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Zusammenfassung

Die vorliegende Dissertation befasst sich mit verschiedenen Aspekten der Vielteilchen-
physik von ultrakalten Quantengasen. Der erste Teil behandelt die theoretische Basis
der Radio-Frequenz-Spektroskopie von ultrakalten Fermigasen in der Ndhe von Feshbach-
Resonanzen. Konkret werden Spektralfunktionen und die daraus folgenden RF-Spektren
von stark wechselwirkenden Fermigasen am Unitaritdtspunkt berechnet. Weiters wird der
Polaron-Molekiil-Ubergang mit Hilfe von Variationsmethoden untersucht. Der kritische
Wert der Wechselwirkungsstirke des Ubergangs wird berechnet und mit experimentellen
Ergebnissen verglichen. Der letzte Abschnitt beschéftigt sich mit der Nichtgleichgewichts-
dynamik von Heisenberg-Spinketten. Hier wird die unitare Zeitentwicklung eines Néel-
Zustands analysiert. Der antiferromagnetische Ordnungsparameter relaxiert im Allge-
meinen exponentiell, wobei die zugehorige Relaxationszeit am isotropen Heisenbergpunkt
minimal ist.

Abstract

This thesis is concerned with different aspects of many-particle-physics in the context of
ultracold quantum gases. The first part deals with the theoretical basis of radio-frequency-
spectroscopy of ultracold Fermi gases near Feshbach-resonances. In particular, we calcu-
late spectral functions and the corresponding rf-spectra of strongly interacting Fermi gases
at unitarity. Furthermore, we study the polaron-to-molecule transition using variational
methods. We calculate the critical value of the interaction strength and compare it to
experimental results. The last part deals with non-equilibrium dynamics of Heisenberg-
spin-chains, where the unitary time evolution of a Néel-state is analyzed. Quite generally,
the antiferromagnetic order parameter relaxes exponentially and the corresponding relax-
ation time exhibits a minimum at the isotropic Heisenberg point.
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Chapter 1

Introduction

Starting with the first experimental realization of Bose-Einstein condensates (BEC) with
lasercooled atomic vapors in 1995 [1, 2] and the subsequent generation of degenerate Fermi
gases in 1999 [3], the physics of ultracold atomic quantum gases evolved rapidly in the last
decade, triggering lots of experimental and theoretical work in this field'. In particular, two
developments have had a tremendous impact. First of all, the use of Feshbach resonances
gave experimentalists a unique tool, making it possible to tune the interaction strength
between atoms in cold gases. Using this method, the BCS-BEC crossover from weakly
bound Cooper pairs to a Bose-Einstein condensate of tightly bound bosonic molecules was
realized for the first time with ultracold atomic Fermi gases. Due to the importance of the
BCS-BEC crossover problem for a large part of this thesis, we will briefly review it below.

The second major achievement was the implementation of optical lattices, which allows
experimentalists to study atomic gases in periodic potentials that are ubiquitous in usual
solid state systems. Indeed, cold gases in optical lattices almost perfectly realize Hubbard
Hamiltonians, thereby enabling physicists to study strongly correlated quantum systems
using the tools of atomic physics. As a bonus, the parameters of the Hubbard model can
be tuned easily by adjusting the optical lattice. From this point of view, cold gases can be
considered as quantum simulators for basic many-body Hamiltonians in condensed matter
physics, which have no direct realization in nature and are hard to tackle theoretically.

Ultracold atomic gases are particularly interesting, because they are very clean systems,
allow for a high degree of experimental control and offer the ability to study relatively sim-
ple quantum mechanical systems, where a direct comparison between experimental results
and theoretical ab initio calculations is feasible. All these nice features and advantages
come at some cost, however. In particular, the arsenal of experimental tools to probe the
properties of ultracold atomic gases is much smaller than in usual solid state physics and
many measurement methods require to release the atomic cloud from the trap, thereby
destroying the system. Nevertheless, many striking experiments have already shown the
versatility and the vast range of potential applications of ultracold atomic gases, and there
is much more to be expected in the upcoming years.

In this theoretical thesis we consider problems that are closely connected to exper-

'For a review see e.g. [4] and [5].



1. INTRODUCTION

iments which have been performed recently, or are about to be carried out in the near
future. Thus, many of the facets of ultracold gases that have been mentioned above will
play a role in the subsequent chapters. In particular, Feshbach resonances are a necessary
ingredient in the first two chapters, where some aspects of the BCS-BEC crossover in ul-
tracold Fermi gases are discussed. The first chapter also deals with theoretical aspects of
a particular method to measure pairing correlations in cold gases, which has been applied
with much success in recent years. Finally, optical lattices play an important role in the
last chapter of this thesis, where quench problems in Heisenberg spin-chains are studied.

BCS-BEC crossover in ultracold atomic gases

It is known since the seminal work of Bardeen, Cooper and Shrieffer (BCS) in 1957 [6], that
a Fermi gas with weak attractive interactions has an instability towards pair formation
and exhibits a phase transition to a superfluid state below a critical temperature 7T,.. In
a simple picture, this phase transition can be understood as Bose-Einstein condensation
(BEC) of bosonic Cooper pairs, although one has to keep in mind that Cooper pairs are
far from being local molecules. Now one can ask what happens, if the interactions are
cranked up in such a way, that two Fermions form a tightly bound molecule instead of a
weakly bound Cooper pair. The first theoretical investigations of this BCS-BEC crossover
scenario were conducted by Eagles [7] and Leggett [8], using the BCS ground state as
a variational ansatz for the whole crossover regime. Although the BCS-BEC crossover
problem was of purely theoretical interest at that time, it regained lots of theoretical
attention due to the possibility of its experimental realization in ultracold atomic gases
with the help of Feshbach resonances.

In experiments with cold Fermi gases usually the isotopes 6Li or *°K are used. These
neutral alkaline atoms typically interact via a Lennard-Jones potential, i.e. at large dis-
tances the attractive interaction is governed by van der Waals forces, and the potential
well supports on the order of ~ 100 bound states. In the ultracold limit, however, the
scattering properties are determined solely by the position of the energetically highest
bound state. In particular, the scattering amplitude of two atoms in the ultracold limit,
i.e. at small relative momenta, takes the form?

1

flk—=0) === —ik+ O(k?)’

(1.1)

where the only parameter that enters the problem is the s-wave scattering length a, which is
only sensitive to the position of the bound state that is closest to the continuum threshold.
In the ultracold limit the complicated Lennard-Jones potential can thus be replaced with
a pseudopotential (we set i = 1 throughout)

V(x) = 4%“ 5(x) | (1.2)

2The validity of the low momentum expansion of the scattering amplitude actually defines the ultracold
limit.



which captures the physics of the uppermost bound state in the van der Waals potential
and gives rise to a scattering amplitude of the form (1.1) after regularization®. For negative
scattering lengths a < 0 the interaction is attractive, whereas positive scattering lengths
a > 0 lead to a repulsive interaction. One has to keep in mind however, that a two-particle
bound state exists only for repulsive interactions a > 0. Indeed, the poles of the scattering
amplitude in the upper half complex plane determine the energy of two-body bound states
[10]. For our low energy scattering amplitude (1.1) we get a pole in the UHP for positive
scattering lengths a > 0, corresponding to a bound state energy Ej, = —(ma?)~!. Due
to the s-wave nature of the contact potential (1.2) it is clear that only Fermions in two
different internal pseudo-spin states can interact, because of the Pauli principle. In the
context of cold atomic gases these pseudo spin states correspond to two different hyperfine
states of the atoms.

Feshbach resonances are scattering resonances, where a two-body bound state exists in
a closed scattering channel that corresponds to a different hyperfine state configuration of
the two scattering atoms. Due to the hyperfine interaction of the atoms at short distances,
the open channel couples to the closed channel. If the energy of a true bound state in the
closed channel coincides with the incident energy of the two atoms in the open channel, a
scattering resonance appears and the scattering length diverges. Because of the different
magnetic moments of the hyperfine states in the open and closed channels, the relative
position of the bound state in the closed channel can be tuned with respect to the open
channel by applying a magnetic field. This gives rise to a magnetic field dependence of
the scattering length of the form

a(B) = ay, <1 - %) , (13)

where By and AB parameterize the position and the width of the resonance. ay, is the
background scattering length, which is determined by the position of the uppermost bound
state in the open channel.

The BCS-BEC crossover problem can now be understood as follows. For weak attrac-
tive interactions @ — 0~ (the BCS-limit) two Fermions in different pseudo-spin states form
a Cooper pair and the Fermi gas becomes unstable below a critical temperature 7T,.. The
typical pair radius ¢ is determined by the BCS energy-gap via & ~ A~ ~ exp((krla|)™1)
and is much larger than the typical interparticle spacing & > k;l, which is set by the
Fermi momentum kp. Note that the Cooper pair is not a true two-particle bound state,
but a many-body effect. Indeed, Cooper pairing is only possible in the presence of a Fermi
sea, which is obvious from the fact that the gap vanishes as kr — 0. Now, if the attrac-
tive interaction is increased, the pair radius £ gets smaller. At resonance a — 400 it is
on the order of the interparticle spacing £ ~ k‘}l. After crossing the resonance, a true
two-body bound state appears in the problem at positive scattering lengths a > 0, with
a bound state energy Ej, = —(ma?)~!. Going further away from the resonance torwards
the BEC-limit kpa < 1, where |Ep| > ep, two Fermions in different pseudo-spin states
will form a tightly bound molecule with a typical pair radius & ~ a that is much smaller

3In the literature the regularized contact potential is known as ’Fermi pseudo-potential’, see e.g. [9].
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1. INTRODUCTION

than the interparticle spacing £ < k‘}l. In this limit the bosonic molecules will form a
Bose-Einstein condensate below a critical temperature.

The so called unitary point, where the scattering length diverges a — +o0 and a two
particle bound state is just about to form, is particularly interesting from a theoretical
point of view. Here, the only remaining length and energy scale is given by the Fermi
momentum and the Fermi energy, because the divergent scattering length has to drop out
of all observables. All thermodynamic properties of the unitary gas are thus determined
by universal numbers times the dimensionful quantities built from the Fermi energy and
the Fermi momentum. Furthermore, the theoretical description of the unitary Fermi
gas is a highly non-trivial problem, because there is no small parameter that can be
used for a controlled expansion. Much effort has been put into the determination of the
universal parameters at unitarity in recent years, both from the theoretical as well as the
experimental side (see e.g. [4]).

The BCS-BEC crossover for the case of an equal number of Fermions in both pseudo-
spin states (ny = n|) is by now a rather well understood problem. In particular, the
topology of the phase diagram is simple: there are only two phases — normal and superfluid
—and the phase transition between these two happens at a critical temperature that evolves
smoothly from the BCS- to the BEC-limit. The situation changes drastically, however, if
a population imbalance (ny > n|) is imposed on the system. In this case not even the
topology of the phase diagram at zero temperature is known, let alone the precise positions
of the critical points. For the imbalanced gas reliable results are only available for the two
weakly interacting BCS- and BEC-limits. A detailed discussion of some aspects of the
phase diagram for the BCS-BEC crossover with a population imbalance can be found in
Sec. 2.1.

Outline

The outline of this thesis is as follows. The first chapter deals with rf-spectroscopy in
ultracold Fermi gases. This measurement method is used widely in order to study pairing
correlations in these systems. After giving an overview on the theoretical basis of rf-
spectroscopy in ultracold gases, we calculate the rf-response of imbalanced Fermi gases
using a non-selfconsistent T-matrix approach. In particular we focus on Fermions in the
normal state at unitarity, where recent measurements observed unexpected line-shifts.

In the second chapter we discuss the BCS-BEC crossover in the limit of an extreme
population imbalance. In particular we study the (N + 1)-particle system of a single mi-
nority atom immersed in a Fermi sea of majority atoms, interacting via a s-wave contact
potential. This problem has some interesting features, such as a quantum phase transi-
tion from a state with polaronic binding to a state where the minority Fermion forms a
molecular two-body bound state with one of the majority atoms. Building on previous
work by Chevy [11] who studied the polaronic part of the (N + 1)-body problem using a
variational ansatz, we construct a complementary variational wave function that describes
the molecular side of the transition and determine the position of the critical point of the
polaron to molecule transition.

The third chapter deals with quantum quench problems in one dimensional Heisenberg

4



spin chains. Here we study the unitary time evolution of a Néel ordered initial state and
determine the relaxation timescales by calculating the time evolution of the staggered mag-
netization using different techniques. These include time dependent mean fields, numerical
simulations, exactly solvable models and effective low energy theories.
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Chapter 2

RF-spectroscopy of ultracold
atomic Fermi gases

The method of rf-spectroscopy was introduced in 2004 by the group of R. Grimm in
Innsbruck as an experimental tool to observe effects of pairing in attractively interacting,
ultracold, two-component Fermi gases [12]. In ultracold gases, the different pseudo-spin
species are usually represented by different hyperfine states of the atoms. The idea of
rf-spectroscopy is to use an external rf-field to drive the Rabi-transition between two
hyperfine states in order to transfer atoms from one of the two occupied states of the
interacting Fermi gas to an initially empty hyperfine state. If the Fermions in the initial
state form molecules, it is clear that the external rf-field has to provide the binding energy
in order to break the molecule and transfer one of the atoms to a different hyperfine
state. Thus, the rf-spectrum is shifted to positive frequencies compared to the bare Rabi-

transition frequency.

At the time when the first rf-measurements of balanced Fermi gases' came up, the

observation of a shifted line in the rf-spectrum was thought to be an unambiguous signa-
ture of Cooper-pairing and thus of superfluidity in ultracold Fermi gases. The situation
changed in 2007, however, when the first rf-measurements of imbalanced Fermi gases were
performed in the group of W. Ketterle at MIT [13]. Indeed, for a sufficiently large mis-
match of the Fermi energies of the two fermionic species, it is known that superfluidity
is lost and the Fermi gas enters a normal state. This is sometimes called the Pauli pair-
breaking mechanism or the Clogston-Chandrasekhar limit [14, 15]. The experiments of the
Ketterle group have shown that the rf-spectra of the interacting, imbalanced Fermi gas in
the normal state are shifted by almost the same amount as in the paired superfluid state?.
Thus, the presence of a shifted rf-spectrum is not a direct indication of superfluidity in
ultracold atomic gases.

The interpretation of the early rf-experiments in Innsbruck was further complicated by

!The term ”balanced” refers to the fact, that the number of atoms in the two pseudo-spin states is
equal, i.e. ny = n|. For imbalanced Fermi gases we use the convention that ny > n|.
2In this experiment, superfluidity was unambiguously verified by the creation of vortices.

7



2. RF-SPECTROSCOPY OF ULTRACOLD ATOMIC FERMI GASES

the presence of final state interactions®. Indeed, the third, initially empty hyperfine state
also interacts with the other two and thus the rf-spectra are not a probe of the interacting
two-component Fermi system alone. Early theoretical interpretations of the experimental
data neglected the strong final state interactions completely [16, 17].

The motivation for the work presented in this chapter is two-fold. First of all, our
aim is to get a better understanding of the influence of final state interactions on the
rf-spectra. This is particularly important in order to obtain quantitative information from
the rf-measurements about the system of interest. The second motivation is to provide
a theoretical basis for the rf-measurements in the normal phase of the imbalanced Fermi
gas from the Ketterle group.

The outline of this chapter is as follows. In Sec. 2.1 we briefly discuss the BCS-BEC
crossover in imbalanced Fermi gases. In particular, we focus on qualitative aspects of the
phase diagram. The theory of rf-spectroscopy in ultracold quantum gases will be examined
in Sec. 2.2. In the last section 2.3 we present a many-body theory for the normal state
of the imbalanced Fermi gas and use it to calculate the rf-spectra at unitarity and zero
temperature.

2.1 BCS-BEC crossover in imbalanced Fermi gases

The BCS-BEC crossover in balanced Fermi gases, i.e. with an equal number of up- and
down-spins, is by now a rather well understood problem. The situation is different how-
ever, if a population imbalance between the two Fermion species is introduced. For strong
interactions close to the unitarity limit a plethora of new possible phases have been pre-
dicted (see [18] and references therein).

