INFORMATIK HH-HHH

Effiziente Algorithmen

O-0-0—O10—]
O-0—0O-0O10—

O-O-O—O1—0]
—0-0-0-010—

Design of Algorithms for Motion Planning and Motion
Prediction

Dmitry Chibisov

Vollstandiger Abdruck der von der Fakultat fir Informatik der Technischen Universitat
Munchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. A. Knoll
Prufer der Dissertation:
1. Univ.-Prof. Dr. E. W. Mayr
2. Univ.-Prof. Dr. H.-J. Bungartz

Die Dissertation wurde am 10.03.2008 bei der Technischen Universitat Minchen

eingereicht und durch die Fakultat fir Informatik am 04.12.2009 angenommen.

i

Abstract

This work is devoted to design of efficient algorithms for special instances of robot motion
planning problems and prediction of motion of fluids. The intricate nature of these prob-
lems problems may manifest itself in enhanced computational complexity. For instance,
the well-known NP- and PSPACE-hardness results for various classes of motion planning
and motion optimization problems seem to imply exponential worst-case running time.
Although these results characterize worst case instances, they nevertheless are indicative
of the computational difficulty of the problem. The goal of this work is to develop a
framework of symbolic-numerical algorithms and software packages using Computer Al-
gebra System Maple, which would allow to increase the efficiency of solution of special
motion planning and motion prediction problems and provide the possibility to develop
the efficient approximation methods for computationally hard problems.

The main contribution of this work is a novel approach for motion planning problem
for multiple tasks distributed in space, which have to be executed by the robot. We de-
scribe an algorithm which computes the minimum-time robot motion due to given velocity
and orientation constraints of the robot end-effector during task execution, and limits on
velocities and accelerations during the overall work-cycle. Given equations of robot mo-
tion in matrix form, we shall utilize the freedom in position and orientation of the robot
end-effector during task execution and express the solution space for our optimization task
explicitly using computation of Moore-Penrose pseudoinverses of matrices with polyno-
mial entries. Furthermore, we discuss the usage of polynomials to speed-up algorithms for
grid generation and numerical solution of two-dimensional incompressible Navier—Stokes
equations.

iii

v

Contents

Problem Formulation and State of the Art
1.0.1 Robot Motion Planning
1.0.2 Prediction of Motion of Fluids
1.1 Contributions of this Work

Navigation Functions for Piano Mover’s Problem

2.1 Construction of the Navigation Function
2.2 Computing Configuration Space Obstacles
2.3 Navigation in the Configuration Space
2.4 Conclusion

Motion Planning for Multiple Tasks

3.1 Solving Kinematic Equations for Tasks with Constrained Orientation of the
End-Effector

3.2 Solving Equations of Motion using Generalized Inverses

3.3 Computing Minimum-Time Motion

3.4 Conclusion

Grid Generation
4.1 Structured Grids
4.2 Unstructured Grids
4.2.1 Hierarchical Methods in Computer Aided Geometric Design and
Symmetry . . o.o. oL
4.2.2 Computing the Invariant Matrix Group
4.2.3 Boundary Discretization Using Quadtrees
4.2.4 Advancing Front Triangulation

Prediction of Fluid Motion

5.1 Second Order Approximation
5.1.1 Fourier Symbol
5.1.2 Analytic Investigation of Eigenvalues
5.1.3 Verification of Stability Conditions

0 U

11
13
15
18

21

24
26
31
33

35
35
39

39
42
45
46

vi CONTENTS

Literature 68

Chapter 1

Problem Formulation and State of
the Art

1.0.1 Robot Motion Planning

Many practical geometric problems for industrial applications deal with moving objects.
In this section we describe the classification of motion planning problems due to [44].
The position and orientation of the geometric object to be moved in the real space may
be manifested as an individual point in a configuration space, in which each coordinate
represents a degree of freedom in the position or orientation of this object (see [43]). More
generally, in the case of a number of distinct objects we denote with configuration space
a topological space C' which is spanned by all the parameters that uniquely determine
the positions of the movable objects. The configurations which, due to the presence of
obstacles, are forbidden to the object can be characterized as regions in the configuration
space Cys called configuration space obstacles (see Fig. 1.1).
The free space Cy.. remains after removing all the obstacles from the workspace

M
Cf?"ee =C - U Cobsj- (11)

j=1

The problem to find a collision-free trajectory of an object is called the piano mover’s
problem:

Formulation 1.1. The Piano Mover’s Problem
e A world W in which either W = R? or W = R3.
e A semi-algebraic obstacle region O C W in the world.

e A semi-algebraic robot is defined in W. It may be a rigid robot A or a collection of
m links, Ay, Ay, ..., A,

2 CHAPTER 1. PROBLEM FORMULATION AND STATE OF THE ART

h

Figure 1.1: Configuration space approach - enlarging obstacles: a problem of motion plan-
ning is reduced to finding a curve (motion of an individual point) in the configuration
space

The configuration space C' determined by specifying the set of all possible transfor-
mations that may be applied to the robot. From this, Cys and Cfe. are derived.

A configuration, ¢; C C/,. designated as the initial configuration.

A configuration g C Cje. designated as the goal configuration. The initial and goal
configurations together are often called a query pair (or query) and designated as

(QI, qG)-

A complete algorithm must compute a (continuous) path, 7 : [0,1] — Clee, such
that 7(0) = ¢; and 7(1) = qg, or correctly report that such a path does not exist.

The algorithm which solves the translational and rotational collision-free motion or safe
placement problem when the objects are polygons or polyhedra was first presented in [43].
This algorithm computes configuration space obstacles using the notion of the Minkowski
sum. After the configuration space obstacles have been calculated, the problem of motion
planning is reduced to finding a path in the so-called wisibility graph. In the presence
of rotational motion, the induced configuration space obstacles may be represented as
nonlinear constraints, which can be approximated by linear constraints. As noted in [52],
the fundamental difficulty is that an exponential number of linear constraints would be
required to approximate even a quadratic surface within an accuracy of 27", resulting in
an exponential time algorithm.

The exact computation of configuration space obstacles can be done with the aid of
real quantifier elimination methods. The configuration space obstacles are semi-algebraic
sets and the task of collision-free motion planning is then reduced to the problem of con-
structing a semi-algebraic curve between initial and final configurations, such that the
intersection of this curve with the interior of semi-algebraic set is empty. This purely geo-
metric problem has been solved in [60] using Cylindrical Algebraic Decomposition (][20]) of
semi-algebraic sets. The latter algorithm can be performed in time polynomial in the num-
ber of polynomials as well as their maximal degree and double exponential in the number
of variables. More efficient algorithms for the path calculation are presented in [3], [10]

and have single exponential bounds in the number of variables. One of disadvantages of
the mentioned algorithms is that they follow the boundary of configuration space and may
produce paths, which touch obstacles. To calculate paths with maximal clearance from
obstacles several methods based on Voronoi diagrams have been proposed (see [10], [61]).
Since these algorithms are exponential in the number of variables they can not be applied
to problems with many degrees of freedom.

The following extension of the Piano Mover’s problem can be formulated as follows (see

[44]):
Formulation 1.2. Feedback Motion Planning

e A state space, X, which is a smooth manifold. The state space will most often be
C'ree, as defined previously.

e For each state, x € X, an action space, U(z) = T,(X), where T, is the tangent
space at a point x on a manifold X. The zero velocity, 0 € T,.(X), is designated as
the termination action, uy . Using this model, the robot is capable of selecting its
velocity at any state.

e An unbounded time interval, 7" = [0, 00).
e A differential state transition equation
T =u,

which is expressed using a coordinate neighborhood and yields the velocity, & , di-
rectly assigned by the action u. The velocity produced by ur is 0 € T,(X), which
means ’stop”.

A goal set Xg C X.

The task is to compute a feedback plan, 7, which is defined as a function 7 , which pro-
duces an action u € U(x) for each x € X . A feedback plan can equivalently be considered
as a vector field on X because each u € U(x) specifies a velocity vector. Further exten-
sion is motion planning under differential constraints. Motion planning under differential
constraints can be considered as a variant of classical two-point boundary value problems
(BVPs). Given initial and goal states, the task is to compute a path through a state space
that connects initial and goal states while satisfying differential constraints ([44]).

Formulation 1.3. Motion Planning Under Differential Constraints

e A world W, a robot A (or Ay,..., A, for a linkage), an obstacle region O, and a
configuration space C', which are defined the same as in Formulation 1.1.

e An unbounded time interval 7" = [0, c0)].

4 CHAPTER 1. PROBLEM FORMULATION AND STATE OF THE ART

A smooth manifold X, called the state space, which may be X = C or it may be a
phase space derived from C' if dynamics is considered;

e Let K : X — (' denote a function that returns the configuration ¢ € C' associated
with z € X. Hence, ¢ = k(x).

e An obstacle region X, is defined for the state space. If X = C, then X 55 = Cpps.

e For each state x € X, a bounded action space U(x) C R™ U up, which includes
a termination action ur and n is some fixed integer called the number of action
variables. If the termination action is applied, it is assumed that f(x,ur) = 0 (and
no cost accumulates, if a cost functional is used). Let U denote the union of U(x)
over all z € X.

e A system is specified using a state transition equation = = f(x, u), defined for every
r € X and u € U(x).

o A state z; € Xy, is designated as the initial state.
o A set Xg C Xy is designated as the goal region.

e A complete algorithm must compute an action trajectory w : T'— U, for which the
state trajectory satisfies:

- z(0) =,

— there exists some t > 0 for which u(t) = ur and z(t) € Xg.

The only known methods for exact planning under differential constraints in the pres-
ence of obstacles are for the double integrator system ¢ = u , for C = R ([48]) and C = R?
([11]). Powerful numerical solver for planning under differential constraints was proposed
in [59] and is based on the multiple shooting method for solving two-point boundary value
problems.

Lower Bounds for Motion Planning Problems

The general motion planning problem, Formulation 1.1, was shown in 1979 to be PSPACE-
hard by Reif ([52]). The problem was restricted to polyhedral obstacles and a finite number
of polyhedral robot bodies attached by spherical joints. The coordinates of all polyhedra
are assumed to be in Q . The proof introduces a motion planning instance with many
attached robot parts that work their way through a complicated system of tunnels, which
simulates the operation of a symmetric Turing machine. Canny established that the prob-
lem in Formulation 1.1 (expressed using polynomials that have rational coefficients) lies
in PSPACE [10]. Therefore, the general motion planning problem is PSPACE-complete.
Many other lower bounds have been shown for a variety of planning problems. One famous
example is the Warehousemans problem (see [44]). This problem involves a finite number
of translating, axis-aligned rectangles in a rectangular world. It was shown in [33] to be

PSPACE-hard. It was even shown that planning for Sokoban, which is a warehousemans
problem on a discrete 2D grid, is also PSPACE-hard ([23]). Other general motion plan-
ning problems that were shown to be PSPACE-hard include motion planning for a chain of
bodies in the plane ([32], [34]) and motion planning for a chain of bodies among polyhedral
obstacles in R3.

Upper Bounds for Motion Planning

The first upper bound for the motion planning problem in Formulation 1.1 results from the
application of cylindrical algebraic decomposition [20]. Let n be the dimension of C. Let m
be the number of polynomials in F', which are used to define Cs. Let d be the maximum
degree among the polynomials in F'. The maximum degree of the resulting polynomials is
bounded by O(d?"") , and the total number of polynomials is bounded by O((md)*" ")
. The total running time required to use cylindrical algebraic decomposition for motion
planning is bounded by (md)®"". Since the general problem is PSPACE-complete, it
appears unavoidable that a complete, general motion planning algorithm will require a
running time that is exponential in dimension. Since cylindrical algebraic decomposition
is doubly exponential, it led many in the 1980s to wonder whether this upper bound could
be lowered. This was achieved by Canny’s roadmap algorithm, for which the running time
is bounded by m™(lg m)do("4). Hence, it is singly exponential, which appears very close to
optimal because it is up against the lower bound that seems to be implied by PSPACE-
hardness. Another single exponential roadmap algorithm has been introduced in [3], and
its running time is bounded by m*™d°"*) . This is the best-known upper bound for the
problems in Formulation 1.1.

1.0.2 Prediction of Motion of Fluids

In this section we discuss the methods of motion prediction for incompressible fluids. Non-
stationary incompressible viscous fluids will be described by the Navier-Stokes equations.
For simplicity, we shall limit our consideration to the two-dimensional case and carry out
our analysis in Cartesian coordinates. Then we obtain a system of partial differential
equations consisting of two momentum equations

du N dp 1 (Pu N Puy Ow?) O(w) N

ot Ox Re \0x%2 0Oy? Ox oy Ja:
v Op 1 (0% 0% O(uv) O(v?)
b= (ot | - - + gy
ot 0y Re \0x%2 0y? ox dy

and the continuity equation

o o,
or oy

The quantities to be found are

6 CHAPTER 1. PROBLEM FORMULATION AND STATE OF THE ART

u: Q% [0,tena) — R, the fluid velocity in z—direction,

o v:) x|[0,tena] — R, the fluid velocity in y—direction,

p:Qx[0,tena] — R the pressure.

g, und g, : Q x [0,tenq) — R denote the external forces, either the Earth grav-
ity or other body forces acting throughout the bulk of the system and producing
acceleration in its parts.

The dimensionless real quantity Re is called the Reynolds number; it characterizes the
fluid flow. The Reynolds number depends on viscosity and on average velocity of the fluid.
The lower the Re value, the more viscous is the fluid.

At the initial moment (¢ = 0), initial conditions u = ug(z,y) and v = vo(x, y) satisfying
(5.3) are given. Besides, supplementary conditions holding at all four boundaries of the
region for all times are required, so that we arrive at aninitial-boundary value problem.

The numerical solution of Navier—Stokes equations is simplified greatly if they are dis-
cretized on a uniform rectangular spatial grid in Cartesian coordinates. It is natural and
convenient to use such grids at the solution of problems in regions of rectangular shape.
Many applied problems are, however, characterized by the presence of curved boundaries.
In such cases, other grid types are often used: curvilinear grids, structured and unstruc-
tured triangular and polygonal grids. Although such grids simplify the implementation of
boundary conditions, their use leads to new difficulties, such as the extra (metric) terms
in equations, extra interpolations, etc. ([38]).

During the last decade, a new method for numerical solution of the Navier-Stokes
equations in regions with complex geometry has enjoyed a powerful development: the
immersed boundary method (IBM). In this method, the computation of gas motion is
carried out on a rectangular grid, and the curved boundary is interpreted as an interface.
The grid cells lying outside the region occupied by the fluid are classified as the ghost
cells in which the Navier—Stokes equations are, however, also solved numerically. A survey
of different recent realizations of the IBM may be found in [46, 65, 68]. The immersed
boundary method has extended significantly the scope of applicability of the rectangular
Cartesian grids at the numerical solution of applied problems of the incompressible fluid
dynamics.

For instance, the difference scheme proposed in [37] is often used within the IBM frame-
work. The convective terms are approximated in this scheme with the aid of the explicit
three-level Adams—Bashforth second-order scheme, and the viscous terms are approximated
by the implicit second-order Crank—Nicolson scheme. Despite the popularity of this and
other schemes [37], its stability was not investigated even in the case of two spatial vari-
ables. As will be shown in Chapter 3 the stability investigation can be reduced to the
problem of variables elimination from algebraic equations, which turns out to be a hard
task even for modern computer algebra software.

1.1. CONTRIBUTIONS OF THIS WORK 7

Symbolic Facilities
of CA
and Visualisation

Protolype Software | o
in Maple

|

Software
in Java, C++ efc.

Figure 1.2: Computer Algebra for Motion Planning and Optimization

1.1 Contributions of this Work

This work is devoted to design of efficient algorithms for robot motion planning and pre-
diction of motion of fluids. The intricate nature of these problems may manifest itself
in enhanced computational complexity. For instance, the well-known NP- and PSPACE-
hardness results for various classes of motion planning and motion optimization problems
seem to imply exponential worst-case running time. Although these results characterize
worst case instances, they nevertheless are indicative of the computational difficulty of the
particular problem at hand. The goal of this work is to develop a framework of symbolic-
numerical algorithms (in particular, using Computer Algebra System Maple as shown in
Fig. 1.2) which would allow to increase the efficiency of solution for special motion plan-
ning and motion prediction problems, and provide the possibility to develop the efficient
approximation methods for computationally hard problems.

Due to the high computational complexity of finding the exact solution of the Piano
Mover’s problem (Formulation 1.1), the widely used heuristic approach is based on so-
called navigation functions. The construction of a scalar valued navigation function for
the specification of robot tasks is a well-known problem. Given the initial and final po-
sition of a robot as well as a set of semi-algebraic obstacles, the navigation function is
required to rise in the vicinity of obstacles in the direction towards them and to decrease
monotonously along some path from the initial to the final position, if and only if the path
does not intersect any obstacle. In this way the problem of calculation of the collision-free
path can be solved in a computationally efficient manner by reduction to the task of fol-
lowing the gradient of the navigation function. In Chapter 2, we present a new family of
analytic navigation functions and investigate their properties for a large class of geometric
optimization problems ([19]).

