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Abstract 

MicroRNA research is not only a very young and fascinating discipline (intensive 

research began in 2000), but also highly topical.  

MicroRNAs (miRNAs) are small, ~22 nucleotide long RNA molecules that play a 

critical role in gene regulation of eukaryotes by pairing to the mRNAs of protein-

coding genes to direct posttranscriptional repression. In the human genome as many 

as ~700 microRNAs have been identified yet. According to recent proteomic studies 

a single microRNA is capable of directing repression of hundreds of genes and fine 

tune protein production of thousands of genes. Consequently, microRNA regulation 

is associated with many fundamental cellular processes and consistently also with a 

number of most severe diseases.  

To systematically analyze the function of microRNAs and to understand their 

regulatory role, there are two major challenges to take. First, all microRNAs of an 

organism have to be detected and second, the targets of each of the microRNAs have 

to be identified. The focus of this thesis is to provide machine learning based 

bioinformatics tools that contribute to both fields. 

Next generation sequencing technology allows the detection of hundreds of 

thousands of small RNA molecules in a single experiment. To extract information 

from the enormous data generated, we have developed miRanalyzer. This allows 

both the detection of known microRNAs together with their expression levels and the 

discovery of novel microRNAs. For the latter we have developed a prediction model 

that is based on the Random Forest learning scheme and automatic feature selection 

of a wide spectrum of features. The high levels of accuracy achieved by this 
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approach is partly based on the fact that we harness the footprint of Dicer processing 

that is visible in deep-sequencing data for the first time. 

For the prediction of microRNA target sites many computational approaches have 

been developed in recent years. Due to limited biological knowledge about the 

characteristics of these cis-regulatory sites, the majority of tools focus on the 

identification of the most prominent feature, the seed match. To keep false-positive 

rates low those tools additionally require its evolutionary conservation. Naturally 

many functional sites will therefore be missed. A fraction that might be as large as 

40%, according to recent studies. 

With TargetSpy we have developed a completely different approach. It is based on a 

machine learning approach that considers several characteristics selected by 

automatic feature selection. We further utilized a recently published set of high 

quality binding site data (HITS-CLIP) derived in deep-sequencing experiments to 

train our model. Extensive evaluations suggest that TargetSpy offers high prediction 

accuracy and may be applicable to a broad taxonomic range of organisms. Further it 

allows the identification of species-specific target sites. 
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Zusammenfassung 

Die microRNA-Forschung ist nicht nur eine sehr junge und spannende Disziplin 

(intensive Forschungsarbeiten begannen erst im Jahr 2000), sondern ebenso 

hochaktuell.  

MicroRNAs (miRNAs) sind kleine, etwa 22 Nukleotid lange RNA Moleküle, die 

durch Bindung an die mRNA von proteinkodierenden Genen post-transkriptionelle 

Repression bewirken und damit eine wesentliche Rolle in der eukaryotischen 

Genregulation spielen. Allein im menschlichen Genom wurden bereits etwa 700 

microRNAs identifiziert. Laut neuester proteomischer Studien ist eine einzelne 

microRNA dazu befähigt, hunderte Gene zu reprimieren und die Proteinproduktion 

tausender Gene in Feinabstimmung zu regulieren. In Folge ist die microRNA-

Regulation in vielen grundlegenden zellulären Prozessen involviert und daraus 

resultierend an einer Reiher schwerwiegender Krankheiten beteiligt.  

Um die Funktion von microRNAs systematisch zu untersuchen und ihre regulative 

Rolle zu verstehen, müssen zwei große Herausforderungen bewältigt werden. 

Einerseits gilt es alle microRNAs eines Organismus zu entdecken und andererseits 

die Zielgene jeder microRNA zu identifizieren. Der Schwerpunkt dieser Dissertation 

liegt darin, auf Maschinellem Lernen basierende Bioinformatik-Tools zu entwickeln, 

die zu beiden Bereichen beitragen. 

Moderne Tiefensequenzierungstechnologie ermöglicht, in einem einzigen 

Experiment, die Detektierung hunderttausender kleiner RNA Moleküle. Um aus der 

Datenfülle verwertbare Informationen zu extrahieren, entwickelten wir das Tool 

miRanalyzer. Dieses ermöglicht einerseits die Identifizierung bekannter microRNAs 



    

 vii 

zusammen mit den jeweiligen Expressionsleveln und andererseits die Entdeckung 

bisher unbekannter microRNAs. Für Letzteres haben wir ein Vorhersagemodell 

entwickelt das auf dem Lerner Random Forest, sowie der automatischen Feature-

Selektion eines breiten Spektrums von microRNA-Eigenschaften basiert. Die 

Verwendung der Tiefensequenzierung ermöglicht erstmalig die Nutzung der 

Fußabdrücke aus der Dicer-Prozessierung. Diese werden in den Sequenzierungs-

datensätzen erstmalig sichtbar und verhelfen mitunter zu der hohen Vorhersage-

genauigkeit dieser Methode. 

Zur Vorhersage der microRNA-Bindestellen wurden in den letzten Jahren eine 

Vielzahl von Ansätzen entwickelt. Aufgrund des begrenzten biologischen Wissens 

hinsichtlich der Eigenschaften von microRNA-Bindestellen konzentrieren sich diese 

Ansätze überwiegend auf das prominenteste Charakteristikum, dem Seed-Match. Um 

die Fehlerraten auf annehmbarem Niveau zu halten, verlangen diese Methoden 

zudem dessen evolutionäre Konservierung. In Folge dessen werden etliche 

funktionale Bindestellen übersehen. Ein Anteil, der laut neuester Studien sich in 

einer Größenordnung von bis zu 40% bewegen kann.  

Mit TargetSpy entwickelten wir einen gänzlich neuen Ansatz. Dieser basiert auf 

Maschinellem Lernen und berücksichtigt verschiedenste Eigenschaften, die in einer 

automatischen Feature-Selektion ausgewählt wurden. Hinzu verwendeten wir die 

kürzlich publizierten, qualitativ hochwertigen Bindestellen (HITS-CLIP) aus 

Tiefensequenzierungs-Experimenten um unser Modell zu trainieren. Umfangreiche 

Evaluierungen lassen die Schlussfolgerung zu, dass TargetSpy über hervorragende 

Vorhersagegenauigkeit verfügt und auf eine große taxonomische Bandbreite von 

Organismen angewendet werden kann. Zudem ermöglicht es die Identifizierung von 

Spezies-spezifischen Bindestellen. 
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Chapter 1  

 

Introduction 

First the current understanding of the biology of the microRNA pathway will be 

detailed, followed by an overview of the current state-of-the-art prediction 

approaches for microRNA genes and microRNA target sites. Subsequently the claim 

of this work and the contribution to the field will be laid out. Finally the chapter 

closes with an outline of this thesis.  

1.1. Biological background 

1.1.1. The history of microRNAs 

Albeit their significance, microRNAs escaped detection until 1993. At that time, 

Victor Ambros and his colleagues Rosalind Lee and Rhonda Feinbaum investigated 

the function of lin-4, a gene essential for normal temporal control of postembryonic 

developmental events in Caenorhabditis elegans. Several lines of evidence indicated 

that lin-4, known to negative control LIN-14, does not encode for a protein but 

instead produces two small RNA transcripts, lin-4S and lin-4L. The smaller 

molecule, lin-4S, was approximately 22 nucleotides (nt) long, whereas lin-4L was 

found to be 61 nt in length. They also discovered that the 5’ regions of the two RNA 

molecules were identical and that they had antisense complementarity to seven sites 

in the 3’ untranslated region (3’UTR) of LIN-14. Subsequently they demonstrated 
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that these sites were crucial for the regulation of LIN-14 and proposed the hypothesis 

in which the small RNA lin-4S, now recognized as the founding member of the 

microRNA class, pairs to the 3’UTR of LIN-14 to repress its translation (Lee et al. 

1993). 

Today it is known, that microRNAs are endogenous ~22 nt long single stranded 

RNA molecules, found to play a fundamental role in the regulation of gene 

expression in eukaryotes. With several hundred microRNAs identified in human and 

several thousand known in total (Griffiths-Jones 2004), the microRNA gene family is 

one of the most abundant classes of gene regulators in multicellular organisms 

(Bartel 2004). Considering most recent experimental findings, microRNAs can act 

by mRNA destabilization and by directly repressing translation of hundreds of genes. 

The impact of microRNAs on the proteome observed in this context suggests that a 

microRNA may act as a rheostat, making fine-scale adjustments to protein synthesis 

from thousands of genes (Baek et al. 2008; Selbach et al. 2008). 

1.1.2. Significance of microRNA regulation 

So far, however, the biological roles of microRNAs have been elucidated only for a 

small fraction. Though there are several lines of evidence suggesting that 

microRNAs play critical roles in most, if not all, physiological processes. Among 

others microRNAs have been proven to be involved in tissue differentiation, cell 

growth and proliferation, fat metabolism, cellular signaling, embryonic development 

and apoptosis (Esquela-Kerscher and Slack 2006).  

Therefore dysregulation of microRNAs or their targets, dysfunctions in the 

microRNA biogenesis or mutations in the mature microRNA or their target site have 

been shown to lead to various severe diseases (Esquela-Kerscher and Slack 2006). 

Cancer for example is caused by runaway proliferation of defective cells in 

combination with their spurious survival. Usually those processes are highly 

regulated in a coordinated fashion to ensure proper function and to safeguard against 

defects. Though damage to those genes that drive this complicated regulation, 

generally referred to as oncogenes and tumor-suppressor genes, may lead to 

oncogenesis. Since microRNAs have been shown to be involved in those critical 
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biological processes, it is not surprising that impaired microRNA expression is 

involved in the formation of cancer (Esquela-Kerscher and Slack 2006; Lu et al. 

2008). Other diseases that are associated with microRNA dysregulation are 

schizophrenia, neurodegenerative diseases like the Parkinson’s disease and diabetes. 

In total the human miRNA-associated disease database (HMDD) currently lists 70 

diseases and its size is constantly growing (Esquela-Kerscher and Slack 2006; Lu et 

al. 2008). 

In case of human cancer it was shown that the expression profile of microRNAs 

reflects the developmental lineage and differentiation stage of tumors. The same 

publication nicely demonstrated that while mRNA expression profiles were 

inappropriate to distinguish between poorly differentiated tumors, microRNA 

expression profiles successfully classified the samples (Lu et al. 2005). Also in case 

of diabetes, several microRNA expression levels are reported to be impaired in 

different animal models for type-2 diabetes. Further, two key insulin-responsive 

proteins, Insig1 and cav2, are validated as direct targets of microRNAs. Moreover 

microRNAs are generally found to be involved in diabetes-associated diseases 

(Kolfschoten et al. 2009). Altogether, microRNAs with their critical role in the 

physiology of living cells and consequently their implications in diseases might 

prove also useful in the diagnosis and treatment of diseases. 

1.1.3. MicroRNA biogenesis and maturation 

According to recent findings, microRNA genes occur as distinct transcriptional units 

as well as polycistronic units in microRNA gene clusters and more than half of all 

known mammalian microRNAs reside within the introns of protein coding genes or 

within either the introns or exons of non-coding genes (Lagos-Quintana et al. 2001; 

Lau et al. 2001; Reinhart et al. 2002). Intronic microRNAs are found to be usually in 

the same orientation as the protein-coding transcript and are therefore co-expressed 

with it, as they share the same primary transcript (Baskerville and Bartel 2005; 

Rodriguez et al. 2004). Only about one tenth are located within the exons of long 

non-protein coding transcripts (Rodriguez et al. 2004). Very few microRNA are also 

found to be within untranslated regions of protein-coding genes (Cullen 2004). 
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Figure 1: Pathway from microRNA biogenesis to mRNA regulation. 
The microRNA gene is transcribed by RNA polymerase II (pol II) into the primary transcript 
(pri-microRNA). Still in the nucleus Drosha mediates the ‘cropping’ step, a procedure that 
removes flanking sequences, resulting in the ~70 nucleotide long pre-microRNA. After the 
relocation into the cytoplasm by exportin-5, Dicer, a cytoplasmatic RNase III, performs the 
second cleaving step called ‘dicing’ to produce the microRNA:microRNA* duplex. 
Subsequently the duplex is separated and one strand gets incorporated into the RISC, while 
the other strand is degraded. Finally the microRNA loaded RISC is potent for regulating 
protein production, either by translational repression or mRNA cleavage. 
 

Current models suggest that microRNA biogenesis and maturation is a stepwise 

process (see Figure 1) that starts in the nucleus and ends in the cytoplasm. First, 

microRNAs are transcribed from RNA polymerase II (in rare cases also by RNApol 

III) to primary transcripts (pri-microRNAs) ranging from several hundred to 

thousands of nucleotides in length (Cai et al. 2004; Lee et al. 2004). Subsequently 

the microprocessor complex, consisting of the double-stranded RNA binding protein 

Pasha and the ribonuclease III (RNase III) endonuclease Drosha, processes the 

transcript by cleaving the flanking sequences of the pri-microRNA. An 
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approximately 70-nucleotide stem-loop structure named precursor microRNA (pre-

microRNA) with two nucleotide 3’ single-stranded overhanging ends, typical for 

RNase III, as well as an 5’ phosphate and 3’ hydroxy termini is released (Denli et al. 

2004; Han et al. 2004; Lee et al. 2003; Lee et al. 2002). The cleavage site marks 

already the mature microRNA that can either reside in the 5’ or in the 3’ arm of the 

pre-microRNA. 

 

Figure 2: Secondary structure of three pre-microRNAs predicted by RNAduplex with 
the mature microRNA sequences highlighted in green. 
The two mature microRNA sequences, miR-1 and miR-375 are located on the 3’ arm of the 
pre-microRNA hairpin structure; miR-16 is on the 5’ arm. According to our current 
understanding there seems to be no rigid pattern in terms of which strand is chosen for the 
mature microRNA. The only evidence we know of is that the thermodynamic stability at the 
microRNAs 5’ end seems to play a critical role in the selection process in that the strand 
with the lower stability is usually associated with RISC. 

The characteristic hairpin structure (Figure 2) is recognized by Exportin-5 that 

subsequently exports the pre-microRNA from the nucleus into the cytoplasm (Zeng 

and Cullen 2004). Later on it is processed by Dicer, again a RNase III, removing the 

loop from the stem, releasing a ~22 nucleotide long microRNA:microRNA* duplex 

(Bernstein et al. 2001; Forstemann et al. 2005; Hutvagner et al. 2001).  
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Finally one strand (mature microRNA) of that duplex is incorporated into the 

Argonaute protein of the RNA-induced silencing complex (RISC), while the other 

strand (microRNA*) is degraded. Supposedly, the strand that is thermodynamically 

less stable paired at its 5’end is chosen as the mature microRNA (Khvorova et al. 

2003; Schwarz et al. 2003). However a few cases are reported where both strands of 

the duplex seem to be chosen to enter the RISC (Lagos-Quintana et al. 2002; 

Schwarz et al. 2003). 

1.1.4. Mechanism of microRNA-mediated repression 

MicroRNA directed posttranscriptional regulation of gene expression may be exerted 

by the two different mechanisms mRNA cleavage and translational repression 

(Carthew 2006; Pillai et al. 2007).  

Upon binding of a microRNA to its target, the RISC functions as an endonuclease 

and cleaves the mRNA between the 10th and 11th nucleotide if the target site exhibits 

perfect or near perfect Watson-Crick base-parings to the full microRNA sequence. 

Although such binding sites are found both in the coding sequence and in the 

untranslated region of protein coding mRNAs, most sites reside in the coding region. 

Since cleavage leads to degradation of the mRNA, the impact of microRNAs can be 

observed in reduced mRNA expression levels. Cleavage has been shown to be the 

predominate mechanism in plants (Hutvagner and Zamore 2002; Llave et al. 2002; 

Tang et al. 2003).  
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Figure 3: Schematic illustration of microRNA directed repression of translational 
initiation. 
A) Normal translational initiation in the absence of microRNAs. First, the translational 
initiation factor eIF4E binds to the 7-methyl-guanine (m7G) cap of the transcript. Second, 
eIF4G binds to eIF4E and the poly(A)-binding protein (PABP) to build a closed loop for 
efficient translation. B) In case the microRNA loaded RISC complex has bound to a target 
site in the 3’UTR of the transcript, Ago proteins, present in the RISC, compete with eIF4E 
for binding to the m7G cap. That way the ribosome is not capable of initiating the translation 
process and hence protein production is prevented. 

In animals however only few microRNAs have sufficient complementarity to their 

targets for mRNA cleavage. Therefore the prevailing regulation type is translational 

repression, a mechanism that requires less complementarity. Instead of slicing the 

mRNA, the effective translation of mRNA into protein is hindered (Brennecke et al. 

2005; Lai 2004; Lewis et al. 2005; Lewis et al. 2003). 
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Yet, the underlying mechanistic of the repression and the actual determinants for 

target recognition have not been reliably unveiled. Regarding the mechanistic, recent 

studies in mammals strongly suggest that by blocking the translational initiation 

process protein production is prevented (Figure 3). The loaded RISC binds to a target 

site in the 3’UTR of the transcript and the Ago protein subsequently competes with 

the translational initiation factor eIF4E for binding the m7G cap. Hence the initiation 

factors cannot build the initiation complex necessary for the ribosomes to bind to the 

mRNA and start translation. (Kiriakidou et al. 2007; Mathonnet et al. 2007; Meister 

2007; Thermann and Hentze 2007; Wakiyama et al. 2007). Though there is also 

experimental support for the hypothesis, that protein production is prevented by 

blocking translational elongation (Nottrott et al. 2006; Olsen and Ambros 1999; 

Peters and Meister 2007). Consensus, however, exists, in that the required cis-

regulatory sites reside mostly in the 3’UTR.  

1.1.5. Target site recognition for translational repression 

On the basis of experimental validation of microRNA binding sites in their 

physiological context parameters that are responsible for proper recognition of 

microRNA target sites are elucidated. Though as more analyzes were performed 

contradictory statements on the determinants were given leading to increasing 

complexity of the topic (Didiano and Hobert 2008). 

The most prominent feature, however, was found to be perfect Watson-Crick base 

pairings to the microRNA 5’ end. Moreover in this region, generally referred to as 

the microRNA “seed match”, no G:U base-pairs were observed. Additionally, point 

mutations in the 5’ region causing loss-of-function supported the seed as an 

important factor (Lee et al. 1993; Reinhart et al. 2000). Functional seed matches 

were found to be between 6 and 8 nt in length (Figure 4).  