In the following we discuss qualitative aspects of the phase diagram, which are essen-
tially based on extrapolations from the weakly interacting limits. We start from a single
channel channel model for the Feshbach resonance [4], describing a two-component Fermi
gas with a contact interaction V(x) = 4mwa/m §(z). The dimensionless inverse interaction
parameter is v = (kpa)~!, where a is the s-wave scattering length and we define kr as
the Fermi momentum of the fully polarized gas at the total density, i.e. k3 = 672n. The
corresponding Fermi energy is given by ep = k‘% /(2m). The interaction potential is attrac-
tive for negative scattering lengths and supports a two-particle bound state with binding
energy Ej, = —(ma?)~! for positive scattering lengths.

For the discussion of the phase diagram of the imbalanced Fermi gas at zero temper-
ature, we choose an ensemble with fixed total particle number N = N; + N| but with a
fluctuating relative particle number 6N = Ny — N|. This can be achieved by introducing
an effective magnetic field A that couples to the two-different spin-states o =T, | in the
standard form

' == (N - M) (2.1)

i.e. h can be thought of as a ’Zeeman’ field that couples to the ’spin’ of the atoms
and favors a finite population imbalance. At a fixed total density n = ny + n|, the

3In recent rf-experiments the hyperfine states are chosen in such a way, that the final state interactions
are small and can be neglected.



2.1. BCS-BEC CROSSOVER IN IMBALANCED FERMI GASES

ground state energy wu(n,h) per volume is then a function of n and h. It determines
the chemical potentials of the majority and minority species from py| = pu £ h where
= Ou(n,h)/On is the average chemical potential. In addition, it also fixes the imbalance
from dn = ny —n| = —0u(n, h)/0h.

At zero temperature, there are two critical fields h.(v) and hg(v) that separate two
simple limiting phases from a regime, in which nontrivial ground states are expected: the
lower critical field h. is defined by a vanishing population imbalance ny = n| for h < h,
and determines the boundary of the balanced superfluid phase. The upper critical field
hs, which will be called ’saturation field” in the following, is defined by the condition of
complete polarization for h > hs, i.e. n) = 0 and ny = n. Since a single component
Fermi system does not interact due to the s-wave nature of the interaction potential in
the ultracold limit, the regime h > h, corresponds to an ideal gas of majority Fermions,
i.e. it is a fully polarized, normal state.

The asymptotic form of the two critical fields h. and hs in the limit of vanishing
interactions (i.e. the BCS-limit for v — —oo and the BEC-limit for v — +o00) can be
inferred from a simple mean field analysis. We start by considering the two critical fields in
the BCS-limit. In this regime the attractively interacting Fermi gas can be described very
well within BCS-theory and the critical field h. has been calculated already by Clogston

[14] and Chandrasekhar [15]

he(v — —o0) = % (2.2)

where A is the BCS gap parameter. It is important to note that the phase transition
from the superfluid to the normal state at h. is a first order transition in the BCS regime,
because the polarization dn/n jumps from zero to a non-zero value*. The leading order
behavior of the saturation field hg in the BCS-limit can be obtained by calculating the
Zeeman field above which a non-interacting Fermi gas is fully polarized. This occurs right
at p = 0, i.e. at h = p = py/2. The next-to-leading order correction can be obtained
from mean-field theory. Indeed, at hs the change in the chemical potential of the minority
Fermions due to the interaction with the majority Fermi sea is given by the mean field
value o) = gn. The asymptotics of the saturation field in the BCS-limit is thus given by

ho(v — —00) = ex <% + 3%‘00 +Ow?) (2.3)

where ep is the Fermi energy of the fully polarized majority gas, as defined above.

In order to obtain the asymptotics of the two critical fields in the BEC-limit v —
400, we formulate a simple mean field theory of bosonic molecules interacting with each
other and with the excess Fermions. In a Landau expansion, the Landau free-energy u
per volume for the bosonic molecules and the excess Fermions up to leading order in
the interaction, as a function of the total density n = n; + n|, the density imbalance
on = n¢ +n| and the magnetic field h is given by
n—on n—on Gad (n — 6n)?

+ Jad— on + R hén (2.4)

4We note that within a grand canonical description the total particle density n also jumps at the critical
field he, c.f. [19].

u(n,dn,h) = g epsOn + Ey




2. RF-SPECTROSCOPY OF ULTRACOLD ATOMIC FERMI GASES

as the sum of the Fermi energy of the excess Fermions, the binding energy of the molecules
and the interaction energies. The atom-dimer interaction strength g,q = 3magq/m and
the dimer-dimer interaction strength g4 = 2magq/m can be expressed in terms of the
corresponding scattering lengths, the exact values of which are given by a.,q = 1.18a
and agq = 0.6a [20]. The last term describes the coupling to the magnetic field h. The
true ground state energy density wu(n,h) is determined by the minimum of the Landau
free-energy u(n,dn,h) with respect to the density imbalance dn. Before proceeding it is
convenient to rewrite Eq. (2.4) in dimensionless form

~ B ~ B 2 B
Agq (N —6n)on  agqg (n—on) _hion (2.5)

EF 5

2/3
uln, n, h) _ 3 (5—n) on — v} (n—on)+

n 2mv n 127v n

Here, the energies are measured again in units of the Fermi energy of a fully polarized gas
at the total density ep = (672n)%/3/(2m) and the tilde denotes dimensionless quantities,
i.e. Ggq = aqq/a and h = h/ep. The minimum of the Landau free-energy is determined by
the equation

O(u/er) _ (5_n)2/3+ 2 +@<1_25_n) +%<5_n —1) —h i 0. (2.6)

oon n 27wV n 6mv \ n

From this expression we can calculate the asymptotics of the two critical fields h. and hg
in the BEC-limit. The critical field h. is defined by the condition of a vanishing imbalance
on = 0. Plugging this into Eq. (2.6) we obtain

he(v — 00) = e <v2 + ?1?] [%d - %D + O™ (2.7)

On the other hand, the saturation field hg is determined by the condition of a fully polarized
gas on = n. Together with Eq. (2.6) this leads to

hs(v — 00) = ep <02 +1-— aad/a> +0(w™?) (2.8)
2mv
Apart from the interaction corrections the critical field h. is thus given by minus one half
of the molecular binding energy Ej, whereas the saturation field is higher by er due to the
presence of the excess Fermi sea. At unitarity, the values of h. and hs can be determined
using variational and Monte-Carlo methods. As will be shown in chapter 3, the saturation
field at unitarity is given by hg(v — 00) ~ 0.80ep. This value was obtained by Chevy [11]
using a variational ansatz and has been confirmed by Monte-Carlo calculations [22, 23, 24].
The critical field he(v — 00) =~ 0.26cF at unitarity was calculated by Lobo et al. [22]. It is
important to note that the range between h. and hg at unitarity is much larger than that
found from a simple mean field analysis, which gives h. ~ 0.32ep and hs = 0.5ep [25].
The qualitative structure of the zero temperature phase diagram as a function of the
interaction parameter v = 1/(kpa) and the effective magnetic field h in units of the bare
Fermi energy e of the fully polarized gas is shown in Fig. 2.1. This phase diagram is
simply constructed by extrapolating the asymptotics of the critical fields that have been
derived above. Below h., the system is in the balanced superfluid phase (SFpj), where

10



2.1. BCS-BEC CROSSOVER IN IMBALANCED FERMI GASES

h/eg

-0.5 0 0.5 1 1.5
(kea)”

Figure 2.1: Qualitative phase diagram of the imbalanced Fermi gas as a function of the
inverse coupling strength (kra)~! and the effective magnetic field 2/ep. The thick line
indicates a first order phase transition and the different phases are labeled as in [21], i.e.
Npp: fully polarized normal phase, Npp: partially polarized normal phase, SFp: balanced
superfluid, SF},: polarized superfluid. The points M and S are discussed in the text. The
precise structure of the phase diagram in the nontrivial regime h, < h < hg is likely to
contain unconventional superfluid phases in addition to the Ny, and SF}, phase, which are
not shown in our figure. Apart from the N, and the SF}, phase, possible phases in the
region between h. and h, that have been discussed in the literature are the FFLO-phase,
the Sarma- or breached pair phase and various phase separated combinations thereof (for
a review, see [18]). Moreover, the Ny, and SF}, phases are unstable with respect to p-wave
pairing, at least in the weakly interacting limits.
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2. RF-SPECTROSCOPY OF ULTRACOLD ATOMIC FERMI GASES

the densities of both species are equal ny = n|. In the BCS-regime, the system enters a
partially polarized (ny > n|), normal Fermi liquid phase (INV,,) above h.. As mentioned
above, this phase transition is of first order, because the polarization jumps from zero to a
nonzero value. At unitarity, this first order transition to a normal state has been observed
in experiments [26] at finite temperature. By contrast, the imbalanced Fermi gas is still
superfluid above h. in the BEC-regime (v — +o0). In this polarized superfluid phase
(SF,) all minority atoms are bound to bosonic molecules with majority atoms and are
superfluid at zero temperature, whereas the excess majority atoms form a Fermi sea. The
transition from SF, to SFy at h. in the BEC-regime is a continuous Lifshitz transition
where the Fermi surface of the excess majority atoms vanishes, thus there has to be a
splitting point .S along the h. line, where the first order transition on the BCS-side turns
into a second order transition in the BEC-regime. Furthermore, this Lifshitz transition
from SF), to SFy is only sharp at zero temperature and turns into a smooth crossover at
finite temperature. The nature of the phase diagram near the splitting point S has been
discussed by Son and Stephanov [27] using an effective field theory. They have shown that
the location of the point S is related to the shape of the dispersion relation of the fermionic
excitations. In particular, the dispersion relation has its minimum at zero momentum for
v > vg and at nonzero momenta for v < vg. Within mean field theory, where the fermionic
excitation spectrum has the usual BCS-form Fy = \/(ex — )2 + A2, the splitting point
S is thus related to the zero crossing of the chemical potential u, which happens on the
BEC-side of the resonance at v ~ 0.44 in mean-field theory. The precise location of the
splitting point S has been determined recently by us from a calculation of the fermionic
excitation spectrum along the BCS-BEC crossover of the balanced gas [28]. It is located
at vg ~ 0.63 and h.(vs) = A ~ 0.6ep, at considerably larger coupling strengths than
predicted by mean-field theory (note the factor 2!/3-difference with the result in Ref. [28],
which is due to the fact that the up-spin Fermi wave vector and not that of the balanced
case appears in the definition of our coupling constant v).

The point M along the saturation field line hy separates a regime where a single down-
spin is a well defined fermionic quasiparticle from one, in which it is bound to a molecule
with one of the majority Fermions. This critical point will be discussed extensively in
chapter 3, where the (N + 1)-particle problem that occurs infinitesimally below hg is
considered in detail. For a finite density of minority atoms, the point M appears as an
endpoint of a line that separates a phase with a finite minority Fermi surface volume
1) # 0 to its left from one with 2] = 0 on the right side®. Using the generalized Luttinger
theorem derived by Sachdev and Yang [29], the expected polarized superfluid (SF,) phase
on the molecular side has a condensate of ’dimers’ plus an up-spin Fermi sea, whose volume
Q = (2m)3(ny — n)) is set by the imbalance. This is consistent with the naive picture
that the density of unpaired majority atoms is simply ny — n| even though the ’dimers’
in the vicinity of the transition are far from local (T, |)-pairs®. This part of the phase

5We note that the minority Fermi surface volume €| vanishes also along the hs-line on the BCS side
to the left of M. This is again a continuous Lifshitz transition, which is sharp at zero temperature only.
By contrast, the transition between the normal and the superfluid state at finite minority concentrations
below the point M remains a phase transition at finite temperature.

5We note that the polarized superfluid phase is unstable with respect to p-wave pairing due to the
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2.1. BCS-BEC CROSSOVER IN IMBALANCED FERMI GASES

diagram has been explored experimentally by Shin et al. [31]. They find that the critical
polarization (én/n)., below which the imblanced gas is superfluid, approaches unity at an
interaction strength v = 0.74. This point can be identified with the point M in our phase
diagram in Fig. 2.1.

A nontrivial issue that has been neglected in the discussion so far is the question
whether a gas of polarons or bound molecules is indeed stable at low but finite minority
densities n|. On the molecular side, the phase immediately below the saturation field
line hy(v) is expected to be a superfluid of (T, ])-pairs at a very low density n; — 0
immersed in an up-spin Fermi sea. The fact that the atom-dimer repulsion a,q = 1.18a
is much larger than the dimer-dimer repulsion a4y = 0.6 @, however indicates that a low
density gas of molecules tends to phase separate from the up-spin Fermi gas. This phase
separation has indeed been found from an extended BCS-description of the BCS-BEC
crossover in an imbalanced gas [19, 25, 32, 33]. It has recently been seen also in the
variational Monte Carlo calculations by Pilati and Giorgini [21]. Their results indicate
that a section between vy =~ 0.73 and a triple point at vy ~ 1.7 along the h,-line is
actually a first order line, where the polarized superfluid disappears with a finite jump in
density as the effective field h increases through hs. The calculations in chapter 3 below
show that the point M lies at vy; ~ 0.84, right in the interval between vy and vy, thus
the polaron to molecule transition would not be accessible at any finite minority density,
at least not in an equilibrium situation. Clearly, our variational calculation for the single
minority atom problem in chapter 3 cannot address the question of phase separation. An
unexpected feature of the hs-line in the presence of phase separation is the fact that the
transition across hg is predicted to be continuous up to vy, first order between vy and
vr and continuous again for v > vp. The rather large value vy ~ 1.7 up to which phase
separation is predicted also appears surprising. Indeed, in the region around v = vp ~ 1.7
our simple mean field model (2.5) for the molecules and the excess Fermions should be
valid. In this model phase separation between a polarized superfluid phase and a fully
polarized Fermi gas appears for coupling constants v < v, pg, below which the energy
density (2.6) has a second minimum at full polarization. This occurs at

3/ add
Ve, PS = % <aad - T> . (2-9)

With the exact values dqq = 1.18 and a4q = 0.6 one obtains v. ps = 0.516, which is far
beyond the predicted value vy ~ 1.7 and in a regime, where the simple expansion (2.5) is
no longer valid. Thus, our simple mean field model does not reproduce the previous results
[21, 25] for the triple point vp. From our point of view, the question of phase separation
at a finite minority atom concentration — and thus also the question if the point M is
directly observable in experiments — remains open.

phonon-induced interaction between excess Fermions in the molecular condensate [30]. The same is true
for the N,, phase, where an attractive p-wave interaction between Fermions of the same species is mediated
by the opposite species. At large imbalances, however, the energy scales associated with p-wave pairing
are much smaller than the lowest temperatures that can be achieved in experiments.
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2. RF-SPECTROSCOPY OF ULTRACOLD ATOMIC FERMI GASES

2.2 Linear response theory of rf-spectroscopy

In experiments with ultracold, two-component Fermi gases a mixture of atoms in two dif-
ferent hyperfine states |1) and |2) is prepared. These two states are commonly denoted by
the pseudospin indices T and | and interact via a s-wave contact potential with interaction
strength g12. In order to measure pairing correlations in such an interacting Fermi gas,
a rf-pulse is applied that transfers atoms coherently form state |2) to an initially empty,
third hyperfine state |3). This situation, depicted schematically in Fig. 2.2, is modeled by
the Hamiltonian

H = Hy+ Hr(t) (2.10)
where the Hamiltonian Hy describes the three hyperfine states and their mutual interac-
tions 7

Hy = Z EkcLJckU + Z 2"“; Z cL_qacLJrqa,ck,J/ckU . (2.11)
k,0=1,2,3 o#o’! k’ k,q

Here, 0 = 1,2,3 indicates the three hyperfine states, ;. = k2/(2m) is the free Fermion
dispersion and g,,s denotes the bare interaction strength between the two different hyper-
fine levels o and o’. The external field that drives the transition between states |2) and
|3) is described by the Hamiltonian

Hr(t) = T/dsa: {ei(kL'x_th)l/J;’(X) Pa(x) + h.c.} (2.12)

where wy, and kj, denote the frequency and momentum of the rf-photons and 7 is propor-
tional to the dipole matrix element.

