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Zusammenfassung

Die vorliegende Dissertation befasst sich mit verschiedenen Aspekten der Vielteilchen-
physik von ultrakalten Quantengasen. Der erste Teil behandelt die theoretische Basis
der Radio-Frequenz-Spektroskopie von ultrakalten Fermigasen in der Nähe von Feshbach-
Resonanzen. Konkret werden Spektralfunktionen und die daraus folgenden RF-Spektren
von stark wechselwirkenden Fermigasen am Unitaritätspunkt berechnet. Weiters wird der
Polaron-Molekül-Übergang mit Hilfe von Variationsmethoden untersucht. Der kritische
Wert der Wechselwirkungsstärke des Übergangs wird berechnet und mit experimentellen
Ergebnissen verglichen. Der letzte Abschnitt beschäftigt sich mit der Nichtgleichgewichts-
dynamik von Heisenberg-Spinketten. Hier wird die unitäre Zeitentwicklung eines Néel-
Zustands analysiert. Der antiferromagnetische Ordnungsparameter relaxiert im Allge-
meinen exponentiell, wobei die zugehörige Relaxationszeit am isotropen Heisenbergpunkt
minimal ist.

Abstract

This thesis is concerned with different aspects of many-particle-physics in the context of
ultracold quantum gases. The first part deals with the theoretical basis of radio-frequency-
spectroscopy of ultracold Fermi gases near Feshbach-resonances. In particular, we calcu-
late spectral functions and the corresponding rf-spectra of strongly interacting Fermi gases
at unitarity. Furthermore, we study the polaron-to-molecule transition using variational
methods. We calculate the critical value of the interaction strength and compare it to
experimental results. The last part deals with non-equilibrium dynamics of Heisenberg-
spin-chains, where the unitary time evolution of a Néel-state is analyzed. Quite generally,
the antiferromagnetic order parameter relaxes exponentially and the corresponding relax-
ation time exhibits a minimum at the isotropic Heisenberg point.
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Chapter 1

Introduction

Starting with the first experimental realization of Bose-Einstein condensates (BEC) with
lasercooled atomic vapors in 1995 [1, 2] and the subsequent generation of degenerate Fermi
gases in 1999 [3], the physics of ultracold atomic quantum gases evolved rapidly in the last
decade, triggering lots of experimental and theoretical work in this field1. In particular, two
developments have had a tremendous impact. First of all, the use of Feshbach resonances
gave experimentalists a unique tool, making it possible to tune the interaction strength
between atoms in cold gases. Using this method, the BCS-BEC crossover from weakly
bound Cooper pairs to a Bose-Einstein condensate of tightly bound bosonic molecules was
realized for the first time with ultracold atomic Fermi gases. Due to the importance of the
BCS-BEC crossover problem for a large part of this thesis, we will briefly review it below.

The second major achievement was the implementation of optical lattices, which allows
experimentalists to study atomic gases in periodic potentials that are ubiquitous in usual
solid state systems. Indeed, cold gases in optical lattices almost perfectly realize Hubbard
Hamiltonians, thereby enabling physicists to study strongly correlated quantum systems
using the tools of atomic physics. As a bonus, the parameters of the Hubbard model can
be tuned easily by adjusting the optical lattice. From this point of view, cold gases can be
considered as quantum simulators for basic many-body Hamiltonians in condensed matter
physics, which have no direct realization in nature and are hard to tackle theoretically.

Ultracold atomic gases are particularly interesting, because they are very clean systems,
allow for a high degree of experimental control and offer the ability to study relatively sim-
ple quantum mechanical systems, where a direct comparison between experimental results
and theoretical ab initio calculations is feasible. All these nice features and advantages
come at some cost, however. In particular, the arsenal of experimental tools to probe the
properties of ultracold atomic gases is much smaller than in usual solid state physics and
many measurement methods require to release the atomic cloud from the trap, thereby
destroying the system. Nevertheless, many striking experiments have already shown the
versatility and the vast range of potential applications of ultracold atomic gases, and there
is much more to be expected in the upcoming years.

In this theoretical thesis we consider problems that are closely connected to exper-

1For a review see e.g. [4] and [5].
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1. INTRODUCTION

iments which have been performed recently, or are about to be carried out in the near
future. Thus, many of the facets of ultracold gases that have been mentioned above will
play a role in the subsequent chapters. In particular, Feshbach resonances are a necessary
ingredient in the first two chapters, where some aspects of the BCS-BEC crossover in ul-
tracold Fermi gases are discussed. The first chapter also deals with theoretical aspects of
a particular method to measure pairing correlations in cold gases, which has been applied
with much success in recent years. Finally, optical lattices play an important role in the
last chapter of this thesis, where quench problems in Heisenberg spin-chains are studied.

BCS-BEC crossover in ultracold atomic gases

It is known since the seminal work of Bardeen, Cooper and Shrieffer (BCS) in 1957 [6], that
a Fermi gas with weak attractive interactions has an instability towards pair formation
and exhibits a phase transition to a superfluid state below a critical temperature Tc. In
a simple picture, this phase transition can be understood as Bose-Einstein condensation
(BEC) of bosonic Cooper pairs, although one has to keep in mind that Cooper pairs are
far from being local molecules. Now one can ask what happens, if the interactions are
cranked up in such a way, that two Fermions form a tightly bound molecule instead of a
weakly bound Cooper pair. The first theoretical investigations of this BCS-BEC crossover
scenario were conducted by Eagles [7] and Leggett [8], using the BCS ground state as
a variational ansatz for the whole crossover regime. Although the BCS-BEC crossover
problem was of purely theoretical interest at that time, it regained lots of theoretical
attention due to the possibility of its experimental realization in ultracold atomic gases
with the help of Feshbach resonances.

In experiments with cold Fermi gases usually the isotopes 6Li or 40K are used. These
neutral alkaline atoms typically interact via a Lennard-Jones potential, i.e. at large dis-
tances the attractive interaction is governed by van der Waals forces, and the potential
well supports on the order of ∼ 100 bound states. In the ultracold limit, however, the
scattering properties are determined solely by the position of the energetically highest
bound state. In particular, the scattering amplitude of two atoms in the ultracold limit,
i.e. at small relative momenta, takes the form2

f(k → 0) =
1

−a−1 − ik + O(k2)
, (1.1)

where the only parameter that enters the problem is the s-wave scattering length a, which is
only sensitive to the position of the bound state that is closest to the continuum threshold.
In the ultracold limit the complicated Lennard-Jones potential can thus be replaced with
a pseudopotential (we set ~ = 1 throughout)

V (x) =
4πa

m
δ(x) , (1.2)

2The validity of the low momentum expansion of the scattering amplitude actually defines the ultracold
limit.
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which captures the physics of the uppermost bound state in the van der Waals potential
and gives rise to a scattering amplitude of the form (1.1) after regularization3. For negative
scattering lengths a < 0 the interaction is attractive, whereas positive scattering lengths
a > 0 lead to a repulsive interaction. One has to keep in mind however, that a two-particle
bound state exists only for repulsive interactions a > 0. Indeed, the poles of the scattering
amplitude in the upper half complex plane determine the energy of two-body bound states
[10]. For our low energy scattering amplitude (1.1) we get a pole in the UHP for positive
scattering lengths a > 0, corresponding to a bound state energy Eb = −(ma2)−1. Due
to the s-wave nature of the contact potential (1.2) it is clear that only Fermions in two
different internal pseudo-spin states can interact, because of the Pauli principle. In the
context of cold atomic gases these pseudo spin states correspond to two different hyperfine
states of the atoms.

Feshbach resonances are scattering resonances, where a two-body bound state exists in
a closed scattering channel that corresponds to a different hyperfine state configuration of
the two scattering atoms. Due to the hyperfine interaction of the atoms at short distances,
the open channel couples to the closed channel. If the energy of a true bound state in the
closed channel coincides with the incident energy of the two atoms in the open channel, a
scattering resonance appears and the scattering length diverges. Because of the different
magnetic moments of the hyperfine states in the open and closed channels, the relative
position of the bound state in the closed channel can be tuned with respect to the open
channel by applying a magnetic field. This gives rise to a magnetic field dependence of
the scattering length of the form

a(B) = abg

(

1 − ∆B

B −B0

)

, (1.3)

where B0 and ∆B parameterize the position and the width of the resonance. abg is the
background scattering length, which is determined by the position of the uppermost bound
state in the open channel.

The BCS-BEC crossover problem can now be understood as follows. For weak attrac-
tive interactions a→ 0− (the BCS-limit) two Fermions in different pseudo-spin states form
a Cooper pair and the Fermi gas becomes unstable below a critical temperature Tc. The
typical pair radius ξ is determined by the BCS energy-gap via ξ ∼ ∆−1 ∼ exp((kF |a|)−1)
and is much larger than the typical interparticle spacing ξ ≫ k−1

F , which is set by the
Fermi momentum kF . Note that the Cooper pair is not a true two-particle bound state,
but a many-body effect. Indeed, Cooper pairing is only possible in the presence of a Fermi
sea, which is obvious from the fact that the gap vanishes as kF → 0. Now, if the attrac-
tive interaction is increased, the pair radius ξ gets smaller. At resonance a → ±∞ it is
on the order of the interparticle spacing ξ ∼ k−1

F . After crossing the resonance, a true
two-body bound state appears in the problem at positive scattering lengths a > 0, with
a bound state energy Eb = −(ma2)−1. Going further away from the resonance torwards
the BEC-limit kFa ≪ 1, where |Eb| ≫ εF , two Fermions in different pseudo-spin states
will form a tightly bound molecule with a typical pair radius ξ ∼ a that is much smaller

3In the literature the regularized contact potential is known as ’Fermi pseudo-potential’, see e.g. [9].
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1. INTRODUCTION

than the interparticle spacing ξ ≪ k−1
F . In this limit the bosonic molecules will form a

Bose-Einstein condensate below a critical temperature.

The so called unitary point, where the scattering length diverges a → ±∞ and a two
particle bound state is just about to form, is particularly interesting from a theoretical
point of view. Here, the only remaining length and energy scale is given by the Fermi
momentum and the Fermi energy, because the divergent scattering length has to drop out
of all observables. All thermodynamic properties of the unitary gas are thus determined
by universal numbers times the dimensionful quantities built from the Fermi energy and
the Fermi momentum. Furthermore, the theoretical description of the unitary Fermi
gas is a highly non-trivial problem, because there is no small parameter that can be
used for a controlled expansion. Much effort has been put into the determination of the
universal parameters at unitarity in recent years, both from the theoretical as well as the
experimental side (see e.g. [4]).

The BCS-BEC crossover for the case of an equal number of Fermions in both pseudo-
spin states (n↑ = n↓) is by now a rather well understood problem. In particular, the
topology of the phase diagram is simple: there are only two phases – normal and superfluid
– and the phase transition between these two happens at a critical temperature that evolves
smoothly from the BCS- to the BEC-limit. The situation changes drastically, however, if
a population imbalance (n↑ > n↓) is imposed on the system. In this case not even the
topology of the phase diagram at zero temperature is known, let alone the precise positions
of the critical points. For the imbalanced gas reliable results are only available for the two
weakly interacting BCS- and BEC-limits. A detailed discussion of some aspects of the
phase diagram for the BCS-BEC crossover with a population imbalance can be found in
Sec. 2.1.

Outline

The outline of this thesis is as follows. The first chapter deals with rf-spectroscopy in
ultracold Fermi gases. This measurement method is used widely in order to study pairing
correlations in these systems. After giving an overview on the theoretical basis of rf-
spectroscopy in ultracold gases, we calculate the rf-response of imbalanced Fermi gases
using a non-selfconsistent T-matrix approach. In particular we focus on Fermions in the
normal state at unitarity, where recent measurements observed unexpected line-shifts.

In the second chapter we discuss the BCS-BEC crossover in the limit of an extreme
population imbalance. In particular we study the (N + 1)-particle system of a single mi-
nority atom immersed in a Fermi sea of majority atoms, interacting via a s-wave contact
potential. This problem has some interesting features, such as a quantum phase transi-
tion from a state with polaronic binding to a state where the minority Fermion forms a
molecular two-body bound state with one of the majority atoms. Building on previous
work by Chevy [11] who studied the polaronic part of the (N + 1)-body problem using a
variational ansatz, we construct a complementary variational wave function that describes
the molecular side of the transition and determine the position of the critical point of the
polaron to molecule transition.

The third chapter deals with quantum quench problems in one dimensional Heisenberg

4



spin chains. Here we study the unitary time evolution of a Néel ordered initial state and
determine the relaxation timescales by calculating the time evolution of the staggered mag-
netization using different techniques. These include time dependent mean fields, numerical
simulations, exactly solvable models and effective low energy theories.

5



1. INTRODUCTION

6



Chapter 2

RF-spectroscopy of ultracold
atomic Fermi gases

The method of rf-spectroscopy was introduced in 2004 by the group of R. Grimm in
Innsbruck as an experimental tool to observe effects of pairing in attractively interacting,
ultracold, two-component Fermi gases [12]. In ultracold gases, the different pseudo-spin
species are usually represented by different hyperfine states of the atoms. The idea of
rf-spectroscopy is to use an external rf-field to drive the Rabi-transition between two
hyperfine states in order to transfer atoms from one of the two occupied states of the
interacting Fermi gas to an initially empty hyperfine state. If the Fermions in the initial
state form molecules, it is clear that the external rf-field has to provide the binding energy
in order to break the molecule and transfer one of the atoms to a different hyperfine
state. Thus, the rf-spectrum is shifted to positive frequencies compared to the bare Rabi-
transition frequency.

At the time when the first rf-measurements of balanced Fermi gases1 came up, the
observation of a shifted line in the rf-spectrum was thought to be an unambiguous signa-
ture of Cooper-pairing and thus of superfluidity in ultracold Fermi gases. The situation
changed in 2007, however, when the first rf-measurements of imbalanced Fermi gases were
performed in the group of W. Ketterle at MIT [13]. Indeed, for a sufficiently large mis-
match of the Fermi energies of the two fermionic species, it is known that superfluidity
is lost and the Fermi gas enters a normal state. This is sometimes called the Pauli pair-
breaking mechanism or the Clogston-Chandrasekhar limit [14, 15]. The experiments of the
Ketterle group have shown that the rf-spectra of the interacting, imbalanced Fermi gas in
the normal state are shifted by almost the same amount as in the paired superfluid state2.
Thus, the presence of a shifted rf-spectrum is not a direct indication of superfluidity in
ultracold atomic gases.

The interpretation of the early rf-experiments in Innsbruck was further complicated by

1The term ”balanced” refers to the fact, that the number of atoms in the two pseudo-spin states is
equal, i.e. n↑ = n↓. For imbalanced Fermi gases we use the convention that n↑ > n↓.

2In this experiment, superfluidity was unambiguously verified by the creation of vortices.
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2. RF-SPECTROSCOPY OF ULTRACOLD ATOMIC FERMI GASES

the presence of final state interactions3. Indeed, the third, initially empty hyperfine state
also interacts with the other two and thus the rf-spectra are not a probe of the interacting
two-component Fermi system alone. Early theoretical interpretations of the experimental
data neglected the strong final state interactions completely [16, 17].

The motivation for the work presented in this chapter is two-fold. First of all, our
aim is to get a better understanding of the influence of final state interactions on the
rf-spectra. This is particularly important in order to obtain quantitative information from
the rf-measurements about the system of interest. The second motivation is to provide
a theoretical basis for the rf-measurements in the normal phase of the imbalanced Fermi
gas from the Ketterle group.

The outline of this chapter is as follows. In Sec. 2.1 we briefly discuss the BCS-BEC
crossover in imbalanced Fermi gases. In particular, we focus on qualitative aspects of the
phase diagram. The theory of rf-spectroscopy in ultracold quantum gases will be examined
in Sec. 2.2. In the last section 2.3 we present a many-body theory for the normal state
of the imbalanced Fermi gas and use it to calculate the rf-spectra at unitarity and zero
temperature.

2.1 BCS-BEC crossover in imbalanced Fermi gases

The BCS-BEC crossover in balanced Fermi gases, i.e. with an equal number of up- and
down-spins, is by now a rather well understood problem. The situation is different how-
ever, if a population imbalance between the two Fermion species is introduced. For strong
interactions close to the unitarity limit a plethora of new possible phases have been pre-
dicted (see [18] and references therein).

In the following we discuss qualitative aspects of the phase diagram, which are essen-
tially based on extrapolations from the weakly interacting limits. We start from a single
channel channel model for the Feshbach resonance [4], describing a two-component Fermi
gas with a contact interaction V (x) = 4πa/mδ(x). The dimensionless inverse interaction
parameter is v = (kFa)

−1, where a is the s-wave scattering length and we define kF as
the Fermi momentum of the fully polarized gas at the total density, i.e. k3

F = 6π2n. The
corresponding Fermi energy is given by εF = k2

F /(2m). The interaction potential is attrac-
tive for negative scattering lengths and supports a two-particle bound state with binding
energy Eb = −(ma2)−1 for positive scattering lengths.

For the discussion of the phase diagram of the imbalanced Fermi gas at zero temper-
ature, we choose an ensemble with fixed total particle number N = N↑ + N↓ but with a
fluctuating relative particle number δN = N↑ −N↓. This can be achieved by introducing
an effective magnetic field h that couples to the two-different spin-states σ =↑, ↓ in the
standard form

Ĥ ′ = −h
(

N̂↑ − N̂↓
)

, (2.1)

i.e. h can be thought of as a ’Zeeman’ field that couples to the ’spin’ of the atoms
and favors a finite population imbalance. At a fixed total density n = n↑ + n↓, the

3In recent rf-experiments the hyperfine states are chosen in such a way, that the final state interactions
are small and can be neglected.
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2.1. BCS-BEC CROSSOVER IN IMBALANCED FERMI GASES

ground state energy u(n, h) per volume is then a function of n and h. It determines
the chemical potentials of the majority and minority species from µ↑,↓ = µ ± h where
µ = ∂u(n, h)/∂n is the average chemical potential. In addition, it also fixes the imbalance
from δn = n↑ − n↓ = −∂u(n, h)/∂h.

At zero temperature, there are two critical fields hc(v) and hs(v) that separate two
simple limiting phases from a regime, in which nontrivial ground states are expected: the
lower critical field hc is defined by a vanishing population imbalance n↑ = n↓ for h < hc

and determines the boundary of the balanced superfluid phase. The upper critical field
hs, which will be called ’saturation field’ in the following, is defined by the condition of
complete polarization for h > hs, i.e. n↓ = 0 and n↑ = n. Since a single component
Fermi system does not interact due to the s-wave nature of the interaction potential in
the ultracold limit, the regime h > hs corresponds to an ideal gas of majority Fermions,
i.e. it is a fully polarized, normal state.

The asymptotic form of the two critical fields hc and hs in the limit of vanishing
interactions (i.e. the BCS-limit for v → −∞ and the BEC-limit for v → +∞) can be
inferred from a simple mean field analysis. We start by considering the two critical fields in
the BCS-limit. In this regime the attractively interacting Fermi gas can be described very
well within BCS-theory and the critical field hc has been calculated already by Clogston
[14] and Chandrasekhar [15]

hc(v → −∞) =
∆√
2

(2.2)

where ∆ is the BCS gap parameter. It is important to note that the phase transition
from the superfluid to the normal state at hc is a first order transition in the BCS regime,
because the polarization δn/n jumps from zero to a non-zero value4. The leading order
behavior of the saturation field hs in the BCS-limit can be obtained by calculating the
Zeeman field above which a non-interacting Fermi gas is fully polarized. This occurs right
at µ↓ = 0, i.e. at h = µ = µ↑/2. The next-to-leading order correction can be obtained
from mean-field theory. Indeed, at hs the change in the chemical potential of the minority
Fermions due to the interaction with the majority Fermi sea is given by the mean field
value δµ↓ = gn. The asymptotics of the saturation field in the BCS-limit is thus given by

hs(v → −∞) = εF

(
1

2
+

2

3π|v|

)

+ O(v−2) (2.3)

where εF is the Fermi energy of the fully polarized majority gas, as defined above.
In order to obtain the asymptotics of the two critical fields in the BEC-limit v →

+∞, we formulate a simple mean field theory of bosonic molecules interacting with each
other and with the excess Fermions. In a Landau expansion, the Landau free-energy u
per volume for the bosonic molecules and the excess Fermions up to leading order in
the interaction, as a function of the total density n = n↑ + n↓, the density imbalance
δn = n↑ + n↓ and the magnetic field h is given by

u(n, δn, h) =
3

5
εFδ δn+ Eb

n− δn

2
+ gad

n− δn

2
δn +

gdd

2

(n− δn)2

4
− h δn (2.4)

4We note that within a grand canonical description the total particle density n also jumps at the critical
field hc, c.f. [19].
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2. RF-SPECTROSCOPY OF ULTRACOLD ATOMIC FERMI GASES

as the sum of the Fermi energy of the excess Fermions, the binding energy of the molecules
and the interaction energies. The atom-dimer interaction strength gad = 3πaad/m and
the dimer-dimer interaction strength gdd = 2πadd/m can be expressed in terms of the
corresponding scattering lengths, the exact values of which are given by aad = 1.18a
and add = 0.6a [20]. The last term describes the coupling to the magnetic field h. The
true ground state energy density u(n, h) is determined by the minimum of the Landau
free-energy u(n, δn, h) with respect to the density imbalance δn. Before proceeding it is
convenient to rewrite Eq. (2.4) in dimensionless form

u(n, δn, h)

εF
=

3

5

(δn

n

)2/3
δn − v2(n−δn)+

ãad

2πv

(n− δn) δn

n
+

ãdd

12πv

(n− δn)2

n
− h̃ δn (2.5)

Here, the energies are measured again in units of the Fermi energy of a fully polarized gas
at the total density εF = (6π2n)2/3/(2m) and the tilde denotes dimensionless quantities,
i.e. ãad = aad/a and h̃ = h/εF . The minimum of the Landau free-energy is determined by
the equation

∂(u/εF )

∂ δn
=
(δn

n

)2/3
+ v2 +

ãad

2πv

(

1 − 2
δn

n

)

+
ãdd

6πv

(δn

n
− 1
)

− h̃
!
= 0 . (2.6)

From this expression we can calculate the asymptotics of the two critical fields hc and hs

in the BEC-limit. The critical field hc is defined by the condition of a vanishing imbalance
δn = 0. Plugging this into Eq. (2.6) we obtain

hc(v → ∞) = εF

(

v2 +
1

2πv

[aad

a
− add

6 a

])

+ O(v−2) (2.7)

On the other hand, the saturation field hs is determined by the condition of a fully polarized
gas δn = n. Together with Eq. (2.6) this leads to

hs(v → ∞) = εF

(

v2 + 1 − aad/a

2πv

)

+ O(v−2) (2.8)

Apart from the interaction corrections the critical field hc is thus given by minus one half
of the molecular binding energy Eb, whereas the saturation field is higher by εF due to the
presence of the excess Fermi sea. At unitarity, the values of hc and hs can be determined
using variational and Monte-Carlo methods. As will be shown in chapter 3, the saturation
field at unitarity is given by hs(v → ∞) ≃ 0.80εF . This value was obtained by Chevy [11]
using a variational ansatz and has been confirmed by Monte-Carlo calculations [22, 23, 24].
The critical field hc(v → ∞) ≃ 0.26εF at unitarity was calculated by Lobo et al. [22]. It is
important to note that the range between hc and hs at unitarity is much larger than that
found from a simple mean field analysis, which gives hc ≃ 0.32εF and hs = 0.5εF [25].

The qualitative structure of the zero temperature phase diagram as a function of the
interaction parameter v = 1/(kF a) and the effective magnetic field h in units of the bare
Fermi energy εF of the fully polarized gas is shown in Fig. 2.1. This phase diagram is
simply constructed by extrapolating the asymptotics of the critical fields that have been
derived above. Below hc, the system is in the balanced superfluid phase (SF0), where

10



2.1. BCS-BEC CROSSOVER IN IMBALANCED FERMI GASES

Figure 2.1: Qualitative phase diagram of the imbalanced Fermi gas as a function of the
inverse coupling strength (kFa)

−1 and the effective magnetic field h/εF . The thick line
indicates a first order phase transition and the different phases are labeled as in [21], i.e.
Nfp: fully polarized normal phase, Npp: partially polarized normal phase, SF0: balanced
superfluid, SFp: polarized superfluid. The points M and S are discussed in the text. The
precise structure of the phase diagram in the nontrivial regime hc < h < hs is likely to
contain unconventional superfluid phases in addition to the Npp and SFp phase, which are
not shown in our figure. Apart from the Npp and the SFp phase, possible phases in the
region between hc and hs that have been discussed in the literature are the FFLO-phase,
the Sarma- or breached pair phase and various phase separated combinations thereof (for
a review, see [18]). Moreover, the Npp and SFp phases are unstable with respect to p-wave
pairing, at least in the weakly interacting limits.

11



2. RF-SPECTROSCOPY OF ULTRACOLD ATOMIC FERMI GASES

the densities of both species are equal n↑ = n↓. In the BCS-regime, the system enters a
partially polarized (n↑ > n↓), normal Fermi liquid phase (Npp) above hc. As mentioned
above, this phase transition is of first order, because the polarization jumps from zero to a
nonzero value. At unitarity, this first order transition to a normal state has been observed
in experiments [26] at finite temperature. By contrast, the imbalanced Fermi gas is still
superfluid above hc in the BEC-regime (v → +∞). In this polarized superfluid phase
(SFp) all minority atoms are bound to bosonic molecules with majority atoms and are
superfluid at zero temperature, whereas the excess majority atoms form a Fermi sea. The
transition from SFp to SF0 at hc in the BEC-regime is a continuous Lifshitz transition
where the Fermi surface of the excess majority atoms vanishes, thus there has to be a
splitting point S along the hc line, where the first order transition on the BCS-side turns
into a second order transition in the BEC-regime. Furthermore, this Lifshitz transition
from SFp to SF0 is only sharp at zero temperature and turns into a smooth crossover at
finite temperature. The nature of the phase diagram near the splitting point S has been
discussed by Son and Stephanov [27] using an effective field theory. They have shown that
the location of the point S is related to the shape of the dispersion relation of the fermionic
excitations. In particular, the dispersion relation has its minimum at zero momentum for
v > vS and at nonzero momenta for v < vS . Within mean field theory, where the fermionic
excitation spectrum has the usual BCS-form Ek =

√

(εk − µ)2 + ∆2, the splitting point
S is thus related to the zero crossing of the chemical potential µ, which happens on the
BEC-side of the resonance at v ≃ 0.44 in mean-field theory. The precise location of the
splitting point S has been determined recently by us from a calculation of the fermionic
excitation spectrum along the BCS-BEC crossover of the balanced gas [28]. It is located
at vS ≃ 0.63 and hc(vS) = ∆ ≃ 0.6εF , at considerably larger coupling strengths than
predicted by mean-field theory (note the factor 21/3-difference with the result in Ref. [28],
which is due to the fact that the up-spin Fermi wave vector and not that of the balanced
case appears in the definition of our coupling constant v).

The point M along the saturation field line hs separates a regime where a single down-
spin is a well defined fermionic quasiparticle from one, in which it is bound to a molecule
with one of the majority Fermions. This critical point will be discussed extensively in
chapter 3, where the (N + 1)-particle problem that occurs infinitesimally below hs is
considered in detail. For a finite density of minority atoms, the point M appears as an
endpoint of a line that separates a phase with a finite minority Fermi surface volume
Ω↓ 6= 0 to its left from one with Ω↓ = 0 on the right side5. Using the generalized Luttinger
theorem derived by Sachdev and Yang [29], the expected polarized superfluid (SFp) phase
on the molecular side has a condensate of ’dimers’ plus an up-spin Fermi sea, whose volume
Ω↑ = (2π)3(n↑ − n↓) is set by the imbalance. This is consistent with the naive picture
that the density of unpaired majority atoms is simply n↑ − n↓ even though the ’dimers’
in the vicinity of the transition are far from local (↑, ↓)-pairs6. This part of the phase

5We note that the minority Fermi surface volume Ω↓ vanishes also along the hs-line on the BCS side
to the left of M . This is again a continuous Lifshitz transition, which is sharp at zero temperature only.
By contrast, the transition between the normal and the superfluid state at finite minority concentrations
below the point M remains a phase transition at finite temperature.

6We note that the polarized superfluid phase is unstable with respect to p-wave pairing due to the

12



2.1. BCS-BEC CROSSOVER IN IMBALANCED FERMI GASES

diagram has been explored experimentally by Shin et al. [31]. They find that the critical
polarization (δn/n)c, below which the imblanced gas is superfluid, approaches unity at an
interaction strength v ≈ 0.74. This point can be identified with the point M in our phase
diagram in Fig. 2.1.

A nontrivial issue that has been neglected in the discussion so far is the question
whether a gas of polarons or bound molecules is indeed stable at low but finite minority
densities n↓. On the molecular side, the phase immediately below the saturation field
line hs(v) is expected to be a superfluid of (↑, ↓)-pairs at a very low density n↓ → 0
immersed in an up-spin Fermi sea. The fact that the atom-dimer repulsion aad = 1.18 a
is much larger than the dimer-dimer repulsion add = 0.6 a, however indicates that a low
density gas of molecules tends to phase separate from the up-spin Fermi gas. This phase
separation has indeed been found from an extended BCS-description of the BCS-BEC
crossover in an imbalanced gas [19, 25, 32, 33]. It has recently been seen also in the
variational Monte Carlo calculations by Pilati and Giorgini [21]. Their results indicate
that a section between vN ≃ 0.73 and a triple point at vT ≃ 1.7 along the hs-line is
actually a first order line, where the polarized superfluid disappears with a finite jump in
density as the effective field h increases through hs. The calculations in chapter 3 below
show that the point M lies at vM ≃ 0.84, right in the interval between vN and vT , thus
the polaron to molecule transition would not be accessible at any finite minority density,
at least not in an equilibrium situation. Clearly, our variational calculation for the single
minority atom problem in chapter 3 cannot address the question of phase separation. An
unexpected feature of the hs-line in the presence of phase separation is the fact that the
transition across hs is predicted to be continuous up to vN , first order between vN and
vT and continuous again for v > vT . The rather large value vT ≃ 1.7 up to which phase
separation is predicted also appears surprising. Indeed, in the region around v = vT ≃ 1.7
our simple mean field model (2.5) for the molecules and the excess Fermions should be
valid. In this model phase separation between a polarized superfluid phase and a fully
polarized Fermi gas appears for coupling constants v < vc,PS, below which the energy
density (2.6) has a second minimum at full polarization. This occurs at

vc,PS =
3

2π

(

ãad −
ãdd

6

)

. (2.9)

With the exact values ãad = 1.18 and ãdd = 0.6 one obtains vc,PS = 0.516, which is far
beyond the predicted value vT ≃ 1.7 and in a regime, where the simple expansion (2.5) is
no longer valid. Thus, our simple mean field model does not reproduce the previous results
[21, 25] for the triple point vT . From our point of view, the question of phase separation
at a finite minority atom concentration – and thus also the question if the point M is
directly observable in experiments – remains open.

phonon-induced interaction between excess Fermions in the molecular condensate [30]. The same is true
for the Npp phase, where an attractive p-wave interaction between Fermions of the same species is mediated
by the opposite species. At large imbalances, however, the energy scales associated with p-wave pairing
are much smaller than the lowest temperatures that can be achieved in experiments.
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2.2 Linear response theory of rf-spectroscopy

In experiments with ultracold, two-component Fermi gases a mixture of atoms in two dif-
ferent hyperfine states |1〉 and |2〉 is prepared. These two states are commonly denoted by
the pseudospin indices ↑ and ↓ and interact via a s-wave contact potential with interaction
strength g12. In order to measure pairing correlations in such an interacting Fermi gas,
a rf-pulse is applied that transfers atoms coherently form state |2〉 to an initially empty,
third hyperfine state |3〉. This situation, depicted schematically in Fig. 2.2, is modeled by
the Hamiltonian

H = H0 +HT (t) (2.10)

where the Hamiltonian H0 describes the three hyperfine states and their mutual interac-
tions

H0 =
∑

k, σ=1,2,3

εkc
†
kσckσ +

∑

σ 6=σ′

ḡσσ′

2V

∑

k′,k,q

c†
k−qσc

†
k′+qσ′ck′σ′ckσ . (2.11)

Here, σ = 1, 2, 3 indicates the three hyperfine states, εk = k2/(2m) is the free Fermion
dispersion and ḡσσ′ denotes the bare interaction strength between the two different hyper-
fine levels σ and σ′. The external field that drives the transition between states |2〉 and
|3〉 is described by the Hamiltonian

HT (t) = T
∫

d3x
{

ei(kL·x−ωLt)ψ†
3(x)ψ2(x) + h.c.