The 6-mer seed match exhibits perfect base pairings to the microRNA nucleotides 2-

7 and is considered as the least effective. The 7-mer seed match can either be a 

perfect base pairing between microRNA nucleotides 1-7 or 2-8, while the second, 

also referred to as a 7mer m8 seed match, seems to be more effective.  
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Figure 4: Types of microRNA seed matches. 

The 6-mer seed (nucleotides 2-7) is colored blue, the additional match to either microRNA 
position 1 or 8 is colored red. The 6-mer seed match is a six nucleotide long stretch in the 
mRNA that shows perfect reverse complementarity to the 6-mer seed in the microRNA. If in 
addition to that match either the first or the eighth nucleotide pairs as well, one speaks of a 7-
mer seed match. An 8-mer seed match exists if both, the first and the eighth nucleotide 
match. 

Due to experimental findings, indicating a higher efficiency when the first nucleotide 

in the target site is an Adenosine (A), no matter if a base pairing occurs at that 

position, such 7-mer sites are called 7mer-A1 sites. Finally the most effective seed 

match found is the 8-mer that exhibits base pairings to the microRNA nucleotides 1-

8. Again, those sites showing an A opposite to the first microRNA nucleotide seem 

to be even more effective (Grimson et al. 2007). 

  ORF   ~~~~~~~~~~~~~~~~~~~~~~~~~~NNNNNNNN~~~~~~~~~~Poly(A)
           ||||||
 3’ microRNA NNNNNNNNNNNNNNNNNNNNNN 5’ microRNA
          87654321

6-mer seed match

  ORF   ~~~~~~~~~~~~~~~~~~~~~~~~~~NNNNNNNN~~~~~~~~~~Poly(A)
           |||||||
 3’ microRNA NNNNNNNNNNNNNNNNNNNNNN 5’ microRNA
          87654321

7-mer seed match

  ORF   ~~~~~~~~~~~~~~~~~~~~~~~~~~NNNNNNNN~~~~~~~~~~Poly(A)
          |||||||
 3’ microRNA NNNNNNNNNNNNNNNNNNNNNN 5’ microRNA
          87654321

  ORF   ~~~~~~~~~~~~~~~~~~~~~~~~~~NNNNNNNN~~~~~~~~~~Poly(A)
          ||||||||
 3’ microRNA NNNNNNNNNNNNNNNNNNNNNN 5’ microRNA
          87654321

8-mer seed match
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However, not all biological functional binding sites do exhibit such a perfect pairing 

to the microRNA seed, like for example binding sites in the gene LIN-14 for lin-4, 

the founding member of the microRNA class (He and Hannon 2004). Also the work 

of Didiano and Hobert clearly demonstrate that a seed is not a general requirement of 

functional target sites (Didiano and Hobert 2006; Didiano and Hobert 2008). The 

current view on this topic is that up to approximately 60% of all regulated binding 

sites exhibit a perfect seed match (Selbach et al. 2008) and therefore 40% or more of 

all microRNA targets do not show this perfect Watson-Crick base pairing to the 

microRNA 5’ end. Based on systematic mutation experiments as well as extensive 

bioinformatics analyzes, it was affirmed, that this other class of target sites exists. 

These target sites show imperfect matches to the microRNA seed but additional 

matches to the 3’ end of the microRNA. It was therefore proposed that target sites of 

this class compensate the disruptions in the seed region by the base pairings observed 

to the microRNA 3’ end (Brennecke et al. 2005; Doench and Sharp 2004; Lim et al. 

2005).   

Although it has been reported that in some cases perfect pairing to an 8-mer seed 

appear to be sufficient for repression (Brennecke et al. 2005; Doench and Sharp 

2004; Lai et al. 2005), seed sites alone do not always guarantee functionality. 

Interestingly, the magnitude of repression has been found to be highly variable 

depending on the UTR context (Farh et al. 2005). So far experimental evidence for 

determinants beyond pure seed pairing has been found for the accessibility of target 

sites to the RISC complex (Kertesz et al. 2007). Further it was demonstrated that 

closely spaced sites often show synergetic action and that additional base pairings to 

microRNA positions 12-17 were strongly correlated to down-regulation. 

Additionally there is experimental support that functional target sites often reside in 

AU rich context, a determinant that is certainly connected to the local RISC 

accessibility. Analyzes on the position of target sites further suggest that functional 

sites seem to reside preferentially in the 3’UTRs, but not too close to the stop codon 

and that the most effective regulation emanates from sites near both ends of the 

3’UTR (Grimson et al. 2007). However not all of these finding could be affirmed. 

Didiano and Hobert analyzed the RISC accessibility and also the local AU content, 

but could not detect any strong correlation between those criteria and the present and 
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strength of the measured regulation. Also when they considered the position in the 

3’UTR and the context of microRNA target sites they found that a relocation of a 

functional site towards the beginning of the 3’UTR but with a clear distance to the 

stop codon showed loss-of-function. Thought it could be verified that a certain 

distance between two sites is mandatory for regulation. Moreover an AU rich 25bp 

long region downstream of the target sites was determined as being necessary for 

proper regulation (Didiano and Hobert 2008). 

1.2. Computational prediction approaches 

Due to the difficulty of detecting microRNAs and their targets systematically by 

experimental techniques, models for predicting microRNA genes and microRNA 

target sites were built shortly after the microRNA pathway was discovered. These 

models are based on very limited experimental data, however the basic principles 

that were used to build these are still found on the core of most current state-of-the-

art predictions approaches.  

1.2.1. MicroRNA gene prediction 

As described in Section 1.1.3, mature microRNAs stem from pre-microRNA 

molecules, showing a characteristic stem-loop hairpin structure. However when 

scanning the human genome for pre-microRNA-like hairpins, one identifies about 11 

million structures (Bentwich et al. 2005). Therefore most of the existing prediction 

approaches utilize comparative genomics information next to structural features. 

The first approach MiRscan, published in 2003, is based on the observations of seven 

components of 50 conserved pre-microRNA hairpin structures corresponding to the 

known microRNAs in Caenorhabditis elegans at that time. From the ~40,000 

conserved hairpin structures identified in a sliding window based genome scanning 

approach in C. elegans, a total number of 35 stem-loop structures additionally to 

those that are already known were predicted with high confidence. Subsequently 16 

of the 35 were experimentally verified, while the rest were conjectured to be false 

positives. For the human genome 107 microRNA candidates were predicted (Lim et 

al. 2003). Later, miRseeker (Lai et al. 2003) was developed for Drosophila 

melanogaster by recognizing microRNA specific conservation patterns. This 
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approach predicted a total of 48 microRNA candidates. In a similar approach, the 

conservation patterns of known microRNAs were used to predict novel candidates 

and to estimate that about 1,000 microRNAs might exist in vertebrate genomes 

(Berezikov et al. 2005). For plants MIRcheck (Jones-Rhoades and Bartel 2004) and 

MIRFINDER (Bonnet et al. 2004) were developed. 

Instead of searching for conserved sequences folding to hairpin structures, Xie et al. 

analyzed 3’UTR sequences for conserved 8-mer sequences for overrepresentation. 

They found that many of those corresponded to the reverse complement of the seed 

region of know microRNAs. In total 129 microRNA candidates were predicted in 

human by considering those conserved 8-mer sequence motifs for which no 

corresponding microRNA was known (Xie et al. 2005). A further strategy for 

predicting homologs of known microRNAs was developed based on genomic 

alignments to microRNA sequences and structures (Legendre et al. 2005; Nam et al. 

2005; Wang et al. 2005). 

All these approaches so far make use of evolutionary conservation and are therefore 

obviously unsuited for the detection of novel, unconserved, species-specific 

microRNA candidates (Berezikov et al. 2006a). The number of non-conserved 

microRNAs, however, was shown to be tremendous (Bentwich et al. 2005). As a 

consequence several ab initio methods based on machine-learning approaches have 

been developed to fill that segment (Huang et al. 2007; Jiang et al. 2007; Nam et al. 

2006; Sewer et al. 2005; Sheng et al. 2007; Xue et al. 2005).  

Bentwich et al. constructed a method, PalGrade, in that they generate all possible 

hairpin structures from the genome and assign them a stability score according to the 

tendency to appear in many folding configurations. Further structural and sequence-

based features are extracted and condensed into a single score. Based on their 

probabilistic approach they estimated the number of conserved microRNAs in human 

to be ~400-500. Including non-conserved microRNAs they approximated the number 

human microRNA to ~800 and therewith proposed that the world of microRNAs is 

larger than initially believed (Bentwich et al. 2005). 
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All computational prediction approaches that analyze genomic DNA structures that 

resemble known microRNA precursors are affected by sensitivity problems and 

sizeable false positive rates. Subsequently experimental test of newly predicted 

microRNAs are required. This however is a fundamental issue, since the bandwidth 

of microRNA expression is enormous, ranging from a just few molecules per cell to 

tens of thousands, and the detection of lowly expressed molecules is reaching the 

limits of what is technically feasible (Friedlander et al. 2008).  

With the availability of next-generation sequencing platforms such as those from 

Solexa/Illumina and 454 Life Sciences/Roche, DNA can be sequenced orders of 

magnitude faster and cheaper compared to standard Sanger sequencing. This novel 

technology allows the detection and profiling of known and novel microRNAs at 

unprecedented sensitivities. To analyze the enormous output that is generated by this 

new technology, several computational challenges have to be taken. MiRDeep is the 

first tool that is capable of detecting known microRNAs from these data. By 

accounting for traces left by dicer processing, visible by this technology for the first 

time, miRDeep identifies novel microRNAs with high accuracy and robustness. In 

summary, this approach reports ~230 previously unknown microRNAs in dog, 

human and worm (Friedlander et al. 2008). 

1.2.2. MicroRNA target site prediction 

The discovery of microRNAs in multicellular organisms raised various absorbing 

questions. Probably the most fascinating and challenging question is what the 

function of these small non-coding RNA molecules might be. The answer to that 

problem lies hidden in their targets. Once we know all the actual targets of all 

microRNAs we will be able to integrate these interactions with other regulatory 

information to build huge networks. Ultimately we will then be able to infer 

functional information for each microRNA from these networks.  

In plants, many targets can be confidentially predicted by simply searching for 

extensive sequence complementarity (see 1.1.4) to the microRNA (Rhoades et al. 

2002). In contrary, extensive complementarity leading to cleavage of the targeted 

mRNA occurs only occasionally in animals (Yekta et al. 2004). Hence the challenge 
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in the accurate detection of metazoan microRNAs is to perform a genome-wide 

computational search to find most of the regulatory targets without concurrently 

introducing too many false positives (Bartel 2009). 

Based on the very early observations of reverse sequence complementarity of 

microRNA lin-4 to multiple conserved sites in the 3’UTR of mRNA lin-14 first 

models for predicting microRNA target sites have been developed. Today umpteen 

approaches are published. These can be classified in many different ways. For 

example one may draw a distinction depending on the methodology of the methods. 

In that case there are traditional approaches relying on specific base-pairing rules and 

machine learning based approaches that try to identify patterns within true and false 

microRNA-target duplexes. Another possible arrangement in groups relies on the 

requirements a target site has to fulfill to be selected as a potential target site 

candidate. Here, meaningful classification criteria are the necessity of a seed match, 

a seed match and the usage of conservation or none of both requirements. In the 

following, we used both measures to categorize widely used prediction approaches 

(Table 1).  

 Traditional approach Machine Learning 
approach 

Seed match requirement 
and usage of  
cross-species information 

PicTar  
PITA TOP 
EIMMo 
MiRBase Targets 
MiRanda 
DIANA-microT 
TargetScanS 
TargetRank 
 

MirTarget2 
TargetMiner 

Seed match requirement PITA ALL 
TargetScanS non-conserved 
MicroInspector 

NBmiRTar 

No seed match 
requirement 

RNA22 
MirWIP 

 

Table 1: Overview of the most currently used microRNA target prediction approaches. 

The majority of the tools are designed as traditional approaches requiring a seed 

match.  As described earlier (see 1.1.5), the formation of a seed match is the most 

prominent determinant of target site detection. However, almost every approach is 
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using a slightly different definition of a seed match. The different levels of observed 

sensitivity and specificity of a particular seed definition and the major goals the 

authors pursued with their approaches mainly drive this.  In the end it is also 

influenced by the knowledge at the time of publication. For instance, PicTar uses 7-

mer seed matches that are either pairing to nucleotides 1-7 or 2-8 of the microRNA 

5’ end. TargetScanS demands a perfect 8-mer seed match pairing to the microRNA 

nucleotides 1-8 with a mandatory ‘A’ opposite to the first nucleotide. And PITA 

TOP also requires the 8-mer seed match, however it does not call for the ‘A’ 

opposite to the first microRNA nucleotide. In contrast PITA ALL even allows for 6-

mer seed matches. 

It was shown that especially in cases where the target site or at least the seed match 

is conserved in other species the false-positive rate is markedly reduced. Since as a 

consequence the prediction reliability improves (Brennecke et al. 2005; Krek et al. 

2005; Lewis et al. 2005; Lewis et al. 2003) many of the approaches are making use 

of cross-species information.  

However, conservation is not always applied the same way. Many different 

approaches have been developed. PicTar offers two configurations - target sites that 

are conserved in human, chimp, mouse, rat and dog (4-way) and the more confident 

prediction set (5-way) that shows additional conservation in chicken. Interestingly, 

only the middle 6-mer of the two overlapping 7-mer seed matches needs to be 

perfectly conserved in these species. The 7th conserved nucleotide can be opposite to 

microRNA nucleotide 1 or 8 and does not necessarily be the same in all species. 

Early versions of TargetScanS started with a similar usage and called the resulting 

prediction sets ‘highly conserved’, ‘conserved’ and ‘poorly conserved’ depending on 

the number of species in which the full length 8-mer seed match is conserved. Today 

TargetScanS is using phylogenetic trees to calculate cross-species conservation. 

MiRanda predictions make use of the precalculated phastCons conservation score.  

Besides these two criteria for predicting microRNA target sites several other intrinsic 

information is used to rank target site candidates. For instance, PITA calculates, what 

the authors call, a site accessibility score (Kertesz et al. 2007). PicTar computes a 

maximum likelihood score by using an HMM model to rank target sites according to 
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combinations of microRNAs that are cooperatively targeting that transcript (Krek et 

al. 2005). As outlined in Section 1.1.5, Grimson et al. 2007 analyzed determinants 

beyond seed pairing. The outcome of that work was subsequently integrated into 

TargetScanS in terms of a context score. Finally, minimum free energy (MFE) 

calculations for identification of energetically stable hybrids can be found in almost 

any approach. 

In several research fields as for example the transcription factor binding site 

prediction, the application of machine learning approaches significantly improved 

prediction performance. Recently, efforts were taken to improve microRNA target 

site prediction performance of traditional approaches by extracting several seed-

based and seed-independent features from target site candidates to classify them with 

the help of machine learning techniques (Bandyopadhyay and Mitra 2009; Wang and 

El Naqa 2008; Yousef et al. 2007). All of those approaches however suffer from a 

lack of sufficient training data. As especially non-functional binding sites are as good 

as not existent, scrambled or randomized sequences were utilized for negative set 

generation.  

Two recent proteomic studies indicate that only 30–45% of proteins associated with 

microRNA regulation contain perfectly matched, conserved seed elements in the 

3’UTRs of their transcripts. In C. elegans it was found, that 40% of the verified 

target sites reside within 3’UTRs that poorly align between C. elegans and C. 

briggsae. The proteomic studies further showed that only up to 60% of the down-

regulated proteins exhibit a perfect seed match in the 3’UTR of their messenger 

RNA (Baek et al. 2008; Hammell et al. 2008; Selbach et al. 2008). In conclusion, a 

significant fraction of functionally important target sites are thought to not show a 

perfect seed match and can therefore not be predicted by the approaches discussed so 

far. 

In 2006, Miranda et al. presented a novel pattern-based approach (RNA22) for the 

identification of microRNA binding sites that does neither use cross-species 

information, nor requires a perfect seed match (Miranda et al. 2006). Another tool 

that falls into that class is mirWIP. Unfortunately predictions are only available for 

C. elegans (Hammell et al. 2008).  
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Altogether, currently available prediction methods are diverse and all have room for 

improvements (Bartel 2009) as the key factors for proper target site detection have 

not been revealed yet.  

1.3. Contribution of this dissertation 

The objectives of this thesis are to develop methods that contribute to the two major 

problems in field of microRNA regulation. 

The first method, miRanalyzer, was developed to analyze data of deep-sequencing 

experiments. The main focus of this work was to identify unknown microRNAs. For 

accomplishment, a machine learning approach was set up and trained on 

experimental data to learn the characteristics of pre-microRNA hairpin structures.  

The objective of the second method, TargetSpy, is to generate a general model for 

the prediction of microRNA target sites, including those that do not show a perfect 

seed match and are not conserved in other species. TargetSpy is a machine learning 

approach, based on target site-specific features and a training set of high quality 

experimentally determined Ago-binding sites. As will be seen, this general approach 

achieves superior performance compared to state-of-the-art prediction methods.  

 

1.4. Thesis Outline 

With the availability of next generation sequencing technology, vast amounts of 

RNA molecules can be sequenced in a single experiment. To convert the extensive 

amount of data into knowledge, advanced bioinformatics tools are necessary to 

process the data and to extract significant information. Consequently, we have 

developed miRanalyzer, a pipeline for the comprehensive analysis of deep 

sequencing experiments of small RNA molecules. Beside the detection of known 

microRNAs, miRanalyzer is capable of predicting novel microRNAs, too. Chapter 2 

of this thesis will explain in detail, how the pipeline works and how we extract and 

utilize valuable information like the Dicer footprint for a more accurate machine 

learning based prediction model. 
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Chapter 3 focuses on the analysis of predicted microRNA target sites. Commonly the 

core of nowadays prediction approaches is to search for reverse complementary seed 

regions that are further conserved in various species. As a consequence the location 

and the amount of predicted target sites are highly dependent on the nucleotide 

composition of the seed sequences. Concretely, microRNAs and transcripts are 

therefore examined in the light of their GC content and their conservation. In 

addition background models are generated to distinguish between characteristics 

unique to microRNA target sites and those that are a consequence of the employed 

prediction model. Lastly we reexamined target sites in terms of position specific 

occurrences of single nucleotide polymorphisms. 

