 20K. Furthermore, in many regions of the sample the Curie
temperature could not be determined since the depolarisation of the beam was too small. This means
that there might be regions of the sample which either show a TC < 6K or stay paramagnetic down
to lowest temperatures. To clarify this, experiments with a cryostat with a base temperature as low as
500mK are already planned.

As for the measurement on crystal I, the temperature range from 32K to 52K investigated with the
possibility to flip the beam polarisation was too small to obtain a TC map for crystal III. The map could,
however, be obtained from the measurements of I+ over the wider temperature range from 20K to 60K.
As a result a variation of TC from 45K to 55K was found.

No spin flipper was used for the measurement on crystal IV, which was carried out at temperatures from
5K to 25K. The evaluation of the data yields a TC in the range from 11K to 20K, however, in contrast
to the other samples, this crystal – which is the only single crystal – shows a rather linear variation of
TC from one end of the sample to the other and thus is the locally most homogeneous crystal.

Discussion

In conclusion, all four crystals show a variation of TC of at least 9K over the sample volume. A layered
structure is observed for crystals I to III, which means that the Curie temperature is relatively constant
along the x-direction at constant y. This could result from the Czochralski-type growth of the samples.
With this method the samples are rotated and slowly drawn out of a melt of the desired composition
for the resulting crystal. The growth direction was along the y-axis and the samples were also rotated
about this axis during crystal growth. Changes in growth velocity were made during growth to maintain
a constant thickness of the ingots [133], which could be responsible for the different compositions of
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I II

III IV

Figure 5.2.3: Resulting TC maps (in K) for the four Pd1−xNix crystals I to IV determined from the
first NDI measurements performed at HZB, Berlin. The position of the samples is indicated by red
rectangles. Strong artifacts resulting from stray fields around the samples are observed. The spatial
resolution was approximately 0.75mm.
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the layers leading to variations of TC. In contrast to this, crystal IV rather shows a gradient of the Curie
temperature along the y-axis. This was the crystal with the lowest Ni concentration in the melt and
the gradient might be caused by the crystallisation of Pd1−xNix with a higher Ni concentration x in the
beginning of the growth process, leaving less Ni in the melt and thus decreasing the Ni content in the
subsequent regions of the ingot. Despite having a nominal Ni concentration which lies slightly below
the critical concentration, the lowest ordering temperature found for this sample is 11K.

Both crystals II and IV have a nominal Ni content close to the critical concentration xc = 2.6%. The
results of these experiments show that these two crystals also have the lowest Curie temperatures of all
samples. However, even though crystal IV has the lowest Ni concentration, its Curie temperatures are
slightly higher than those of crystal II. But crystal II is at the same time much less homogeneous than
crystal IV, exhibiting a wider variation of TC. Crystals I and III have approximately the same nominal
Ni content as well, and both show relatively similar Curie temperatures, which are higher than those of
the other two crystals. This is also in agreement with their higher Ni content.

Further investigation at FRM II

Crystals II and IV were investigated in more detail at the ANTARES beam line at FRM II using 3He
polarisers and analysers (setup #3 in 4.2), which give much better spatial resolution and beam homo-
geneity than the solid state benders used for the experiments at HZB. Furthermore, the samples were
mounted in a closed container filled with He exchange gas to reduce the temperature gradient over the
samples.

For crystal IV a temperature scan of the depolarisation of the beam from 5K to 32.5K was measured
at a wavelength of 3.2Å in temperature steps of 2.5K. From the temperature dependence of the depo-
larisation, the Curie temperature of the sample was best determined by fitting the variation of the beam
polarisation with temperature with a step function. Just as with with the prior measurements strong ef-
fects of stray fields outside of the sample were observed. To obtain TC only at the location of the sample,
the calculation of the Curie temperature was restricted to the rectangular region where the sample was
located. This region was determined from the transmission images at higher temperature where the
sample was paramagnetic and only attenuation of the beam but no depolarisation occurs.

Results on crystal IV

The Curie temperature map obtained for crystal IV is shown in Fig. 5.2.4 in the left panel. The observed
TC ranges from 12K to 30K, which is in general agreement with the values observed in the measure-
ments at HZB. However, from the present measurements we find that on a local scale the variation of
the magnetic properties is stronger than expected from the low-resolution measurements at HZB.

Using the dependence of TC on the Ni content x published in the article by Nicklas [36], it was possible
to calculate the variations of the Ni concentration over the sample. The concentration dependence shown
in this article and in Fig. 1.3.2 contains a compilation of most data published before 1999. All of these
independent measurements turn out to be consistent with each other. The resulting concentration map
for crystal IV is shown in the right panel of Fig. 5.2.4 and the concentration is found to vary by ≈ 0.8%
from 2.9% to 3.7%. We find that the lowest concentration of 2.9% found for this sample is higher
than the nominal concentration of 2.59% used in the melt. This observation could either result from an
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erroneous preparation of the melt or from the crystallisation of material with higher Ni concentration
than the prepared melt. The latter explication would make it rather difficult to grow crystals of a defined
Ni content with the Czochralski technique.

Results on crystal II

Measurements with higher spatial resolution have also been made with the same setup for crystal II.
In this experiment the depolarisation of the beam by the sample was measured for temperatures from
3.5K to 29K in steps of 0.5K at a wavelength of 3.2Å. For this measurement a magnetic field of 80G
was applied at the sample position parallel to the guide field. This turned out to completely remove
the fringes around the sample caused by field distortions. However, the application of a magnetic field
magnetises the sample to a certain degree. Especially in the low TC regions of the sample which show a
very small ordered moment Ms this may have brought the sample close to saturation with a magnetisation
pointing in the same direction as the beam polarisation. As a consequence no depolarisation of the beam
can be observed in these regions and they seem to be paramagnetic.

The Curie temperatures were determined from the depolarisation measurements as the temperature at
which the beam polarisation falls below 60%. This rather strict threshold was chosen as discussed in 4.1
because of the high statistical noise in the images. The TC map obtained with this method is shown in
Fig. 5.2.5. Variations of the ordering temperature between 6K and 25K were found but for vast regions
of the sample, no TC could be determined due to the small depolarisation of the beam by the sample.
This means that the sample has a Curie temperature smaller than 5K in these regions or might even be
paramagnetic down to T = 0.

Slice 1 of Crystal II

All of the measurements described above have been performed on samples of a cylindrical shape. In
neutron depolarisation measurements the total depolarisation along the transmission path of the neutron
beam through the sample is measured. For a cylindrical sample, the transmission length is larger in the
centre of the sample than at the sides. Therefore, higher depolarisation of the beam is expected in the
centre of a homogeneous sample.

To determine the effect of the variation of the sample thickness on the depolarisation and the determina-
tion of the Curie temperature, after the measurements on the entire crystal described above, a first slice
was cut from the middle of crystal II along the cylinder axis with a thickness of 1mm and a rectangular
cross section of 10×26mm2. After spark erosion cutting, the slice was polished to remove any remnants
from the cutting process from the surface.

This slice, a photo of which is shown in Fig. 5.2.2 (a), was once more analysed for its neutron depolari-
sation during a subsequent beam time. The depolarisation of the neutron beam was measured with setup
#4 described in 4.2 using 3He polariser and analyser and a polychromatic beam. The temperature was
varied from T = 4K up to T = 29K in steps of 1K. To avoid saturation of the sample, no additional
field was applied at the sample position apart from the guide field of B≈ 10G.

With a variation of the Curie temperature between 4K and 24K as shown in Fig. 5.2.6 (a), this measu-
rement once more confirmed the results already obtained on the entire crystal II and yielded even higher
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Figure 5.2.4: Spatial distribution of TC over the cross section of crystal IV as obtained from the expe-
riments at FRM II (a). A variation of the Curie temperature from 12K to 30K was found, which is in
agreement with prior measurements at HZB. However, much better spatial resolution is achieved with
this setup using a 3He polariser and analyser. A plot of TC along the arrow indicated in figure (a) is
shown in figure (c) together with a linear fit of the data. The variation of the Ni concentration x (in %)
was calculated from the Curie temperature using published data of the concentration dependence of TC
(b). The concentration varies from 2.9% to 3.7%.
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T  [K]Ccrystal II

Figure 5.2.5: TC-map obtained at FRM II for crystal II (left). The ordering temperature is found to
lie in the range between 6K and 25K and the sample shows vast regions where the sample does not
order ferromagnetically down to the lowest accessible temperature of 5K. A plot of TC along the arrow
indicated in the left image is shown (right).

spatial resolution. Generally, the depolarisation of the beam by the slice is higher than for the entire
crystal because a polychromatic beam with larger mean wavelength leading to higher depolarisation
(c.f. eq. (2.4.9)) was used in this experiment. Despite of the higher depolarisation, several regions of the
sample still show very small depolarisation of the beam even at the lowest temperatures we could reach.
Thus, it is still not clear whether these regions eventually order ferromagnetically or stay paramagnetic
down to T = 0. Furthermore, the effect of the sample thickness on the determination of the Curie tem-
perature was found to be small for this particular sample because the sample shows similar magnetic
properties for the thin slice as for the entire crystal. This underlines that the variations of the sample in
the horizontal direction are small compared to those in the vertical direction.