In Chapter 3, we consider a special case of a general robot motion planning problem

8 CHAPTER 1. PROBLEM FORMULATION AND STATE OF THE ART

(Formulations 1.2, 1.3) for multiple tasks distributed in space, which have to be executed
by the robot and describe an approach for computing the minimum-time robot motion
due to given velocity and constrained orientation of the robot end-effector during the task
execution, and limits on velocities and accelerations during the overall work-cycle ([17],
[18]). Since the velocity of task execution is given, the time needed for execution of given
tasks can be reduced using the freedom in orientation of the end-effector in such a way as
to reduce the motion time between tasks. Given equations of robot motion in matrix form,
we shall utilize the freedom in position and orientation of the robot end-effector during
the task execution and express the solution space for our optimization task explicitly using
computation of Moore-Penrose pseudoinverses of matrices with polynomial entries. Finally,
joint displacements for offsets between tasks are described using cubic B-Splines such that
a number of well-known numerical methods can be applied to compute minimum-time
B-Spline curves. The application of this approach will be applied to remote laser welding
used in automotive industry in order to compute minimum-time robot trajectories.

Finally, in Chapter 4 and Chapter 5 we discuss the usage of polynomials to speed-up
algorithms for grid generation and numerical solution of two-dimensional incompressible
Navier-Stokes equations (see [14], [16], [15]).

Chapter 2

Navigation Functions for Piano
Mover’s Problem

Many practical geometric problems for industrial applications deal with placing and moving
an object without colliding with nearby objects. The intricate nature of such problems
manifests itself in enhanced computational complexity, whereas in industrial applications
these problems must often be solved in real time. In this chapter, we consider two main
types of spatial planning problems in a common framework:

e FindSpace: optimal placement of geometric objects, for example, maximizing the
number of objects of similar shape that can be cut out from a piece of material,
minimizing the quantity of material needed to produce certain shapes, various packing
problems, etc. (see, for example, [22]);

e FindPath: finding a collision-free motion path of an object amidst some obsta-
cles of a particular shape, for example, an automatic assembly using an industrial
robot, which requires grasping objects, moving them without collisions, and ulti-
mately bringing them together.

The position and orientation of the geometric object to be moved or placed in the real
space may be manifested as an individual point in a configuration space, in which each
coordinate represents a degree of freedom in the position or orientation of this object ([43]).
The configurations which, due to the presence of obstacles, are forbidden to the object can
be characterized as regions in the configuration space called configuration space obstacles
(see Fig. 1.1). The algorithm which solves the translational and rotational collision-free
motion or safe placement problem when the objects are polygons or polyhedra was first
presented in [43]. This algorithm computes configuration space obstacles using the notion
of the Minkowski sum. After the configuration space obstacles have been calculated, the
problem of motion planning is reduced to finding a path in the so-called wvisibility graph.
In the presence of rotational motion, the induced configuration space obstacles may be
represented as nonlinear constraints, which can be approximated by linear constraints. As
noted in [52], the fundamental difficulty is that an exponential number of linear constraints

9

10 CHAPTER 2. NAVIGATION FUNCTIONS FOR PIANO MOVER’S PROBLEM

would be required to approximate even a quadratic surface within an accuracy of 277,
resulting in an exponential time algorithm.

The exact computation of configuration space obstacles can be done with the aid of
real quantifier elimination methods, as will be discussed in Section 2.2. The configuration
space obstacles are semi-algebraic sets and the task of collision-free motion planning is then
reduced to the problem of constructing a semi-algebraic curve between two points, such
that the intersection of this curve with the interior of semi-algebraic set is empty. This
purely geometric problem has been solved in [60] using Cylindrical Algebraic Decomposition
([20]) of semi-algebraic sets. The latter algorithm can be performed in time polynomial in
the number of polynomials as well as their maximal degree and double exponential in the
number of variables. More efficient algorithms for the path calculation are presented in [3],
[10] and have single exponential bounds in the number of variables. One of disadvantages
of the mentioned algorithms is that they follow the boundary of configuration space and
may produce paths, which touch obstacles. To calculate paths with maximal clearance
from obstacles several methods based on Voronoi diagrams have been proposed (see [10],
[61]).

In contrast to all these approaches, the objective of the present work is the generaliza-
tion of finding a geometric path in order to

e find paths, which guarantee a certain minimum clearance from obstacles,

e provide the possibility to incorporate nonholonomic motion constraints (velocities,
acceleration, etc.).

For this purpose, we shall describe a family of analytic functions with the property to
rise in the vicinity of obstacles of arbitrary shape in the direction towards them. Using
such ”obstacle functions” (sometimes called ”distance function”), we shall show how a
7goal function” (sometimes called ”target function”) can be constructed, which decreases
monotonously along some path from the initial to the final position, if and only if the path
does not intersect any obstacle. Combining obstacle and goal function, we shall obtain
a scalar-valued ”"navigation function” such that the problem of motion planning can be
reduced to the task of following the gradient of the navigation function.

To our knowledge, the idea of using scalar valued functions for the obstacle avoidance
was pioneered in [36]. The author proposed the navigation functions for the case the obsta-
cles are a parallelepiped, a finite cylinder, and a cone. However, these geometric primitives
do not form a sufficient set to describe the images of obstacles in the configuration space.
The first construction of a general analytic navigation function is due to [54]. The authors
show how a smooth navigation function can be constructed for the case when obstacles are
smooth manifolds. In this chapter, we describe the construction of a more general family
of navigation functions for arbitrary semi-algebraic objects. For this purpose, we shall use
the functional representation of semi-algebraic point sets defined by so-called R-functions
([56], [62]) and reduce the problem of path finding to the solution of the Newton’s equa-
tions of motion in a field of forces that can be done numerically. The obstacle and goal

2.1. CONSTRUCTION OF THE NAVIGATION FUNCTION 11

functions play the role of repulsive and attractive forces that push the object away from
obstacles and pull it towards the goal position. As will be shown, the R-functions exhibit
a wide range of differential properties, which can be used for the purpose of nonholonomic
motion control. The implementation of our approach and computational examples will be
presented.

2.1 Construction of the Navigation Function

The theory of R-functions ([56],[62]) provides the methodology of constructing an implicit
functional representation for any semi-algebraic set using logical (set-theoretical) oper-
ations. In this section we shall briefly introduce this concept and some results from the
theory of R-functions, which shall be used in Section 2.3 for the purpose of the collision-free
motion planning.

Let F(Xy, ..., X,) be a Boolean function with truth value 1 and false value 0 built using
logical operations A, V and —. A real valued function f(z1,...,2,) is called an R-function
if its sign is completely determined by the signs of its arguments. More precisely, f is an
R-function if there exists a Boolean function F' such that

sign(f(xy,...,x,)) = F(sign(Xy), ..., sign(X,,)). (2.1)

In other words, f works as a Boolean switching function, changing its sign only when
its arguments change their signs. For example, logical operations on Boolean variables
X1, Xy may be performed on real-valued variables 1, xo such that (2.1) is satisfied using
the following rules:

x1 A x25x1+x2—\/x%+x%
1V 2y = 21 + 29 + /23 + 23 (2.2)

r = —Tq.
Consider, e.g., the Boolean function defined by
F(X1, X0, X3, Xy) = X1 AN Xo AN X3 A Xy A X5,

The corresponding real valued function f may be defined recursively according to (2.2):

fi(z1,2) = &1 + 29 — \/2? + 23
fo(w3,24) = 23 4+ 24 — /7] + 27 (2.3)

flay,xa, w5, 20, 25) = fr + fo = Vi + fo° + 25 — \/(fl + o= VA +f22>2 + 252

This R-function can be used to describe point sets bounded by four arbitrary polynomials:

R(l’,y) = {(x,y)|¢1(x,y) > 0OA ¢2(x,y) > 0OA ¢3($7y) > OA ¢4($7y) > 0A ¢5($7y) Z(O})
2.4

12 CHAPTER 2. NAVIGATION FUNCTIONS FOR PIANO MOVER’S PROBLEM

ifin
o
\\&4

Figure 2.1: O(x,y) and its roots.

For example, let four lines in the plane be given by the roots of the polynomials ¢;, © = 1...4,

¢1($,y) =z

oz, y) =2 —4
(ﬁg(flf,?/) =Y
Palz,y) =y —4

and a circle be given by

¢5(z,y) = (x—2)° + (y—2)° — L.

The object shown in Fig. 2.1 can be described as semi-algebraic set (2.4) or, alternatively,
with the help of analytic function f(¢q(z,v), p2(z,vy), d3(z,vy), da(z,y), d5(z,y)), that is
equal to zero on the boundary of the object, positive inside and negative outside the ob-
ject. In this way, any complicated semi-algebraic object can be constructed from primitive
algebraic objects. Thus, R-functions enable one to write easily an equation for an ob-
ject of arbitrary shape in the same way as one forms geometric objects by logical or set
theoretic operations ([53]). Therefore R-functions are helpful in describing complicated
semi-algebraic objects as an analytic function having the following sign property

f(x) >0 if x is inside the object
f(x) =0 if x is on the boundary of the object
f(x) <0 if x is outside the object

Alternatively to (2.2), the following rules described in [56] can be used to form union and
intersection of geometric objects:

1
R, : H—a(xl + 2o+ \/x% + 2% — 201 19),

where a(xy, xs) is an arbitrary symmetric function such that —1 < a(xy, z9) < 1.

Ry« (21 + 29 £ /27 + 23) (27 —I—:E%)%,

where m is any even positive integer.

R,z + xy £ (2] + xé’)(%),

2.2. COMPUTING CONFIGURATION SPACE OBSTACLES 13

for any even positive integer p.

In each case above, choosing the +/— sign determines the type of an R-function: (+)
corresponds to R-disjunction and (—) sign gives the R-conjunction. The given families of
R-functions exhibit a wide range of differential properties, which are studied in [63]. The
change of parameters a;, m and p leads to different characteristics of the navigation function,
which will be described in Section 2.4 and allows to control the velocity or acceleration of
the object.

The following theorem about the derivative of R,-functions at the boundary has been
proven in [56]. It states that the absolute value of the derivative of an R-function at the
boundary point p in the given vector direction is equal to the absolute value of the derivative
of the polynomial ¢;, which describes this part of boundary, provided the boundary part
¢; does not intersect with any other boundary boundary part ¢; in p. The sign of the
derivative is determined by the number of logical negations of x;, called inversion degree.

Theorem 1 (Rvachev [56], [62]) Let f(xy,...,xn) be such R,-function that argument
x; appears in [only once and has the inversion degree m. Suppose the functions ¢1, ..., on
and f are continuously differentiable and satisfy the following condition at point p:

¢i(p) = 0;¢;(p) # 0,1 # jj;

f(@1, s o), = 0.
Then, for any vector direction [, the following equality holds
GIRP1 - OND | qym (00
ol o |,

For example, for any point p on the boundary part ¢;, ¢ = 1...5, shown in Fig. 2.1, the
following condition is satisfied

p

af(¢la L) ¢5)
ol

p-
This condition allows one to use the gradient of R-functions to predict the presence of
obstacles and avoid collisions, as will be described in Section 2.4.

2.2 Computing Configuration Space Obstacles

As mentioned above, an important part in our approach to motion planning is a configu-
ration space method ([43]). We propose to use the following two solutions:

e exact computation of configuration space obstacles based on quantifier elimination
methods ([41]);

e approximation of configuration space obstacles by nonlinear constraints, which can
be calculated in a more efficient manner ([49]).

In the following paragraphs we shall briefly describe both approaches.

14 CHAPTER 2. NAVIGATION FUNCTIONS FOR PIANO MOVER’S PROBLEM

{53 [Fx v A1) =01 f(x =5 v—13,) =0}

v A1)
(x.1)

FASAY.
-

Figure 2.2: Calculation of configuration space obstacles by quantifier elimination

Exact computation of configuration space obstacles This algorithmic problem can
be formulated as a decision problem for the first-order theory of real fields. The real
numbers constitute an ordered field, which is closed under addition and multiplication.
The formulas in the first-order theory of reals, defined by A. Tarski in 1930 and called
the Tarski formulas, are composed from equalities and inequalities. Such formulas may
be constructed by introducing logical connectives (conjunction, disjunction and negation)
and the universal and existential quantifiers to the atomic formulas.

For example, let some geometric object representing obstacle O be bounded by roots of
finitely many polynomials O; ;(z,y, z). The inequalities O; ;(z,y, 2) > 0 and O, j(z,y, z) <
0 can be used to describe the exterior and interior of the object. Choosing the suitable
sign of the polynomials we may use only ”>" to describe any geometric object. The Tarski
formula describing the set of points, which belong to the object, can be written as follows:

O(x,y,z) = \//\Oi,j(x>y>z) >0
i

The object P to be moved is given by roots of polynomials P;(z,y, z) and can be described
with a Tarski formula in the same way. A shift of the object by xg, v, zo units can be
written as:

P(l’,y,z)E\//\R;J(l'—l'(),y_yo,Z—Z()) ZO
(]

As can be seen in Fig. 1.1 and 2.2, in the two-dimensional case the configuration
space obstacle corresponding to O can be calculated for a particular orientation of P by
contacting P with O and moving P along the boundary of O keeping them in contact. The
resulting geometric object is the configuration space obstacle O((;o”f corresponding to the
orientation ¢ of P.

The contact of O and P can be expressed in terms of common roots of bounding poly-
nomials. Thus, Ogmf corresponds to such shifts xg, yo, zg of P where some of polynomials
P, and O; have common roots. This can be formalized with a Tarski sentence as follows:

{(I07y07'z0)|5|x7y72 : P(I‘ —20,Y — Yo, 2 — ZO) =0A O(I,y,Z) = 0}

2.3. NAVIGATION IN THE CONFIGURATION SPACE 15

Eliminating 3-quantifiers with existing methods ([12]) produces the semi-algebraic set that
corresponds to O(fonf . The latter quantity can also be described with the aid of R-functions,
as explained in Section 2.2. In Section 2.4 we shall show how such description can be used
to predict collisions.

Approximate computation of configuration space obstacles The configuration
space obstacles can be calculated using the notion of the Minkowski sum. An algorithm
for the approximation of the Minkowski sum with the help of R-functions has been proposed
in [49]. Suppose P and O are defined by R-functions P(xq, ...,24) > 0 and O(xy, ..., x4) > 0,
respectively. The intersection of P shifted by sq, ..., s4 units and O can be written as

F(x1, .., Td, $1, ey $a) = P21 — 81,000y g — Sq) A O(21, ..., T4q)

As explained above, O(fonf consists exactly of such shifts si,..., s4, which produce the
contact between P and O. The contact of P and O means that their intersection is not
empty. In this case F' > 0, otherwise, if P does not touch O, F < 0.

Thus, the projection of F(xy, ..., x4, s1,...,Sq) must be calculated: find such si, ..., s4
so that there exist some z1, ..., x4 with F(xq,...,24, $1,...,84) > 0. As shown in [49], this
projection can be computed by solving the following maximization problem:

Ogonf(sh -y 8a) = max{F3(x1, ..., 74, 51, .-, 8a) }-

The necessary condition for a point (z1, ..., 94) where the maximum is attained:

=0,i=1..d;

Osi
These equations can be solved numerically, for example, with the help of Newton’s method.
In this manner, the configuration space obstacles can be represented as R-functions and
used to predict collisions with obstacles.

2.3 Navigation in the Configuration Space

As mentioned above, the calculated configuration space obstacles can be represented with
the help of R-functions. It follows from Theorem 1 that in the vicinity of obstacles the
R-function increases towards them (see Fig. 2.3). Such "obstacle function” is therefore
useful in order to predict collisions and determine the direction of the motion in order to
avoid obstacles. Apart from the ”obstacle function” O, we introduce the ”goal function”
G, which is decreasing monotonously along the path 7 that connects the initial position
s = (s1,...,sy) and the target position g = (g1, ...,gn). The goal function is required to
have only one minimum value in g. As we shall describe below, the sum of both functions
defines the potential field U, which is used for motion planning (see Fig. 2.4):

U(Zlﬁ'l, ...,ZL’N) = O(Zlfl, ...,[L’N) + G(Z’l, ...,ZL’N). (25)

16 CHAPTER 2. NAVIGATION FUNCTIONS FOR PIANO MOVER’S PROBLEM

o

Figure 2.3: The region with obstacles (colored black) and its obstacle function. The path
from s to g must be calculated.

Different functions with only one minimum value in the goal position and different differ-
ential properties can be used. In general, the following conditions must be satisfied:

e (G is decreasing monotonously along the shortest path 7 connecting (si, ..., sy) with
(g1, .-, gn), €.g. the sign of the derivatives should be constant:

. <8G(ZL’1,...,ZL’N)
sign \ ————————
81’7;

) — const. (2.6)

e U is decreasing monotonously in all points p € m, which lie not too close to any
obstacle (|O(p)| < €). From (2.5), (2.6) and from the fact that sz’gn(g—g) # const, it
follows that the derivatives of G should be greater than those of O:

0G(a¢1, ceey ZL’N)
0:)3,~

00(1'1, ...,ZL’N)

>
0:)3,~

O(p)| < e 2.7)

P 1

e U has a minimum value in some point p € 7 in the vicinity of an obstacle (|O(p)| > ¢)

and increases towards the obstacle:

8G(x1, ceey SL’N)
85(7Z'

- '80(3:1,...,:6]\;)

0(p)| > e & ' (2.8)

P P

The following functions, which have only one minimum value in the goal position g, can
be used as goal functions:

Go(x1,...,xN) = Oé(f)\/|91 — 1|+ ... + gy — 2N,

Ga(z1, .. zn) = a(e)((g1 — 21)* + ... + (gv — !L"N)zd)i,

where d and «(e€) are the parameters to be chosen in order to satisfy the conditions (2.6)-
(2.8). Using this function, the potential field U can be constructed according to (2.5).