Subsequently, Chapter 4 is dedicated to TargetSpy, our approach to the prediction of 

microRNA targets sites, disregarding microRNA seed match and conservation 

requirements. The model is based on machine learning, automatic feature selection 

and a wide range of features covering current biological knowledge. It is further 

trained on HITS CLIP data that currently constitute the most accurate experimentally 

derived (deep sequencing) evidence of microRNA target sites. Altogether, TargetSpy 

is perfectly suited for predicting seed based and seed free target sites, a sub class of 

substantial size that is missed by most currently available mainstream tools (see 

Table 1). The abdication of conservation features TargetSpy to analyze species-

specific microRNA-target interactions also in unconserved genomic sequences. In 

order to estimate prediction accuracy, we performed extensive evaluations and 

benchmarked our method with state-of-the-art approaches. In total, the results 

suggest that TargetSpy performs excellent, especially on the human dataset revealing 

fold-change in protein production for five selected microRNAs, where it shows 

superior performance in all three target site classes (see 1.2.2). In conclusion, this 

method contributes significantly to the field of computational prediction of 

microRNA target sites. 

In the final Chapter 5 we will summarizes the work presented in this thesis and 

provide and outlook on promising extensions to our work for future research. 

 



 

 

Chapter 2  

 

MiRanalyzer: Analysis and prediction of microRNAs 

in deep sequencing data  

Next generation sequencing is revolutionizing genomics since these new techniques 

allow now the sequencing of even small RNA molecules and the estimation of their 

expression levels. Hence, microRNA sequence data is expected to increase notably 

during the next years. Consequently, there will be a high demand of bioinformatics 

tools to cope with the several gigabytes of sequence data generated in each single 

deep-sequencing experiment. 

Given this scene, we developed miRanalyzer, a user-friendly web server tool for the 

analysis of deep-sequencing experiments for small RNAs. MiRanalyzer broadens the 

scope of currently existing standalone tools by adding new types of analyzes. The 

web server tool requires a simple input file containing a list of sequence reads and 

the number of times each read has been obtained (expression levels). Using these 

data, miRanalyzer 1) detects all known microRNA sequences annotated in miRBase, 

2) finds all perfect matches against other libraries of transcribed sequences as 

mRNA, RepBase and RFam and, 3) identifies unknown microRNAs. The prediction 

of new microRNAs is an especially important point as there are many species with 

very few known microRNAs. 
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Therefore, we implemented a machine-learning algorithm for the prediction of new 

microRNAs that reaches area under the curve values of 97.9% and recall values of 

up to 75% on unseen data. The web tool summarizes all the described steps in a 

single output page, which provides a comprehensive overview of the analysis, adding 

a link to more detailed output pages for each analysis module. 

MiRanalyzer is available at http://web.bioinformatics.cicbiogune.es/microRNA/. 

 

2.1. Background 

The recent years witnessed a profound change in our understanding of the regulation 

of gene expression. Small non-coding RNA especially came into focus as it became 

clear that they are key players in many cellular processes by post-transcriptionally 

regulating gene expression via either degradation, translational repression, or both 

(Kim and Nam 2006; Lagos-Quintana et al. 2001). MicroRNAs, belonging to the 

family of small non-coding RNAs, are endogenous in many animal and plant 

genomes and are now recognized to be one of the major regulatory gene families in 

eukaryotic cells. They are believed to regulate the expression of around one third of 

all genes in the human genome, involved in many fundamental processes like 

metabolism, development and regulation of the nervous and immune systems 

(Bagasra and Prilliman 2004; Ouellet et al. 2006). Furthermore, it has been reported 

that some microRNAs are actively involved in the development of pathologies like 

cancer (Lu et al. 2005). 

The traditional experimental approach to measure the expression levels of 

microRNAs involves cloning and Sanger sequencing. This is an expensive and time-

consuming procedure, and as a consequence, relatively little expression data is 

currently available (see (Landgraf et al. 2007) for a microRNA expression atlas). 

Moreover, the huge range of microRNA expression from tens of thousands to just 

few molecules per cell complicates the detection of microRNAs expressed at low 

copy numbers. Hence many undetected microRNA may exist even in well-explored 

species. Recently, microRNA expression profiling panels became available for 

measuring expression levels by means of hybridization. These panels allow a high-
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throughput detection of microRNA expression. However, they do not allow the 

detection of new microRNAs. 

Next generation sequencing platforms like Genome Analyzer (Illumina Inc.) or 

Genome SequencerTM FLX (454 Life ScienceTM and Roche Applied Science) 

became recently available for the sequencing of small RNA molecules that allow 

both the detection of expression levels and new microRNA sequences at high speed 

and sensitivity and low cost. However, each sequencing experiment produces up to 

three Gbp of sequence data, whose analysis represents an important bioinformatics 

challenge. 

Given the importance of microRNAs in the regulation of gene expression, in the 

coming years many deep-sequencing experiments will be carried out to detect and 

measure their expression. Therefore, user-friendly tools are required for the 

processing of the enormous amount of data that will be generated. To our 

knowledge, so far there is only one standalone tool available for the analysis of deep 

sequencing microRNA data: miRDeep published by Friedländer et al. (2008). 

On the other hand, the prediction of microRNA genes has been extensively 

employed over the past years and several distinct approaches have been developed. 

Some of the methods used in the purely computational detection approaches were, 

for example, conservation of certain regions - phylogenetic shadowing (Berezikov et 

al. 2005), different machine learning methods like support vector machines using 

structure-sequence features (Xue et al. 2005), random forest models (Jiang et al. 

2007) or probabilistic co-learning models (Nam et al. 2006). Bentwich et al. (2005) 

used further features like the stability of the hairpin together with an experimental 

validation. The main drawbacks of these approaches are that they are either limited 

to conserved microRNAs or that they tend to have a high rate of false positive 

predictions. However, new sequencing experiments open new possibilities in the 

prediction of microRNAs, allowing the generation of previously unavailable 

characteristics like, for example, the traces left by dicer processing. 

Consequently, we have developed miRanalyzer, a web server tool that implements 

all necessary methods for a comprehensive analysis of deep sequencing experiments 
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of small RNA molecules. It detects known microRNAs annotated in miRBase and 

matches in other transcribed sequences (RNA, RFam and RepBase). Furthermore, 

miRanalyzer performs highly accurate (Area Under the Curve - AUC - value of 

97.9%) predictions for new microRNAs, by utilization of machine learning 

techniques and novel features that capitalize the additional information provided by 

deep-sequencing data. Furthermore our approach directly learned from nature, as we 

trained on experimental data, in contrary to training sets that are artificially generated 

by shuffling sequences. This high accuracy is important for the identification of 

novel microRNAs, a process that usually results in high false positive rates. The tool 

also includes a Perl script for the proper generation of the input file using the 

Genome Analyzer (Illumina Inc.) pipeline results. Currently, miRanalyzer works for 

nine frequently used model species (human, mouse, rat, fruit-fly, round-worm, 

zebrafish, dog, chicken and the protozoan Giardia lamblia). 

2.2. Material and Methods 

2.2.1. Sequence data 

MiRanalyzer uses the newest genome assembly of each species, downloaded from 

the UCSC Genome Browser (http://hgdownload.cse.ucsc.edu/downloads.html): 

Homo sapiens (hg18, NCBI 36.1), Mus musculus (mm8, NCBI 36), Rattus 

norvegicus (rn4, version 3.4), Drosophila melanogaster (dm3, BDGP Release 5), 

Caenorhabditis elegans (ce6, WUSTL School of Medicine GSC and Sanger Institute 

version WS190), Canis familiaris (canFam2, v2.0) , Danio rerio (danRer5), Gallus 

gallus (galGal3). Data for Giardia lamblia (gli1) were derived from the GiardiaDB 

(http://giardiadb.org/giardiadb/). 

The mRNA sequence data were derived from different databases: H. sapiens, M. 

musculus, R. norvegicus and D. rerio from the NCBI RefSeq database 

(ftp://ftp.ncbi.nih.gov/refseq/), D. melanogaster from FlyBase (http://flybase.org/) 

and C. elegans from WormBase (http://www.wormbase.org/). The mRNA sequences 

for C. familiaris were extracted from the genomic sequence using the Galaxy 

platform (Giardine et al. 2005). 
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In addition, mature microRNA sequences were derived from miRBase version 12.0 

(http://microrna.sanger.ac.uk/sequences/); RNA sequences included in RFam version 

9.0 (Gardner et al. 2009) were downloaded from http://rfam.sanger.ac.uk/; and 

RepBase version 10.10  (Jurka et al. 2005) were obtained from 

http://www.girinst.org/. Annotations and genomic coordinates of RepeatMasker and 

PhastCons elements where downloaded from the UCSC table browser 

(http://genome.ucsc.edu/cgi-bin/hgTables?command=start). 

We used deep–sequencing data from three different experiments: a) the combined C. 

elegans data (accession no. GSE6282 and GSE5990 from GEO database at NCBI), 

which have been used also in (Friedlander et al. 2008) with a total of 205,575 unique 

reads, b) data from human HeLa cells (Friedlander et al. 2008) with accession no. 

GSE10829 and 319,939 unique reads, and c) data from rat hepatocytes with 22,086 

unique reads generated in the CIC bioGune lab, publicly available on our website 

(http://web.bioinformatics.cicbiogune.es/microRNA/defaultReads.txt). 

2.2.2. Generating ‘unknown mature-star’ sequences 

We generated the unknown star sequences by means of the miRBase precursor and 

mature sequences. First, we calculate the secondary structures for all hairpins using 

RNAfold (Hofacker 2003) with parameters ‘-noLP’. Then, we detect the coordinates 

of the mature microRNAs within the pre-microRNA hairpin. By means of these 

coordinates, the information of the secondary structure and the characteristic “2-nt 3’ 

overhang” caused by Dicer, we extracted the corresponding sequence pairing with 

the mature microRNA. 

2.2.3. Read Alignment 

Read sequences often contain adapter sequences (see standard protocol of small 

RNA sample preparation at http://www.illumina.com/) at its 3’ ends. Therefore, 

miRanalyzer has two alignment options depending on whether the reads have adapter 

sequences or not. In general, the tool generate a prefix tree of all input reads and 

subsequently walk in a single run over the genome to detect the reads. By default, 

miRanalyzer assumes the existence of adapter sequences and therefore, first detects 

matches of a subsequence of 16 bp starting at the 5’ end of the read. When 
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miRanalyzer detects an initial match, it expands the subsequence as long as a perfect 

match is given. Finally, only matches of the longest subsequence are retained. 

 

2.2.4. Ontological analysis 

We used a recently published tool, Annotation-Modules (Hackenberg and Matthiesen 

2008), to pre-calculate the significant annotations of all target gene lists for all 

microRNAs in the miRBase (12.0). Currently, the user can choose between two 

different target site prediction methods: miRBase target site predictions by miRanda 

software (Enright et al. 2003) and TargetScan (Lewis et al. 2005). 

 

2.2.5. Secondary structure prediction 

For predicting the secondary structure and its minimum free energy (MFE) we 

utilized the Vienna RNA package (Hofacker 2003). 

 

2.2.6. Training and test sets 

For the machine learning approach we created three data sets, one from each of the 

three species: Homo sapiens, Caenorhabditis elegans and Rattus norvegicus. First, 

we extracted all pre-microRNA candidates from the experimental dataset that could 

be mapped to a known microRNA and labeled them as positive instances. Second, 

we selected an equal amount of pre-microRNA candidates from the same dataset by 

random selection with the known microRNAs removed and labeled them as negative. 

In total we obtained a dataset of 612 instances in human, 468 instances in worm and 

376 instances in rat. 

 

2.2.7. Features 

We created a broad variety of features associated with nucleotide sequence, structure 

and energy. Table 2 lists all the features used in this work. 
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Feature Name Description of the feature 

Read count Number of reads mapping to the pre-microRNA 

Length The length of the longest hairpin structure 

Stem length The length of the longest hairpin structure stem 

Mfe The mean free energy of the hairpin 

Loop length The number of bases in the loop of the hairpin 

Loop GC The GC-content of the loop 

GC The GC-content of the small hairpin 

Asymmetric bulges The number of asymmetric bulges and mismatches regarding the stem 

Symmetric bulges The number of symmetric bulges and mismatches regarding the stem 

Bulges The number of bulges in the stem 

Longest bulge The number of non-pairing nucleotides of the longest bulge 

Mismatches pre-
microRNA 

The number of single mismatches in the hairpin 

Mismatches microRNAs  The number of single mismatches in the mature microRNA region of 
the hairpin 

Stability The smallest hairpin harbouring the read is extended 10 times for 10bp 
at both ends. The stability is given as the frequency the original 
structure is found in the elongated structures (see Figure 5 for an 
illustration) 

Alternating stability Reports whether a structure disappears in the stability calculation when 
extending the sequence, but reappears again (see Figure 5 for an 
illustration) 

Triple-SVM features All features that were proposed by Xue et al. (Xue et al. 2005) 

Bindings The number of bindings in the stem divided by the hairpin length 

Table 2: Features calculated for the generation of the classifier. 

 

 

Figure 5: Aligned hairpin structures from the stability calculation displayed in dot-
bracket notation. 
The margins left and right are trimmed for proper illustration. As nine of ten structures 
contain exactly the structure of the smallest hairpin covering the read sequence, the value of 
the stability feature is 9/10. The 4th elongation leads to a varied structure. Because the 
following elongations, however, fold identical again, the alternating stability feature is 
allocated with “true”. 
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2.2.8. Classifier 

To detect new MicroRNAs we set up a machine learning approach based on the 

standard WEKA (Witten and E 2005) implementation of the random forest learning 

scheme (Breiman L 2001), with the number of trees set to 100. To find the features 

with the highest prediction power, on which the learning scheme is subsequently 

trained, we performed feature selection by evaluating the features by means of their 

information gain. We then ranked the features according to their discrimination 

power. The top ten features used for building the final classifier are: stability, mfe, 

bindings, stem length, read count, longest bulge, mismatches microRNA, 

mismatches pre-microRNA, alternating stability and the Triple-SVM feature “A…”. 

2.2.9. Pre-processing 

In order to check the reads for putative new microRNAs we perform a pre-

processing of the data that contains the following steps:  

1. Reads that overlap in the genome are clustered together. 

2. Due to sequencing errors in reads, dicer products (mature, mature-star and 

loop) could be grouped together such that they appear as non-microRNA 

products (for example producing a long cluster that overlaps the loop of the 

precursor). To avoid such a situation, we walk along the cluster sequences 

and test whether the start of the current read overlaps less than 3 nucleotides 

with the end positions of previous reads. In that case the cluster is split at the 

current read start position. This way, clusters may contain exactly one non-

dicer product or the mature microRNA or the mature-star microRNA, but not 

more than one theoretical product.  

3. Clusters of more than 25bp length are discarded. 

4. Since the microRNA can be located either on the 5’ arm or the 3’ arm of the 

hairpin, we extract the cluster sequence twice from the genomic location, 

with 60bp upstream and 10bp downstream flanking areas and vice versa. For 

both sequences the secondary structure is predicted via RNAfold, but only the 

energetically favourable is retained. 
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5. Non-hairpin structures are discarded.  

6. Structures where the cluster sequence is not fully included or spans the loop 

and a part of the stem cannot be dicer products are consequently discarded. 

7. Finally, since our analysis showed that virtually all known microRNAs show 

more than 14 bindings in the microRNA:microRNA-star duplex, we 

considered this as a mandatory requirement. 

Having applied the pre-processing step to the three experimental data sets, we 

receive 6,967 candidate precursors for rat, 12,233 for worm and 43,905 for human. 

2.2.10. Post-processing 

After classification of the deep-sequencing data in form of the clusters created in the 

pre-processing step, clusters containing the mature and mature-star microRNA are 

merged such that one cluster represents one microRNA precursor. 

2.2.11. Input file description 

A usual next-generation sequencing experiment produces several hundred million 

base pairs of output corresponding to hundreds of megabyte or several gigabytes of 

data when stored into a file. That is by far too many data to send over the web to 

analyze it using a web server tool. However, some reads (tags) obtained in 

microRNA sequencing experiments can be found multiple times in the raw data 

output. The number of copies detected for a unique read is proportional to its 

expression level. Given this redundancy, the only information needed for the analysis 

of microRNAs are the sequences of the reads and the number of times each unique 

read was encountered in the experiment. This reduces the size of the input file 

drastically to a few megabytes, which is an acceptable size for a web server tool. 

MiRanalyzer accepts two different input formats: 

1. A tab separated file with the read sequences and its counts (number of times 

each read has been obtained in the experiment) 

GAGGTAGTAGGTTGTA 49862 
ACCCGTAGAACCGACC 15490 
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GGAGCATCTCTCGGTC 13762 
... ... 

Figure 6: Sample for a tab separated input file 

2. A multi-FASTA file with the copy number of the unique reads (read count) 

as the description in the header (e.g. >ID ‘count’). 

>ID 49862 
GAGGTAGTAGGTTGTA 
>ID 15490 
ACCCGTAGAACCGACC 
>ID 13762 
GGAGCATCTCTCGGTC 

Figure 7: Sample for a multi-FASTA input file 

Along with this web-tool, we supply a Perl script that counts the reads of a Genome 

Analyzer (Illumina Inc.) deep-sequencing experiment, producing the tab separated 

input format needed by the miRanalyzer. The script allows averaging of several 

lines, filtering for low quality reads and a simple analysis of differential expression 

(log2 ratios between different lines). To counts the sequence reads the script needs to 

have the s_L_sequence.txt files (being L the lane on the flowcell) supplied as input. 

Two quality measures to filter out low quality reads have been implemented.  

A more detailed description of the Perl script can be found on the tutorial page 

(http://web.bioinformatics.cicbiogune.es/microRNA/manual.html). 