Slice 2 of Crystal II

A second slice of similar dimensions (see Fig. 5.2.2 (b)) was cut from crystal II adjacent to the first
slice and analysed with the same setup as the other slice in a temperature range from 4K to 30K. The
resulting TC-map is shown in Fig. 5.2.6 (b) and is in good agreement with the results obtained on the first
slice. Both slices show a rather good homogeneity in the x-direction while there are strong variations of
the observed magnetic properties in the y-direction. This is also in agreement with the measurements on
the whole crystal II which were made before. This agreement gives further evidence that the variations
in the horizontal layers of the crystals are small compared to those in the vertical direction.

Fig. 5.2.6 (c) shows plots of TC along the centre lines for both slices. There is a general agreement of
the main features of the plots. Especially the maxima at x = 2mm and x = 8mm and the minimum at
x≈ 16mm are present in both slices. However, the maximum values for slice 2 are up to 4K higher than
for slice 1 and the minimum values are up to 4K lower for slice 1. Furthermore, the curve for slice 2
seems to be shifted slightly towards higher x-values, which is probably due to small differences in the
alignment of the two plots with respect to the crystals. Despite these disagreements, the observed TC
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Figure 5.2.6: Distribution of the Curie temperature TC over slice 1 (a) and slice 2 (b) cut from crystal II.
The colour code is given in the right panel. Variations of TC between 5K and 24K were found for both
samples and for some regions, especially at the edges of the samples, the depolarisation of the beam was
too small to determine the Curie temperature. Thus, in these regions TC is either smaller than 5K or the
sample stays paramagnetic down to lowest temperatures. A horizontal layer structure is observed for
both samples and they generally show a very similar structure, which further suggests that the variations
in the horizontal direction are rather small compared to those in the vertical direction. A plot of TC along
the arrows indicated in images (a) and (b) is shown in (c).
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values are in good agreement for the two slices.

Samples from the University of Augsburg

To compare the quality of the four Pd1−xNix crystals obtained from the company Mateck with other
samples, two crystals from University of Augsburg were additionally investigated. The crystals, which
have a disc shape with a diameter of 10mm and a thickness of 2mm were prepared by arc melting in
argon and quenched from the melt. In the following, the samples were remelted many times and later
annealed at 1000°C for five days. These two samples with a nominal Ni content of x = 2.50% (A2.5)
and x = 5.00% (A5.0), respectively, have been prepared in exactly the same way as the samples used
for the measurements published by Nicklas et al. [36]. The authors found an ordering temperature of
TC = 75K for a similar sample with x = 0.05, whereas the sample with x = 0.025 is below the critical
Ni concentration and was found not to order ferromagnetically. Both polycrystalline samples are shown
on the photo in Fig. 5.2.7 (right).

These two crystals were investigated with setup #3 consisting of 3He polarisers and analysers using a
monochromatic beam of λ = 3.2Å. The depolarisation of the beam at 4K – the lowest temperature we
could reach with the available cryostat – was measured. While sample A5.0 showed strong depolarisa-
tion of the beam, no depolarisation was found for sample A2.5. This is in agreement with the statement
of Nicklas et al. [36] that this sample is below the critical concentration of xc = 2.6% and consequently
should stay paramagnetic down to T = 0. Neutron depolarisation measurements on this sample with a
3He cryostat down to temperatures of 500mK are already scheduled.

To determine the Curie temperature and homogeneity of sample A5.0, a temperature scan of the neutron
depolarisation from 55K to 75K was made in steps of 1K. The resulting TC map shown in Fig. 5.2.7
is rather homogeneous compared to those of the Mateck crystals. However, we still find variations of
TC from 66K to 73K. This is in general agreement with the TC of 75K found by Nicklas et al., since
the authors determined the ordering temperature from magnetisation measurements on a macroscopic
sample and thus – for an inhomogeneous sample – always find the total magnetisation of the sample to
vanish at the highest ordering temperature found within the sample volume.

Magnetisation Measurements on Slice 1 of Crystal II

With the results of the depolarisation measurements on slice 1 described above, several interesting spots
with different ordering temperatures were identified. At these spots ten small samples of 1×1×1mm3

were cut from the slice. For alignment, a 1mm-grid was overlaid to the sample as shown in Fig. 5.2.8
where the obtained samples are marked by red squares. To reduce the time needed to cut the samples,
all samples were arranged in a strip, which was cut from the sample by spark erosion. This strip was
then cut into pieces with a diamond wire saw. The samples were named as indicated by the letters
and numbers on the grid in Fig. 5.2.8. After cleaning and polishing of these samples, magnetisation
measurements were made with a Quantum Design Physical Property Measurement System (PPMS) in
collaboration with C. Franz for comparison with the results obtained from the radiography experiments
described above.

Magnetic field sweeps were performed at different temperatures with fields up to B = 9T. The results
were plotted as Arrott plots (B/M vs. M2) as discussed in 4.3 and Ms and TC were determined from
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A5.0
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Figure 5.2.7: Distribution of the Curie temperature TC over the PdNi samples from University of Aug-
sburg (left). The shape of samples A5.0 and A2.5 is indicated on the top and bottom, respectively.
Nicklas et al. [36] found an ordering temperature of TC = 75K for sample A5.0 (top), whereas sample
A2.5 is below the critical concentration. A photo of the two samples as mounted in the sample holder is
shown (right).

the data. An example of such an Arrott plot is given for sample D8 in Fig. 5.2.9. However, the Arrott
plots are only found to be linear at high fields and high temperatures. For low fields and temperatures, a
curvature of the Arrott plots is observed, which is of the same order of magnitude for all samples. The
resulting TC vs. Ms for all samples measured at the time of writing are plotted in Fig. 5.2.10. Gene-
rally, an increase of Ms with increasing TC is observed. However, there exist several samples with very
similar ordering temperature, showing different ordered moments. These differences might be caused
by heterogeneities within the samples. The ordered moment is determined from the low temperature
behaviour of the magnetisation data. Therefore, if the sample consists of several fractions with different
ordering temperatures, all fractions will contribute to the ordered moment at T = 0. In contrast to that,
TC is determined as the temperature where the magnetisation vanishes. The condition M = 0 is fulfilled
when the highest ordering temperature of all fractions of the sample is reached. Therefore, the obtained
value of TC represents the highest ordering temperature of all fractions of the sample.

Within the SCR theory framework Ms would be expected to track TC down to zero as indicated by the
blue line in Fig. 5.2.10. However, the data suggests that Ms vanishes discontinuously at TC = 0 as shown
by the dashed red line in the figure. This behaviour suggests a first order phase transition of Pd1−xNix
at T = 0 and not a second order transition as expected for a quantum critical point.

It turned out during the evaluation of the data that the ordering temperatures for the small samples
determined from these magnetisation measurements were in poor agreement with the values obtained
from NDI measurements performed before cutting. A more detailed investigation of the remaining
pieces of the slice after cutting revealed that the grid marking the samples to be cut out was rotated
by 180° by the sample preparation lab before the cutting process. Therefore not the samples originally
intended were cut from the slice. Furthermore the exact position of the grid with respect to the sample
boundaries during the cutting process was not exactly known. To determine the location of the grid and
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Figure 5.2.8: Location of the small samples cut from slice 1. These samples have a size of 1×1×1mm3

and were used for magnetisation measurements in a Quantum Design PPMS. The figure shows the
correct positions of the samples after realignment of the grid .
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D8

Figure 5.2.9: Arrott plots for Pd1−xNix sample D8 as obtained from the magnetisation measurements at
the PPMS magnetometer.