2.3. NAVIGATION IN THE CONFIGURATION SPACE 17

The collision-free path from the initial to the final position corresponds to the direction of
the gradient of U. In other words, we must simply follow the gradient of U. In this way,
the purely geometric problem of path calculation can be reduced to the physical problem
formulated with the help of the Newton’s equations, which describe the motion of an object
in the field of some forces F'

ma+ \v =F,

where m is a mass of the object to be moved, a and v are acceleration and velocity,
respectively, and A is a so-called dissipation coefficient. Large values of A\ correspond to
the motion in a highly viscous environment. To describe the motion we may write the
following differential equation:

dx;(t) oU(xq, ..., xq)

w TN T Ox; (2:9)
(for simplicity, we do not consider curvilinear coordinates here). The force due to the
environment “resistance” in our model is taken to be R = —A\v. However, other models,
in particular those that account for the resistance increasing with velocity, can also be
formulated, e.g. R = —C|v|v or, in the component form, R/ = —(Cgyi'a*)2i7. Here gy,
is a metric tensor and C' is the drag coefficient, which in general depends on the object’s
geometry and on the Reynolds number. The first term in (2.9) corresponds to the inertial
motion. In our primary example, we assume this term to be small as compared to the
dissipative term, which impedes the object’s when the object approaches the obstacle.
This is justifiable when the inertia coefficient m is small compared to A7y where 7y is the
characteristic time of object motion. The equations
)\dxl-(t) :_8U(x1,...,xd) (2.10)
can be solved numerically, e.g. using the finite difference techniques. Numerical methods
of solution of the motion equations are mostly based on evaluating the fist derivatives as

df(z) _ flo+ba) —a(e) | oop

dx Azx

Figure 2.4: Addition of the obstacle and the goal functions

18 CHAPTER 2. NAVIGATION FUNCTIONS FOR PIANO MOVER’S PROBLEM

Figure 2.5: The potential field (left), its gradient field (in the middle) and the path (right)
calculated by following the gradient according to (2.12). % = 0.1; number of time steps:
54; computational time (using Maple): 0.121 sec

Such discretization of (2.10) leads to

At
AI‘Z‘

)\ZL’i(tj+1) =)\ZL’Z(t]) - (U(l’l,...,lﬁi—l—Alﬁi,...,l’n) —U(xl,...,xi,...,xn)). (211)
According to (2.11), the object position x(t;11) at the time step t;;; can be calculated
from the previous position z; at the time step ¢; and the approximation of the gradient
of U at x(t;). Initial values x;(0) designate the initial positions of an object. Solving the
equations

At
i1 = Arj = (Ul + Az,y;) = Uz, 1))

At
Yir1 = Ay — A—y(U(%‘, yj + Ay) — Ulz;,y;)) (2.12)
leads to the motion shown in Fig. 2.5, 2.6. An example with three degrees of freedom
demonstrated in Fig. 2.7 can be produced by solving

At
Tjq1 = AT; — A—:E(U(xj + Az, Y5, 05) — Ulzj, 95, 9;))

At
Yir1 = Ay — A—y(U(xj,yj + Ay, ¢;) — Ul(zj, y;, b;))

A
Gjs1 = A — A—;(U(xjaij¢j + A¢) — U(x;, 95, 8;))-

2.4 Conclusion

Our approach to spatial planning and associated geometrical problems presented in this
chapter is based on the object motion representation in a configuration space, which has

2.4. CONCLUSION 19

A1] B

i

- y 24
N £
: @ I]Q
|
T B 3 k3 [T B 3
x x

Figure 2.6: Examples of calculated paths from the initial to final positions. Left: % =0.1;

xT

number of time steps: 60; computational time (using Maple): 0.251 sec. Right:% = 0.035;
number of steps: 300; computational time (using Maple): 1.562 sec.

(‘//_

Figure 2.7: An example of calculated path with three degrees of freedom: z and y trans-
lations and rotation.

a dimensionality equal to the number of independent coordinates describing the object
position and orientation in the real space. The advantage of such a method is due to the
fact that in the configuration space an object’s motion corresponds to that of a fictitious
material point moving in a potential field combined with viscous (dissipative) forces. This
allows one to employ powerful numerical algorithms to compute collision-free trajectories.
The potential field configuration is defined with the help of R-function techniques, which
seems to be a convenient method for the functional (analytical) representation of complex
geometries. The potential force field defined by R-functions has an attractive and a re-
pulsive part whose competition determines the goal function and the obstacle function,
respectively. As it is typical of such situations, certain extremal properties arise defining
the optimal path. The future work will be devoted to the extremal properties of the ob-
stacle and goal functions. Possible applications of presented techniques, apart from robot
motion planning, may include medical kinesiology, biomechanics of human motion, ren-
dering of human body positions, velocities and accelerations, joint simulations - all being
modeled with the help of motion equations.

20 CHAPTER 2. NAVIGATION FUNCTIONS FOR PIANO MOVER’S PROBLEM

Chapter 3

Motion Planning for Multiple Tasks

In this chapter we consider the kinematic properties of robots with 6 rotational joints
and describe an approach for optimization of robot motion due to given geometric and
differential constraints (i.e. constraints on position and orientation of the robot end-effector
during the execution of some tasks, and limits on velocities and accelerations during the
overall workcycle respectively). Several methods for control of robotic manipulators and
for solving optimal point-to-point-trajectory problems have been suggested in literature,
e.g. in [13], [45], [59], to cite only a few of many papers. However, these methods either do
not allow to restrict the resulting motion with respect to both geometric and differential
constraints at the same time or become very inefficient. The approach presented in our
paper [18] overcomes these limitations by utilizing the particular kinematic model of a robot
at hand as well as the particular form of geometric constraints, which occur, for example,
in laser welding. In the present chapter several important extensions and improvements of
this approach will be presented. We consider the non-academic, highly nonlinear model of
a commercially available robot (KUKA robot with 6 rotation joints, see [40]) and discuss
several objectives for optimal motion. Given equations of robot motion in matrix form,
we shall utilize the freedom in position and orientation of the robot end-effector during
task execution and express the solution space for our optimization task explicitly using
computation of Moore-Penrose pseudoinverses.

As an application we consider laser welding for automotive industry. Laser welding
reduces the overall workcycle time needed per car significantly and is of great economic
importance. However, remote welding using lasers leads to new requirements for motion
planning. In order to reduce workcycle time the optimal trajectories must be calculated.
Let us describe the technical conditions on laser welding in more detail and state the
optimization problem. Consider a number of welding seams distributed on a surface S
in the Cartesian space. Every seam can be welded from the given distance d. However,
the angle between the normal to S, called ng, and the laser beam is constrained by ¢,q.-
Thus, for every welding point (z,y, z) € S the end-effector of the robot can lie on a part of
a sphere with the radius d centered in the point (x,y, 2z). The admissible part of a sphere
lies inside the cone given by the vertex (x,y, z) and the angle ¢,q.. Let 0 = (01, -, 6g)
denote angles at the joints of the robot. The angles and velocities of individual joints are

21

22 CHAPTER 3. MOTION PLANNING FOR MULTIPLE TASKS

Figure 3.1: Industrial robot KUKA KR.

constrained by some constants

|6i] < 6"

6;| < gmar (3.1)

02 < éimax

The optimization problem is to find a motion of robot joints 6;(¢), ..., 0(t) such that

o 0.(t),...,06(t) are at least C?,

e prescribed velocity v of the laser focus as well as the welding angle condition ¢ < ¢,,42
is satisfied for every seam,

e constraints (3.1) are satisfied both for seams and offsets,

e the total welding time is minimized.

In the following we shall assume the prescribed order for welding of individual seams and
will consider optimal motion subproblems for seams and offsets separately.

Since the welding velocity is prescribed for individual seams, the minimum-time trajec-
tories may be calculated using the freedom in the orientation of laser beam during welding
in such a way as to produce minimum-time trajectories in offsets between seams. In this
way the problem can be reduced to:

e calculation of orientations of the laser beam at the end points of seams (Fig. 3.2),

e calculation of velocities of individual joints at the end points of seams (Fig. 3.3),

23

Figure 3.2: The optimal path problem for laser welding: calculate admissible orientations
of laser beam such that the total time is minimized.

such that total time is minimized. As shown in Fig. 3.2, orientation of the laser beam
can be described by angles w and ¢ (|w| < Gmaz,|@| < Gmae). Consider admissible orien-
tations A and B at the end points of an offset. Let 0f',... 0 and 67, ... 6F denote the
joint angles of the robot in positions corresponding to orientations A and B, respectively.
The calculation of time optimal motion can be reduced to calculation of the appropriate

e orientations A and B for every offset, which determine 03',... 604, 68 ... 65
e velocities of individual joints at the end points of offsets (67, ..., 64, 07, ... 05) (see
Fig. 3.3).

Since the inverse kinematics solution is known, the admissible orientations A and B, which
minimize motion time can be found by a descent gradient method as will be shown in
Section 3.4. In order to determine the admissible velocity space at end points of offsets
(07,...,04, 08, ... 65) we shall describe the computation of the Moore-Penrose pseudoin-
verses of matrices with polynomial entries (see Section 3.3). The admissible velocity space
is determined by constraints on velocity of the laser focus. If the location of the laser focus
at the end points is specified as a vector x = (z,y, z) then the kinematic equation can be
written as

x = F(0), (3.2)

where F is a smooth vector function. One of the popular techniques for controlling a
manipulator is resolved motion rate control which calculates the joint velocities from the
joint configuration and desired laser focus velocity. The underlying equation is the Jacobian
equation which can be found by differentiating (3.2) to obtain

x = J(6), (3.3)
where x is the desired laser focus velocity. We shall consider the problem to move the laser
focus along the given seam with the prescribed laser focus velocity v = /42 + 32 + 22

by finding the controls 6, -, 6 in (3.4), which steer the initial position of the laser
focus at the begin of the seam (zy,ys, z7) to the final position at its end (zp,yp, 2r).

24 CHAPTER 3. MOTION PLANNING FOR MULTIPLE TASKS

Figure 3.3: Changing velocities at the end points of offsets may increase or decrease the
motion time.

Since in our case there is an infinite number of such control strategies, which correspond
to different welding orientations one can take advantage of this freedom by choosing a
control strategy which will provide the C? continuity of joint motions and will reduce the
time required for motion between individual seams. The variety of all admissible controls
satisfying prescribed welding velocity can be expressed explicitly using the generalized
inverse strategies of the form

0= J"(x),

where J7 is the Moore-Penrose pseudoinverse of J (see [4]).

3.1 Solving Kinematic Equations for Tasks with Con-
strained Orientation of the End-Effector

In this chapter we use Denavit-Hartenberg formalism ([24]) to model a 6R manipulator.
Each robot link is represented by the line along its joint axis and the common normal
to the next joint axis. In the case of parallel joints any of the common normals can be
chosen. The links of the 6R manipulators numbered from 1 to 7. The base link is 1, and
the outermost link or hand is 7. A coordinate system is attached to each link for describing
the relative arrangements among the various links. The coordinate system attached to the
7th link is numbered i. The 4x4 transformation matrix relating ¢ + 1 coordinate system to
i coordinate system is given by (see [1] for more details):

G =S\ Sifi Q¢
Si 0 CiNi Cifli QS
Ri = 5
0 2% Ai d;
0 0 0 1

where s; = sin(6;), ¢; = cos(0;), 0; is the ith joint rotation angle. u; = sin(«;), \; = cos(w;),
«; is the ith twist angle, a; is the length of link 2 + 1, d; is the offset distance at joint 7.

3.1. SOLVING KINEMATIC EQUATIONS FOR TASKS WITH CONSTRAINED ORIENTATION OI

The parameters «;, a;,d; determine the particular kinematic of a 6R robot. Once these
parameters are given the shifted and rotated coordinate system attached to the robot
end-effector can be calculated for certain joint angles 6;, ¢ = 1...6 as a matrix product
R 1RsR3R R5R¢. The spatial coordinates of the end-effector x° can be computed by

X% = R1R2R3R4R5R6V, (34)

where v = [0, 0,0, 1]T, x% = [z,y, 2, 1]T.

For the case of laser welding, described in the previous section, let us include the
transformation R, from the 6th link to the welding point in the kinematic equations (3.4).
The complete homogeneous transformation, denoted by T, relates the original coordinate
systems and the coordinate system attached to the welding point:

k’l ll m; T

k’g lg mo

Ty = RiR:R3RiRsR6R; = ; (3.5)

Yy
3 I3 mg oz
1

0 0 0

where k = [k, ko, kg]T, 1= [y, s, lg]T, and m = [mq, mo, mg]T are the orthonormal basis of
the transformed coordinate system, and [z, y, 2] is its origin. Let R, be chosen in such a way
as to direct the vector m along the laser beam. Consider the normal vector n = [ny, no, ng]T
to the welding surface. Rotating about the axes x and z in the original coordinate system
by the angles w and ¢ (Fig. 3.2), |w| < émaz,| | < Gmas, we obtain the vector:

n“? =
cos (w) ny + sin (w) cos (@) ng + sin (w) sin (¢) ng
—sin (w) ny + cos (w) cos (¢) n2 + cos (w) sin (@) n3 | . (3.6)
— sin (¢) na + cos (¢) ng

Given a particular robot position determined by 6y, ...,0s, the resulting orientation of
the laser beam with respect to the welding surface (given in terms of w and ¢) may be
calculated by solving the equations (3.6) and (3.5):

ns? = m. (3.7)

7

These equations may be solved with the aid of Grobner basis computation. Let us perform
the change of variables ¢; = cos(w), s1 = sin(w), co = cos(¢), sy = sin(¢) and introduce
corresponding constraints: ¢ + s = 1, ¢3 + s3 = 1. Eliminating variables by computing
a Grobner basis with lexicographic ordering m; < ms < mg <ny < ng < n3z < 8§17 < ¢ <
Sy < ¢ we obtain the solutions of (3.7):

¢ = arcsin (1/2

—2ngm3 + 2v/n3* — nz?ms? + ny?nsz?
n3? + ny? '

26 CHAPTER 3. MOTION PLANNING FOR MULTIPLE TASKS

and

. (mlcos((b) ny + mysin(¢p) ng — n1m2>
w = arcsin .

m12 + m22

Let us write the kinematic equations in the following form.

y@t) | =1 Y6 ...6) (3.8)

where X (01...0¢), Y (61...65), Z (01 ...0s) may be derived from (3.5).

To obtain the equations of motion of the end-effector we differentiate (3.8) with respect
to t and apply the chain rule. The resulting system of equations may be written in the
following form:

T Xgl X06
y e)/:91 - 91 —l— + }/96 ° 96, (39)
3 Z@l Z@G

where Xy;, Yy:, Zp; denote derivatives with respect to #;. Note that in the general case the
equations admit infinitely many solutions. In the following section we shall express the
variety of all solutions explicitly.

3.2 Solving Equations of Motion using Generalized
Inverses

In this section we describe the computation of pseudoinverse matrices and express the
solution of equations (3.9) explicitly. The pseudoinverse for a general rectangular matrix
may be defined (see [4]) as follows.

Definition 1 Let A € R™*"™. The Matriz X € R"™™ is called pseudoinverse of A provided
AXA = A.

Let
Xo, Xog
A= Ye - Yo (3.10)
Zy, Zy,
T
b= |y

3.2. SOLVING EQUATIONS OF MOTION USING GENERALIZED INVERSES 27

Then (3.9) may be written as follows:
Az =b (3.11)
The following result has been shown in [5],[51]:
Theorem 2 The system (3.11) has a solution if and only if
AXb =0,
in which case the most general solution s
r=Xb+ (I - XAy,
where y 1s arbitrary.

Let R™*"™ denote the class of m x n real matrices of rank r. Let I, denote the unit
matrix 7 x 7. Let P denote the permutation matrix. If P; denotes the jth column of P,
and e; the jth column of I,,, we have P; = ey, where k = ¢;, j = 1,2,---,n. The remaining
columns of P are the remaining unit vectors in any order. The pseudoinverse X can be
calculated by transforming a given matrix A into a Hermite normal form by a sequence
of elementary row operations. Every elementary row operation (multiplication of a given
row by a nonzero scalar and addition to a given row of a scalar multiple of another row)
can be interpreted as a premultiplication of A by a suitable nonsingular matrix, called
an elementary row matrix. Any matrix can be transformed into its Hermite normal form
by a finite sequence of elementary row operations. Therefore, for any matrix A™*"™ there
is a nonsingular m x m matrix E (the product of the elementary row matrices) and a
permutation matrix P of order n, such that

I, K
0 O

Theorem 3 Let A € R™", and let E € R™™ and P € R™"™ be such that

EAP =

According to [4] the following theorem holds:

I, K
0 0

EAP =

Then for any L € R™=)Xm=) “the n x m matriz

I, 0
0 L

X=P E

is a pseudoinverse of A.