 

2.2.12. Input parameters 

Apart from the file with the read sequences, several other input options are available: 

Species and genome assembly 

In the current version one of the following nine species genome assemblies can be 

chosen: 

 Homo sapiens (hg18, NCBI 36.1) 

 Mus musculus (mm8, NCBI 36) 

 Rattus norvegicus (rn4, version 3.4) 
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 Drosophila melanogaster (dm3, BDGP Release 5) 

 Caenorhabditis elegans (ce6, WUSTL School of Medicine GSC and Sanger 
Institute version WS190) 

 Canis familiaris (canFam2, v2.0) 

 Danio rerio (danRer5) 

 Gallus gallus (galGal3)  

 Giardia lamblia (gli1) 

 

Number of mismatches 

Next generation sequencing data are normally characterized by a higher sequencing 

error than the Sanger sequencing, but this error rate is balanced by a much higher 

redundancy. Therefore, the user should carefully choose the number of allowed 

mismatches (0, 1 or 2) to assign a sequence-read to a microRNA (default value is 1). 

Note that for the detection of new microRNAs and the overlapping with repetitive 

sequences, only perfect matches to the genome are considered. 

Target gene table 

The program makes available the putative target genes for each detected microRNA 

and direct links to their ontological analysis. Thus, the user must select a set of 

predicted target genes. We offer two different prediction methods: 

 Predictions from miRBase hosted at the Sanger Institute 

 Predictions from TargetScan (conserved family – conserved target) 

Posterior probability threshold 

The posterior probability of a random event or an uncertain proposition is the 

conditional probability that is assigned after the relevant evidence is taken into 

account. One of the available values should be selected (default is 0.9). 
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Do not consider adapter sequences 

By default, the tool tries to detect if adapter sequences exist by searching for the 

perfect matches in subsequences of the input reads. If this option is selected, the tool 

will only look for the perfect matches of the input reads complete sequences. 

Detect just new microRNAs 

This option will skip the detection of known microRNAs. 

Remove reads detected in mRNA database 

Reads detected in a RefSeq transcript are removed from the input. Note that reads 

that map perfectly to a mRNA sequence may correspond to degradation products. If 

this option is not chosen, the tool automatically eliminates all reads that map to more 

than 5 mRNA sequences 

Remove reads detected in RFam 

This option removes reads that correspond to other known RNAs sequences as these 

might be easily confused with microRNAs (in the prediction of new microRNAs). 

Removes reads detected in RepBase 

This option removes all reads found in a RepBase sequence (transposons) 

Predict only conserved microRNAs 

All read clusters that do not overlap with a phylogenetically conserved element 

(PhastCons) are removed. 

 

2.3. Results and Discussion 

Our tool miRanalyzer follows three internal analysis steps (see Figure 8): (i) 

detection of known microRNAs, (ii) mapping against libraries of transcribed 

sequences (mRNA, ncRNA, etc.) and (iii) prediction of new microRNAs. After each 

of these three steps, the detected reads are removed from the input data following the 

options set by the user (see Table 7). 
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Figure 8: Workflow of miRanalyzer processes. 
The analysis stream can be divided into three steps: detection of known microRNAs, 
detection of reads in other expressed sequences like mRNA, ncRNA etc. (to estimate the 
sample quality and remove reads which are prone to give false positives in the prediction of 
new microRNAs) and the prediction of new microRNAs. Finally, the program outputs all 
reads (remaining reads) that have not been assigned to any entity or have been filtered out 
from the beginning (reads with ambiguous characters in their sequence).  
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2.3.1. Detection of known microRNAs 

In many of the microRNA experiments, the main purpose will be the detection of the 

expression levels of known microRNAs or frequently the differential expression of 

microRNAs between two samples. Therefore, as the first analysis step, miRanalyzer 

detects the reads that correspond to known microRNAs. To carry out the detection of 

known microRNAs, we used the miRBase repository (Griffiths-Jones 2006) which 

offers mature (the mature sequences of known microRNAs), mature-star (the 

sequence which pairs with the mature microRNA in the pre-microRNA secondary 

structure) and precursor microRNA sequences (sequence of the hairpin). For some of 

the microRNA precursors, it is unclear which of the two sequences (mature or 

mature-star) is biologically functional. In the case where both sequences are found to 

be expressed and the predominant product can be clearly detected, the minor product 

is labeled with a * (mature-star). Apart from the known mature-star sequences we 

generated a library with all other theoretically possible mature-star sequences. This 

also allows the detection of functional mature-star microRNAs whose expression has 

not been observed previously. 

Many microRNA sequences, especially those belonging to the same microRNA 

family, exhibit a high degree of sequence similarity. Given that sometimes the read 

might be rather short (16 bp), non-unique matches might occur. A non-unique match 

exists if a read maps with the same quality (i.e. the same number of mismatches) at 

different positions or to more than one sequence in the library. Often, alignment 

programs such as ELAND (included in Illumina Inc. pipeline), do not report these 

ambiguous matches. However, this might result in a loss of important information. 

Therefore, miRanalyzer reports these ambiguous matches, stating all microRNAs 

where matches have been found. Note that the groups of microRNAs that have been 

detected by the same read will normally belong to the same family. 

The exact order of mapping against known microRNAs is: mature, mature-star, 

unknown mature-star and precursors/hairpin. Both unique matches (a read matches 

just to one known microRNA) and ambiguous matches (a read matches several 

microRNAs with the same quality) are detected and removed from the input at each 
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step. The removal is important as otherwise the reads would be detected again in the 

precursor sequences (hairpins). 

After known microRNAs detection, the corresponding target genes (those genes 

which are predicted to be regulated by the detected microRNA) are extracted (see 

Material and Methods) and pre-calculated ontological analyzes are made available. 

In the case of ambiguous matches where the set of target genes is made up of a 

combination of various microRNAs, a link to Annotation-Module (Hackenberg and 

Matthiesen 2008) is offered to launch the ontological analysis with the obtained gene 

list. 

2.3.2. Mapping against transcribed sequences 

After detecting reads that correspond to known microRNAs, miRanalyzer maps the 

remaining reads to databases of transcribed sequences as mRNA, non-coding RNA 

(RFam) and (retro)-transposons. Only perfect matches are considered in this analysis. 

These alignments are performed to achieve several aims: 

First, the mapping against the transcriptome should not yield any matches except for 

exonic microRNAs (Kim and Nam 2006). Therefore, the number of matches can be 

viewed as a sample quality parameter, i.e. contamination of the RNA sample with 

degradation products and poly-A tails. 

Second, the mapping to RFam (and other libraries of ncRNA) and RepBase has two 

goals: 1) it might be interesting to see which other known small ncRNAs are in the 

sample and 2) the removal of these reads will lower the number of false positives in 

the prediction of new microRNAs as those small ncRNA might be confused with 

actual microRNAs. The removal of those sequences is optional (see Material and 

Methods). 

Third, we also used the genomic annotation of repeats and transposons derived by 

RepeatMasker (http://www.repeatmasker.org). After aligning all reads with the 

genome, miRanalyzer checks if the read coordinates overlap with those of the 

RepeatMasker annotation. In this way we can detect reads that overlap with 
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‘degraded’ transposons whose expression might indicate ‘domestication’ (acquired 

function). 

2.3.3. Prediction of microRNAs 

The last step of the pipeline is the detection of novel, previously unreported 

microRNAs. This constitutes a very important analysis step in the miRanalyzer tool 

as 1) a controversy exists over the real number of microRNAs (Berezikov et al. 

2006b) and therefore it is important to mine sequencing experiments for new 

previously undetected microRNAs and 2) for many species there are none or just a 

few microRNAs known. Consequently, the analysis of sequencing experiments in 

these species relies almost completely on the prediction of new microRNAs.  

As described in 1.1.3 microRNA precursors form a very characteristic hairpin 

structure. After the relocalization into the cytosol, the pre-microRNAs are cleaved at 

the loop end of the hybrid by an endonuclease called Dicer. The location of the 

cleavage (see Figure 9A) is relatively well determined (Filipowicz et al. 2008; 

Grishok et al. 2001; Hutvagner et al. 2001). As a consequence, the precursor can be 

divided into exactly three regions, the 5’ arm, the loop and the 3’ arm. 

Reads stemming from pre-microRNAs should therefore correspond to one of these 

regions. They must not overlap the cleavage site, as this would only be the case if 

they were not a product of Dicer. Since all microRNAs are however processed by 

Dicer, non-compliant reads (see Figure 9B) indicate other cleavage or degradation 

events that are not associated with the microRNA biogenesis pathway.  
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Figure 9: Traces of Dicer processing detectable in deep-sequencing experiments. 

Generally, a very high number hairpin structures exist within a genome. When the 

tens and hundreds of thousands of reads that are produced in a deep-sequencing 

experiment are mapped to the genome, the overwhelming majority is associated with 

hairpin structures. Therefore testing the reads for the Dicer footprint serves as a 

powerful first-step filter in the identification of functional microRNAs (Friedlander 

et al. 2008). 

Subsequently, we extracted several biologically motivated features (see Table 2 for a 

full list). One of these features, for instance, is the stability of the sub-structure that 

covers the mature microRNA sequence. The Idea behind this is that the structure of a 

functional microRNA should persist, independent of the surrounding context. We 

thus compute the secondary structure of the mature sequence with increasing 

flanking sizes and report the fraction of structures that maintain the exact 

substructure of the mature sequence (see Material and Methods; Figure 5). 
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As it is expected that each features is different in its predictive power, we employed 

a feature selection approach (see Materials and Methods for detail) to receive a 

ranked list with the best features on top. To train only on the most relevant features 

we restricted the classifier to the best ten. As learning scheme we used the random 

forest method (Breiman L 2001) . 

 

2.3.4. Evaluation of prediction model 

We used three different data sets from human (hsa), rat (rno) and worm (cel, see 

Material and Methods) for building the final prediction model. The results shown in 

Table 3 suggest that the classifier is highly sensitive and specific not only according 

to a standard ten-fold cross-validation, but also in a cross-species test on completely 

unseen test data. The results shown in the upper part of Table 3 depict the outcome 

when learning with one of the species (training set) and predicting the remaining 

ones (test data). For evaluation of prediction power in the same species, we applied a 

ten-fold cross validation approach. 

 

Figure 10: Histogram of miRanalyzer scores. 
Known microRNAs are colored in red, all other data are colored in blue. The insert is a 
close-up for candidates with scores better than 0.65. 

 

It can be seen that while the cross-validated results are high, the recall is moderate 

predicting on unseen data. We highlighted (yellow) the worst prediction values on 
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the different test sets, which are 0.66 (cel/rno), 0.48 (rno/cel) and 0.64 (rno/hsa). To 

check whether we can improve prediction power for those in particular, we merged 

two datasets and evaluated against the third set (values highlighted in green). It can 

be seen that the prediction improved significantly, especially for C. elegans. While 

trained solely on rat or human and evaluated on worm a recall of only 0.48 and 0.67, 

respectively, could be reached.  

 
Table 3: The true positive rates (top part) and false positive rates (bottom part) for 
different classifiers at a posterior probability threshold of 0.9. 
The superscripted “CV” denotes that this value was achieved in a standard ten-fold cross-
validation approach. The highlighted values in yellow indicate the worst prediction 
performances when trained on a single data set. The worst prediction performances when 
trained on two merged data sets and evaluated on the third are highlighted in green. 

The merged training set, however, achieves a recall of 0.71, suggesting synergetic 

effects when integrating instances from different species into the training set. To 

benefit most from this effect, we trained the final classifier on all three data sets. 

Thus we obtain an area under the curve (AUC) value of 97.9% with a true positive 

rate of 0.79 and a false positive rate of 0.007 for the fixed threshold at 0.9. To test for 

False negative rate 

(threshold: 0.9) 
Test set 

  rno cel hsa rno-cel rno-hsa cel-hsa rno-cel-hsa 

rno 0.01CV 0.008 0.009 0.004 0.008 0.001 0.005 

cel 0.005 0.004
CV 0.003 0.002 0.01 0 0.005 

hsa 0.005 0.004 0.01CV 0.01 0.01 0.005 0.005 

rno-cel 0.02 0.008 0.01 0.009CV 0.01 0.007 0.01 

rno-hsa 0.02 0.01 0.01 0.01 0.01CV 0.01 0.01 

cel-hsa 0.005 0.004 0.009 0.004 0.01 0.003CV 0.01 

T
ra

in
in

g
 s

e
t 

rno-cel-hsa 0.01 0.004 0.003 0.01 0.01 0.009 0.007CV 

True positive rate  

(threshold: 0.9) 
Test set 

  rno cel hsa rno-cel rno-hsa cel-hsa rno-cel-hsa 

rno 0.74CV 0.48 0.64 0.66 0.73 0.57 0.65 

cel 0.66 0.77CV 0.69 0.80 0.68 0.79 0.76 

hsa 0.74 0.67 0.77CV 0.70 0.84 0.81 0.79 

rno-cel 0.89 0.91 0.75 0.79CV 0.80 0.82 0.84 

rno-hsa 0.91 0.71 0.93 0.80 0.78CV 0.84 0.86 

cel-hsa 0.74 0.91 0.91 0.83 0.84 0.81CV 0.86 T
ra

in
in

g
 s

e
t 

rno-cel-hsa 0.89 0.91 0.90 0.91 0.91 0.92 0.79CV 
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robustness, we repeated the cross validation on ten different negative sets, which 

resulted in a mean AUC value, true positive rate and false positive rate of 97,9%, 

0.79 and 0.0077 with the standard deviations of 0.001, 0.01 and 0.003, respectively. 

 

 

Figure 11: Receiver operating characteristics for the classifier trained on human, C. 
elegans and mouse (red), C. elegans and human (blue) and rat and C. elegans (green). 
The latter three classifiers were evaluated each with the one dataset that was not used for 
training, while the final classifier (red) was evaluated in a standard ten-fold cross-validation.  
 

Figure 10 shows a cross-species evaluation of miRanalyzer trained on human and C. 

elegans and evaluated on rat. Obviously, most of the data have very low scores (the 

posterior probability assigned by the classification model to each instance) assigned. 

We build a close-up for the range between 0.65 and 1 to better visualize the high 

scoring predictions. It can be seen that the known rat microRNAs are strongly 

accumulated towards scores of 1, demonstrating the high predictive power of our 
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approach and the good ability to generalize. Note that the classifier has never seen 

data from rat before.  

 

 

Figure 12: Various performance measures for the final classifier trained on human, C. 
elegans and rat and evaluated in a standard ten-fold cross-validation approach. 
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2.4. Application 

As a working example we used data derived from an experiment carried out in the 

laboratory of the functional genomic unit at CIC bioGune with rat hepatocytes 

following standard protocols for smallRNA sample preparation and deep-sequencing 

(http://www.illumina.com/). Figure 13 shows the summary output page of 

miRanalyzer run on these data. The page is made up of five boxes that reveal the 

intrinsic workflow of miRanalyzer: 

The first box shows the current state of the process (executing, pending, etc.) on the 

left side and depicts a short summary of the process (input data and options) on the 

right side. 

The second box shows the summary of the analysis of known microRNAs. Each 

column corresponds to the mapping against a different set of sequences (mature, 

mature-star, etc.). The last row provides a link to detailed output for each of the 

columns. For example, the analysis of unknown mature-star sequences shows that 

miR-423-star is moderately expressed (744 copies) while the sequence that is 

annotated in miRBase (mature miR-423) has less than 10 copies. 

The third box summarizes the matching of reads to several sets of transcribed 

sequences. For example the fraction of reads mapped to the transcriptome may give a 

good estimate on the sample quality. It can be seen that around 8.3% of all reads in 

this sample originate from mRNA but this corresponds just to 3% of transcription 

amount (number of mRNA reads/total number of reads). 

The fourth box shows the summary of the detection of new microRNAs. In addition, 

a link is given for further information on each read cluster that has been predicted to 

be a novel microRNA. A link is also provided to a detailed output page with 

information on the chromosomal coordinates, the long hairpin structure and a 

verification if the reads have been detected before in the experiment (for example if 

matched against RepBase, etc.). 

Finally, the last box gives a summary of the filtered and unmapped reads. 
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Figure 13: The summary page of miRanalyzer. 
Five boxes are shown which correspond to summary & state of the process, analysis of 
known microRNA, matches against transcribed sequences, detection of new microRNAs and 
summary of unmatched sequences.  
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Number of allowed mismatches: 1
Unique reads in input: 22086
Number of reads in input 
(sum of all read counts) 1596647

Analysis completed

You can bookmark this page

Download all results in plain text here

Known MicroRNA

Library/ 
Parameters mature ambiguous

mature
mature-

star
ambiguous

mature-star
unknown

mature-star
ambiguos unknown

mature-star hairpin ambiguous
hairpin

total number 128 29 25 2 14 0 59 11

fraction (number) of
known microRNAs

43.7% 
(293) --- 43.1% 

(58) --- 7.1% 
(197) --- 20.6% 

(287) ---

number of unique reads 1219 176 111 9 54 0 216 18

fraction of unique reads 5.5% 0.797% 0.503% 0.041% 0.244% 0.000% 0.978% 0.081%

read count 1408255 44925 4115 88 1190 0 2823 111

fraction of read count 88.2% 2.814% 0.258% 0.006% 0.075% 0.000% 0.177% 0.007%

links to detail pages details details details details details no results details details

Alignment to transcriptome

Library/Parameters Transcriptome Rfam RepBase RepeatMasker
(genomic)

number of unique
reads 1839 95 268 4905

fraction of unique
reads 8.327% 0.430% 1.213% 22.209%

read count 47370 377 3950 19534

fraction of read count 2.967% 0.024% 0.247% 1.223%

links details details details details

Predicted candidate microRNAs

Number of predicted new microRNA: 91 (out of 93 
predicted precursors)

in 111 of 22086 input reads (0.503 percent) the sequence were found
to be part of a putative new microRNA which corresponds to 420
expressed sequence reads out of 1596647 (0.026 percent)

See detailed analysis

Unmatched reads

Parameters Filtered Reads Unmapped Reads

amount of unique reads 0 8048

fraction of unique
reads 0.000% 36.439%

read count 0 44942

fraction of read count 0.000% 2.815%

links details details
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2.5. Conclusion 

MiRanalyzer is a powerful and easy to use web server tool for the integral analysis of 

next generation sequencing data of small RNA molecules. It allows both the 

detection of known microRNAs and the prediction of new microRNAs. For the 

prediction of new microRNAs a new sensitive machine learning based approach was 

developed that reaches an AUC of 97.9% in our tests. 