Figure 5.2.10: Plot of Ms vs. TC obtained by C. Franz from magnetisation measurements on seven of
the small samples cut from slice 1 (blue) and four other samples cut from the entire crystals I to IV
(green) at a PPMS magnetometer. The latter datapoints have been obtained by C. Franz [53] in earlier
measurements.
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Sample TC,PPMS[K] TC,NDI[K] Ms,PPMS[A/m] Ms,NDI[a.u.]
C8 17.5 17.1 20000 0.75
D8 20.5 17.3 26000 0.64
E8 17.5 15.5 23000 0.45
G8 17.5 16.2 24500 0.60
K8 18 16.3 22000 1.08
P8 15 15.3 22000 0.68
W8 17.5 16.6 25500 0.76

Table 5.2: Comparison of the ordering temperatures and ordered moments obtained for the small
samples cut from crystal II from magnetisation measurements on a PPMS with NDI measurements.
The position of the grid with respect to the sample was optimised by minimising the mean square errors
1
N ∑i (TC,PPMS−TC,NDI)

2 of both results with respect to each other. No good agreement is found for the
values of Ms which might, however, be due to the completely different measurement procedures.

therefore the position of the small samples cut from the slice, the mean square error of the TC values
obtained from the NDI data and the bulk measurements was calculated for different shifts of the grid with
respect to the sample boundaries. A minimisation of this mean square error ( 1

N ∑i (TC,PPMS−TC,NDI)
2)

revealed the true position of the grid on the sample as shown in Fig. 5.2.8. A comparison of the final
values of the ordering temperatures obtained with both methods is shown in Tab. 5.2.

The results of this optimisation yielded a shift of the grid with respect to the originally assumed position
by approximately 0.5mm both in the x and y direction, giving a very stable minimum of the mean square
error. The ordered moment was determined from the NDI measurements using eq. (4.4.2):

M2 (T ) =− 1
α

ln
P(T )

P0
, (5.2.1)

with α := 1
3 γ2µ2

0 dδ/v2. The value of the scaling factor α was determined by first setting it to α = 1
which yields the values for Ms,NDI given in Tab. 5.2. Using an average value of the bulk and NDI values
for the ordered moment and assuming a constant domain size throughout the sample we then determined
α as

α =
M2

s,NDI

M2
s,PPMS

= 7.44 ·10−10. (5.2.2)

Plugging in the sample thickness d = 10−3 m and the average neutron velocity v= 890m/s for λ = 4.5Å
into the definition of α yields an average domain size of δ = 33 µm.

The agreement of the values for the ordered moment determined from the PPMS measurements and
those from the NDI measurements is found to be rather poor. However, this might be attributed to the
fact that both methods use a completely different technique to obtain these values and consequently
inhomogeneities of the sample may have a completely different influence on the results. It is especially
worth noting that the ordered moment found from magnetisation measurements is determined from the
extrapolation of the high field behaviour towards zero field. In contrast to that NDI measurements are
performed in very low magnetic fields. Here only the guide field of Bg ≈ 10−3 T is present.
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T : P < 0.95C

Figure 5.2.11: Ms vs. TC dependence of Pd1−xNix slice 1 determined from NDI measurements. Each
point in the plot represents a pair of Ms and TC values found at one pixel of the NDI data. The width
of the plot is caused by inhomogeneities along the transmission path of the neutron beam through the
sample. The intrinsic – homogeneous behaviour was shown by simulations to be given by the right edge
of the cloud of points. However, the amount of data points especially at the low-TC end of the plot is not
sufficient to determine whether the phase transition is intrinsically first (green line) or second (red line)
order.

Comparison with Neutron Depolarisation Data

As discussed in 4.4 it is possible to obtain the ordering temperature as well as the ordered moment from
the temperature dependence of neutron depolarisation data. Here the ordered moment is determined
from the extrapolation of the depolarisation data towards T = 0 and the ordering temperature is found
as the temperature below which the polarisation falls below a certain threshold (P < 0.95 in this case).
The values of Ms and TC determined by this method for all pixels of the cross section of the Pd1−xNix
slice 1 were plotted in a single diagram shown in Fig. 5.2.11, similar to Fig. 5.2.10 obtained from bulk
measurements. In contrast to the latter plot, the evaluation of the NDI data shows a much larger amount
of data points resulting from the evaluation of Ms and TC for each pixel of the NDI images.

As for the magnetisation data shown above, we also find different values of Ms for one value of TC

evaluated from the neutron depolarisation data. It was discussed in 4.4 that the broadening of the distri-
bution of Ms values for one ordering temperature originates from inhomogeneities of the sample along
the transmission path of the neutron beam through the sample. From comparison of the width of the
measured data with simulations of an inhomogeneous sample we can deduce that the neutron beam tra-
verses more than five regions of random ordering temperature. Since the sample thickness is only 1mm
the size of these regions must on the average be smaller than 0.2mm. It is therefore obvious that the
length scale of the inhomogeneities in the sample is of this order of magnitude and therefore smaller
than the lateral spatial resolution achieved in the NDI measurements. We therefore conclude that the
length scale of inhomogeneities in our particular sample is smaller than what can be resolved by these
real space measurements.
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As shown by the simulations in 4.4 the lower right edge of the cloud of points in Fig. 5.2.11 represents the
case where the beam transmits the sample on a path with only one ordering temperature. Therefore, the
sample is homogeneous along the transmission path of the beam for these points and the points represent
the intrinsic behaviour of the sample unaffected by inhomogeneities. However, we furthermore showed
that the shape of this edge depends crucially on the choice of the threshold for the determination of TC

especially at the low-temperature end of the plot. Decreasing this threshold leads to a shift of the curve
towards lower TC values and would lead to an erroneous identification of a first order phase transition of
Ms for TC→ 0. However, the statistical noise in the depolarisation data prevents the use of a threshold
larger than 0.95. From the present data of a very inhomogeneous Pd1−xNix sample we can therefore not
conclude the intrinsic dependence of Ms on TC. As indicated by the lines in Fig. 5.2.11, both a quantum
critical (red) or a first order behaviour (green) may be seen in the data. However, it should be noted
that a quantum critical behaviour would be contradictory with our magnetisation measurements shown
in Fig. 5.2.10 which rather indicate a first order phase transition.

To solve the question whether the quantum phase transition of Pd1−xNix is first or second order, samples
with lower ordering temperatures would be necessary to increase the amount of data in the lower left
corner of the plots, which contains the most valuable information on the phase transition. Furthermore,
it would be helpful to have samples which are homogeneous along the transmission direction of the
beam. Such samples yield only a single value of Ms for a certain TC. It would be ideal to study gradient
crystals for which the ordering temperature changes as a function of position perpendicular to the beam
direction. A spatially resolved investigation of such a sample yields the entire Ms (TC) relation in a single
NDI measurement run.

Additionally, the counting statistics in the measurements should be increased to allow for the choice of
a higher threshold in the data evaluation, which will decrease the shifting effect of the plots as shown by
our simulations. Furthermore a higher threshold also is required to determine the ordering temperature
of regions of the sample with low TC and therefore also low Ms, resulting only in a small depolarisation
of the beam.

Conclusion: Pd1−xNix

In conclusion, all measurements on Pd1−xNix discussed in this section demonstrate that it is extremely
difficult to produce homogeneous samples of this material. The most homogeneous sample we inves-
tigated was sample A5.0 from the University of Augsburg which, however, still shows relatively large
variations of the ordering temperature of approximately 7K. Furthermore, this sample shows a high
average ordering temperature of ≈ 65K and is therefore far away from the quantum critical regime.

The comparison of our experiments on the 1mm thick slice 1 cut from the low-TC Pd1−xNix crystal II
with simulated neutron depolarisation data show that the inhomogeneities in this sample are even larger
than expected from the neutron depolarisation images, where the limited spatial resolution of 0.3mm
hinders the verification of variations of the magnetic properties on a smaller length scale. The rounded
shape of the temperature dependence of the measured depolarisation which is in good agreement with
our simualtions of an inhomogeneous sample indicates heterogeneities on an even smaller length scale.

The ultimate verification of the intrinsic nature of the quantum phase transition in Pd1−xNix from the
NDI data was at the time of writing not possible since the particular sample we have investigated turned
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out to be too inhomogeneous and at the same time did not contain enough regions with very low ordering
temperatures. To achieve a clarification whether the intrinsic phase transition is second or first order, and
therefore whether or not a QCP exists in Pd1−xNix , a sample with lower ordering temperature which
should additionally be more homogeneous should be used.
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5.2.2 Ni3Al

As discussed in 1.3.3, the Curie temperature of Ni3Al can be reduced by application of hydrostatic
pressure as well as by compositional doping. Niklowitz et al. [9] found TC to vanish at a critical pressure
of approximately pc = 80kbar. The same effect can be achieved by compositional doping with excess
Al compared to the stoichiometric composition. The concentration dependence of TC was studied by
deBoer et al. [54]. These authors found by extrapolation of the TC values observed for different Ni
concentrations that in Ni75−xAl25+x the Curie temperature falls to zero at an excess Al concentration of
x = 0.4, which shows the strong dependence of the magnetic properties of the material on compositional
variations. As a consequence, especially for large size crystal growth, it is of paramount importance to
minimise compositional inhomogeneities in the material.