Now we want calculate the rf-current within linear response theory’, which is a good
approximation for small population transfers. The rf-current operator I := N3 measures
the rate of change of atoms in state |3) and — using the Heisenberg equation of motion —
can be expressed as

A

I = N3 = i[Ho+ Hr,Ns] = i[Hr, N
= —z"]'/d?’x (ei(kL'x_“’Lt)l/J;,(x)wz(x) - h.c.> (2.13)

Calculating the rf current in linear response [34] with respect to Hy leads to

I=(N3)= —i/dt'@(t — ') ([N5(t), HF (")) (2.14)

where the expectation value has to be taken in the initial state (i.e. the ground state of
Hj) and the operators on the RHS are represented in the interaction picture with respect
to the Hamiltonian Hy defined in Eq. (2.11), i.e.

OI(t) _ eiHotOe—iHot _ ei > MoNoteiKot(’)e_iKotei >, HoNot ) (215)

"Note that the linear response theory for the rf-current is similar to simple theories of tunneling in
superconductors, c.f. [34].
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2.2. LINEAR RESPONSE THEORY OF RF-SPECTROSCOPY

Figure 2.2: Schematic representation of rf spectroscopy. A two component Fermi gas is
prepared using a mixture of Fermions in hyperfine states |1) and |2), interacting with
coupling strength ¢gi2. In order to probe pairing correlations in this two component gas,
atoms in state |2) are transferred to an initially empty state |3) using a rf-transition.
In a naive picture, the binding energy between two atoms in states |1) and |2) needs to
be provided in order to transfer atoms from [2) to |3), giving rise to a shift of the bare
rf-transition frequency by an amount proportional to the binding energy.

However, the interaction picture for the field operators is usually defined via the grand
canonical Hamiltonian Ko = Hy— ) fto Ny, in order to avoid dealing with a fixed particle
number®

wg(x, t) = eiK()ti/J;,(x)e_iKot (2.16)
Thus, when switching to the interaction representation for the operators H7 and Njs in Eq.
(2.14), one gets additional factors of the form e besides the replacement 1 (x) — ¥(x, t).
After inserting the interaction picture operators for the rf-current (2.13) and the tunneling
Hamiltonian (2.12) into Eq. (2.14) and evaluating the time integral, the rf-current, which
is a function of the frequency of the applied rf-field, can be written as the imaginary part
of the retarded rf-susceptibility in frequency space x(w) = x'(w) + ix"(w)

I(wr) =272 X" (w = 3 — p2 — wr).- (2.17)

Here and in the following, the double-prime x” denotes the imaginary part of y. The
retarded susceptibility is given by?

x(w) = /_OO dte“'x(t) = —i /_OO dt eith(t)<[A(t),AT(O)]> (2.18)
with
A(t) = / B 0% o (x, 1) vy (%, ) (2.19)

8Field operators in the ’grand canonical’ interaction picture are indicated by the additional time argu-
ment instead of using the index .
9Note that our definition of the susceptibility differs from the standard definition by a minus sign.
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In the following two sections we use two different strategies in order to obtain information
about the rf-spectra from equations (2.17) and (2.18). In section 2.2.1 we derive sum
rules for the average rf-shift which hold for all interaction strengths g,,/, including final
state interactions. This approach has been used before by Yu and Baym [35] for the weak
coupling BCS-limit. In section 2.2.2 we derive an explicit expression for the susceptibility
(2.18) in the case of vanishing final state interactions gi3 = gos = 0 and show how the
rf-spectrum is related to the spectral function of the interacting Fermi gas. The results
obtained in this section are similar to the expressions for the tunneling of electrons between
a superconductor and a normal metal [34] and have been obtained previously by Kinnunen
et al. [16], He et al. [17] and Ohashi et al. [36].

Note that we set the momentum of the incident rf-wave equal to zero k7 = 0 in
the remainder of this thesis. This is an excellent approximation, since kj is orders of
magnitude smaller than the momenta of the involved atoms.

2.2.1 Mean rf-shift in the presence of final state interactions

In this section our aim is to get an exact expression for the average (or mean) rf-shift
including final state interactions. The mean rf-shift @ is defined as the normalized first
moment of the rf-spectrum I(w)

oo Jdwwl(w) [ dw(ps — pp —w) x"(W)
JdoTw) [ o)

Just as a side remark we note that w(= wy,) in the expression above doesn’t really measure
the real frequency of the rf-photon, since we have not included an energetic offset wog
between the states |2) and |3) in our Hamiltonian Hy in Eq. (2.11). Thus, w corresponds
to the difference between the photon frequency that is necessary to drive the transition in
the presence of interactions and the bare transition frequency w3, which we have implicitly
set to zero in our calculation.

Our remaining task is to calculate the zeroth and first moment of the retarded sus-
ceptibility’s imaginary part x”(w) defined in Eq. (2.18). This can be achieved by deriving
sum rules using the peculiar analytic properties of x(w). Indeed, the fact that the retarded
susceptibility x(w) is analytic in the upper half complex plane gives rise to exact relations
between its real- and imaginary parts, famously known as Kramers-Kronig relations. Fur-
thermore, the retarded susceptibility is completely determined by its imaginary part via
the so called spectral representation

x(2) = /OO o X7(w) (2.21)

oo T W—2

(2.20)

From this relation we can infer the imaginary part x”(w) of Eq. (2.18), which turns out
to be given by

Y (w) = —%/dt et ([A(t), AT(0)]) . (2.22)

This result can be verified easily by inserting it into the spectral representation (2.21). By
a simple inverse Fourier transformation of (2.22) we get the 'generating function’ of the
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2.2. LINEAR RESPONSE THEORY OF RF-SPECTROSCOPY

moments of y”(w)
dw

™

O e ® (223)
Setting the time equal to zero (t = 0), we obtain the sumrule for the zeroth moment (i.e.
the normalization) of the retarded susceptibility

™

/d—wx”(w) = —([4,AT]) = Ny — Ny (2.24)

where Ny and N3 denote the total number of particles in states |2) and |3) before switching
on the rf-field. In particular, we have N3 = 0 in the situation considered here. We use
this sumrule to normalize the rf-spectrum I(w) to

Na

/dw[ = N = ny (2.25)

i.e. using (2.17) the normalized rf-spectrum is defined by I(w) = x"(us — p2 — w)/(7V).
The first moment can be obtained by differentiating Eq. (2.23) once with respect to
the time ¢ and setting ¢ = 0 subsequently. This gives

% o) = ([[Ko, 4], AT) (226)

where the Heisenberg equation of motion for the operator A has been used to replace
A on the RHS. The double commutator can be calculated straightforwardly. Inserting
Ko = Hy—)_, te N, with Hy from Eq. (2.11) leads to a number of terms that need to be
evaluated. The kinetic energy terms give

Z < Hkm_:uo No, 4], AT]> = (u3 — p2)(N2 — N3) . (2.27)
0=1,2,3

This expression cancels exactly with the first two terms on the RHS of (2.20), which simply
reflects the fact that the mean rf-shift is zero when all interactions are switched off, as
expected. The remaining calculation of the commutators with the interaction parts of Hy
can be simplified using the following observations. First of all, it is easily established that

[H23 Al =0, (2.28)

int»

i.e. the interaction Hamiltonian between the states |2) and |3) drops out and doesn’t affect
the mean rf-shift. This is not really surprising, because the rf-field transfers the Fermions
in a coherent superposition of states |2) and |3), thus they are all in the same state and
cannot interact. The second simplification arises, if the interaction strengths g2 and g3
are equal. Precisely at this point one can show that all interaction effects cancel and the
mean rf-shift is zero. We thus write the sum of H!2 and H!? in the form

int int
H12 H12

HE2 + HE = (G120 — gi3) =2 + g1z =2t + H1 (2.29)
g12 g12

invar
int
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and use [H2¥2" ' A] = 0. Thus we are left with the straightforward calculation of the double
commutator [[H{2, A], AT], which in the end is the only term that contributes to the mean

rf-shift. Collecting all results, we finally obtain

J12 — G13 <<{Iiln?§> B <]7_{ilnzt>> (2.30)
Ny — N3 \ g13 912

w =

A further simplification can be made using the fact that the state |3) is initially empty
(N3 = 0), which also implies that the interaction energy between the states |1) and |3) is
zero, i.e. (H{3) = 0. The mean rf-shift is thus given by
912 — 13 (Hi)
gi2 No

W= (2.31)
This expression shows that the mean rf-shift is indeed determined by the interaction energy
in the Fermi gas, as expected naively. For attractive interactions, the rf-photons need to
provide the difference of the binding energies'® in the initial and final states in order to
drive the transition. Furthermore, the mean rf-shift is zero if the interaction strengths gpo
and gp3 are equal.

In spite of its simplicity, there is one formal problem with Eq. (2.31) that needs to
be resolved. Quite generally, contact interaction potentials of the form V(x) = gd(x)
lead to momentum distributions that have a tail proportional to ~ k=% at large momenta
k — oo. This fact has been elucidated recently in a series of papers by Tan [37, 38, 39].
As a consequence of this long tail the kinetic energy (Hyi,) ~ A as well as the potential
energy (Hin) ~ A formally diverge linearly with the momentum cutoff A, with their sum
being finite, of course. One may thus wonder if the expression (2.31) is well defined and
leads to physical results, if the interaction energy formally diverges. Interestingly it turns
out, however, that the mean-rf shift is indeed finite because the bare coupling strengths g
formally tend to zero and regularize the expression for the mean rf-shift. Indeed, as shown
in the appendix, the bare couplings g,, are related to the physical s-wave scattering
lengths a,,s via

1 m Pk 1
I N / B (2.32)
Goo’ AT gy k<A (27T) 2ek
where a,, is the s-wave scattering length between atoms in states o) and |o’) and we have

explicitly included the UV-cutoff A — oco. Plugging this result into (2.31) and expanding
to leading order in the momentum cutoff A leads to

o om(H2Y (1 1
I s i} - 2.33
YT ANy \aiz a2 (2:33)

Now we need an expression for the interaction energy (Hiy:) ~ A, where the cutoff depen-
dence is explicitly visible. One possibility is to use a result derived by Tan [37], who has

0The term ’binding energy’ is used here in a rather general sense. It includes the binding energy of
two-particle bound states as well as mean field interaction energies.
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shown that the total energy E = (H) of a balanced Fermi gas with contact interaction is
given by

C C
E = 22}{251{ <nk - ﬁ> Vo (2.34)

Here, the factor 2 comes from the spin degeneracy, a is the scattering length and C' is the
so called ’contact coefficient’, which is determined by the asymptotics of the momentum

distribution at large momenta!!
k—oo C
M g
The result (2.34) is remarkable, since it shows that the total ground state energy of an
ultracold gas with short range interactions is a function of the momentum distribution
alone. From Tan’s energy relation it is obvious, that the interaction energy contribution
is determined by'?

(2.35)

(Hint) = E— (Hqn) = E— 2261«711«

k
€k Vv
— 9
CEk: k4 + C47Tma
Vv Vv
- _0271'2771, + dtma (2.36)

Note that the second term is not cutoff dependent and thus irrelevant in the limit A — oc.
Using Eq. (2.36) together with Eq. (2.33), we obtain a cutoff independent result for the
mean rf-shift. Simultaneously, a different approach to make the cutoff dependence of
(Hint) explicit was utilized by Baym et al. [41], who used the fact that the interaction
energy can be expressed as a derivative of the total ground state energy with respect to
the inverse scattering length via

_O0E _2A OF
~ %95 T 7 a(1/a)

(Hint) (2.37)
Plugging this expression into (2.33) also leads to a cutoff independent expression for the
mean rf-shift. The fact that both results (2.36) and (2.37) are equivalent follows from
Tan’s adiabatic theorem [37]

I(E/V) C

=— 2.

d(1/a) dm’ (2:38)
which relates to contact coefficient to the derivative of the ground state energy with respect
to the inverse scattering length.

Hnterestingly, the contact coefficient C' shows up in many different contexts. For example, Braaten and
Platter have shown that C is related to the probability that two Fermions with opposite spin are close to
each other [40].

12We note that this result also holds for the imbalanced Fermi gas with N; # N|. In this case, the
momentum distributions of the two Fermion species are different, but the asymptotics at large momenta
are identical, because the asymptotics are determined by two particle physics. We will give an explicit
example in section 3.1.3.
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We obtain our final expression for the mean rf-shift using equations (2.36) and (2.33).
In order to eliminate the dependence of the mean rf-shift @ ~ (Hjy)/N2 on the number
of atoms in state |2) it is convenient to define a dimensionless contact coefficient s via
_C
T3

Ko by
where the Fermi momenta are defined via the respective densities of the atoms in states
1) and |2) as k%, = 672ny and k3, = 67°ne. For balanced gases ny = ny = n/2, this
definition reduces to the ’canonical’ definition s = C/k} with k3 = 37?n. Using (2.39)
our final result for the mean rf-shift is given by [42]

i:—?ﬂrs( ! ! > (2.40)

EF1 kria1z  kriaiz

s (2.39)

which holds for balanced, as well as imbalanced Fermi gases. It is interesting to note
that the mean rf-shift w is well defined only in the presence of final state interactions
a3 # 0. Indeed, as will be shown below, the rf-spectrum I(w) decays at large frequencies
like ~ w™3/2 in the case of vanishing final state interactions, thus the first moment of I(w)
doesn’t exist.

Mean rf-shift of the balanced Fermi gas in the BCS- and BEC-limits

We now employ Eq. (2.40) to calculate the mean rf-shifts of the balanced Fermi gas in the
well known BCS- and BEC-limits. Using an extended BCS-theory for the crossover, the
dimensionless contact coefficient is given by

A2

2 (2.41)
42,

SBCS =
where ep = (372n)%/3/(2m) is the Fermi energy of the balanced gas. In the expression
above A is the well known BCS gap-parameter. In the BCS-limit a5 — 07 it is given by
Apcs = 8cp exp(—n/(2kr|aiz]) —2) (see e.g. [43]). One has to keep in mind however, that
BCS-theory gives only a sub-leading correction to the ground state energy and thus to the
mean rf-shift in the BCS-limit, where the Hartree term ~ aj9n is the dominant contribution
to the interaction energy. On the other hand one obtains Apgc = 4ep//3mkpais in the
BEC-limit a15 — 0". The mean rf-shift in the BEC-limit is thus given by

o = 2E, (1 - @> , (2.42)
a3

where Ej, = 1/(ma?,) is the binding energy of the molecule. This result is perfectly
consistent with the mean rf-shift for bound-free transitions that follow from a detailed
calculation of the rf-spectrum in the molecular limit by Chin and Julienne [44], who get

(w— Ep)1/?
(w + EI/) — Eb) ’

I(@)~ = (2.43)

where E, = 1/(ma},) and E, = 1/(ma?;). The mean shift corresponding to this rf-
spectrum is indeed given by Eq. (2.42).
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Mean rf-shift of the unitary Fermi gas

At unitarity a1o — oo, the mean rf-shift can be expressed as
w=—-———, (2.44)

where vy = kpi/m is the Fermi velocity of the atoms in state |1). For the case of a
balanced (1,2)-Fermi gas, the dimensionless contact coefficient s can be calculated using
Tan’s adiabatic theorem (2.38) and numerical results for the ground state energy, for
example. Recently, we obtained s ~ 0.08 for the balanced, unitary gas at zero temperature
[28], which is very close to the value s ~ 0.07 for a strongly imbalanced gas (see Eq. (3.33)).
This result is consistent with the experiments by Schunck et al. [13], who observe almost
no change in the rf-spectrum when going from the balanced superfluid to the imbalanced
normal phase at unitarity.

2.2.2 RF-spectrum in the case of no final state interactions

In this section we are going to evaluate the retarded susceptibility (2.18) in detail and show
how it is connected to the spectral function of the interacting Fermi gas. In particular
we focus on the situation of vanishing final state interactions (g13 = g3 = 0), where the
following calculation is exact.