Furthermore, the tool detects matches of the reads against other libraries of 

transcribed sequences such as mRNA, RFam (RNA) and RepBase (Transposons). 

Currently, the tool works for nine species, but can easily be extended to further 

species in future. 



 

 

Chapter 3  

 

Examination of microRNAs target sequences 

As pointed out earlier, a perfect match to the microRNA seed region is considered as 

a critical factor in the detection of target sites. It was further demonstrated, that the 

false positive rate in the prediction of target sites could be significantly reduced if the 

seed match is also conserved across several species. Therefore a simple but effective 

strategy of detecting target site with a high likelihood of biological impact is to 

search for conserved reverse complimentary seed sequences in the 3’UTRome 

(Bartel 2009). 

This approach is solely based on nucleotide sequence and cross-species information 

and does not include any secondary information, like hybrid structure, stability or 

local influences to the target site. Consequently the detection process is highly 

dependent on the nucleotide composition of the microRNA seed. We therefore study 

the GC content distributions of microRNAs and 3’UTRs in this chapter. In addition, 

we analyze the structure of all known human genes (RefSeq) – with intronic 

sequences removed – regarding their GC content and conservation. Finally we built 

microRNA target site background models. We found that highly conserved 

microRNAs target significantly more transcripts than expected. 

With the availability of genome-wide SNP data, extensive studies of cis-regulatory 

sites became possible. Recently, it was proposed, that with respect to these data, 
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there is negative selection acting on predicted microRNA binding sites (Chen and 

Rajewsky 2006). These authors detected a significant gap in SNP density between 

the seed region and the rest of the target site. Although their random control showed 

a gap at the same position, too, the associated p-value for the background gap was an 

order of magnitude higher. Hence the authors proposed that the conserved seed 

matches of ultra conserved microRNAs are under negative selection pressure. 

Driven by our findings regarding the highly conserved microRNAs, we reassessed 

the SNP density at predicted microRNA target sites. Our results show that the SNP 

density is not reduced in the seed match of highly conserved microRNAs compared 

to conserved random 8-mer sequences. We further demonstrate that the position of 

the gap in SNP density is dependent on the seed length used for predicting target 

sites. 

3.1. Materials and Methods 

3.1.1. Alignment data and conservation 

We downloaded the 17-way multiZ alignments and the human RefSeq transcript 

annotations form the University of California, Santa Cruz (USCS) browser and 

assembled alignments for 5000nt upstream, 5’UTR, CDS, 3’UTR and 5000nt 

downstream into continuous multiple alignments per RefSeq transcript annotation 

using the Galaxy Webservice (Giardine et al. 2005). 

To calculate the conservation profile, we divided the alignments into 100 bins of 

equally long substrings. Each nucleotide position was then tested for perfect 

conservation in human, chimp, rat, mouse and chicken. Subsequently the fraction of 

conserved nucleotides of a bin was returned as degree of conservation. 

3.1.2. MicroRNA data 

All mature microRNA sequences were downloaded from the microRNA registry 

version 12.0 (Griffiths-Jones 2004). Ultra conserved microRNAs were obtained from 

(Krek et al. 2005). Background seed sequences were generated by recursively adding 

one nucleotide at a time such that all combinatorial possible 6-mer and 8-mer 
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sequences are covered. The shifted set was created by extracting 8-mers from the 56 

ultra conserved microRNA sequences, starting at positions 6, 8 and 10. 

3.1.3. Conserved target site prediction 

For the prediction of microRNA target sites, three approaches were used in this 

work. They vary in the seed definition and way conservation is applied. In the first 

approach we identified target sites by searching for 6-mer seed matches that are 

perfectly conserved in the species human, chimpanzee, mouse, rat, and dog. In the 

second approach we simply changed from 6-mer seeds to 8-mer seeds. The last 

approach, similar to the core PicTar algorithm, uses 7-mer seed matches and a 

slightly different way of conservation usage. First, 6-mer sites with perfect Watson-

Crick complementarity to the microRNA bases 2-7, counted from the microRNA 5’ 

end are searched for. These 6-mers have to be perfectly conserved in human, 

chimpanzee, mouse rat and dog. Moreover either a perfect match to microRNA 

position 1 or 8 is required for each species.  

3.1.4. SNP data 

All human SNP data used in this analysis were downloaded from the dbSNP (build 

128) track of the UCSC genome browser. From this set we discarded all SNPs 

originating from insertion and deletion events as well as all SNPs with more than two 

alleles and those with only one allele (monomorphic). SNPs with more than one 

assigned loci (release hg18) were excluded as well. Genotype data were retrieved 

from the International HapMap Project (build 23a, NCBI build 36) and from 

Perlegen Science (version 1, NCBI build 34). We used liftOver to map Perlegen data 

to hg18. In total we retrieved 9,657,322 SNPs from dbSNP, from which 4,086,708 

SNPs are genotyped by HapMap and 1,545,504 SNPs are genotyped by Perlegen. 

HapMap genotypes correspond to 90 CEPH individuals with ancestry from northern 

and western Europe (European population), 90 Yoruban individuals (African 

population), 45 Han Chinese in Beijing (Chinese population) and 44 Japanese in 

Tokyo (Japanese population). Perlegen genotype data were obtained from 24 

European Americans (European population), 23 African Americans (African 

population) and 24 Han Chinese (Chinese population). Taken together, we retrieved 
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1,240,720 SNP data, genotyped from both, HapMap and Perlegen. From these we 

were able to map 1,700 to the 5’UTR, 16,700 to CDS and ~13,500 to 3’UTR. 

3.2. Results and Discussion 

3.2.1. MicroRNAs and transcripts in the light of GC content 

We first investigated the human 5’ untranslated regions (5’UTRs), coding sequence 

(CDS) and 3’ untranslated regions (3’UTRs) with respect to their GC content. 

Therefore we calculated the GC content of all sequences, with the exception of very 

short (<100nt) ones. The resulting histogram is shown in Figure 14A. As can easily 

be observed, there is a significant difference between the three groups. While the 

5’UTRs are Gaussian like distributed, but shifted towards GC richness, the CDS are 

almost uniformly distributed in the range between 35% and 65% GC content. The 

3’UTRs are clearly the GC poorest sequences in human, with a global maximum at 

33%. The distribution however is bimodal and a local maximum appears at 

approximately 50%. 

 

Figure 14: GC content distributions of A) human microRNAs and B) human 3’UTRs. 

In a second step, we analyzed all known human microRNAs according to their GC 

content (Figure 14B). We see 1) the peak at 50% GC content and 2) a bias towards 

the region 30%-50%. This is particularly interesting, as we have seen that the 

majority of 3’UTRs fall into that range. As a pure matter of chance, microRNA 

target sites will therefore occur in the 3’UTRs much more often than in the CDS or 

the 5’UTRs. A simple search for non-conserved microRNA seed matches (Table 4) 
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reveals for the 3’UTRs a 20% (16.4 matches/kb versus 13.7 matches/kb) density 

enrichment compared to 5’UTRs.  

 
Number of perfect 

seed matches 
Total number of 

nucleotides 
Seed match density 

(matches/kb) 

5’UTR 126,731 9,268,795 13.7 

CDS 728,013 49,094,793 14.8 

3’UTR 468,403 28,453,035 16.4 

Table 4: Overview of the number of seed matches in the 5’UTR, CDS and 3’UTR. 

As the GC content distributions of the three groups 5’UTR, CDS and 3’UTR are so 

different, we focused on the position specific analysis of those (Figure 15A). In 

addition, we considered 5000 nucleotides up- and downstream of the start and end 

position of the genes. Interestingly, one sees that the GC content is extreme at the 

transcription start (GC rich) and stop site (GC poor), a phenomenon that was earlier 

reported as genomic punctuation (Zhang et al. 2004). Between these two sites, a 

continuous decay in GC content can be observed. While the decay is linear in the 

5’UTR, it is almost stopped in the CDS. Here the GC content remains at around 

52%. In the 3’UTR, the decay reinitiates, while it is extreme towards the beginning 

and ending. The up- and downstream flanking regions, illustrating the general 

genomic level, show a constant GC content of about 45%. 

In addition, we have plotted the conservation of these regions in a position specific 

manner, too. As expected (Figure 15B) the highest conservation is observed in the 

CDS with a mean of around 70% followed by the 5’ UTR and 3’ UTR with a 

conservation level of approximately 35%. It is interestingly, however, that the 3’ 

UTRs show strong conservation peaks at the boundaries, forming a U-shape. The 

5’UTRs also show a strong peak at the end. This is however narrow and likely 

attributed to the translation start site which is directly following. For the 3’UTR U-

shape we do not have such a conventional explanation.  
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Figure 15: Structure of known human genes with intronic sequences removed in 
reference to GC content and conservation. 

However, as pointed out in 1.1.5, it could be demonstrated, that microRNA target 

sites that are positioned at the margins of the 3’UTRs show a higher functionality 

compared to those that are located in the middle (Grimson et al. 2007). Therefore 

microRNAs might be the driving force that shaped the GC content distribution of 

3’UTRs. 

 

Figure 16: Compartmentation of microRNA target site  

3.2.2. The more target sites a microRNA has the AT richer its seed region 

As we say in the last chapter, that 3’UTRs are higher conserved at their margins and 

that target sites in these regions have been demonstrated to show a higher 

functionality, we subsequently focused on those highly conserved target sites. 
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Therefore we considered both, seeds of human microRNAs as well as any 8-mer 

sequences. We clustered all target sites, i.e. a perfectly conserved 6-mer (nucleotide 

2-7) seed match and an additionally conserved match to either microRNA nucleotide 

1 or 8, of a microRNA and an 8-mer sequence together such that we receive a simple 

relation table with the 8-mer sequences in the first column and the number of 

conserved sites in the 3’UTR in the second. Subsequently we clustered entries 

together by employing a binning on the number of target sites. For each bin, we then 

calculated the mean GC content both of the seed match and of the target site rest (see 

Figure 16 for an explanation). 

 

Figure 17: GC content of the seed and the target site rest relative to the number of 
conserved target sites detected in the 3’UTRome. 

As can be seen in Figure 17A, the GC content of the target site rest stays almost 

constant, independent on the number of targeted sites. On the contrary, the GC 

content of the seed matches constantly declines with the number of target sites 

observed. In consequence, this leads to an asymmetry within target sites for 8-mers 

that match either extremely often or rare. Target sites of 8-mers that match in the 

range between 250 and 500 are approximately balanced. For microRNAs the 

intersection is slightly shifted towards higher numbers (~ 600) of target sites. 

Additionally we observe that the fraction of 8-mer seeds is bimodal distributed with 

a significant fraction (> 40%) of all seeds having equal or less than 70 target sites. 

The distribution for microRNA seeds follows the same general trend (data not 

shown). 
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We then questioned whether this is also the case when only ancient, i.e. highly 

conserved microRNAs are considered. We therefore used the list of 56 microRNAs, 

that was initially compiled by (Krek et al. 2005) and we additionally created a non-

microRNA background (shifted set) as used by (Chen and Rajewsky 2006). Since the 

data are significantly sparser than the analysis of all 8-mers, we increased the bin 

size to 100. Therefore the bimodal effect vanishes (Figure 17B). The remarkable 

point, however, is that the ultra conserved set of 56 microRNAs follows a distinct 

distribution. All these microRNAs seem to be biased towards high amounts of 

conserved target sites, a clear break with all 8-mers, all microRNAs and the shifted 

set.  

3.2.3. Negative selection on predicted conserved microRNA target sites is 

equal to other conserved sites 

According to recent studies, a single mutation in the seed match of a target site can 

be sufficient to destroy the regulatory function of microRNAs (Brennecke et al. 

2005). Further it was shown that single nucleotide polymorphisms (SNPs) have 

significant impact on the functionality of microRNA regulation (Abelson et al. 2005; 

Clop et al. 2006). As we have just found that ultra conserved microRNAs tend to 

target much more transcripts than the 8-mer sequences, we turned towards the 

question, whether this has influence on the SNP density and therefore might affect 

formerly drawn conclusions on negative selection acting on microRNA target sites. 

 

Figure 18: Position specific fraction of SNPs in conserved microRNA target sites.  

The dashed lines indicate the average SNP fraction in the seed region (bases 1-8) and the rest 
of the target site (bases 9-22). In (A) the SNP fractions of predicted target sites according to 
the ultra conserved microRNAs are shown. Conserved random controls (shifted set) are 
displayed in (B).  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Position in binding site

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fr
ac

tio
n 

of
 S

N
Ps

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Position in binding site

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fr
ac

tio
n 

of
 S

N
Ps

A B



 

 51 

We therefore extracted all human genotyped SNP data (Perlegen and HapMap) from 

dbSNP (Sherry et al. 1999; Sherry et al. 2001) and mapped them on the 3’UTRs to 

get a crosslink between the target sites and the SNPs.  

In a first analysis, we computed the fraction of SNPs according to the position within 

the target site, following the protocol of (Chen and Rajewsky 2006). In total we 

retrieved 581 SNPs within 25.228 target sites. Figure 18A shows the distribution for 

target sites corresponding to the ultra conserved microRNAs, while B shows the 

distribution for the random controls (shifted set as before). In compliance with Chen 

et al. we found for the target site of the ultra conserved microRNAs the difference 

between the seed match and the rest to be highly significant ( ). 

In the control set the difference was still significant ( ), 

though by far not as significant as for the microRNAs.  

 

Figure 19: SNP density of predicted target sites 
A) SNP density of the seed match and rest region binned according to the number of 
conserved predicted target sites in the 3’UTRome. The number of target sites is discretisized 
into equally wide bins of size 10 for all 8-mers and of size 200 for those belonging to the 
ultra conserved microRNAs. The difference between the SNP density of the seed match and 
the rest region of all 8-mers is constantly increasing as the number of target sites per seed 
raises. An exception to that are seeds with 70 or less target sites. At 80 target sites per seed, 
the SNP density is approximately equal in both (seed match and rest) distributions. In terms 
of SNP density, the rest region of all 8-mers (blue) seems to be independent of the number of 
seed matches, while the SNP density in the seed region (black) declines. Superimposing the 
ultra conserved microRNAs, the seed region (green) follows the seed region of all 8-mers 
(black), while the rest region (red) is above the rest of all 8-mers. B) Position specific SNP 
density in conserved seed matches, averaged in the seed match (bases 1-8) and the rest of the 
site (bases 9-22).  
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Subsequently we investigated whether the observed gap between the seed match and 

the target site rest (see Figure 18) could be due to the fact that the ultra conserved 

microRNAs show significant higher amounts of conserved target sites per 

microRNA. As before, we clustered the microRNAs and 8-mer sequences by the 

number of conserved target sites they exhibit and binned them accordingly. For each 

bin the mean SNP density was then calculated (Figure 19A). Apparently, the SNP 

density of the 8-mer target site rest seems uncorrelated to the number of targeted 

sites, while the seed match declines with the number of conserved target sites per 

microRNA. We also see that the seed match of ultra conserved microRNAs follows 

the general trend of the 8-mer counterpart. The rest region of the target sites from the 

ultra conserved microRNAs, however, shows much higher SNP densities than those 

from the 8-mer sequences. This is intriguing, as it 1) explains the observed step in 

the SNP fraction and 2) indicates that rest region shows a higher flexibility, i.e. fewer 

evolutionary constrains than expected.  
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Figure 20: Position specific a SNP density in conserved seed matches for A) 6mer, B) 
core PicTar and C) 8mer seeds. 
Indicated by the mean marks of the box and whisker elements, the gap between seed and rest 
region is for 6mer seeds at position 6, for core PicTar seeds (7-mer; nucleotide 1-7 or 2-8) at 
position 8 and for 8mer seeds at position 8. Further the mean SNP density is decreasing for 
the whole target site from 6mer seeds to 8mer seeds. 

To prove it we repeated the plot of Figure 18 with the modification of using actual 

SNP densities instead of the fraction. Additionally we created several background 

distributions by drawing target sites at various bins, but only from the same bin each 
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region is vastly above the background sets, irrespective of the chosen amount of 

targeted sites of the background. 

We also modified the definition of the seed match requirement. By applying not only 

the 8-mer, but also the 7-mer and 6-mer seed definition, we repeated the last analysis 

for all possible x-mer sequences. As result, we received Figure 20A-C. One sees, that 

on a 6-mer background the step is located at position 6. With a 7-mer seed match the 

step is at nucleotide 8, while the first nucleotide has a slightly higher SNPs density, 

too. In the last scenario, when 8-mer matches are requested, also the first nucleotide 

is at the same low density as the rest of the seed match.  

3.3. Conclusion 

We have demonstrated that the GC content of the microRNAs and the 3’UTRs is of 

major interest for the field of computational prediction of target sites. Generally, both 

ends of the 3’UTR are higher conserved than the middle. The 3’UTRs show a 

pronounced gradient in GC-content, being GC-rich at its 5’-end and AT-rich at its 3’-

end. Though, generally, the more conserved target sites a microRNA exhibits, the 

AT richer is the seed. 

The GC content of the rest of the target site, however, is not correlated to the number 

of target sites of the respective microRNA. Interestingly these findings hold true not 

only for microRNAs, but for all possible 8-mer pseudo microRNAs. Therefore this is 

complicating the search for real microRNA target sites. 

We have further analyzed SNPs at target sites and were able to reproduce the 

significant gap in SNP density between the seed match and the rest. In contrast to the 

findings of Chen and Rajewsky (2006), we have support that the observed step is not 

due to negative selection on the seed match of ultra conserved microRNAs, but due 

to a higher SNP density in the rest.  

In addition, we have shown that the position of the step in SNP density is dependent 

on the length of the used seed definition. We therefore hypothesize that the observed 

step may be a GC dependent phenomenon introduced by the usage of conservation 

for identifying target sites. We currently have no explanation for the higher SNP 
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density in the rest of the target sites of ultra conserved microRNAs compared to 

background. The sample size of mappable SNPs to predicted target sites is larger 

than which was used by Chen and Rajewsky (2006), though it is still rather small. 

With the availability of more accurate SNP data more robust analyzes will be 

possible. 
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Chapter 4  

TargetSpy: Analysis and prediction of microRNA 

target sites 

Virtually all currently available microRNA target site prediction algorithms require 

the presence of a (conserved) seed match to the 5’ end of the microRNA. Recently 

however, it has been shown that this requirement might be too stringent, leading to a 

substantial number of missed target sites. 