The institute E21 at the Fakultät für Physik of Technische Universität München owns an optical image
furnace in which single crystals can be grown with the optical float zoning technique (OFZ). This fur-
nace has been remodeled to an all-metal-sealed UHV compatible setup by A. Neubauer as part of his
PhD thesis. With these modifications, the entire image furnace can be evacuated, heated and afterwards
filled with high purity argon inert gas atmosphere to reduce the evaporation of crystal material during
the growth process. Being a crucible-free technique in combination with the high purity inert gas atmos-
phere makes the OFZ technique one of the cleanest techniques for single crystal growth and guarantees
highest purity and perfection of the resulting crystals. High purity is especially important for weakly fer-
romagnetic materials in which even small contaminations with ferromagnetic materials can significantly
alter the magnetic properties of the samples.

Attempts were made to grow large size Ni3Al single crystals for bulk investigations as well as neutron
scattering experiments with the OFZ technique. Especially neutron scattering experiments require large
samples due to the increase of the intensity of the scattered neutrons with increasing sample size. The
crystals were grown from starting rods which were prepared by inductive heating of the constituents in
the desired amounts in a Cu crucible. The inductive heating leads to a stirring of the melt at the same
time. The melt was then cast into a cylindrically formed water cooled crucible with a diameter of 6mm
which allows rapid quenching of the melt.

As discussed in 1.3.3, the phase diagram of Ni3Al is not exactly known. Especially around the stoichio-
metric composition, the location of the peritectic point is uncertain. As a consequence, the preparation
of a melt with the desired composition of the final crystal does not necessarily lead to the growth of a
crystal with this composition. To study the influence of the starting composition on the resulting crystal
composition, starting rods with different Ni concentrations between 75% and 76.5% were prepared.

Polarised neutron radiography was used as a sensitive tool to study the homogeneity and therefore
the quality of the starting rods for crystal growth as well as the resulting crystals. Furthermore, this
method offers the possibility to assess the effects of different growth conditions (i.e. growth velocity,
temperature, annealing, ..) on the resulting crystal quality. An overview of all measurements performed
on Ni3Al samples and a summary of the results is given in Tab. 5.3. The starting rods are named “L##”
and the OFZ grown crystals are named “OFZ##” and were all prepared by A. Neubauer at the E21
institute. Furthermore, four other samples obtained from other groups were investigated.
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Table 5.3: Overview of the experiments and results on Ni3Al samples. The setups are described in
more detail in 4.2 and their numbers are defined in Tab. 4.1. The OFZ samples were grown before
the development of the NDI technique. Therefore, the starting rods of these samples have not been
investigated.
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Starting Rods

Several starting rods with different Ni concentrations were investigated for their homogeneity and Curie
temperature distribution at HZB Berlin with setup #1 (see 4.2) consisting of two solid state benders,
followed by further investigations at FRM II with setup #2 using the periscope as a polariser. Both
setups yield only mediocre spatial resolution and especially the periscope leads to severe stripe artifacts
due to the imperfections discussed in 3.2.4. Therefore, a detailed evaluation of the data was often very
difficult and for some samples only a visual evaluation of the depolarisation data could be made. In this
work, we will only present the data of the samples for which a detailed analysis was possible.

The resulting TC-maps for the starting rods L54 and L33 are shown in Fig 5.2.12 and Fig. 5.2.13, res-
pectively. L54 turns out to be rather homogeneous along the cylinder axis with variations in TC of only
2.5K. The variation perpendicular to the cylinder axis can mainly be attributed to the shape of the crys-
tal, which leads to higher depolarisation in the centre of the crystal, where it has a larger thickness, while
at the edges the depolarisation is smaller due to the lower thickness. A constant threshold of P < 0.5
was used to determine TC. Due to the higher depolarisation in the centre of the crystal, this threshold is
reached at a higher temperature than at the sides of the sample, which show lower depolarisation.

T  [K]CL54

Figure 5.2.12: Distribution of the Curie temperature TC for starting rod L54 (left) and a plot of the
Curie temperature along the black arrow indicated in this figure (right). This sample is found to be very
homogeneous along the cylinder axis. The variations perpendicular to the cylinder axis might mainly
be an artifact introduced in the algorithm which determines the ordering temperature by the variation of
the transmission length through the sample.

The starting rod L33 turns out to be much less homogeneous, showing variations of TC along the cylinder
axis between 55K and 65K. Here, the top part of the sample shows a region of higher ordering tem-
perature than the rest of the sample. However, the region at the top, displayed in white in Fig. 5.2.13,
was found to stay paramagnetic down to 5K. The lower 2/3 part of the sample, in contrast, is very
homogeneous, showing an ordering temperature of TC ≈ 56K. These strong variations in the ordering
temperature might have been caused by incomplete melting of the constituents. A shorter melting time
was used for this sample than for sample L54 which does not show such inhomogeneities.
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T  [K]CL33

Figure 5.2.13: TC-map for starting rod L33 (left) and plot along the black arrow shown in the left image
(right). This sample shows strong variations of the ordering temperature especially at the top part of the
sample, where a region with TC < 5K coexists next to a region with TC ≈ 65K.

OFZ Grown Samples

Several crystals were analysed for their neutron depolarisation after OFZ growth. All samples were
investigated optically for macroscopic single crystalline grains. For samples that seemed to have large
grains, X-ray Laue images have been made, showing that none of the samples is entirely single crystal-
line. Since these samples were all grown before the development of the NDI technique, their starting
rods could not be investigated.

The TC-maps obtained from the temperature scans for crystals OFZ15, OFZ17 and OFZ20 are shown
in Fig. 5.2.14. The measurements on samples OFZ15 and OFZ17 were carried out at HZB, Berlin with
setup #1 (see 4.2) using two solid state benders as polariser and analyser, while the measurements on
OFZ20 were performed at FRM II using setup #2 with the periscope as a polariser and a 3He analyser.

Generally it is seen that the OFZ grown samples show much stronger gradients of TC along the cylinder
axis than the starting rods. Especially samples OFZ15 and OFZ17 show a pronounced layer structure
which was not observed in any of the starting rods and consequently seems to arise during OFZ growth.
However, the observed layer structure is not in agreement with the logged change of growth conditions.
In our measurements, both OFZ15 and OFZ17 were oriented such that the growth direction was from
bottom to top as indicated by the arrows in the images in Fig. 5.2.14 (a) and (b). The beginning of the
floating zone (i.e. the point where OFZ growth was started) is indicated by a red line in the figures.
OFZ17 shows a region at the beginning of the floating zone, which was found to be ferromagnetic up to
room temperature displayed in white in the figure.

OFZ20 was grown from top to bottom in Fig. 5.2.14 (c) and shows a similar region which is ferromagne-
tic at room temperature at the the beginning of the floating zone. However, these ferromagnetic regions
do most likely not arise from the OFZ growth but from incomplete melting of the raw materials when
preparing the starting rods. The ferromagnetic regions are probably due to unmolten Ni grains. For the
starting rods prepared after these measurements, special care was taken to assure complete melting of
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OFZ 15(a)

OFZ 17(b)

OFZ 20(c)

Figure 5.2.14: Distribution of the Curie temperature TC and photos of samples grown in the optical
image furnace at E21. (The photo of OFZ17 was taken after the NDI measurements and shows a surface
which was polished for EDX measurements afterwards.) OFZ15 (a) and OFZ17 (b) were investigated
at HZB, Berlin. The measurements on OFZ20 (c) were performed at FRM II. The red arrows indicate
the growth direction and the red lines the point at which OFZ growth was started. Both OFZ17 and
OFZ20 show a region which stays ferromagnetic up to room temperature and consequently must have
a very high Ni content. The plots in the right panel show the variation of TC along the centre of the
crystals from top to bottom. The growth direction is once more indicated by red arrows and the end of
the floating zone by dashed lines.
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OFZ 20-L1

Figure 5.2.15: Curie temperature map for OFZ20-L1 (left). The crystal shows three large grains with
different odering temperatures. Furthermore, one spot was found which remains ferromagnetic at T =
90K. The grains can also be identified optically on the microscope photographs after etching of the
surface (right).

the raw materials. No such high TC ferromagnetic region was observed in OFZ15. Therefore it seems
that the raw materials in the starting rod for this crystal have been entirely molten.

Crystal OFZ20 shows extended single crystalline regions. Thus, a cylindrical sample named OFZ20-L1
with a diameter of 7mm and a length of 5mm was cut from the large crystal. However, this sample
still consists of several grains, three of which seem to occupy a major part of the sample volume. This
sample was characterised by neutron depolarisation at ambient pressure as well as under pressures of up
to 12kbar (see 5.2.3). Additionally, magnetisation measurements were performed at ambient pressure
at a Quantum Design PPMS magnetometer.