The explicit calculation of the retarded susceptibility in equation (2.18) is conveniently
performed in the Matsubara representation [34, 45, 46|, i.e. we calculate the Matsubara
susceptibility x(i€2,) and obtain the retarded susceptibility by an analytic continuation
to the real axis x(w) = x(iQ, — w + i0"), which can be inferred using a Lehmann
representation of the susceptibilities. Using the Matsubara representation has the further
advantage that we get an expression for the retarded susceptibility that is valid at arbitrary
temperatures. The Matsubara susceptibility is given by

B , B ,
x(18,) = / dr 7 x (1) = —/ dr T <TTA(7')AT(0)> (2.45)
0 0
where Q,, = 27n/f with n € Z are bosonic Matsubara frequencies and T, denotes the

imaginary time ordering symbol. Inserting the expressions for the operators (2.19) in
Matsubara representation we get (note again that we set ky, = 0)

B ) _ _
Y (i) = — / dr T / Pz &’ (Trps(x, 7)o (x, 7)Y (X, 0)3(x',0)) . (2.46)
0
For the case of vanishing final state interactions, no vertex corrections need to be taken into
account and the expectation value above can be factorized into two Matsubara Green’s

functions. The diagrammatic representation is shown in Fig. 2.3. After switching to
momentum- and frequency space one thus gets

3
N %Z / %gg(k,mm)%(k,mm +i0) (2.47)
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k+q, 2

k, 3

Figure 2.3: Diagrammatic representation of the rf-susceptibility. The bold line corresponds
to the full Green’s function of a Fermion in state |2) (i.e. dressed by interactions with
state |1)) and the thin line is the bare Green’s function for a Fermion in state |3). Vertex
corrections are absent in the case of vanishing final state interactions g3 = go3 = 0.

where wy, = (2m+1)7 /5 with m € Z are fermionic Matsubara frequencies. After replacing
the Matsubara summation by a contour integral in the usual way'? and performing the
analytic continuation i€),, — w-+107" to real frequencies, we obtain the following expression
for the imaginary part of the retarded susceptibility

Z/ ImGE (k, Q) ImGE(k, Q + w) (np(Q+w) — np(Q)), (2.48)

and np(w) denotes the Fermi distribution. Since the state |3) is not interacting with the
other two, we can insert the free retarded Green’s function for G3R, ie.

ImG?(k, w) = —mo(w — ek — wa3 + U3) (2.49)

where we have explicitly included the energy difference we3 between the two hyperfine
levels |2) and |3). Using Eq. (2.17), adopting the normalization condition (2.25) and using
the fact that the state |3) is initially empty (u3 = 0), we obtain our final expression for
the rf-spectrum I(w) = x"(us — p2 — was — w)/(7V)

3
I(w) = % / % As(k,ex —w — p2) np(ex — w — pa) (2.50)

where we have introduced the spectral function
Az (k,w) = —2ImGE (k, w) (2.51)

of Fermions in state |2) and the rf-frequency wy, is measured with respect to the bare
transition frequency, i.e. wy, — we3z = w. Using this convention, the rf-spectrum for a non-
interacting Fermi gas in state |2) is a delta-peak at w = wy — wag = 0, corresponding to
the bare rf-transition frequency.

13For details, see the similar calculation in section 2.3 below.
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2.2. LINEAR RESPONSE THEORY OF RF-SPECTROSCOPY

The spectral function A(k,w) contains all information about the single particle- and
hole-excitations of the system. In particular, the momentum, energy and lifetime of these
excitations can be obtained from it. In the following, we collect some properties of the
spectral function which will be useful in later sections. First of all, A(k,w) can be decom-
posed into a sum of a particle- and a hole-part A(k,w) = A (k,w)+ A_(k,w), describing
the particle- and the hole-excitations respectively. In terms of a Lehmann representation,
these two parts can be expressed as

Ay (k,w) = 27” S B (il )2 6(w — Enm + Ea) (2.52)
2 _BE, 9
A(kw) = — §e BEn | (mex|n)|? 6(w + Em — Ey) . (2.53)

Here, the states |n) and |m) denote exact eigenstates of the interacting system with energies
FE, and E,,, respectively, and Z is the canonical partition function. The spectral function
is normalized as [ g—:r’A(k,w) = 1 and the integral over the hole part A_(k,w) gives the
momentum distribution

Z—:A_(k, w) = n(k) (2.54)

From Egs. (2.52) and (2.53) it can be easily shown, that the particle- and the hole-part of
the spectral function are related via a detailed balance condition

A_(k,w) =e A, (k,w) (2.55)
From this follows, that the hole-part of the spectral function is given by
A_(k,w) =np(w)Ak,w) (2.56)

and thus the rf-spectrum (2.50) is a measure of the hole-part only. This is obvious from
physical reasons, because the rf-transition removes particles from state |2), thereby creat-
ing hole-excitations in the interacting (1, 2)-Fermi system.

RF-spectra in BCS theory

Now we are in a position to calculate the rf-spectra of ultracold Fermi gases using Eq.
(2.50) and compare them directly to experiments. The only quantity that is needed as
input is the spectral function A(k, w) of the interacting many-body system, which is usually
known only approximately, however. One important example where the spectral function
is known analytically is BCS-theory

Apcs(k,w) = 27 [upd(w — Ex) + vgd(w + E)] . (2.57)

At zero temperature, this gives rise to an rf-spectrum of the form

m3?  |w A2 A?
I(W)—m\/§+ﬂ—gﬁa (2.58)
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which has a sharp onset at wpin = /p? + A% — . In weak coupling, A < u ~ ep, the
onset corresponds to the condensation energy per particle wmi, ~ A%/(2er) and the peak
position is at wpeak =~ %Az /ep. Furthermore, the rf-spectrum has a tail ~ w3/2 at large
frequencies, thus the first moment doesn’t exist.

As can be seen from Eq. (2.57), BCS-theory gives rise to a sharp fermionic single-
particle excitation spectrum, i.e. the lifetime of the excitations is infinite for all momenta,
even at finite temperature. The BCS-result is based on an approximate Hamiltonian,
however, which neglects the effect of the collective Bogoluibov-Anderson mode on the
fermionic excitation spectrum. Indeed, the interaction with Bogoliubov-Anderson phonons
should lead to an appreciable lifetime-broadening of the fermionic quasiparticles and thus
should have an observable effect on the rf-spectra. Some aspects of this question will be
discussed in Appendix B.

2.3 Non-selfconsistent T-matrix approach for the imbalanced
Fermi gas

In this section we formulate a theory that is capable of describing the normal phase of the
attractively interacting, imbalanced Fermi gas above the Clogston-Chandrasekhar limit.
In particular, our aim is to provide a qualitative as well as a quantitative understanding
of the experimental results by Schunck et al. [13], who observed shifted rf-spectra in the
normal phase of the imbalanced Fermi gas also in the normal state. Our starting point is
the Hamiltonian

g
H = Z (Ek - /J/O-) CTko_Cko. + V Z ch—kTCLLCk’lcq—k’T . (259)
k,o=T,] k' k,q

describing a two-species Fermi gas with a contact interaction. We denote the majority
atoms with T and the minority atoms with | in the remainder of this thesis, i.e. ny > nj.
Furthermore, we use a grand-canonical description, where the population imbalance is
imposed by applying different chemical potentials i, for the two fermionic species. This
can be described conveniently by introducing an effective magnetic field A that couples to
the two different pseudo-spin states o =T, | via

Hr | = M +h. (260)

Note that this artificial magnetic field couples only to the ”spin” of the uncharged atoms.
For charged particles such as electrons, the orbital coupling of the magnetic field leads to
the Meissner effect in the superconducting state and thus the coupling to the spin degree
of freedom is effectively absent in the bulk. In that respect, ultracold atoms offer the
unique possibility to study the Pauli-pair-breaking mechanism in its pure form.

In order to study the effects of pairing fluctuations on the single particle properties of
the imbalanced Fermi gas in the normal phase, we employ a non-selfconsistent T-matrix
approach. This method has been used widely in the literature to study the BCS-BEC
crossover of the balanced gas above T, [47, 48], or the normal phase of the attractive-U
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q-k?
q-k?

O

r(g) r(a) g r(a)

K,V

Figure 2.4: Left: diagram for the self-energy X|(k,w) of the minority species Green’s
function. Right: Bethe-Salpeter equation for the vertex function I'(q,w) in ladder ap-
proximation.

Hubbard model [49]. It has also been applied recently to study the strongly imbalanced
Fermi gas at the saturation field [50]. In the non-selfconsistent T-matrix approach!#, a
usual particle-particle ladder approximation is used to incorporate the effects of pairing
in the vertex function (see e.g. [45, 51]) and the fermionic self-energy is calculated at the
one-loop level, including the vertex corrections. The diagrams for the self-energy > and the
vertex function I' are shown in Fig. 2.4. In Matsubara representation, the corresponding
analytic expressions are

3
Sy (ki) = %Z / (‘;T(ig T(d, Q)G (q — K, i — i) (2.61)
Qm
M%) = T (2:62)
3
L(q,if) = —% T / % Gr(a— ki — iwn)Gy (ki) (2.63)

where Gy and G| are the bare Matsubara-Green’s functions of the majority- and minority
Fermions, § = 1/kpT is the inverse temperature and the fermionic- and bosonic Matsubara
frequencies are denoted by w,, = (2n + 1)7/8 and Q,, = 2wn/[ respectively, with n € Z.

We evaluate the sums over Matsubara frequencies using standard techniques (see e.g.
[34] and [45]), where the sums are represented as contour integrals over the complex coor-
dinate iwyy,, i, — z. We start by calculating the sum for the pair propagator L(q,i€,).
As a function of z, the two Green’s functions in (2.63) have poles on the real axis and at
z = i), + € with some ¢ € R, respectively. Thus, using the contour depicted in Fig. 2.5a,
the Matsubara sum can be written as

3 z
L@ = [ G5 § smnrGia it -6 0, @6

MYWe note that the term ”non-selfconsistent” refers to the fact, that all internal propagator lines in the
diagrams are bare (i.e. non-interacting) Green’s functions and the notion ”T-matrix approach” is due to
the replacement of the bare interaction vertex g with the scattering T-matrix of two particles in vacuum.
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Im(z) Im(z)
J J

Figure 2.5: Contours for the evaluation of the Matsubara sums for the pair-propagator L
(left) and the fermionic self-energy ¥ (right). The radius of the circles is taken to infinity.
The crosses mark the positions of the fermionic (left) and bosonic (right) Matsubara
frequencies, i.e. the positions of the poles of np(z) and ng(z).

where np(2) = (exp(8z) + 1)~ ! is the Fermi distribution function which has poles at the
fermionic Matsubara frequencies iw,, with residuum Res[np(z),iw,] = —3~'. The retarded
pair propagator L(q, ) is obtained via an analytic continuation i€, — Q 4 0% to real
frequencies 2 € R. Using G(k,Q +i07) = G (k,Q), G(k,Q —i0") = GA(k,Q), where
Gr and G4 = GR"* denote the retarded and advanced Green’s functions respectively, and
using nr(z + i€2,) = np(z) we finally get

3 S
LR(q,Q) = /%/ d?np(z) G?(q—k,Q—z)Ime(k,z)

—0o0

—GR(k, 2+ Q) ImGF(q - k, —z)]

A’k np(p —eq-x) — nplex — p)
: . (2.65)
(2m)3 Q—ex —eq-k +2p + 10t
The 'retarded’ vertex function is then straightforwardly defined via'®
g —L (q7 W)

Obviously, the integral in the definition (2.65) of the pair propagator diverges at large
momenta and needs to be regularized. This can be achieved by replacing the bare inter-
action strength g in the vertex function with the scattering T-matrix of two Fermions in

15 Albeit using the superscript %, the vertex function FR(q,w) is not a retarded function in the usual
sense. Indeed, FR(q,w) can have poles in the upper half complex plane. The superscript ¥ is just an
indication that we have obtained the vertex function by an analytic continuation to w + 0" .
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vacuum, as shown in appendix A. We thus obtain

M) = [ (aw)] (2:67)

where the regularized pair propagator, given by

LE (q,w) = L (q,w) +/d3—ki (2.68)
e ' (2m)3 2¢y
is now well defined.

The Matsubara sum for the fermionic self-energy in Eq. (2.61) can be evaluated in a
similar manner. In the following calculation we assume that the Vertex function I'(q,w)
has poles or branch cuts only on the real axis. This assumption is crucial and intimately
connected to the fact that our calculation is valid only for the non-superfluid, normal
phase. Indeed, the appearance of a pole in the Vertex function in the upper half complex
plane would signal the onset of superfluidity [45]. As will be discussed in the next section,
the instability towards the superfluid phase occurs first at w = 0 and q = 0, giving rise to
the so called Thouless-criterion [52], which determines the boundary between the normal
and the superfluid phase. Restricting ourselves to the normal phase, where the poles of
the vertex function are on the real axis, the contour integral for the evaluation of the
Matsubara sum is given by

3 2
Yok, iw,) = /(;ZT??) [i ;—mnB(Z)F(Qa 2)G-o(a =k, z —iwn)
+% I'(a,0)G-o(q — k, —iwn) | - (2.69)

Here, np(z) = (exp(Bz) — 1)~! is the Bose distribution function which has poles at the
bosonic Matsubara frequencies i€2,, with residuum Res[np(z),i€2,] = 3~! and the contour
is depicted in Fig. 2.5b. Note that the term at i€2,, = 0 has to be included separately. After
performing the analytical continuation to real frequencies and using np(z+iw,) = —np(2)
we obtain the retarded fermionic self-energy

3 [e%) >
SRk,w) = /(ST??’/_OO%[”B(”Z) G2 (q—k,z —w)ImIMR(q, 2)

—np(2)T¥(q, 2z +w) ImGE_(q — k,2)|, (2.70)

where the separately included i€2,, = 0 term in (2.69) cancels exactly with the residue
obtained by integrating above and below the pole of np(z) at z = 0.

Within the non-selfconsistent T-matrix approach, the equations (2.65), (2.66) and
(2.70) determine the properties of the imbalanced Fermi gas in the normal phase. We
note however, that the chemical potential of the minority atoms in these equations has to
be evaluated selfconsistently in order to get correct results in the whole crossover regime.
Indeed, the chemical potential of the minority atoms in the BEC-limit is predominantly
determined by the molecular binding energy, thus setting 11| = €| in the equations above
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would lead to wrong results'®. The chemical potential of the majority atoms {1, however,
does not need not be calculated selfconsistently for arbitrary coupling. Naively, this can
be understood from the fact that in the BEC-regime all minority atoms are already paired,
thus adding a further majority atom does not alter the ground state energy significantly
in comparison to the non-interacting case. Recently, Veillette et al. [53] used a 1/N-
expansion to analyze the imbalanced gas at unitarity, which is equivalent to our T-matrix
approximation in leading order. They did not determine the minority chemical potential
self-consistently, however, and thus get p) ~ —0.9er at the saturation field at unitarity,
which is 50% off the Monte-Carlo result p; ~ —0.6ep. Furthermore, their calculation
breaks down at (kpa)~' a 0.3, where | diverges in their approach.

In the following section we will discuss the properties of the vertex function in more
detail. After that, we are going to calculate the fermionic spectral functions, thereby
obtaining an explicit expression for the rf-spectrum of imbalanced Fermi gases in the
normal phase at unitarity and zero temperature.

2.3.1 The Vertex function I'(q,2) at zero temperature

The vertex function I'(q,2) corresponds to the non-trivial part of the two-particle prop-
agator. Its poles thus determine the dispersion relation of two-particle excitations of the
imbalanced Fermi gas (see e.g. [54]). We start by discussing the poles of the vertex func-
tion (2.67) at zero temperature and zero momentum q = 0. As mentioned previously, the
chemical potential of the minority atoms | in the imbalanced gas has to be calculated
selfconsistently, in contrast to the majority chemical potential p1. We thus set puy = ep
in the expression (2.68) for the pair propagator (this approximation is exact close to the
saturation field hs), where ep = k%/(2m) is the Fermi energy associated with the density
of the majority atoms, i.e. k3 = 6m%n;. After evaluating the integral we obtain

l—ﬁ‘_‘_lln \/Z_\/X
Envoy IR by e

%ln‘

L ifA>0
ReLE (0,0) = ZE\14 /i + /A

2 -
2m g — arctan \/g — arctan 4/ “—)\l ifA<O
mLE(0,0) = ?T]f g VIO 031 —\) —O(A—1)] | (2.71)

where we have used the abbreviations A := (ep + p1| +w)/(2ep) and fi) := p)/ep. Note
that in case of a negative chemical potential of the minority atoms | < 0 (which happens
in particular close to hy), all terms where fi| appears vanish identically in the expressions
for the pair propagator above. For the case of positive p’s, the real part of the pair
propagator has two poles at w = £2h, as can be seen in Fig. 2.6. At a fixed magnetic field
h, the corresponding vertex function I'(0,w) has either two poles on the real axis in the
region —2h < w < 2h , or two poles in the complex plane, depending on the interaction

16This situation is similar to the BCS-theory for the balanced crossover, where two equations (the gap-
equation and the particle-number equation) are needed to determine all ground state properties. Setting
1 = er amounts to a neglect of the particle-number equation in this case.
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— ImL(O,0) | 7
— Re L(0,m)|

3

o/ e

rReg(q, w) at zero
momentum q = 0 as a function of w, for 2h = 0.15¢r. The real part ReLrReg(O, w) has two
poles at w = £2h, if the minority chemical potential as positive. For negative p’s, the
pole at negative frequencies vanishes (this is an artefact of the theory and is discussed in

more detail in the text).