We developed TargetSpy, a novel computational approach for predicting target sites 

regardless of the presence of a seed match. It is based on machine learning and 

automatic feature selection using a wide spectrum of features covering current 

biological knowledge. Our model does not rely on evolutionary conservation, which 

allows for the detection of species-specific interactions and makes TargetSpy suitable 

for analyzing unconserved genomic sequences.  

In order to allow for an unbiased comparison of TargetSpy to other methods, we 

classified all algorithms into three groups: I) no seed match requirement, II) seed 

match requirement, and III) conserved seed match requirement. Appropriate post 

filtering generates TargetSpy predictions for classes II and III. On a human dataset 

revealing fold-change in protein production for five selected microRNAs our method 

shows superior performance in all classes. In Drosophila melanogaster not only our 

class II and III predictions are on par with other algorithms, but notably the class I 

(no-seed) predictions are just marginally less accurate.  We estimate that TargetSpy 
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predicts between 26 and 112 functional target sites without a seed match per 

microRNA that are missed by all other currently available algorithms.  

Only a few algorithms can predict target sites without demanding a seed match and 

TargetSpy demonstrates a substantial improvement in prediction accuracy in that 

class. Furthermore, when conservation and the presence of a seed match are required, 

the performance is comparable with state-of-the-art algorithms. TargetSpy was 

trained on mouse and performs well in human and drosophila, suggesting that it may 

be applicable to a broad range of species. Moreover, we have demonstrated that the 

application of machine learning techniques in combination with upcoming deep 

sequencing data results in a powerful microRNA target site prediction tool 

(www.targetspy.org). 

4.1. Background 

The discovery of microRNAs in 1993 (Lee et al. 1993) introduced a totally new 

dimension in our understanding of how gene expression is regulated. Animal and 

plant genomes contain hundreds of microRNA genes (Bartel 2009; Bentwich et al. 

2005) that control fundamental cellular processes and are implicated in severe 

diseases. Incorporated into a protein complex named RISC, microRNAs perform 

posttranscriptional gene regulation either through perfect binding to a cis-regulatory 

target site in the 3’UTR that is subsequently cleaved, leading to mRNA degradation, 

or by imprecise binding preferably of the microRNA 5’ end to a target site, leading 

to possibly reversible repression of protein production. While posttranscriptional 

cleavage is prevalent in plants, translational repression is the predominant type of 

regulation in animals. Our current knowledge about the function of specific 

microRNAs, their targeted messenger RNAs, and the exact location of binding sites 

is limited.  

Experimental detection of microRNA target sites is a costly and time-consuming 

process. While recent estimates suggest that more than 50% of human protein-coding 

genes may be regulated by microRNAs and that each microRNA may bind to 300-

400 target genes, the latest release of the TarBase database contains information on 

only 995 human in vivo microRNA-gene interactions involving 103 distinct 
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microRNAs and 825 distinct genes, a far cry from the actual extent of microRNA 

targeting (Bartel 2009; Sethupathy et al. 2006).  

Computational prediction of microRNA/gene interactions is a valuable tool for 

guiding wet-lab experiments, and it remains the only option for systematic genome-

wide reconstruction of the complex combinatorial picture of microRNA-mediated 

target binding. It is also a challenging task because of the daunting difficulty of 

distinguishing true microRNA-mRNA hybrids against the noisy background of 

millions of possible microRNA-gene combinations and, more generally, because the 

basic mechanisms of microRNA target recognition remain largely unknown. 

Over the recent years many target prediction algorithms have been developed based 

on different principles (see Bartel 2009 for a review). However, the two recurring 

parameters used by the available methods are i) the existence of a seed match 

(continuous base pairing between a 3’UTR and the first 6-8 bases of a microRNA 5’ 

end), and ii) evolutionary conservation of the target site across multiple species. 

Utilization of these powerful constraints in prediction algorithms leads to more 

reliable detection of those functional duplexes that contain them, but at the same time 

limits our ability to identify biologically relevant microRNA target sites that do not 

fulfill these requirements. 

By definition, organism-specific or simply poorly conserved sites cannot be 

predicted at all if the conservation filter is applied. It has also been suggested that the 

seed match requirement may be too stringent, and that at least a second “type” of 

target sites - the so called 3’ compensatory target sites – exists that cannot be 

detected by the seed match based methods. On the other hand, many potential 

microRNA-target interactions that do involve conserved seed regions may be non-

functional in a physiological context (Didiano and Hobert 2006). Furthermore, new 

biological insights into the mechanisms of target binding have been obtained which 

could be used for predicting target sites. For example, target site accessibility to the 

RISC complex has been suggested as an important determinant of functional 

interactions.  
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We sought to develop a computational technique free from both the seed requirement 

and the conservation filter and thus capable of predicting species-specific and 3’ 

compensatory target sites. Our method, TargetSpy, incorporates current biological 

knowledge in form of multiple sequence and structure features evaluated in the 

framework of an objective machine-learning prediction scheme. 

However, since the (conserved) seed match is a strong determinant of target site 

detection, even though not the only one, we additionally generate predictions for 

sites with conserved and unconserved seed matches by post-filtering TargetSpy 

results.  

We carried out extensive benchmark tests of the TargetSpy performance in human 

and Drosophila melanogaster. Our results suggest that TargetSpy, although trained 

on mouse, achieves the same performance as the best state-of-the-art methods in D. 

melanogaster, implying that the method can be applied to a broad taxonomic range 

of species for which no experimentally validated target sites are known. 

Furthermore, on the recently published experimental human dataset, describing 

changes in protein synthesis mediated by microRNAs, our method shows the highest 

accuracy among all tested prediction algorithms.  

4.2. Methods 

4.2.1. Dataset of 3’ UTR sequences  

We retrieved 3’UTR sequences from the UCSC Genome Database (Karolchik et al. 

2008) using the UCSC Table Browser. For human (hg18, March 2006), mouse 

(mm8, July 2007), rat (rn4, November 2004) and chicken (galGal2, May 2006) we 

used the RefSeq Genes Track, for fly (dme, April 2006) we took the FlyBase 

annotations. For generating target site predictions considering conserved seeds, we 

used Galaxy (Giardine et al. 2005) to extract 3’UTR alignments for human, chimp, 

mouse, rat and dog from the 17-way human whole genome alignment and D. 

melanogaster, D. yakuba, D. ananassae, and D. pseudoobscura from the 15-way d. 

melanogaster whole genome alignment. 
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4.2.2. Dataset of MicroRNA sequences 

All mature microRNA sequences originate from the miRBase, release 12 (Griffiths-

Jones 2004). In total we retrieved 692 microRNAs for human, 513 for mouse, 443 

for chicken and 147 for fly.  

4.2.3. Target site predictions by previously published methods 

The target predictions of PicTar (Krek et al. 2005) were downloaded from the UCSC 

database using the Table Browser and were migrated from hg17 to hg18 by applying 

the UCSC command line tool liftover. We used the predictions conserved in human, 

mouse, rat, chimp and dog (4-way) as well as the predictions additionally conserved 

in chicken (5-way). For fly we downloaded the sensitive prediction set (S1) of PicTar 

that is composed of predictions conserved in D. melanogaster, D. yakuba, D. 

ananassae, and D. Pseudoobscura, also via the UCSC Table Browser.  Predictions 

for the human genome made by miRanda (John et al. 2004), release September 2008, 

were downloaded from http://microRNA.org (Betel et al. 2008). Only predictions for 

transcripts contained in the RefSeq database were considered. Human and fly 

predictions made by miRBase Targets (Enright et al. 2003), version 5, were 

downloaded from http://microrna.sanger.ac.uk/targets/v5/. RNA22 (Miranda et al. 

2006) predictions for human 3’UTR sequences were downloaded from 

http://cbcsrv.watson.ibm.com/rna22.html. Since these predictions were made using 

Ensembl transcripts, we mapped the predictions to RefSeq genes by applying 

mapping tables provided by Ensembl and UCSC. Predictions of PITA (Kertesz et al. 

2007) were downloaded from 

http://genie.weizmann.ac.il/pubs/mir07/mir07_data.html. We utilized the “TOP” and 

the “ALL” set with 3/15 flankings. TargetScanS (Lewis et al. 2005) predictions and 

the corresponding microRNA family mapping table were downloaded from 

http://www.targetscan.org/cgi-bin/targetscan/data_download.cgi?db=vert_50. 

Predictions made by Gaidatzis et al. (Gaidatzis et al. 2007) were downloaded from 

the EIMMo server http://www.mirz.unibas.ch/. Targets predicted by mirTarget2 

(version 3) (Wang and El Naqa 2008) were downloaded from 

http://mirdb.org/miRDB. Human target site predictions of DIANA-microT v3.0 

(Maragkakis et al. 2009) were retrieved via the web server at 
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http://diana.cslab.ece.ntua.gr/microT/ for the thresholds loose (score=7.3) and strict 

(score=19). Finally, we downloaded the human target site predictions of TargetRank 

(Nielsen et al. 2007) from http://hollywood.mit.edu/targetrank/. 

4.2.4. Experimental data for evaluation 

Two sets of experimentally verified target sites were used to benchmark target 

prediction algorithms. For evaluation on Drosophila melanogaster, we used the 120 

experimentally tested microRNA - gene interactions compiled by Stark et al. (2005) 

and the 190 interactions published by Kertesz et al. (2007). The former set is 

composed of 61 functional and 59 non-functional interactions; the latter set consists 

of 102 functional and 88 non-functional interactions. The appropriate 3’UTR 

sequences were derived from the FlyBase annotations provided by UCSC. 

Transcripts for which no 3’ UTR was available were discarded. For evaluation on 

human, we used an experimental dataset that is based on the pSILAC technique and 

reveals fold changes in protein production caused by five selected microRNAs 

(Selbach et al. 2008), downloaded from http://psilac.mdc-berlin.de. 

Free energy estimates 

All duplex structures and energy estimates were calculated by the RNAduplex and 

RNAcofold programs from the Vienna package version 1.6.1 (Hofacker et al. 1994). 

We applied the option -noLP to exclude base pairs, which can only occur as lonely 

pairs and the option -e to retrieve all suboptimal structures instead of just the one 

with the minimum free. The minimum free energy that can be observed for a 

microRNA is defined as the energy value calculated for the duplex of the microRNA 

and its perfect reverse compliment. 

4.2.5. Generation of candidate zones 

The microRNA - mRNA interaction is typically characterized as an interval within 

the mRNA sequence that is almost perfectly reverse complementary to the 

microRNA sequence over a substantial fraction of the microRNA, or at least over a 

seed region of 6-8 bases. In this work we investigate the possibility to abandon the 

strict requirement for the presence of a seed region and attempt to find zones of high 

attraction between the microRNA and its target mRNA independent of seed 



 

 62 

occurrence. Such candidate zones cover not just a particular binding site, but a larger 

stretch of sequence including several potential adjacent binding sites. This approach 

involves three subsequent steps illustrated in Figure 21A-C.  

 

 

Figure 21: Schematic illustration of the candidate target site generation pipeline. 
A) MicroRNA-mRNA duplexes sharing the same anchor position on the mRNA are 
grouped. Duplexes with the lowest free energy in each group are shown in green color, all 
others in blue. B) Zoom-in at one group. The anchor of each hybrid (red vertical line) is the 
first nucleotide of the target site base-pairing with the 5’ end of the microRNA. Only the 
energetically most favorable hybrid, shown in green, is retained for further analysis. C) 
Smoothed attraction graph of all the retained hybrids. A candidate zone is defined as the 
stretch of the target sequence (shown in purple) where the smoothed hybrid free energy falls 
below a certain energy threshold. D) For each candidate zone the energetically most 
favorable hybrid that shows base pairing within the first two nucleotides counting from the 
microRNA 5’ end is selected as its representative.  

 

First, for a pair of microRNA and mRNA sequences, all possible duplex structures 

predicted by RNAduplex are ordered according to the sequence position of their 

anchor (see next section). 
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In a second step energy values of the selected duplexes are plotted against the 

respective anchor positions, resulting in a graph reflecting the attraction of individual 

areas of the mRNA towards the particular microRNA under study, measured in terms 

of Gibbs free energy values. To reduce local fluctuations the curve is smoothed by 

taking the average of the energy values for the current position and for its two 

immediate neighbors (i.e. by using a sliding window of length 3). 

In the last step those mRNA areas with a particularly strong attraction for a given 

microRNA are identified based on the requirement that all energy values of predicted 

duplex structures be below a certain cut-off x, and at least one duplex, we call it the 

representative, be below a cut-off value y. Based on the current experimental 

knowledge (Ambros 2004) base pairing for the representative is additionally required 

to start with the first or second nucleotide of the microRNA counted from its 5’end. 

We call the areas satisfying these conditions candidate zones. The variables x and y 

are expressed in terms of the ratios between the observed energy of a duplex and the 

maximal energy of a given microRNA. For example a value of 0.25 means that the 

duplex has 25% of the energy of a perfect reverse complementary hybrid. In view of 

our intention to detect as many potential target sites as possible in the first step of our 

workflow we set x to 0.24 and y to 0.25, which is well below the energy cutoffs 

applied by other approaches (Krek et al. 2005).  

On average this leads to eight candidate zones for each microRNA and 3’UTR in 

human (for comparison, seven sites were reported for the classic lin-4:lin-14 in 

Caenorhabditis elegans (Lee et al. 1993)).  

 

4.2.6. Duplex stacking and anchor choice 

Since we do not choose duplex structures based on significant free energy values, we 

obtain for each microRNA-mRNA pair a vast amount of overlapping predicted 

secondary structures, typically in the order of 5000-20000. Therefore we need to 

group the resulting structures according to their location on the mRNA. Structures 

with a G:U match in the first eight base pairings as well as those that show five or 

more G:U pairings in the entire duplex are discarded. Given that duplexes will 
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heavily overlap on the mRNA, we need to define anchor points in order to map the 

duplexes to a specific position on the mRNA sequence. 

 

Figure 22: Defining the position of a microRNA-mRNA duplex on the mRNA sequence.  
The anchor is the position at which the first base pairing occurs, viewed from the mRNA 3’ 
end (or microRNA 5’ end).  

Different types of anchors can be considered including, for example, the mRNA 

position where the first nucleotide pairing occurs, counting either from the 3’ end or 

from the 5’ end of the corresponding microRNA, or some middle point of the duplex. 

In view of the findings suggesting that base pairing at the 5’ end of the microRNA 

particularly strongly contributes to target site recognition (Brennecke et al. 2005; 

Doench and Sharp 2004; Lai 2002; Lewis et al. 2003; Rajewsky and Socci 2004) we 

chose to define the anchor point as the position on the mRNA sequence where the 

first base-pairing with the microRNA 5’ end occurs (Figure 22). If duplexes with a 

perfect microRNA 5’ end pairing of at least 7 consecutive nucleotides (seed region) 

are present all other structures with the same anchor point and no seed region are 

discarded. Subsequently the energetically most favorable one for each anchor is 

selected as the best candidate for this specific anchor position (Figure 21A,B).  

 

 

 

3’                 UACGGGAAAAUUGUAACGUG-AC        5’ microRNA
                   |||||:     ||:|||||:  |
5‘ GTGCAGCATGACGTACATGCCTCTCTCC-ACGTTGCATAAGTTGGCAGT     3’ mRNA

anchor

anchor

anchor

3’          UACGGGAAAA------------UUGUAACGUGAC        5’ microRNA
            :|||||||              |:|||| :||||
5‘ CGACACTACGTGCCCTTAAAATAATGATTTAAGCATTTTACTGGCGACGT    3’ mRNA

3’                 UACGGGAAAAU--UGUAACGUGAC        5’ microRNA
                   :||||:|||    ||| ||||:|
5‘ CTTAAAATAATGATTTGTGCCTTTTGGTTACA-TGCATTCGCCCAAATAA    3’ mRNA
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4.2.7. Training set 

In order to develop a classifier of high quality, it is essential to obtain a training set 

that is truly representative of both the positive (actual target sites) and negative (non-

target sites) class. 

Recently a set of argonaute (Ago) - mRNA binding sites, identified by a novel 

technique that isolates RNA by crosslinking immunoprecipitation in high-thoughput 

experiments (HITS-CLIP), was published for the 20 most abundant microRNAs 

present in the P13 mouse brain (Chi et al. 2009). Argonautes are proteins that upon 

association with microRNAs form the RNA-induced silencing complex (RISC), 

which is responsible for the repression of target mRNA expression. 

To our knowledge this is the first experimental data set that reports directly 

microRNA target sites in a large-scale fashion and TargetSpy is the first algorithm 

that is using it for training. We retrieved the data from http://ago.rockefeller.edu/ and 

removed all sites that did not map to 3’UTRs nor had a RefSeq accession number 

associated. Since only the microRNA family is specified in this publication, we 

identified the candidates for all microRNAs belonging to that family. Those 

candidates that overlapped the experimentally derived sites were retained as positive 

instances. In cases where several candidates of the same microRNA family 

overlapped, we took the energetically most favorable one. Target site candidates 

having no equivalent in the set of experimentally derived Ago binding sites are 

unlikely to be biologically relevant. We therefore identified the energetically most 

stable candidate for a reported Ago-mRNA interaction that does not overlap the 

validated Ago-binding site. Those candidates served as negative instances. In total 

we obtained 3872 positive and 4540 negative instances. 

4.2.8. Features of microRNA - mRNA duplexes 

In order to build an accurate microRNA target predictor it is of paramount 

importance to define a set of characteristics that effectively distinguish real 

microRNA-mRNA interactions from any other types of hybrids. Numerous 

properties of such duplexes have been reported in biological literature in recent 

years, and some of them have been incorporated in target prediction methods 
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developed earlier. Here, instead of relying on a limited number of empirically 

selected features we chose to objectively evaluate the performance of a possibly 

broad spectrum of pairing requirements within the framework of a machine learning 

approach. Below follows the list of features used in this study. 

General extent of microRNA-mRNA binding 

• Number of base-pairings to the microRNA 8-mer seed. 

• Number of base-pairings to the first eight nucleotides of the microRNA 3’ 

end. 

• Number of consecutive base-pairings at the microRNA 3’ end with two 

allowed non-pairing positions, beginning at the first base pairing position. 

• Length of the longest stretch of consecutive base-pairings anywhere in the 

hybrid. 