The results on the small sample OFZ20-L1 shown in Fig. 5.2.15 indicate that this sample consists mainly
of three regions with different ordering temperature. This is in agreement with investigations of the
sample in an optical microscope after etching of the surfaces, in which three large grains were found
as observed from the photographs in the figure. Furthermore, there exists one small spot on the top left
part of the sample which was found to stay ferromagnetic up to at least 90K, which was the highest
temperature at which the neutron depolarisation was measured for this sample.

Samples from Forschungszentrum Jülich

Further investigations were made on two crystals grown at Forschungszentrum Jülich. The first crystal is
of cylindrical shape with a diameter of ≈ 16mm and a length of ≈ 60mm and was grown and borrowed
to us by T. Chatterji. We will call this crystal Jül-l in the following discussion. This single crystal had
been used for the measurement of spin fluctuations in an article by Semadeni et al. [62] and has a Ni
concentration of 76%, which was estimated by the authors from the observed Curie temperature. The
second crystal, which we will call Jül-s, is of conical shape with a base diameter of ≈ 14mm and a
length of ≈ 20mm. Not much is known about the growth conditions of the crystal. It was grown by T.
Reif in Jülich but it is not sure whether it is a single crystal or not.
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These two samples were investigated at HZB Berlin using solid state benders as polariser and analyser
(setup #1 in 4.2). The thickness of the sample covered quite exactly the width of the beam, however,
the length of the crystal was larger than the beam height. Thus, only one end of the sample could be
investigated. The black triangular region in the bottom right corner of Fig. 5.2.16 (left) is due to an edge
which was cut from the crystal after alignment in prior neutron scattering measurements. No special
care was taken in this neutron depolarisation experiment for alignment of the crystal axes with respect
to the beam polarisation.

The Curie temperature distribution of these two crystals is shown in Fig. 5.2.16. Image (a) shows the
results on the large crystal, while image (b) gives the TC-map of the small crystal. In contrast to the
results presented by Semadeni et al. [62], who reported TC = 72.5K for this sample, we found a strong
variation of the ordering temperature over the size of the sample. Approximately 2.5cm from the bottom
of the sample a region with an ordering temperature of 90K is found. The part of the sample above this
region is very homogeneous and we found TC = 82K. The bottom part of the sample also turns out to
be very homogeneous with an ordering temperature of 65K. A plot of TC along the centre line of the
sample is shown in Fig. 5.2.16 (b).

These results are extremely important for the interpretation of the neutron scattering results presented
in the article by Semadeni et al. since these measurements were performed on the entire crystal. This
implies that the obtained results represent an average over regions of the sample with different magnetic
properties.

Even though not much is known about the growth of the smaller crystal it seems to be grown with a
different technique since it displays a layered structure similar to that also observed for the OFZ crystals
grown at the institute E21. The Curie temperature of this crystal varies from ≈ 75K to 85K over the
sample, and the highest ordering temperatures are found at the tip of the sample. Furthermore, the
regions of homogeneous magnetic behaviour are much smaller than those in the larger crystal.

Samples from University of Cambridge

Two samples obtained from the group of G. G. Lonzarich at Cavendish Laboratory, University of Cam-
bridge were investigated with high spatial resolution at FRM II using the setup #3 with 3He polariser
and analyser. These samples were prepared by N. Bernhoeft at the ILL, Grenoble by melting of Ni and
Al in the desired amounts of the final crystal and rapid quenching of the melt. The obtained ingots were
afterwards annealed for several months, which lead to the formation of large single crystalline grains,
which can visually be well observed in the photos of the samples as mounted on the sample holder in
Fig. 5.2.17 and Fig. 5.2.18. These crystals were named E5 and E8 by the producer and we will keep this
scheme during this discussion. Several small samples for bulk measurements had already been extracted
from sample E5 at various positions, the holes of which can be seen in the photo. Sample E8 consists
of two parts. A large half-cylindrical part with a diameter of ≈ 15mm and a length of ≈ 35mm and a
smaller circular part with a diameter of ≈ 15mm. The orientation of the two parts with respect to each
other during the growth process is unknown.

Sample E5 was found to be rather inhomogeneous with its ordering temperatures ranging from 42K to
more than 55K, which was the highest temperature at which the neutron depolarisation was measured
for this sample. Furthermore, a strong correlation between the visually observed grain structure and
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a) b)

c) d)

Figure 5.2.16: Distribution of the Curie temperature TC for the large crystal Jül-l (a) and the small crystal
Jül-s (c) both grown in Jülich. The large crystal shows essentially three regions: The top part has an
ordering temperature of 82K, the bottom part has a lower TC of 65K and the middle part is relatively
inhomogeneous with a maximum TC of 90K. The small crystal shows a layered structure with variations
of TC between≈ 75K and 85K. Plots of TC along the arrows indicated in the figures are shown in images
(b) and (d), respectively.
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Ni Al  E5   T [K]3 Ca) b)

c)

Figure 5.2.17: Distribution of the Curie temperature TC for crystal E5 (a) and a photo of the crystal as
mounted on the sample holder (b). The sample shows strong variations of TC from 42K to more than
55K (highest temperature in the measurement). However, the single crystalline grains seem to be rather
homogeneous. A plot of TC along the arrow indicated in (a) is shown in (c).
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the variations of TC was observed. This suggests that the single crystalline grains of the sample might
be relatively homogeneous and the variations of the magnetic properties might mainly occur from one
grain to the other.

Sample E8 turned out to be very homogeneous over extended regions. The ordering temperature, which
is displayed in Fig. 5.2.18 (left), shows only variations between 37K and 39K over the entire sample.
Furthermore, most of the sample has a Curie temperature of 37K and only several spots of the crystal,
mainly located at the top of the larger part of the crystal and on the smaller crystal, show higher TC.

Conclusion: Ni3Al

Summarising the results of the many experiments performed on various Ni3Al samples, it can be said
that it seems to be extremely difficult to obtain large samples with high homogeneity of their magnetic
properties. This difficulty arises especially for single crystalline samples in the case of OFZ growth,
where a pronounced layer structure is introduced. In comparison to that, the polycrystalline starting
rods used for float zoning were found to be much more homogeneous. This observation lets us conclude
that the variations are introduced by the OFZ technique.

A comparison of the samples produced at the E21 institute with samples from other groups shows that
not only OFZ grown samples exhibit variations of their magnetic properties. The only sample that was
found to be of high homogeneity is sample E8 from the University of Cambridge.

The observation that many samples turn out to be of much lower quality than expected directly leads
to the question of the homogeneity of the samples used for many of the publications on Ni3Al. In case
that inhomogeneous samples have been used for these experiments, the inherent averageing over these
inhomogeneities might have lead to a wrong interpretation of the experimental data.
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Ni Al  E8   T [K]3 Ca) b)

c)

Figure 5.2.18: TC-map for crystal E8 (a) and a photo of the two parts of the sample on the sample holder
(b). Sample E8 was found to be extremely homogeneous over most parts of the sample with a variation
of TC of less than 1K. Only several spots of the sample show an ordering temperature which is 2K
higher than the value of 37K observed for the rest of the sample. A plot of TC along the arrow indicated
in (a) is shown in (c).
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5.2.3 Pressure Dependence of Ferromagnetism

In many weakly ferromagnetic materials, ferromagnetism can be suppressed by application of hydro-
static pressure. In contrast to compositional doping, which can i.e. be used in Pd1−xNix to tune the
ordering temperature to zero, the application of pressure is a clean method, which does not introduce
any compositional disorder in the material. Being neglected in the SCR theory framework, disorder
effects might modify the free energy landscape and introduce new and complex physical behaviour in
the systems. Therefore, pressure induced tuning of the ferromagnetic to paramagnetic phase transition
is a very useful experimental technique to study quantum phase transitions close to T = 0 in the absence
of disorder.

However, it turns out to be experimentally very difficult to perform accurate magnetisation measure-
ments at high pressures. As a proof of principle measurement, the effect of hydrostatic pressure on the
neutron depolarisation of the materials Ni3Al and the Heusler alloy Fe2VAl was studied by means of
NDI. Both samples were placed together in one Cu:Be clamp type pressure cell with an inner diameter
of 7mm, a technical drawing of which is shown in Fig. 5.2.19 (a). To increase the neutron transmission
of the pressure cell, the walls around the sample area were thinned to a thickness of 7mm. The samples
were placed in a Teflon cup filled with Fluorinert as a pressure medium, and maximum pressures of
10kbar were applied in this modified pressure cell. The pressure in the cell was calculated from the
applied force used to load the cell. In this thesis we will only discuss the experiments on the Ni3Al
sample, which show a strong pressure dependence of TC.