Figure 2.6: Real and imaginary part of the (regularized) pair propagator L

strength!”. Alternatively one can fix the interaction strength and vary the magnetic field
h, thereby shifting the position of the poles.

In the BCS-limit (a — —o0) the poles of the vertex function jump into the complex
plane right below the value of the magnetic field i, where the two poles on the real axis
merge at w = 0. This happens at very small magnetic fields in the BCS-limit. Expanding
the vertex function in h < g leads to

272 T h -1
1(0,0) = —2—In— h? . 2.72
( 70) mkF |:2kFa n4€F +O( )] ( 7 )

The critical magnetic field het below which the poles of I' jump into the complex plane
is thus given by

(2.73)

crit

A
h3CS = dep exp< T 2> = =BCS

 2kplal 2
corresponding to the lower critical field at the Clogston-Chandrasekhar transition!®. The

critical field h.it where a pole in the vertex function appears at ¢ = 0 and w = 0 can thus
be associated with the onset of superfluidity. This condition is known in the literature as

"Note that the term proportional to the inverse interaction strength 1/g in the vertex function (2.67)
effectively shifts the real part of the pair propagator up or down, thereby shifting the position of the poles.

8 Note that the value of heyit is below the thermodynamical critical field he = A/ \/5 and corresponds
to the lower critical field of the first order phase transition from the superfluid to the normal state.
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the Thouless criterion [52]. It is important to note, however, that away from the BCS-
limit, the poles of the vertex function jump into the complex plane not at w = 0 but at
slightly negative frequencies. This can be seen in Fig. 2.6, where the local maximum of
the real part in the regime —2h < w < 2h is slightly below w = 0. This would lead to a
slightly lower critical field than the Thouless criterion. Nevertheless, because of the reasons
to be explained in the following sub-section, we use the Thouless criterion to determine
the boundary of the superfluid phase. At negative minority chemical potentials | < 0,
the pole of the pair propagator at negative frequencies vanishes. This is an artefact of
the theory and related to the fact, that the occupation number of the minority Fermion
modes in the expression (2.65) for the pair propagator is identically zero at T" = 0, which
is obviously unphysical. Indeed, this has some consequences for our rf-spectra and other
observables, as will be discussed in Sec. 2.3.2.

Thouless criterion

As mentioned above, the critical magnetic field below which the imbalanced Fermi gas
is superfluid can be calculated from the condition that the vertex function has a pole at
q=0and w =0, i.e.

I';'(0,0) = 0. (2.74)

There are several ways to understand how this condition arises. First of all it is easy to
see that the Thouless criterion is equivalent to the BCS-gap equation at A = 0, which
determines the boundary of the superfluid phase within mean-field theory. Using Eqgs.
(2.74), (2.66) and (2.65) we obtain

1 / d*k O(ex — pip) — O(py — ex)
g J (@2m)3 2(p — ex)

which is indeed equivalent to the BCS-gap equation for A = 0.

A different way to understand the Thouless criterion is to study the response of the
system to a fictitious external pairing field, which couples to the ’'pairing operator’ Aq =
Yk Ck+qlC—k|- Within a mean-field RPA calculation, the corresponding response function
is given by [55]

(2.75)

_ xX%aqw)
1—gx9(q,w)

where the response function y(¥ (q,w) of the non-interacting system is given by our ex-
pression (2.65) for the pair propagator. The phase transition to a homogenous super-
fluid state is determined by a divergence of the static response function at q = 0, i.e.
g ! — O (0,0) = 0, which is equivalent to the Thouless criterion for our vertex function
in ladder approximation. Actually, from this calculation it can be inferred, that an in-
stability towards a superfluid phase with an inhomogeneous order parameter (such as the
FFLO phase) can be obtained from a modified Thouless criterion, where the momentum q
is kept at a non-zero value. Indeed, if the response function diverges at a finite momentum
q before diverging at q = 0, the response of the system to a modulated order parameter
is stronger an thus the dominant instability.

x(q,w) (2.76)
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On a more formal level, the Thouless criterion (2.74) is related to the spontaneous
U(1)-symmetry breaking in the superfluid phase and the associated massless Goldstone
Boson, i.e. the Bogoliubov-Anderson mode in the case of neutral superfluids. Indeed, the
pole of the exact vertex function determines the dispersion relation of collective modes in
the interacting Fermi gas. Thus, the appearance of a gapless Goldstone mode manifests
itself through the presence of a pole in the vertex function at zero momentum and energy.
Therefore, the Thouless criterion holds quite generally and is independent from our ladder
approximation for the vertex function. In particular, it can be derived from an exact Ward
identity related to the U(1) gauge symmetry [56].

In Eq. (2.73) we have used the Thouless criterion already to calculate the critical field
in the BCS-regime. In the opposite BEC-limit (¢ — oo) the asymptotic value of heyit,
obtained using the Thouless criterion, is given by

4k
hBEC:|Eb|/2—|—€F— ra

crit

er + O(a?) (2.77)

which corresponds to the saturation field (2.8) in the BEC-limit, as expected. However,
the associated atom-dimer scattering length is given by aaBC‘l)m = 8/3a instead of the exact
value a,g = 1.18a. Thus, the ladder approximation for the vertex function takes the
atom-dimer scattering only at the level of Born’s approximation into account.

At unitarity we obtain heit(v — 00) ~ 0.36ep for the value of the critical field.
The instability torwards an FFLO phase occurs at a slightly higher field hCFEtLO(v —
o0) ~ 0.40ep. The critical field heit at arbitrary interaction strengths obtained from the

Thouless criterion is plotted in the T-matrix phase diagram in Fig. 2.7 in Sec. 2.3.3.

The Vertex function for ;) < 0 at arbitrary momenta

As mentioned several times already, the chemical potential of the minority atoms 4| has to
be calculated selfconsistently in order to obtain correct results for all interaction strengths,
especially in the BEC-limit. In the rest of this chapter we restrict ourselves to the case
p) = p— h < 0, where the chemical potential of the minority atoms is negative. This
simplifies the calculations considerably but also leads to some unphysical results, as will
be seen in Sec. 2.3.2. Nevertheless, albeit using this restriction, the calculation covers
a large part of the phase diagram plotted in Fig. 4.2, in particular the normal phase in
the region h/u; > 0.5. As previously, we set uy = ep = k%/(2m) with k% = 67°n; and
measure all energies in units of £p, i.e. in units of the Fermi energy of the non-interacting
majority Fermi gas.

The regularized pair propagator (2.68) can be calculated analytically at zero temper-
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ature. For the real and imaginary part we obtain

ReLl (qw) = /(d3k[ O(eq—x — 1) +i]

reg 21)3 lw — e —eqek + 210 2ex

~ mkp __1—A—qW4hlA—(1—qﬂF

- (2n)2 2q A—(1+q/2)?
1 (1=vA)?—¢*/4 :
5 111 m‘ lf )\ > O

VAl ] (2.78)
7 — arctan 1\7‘%2 — arctan 1_“1<|2 if A<0
A3k
ImL(q,w) = —77/ g 6(w — ek — eq-k + 21)O(eq—k — 1)
k
= T ome(s +qvh)

8
X [2&@(/{ — V) + (VA + 5/9)O(—k + q\/X)] (2.79)

where we have defined ¢ = |q|/kr and kp is the momentum associated to p; = ep =
k%./(2m), as defined above. The abbreviations A and r introduced in the expressions
above are defined by

1 w+p g
A S o R b 1 2.80
2 2ep 4R (2.80)
w —2h
— 92.81
K - (2.81)

Note that one of the two Fermi distribution functions from (2.65) has dropped out at zero
temperature, since we have restricted ourselves to the case ;1) < 0. Apart from simplifying
further calculations, this leads to some unphysical results. Usually, the nominator of the
integral for the pair propagator (2.65) is nonzero if both Fermion states are either occupied
or empty, i.e. scattering can only take place if two particles or holes are present. For
negative p’s, however, we have a situation where the occupation of the minority atom
states in the pair propagator is always zero at T = 0. As a consequence, some universal
properties of the interacting Fermi gas are flawed. For example, the tails in the momentum
distributions at large momenta as well as the tails in the rf-spectra at large frequencies
are missing. Furthermore, the majority atoms form a non-interacting Fermi gas, which is
a good approximation only in the case of very strong imbalances nt > n.

2.3.2 Spectral functions A, (k,w) at zero temperature

In this section we are going to calculate the spectral functions A, (k, w) for the two Fermion
species o =T, | at zero temperature, using the non-selfconsistent T-matrix approach intro-
duced above. We will consider only the case, where the chemical potential of the minority
atoms is negative | < 0 (i.e. h > p). As mentioned previously, this includes the inter-
esting regime close to the saturation field hs and covers almost the whole normal phase
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at unitarity. In terms of the fermionic self-energy > (k,w), the spectral function can be
expressed as

As(k,w) = —2ImGE(k, w)
_ R
_ 2 Im¥Mk,w) ! (2.82)
(w — ek + po — Re T (k,w))? + (Im TE(k,w))

Within our non-selfconsistent T-matrix approach, the real part of the self energy (2.70)
at T'= 0 is given by

d3
Resfcw) = [ 5L 00y — ) RelMa + kow+ 2 — i)
(2m)3
3 _ R
@r)3 T z—w—eq-k + fi—0
whereas the imaginary part of the self energy can be written as
R d’q R

tm S0 0) = [ 555 (O — 2q) = Ols — 0~ )} IL(@ + ko +2q —sis).
(2.84)

and the retarded, regularized vertex function (2.67) is given by
I(q,2) = ! (2.85)

’ 1/g —Re L (q,2) — i Tm LE(q, 2) '

with g = 47a/m. The real- and imaginary-parts of the pair propagator L are given by
(2.78) and (2.79).

Spectral function of the majority Fermions A;(k,w)

As explained above, the chemical potential £) for the minority Fermions has to be cal-
culated selfconsistently in order to obtain correct results close to the saturation field hg.
Thus, in the regime where ;1) < 0, the occupation number of all minority Fermion modes
in the expressions for the vertex function and self-energies is zero at T' = 0. The majority
atoms thus respond as if no minority atoms were present and form an ideal Fermi gas.
This can be seen easily from the equations (2.83) and (2.84) for the self energy of the
majority atoms. If we set pu; <0, we get

Sik,w) =107 . (2.86)

Clearly, this is an unphysical artefact of the self-consistent treatment of the minority
chemical potential, which suppresses the occupation of all minority Fermion modes at
zero temperature if | < 0. Obviously, even for very small minority atom concentrations,
the momentum distribution of the majority atoms should be smeared out and form a
~ k™% tail at large momenta due to the interaction with the minority atoms. The height
of this tail should scale with the number of minority atoms, however. Thus, at very large
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population imbalances, the treatment of the majority Fermions as an ideal Fermi gas is a
fairly good approximation. This drawback has also one minor advantage. Indeed, within
the T-matrix approach, setting the chemical potential of the majority atoms equal to the
Fermi energy p11 = eF is exact in the regime p| < 0.

Spectral function of the minority Fermions A (k,w)

For the discussion of the minority Fermion spectral function we restrict ourselves to the
hole-part A _(k,w), since this is the relevant quantity for calculating the rf-spectrum
and the momentum distribution. At zero temperature, the hole-part (2.56) coincides
with the full spectral function for negative frequencies w < 0 and is zero otherwise, i.e.
A_(k,w) = O(—w)A(k,w). Thus, we can restrict our calculation of the spectral function
to negative frequencies in the following.

Note that in the case of negative frequencies w < 0, the vertex function in the ex-
pressions for the real- and imaginary-part of the self-energy in Eqs. (2.83) and (2.84) is
evaluated only at negative frequencies z < 0. This simplifies the equations considerably,
because one can easily show from Eq. (2.79) that the imaginary part of the pair propagator
is zero at negative frequencies, i.e. Im LR(q7 z < 0) = 0". Thus, the real- and imaginary
part of the vertex function at negative frequencies are given by

Iml'(q,2 < 0) = 76(1/9 — Re Lﬁg(q7 z)) (2.87)

1
x _ 2.
Re (q7 z < 0) 1/9 — Re ng((% Z) ( 88)

Due to the delta function in (2.87) expressions containing the imaginary part of the vertex
function give a nonzero result only at those points, where the vertex function has a pole
on the real axis at negative frequencies. Now, in the normal (non-superfluid) phase with
h > u, the vertex function has a pole only at positive frequencies, as shown above in
section 2.3.1. Thus, all terms in (2.83) and (2.84) which involve the imaginary part of the
vertex function ImI'®(q, z < 0) vanish and we are finally left with

ImEf(k,w) = 0° (2.89)

d3q 1
ReXf(k,w) = /—@ -
e Xy (k,w) (2m)3 (11 = &9) 1/g —ReLli,(q+kw+e;—py)

(2.90)

The hole-part of the minority species spectral function at zero temperature is thus simply
given by
R
Ay _(k,w) =21 O(-w) 6(w —ex + p; — Re ¥ (k,w)) . (2.91)

We mention once more, that this expression is only valid in the normal, non-superfluid
phase and for negative minority-species chemical potentials p| < 0. For positive p)’s, the
pair-propagator has a finite imaginary part at negative frequencies and the simplifications
used above are no longer valid.

The dispersion relation Ey of the minority species’ fermionic excitations is given by
the zeros of the argument of the delta function in Eq. (2.91). In particular, the dispersion
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relation is defined by the roots w = Ey — |, i.e. it is a solution of the equation
Ex =ex +ReXf(k, Bx — p)) (2.92)

At zero temperature, the hole-spectral function (2.91) can thus be written in terms of the
dispersion relation of the excitations Fy as

Al _(k,w) =210(—w) Z(k) d(w — Ex + 1) (2.93)

and the quasiparticle weight Z(k) is given by

Z(k) = |1 - d,Re Ef(k,w)‘ (2.94)

w=FEx—p|

Using Eqgs. (2.90) and (2.92), we solve for the excitation energies Fjy numerically. At
unitarity ¢ — oo we find that the dispersion relation of the polaron can be parameterized
using a binding energy and an effective mass as

By = -

(2.95)

with excellent accuracy for k < 0.5kp. Here ¢, = —0.6066cp = pu l‘ h—p. 15 the binding
energy of the polaron at unitarity, which is independent of the field h (1 e. independent
of the imbalance) in the regime h > p within the non-selfconsistent T-matrix approach.
For the effective mass of the polaron at unitarity we get m* = 1.17m, which is also
independent of the imbalance. These values have been found previously by Combescot et
al. [50] and are in good agreement with the recent experimental results e, ~ —0.64(7) [57]
and m*/m = 1.17(10) [58]. Furthermore, we find that the quasiparticle weight Z(k) at
unitarity for momenta k < 0.4kr can be parameterized with very good accuracy as

k 2

Z(k)=20—C¢ <—> (2.96)
kr

where the coefficients Zy = 0.78 and ¢ = 0.14 are independent of the imbalance. For

momenta k 2 0.4kr the quadratic dependence is no longer valid.