28 CHAPTER 3. MOTION PLANNING FOR MULTIPLE TASKS

Let Ty = [A I,]. A matrix F transforming A into a Hermite normal form can be
found by Gaussian Elimination on Ty, where after the elimination is completed,

ETy=[EA E|,

E being recorded as the right-hand m x m submatrix of ET,. We use division-free Gaussian
Elimination which can be used for calculations over an integral domain:

fork=0,1, 2, ..., m-1;
for i = k+1, ..., m;
forj =k, ..., m
“ffl = aj, 407 — ai,jaik
In order to obtain a Hermite normal form each row can be divided by the diagonal elements
az’fi_l such that diagonal elements become equal to 1. In the final step we eliminate all
non-diagonal elements from each of first m rows of A:
fork=m, ..., I;
for: =k-1, ..., I;
forj =1, ..., n;

k+1 k k k k

Ajj = Qg Qi — A ;0

These algorithms can be applied for matrices with polynomial entries. The resulting ana-
lytic inverse for the matrix (3.10) is too large to be reproduced here. Let us consider the fol-
lowing numerical example for 61, ..., g equal to 1.341683383, —.2875582134, —1.510743899,
7523051353, 1.025718970, and —.9611240531. Then A reduces to

—853.9784765 48.84911674 —749.6416328
A= | 2633407003 —513.7069127 —518.5943929 - --
—270.0005971 66.87701330 —159.6786724

—1785.623805 —80.72274815 —135.4730149
701.0000547 —346.1407570 —580.9109943
0 —1548.169056 —733.0706917

Performing Gaussian Elimination on 7y = [A I,,,] we obtain:

1.0 —0.05720181256 0.8778226307

0.0 1.0 1.503601368
0.0 0.0 1.0
—0.001170989700 -0.0 —0.0

—0.0006184164479 —0.002005441375 0.0
—5687224.412 2062896.860 20000000.0

3.2. SOLVING EQUATIONS OF MOTION USING GENERALIZED INVERSES

Elimination of elements above the diagonal yields:

1.0 0 0
0 1.0 0
0.0 0.0 1.0

5481525.206 —1988284.675 —19276627.08
8551318.405 —3101774.543 —30072027.36
—5687224.412 2062896.860 20000000.0

29

Now the matrix £ can be built from last three columns of the above matrix and X can be

calculated according to Theorem 3:

[5481525.206 —1988284.675 —19276627.08]
8551318.405 —3101774.543 —30072027.36
0.0 0.0 0.0
7| 5687224412 2062896.860 20000000.0
0.0 0.0 0.0
I 0.0 0.0 0.0 |

The parameterized solution of (3.11) may be expressed according to Theorem 2:

0, = 5481525.206 & — 1988284.675 3y — 19276627.08 2 + 2.0

v+ 11181729560.0 6 — 30089220140.0 w — 14543548020.0 &

0, = 8551318.405 & — 3101774.543 §y — 30072027.36 2 — 5.0

v+ 17443781820.0 6 — 46939946910.0 w — 22688303970.0 &
03 =1~

0, = —5687224.412 i + 2062896.860 y + 20000000.0 2 — 2.0

v —11601334119.0 6 + 31218345390.0 w + 15089307840.0 &
95 = w

06 =&

In general, computation of Moore-Penrose pseudoinverse of the Jacobian with polynomial
entries allows us to parameterize the joint velocity space at the end points of offsets between

30 CHAPTER 3. MOTION PLANNING FOR MULTIPLE TASKS

tasks:
91 = U1(91, c ,96)i + U2(91, e ,06)y'+
Us(bh,...,06) 2+
(Ur(01,--.,06) X4 + Uz(b1,...,06)Yps+
Us(01, ... ,06) Zp4)S+
(Ur(01,.-.,06)Xo5 + Uz(61,...,06)Yp5+
U3(017' .. ,96)205)77‘1‘
(U1(91,...,96)X96+U2(91,...,96)Ybﬁ+
Us(01,...,06)Zgs)0,
Oy = Vi(61,...,06)% + Va(bs,...,06)5+
V3(01,...,06) 2+
(Vl(el,...,eﬁ)XM+V2(91,...,96)Y294+
V3(01,...,06) Zpa)E+
(Vl(el,...,eﬁ)X%+V2(91,...,96)Y295+
V3(b1,...,06)Zgs)n+
(Vi(01,...,06) X6 + Va(b1,...,06)Yos+ (3.12)
‘@)(917 cee 796)Z96)57 ’
O3 = Wi(61,...,06)E + Wa(b,...,06) 0+
Wg(el,. . ,96)24_
(W1(91, . ,96)X94 + Wg(@l, . 796)}{94"’_
W3(01,...,06)Zos)E+
(W1i(01,...,06)Xgs + Wa(01,...,06)Yps5+
Ws3(01,...,06)Zgs)n+
(W1i(01,...,06)Xp6 + Wa(01,...,06)Ype+
W3(01,...,06)Zs)0,
94 - 67
9.5 =1,
b = 0,
where)[{1 Z:+_ZY9;Z92D—I—Z%Y92’ U, = *)((93202;)(022037 Uy = —X93Y92[;1-X92Y937 V, = Y03291[—)293Y01’
—A9. Xo3Yp1 —Yo3X Yo1Z9go—Zp1Ye XopoZg1—Zga X,
V2 — 03401203 91’ Vg _ X3 91D 03 91’ Wl _ Yo ezD 01 92’ W2 — K02 91D 62 91’ W3 —

D

XY 002X D is equal to XosYo1 Zoo + Yos X2 Zor — Yos Xor Zoo — Xo, Zor Yoo — Zos XoaYor +
Zp3Xp1Yp, and is known to be non-vanishing except a finite number of singular positions of
the robot. Xy;, Yy, Zp; denote derivatives of the components of forward kinematic mapping
(3.8) with respect to ;. In the following Section we shall use these equations in order to
compute minimum-time motion of the robot for prescribed tasks.

3.3. COMPUTING MINIMUM-TIME MOTION 31

Figure 3.4: The optimal path problem for laser welding: calculate admissible orientations
of laser beam such that the total time is minimized.

3.3 Computing Minimum-Time Motion

Since the velocity of the end-effector is prescribed for individual tasks, the minimum-time
trajectories may be calculated using the freedom in the orientation of end-effector during
the task execution in such a way as to produce minimum-time trajectories in offsets between
tasks. As shown in Fig. 3.4, orientation of the end-effector can be described by angles
w, ¢ (|w| < bmaz,|®| < Pmaz). Consider admissible orientations A, B at the end points
of an offset, and admissible orientations C', D at the end points of corresponding seams.

Let 624, ... 08, 08,08 69 ... 05 0P ... 6P denote the joint angles of the robot in
positions corresponding to orientations A, B, C, and D, respectively. The joint trajecto-
ries between these positions are described by curves 01'8(t), ... 08P (t), 0F4(t), ..., 054(¢),
OB (t),...,08P(t), such that

07 4(1) = 0,7(0); 077 (1) = 67P(0);

674 (1) = 65(0); 6;2(1) = PP (0); (3.13)

674(1) = 67(0); 675(1) = 6P (0);

Since for the motion between tasks we do not have any restrictions for the position and
velocity of the end-effector we use the well known approach ([31], [42]) to describe the
vector of joint displacements 0(t) = [#4Z(¢)]i = 1...6] by cubic B-splines with respect to
the sequence of knots t;, t; < t;41, j = 1... N distributed in the interval [0, 1], :

o(t) = Z x; N3 (t) (3.14)

where N f denote the B-spline basis functions of order 3; t;, x; denote control points, which
determine the shape of the spline curve, and t € [t;,ty] is a parameter. The derivatives of

32 CHAPTER 3. MOTION PLANNING FOR MULTIPLE TASKS

the spline curve are given by

N
' (1) pr2 L _ X~ X1
x=3)» x'N;, x' =—"———7— (3.15)
; J J J tj+3 _ tj
as well as
L o _ X =X
X=6)Y x'Nj, x~ =-2_J— (3.16)
21: T tive —1;

According to the approach presented in ([31], [42]) the problem of computing minimum-
time spline curve satisfying acceleration and velocity conditions (3.1) reduces to minimiza-
tion of ¢ty — t3 in such a way that |x;| < 6", |%;| < 0", i = 1...6. The following
necessary optimality condition derived in [31] tells that that maximal acceleration has to
be reached at least at one of four consecutive knots (otherwise, due to the locality prop-
erty of B-Splines, the fourth and all consecutive knots could be shifted to the left meaning
decreasing the time without violation of velocity and acceleration constraints) :

Theorem 4 A spline curve is time optimal with respect to acceleration and velocity con-
straints if ||X;|| < 0" In this case, we have that for at least onei, 1 =1...6,

3

H(GH;W) = 0,5 =2, N,
k=

where x, xV are defined in (3.15), (3.16).

In order to obtain the minimum-time spline curve for individual offsets between tasks the
knot-shifting algorithms presented in [31], [42] start with an arbitrary distribution of knots
and try to get the distances between knots |t;11 — t;| as small as possible. Due to the

Theorem 4 this can be done by considering \xﬁzk| as function in ¢; solving the equation
(%é;m \XJ +k|) = 0 numerically.
The complete optimization problem reduces to calculation of admissible A, B, §94(t),

0BD(t) for all tasks, and to approximate 6:8(¢) by time optimal spline curves such that
the total motion time is minimized, and constraints

0, < o7
6| < oo

: < elma:v

are satisfied. Thus, the solution space for this optimization problem is determined by:

1. admissible orientations A and B for every offset (and corresponding joint positions
08, .. 08, 08, ... 08)

3.4. CONCLUSION 33

2. admissible velocities 6’{‘, ce 6’;54, 913 e 6’? at the end points of offsets due to con-
straints on velocity of the end-effector during execution of corresponding tasks

3. curves 0" (1), ..., 08P (t) such that (3.13) is satisfied.

We use the method of steepest descent, and the cost function F(wa, ¢a, wp, &5, £a,Ma,04,E8,08,08),
where wy, ¢4, wp, ¢p determine orientations of the end-effector at the end points of the
offsets, and &4, na, 04 , £, Np, 0p determine the possible velocities of joints at the end
points of the offsets. Given &4, 14, 04 , £, 1B, 05, We then get 9{‘, : ..,e’g‘, élB,...,éég
using (12). Since the time required for task execution is prescribed, the value of the cost
function F' is determined by the motion time for offsets. This quantity can be calculated
by computing time optimal B-spline curve (3.14) for every offset. Several methods for
non-linear programming, e.g. the method introduced in [31], can be used for this purpose.
Consider spline curve with boundary conditions given by (3.13). The problem can be for-
mulated as follows: given a velocity bound, and an acceleration bound, determine knots ¢;,
7 =23,...,N — 3, such that ty_3 — t3 is minimized under the restrictions on velocity, and
acceleration. The method proposed in [31] begins with an arbitrary distribution of knots
and then attempts to get any successive knots as close as possible while still maintaining
the velocity and acceleration constraints (3.1).

3.4 Conclusion

In this chapter we described an approach to calculation of minimum-time trajectories for
robots with 6 rotation joints for multiple tasks with constrained orientation and velocity
of the end-effector. In order to reduce the time required for execution of prescribed tasks
with such type of constraints we parameterized admissible orientation and velocity spaces
using computation of Moore-Penrose pseudoinverses of matrices with polynomial entries.
We used computer algebra system Maple to perform these calculations and derive formulae
and procedures for numerical optimization by the method of steepest descent. Finally, the
computational examples have been presented.

34 CHAPTER 3. MOTION PLANNING FOR MULTIPLE TASKS

1600
1200
Er
0 ——]
20007 y

[}
i
4
4
TR R 0 e 0004510

g
i
1000

af

1
&

1.
L

| —
L |

i i f) [

g g__nja':mzﬁi__ﬁ

. —_—
“Re
on
L
T =
|
.ﬁm%
1400
100
{1y
wod
o
am
B
i
)

Figure 3.5: Computational examples.

Chapter 4

Grid Generation

Advanced computer technologies and parallel architectures allow one to solve time depen-
dent problems with 10° and more unknowns on rectangular regions in realistic time using
hierarchical and adaptive approaches [9, 69]. In order to handle problems of such order of
computational complexity on arbitrary regions and, in particular, with moving boundaries,
we are interested to have efficient grid generation techniques, which would support hierar-
chical approach to computing and provide the possibility of adaptive mesh refinement as
well as remeshing, due to the changes of boundaries, with minimal computational costs.

Considered as optimization task the problem may be reduced to finding a minimizer
of the weighted combination of so-called length, area, and orthogonality functionals. Un-
fortunately, it has been shown that on the one hand, certain weights of the individual
functionals do not admit the unique optimizer on certain geometric domains. On the other
hand, some combinations of these functionals lead to the lack of ellipticity of correspond-
ing Euler-Lagrange equations, and finding the optimal grid becomes computationally too
expensive for practical applications. Choosing the right functional for the particular geo-
metric domain of interest may improve the grid generation very much, but choosing the
functional parameters is usually done in the trial and error way and depends very much
on the geometric domain. This makes the automatic and robust grid generation difficult.
In this chapter we present a framework for generating structured and unstructured grids
implemented in Computer Algebra System Maple.

4.1 Structured Grids

The problem of grid generation on an arbitrary region 2 in the (z,y) plane can be solved
by giving a map (&, 1), y(&, n) from the unit square in the plane (£, 7) onto €. By choosing
a uniform grid (§;,n;) in the unit square, the map z(&;,n;), y(&, n;) would transform the
grid (&, n;) to the region of interest. The required map may be computed in a number
of ways. The variational grid generation is one of the most established approaches for
this purpose, due to high quality of resulting grids. It provides the possibility to control
the grid properties by choosing appropriate grid functionals to be minimized. The basic

35

36 CHAPTER 4. GRID GENERATION

functionals are Length (1), Area (I4), and Orthogonality (/o) functionals, which can be
written in the form (see [39]):

L) = 12 [[lad 45 + 2 +)i (41)
Ly(z,y) = 1/2 / / (we*yy® + Y&’y — 2 weyyeyy,)dE dn; (4.2)
Io(x,y) = 1/2 //(9352%2 + 2Ty Yeyy + ye Y,)dE dny. (4.3)

The map z(&, 1), y(£,n) minimizing each of above functionals can be found by by solving
corresponding Euler-Lagrange equations, which can be written in general form

Tiixee + TipXen + TooXyy + S =0,

where 7; ; are 2 x 2 matrices and S is a 2 x 1 vector. The terms in 7; ; and S depend on the
particular functional and are nonlinear in the case of Area and Orthogonality Functionals.
In the case of the Length functional I, 7T} ; can be shown to be constant, and the Euler—
Lagrange equations reduce to the simplest one:

Tee + Ty =0, Yee + Yny = 0.

Minimizing I, by solving above equations leads to smooth grids. However, intersections of
grid lines may occur (Fig. 4.1). The folding of resulting grids by using the Length functional
is inadmissible for practical applications. The Area functional leads to the following Euler—
Lagrange equations, which produce unfolded but, unfortunately, nonsmooth grids:

2 2
TeelYn” + YnTeYen— YnYeeTn— 2YnYeTen— YeTeYnn + YeYenTn + Ye Ty = 0,
2 2
—TnTe Y 2 TyTele,y + Ye ey~ + TyYeley + Tele gy + T¢ Y~ TeYelny = 0.

As described in [39], the further shortcoming of this method is that available numerical
procedures for solving the above equations do not converge for certain domains. The Or-
thogonality functional produces orthogonal and sufficiently smooth grids on many domains,
however, fails to converge in certain cases. Euler-Lagrange equations for the Orthogonality
functional are:

xi,ixnz + 4, Tele y + TpYe eUn + TnYelen + 2 TenYeyy + xi%vm + TeYenYn

+Teyeyny = 0,

YnTe,eTy + YnTeley + yé,ﬁyn2 + A YnYeYen + 2 Ye nTely + Yele nTy + YeleXny
2 _

+Ye Yny = 0.

In order to obtain smooth, orthogonal, and unfolded grids, the weighted combination of
Length, Area, and Orthogonality functionals may be used:

I(z,y) =wala(z,y) + wplp(z,y) + wol(x,y) (4.4)

4.1. STRUCTURED GRIDS 37

>

AN
‘-llll“

L\

L\

AT
EREW
===Illl

i
EERL

/]
[]

N>

I
DN
>

v
RN

ANNSWEI, 289
ANNS==44 S=ad
AR R
E \\Eg8
%9==E§='=t N

it
A

[]

L
/
/]
|

B

Figure 4.1: Grid generation by minimizing the Length functional (top), and by minimizing
the Winslow functional (bottom)

In particular, Area-Length combination overcomes the limitation of individual functionals
because of avoiding grid folding produced by Length functional and producing smooth grids
in contrast to the Area functional. However, the corresponding equations do not admit the
continuous solution on many practically important domains like airfoil, backstep, and 7 C”-
domains (see [39]). In order to preserve the advantages of the Length functional and avoid
the grid foldings the famous Winslow grid generator has been proposed. The Winslow

functional
2,2 4y 262 + g2
Ty = [[Iy IEEE geqy
(xf?/n - xnyﬁ) (xfyn - ZEnyﬁ)

leads to equations:

(%2 + yn2) Tee — 2 (TeTy + Yely) Tey + (%2 + xnz) Ty =0,
(%2 + yn2> Yee — 2 (Tey + YeUn) Yen + (3752 + xn2) Yny = 0.

The Winslow generator inherits the grid smoothness from the Length functional and tends
to produce smooth non-folded grids (see Fig. 4.1). However, the lack of orthogonality
may lead, for example, to high truncation errors by using the Winslow grids for numerical
solution of PDE’s. Further modifications of the presented functionals may be found in
the literature (see [39]), which tend to produce good meshes in certain cases and fail to
admit the solution in other cases. Choosing the right functional for a certain geometric
domain, or, in particular, choosing optimal weights in (4.4) may improve the resulting
grids significantly. The optimal choice, however, depends on the particular domain very

38 CHAPTER 4. GRID GENERATION

much and is usually performed in the trial-and-error way. All this makes the automatic
and robust grid generation difficult.