• Length of the target site. 

• Binding asymmetry. Here we measured the ratio between the amounts of 

paired bases in the 3’ versus the 5’ region of the microRNA. We considered 8 

nucleotides on each side. 

Extent of G:U base pairing 

• Total number of G:U wobble base pairs in the microRNA - mRNA hybrid. 

Bulge-related features of duplexes 

• Number of bulges on the microRNA. 

• Number of bulges on the target site. 

• Total bulge length on the microRNA. 

• Total bulge length on the target site. 

• Number of bulges on the microRNA. We tested the bulge lengths of 1,2,3,4 

and 5 bases. 
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• Number of bulges on the target site. In this cases we tested bulge lengths of 

1,2,3,4,5,6 and equal or greater than 7 bases as bulges on the mRNA 

sequence tend to be larger than those on microRNAs. 

• Length of the second largest bulge on the microRNA. 

• Length of the second largest bulge on the target site. 

• Mean length of bulges on the target site. 

• Number of symmetric bulges. 

Position specific features  

 Position of the target site in the 3’UTR. We split 3’UTRs into 100 bins and 

returned the index of the bin containing the anchor of the candidate zone’s 

representative as the position of the target site. 

 Following the reasoning of Lewis et al. (Lewis et al. 2005) we calculated four 

features related to the base occurrence at given positions. Specifically we 

recorded the nucleotides in the target site at microRNA positions 1 (t1 

anchor) and 9 (t9 anchor) and the existence of an S (A or U) or W (G or C) 

base at the same positions (t1 S/W anchor and t9 S/W anchor). 

Compositional features 

Base composition of both 3’ UTRs (Robins and Press 2005) and microRNAs plays 

an important role in mRNA-microRNA recognition. Here we employ the following 

compositional features: 

• G+C content of the target site. 

• G+C content of the 50 nucleotide long region upstream of the target site. 

• G+C content of the 50 nucleotide long region downstream of the target site. 

• G+C content ratio between the microRNA and the target site. 

• Difference in G+C content between the target site and the upstream flanking 

region. 
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• Difference in G+C content between the first and the last eight nucleotides of 

the target site. 

• Occurrence of CpG di-nucleotide in the target site sequence as well as in its 

3’ and 5’ flanking regions. 

The length of 3’ and 5’ flanking regions was taken to be 20 nucleotides, unless 

otherwise stated. 

Compactness 

We reasoned that hybrids that are more compact, i.e. having only few unpaired 

nucleotides both in the microRNA and in the target site are more likely to be 

biologically functional that others. Therefore our goal was to unify these two features 

into a single measure. We define the compactness of a hybrid as the mean value of 

the following ratios:  number of basepairs/microRNA length and number of 

basepairs/target site length. Compactness values are thus in the range between 0 and 

1, with the latter value corresponding to perfect complementarity. If the target site is 

shorter than the microRNA a penalty is introduced, as this case is not taken into 

account by the mean of the ratios stated above: 

 

Accessibility of the target site to RISC 

Recent literature (Kertesz et al. 2007; Zhao et al. 2005) suggests that target site 

accessibility to RISC is a critical factor in microRNA target recognition. Examples 

of approaches that have been developed to approximate accessibility are RNAup 

(Muckstein et al. 2006) and IntraRNA (Busch et al. 2008). We applied the definition 

of Kertesz et al. (2007) and calculated accessibility as the difference between the free 

energy of the microRNA hybrid and the energy of the local secondary structure of 
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the target site including 3 nt upstream and 15 nt downstream flanking sequences. We 

further tested all combinations for upstream and downstream flankings from 0nt to 

30nt in 5 nt steps. 

 

4.2.9. Classifier 

Using the positive and negative instances we developed a classifier capable of 

distinguishing microRNA - mRNA duplexes from other hybrids in the feature space 

described above. The problem is that most of the biologically motivated features 

implicated in microRNA target recognition, with the exception of the seed match, 

display only a weak correlation with functionality. A standard approach to enhance 

the prediction performance in case of weak features is to utilize boosting. We 

therefore applied the learning scheme based on boosting called MultiBoost (Webb 

2000) with decision stumps as base learner. In comparison with other methods we 

have tried (SVM (Xu et al. 2009), Naive Bayes (George H. John 1995), C4.5 

(Quinlan 1993), AdaBoost (Freund 1996) with C4.5, MustiBoost with C4.5) it 

consistently produced superior results (Figure 23).  

 

Figure 23: ROC curves generated by various classifiers evaluated in 10-fold cross-
validations on the training set. 
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We used the WEKA (Witten and Frank 2005) implementation of the learning scheme 

and largely relied on the standard configuration provided by WEKA, with the 

exception of setting the number of bagging iterations to 200. For estimating the 

quality of each individual feature and for subsequent ranking of features, we used the 

Relief-F (Kononenko 1994) algorithm. ReliefF estimates the quality of features 

according to how well they distinguish between closely neighbored instances of 

different classes. To find the best possible set of features, we applied the feature 

evaluation approach called “Correlation-based Feature Selection” (Mark A. Hall 

1998) (CFS) together with the best-first search algorithm. Only features from the 

subset computed by this filter approach are taken for the classifier. 

 

4.2.10. Target site prediction 

For each organism considered we predicted microRNA target sites and ranked them 

according to their score. As explained above TargetSpy initially considers every 

potential candidate zone and assigns a score to it. Overlapping candidate zones were 

merged together, and the representative with the highest score becomes the 

representative of the entire merged zone. This permissive approach generates vast 

amounts of candidates with very low scores. Additional criteria are subsequently 

imposed in various combinations to narrow down the set of predicted targets (Table 

2). The naming of the prediction datasets is based on whether or not the presence of a 

seed region is required, and whether a permissive (sens) or strict (spec) threshold is 

applied.  

Prediction dataset name Seed match 
required 

Conservation 
considered 

False-positive rate 
threshold 

TargetSpy no-seed sens No No 0.05 

TargetSpy no-seed spec No No 0.01 

TargetSpy seed sens Yes No 0.05 

TargetSpy seed spec Yes No 0.01 

TargetSpy cons. seed sens Yes Yes 0.05 

TargetSpy cons. seed spec Yes Yes 0.01 

Table 5: Applied threshold and limitation to the prediction subsets. 
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4.2.11. Evaluation of prediction performance 

For assessing the quality of our classifier we used the following performance 

measures: sensitivity, specificity, accuracy and the Matthews correlation coefficient 

(MCC). As in any classification process four different possibilities have to be 

accounted for: true positives (TP), true negatives (TN), false positives (FP) and false 

negatives (FN). For the evaluation on the training set, we obtained these values in 

form of a confusion matrix by performing a standard 10 fold cross validation 

followed by plotting a receiver operating characteristic (ROC) curve. From this we 

calculated the area under the curve (AUC) statistics, a measure that is understood as 

the probability that the classifier will assign a positive instance a higher score than a 

negative instance when picking an instance from each class randomly. Given the 

confusion matrix, sensitivity and specificity, are defined by the following equations: 

€ 

sensitivity =
TP

TP + FN

specificity =
TN

FP +TN

 

A single measure representing the predictive power of the classifier must account for 

all those four possibilities listed above. A factor considered to be one of the best 

performance measures is the Matthew’s correlation coefficient (Baldi et al. 2000) 

given by: 

€ 

MCC =
TP × TN − FP × FN

(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)
 

 

Its value range is [-1,1]. A value of MCC = 1 indicates the best possible prediction, 

such that any positive instance is correctly predicted and only positive instances are 

predicted as positive. MCC = -1 indicates the worst possible prediction. A value of 

MCC = 0 would be expected for a random prediction scheme.  

The evaluation on pSILAC data was performed as in Selbach et al. 2008. There, the 

performance measure (accuracy) was defined as the fraction of predicted mRNA 

targets with reduced protein production (log2 fold change < -0.1).  
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4.2.12. Implementation and availability 

We implemented our method as a stand-alone Java program called TargetSpy. The 

program relies on the Java Virtual Machine version 1.5 and two freely available third 

party software packages - the Vienna package for RNA secondary structure 

prediction (version 1.6.1) and the data mining software WEKA (version 3.5.3). 

TargetSpy is available from our web site (http://www.targetspy.org) along with 

installation instructions and links to all required third party software packages. 

 

4.3. Results and Discussion 

4.3.1. Classification of prediction approaches 

As discussed in 1.2.2, current tools for predicting microRNA target sites can be 

grouped into three distinct classes according to their requirements on target sites (see 

Table 6 for an overview of all tools, including TargetSpy, used in the following 

evaluations). Class I is constituted by those approaches that make use of neither the 

seed match requirement nor conservation. Class II contains all approaches that do 

require a seed match, but make no use of conservation. Finally, class III is for those 

predictors that both require a seed match and rely on conservation.  

Some methods cannot be perfectly fitted into this scheme. For example, while 

miRanda does actually not require a perfect seed match it weights the seed region so 

high that on average just around 7% of all predicted target sites show mismatches to 

the 7-mer seed (microRNA nucleotides 1-7 or 2-8). miRBase Targets uses miRanda 

for candidate generation, and permits a single mismatch to the seed region. Since 

both approaches additionally require the target site to be conserved, we consider 

them as members of class III.  
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Organism Seed match not required Seed match required Seed match required and 
conservation considered 

Human RNA22 

TargetSpy no-seed 

PITA All 3/15 

TargetScanS non-conserved 

TargetSpy seed 

EIMMo 

MiRBase Targets 

MiRanda 

PicTar 

DIANA-microT 

TargetScanS 

PITA TOP 

MirTarget2 

TargetRank 

TargetSpy cons. seed 

Fly RNA22 

TargetSpy no-seed 

PITA All 3/15 

TargetSpy seed 

EIMMo 

PicTar 

MiRBase Targets 

TargetSpy cons. seed 

TargetScanS 

Table 6: Classification of microRNA target site prediction tools. 

Note also that TargetSpy generally belongs to class I, since our model does not 

impose a strict seed match requirement and does not consider conservation of target 

sites. However, we can easily build subsets of our predictions that satisfy the criteria 

of class II and III. Throughout this work we refer to the subset of TargetSpy 

predictions containing a perfect 7-mer seed match as TargetSpy seed. Likewise, 

TargetSpy conserved seed denotes a set of predicted target sites containing a 

conserved seed match. 

 

4.3.2. Computational pipeline for predicting microRNA target sites 

Our intention here is to build a pipeline for predicting microRNA target sites based 

on the multiple features described in the Methods section. At run time TargetSpy 

takes two multiple FASTA files as input; one with the 3’ UTR sequences and the 

other one with the microRNA sequences. Note that no other extrinsic information, 

such as evolutionary conservation needs to be provided.  
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Figure 24: A schematic overview of the TargetSpy prediction pipeline.  
Annotated 3’UTR sequences and all known microRNAs from a given species serve as input. 
MicroRNAs are matched against 3’UTRs to generate potential candidate zones. The 
resulting candidate zones are classified and ranked according to their score, with overlapping 
zones being merged together. 

 

For each input microRNA TargetSpy identifies candidate zones (stretches of DNA 

sequence potentially harboring a target site) in all 3’UTR sequences. It calculates the 

score for the representative of each candidate zone, merges overlapping candidate 

zones, and ranks the predictions according to their scores (Figure 24, see Methods 

for details). Using this protocol target sites were predicted for Homo sapiens, Mus 

musculus, Rattus norvegicus, Gallus gallus and Drosophila melanogaster (Table 7). 

 

3‘UTRs microRNAs

Predicted target sites

Candidate zone generation

Merge overlapping candidate zones

Rank candidate zones
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Human 26161 1210 692 4837k 1023k 829k 339k 

Mouse 18694 1082 513 1906k 407k 340k 137k 

Rat 11859 760 292 535k 113k 91k 36k 

Chicken 3676 927 443 372k 80k 59k 24k 

Fly 15884 471 147 247k 54k 50k 20k 

Table 7: Number of target sites predicted in each species by different versions of the 
TargetSpy method. See Methods for more detail. 

 

4.3.3. Target site candidates 

A usual starting point of a prediction workflow is the search for perfect seed matches 

in the 3’UTR of transcripts of interest. Since our goal is to develop a model that does 

not rely on the presence of a seed match we had to redefine the rules for selecting 

initial candidate target sites. Following the reasoning that a functional site is more 

attracted by the loaded RISC complex than its surrounding area, we identify 

candidates by searching for areas in the target sequence where the predicted Gibbs 

free energy of the microRNA-target duplex is below a certain microRNA-specific 

energy threshold (see Methods for detail). To ensure a high coverage of functional 

binding sites we have chosen a conservative cut-off. With this candidate definition at 

hand, we identified about 150 million target site candidates for all microRNAs in 

human.  

4.3.4. Selection of informative features and classifier evaluation 

As described in the Methods section we evaluated a wide range of target site features 

by applying the Relief-F (Kononenko 1994) technique (see Table 8 for the ranked 

list of features). Some features generally considered to be highly relevant for target 
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site recognition by microRNA, such as the number of base parings to the microRNA 

seed, performed very well. On the other hand, the feature accessibility with 3 nt 

upstream and 15 nt downstream flankings, reported in Kertesz et al. (2007) to be 

strongly discriminative, was evaluated as poorly performing. To analyze whether this 

is due to the chosen flanking sequences, we tested other flanking settings and found 

30 nt upstream and 30 nt downstream to perform slightly better than the 3/15 setting; 

however the improvement was marginal (data not shown). Interestingly, the feature 

compactness (combining the length of the target site and the number of nucleotides 

binding to the microRNA, see Methods), introduced in this work performs among the 

best. 

 

Figure 25: Classifier performance as a function the feature set size. 
The classifier was evaluated in an iterative process where one feature was added in each 
step. Features were selected according to the ranked feature list (Table 5), beginning with 
the best feature. In black the AUC values (y-axis) for the corresponding feature set size (x-
axis) are shown. The red line indicates the AUC value of the feature set that was achieved by 
the feature subset selection approach. 

 

Subsequently we evaluated the performance of the classifier with respect to the 

features used for training. We started with the single best feature and incrementally 

added features from Table 8 one by one, according to the ranking. Each classifier 

was evaluated on the training set by a standard 10-fold cross-validation procedure, as 

implemented in WEKA (Witten and Frank 2005). Figure 25 shows the number of 

features used for building the classifier and the corresponding area under the curve 
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(AUC) values. Apparently, the AUC value increases up to the 14th added feature. 

Upon adding further features the performance begins to oscillate around the AUC 

value 0.79 and does not improve further.  

Since Relief-F only considers one feature at a time and does not take into account the 

correlation between features, we additionally applied the Correlation-based Feature 

Selection (CFS) (Mark A. Hall 1998) for identifying the best feature subset. This 

approach returned an AUC value of 0.79 (Figure 25, red line) with a set of only 

seven features, namely compactness, G+C content ratio between microRNA and 

target site, length of the longest stretch of consecutive base-pairings anywhere in the 

hybrid, binding asymmetry, G+C content of the target site, number of base-pairings 

to the microRNA 8-mer seed, and the position of the target site in the 3’UTR. The 

first four features are used here for the first time, while the latter three have been 

proposed before (Bandyopadhyay and Mitra 2009; Kim et al. 2006; Lewis et al. 

2005; Yousef et al. 2007). Interestingly, several of these features evaluated 

individually are classified merely as weak performers, while in combination the 

classifier exploits synergetic effects between features, making it the smallest set of 

all with a comparable performance. 

Following the common practice of selecting from all competing models of equal 

performance the simpler one, we chose the feature set generated by CFS for our 

machine learning technique. 

Since TargetSpy tries in the first step to identify as many potential target sites as 

possible and subsequently ranks those according the classifier score, enormous 

amounts of target sites are produced from which only a fraction, the top predictions, 

are of interest. In order to make application and benchmarking of TargetSpy more 

transparent, we created a subset of predictions with high sensitivity and high 

specificity. The recognition thresholds were set such that the target sites with a false-

positive rate lower than 5% (as evaluated in a 10-fold cross-validation) were 

assigned to the sensitive subset and those with a false-positive rate of 1% or less to 

the specific set (Table 5). 
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Rank Features Score 
1 Number of base parings to the microRNA 8-mer seed 0.03175 
2 G+C content of target site 0.01263 
3 Number of base pairings to the first 8 nucleotides of the microRNA 3’ end 0.01038 
4 Number of consecutive base-pairings to the microRNA 3’ end with two allowed 

non-pairing positions 0.00995 
5 Occurrence of CpG in target site 0.00799 
6 G+C content ratio between the microRNA and the target site 0.00642 
7 Compactness  0.00619 
8 T9 anchor 0.00556 
9 Longest stretch of consecutive base-pairings in the hybrid  0.00513 
10 Number of bulges in the microRNA of size three 0.00498 
11 T1 S/W anchor 0.00491 
12 Total number of base-pairings 0.00475 
13 Number of bulges on the target site of size seven or greater 0.00442 
14 T1 anchor 0.00434 
15 Number of bulges in the microRNA of size two 0.00433 
16 Occurrence of CpG in the upstream flanking area 0.00383 
17 Number of bulges in the target site of size one 0.00374 
18 Total bulge length of the target site 0.00362 
19 Length of the target site 0.00336 
20 Total bulge length of the microRNA 0.00334 
21 Target site position within the 3’UTR 0.00333 
22 Number of symmetric bulges 0.00290 
23 G+C content upstream of the target site 0.00287 
24 Number of bulges on the target site 0.00286 
25 Length of the second largest bulge on the target site 0.00268 
26 Mean length of bulges on the target site 0.00263 
27 T9 S/W anchor 0.00261 
28 Binding asymmetry 0.00255 
29 Number of bulges in the target site of size two 0.00240 
30 Total number of G:U wobble base pairs 0.00227 
31 Local RISC accessibility 30/30 0.00220 
32 Local RISC accessibility 3/15 0.00215 
33 Number of bulges in the target site of size four 0.00210 
34 Difference in G+C content between the first and the last nt of the target site 0.00201 
35 Occurrence of CpG in downstream flanking area 0.00179 
36 Number of bulges in the microRNA of size one 0.00179 
37 Length of the second largest bulge on the microRNA 0.00174 
38 Number of bulges on the microRNA 0.00153 
39 Number of bulges in the microRNA of size five 0.00128 
40 Number of bulges in the target site of size three 0.00113 
41 Difference in G+C content between the target site and the 20 nt upstream and 

downstream flanking region 0.00112 
42 Number of bulges in the target site of size five 0.00100 
43 Number of bulges in the microRNA of size four 0.00084 
44 G+C content downstream of the target site 0.00084 
45 Number of bulges in the target site of size six 0.00021 

Table 8: A ranked list of all features used in this work. 
The score is calculated by the ReliefF method.  
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4.3.5. Evaluation on experimentally verified data 

We next set out to evaluate the quality of the learning scheme implemented in 

TargetSpy on experimentally verified data and to benchmark TargetSpy against 

commonly used methods. This task is challenging as published methods are based on 

different principles, which makes it hard to compare them in a fair fashion. Our 

current knowledge about microRNA target sites is almost exclusively drawn from a 

handful of experiments exploring the targeting of a minority of the most highly 

expressed microRNAs (Baek et al. 2008). These experiments may have a strong 

selection bias in that they usually analyze the impact of microRNA overexpression or 

depletion on conserved molecular mechanisms. In addition, experimentally identified 

targets are often biased towards computational prediction approaches used to identify 

the initial pool of candidates (Stark et al. 2005). 