2.3.3 Momentum distribution of the minority Fermions

The momentum distribution of the minority Fermions at zero temperature in the regime
p; < 0 can be calculated using the spectral function (2.93) via Eq. (2.54). From this we
obtain

ni(k) = / © Y kw)

2T

0
_ / dw Z(K) §(w — Ex + 1))

—0o0

= 20O, — Fx) (2.97)
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Figure 2.7: Phase boundaries within the T-matrix approach (compare with Fig. 2.1). The
grey region represents the partially polarized normal phase Np,. The red line marks the
saturation field hs obtained using Eq. (2.99), the black line was obtained using the Thouless
criterion (2.74). The blue line marks the phase boundary of the FFLO phase, obtained
using the modified Thouless criterion. In the region above the dotted line h/ep = 0.5, the
minority Fermion chemical potential is negative p) < 0.

This expression for the momentum distribution of the minority atoms can be used to
obtain the saturation field hg, where the minority Fermion density vanishes. Indeed, the
chemical potential of the minority Fermion at h, is given by p|(h = hy) = Ep. Using Eq.
(2.92) we obtain

w1l ey, = 27(0,0) (2.98)

and thus the saturation field h; is given by the exact expression

R
hs 1 (1 _ 20,0 (O’O)> , (2.99)

EF 2 EF

Using this equation and the self-energy from our T-matrix approximation, we calculate
the saturation field hs for all interaction strengths numerically. The result is plotted in the
T-matrix phase diagram in Fig. 2.7. It turns out that the hg(v) curve intersects with the
critical field hepi¢ from the Thouless criterion at an interaction strength v = (k Fa)_1 =1.27
and lies below hgy for v > 1.27. In this regime, the vertex function has poles in the
complex plane and the calculation of hs using Eq.(2.99) breaks down.

From Eq. (2.97) it is obvious, that the momentum distribution of the minority Fermions
at zero temperature has no tail at large momenta, since nll{ =0if “ex > lep| 4 1) . Again,
this is an artefact of the selfconsistent calculation of the minority chemical potential in
the regime ) < 0. Nevertheless, we expect that the main features are reasonably well
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Figure 2.8: Polarization P = (ny —n|)/(nt +n|) of the imbalanced Fermi gas at unitarity
and 7' = 0 as a function of the minority chemical potential 1|, obtained by integrating
the momentum distribution (2.97). The dashed line corresponds the approximate result,
obtained using Eq. (2.100).

described within this approach. Using the approximate expansions (2.95) and (2.96) for
the dispersion relation and the quasiparticle weight at unitarity, we get

k2 m
ny(k) ~ (ZO —¢ k:_2> © <Ni + les| — %5k> (2.100)
F

which is a good description for kp| < 0.4kp, i.e. for large imbalances.

We can use the minority momentum distribution (2.97) to calculate the population
imbalance P = (ny —n|)/(ny +n|) as a function of the minority chemical potential. The
result is plotted in Fig. 2.8 and shows that the chemical potential of the minority Fermions
is indeed negative for a large range of polarizations at unitarity.

2.3.4 RF-spectra of the minority Fermions

In the absence of final state interactions, the rf-spectrum for the minority Fermions can be
calculated using Eq. (2.50). At zero temperature, using the result (2.93) for the hole-part
of the minority species’ spectral function in the regime p; < 0, we obtain

3
I(w) = %/% A(k,ex —w —pp) npex —w — )
3
= /%Z(k) d(ex — Fx —w)O(w + p — ex) (2.101)
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The rf-response is nonzero at frequencies which coincide with the energy difference between
the kinetic energy of the Fermion in the final state and the excitation energy Fy. Using the
approximate expression (2.95) for the excitation energies Ey at unitarity, the rf-spectrum
can be written as

3 m* —m
1) = [t 20 6(" et fal - w) 0w+ - 2

~ [ vE 28 5(
~ Z(\/50) VT Olw+ 1y — ) (2.102)

*

m*—m
Te+|eb|—w> O(w+ p| —¢)

with
m*

go = 7_m(w — |ep]) - (2.103)

Using Eq. (2.96) for the quasiparticle weight, the rf-spectrum of the minority Fermions in
the regime 1) < 0 at unitarity is approximately given by

* * * *
1)~ (- 2Bl o) o)+ T )
m*—m e m*—m m m

(2.104)
Note that there is no tail in the rf-spectrum at 7' = 0 at large frequencies, since the
unit step function cuts off the integral and thus I(w) is identically zero for all frequencies
W > Whnax = mW*|eb| + m*ﬂ;m ). Again, this is an artefact of the selfconsistent calculation
of the minority species’ chemical potential ;1| within the T-matrix approach. Indeed, it
has been shown recently by Schneider et al. [59], that the rf-spectra should have a tail
~ C /w3/ 2 proportional to the contact coefficient C, which has been introduced in Sec.
2.2.1. The sharp drop of the minority rf-spectrum at zero temperature in the normal
phase is related to the fact the minority atoms form a Fermi-liquid. Indeed, close to the
Fermi surface a Landau Fermi liquid at zero temperature has a spectral function of the
form

AFL(kv w) = Zé(w - el*c + /L) + Ainc(k7 w) 9 (2105)

where the 'coherent’ delta-function contribution comes from the infinite-lifetime excita-
tions at the Fermi momentum and the renormalized dispersion is parametrized by an
effective mass, i.e. ef = k?/(2m*). The second term describes the incoherent part of the
spectral function. Repeating the calculation for the rf-spectrum with this spectral func-
tion gives rise to a sharp drop of I(w) at w = u(m* —m)/m, as above. Thus, apart from
missing the small tails at high frequencies, the qualitative form of the spectrum (2.104) is
correct.

The minority rf-spectrum has a sharp onset at win = |€p|, corresponding to the "bind-
ing energy’ of the down-Fermion to the majority Fermi sea. This coincides again with the
naive expectation, that the rf-field has to provide the binding energy in order to transfer
atoms to the empty hyperfine state. The width of the rf-spectrum is given by

m* —m
—(

Aw = Wmax — Wmin = lep| + pep) - (2.106)
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Figure 2.9: Minority Fermion rf-spectra in the normal phase at unitarity and zero tem-
perature, plotted for population imbalances. The red dashed line corresponds to the
approximate spectra obtained using Eq. (2.104).

The width of the spectral line is a direct measure of the effective mass m* and of the
population imbalance P. Indeed, for m* — m or P — 1 (i.e. 1) — —|€p|) the width of the
spectral line goes to zero.

The numerically obtained results for the rf-spectra (2.101) are plotted in Fig. 2.9. These
spectra cannot be compared directly with the experimentally measured ones, because we
have calculated the rf-spectra at zero temperature, whereas the experiments are performed
at relatively high temperatures on the order of 0.17r. As mentioned above, the sharp
upper cutoff in the rf-spectra is related to the presence of a sharp Fermi surface at zero
temperature and thus cannot be resolved in the experimentally measured spectra at finite
temperature. Indeed, at finite temperature, this discontinuity is washed out due to thermal
excitations.

2.4 Conclusions

In this chapter we have calculated the spectral functions and the rf-response of imbalanced
Fermi gases in the normal phase at zero temperature, using a T-matrix approach. One
important conclusion that can be drawn from this calculation is, that the shift of the
minority rf-spectrum in the normal phase of the imbalanced Fermi gas is essentially due
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to the Hartree shift of the minority species’ chemical potential and not an effect of two-
particle pairing. Actually, after the first rf-measurements on imbalanced Fermi gases
came up, it was widely believed that the minority rf-shift is due to pre-formed pairs in
the normal phase. This is not true, however. Indeed, if the minority rf-shift would be a
pairing effect, the paired majority atoms should show the same rf-response as the minority
atoms because of symmetry. Apart from the unpaired ”excess”-Fermion peak at w = 0,
the rf-spectrum of the majority atoms should show a second peak that is identical to the
minority rf-spectrum and arises from the paired majority atoms. Our calculations show
no signs of such a pairing in the normal phase, however. Thus, the binding energy of
the minority atoms in the normal phase of the imbalanced Fermi gas is a polaronic effect.
Only for strong enough interactions on the BEC-side of the Feshbach resonance, where the
formation of a molecular bound state is possible, the pairing is of a two-particle nature. In
this case, the ground state of the many-body system is no longer a normal Fermi-liquid but
a superfluid of condensed molecules. This polaron-to-molecule transition will be discussed
extensively in the subsequent chapter 3. Recent rf-measurements of the imbalanced Fermi
gas [57] directly validate this picture. Indeed, in the normal phase where polaronic binding
is present, no overlap between the minority and the majority rf-spectra is seen. In the
superfluid phase, however, where molecules are formed, the rf-spectra of the two species
overlap (apart from the rf-response of the unpaired majority atoms).
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Chapter 3

Polaron to molecule transition in
strongly imbalanced Fermi gases

As already mentioned in Sec. 2.1, the phase diagram of strongly interacting two-component
Fermi gases with a population imbalance is rather complicated and poorly understood.
In fact, reliable theoretical results exist only for two limiting cases. The first one is
the trivial limit of zero imbalance, i.e. the balanced Fermi gas, which has been studied
extensively in the BCS-BEC crossover literature (see [4] and references therein). The
other limit, on which we will will focus in this chapter, corresponds to the extremely
imbalanced gas close to the saturation field hs. Here one encounters the situation of a
single minority atom interacting with a Fermi sea of majority atoms. This problem is
especially interesting, because a quantum phase transition from a normal (Fermi liquid)
phase to a superfluid phase of Bose-condensed molecules is expected to occur at finite
but arbitrary low concentration of minority atoms, if the interaction strength is tuned
from the BCS to the BEC regime via a Feshbach resonance. Within the (IV + 1)-particle
problem, this phase transition can be understood in a simple picture as follows. In the
case of attractive interactions, the minority atom dresses itself with a cloud of majority
atoms and forms a Landau quasiparticle. This quasiparticle is usually called polaron in the
literature, in analogy to a polaron in solid state physics, where an electron dresses itself
with a cloud of phonons (see e.g. [60]). Quite generally, the associated polaron energy for
low momenta p < kp is of the form

p?

E(p) = Aep + 2

(3.1)
where the first term corresponds to a ’binding energy’ (i.e. A < 0) due to the attractive
interaction between the minority atom and the Fermi sea and the second term represents
the kinetic energy of the quasiparticle, where the effect of the dressing cloud is described
by an effective mass m* > m. Here and in the following, the Fermi energy is defined
by ep = k%/(2m) with a Fermi momentum kp that is related to the up-spin density
by the standard relation ny = k2./(672) for a single component Fermi gas. Since we are
interested in the limit of vanishing down-spin density n; — 0, these are the relevant energy

41



3. POLARON TO MOLECULE TRANSITION

Figure 3.1: Cartoon of the polaron to molecule transition in the (N + 1)-particle problem.
a): noninteracting case; b): for attractive interactions, the minority atom forms a polaron
by dressing itself with a cloud of majority atoms; ¢): beyond a critical interaction strength,
the minority atom forms a molecular bound state with one of the majority atoms. Picture
taken from [57].

and momentum scales. Theoretical values for the binding energy and the effective mass
of the polaron have been determined from variational Monte-Carlo calculations by Lobo
et al. [22] as well as from a T-matrix approximation by Combescot et al. [50] and in the
previous chapter of the present thesis (see Eq. (2.95)). Quite recently, the properties of the
polaron have been studied also in experiments. For the binding energy and the effective
mass at unitarity they obtain A = —0.64(7) [57] and m*/m = 1.17(10) [58], in rather good
agreement with the theoretical results.

Beyond a critical interaction strength however, the minority atom forms a molecular
bound state with one of the majority atoms and thus can no longer propagate as an
independent fermionic quasiparticle!. This transition has been discussed previously by
Prokof’ev and Svistunov [23, 24]. At finite minority concentrations one expects a Bose-
Einstein-condensate of molecules. A cartoon picture of the polaron to molecule transition
is shown in Fig. 3.1.

A major step torwards a theoretical understanding of the (N + 1)-particle problem
was put forward by Chevy [11], who introduced a simple variational wave function that
captures the essential physics of a single down-Fermion immersed in an up-Fermi sea. This
ansatz works very well on the BCS-side of the Feshbach resonance up to the unitary point
and slightly beyond, as long as the minority atom forms a polaron with the Fermi-sea.
However — as will be discussed in detail below — it turns out that Chevy’s wave function
is not capable of describing the BEC-regime of the (IV + 1)-particle problem properly. In
particular, it doesn’t capture the phase transition from polaronic-binding to a molecular
two-body bound state. In the following sections we discuss the limitations of Chevy’s

!Obviously, this critical interaction strength lies on the BEC-side of the Feshbach resonance, since a
molecular bound state in the two body problem is only present at positive scattering lengths a > 0. As will
be shown below, the formation of the two-body bound state is possible only beyond a critical interaction
strength (kFa)gl > 0.84. Interestingly, the molecule formation is more difficult in the presence of a Fermi
sea, than in its absence. This is in contrast to the usual Cooper problem [61], where a bound state between
to weakly interacting Fermions arises only if a Fermi sea is present. This issue is discussed in App. C,
where we analyze the Cooper problem in a spin polarized environment.
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q-k

Figure 3.2: Pictorial representation of Chevy’s variational wave function (3.4). The large
grey circle represents the Fermi sea of the majority atoms.

ansatz and propose a complementary variational wave function, that leads to a correct
description of the molecular bound-state within the (N + 1)-particle problem and allows
to pin down the polaron to molecule transition point.

3.1 Chevy’s ansatz and its problems in the BEC-regime

The (N + 1)-particle problem that will be discussed in the following is based on the
standard model for ultracold two-species Fermi gases interacting via a contact interaction,
defined by the Hamiltonian

H = Z EkCLO_CkU + g_‘;) Z C;rqTcirczlckslckﬂ&kl+k2,k3+k4 : (3.2)
ko ki ,k2,k3,k4
Here, CLU and ¢y, are the creation and destruction operators for Fermions with momentum
k in the pseudo-spin state o and e = k*/(2m) denotes the dispersion relation of free
Fermions with mass m. As shown in appendix A, the bare interaction strength gg is
related to the physical s-wave scattering length a via

SR (3.3)

A simple variational wave function for the (N41)-particle problem of a single down-spin
Fermion interacting with a sea of spin-up Fermions was introduced by Chevy [11]. It
is based on an expansion up to a single particle-hole excitation around the unperturbed
Fermi sea and takes the form

/
o) = (d0chy + Y raclygelyear ) FST) (3.4)
k,q

Here and in the following sums on k and q with a prime are restricted to k > kg and
q < kp, respectively and the N-particle Fermi sea of up-atoms is denoted by |F S{V ).
Pictorially, this variational ansatz is shown in Fig. 3.2.
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Although the ansatz (3.4) is restricted to single particle-hole excitations, which is
difficult to justify for strongly interacting Fermi systems?, Monte Carlo calculations [21,
23, 24] have shown that this variational wave function gives very accurate results for the
ground state energy of the polaron, in particular at unitarity, where the scattering length
a is infinite. On a formal level, the truncation of the particle-hole expansion after the first
term has been analyzed by Combescot and Giraud [62], who have shown that higher order
terms with more than one particle-hole excitation interfere destructively. In fact, this
interference is perfect if the hole-momentum q in the first order term is pinned at q = 0
and justifies the restriction to a single particle-hole excitation, if an expansion in hole
wavevectors is legitimate3. In fact, however, the accuracy of Chevy’s ansatz at unitarity
is probably a coincidence, because the wave function smoothly interpolates between the
weak coupling BCS- and BEC-limits, where it gives the correct leading-order behavior of
the ground state energy, as will be shown in the next section. Furthermore, the results
for other quantities such as the quasiparticle residue of the minority atom are not very
accurate (see Fig. 3.4 below).