For solving the Euler-Lagrange equations corresponding to the individual functionals
we use the Alternating Direction Implicit (ADI) method introduced in [50].

For instance, consider the Winslow grid generator, which is based on the solution of
the following system of nonlinear coupled PDE’s:

(2 + yn®) wee — 2 (Tey + Yen) Tem + (267 + 27) 2y = 0,
("Efz + yn2) Yee — 2 (Tey + YeUn) Ve + (3752 + %2) Ynn = 0.

As described in [26], we use the following second-order approximation for the partial deriva-
tives of the function f(&,n):

(fﬁ)l,] - 1/2<fl+1,j - fi—l,j)’

(f)ig = 1/2(fijer — fij—1), (fee)iy = (firry — 2fij + fim1),
Jij = (figr1 —2fij+ fij-1),

(foe)ig = 1/4(fixrj41 — firrj—1 — ficij+1 + ficrj-1) -

Let us introduce the following difference operators:
AL fig = (@) + W] (fivay = 2fi5 + fimrg) s

A7 fig = (@D + W] (figer — 2fij + fig—1)

Az,gfi,j =-1/2 [(%%)Zj + (yﬁyn)Zj} (firrje1 — firrj—1 — fici w1 + fic1-1) -

The superscript denotes the number of iterations. Then the ADI difference scheme, which
converges to the solution of Winslow equations using pseudo-time steps 7, may be written

as follows:

Tid TThj _ pma o An gn o Angn

0.57 1] Em g UV
75’32;;.5_753 o NP A2 B A AT
% = Aehig + Aeyiy + MYy
W0 g L A

Using this scheme, for example, the grid in Fig. 4.1 has been obtained.

4.2. UNSTRUCTURED GRIDS 39

4.2 Unstructured Grids

In our work we are interested in the integration of computer aided geometric design
(CAGD) and numerical simulation in such a way that would allow us to design robust,
efficient, and reliable scientific software. On the one hand the physical or numerical proper-
ties of the computational problem make demands on the possible geometric representation
of an object under consideration. On the other hand different topological and geometric
representation of an object exist, which can not be converted to each other in a simple and
efficient way.

By far the most common representation for curves and surfaces in CAGD is the para-
metric representation (Bezier, NURBS or BSPline curves). But the researchers recognized
early the power of implicit curves and surfaces for the purpose of modeling and simula-
tion. The present paper shows how the complex geometric regions whose boundaries are
given as implicit algebraic curves can be subdivided into symmetric parts to speed-up the
computationally expensive advancing front triangulation and finite element computation
on the resulting grid. We calculate for the geometric region given as an implicit curve the
symmetry axes by computing the invariant finite matrix group of reflections. The advanc-
ing front triangulation can also be performed for only one of the symmetric parts, and the
resulting grid is assembled. It will be shown that the use of symmetry properties of a given
planar region enables the CPU time savings by a factor from 3 to 8.

4.2.1 Hierarchical Methods in Computer Aided Geometric De-
sign and Symmetry

In this section we consider the constructive hierarchical geometry representations. A con-
structive representation defines an object by the sequence of operations for constructing
an object [53]. The most common constructive representation is called Constructive Solid
Geometry (CSG) and uses the boolean (set theoretic) operations. The operation sequence
is typically stored as a tree. For example, the object shown on the right hand side in the
figure 4.2 can be constructed from rectangle, circle, and cone using set union and difference
operations.

PN

L)

N
UO

Figure 4.2: A geometric object formed by set theoretic operations

To convert this set theoretic operations to a real valued functions the R-Functions

40 CHAPTER 4. GRID GENERATION

proposed in [56] (a short introduction and basic applications of R-Functions can be found
in [62] too) can be used. R-Functions allow us to write easily an equation for an object
of arbitrary shape, in the same way as one forms the solid by the boolean operations. If
x = (21, ..., ;) is a point in R", then:

f(x) >0 if x is inside the object
f(x) =0 if x is on the boundary of the object (4.5)
f(x) <0 if x is outside the object

The set-theoretic operations on objects described as R-Functions can be defined as
follows

fi(x) U fa(x) = fi(x) + fa(x x) + f3(x
fi(x) N fa(x) = fi(x) + fa(x x) + f5(x (4.6)
fi(x)\ f2(x) = fi(x) x) + f3(x

Note that the boundary of the geometric region is represented as roots of the R-
Functions f(x) = 0. We can isolate the squared roots in (4.6) and square left and right
hand side respectively, in case of the intersection, for example :

W

\/f1 ‘l‘fz (x) + fo(x)
fi(x) + f3(x) = fi(x)+2f1(X)f2()+ f5(x)
2f1(x) fa(x) =

In this way we obtain the the point set containing boundary given by the equation

fi(x) fa(x) =0

Ifi(x) U fa(x)) € {x: fi(x) * fa(x) = O}
A(f1(x) N fa(x)) € {x: fi(x) * f2(x)
Ifi(x)\f2(x)) € {x: fi(x) * fa(x) = O}

In the next section we will show, how the domain boundary obtained according to (4.7)
can be used to compute finite symmetry groups of the domain.

I
(e}
—

(4.7)

The rectangle in Fig. 2.7 can be constructed as the intersection of 4 half-spaces according
0 (4.6) :

filz,y)=1—x
fo(z,y)=1+=x
fs(z,y)=1—y
falz,y) =1+y

4.2. UNSTRUCTURED GRIDS 41

Then we obtain:

Rect(z,y) = (f1 N f2) N (fa N fa) = f1 + f2 =\ f1° + [2° + [3 + f}—

2 2
\/f3% + f4% — \/<f1 + 2 — \/f12+f22> + <f3 +f4 - \/f32+f42>

Another representation of the rectangle boundary is the one according to (4.2.1):
ORect(z,y) C (z — 1)(1 +2)(y — (1 +1)

Other primitives used in the above example are:
1
parabola(z,y) = y — 3 2%; circle(z,y) = —2? — y* + g
The complete object is given by

O(z,y) = Rect\(circle U parabola) =

2
Rect — parabola — circle — \/pambola2 + circle® — \/Rect2 + (pambola + circle + \/pambola2 + cz'rcle2>

Obviously the following symmetry properties hold:
Rect(z,y) = Rect(£z, £y)
Rect(z,y) = Rect(+y, £x)
or in the matrix form
Rect(Dyx) = Rect(x)

+£1 0 0 =+£1
D, =
0 =1 +£1 0

D, is the well known dihedral group whose elements correspond to rotations and reflections
in the plane. The circle has a symmetry group SO,

SO, = [cos(¢) —sin(¢)]
sin(¢) cos(¢)

and the parabola is a reflection symmetric with respect to the y-axis:

. ~1 0
O

In the present paper we present an algorithm for computation of the symmetric de-
composition shown in the following figure and show how the costs of advancing front
triangulation can be reduced by performing them on the symmetric parts only marked in
the figure.

Y

42

CHAPTER 4. GRID GENERATION

W
<

ELF

i

Figure 4.3: Decomposition into symmetric parts

4.2.2 Computing the Invariant Matrix Group

We start with the decomposition of single polynomials from which our region was built
Consider the polynomial
N

i,j=0
Let the transformation matrix be given by

gi1 91,2
92,1 922

Then the polynomial remains invariant iff

G:

N

Z 09117 + g12y)° (92 1T+ g2, 2y) = f(x)

f(Gxx) = f(G*(z,y)"

Exponentiating and collecting coefficients of like power leads to

N

N
0f(G+*x) = Z xiyjfi,j(gl,la91,279271792,2) = Z Clmxiyj = f(x).

i,j=0 i,j=0
In this way we obtain the following system of N? equations ([21])
fi,j(gl,lu91,2792,1792,2) = Q4 j,

where f; ; are some functions, which depend on (g;1, 91,2, 92,1, g2.2) and can be computed
for example, with Maple, as follows:

transform the polynomial according to (10) and expand it
[> f£G:=expand(f (op(convert(G.xx,list))) ,{x,y});

calculate the coefficients of f(G*x)

4.2. UNSTRUCTURED GRIDS 43

[> f:=[coeffs(fG,{x,y})];

calculate the coefficients of f(x)
[> a:=[coeffs(f,{x,yP)];

The last step is to solve the system of equations to obtain the invariant matrix group.
For example, for the Rect(x,y)\circle(z,y) = —(x — 2) * (y — 2) * (x + 2) * (y + 2) *
(22 + y* — 1) we obtain the following system of equations

-20 = —20g11% —20991%, 16 =16,4 =4g11* +4 921" + 991129217,
9 = 9g12%921° + 2492129227 + 99112922 + 36 91192192291 2 + 24 91,1791 2°
,—1 = —6912°921°922" — 891,1922° 91,2021 — 6 91,1°92.2° 912" — 912" 9217 —
g11°022" — 891192,192,201.2°,
—1 = —8911°0102201.2 — 6911292279217 — 6 9127 92.1%1.1% — G1.2°92.1" —
9117922 — 8 G1.2921° 91,1922,
20 = —20g12% —20g00% 4 =4goo* +4 912" + 991279207

Note, we are looking for symmetric decomposition and, therefore, are interested in
reflections groups only. According to [7] the following condition must be satisfied for any
reflection transformation:

91,192,2 — 92,1912 = —1 (4.8)
The system of equations (4.8), (4.2.2) has the solutions

{922=0,912=1,921 =1,911 =0} . {922 =0,911 = 0,912 = —1,921 = —1},
{912=0,922=1,921 = 0,911 = =1} ,{g12 = 0,921 = 0,922 = —1,g11 = 1},

which correspond to the reflection of part R, of G4 given by:
0 -1 0 1 1 0 -1 0
R4 - 5) ’ .
-1 0 10 0 -1 0 1
Note that R, does not satisfy the closure property and, therefore, is not a group.

Obviously, the symmetry axes are given by those eigenvectors of these matrices, which
correspond to the eigenvalue 1:

44 CHAPTER 4. GRID GENERATION

Figure 4.4: Decomposition of Rect(z,y)\circle(x,y) and Rect(z,y)\(circle(x — 1/2,y —

WLl L))

Solving R;x’ = xT we obtain four symmetry lines:
ll('xa y) =T
12(:1:7 y) =Y,
l3(x> y) =T —Y, (49)
la(z,y) =z +y.

As shown in Fig. 4.4, these four lines decompose the initial domain O(x,y) given by
O(z,y) = Rect(z,y)\circle(x,y) = Rect(z,y) — circle(z,y) — \/Rect(x, y)? + circle(z, y)?
in 8 congruent parts O;(z,y), which can be obtained using R-intersection (4.6) of O(x,y)
and eight halfspaces given by 4 lines (4.9) as follows:
Or(z,y) = O(x,y) Nla(,y) N ls(z,y)
Ox(z,y) = O(z,y) Nl (z,y) N —ls(z,y)
Os(x,y) = O(z,y) N —li(z,y) Nla(x, y)
Ou(z,y) = O(z,)ﬁl2(f€ y) N =la(z,y) (4.10)
(z,y)
(z,y)
(z,y)

Y

n—

Os(z,y) = O(z,y) N =la(z,y) N =l
Og(@,y) = Oz, y) N =li(z,y) Nl
Or(z,y) = Oz, y) N hi(z,y) N =l
Os(z,y) = O(z,y) N —la(z,y) N lu(z,y)

In this way the finite symmetry group of simple geometric regions given as roots of

polynomial equalities can be calculated. The decomposition of the region shown in Fig.
4.3 can be derived using symmetry axes of such primitive regions in the same way.

Y

4.2. UNSTRUCTURED GRIDS 45

0,4 0.4

/
o/ z
N

/
/
{

Figure 4.5: Curve approximation with quadtrees

while AF # () do
v := compute_next_candidate_vertex (F(a,b) € AF,d(x,y))
while not visible(E/(a,b),v) or min_angle(& U (a,v) U (v,0)) < O
or min distance(VUw)) < [, do
v := find_nearest_vertex (V,v)

od:
E:=E&U{(a,v),(v,b)}
V:=VU{v}
AF = AF U{(a,v), (v,0)} — {(a,b)}

od:

Figure 4.6: A quasi-Maple description of the basic structure of advancing front algorithm

4.2.3 Boundary Discretization Using Quadtrees

As shown in section 4.2.2, the implicit curves can be used to describe complex geometric
regions. In order to perform the advancing front triangulation needed for the FEM calcu-
lations on such regions enclosed by R(x,y) = 0 we need to partition the curve R(z,y) =0
into linear segments. The term quadtree (or octtree in 3-dimensional case) is used to de-
scribe a well-known class of hierarchical data structures whose common property is that
they are based on the principle of recursive decomposition of space [57]. As shown in Fig.
4.5 we start with the root rectangular element enclosing the geometric region of interest
and subdivide it successively into four equal-sized quadrants. Each of these quadrants can
be entirely contained in the region (R(x,y) > 0), entirely disjoint from it (R(z,y) < 0)
or crossed by the boundary curve (R(z,y) changes the sign along some quadrant edge).
Checking the sign of R(x,y) in the quadrant nodes one can determine the edges wich are
crossed by the boundary curve and approximate the curve in the particular quadrant as
shown in Fig. 4.5. The boundary quadrants can be successively subdivided to achieve a
better approximation of the region boundary.

46 CHAPTER 4. GRID GENERATION

We have implemented a package SpaceTrees for Maple, that provides the following
features:

e generating and refinement of quadtrees
e performing the set operations on quadtrees (union, intersection, difference)

e generating the discretization for numerical methods: both initial front for advancing
front method described bellow and rectangular elements

This package is implemented in object-oriented way. For example, the following com-
mand generates the quadtree with top left corner with coordinates 0 , 1 and widths 1,
1 in z- and y-direction:

[> root:=quadtree(0, 1, 1, 1, 0(x,y));

O(z,y) = 0 is the implicit function that bounds the region to be partitioned.
To refine the generated quadtree the method refine can be invoked:

[> ““||lroot]||refine();

After several refinements one obtains the result shown in Fig. 4.5.
To obtain the approximation of O(x,y) = 0 corresponding to a particular depth of the
quadtree use:

[> ““|lroot||getBoundary(depth_level);

The line segments generated in this way approximate boundary and are now used as
initial front for the advancing front triangulation method described bellow.

4.2.4 Advancing Front Triangulation

This method [28] starts with the initial front AF obtained in the previous section. Then,
it adds triangles into the domain, with at least one edge on the front. At each step, this
will update the front. When the front is empty, the mesh generation is completed. This
requires that the domain be bounded, but for unbounded domain the front can be advanced
until it is at some large distance from the object. As the algorithm progresses, the front
will advance to fill the remainder of the area with triangles.

In Fig. 4.6 the algorithm that we use is shown in more detail. Let three sets be given:

AF — current advancing front, consisting of edges
V — the set of all triangulation vertices
& — the set of oriented triangulation edges

E(a,b) — the edge connecting vertices a and b

4.2. UNSTRUCTURED GRIDS 47

For each edge E = (a,b) € AF of the front the algorithm calculates candidate vertex
v lying in the vertex of an equilateral triangle with the base E. The triangles can be

stretched by the user defined parameter d(x,y). Adapting d(x,y) the size of triangles can
be adapted through the region.

compute next_candidate vertex(F,d) - returns the point lying in the vertex of an
equilateral triangle with the base F,
to the left from E at the distance dist(z,y)
d(z,y) - determines the stretching factor

Before new candidate edges (a,v), (v,b) are inserted in the current triangulation, we
perform the intersection tests with existing edges using the procedure visible. Fur-
thermore we calculate the minimal distance and minimal angle between (a,v), (v,b) and
existing triangulation edges using min distance, min_angle:

visible(E::edge, v::vertex, s::set)— tests, wether the generated edge
is crossed by any other edge of the set s

computes the minimal distance between points
of the set s

computes the minimal distance between edges
of the set s

min_distance(s: :set)

min angle(s::set)

If (a,v), (v,b) does not intersect any other edge and minimal distance and angle con-
dition are not violated, they will be added to the triangulation. If this is not the case,

the next candidate vertex will be chosen from the existing triangulation vertices V' using
find nearst_vertex:

find nearest_vertex(s::set, v::vertex)— finds the vertex in s nearest to v
In this way the triangulation result depends on the choice of the following parameters:

lyin — the minimum distance allowed between vertices
Omin — the minimum angle allowed between edges
d(x,y) — stretching parameter

Compare, for example, grids obtained with §(z,y) = 1 (on the left hand side in Fig.
4.8) and § given by

16

2x+ % r< -1
1 otherwise

(on the right hand side in Fig. 4.8) In Figs. 4.7 and 4.9 the different grids for different
choices of these parameters are shown. For two parts of the region of Fig.4.2 their triangu-
lation as well as composite grid for the entire region are depicted in Fig. 4.9. In this case
there are six symmetric subregions according to Fig. 2, but the advancing front triangu-

48 CHAPTER 4. GRID GENERATION

04
TTTTTTITTIT I T I I I T I T TI I o7 N
0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Figure 4.7: Advancing front triangulation with two different (coarse and fine) initial fronts

)

2
5

NS
/N\/

)
N
N

NV

(a) (b) (c)

Figure 4.9: The triangulation of parts of our region obtained with 6 = 1,[,,;,, = 0.3, 0,5, =
0.6 (a), (b) and the derived triangulation of the whole region (c).