}

(2.12)

where ωL and kL denote the frequency and momentum of the rf-photons and T is propor-
tional to the dipole matrix element.

Now we want calculate the rf-current within linear response theory7, which is a good
approximation for small population transfers. The rf-current operator Î := Ṅ3 measures
the rate of change of atoms in state |3〉 and – using the Heisenberg equation of motion –
can be expressed as

Î = Ṅ3 = i[H0 +HT ,N3] = i[HT ,N3]

= −iT
∫

d3x
(

ei(kL·x−ωLt)ψ†
3(x)ψ2(x) − h.c.

)

(2.13)

Calculating the rf current in linear response [34] with respect to HT leads to

I = 〈Ṅ3〉 = −i
∫

dt′ Θ(t− t′)
〈
[Ṅ I

3 (t),HI
T (t′)]

〉
(2.14)

where the expectation value has to be taken in the initial state (i.e. the ground state of
H0) and the operators on the RHS are represented in the interaction picture with respect
to the Hamiltonian H0 defined in Eq. (2.11), i.e.

OI(t) = eiH0tOe−iH0t = ei
P

σ µσNσteiK0tOe−iK0tei
P

σ µσNσt . (2.15)

7Note that the linear response theory for the rf-current is similar to simple theories of tunneling in
superconductors, c.f. [34].
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Figure 2.2: Schematic representation of rf spectroscopy. A two component Fermi gas is
prepared using a mixture of Fermions in hyperfine states |1〉 and |2〉, interacting with
coupling strength g12. In order to probe pairing correlations in this two component gas,
atoms in state |2〉 are transferred to an initially empty state |3〉 using a rf-transition.
In a naive picture, the binding energy between two atoms in states |1〉 and |2〉 needs to
be provided in order to transfer atoms from |2〉 to |3〉, giving rise to a shift of the bare
rf-transition frequency by an amount proportional to the binding energy.

However, the interaction picture for the field operators is usually defined via the grand
canonical Hamiltonian K0 = H0−

∑

σ µσNσ, in order to avoid dealing with a fixed particle
number8

ψ†
3(x, t) = eiK0tψ†

3(x)e−iK0t (2.16)

Thus, when switching to the interaction representation for the operators HT and Ṅ3 in Eq.
(2.14), one gets additional factors of the form eiµσt besides the replacement ψ(x) → ψ(x, t).
After inserting the interaction picture operators for the rf-current (2.13) and the tunneling
Hamiltonian (2.12) into Eq. (2.14) and evaluating the time integral, the rf-current, which
is a function of the frequency of the applied rf-field, can be written as the imaginary part
of the retarded rf-susceptibility in frequency space χ(ω) = χ′(ω) + iχ′′(ω)

I(ωL) = 2T 2 χ′′(ω = µ3 − µ2 − ωL) . (2.17)

Here and in the following, the double-prime χ′′ denotes the imaginary part of χ. The
retarded susceptibility is given by9

χ(ω) =

∫ ∞

−∞
dt eiωtχ(t) = −i

∫ ∞

−∞
dt eiωt Θ(t)

〈
[A(t), A†(0)]

〉
(2.18)

with

A(t) =

∫

d3x eikL·x ψ†
3(x, t)ψ2(x, t) . (2.19)

8Field operators in the ’grand canonical’ interaction picture are indicated by the additional time argu-
ment instead of using the index I .

9Note that our definition of the susceptibility differs from the standard definition by a minus sign.

15



2. RF-SPECTROSCOPY OF ULTRACOLD ATOMIC FERMI GASES

In the following two sections we use two different strategies in order to obtain information
about the rf-spectra from equations (2.17) and (2.18). In section 2.2.1 we derive sum
rules for the average rf-shift which hold for all interaction strengths ḡσσ′ , including final
state interactions. This approach has been used before by Yu and Baym [35] for the weak
coupling BCS-limit. In section 2.2.2 we derive an explicit expression for the susceptibility
(2.18) in the case of vanishing final state interactions ḡ13 = ḡ23 = 0 and show how the
rf-spectrum is related to the spectral function of the interacting Fermi gas. The results
obtained in this section are similar to the expressions for the tunneling of electrons between
a superconductor and a normal metal [34] and have been obtained previously by Kinnunen
et al. [16], He et al. [17] and Ohashi et al. [36].

Note that we set the momentum of the incident rf-wave equal to zero kL = 0 in
the remainder of this thesis. This is an excellent approximation, since kL is orders of
magnitude smaller than the momenta of the involved atoms.

2.2.1 Mean rf-shift in the presence of final state interactions

In this section our aim is to get an exact expression for the average (or mean) rf-shift
including final state interactions. The mean rf-shift ω̄ is defined as the normalized first
moment of the rf-spectrum I(ω)

ω̄ =

∫
dω ω I(ω)
∫
dω I(ω)

=

∫
dω (µ3 − µ2 − ω)χ′′(ω)

∫
dω χ′′(ω)

(2.20)

Just as a side remark we note that ω(≡ ωL) in the expression above doesn’t really measure
the real frequency of the rf-photon, since we have not included an energetic offset ω23

between the states |2〉 and |3〉 in our Hamiltonian H0 in Eq. (2.11). Thus, ω corresponds
to the difference between the photon frequency that is necessary to drive the transition in
the presence of interactions and the bare transition frequency ω23, which we have implicitly
set to zero in our calculation.

Our remaining task is to calculate the zeroth and first moment of the retarded sus-
ceptibility’s imaginary part χ′′(ω) defined in Eq. (2.18). This can be achieved by deriving
sum rules using the peculiar analytic properties of χ(ω). Indeed, the fact that the retarded
susceptibility χ(ω) is analytic in the upper half complex plane gives rise to exact relations
between its real- and imaginary parts, famously known as Kramers-Kronig relations. Fur-
thermore, the retarded susceptibility is completely determined by its imaginary part via
the so called spectral representation

χ(z) =

∫ ∞

−∞

dω

π

χ′′(ω)

ω − z
. (2.21)

From this relation we can infer the imaginary part χ′′(ω) of Eq. (2.18), which turns out
to be given by

χ′′(ω) = −1

2

∫

dt eiωt
〈
[A(t), A†(0)]

〉
. (2.22)

This result can be verified easily by inserting it into the spectral representation (2.21). By
a simple inverse Fourier transformation of (2.22) we get the ’generating function’ of the
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moments of χ′′(ω)
〈
[A(t), A†(0)]

〉
= −

∫
dω

π
e−iωt χ′′(ω) (2.23)

Setting the time equal to zero (t = 0), we obtain the sumrule for the zeroth moment (i.e.
the normalization) of the retarded susceptibility

∫
dω

π
χ′′(ω) = −

〈
[A,A†]

〉
= N2 −N3 (2.24)

where N2 and N3 denote the total number of particles in states |2〉 and |3〉 before switching
on the rf-field. In particular, we have N3 = 0 in the situation considered here. We use
this sumrule to normalize the rf-spectrum I(ω) to

∫

dω I(ω)
!
=
N2

V
= n2 (2.25)

i.e. using (2.17) the normalized rf-spectrum is defined by I(ω) = χ′′(µ3 − µ2 − ω)/(πV ).
The first moment can be obtained by differentiating Eq. (2.23) once with respect to

the time t and setting t = 0 subsequently. This gives
∫
dω

π
ω χ′′(ω) =

〈
[[K0, A], A†]

〉
(2.26)

where the Heisenberg equation of motion for the operator A has been used to replace
Ȧ on the RHS. The double commutator can be calculated straightforwardly. Inserting
K0 = H0 −

∑

σ µσNσ with H0 from Eq. (2.11) leads to a number of terms that need to be
evaluated. The kinetic energy terms give

∑

σ=1,2,3

〈
[[Hkin

σ − µσNσ, A], A†]
〉

= (µ3 − µ2)(N2 −N3) . (2.27)

This expression cancels exactly with the first two terms on the RHS of (2.20), which simply
reflects the fact that the mean rf-shift is zero when all interactions are switched off, as
expected. The remaining calculation of the commutators with the interaction parts of H0

can be simplified using the following observations. First of all, it is easily established that

[H23
int, A] = 0 , (2.28)

i.e. the interaction Hamiltonian between the states |2〉 and |3〉 drops out and doesn’t affect
the mean rf-shift. This is not really surprising, because the rf-field transfers the Fermions
in a coherent superposition of states |2〉 and |3〉, thus they are all in the same state and
cannot interact. The second simplification arises, if the interaction strengths ḡ12 and ḡ13
are equal. Precisely at this point one can show that all interaction effects cancel and the
mean rf-shift is zero. We thus write the sum of H12

int and H13
int in the form

H12
int +H13

int =
(
ḡ12 − ḡ13

)H12
int

ḡ12
+ ḡ13

H12
int

ḡ12
+H13

int

︸ ︷︷ ︸

Hinvar
int

(2.29)
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and use [H invar
int , A] = 0. Thus we are left with the straightforward calculation of the double

commutator [[H12
int, A], A†], which in the end is the only term that contributes to the mean

rf-shift. Collecting all results, we finally obtain

ω̄ =
ḡ12 − ḡ13
N2 −N3

(〈H13
int〉
ḡ13

− 〈H12
int〉
ḡ12

)

(2.30)

A further simplification can be made using the fact that the state |3〉 is initially empty
(N3 = 0), which also implies that the interaction energy between the states |1〉 and |3〉 is
zero, i.e. 〈H13

int〉 ≡ 0. The mean rf-shift is thus given by

ω̄ = − ḡ12 − ḡ13
ḡ12

〈H12
int〉
N2

(2.31)

This expression shows that the mean rf-shift is indeed determined by the interaction energy
in the Fermi gas, as expected naively. For attractive interactions, the rf-photons need to
provide the difference of the binding energies10 in the initial and final states in order to
drive the transition. Furthermore, the mean rf-shift is zero if the interaction strengths ḡ12
and ḡ13 are equal.

In spite of its simplicity, there is one formal problem with Eq. (2.31) that needs to
be resolved. Quite generally, contact interaction potentials of the form V (x) = gδ(x)
lead to momentum distributions that have a tail proportional to ∼ k−4 at large momenta
k → ∞. This fact has been elucidated recently in a series of papers by Tan [37, 38, 39].
As a consequence of this long tail the kinetic energy 〈Hkin〉 ∼ Λ as well as the potential
energy 〈Hint〉 ∼ Λ formally diverge linearly with the momentum cutoff Λ, with their sum
being finite, of course. One may thus wonder if the expression (2.31) is well defined and
leads to physical results, if the interaction energy formally diverges. Interestingly it turns
out, however, that the mean-rf shift is indeed finite because the bare coupling strengths ḡ
formally tend to zero and regularize the expression for the mean rf-shift. Indeed, as shown
in the appendix, the bare couplings ḡσσ′ are related to the physical s-wave scattering
lengths aσσ′ via

1

ḡσσ′

=
m

4πaσσ′

−
∫

k<Λ

d3k

(2π)3
1

2εk
(2.32)

where aσσ′ is the s-wave scattering length between atoms in states |σ〉 and |σ′〉 and we have
explicitly included the UV-cutoff Λ → ∞. Plugging this result into (2.31) and expanding
to leading order in the momentum cutoff Λ leads to

ω̄ =
π

2

〈H12
int〉

ΛN2

(
1

a13
− 1

a12

)

(2.33)

Now we need an expression for the interaction energy 〈Hint〉 ∼ Λ, where the cutoff depen-
dence is explicitly visible. One possibility is to use a result derived by Tan [37], who has

10The term ’binding energy’ is used here in a rather general sense. It includes the binding energy of
two-particle bound states as well as mean field interaction energies.
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shown that the total energy E = 〈H〉 of a balanced Fermi gas with contact interaction is
given by

E = 2
∑

k

εk

(

nk − C

k4

)

+ V
C

4πma
. (2.34)

Here, the factor 2 comes from the spin degeneracy, a is the scattering length and C is the
so called ’contact coefficient’, which is determined by the asymptotics of the momentum
distribution at large momenta11

nk
k→∞−→ C

k4
. (2.35)

The result (2.34) is remarkable, since it shows that the total ground state energy of an
ultracold gas with short range interactions is a function of the momentum distribution
alone. From Tan’s energy relation it is obvious, that the interaction energy contribution
is determined by12

〈Hint〉 = E − 〈Hkin〉 = E − 2
∑

k

εknk

= −2C
∑

k

εk
k4

+C
V

4πma

= −C V

2π2m
Λ + C

V

4πma
. (2.36)

Note that the second term is not cutoff dependent and thus irrelevant in the limit Λ → ∞.
Using Eq. (2.36) together with Eq. (2.33), we obtain a cutoff independent result for the
mean rf-shift. Simultaneously, a different approach to make the cutoff dependence of
〈Hint〉 explicit was utilized by Baym et al. [41], who used the fact that the interaction
energy can be expressed as a derivative of the total ground state energy with respect to
the inverse scattering length via

〈Hint〉 = ḡ
∂E

∂ḡ
=

2Λ

π

∂E

∂(1/a)
(2.37)

Plugging this expression into (2.33) also leads to a cutoff independent expression for the
mean rf-shift. The fact that both results (2.36) and (2.37) are equivalent follows from
Tan’s adiabatic theorem [37]

∂(E/V )

∂(1/a)
= − C

4πm
, (2.38)

which relates to contact coefficient to the derivative of the ground state energy with respect
to the inverse scattering length.

11Interestingly, the contact coefficient C shows up in many different contexts. For example, Braaten and
Platter have shown that C is related to the probability that two Fermions with opposite spin are close to
each other [40].

12We note that this result also holds for the imbalanced Fermi gas with N↑ 6= N↓. In this case, the
momentum distributions of the two Fermion species are different, but the asymptotics at large momenta
are identical, because the asymptotics are determined by two particle physics. We will give an explicit
example in section 3.1.3.
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We obtain our final expression for the mean rf-shift using equations (2.36) and (2.33).
In order to eliminate the dependence of the mean rf-shift ω̄ ∼ 〈Hint〉/N2 on the number
of atoms in state |2〉 it is convenient to define a dimensionless contact coefficient s via

s =
C

k3
F2 kF1

, (2.39)

where the Fermi momenta are defined via the respective densities of the atoms in states
|1〉 and |2〉 as k3

F1 = 6π2n1 and k3
F2 = 6π2n2. For balanced gases n1 = n2 = n/2, this

definition reduces to the ’canonical’ definition s = C/k4
F with k3

F = 3π2n. Using (2.39)
our final result for the mean rf-shift is given by [42]

ω̄

εF1
= −3π s

(
1

kF1a13
− 1

kF1a12

)

, (2.40)

which holds for balanced, as well as imbalanced Fermi gases. It is interesting to note
that the mean rf-shift ω̄ is well defined only in the presence of final state interactions
a13 6= 0. Indeed, as will be shown below, the rf-spectrum I(ω) decays at large frequencies
like ∼ ω−3/2 in the case of vanishing final state interactions, thus the first moment of I(ω)
doesn’t exist.

Mean rf-shift of the balanced Fermi gas in the BCS- and BEC-limits

We now employ Eq. (2.40) to calculate the mean rf-shifts of the balanced Fermi gas in the
well known BCS- and BEC-limits. Using an extended BCS-theory for the crossover, the
dimensionless contact coefficient is given by

sBCS =
∆2

4ε2F
, (2.41)

where εF = (3π2n)2/3/(2m) is the Fermi energy of the balanced gas. In the expression
above ∆ is the well known BCS gap-parameter. In the BCS-limit a12 → 0− it is given by
∆BCS = 8εF exp(−π/(2kF |a12|)−2) (see e.g. [43]). One has to keep in mind however, that
BCS-theory gives only a sub-leading correction to the ground state energy and thus to the
mean rf-shift in the BCS-limit, where the Hartree term ∼ a12n is the dominant contribution
to the interaction energy. On the other hand one obtains ∆BEC = 4εF /

√
3πkF a12 in the

BEC-limit a12 → 0+. The mean rf-shift in the BEC-limit is thus given by

ω̄ = 2Eb

(

1 − a12

a13

)

, (2.42)

where Eb = 1/(ma2
12) is the binding energy of the molecule. This result is perfectly

consistent with the mean rf-shift for bound-free transitions that follow from a detailed
calculation of the rf-spectrum in the molecular limit by Chin and Julienne [44], who get

I(ω) ∼ (ω − Eb)
1/2

ω2(ω + E′
b − Eb)

, (2.43)

where Eb = 1/(ma2
12) and E′

b = 1/(ma2
13). The mean shift corresponding to this rf-

spectrum is indeed given by Eq. (2.42).
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Mean rf-shift of the unitary Fermi gas

At unitarity a12 → ∞, the mean rf-shift can be expressed as

ω̄ = −3π s

2

vF1

a13
, (2.44)

where vF1 = kF1/m is the Fermi velocity of the atoms in state |1〉. For the case of a
balanced (1, 2)-Fermi gas, the dimensionless contact coefficient s can be calculated using
Tan’s adiabatic theorem (2.38) and numerical results for the ground state energy, for
example. Recently, we obtained s ≃ 0.08 for the balanced, unitary gas at zero temperature
[28], which is very close to the value s ≃ 0.07 for a strongly imbalanced gas (see Eq. (3.33)).
This result is consistent with the experiments by Schunck et al. [13], who observe almost
no change in the rf-spectrum when going from the balanced superfluid to the imbalanced
normal phase at unitarity.

2.2.2 RF-spectrum in the case of no final state interactions

In this section we are going to evaluate the retarded susceptibility (2.18) in detail and show
how it is connected to the spectral function of the interacting Fermi gas. In particular
we focus on the situation of vanishing final state interactions (ḡ13 = ḡ23 = 0), where the
following calculation is exact.

The explicit calculation of the retarded susceptibility in equation (2.18) is conveniently
performed in the Matsubara representation [34, 45, 46], i.e. we calculate the Matsubara
susceptibility χ(iΩn) and obtain the retarded susceptibility by an analytic continuation
to the real axis χ(ω) = χ(iΩn → ω + i0+), which can be inferred using a Lehmann
representation of the susceptibilities. Using the Matsubara representation has the further
advantage that we get an expression for the retarded susceptibility that is valid at arbitrary
temperatures. The Matsubara susceptibility is given by

χ(iΩn) =

∫ β

0
dτ eiΩnτ χ(τ) = −

∫ β

0
dτ eiΩnτ

〈
TτA(τ)A†(0)

〉
(2.45)

where Ωn = 2πn/β with n ∈ Z are bosonic Matsubara frequencies and Tτ denotes the
imaginary time ordering symbol. Inserting the expressions for the operators (2.19) in
Matsubara representation we get (note again that we set kL = 0)

χ(iΩn) = −
∫ β

0
dτ eiΩnτ

∫

d3x d3x′
〈
Tτ ψ̄3(x, τ)ψ2(x, τ)ψ̄2(x

′, 0)ψ3(x
′, 0)

〉
. (2.46)

For the case of vanishing final state interactions, no vertex corrections need to be taken into
account and the expectation value above can be factorized into two Matsubara Green’s
functions. The diagrammatic representation is shown in Fig. 2.3. After switching to
momentum- and frequency space one thus gets

χ(iΩn) =
1

β

∑

ωm

∫
d3k

(2π)3
G3(k, iωm)G2(k, iωm + iΩn) (2.47)
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q

k+q, 2

k, 3

Figure 2.3: Diagrammatic representation of the rf-susceptibility. The bold line corresponds
to the full Green’s function of a Fermion in state |2〉 (i.e. dressed by interactions with
state |1〉) and the thin line is the bare Green’s function for a Fermion in state |3〉. Vertex
corrections are absent in the case of vanishing final state interactions ḡ13 = ḡ23 = 0.

where ωm = (2m+1)π/β with m ∈ Z are fermionic Matsubara frequencies. After replacing
the Matsubara summation by a contour integral in the usual way13 and performing the
analytic continuation iΩm → ω+i0+ to real frequencies, we obtain the following expression
for the imaginary part of the retarded susceptibility

χ′′(ω) =
∑

k

∫
dΩ

π
ImGR

3 (k,Ω) ImGR
2 (k,Ω + ω)

(
nF (Ω + ω) − nF (Ω)

)
, (2.48)

and nF (ω) denotes the Fermi distribution. Since the state |3〉 is not interacting with the
other two, we can insert the free retarded Green’s function for GR

3 , i.e.

ImGR
3 (k, ω) = −π δ(ω − εk − ω23 + µ3) (2.49)

where we have explicitly included the energy difference ω23 between the two hyperfine
levels |2〉 and |3〉. Using Eq. (2.17), adopting the normalization condition (2.25) and using
the fact that the state |3〉 is initially empty (µ3 = 0), we obtain our final expression for
the rf-spectrum I(ω) = χ′′(µ3 − µ2 − ω23 − ω)/(πV )

I(ω) =
1

2π

∫
d3k

(2π)3
A2(k, εk − ω − µ2) nF (εk − ω − µ2) (2.50)

where we have introduced the spectral function

A2(k, ω) = −2 ImGR
2 (k, ω) (2.51)

of Fermions in state |2〉 and the rf-frequency ωL is measured with respect to the bare
transition frequency, i.e. ωL − ω23 = ω. Using this convention, the rf-spectrum for a non-
interacting Fermi gas in state |2〉 is a delta-peak at ω = ωL − ω23 = 0, corresponding to
the bare rf-transition frequency.

13For details, see the similar calculation in section 2.3 below.
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The spectral function A(k, ω) contains all information about the single particle- and
hole-excitations of the system. In particular, the momentum, energy and lifetime of these
excitations can be obtained from it. In the following, we collect some properties of the
spectral function which will be useful in later sections. First of all, A(k, ω) can be decom-
posed into a sum of a particle- and a hole-part A(k, ω) = A+(k, ω)+A−(k, ω), describing
the particle- and the hole-excitations respectively. In terms of a Lehmann representation,
these two parts can be expressed as

A+(k, ω) =
2π

Z

∑

n,m

e−βEn |〈m|c†
k
|n〉|2 δ(ω − Em + En) (2.52)

A−(k, ω) =
2π

Z

∑

n,m

e−βEn |〈m|ck|n〉|2 δ(ω + Em − En) . (2.53)

Here, the states |n〉 and |m〉 denote exact eigenstates of the interacting system with energies
En and Em, respectively, and Z is the canonical partition function. The spectral function
is normalized as

∫
dω
2πA(k, ω) = 1 and the integral over the hole part A−(k, ω) gives the

momentum distribution ∫
dω

2π
A−(k, ω) = n(k) (2.54)

From Eqs. (2.52) and (2.53) it can be easily shown, that the particle- and the hole-part of
the spectral function are related via a detailed balance condition

A−(k, ω) = e−βωA+(k, ω) (2.55)

From this follows, that the hole-part of the spectral function is given by

A−(k, ω) = nF (ω)A(k, ω) (2.56)

and thus the rf-spectrum (2.50) is a measure of the hole-part only. This is obvious from
physical reasons, because the rf-transition removes particles from state |2〉, thereby creat-
ing hole-excitations in the interacting (1, 2)-Fermi system.

RF-spectra in BCS theory

Now we are in a position to calculate the rf-spectra of ultracold Fermi gases using Eq.
(2.50) and compare them directly to experiments. The only quantity that is needed as
input is the spectral function A(k, ω) of the interacting many-body system, which is usually
known only approximately, however. One important example where the spectral function
is known analytically is BCS-theory

ABCS(k, ω) = 2π
[
u2
kδ(ω − Ek) + v2

kδ(ω + Ek)
]
. (2.57)

At zero temperature, this gives rise to an rf-spectrum of the form

I(ω) =
m3/2

√
2π2

√

ω

2
+ µ− ∆2

2ω

∆2

2ω2
, (2.58)
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which has a sharp onset at ωmin =
√

µ2 + ∆2 − µ. In weak coupling, ∆ ≪ µ ≈ εF , the
onset corresponds to the condensation energy per particle ωmin ≃ ∆2/(2εF ) and the peak
position is at ωpeak ≃ 5

8∆2/εF . Furthermore, the rf-spectrum has a tail ∼ ω−3/2 at large
frequencies, thus the first moment doesn’t exist.

As can be seen from Eq. (2.57), BCS-theory gives rise to a sharp fermionic single-
particle excitation spectrum, i.e. the lifetime of the excitations is infinite for all momenta,
even at finite temperature. The BCS-result is based on an approximate Hamiltonian,
however, which neglects the effect of the collective Bogoluibov-Anderson mode on the
fermionic excitation spectrum. Indeed, the interaction with Bogoliubov-Anderson phonons
should lead to an appreciable lifetime-broadening of the fermionic quasiparticles and thus
should have an observable effect on the rf-spectra. Some aspects of this question will be
discussed in Appendix B.

2.3 Non-selfconsistent T-matrix approach for the imbalanced
Fermi gas

In this section we formulate a theory that is capable of describing the normal phase of the
attractively interacting, imbalanced Fermi gas above the Clogston-Chandrasekhar limit.
In particular, our aim is to provide a qualitative as well as a quantitative understanding
of the experimental results by Schunck et al. [13], who observed shifted rf-spectra in the
normal phase of the imbalanced Fermi gas also in the normal state. Our starting point is
the Hamiltonian

H =
∑

k, σ=↑,↓
(εk − µσ) c†kσckσ +

ḡ

V

∑

k′,k,q

c†q−k↑c
†
k↓ck′↓cq−k′↑ . (2.59)

describing a two-species Fermi gas with a contact interaction. We denote the majority
atoms with ↑ and the minority atoms with ↓ in the remainder of this thesis, i.e. n↑ > n↓.
Furthermore, we use a grand-canonical description, where the population imbalance is
imposed by applying different chemical potentials µσ for the two fermionic species. This
can be described conveniently by introducing an effective magnetic field h that couples to
the two different pseudo-spin states σ =↑, ↓ via

µ↑,↓ = µ± h . (2.60)

Note that this artificial magnetic field couples only to the ”spin” of the uncharged atoms.
For charged particles such as electrons, the orbital coupling of the magnetic field leads to
the Meissner effect in the superconducting state and thus the coupling to the spin degree
of freedom is effectively absent in the bulk. In that respect, ultracold atoms offer the
unique possibility to study the Pauli-pair-breaking mechanism in its pure form.

In order to study the effects of pairing fluctuations on the single particle properties of
the imbalanced Fermi gas in the normal phase, we employ a non-selfconsistent T-matrix
approach. This method has been used widely in the literature to study the BCS-BEC
crossover of the balanced gas above Tc [47, 48], or the normal phase of the attractive-U
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Γ(  )qΓ(  ) qΓ(  ) qg g

Figure 2.4: Left: diagram for the self-energy Σ↓(k, ω) of the minority species Green’s
function. Right: Bethe-Salpeter equation for the vertex function Γ(q, ω) in ladder ap-
proximation.

Hubbard model [49]. It has also been applied recently to study the strongly imbalanced
Fermi gas at the saturation field [50]. In the non-selfconsistent T-matrix approach14, a
usual particle-particle ladder approximation is used to incorporate the effects of pairing
in the vertex function (see e.g. [45, 51]) and the fermionic self-energy is calculated at the
one-loop level, including the vertex corrections. The diagrams for the self-energy Σ and the
vertex function Γ are shown in Fig. 2.4. In Matsubara representation, the corresponding
analytic expressions are

Σσ(k, iωn) =
1

β

∑

Ωm

∫
d3q

(2π)3
Γ(q, iΩm)G−σ(q− k, iΩm − iωn) (2.61)

Γ(q, iΩn) =
1

1/ḡ − L(q, iΩn)
(2.62)

L(q, iΩn) = − 1

β

∑

ωm

∫
d3k

(2π)3
G↑(q − k, iΩn − iωm)G↓(k, iωm) (2.63)

where G↑ and G↓ are the bare Matsubara-Green’s functions of the majority- and minority
Fermions, β = 1/kBT is the inverse temperature and the fermionic- and bosonic Matsubara
frequencies are denoted by ωn = (2n+ 1)π/β and Ωn = 2πn/β respectively, with n ∈ Z.

We evaluate the sums over Matsubara frequencies using standard techniques (see e.g.
[34] and [45]), where the sums are represented as contour integrals over the complex coor-
dinate iωm, iΩm → z. We start by calculating the sum for the pair propagator L(q, iΩn).
As a function of z, the two Green’s functions in (2.63) have poles on the real axis and at
z = iΩn + ε with some ε ∈ R, respectively. Thus, using the contour depicted in Fig. 2.5a,
the Matsubara sum can be written as

L(q, iΩn) =

∫
d3k

(2π)3

∮

C1

dz

2πi
nF (z)G↑(q− k, iΩn − z)G↓(k, z) , (2.64)

14We note that the term ”non-selfconsistent” refers to the fact, that all internal propagator lines in the
diagrams are bare (i.e. non-interacting) Green’s functions and the notion ”T-matrix approach” is due to
the replacement of the bare interaction vertex ḡ with the scattering T-matrix of two particles in vacuum.
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Figure 2.5: Contours for the evaluation of the Matsubara sums for the pair-propagator L
(left) and the fermionic self-energy Σ (right). The radius of the circles is taken to infinity.
The crosses mark the positions of the fermionic (left) and bosonic (right) Matsubara
frequencies, i.e. the positions of the poles of nF (z) and nB(z).

where nF (z) = (exp(βz) + 1)−1 is the Fermi distribution function which has poles at the
fermionic Matsubara frequencies iωn with residuum Res[nF (z), iωn] = −β−1. The retarded
pair propagator LR(q,Ω) is obtained via an analytic continuation iΩn → Ω + i0+ to real
frequencies Ω ∈ R. Using G(k,Ω + i0+) = GR(k,Ω), G(k,Ω − i0+) = GA(k,Ω), where
GR and GA = GR

∗ denote the retarded and advanced Green’s functions respectively, and
using nF (z + iΩn) = nF (z) we finally get

LR(q,Ω) =

∫
d3k

(2π)3

∫ ∞

−∞

dz

π
nF (z)

[

GR
↑ (q− k,Ω − z) ImGR

↓ (k, z)

−GR
↓ (k, z + Ω) ImGR

↑ (q − k,−z)
]

=

∫
d3k

(2π)3
nF (µ↑ − εq−k) − nF (εk − µ↓)

Ω − εk − εq−k + 2µ+ i0+
. (2.65)

The ’retarded’ vertex function is then straightforwardly defined via15

ΓR(q, ω) =
1

ḡ−1 − LR(q, ω)
. (2.66)

Obviously, the integral in the definition (2.65) of the pair propagator diverges at large
momenta and needs to be regularized. This can be achieved by replacing the bare inter-
action strength ḡ in the vertex function with the scattering T -matrix of two Fermions in

15Albeit using the superscript R, the vertex function ΓR(q, ω) is not a retarded function in the usual
sense. Indeed, ΓR(q, ω) can have poles in the upper half complex plane. The superscript R is just an
indication that we have obtained the vertex function by an analytic continuation to ω + i0+.
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vacuum, as shown in appendix A. We thus obtain

ΓR(q, ω) =
[ m

4πa
− LR

reg(q, ω)
]−1

, (2.67)

where the regularized pair propagator, given by

LR
reg(q, ω) = LR(q, ω) +

∫
d3k

(2π)3
1

2εk
, (2.68)

is now well defined.
The Matsubara sum for the fermionic self-energy in Eq. (2.61) can be evaluated in a

similar manner. In the following calculation we assume that the Vertex function Γ(q, ω)
has poles or branch cuts only on the real axis. This assumption is crucial and intimately
connected to the fact that our calculation is valid only for the non-superfluid, normal
phase. Indeed, the appearance of a pole in the Vertex function in the upper half complex
plane would signal the onset of superfluidity [45]. As will be discussed in the next section,
the instability towards the superfluid phase occurs first at ω = 0 and q = 0, giving rise to
the so called Thouless-criterion [52], which determines the boundary between the normal
and the superfluid phase. Restricting ourselves to the normal phase, where the poles of
the vertex function are on the real axis, the contour integral for the evaluation of the
Matsubara sum is given by

Σσ(k, iωn) =

∫
d3q

(2π)3

[ ∮

C2

dz

2πi
nB(z) Γ(q, z)G−σ(q − k, z − iωn)

+
1

β
Γ(q, 0)G−σ(q− k,−iωn)

]

. (2.69)

Here, nB(z) = (exp(βz) − 1)−1 is the Bose distribution function which has poles at the
bosonic Matsubara frequencies iΩn with residuum Res[nB(z), iΩn] = β−1 and the contour
is depicted in Fig. 2.5b. Note that the term at iΩn = 0 has to be included separately. After
performing the analytical continuation to real frequencies and using nB(z+iωn) = −nF (z)
we obtain the retarded fermionic self-energy

ΣR
σ (k, ω) =

∫
d3q

(2π)3

∫ ∞

−∞

dz

π

[

nB(z)GA
−σ(q − k, z − ω) ImΓR(q, z)

−nF (z) ΓR(q, z + ω) ImGR
−σ(q − k, z)

]

, (2.70)

where the separately included iΩn = 0 term in (2.69) cancels exactly with the residue
obtained by integrating above and below the pole of nF (z) at z = 0.