Recently the impact of microRNA overexpression and knockdown was analyzed in 

large-scale proteomic studies (Baek et al. 2008; Selbach et al. 2008) not suffering 

from the selection bias discussed above. A further advantage is that none of the 

prediction approaches were trained on these data. However the data were generated 

by mass spectrometry and are therefore prone to an expression bias, although the 

authors state that this bias is mild. An additional complication is that the changes in 

protein expression of only a few microRNAs were measured, but the precise location 

of the target site in the respective transcript was not determined. 

However, until high quality deep sequencing data like those from (Chi et al. 2009) 

become available in large amounts, these data constitute the current gold standard. 

Hence we use the fly dataset (Kertesz et al. 2007; Stark et al. 2005) and the human 

pSILAC dataset (Selbach et al. 2008) for evaluation. 

Performance comparison in Drosophila melanogaster 

In 2005 Stark et al. (Stark et al. 2005) conducted a broad comparison of widely used 

target prediction approaches. A set of 133 experimentally tested functional (61) and 

non-functional (59) microRNA-gene interactions was compiled, from which 120 

were used for the actual comparison (Stark et al. 2005). This dataset served as the 

standard of truth to evaluate the evolutionary approach to microRNA target 
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prediction published by Gaidatzis et al. (Gaidatzis et al. 2007) and was later extended 

to 190 interactions by Kertesz et al. (2007). Note that this latter set also includes the 

13 interactions that were excluded by Stark and colleagues since their respective 

3’UTRs were not annotated. To assess the predictive power of our method and 

compare it with other methods, we applied it first to the original set and then to the 

extended set of targets. Since we assign each candidate zone a score, we are able to 

quantify the performance by a receiver operating characteristic (ROC) curve, making 

the comparison to other approaches more transparent. 

When comparing the performance of methods on the original dataset of Stark et al. 

(2005) (Figure 26A,C) EIMMo achieves the best results, showing a high true-

positive rate coupled with a low false-positive rate. Then follow PicTar, TargetSpy 

seed, PITA ALL 3/15, TargetScanS and TargetSpy conserved seed in the order of 

decreasing AUC values. The next best approach is TargetSpy no-seed, followed, with 

significant distance, by miRanda and finally RNA22, that is performing marginally 

better than random.  

Despite the benefit of being able to compare all methods by just one value, looking at 

the ROC curve progression is even more enlightening, especially for those methods 

that are clustered closely together by the AUC value. Particularly interesting is the 

characteristic of the curves at low false-positive rates as for many experiments the 

amount of samples may be strongly limited. TargetSpy conserved seed shows the 

lowest false-positive rate (FPR) in the test up to a true-positive rate (TPR) of 48%. 

TargetSpy seed shows the second lowest FPR, but offers slightly better TPR, 

comparable to that of PicTar. Note that TargetSpy no-seed shows a performance that 

is close to class II and III methods, especially for its top predictions that cover more 

than 50% in TPR. 

Benchmarking on the extended set of 190 experimentally verified microRNA-target 

interactions (see Methods) produces several interesting observations (Figure 26B,D). 

First, the AUC values are generally lower compared to the original set. Second, 

PITA, specifically fitted to this set, is far ahead of all other approaches. Third, the 

ranking of the other approaches has not changed except that i) TargetSpy seed 

performs ahead of PicTar and EIMMo, TargetSpy conserved seed outperforms 
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TargetScanS and miRBase Targets performs better than PITA TOP 3/15 and ii) the 

relative distance between TargetSpy no-seed and TargetScanS is reduced. Finally, 

the specificity in particular that of EIMMo and TargetScanS, suffered strongly 

especially for their top predictions.  

In summary, the evaluation on experimental fly data suggests that TargetSpy, which 

was trained on mouse data, performs as good as current state-of-the-art algorithms 

when enforcing the seed match criterion. Furthermore, the no-seed prediction is 

notably better than RNA22, the other tested algorithm that does not require a perfect 

seed match. 

 

Figure 26: Performance comparison of target prediction approaches. 
A) and C) refer to the dataset compiled by Stark et al. (Stark et al. 2005)). B) and D) refer to 
the dataset compiled by Kertesz et al. (2007). A) and B) show the ROC curves of the tested 
approaches, C) and D) the AUC values. The gray line indicates the performance of random 
guessing. 
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Evaluation on pSILAC data 

Selbach et al. (Selbach et al. 2008) performed a comparison of the most widely used 

approaches by measuring the fraction of predicted target sites associated with 

proteins that are more strongly down-regulated than -0.1 log2 fold change. They 

generated two background (random) sets: i) a set where all mRNAs present are 

considered as targets, and ii) a set of all mRNAs that have a 6-mer seed match in 

their sequence, further referred to as the Selbach background. In order to compare 

class III predictors to the random expectation, we additionally introduced a 

background dataset for conserved seed matches as proposed by (Bartel 2009). 

Specifically, we searched for 6-mer (positions 2-7) seed matches that are perfectly 

conserved in human, chimp, mouse rat and dog that show additionally a match to 

either base 1 or 8 (Chen and Rajewsky 2006). This way we have background sets 

produced by trivial prediction strategies in place for each of the three classes of 

prediction tools. 

As seen in Figure 27 for the first class (no seed/no conservation) a completely 

random selection of target sites would yield a ~27% intersection (background 

accuracy) with down-regulated proteins in pSILAC. Both RNA22 and TargetSpy no-

seed perform better than random. TargetSpy no-seed attains the accuracy of 34.2%, a 

significant improvement compared to random predictions. RNA22 shows 36.2% 

accuracy, however at a sensitivity that is more than 6.6 times lower than TargetSpy 

no-seed sens. In the specific setting TargetSpy no-seed contains still more than 2.3 

times as many target sites as RNA22, but achieves an accuracy of 42.9% and is thus 

on the same level as the 6-mer seed background of class II.  

The background accuracy for class II is at 42.6% when using 6mer seeds. As PITA 

covers all target site candidates with seed matches beginning at the size of 6 nt and 

subsequently ranks them according to their accessibility, it is necessary to consider 

only its top ranking predictions. Following Selbach et al. 2008 (Selbach et al. 2008) 

we took the top 1000 predictions per microRNA and found a 42.3% overlap with 

down-regulated proteins demonstrating an accuracy below the background level. 

TargetScanS, predicting non-conserved target sites with at least a 6-mer seed match, 

shows a higher accuracy (47.9%) than PITA and noticeably out-performs the 6-mer 
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seed background, although it does not pass the accuracy of the 7-mer seed 

background. For 7mer seeds, which are used by PicTar and TargetSpy seed, the 

corresponding background accuracy was 48.4%. Both TargetSpy seed sens and 

TargetSpy seed spec perform clearly better than this trivial prediction, showing 

accuracies of 52.8% and 55.3%, respectively, and thus perform best in class II. 

 

 

Figure 27: Performance evaluation of various prediction approaches on the pSILAC 
data set.  
This set contains changes in protein production caused by the five microRNAs miR-1, miR-
16, miR-155, miR-30a-5p and let-7b. The first value in each bar represents the number of 
microRNA-target interactions that are associated with down-regulation (log2-fold change < -
0.1) and the second value reports the total number of interactions predicted for the pSILAC 
set. The value on top of each bar displays the accuracy. White bars with black outlines 
display the trivial predictors, TargetSpy is represented in orange and other approaches are 
displayed in black. 
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The final class of target prediction approaches (seed/conservation) shows an overlap 

of 62.5% with random predictions. Both miRanda and miRBase Targets predictions 

include a small fraction of conserved target sites with imperfect seed regions, and the 

corresponding accuracies (45.5% and 42.1%, respectively) are below the background 

and close to that of the trivial seed predictor of class II. PicTar 4-way (those 

predictions where the seed match is conserved among 4 species) reaches an accuracy 

of 60.2%, which is also below the background. Interestingly the more stringent 

PicTar 5-way that additionally requires conservation in chicken performs worse that 

PicTar 4-way. Also DIANA-microT, TargetScanS, PITA TOP, an official subset of 

PITA with conserved 8-mer seed matches required, and EIMMo with the high 

confidence setting (score >= 0.5) are performing slightly below background. The 

first approach performing above the trivial predictor of class III is TargetRank 

(62.9%), followed by mirTarget2 (67.4%) and the sensitive subset of TargetSpy 

conserved seed (68.1%). Finally, TargetSpy conserved seed spec achieves the highest 

accuracy of all methods (75.3%). It should be noted, however, that although 

TargetSpy achieves superior performance in terms of accuracy and sensitivity in 

classes I and II, the sensitivity of TargetSpy in class III is lower compared to other 

approaches. The higher sensitivity of some approaches might be attributed to the 

choice of seed match that is enforced. EIMMo, for example, integrates several 

different seed match definitions (including also short 6-base long ones) and shows a 

sensitivity that is 2.7 times higher than our approach at the sensitive threshold and 

more than 6 times higher when compared to our specific setting.  

To exclude the possibility that the performed evaluation is only valid for the chosen 

threshold of -0.1 log2 fold change, we also investigated the cumulative fraction of 

predicted target sites as a function of the protein log2 fold change. Figure 28 shows 

the distributions for each of the three classes. It becomes apparent that the relative 

performance of computational approaches remains practically unchanged for each 

fold change value in each class. However, as seen in Figure 28C, the advance of 

TargetSpy conserved seed spec (green line) is particularly pronounced for low log2 

fold change values. Since low fold change values correspond to stronger protein 

down-regulation this may imply that our approach performs even better for highly 

efficient target sites. 
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In general our results on the pSILAC data suggest that TargetSpy performs best in 

each class, showing furthermore a constant gain in accuracy from the sensitive to the 

specific threshold. This finding implies that the prediction quality increases with the 

score and therefore the ranking of target sites imposed by the score of our model 

seems to have biological relevance. 

 

Figure 28: Cumulative fraction of predicted target sites of down-regulated proteins 
according to the measured fold change. 
The distributions are given for A) approaches not requiring a seed (class I), B) approaches 
requiring a seed (class II), and C) approaches requiring a seed and considering site 
conservation (class III). 
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the specific set. This means that TargetSpy reports between 26 (spec) and 112 (sens) 

functional target sites showing no seed match per microRNA that could not be 

detected by any other tool. 

4.4. Conclusion 

In summary, we have developed a novel computational approach for predicting 

microRNA target sites that neither implies the existence of a seed nor utilizes 

phylogenetic footprinting. Instead of using rigid rules and/or arbitrarily selected 

target site features, we objectively derived a set of discriminative features to be used 

for machine learning. Due to these important advantages TargetSpy is able to predict 

species specific (i.e. unconserved) target sites, is suitable for processing poorly 

conserved/low quality genomic sequences for which methods that rely on 

conservation and species specific information will not work, and allows for 

analyzing differences in microRNA targets between various species.  

We grouped computational prediction approaches into three classes, depending on 

their usage of a seed match criterion in order to provide a comparison of their 

performance among each other and against the background level. On an 

experimentally derived microRNA-target interaction set in Drosophila, our method 

is on par with the best available approaches. In a further benchmark on human 

microRNA-target data generated by the pSILAC technology, TargetSpy not only 

reported the highest accuracies in class I, but also in the other two classes for which 

our predictions where post filtered according to the class definition. Given that 

TargetSpy, trained on experimentally derived Ago binding sites in the 3’UTR of 

mouse transcripts, showed very good performance when evaluated in fly and human, 

we suggest that our algorithm can be applied to a broad taxonomic range of 

organisms.  

Finally, we have shown that even on a small high quality target site specific data set, 

derived by a deep sequencing experiment (Chi et al. 2009), machine learning 

techniques show high potential in the prediction of microRNA target sites. We 

assume that advances in this direction will become even more pronounced as more 

data of this kind become available. 



 

 

Chapter 5  

Conclusion and Outlook 

The microRNA research is a very young scientific discipline. Although back in 1993 

the first cornerstone was laid as the (microRNA) gene lin-4 was discovered in C. 

elegans, the observed phenomenon was believed to be a special case in nematodes. 

Initial in the year 2000 with the discovery of microRNA let-7 in C. elegans as well 

as homologs in fly, human and eleven other bilateral animals, the microRNA 

pathway was considered as a general concept on gene regulation in eukaryotes. The 

knowledge we have about microRNAs is therefore the result of intensive research of 

less than a decade. 

Today, a considerable amount of microRNA genes in various species is known. 

However, the end of the flagpole is not reached, as the number is constantly growing. 

Further, only for very few microRNAs their function is at least partly understood. 

Consequently, the very next major milestone in microRNAs research is the 

functional annotation of all microRNAs of an organism. Therefore the two goals 

towards that milestone are the detection of all microRNAs and the identification of 

their targets. 

With the technology progression of deep-sequencing platforms, vast amounts of 

actually expressed RNA sequences become available. Our pipeline miRanalyzer 

solves two major bioinformatics challenges: 

First, the multitudinous amounts of sequence reads are clustered and mapped to the 

genome. Consequently, annotations from various databases like RFam, RepBase and 
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miRBase can be associated with the mapped reads. Hence, miRanalyzer provides an 

analysis of deep-sequencing experiments in the sense that known microRNAs are 

identified and reported together with their read copy number, an estimate for the 

expression level. 

Second, clustered reads that could not be mapped to known annotations are tested if 

they constitute a functional but unknown microRNA. The two major key points here 

are the exploit of the Dicer footprint, visible due to next generation sequencing 

technologies for the first time, and the usage of a machine learning technique trained 

on experimentally derived data. The combination of this highly distinctive model and 

the fact that deep-sequencing data actually contain sequence reads from expressed 

RNA molecules only, led to a prediction accuracy that is strongly ahead of traditional 

approaches. Besides, we completely abstained from conservation such that 

miRanalyzer is suitable for the detection of species-specific microRNAs. 

The other method, TargetSpy, we have developed in this thesis predicts microRNA 

target sites without requiring a seed match and conservation. It is based on machine 

learning techniques, a broad spectrum of biologically motivated features and an 

automatic feature selection approach. TargetSpy is trained on recently available 

deep-sequencing data of Ago binding sites, a dataset that constitutes the current gold 

standard in means of actual target site information. Due to these important 

advantages we are able to predict species-specific target sites with and without a seed 

match, process poorly conserved genomic sequences and allow for analyzing 

differences in microRNA targets between various species.  

Depending on the usage of a seed match criterion and conservation, we have 

structures the field of prediction approaches into three distinct classes. To perform 

meaningful evaluations, we post-filtered the predictions of TargetSpy to meet the 

minimum requirements of the class considered. Conditioned on the evaluations, 

TargetSpy performs either on par with the best available approaches or even superior 

in every prediction class. As TargetSpy was trained on mouse data, but evaluated on 

human and fly data, we suggest that our algorithm can be applied to a broad 

taxonomic range of organisms. 
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Altogether we have provided two approaches in this work, one for each of the 

targeted issue. Either of them contributes significantly to the research field. Both 

methods utilize next-generation sequencing data and both are based on machine 

learning techniques. One additional critical factor is the usage of biologically 

motivated features that are evaluated in an automatic feature selection approach. 

Ultimately, the ideas and methods presented in this thesis may be extended and 

supplemented in various directions in future research. 

First and foremost, the list of features used in both approaches can be easily extended 

and adapted such that novel experimental findings can be accounted for in future 

releases. MiRanalyzer for instance is highly focused on features intrinsic to the read 

sequence data from deep-sequencing experiments. Integrating novel features that are 

based on characteristics of the mapped genomic location for example promotor 

regions or other microRNA loci (gene cluster) may improve prediction accuracy. 

Also the features currently used are a source for inspiration and improvements. On 

the one side, one may combine two features by expert knowledge to create a more 

powerful third feature. Promising candidates therefore are certainly GC content 

related features and RISC accessibility. On the other side features themselves could 

be improved. Again, RISC accessibility is a promising candidate, as currently only 

the energies of the microRNA-target hybrid and the self-folded target sites are 

considered. Improvements could be achieved when the actual structure change 

around the target site is measured between the unbound and bound state. 

We have developed a whole new approach in the identification of microRNA target 

site candidates, a necessary step since we abandoned the usage of a seed match 

requirement. We have chosen conservative parameters to lose as few functional 

target sites as possible. However, the reverse of this approach is that we end up with 

enormous amounts of apparently improper candidates that clutter the successive 

classification step. As new biological insights become available that allow a more 

restrictive screening for candidates without losing actual functional sites, those 

criteria may be integrated into the TargetSpy pre-processing step. Consequently the 

prediction accuracy may improve while simultaneously the time needed for 

prediction will decrease as the amount of improper candidates is reduced. 
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Ultimately, the usage of deep-sequencing technology is at the outset. As more of 

these high quality data will become publicly available, both of our developed 

methods will directly profit, as they just have to be retrained on the new data. 

Further, more extensive and unbiased evaluations will be possible such that the 

benefits of individual features and prediction approaches will become visible in a 

much more detailed fashion. 

In the end it will be the tight interplay of experimental design and bioinformatics 

tools that ensure a continuous increase in microRNA knowledge and model 

advancements. Through these we will gain a more sophisticated understanding of 

organism complexity that will lead to important applications and improvements of 

disease therapies. 
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