4.2. UNSTRUCTURED GRIDS 49

Figure 4.10: Decomposing of a channel with a cylinder leads to speed-up factor 8.

lation is executed only in two of them as shown in Fig. 4.9. The filling of the remaining
symmetric counterpart subregions by a grid is a mere reflection, thus, no costly operations
of the advancing front triangulation are performed at this reflection. Therefore, we can
neglect the CPU time needed for these reflections. As a result, we obtain for the region of
Fig. 4.9 the speed-up factor of 6/2 =3. For another region shown in Fig. 4.10 the speed-up
factor is obviously equal to 8.

50

CHAPTER 4. GRID GENERATION

Chapter 5

Prediction of Fluid Motion

The Navier—Stokes equations governing two-dimensional unsteady flows of an incompress-
ible viscous fluid may be written in vector form as follows:

ou Op 1 (0Pu 0O*u o(u?) O(uv)
ot + dr Re (01’2 * 0y2> or oy + Iy (5.1)
v dp 1 [(d*v D I(uv) 9(v?)
oL (289 _ 2
ot * Jy Re <8x2 * 8y2) oz dy 9y (5:2)
and the continuity equation
ou Ov
ooy = (5.3)

The quantities to be found are

o u:Qx[0,tpng — R, the fluid velocity in z—direction,
o v:) x|[0,tena] — R, the fluid velocity in y—direction,
e p:Q x|[0,tenq] — R the pressure.

e g, und g, : Q x [0,¢.4] — R denote the external forces, either the Earth grav-
ity or other body forces acting throughout the bulk of the system and producing
acceleration in its parts.

The dimensionless real quantity Re is called the Reynolds number; it characterizes the
fluid flow. The Reynolds number depends on viscosity and on average velocity of the fluid.
The lower the Re value, the more viscous is the fluid.

At the initial moment (¢ = 0), initial conditions u = ug(z,y) and v = vg(x, y) satisfying
(5.3) are given. Besides, supplementary conditions holding at all four boundaries of the
region for all times are required, so that we arrive at an initial-boundary value problem.

There exist a number of approaches for the discretization of the Navier-Stokes equations.
A stable finite difference method is based on using so called staggered grids, where the
unknown variables u, v and p lie at different grids shifted with respect to each other.

51

52 CHAPTER 5. PREDICTION OF FLUID MOTION

Yjk+l
U; 1 U,y 1 .
i=ak o <Jt2k Figure 5.1: The staggered
A grid in two dimensions.

Primarily, a reference grid is chosen whose lines subdivide the whole region into cells.
The cell characterized by index (i, j) corresponds to the rectangle [(i — 1) dx,idz] X [(j —
1) 0y, j 0y]. In such a grid the pressure p will be related to the cell midpoint, the u velocity
at the midpoint of vertical cell edges, and the v velocity at the midpoints of the horizontal
cell edges. The index (i,7) is assigned to the pressure at the cell center as well as to
the u-velocity at the right edge and the v-velocity at the upper edge of (i,) cell. Thus,
the pressure p; ; is located at coordinate points ((i — 0.5) dz, (j — 0.5) dy), the horizontal
velocity u; ; at points with the coordinates (i dz, (j — 0.5) dy) and the vertical velocity v; ;
at coordinate points ((i —0.5) dz, j dy). So the points for u, v and p belong to three different
grids (lattices), each being shifted by half a lattice period with respect to the reference
grid.

In order to discretize the continuity equation on staggered grid one approximates the
second derivatives by taking finite differences of the first derivatives. Such operation gives:

{0%} Ui — 2+ Ui
ox?], (0x)? ’
[@] Uiy — 22U U
|, (dy)?

This discretization leads to a large system of linear equations, which can be approxi-
mately solved by a variety of methods developed in numerical mathematics (see below).

Now the Navier-Stokes equations can be discretized in the following fashion: at first, we
shall handle the spatial derivatives. The momentum equation (5.1) will be evaluated at the
vertical edge midpoints, the momentum equation (5.2) at the horizontal edge midpoints,
and the continuity equation (5.3) at the cell midpoints. Thus, it remains to be proved that
equation (5.1) is associated with velocity u, equation (5.2) with velocity v, and equation
(5.3) with pressure p considered as unknowns. We replace the expression in equation (5.1)
taken at the midpoint of the right edge of cell (i,7),i=1,...,imax — 1, j=1..., jmaxz,

o(u?) L (it Uiy 2_ wisyy +uig) "
x|, T 2 2

ai |wij + i1l (Wiy — tig1y) _ |wi1,j + Uil (wiz1y — uiy)
2 2 2 2 ’

23

O(uv) L (i A viy) (Wi + wigen) (i 4 i) (g1 + wiy) i
dy iy 5y 2 2 2 2
|vig + Vi (wiy — w]+1) Vi1 + Visro] (Wijo1 — wiy) 5.4)
5y P 2 2 2

|:@:| L Uit1,5 — 2uz,j + Uji—1,5

o2 |, (0x)?

@ N e 25 + Ui @ _ Pit15 — pz,g

Dy? (0y)? ’ or |, ox

For the expressions in equation (5.2), we set at the midpoint of the upper edge of cell
(1,7),i=1,...imazx, j=1..., jmax — 1

O(uv) .: i (uiy + “z‘j+1) (Vij + Vitry) (Uimry 4 i1 g41) (Vi1 + viy) N
or |, 2 2 2

)

51’ 2 2

<
I ()
<

|ui + Uw+1| (vig = Vitrg) [uic1y + Uiy (vieyy — Um'))
2)

at (vt Uw+1| Uij = Vig+1) [vig—1 + vigl (Vi1 — viy) (5.5)
“oy 2 2 2 ’ '
|:@:| o Vig1,5 — sz,j + Vi—1,5
2 2)
or i (0x)
@ o Vigtl = 205 + Vi op _ Pij+1 = Pij
], (0y)? ’ Wl oy

The terms in the continuity equation (5.3) are replaced at the midpoint of cell (i,),
1=1,...,1max, 3 =1...,jmax, by

ou Uy — U1y ov Ui — Vi1
[&ULJ = iy Yy, {ay]m = S, (5.6)

Here « is a parameter with values between 0 and 1. For a = 0, one gets the second-order
approximation for differential operators, i.e. the approximation error has the accuracy
O((6z)?) or O((6y)?). However, for small viscosity values, this approximation can result in
oscillations in the solution. In such cases one must resort to a so-called donor-cell scheme
(v = 1), which only produces the first-order approximation. In practice, a mixture of both
techniques is used, with @ € [0, 1]. The parameter «a should be selected slightly larger than
the maximal grid value of |udt/dx| and |vdt/dy|.

While discretizing the momentum equations (5.1) and (5.2) with respect to time, the
terms on the left-hand side should be evaluated at time point ¢,,,; and those on the right-
hand side at time point ¢,. The time derivative 0u/0t taken at time t,; will be replaced

04 CHAPTER 5. PREDICTION OF FLUID MOTION

by a finite difference quotient of the first order, (u(™+") — u()/§t. This corresponds to
the explicit time-stepping Euler scheme. There exist also implicit schemes, where on the
right-hand side also the values appear which are associated with future temporal points,
t,i1. Implicit methods allow considerably bigger time steps. However, for each time step
a large (nonlinear) system of equations arises, and the necessity to solve the latter almost
totally annihilates the advantages of applying bigger time steps..

The continuity equation (5.3) will be related to time point ¢,.

The Algorithm The method of solution of the discrete equations obtained above can
be described by the following sequence of steps.

The Time-Stepping Loop

In the outer iteration loop, the time is incremented at each step, starting from the time
point ¢t = 0, by a given ¢t, until the the final time point t.,4 is attained. At each step n
(n=0,1,...) the differential equations will be discretized as described above. The values
of all variables at any time step %, are known, and those at time ¢, 1 should be computed.

The Discrete Momentum Equations
The discrete momentum equations at each time step are to be solved again for newly
determined velocities u(" and v n+1 . Then one obtains

ot
n+l1 n n+1 n+1
W = B - L) 657
1=1,...;,0max —1, j=1,...,7maz;
ot
n+1 n n+1 n+1
Ui(,j = G(J) @(z(,j—i-l) - E])) (5.8)
1=1,...,0max, j=1,...,5max — 1.

Here, the terms F| ;L und G(contain the discretized right-hand sides of momentum
equations (5.1) and (5 2) as Well as the current time-level velocities u™ and v". Using the
discretized equations (5.4) and (5.5), we obtain

o 1 0*u 0*u O(u?) O(uv)
s = (i (2], <[22) - [, -[22),) oo

1=1,...,0max —1, j=1,...,7maz;
1 9*v 0*v I(uv)]| [0(v?)
Gi; = vi;+0ot — — — 5.10
;o= gt < <[a] " [@]) [) =Ty, o) G0
1=1,...,0max, j=1,...,7max — 1.
The pressure Equation
(n +1)

Equatlons (5.7) and (5.8) give the closed formulae to determine the new velocities u;

n+1) . (n)

in terms of the old velocities u, ; and vi j . However, the pressure p* remains

und vi, J

25

(n+1
,J
first provide an equation for p*1 and solve it. Such equation can be obtained by putting

so far unknown. Before the quantities u) and UZ-(3+1) could be determined, one should

the expressions (5.7) and (5.8) for ugzﬂ) und UZ-(3+1) into the discrete continuity equation
related to time point ¢, 1:
n+1 n+1 n+1 n+1 n+1 n+1
P§+1,j) - 2p§,j : ‘|’P§—1,j) i pz(',j+1) - 2p§,j : ‘|’P§,j—1) _
(0x)? (0y)?
ot ox oy ’ '
1=1,...,9max, j=1,...,7max.

This is the familiar form of the discretized Poisson equation for the quantity p™*")

a2p(n+1) 02p(n+1)
+ =7rs
Ox? 0y?

on a domain €2, with an arbitrary right-hand side rs. To ensure the uniqueness of the
solution, we also need the boundary conditions p; ; (i € {0, imax + 1}, 5 € {0, jmazx +1}),
F,; (i € {0,imaz}) und G;; (j € {0, jmax}), which we can obtain from the momentum
equations being considered at the boundary (see below).

Now it is possible to solve the pressure equation (5.11) using any solution techniques
developed for systems of linear equations. Since the direct methods, as e.g. Gauss elimina-
tion, lead to high computational costs for large problems (here imax - jmax is unknown), it
is more customary to use iterative procedures while solving numerically partial differential
equations. An example is the Gauss-Seidel method, in which, starting from some initial
value, all the cells are successively updated in each cycle, and the pressure at (7,) cell is
adjusted in such a way that the corresponding equation should be exactly satisfied.

An improved variant is given by the SOR (successive over-relaxation) method, when
the iteration step is given by the following loop over all cells:

1=1,...,1max
7=1...,7max
pift = (L—w)pl+ (5.12)
w pg—l,j +p§t—+11,j " pﬁfj+1 +p::f;'r—11 s
pYp (3y)? ’

The upper indices it und 7t 41 designate the iteration step number. Important: the old
pressure value p* will be right away overwritten by the updated value, pit + 1, i.e. there
remains no saved copy of the pressure field.

The quantity rs;; is the right-hand side of the pressure equation (5.11 for the (i,)
cell and w is a parameter (relaxation factor), which must be chosen from the interval]0, 2]

o6 CHAPTER 5. PREDICTION OF FLUID MOTION

(often the value w = 1.7 is used). For w = 1, the method is reduced to that of Gauss-
Seidel. The iteration process stops either once the maximum number of iterations, itmazx,
is reached or when the residual

) — = Dit1,j — 205+ Dic1j | Dij+1 — 2Dij + Pij1)2 . .
res : (; ; ((00)2 + o) rs;j | /(imaz - jmaz)
(5.13)
becomes smaller than the tolerance value e defined by the user.
As a starting value for the iteration process to calculate the pressure p(®*!) any pressure
value related to time level n can be taken.
Using the calculated pressure values related to time point ¢,,,1, one can then, with the

help of (5.7) and (5.8), compute the velocity values u and v for time point t,1

The Stability Condition In order to ensure the stability of the numerical algorithm
and avoid oscillations, the following three stability conditions must be imposed on the
stepsizes dx, dy, and dt:

2 (0z)*(dy)*
Re ot < (0z)? + (6y)?’

Here |upqz| and |v,,q,| are the maximal absolute values of the respective velocities. The
latter two inequalities in (5.14) are called the Courant—Friedrichs-Levi (CFL) conditions.

One can use an adaptive stepsize control based on the above stability conditions. This
is implemented by choosing 0t for the next time step in such a way that each of the three
conditions (5.14) is satisfied:

Re (1 1\ s by
ot = i — | — + — _ . 5.15
T < 2 ((51‘2 * 6y2) ’ |umax" ‘Umaw‘) ()

The coefficient 7 €)0, 1] is a safety factor. This stepsize control ensures, however, only
the stability of the metod. In order to specify the accuracy, the stepsize control should
be based on some error estimation procedure, which allows one to appraise the difference
between numerical and analytical solutions.

[Umaz| 0t < Oz, [Vmaz| 0t < Oy. (5.14)

5.1 Second Order Approximation

During the last decade, a new method for numerical solution of the Navier-Stokes equations
in regions with complex geometry has enjoyed a powerful development: the immersed
boundary method (IBM). In this method, the computation of gas motion is carried out on
a rectangular grid, and the curved boundary is interpreted as an interface. The grid cells
lying outside the region occupied by the fluid are classified as the ghost cells in which the
Navier—Stokes equations are, however, also solved numerically. A survey of different recent

1/2

5.1. SECOND ORDER APPROXIMATION 57

realizations of the IBM may be found in [46, 65, 68]. The immersed boundary method has
extended significantly the scope of applicability of the rectangular Cartesian grids at the
numerical solution of applied problems of the incompressible fluid dynamics.

The difference scheme proposed in [37] is often used within the IBM framework. The
convective terms are approximated in this scheme with the aid of the explicit three-level
Adams—Bashforth second-order scheme, and the viscous terms are approximated by the
implicit second-order Crank—Nicolson scheme. Despite the popularity of scheme [37], its
stability was not investigated even in the case of two spatial variables.

The purpose of the present work is the stability investigation of a modified scheme from
[37]. This investigation is carried out at first by the Fourier method. Since this analysis
method is applicable only to linear difference schemes with constant coefficients we employ
one more method for stability analysis of nonlinear difference equations approximating the
Navier—Stokes equations. This method was proposed in [47] and reduces to the investiga-
tion of the behaviour of solution of difference equations in the case when the oscillating
velocity profiles are specified on two lower time levels. The obtained stability conditions
have been verified by computations of two test problems one of which is the lid-driven
cavity problem.

Following [37] we will discretize the momentum equation in time by using a hybrid
second-order scheme:

vt—o" 3 1 1
_H—w ——H —-n—1 - no__
- +2 (o) 5 (v)+pGp

[L(5%) + L(7™)] . (5.16)

(CIIN

Here 7 is the time step, H(0") is the difference operator approximating the operator (7V)7,
G is the discrete gradient, L is the discrete Laplace operator, n is the time level. Thus,
the convective terms in (5.16) are approximated explicitly by the second-order Adams—
Bashforth scheme, and the diffusion terms vAv¢ are treated implicitly using second-order
Crank—Nicolson scheme. The implicit approximation of viscous terms is applied according
to [37] in order to eliminate a restriction for time step 7 dictated by the computational
stability:.

At the second fractional step, the field of intermediate velocities
ensure the mass conservation:

U* is corrected to

(0" = %) /7 = =GP, (5.17)

The pressure correction p’ is computed in such a way that a divergence-free velocity field
is obtained at the (n + 1)th time step. To this end, let us apply the divergence operator
to the both sides of equation (5.17):

(D" — D) /7, = —Lyp/, (5.18)

where D is a discrete analog of the divergence operator. Since it is required that Do+ = 0,
we obtain from (5.18) the Poisson equation for the pressure correction:

Ly = (1/7,) Dv*. (5.19)

o8 CHAPTER 5. PREDICTION OF FLUID MOTION

The correction p’ found as the solution of equation (5.19) is then used for the correction
of the velocity field according to (5.17): "' = ¢* — 7,,Gp’ and of the pressure field:
p"™ = p" + p/. The Poisson equation (5.19) was solved by the BiICGSTAB method [66].
As was pointed out in [38], the pressure correction method was found to be the fastest of
the methods tested by Armfield and Street [2] and is the method used here.