Within the non-selfconsistent T-matrix approach, the equations (2.65), (2.66) and
(2.70) determine the properties of the imbalanced Fermi gas in the normal phase. We
note however, that the chemical potential of the minority atoms in these equations has to
be evaluated selfconsistently in order to get correct results in the whole crossover regime.
Indeed, the chemical potential of the minority atoms in the BEC-limit is predominantly
determined by the molecular binding energy, thus setting µ↓ = εF↓ in the equations above
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would lead to wrong results16. The chemical potential of the majority atoms µ↑, however,
does not need not be calculated selfconsistently for arbitrary coupling. Naively, this can
be understood from the fact that in the BEC-regime all minority atoms are already paired,
thus adding a further majority atom does not alter the ground state energy significantly
in comparison to the non-interacting case. Recently, Veillette et al. [53] used a 1/N -
expansion to analyze the imbalanced gas at unitarity, which is equivalent to our T-matrix
approximation in leading order. They did not determine the minority chemical potential
self-consistently, however, and thus get µ↓ ≃ −0.9εF at the saturation field at unitarity,
which is 50% off the Monte-Carlo result µ↓ ≃ −0.6εF . Furthermore, their calculation
breaks down at (kF a)

−1 ≈ 0.3, where µ↓ diverges in their approach.

In the following section we will discuss the properties of the vertex function in more
detail. After that, we are going to calculate the fermionic spectral functions, thereby
obtaining an explicit expression for the rf-spectrum of imbalanced Fermi gases in the
normal phase at unitarity and zero temperature.

2.3.1 The Vertex function Γ(q, Ω) at zero temperature

The vertex function Γ(q,Ω) corresponds to the non-trivial part of the two-particle prop-
agator. Its poles thus determine the dispersion relation of two-particle excitations of the
imbalanced Fermi gas (see e.g. [54]). We start by discussing the poles of the vertex func-
tion (2.67) at zero temperature and zero momentum q = 0. As mentioned previously, the
chemical potential of the minority atoms µ↓ in the imbalanced gas has to be calculated
selfconsistently, in contrast to the majority chemical potential µ↑. We thus set µ↑ = εF
in the expression (2.68) for the pair propagator (this approximation is exact close to the
saturation field hs), where εF = k2

F /(2m) is the Fermi energy associated with the density
of the majority atoms, i.e. k3

F = 6π2n↑. After evaluating the integral we obtain

ReLR
reg(0, ω) =

mkF

2π2

[

1 +
√
µ̃↓ +

√

|λ|







1
2 ln

∣
∣
∣
1−

√
λ

1+
√

λ

∣
∣
∣+ 1

2 ln

∣
∣
∣
∣

√
µ̃↓−

√
λ√

µ̃↓+
√

λ

∣
∣
∣
∣

if λ > 0

π
2 − arctan

√
1
λ − arctan

√
µ̃↓

λ if λ < 0

]

ImLR(0, ω) =
mkF

2π2

π

2

√
λ Θ(λ) [Θ(µ̃↓ − λ) − Θ(λ− 1)] , (2.71)

where we have used the abbreviations λ := (εF + µ↓ + ω)/(2εF ) and µ̃↓ := µ↓/εF . Note
that in case of a negative chemical potential of the minority atoms µ↓ < 0 (which happens
in particular close to hs), all terms where µ̃↓ appears vanish identically in the expressions
for the pair propagator above. For the case of positive µ↓’s, the real part of the pair
propagator has two poles at ω = ±2h, as can be seen in Fig. 2.6. At a fixed magnetic field
h, the corresponding vertex function Γ(0, ω) has either two poles on the real axis in the
region −2h < ω < 2h , or two poles in the complex plane, depending on the interaction

16This situation is similar to the BCS-theory for the balanced crossover, where two equations (the gap-
equation and the particle-number equation) are needed to determine all ground state properties. Setting
µ = εF amounts to a neglect of the particle-number equation in this case.
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Figure 2.6: Real and imaginary part of the (regularized) pair propagator LR
reg(q, ω) at zero

momentum q = 0 as a function of ω, for 2h = 0.15εF . The real part ReLR
reg(0, ω) has two

poles at ω = ±2h, if the minority chemical potential as positive. For negative µ↓’s, the
pole at negative frequencies vanishes (this is an artefact of the theory and is discussed in
more detail in the text).

strength17. Alternatively one can fix the interaction strength and vary the magnetic field
h, thereby shifting the position of the poles.

In the BCS-limit (a → −∞) the poles of the vertex function jump into the complex
plane right below the value of the magnetic field h, where the two poles on the real axis
merge at ω = 0. This happens at very small magnetic fields in the BCS-limit. Expanding
the vertex function in h≪ εF leads to

Γ(0, 0) =
2π2

mkF

[
π

2kFa
− 2 − ln

h

4εF
+ O(h2)

]−1

. (2.72)

The critical magnetic field hcrit below which the poles of Γ jump into the complex plane
is thus given by

hBCS
crit = 4εF exp

(

− π

2kF |a|
− 2

)

=
∆BCS

2
(2.73)

corresponding to the lower critical field at the Clogston-Chandrasekhar transition18. The
critical field hcrit where a pole in the vertex function appears at q = 0 and ω = 0 can thus
be associated with the onset of superfluidity. This condition is known in the literature as

17Note that the term proportional to the inverse interaction strength 1/g in the vertex function (2.67)
effectively shifts the real part of the pair propagator up or down, thereby shifting the position of the poles.

18Note that the value of hcrit is below the thermodynamical critical field hc = ∆/
√

2 and corresponds
to the lower critical field of the first order phase transition from the superfluid to the normal state.
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the Thouless criterion [52]. It is important to note, however, that away from the BCS-
limit, the poles of the vertex function jump into the complex plane not at ω = 0 but at
slightly negative frequencies. This can be seen in Fig. 2.6, where the local maximum of
the real part in the regime −2h < ω < 2h is slightly below ω = 0. This would lead to a
slightly lower critical field than the Thouless criterion. Nevertheless, because of the reasons
to be explained in the following sub-section, we use the Thouless criterion to determine
the boundary of the superfluid phase. At negative minority chemical potentials µ↓ < 0,
the pole of the pair propagator at negative frequencies vanishes. This is an artefact of
the theory and related to the fact, that the occupation number of the minority Fermion
modes in the expression (2.65) for the pair propagator is identically zero at T = 0, which
is obviously unphysical. Indeed, this has some consequences for our rf-spectra and other
observables, as will be discussed in Sec. 2.3.2.

Thouless criterion

As mentioned above, the critical magnetic field below which the imbalanced Fermi gas
is superfluid can be calculated from the condition that the vertex function has a pole at
q = 0 and ω = 0, i.e.

Γ−1
R (0, 0) = 0 . (2.74)

There are several ways to understand how this condition arises. First of all it is easy to
see that the Thouless criterion is equivalent to the BCS-gap equation at ∆ = 0, which
determines the boundary of the superfluid phase within mean-field theory. Using Eqs.
(2.74), (2.66) and (2.65) we obtain

1

ḡ
=

∫
d3k

(2π)3
Θ(εk − µ↑) − Θ(µ↓ − εk)

2(µ− εk)
(2.75)

which is indeed equivalent to the BCS-gap equation for ∆ = 0.
A different way to understand the Thouless criterion is to study the response of the

system to a fictitious external pairing field, which couples to the ’pairing operator’ ∆q =
∑

k ck+q↑c−k↓. Within a mean-field RPA calculation, the corresponding response function
is given by [55]

χ(q, ω) =
χ(0)(q, ω)

1 − ḡχ(0)(q, ω)
(2.76)

where the response function χ(0)(q, ω) of the non-interacting system is given by our ex-
pression (2.65) for the pair propagator. The phase transition to a homogenous super-
fluid state is determined by a divergence of the static response function at q = 0, i.e.
ḡ−1 − χ(0)(0, 0) = 0, which is equivalent to the Thouless criterion for our vertex function
in ladder approximation. Actually, from this calculation it can be inferred, that an in-
stability towards a superfluid phase with an inhomogeneous order parameter (such as the
FFLO phase) can be obtained from a modified Thouless criterion, where the momentum q

is kept at a non-zero value. Indeed, if the response function diverges at a finite momentum
q before diverging at q = 0, the response of the system to a modulated order parameter
is stronger an thus the dominant instability.
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On a more formal level, the Thouless criterion (2.74) is related to the spontaneous
U(1)-symmetry breaking in the superfluid phase and the associated massless Goldstone
Boson, i.e. the Bogoliubov-Anderson mode in the case of neutral superfluids. Indeed, the
pole of the exact vertex function determines the dispersion relation of collective modes in
the interacting Fermi gas. Thus, the appearance of a gapless Goldstone mode manifests
itself through the presence of a pole in the vertex function at zero momentum and energy.
Therefore, the Thouless criterion holds quite generally and is independent from our ladder
approximation for the vertex function. In particular, it can be derived from an exact Ward
identity related to the U(1) gauge symmetry [56].

In Eq. (2.73) we have used the Thouless criterion already to calculate the critical field
in the BCS-regime. In the opposite BEC-limit (a → ∞) the asymptotic value of hcrit,
obtained using the Thouless criterion, is given by

hBEC
crit = |Eb|/2 + εF − 4 kF a

3π
εF + O(a2) (2.77)

which corresponds to the saturation field (2.8) in the BEC-limit, as expected. However,
the associated atom-dimer scattering length is given by aBorn

ad = 8/3a instead of the exact
value aad = 1.18a. Thus, the ladder approximation for the vertex function takes the
atom-dimer scattering only at the level of Born’s approximation into account.

At unitarity we obtain hcrit(v → ∞) ≃ 0.36εF for the value of the critical field.
The instability torwards an FFLO phase occurs at a slightly higher field hFFLO

crit (v →
∞) ≃ 0.40εF . The critical field hcrit at arbitrary interaction strengths obtained from the
Thouless criterion is plotted in the T-matrix phase diagram in Fig. 2.7 in Sec. 2.3.3.

The Vertex function for µ↓ < 0 at arbitrary momenta

As mentioned several times already, the chemical potential of the minority atoms µ↓ has to
be calculated selfconsistently in order to obtain correct results for all interaction strengths,
especially in the BEC-limit. In the rest of this chapter we restrict ourselves to the case
µ↓ = µ − h < 0, where the chemical potential of the minority atoms is negative. This
simplifies the calculations considerably but also leads to some unphysical results, as will
be seen in Sec. 2.3.2. Nevertheless, albeit using this restriction, the calculation covers
a large part of the phase diagram plotted in Fig. 4.2, in particular the normal phase in
the region h/µ↑ > 0.5. As previously, we set µ↑ = εF = k2

F /(2m) with k3
F = 6π2n↑ and

measure all energies in units of εF , i.e. in units of the Fermi energy of the non-interacting
majority Fermi gas.

The regularized pair propagator (2.68) can be calculated analytically at zero temper-
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ature. For the real and imaginary part we obtain

ReLR
reg(q, ω) =

∫
d3k

(2π)3

[ Θ(εq−k − µ↑)

ω − εk − εq−k + 2µ
+

1

2εk

]

=
mkF

(2π)2

[

1 − 1 − λ− q2/4

2q
ln

∣
∣
∣
∣

λ− (1 − q/2)2

λ− (1 + q/2)2

∣
∣
∣
∣

+
√

|λ|







1
2 ln

∣
∣
∣
(1−

√
λ)2−q2/4

(1+
√

λ)2−q2/4

∣
∣
∣ if λ > 0

π − arctan 1+q/2√
|λ|

− arctan 1−q/2√
|λ|

if λ < 0

]

(2.78)

ImLR(q, ω) = −π
∫

d3k

(2π)3
δ(ω − εk − εq−k + 2µ)Θ(εq−k − µ↑)

= −mkF

8π
Θ(λ)Θ(κ+ q

√
λ)

×
[

2
√
λΘ(κ− q

√
λ) + (

√
λ+ κ/q)Θ(−κ+ q

√
λ)
]

(2.79)

where we have defined q = |q|/kF and kF is the momentum associated to µ↑ = εF =
k2

F /(2m), as defined above. The abbreviations λ and κ introduced in the expressions
above are defined by

λ :=
1

2
+
ω + µ↓
2εF

− |q|2
4k2

F

(2.80)

κ :=
ω − 2h

2εF
(2.81)

Note that one of the two Fermi distribution functions from (2.65) has dropped out at zero
temperature, since we have restricted ourselves to the case µ↓ < 0. Apart from simplifying
further calculations, this leads to some unphysical results. Usually, the nominator of the
integral for the pair propagator (2.65) is nonzero if both Fermion states are either occupied
or empty, i.e. scattering can only take place if two particles or holes are present. For
negative µ↓’s, however, we have a situation where the occupation of the minority atom
states in the pair propagator is always zero at T = 0. As a consequence, some universal
properties of the interacting Fermi gas are flawed. For example, the tails in the momentum
distributions at large momenta as well as the tails in the rf-spectra at large frequencies
are missing. Furthermore, the majority atoms form a non-interacting Fermi gas, which is
a good approximation only in the case of very strong imbalances n↑ ≫ n↓.

2.3.2 Spectral functions Aσ(k, ω) at zero temperature

In this section we are going to calculate the spectral functions Aσ(k, ω) for the two Fermion
species σ =↑, ↓ at zero temperature, using the non-selfconsistent T-matrix approach intro-
duced above. We will consider only the case, where the chemical potential of the minority
atoms is negative µ↓ < 0 (i.e. h > µ). As mentioned previously, this includes the inter-
esting regime close to the saturation field hs and covers almost the whole normal phase
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at unitarity. In terms of the fermionic self-energy Σ(k, ω), the spectral function can be
expressed as

Aσ(k, ω) = −2 ImGR
σ (k, ω)

=
−2 Im ΣR

σ (k, ω)

(ω − εk + µσ − ReΣR
σ (k, ω))2 +

(
Im ΣR

σ (k, ω)
)2 (2.82)

Within our non-selfconsistent T-matrix approach, the real part of the self energy (2.70)
at T = 0 is given by

Re ΣR
σ (k, ω) =

∫
d3q

(2π)3
Θ(µ−σ − εq)ReΓR(q + k, ω + εq − µ−σ)

−
∫

d3q

(2π)3
dz

π

Θ(−z) ImΓR(q, z)

z − ω − εq−k + µ−σ
(2.83)

whereas the imaginary part of the self energy can be written as

Im ΣR
σ (k, ω) =

∫
d3q

(2π)3
{Θ(µ−σ − εq) − Θ(µ−σ − ω − εq)} ImΓR(q + k, ω + εq − µ−σ) .

(2.84)
and the retarded, regularized vertex function (2.67) is given by

ΓR(q, z) =
1

1/g − ReLR
reg(q, z) − i ImLR(q, z)

(2.85)

with g = 4πa/m. The real- and imaginary-parts of the pair propagator LR are given by
(2.78) and (2.79).

Spectral function of the majority Fermions A↑(k, ω)

As explained above, the chemical potential µ↓ for the minority Fermions has to be cal-
culated selfconsistently in order to obtain correct results close to the saturation field hs.
Thus, in the regime where µ↓ < 0, the occupation number of all minority Fermion modes
in the expressions for the vertex function and self-energies is zero at T = 0. The majority
atoms thus respond as if no minority atoms were present and form an ideal Fermi gas.
This can be seen easily from the equations (2.83) and (2.84) for the self energy of the
majority atoms. If we set µ↓ < 0, we get

ΣR
↑ (k, ω) = i0− . (2.86)

Clearly, this is an unphysical artefact of the self-consistent treatment of the minority
chemical potential, which suppresses the occupation of all minority Fermion modes at
zero temperature if µ↓ < 0. Obviously, even for very small minority atom concentrations,
the momentum distribution of the majority atoms should be smeared out and form a
∼ k−4 tail at large momenta due to the interaction with the minority atoms. The height
of this tail should scale with the number of minority atoms, however. Thus, at very large
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population imbalances, the treatment of the majority Fermions as an ideal Fermi gas is a
fairly good approximation. This drawback has also one minor advantage. Indeed, within
the T-matrix approach, setting the chemical potential of the majority atoms equal to the
Fermi energy µ↑ = εF is exact in the regime µ↓ < 0.

Spectral function of the minority Fermions A↓(k, ω)

For the discussion of the minority Fermion spectral function we restrict ourselves to the
hole-part A↓,−(k, ω), since this is the relevant quantity for calculating the rf-spectrum
and the momentum distribution. At zero temperature, the hole-part (2.56) coincides
with the full spectral function for negative frequencies ω < 0 and is zero otherwise, i.e.
A−(k, ω) = Θ(−ω)A(k, ω). Thus, we can restrict our calculation of the spectral function
to negative frequencies in the following.

Note that in the case of negative frequencies ω < 0, the vertex function in the ex-
pressions for the real- and imaginary-part of the self-energy in Eqs. (2.83) and (2.84) is
evaluated only at negative frequencies z < 0. This simplifies the equations considerably,
because one can easily show from Eq. (2.79) that the imaginary part of the pair propagator
is zero at negative frequencies, i.e. ImLR(q, z < 0) ≡ 0+. Thus, the real- and imaginary
part of the vertex function at negative frequencies are given by

ImΓR(q, z < 0) = π δ
(
1/g − ReLR

reg(q, z)
)

(2.87)

ReΓR(q, z < 0) =
1

1/g − ReLR
reg(q, z)

(2.88)

Due to the delta function in (2.87) expressions containing the imaginary part of the vertex
function give a nonzero result only at those points, where the vertex function has a pole
on the real axis at negative frequencies. Now, in the normal (non-superfluid) phase with
h > µ, the vertex function has a pole only at positive frequencies, as shown above in
section 2.3.1. Thus, all terms in (2.83) and (2.84) which involve the imaginary part of the
vertex function ImΓR(q, z < 0) vanish and we are finally left with

ImΣR
↓ (k, ω) = 0− (2.89)

ReΣR
↓ (k, ω) =

∫
d3q

(2π)3
Θ(µ↑ − εq)

1

1/g − ReLR
reg(q + k, ω + εq − µ↑)

(2.90)

The hole-part of the minority species spectral function at zero temperature is thus simply
given by

A↓,−(k, ω) = 2πΘ(−ω) δ
(
ω − εk + µ↓ − Re ΣR

↓ (k, ω)
)
. (2.91)

We mention once more, that this expression is only valid in the normal, non-superfluid
phase and for negative minority-species chemical potentials µ↓ < 0. For positive µ↓’s, the
pair-propagator has a finite imaginary part at negative frequencies and the simplifications
used above are no longer valid.

The dispersion relation Ek of the minority species’ fermionic excitations is given by
the zeros of the argument of the delta function in Eq. (2.91). In particular, the dispersion
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relation is defined by the roots ω = Ek − µ↓, i.e. it is a solution of the equation

Ek = εk + ReΣR
↓ (k, Ek − µ↓) (2.92)

At zero temperature, the hole-spectral function (2.91) can thus be written in terms of the
dispersion relation of the excitations Ek as

A↓,−(k, ω) = 2πΘ(−ω) Z(k) δ(ω −Ek + µ↓) (2.93)

and the quasiparticle weight Z(k) is given by

Z(k) =

∣
∣
∣
∣
1 − ∂ωRe ΣR

↓ (k, ω)
∣
∣
∣
ω=Ek−µ↓

∣
∣
∣
∣

−1

. (2.94)

Using Eqs. (2.90) and (2.92), we solve for the excitation energies Ek numerically. At
unitarity a→ ∞ we find that the dispersion relation of the polaron can be parameterized
using a binding energy and an effective mass as

Ek = −|ǫb| +
m

m∗ εk (2.95)

with excellent accuracy for k . 0.5kF . Here ǫb = −0.6066εF = µ↓
∣
∣
h=hs

is the binding
energy of the polaron at unitarity, which is independent of the field h (i.e. independent
of the imbalance) in the regime h > µ within the non-selfconsistent T-matrix approach.
For the effective mass of the polaron at unitarity we get m∗ = 1.17m, which is also
independent of the imbalance. These values have been found previously by Combescot et
al. [50] and are in good agreement with the recent experimental results ǫb ≃ −0.64(7) [57]
and m∗/m = 1.17(10) [58]. Furthermore, we find that the quasiparticle weight Z(k) at
unitarity for momenta k . 0.4kF can be parameterized with very good accuracy as

Z(k) = Z0 − ζ

(
k

kF

)2

(2.96)

where the coefficients Z0 = 0.78 and ζ = 0.14 are independent of the imbalance. For
momenta k & 0.4kF the quadratic dependence is no longer valid.

2.3.3 Momentum distribution of the minority Fermions

The momentum distribution of the minority Fermions at zero temperature in the regime
µ↓ < 0 can be calculated using the spectral function (2.93) via Eq. (2.54). From this we
obtain

n↓(k) =

∫ ∞

−∞

dω

2π
A↓,−(k, ω)

=

∫ 0

−∞
dω Z(k) δ(ω − Ek + µ↓)

= Z(k)Θ(µ↓ − Ek) (2.97)
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Figure 2.7: Phase boundaries within the T-matrix approach (compare with Fig. 2.1). The
grey region represents the partially polarized normal phase Npp. The red line marks the
saturation field hs obtained using Eq. (2.99), the black line was obtained using the Thouless
criterion (2.74). The blue line marks the phase boundary of the FFLO phase, obtained
using the modified Thouless criterion. In the region above the dotted line h/εF = 0.5, the
minority Fermion chemical potential is negative µ↓ < 0.

This expression for the momentum distribution of the minority atoms can be used to
obtain the saturation field hs, where the minority Fermion density vanishes. Indeed, the
chemical potential of the minority Fermion at hs is given by µ↓(h = hs) = E0. Using Eq.
(2.92) we obtain

µ↓
∣
∣
h=hs

= ΣR
↓ (0, 0) (2.98)

and thus the saturation field hs is given by the exact expression

hs

εF
=

1

2

(

1 −
ΣR
↓ (0, 0)

εF

)

. (2.99)

Using this equation and the self-energy from our T-matrix approximation, we calculate
the saturation field hs for all interaction strengths numerically. The result is plotted in the
T-matrix phase diagram in Fig. 2.7. It turns out that the hs(v) curve intersects with the
critical field hcrit from the Thouless criterion at an interaction strength v = (kFa)

−1 = 1.27
and lies below hcrit for v > 1.27. In this regime, the vertex function has poles in the
complex plane and the calculation of hs using Eq.(2.99) breaks down.

From Eq. (2.97) it is obvious, that the momentum distribution of the minority Fermions

at zero temperature has no tail at large momenta, since n↓
k

= 0 if m
m∗ εk > |ǫb|+µ↓. Again,

this is an artefact of the selfconsistent calculation of the minority chemical potential in
the regime µ↓ < 0. Nevertheless, we expect that the main features are reasonably well
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Figure 2.8: Polarization P = (n↑−n↓)/(n↑ +n↓) of the imbalanced Fermi gas at unitarity
and T = 0 as a function of the minority chemical potential µ↓, obtained by integrating
the momentum distribution (2.97). The dashed line corresponds the approximate result,
obtained using Eq. (2.100).

described within this approach. Using the approximate expansions (2.95) and (2.96) for
the dispersion relation and the quasiparticle weight at unitarity, we get

n↓(k) ≈
(

Z0 − ζ
k2

k2
F

)

Θ
(

µ↓ + |εb| −
m

m∗ εk
)

(2.100)

which is a good description for kF↓ . 0.4kF , i.e. for large imbalances.

We can use the minority momentum distribution (2.97) to calculate the population
imbalance P = (n↑ − n↓)/(n↑ + n↓) as a function of the minority chemical potential. The
result is plotted in Fig. 2.8 and shows that the chemical potential of the minority Fermions
is indeed negative for a large range of polarizations at unitarity.

2.3.4 RF-spectra of the minority Fermions

In the absence of final state interactions, the rf-spectrum for the minority Fermions can be
calculated using Eq. (2.50). At zero temperature, using the result (2.93) for the hole-part
of the minority species’ spectral function in the regime µ↓ < 0, we obtain

I(ω) =
1

2π

∫
d3k

(2π)3
A↓(k, εk − ω − µ↓) nF (εk − ω − µ↓)

=

∫
d3k

(2π)3
Z(k) δ(εk − Ek − ω)Θ(ω + µ↓ − εk) (2.101)
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The rf-response is nonzero at frequencies which coincide with the energy difference between
the kinetic energy of the Fermion in the final state and the excitation energy Ek. Using the
approximate expression (2.95) for the excitation energies Ek at unitarity, the rf-spectrum
can be written as

I(ω) =

∫
d3k

(2π)3
Z(k) δ

(
m∗ −m

m∗ εk + |ǫb| − ω

)

Θ(ω + µ↓ − εk)

∼
∫

dε
√
ε Z(

√
ε) δ

(
m∗ −m

m∗ ε+ |ǫb| − ω

)

Θ(ω + µ↓ − ε)

∼ Z(
√
ε0)

√
ε0 Θ(ω + µ↓ − ε0) (2.102)

with

ε0 =
m∗

m∗ −m
(ω − |ǫb|) . (2.103)

Using Eq. (2.96) for the quasiparticle weight, the rf-spectrum of the minority Fermions in
the regime µ↓ < 0 at unitarity is approximately given by

I(ω) ∼
(

Z0 − ζ
m∗

m∗ −m

ω − |εb|
εF

) √

m∗

m∗ −m
(ω − |ǫb|) Θ

(
m∗

m
|ǫb| +

m∗ −m

m
µ↓ − ω

)

(2.104)
Note that there is no tail in the rf-spectrum at T = 0 at large frequencies, since the
unit step function cuts off the integral and thus I(ω) is identically zero for all frequencies
ω > ωmax = m∗

m |ǫb| + m∗−m
m µ↓. Again, this is an artefact of the selfconsistent calculation

of the minority species’ chemical potential µ↓ within the T-matrix approach. Indeed, it
has been shown recently by Schneider et al. [59], that the rf-spectra should have a tail
∼ C/ω3/2 proportional to the contact coefficient C, which has been introduced in Sec.
2.2.1. The sharp drop of the minority rf-spectrum at zero temperature in the normal
phase is related to the fact the minority atoms form a Fermi-liquid. Indeed, close to the
Fermi surface a Landau Fermi liquid at zero temperature has a spectral function of the
form

AFL(k, ω) = Zδ(ω − ε∗k + µ) + Ainc(k, ω) , (2.105)

where the ’coherent’ delta-function contribution comes from the infinite-lifetime excita-
tions at the Fermi momentum and the renormalized dispersion is parametrized by an
effective mass, i.e. ε∗k = k2/(2m∗). The second term describes the incoherent part of the
spectral function. Repeating the calculation for the rf-spectrum with this spectral func-
tion gives rise to a sharp drop of I(ω) at ω = µ(m∗ −m)/m, as above. Thus, apart from
missing the small tails at high frequencies, the qualitative form of the spectrum (2.104) is
correct.

The minority rf-spectrum has a sharp onset at ωmin = |ǫb|, corresponding to the ’bind-
ing energy’ of the down-Fermion to the majority Fermi sea. This coincides again with the
naive expectation, that the rf-field has to provide the binding energy in order to transfer
atoms to the empty hyperfine state. The width of the rf-spectrum is given by

∆ω = ωmax − ωmin =
m∗ −m

m
(|ǫb| + µ↓) . (2.106)
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Figure 2.9: Minority Fermion rf-spectra in the normal phase at unitarity and zero tem-
perature, plotted for population imbalances. The red dashed line corresponds to the
approximate spectra obtained using Eq. (2.104).

The width of the spectral line is a direct measure of the effective mass m∗ and of the
population imbalance P . Indeed, for m∗ → m or P → 1 (i.e. µ↓ → −|ǫb|) the width of the
spectral line goes to zero.

The numerically obtained results for the rf-spectra (2.101) are plotted in Fig. 2.9. These
spectra cannot be compared directly with the experimentally measured ones, because we
have calculated the rf-spectra at zero temperature, whereas the experiments are performed
at relatively high temperatures on the order of 0.1TF . As mentioned above, the sharp
upper cutoff in the rf-spectra is related to the presence of a sharp Fermi surface at zero
temperature and thus cannot be resolved in the experimentally measured spectra at finite
temperature. Indeed, at finite temperature, this discontinuity is washed out due to thermal
excitations.