The Ni3Al sample used in these measurements is sample OFZ20-L1 on which neutron depolarisation
measurements at ambient pressure have already been made as discussed in 5.2.2. These experiments
have shown that this sample mainly consists of three large grains with different ordering temperatures.
However, the sample orientation in this new experiment was different from the prior experiment, which
prevents direct comparison of the results. An average ordering temperature of TC = 85K was found for
this sample from susceptibility measurements.

The experiments were made with setup #4 shown in 4.2 with a 3He polariser and analyser using a po-
lychromatic (λ ≥ 4Å) neutron beam with a collimation ratio L/D = 800, which leads to a very high
spatial resolution of 0.3mm. Temperature dependent measurements of the neutron depolarisation were
performed at two different pressures of ≈ 0.2kbar and 10kbar but otherwise using exactly the same ex-
perimental parameters. Extreme care was taken to maintain the orientation of the sample while changing
the pressure. The low pressure measurement was performed at 0.2kbar, which prevented loosening of
the sample inside the pressure cell. The neutron depolarisation was investigated in a temperature range
from 75K to 90K in steps of 1K. At each temperature a total of 15 spin-up and spin-down images with
an exposure time of 60s each were taken, respectively.

Results and Discussion

Fig. 5.2.19 (b) – (d) show a typical set of images as obtained for each temperature step (here T = 82K).
A standard absorption neutron radiograph is shown in image (b). The contrast in this image is only
due to the absorption of the neutrons by the sample and the pressure cell and not due to a magnetic
interaction. The thinned shape of the pressure cell is clearly visible as well as the dark pressure stamp
on the top. Furthermore, the Ni3Al sample can be seen in the topmost third of the brighter pressure
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Figure 5.2.19: Technical drawing of the thinned Cu:Be pressure cell (a). The sample is placed inside a
Teflon cup filled with Fluorinert as a pressure medium. Neutron absorption radiograph (b) of the pres-
sure cell containing a Ni3Al sample (top) and a Fe2VAl sample (bottom), giving only weak absorption
contrast. Polarisation of the neutron beam after transmission of the sample at T = 82K for a pressure
of p = 0.2kbar (c) and 10kbar (d). The red rectangles mark the regions over which the temperature
dependence of the beam polarisation is plotted in Fig 5.2.20. The Fe2VAl sample is paramagnetic at this
temperature, while for the Ni3Al sample spatial variations in the neutron depolarisation can be observed.

volume. The Fe2VAl sample, located directly below the Ni3Al sample and separated from the latter by
an (invisible) Al spacer is hardly visible. Images (c) and (d) show the neutron beam polarisation after
transmission of the sample at p = 0.2kbar and 10kbar, respectively. One can clearly observe the change
of position of the (ferromagnetic and thus depolarising) pressure stamp with different pressure in these
images. At a first glimpse one can already see the reduction of the darkened area at higher pressure,
i.e the increase of the neutron beam polarisation with increasing pressure. Although the pressure cell is
non-magnetic, it is slightly visible in the polarisation images (c) and (d) which is due to the statistical
errors introduced by the strong neutron absorption of the material and the resulting low neutron counting
statistics. This effect is most pronounced in the bottom part of the cell where it has its largest thickness.

The temperature dependence of the neutron depolarisation is plotted in Fig. 5.2.20, averaged over two
different areas of the sample marked by red rectangles in Figs. 5.2.19 (c) and (d). From both plots it
is obvious that the onset of neutron depolarisation, which coincides with the onset of ferromagnetic
interaction in the sample, shifts towards lower temperatures at a hydrostatic pressure of p = 10kbar.
The decrease of the ordering temperature is found to be approximately 2K, giving a ∂TC

∂ p ≈ 0.2K/kbar,
which is lower than the value of ≈ 0.5K/kbar found by Niklowitz et al. [9] for a stoichiometric sample.
Furthermore, we observe a constant depolarisation of the beam by the sample even at higher tempera-
tures. This is due to a residual magnetisation of the sample, which was found to set in at 150K from
ambient pressure susceptibility measurements on this sample.

The temperature dependence of the beam polarisation below the ferromagnetic transition shows a stee-
per decrease with applied pressure than at ambient pressure. This behaviour is intuitively unexpected
since the application of pressure leads to a decrease of the magnetic moments and should consequently
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Figure 5.2.20: Temperature dependence of the neutron beam depolarisation by a Ni3Al sample averaged
over the red rectangles A and B shown in Fig. 5.2.19. The red circles give the data at 10kbar, while the
low pressure data is shown in black. The reduction of the beam polarisation (marked by arrows) shows
the onset of ferromagnetic interaction in the sample. Application of a hydrostatic pressure of 10kbar
leads to a reduction of the ordering temperature of approximately 2K. Due to a residual magnetisation
of the sample, which sets in at around 150K the beam polarisation does not quite reach 100%.

cause the beam polarisation to increase at a certain temperature compared to the ambient pressure value.
Possible reasons for the reduction of the beam polarisation with pressure are an expansion of the ferro-
magnetic domains in the sample or a reorientation of the domains due to uniaxial pressure components
introduced by the freezing of the pressure medium. Both effects could lead to a reduction of the beam
polarisation. To clarify this question further experiments – preferably with a homogeneous sample – are
necessary.

Conclusion

With these measurements we have shown the possibility to investigate the pressure dependence of the
ferromagnetic phase transition with polarised neutron radiography. We obtained spatially resolved in-
formation about the pressure dependence of the magnetic properties of the material in a single measu-
rement. NDI offers the possibility of a relatively fast investigation even of large and inhomogeneous
samples with a non-destructive method, which can be of great interest in many fields of research.

To achieve higher pressures or perform measurements on larger samples, many different types of pres-
sure cells are available, which could be adapted for the use in neutron radiography experiments. In
addition further developments in neutron radiography and neutron optics (e.g focussing neutron optics)
offer many possibilities for detailed investigation of a wide variety of problems from geophysics to
superconductivity.

5.2.4 Tomographic Measurements

Tomography offers the possibility to non-destructively obtain three dimensional information about the
spatial distribution of a material property within a sample. In standard neutron absorption tomogra-
phy the transmission of a sample is measured under many different projection angles. These data are
then reconstructed into a 3D model of the neutron absorption coefficient µ (x,y,z) using a filtered back
projection algorithm.
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As discussed in 2.6, measuring the polarisation of the neutron beam after transmission of the sample
instead of the attenuation of the neutron beam under many projection angles yields 3D information
about the neutron depolarisation density ρ (x,y,z). The reconstruction of this depolarisation density can
be performed with exactly the same algorithm, which is also used for neutron absorption tomography.
The neutron depolarisation density contains volume information about the distribution of the spin flip
probability within the sample. In comparison to the prior measurements, where only one projection
angle was used, this method can retrieve 3D information about the variation of the magnetic properties
within the sample. However, the procedure of acquiring many projections under different angles leads
to very long measuring times. To limit the measurement time, the tomographic measurements described
here have only been performed at a single temperature.

Experimental Details

A tomography of Pd1−xNix crystal II was performed by mounting the cryostat in which the sample was
mounted on a rotary stage, allowing to rotate the cryostat together with the sample over 180°. The
experiments were made with a monochromatic beam of λ = 3.2Å employing setup #3 (cf. 4.2) with
a 3He polariser and analyser. During the measurement, which was performed at a temperature of 8K,
the sample was rotated in steps of 1° from 0° to 179° resulting in a total of 180 projections. At each
projection angle, one spin-up and one spin-down image with an exposure time of 60s was recorded. This
procedure was repeated 5 times, resulting in a total of 5 spin-up and spin-down images at each projection
angle yielding a total exposure time of 30h. With this procedure we could avoid that the relaxation of
the 3He gas polarisation and consequently the higher statistical noise in the images affected especially
the larger projection angles. In contrast to this, the 3He relaxation was distributed more equally over all
projections. Furthermore, 10 open beam images with the cryostat moved out of the beam were acquired
for each polarisation direction, respectively.

Data evaluation

From each pair of spin-up and spin-down images the polarisation was calculated as Pi =
I↑,i−I↓,i
I↑,i+I↓,i

. All
polarisations were then averaged while being weighted with the inverse of the standard deviation wi,
which was measured in a homogeneous area outside of the sample.

P =
1

∑
5
i=1 wi

5

∑
i=1

wiPi (5.2.3)

The standard deviation was taken as a measure for the statistical error due to the decreasing counting sta-
tistics resulting from the decreasing 3He polarisation. This data was then reconstructed with a standard
filtered back projection algorithm yielding the spatial distribution of the neutron depolarisation density
ρ (x,y,z).