Following [37] we will approximate all spatial derivatives by second-order central differ-
ences on a staggered grid (see Fig. 5.1). The advantages of staggered grid at the numerical
integration of the Navier—Stokes equations for incompressible fluid are discussed in detail in
(37, 38]. For example, the term §%v/0y? is approximated on the staggered grid as follows:

(020/0y2)j7k+1/2 = (V4372 = 2Vjp41/2 + Uj,k—l/2)/(hg)’

where hy, ho are the steps of uniform rectangular grid along the x- and y-axes, respectively;
the subscripts j, k refer to the cell center. To approximate the convective terms H (7") we
use in (5.16) the difference formulas of the MAC-method [29, 55, 37]. These formulas are
applied to the divergence form of motion equations:

ou O(u?) 8uv+1@_A_ v Ouw 8(U2)+1@:

gu guv 29 _ gv A,
0t+ Ox oy pox rew 0t+8x+ dy p Oy vev

For example, (0u®/0x) ;1126 = (U3 1, — u2,)/h1, where w;y = (1/2)(wj_1/op + Ujt1/2.)-

We now mention several stability conditions, which were used previously at the com-
putation of time step 7 entering the difference scheme (5.16). Roache [55] discussed the
stability of the Adams—Bashforth scheme at its application for approximation of the one-
dimensional advection-diffusion equation

¢/t + 0(uC)/0x = vO*¢ /O, (5.20)

This scheme proved to be unconditionally unstable, and it has a weak divergence caused
by the fact that the scheme amplification factor G obtained by the Fourier method has
the form G = 1+ O(7?). It is, however, to be noted that the above scheme from [55] for
equation (5.20) is explicit, whereas there are in scheme (5.16) also the implicit operators,
which stabilize the numerical computation. It is to be noted here that since v = O(1/Re),
where Re is the Reynolds number, then at high Reynolds numbers, the stabilizing effect of
the implicit term in (5.16) becomes insignificant. The computation nevertheless remains
stable at the solution of practical problems by scheme (5.16) also for the value Re = 25
000, as this was shown in [35]. It was proposed in [35] to compute the time step 7 at the
computation by scheme (5.16) by using the formula

s -1 -1) -1
T = Il;ljfll [Tconv/Cme + Tdiff/Cdsz}) (521)

where the items are computed in each (j, k) cell as follows:

Tooms = [ul/ha + [0l /B, 7y = v (1/h7 + 1/h3) .

5.1. SECOND ORDER APPROXIMATION 59

For the diffusion component in (5.21) the Courant number Cy;rr = 0.25 according to [35],
and for the convective component the values of C.,,, were taken from 0.5 to 1. Note that
formula (5.21) is similar to the one used in [6], but in [6], the common Courant number
Ceonv = Caifr = 0.25 was used. Owing to the application of formula (5.21) with different
values of C.,,, and Cy;rp the authors of [35] were able to reduce the required CPU time at
the computations of unsteady flows by a factor of nearly four.

The stability analysis results were presented in [27] for the schemes of Runge-Kutta
type with the stage numbers three and five for the two-dimensional advection-diffusion
equation

Of Jot +udf|0x +vOf |0y = v(0*f/0x* + 0> f | Oy?).
It turned out that for the both studied schemes, the stability condition has the form

2 SN2
<7‘H1|Z|@‘) +<%) <1, (5.22)

where k1 = ut/hy, ko = v7/hy, kK = v7(1/h3 + 1/h3) = k3(1 + K3), k3 = v7/(h3), Ky =
hi/hs, a and b are certain constants depending on the specific method of the Runge-Kutta
type. Despite the fact that condition (5.22) as well as the empirical stability condition
(5.21) were obtained for different difference schemes their structure is similar. Formula
(5.21) can indeed be written in terms of dimensionless quantities 1, ko and s} as

K1l + |k K
Il 1ol |

Cconv Cdi If o

5.1.1 Fourier Symbol

The stability analysis of difference schemes by the Fourier method is known to be applicable
only to linear schemes with constant coefficients. Difference scheme (5.16) is nonlinear,
therefore, prior to the Fourier method application it is necessary to linearize the scheme.
Linearization may be implemented in two different ways. One of them consists of that
the original differential equations (in our case these are equations (5.1), (5.1), (5.3) are at
first linearized, and the difference scheme (5.16) is then applied to linearized differential
equations. Another technique reduces to a direct linearization of difference equations
(5.16). We use the first of the above techniques because it involves a slightly shorter
calculation.

Thus, let us assume that U(x,y,t), V(x,y,t), P(x,y,t) is an exact solution of equation
(5.1), (5.1), (5.3), where U and V are the components of the velocity vector along the z-
and y-axes, respectively, P is the pressure. According to difference equation (5.16), only
the velocity components are varied at a passage from the nth time level to the (n + 1)th
time level. We can, therefore, present solution ¢ of system (5.1), (5.1), (5.3) as

u=U+du, v=V+dv, p=P, (5.23)

where du and dv are the errors, which are small in their absolute values and which are
caused by the approximation error, machine roundoff errors, etc. Since the “big” quantities

60 CHAPTER 5. PREDICTION OF FLUID MOTION

U, V, P satisfy equation (5.1), (5.1), (5.3), as a result of substituting formulas (5.23) in (5.1),
(5.1), (5.3) and neglecting the second-order terms with respect to ou and dv we obtain the
following linear differential equations:

odu N U@du N V@du . 9%*6u N 0*u
ot ox dy ox? Oy?

0ov . U@év . V85U . 9%6v . 9%6v
ot ox oy ox? oy)’

?

(5.24)

Let us now approximate system (5.24) by difference scheme (5.16) on a staggered grid.
Since this difference scheme is a three-level scheme we introduce two auxiliary dependent
variables dr™ and §s™ by formulas [26]: 6r" = du™~1, §s™ = dv"~! before the investigation
of its stability. Let V = (U, V)T, §t" = (du™, 6v™)T, 67" = (6r™,6s™)T. We can then write
difference scheme (5.16) as applied to system (5.24) in the form:

0 — s 3

T - %(V"‘1V)(5W =YLy £ LY. (5.25)

NN

T

Thus, (5.25) is a two-layer difference scheme. Upon “freezing” its coefficients \7”, yn-l
we can apply the von Neumann stability analysis [25, 26] to obtain the necessary stability
condition. According to the procedure of this analysis we substitute into the system of
difference equations

M + ;(WV)&U” — %(V"_IV)&’" = g [L(60%) + L(0T™)];
5rn+l — 5un7 (526)
ds"tl = gun
the solution of the form
(S’Lﬁy’k = (Slﬁo)\n exp[i(jmlhl + k‘mghg)], (527)

where Juw™ = (du™, jv™, 6r™, 6s™)T, Sy is a constant vector, m; and my are real components
of the wave vector, A\ is a complex number, i = y/—1. As a result of the substitution of
particular solution of the form (5.27) into system (5.26) we obtain the system

Asul it = Bowy, (5.28)

where

O O O
o O O
O = O O
= O O O
O = O o
_ o o O
O OO0
O O o O

a=1+4k3(1—cos&)+ rky(l —cosn), c=(1/2)i(kisiné+ kosinn),

b=1-3c—rz(1l —cos) — ry(l —cosn), (5.29)

5.1. SECOND ORDER APPROXIMATION 61

Ur Vr vT vT
’) 2 2

& =myhy, 1 = msohy. The quantities k3 and k4 are nonnegative by virtue of their physical
meaning, therefore, a > 1, and, hence, matrix A is invertible. Multiplying the both sides
of equation (5.28) from the left by A=! we obtain the system

Ky = (5.30)

satt = G 8y, (5.31)

where matrix G = A7 B is called the amplification matrix of the difference scheme with
constant coefficients. But in our case, the coefficients depend on z, y, and ¢t with regard for
(5.30). Therefore, we will consider in the following the matrix G in (5.31) for fixed values
of x,y,t and will term the corresponding matrix GG the Fourier symbol of the difference
scheme.

All analytic formulas presented in this section and in the next section can be obtained
with the aid of the computer algebra system. In particular,

G=A"'B= (5.32)

O = Ol
— Ol O
S O Oele
S Ol O

Denote by A1, Aa, A3, Ay the eigenvalues of matrix G. The von Neumann necessary stability
conditions then have the form [25]

Am| <1+0(7), m=1,...,4. (5.33)

Let K = (K1, ka2, K3, k4). We have found the expression for the characteristic polynomial
F(A R, €,m) = Det(G — AI) of matrix G, where [is the identity matrix, with the aid of the
CAS we obtain:

(aX? — b\ — ¢)?
a? '

fONE Em) =

This equation has two roots A, A9, and the multiplicity of each of these roots is equal to

two:
b— Vb% + dac \ b+ Vb? +4ac
2a roeT 2a '

(5.34)

A = (5.35)

5.1.2 Analytic Investigation of Eigenvalues

We first consider the particular case of creeping fluid flows when U ~ 0, V' ~ 0. Assuming
then k1 = Ky = 0 we obtain the following expression for As: Ay = (1 — 0)/(1 + o), where
o = 2[kzsin?(£/2) + kysin(n/2)] > 0. It is easy to be sure of the fact that |\y| < 1 for any
k3, k4, &, m. That is there are no limitations for k3 and k4. This is not surprising because
for k1 = ke = 0 scheme (5.16) is implicit, therefore, it is absolutely stable [26].

We now consider the particular case when k3 = k4 = 0, kK1 > 0, ko > 0. It is clear that
the coefficient ¢ in (5.29) reaches its maximum over &, nat £ =n =7/2. If kK1 <0, Ky <0,

62 CHAPTER 5. PREDICTION OF FLUID MOTION

SO0
RO~ E o
i~
>
S}

“02 04 06 08 1P " 02 04 06 08 1

Figure 5.2: The graphs of Figure 5.3: The graphs of
|A12| vs. B the root (kf)s vs. kg for dif-
ferent &

then this maximum is reached at sin& = sgn k, sinn) = sgn xy. Then in the general case
it is obvious that maxg, |c| = (1/2)(|k1| + |k2]). The graphs of the quantities ||, |2
are shown in Fig. 5.2 as the functions of the quantity 8 = |ki| + |k2|. It is seen that |\
exceeds unity by a small value in the interval 0 < 5 < 0.5. That is scheme (5.16) is weakly
unstable in this interval.

It follows from the above consideration of particular cases that the necessary stability
condition of scheme (5.16) for values k1, ks, K3, k4 different from zero must have the follow-
ing form: |k1| 4 |ke| < (K3, k4), where the function ¢(ks, k4) should satisfy the following
properties:

* ©(0,0) =0;
o (k3 ,ky) >0, |k3|+ |ka] > 0.

The property ¢(0,0) = 0 ensures the presence of the above revealed instability of scheme
(5.16) for k3 = Ky = 0.

In the case when k1 # 0,k # 0,k3 # 0,k4 # 0 the derivation of stability condition
in an analytic form from (5.35) is difficult because of the availability of square roots of
complex numbers. In this connection, we use in the following the concept of the resultant,
to which one can reduce the problem of determining the stability region boundary. The
corresponding procedure was described in [25], therefore, we present it only briefly here.
Thus, let f(\, R, &, n) be the characteristic polynomial of a difference scheme, and let its
degree in A be equal tom (m > 1). Following [25] let us perform the Mobius transformation
A= (w+1)/(w—1). Then we obtain the polynomial

g(wa /375}77) = (w - 1)mf((w + 1)/((4) - 1)7 ’5»5,77)

Let wy,...,wy, be the roots of polynomial g. The condition Rew; < 0, j = 1,...,m,
corresponds to condition |A\;| <1, j =1,...,m. Then at the boundary I" of the stability
region the polynomial g must have at least one purely imaginary zero. Set w = ic and
consider the polynomial ¥ (o, <,&,n) = g(io, K, &,n). It is clear that the boundary T is
determined by those values of quantities &, &,n, at which the polynomial ¢ has a real
zero o. Zeroes of polynomial 1 are determined by the system of two equations with real

5.1. SECOND ORDER APPROXIMATION 63

coefficients Ret) = 0, Im1 = 0. This system has the solution if and only if the resultant
of equations Revy = 0, Im¢) = 0 equals zero:

Res(Re), Im) = 0. (5.36)
As a result, we obtain the following formula for Res(Re), Im1)):

R(R.&n) = Res(Ret,Imv) = —a’ + a0} + a’b; + dabibycy + 2a’cy
+ bict 4+ b3t —cf, (5.37)

where in accordance with (5.29)

a = 14 r3(1—cos&)+ ry(l—cosn), by =1 —k3(1 —cosé) — ka(l — cosn),
by = —(3/2)(kisin + kesinn), ¢ = (1/2)(k1siné + ko siny). (5.38)

The substitution of expressions (5.38) in (5.37) leads to a bulky formula, which we do not
present here for the sake of brevity.

As we have shown above in this section, in the particular case when k3 = k4 = 0 the
most restrictive stability condition is obtained for sin¢ = sinn = 1. In this connection,
we will investigate in the following the case £ = 1 in more detail. As a result, we obtain
a quadratic equation in z = k7 to determine the roots of equation R(R,&,&) = 0. Using
the Maple command solve we can obtain the analytic expressions for the both roots.
For the sake of brevity we present only the second root z;. We introduce the notation
ks = |k1| + |ka|, ke = K3 + K4, 2 = k2. Denote by ri the value of quantity x5 at the
stability region boundary. Then

1
7 = (K)y = §CSC4£ (—10kgsin® € — 12k sin® € 4 10k cos E sin® &

+ 24kZ cos Esin® € — 12k cos® Esin® € + 24/kg\/—1 + cos € X
(—1 — 2ng + 2k cos &)/ —8 — kg + kg cos € sin’ 5) . (5.39)

In particular, at £ = n = 7/2 we obtain the following expressions for the both roots (k%);
and (k?)s:

(ki)1 = (—bHre — 6;1% — \/?6(1 4 2'%‘)\/%)1/27
(KE)Q = (—5/% — 6/{2 + \//?6(1 + QKG)m)ug

The radicand in formula for (k%); is negative because it is the sum of negative items.
Therefore, it is worthwhile considering only the root zs given by (5.39). In order to be
sure that the values £ = n = 7/2 yield the most restrictive stability condition we have
constructed twenty curves of the family (x%)2(&,€&) with the step A{ = 0.0457. These
curves are shown in Fig. 5.3, in which the curve for the particular pair £ = n = 7/2 is
shown as a thick line. We can see that this line is the lowest one in Fig. 5.3. Thus, we
have obtained an approximate form of the necessary stability condition:

|k | 4 [R2| < (=Bke — 6K2 + /Rg(1 + 2r6)V/S + Irg) /2. (5.40)

64 CHAPTER 5. PREDICTION OF FLUID MOTION

Figure 5.4: The surface 7 =
7(a,b)

For £ =n = m/2, the expression for the resultant becomes especially simple:
R(R,m/2,7/2) = (1/2)2* — 4drg + 5zrg — 8kig + 62k7 — 4. (5.41)

Substituting the expressions for ki, kg, k3, k4 from (5.30) into (5.41) we obtain a fourth-
degree polynomial equation for determining the time step 7. Its solution is efficiently found
with the aid of the Mathematica function Solvel[...], and it turns out that equation R = 0
has two real roots and two complex conjugate roots. The real root 7 = 0 is of no practical
value. The other real root is as follows:
3
—— —% — (2"/3(—148a%p* — 416ab* — 641°)) /(3(a® + 12ab*) x
(216a*b + 1744a°b® 4 19776ab° + 9984ab” + 10240’

+ 24V/3a32bV/27a + 462 (a® + Sab® — 48b*))1/3)

o3 21/3(a21 12007 ((216a"b + 1744a°0° + 197764°b” + 9984ab’
+10240° + 24v/30*2bv/27a + 462 (a® + Sab® — 48b4)) " (5.42)
where ,
a:<%+%) , b:h%+h—”§. (5.43)

Note that after the non-dimensionalization of the Navier-Stokes equations, the value v is
usually replaced with v = 1/Re.

We show in Fig. 5.4 the surface 7 = 7(a, b). We can draw the following conclusions from
this figure: (i) for sufficiently large values of |U| and |V'|, such that a > 0.5, the time steps
are smaller than for a < 0.5; (ii) for low Reynolds numbers, when b is sufficiently high, the
maximum time step becomes higher and higher with increasing b for sufficiently low a. This
may be explained by the well-known fact that with decreasing Re, the dissipative effects
become more pronounced, and right these effects are known to stabilize the difference
solution.

Let us consider the case when 0 < kg < 1 (high Reynolds numbers). Using the
Mathematica command Series[7,b,0,1}] we find:

2(a®)/3013 10b

A S T 44
T e 3a—|-0(b) (5.44)

5.1. SECOND ORDER APPROXIMATION 65

If, for example, Re = 1/v = 10%, then 7 = O(10~%/3). This consideration explains why the
computations by scheme (5.16) are stable also for such high Reynolds numbers.

Note that formula (5.42) for the maximum time step allowed by stability is approximate
because for & # 1 one may expect, in principle, a somewhat more restrictive stability condi-
tion. Therefore, it is advisable to compute the time step 7,, in computer code implementing
scheme (5.16) from the known difference solution at the nth time level by formula

Tp=0- njlzn T(aj,b), (5.45)
where 7 is computed by (5.42) at each grid cell (4, k), and 0 is the user-specified safety
factor, 0 < 6 < 1 (for example, 6 = 0.98).

On the other hand, although the stability condition (5.42) is approximate, it has a
correct analytic form obtained from the von Neumann stability condition with the aid of the
algebra of resultants. This enables the obtaining of information on the stability properties
of a numerical method under the variation of such important physical parameters as the
Reynolds number and the gas velocity.

A shortcoming of symbolic-numerical methods for stability investigation consists of
the fact that although it is possible to obtain with their aid a finite set of the stability
region boundary points these methods do not give information about the structure of the
analytic form of the stability region boundary. Although one can obtain the analytic
approximation for the maximum time step 7 with the aid of the method of least squares
the resulting analytic formulas have a shortcoming that they specify this analytic form in
a user-predefined class of forms, which may be far from the true analytic dependence.