2.4 Conclusions

In this chapter we have calculated the spectral functions and the rf-response of imbalanced
Fermi gases in the normal phase at zero temperature, using a T-matrix approach. One
important conclusion that can be drawn from this calculation is, that the shift of the
minority rf-spectrum in the normal phase of the imbalanced Fermi gas is essentially due
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to the Hartree shift of the minority species’ chemical potential and not an effect of two-
particle pairing. Actually, after the first rf-measurements on imbalanced Fermi gases
came up, it was widely believed that the minority rf-shift is due to pre-formed pairs in
the normal phase. This is not true, however. Indeed, if the minority rf-shift would be a
pairing effect, the paired majority atoms should show the same rf-response as the minority
atoms because of symmetry. Apart from the unpaired ”excess”-Fermion peak at ω = 0,
the rf-spectrum of the majority atoms should show a second peak that is identical to the
minority rf-spectrum and arises from the paired majority atoms. Our calculations show
no signs of such a pairing in the normal phase, however. Thus, the binding energy of
the minority atoms in the normal phase of the imbalanced Fermi gas is a polaronic effect.
Only for strong enough interactions on the BEC-side of the Feshbach resonance, where the
formation of a molecular bound state is possible, the pairing is of a two-particle nature. In
this case, the ground state of the many-body system is no longer a normal Fermi-liquid but
a superfluid of condensed molecules. This polaron-to-molecule transition will be discussed
extensively in the subsequent chapter 3. Recent rf-measurements of the imbalanced Fermi
gas [57] directly validate this picture. Indeed, in the normal phase where polaronic binding
is present, no overlap between the minority and the majority rf-spectra is seen. In the
superfluid phase, however, where molecules are formed, the rf-spectra of the two species
overlap (apart from the rf-response of the unpaired majority atoms).
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Chapter 3

Polaron to molecule transition in
strongly imbalanced Fermi gases

As already mentioned in Sec. 2.1, the phase diagram of strongly interacting two-component
Fermi gases with a population imbalance is rather complicated and poorly understood.
In fact, reliable theoretical results exist only for two limiting cases. The first one is
the trivial limit of zero imbalance, i.e. the balanced Fermi gas, which has been studied
extensively in the BCS-BEC crossover literature (see [4] and references therein). The
other limit, on which we will will focus in this chapter, corresponds to the extremely
imbalanced gas close to the saturation field hs. Here one encounters the situation of a
single minority atom interacting with a Fermi sea of majority atoms. This problem is
especially interesting, because a quantum phase transition from a normal (Fermi liquid)
phase to a superfluid phase of Bose-condensed molecules is expected to occur at finite
but arbitrary low concentration of minority atoms, if the interaction strength is tuned
from the BCS to the BEC regime via a Feshbach resonance. Within the (N + 1)-particle
problem, this phase transition can be understood in a simple picture as follows. In the
case of attractive interactions, the minority atom dresses itself with a cloud of majority
atoms and forms a Landau quasiparticle. This quasiparticle is usually called polaron in the
literature, in analogy to a polaron in solid state physics, where an electron dresses itself
with a cloud of phonons (see e.g. [60]). Quite generally, the associated polaron energy for
low momenta p ≪ kF is of the form

E(p) = AεF +
p2

2m∗ , (3.1)

where the first term corresponds to a ’binding energy’ (i.e. A < 0) due to the attractive
interaction between the minority atom and the Fermi sea and the second term represents
the kinetic energy of the quasiparticle, where the effect of the dressing cloud is described
by an effective mass m∗ > m. Here and in the following, the Fermi energy is defined
by εF = k2

F /(2m) with a Fermi momentum kF that is related to the up-spin density
by the standard relation n↑ = k3

F /(6π
2) for a single component Fermi gas. Since we are

interested in the limit of vanishing down-spin density n↓ → 0, these are the relevant energy
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3. POLARON TO MOLECULE TRANSITION

Figure 3.1: Cartoon of the polaron to molecule transition in the (N +1)-particle problem.
a): noninteracting case; b): for attractive interactions, the minority atom forms a polaron
by dressing itself with a cloud of majority atoms; c): beyond a critical interaction strength,
the minority atom forms a molecular bound state with one of the majority atoms. Picture
taken from [57].

and momentum scales. Theoretical values for the binding energy and the effective mass
of the polaron have been determined from variational Monte-Carlo calculations by Lobo
et al. [22] as well as from a T-matrix approximation by Combescot et al. [50] and in the
previous chapter of the present thesis (see Eq. (2.95)). Quite recently, the properties of the
polaron have been studied also in experiments. For the binding energy and the effective
mass at unitarity they obtain A = −0.64(7) [57] and m∗/m = 1.17(10) [58], in rather good
agreement with the theoretical results.

Beyond a critical interaction strength however, the minority atom forms a molecular
bound state with one of the majority atoms and thus can no longer propagate as an
independent fermionic quasiparticle1. This transition has been discussed previously by
Prokof’ev and Svistunov [23, 24]. At finite minority concentrations one expects a Bose-
Einstein-condensate of molecules. A cartoon picture of the polaron to molecule transition
is shown in Fig. 3.1.

A major step torwards a theoretical understanding of the (N + 1)-particle problem
was put forward by Chevy [11], who introduced a simple variational wave function that
captures the essential physics of a single down-Fermion immersed in an up-Fermi sea. This
ansatz works very well on the BCS-side of the Feshbach resonance up to the unitary point
and slightly beyond, as long as the minority atom forms a polaron with the Fermi-sea.
However – as will be discussed in detail below – it turns out that Chevy’s wave function
is not capable of describing the BEC-regime of the (N + 1)-particle problem properly. In
particular, it doesn’t capture the phase transition from polaronic-binding to a molecular
two-body bound state. In the following sections we discuss the limitations of Chevy’s

1Obviously, this critical interaction strength lies on the BEC-side of the Feshbach resonance, since a
molecular bound state in the two body problem is only present at positive scattering lengths a > 0. As will
be shown below, the formation of the two-body bound state is possible only beyond a critical interaction
strength (kF a)−1

c > 0.84. Interestingly, the molecule formation is more difficult in the presence of a Fermi
sea, than in its absence. This is in contrast to the usual Cooper problem [61], where a bound state between
to weakly interacting Fermions arises only if a Fermi sea is present. This issue is discussed in App. C,
where we analyze the Cooper problem in a spin polarized environment.
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Figure 3.2: Pictorial representation of Chevy’s variational wave function (3.4). The large
grey circle represents the Fermi sea of the majority atoms.

ansatz and propose a complementary variational wave function, that leads to a correct
description of the molecular bound-state within the (N + 1)-particle problem and allows
to pin down the polaron to molecule transition point.

3.1 Chevy’s ansatz and its problems in the BEC-regime

The (N + 1)-particle problem that will be discussed in the following is based on the
standard model for ultracold two-species Fermi gases interacting via a contact interaction,
defined by the Hamiltonian

H =
∑

k, σ

εkc
†
kσckσ +

g0
V

∑

k1,k2,k3,k4

c†k1↑c
†
k2↓ck3↓ck4↑δk1+k2,k3+k4

. (3.2)

Here, c†
kσ and ckσ are the creation and destruction operators for Fermions with momentum

k in the pseudo-spin state σ and εk = k2/(2m) denotes the dispersion relation of free
Fermions with mass m. As shown in appendix A, the bare interaction strength g0 is
related to the physical s-wave scattering length a via

1

g0
=

m

4πa
− 1

V

∑

k

1

2εk
. (3.3)

A simple variational wave function for the (N+1)-particle problem of a single down-spin
Fermion interacting with a sea of spin-up Fermions was introduced by Chevy [11]. It
is based on an expansion up to a single particle-hole excitation around the unperturbed
Fermi sea and takes the form

|ψ0〉 =
(

φ0 c
†
0↓ +

∑′

k,q

φkq c
†
q−k↓c

†
k↑cq↑

)

|FSN
↑ 〉 . (3.4)

Here and in the following sums on k and q with a prime are restricted to k > kF and
q < kF , respectively and the N-particle Fermi sea of up-atoms is denoted by |FSN

↑ 〉.
Pictorially, this variational ansatz is shown in Fig. 3.2.
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3. POLARON TO MOLECULE TRANSITION

Although the ansatz (3.4) is restricted to single particle-hole excitations, which is
difficult to justify for strongly interacting Fermi systems2, Monte Carlo calculations [21,
23, 24] have shown that this variational wave function gives very accurate results for the
ground state energy of the polaron, in particular at unitarity, where the scattering length
a is infinite. On a formal level, the truncation of the particle-hole expansion after the first
term has been analyzed by Combescot and Giraud [62], who have shown that higher order
terms with more than one particle-hole excitation interfere destructively. In fact, this
interference is perfect if the hole-momentum q in the first order term is pinned at q = 0
and justifies the restriction to a single particle-hole excitation, if an expansion in hole
wavevectors is legitimate3. In fact, however, the accuracy of Chevy’s ansatz at unitarity
is probably a coincidence, because the wave function smoothly interpolates between the
weak coupling BCS- and BEC-limits, where it gives the correct leading-order behavior of
the ground state energy, as will be shown in the next section. Furthermore, the results
for other quantities such as the quasiparticle residue of the minority atom are not very
accurate (see Fig. 3.4 below).

3.1.1 Ground state energy

A variational upper bound to the ground state energy of the polaron using Chevy’s ansatz
(3.4) can be obtained by taking the coefficients φ0 and φkq in the wave function (3.4) as an

infinite set of variational parameters. Calculating the minimum of 〈ψ0|Ĥ |ψ0〉 with respect
to these variational parameters under the constraint of a normalized wave function leads
to the two coupled equations [11]

(

E − g0
V
N
)

φ0 =
g0
V

∑′

kq

φkq (3.5)

(E − εk − εq−k + εq)φkq =
g0
V
φ0 +

g0
V

∑′

k

φkq , (3.6)

where the ground state energy E is measured with respect to the N -particle Fermi sea,
thus E is equivalent to the chemical potential of the down-Fermion µ↓ ≡ E. Solving (3.6)
for φkq leads to

φkq =
φ0

V

χ(q;E)

E − εk − εq−k + εq
(3.7)

where we have defined

χ(q;E) :=




1

g0
− 1

V

∑

|k|>kF

1

E − εk − εq−k + εq





−1

. (3.8)

The divergence of the integral in the expression above can be regularized using Eq. (3.3),
i.e. by replacing the bare interaction strength g0 with the physical s-wave scattering length

2Note that from an energetic point of view it would be favorable to create a larger number of particle-
hole excitations close to the Fermi surface, instead of a single one with large momentum transfer.

3Pinning the hole-wavevector at q = 0 is a bad approximation in the BEC-regime. This issue will be
discussed at the end of Sec. 3.1.1.

44



3.1. CHEVY’S ANSATZ

Figure 3.3: Ground state energy E in units of the Fermi energy εF as a function of the
inverse coupling (kF a)

−1. Note that E ≡ µ↓ is measured with respect to the Fermi sea.
The red solid line corresponds to the result obtained using Chevy’s wave function, the
black dashed line corresponds to the energy of the molecular bound state Eb = −1/(ma2).

a. Note that χ(q;E) has essentially the same form as the (real part of the) vertex function
(2.66) studied in detail in Sec. 2.3.1 and thus can be calculated analytically.

Using Eq. (3.5) one gets the following implicit equation for the ground state energy

E =
1

V

∑

|q|<kF

χ(q;E) . (3.9)

This equation thus determines the variational upper bound for the ground state energy
of a single down-Fermion immersed in an up-Fermi sea as a function of the interaction
strength. The numerically obtained result is shown in Fig. 3.3. In particular, the chemical
potential of the down-Fermion at unitarity is given by µ↓ = −0.6066εF , which is in good
agreement with the fixed-node Monte Carlo result µ↓ = −0.594εF of Pilati and Giorgini
[21] and the diagrammatic Monte-Carlo result µ↓ = −0.615εF of Prokof’ev and Svistunov
[23].

In the two weak coupling BCS- and BEC-limits the ground state energy E ≡ µ↓ can be
calculated analytically within Chevy’s variational approach. In the BCS-regime a → 0−,
the dominant contribution to the ground state energy comes from χ(q;E) ≈ 4πa/m, thus
the chemical potential of the down-Fermion is given by its mean field value µ↓/εF =
4/(3π) kF a, as expected. A bit more interesting is the BEC-limit a→ 0+. In this regime
the two-particle bound state dominates the ground state behavior. We thus expand the
integral in Eq. (3.8) for large energies |E| ≫ εF and small momenta q, which is very
accurate in the BEC-regime. In this case Eq. (3.9) simplifies to (in dimensionless form
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and after taking the thermodynamic limit)

E

εF
≈ 4

π

∫ 1

0
dq

q2

1
kF a −

√

−E/εF

2 +
√

− 2
E/εF

q2

8

(3.10)

where momenta q are measured in units of kF . In the BEC-limit (kFa)
−1 → ∞, this

equation leads to4

EChevy
a→0+

= Eb − εF /2 + O(a) , (3.11)

where Eb = −1/(ma2) denotes the binding energy of the two particle bound state. Thus,
Chevy’s wave function seems to describe the molecule formation correctly. However, it
turns out that the constant term ∼ εF /2 in (3.11) is wrong by a factor of two. Indeed,
a simple mean field analysis shows, that the correct asymptotic behavior of the ground
state energy in the BEC-limit is given by

E
a→0+

= Eb − εF + gadn↑ + O(a2) , (3.12)

where the leading contribution is again the molecular binding energy Eb. The constant
contribution εF is due to the removal of one up-Fermion from the Fermi-sea in order to
form the molecule and the third term accounts for the mean field repulsion between the
molecule and the Fermi-sea. Its interaction strength gad = 3πaad/m is related to the exact
atom-dimer scattering length aad = 1.18 a that has first been calculated by Skorniakov and
Ter-Martirosian [63] for neutron-deuteron scattering (in the context of ultracold gases, this
result has been re-derived by Petrov et. al. [20]).

The fact that the result (3.11) for the ground state energy differs from the correct
asymptotics by εF /2 is a first indication that Chevy’s variational ansatz breaks down in
the BEC-regime. The reason for this discrepancy can be traced back easily to the structure
of Chevy’s wave function. Indeed, a closer inspection of (3.4) shows that the dominant
terms in the BEC-limit are those, where the hole-momentum q = 0 vanishes, i.e.

∑′

k

φk,0 c
†
−k↓c

†
k↑c0↑|FSN

↑ 〉 . (3.13)

In the BEC-regime this term corresponds to the molecular bound-state wave function of
an up- and a down-Fermion with opposite momenta in the presence of a Fermi sea5. From
an energetic point of view this part of the wave function is not optimal however, since it
creates a hole in the center of the ↑-Fermi-sphere. Energetically it would be favorable to
replace the punctured N-particle Fermi-sphere with a (N-1)-particle Fermi sea, i.e.

c0↑|FSN
↑ 〉 −→ |FSN−1

↑ 〉 , (3.14)

4We note that the inclusion of the q-dependent term in the denominator of Eq. (3.10) is crucial in
order to obtain the constant term ∼ εF in the asymptotics of the ground state energy (3.11). This term
is missing in the analysis of Combescot et al. [50], see their Eq. (9).

5The presence of the up-Fermi sea leads to a slight modification of the ’free’ molecular wave function
on length scales x & k−1

F . However, this modification is not important in the BEC-regime kF a ≪ 1, where
the interparticle spacing ∼ k−1

F is much larger than the typical size of the molecule ∼ a.
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3.1. CHEVY’S ANSATZ

which would lead to a ground state energy that is lower by εF . However, within Chevy’s
ansatz (3.4) this would require the inclusion of an arbitrary number of particle-hole exci-
tations in order to reshuffle the Fermi-sea in such a way that the hole vanishes.

The fact that Chevy’s wave function gives an incorrect description of the (N + 1)-
particle problem in the BEC-regime becomes even more apparent if one takes a closer
look at the quasiparticle residue Z↓ of the minority atom.

3.1.2 Quasiparticle residue

From a many body point of view, the relevant quantity that characterizes the polaron as
well defined quasi-particle is the so called quasiparticle residue Z↓ of the minority atom.
Quite generally, the quasiparticle residue gives the probability amplitude that a particle
with momentum k propagates without being scattered. It is directly related to the Green’s
function

iG(p, t > 0) = 〈cp(t)c†p(0)〉 . (3.15)

Indeed, the probability amplitude for propagation as a proper quasiparticle is determined
by the pole and the corresponding residue of the Green’s function in the lower half complex
plane [45]

G(k, t)
γt≫1≈ GR(k, t) =

∫
dω

2π

e−iωt

ω − εk + µ− ΣR(k, ω)
. (3.16)

Let’s assume that the retarded Green’s function has a simple pole in the LHP at ω =
Ek − iγk − µ, with γk > 0, i.e.

Ek = εk + ReΣR(k, Ek − iγk − µ) (3.17)

γk = −Im ΣR(k, Ek − iγk − µ) (3.18)

Closing the contour in the LHP gives

GR(k, t) = −i e−i(Ek−iγk−µ)t

1 − ∂ωΣR(k, Ek − iγk − µ)
. (3.19)

In a Fermi liquid state the imaginary part of the self energy vanishes right at the Fermi
momentum6 kF , which is defined by EkF

= µ, and thus we have γk = 0+. The quasiparticle
residue Z is then defined by

Z = lim
t→∞

|GR(kF , t)| =
1

|1 − ∂ωΣR(kF , 0)|
(3.20)

where the absolute value was taken in order to remove the oscillating term. The quasi-
particle residue Z is also related to the discontinuity of the momentum distribution n(p)
of the Fermions at kF . It was already shown by Migdal [64] that

Z = n(kF − 0+) − n(kF + 0+) (3.21)

6Note that this is a general discussion of the quasiparticle residue. In the following we are interested in
the properties of the minority Fermion, thus kF ≡ kF↓ → 0 for the (N + 1)-particle problem considered in
this chapter.
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Indeed, at zero temperature and infinitesimally close to kF , where γk = 0 we get

n(k) =

∫
dω

2π
A(k, ω)Θ(−ω)

k→kF≈
∫

dω δ (ω − εk + µ− Re ΣR(k, ω)) Θ(−ω)

≈ Z(kF )Θ(µ− Ek) (3.22)

with the quasiparticle residue Z(kF ) ≡ Z from Eq. (3.20). From this expression it is
obvious that the Fermi momentum kF is related to the chemical potential µ via µ = EkF

or equivalently, using Eq. (3.17), by

µ = εkF
+ Re ΣR(kF , 0) . (3.23)

Furthermore, the discontinuity of the momentum distribution at the Fermi momentum is
given by

lim
δ→0

[n(kF − δ) − n(kF − δ)] = Z =
1

|1 − ∂ωΣR(kF , 0)|
(3.24)

In the case of Chevy’s wave function (3.4), where the Fermi momentum of the down
particle is zero, the quasiparticle residue of the down-Fermion can be obtained via the
jump in the momentum distribution at k = 0. It is given by

Z↓ = |φ0|2 (3.25)

and can be calculated by inserting the coefficients φkq from Eq. (3.7) into the normalization
condition of the wave function 1 = |φ0|2 +

∑

kq |φkq|2. From this one obtains

1

|φ0|2
= 1 +

1

V 2

∑′

k,q

χ2(q;E)

(E − εk − εq−k + εq)2
. (3.26)

The result for the minority Fermion quasiparticle residue is shown in Fig. 3.4 together with
recent experimental results. Apparently, Chevy’s ansatz for the polaron predicts a finite
Z↓ of the minority atom for all interaction strengths, even deep in the BEC-regime where a
molecular bound state with one of the majority atoms is formed. In this regime, however,
the quasiparticle residue is expected to vanish, because the minority atom can no longer
propagate as a free particle. Indeed Z↓ vanishes identically beyond the critical interaction
strength of molecule formation, which is consistent with recent experiments [57]. Actually,
Z↓ can be viewed as the order parameter of the polaron to molecule transition.

The numerical value of Z↓ at unitarity v = 0 is Z↓(v = 0) ≃ 0.78 within Chevy’s
ansatz. This is much larger than the experimentally observed value Z↓ = 0.39(9) which
is likely to be a lower bound, however [57]. Apparently, the expansion up to a single
particle-hole excitation considerably overestimates the quasiparticle residue even though
it gives reliable results for the ground state energy and the effective mass.
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Figure 3.4: Quasiparticle residue Z↓ of the minority Fermion as function of (kFa)
−1,

calculated using Chevy’s variational ansatz (3.4). In the regime where the ansatz (3.4)
breaks down, Z↓ is drawn as dotted line. The red dots correspond to the experimentally
measured quasiparticle residue from the MIT group [57] at a minority concentration of
5%.

3.1.3 Momentum distribution and contact coefficient

Another interesting quantities are the momentum distributions of the two Fermion species.
A simple calculation using Chevy’s ansatz shows that they are given by

n↓p = |φ0|2δp,0 +
∑

|q|<kF

|φq−p,q|2Θ(|q− p| − kF ) (3.27)

n↑p = Θ(kF − p)

[

1 −
∑

|k|>kF

|φkp|2
]

+ Θ(p− kF )
∑

|q|<kF

|φpq|2 (3.28)

Note that the wave-function coefficients φkq from Eq. (3.7) scale as ∼ V −1 an thus the
tails of the momentum distributions of both species scale as one over volume. This is
a trivial consequence of the fact that we have only one minority atom present and thus
the minority atom density is given by V −1. Furthermore, the asymptotics of momentum
distributions for both species at large momenta are identical and given by

n↑,↓p

p→∞−→
∑

|q|<kF

|φpq|2 . (3.29)
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The contact coefficient C that has been introduced in sec 2.2.1 can now be calculated
according to (2.35) via

C = lim
k→∞

k4nk = lim
k→∞

k4
∑′

k

|φkq|2 =
m2|φ0|2
V 2

∑′

q

|χ(q;E)|2 (3.30)

Now it is easy to see that Chevy’s ansatz for the strongly imbalanced gas obeys the
adiabatic theorem (2.38). Indeed, the interaction energy within Chevy’s ansatz is given
by

〈Hint〉 = −Λ
m

2π2

|φ0|2
V

∑′

q

|χ(q;E)|2 . (3.31)

Using Tan’s relation for the interaction energy from Eq. (2.36), the contact coefficient is
given by

C = −2π2m

ΛV
〈Hint〉 =

m2|φ0|2
V 2

∑′

q

|χ(q;E)|2 , (3.32)

which is equivalent to the result (3.30) obtained from the asymptotics of the momentum
distribution, thus Chevy’s ansatz obeys the adiabatic theorem. Right at unitarity the
dimensionless contact coefficient s, defined in (2.39), can be obtained numerically from
(3.32) and is given by [65]

s =
C

kF 6π2/V
= 0.072 . (3.33)

Note again that the factor V comes from the fact that the minority atom density is given
by n↓ = V −1. The results for the dimensionless contact coefficient as a function of the
scattering length are shown in Fig. 3.11 on page 67, together with the results from our
variational ansatz for the BEC-regime.

3.1.4 Minority spectral function and rf-response

In principle, a variational ansatz like (3.4) for the ground state of an interacting many-
body system contains no dynamical information. Indeed, in order to calculate the single
particle spectral function A(k, ω) it is necessary to know the excited states7 of the system,
as can be seen immediately from the Lehmann representation of the spectral function in
Eqs. (2.52) and (2.53). However, the (N + 1)-particle problem is an exception to this
general rule, because the knowledge of the ground state wave function suffices to calculate
the hole part of the minority spectral function A−

↓ (k, ω) at zero temperature, which is
given by

A−
↓ (k, ω) = 2π

∑

m

|〈m|ck↓|0〉|2 δ(ω + Em − E0) . (3.34)

This is because the excited states |m〉 are eigenstates of the non-interacting Hamiltonian
of the fully polarized majority gas, if the single minority atom is removed from the system.

7In particular one has to know the excited states with single particle/hole excitations.
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Using Chevy’s ansatz (3.4) for the ground state wave function |0〉 and the equation above,
the hole part of the minority spectral function at zero temperature is given by

A−
↓ (p, ω) = 2π|φ0|2δ(ω)δp,0 + 2π

∑

|q|<kF

|φq−p,q|2Θ(|q− p| − kF )δ(ω + εq−p − εq) (3.35)

Note that by convention ω is measured with respect to the chemical potential µ↓. It can
be seen immediately that this expression for the spectral function satisfies Eq. (2.54), i.e.
it gives the momentum distribution of the minority atom (3.27) when integrated over the
frequency ω and divided by 2π. Furthermore, from the delta-function in the last term
of Eq. (3.35) it can be inferred that for a given momentum p, the spectral function is
non-zero in the interval −εp − pkF/m < ω < −εp + pkF /m.

The minority rf-spectrum at zero temperature can now be calculated by plugging the
spectral function from Eq. (3.35) into Eq. (2.50)

I↓(ω) =
|φ0|2
V

δ(ω + µ↓) + V

∫ ′ d3k d3q

(2π)6
|φkq|2 δ(εq−k + εk − εq − ω − µ↓) , (3.36)

where the prime on the integration symbol indicates the restriction of the integration area
to k > kF and q < kF . The rf-spectrum exhibits a sharp peak ∼ Z↓δ(ω+µ↓) proportional
to the quasiparticle residue, as expected in an exact description. This peak has been
obtained already in the T-matrix calculation in Sec. 2.3.2. Note that the factor V −1 in
the first term comes from the normalization of the rf-spectrum (2.25). The second term
is non-zero for ω > −µ↓ and leads to the tail in the rf-spectrum, which is missing in
the T-matrix calculation. As will be shown right below, this tail is proportional to the
contact coefficient C ∼ V −1 at large frequencies. The scaling of the tail ∼ V −1 is again
due to the normalization condition of the Rf-spectrum, thus the tail doesn’t vanish in the
thermodynamic limit if the Rf-spectrum is properly normalized. Indeed, if we calculate
the normalized spectral weight of the peak (first term) and of the tail (second term) of
the rf-spectrum in Eq. (3.36) using the normalization condition 1 = |φ0|2 +

∑

kq |φkq|2,
we immediately see that spectral weight of the tail is given by 1 − Z↓, which is ∼ 22% at
unitarity.

At large frequencies ω → ∞, the rf-spectrum can be calculated explicitely and we get

I↓(ω → ∞) ≈ V

∫ ′ d3k d3q

(2π)6
|φkq|2 δ(2εk − ω) . (3.37)

From Eq. (3.29) we know that the q-integral in the above expression gives the asymptotics
of the momentum distribution at large momenta. After evaluating the k-integral the tail
of the rf-spectrum can thus be expressed as

I↓(ω → ∞) ≈ 1

4π2
√
m

C

ω3/2
, (3.38)

where C is the contact coefficient introduced above.
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Figure 3.5: Minority rf-spectrum at unitarity, obtained within Chevy’s ansatz from (3.36)
and normalized to unity. The red dashed line marks the asymptotics (3.38) at large
frequencies. The delta-function contribution is indicated by the thick vertical line and has
a weight equal to Z↓ = |φ0|2 ≃ 0.78.

3.1.5 Equivalence of Chevy’s ansatz to a non-selfconsistent T-matrix
approach

It turns out that Chevy’s variational ansatz for the polaron problem is formally equivalent
to the non-selfconsistent T-matrix approach for the imbalanced Fermi gas from Sec. 2.3, as
far as equilibrium properties such as the ground state energy and the quasiparticle residue
at the saturation field hs (i.e. where the minority density vanishes) are concerned. This
equivalence was observed already by Combescot et al. [50] and will be briefly discussed in
this section.

Within Chevy’s ansatz, the chemical potential8 of the minority Fermion µ↓ is de-
termined by Eq. (3.9). On the other hand, within the T-matrix approach the chemical
potential µ↓ at the saturation field hs is given by the self-energy at zero momentum and
frequency9. Using Eq. (2.90) this leads to the equation

µ↓ = ΣR
↓ (0, 0)

=

∫

q<kF

d3q

(2π)3

[
1

g0
+

∫

k>kF

d3k

(2π)3
1

εk + εq−k − εq − µ↓

]−1

(3.39)

8Note again that the ground state energy E of the polaron measured with respect to the N-particle
Fermi sea is equivalent to the minority Fermion chemical potential µ↓ ≡ E.

9At the saturation field hs the chemical potential µ↓ is negative for all interaction strengths, which
simplifies the T-matrix calculations considerably. See the discussion in Sec. 2.3.2.
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which is identical to Chevy’s result (3.9). The same is true for the quasiparticle residue
Z↓ of the minority Fermion. Within Chevy’s ansatz Z↓ is given by Eqs. (3.25) and (3.26).
The T-matrix approach at the saturation field hs leads to

Z−1
↓ =

∣
∣
∣
∣
1 − ∂

∂ω
ReΣR

↓ (0, 0)

∣
∣
∣
∣

(3.40)

= 1 +
1

V 2

∑

q<kF

k>kF

(εk + εq−k − εq − µ↓)
−2

(
1
g0

+ 1
V

∑

k′>kF

1
εk′+εq−k′−εq−µ↓

)2 ,

which is again equivalent to the result obtained using Chevy’s ansatz.
Apart from leading to the same results, the T-matrix approach has one crucial ad-

vantage over Chevy’s wave function, however. While Chevy’s ansatz suggests that it is
valid in the whole BCS-BEC crossover regime, the T-matrix approach has the ability to
predict its own breakdown via the Thouless criterion, that has been discussed in Sec. 2.3.1.
Indeed, we have found in Sec. 2.3.2 that the critical chemical potential from the Thouless
criterion crosses the chemical potential obtained using Eq. (3.39) at a critical interaction
strength (

1

kFa

)

crit

= 1.27 . (3.41)

which can be identified with the point M in the phase diagram 2.1.
The equivalence of Chevy’s wave function to the T-matrix approach shows, that there

is a critical point M on the BEC side of the Feshbach resonance beyond which the ansatz
(3.4) is no longer valid. Indeed, we have already seen above that Chevy’s ansatz leads to
a polaronic ground state for all interaction strengths and is not capable of describing the
molecule formation correctly. In the rest of this chapter our aim is to find a complementary
variational ansatz that is valid on the BEC-side of the point M and which correctly
describes the formation of the molecular ground state. This will allow us to pin down the
transition point M with a higher accuracy than the T-matrix result (3.41).

3.2 Variational ansatz for the BEC-regime

In order to describe the physics of bound state formation in the regime v ≫ 1, we pro-
pose a variational ansatz for the (N+1)-body problem that complements the ansatz (3.4)
describing a Fermi polaron with a finite quasiparticle residue. Our ansatz gives the exact
behavior (3.12) of the ground state energy in the BEC-limit up to linear order in a. The
associated variational wave function

|ψ0〉 =
(∑′

k

ξk c
†
−k↓c

†
k↑ +

∑′

k′,k,q

ξk′kq c
†
q−k−k′↓c

†
k′↑c

†
k↑cq↑

)

|FSN−1
↑ 〉 (3.42)

is a natural generalization of the Chevy ansatz and is constructed by adding a (↑, ↓)-
pair to a (N − 1)-particle Fermi sea of ↑-Fermions, together with the leading term in
an expansion in particle-hole excitations. Again, sums on k,k′ and q are restricted to
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Figure 3.6: Pictorial representation of the variational wave function (3.42) for the molec-
ular ground state.

k, k′ > kF and q < kF , respectively. The first term accounts for the formation of the
molecule in the presence of the ↑-Fermi sea and gives the correct next-to-leading-order
ground state energy in the BEC-limit, avoiding the problem of creating a hole in the ↑-
Fermi sea. The single particle-hole excitation in the second term describes the leading
order contribution to the interaction of the dimer with the Fermi sea apart from Pauli-
blocking effects, that are already accounted for in the first term. An important feature
brought about by the inclusion of the second term in Eq. (3.42) is that it amounts to
an exact treatment of the three-particle problem. Indeed, as will be shown in detail in
Sec. 3.2.6, the set of coupled equations (3.63)-(3.66) that determine the coefficients of the
variational many-body wave function reduce, in the three-particle limit, precisely to the
integral equation for the exact solution of the three-body problem by Skorniakov and Ter-
Martirosian [63]. As a result, the exact atom-dimer scattering length aad = 1.18a appears
in the asymptotic behavior of the ground state energy (3.12), giving rise to the correct
next-to-next-to-leading order behavior of the ground state energy in the BEC-limit.

Obviously, the ansatz (3.42) is not capable of describing the whole range of scattering
lengths correctly. In particular, it does not capture the weak coupling BCS-limit a→ 0−.
Indeed, the ↓-Fermion in the first term is always added at momenta k > kF , leading to a
ground state energy that is too high by εF in the weak coupling limit. Our ansatz (3.42)
is therefore complementary to the Chevy wave function (3.4), which correctly describes
the situation at weak coupling up to and slightly beyond the unitarity limit.

From a physical point of view, the two variational wave functions (3.4) and (3.42)
characterize very different ground states. Chevy’s ansatz describes a Fermi polaron with a
finite quasiparticle residue, which allows to build a normal Fermi liquid at a finite concen-
tration of the down-spin Fermions, provided that interactions between the quasiparticles
have no attractive channels. By contrast, the wave function (3.42) describes a bosonic
molecule interacting with a Fermi sea. At a finite concentration n↓ 6= 0, the resulting
ground state is expected to be a superfluid of condensed bosonic molecules, coexisting
with unpaired majority Fermions. The critical coupling vM , where the ground state ener-
gies of the two variational wave functions intersect, is thus expected to separate a normal
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fluid from a superfluid ground state of the attractive Fermi gas in the limit of very strong
imbalance.

3.2.1 The two-channel model

The variational ansatz (3.42) is based on the single channel model (3.2) that describes the
attractive interactions between the two pseudo-spin states. For computational purposes,
however, it turns out to be easier to start from the more general two-channel model [66],
which is defined by the Hamiltonian

H =
∑

p

(εp
2

+ ν0

)

b†pbp +
∑

p,σ

εpc
†
p,σcp,σ +

g0√
V

∑

p′,p

(

b†pcp−p′,↑cp′,↓ + h.c.
)

. (3.43)

Here, b†p denotes the bosonic creation operator of a molecule with momentum p and

c†p,σ are the fermionic creation operators for the two species σ =↑, ↓. The free particle
dispersion is denoted by εp = p2/(2m) and the factor 1/2 in the first term accounts for
the factor two in the molecule to single Fermion mass ratio.