Furthermore, the attenuation of the neutron beam by the sample was calculated as

A =
∑

5
i=1 I↑,i + I↓,i
I↑,ob + I↓,ob

, (5.2.4)

where I↑,ob and I↓,ob are the summed intensities of the open beam images. Just as the depolarisation data,
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Figure 5.2.21: Tomographic reconstruction of the absorption (grey) and depolarisation (blue) data of
Pd1−xNix crystal II. Image (a) shows only the absorption data and images (b) – (f) show horizontal cuts
through the absorption data at different heights for better visualisation of the depolarisation data.

this data was reconstructed with a filtered back projection algorithm, resulting in the spatial distribution
of the neutron absorption coefficient µ (x,y,z).

Results & Discussion

The resulting 3D data sets were aligned and visualised with a 3D volume rendering software as shown in
Fig. 5.2.21. The absorption data is shown in grey and the depolarisation data is displayed in blue. Image
(a) shows only the absorption data, which gives an outside view of the shape of the crystal. At the top
an inclined edge is visible which was cut from the crystal for bulk measurements. At the bottom of the
sample, the glue is visible, which was used to fix the crystal on the sample holder and which shows high
attenuation of the neutron beam. Images (b) to (f) show different horizontal cuts through the absorption
data for better visualisation of the depolarisation data. Furthermore, in these images the absorption data
is rendered more transparently to permit to see the depolarising parts of the sample close to the surface.
It is clearly observed from the images that the sample has highly inhomogeneous magnetic properties
and that the depolarising parts of the sample are oriented in horizontal layers.

Tomography of Slice 1 of Crystal II

Similar measurements as those on the entire crystal II described above have been performed on slice II
after cutting of the two slices from this crystal. In contrast to the experiments on the entire crystal, this
tomography has been performed with a polychromatic beam with λ ≥ 4Å with setup #4 (cf. 4.2) using
a 3He polariser and analyser at a collimation ratio of L/D = 800. Thus, very high spatial resolution
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Figure 5.2.22: Tomographic reconstruction of slice 2 of Pd1−xNix crystal II. The absorption data is
displayed in grey and the depolarisation data in blue. (a) only the absorption data is shown. (b) – (e)
several cuts through the absorption data are displayed for better visualisation of the depolarisation data.
(f) only the depolarisation data is shown.

of ≈ 0.3mm could be achieved. The sample was mounted as shown in Fig. 5.2.2 (right) between two
Al sheets in a closed container filled with He exchange gas. The measurements were performed at a
temperature of 12K and 180 projections were acquired over 179°. At each projection angle 5 images
with an exposure time of 60s were recorded and processed as described above.

The reconstructed 3D data is shown in Fig. 5.2.22, where again the absorption data is displayed in
grey and the depolarisation data in blue. In image (a) only the absorption data is displayed, showing
that the shape of the slice can be accurately reconstructed from the projections. The absorption data
of the sample is very homogeneous over the sample volume and from this data no variation of the
sample composition is observed. There is a single horizontal streak visible where the object seems
to have a scratch in 2/3 of the height of the sample. However, this is a reconstruction artifact due
to a pixel defect, which was visible at this position on the detector. Images (b) – (e) show both the
absorption and the depolarisation data, where the absorption data is only displayed from the bottom of
the sample up to different heights for a better visualisation of the depolarisation data. Image (f) shows
only the depolarisation data. Despite the higher temperature in this measurement, there seem to be more
depolarising regions in the sample than observed in the measurement on the entire crystal described
above. However, this is due to the use of a polychromatic beam with larger mean wavelength, which
leads to larger depolarisation.

It can be observed that especially at the top and bottom end of the sample, the depolarisation density
extends to regions outside of the sample boundaries. This is mainly due to stray field effects, which
often occur at the sample boundaries, and lead to a depolarisation of the beam even outside the sample.
In the remaining parts of the sample the depolarisation extends in some places towards the surface of
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the sample but not outside the sample.

It can be clearly observed from the data shown in Fig. 5.2.22 that the sample shows highly inhomo-
geneous magnetic properties, whereas its absorption is very homogeneous. This underlines that the
variations in composition leading to a change in the magnetic properties are very small, which is in
agreement with the strong composition dependence of the ordering temperature in Pd1−xNix. Also in
good agreement with the radiographic measurements shown above is that at a temperature of 12K there
are vast paramagnetic regions in the sample, which show no depolarisation of the neutron beam.

Conclusion

These proof of principle measurements have shown the possibility to reconstruct neutron depolarisation
data with standard filtered back projection algorithms and to obtain the spatial distribution of the neutron
depolarisation density. Tomography can be an extremely helpful tool for quality control of samples
and for locating small and homogeneous parts of a large sample, which can then be used for bulk
measurements.

It would be ideal to perform temperature dependent tomographies of samples to obtain 3D information
about the distribution of the Curie temperature TC. The required beam time of nearly two days to perform
such a measurement at a single temperature at currently available neutron sources, however, limits the
application of this method to only a few temperature steps.
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Chapter 6

Conclusion & Outlook

In this work we have developed a powerful new technique for the spatially resolved investigation of ma-
gnetic properties of bulk samples. This method, which we call Neutron Depolarisation Imaging (NDI),
is based on the combination of a standard neutron radiography setup with equipment for neutron spin
polarisation analysis. The interaction of the neutron’s nuclear magnetic moment with the magnetic fields
inside the domains of a ferromagnetic sample leads to the depolarisation of a polarised and collimated
neutron beam after transmission of the sample. Analysing the depolarisation the neutron beam suffers
by penetration of the sample yields valuable information about the domain structure of the sample. Most
notably the average domain sizes, the ordering temperature of the sample and the ordered moment can
be determined.

In contrast to the well known standard one dimensional neutron depolarisation technique, on which this
method is based, we have used a collimated neutron beam on the radiography beam line ANTARES
at FRM II in combination with neutron polarisers and analysers which do not affect the collimation.
Employing a 2D position sensitive detector allows for the spatially resolved determination of the sample
properties listed above. The requirements for the polarisers and analysers as well as further instrument
components like a monochromator and spin flippers have been analysed in the context of optimising the
performance of the NDI setup.

Experiments with this new technique have been performed on various samples of the weakly ferroma-
gnetic (FM) materials Pd1−xNix and Ni3Al during which NDI has proven to be a valuable tool for the
assessment of sample quality and homogeneity. For both substances the magnetic properties crucially
depend on the concentration of the constituents and even small inhomogeneities lead to strong variations
of these properties. The direct spatially resolved determination of the magnetic properties in contrast
to the determination of the concentration of the constituents makes NDI superior to other methods like
EDX. Furthermore, not being a surface sensitive method, NDI allows to measure the properties of bulk
samples. The results of these experiments and experiments on other weakly ferromagnetic materials
show that samples of good quality and homogeneity are extremely rare. Even samples which were found
to be of high quality e.g. by residual resistivity measurements were found to show strong variations in
the ordering temperature on a macroscopic scale.

The interest in weakly ferromagnetic materials is, however, not primarily based on the determination
of sample homogeneity. More importantly, this material class shows ferromagnetic order at very low
temperatures at which deviations from the standard Fermi liquid (FL) model of ferromagnetism are
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observed. The detailed investigation of many weakly ferromagnetic systems has lead to the view that
this FL model is inappropriate to describe the ferromagnetism of these substances.

The transition temperature of weakly FM materials can be tuned towards T = 0 by application of hy-
drostatic pressure or by variation of the composition of the material. Tuning the ordering temperature
towards low temperatures leads to a balancing of strong interactions leaving only weak interactions to
determine the ground state of the material. These interactions can lead to completely new magnetic or-
der as observed for example by the coexistence of superconductivity and ferromagnetism in UGe2 or by
the formation of a liquid crystal like phase of partial magnetic order in MnSi. In all systems investigated
so far the phase transition was found to change from second to first order as coming sufficiently close
to the suppression of the ordering temperature. For this reason there has been an extensive search going
on in the past 20 years to find a material showing a quantum critical point for which the phase transition
remains second order at T = 0.

We have therefore developed a method for the spatially resolved determination of the ordered moment
Ms, which is the order parameter of the ferromagnetic to paramagnetic phase transition, as well as
the ordering temperature TC from the temperature dependence of NDI data. For an inhomogeneous
sample containing regions with different Ms and TC this method can yield the intrinsic relation between
these two properties and can therefore reveal information, whether the phase transition is first or second
order. A Pd1−xNix sample was investigated in detail using this technique and the results were compared
with simulations. For this particular sample, which does not contain areas with sufficiently low ordering
temperatures we could, however, not ultimately successfully determine the nature of the phase transition.