5.1.3 Verification of Stability Conditions
The Taylor—Green Vortex

The Taylor—Green vortex is one of few analytical solutions of the two-dimensional Navier—
Stokes equations. The solution, with v =1 and p = 1, is given by formulas [37]

-2

uw=—ecosxsiny, v=e>

Psinxcosy, p= —e *(cos2x + cos2y)/4. (5.46)

The flow is represented by periodic counter-rotating vortices that decay in time. The
computational domain is over 7/2 < z,y < 57/2, which corresponds to homogeneous
Dirichlet boundary conditions for the velocity component normal to the boundary and
homogeneous Neumann boundary condition for the velocity component tangent to the
boundary. The pressure boundary condition is homogeneous Neumann everywhere.

We have carried several computations of this test problem using formula (5.42) for the
time step 7. It turns out that this formula gives the 7 values, which are by factors from
2 to 6 higher than those obtained from formula (5.21). These factors varied depending on
the grid step sizes h; and ho and the number of executed time steps, that is on the local
values of the velocity components. The computation by the above described difference
method nevertheless remained stable when using (5.42) with safety factor 6 = 0.5.

66 CHAPTER 5. PREDICTION OF FLUID MOTION

30
25
20
15
10

30
25
20
15
10

(6)]
U'I

5 10 15 20 25 3 5 10 15 20 25 30 5101520253

(a) (b) ()
Figure 5.5: The contours of u (a), v (b), and p (c) for n = 20 (t = 0.96157)

0 1u Figure 5.6: The profile of u = u(zo,y),

0.0ST\ / xo = 3.45575 (= 1.17); solid line is the

_0.05) 3W 7Y exact solution, dotted line is the numer-
-0.1 ical solution for n = 20 (t = 0.96157),

Since the amplitudes of the velocity components decay exponentially with time in the
given task, we present in Figures 5.5 and 5.6 the results for the case of using formula (5.21)
with Ceony = 0.5, Cgirp = 0 and the 30 x 30 grid to show that our computer code works
correctly also after executing several dozens of time steps.

Lid-Driven Cavity Problem

This problem is frequently used as a test of numerical methods for the incompressible
Navier—Stokes equations, although it has no known exact analytic solution. In this problem
the no-slip boundary conditions are imposed on the left, bottom, and right walls of the
cavity, and the z-component U, of the velocity is specified at the upper boundary (the
moving “lid”). Let B be the horizontal cavity size. Then the dimensional lengths are
non-dimensionalized with respect to B, and the Reynolds number Re has the form Re =
UoBp/ . The dimensionless velocity component v = 1 at the lid. The pressure boundary
condition is homogeneous Neumann everywhere.

We have done numerous computations by the difference method of Section 2 for the
purpose of elucidating the validity of formula (5.42) for the maximum time step allowed
by stability. We at first consider the case when the Reynolds number Re = 1. It turns out
that the computation remains stable even if the actual time step exceeds the value given
by (5.42) by a factor of three, that is = 3 in (5.45). But, on the other hand, for # > 1 the
convergence to the stationary solution of the lid-driven cavity problem slows down with
increasing 6.

Another interesting fact revealed by our computations in the low Reynolds number case
is that the actual time step computed with the aid of (5.45) was by factors from 33 to 58
higher than in the case of using the known empirical formula (5.21), in which we specified
the values Cony = 0.5, Cgipp = 0. This result means that in the case of numerical solution

5.1. SECOND ORDER APPROXIMATION 67

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
x X

Figure 5.7: Streamlines in the lid-driven cavity problem: (a) Re = 1; (b) Re = 400

of more complex stationary flow problems with low Reynolds numbers it is possible to have
very significant savings in CPU times (by a factor of up to 58).

And the final observation, which we have drawn from our numerical experiments in-
volving (5.42) is that it ensures the fastest convergence to the stationary solution in the
case of Re = 1 when the value on the right-hand side of (5.42) is multiplied by a safety
factor of about 0.6.

In the case of a higher Reynolds number, namely Re = 400, the computation using
(5.45) with @ = 1 proves to be unstable. In order to ensure the stability for Re = 400, one
must take the value § < 0.1 in (5.45). But even in this case, the actual “stable” time step
exceeded the value given by (5.21) by a factor of about five.

Although the computation using (5.45) may remain stable also for § > 1, in the case
of large time steps one should ensure the needed accuracy of the results. For this purpose,
one can use the known test problems for which the exact analytic solutions are available.

We show in Fig. 5.7 some numerical results obtained with the use of formula (5.42), in
which the right-hand side was multiplied by the safety factor # = 0.6 in the case of Re =
1. One can verify that these two figures are very similar to Figs. 4, (a) and (b) from [37].
Figure 5.7 was obtained on a mesh of 30 x 30 cells.

68

CHAPTER 5. PREDICTION OF FLUID MOTION

Bibliography

1]

2]

[10]
[11]

[12]

[13]

J. Angeles: Fundamentals of Robotic Mechanical Systems, Springer Verlag New-York,
2003

S.W. Armfield, R. Street: The fractional-step method for the Navier—Stokes equations
on staggered grids: the accuracy of three variations, J. Comp. Phys., 153:660-665,
1999

S. Basu, R. Pollack, M.-F. Roy : Computing Roadmaps of Semi-algebraic Sets on
a Variety. In Foundations of Computational Mathematics, F. Cucker and M. Shub
(eds.), 1-15, Springer-Verlag, 1997

A. Ben-Israel, T. N. E. Greville: Generalized Inverses: Theory and Applications, John
Wiley and Sons, 1974

A. Bjerhamar: A Generalized Matrix Algebra, Kungl. Tekn. Hoegsk. Handl, 49, 1951

B. J. Boersma, G. Brethower, F. T. M. Nieuwstadt: Numerical investigtion on the
effect of the inflow conditions on the self-similar region of a round jet, Phys. Fluids,
10:899-909, 1998

L. C. Groove, C. T. Benson: Finite Reflection Groups, Springer-Verlag, 1985
J. W. Bruce, P. J. Giblin: Curves and Singularities, Cambridge University Press, 1984

H.-J. Bungartz: Diinne Gitter und deren Anwendung bei der adaptiven Losung der
dreidimensionalen Poisson-Gleichung, Dissertation, Institut fiir Informatik, Technis-
che Universitait Miinchen, 1992

J. Canny: The Complexity of Robot Motion Planning, MIT Press, 1987

J. Canny, A. Rege, and J. Reif: An exact algorithm for kinodynamic planning in the
plane, Discrete and Computational Geometry, 6:461-484, 1991

B. F. Caviness , J. R. Johnson (eds.): Quantifier Elimination and Cylindrical Algebraic
Decomposition, Springer-Verlag, 1998

Y .-C. Chen: Solving Robot Trajectory Planning Problems with Uniform Cubic B-
Splines, Opt. Contr. Appl. and Meth., 12:247-262, 1991

69

70

[14]

[16]

[17]

[18]

[20]

[21]

[22]

BIBLIOGRAPHY

D. Chibisov, V. Ganzha, E. W. Mayr, E. V. Vorozhtsov: Generation of orthogonal
grids on curvilinear trimmed regions in constant time. In Proc. CASC’2005, V. G.
Ganzha, E.W. Mayr, E. V. Vorozhtsov (eds.), LNCS 3718, Springer-Verlag, Berlin,
Heidelberg, 2005, 105-114

D. Chibisov , V. Ganzha, E. W. Mayr, E. V. Vorozhtsov: Stability Investigation of a
Difference Scheme for Incompressible Navier-Stockes Equations in Proc. CASC’2007,
V. G. Ganzha, E'W. Mayr, E. V. Vorozhtsov (eds.), LNCS 4770, Springer-Verlag,
Berlin, Heidelberg, 2005, 102-117

D. Chibisov , V. G. Ganzha, E.V. Vorozhtsov: Hierarchical Advancing Front Triangu-
lation Using Symmetry Properties, In Proc. CASC’2004, V. G. Ganzha, E.W. Mayr,
E. V. Vorozhtsov (eds.), TUM Press, 2004

D. Chibisov and E. W. Mayr: Computing Minimum-Time Motion for 6R Robots
with Application to Industrial Welding, In L. Gadomski, M. Jakubiak, and A. N.
Prokopenya (eds.), CASTR’07, Computer Algebra Systems in Teaching and Research,
36-46, Wydavnictwo Akademii Podlaskiej Siedlce, Poland, 2007

D. Chibisov, E. W. Mayr: Motion Planning for 6R Robots: Multiple Tasks with
Constrained Velocity and Orientation of the End-Effector, in Proc. of the 2007 In-

ternational Workshop on Symbolic-Numeric Computation, July 27-29, 2007, London,
Ontario, Canada, ACM Press, New York

D. Chibisov, E.W. Mayr, S. Pankratov: Spatial Planning and Geometric Optimization:
Combining Configuration Space and Energy Methods . In Proc. ADG’2004, H. Hong,
D. Wang (eds.), LNAI 3763, Springer-Verlag, 2006

G. E. Collins: Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic
Decomposition, Lect. Notes in Comp. Sci. 33, 515-532, Springer-Verlag, 1975

D.A. Cox, J.B. Little, D. O’Shea: Ideals, Varieties, and Algorithms, Springer-Verlag,
Berlin, 1996

Croft T.H., Falconer K. J., Guy R. K.: Unsolved Problems in Geometry, Springer-
Verlag, 1991

J. C. Culberson: Sokoban is PSPACE-complete. In Proceedings International Confer-
ence on Fun with Algorithms (FUN9S8), 6576, Waterloo, Ontario, Canada, June 1998,
Carleton Scientific

J. Denavit and R. S. Hartenberg: A Kinematic Notation for Lower-Pair Mechanisms
Based Upon Matrices. J. App. Mechanics, 77:215-221, 1955

V. G. Ganzha, E.V. Vorozhtsov.: Computer-Aided Analysis of Difference Schemes for
Partial Differential Equations, Wiley-Interscience, New York, 1996

BIBLIOGRAPHY 71

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[35]

[36]

[37]

[38]

[39]

[40]

V. Ganzha, E. V. Vorozhtsov: Numerical Solution for Partial Differential Equations:
Problem Solving Using Mathematica, CRC Press, Boca Raton, Ann Arbor, 1996

V. Ganzha, E.V. Vorozhtsov: Symbolic-numerical computation of the stability regions
for Jameson’s schemes. Mathematics and Computers in Simulation, 42:607-615, 1996

P.L. George: Automatic Mesh Generation. Application to Finite Element Method,
John Wiley & Sons, New York, 1991.

F.H. Harlow, J.E. Welch: Numerical calculation of time-dependent viscous incom-
pressible flow of fluid with free surface. Phys. Fluids, 8:2182-2189, 1965

Chr. Hoffmann: Implicit curves and surfaces in CAGD, IEEE Computer Graphics and
Applications, 1993

W. Hoffmann and T. Sauer: A Spline Optimization Problem from Robotics, Rediconti
di Mathematica, 26:221-230, 2006

J. Hopcroft, D. Joseph, and S. Whitesides: Movement problems for 2- dimensional
linkages. In J .T .Schwartz, M. Sharir, and J. Hopcroft (eds.), Planning, Geometry,
and Complexity of Robot Motion, 282329, Ablex, Norwood, NJ, 1987

J. E. Hopcroft, J. T. Schwartz, and M. Sharir: On the complexity of motion planning
for multiple independent objects: PSPACE-hardness of the warehousemans problem.
International Journal of Robotics Research, 3(4):7688, 1984

D. A. Joseph and W. H. Plantiga: On the complexity of reachability and motion
planning questions. In Proceedings ACM Symposium on Computational Geometry,
6266, 1985

B.B. Ilyushin, D. V. Krasinsky: Large eddy simulation of the turbulent round jet
dynamics. Thermophysics and Aeromechanics, 13(1):43-54, 2006

O. Khatib: Real time obstacle avoidance for manipulators and mobile robots, Internat.
J. Robotics, 5:90-99, 1986

J. Kim, P. Moin: Application of a fractional-step method to incompressible Navier—
Stokes equations. J. Comp. Phys., 59:308-323, 1985

M. P. Kirkpatrick, S.W. Armfield, J.H. Kent: A representtion of curved boundaries for
the solution of the Navier—Stokes equations on a staggered three-dimensional Cartesian
grid. J. Comp. Phys., 184:1-36, 2003

P. Knupp, , S. Steinberg: Fundamentals of Grid Generation, CRC Press, Boca Raton,
Ann Arbor, 1986

KUKA Roboter GmbH: Specification of KR 60 HA,
http://www.kuka.com/germany /en/products/industrial_robots/medium /kr60_ha/

72

[41]

[42]

[43]

[44]
[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

BIBLIOGRAPHY

J.-C. Latombe: Robot Motion Planning, Kluwer Academic Publishers, 1991

C.S. Lin, P-R. Chang, J.Y.S. Luh: Formulation and Optimization of Cubic Poly-
nomial Joint Trajectories for Industrial Robots, IEEE Trans. on Automatic Control,
28:1066-1074, 1983

T. Lozano-Perez: Spatial Planning: A Configuration Space Approach, IEEE Trans-
actions on Computers, C-32 (2), 108-120, 1983

S. M. LaValle: Planning Algorithms, Cambridge University Press, 2006

A. Y. Lee: Solving Constrained Minimum-Time Robot Problems using the Sequential
Gradient Restoration Algorithm, Opt. Contr. Appl. and Meth., 13:145-154, 1992

S. Marella, S. Krishnan, H. Liu, H.S. Udaykumar: Sharp interface Cartesian grid
method I: An easily implemented technique for 3D moving boundary computations.
J. Comp. Phys., 210:1-31, 2005

M.L. Minion: On the stability of Godunov-projection methods for incompressible flow.
J. Comp. Phys.;123:435-449, 1996

C. O’Dunlaing: Motion planning with inertial constraints, Algorithmica, 2(4):431-475,
1987

A. Pasko, O. Okunev, V. Savchenko: Minkowski sum of point sets defined by inequal-
ities, Computers and Mathematics with Applications, 45(10/11):1479-1487, 2003

D. W. Peaceman, H.H. Rachford: The numerical solution of parabolic and elliptic
differential equations, J. of STAM, 3:28-41, 1955

R. Penrose: A generalized Inverse for Matricesm, In Proc. Cambridge Philos. Soc.,
51:406-413, 1955.

J. H. Reif : Complexity of the Generalized Mover’s Problem; In Planing, Geometry
and Complexity of Robot Motion, T. Schwartz, M. Sharir, J. Hopcroft (eds.), 267-281,
Ablex Publishing Corporation, 1987

A. Requicha: Representations for Rigid Solids: Theory, Methods, and Systems, ACM
Computing Surveys (CSUR) Archive, 12(4):437-464, ACM Press, 1980

E. Rimon, D. E. Koditschek: The Construction of Analytic Diffeomorphisms for Exact
Robot Navigation on Star Worlds, Transactions of the AMS, 327(1):71-116, 1991

P. J. Roache: Computational Fluid Dynamics. Hermosa, Albuquerque, New Mexico,
1976

V. L. Rvachov: Methods of Logic Algebra in Mathematical Physics, Naukova Dumka,
Kiev, 1974 (in Russian)

BIBLIOGRAPHY 73

[57]
[58]

[59]

[60]

[61]

H. Samet: The Design and Analysis of Spatial Data Structures, Addison-Wesley, 1990

T.W. Sederberg: Implicit and Parametric Curves and Surfaces for Computera-Aided
Geometric Desgin, PhD Thesis, Purdue University,1983

M. Schlemmer and O. von Stryk, Optimal Control of the Industrial Robot Manutec
r3, In D. Kraft R. Bulirsch (eds.), Computational Optimal Control, volume 115 of
International Series of Numerical Mathematics, 367-382, 1994.

J. Schwartz, M. Sharir: On the Piano Movers Problem II. General Techniques to
Computing Topological Properties of Real Algebraic Manifolds, Advances in Applied
Mathematics, 4:298-351, 1983

J. Schwartz, C.K. Yap: Advances in Robotics , Lawrence Erlbaum associates, Hillside
New Jersey, 1986

V. Shapiro: Theory and Applications of R-Functions: A primer, Technical Report,
Cornel University, 1991

V. Shapiro, I. Tsukanov: Implicit Functions With Guaranteed Differential Properties;
In Proceedings of the Fifth Symposium On Solid Modeling ”SOLID MODELING’99”,
258-269, Ann Abor, Michigan, ACM Press, 1999

H. Schlichting, E. Truckenbrodt: Aerodynamics of the Airplane, McGraw-Hill, New
York, 1979

M. Uhlmann: An immersed boundary method with direct forcing for the simulation
of particulate flows. J. Comp. Phys., 209:448-476, 2005

H. A. van der Vorst: Bi-CGSTAB: A fast and smoothly converging variant of Bi-
CG for the solution of nonsymmetric linear systems, STAM J. Sci. Statist. Comput.,
13:631-644, 1992

V. Weispfenning: Quantifier elimination for real algebra - the cubic case. In Proc.
ISAAC 1994, Oxford, England UK

J. Yang, E. Balaras: An embedded-boundary formulation for large-eddy simulation of
turbulent flows interacting with moving boundaries, J. Comp. Phys., 215:12-40, 2006

C. Zenger: Sparse grids. In: Parallel Algorithms for Partial Differential Equations,
Proc. Sixth GAMM-Seminar, Kiel, 1990, Hackbusch, W., editor, Vol. 31 of Notes on
Num. Fluid Mech. Vieweg-Verlag, Braunschweig/ Wiesbaden, 241-251, 1990