The two particle problem: relating the bare couplings to physical parameters

In order see how the bare detuning ν0 and the Feshbach coupling strength g0 in the two-
channel model are related to the physical s-wave scattering length a and the interaction
range r0, we study the two particle problem briefly. The ground state wave function of an
up- and a down-Fermion in the two channel model can be obtained from the ansatz

|ψ〉 =
(

ηb†0 +
∑

k

ξkc
†
k↑c

†
−k↓

)

|0〉 , (3.44)

which is an eigenstate of the Hamiltonian (3.43) with energy E if the coefficients η and ξk
satisfy the equations

(E − ν0)η =
g0√
V

∑

k

ξk (3.45)

(E − 2εk) ξk =
g0√
V
η (3.46)

as can be checked easily by calculating H|ψ〉 = E|ψ〉 and equating the coefficients. These
two equations can be combined to

E − ν0 =
g2
0

V

∑

k

1

E − 2εk
. (3.47)

The integral on the RHS diverges for large momenta, thus the bare detuning needs to be
regularized in the usual way via

ν0 = ν +
g2
0

V

∑

k

1

2εk
. (3.48)
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Evaluating the integral in the thermodynamic limit finally leads to the eigenvalue equation

E − ν =
g2
0m

4π

√
−Em . (3.49)

We are looking for the energy of the molecular bound state of the two Fermions, which is
parameterized as10 E = −Eb = −κ2/m. Plugging this into the above equation we get

−κ
2

m
− g2

0m

4π
κ− ν = 0 . (3.50)

On the other hand, the scattering amplitude of two particles with vanishing relative mo-
mentum k is given by

f(k → 0) =
1

−1/a+ r0k2/2 − ik + O(k3)
(3.51)

where a is the s-wave scattering length and r0 is the interaction range. Bound states are
determined by the poles of the scattering amplitude in the upper half complex plane at
k = iκ, with a binding energy given by E = −κ2/m. This leads to the equation

−r0
κ2

2
+ κ− 1

a
= 0 (3.52)

Comparing the coefficients of equations (3.50) and (3.52) we finally get the following
relations between the bare couplings ν0 and g0 of the two-channel model and the physical
parameters a and r0

ν0

g2
0

= − m

4πa
+

1

V

∑

p

1

2εp
, (3.53)

r0 = − 8π

g2
0m

2
. (3.54)

Note that the effective range of the interaction r0 is negative. Indeed, this counterintuitive
result holds for all zero-range potentials [67]. Furthermore, we note that the two-channel
Hamiltonian (3.43) is equivalent to a single channel model in the interesting limit where
the effective range r0 goes to zero, i.e. kF r0 ≪ 1 (i.e. for broad Feshbach resonances), as
can be seen easily by integrating out the bosonic degrees of freedom.

Variational ansatz in the two-channel model

The corresponding variational ansatz to (3.42) in the two-channel model has two additional
terms (∼ η0, ηkq) where the closed-channel state is occupied

|ψ0〉 =
(

η0 b
†
0 +

∑′

k

ξk c
†
−k↓c

†
k↑ +

∑′

k,q

ηkq b
†
q−k

c†
k↑cq↑

+
∑′

k′,k,q

ξk′kq c
†
q−k−k′↓c

†
k′↑c

†
k↑cq↑

)

|FSN−1
↑ 〉 . (3.55)

10Note that the two Fermions have the same mass m, thus the reduced mass is given by mr = m/2.
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The ground state energy can now be obtained variationally by evaluating the expectation
value of the Hamilton operator (3.43) in the state (3.55) and determining the minimum
with respect to the infinite set of variational parameters η0, ξk, ηkq and ξk′kq. The con-
straint of a normalized variational wave function is included conveniently using a Lagrange
multiplier E, which serves as trial ground state energy. The variational method thus leads
to the four coupled equations

∂

∂η∗0

(

〈ψ0|Ĥ|ψ0〉 − E〈ψ0|ψ0〉
)

= 0 (3.56)

∂

∂ξ∗k

(

〈ψ0|Ĥ|ψ0〉 − E〈ψ0|ψ0〉
)

= 0 (3.57)

∂

∂η∗kq

(

〈ψ0|Ĥ|ψ0〉 − E〈ψ0|ψ0〉
)

= 0 (3.58)

∂

∂ξ∗
k′kq

(

〈ψ0|Ĥ|ψ0〉 − E〈ψ0|ψ0〉
)

= 0 (3.59)

The derivatives with respect to the complex conjugate parameters lead to the conjugate
equations, which contain no additional information. The expectation values can be eval-
uated straightforwardly and one obtains

〈ψ0|ψ0〉 = |η0|2 +
∑′

k

|ξk|2 +
∑′

kq

|ηkq|2 + 2
∑′

k′kq

|ξk′kq|2 (3.60)

〈ψ0|Ĥ0|ψ0〉 = (ν0 − εF )|η0|2 +
∑′

k

|ξk|2(2εk − εF )

+
∑′

kq

|ηkq|2(ν0 + εq−k/2 + εk − εq − εF )

+ 2
∑′

k′kq

|ξk′kq|2(εq−k−k′ + εk + εk′ − εq − εF ) (3.61)

〈ψ0|Ĥint|ψ0〉 = − g0√
V
η∗0
∑′

k

ξk +
g0√
V

∑′

kq

ξ∗kηkq − g0√
V

∑′

k′kq

(η∗kq − η∗k′q)ξk′kq

+ h.c. (3.62)

Note that the energy in the above equations is evaluated with respect to the N -particle
Fermi sea instead of the (N − 1)-particle sea, which explains the occurrence of the ∼ εF
terms in Eq. (3.61). This choice allows for a direct comparison with the results obtained
using Chevy’s ansatz. Furthermore, since the N-particle Fermi sea has been used as
reference scale, the ground state energy E is equivalent to the chemical potential µ↓ ≡ E

57



3. POLARON TO MOLECULE TRANSITION

of the single down-spin. Finally, the four coupled variational equations are given by

(E + εF − ν0) η0 = − g0√
V

∑′

k

ξk (3.63)

(E + εF − 2εk) ξk = − g0√
V
η0 +

g0√
V

∑′

q

ηkq (3.64)

(

E + εF − ν0 −
εq−k

2
− εk + εq

)

ηkq =
g0√
V
ξk − 2g0√

V

∑′

k′

ξk′kq (3.65)

(
E + εF − εq−k−k′ − εk′ − εk + εq

)
ξk′kq = − g0

2
√
V

(
ηkq − ηk′q

)
(3.66)

3.2.2 No particle-hole excitation

Before providing a full solution to the equations (3.63)-(3.66), we investigate a simplified
version of the variational problem and neglect the effect of particle-hole excitations for
the moment, i.e. we set ηkq = 0 and ξk′kq = 0. In this case the ground state energy is
determined solely by the equations (3.63) and (3.64), which are essentially equivalent to
the two equations (3.45) and (3.46) for the exact solution of the two-body problem. The
only difference is the restriction of the k-sum to momenta larger than kF , which accounts
for the Pauli blocking of the Fermi sea. Without the inclusion of particle-hole excitations
our variational ansatz is thus analogous to Cooper’s problem [61] (see also App. C), where
the ground state energy of two Fermions with zero total momentum in the presence of a
Fermi sea is studied. Plugging Eq. (3.63) into (3.64) one obtains the equation

(E + εF − 2εk) ξk =
g2
0

E + εF − ν0

1

V

∑′

k

ξk . (3.67)

This integral equation is easily soluble since it has a trivially separable kernel. Setting the
RHS equal to a constant we get the condition

E + εF − ν0

g2
0

=
1

V

∑′

k

1

E + εF − 2εk
. (3.68)

Since we are interested in broad Feshbach resonances, where the long range physics is
determined solely by the s-wave scattering length a, we take the zero range limit r0 → 0
(or equivalently g0 → ∞, see Eq. (3.54)). Furthermore we use Eq. (3.53) to renormalize
the bare coupling constants and obtain

m

4πa
=

1

V

∑′

k

1

E + εF − 2εk
+

1

V

∑

p

1

2εp
. (3.69)

Note again that the prime on the summation symbol indicates the restriction of the in-
tegration area to |k| > kF . Evaluating the integrals explicitly in the thermodynamic
limit, (3.69) reduces to the transcendental equation (in dimensionless form, i.e. measuring
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energies in units of εF )

π

2kFa
= 1 +

√

−E + εF
2εF

arctan

(√

−E + εF
2εF

)

. (3.70)

The numerical results for the ground state energy obtained from Eq. (3.70) are shown in
Fig. 3.10. As discussed in equation (3.12), the dominant contribution to the ground state
energy in the BEC-limit (a→ 0+) comes from the molecular binding energy. In this limit
an approximate analytical solution to Eq. (3.70) can be obtained by setting E = Eb−εF +δ
and expanding to leading order in δ. As a result we get

E = Eb − εF +
8πa

m
n↑ + O(a2) . (3.71)

Comparing this result with Eq. (3.12), the effective atom-dimer scattering length within
this approximation turns out to be given by aad = (8/3)a. This is exactly the result for
atom-dimer scattering in Born approximation, which, however, is far from the exact value
aad = 1.18a.

We note that the transcendental equation (3.70) is exactly equivalent to the Thouless
criterion Γ−1(k = 0, ω = 0) = 0 that was obtained in section 2.3.1, where only the
particle-particle ladder for the vertex function was taken into account. Formally, this
can be understood from the fact that the Thouless criterion for the vertex function in
the particle-particle ladder approximation is equivalent to the BCS-gap equation, which
in turn gives the same result as the Cooper problem, which is equivalent to the ansatz
discussed in this subsection.

3.2.3 Full solution of the variational problem

Now we turn to the solution of the full variational problem, thus including the effect of a
single particle hole excitation. In this case, the equations (3.63)-(3.66) can be reduced to
a single integral equation for the coefficients ηkq as follows. First of all, we insert equation
(3.63) in (3.64) and (3.66) in (3.65). In order to perform the zero range limit r0 → 0
already at an early stage we multiply Eq. (3.65) with 1/g2

0 and define ξ̃k = ξk/(g0
√
V ).

This leads to the two coupled equations

Ekξ̃k = −g
2
0

ν0

1

V

∑′

k

ξ̃k +
1

V

∑′

q

ηkq (3.72)

αkqηkq = ξ̃k − 1

V

∑′

k′

ηk′q

Ek′kq

(3.73)

where the zero range limit has been taken already and the coefficients are defined as

Ek := E + εF − 2εk (3.74)

Ek′kq := E + εF − εq−k−k′ − εk′ − εk + εq (3.75)

αkq := −ν0

g2
0

− 1

V

∑′

k′

1

Ek′kq

(3.76)
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The integral equation (3.72) for the coefficients ξ̃k has a trivial kernel and can be solved
formally

ξ̃k = − c

Ek

+
1

V

∑′

q

ηkq

Ek

(3.77)

where the constant c is given by

c =
g2
0

ν0

1

V

∑′

k

ξ̃k =
1

V 2

∑′

kq

ηkq

γ Ek

(3.78)

and we have defined

γ :=
ν0

g2
0

+
1

V

∑′

k

1

Ek

(3.79)

By inserting ξ̃k from Eq. (3.77) into Eq. (3.73) the four coupled equations (3.63)-(3.66)
finally reduce to a single homogeneous Fredholm equation of the second kind11

1

V 2

∑′

k′,q′

K(E;k,q;k′,q′) ηk′q′ = 0 . (3.80)

The associated Kernel K(E;k,q;k′ ,q′) is given by

K(E;k,q;k′,q′) =
V δk,k′

Ek

− 1

γEkEk′

− αkqV
2δk,k′ δq,q′ − V δq,q′

Ek′kq

(3.81)

Now, the ground state energy can be obtained in a rather straightforward manner. The
homogeneous integral equation (3.80) has a nontrivial solution only if the Fredholm deter-
minant of the Kernel vanishes (detF K = 0). Since an analytic solution to this problem is
hardly possible, we evaluate the Fredholm determinant numerically by discretizing the in-
tegral equation and calculating the determinant of the corresponding homogeneous linear
equation system. Schematically this works in the following way12

∫

dx′K(x, x′)u(x′) = 0

y

N∑

m=1

∆xK(xn, xm)u(xm) = 0 ∀ n ∈ {1, . . . ,N}

y

detK(xn, xm)
!
= 0

11We note that the description within the two-channel model allowed us to reduce the problem to a single
integral equation for the coefficients ηkq. Within the single-channel model, we would get an equation for
the coefficients ξk′kq, which is in principle equivalent but much harder to solve numerically due to the
third momentum dependence.

12Note that we use a Gauss-Legendre quadrature instead of an equidistant discretization in our calcula-
tion. This leads to a much faster convergence with less sampling points.
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Figure 3.7: Relative error of the ground state energy in the (q = 0)-approximation as a
function of the order m of the Gauss-Legendre quadrature, plotted for different interaction
strengths. The ground state energy at order m = 15 (in the (q = 0)-approximation) has

been taken as reference value, i.e. we plot |E(m)
q=0/E

(15)
q=0 − 1|. Red with circles: unitarity;

green with squares: ν = π/(2kF a) = 1; blue with diamonds: ν = 2; orange with up-
triangles: ν = 3. At order m = 11 the relative error at unitarity is already below 10−5.

The root of the determinant then determines the ground state energy E. For an efficient
numerical calculation of the Fredholm determinant we need to reduce the dimensionality
of the integral equation, however13. In the following, this will be done in two ways.
At first approximately, by pinning to hole-wavevector at q = 0. This leads to an one-
dimensional integral equation, which is easy to solve numerically. Secondly, we show how
the numerical solution to the full variational problem can be obtained by reducing (3.80)
to a three-dimensional integral equation. This is possible because in an isotropic system
the scalar coefficients ηkq ≡ η(k, q, cos θkq) only depend on the magnitude of the two
momenta k and q, as well as the angle between them.

Evaluation of the ground state energy in the (q = 0)-approximation

Pinning the hole wavevector q in Eq. (3.80) at q = 0 leads to the simplified integral
equation

1

V

∑′

k′

(
V δk,k′ n↑

Ek

− n↑
γEkEk′

− 1

Ek′k0
− αk0V δk,k′

)

ηk′0 = 0 (3.82)

13A simple discretization of the integral equation (3.80) in cartesian coordinates with only ten points
per axis would already lead to a 106 × 106 matrix, the determinant of which can hardly be evaluated on a
usual computer in reasonable time.
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Figure 3.8: Ground state energy (binding energy Eb subtracted) as a function of the inverse
interaction parameter (kFa)

−1. The blue line with dots corresponds to the (q = 0)-
approximation, the red line with squares are the results from the full solution of the
variational problem. The inset shows the error of the (q = 0)-approximation with respect
to the full solution, which is at most 3% in the regime (kFa)

−1 & 0.8, where the ansatz
(3.55) is valid.

where the factors n↑ arise from the remaining q′-integral, i.e. (1/V )
∑′

q
1 = n↑. Since

ηk′0 depends only on the magnitude of k′, we switch to spherical coordinates and choose
a frame where k points in z-direction and the polar angle θ′ corresponds to the angle
between k′ and k. In dimensionless form one obtains

∫ ∞

1
dk′
{

2δ(k − k′)

3Ẽk

− α̃k0δ(k − k′) − 4k′2

3γ̃ẼkẼk′

−
∫ 1

−1
dcos θ′

k′2

Ẽk′k0

}

ηk′ (3.83)

where the energies and momenta are measured in units of εF and kF . The angular integral
in the equation above can be evaluated analytically. The Fredholm determinant of (3.83)
can now be evaluated numerically as sketched above. The discretization of the integral
using a Gauss-Legendre quadrature [68] of order14 m ≈ 10 already leads to very accurate
results, as can be seen from Fig. 3.7. If a simple rectangular equidistant quadrature is
applied, more than 200 sampling points are needed to reach the same level of accuracy.
The results for the ground state energy are shown in Fig. 3.8.
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Figure 3.9: Coordinate frame for evaluating the integral in Eq. (3.86). In the text we use
the abbreviated notation θkq ≡ θ and θk′q′ ≡ θ′.

Full solution of the variational problem

We now proceed with the solution of the full variational problem. As mentioned above, we
need to reduce the six-dimensional integral equation (3.80) to a three dimensional integral
equation of the form

∫ ∞

kF

dk′
∫ kF

0
dq′
∫ 1

−1
dcos θ′ K(E; k, q, cos θ; k′, q′, cos θ′) η(k′, q′, cos θ′) = 0 (3.84)

where k = |k|, q = |q| and θ denotes the angle between k and q. We start by writing the
original integral equation (3.80) in dimensionless form and take the thermodynamic limit

0 =

∫

|q′|<1

d3q′
∫

|k′|>1

d3k′
{

δ(3)(k − k′)

2πẼk

− 1

4π2γ̃ẼkẼk′

− α̃k′q′δ(3)(q − q′)δ(3)(k− k′)

−δ
(3)(q − q′)

2πẼk′kq

}

ηk′q′ . (3.85)

Here, Ẽ = E/εF and α̃ = α2π2/(kFm) (same for γ̃) and the momenta are measured in
units of kF , but are denoted with the same symbols. Since ηkq and α̃kq depend only
on the lengths and the angle between k and q, the first three terms on the RHS can be
brought easily to the form (3.84). Only the last term needs a more careful analysis, since
Ek′kq depends on the magnitudes and angles between the three momenta k′, k and q. At

14The order m of the quadrature is equal to the number of support points.
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first, we evaluate the d3k′ integral of the last term using spherical coordinates in the frame
depicted in Fig. 3.9, where q ≡ q′ is taken along the z-axis and k lies in the xz-plane,
WLOG (i.e. ϕk = 0 in spherical coordinates). Inserting Ek′kq from Eq. (3.75) explicitly,
the d3k′ integral of the last term on the RHS of Eq. (3.85) takes the form

∫ ∞

1
dk′k′2

∫ 1

−1
dcos θ′

∫ 2π

0
dϕ′

k

η(k′, q′, cos θ′)/(2π)

Ẽ − 2k2 − 2k′2 − 2kk′ cos θk,k′ + 2kq cos θ + 2k′q′ cos θ′

(3.86)
Since q ≡ q′, we can express the angle between k and k′ as

cos θkk′ = cos θ cos θ′ + cosϕ′
k sin θ sin θ′ , (3.87)

and perform the dϕ′
k integral directly. Thus, we find the kernel K of the dimension-reduced

integral equation (3.84) in dimensionless form to be given by

K =
q′2

Ẽk

δ(k − k′) − 2q′2k′2

γ̃ẼkẼk′

− δ(k − k′)δ(q − q′)δ(cos θ − cos θ′)α̃(k′, q′, cos θ)

+ k′2δ(q − q′)

{
(

2k2 + 2k′2 + 2kk′ cos θ cos θ′ − 2qk cos θ − 2q′k′ cos θ′ − Ẽ
)2

−
(
2kk′

)2 (
1 − cos2 θ

) (
1 − cos2 θ′

)

}−1/2

(3.88)

The integrals (3.76) and (3.79) for the coefficients α̃kq and γ̃ in the above expression for
the kernel K can be evaluated analytically. For the sake of completeness, we give here the
results without derivation15

γ̃ = − π

2kFa
+ 1 −

√

Ẽ + 1

2
arctanh

√

Ẽ + 1

2
(3.89)

α̃kq =
π

2kFa
− 1

2

[

1 − 1 − λ− µ2

4µ
ln

∣
∣
∣
∣

λ− (1 − µ)2

λ− (1 + µ)2

∣
∣
∣
∣
+
√

|λ| F
]

(3.90)

with

F =







1
2 ln

∣
∣
∣
(1−

√
λ)2−µ2

(1+
√

λ)2−µ2

∣
∣
∣ if λ > 0

π − arctan 1+µ√
|λ|

− arctan 1−µ√
|λ|

if λ < 0

(3.91)

and

λ =
Ẽ + 1 − |k − q|2/2 − k2 + q2

2
(3.92)

µ =
|k − q|

2
(3.93)

15Note again that ˜ denotes the dimensionless quantities, i.e. γ̃ = γ 2π2/(mkF ).
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3.2. VARIATIONAL ANSATZ FOR THE BEC-REGIME

Figure 3.10: Groundstate energy E − Eb (binding energy Eb = −1/(ma2) subtracted) of
a single down-Fermion immersed in an up-spin Fermi sea in units of the Fermi energy εF
as function of the inverse interaction strength (kF a)

−1. Blue solid line: Chevy’s ansatz
(3.4); red line with full squares: ansatz Eq. (3.42); black dashed line: BEC-asymptotics
(3.12); orange dash-dotted line: Thouless criterion (3.70). The open black diamonds and
green triangles correspond to the QMC results for the molecule- and the polaron energy
from Prokof’ev and Svistunov [23]. For (kFa)

−1 > 0.84 our variational ansatz (3.55) leads
to a lower ground state energy than Chevy’s ansatz (3.4). This point marks the phase
transition from a polaron to a molecular state. Picture taken from [65].

In order to perform the numerical calculation of the Fredholm determinant we change the
variables k and k′ in the integral equation (3.84) and its corresponding kernel (3.88) to the
new variables y = 1/k and y′ = 1/k′ and discretize the resulting integral equation using a
Gauss-Legendre quadrature with eleven sampling points for the k and q integrals and four
points for the cos θ integral, leading to an absolute error of order 10−4 of the ground state
energy at the unitarity point, where the convergence is slowest. The results are shown in
Fig. 3.10. For (kFa)

−1 = 0.84, our variational ansatz leads to a lower ground state energy
than Chevy’s ansatz. It is quite remarkable, that our variational results are in perfect
agreement with diagrammatic Monte-Carlo results from Prokof’ev and Svistunov [23].

3.2.4 Quasiparticle residue and contact coefficient

As shown previously, Chevy’s ansatz for the polaron problem leads to a finite quasiparticle
residue Z↓ of the minority atom for all interaction strengths, implying that there is always
a finite probability that the down-Fermion can propagate freely. However, in the regime
where the minority particle forms a molecule with one of the up-Fermions, it is clear that
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3. POLARON TO MOLECULE TRANSITION

it can no longer propagate as a free particle, thus the quasiparticle residue Z↓ has to
vanish identically. From this point of view Z↓ can be interpreted as order parameter for
the transition from the polaron to the molecular state. In the following we show that our
ansatz indeed leads to a vanishing quasiparticle residue for the minority Fermion, thus
implying that the intersection point of the ground state energies obtained using Chevy’s
ansatz and our ansatz for the molecule marks the position of a first order quantum phase
transition.

Since the variational ground state wave function does not allow to calculate the full
down-spin Green’s function, the definition (3.20) of the quasiparticle residue is not applica-
ble. Instead, we use the standard connection between Z↓ and the jump in the momentum
distribution at the Fermi momentum kF↓, which is zero in the limit of a single down-spin.
The momentum distribution of the ↓-Fermion within the variational ansatz (3.55) is given
by

n↓p = |ξp|2 + 2
∑′

k′kq

∣
∣ξk′kq

∣
∣2 δp,q−k′−k (3.94)

and is normalized via

1 =
∑

p

n↓p =
∑′

k

|ξk|2 + 2
∑′

k′kq

∣
∣ξk′kq

∣
∣2 . (3.95)

The normalization condition requires the coefficients to scale with the system volume as
ξk ∼ 1/

√
V and ξk′kq ∼ 1/V 3/2. Since an upper bound to the quasiparticle residue Z↓ is

given by the momentum distribution at p = 0 and ξp ≡ 0 for p < kF , we find that

Z↓ ≤ n↓p=0 = 2
∑′

k′kq

∣
∣ξk′kq

∣
∣2 δq,k′+k ∼ 1

V
. (3.96)

As a result, the quasiparticle residue Z↓ of the molecular wave function scales inversely with
the volume of the system and thus vanishes in the thermodynamic limit. This is in contrast
to Chevy’s wave function, where Z↓ = |φ0|2 is always finite. The two wave functions (3.4)
and (3.42) therefore describe qualitatively different ground states. In particular, no sharp
peak is expected in the minority rf-spectrum at coupling strengths v > vM , consistent
with the experimental observation [57]. This point will be discussed in more detail in the
subsequent section.

In the q = 0 approximation, which captures the essential properties of the variational
ansatz (3.42), the quasiparticle residue Z↓ in fact vanishes identically. Indeed,

Z↓ ≤ 2
∑′

k

|ξ−kk0|2 = 0 , (3.97)

since, as can be seen from Eq. (3.66), the coefficients ξ−kk0 ∝ ηk0 − η−k0 = 0 vanish
because ηk0 only depends on the length of k.

In Fig. 3.11 we plot the dimensionless contact coefficient s, which has been defined
in Eq. (2.39), for the two variational wave functions (3.4) and (3.55), using the adiabatic
theorem (2.38). Quite generally, the ground state energy density u = E/V of the strongly
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3.2. VARIATIONAL ANSATZ FOR THE BEC-REGIME

Figure 3.11: Dimensionless contact coefficient s, calculated using the adiabatic theorem
(2.38) and the ground state energies from the two variational wave functions (3.4) and
(3.55). The black dashed line indicates the BEC-asymptotics sBEC = 4v/3π.

imbalanced Fermi gas can be expanded in powers of the minority density n↓. The definition
of the minority atom chemical potential µ↓ implies that this expansion is of the form

u =
3

5
εF↑n↑ + µ↓n↓ + . . . (3.98)

where the first term is simply the energy of a non-interacting gas of spin-up Fermions. The
dimensionless contact coefficient s defined in Eq. (2.39) for a strongly imbalanced Fermi
gas can thus be obtained from the derivative

s =
1

3π

∂(−µ↓/εF )

∂v
(3.99)

of the negative down-spin chemical potential in units of the majority Fermi energy with
respect to the coupling constant v. Since µ↓ is precisely the energy E associated with
adding a single down-spin, our result for the ground state energy of the (N + 1)-particle
problem immediately gives the contact density of an almost fully polarized attractive Fermi
gas (note that this applies even on the molecular side v > vM , where the single added
down-spin is not a propagating quasiparticle). Because the ground state energies of the
two variational wave functions as a function of the inverse interaction strength cross with
a finite slope, the contact coefficient jumps at the critical point M , indicating a first order
transition.

3.2.5 Minority spectral function and rf-response

As in Sec. 3.1.4 we can calculate the hole-part of the minority spectral function A−
↓ (k, ω)

and the minority rf-spectrum at zero temperature using the variational ansatz (3.55) for
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the BEC regime. For simplicity we use the approximation ξk′kq = 0, i.e. we do not include
particle hole excitations. This approximation gives the correct results for large frequencies
and momenta, because the molecule formation is described already by the ξk term alone.
Using Eq. (3.34) the hole-part of the minority spectral function at T = 0 in the BEC
regime is thus given by

A−
↓ (k, ω) = 2π|ξk|2 Θ(k − kF ) δ(ω + εk) (3.100)

We note that |ξk|2 = n↓k equals the minority momentum distribution in this approximation.
Furthermore, the inclusion of the ξk′kq term in the ground state wave function would give
rise to non-zero spectral weight in the regime ω < εF and k < kF . The minority rf-
spectrum can be obtained straightforwardly from the spectral function above and can be
expressed as

I↓(ω) =

∫
d3k

(2π)3
|ξk|2Θ(k − kF ) δ(2εk − ω − µ↓) . (3.101)

The coefficients ξk have been determined in Eq. (3.67) as ξk ∼ (µ↓ + εF − 2εk)−1, apart
from a normalization factor. In the molecular limit, where µ↓ ≃ Eb = −1/(ma2), the
rf-spectrum thus takes the form

I↓(ω) ∼
√

ω + µ↓
2

Θ(
ω+µ↓

2 − εF )

(ω − εF )2
. (3.102)

Note that the εF terms are a remnant of the Pauli blocking of the molecular wave function
for k < kF and lead to a sharp cutoff of the rf-spectrum at low frequencies (deep in the
molecular limit the εF -terms are negligible, however). This cutoff is washed out, if particle
hole excitations (ξk′kq 6= 0) are taken into account.

Compared to the result for the polaron rf-spectrum in Sec. 3.1.4, the sharp peak at
ω = −µ↓ is missing on the molecular side of the transition. However, the tail of the
rf-spectrum at large frequencies is again determined by

I↓(ω → ∞) ≈ 1

4π2
√
m

C

ω3/2
. (3.103)

3.2.6 Three particle limit

As mentioned previously, our variational ansatz (3.55) solves the three particle problem
exactly, since it corresponds to the most general three particle state that one can write
down. In this section we show explicitly how the connection between our result and the
exact solution of the three Fermion problem by Skorniakov and Ter-Martirosian can be
established.

If we take our variational wave function (3.55) and reduce the (N − 1)-particle Fermi
sea to a single Fermion, it is clear that only the q = 0 term survives in the ansatz. Now,
if we start from our integral equation (3.80) for the full variational problem and take the
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limit of a one particle Fermi sea, i.e. we set q = 0 and take kF → 0, it is easy to see that
one arrives at the equation (in the thermodynamic limit)

αk0 ηk0 = −
∫

d3k′

(2π)3
ηk′0

Ek′k0
. (3.104)

Note that the first two terms from Eq. (3.81) vanish in the limit kF → 0 due to the lack
of the Delta-functions in the d3q′ integral. Inserting the coefficients αk0 and Ek′k0 from
equations (3.76) and (3.75) explicitly (keeping in mind that the k-integration covers the
whole R

3 in the limit kF → 0), equation (3.104) takes the form

(
1

a
−
√

3k2

4
−mE

)

ηk =

∫
d3k′

(2π)3
4π ηk′

k2 + k′2 + k · k′ −mE
. (3.105)

The above equation corresponds to the Schrödinger equation for the relative wave function
between the molecule and the third Fermion in the three particle problem. It is exactly
equivalent to the one derived by Skorniakov and Ter-Martirosian [63] for the three nucleon
problem with total spin S = 3/2 and total pseudospin T = 1/2 (see Eq. (29) in [63]), which
corresponds exactly to our problem16.

3.3 Conclusions

Using two complementary variational wave functions we have shown that a phase transition
from a polaronic ground state to a molecular bound state shows up in the (N +1)-particle
problem at an interaction strength vM ≈ 0.84. Our result is close to the value vM ≈ 0.90
obtained from exact diagrammatic quantum Monte-Carlo simulations [23, 24]. The little
discrepancy is entirely due to the fact that the variational ansatz (3.4) for the polaronic
side of the transition is not precise near vM , as can be seen from Fig. 3.10.

The analysis of the polaron to molecule transition in this chapter leaves two important
questions open: what is the nature of the transition and what are its implications for
the phase diagram of the strongly imbalanced gas? Now for the case of a single minority
Fermion in an up-spin Fermi sea, the transition from a polaronic to a molecular state is
a first order transition, where the quasiparticle residue Z↓ exhibits a discontinuous jump
from a finite value to zero at the critical coupling vM ≃ 0.9. This is a result of the fact
that the energies of the two ground states, which have different quantum numbers, cross
with a finite slope at vM (see Fig. 3.10.). It is important to note that this crossing
is not an artefact of extending the different variational states beyond their domain of
validity. Indeed, as shown by Prokof’ev and Svistunov [23, 24], both the polaronic and the
molecular state exist as stable excitations for v > vM or v < vM respectively because the
phase space for decay vanishes linearly with the magnitude of the energy difference. Both
states are thus reachable as metastable configurations coming from the weak coupling or
the molecular side, as expected for a first order transition.