3.1.1 Ground state energy

A variational upper bound to the ground state energy of the polaron using Chevy’s ansatz
(3.4) can be obtained by taking the coefficients ¢g and ¢iq in the wave function (3.4) as an
infinite set of variational parameters. Calculating the minimum of (| H|t) with respect
to these variational parameters under the constraint of a normalized wave function leads
to the two coupled equations [11]

go 90 !
(E — VN) b0 = v %: Pkq (3.5)
(E — €k — Eq—-k + Eq) ¢kq - gVO(bO + g_‘/(v) Z/ ¢kq7 (36)
k

where the ground state energy E is measured with respect to the N-particle Fermi sea,
thus E is equivalent to the chemical potential of the down-Fermion p| = E. Solving (3.6)
for ¢yq leads to

%o x(q; E)
P = V E—¢ex—eqk+eéq (3.7)

where we have defined
1
1 1 1

B = —— = . 3.8
x(a; B) g V E—cx —eq-k+&q (38)

The divergence of the integral in the expression above can be regularized using Eq. (3.3),
i.e. by replacing the bare interaction strength gy with the physical s-wave scattering length

2Note that from an energetic point of view it would be favorable to create a larger number of particle-
hole excitations close to the Fermi surface, instead of a single one with large momentum transfer.

3Pinning the hole-wavevector at q = 0 is a bad approximation in the BEC-regime. This issue will be
discussed at the end of Sec. 3.1.1.
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Figure 3.3: Ground state energy F in units of the Fermi energy ¢ as a function of the
inverse coupling (kpa)~t. Note that F = p1| is measured with respect to the Fermi sea.
The red solid line corresponds to the result obtained using Chevy’s wave function, the
black dashed line corresponds to the energy of the molecular bound state E, = —1/(ma?).

a. Note that x(q; F) has essentially the same form as the (real part of the) vertex function
(2.66) studied in detail in Sec. 2.3.1 and thus can be calculated analytically.

Using Eq. (3.5) one gets the following implicit equation for the ground state energy

B=2 Y xah). (39)

lal<kr

This equation thus determines the variational upper bound for the ground state energy
of a single down-Fermion immersed in an up-Fermi sea as a function of the interaction
strength. The numerically obtained result is shown in Fig. 3.3. In particular, the chemical
potential of the down-Fermion at unitarity is given by x| = —0.6066¢, which is in good
agreement with the fixed-node Monte Carlo result ;| = —0.594eF of Pilati and Giorgini
[21] and the diagrammatic Monte-Carlo result ;1| = —0.615¢ of Prokof’ev and Svistunov
[23].

In the two weak coupling BCS- and BEC-limits the ground state energy £/ = p| can be
calculated analytically within Chevy’s variational approach. In the BCS-regime a — 07,
the dominant contribution to the ground state energy comes from x(q; E') ~ 4mwa/m, thus
the chemical potential of the down-Fermion is given by its mean field value p/ep =
4/(3m) kra, as expected. A bit more interesting is the BEC-limit @ — 0. In this regime
the two-particle bound state dominates the ground state behavior. We thus expand the
integral in Eq. (3.8) for large energies |E| > ep and small momenta q, which is very
accurate in the BEC-regime. In this case Eq. (3.9) simplifies to (in dimensionless form
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and after taking the thermodynamic limit)
E 4 1 2
— = —/ dq q
EF ™ Jo 1 F E/er + F 2 ¢
kFCL 2 E/EF 8

where momenta q are measured in units of kp. In the BEC-limit (kpa)™' — oo, this
equation leads to*

(3.10)

Echey “ 2 By —ep/2+ 0(a) (3.11)
where B, = —1/(ma?) denotes the binding energy of the two particle bound state. Thus,
Chevy’s wave function seems to describe the molecule formation correctly. However, it
turns out that the constant term ~ ep/2 in (3.11) is wrong by a factor of two. Indeed,
a simple mean field analysis shows, that the correct asymptotic behavior of the ground
state energy in the BEC-limit is given by

a—071 2

E = Ey,—er+ GadMy + O(a ) ) (3'12)
where the leading contribution is again the molecular binding energy Fj. The constant
contribution e is due to the removal of one up-Fermion from the Fermi-sea in order to
form the molecule and the third term accounts for the mean field repulsion between the
molecule and the Fermi-sea. Its interaction strength g,q = 3magq/m is related to the exact
atom-dimer scattering length a,q = 1.18 a that has first been calculated by Skorniakov and
Ter-Martirosian [63] for neutron-deuteron scattering (in the context of ultracold gases, this
result has been re-derived by Petrov et. al. [20]).

The fact that the result (3.11) for the ground state energy differs from the correct
asymptotics by ep/2 is a first indication that Chevy’s variational ansatz breaks down in
the BEC-regime. The reason for this discrepancy can be traced back easily to the structure
of Chevy’s wave function. Indeed, a closer inspection of (3.4) shows that the dominant
terms in the BEC-limit are those, where the hole-momentum q = 0 vanishes, i.e.

/
> buocly ehyeor FST) (3.13)
k

In the BEC-regime this term corresponds to the molecular bound-state wave function of
an up- and a down-Fermion with opposite momenta in the presence of a Fermi sea’®. From
an energetic point of view this part of the wave function is not optimal however, since it
creates a hole in the center of the T-Fermi-sphere. Energetically it would be favorable to
replace the punctured N-particle Fermi-sphere with a (N-1)-particle Fermi sea, i.e.

cor|FSY) — [FSYT) (3.14)

“We note that the inclusion of the g-dependent term in the denominator of Eq. (3.10) is crucial in
order to obtain the constant term ~ e in the asymptotics of the ground state energy (3.11). This term
is missing in the analysis of Combescot et al. [50], see their Eq. (9).

5The presence of the up-Fermi sea leads to a slight modification of the ’free’ molecular wave function
on length scales x 2 k;l. However, this modification is not important in the BEC-regime kra < 1, where
the interparticle spacing ~ k;l is much larger than the typical size of the molecule ~ a.
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3.1. CHEVY’S ANSATZ

which would lead to a ground state energy that is lower by er. However, within Chevy’s
ansatz (3.4) this would require the inclusion of an arbitrary number of particle-hole exci-
tations in order to reshuffle the Fermi-sea in such a way that the hole vanishes.

The fact that Chevy’s wave function gives an incorrect description of the (N + 1)-
particle problem in the BEC-regime becomes even more apparent if one takes a closer
look at the quasiparticle residue Z| of the minority atom.

3.1.2 Quasiparticle residue

From a many body point of view, the relevant quantity that characterizes the polaron as
well defined quasi-particle is the so called quasiparticle residue Z| of the minority atom.
Quite generally, the quasiparticle residue gives the probability amplitude that a particle
with momentum k propagates without being scattered. It is directly related to the Green’s
function

iG(p,t > 0) = (cp(t)ch(0)) . (3.15)

Indeed, the probability amplitude for propagation as a proper quasiparticle is determined
by the pole and the corresponding residue of the Green’s function in the lower half complex
plane [45]
Y>1 dw et
Gk,t) =~ Ggrk,t) = — .
( ) R( ) 2w w—&?k—i-u—ER(k,w)

(3.16)

Let’s assume that the retarded Green’s function has a simple pole in the LHP at w =
Fy — iy — p, with y¢ > 0, i.e.
Ex = ex+ ReXp(k, Ex — iy — 1) (3.17)
N = —ImZg(k, Ex —in — p) (3.18)
Closing the contour in the LHP gives
e~ i (Bx—inc—p)t

Crlk,t) = —i , .
rik;?) 1 —0,Xr(k, Bx — iy — 1)

(3.19)

In a Fermi liquid state the imaginary part of the self energy vanishes right at the Fermi
momentum® kx, which is defined by Ey » = W, and thus we have 9 = 0%. The quasiparticle
residue Z is then defined by

1
N ‘1 - awZR(kF7O)’

Z = tlim ’GR(kF,t)’ (320)

where the absolute value was taken in order to remove the oscillating term. The quasi-
particle residue Z is also related to the discontinuity of the momentum distribution n(p)
of the Fermions at kp. It was already shown by Migdal [64] that

Z =n(kp —0%) —n(kp +07) (3.21)

5Note that this is a general discussion of the quasiparticle residue. In the following we are interested in
the properties of the minority Fermion, thus kr = kr; — 0 for the (N + 1)-particle problem considered in
this chapter.
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3. POLARON TO MOLECULE TRANSITION

Indeed, at zero temperature and infinitesimally close to kp, where v = 0 we get

nk) = ;l—: Ak, w)O(—w)
i / dwd (@ — e+ o — Re Ep(k,w)) O(—w)
~  Z(kr)©(p— Ex) (3.22)

with the quasiparticle residue Z(kp) = Z from Eq. (3.20). From this expression it is
obvious that the Fermi momentum kg is related to the chemical potential ;v via p = Fy,,
or equivalently, using Eq. (3.17), by

p =€k, + ReXr(kp,0). (3.23)

Furthermore, the discontinuity of the momentum distribution at the Fermi momentum is
given by

lim [n(kp — 8) — n(kp —8)] = Z = !

.24
=0 11— 0,k (kr,0)| (3.24)

In the case of Chevy’s wave function (3.4), where the Fermi momentum of the down
particle is zero, the quasiparticle residue of the down-Fermion can be obtained via the
jump in the momentum distribution at k = 0. It is given by

Zy = |l (3.25)

and can be calculated by inserting the coefficients ¢yq from Eq. (3.7) into the normalization
condition of the wave function 1= |¢g|* + "y |fxq|*. From this one obtains

x%(q; E)
— €k —€q-k T €q)

1 1 !
—s =14+ = . 3.26
|¢0|2 V2 kzg (E 2 ( )

The result for the minority Fermion quasiparticle residue is shown in Fig. 3.4 together with
recent experimental results. Apparently, Chevy’s ansatz for the polaron predicts a finite
Z\ of the minority atom for all interaction strengths, even deep in the BEC-regime where a
molecular bound state with one of the majority atoms is formed. In this regime, however,
the quasiparticle residue is expected to vanish, because the minority atom can no longer
propagate as a free particle. Indeed Z| vanishes identically beyond the critical interaction
strength of molecule formation, which is consistent with recent experiments [57]. Actually,
Z| can be viewed as the order parameter of the polaron to molecule transition.

The numerical value of Z| at unitarity v = 0 is Z|(v =0) ~ 0.78 within Chevy’s
ansatz. This is much larger than the experimentally observed value Z; = 0.39(9) which
is likely to be a lower bound, however [57]. Apparently, the expansion up to a single
particle-hole excitation considerably overestimates the quasiparticle residue even though
it gives reliable results for the ground state energy and the effective mass.
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Z, =10y

(kea)”

Figure 3.4: Quasiparticle residue Z| of the minority Fermion as function of (kpa)™1,
calculated using Chevy’s variational ansatz (3.4). In the regime where the ansatz (3.4)
breaks down, Z| is drawn as dotted line. The red dots correspond to the experimentally
measured quasiparticle residue from the MIT group [57] at a minority concentration of

5%.

3.1.3 Momentum distribution and contact coefficient

Another interesting quantities are the momentum distributions of the two Fermion species.
A simple calculation using Chevy’s ansatz shows that they are given by

nh = |6ol*0po+ D Ibq-pal’©(a—pl—kr) (3.27)
lal<kr
nl, = O(kr —p) [1— > okl | O —kr) D |opal (3.28)
‘k|>k)F |q‘<k‘F

Note that the wave-function coefficients ¢yq from Eq. (3.7) scale as ~ V1 an thus the
tails of the momentum distributions of both species scale as one over volume. This is
a trivial consequence of the fact that we have only one minority atom present and thus
the minority atom density is given by V~!. Furthermore, the asymptotics of momentum
distributions for both species at large momenta are identical and given by

pP—00
nyt =Y (el (3.29)
la|<kr
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The contact coefficient C' that has been introduced in sec 2.2.1 can now be calculated
according to (2.35) via

e A o AN 2 WO’
C = lim k' = lim k Zk: |Pkq|” = Z Ix(a; B (3.30)

Now it is easy to see that Chevy’s ansatz for the strongly imbalanced gas obeys the

adiabatic theorem (2.38). Indeed, the interaction energy within Chevy’s ansatz is given
by

(Hing) = — ‘%’ Z Ix(a; B2 (3.31)

Using Tan’s relation for the interaction energy from Eq. (2.36), the contact coefficient is
given by

27%m 2|<J50|2
C= —W<Hint = Z Ix(a; E)|”, (3.32)

which is equivalent to the result (3.30) obtained from the asymptotics of the momentum
distribution, thus Chevy’s ansatz obeys the adiabatic theorem. Right at unitarity the
dimensionless contact coefficient s, defined in (2.39), can be obtained numerically from
(3.32) and is given by [65]
C
§=————=0.072. 3.33

k F 6 2 / Vv ( )
Note again that the factor V' comes from the fact that the minority atom density is given
by n| = VL. The results for the dimensionless contact coefficient as a function of the
scattering length are shown in Fig. 3.11 on page 67, together with the results from our
variational ansatz for the BEC-regime.

3.1.4 Minority spectral function and rf-response

In principle, a variational ansatz like (3.4) for the ground state of an interacting many-
body system contains no dynamical information. Indeed, in order to calculate the single
particle spectral function A(k, w) it is necessary to know the excited states” of the system,
as can be seen immediately from the Lehmann representation of the spectral function in
Egs. (2.52) and (2.53). However, the (N + 1)-particle problem is an exception to this
general rule, because the knowledge of the ground state wave function suffices to calculate
the hole part of the minority spectral function Al_(k,w) at zero temperature, which is
given by

Al (k,w) =21 Y [(m|ey|0)|* 6(w + B — Eo) - (3.34)

m

This is because the excited states |m) are eigenstates of the non-interacting Hamiltonian
of the fully polarized majority gas, if the single minority atom is removed from the system.

"In particular one has to know the excited states with single particle/hole excitations.
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Using Chevy’s ansatz (3.4) for the ground state wave function |0) and the equation above,
the hole part of the minority spectral function at zero temperature is given by

Al_(p,w) = 27T|¢0|25(w)5p,0 + 27 Z |¢q—p,q|2®(|q =Pl = kp)d(w+eq-p —€q) (3-35)
lal<kr

Note that by convention w is measured with respect to the chemical potential 4. It can
be seen immediately that this expression for the spectral function satisfies Eq. (2.54), i.e.
it gives the momentum distribution of the minority atom (3.27) when integrated over the
frequency w and divided by 27. Furthermore, from the delta-function in the last term
of Eq. (3.35) it can be inferred that for a given momentum p, the spectral function is
non-zero in the interval —ep — pkp/m < w < —ep + pkp/m.

The minority rf-spectrum at zero temperature can now be calculated by plugging the
spectral function from Eq. (3.35) into Eq. (2.50)

2 /d?’k?dg
I (w) = @ O(w 4 py) + V/ @T)Gq |prql® 6(cqk + ek — €q —w — 1), (3.36)

where the prime on the integration symbol indicates the restriction of the integration area
to k > kp and ¢ < kp. The rf-spectrum exhibits a sharp peak ~ Z|§(w + | ) proportional
to the quasiparticle residue, as expected in an exact description. This peak has been
obtained already in the T-matrix calculation in Sec. 2.3.2. Note that the factor V! in
the first term comes from the normalization of the rf-spectrum (2.25). The second term
is non-zero for w > —pu| and leads to the tail in the rf-spectrum, which is missing in
the T-matrix calculation. As will be shown right below, this tail is proportional to the
contact coefficient C' ~ V1 at large frequencies. The scaling of the tail ~ V! is again
due to the normalization condition of the Rf-spectrum, thus the tail doesn’t vanish in the
thermodynamic limit if the Rf-spectrum is properly normalized. Indeed, if we calculate
the normalized spectral weight of the peak (first term) and of the tail (second term) of
the rf-spectrum in Eq. (3.36) using the normalization condition 1 = |¢g|? + > kq |Prql?,
we immediately see that spectral weight of the tail is given by 1 — Z|, which is ~ 22% at
unitarity.

At large frequencies w — 00, the rf-spectrum can be calculated explicitely and we get

' dh B
I(w — o0) ~ v/ @T)Gq i ” 5205 — ). (3.37)

From Eq. (3.29) we know that the g-integral in the above expression gives the asymptotics
of the momentum distribution at large momenta. After evaluating the k-integral the tail
of the rf-spectrum can thus be expressed as

1
in2Jm P

I (w—o00) ~ (3.38)

where C' is the contact coefficient introduced above.
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Figure 3.5: Minority rf-spectrum at unitarity, obtained within Chevy’s ansatz from (3.36)
and normalized to unity. The red dashed line marks the asymptotics (3.38) at large
frequencies. The delta-function contribution is indicated by the thick vertical line and has
a weight equal to Z| = |po|? =~ 0.78.