We have proven the feasibility of pressure experiments at hydrostatic pressures of up to 12kbar in this
work. As stated above, the application of hydrostatic pressure can lead to the suppression of the ordering
temperature and the balancing of strong interactions. What remains are weaker interactions which nor-
mally do not play a significant role in the formation of the ground state of the material. New magnetic
order was found to arise from these interactions at low temperatures. Especially high-TC supercon-
ductors show significant heterogeneities and it is not known whether this disorder might eventually be
responsible for the formation of the superconducting phase. Furthermore, it is not clear whether these
heterogeneities arise from an intrinsic behaviour of the system or are caused by constitutional inhomo-
geneities of the sample. We have therefore developed a criterion to assess the amount of heterogeneity
in a sample from the shape of the temperature dependence of its depolarisation signature. In the future
we plan to perform NDI experiments under hydrostatic pressure down to lowest temperatures. These ex-
periments will help to clarify whether the depolarisation signature shows the presence of heterogeneities
and can therefore help to understand the origin of novel magnetic phases.

A further goal will be the extension of the NDI method to the three dimensional analysis of the beam
depolarisation by the sample. This will require for compact polarisation rotators before and after the
sample. The 3D analysis of the neutron depolarisation will provide even more information on the ma-
gnetic properties of the sample. Using this technique it will be possible to determine a net magnetisation
and the mean square directions cosines of the magnetisation in the domains, i.e. it will be possible to
identify easy axes of the system.
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Appendix A

Further Experiments

A.1 Visualisation of magnetic field integrals

Not only magnetic domain structures of samples can be studied by radiography with polarised neutrons.
The Larmor precession of the neutron spin around a magnetic field does not necessarily have to take
place inside the sample. Any magnetic field perpendicular to the neutron polarisation between polariser
and analyser will cause the neutron spin to precess around this field. The Larmor frequency of this
precession is given by ω = γB⊥, where B⊥(x,y,z) is the magnetic field perpendicular to the polarisation
direction and γ is the gyromagnetic ratio. The total precession angle φ of the neutron spin after passing
through the sample area is then given by the time the neutron spends within the field. With the neutron
velocity v, this can be expressed as the field-integral along the flight path of the neutron

φ = γ/v
∫

B⊥(x,y,z)dz. (A.1.1)

The integral goes along the flight path of the neutron between polariser and analyser. The intensity
measured at the detector is a product of the conventional attenuation law due to any neutron absorbing
material between polariser and analyser

Ia = I0 exp
(
−
∫

µ(x,y,z)dz
)

(A.1.2)

and a polarisation dependent part, which represents the projection of the resulting polarisation direction
onto the analysing direction and is given by

Ip = 1/2(1+PPa cosφ) . (A.1.3)

Here φ is the precession angle defined above, Pa is the analysing efficiency and P is the polarising
efficiency. Using this equation, this technique can be used to determine the magnetic field integral of
complex field geometries, like the stray field of electric coils or permanent magnets, or even trapped
flux in superconductors [94]. However, not the absolute value of the field integral can be determined but
only the variation of the precession angle modulo 2π .

As an example of the potential of this method we show the field integral image of a permanent ring
magnet, which is a rotor of an electro motor. The magnet, which is shown in the inset of the plot on
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Figure A.1.1: Magnetic field integral image of a ring magnet (left) and a plot of the data along the
red arrow in the left image (right). The ring magnet (shown in the inset in the plot on the right side)
was mounted on a vertical Al slab with some Al tape, which is visible above and below the magnet.
The direction of the beam was in z-direction and it was polarised in y-direction. A fit of the data with
A(x)sin(β/(x− x0)) with a linearly increasing amplitude A(x) is shown by the dashed red line.

the right hand side of Fig. A.1.1, has a diameter of ≈ 2cm and approximately the same length. It was
mounted on a vertical Al slab with some Al tape, which is visible due to its neutron absorption above
and below the dark magnet in the middle of the left image.

The image was acquired at a wavelength of 3.2Å, using setup #3 described in 4.2 with a 3He polariser
and analyser as shown in Fig 3.2.1 b). This setup yields a spatial resolution of 0.4mm, which is the
highest value for magnetic field imaging reported so far. The cross section of the image is ≈ 9×9cm2.

Coming from the outside of the left image one observes a fringe pattern with decreasing wavelength
as going towards the centre of the magnet. This pattern originates from the variation of the detected
intensity with the precession angle φ as discussed above and is in agreement with the increase of the
magnetic field closer to the magnet. No more fringes are observed very close to the magnet due to the
limited spatial resolution of the setup which does not allow to resolve the finer fringes. A plot of the
detected intensity along the red line in the left image is shown on the right hand side of Fig. A.1.1.
At the outer regions the fringes can be clearly resolved, but going closer to the centre of the image, the
amplitude of the modulation decreases and the modulation vanishes at around 15mm from the beginning
of the arrow. The modulation that can still be resolved is in agreement with a spatial resolution of
0.4mm. A comparison of the data with a A(x)sin(β/(x− x0)) fit with linearly increasing amplitude
A(x) is given by the dashed red line. Very good agreement of the peak positions is found for large
x-values, whereas closer to the magnet a slower variation of the data is observed.

These measurements have shown that radiography with polarised neutrons allows to directly measure
the magnetic field integral along the neutron flight path. This could for instance be used to determine
the homogeneity of the magnetic field inside neutron spin manipulation components like precession coil
spin flippers or B0 coils used for neutron spin echo. A high field homogeneity over the cross section
of these devices is essential for their performance and can be easily investigated with this method by
aligning the components in a way that their magnetic field is perpendicular to the beam polarisation.
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A.2 Magnetostriction in Ni foils

Here we will present first proof-of-principle measurements of a further interesting application of neu-
tron depolarisation imaging. The magnetostriction effect leads to a change of the orientation of the
domains within a sample, if a uniaxial force is applied on the sample. As a consequence, a change of
the depolarisation which a neutron beam suffers after transmission of the sample is observed. In our
experiments we used this effect on foils made of Ni, which has a negative magnetostrictive constant of
λs ≈ −37 · 10−6 [134], as a method for the spatially resolved measurement of the mechanical stress in
the material. Non-spatially resolved 3D neutron depolarisation measurements of the magnetostrictive
effect in Ni foils have already shown the possibility to use this effect as a measure of the stress applied
on the foil [84] .

High purity Ni foils (99.99%) with a thickness of 125 µm were cut to a concave shape as shown in
Fig. A.2.1 (right) with a maximal width of 30mm and a minimal width of 10mm. After cutting, the
foils were annealed in vacuum at 900°C for 8h to remove any remaining strain from the samples and
then mounted in a frame, which was fixed at the top end, while the bottom end could be loaded with
weights up to 25kg. For the experiment, the foil was placed in the polarised neutron beam between the
3He polariser and analyser of setup #3 (c.f. 4.2) with the direction of the tension applied by the weights
being parallel to the beam polarisation. Spatially resolved measurements of the beam polarisation after
transmission of the Ni foils were performed with three different loads from 5kg to 25kg on the setup.
Five spin-up and spin-down images with an exposure time of 60s each were acquired per applied load,
from which the transmitted beam polarisation was calculated.

Figure A.2.1: Beam polarisation after transmission of a Ni foil along the line shown in the image on
the right hand side (from top to bottom). The foil was loaded with different weights to modify the
mechanical stress. Increasing stress leads to a reorientation of the domains and to increasing beam
polarisation. For better visibility, the curves are shifted by a value of 0.02 along the y-axis as indicated
by the red and blue baselines.

The beam polarisation after transmission of the foil is plotted in the left plot of Fig. A.2.1 along the
yellow arrow shown in the right image. However, due to the strong depolarisation of the beam by the
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Ni foil (P ≈ 0), the statistical error in these measurements is very large. To reduce the statistical error,
the polarisation was averaged over the horizontal extension of the arrow. For better visibility, the curves
were shifted by a value of 0.02 with respect to each other along the y-axis.

Even though the statistical errors in these measurements are very high, it is still visible that the peak in
the plot, which is located at the position where the sample has its smallest width (marked by the dashed
green lines), increases with increasing stress. The beam polarisation increases due to the preferred
alignment of the domains in the sample in parallel to the direction of the applied mechanical stress. A
quantitative, spatially resolved evaluation of the mechanical stress in the foil was not possible due to the
large errors in the measurements. These errors could, however, be decreased in future measurements
by acquiring more images and also by using a polychromatic beam giving much improved counting
statistics.

These proof-of-principle measurements have shown the possibility to use ferromagnetic foils with a high
magnetostrictive constant as stress gauges for the spatially resolved determination of mechanical stress.
The sensitivity of the method could be further improved by using foils with a higher magnetostrictive
constant, e.g. FeCoV, for which the magnitude of the magnetostrictive constant λs ≈ 83.4 · 10−6 is ap-
proximately twice as high as for Ni [135, 136]. Stress sensors could be built by mounting such foils on
the surface of a (nonmagnetic) sample and measuring the depolarisation of the beam after transmission
of the foil.
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