16Note that in the case S = 3/2 the spin part of the wave function only gives rise to an unimportant
overall prefactor.
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Concerning the implications for the phase diagram, the results for the minority atom
chemical potential µ↓ ≡ E in this chapter completely determine the saturation field line
hs(v) as a function of v = (kF a)

−1 in the phase diagram shown in Fig. 2.1. This is because
the effective magnetic field is determined by h = (µ↑ − µ↓)/2 and the majority chemical
potential µ↑ = εF is equal to the Fermi energy at hs, where εF = (6π2n)2/3/(2m) and
n = n↑. The saturation field is thus given by

hs(v) =
εF
2

(

1 − µ↓(v)

εF

)

. (3.106)

One open question that has been mentioned at the end of Sec. 2.1 cannot be answered
within the (N + 1)-particle problem, however, namely if phase separation occurs at finite
minority atom concentrations close to the point M . This question is interesting from a
theoretical point of view but not important for experiments, because the mixing entropy
disfavors phase separated states at finite temperature.
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Chapter 4

Quench dynamics of Heisenberg
spin chains

The experimental ability to control systems of ultracold atoms with high accuracy and
prepare states with high fidelity triggered lots of theoretical work on so called quantum
quench problems recently. In a quantum quench problem, the system under consideration
is described by a Hamiltonian H(g) that is dependent on a parameter g, such as the
interaction strength for example. Initially, the system is prepared in the ground state of
the Hamiltonian with respect to a given parameter g0. At time t = 0 the parameter g
is suddenly ’quenched’ to a different value g 6= g0 and the subsequent time evolution of
the system is studied. Up to now mainly questions concerning thermalization of quenched
quantum systems have been addressed. Obviously, the unitary time evolution of a pure
initial state can never lead to a thermal mixed-state. Nevertheless, it was suggested that
the expectation values of local observables after large evolution times can be expressed in
terms of a thermal average at an effective temperature corresponding to the energy of the
initial state [69, 70, 71, 72].

The first experimental realization of a quantum quench problem with ultracold atoms
was reported by Greiner et al. [73] in 2002. In this experiment, ultracold bosonic atoms
were loaded into an optical lattice at a lattice depth where the ground state is superfluid.
Then, the lattice depth was ramped up rapidly to a value, where the equilibrium ground
state is a Mott-insulator. After this interaction quench Greiner et al. observed collapse
and revival oscillations of the order parameter. Deep in the Mott-insulating regime, this
can be understood rather easily in terms of a single site Hamiltonian. Indeed, in that case
the time evolution of the initial on-site coherent state is governed by the interaction term
∼ U alone, leading to a phase factor that is periodic if Ut is an integer multiple of 2π.

The following theoretical work was triggered partly by a recent experiment with ul-
tracold atoms in optical lattices, which has demonstrated the control of super-exchange
interactions in such systems for the first time [74]. In particular, a one-dimensional array
of decoupled double wells was generated by superposition of lasers with different wave-
lengths. Atoms in two different hyperfine states (which we refer to as pseudospin ”up”
and ”down” in the following) were loaded into the lattice and manipulated in such a way,
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Figure 4.1: Left: schematic picture of the experimental setup studied by Trotzky et al.
[74]. Right: results. Both pictures were taken from [74].

that in each left well a spin up atom and in each right well a spin down atom was present
(see Fig. 4.1). This initial state corresponds to a perfectly Néel ordered state of the spins
in the array of decoupled double wells

|ψNéel〉 = | ↑↓↑↓ · · · ↑↓〉 (4.1)

Deep in the Mott-insulating regime, i.e. at large lattice depths, where double occupancies
of a single well are heavily suppressed by the strong on-site repulsion of the atoms, the
simplest theoretical description for each double well is provided by a two-site Heisenberg
model

H = J S1 · S2 =
J

2

(
S+

1 S
−
2 + h.c.

)
+ JSz

1S
z
2 . (4.2)

The Heisenberg model accounts for the interaction of localized spins via virtual second
order hopping processes, commonly known as superexchange interactions. The superex-
change coupling J ∼ t2/U is related to the hopping t and onsite-interaction U of the
atoms in the double well1. Since the initial state |ψ(0)〉 = | ↑↓〉 is coupled solely to the
state |↓↑〉 via the Hamiltonian (4.2), it is sufficient to diagonalize the Hamiltonian in the
subspace of those two states. The eigenstates are the singlet |s〉 = (| ↑↓〉 − |↓↑〉)/

√
2 and

the triplet-state |t〉 = (| ↑↓〉 + | ↓↑〉)/
√

2 with respective eigenenergies Es = −3J/4 and
Et = J/4. Obviously, after preparation of the initial state, the system will start to oscillate
between the singlet- and the triplet state

|ψ(t)〉 =
1√
2
eiJt/4

(

e−iJt/2|t〉 + eiJt/2|s〉
)

(4.3)

with a characteristic frequency given by the exchange coupling J . Indeed, such oscillations
have been observed in the experiment, the results of which are shown in Fig. 4.1.

In the subsequent sections we are going to study the many-body analogon of the above
mentioned singlet-triplet oscillations in the double-well, i.e. instead of a double well we

1The coupling between neighboring double wells can be neglected if the potential barriers between the
double wells are large enough.
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focus on a Heisenberg chain with N → ∞ sites and nearest neighbor superexchange cou-
pling. Experimentally, this situation can be realized easily by ramping down the barriers
between the initially decoupled double wells.

The outline of this chapter is as follows. In Sec. 4.1 we present the basic XXZ-model,
which is a generalization of the isotropic spin-1/2 Heisenberg chain to anisotropic spin-spin
couplings, and discuss approximative and numerical methods to study the time evolution
of the initial Néel state. A slightly different model for a spin-chain, the so called XZ-
model, is analyzed in Sec. 4.2. It has the advantage of being analytically diagonalizable
and shows a similar behavior in the time evolution of the Néel state as the XXZ-model.
In Sec. 4.3 we discuss the time evolution of weakly antiferromagnetically ordered initial
states. In particular, we focus on the applicability of Luttinger liquid theory, which has
been extremely successful in describing the equilibrium properties of 1D systems. Finally,
in Sec. 4.4, the time evolution of the Néel state in higher dimensional XXZ-models is
considered.

4.1 XXZ-Model

As mentioned above, the Heisenberg model provides an effective description of two com-
ponent Bose- or Fermi gases in optical lattices deep in the Mott insulating regime2. In
the following, we are going to study the time evolution of a Néel state (4.1) in the one-
dimensional, anisotropic spin-1/2 Heisenberg- (or XXZ-) chain, defined by the Hamiltonian

HXXZ = J
∑

ℓ

(
Sx

ℓ S
x
ℓ+1 + Sy

ℓ S
y
ℓ+1 + ∆Sz

ℓS
z
ℓ+1

)

= J
∑

ℓ

[
1

2

(
S+

ℓ S
−
ℓ+1 + S−

ℓ S
+
ℓ+1

)
+ ∆Sz

ℓS
z
ℓ+1

]

(4.4)

where the index ℓ labels the lattice sites and the spin operators Sx, Sy and Sz obey the
usual angular momentum algebra [Sx, Sy] = iSz on a given lattice site and commute if
taken at different sites. The spin raising and lowering operators are defined as S± =
Sx ± iSy. In the rest of this thesis we take J to be positive.

The XXZ-Hamiltonian is a slight generalization of the usual isotropic (∆ = 1) Heisen-
berg model and has some interesting properties. First of all it is an integrable model and
can be solved exactly using the Bethe-ansatz [76]. The zero temperature phase diagram
of the XXZ-Hamiltonian is shown in Fig. 4.2. Since the total magnetization Sz

tot =
∑

ℓ S
z
ℓ

is a conserved quantity in the XXZ-model and we start from an initial Néel state, which
has zero total magnetization, we restrict our discussion to the line Sz

tot = 0 in the phase
diagram. Here, the ground state has antiferromagnetic order in z-direction if ∆ > 1 and
ferromagnetic order if ∆ < −1. In the regime |∆| < 1, the ground state of the XXZ-model
is paramagnetic. At finite temperatures no long range order exists in the one dimensional
XXZ-chain. This is true for any one dimensional system at finite temperature with short
range interactions. In the limit ∆ → ∞, the XXZ-chain reduces to an antiferromagnetic

2For details see for example [4, 75].
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Figure 4.2: Zero temperature phase diagram of the XXZ-Hamiltonian (4.4) with J > 0 as
function the anisotropy parameter ∆ and of the total magnetization per lattice site.

Ising model, where the Néel state is one of the two degenerate ground states which are
related via a translation by one lattice site. From this point of view the time evolution of
a Néel state is equivalent to a quench of the XXZ-chain from ∆0 = ∞ to a finite value of
the anisotropy ∆.

Our goal is to study the relaxation timescales in the XXZ-chain that are a consequence
of the quantum quench from the initial Néel state. In principle, we have to calculate the
unitary time evolution of the initial state, i.e.

|ψ(t)〉 = eiHXXZt|ψNéel〉 . (4.5)

This is a non-trivial problem, however, because we are dealing with an interacting many-
body system. Since it is practically impossible to study the time evolution of the full wave
function in the thermodynamic limit, we focus on one particular observable, namely the
staggered magnetization

ms =
1

N

∑

ℓ

(−1)ℓ〈Sz
ℓ 〉 , (4.6)

where N denotes the number of lattice sites. The staggered magnetization ms is the
order parameter of the antiferromagnetic phase and takes its maximal value for a Néel
state (4.1), where |ms| = 1/2. Contrary, a state with ferromagnetically aligned spins has
ms = 0. In contrast to spin-spin correlation functions, the staggered magnetization is well
suited to extract nontrivial relaxation timescales from our quench problem. This is in part
a consequence of the light-cone effect, which leads to a rather generic behavior of spin-spin
correlation functions and will be discussed in more detail later.

To get more insight into the problem under consideration and for certain practical
calculations it is useful to map the XXZ-Hamiltonian (4.4) to a model of spinless Fermions
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on a lattice using the well known Jordan-Wigner transform [77]

Sz
ℓ = nℓ − 1/2

S+
ℓ = c†ℓ exp

(

iπ
∑

j<ℓ

nj

)

(4.7)

S−
ℓ = cℓ exp

(

− iπ
∑

j<ℓ

nj

)

.

Here, the fermionic operators cℓ and c†ℓ obey the standard anti-commutation relations

and nℓ = c†ℓcℓ counts the number of Fermions on site ℓ. The idea of this transformation
becomes clear when one realizes that the string operators ensure the commutativity of the
spin operators at different lattice sites. Using this transformation, the XXZ-Hamiltonian
(4.4) maps to a model of spinless Fermions on a lattice with nearest neighbor interactions

HXXZ = −J
2

∑

ℓ

{

c†ℓcℓ+1 + c†ℓ+1cℓ − 2∆(nℓ − 1/2)(nℓ+1 − 1/2)
}

. (4.8)

Note that we have used a sublattice rotation cj → (−1)jcj on every other site to transform
the antiferromagnetic exchange coupling in the xy-plane to a ferromagnetic exchange3, i.e.
J → −J and ∆ → −∆. We note that the Néel state and the staggered magnetization ms

are invariant with respect to this sublattice rotation, thus the time evolution of ms(t) is
invariant as well. In the fermionized picture, the Néel state (4.1) corresponds to a state
with one Fermion at every second lattice site, i.e. spin-up corresponds to an occupied site
and spin-down to an empty site4.

Before procceding, we prove that the time evolution of the staggered magnetization
ms(t) following a quench from the Néel state is invariant with respect to a change of sign
of the exchange coupling J → −J and/or of the anisotropy ∆ → −∆. This is a remarkable
property, because it means that ms(t) is the same in a ferromagnetic and in an antifer-
romagnetic spin-chain, which have a completely different excitation spectrum, however.
Above, we have already argued, that ms(t) is invariant with respect to a combined change
of sign of J and ∆. Now we show that ms(t) is also invariant with respect to a change
of J alone. Indeed, the change J → −J is equivalent to a time reversal transformation of
the time evolution operator. We thus get

ms(t,−J) = 〈ψNéel|T−1eiHtT ms T
−1e−iHtT |ψNéel〉

= 〈ψNéel|T−1eiHtTr ms T
−1
r e−iHtT |ψNéel〉

= 〈ψNéel|T−1Tre
iHtms e

−iHtT−1
r T |ψNéel〉

= 〈ψNéel| eiHtms e
−iHt |ψNéel〉 = ms(t, J) (4.9)

3We note that this transformation is not necessary for the subsequent calculations. Its only purpose is
to bring the kinetic energy term in the fermionized Hamiltonian to the conventional form.

4A similar setup with Bosons instead of Fermions at every second lattice site and on-site interactions
instead of nearest neighbor interactions was studied by Cramer et al. [78]. Note however, that their model
exhibits no quantum phase transition, because the equilibrium ground state for Bosons is always superfluid
at half filling.
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4. QUENCH DYNAMICS OF HEISENBERG SPIN CHAINS

where T and Tr denote the time-reversal and lattice translation operators and we have used
the facts that T−1msT = T−1

r msTr = −ms, the Hamiltonian is translation invariant and
the Néel state is invariant under the combination of time reversal and lattice translation.

4.1.1 Free Fermion limit (∆ = 0)

The fermionized Hamiltonian (4.8) is especially useful to study the limit ∆ = 0, which is
commonly known as the XX-limit, where the XXZ-chain maps to a model of free Fermions.
Going over to momentum representation via5

cℓ =
1√
L

π∑

k=−π

exp(−ikℓ) ck , (4.10)

the fermionized Hamiltonian (4.8) with ∆ = 0 becomes diagonal

HXX =
π∑

k=−π

εk c
†
kck with εk = −J cos(k) (4.11)

and the staggered magnetization (4.6) is given by

ms =
1

N

∑

ℓ

(−1)ℓ〈c†ℓcℓ〉 =
1

L

π∑

k=−π

〈c†k+πck〉 . (4.12)

In this special case the time evolution of the staggered magnetization starting from an
initial Néel state can be calculated exactly

ms(t) =
1

L

π∑

k=−π

〈ψNéel|c†k+π(t)ck(t)|ψNéel〉

=

∫ π

−π

dk

2π
ei2Jt cos(k)〈ψNéel|c†k+πck|ψNéel〉

=
1

2
J0(2Jt) , (4.13)

where we have used that 〈ψNéel|c†k+πck|ψNéel〉 = 1/2 and J0 denotes the zeroth Bessel
function of the first kind. At times Jt≫ 1, the asymptotic behavior is given by

ms(t)
Jt≫1≈

√

1

4πJt
cos(2Jt− π/4) (4.14)

Thus, the staggered magnetization oscillates with a characteristic frequency ∼ 2J and
decays algebraically as ∼ 1/

√
t. The oscillations can be viewed as the many body analogon

5We set the lattice spacing to unity throughout, thus the length L of the chain equals the number of
lattice sites N .
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of the singlet-triplet oscillations in the two site model. The connected spin-spin correlation
function can be calculated equally easy in the free Fermion limit. We obtain

〈Sz
0S

z
ℓ 〉 − 〈Sz

0〉〈Sz
ℓ 〉 =

1

4

(
δℓ,0 − J 2

ℓ (2Jt)
)
, (4.15)

where Jℓ denote the Bessel functions of the first kind.
For finite anisotropies ∆ 6= 0 it is no longer possible to calculate the exact time

evolution of the staggered magnetization analytically in a simple way, since one deals with
an interacting many-body problem. In this case, one has to use approximations or resort to
numerical simulations. We mention however, that it might be possible to calculate ms(t)
exactly using the Bethe ansatz. Using this method, it would be necessary to evaluate the
expression

ms(t) =
∑

n,n′

〈ψ0|n〉〈n′|ψ0〉ei(En−En′ )t〈n|m̂s|n′〉 (4.16)

where {|n〉} denotes a full set of Bethe eigenstates with corresponding eigenenergies En,
which are in principle known exactly. However, the calculation of the overlap of the initial
state with the Bethe-eigenstates and of matrix elements of the staggered magnetization
operator is a highly non-trivial task, which we did not attempt in this thesis.

4.1.2 Time-dependent mean-field theory

In this section, as a first step to analyze the interacting many-body problem, we employ a
simple time-dependent mean field theory to account for the interaction term in (4.8)6. We
expand the interaction term to linear order in fluctuations δnℓ around the mean density

nℓ = 〈nℓ〉 + δnℓ . (4.17)

The mean field value of the Fermion density at site ℓ is related to the staggered magneti-
zation via (note the time dependence)

〈nℓ〉 =
1

2
+ (−1)ℓms(t) (4.18)

Using this approach, the Hamiltonian (4.8) reduces to the time dependent mean-field
Hamiltonian in momentum space, given by

HMF(t) = −J
π∑

k=−π

{

cos(k)c†kck + 2∆ms(t)c
†
k+πck

}

(4.19)

Note that the time dependent mean fieldms(t) = L−1
∑

k〈c
†
k+π(t)ck(t)〉 has to be evaluated

selfconsistently.
In order to calculate the time evolution of the staggered magnetization within this

mean field Hamiltonian, we map (4.19) to a pseudospin model as follows. Since the

6After we had obtained the tMFT results which are presented in this section, a preprint of Hastings and
Levitov appeared on the arXiv [79], who had studied the same problem using exactly the same method.
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4. QUENCH DYNAMICS OF HEISENBERG SPIN CHAINS

symmetry of the initial Néel state is always present in the mean-field Hamiltonian, the
unit cell is effectively doubled and we can employ a reduced zone scheme by restricting the
pseudo-momentum to the interval |k| < π/2. Furthermore, we define pseudospin operators
via

σx
k = c†k+πck + c†kck+π (4.20)

σy
k = i c†k+πck − i c†kck+π (4.21)

σz
k = c†kck − c†k+πck+π (4.22)

The mean-field Hamiltonian (4.19) thus maps to the pseudospin Hamiltonian

HMF = −J
π/2
∑

k=−π/2

{cos(k)σz
k + 2∆ms(t)σ

x
k} (4.23)

and the staggered magnetization ms(t) in the pseudospin formulation is given by

ms(t) =
1

L

π/2
∑

k=−π/2

〈σx
k(t)〉 . (4.24)

In the pseudospin model, the initial Néel state corresponds to a state where all spins point
in x-direction, i.e. 〈σx

k〉0 = 1. The Heisenberg equations of motion for the pseudospin
operators are now easily obtained and take the form

∂t 〈σx
k〉 = −2εk 〈σy

k〉 (4.25)

∂t 〈σy
k〉 = 2εk 〈σx

k 〉 + 4∆ms(t) 〈σz
k〉 (4.26)

∂t 〈σz
k〉 = −4∆ms(t) 〈σy

k〉 . (4.27)

Note again, that the staggered magnetization ms(t) has to be evaluated selfconsistently
via Eq. (4.24). In order to calculate the time evolution of the staggered magnetization, we
solve the equations of motion for the pseudo-spin operators numerically using the Euler
method. The results are shown in Fig. 4.3.

In the paramagnetic regime ∆ < 1, the numerics shows that the staggered magnetiza-
tion decays faster if ∆ is increased. This result is somewhat surprising, because naively one
would expect that a repulsive nearest neighbor interaction between the Fermions would
stabilize the initial Néel order. This argument doesn’t work however, since we have shown
earlier that the time evolution of the staggered magnetization is invariant with respect to
J → −J and/or ∆ → −∆. Thus replacing the repulsive with an attractive interaction
doesn’t change ms(t). From the pseudospin formulation of the mean-field Hamiltonian
it becomes clear, why the staggered magnetization decays faster if the anisotropy ∆ is
increased. In the free Fermion limit ∆ = 0 the pseudospins precess independently around
the z-axis, each with a different precession frequency due to the different Zeeman field for
every spin. The total spin in x-direction, which equals the staggered magnetization in the
Heisenberg model, thus decays due to the dephasing of the individual spins. Now, if the
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4.1. XXZ-MODEL

Figure 4.3: Time evolution of the staggered magnetization ms(t) in the XXZ-chain for
various anisotropy parameters ∆, starting from an initial Néel state. The results shown
in this picture were obtained within our time dependent mean-field theory. For easy axis
anisotropies (∆ > 1) our tMFT predicts a saturation of the staggered magnetization in
the long time limit t→ ∞.

anisotropy ∆ is nonzero, the precession axis is slightly tilted in the x-z-plane, thus reduc-
ing the projection of the pseudospins on the x-axis, which amounts to a smaller staggered
magnetization.

In the antiferromagnetic regime ∆ > 1, our mean field theory predicts a saturation of
the staggered magnetization at a nonzero value at large times. The saturation value

m̄ = lim
T→∞

1

T

∫ T

0
dtms(t) (4.28)

can be inferred from a time averaged Hamiltonian, because we know from our numerics
that the staggered magnetization exhibits decaying oscillations around the saturation value
in the easy axis regime at large times. Since the saturation value of the staggered moment
m̄ is simply a time average over ms(t), we attempt to calculate m̄ selfconsistently with a
time averaged Hamiltonian

H̄ =
∑

k

{εkσz
k − 2Jzm̄σ

x
k} (4.29)

which is almost trivially soluble. Using (4.29) for the dynamics of the Néel state and the
Baker-Campbell-Haussdorff formula, we obtain

ms(t) =
1

2
−
∫
dk

2π

2J2 cos2(k)

4J2
z m̄

2 + J2 cos2(k)
sin2

(√

4J2
z m̄

2 + J2 cos2(k)t
)

(4.30)
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4. QUENCH DYNAMICS OF HEISENBERG SPIN CHAINS

Figure 4.4: Saturation value of the staggered magnetization m̄ as a function of the
anisotropy parameter ∆, obtained within our time dependent mean field theory. The
solid line corresponds to the result (4.32), whereas the dots are obtained from the full
numerical solution of the mean field equations for N spins. Close to the isotropic point
∆ = 1, the numerics shows a finite size rounding of the transition.

corresponding to a saturation value of the staggered moment given by

m̄ =
1

2
−
∫
dk

2π

J2 cos2(k)

4J2
z m̄

2 + J2 cos2(k)
=

m̄Jz/J
√

1 + (2m̄Jz/J)2
. (4.31)

Solving for m̄, we get the following analytic expression for the saturation value of the
staggered moment as function of the anisotropy parameter ∆

m̄ =
1

2

√

1 − 1

∆2
(4.32)

As can be seen from a comparison with numerically obtained saturation values from the
full solution of the mean-field equations in Fig. 4.4, the expression (4.32) is essentially
exact.

4.1.3 Numerical simulations

The time dependent mean-field theory described in the previous section is a simple method
to study the time evolution of the staggered magnetization in the XXZ-chain at finite
anisotropies ∆. Nevertheless, these results should be taken with care, since it is known
that mean field theories for low dimensional systems are problematic due to the increased
importance of quantum fluctuations and may lead to wrong conclusions. Thus, it is nec-
essary to complement the findings in the previous section with exact results in order to
validate or invalidate our time dependent mean-field theory. Since an exact solution of
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Figure 4.5: Numerical simulation of the time evolution of the staggered magnetization
ms(t) in a XXZ-chain with N = 12 spins and open boundary conditions, starting from an
initial Néel state. The different curves correspond to various anisotropies ∆.

the full interacting system is out of question, the next best thing to try is a numerical
simulation of the problem. However, an exact numerical calculation can be handled only
for small sized chains with up to 20 spins. This has the disadvantage, that the simulation
runs into Poincaré recurrences after rather short evolution times. Fortunately, there ex-
ist quite sophisticated numerical techniques for 1D systems commonly known under the
collective name ’density matrix renormalization group’ (DMRG)7, which can be used for
controlled simulations of large (in some situations even infinite) size spin chains. These
methods are based on matrix product state decompositions and allow to follow the time
evolution of the infinite chain as long as the entanglement entropy remains sufficiently
small. In the following we present results obtained using both techniques.

Direct numerical solution of the Schrödinger equation for a small spin chain

The easiest way to simulate a small sized spin chain is a brute force method using the
Euler algorithm to solve the Schrödinger equation directly. This is simply achieved via
a discretization of the time derivative by replacing it with the differential quotient and
calculating the state of the system iteratively using the discretized Schrödinger equation

|ψ(t+ δt)〉 = |ψ(t)〉 − i
δt

~
ĤXXZ|ψ(t)〉 . (4.33)

7For a review see [80].
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This method has the disadvantage that very small time steps δt need to be chosen in order
to keep the error during the time evolution small8. In particular we have taken J δt = 10−4

for the data shown in Fig. 4.5. The state of the system is conveniently expanded in the
basis of the Sz

ℓ eigenstates. Since the total magnetization is a conserved quantity, the
dimension of the Hilbert space corresponding to our problem of an initial Néel state for a
chain with N spins is given by

dim(H) =

(
N

N/2

)

. (4.34)

which is slightly smaller than 2N and reduces the computational effort a little bit. The
numerical results for a chain with N = 12 spins and open boundary conditions are shown
in Fig. 4.5. Obviously, the small system size becomes apparent after evolution times on
the order of Jt ≃ 10, where the first recurrence seems to appear. Comparing the numerical
simulation of the finite size chain with the mean-field results from the previous section
shows qualitative agreement for easy plane anisotropies ∆ < 1, i.e. with increasing ∆
the oscillations of the staggered magnetization decay faster. Interestingly, the situation is
different in the easy axis regime ∆ > 1. A comparison of the results for ∆ = 1.6 shows a
fast decay of the staggered magnetization without oscillations up to times Jt = 5 in the
numerical simulation of the finite size chain (at larger times, a comparison is no longer
trustworthy due to the recurrence in the finite chain at Jt = 10). In contrast, mean-field
theory predicts a large saturation value even at such moderate easy axis anisotropies, to-
gether with a fast oscillation around the saturation value. This is a first indication that the
time dependent mean-field theory leads to questionable results in the easy axis regime. In
particular, the numerical results for the finite size chain at moderate easy axis anisotropies
seem to indicate that ms(t) decays to zero also for ∆ > 1. Unfortunately, the numerical
simulation cannot rule out the possibility of a saturation of the staggered magnetization
for easy axis anisotropies because of the early appearance of Poincaré recurrences.

DMRG results

In the following we present numerical results on the time evolution of the staggered mag-
netization in the XXZ-chain starting from an initial Néel state, which were obtained using
the above mentioned DMRG technique. This method is far better suited to study infinite
spin chains, especially if the initial state is sufficiently uncorrelated such that the entan-
glement entropy is small. The number of matrix product states which have to be taken
into account for an accurate description of the system’s state within the DMRG-method
is directly proportional to the entanglement entropy, which is defined as the von Neumann
entropy of an arbitrary sub-system of the total system, i.e. S = Tr(ρA log2 ρA), where ρA

is the reduced density matrix of the subsystem A. Since this entropy usually increases

8A direct numerical diagonalization of the Hamiltonian would be better suited to study the time evolu-
tion of finite size spin chains, because no time-slicing error is introduced that way. Furthermore one avoids
the problem of violating unitarity due to the discretization. In our case this is not relevant however, since
the Poincaré recurrences reduce the interesting time window to a size, where the time slicing error can be
kept small with little effort.
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Figure 4.6: Numerical calculation of the time evolution of the staggered magnetization
ms(t) in an infinite size XXZ-chain using the DMRG method, starting from an initial Néel
state. The different curves correspond to various anisotropies ∆. The lower panel shows
ms(t) on a logarithmic scale, indicating exponential relaxation for intermediate times.

linearly in time for Heisenberg spin chains, this method works particularly well to follow
the evolution up to intermediate times on the order of Jt ≃ 15 for infinite size chains.
The results which are shown in Fig. 4.6 were obtained by Peter Barmettler in course of a
collaboration on this problem setup. For the details on the method see Peter’s thesis [81]
or our papers [82] and [83] and the references therein.

The DMRG results in Fig. 4.6 show several interesting features. First of all, the
behavior of the staggered magnetization in the easy axis regime ∆ > 1 is different from
the findings of our time-dependent mean-field theory. In particular, ms(t) shows hardly
any oscillations and decays exponentially in the numerically accessible time window instead
of having a tendency to saturate as expected from tMFT. These results also agree with
the findings from the numerical simulation of the finite size spin chain at short times.
In the easy plane regime ∆ < 1, the DMRG-results seem to agree qualitatively with
the tMFT data. A quantitative analysis of the data shows however, that tMFT leads
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4. QUENCH DYNAMICS OF HEISENBERG SPIN CHAINS

to an algebraic decay of the oscillations, whereas DMRG shows exponential relaxation at
intermediate times. Surprisingly, for 0.6 < ∆ < 1 DMRG predicts a relaxation of the
staggered magnetization that seems to be faster than exponential.

We have extracted the relaxation timescales from fits to the numerical data at suffi-
ciently large times using

ms(t) ∼ e−t/τ1 (4.35)

in the easy axis regime ∆ & 1, and fits of the form

ms(t) ∼ e−t/τ2 cos(ωt+ φ) (4.36)

in the easy plane regime ∆ . 1. Note that this fit is only valid at intermediate timescales in
the easy plane regime, because the numerics shows an accelerated relaxation for ∆ & 0.6
at large times, as mentioned above. Close to the critical point, the behavior of ms(t)
in the XXZ-model is rather complicated and cannot be reliably fitted with one of the
functions above. The relaxation times and the oscillation period are plotted in Fig. 4.7. It
is interesting to note that the relaxation is fastest close to the critical point9 ∆ = 1. In the
easy axis regime this can be understood using a simple phase space argument. Naively, the
initial state can be considered as a source of quasiparticles at t = 0. In order to equilibrate,
these quasiparticles need to scatter. Since the gap of the quasiparticle excitations vanishes
at the critical point, the phase space for scattering is largest and thus the relaxation should
be fastest at the critical point. We also mention that, as far as the staggered magnetization
ms is concerned, our results are in agreement with a thermalization scenario, because the
equilibrium expectation value of ms at finite temperature is zero in 1D. This is not true
for correlation functions in general, however.

4.2 XZ-Model

The previous numerical investigations of the time evolution of the staggered magnetiza-
tion ms(t) following a quench in the XXZ-chain revealed an interesting crossover in the
relaxation dynamics at the isotropic point ∆ = 1 of the XXZ-model, but were not suitable
to draw any conclusions on the behavior of ms(t) at large times. The mean field theory
discussed in Sec. 4.1.2 predicts a saturation of the staggered magnetization in the easy axis
regime, which is presumably wrong, whereas the DMRG-numerics in Sec. 4.1.3 indicates
exponential relaxation of ms(t), although the accessible time scales do not suffice to rule
out saturation at long times for large anisotropies. In order to circumvent these draw-
backs, we look for a slightly different, analytically treatable model, that shows a similar
behavior of ms(t) as the XXZ-model in the easy axis regime ∆ > 1 as far as the time
evolution of the Néel state is concerned. A suitable candidate is the so called XZ-chain,

9We mention that this is exactly the opposite as one would expect from the notion of ”critical slowing
down”, which holds only for small perturbations from equilibrium, however.
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Figure 4.7: Numerically extracted timescales for the quench from a Néel state in the
XXZ-model as a function of the anisotropy ∆. The relaxation times τ1 and τ2 have been
obtained from an exponential fit to the numerical data of the staggered magnetization
ms(t). Note that in the easy plane regime ∆ < 1, the exponential fit from which τ1 is
extracted is only valid in the intermediate time regime. The green dots correspond to the
period of the oscillations of ms(t) in the easy plane regime.

defined by the Hamiltonian

HXZ = J
∑

ℓ

(
2Sx

ℓ S
x
ℓ+1 + ∆Sz

ℓS
z
ℓ+1

)
(4.37)

= HXXZ +
J

2

∑

ℓ

(
S+

ℓ S
+
ℓ+1 + S−

ℓ S
−
ℓ+1

)
. (4.38)

This Hamiltonian differs from the XXZ-chain (4.4) by the appearance the terms S+
ℓ S

+
ℓ+1 +

h.c. that violate the conservation of the total magnetization in z-direction Sz
tot, but in

the limit ∆ ≫ 1 one expects that the time evolution of the staggered magnetization in
this model is similar to that in the XXZ model. In particular, it is obvious that the
time evolution of the Néel state (4.1) in both models is equivalent for short times, since
the additional terms in the XZ-Hamiltonian give zero when acting on a Néel state. The
XZ-model as defined above also has a quantum phase transition at ∆c = 2 with long-range-
order in the ground state z-correlations for ∆ > ∆c and thus resembles the XXZ-chain
in that respect. The situation is different in the regime ∆ < ∆c however, where the
ground state of the XZ-model has LRO in the x-correlations, whereas the XXZ-model has
a paramagnetic ground state.

In contrast to the XXZ-model, the XZ-model can be diagonalized analytically by apply-
ing the Jordan-Wigner transform in a rotated frame of reference. Using the transformation
defined in Eq. (4.7) after a π/2 rotation around the x-axis (i.e. Sz

ℓ → Sy
ℓ ) and going over

to momentum representation via (4.10) we map the Hamiltonian of the XZ-model to the
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fermionic Hamiltonian

HXZ =
J

2

π∑

k=−π

{

(∆ + 2) cos(k)c†kck +
i

2
(∆ − 2) sin(k)

(

c†kc
†
−k + ckc−k

)}

. (4.39)

In this form, the Hamiltonian can be diagonalized straightforwardly using a Bogoliubov
transformation to a new set of fermionic creation- and annihilation-operators αk and α†

k

with the standard fermionic anti-commutation relations {αk, α
†
q} = δk,q, that are related

to the original Jordan-Wigner Fermion operators via

[
c−k

c†k

]

=

[
cos θk −i sin θk

−i sin θk cos θk

] [
α−k

α†
k

]

= M∆

[
α−k

α†
k

]

, (4.40)

where the constraint θ−k = −θk needs to be imposed in order to preserve the fermionic anti-
commutation relations of the ck-operators. Using (4.40), we finally obtain the diagonalized
XZ-Hamiltonian

HXZ =

π∑

k=−π

Ek

(

α†
kαk − 1

2

)

with Ek = J
√

1 + ∆2/4 + ∆ cos(2k) (4.41)

together with the equation that determines the rotation angle θk of the Bogoliubov trans-
formation

tan(2θk) =
2 − ∆

2 + ∆
tan(k) . (4.42)

The next step is to calculate the time evolution of the Jordan-Wigner Fermion operators
following the quantum quench. The time dependence of the Bogoliubov-quasiparticle
operators follows trivially from (4.41). Thus, the time evolution of the JW-operators in
momentum space can be immediately obtained using the Bogoliubov transformation (4.40)

[
c−k(t)

c†k(t)

]

= M∆

[
e−iEkt 0

0 eiEkt

]

M−1
∆

[
c−k

c†k

]

(4.43)

where M∆ is the Bogoliubov-transformation matrix that has been defined in Eq. (4.40).
Note that M∆ depends on the anisotropy parameter ∆ via Eq. (4.42).

Since the initial Néel state is the ground state of the XZ-Hamiltonian (4.39) with
∆ = ∆0 → ∞, we express the time dependent (Heisenberg-) Jordan-Wigner Fermion
operators ck(t) after the quench (i.e. at t > 0) in terms of the Bogoliubov-quasiparticle

operators α
(0)
k that diagonalize the Hamiltonian (4.39) for the initial value ∆ = ∆0 before

the quench. We thus get

[
c−k(t)

c†k(t)

]

= M∆

[
e−iEkt 0

0 eiEkt

]

M−1
∆ M∆0

[

α
(0)
−k

α
(0)
k

†

]

(4.44)

This mapping allows us to evaluate all expectation values as ground state expectation

values with respect to the Bogoliubov-quasiparticle operators α
(0)
k that diagonalize the
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initial Hamiltonian, i.e. α
(0)
k |GS(t < 0)〉 = 0. Writing down Eq. (4.44) explicitly, we get

the following expression for the time dependence of the JW-Fermion operators after the
quantum quench

ck(t) =
(

e−iEkt cos(θk) cos(θk − θ
(0)
k ) + eiEkt sin(θk) sin(θk − θ

(0)
k )
)

α
(0)
k

+ i
(

eiEkt sin(θk) cos(θk − θ
(0)
k ) − e−iEkt cos(θk) sin(θk − θ

(0)
k )
)

α
(0)
k

†
. (4.45)

Here, the angle θ
(0)
k that corresponds to the initial state is given by 2θ

(0)
k = −k in the case

of an initial Néel state (i.e. ∆0 → ∞).
Although the Jordan-Wigner transform makes an analytic diagonalization of the XZ-

Hamiltonian possible, it introduces complications to the calculation of the staggered mag-
netization. In terms of the Jordan-Wigner Fermions the staggered magnetization (4.6) is
no longer a local operator, because the spin operators Sz

ℓ have the Jordan-Wigner strings
attached (remember that we had to rotate our frame of reference by π/2 around the x-
axis in order to be able to diagonalize HXZ using the standard definition (4.7) of the
Jordan-Wigner transform), i.e.

Sz
ℓ =

i

2
(cℓ − c†ℓ) exp

(

iπ
∑

j<ℓ

nj

)

(4.46)

Thus it is no longer tractable to calculate the staggered magnetization as defined in Eq.
(4.6). Because of that, we use an equivalent definition of the staggered magnetization
which probes the long-range antiferromagnetic order

m2
s = lim

n→∞
(−1)n〈Sz

ℓS
z
ℓ+n〉 (4.47)

where ℓ can be set to any value due to the translational invariance of the spin chain in the
thermodynamic limit (later we take ℓ = 0 for convenience). In terms of Jordan-Wigner
Fermions the SzSz-correlation function is given by [84]

〈Sz
ℓS

z
ℓ+n〉 = −1

4

〈
(cℓ − c†ℓ) exp

(

iπ
ℓ+n−1∑

j=ℓ

nj

)

(cℓ+n − c†ℓ+n)
〉

= −1

4

〈
(cℓ − c†ℓ)

∏

ℓ≤ j < ℓ+n

(1 − 2nj) (cℓ+n − c†ℓ+n)
〉

= −1

4
(−1)n

〈
(c†ℓ − cℓ)

∏

ℓ≤ j < ℓ+n

(c†j − cj)(c
†
j + cj) (c†ℓ+n − cℓ+n)

〉

=
1

4
(−1)n

〈
(c†ℓ + cℓ)

∏

ℓ < j < ℓ+n

(c†j − cj)(c
†
j + cj) (c†ℓ+n − cℓ+n)

〉
(4.48)

where the last line follows from (c†ℓ − cℓ)
2 = −1. The last equation can be written in a

more compact form by introducing the Majorana-Fermion operators

Aℓ = c†ℓ + cℓ and Bℓ = c†ℓ − cℓ (4.49)
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In this notation the SzSz-correlation function is given by

〈Sz
0S

z
n〉 =

1

4
(−1)n〈A0B1A1B2A2 . . . Bn−1An−1Bn〉 (4.50)

As is obvious from Wick’s theorem (see e.g. [46]), the basic building blocks of the correla-
tion function (4.50) are the pairwise contractions 〈AiBj〉, 〈AiAj〉 and 〈BiBj〉 between all
Majorana operators. Indeed, the correlation function (4.50) can be written as a Pfaffian
of pairwise contractions (c.f. [85] and references therein)

〈Sz
0Sz

n〉 = (−1)n

4
Pf | 〈A0A1〉 〈A0A2〉 ··· 〈A0An−1〉 〈A0B1〉 〈A0B2〉 ··· 〈A0Bn〉

〈A1A2〉 ··· 〈A1An−1〉 〈A1B1〉 〈A1B2〉 ··· 〈A1Bn〉
. . .

...
...

. . .
...

〈An−2An−1〉 〈An−2B1〉 ··· 〈An−2Bn〉
〈An−1B1〉 〈An−1B2〉 ··· 〈An−1Bn〉

〈B1B2〉 〈B1B3〉 ··· 〈B1Bn〉
〈B2B3〉 ··· 〈B2Bn〉

. . .
...

〈Bn−1Bn〉

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(4.51)

This expression is further simplified in the thermodynamic limit, where all pairwise con-
tractions depend only on the distance between the Majorana operators due to the trans-
lational invariance. Using (4.10), (4.45) and (4.49), we are now able to calculate the time
dependent pairwise contractions between the Majorana operators following the quantum
quench and thus get an explicit expression for the time evolution of staggered magnetiza-
tion via (4.47) and (4.51). In particular, after a tedious but straightforward calculation, we
obtain the following expressions for the contractions in the thermodynamic limit (define

φk
.
= θk − θ

(0)
k )

aj−ℓ+1
.
= 〈AjBℓ〉 =

∫ π

−π

dk

2π
e−ik(j−ℓ)ei2θk

[
cos(2φk) − i sin(2φk) cos(2Ekt)

]
(4.52)

bj−ℓ
.
= 〈AjAℓ〉 = 〈BjBℓ〉 =

∫ π

−π

dk

2π
e−ik(j−ℓ) sin(2Ekt) sin(2φk) ∀j 6= ℓ(4.53)

we note that the above expressions have been derived before by Sengupta, Powell and
Sachdev [86] in the context of quench problems in the transverse field Ising-model. In
terms of the above coefficients an and bn for the pairwise contractions, which depend
explicitly on time, the Pfaffian (4.51) now takes the simplified form

〈Sz
0 (t)Sz

n(t)〉= (−1)n

4
Pf | b−1 b−2 ··· b−(n−1) a0 a−1 ··· a−(n−1)

b−1 ··· b−(n−2) a1 a0 ··· a−(n−2)

. . .
...

...
. . .

...
b−1 an−2 ··· a−1

an−1 an−2 ··· a0

b−1 b−2 ··· b−(n−1)

b−1 ··· b−(n−2)

. . .
...

b−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(4.54)

The integrals for the coefficients an and bn in the defining equations (4.52) and (4.53)
simplify considerably for three special cases:
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• t = 0: In this somewhat trivial limit the evaluation of the Pfaffian gives the staggered
magnetization of the initial state via (4.47). The coefficients an and bn at t = 0 are
given by

an =

∫ π

−π

dk

2π
e−ik(n−1)ei2θ

(0)
k

Néel
= δn,0 (4.55)

bn = 0 (4.56)

• t → ∞: The behavior of the staggered magnetization at large times t → ∞ is
particularly interesting, since this is precisely the regime which is not accessible
numerically. Indeed, as will be shown below, the Szegö lemma allows us to get a
rigorous result for long time limit of the staggered magnetization ms(t→ ∞) in the
XZ-model. At t→ ∞, the coefficients an and bn take the form

an =

∫ π

−π

dk

2π
e−ik(n−1)ei2θk cos(2φk) (4.57)

bn = 0 (4.58)

where the time-dependent oscillating terms vanish due to the Riemann-Lebesgue
lemma.

• Quench from the Néel state to the critical point: For the special case of a

quench from the Néel state (∆0 = ∞) to the critical point (∆ = 2), i.e. for θ
(0)
k = −k

and θk = 0, the integrals can be evaluated explicitly and we get

an =







(δn,0 + δn,2)/2 + (−1)n/2 (n− 1)
Jn−1(4Jt)

4Jt
for n even

0 for n odd
(4.59)

bn =







i(−1)n/2 n
Jn(4Jt)

4Jt
for n even (n 6= 0)

0 for n odd
(4.60)

4.2.1 Staggered magnetization ms(t → ∞) in the long time limit

As we have shown above in Eqs. (4.57) and (4.58), the coefficients of the Pfaffian (4.54)
simplify considerably in the long time limit t→ ∞. In particular, since the coefficients bn
vanish, the Pfaffian reduces to a Toeplitz determinant, as can be seen easily by applying
Wick’s theorem to (4.50) for the case bn ≡ 0 (see [84]). The staggered magnetization is
thus given by

m2
s(t→ ∞) = lim

n→∞
1

4

∣
∣
∣
∣
∣
∣
∣
∣
∣

a0 a−1 · · · a−(n−1)

a1 a0 · · · a−(n−2)
...

. . .
...

an−1 · · · a0

∣
∣
∣
∣
∣
∣
∣
∣
∣

(4.61)

The reduction of the Pfaffian to a Toeplitz determinant in the case of vanishing bn con-
tractions can also be inferred by using the fact that the Pfaffian is equivalent to the square
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root of the determinant of the antisymmetric 2n × 2n matrix (apart from a sign, which
is obvious in our case) obtained by mirroring the triangular scheme (4.54) at the main
diagonal. Thus, for bn ≡ 0 one is left with

m2
s(t→ ∞) = lim

n→∞
1

4

√
∣
∣
∣
∣

0 An

−AT
n 0

∣
∣
∣
∣
= lim

n→∞
1

4

√

(detAn)2 = lim
n→∞

1

4
|detAn| (4.62)

where An is the n × n-Toeplitz matrix built from the coefficients aj, i.e. the matrix
shown in equation (4.61). In order to calculate the asymptotics n → ∞ of the Toeplitz
determinant in Eq. (4.61), we apply Szegös lemma, which can be stated as follows:

Szegö’s Lemma [87]: Let α(k) be the generating function
of the n × n-Toeplitz matrix An, i.e. the coefficients aℓ of the
Toeplitz matrix

An =








a0 a−1 · · · a−(n−1)

a1 a0 · · · a−(n−2)
...

. . .
...

an−1 · · · a0








(4.63)

are obtained via the Fourier-integral

aℓ =

∫ π

−π

dk

2π
e−iℓkα(k) . (4.64)

If α has no singularities in the integration interval and has
winding number zero, i.e. argα(k + 2π) − argα(k) = 0, then
the asymptotic behavior of the Toeplitz matrix An for large n
is given by

lim
n→∞

det(An) = exp

[

n

∫ π

−π

dk

2π
log α(k)

]

F (α) (4.65)

where log denotes the natural logarithm and the function F
contains subleading corrections of order O(n0).

In our case, the generating function α(k) = eikei2θk cos(2φk) can be read off directly from

(4.57). For a quench from the Néel state (2θ
(0)
k = −k) it can be simplified to

α(k) = eik
∆ + 2cos(2k)

(∆ + 2) cos(k) − i(∆ − 2) sin(k)
(4.66)

The generating function has no singularities and winding number zero in the easy axis
regime ∆ > 2, thus we can apply Szegös lemma in order to obtain the staggered magne-
tization at t→ ∞. The integral in Eq. (4.65) using the generating function (4.66) can be
calculated analytically and we obtain finally

m2
s(t→ ∞) = lim

n→∞
1

4

[

1 +
√

1 − 4/∆2

2

]n

(4.67)
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Figure 4.8: Cartoon of the light-cone in quantum mechanical spin systems. Two initially
uncorrelated spins at a distance n are not causally connected up to a time given by the
light-cone condition t = (n− ξ0)/(2vmax), where vmax is the maximum (classical) speed of
the quasiparticles and ξ0 is the correlation length of the initial state.

Thus, the staggered magnetization ms(t → ∞) in the XZ-model vanishes at long times
for any finite ∆ > 2, if we start from an initial Néel state.

4.2.2 Staggered magnetization ms(t) and the light-cone trick

In the section above we have shown how the staggered magnetization can be calculated
explicitly in the long time limit by the application of Szegö’s lemma to obtain the asymp-
totics of the Toeplitz determinant (4.61) for n → ∞. Now we are interested not only in
the long time limit, but in the full time evolution of the staggered magnetization in the
XZ-model. Unfortunately, Szegö’s lemma as stated above cannot be applied in this case,
since the contractions bn do not vanish and thus the Pfaffian (4.54) does not reduce to
a Toeplitz determinant. In this section we use a trick based on the so called horizon- or
light-cone effect to calculate the time evolution of ms(t) semi-analytically. However, an
analytic solution of this problem might be possible via a generalization of Szegö’s lemma
to block Toeplitz determinants, as will be shown in the subsequent section 4.2.3.

The light-cone trick is based on an observation by Lieb and Robinson [88], who have
shown that information in quantum spin systems with finite range interactions propagates
with a finite group velocity. From this follows, that correlations in a spin chain can only
build up within a ’light-cone’ determined by the maximal group velocity of the quasipar-
ticles. Or stated otherwise, two initially uncorrelated spins are not causally connected up
to a time which is given by the ratio of the distance between the two spins to the max-
imal group velocity of the quasiparticles. Calabrese and Cardy [89] have constructed an
intuitive picture of this situation, which holds quite generally and works extremely well.
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The main message can be summed up in three points:

• In the context of a quench problem, the initial state is a source of quasiparticles which
propagate through the system with a finite (classical) group velocity v = ∂Ek/∂k.
Here, Ek denotes the dispersion relation of the quasiparticles, which is given by Eq.
(4.41) in our case.

• Quasiparticles originating from points that are separated by a distance which is
larger than the correlation length ξ0 of the initial state are incoherent and lead to
the relaxation of local observables.

• Quasiparticles originating from closely separated points, i.e. two points within the
correlation length ξ0 of the initial state, are entangled and induce correlations be-
tween local observables.

The situation is sketched in the cartoon in Fig. 4.8. It needs to be mentioned however,
that the light cone is not perfectly sharp in a quantum mechanical system. Nevertheless,
the corrections are exponentially small [88] and can be safely neglected for our purpose.

Our initial Néel state is completely uncorrelated, i.e. the correlation length ξ0 defined
via the connected correlation function

Gzz(n) = 〈Sz
0S

z
n〉 − 〈Sz

0〉〈Sz
n〉 ∼ e−n/ξ0 (4.68)

is identically zero for the Néel state: ξNéel
0 ≡ 0. Thus, two spins at a distance of n lattice

sites are not causally connected up to a time given by the light-cone condition

t =
n

2vmax
=

n

4J
(4.69)

where vmax = 2J is the maximum group velocity for our quasiparticles with dispersion
(4.41). In order to calculate the time evolution of the staggered magnetization starting
from a Néel state it is thus sufficient to evaluate the Pfaffian in Eq. (4.54) for a finite size
n numerically, as long as we are interested in times smaller than Jt < n/4

m2
s(t)
∣
∣
∣
Jt < n

4

= (−1)n〈Sz
0S

z
n〉 (4.70)

This means that the size of the Pfaffian that we have to evaluate numerically increases
linearly in time. If we want to follow the time evolution of the staggered magnetization
starting from an initial Néel state up to times Jt = 10, we need to evaluate the Pfaffian
corresponding to an antisymmetric 80 × 80 matrix. Since the light-cone is not perfectly
sharp, we increase the distance between the spins by two lattice spacings as compared to
the light-cone condition in the numerical calculation. Using this method, we follow the
time evolution up to Jt = 40 for arbitrary anisotropies ∆ and up to Jt = 100 for a quench
to the critical point ∆ = ∆c = 2. The results are plotted in Fig. 4.9. In order to show how
well the light-cone trick works, we have plotted the staggered magnetization evaluated
using Eq. (4.70) for different fixed distances between the spins as a function of time in
Fig. 4.10. As can be seen in the figure, the result for a fixed distance r starts to deviate
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Figure 4.9: Time evolution of the staggered magnetization ms(t) at different anisotropies
starting from an initial Néel state in the XZ-model, calculated semi-analytically using the
light-cone trick. The solid lines for ∆ < 2 are fits to the numerical data using Eq. (4.72).
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Figure 4.10: Time evolution of the staggered magnetization ms(t) at ∆ = 4, evaluated
using Eq. (4.70) for different distances r between the spins. The results start to deviate
from the true ms(t) curve precisely at the times given by the light-cone condition (4.69).
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Figure 4.11: Numerically extracted timescales for the quench from a Néel state in the
XZ-model as a function of the anisotropy ∆. The relaxation times τ1 and τ2 have been
obtained from an exponential fit to the numerical data of the staggered magnetization
ms(t). The green dots correspond to the period of the oscillations of ms(t) in regime
∆ < ∆c.

from the true time evolution of the staggered magnetization ms(t) precisely at the times
given by the light-cone condition (4.69).

We note that the above mentioned method also works for a general quench problem,
where a ground state with arbitrary ∆0 is chosen. One has to keep in mind however,
that for a general quench the light-cone condition (4.69) has to be modified, since the
correlation length ξ0 of the initial state is usually nonzero. Indeed, the distance between
the two spins in Eq. (4.70) has to be increased by ξ0 in order to obtain reliable results.
This means that the computational effort increases considerably, if the correlation length
of the initial state is large. Thus, the light-cone method for calculating ms(t) works well
for sufficiently uncorrelated initial states, i.e. quenches with ∆0 ≫ 1, but breaks down for
quenches with ∆0 close to the critical value ∆c = 2, where the correlation length of the
initial state diverges.

From the results shown in Figs. 4.9 and 4.12 it can be seen that the staggered magneti-
zation ms(t) after a quench from the Néel state in the XZ-model indeed behaves similarly
as in the XXZ-model for large anisotropies ∆ > ∆c, i.e. ms(t) decays exponentially with-
out oscillations. For ∆ < ∆c the behavior is a little bit different than in the XXZ-model.
In this regime we find again exponentially decaying oscillations, but the oscillation period
increases upon approaching the critical point. Furthermore, in the limit ∆ = 0 the time
evolution of ms(t) can again be calculated exactly, as in the XX-model. From this we
obtain

ms(t)
∆=0
=

1

2
cos2(Jt) , (4.71)

i.e. the staggered magnetization in the XZ-model steadily oscillates without decaying in
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the limit ∆ = 0.
As for the XXZ-model, we have extracted the relaxation times using exponential fits

to the numerical data of ms(t). In the easy axis regime ∆ > ∆c, we use the same simple
exponential fit as for the XXZ data. In the regime ∆ < ∆c however, we use a fitting
function of the form

ms(t) ∼ e−t/τ2
(
cos2(ωt) − const.

)
(4.72)

where the constant is usually small and positive. Note that this function fits the XZ-data
perfectly for all times Jt & 5 and all anisotropies ∆ < ∆c, in contrast to the XXZ-model,
where an accelerated decay is observed close to the critical point. The relaxation times
and the oscillation period are shown in Fig. 4.11. As can be seen from this figure, the
minimum of the relaxation time in the XZ-model is right at the critical point ∆c = 2.

4.2.3 A possible route to an exact analytic solution

As mentioned in the previous section, there exists a possible route to an exact analytical
calculation of the time evolution of the staggered magnetization in the XZ-model, which
is sketched in this section. This method is based on a generalization of Szegö’s lemma
to block-Toeplitz determinants that has been found by Widom [90]. Using this approach,
the computation reduces to a Wiener-Hopf factorization problem of the matrix-valued
generating function for the coefficients of the block-Toeplitz matrix, which we weren’t
able to solve, unfortunately. Nevertheless, since the method itself is interesting on its own
and might be useful for related problems, we present it here briefly.

We want to obtain a general expression for the time evolution of the staggered magne-
tization ms(t) in the XZ-model following a quantum quench, i.e. we have to evaluate the
Pfaffian defined in Eq. (4.54) in the limit n→ ∞. We recall that Pfaffians can be written
as the square root of the determinant of the antisymmetric 2n × 2n matrix (apart from
a sign, which is obvious in our case) obtained by mirroring the triangular scheme (4.54)
at the main diagonal. Since in our case we have b−i = −bi, the correlator (4.50) can be
written as the square root of a block-Toeplitz determinant

〈Sz
0(t)Sz

n(t)〉 =
1

4
(−1)n

∣
∣
∣
∣

C D
−DT C

∣
∣
∣
∣

1/2

(4.73)

where the Toeplitz matrices C and D have coefficients bn and an respectively. Alterna-
tively, by shuffling rows and columns, we can write

〈Sz
0(t)Sz

n(t)〉 =
1

4
(−1)n det(Tn)1/2 (4.74)

with a n× n block-Toeplitz matrix Tn with 2 × 2 matrix coefficients τi:

Tn =








τ0 τ−1 · · · τ−(n−1)

τ1 τ0 · · · τ−(n−2)
...

. . .
...

τn−1 · · · τ0








τi =

(
bi ai

−a−i bi

)

(4.75)
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All coefficients τi of the block-Toeplitz determinant Tn are completely specified by the
2 × 2 matrix-valued generating function τ(k), whose Fourier coefficients are equal to τi:

τℓ =

∫ π

−π

dk

2π
e−ikℓ τ(k) τ(k) =

(
λ(k) µ(k)

−µ(−k) λ(k)

)

(4.76)

and the coefficients of the generating function are obtained from Eqs. (4.52) and (4.53),
in particular

λ(k) = sin(2φk) sin(2Ekt) (4.77)

µ(k) = ei(k+2θk)(cos(2φk) − i sin(2φk) cos(2Ekt)) (4.78)

and µ(−k) = µ∗(k). Now we can use the equivalent of Szegö’s lemma for block-Toeplitz
determinants [90], which is applicable if det τ(k) 6= 0 and det τ(k) has winding number
zero (i.e. arg det τ(k = 0) − arg det τ(k = 2π) = 0). In our case the matrix function
τ(k) from Eq. (4.76) is unitary and has det τ(k) = 1, thus all prerequisites for applying
Widom’s theorem are met. This theorem provides an asymptotic formula for block Toeplitz
determinants and reads as follows

lim
n→∞

det(Tn) = G[τ(k)]n E[τ(k)] (4.79)

with

G[τ(k)] = exp

[∫ π

−π

dk

2π
log det τ(k)

]

(4.80)

E[τ(k)] = det(T∞[τ(k)]T∞[τ−1(k)]) (4.81)

In our case the leading order term is unity, i.e. G[τ(k)] = 1, because we have det τ(k) = 1.
This result has to hold because of physical reasons obviously, otherwisems(t) would be zero
or infinity at all times. In order to obtain the time evolution of the staggered magnetization
at arbitrary times, we have to evaluate the sub-leading corrections E[τ ]. Unfortunately
the expression (4.81) is not very useful for explicit calculations. Nevertheless, Widom
was able to prove another theorem, which gives an explicit expression for the logarithmic
derivative of E[τ ] and can be used for explicit calculations. In order to be able to apply
this theorem directly to our problem, it is convenient to make a change of variables. In
particular, we write the generating function τ(k) as a function of the complex variable
z = eik. Now suppose τ−1(z) (which is equivalent to τ †(z) in our case) has the left and
right Wiener-Hopf factorizations

τ−1(z) = u+(z)u−(z) = v−(z)v+(z) (4.82)

where u+ and v+ (u− and v−) are analytic inside (outside) the unit circle, i.e. u+ and v+
(u− and v−) have only positive (negative) Fourier coefficients as functions of k. Further-
more let τ(z) be a differentiable function of a parameter t. Then Widom’s theorem [90]
states that

d

dt
logE[τ ] =

i

2π

∮

Ξ
dz tr {[(∂zu+)u− − (∂zv−)v+] ∂tτ} (4.83)
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where Ξ denotes the unit circle and we have chosen the time t as the parameter. Since
we now from our numerics that the staggered magnetization ms(t) decays exponentially
at large times, the expression (4.83) should tend to a constant value at large times.

The remaining problem is to find the Wiener-Hopf factorization in Eq. (4.82) of the
generating function τ(z). The only situation where an analytical factorization seems to be
possible is the quench from the Néel state to the critical point ∆c = 2 of the XZ-model,
where the expressions for the coefficients µ and λ in Eqs. (4.77) and (4.78) of the generating
function simplify considerably. At the critical point ∆ = 2 we get (again z = eik)

λ(z) =
−i
2

(z − z−1) sin(Jzt(z + z−1)) (4.84)

µ(z) =
z

2

{
z + z−1 − (z − z−1) cos(Jzt(z + z−1))

}
(4.85)

Note that these functions have an essential singularity at z = 0. If we would have just
a pole of finite order n at the origin, the Wiener-Hopf factorization could be performed
easily by factoring out the singularity by a multiplication with zn.

Albeit we haven’t been able to solve the Wiener-Hopf factorization problem for the
matrix-valued generating function τ , the above formulation of the problem can be em-
ployed to justify the light-cone trick used in the previous section. Indeed, there is another
theorem by Widom [90] which states that E[τ ] is given by

E[τ ] = G[τ ]ℓ detTℓ[τ
−1] (4.86)

if the Fourier coefficients τm vanish for m > ℓ or m < ℓ for some fixed ℓ. Thus one
only needs to calculate the determinant of a finite Toeplitz matrix Tℓ in order to obtain
the determinant of T∞. This is precisely what we do when using the light-cone trick at
intermediate times, where ℓ scales linearly with time. Indeed, it can be shown that the
coefficients τm are exponentially small for m > ℓ at a given time t.

4.2.4 Relation between the XXZ- and XZ-model in the regime ∆ ≫ 1

The comparison between the results for the XXZ- and XZ-model in Fig. 4.12 shows, that
the time evolution of the staggered magnetization in both models is almost indistinguish-
able at large anisotropies ∆ ≫ 1. In the following we’re going to clarify this observation
by comparing the excitation spectra of the two models.

As has been shown in the previous section, the dispersion relation of the excitations
in the XZ-model for ∆ > 2 is given by

Exz(k) = J
√

1 + ∆2/4 + ∆ cos(2k). (4.87)

For the XXZ chain, the dispersion relation of elementary excitations can be calculated
using the Bethe-ansatz [76]. In the antiferromagnetic regime (∆ > 1) one can write down
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Figure 4.12: Comparison between the results for the time evolution of the staggered
magnetization ms(t) following a quench from the Néel state in the XXZ- and XZ-model.

a parametric representation (define ∆ = cosh(λ))

Exxz(α) = 2π sinh(λ)

∞∑

n=−∞

e−inα

cosh(nλ)
(4.88)

k(α) = −2π

∫ α

0
dα′

∞∑

n=−∞

e−inα′

cosh(nλ)
(4.89)

A plot of both dispersion relations for different values of ∆ is shown in Fig.4.13.
Now, one can easily establish that the dispersion relations of both models are asymp-

totically the same in the regime ∆ ≫ 1, where we get

E(k) =
∆

2
+ cos(2k) + O(1/∆). (4.90)

Since the energy difference between the initial Néel-state and the ground state in the regime
∆ ≫ 1 is small, the dynamics is completely determined by the elementary excitations,
which have identical dispersions in both models, up to corrections ∼ 1/∆. Thus it is not
surprising that the time evolution of the staggered magnetization in both models is almost
equivalent for large ∆.

4.3 Weakly antiferromagnetically ordered initial states and
Luttinger-Liquid theory

As an introduction to our discussion of quenches from correlated antiferromagnetic states
(i.e. quenches with ∆0 <∞), we consider the time evolution of weakly antiferromagnetic
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Figure 4.13: Dispersion relation of excitations in the XXZ-model (blue) and in the XZ-
model (red,dashed) for different values of ∆ (∆ = 2, 4, 6, 10 from top left to bottom right).

spin density wave (SDW) states under the XX-Hamiltonian (4.11) in the first part of this
section. This will provide a benchmark for the results obtained within Luttinger-liquid
theory in the second part of this section and allows for a brief discussion of the applicability
of effective low energy theories to the particular type of quench problems studied in this
thesis.

In the fermionic picture, antiferromagnetic SDW states can be written in analogy to
a BCS state as

|SDW〉 =
∏

−π/2 < k≤π/2

(ukc
†
k + vkc

†
k+π)|0〉 . (4.91)

In particular, the SDW state reduces to a Néel state for uk = vk = 1/
√

2. The time
evolution of the staggered magnetization ms(t) in the XX-model (4.11) starting from a
SDW state at t = 0 is thus determined by the coefficients uk and vk and Eq. (4.12) via

ms(t) =
1

L

π∑

k=−π

〈SDW|c†k+π(t)ck(t)|SDW〉

=

∫ π

−π

dk

2π
e−i2ǫktukvk , (4.92)

where we have taken the thermodynamic limit in last equality. In the following we consider
weakly antiferromagnetic SDW states, where

ukvk =
∆s

2
√

ǫ2k + ∆2
s

. (4.93)

Here, ∆s denotes the SDW-gap and ǫk = −J cos k is the free Fermion dispersion relation.
For a weak SDW state with ∆s ≪ J there are two main contributions to the integral in
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4. QUENCH DYNAMICS OF HEISENBERG SPIN CHAINS

equ. (4.92). The first comes from the square root singularity in the vicinity of the two
Fermi points kf = ±π/2, whereas the second one comes from the square root singularity
of the density of states at k = 0. Writing down these two contributions separately one
obtains

ms(t) ≈ ∆s

2J
J0(2Jt) +

∆s

πJ
K0(2∆st) (4.94)

≈ 1√
4πJt

{√

∆s

J
e−2∆st +

∆s

J
cos(2Jt− π/4)

}

and the second equality holds for large times t ≫ 1/∆s. Here, the first term is simply
the result of the linearized dispersion near the Fermi points, or stated otherwise, what
one would obtain from Luttinger-liquid theory. The algebraically decaying oscillations
which dominate the long time behavior are a result of contributions from the band edges,
hence are a lattice effect and thus cannot be captured within a Bosonization approach.
From this simple calculation it becomes clear that even for the time evolution of a very
weak SDW-state (∆s ≪ J), where the deviation of the momentum distribution from a
Fermi distribution is significant only close to the Fermi points and a linearization of the
dispersion relation seems viable, Luttinger liquid theory gives reasonable results only in
the very restricted time interval ∆−1

s ≪ t≪ ∆−1
s ln(J/∆s).

Although we have argued above that Luttinger liquid theory is not expected to correctly
describe the time evolution of the staggered magnetization following a quantum quench,
we briefly discuss the predictions of LL-theory for a quench from correlated initial states
to the gapless phase ∆ < 1 in this section. In the paramagnetic regime ∆ < 1, the
bosonized form of the XXZ model (4.4) up to irrelevant terms is given by the Luttinger
liquid Hamiltonian [91]

HLL =
u

2π

∫

dx

{

K (πΠ(x))2 +
1

K
(∂xφ(x))2

}

. (4.95)

The bosonized form of the staggered magnetization is given by ms ∼ 〈cos(2φ)〉x=0, where
we have used translational invariance. The remaining problem amounts to computing
the time evolution of 〈cos(2φ)〉, starting from a state where the field φ is initially locked
near 0 or π/2. We mention that this is essentially the dual of the dephasing problem
studied in [92], and thus we expect an exponential decay of ms with a characteristic
timescale τ ∼ 1/(K∆s). A convenient technique to solve this problem is the truncated
Wigner method [93], which is exact for quadratic Hamiltonians such as (4.95). Using this
approach, the time dependent expectation value of the staggered magnetization can be
written as a functional integral over the Wigner transform ̺W (φ0, φ̇0) of the initial density
matrix:

〈cos(2φ)〉 =

∫

Dφ(t)

∫

D(φ0, φ̇0) ̺W (φ0, φ̇0) cos(2φ) δ(φ̈ − u2∂2
xφ)

=

∫

D(φ0, φ̇0) ̺W (φ0, φ̇0) cos(2φcl(x, t)) (4.96)
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Here, the functional δ−distribution ensures that one integrates only over solutions of the
classical equations of motion and φcl(x, t) denotes the classical solution to the 1D wave
equation corresponding to the initial conditions φ0(x) and φ̇0(x). The speed of sound is
denoted by u. We have also used the fact that the operator cos(φ) is diagonal in the
φ−representation. The classical solution φcl(t) of the 1D wave equation can be explicitly
constructed using D’Alembert’s formula

φcl(x, t) =
1

2

[

φ0(x− ut) + φ0(x+ ut) +
1

u

∫ x+ut

x−ut
dx′φ̇0(x

′)

]

(4.97)

After switching to a dual field representation using Ku∂xθ = φ̇, we get

〈cos(2φ)〉 ∼
∫

D(φ0, θ0) ̺W (φ0, θ0) cos
[

φ0(x− ut) + φ0(x+ ut)

+Kθ0(x+ ut) −Kθ0(x− ut)
]

(4.98)

Since in the initial state φ is locked near φ0 = 0, we factor out the φ dependent part of
the integral obtaining

ms(t) ∼
〈
cosK(θ(ut) − θ(−ut))

〉

0
, (4.99)

where the brackets with the index 0 denote the expectation value taken with respect to the
initial state. In principle, the expectation value in Eq. (4.99) has to be calculated for the
ground state of the sine-Gordon model in the gapped phase, which is a nontrivial problem.
Alternatively, Eq. (4.99) can be evaluated within a semiclassical analysis, where the gap
of the initial state is relatively large. In this case, the cos-term in the sine-Gordon model
can be expanded around the minimum, thereby obtaining the Hamiltonian of a massive
scalar field. In particular, we take the ground state of the LL-Hamiltonian (4.95) with an
additional mass-term ∼ ∆sφ

2 as initial state. Since this is a quadratic theory, Eq. (4.99)
can be simplified via

ms(t) ∼ Re
〈

eiK(θ(ut)−θ(−ut))
〉

0

= exp −K
2

2

〈
(θ(ut) − θ(−ut))2

〉

0
(4.100)

After inserting the mode expansions of the dual field

θ(x) =

√
π

2uKL

∑

q

√
ωq

q

(

bq e
iqx + b†q e

−iqx
)

(4.101)

with the dispersion relation ω2
q = (uq)2 + ∆2

s, we obtain

ms(t) ∼ exp −K
∫ Λ

0
dq

√

q2 + ∆2
s/u

2

q2
sin2(qut)

∼ exp(−πK∆st/2) . (4.102)
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The last line holds for ∆st ≫ 1, where ∆s again denotes the gap of the initial state.
Luttinger-liquid theory thus predicts an exponential decay of the staggered magnetization,
but it misses the oscillations of ms(t), which are a lattice effect. Furthermore, LL-theory
predicts a slowing down of the exponential decay as one gets closer to the Heisenberg
point K = 1/2 (the free Fermion limit corresponds to K = 1). Interestingly, this behavior
is in accordance with the naive picture of critical slowing down. We also mention, that
LL-theory doesn’t respect the exact symmetry of the time evolution under Jz → −Jz,
which in LL-theory corresponds to K → 1/K.

4.4 Quench dynamics in higher dimensions

So far we have discussed the time evolution of the staggered magnetization starting from an
initial Néel state only in one dimensional spin chains. Obviously, it would be interesting to
study the same setup in higher dimensional systems. Unfortunately there are not as many
sophisticated analytical tools available to study this problem in D > 1. In the following
section we use the simplest approach to study our quench problem in higher dimensional
models, namely spin-wave theory, where a Holstein-Primakoff transformation is utilized
to obtain an approximate description of the Heisenberg model in terms of non-interacting
spin-wave excitations. This approach should work reasonably well if the initial Néel state
is energetically not far from the equilibrium ground state after the quench and thus the
density of excitations is low, i.e. for ∆ ≫ 1. In the subsequent section we compare the
results with a thermalization scenario.

4.4.1 Quench from a Néel state using Holstein-Primakoff theory

We start from a D-dimensional, anisotropic, antiferromagnetic Heisenberg model with
nearest neighbor interactions on a cubic lattice

H = J
∑

〈ℓ,m〉

{
1

2

(
S+

ℓ S
−
m + h.c.

)
+ ∆Sz

ℓS
z
m

}

. (4.103)

The cubic lattice is bipartite, thus we express the spin operators in terms of two Holstein-
Primakoff Bosons (see e.g. [75]), one for each sublattice. On sublattice A (index ℓ) we
take

Sz
ℓ = S − a†ℓaℓ , S−

ℓ ≈
√

2S a†ℓ (4.104)

and on sublattice B (index m)

Sz
m = −S + b†mbm , S−

m ≈
√

2S bm (4.105)

with aℓ and bm as bosonic annihilation operators and S = 1/2 for the spin-1/2 models un-
der consideration. By inserting these expressions in equ. (4.103), retaining only quadratic
terms and switching to momentum representation we obtain (setting the lattice constant
to unity)

H ≈ −J∆S2Nz/2 + zJ∆S
∑

k

{

a†
k
ak + b†

k
bk + λk

(

a†
k
b†−k

+ akb−k

)}

, (4.106)
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Figure 4.14: Saturation value m̄ of the staggered moment at long times t→ ∞ for different
dimensions D as a function of the anisotropy ∆, obtained using the Holstein-Primakoff
approach. Black dotted line: D=1; red dashed line: D=2; blue solid line: D=3. In
three dimensions the saturation value at the isotropic point ∆ = 1 is finite and given by
m̄ = 0.277.

where z is the number of nearest neighbors, i.e. z1D = 2, z2D = 4 and z3D = 6 on a cubic
lattice. Furthermore, ki=x,y,z ∈ {−π/2, π/2} and

λk =
2

z∆

∑

i=x,y,z

cos(ki) . (4.107)

The staggered magnetization expressed in terms of the HP-Bosons is given by

ms =
1

N

∑

ℓ∈A

Sz
ℓ − 1

N

∑

m∈B

Sz
m = S − 1

N

∑

k

(

a†kak + b†kbk
)

. (4.108)

Now we want to calculate the time evolution of the staggered magnetization ms(t) under
the Hamiltonian (4.106), starting from an initial Néel state. The Néel state is the ground
state of the Hamiltonian (4.106) for ∆ → ∞, i.e. it satisfies ak|ψ(0)〉 = bk|ψ(0)〉 = 0.
Because of that it is convenient to calculate the time evolution of ms(t) directly with the
Hamiltonian (4.106) instead of diagonalizing it first using a Bogoliubov transformation.
Using the Baker-Campbell-Hausdorff formula we get

〈a†
k
(t)ak(t)〉Néel = 〈b†

k
(t)bk(t)〉Néel =

λ2
k

1 − λ2
k

sin2

(

zJ∆S
√

1 − λ2
k
t

)

(4.109)

Thus, using the Holstein-Primakoff approach, we obtain the following expression for the
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time evolution of the staggered magnetization in a spin-1/2 Heisenberg model (S = 1/2)
after a quench from the Néel state

ms,HP(t) =
1

2
− 2

∫ π/2

−π/2

dDk

(2π)D
λ2
k

1 − λ2
k

sin2

(
zJ∆

2

√

1 − λ2
k t

)

(4.110)

The saturation value of the staggered magnetization

m̄ = lim
T→∞

1

T

∫ T

0
dtms(t)

=
1

2
−
∫ π/2

−π/2

dDk

(2π)D
λ2
k

1 − λ2
k

(4.111)

is shown in Fig. 4.14 for the dimensions D=1,2 and 3. As can be seen from this figure,
the HP-approach breaks down at the Heisenberg point ∆ = 1 in one and two dimensions,
leading to an unphysical divergence of the saturation value of the staggered magnetization.
In D = 3 the HP approach gives a finite saturation value of m̄ = 0.277 at the Heisenberg
point. In contrast to the 1D case, where we suspect from the analysis in the previous
sections that the staggered magnetization doesn’t saturate at a finite value at long times,
the saturation predicted by spin-wave theory in the 3D case is likely to be correct. Indeed,
within a thermalization scenario, the staggered magnetization should saturate at a value
corresponding to a thermal state at a temperature related to the energy of the initial state.
We will take a closer look at this scenario in the following section.

4.4.2 Comparison with a thermalization scenario in 3D

In the section above we have calculated the saturation value of the staggered magnetization
m̄ using the Holstein-Primakoff spin-wave theory. Now we want to see if m̄ can be inferred
from a thermalization scenario in the three dimensional case. As mentioned previously,
one naively expects that local observables should thermalize after a quantum quench.
Thus, after long evolution times t → ∞, the expectation values of local observables should
coincide with a thermal average at an effective temperature Teff = 1/βeff corresponding to
the energy of the initial state |ψ0〉. More precisely, the effective temperature is determined
by

〈ψ0|Ĥ|ψ0〉 !
=

1

Z
Tr
[

Ĥe−βeffĤ
]

. (4.112)

In the following we are going to compare the results for the saturation value of the staggered
magnetization m̄ after a quench from the Néel state with the thermal expectation value
at an effective temperature given by the equation above. All calculations are performed
within the framework of spin-wave theory in order to get comparable results.

As a first step we need to diagonalize the Hamiltonian (4.106) in order to calculate
the thermal averages. This can be achieved easily using a Bogoliubov transformation to a
new set of bosonic operators αk and βk, defined by

ak = αk cosh θk + β†−k
sinh θk (4.113)

b†−k = αk sinh θk + β†−k cosh θk . (4.114)
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Figure 4.15: Effective temperature βeff and staggered magnetization ms for the 3D antifer-
romagnetic Heisenberg model on a cubic lattice, calculated within spin-wave theory. Left:
βeff of the initial Néel state as a function of the anisotropy ∆ in units of J−1

z = (J∆)−1,
calculated using (4.112). Right: staggered magnetization as function of the anisotropy.
Blue dotted line: equilibrium value of ms at zero temperature; red solid line: equilibrium
value of ms at temperature βeff corresponding to the initial Néel state; black dashed line:
saturation value m̄ of the staggered magnetization after a quench from the Néel state
(4.111).

The angle θk is determined by
tanh 2θk = −λk (4.115)

and λk has been defined in Eq. (4.107). The diagonalized Hamiltonian reads

H = −zNJ∆

2
S(S+21−D)+zNJ∆S

∫ π/2

−π/2

dDk

(2π)D

√

1 − λ2
k

(

α†
kαk + β†kβk + 1

)

. (4.116)

At finite temperatures, the number of Bogoliubov quasiparticle excitations is determined
by the Bose-Einstein distribution function

〈α†
kαk〉β = 〈β†kβk〉β = nB(Ek) =

(

exp
[
β zSJ∆

√

1 − λ2
k

]
− 1

)−1

. (4.117)

Using this result it is straightforward to show, that the staggered magnetization in thermal
equilibrium is given by

〈ms〉β =
1

2
−
∫ π/2

−π/2

dDk

(2π)D

(

1 + 2nB(Ek)
√

1 − λ2
k

− 1

)

(4.118)

The (inverse) effective temperature βeff corresponding to the initial Néel state can now be
calculated using (4.112), (4.116), (4.117) and 〈ψNéel|H|ψNéel〉 = −zNJ∆S2/2. For the 3D
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case, where HP works reasonably well, the numerical results for the effective temperature
βeff and the staggered magnetization ms are shown in Fig. 4.15. It seems that in 3D a
thermalization scenario is indeed valid, at least as far as ms is concerned. Apart from a
small region close to the critical point ∆ = 1, the saturation value m̄ after the quench and
the equilibrium value ms at the effective temperature practically coincide.

4.5 Conclusions

In this chapter we have calculated the time evolution of the staggered magnetization in
spin-1/2 Heisenberg chains starting from an initial Néel state, using different methods
and approximations. We have conjectured that the staggered magnetization vanishes
exponentially (at least at intermediate time scales) for all finite anisotropies 0 < ∆ < ∞
in the XXZ- as well as in the XZ-chain and the corresponding relaxation time exhibits
a minimum close to or at the critical point, where a quantum phase transition to an
antiferromagnetically ordered state occurs. Furthermore, we have observed a crossover
from oscillating to non-oscillating behavior of the staggered magnetization in both models
as the critical point is crossed.

106



Appendix A

Regularization of the bare
interaction strength

In this appendix we show briefly, how the UV-divergence associated with the contact inter-
action V (x) = g0δ(x) is regularized1. This can be done by replacing the bare interaction
potential with the low energy limit of the scattering T-matrix of two particles in vacuum,
which is well defined even if the potential is singular. The T-matrix is related to the
scattering amplitude f via

T = −4π

m
f (A.1)

In the low energy limit k → 0, where the scattering amplitude is given by

f(k) =
1

−a−1 − ik
(A.2)

The T-matrix is thus simply related to the s-wave scattering amplitude

T
k→0−→ 4πa

m
(A.3)

The remaining task is to replace the bare interaction V with the T-matrix (A.3). This
can be done using the Lippmann-Schwinger equation for the T-matrix of two particles in
vacuum

T = V + V χ(0)T , (A.4)

which takes an arbitrary number of repeated scattering events between the two particles
into account. Here, χ(0) denotes the propagator of the two particles in vacuum. In case
of a contact interaction, the T matrix depends only on the total momentum and energy
of the two colliding particles. In particular we get

T (q) = g0 + g0

∫
d4k

(2π)4
G(q − k)G(k)T (q) (A.5)

1Usually, a more physical interaction potential with a finite range r0 would lead to a natural momentum
cutoff Λ ∼ r−1

0 .
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in momentum space, where G denotes the single-particle propagator. Taking the limit of
vanishing 4-momentum q → 0 one obtains

T (0) = g0 − g0 T (0)

∫
d3k

(2π)3
1

2εk
(A.6)

Using T (0) = 4πa
m from above, we finally arrive at

1

g0
=

m

4πa
−
∫

d3k

(2π)3
1

2εk
(A.7)

This expression can be used to remove the UV-divergences in all ill-defined expressions
that arise due to the use of the contact potential.
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Appendix B

BCS-BEC crossover at T = 0:
lifetime of fermionic excitations

Two types of low energy quasiparticle excitations are present in the BCS-BEC crossover
problem at temperatures below the superfluid transition, namely gapped fermionic single
particle excitations with a BCS-like dispersion and the collective Bogoliubov-Anderson
mode, which is a phonon excitation of the condensate with a linear dispersion relation. A
description of the BCS-BEC crossover in terms of effectively non-interacting quasiparticles
is only feasible, if the lifetime of these two excitation branches is sufficiently large. At
zero temperature, where no interaction with thermally excited quasiparticles takes place,
the only lifetime limiting process is the decay of a quasiparticle into a bunch of low
energy excitations. These processes need to obey the kinematic constraints from energy-
and momentum-conservation, however. For example, as long as the energy of a phonon
doesn’t exceed twice the fermionic excitation gap, it cannot decay into a fermionic particle-
and a hole-excitation. The only other process that can lead to a finite phonon lifetime is
Beliaev-damping [94], which is only possible if the non-linear part of the phonon dispersion
is positive, i.e. the dispersion bends slightly upward. Even if this is the case, Beliaev-
damping is negligible in the long-wavelength limit. In this appendix we want to ask the
question, to what extent the lifetime of the fermionic single particle excitations is limited
by the interactions. It is clear that the fermionic excitations have to be sharp at the
minimum of the dispersion, because at this point it is energetically not possible for the
fermionic excitations to decay.

Our starting point is the standard Hamiltonian of a two-component Fermi gas with an
attractive (ḡ < 0) contact interaction

H =
∑

k,σ

(εk − µ)nkσ +
ḡ

V

∑

q,k′,k

c†k+q↑c
†
−k↓c−k′↓ck′+q↑ . (B.1)

The superfluid correlations of the ground state are very well described by the reduced
BCS-Hamiltonian

HBCS =
∑

k,σ

(εk − µ)nkσ +
ḡ

V

∑

k′,k

c†k↑c
†
−k↓c−k′↓ck′↑ , (B.2)
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which only takes zero momentum pairs (i.e. q = 0) into account. Unfortunately, this
approximate Hamiltonian is not capable of describing the collective Bogoliubov-Anderson
mode, which is connected to the spontaneous U(1)-symmetry breaking of the superfluid
ground state. The Bogoliubov-Anderson mode is a sound mode that is related to density
fluctuations of the condensate, which cannot be described without including finite momen-
tum pairs. However, the reduced BCS-Hamiltonian has the advantage of being exactly
diagonalizable. In terms of the fermionic BCS-quasiparticle operators αkσ it takes the
form

HBCS = EBCS
0 +

∑

kσ

Ek α
†
kσαkσ , (B.3)

where Ek =
√

(εk − µ)2 + ∆2 denotes the standard BCS-quasiparticle dispersion. The
quasiparticle operators αkσ are related to the original fermionic operators via a Bogoliubov
transformation

ck↑ = ukαk↑ + vkα
†
−k↓ (B.4)

c−k↓ = −vkα†
k↑ + ukα−k↓ , (B.5)

where the coefficients are given by u2
k = (1 + εk−µ

Ek
)/2 and v2

k = 1 − u2
k. Note that the re-

duced BCS-Hamiltonian (B.2) cannot be mapped to (B.3) directly by simply applying the
Bogoliubov transformation. Indeed, a direct mapping is only possible if a mean field de-
composition of the interaction term in Eq. (B.2) is used beforehand. The interaction term
in the reduced BCS-Hamiltonian corresponds to an infinite range interaction, however,
thus the mean field treatment is essentially exact1.

In the following we are interested in the lifetime of fermionic excitations in a neutral,
superfluid Fermi system at zero temperature. The dispersion and the lifetime of single
particle excitations are determined by the poles of the Green’s function

Gσ(k, t− t′) = −i〈T
{
ckσ(t)c†kσ(t′)

}
〉 , (B.6)

where the time argument denotes operators in the Heisenberg picture. In order to incorpo-
rate the superfluid correlations of the ground state without having to deal with anomalous
Green’s functions, we use the Bogoliubov transformation that has been defined in Eqs.
(B.4) and (B.5) above, and express the fermionic Green’s function G from Eq. (B.6) in

terms of the BCS-quasiparticle Green’s functions Gσ(k, t− t′) = −i〈T
{
αkσ(t)α†

kσ(t′)
}
〉

Gσ(k, ω) = u2
k Gσ(k, ω) − v2

k G−σ(−k,−ω) (B.7)

This mapping directly relates the lifetime of fermionic excitations to the lifetime of BCS-
quasiparticles. Within a description in terms of the reduced BCS-Hamiltonian alone, the
lifetime of the BCS-quasiparticles (and thus also the lifetime of the fermionic excitations)
is obviously infinite, i.e. ImGR

σ (k, ω) = −πδ(ω − Ek). Together with Eq. (B.6) this leads
to the BCS-approximation for the fermionic spectral function, see Eq. (2.57).

1For a more rigorous analysis of this mapping see [95].
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The residual interaction

Hres = H −HBCS =
ḡ

V

∑

k′,k,q 6=0

c†
k+q↑c

†
−k↓c−k′↓ck′+q↑ , (B.8)

that has been neglected in BCS-theory, describes interactions between BCS-quasiparticles
and their coupling to the collective Bogoliubov-Anderson mode. When expressed in terms
of the Bogoliubov quasiparticle operators, the residual interaction gives rise to three dif-
ferent types of quasiparticle interactions Hres = H40 +H31 +H22

H40 =
1

V

∑

k,k′,q 6=0

V
(4,0)
k′kq

αk↑α−k−q↓α−k′↓αk′+q↑ + h.c. (B.9)

H31 =
1

V

∑

k,k′,q 6=0,σ

V
(3,1)
k′kq

α†
kσαk−qσα−k′↓αk′+q↑ + h.c. (B.10)

H22 =
1

V

∑

k,k′,q 6=0

[

V
(2,2),↑↓,1
k′kq

α†
q−k↑α

†
k↓αk′↓αq−k′↑

+V
(2,2),↑↓,2
k′kq α†

k↑α
†
−k′↓αq−k′↓αk−q↑ + V

(2,2),↑↑
k′kq α†

k+q↑α
†
k′↑αk′+q↑αk↑

+V
(2,2),↓↓
k′kq

α†
k+q↓α

†
k′↓αk′+q↓αk↓

]

(B.11)

corresponding to four-wave annihilation, quasiparticle decay and quasiparticle scattering.
The associated vertices are given by

V
(4,0)
k′kq

= g0 vk+qvkuk′uk′+q (B.12)

V
(3,1)
k′kq

= g0
(
vk′vk′+qvkuk−q − uk′uk′+qukvk−q

)
(B.13)

V
(2,2),↑↓,1
k′kq

= g0
(
uq−kukuk′uq−k′ + vq−kvkvk′vq−k′

)
(B.14)

V
(2,2),↑↓,2
k′kq

= g0
(
ukuk′−qvk′vk−q + vkvk′−quk′uk−q

)
(B.15)

V
(2,2),↑↑
k′kq

= g0 uk+quk′+qvkvk′ (B.16)

V
(2,2),↓↓
k′kq

= g0 vk+qvk′+qukuk′ (B.17)

The only process that limits the lifetime of BCS-quasiparticles at zero temperature is
quasiparticle decay. A simple second order perturbation theory calculation with H31

shows, that there is a broad range around the minimum of the dispersion relation where
the BCS-quasiparticle has an infinite lifetime. This is simply because the decay into
three quasiparticles is suppressed by energy and momentum conservation (i.e. the quasi-
particle has to have at least an initial energy of 3∆, otherwise the decay is impossible).
However, this is not the dominant contribution to the lifetime close to the dispersion
minimum. Indeed, it is possible that a BCS-quasiparticle emits a Bogoliubov-Anderson
phonon. This process has a much less restrictive phase space constraint than the decay
into three quasiparticles. In order to estimate this contribution, we need to know how the
BCS-quasiparticles couple to the collective Bogoliubov-Anderson mode. Quite generally,
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Figure B.1: Dominant contribution to the BCS-quasiparticle self-energy at T = 0.

collective modes show up as pole in the vertex function corresponding to the scattering of
two quasiparticles. In the case of the Bogoliubov-Anderson mode this can be understood
from the fact that a phonon can be considered as a bound state of two elementary excita-
tions with non-vanishing total momentum. As shown already by Galitskii [96], the vertex
function Γ(q, ω) for the scattering of an up- and a down- BCS-quasiparticle has a pole at
ω2 = c2sq

2 corresponding to the Bogoliubov-Anderson phonon mode, where cs is the sound
velocity. Within a diagrammatic formulation, the leading order self-energy contribution
corresponding to the emission of a Bogoliubov-Anderson phonon is shown in Fig. B.1.
Apart from combinatorial factors, the BCS-quasiparticle self-energy is thus given by

Σ↑(k, iωk) =
1

β3

∑

{ωn}

∫
d3q d3k′ d3k′′

(2π)9
V

(1,3)
−k′kq

V
(3,1)
−k′′kq

G↑(k − q, iωk − iωq)G↓(k
′, iωk′)

× G↑(q − k′, iωq − iωk′)Γ(q, iωq)G↓(k
′′, iωk′′)G↑(q− k′′, iωq − iωk′′) (B.18)

Evaluating the Matsubara summations, setting T = 0 and performing the analytic con-
tinuation iωk → ω + iδ, we obtain the retarded self-energy

ΣR
↑ (k, ω) =

∫
d3q d3k′ d3k′′

(2π)9
V

(1,3)
−k′kq

V
(3,1)
−k′′kq

Γ(q, ω − Ek−q + iδ)

× G↓(k
′, ω − Ek−q −Eq−k′ + iδ)G↓(k

′′, ω − Ek−q −Eq−k′′ + iδ) (B.19)

The important contribution to the imaginary part of the self energy comes from the pole
of the Vertex function Γ(q, ω) at ω = cs|q| and is given by

ImΣR
↑ (k, ω) =

∫
d3q d3k′ d3k′′

(2π)9
V

(1,3)
−k′kqV

(3,1)
−k′′kq ZBA(q) δ(ω −Ek−q − cs|q|)

× ReG↓(k
′, ω − Ek−q − Eq−k′)ReG↓(k

′′, ω − Ek−q −Eq−k′′) (B.20)

where ZBA(q) is the quasiparticle weight of the Bogoliubov-Anderson mode and we have
neglected the terms originating from the imaginary parts of the two Green’s functions,
because they give rise to the stronger 3∆ constraint that has been discussed above. As-
suming that the real part of the self-energy is small, we evaluate the self-energy on-shell
at ω = Ek and extract from (B.20) the – expected – kinematic constraint

Ek = Ek−q + cs|q| . (B.21)
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For fermionic excitations with an energy close to the dispersion minimum it is clear that
only the emission of long wavelength (i.e. low-energy) phonons is possible. Expanding the
kinematic constraint for small phonon momenta we get the condition

|∇Ek| > cs (B.22)

for the emission of a phonon, i.e. the emission of a phonon is impossible as long as the
group velocity |∂kEk| of the quasiparticle excitations is smaller than the sound velocity.
Thus, the spectral function of the fermionic single-particle excitations exhibits a sharp
peak in the interval

|k − kF |
kF

<
cs

2vF

∆

εF
(B.23)

around the dispersion minimum.
Apart from this region close to the dispersion minimum, the fermionic excitations

have a finite liftime which scales as ∼ (kFa)
2 in the weak coupling limit. This lifetime

broadening has observable consequences on the rf-spectra. Indeed, the sharpness of the
onset of the rf-spectra is determined by the quasiparticle width at k = 0. A more detailed
discussion of this issue can be found in Ref. [28].
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Appendix C

The Cooper problem in a
spin-polarized Fermi gas

In this appendix we briefly analyze the Cooper problem of two interacting Fermions in a
spin-polarized environment. Suppose we have a spin-polarized Fermi sea of noninteracting
up-Fermions and we add one more up-Fermion and one down-Fermion, which are inter-
acting via a pseudopotential with interaction strength g = 4πa/m. Due to Pauli blocking,
the up-Fermion has to be added at a momentum |k| > kF , where kF = (6π2n↑)1/3 denotes
the Fermi-momentum of the up-Fermi-sea. The down-Fermion can be added at arbitrary
momenta, however. In the non-interacting limit it is thus energetically favorable to add
the down-Fermion at k↓ = 0 and the up-Fermion at |k↑| = kF (without loss of generality
we add the up-Fermion at momentum k↑ = kF ez). Note that this ’Cooper-pair’ has a
total momentum of Q = k↑ + k↓ = kF ez per construction. In the center of mass frame,
the Schrödinger equation for the ground state energy of the two interacting Fermions takes
the form

1

g0
=

1

V

∑

q

1

Er − 2εq
(C.1)

with q = (k↑ − k↓)/2 as the relative momentum between the two Fermions. Here Er is
the ground state energy in the CM-frame (i.e. without the kinetic energy of the center
of mass motion) and εq = q2/(2m) denotes the dispersion relation of the Fermions. The
bare interaction strength g0 is regularized in the standard form via (A.7).

In the usual Cooper problem, the q-sum in (C.1) is restricted to |q| < kF due to the
presence of a Fermi sea for both Fermion species. In the case of a spin-polarized up-
Fermi sea, virtual scattering processes are restricted to |k↑| > kF and we get the following
condition for the q-sum in (C.1)

|k↑| =

∣
∣
∣
∣

kF

2
ez + q

∣
∣
∣
∣
> kF . (C.2)

The Schrödinger equation (C.1) can thus be written as

1

g0
=

1

V

∑

|p|>kF

1

Er − 2εp−ezkF /2
. (C.3)
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Figure C.1: Blue line: ground-state energy of a Cooper-pair in a spin polarized Fermi sea
in units of εF , as function of the inverse coupling strength (kFa)

−1. The dashed red line
marks the two-particle bound-state energy Eb = −1/(ma2) in the absence of a Fermi sea.

In fig. C.1 we plot the ground state energy of the Cooper pair, i.e. the numerical solution
of (C.3) plus the kinetic energy of the center of mass motion, as function of v = (kF a)

−1.
For v < π−1 the ground state energy is the same as in the non-interacting case. For
v > π−1, however, the two Fermions form a two-particle bound state. Naively this should
happen when the binding energy of the two particle bound state is larger than the Fermi
energy |Eb| = (ma2)−1 > εF , , i.e. v > 1/

√
2, because in this case it is energetically

favorable to lift the down-Fermion to an energy above εF and form a bound state in a
relative (q,−q)-configuration with zero total momentum. This estimate is in reasonable
agreement with the result for the position of the critical point M from chapter 3, where
we have found vM ≃ 0.84. For the case considered in this appendix, however, the situation
is a little bit different because the total momentum of the pair is finite and conserved.

Now it is also clear why molecule formation is more difficult in the presence of a
polarized Fermi sea than in its absence. Indeed, the minority Fermion has to overcome
an energy gap ∼ εF in order to form a bound state with one of the majority Fermions.
Energetically, this process is favorable only if the binding energy is larger then the energy
gap.
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Appendix D

Papers

On the following pages we reprint the four most relevant of the papers that were published
in the context of this thesis:

• M. Punk and W. Zwerger
”Theory of rf-Spectroscopy of Strongly Interacting Fermions”
Phys. Rev. Lett. 99, 170404 (2007).

• M. Punk, P.T. Dumitrescu, and W. Zwerger
”Polaron-to-molecule transition in a strongly imbalanced Fermi gas”
Phys. Rev. A 80, 053605 (2009).

• R. Haussmann, M. Punk, and W. Zwerger
Spectral functions and rf-response of ultracold fermionic atoms
Phys. Rev. A 80, 063612 (2009).

• P. Barmettler, M. Punk, V. Gritsev, E. Demler, and E. Altman
”Relaxation of Antiferromagnetic Order in Spin-1/2 Chains Following a Quantum
Quench”
Phys. Rev. Lett. 102, 130603 (2009).
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