3.1.5 Equivalence of Chevy’s ansatz to a non-selfconsistent T-matrix
approach

It turns out that Chevy’s variational ansatz for the polaron problem is formally equivalent
to the non-selfconsistent T-matrix approach for the imbalanced Fermi gas from Sec. 2.3, as
far as equilibrium properties such as the ground state energy and the quasiparticle residue
at the saturation field hy (i.e. where the minority density vanishes) are concerned. This
equivalence was observed already by Combescot et al. [50] and will be briefly discussed in
this section.

Within Chevy’s ansatz, the chemical potential® of the minority Fermion py is de-
termined by Eq. (3.9). On the other hand, within the T-matrix approach the chemical
potential | at the saturation field h, is given by the self-energy at zero momentum and
frequency?. Using Eq. (2.90) this leads to the equation

p, = %f(0,0)
-1

a3 1 B3k 1
_ / a [_ i / . (3.39)
q<kp (2m)% |90 k>kp (27)3 ex + €q-x —€q — 1]

8Note again that the ground state energy F of the polaron measured with respect to the N-particle
Fermi sea is equivalent to the minority Fermion chemical potential 1) = E.

9At the saturation field hs the chemical potential p; is negative for all interaction strengths, which
simplifies the T-matrix calculations considerably. See the discussion in Sec. 2.3.2.
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3.2. VARIATIONAL ANSATZ FOR THE BEC-REGIME

which is identical to Chevy’s result (3.9). The same is true for the quasiparticle residue
Z, of the minority Fermion. Within Chevy’s ansatz Z| is given by Eqs. (3.25) and (3.26).
The T-matrix approach at the saturation field hg leads to

z7t = ‘1—iReEf(0,0) (3.40)

! N ow

_ 1_‘_%2 (5k+5q—k—5q_ﬂl)_2 -
Vv 1,1 1
Sk <g—o v 2kp +———m>
which is again equivalent to the result obtained using Chevy’s ansatz.

Apart from leading to the same results, the T-matrix approach has one crucial ad-
vantage over Chevy’s wave function, however. While Chevy’s ansatz suggests that it is
valid in the whole BCS-BEC crossover regime, the T-matrix approach has the ability to
predict its own breakdown via the Thouless criterion, that has been discussed in Sec. 2.3.1.
Indeed, we have found in Sec. 2.3.2 that the critical chemical potential from the Thouless
criterion crosses the chemical potential obtained using Eq. (3.39) at a critical interaction

strength
1
— =1.27. 3.41
(kFCL)crit ( )

which can be identified with the point M in the phase diagram 2.1.

The equivalence of Chevy’s wave function to the T-matrix approach shows, that there
is a critical point M on the BEC side of the Feshbach resonance beyond which the ansatz
(3.4) is no longer valid. Indeed, we have already seen above that Chevy’s ansatz leads to
a polaronic ground state for all interaction strengths and is not capable of describing the
molecule formation correctly. In the rest of this chapter our aim is to find a complementary
variational ansatz that is valid on the BEC-side of the point M and which correctly
describes the formation of the molecular ground state. This will allow us to pin down the
transition point M with a higher accuracy than the T-matrix result (3.41).

3.2 Variational ansatz for the BEC-regime

In order to describe the physics of bound state formation in the regime v > 1, we pro-
pose a variational ansatz for the (N+1)-body problem that complements the ansatz (3.4)
describing a Fermi polaron with a finite quasiparticle residue. Our ansatz gives the exact
behavior (3.12) of the ground state energy in the BEC-limit up to linear order in a. The
associated variational wave function

/ /

N—

o) = (2= el ipely + D2 onachso gl ) IFSYT (3.42)
k k'.k,q

is a natural generalization of the Chevy ansatz and is constructed by adding a (T, |)-
pair to a (N — 1)-particle Fermi sea of {-Fermions, together with the leading term in
an expansion in particle-hole excitations. Again, sums on k,k’ and q are restricted to
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" $.

Figure 3.6: Pictorial representation of the variational wave function (3.42) for the molec-
ular ground state.

k,k' > kp and q¢ < kp, respectively. The first term accounts for the formation of the
molecule in the presence of the T-Fermi sea and gives the correct next-to-leading-order
ground state energy in the BEC-limit, avoiding the problem of creating a hole in the -
Fermi sea. The single particle-hole excitation in the second term describes the leading
order contribution to the interaction of the dimer with the Fermi sea apart from Pauli-
blocking effects, that are already accounted for in the first term. An important feature
brought about by the inclusion of the second term in Eq. (3.42) is that it amounts to
an exact treatment of the three-particle problem. Indeed, as will be shown in detail in
Sec. 3.2.6, the set of coupled equations (3.63)-(3.66) that determine the coefficients of the
variational many-body wave function reduce, in the three-particle limit, precisely to the
integral equation for the exact solution of the three-body problem by Skorniakov and Ter-
Martirosian [63]. As a result, the exact atom-dimer scattering length a,y = 1.18a appears
in the asymptotic behavior of the ground state energy (3.12), giving rise to the correct
next-to-next-to-leading order behavior of the ground state energy in the BEC-limit.

Obviously, the ansatz (3.42) is not capable of describing the whole range of scattering
lengths correctly. In particular, it does not capture the weak coupling BCS-limit a — 0.
Indeed, the |-Fermion in the first term is always added at momenta k > kp, leading to a
ground state energy that is too high by ep in the weak coupling limit. Our ansatz (3.42)
is therefore complementary to the Chevy wave function (3.4), which correctly describes
the situation at weak coupling up to and slightly beyond the unitarity limit.

From a physical point of view, the two variational wave functions (3.4) and (3.42)
characterize very different ground states. Chevy’s ansatz describes a Fermi polaron with a
finite quasiparticle residue, which allows to build a normal Fermi liquid at a finite concen-
tration of the down-spin Fermions, provided that interactions between the quasiparticles
have no attractive channels. By contrast, the wave function (3.42) describes a bosonic
molecule interacting with a Fermi sea. At a finite concentration n| # 0, the resulting
ground state is expected to be a superfluid of condensed bosonic molecules, coexisting
with unpaired majority Fermions. The critical coupling vys, where the ground state ener-
gies of the two variational wave functions intersect, is thus expected to separate a normal
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fluid from a superfluid ground state of the attractive Fermi gas in the limit of very strong
imbalance.

3.2.1 The two-channel model

The variational ansatz (3.42) is based on the single channel model (3.2) that describes the
attractive interactions between the two pseudo-spin states. For computational purposes,
however, it turns out to be easier to start from the more general two-channel model [66],
which is defined by the Hamiltonian

€ 90
H= Z <—p + 1/0) b;f,bp + Zspc;acpﬂ + == Z <bJIr>Cp—p’,TCp’,l + h.c.) . (3.43)
p 2 p,o \/V p’.p

Here, pr denotes the bosonic creation operator of a molecule with momentum p and
CI,,U are the fermionic creation operators for the two species ¢ =7, |. The free particle
dispersion is denoted by e, = p?/(2m) and the factor 1/2 in the first term accounts for

the factor two in the molecule to single Fermion mass ratio.

The two particle problem: relating the bare couplings to physical parameters

In order see how the bare detuning vy and the Feshbach coupling strength gy in the two-
channel model are related to the physical s-wave scattering length a and the interaction
range ro, we study the two particle problem briefly. The ground state wave function of an
up- and a down-Fermion in the two channel model can be obtained from the ansatz

¥) = (an +> kaLTCT_kl) 0), (3.44)
k

which is an eigenstate of the Hamiltonian (3.43) with energy F if the coefficients 1 and &
satisfy the equations

(E—w)n = % Zk:Ek (3.45)

90

Wﬁ

as can be checked easily by calculating H|v) = E|¢) and equating the coefficients. These
two equations can be combined to

2
90 1
E—yvy== E _ 4
o vV o E — 2¢ey (3.47)

(E—2e) & = (3.46)

The integral on the RHS diverges for large momenta, thus the bare detuning needs to be
regularized in the usual way via

vw=rv+=-» —. (3.48)
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Evaluating the integral in the thermodynamic limit finally leads to the eigenvalue equation

2
E—v=9"V"Fnm. (3.49)

47
We are looking for the energy of the molecular bound state of the two Fermions, which is
parameterized as!® E = —F, = —x?/m. Plugging this into the above equation we get
2 2
K gom
—— - —k—-v=0. 3.50
m a7 ( )

On the other hand, the scattering amplitude of two particles with vanishing relative mo-
mentum k is given by

1
—1/a +rok?/2 — ik + O(k3)
where a is the s-wave scattering length and rg is the interaction range. Bound states are

determined by the poles of the scattering amplitude in the upper half complex plane at
k = ix, with a binding energy given by E = —x2/m. This leads to the equation

f(k—0)= (3.51)

2
K 1
—7’074‘/41—5:0 (352)
Comparing the coefficients of equations (3.50) and (3.52) we finally get the following
relations between the bare couplings vy and gg of the two-channel model and the physical
parameters a and 7

12 m 1 1
- = —+ = — 3.53
g2 dra V = 2ep ’ (8:53)
8
= ——. 3.54
To gng ( )

Note that the effective range of the interaction rg is negative. Indeed, this counterintuitive
result holds for all zero-range potentials [67]. Furthermore, we note that the two-channel
Hamiltonian (3.43) is equivalent to a single channel model in the interesting limit where
the effective range ro goes to zero, i.e. kpro < 1 (i.e. for broad Feshbach resonances), as
can be seen easily by integrating out the bosonic degrees of freedom.

Variational ansatz in the two-channel model

The corresponding variational ansatz to (3.42) in the two-channel model has two additional
terms (~ 1o, Nkq) Where the closed-channel state is occupied

/ /
|¢0> = (770 bJ(r) + Z §k CT_leLT + Z Tlkq bL—kCLTCQT
k k,q

/
+ Z gk’kq c;—k—k'ch’TCLTCQT) ’FS%V 1> . (355)
kl7k7q

ONote that the two Fermions have the same mass m, thus the reduced mass is given by m, = m/2.
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3.2. VARIATIONAL ANSATZ FOR THE BEC-REGIME

The ground state energy can now be obtained variationally by evaluating the expectation
value of the Hamilton operator (3.43) in the state (3.55) and determining the minimum
with respect to the infinite set of variational parameters ng, &k, kg and xkq. The con-
straint of a normalized variational wave function is included conveniently using a Lagrange
multiplier £, which serves as trial ground state energy. The variational method thus leads
to the four coupled equations

aig(wo‘mwo Blolto)) = 0 (3.56)
azt(%'HW’O Blolto)) = 0 (3.57)
a%q(wo‘mwo B(tolvo)) = 0 (3.58)
geg, ((lfvn) = Blinli)) = o (359)

The derivatives with respect to the complex conjugate parameters lead to the conjugate
equations, which contain no additional information. The expectation values can be eval-
uated straightforwardly and one obtains

(olwo) = Imof* + Z 6l + Z eal® +2 Y [eial’ (3.60)
k'kq
(ol Holo) = (0 —er)lnol* + Z |c* (2ex — e7)
K
/
+ Z ’nqu(VO +eq-k/2+ ek —Eq —€F)
kq
!/
+ 2 Z |£k’kq|2(5q—k—k’ +ex +ew —€q — EF) (3.61)
k'kq
2 Y 9o
(to|Hint[tho) = Uoz e + Z Silkq — \/—Z Teq — Mk'q)ék’kq
K'kq
+ h.c. (3.62)

Note that the energy in the above equations is evaluated with respect to the N-particle
Fermi sea instead of the (IV — 1)-particle sea, which explains the occurrence of the ~ ep
terms in Eq. (3.61). This choice allows for a direct comparison with the results obtained
using Chevy’s ansatz. Furthermore, since the N-particle Fermi sea has been used as
reference scale, the ground state energy E is equivalent to the chemical potential u) = F
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of the single down-spin. Finally, the four coupled variational equations are given by
/
(E+ep—vo)mo = —g—oz €1 (3.63)
vV k
/
(Eter 2006 = —mot+ 2N g (3.64)

Eq—k 2
(E +er—1p— qT —ex + €q> Tkq b — Z fwkq  (3.65)

(E + EF — Eq_k_kf — &k’ — €k + Eq) fk’kq = — 2\9/0v (nkq — nqu) (3.66)

3.2.2 No particle-hole excitation

Before providing a full solution to the equations (3.63)-(3.66), we investigate a simplified
version of the variational problem and neglect the effect of particle-hole excitations for
the moment, i.e. we set g = 0 and kg = 0. In this case the ground state energy is
determined solely by the equations (3.63) and (3.64), which are essentially equivalent to
the two equations (3.45) and (3.46) for the exact solution of the two-body problem. The
only difference is the restriction of the k-sum to momenta larger than kg, which accounts
for the Pauli blocking of the Fermi sea. Without the inclusion of particle-hole excitations
our variational ansatz is thus analogous to Cooper’s problem [61] (see also App. C), where
the ground state energy of two Fermions with zero total momentum in the presence of a
Fermi sea is studied. Plugging Eq. (3.63) into (3.64) one obtains the equation

(E+ e — 2ex) &k = E—i—EF—VQVZ k- (3.67)

This integral equation is easily soluble since it has a trivially separable kernel. Setting the
RHS equal to a constant we get the condition

E+€F—V0_
2 VZE+E

2 (3.68)

F— 2k

Since we are interested in broad Feshbach resonances, where the long range physics is
determined solely by the s-wave scattering length a, we take the zero range limit rg — 0
(or equivalently gy — o0, see Eq. (3.54)). Furthermore we use Eq. (3.53) to renormalize
the bare coupling constants and obtain

R vZ E+€F—2Ek vzzgp (8.69)

Note again that the prime on the summation symbol indicates the restriction of the in-
tegration area to |k| > kp. Evaluating the integrals explicitly in the thermodynamic
limit, (3.69) reduces to the transcendental equation (in dimensionless form, i.e. measuring
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energies in units of p)

T E+erp E+er
=1 — t — . 3.70
i + 9% r arc an( - ) ( )

The numerical results for the ground state energy obtained from Eq. (3.70) are shown in
Fig. 3.10. As discussed in equation (3.12), the dominant contribution to the ground state
energy in the BEC-limit (¢ — 07) comes from the molecular binding energy. In this limit
an approximate analytical solution to Eq. (3.70) can be obtained by setting £ = Ey—ep+0
and expanding to leading order in 4. As a result we get

8
E=FEy—ecp+ % ny + 0(a?) . (3.71)

Comparing this result with Eq. (3.12), the effective atom-dimer scattering length within
this approximation turns out to be given by a,q = (8/3)a. This is exactly the result for
atom-dimer scattering in Born approximation, which, however, is far from the exact value
g = 1.18a.

We note that the transcendental equation (3.70) is exactly equivalent to the Thouless
criterion I"}(k = 0,w = 0) = 0 that was obtained in section 2.3.1, where only the
particle-particle ladder for the vertex function was taken into account. Formally, this
can be understood from the fact that the Thouless criterion for the vertex function in
the particle-particle ladder approximation is equivalent to the BCS-gap equation, which
in turn gives the same result as the Cooper problem, which is equivalent to the ansatz
discussed in this subsection.

3.2.3 Full solution of the variational problem

Now we turn to the solution of the full variational problem, thus including the effect of a
single particle hole excitation. In this case, the equations (3.63)-(3.66) can be reduced to
a single integral equation for the coefficients nxq as follows. First of all, we insert equation
(3.63) in (3.64) and (3.66) in (3.65). In order to perform the zero range limit 7o — 0
already at an early stage we multiply Eq. (3.65) with 1/¢2 and define b = &/ (90VV).
This leads to the two coupled equations

2
~ 95 1 !~ 1 /
Bé = -BlsVg Ly 72
kék WV 2 §k+V a Tkq (3.72)
. ~ 1 / ’I’}k/q
Oxqllkq = &k v Ek/ g (3.73)

where the zero range limit has been taken already and the coefficients are defined as

Ey = E+ep— 2y (3.74)

Ek’kq = E+ep— €q-k-k/ — €k’ — €k t+ &q (3.75)
140} 1 ! 1

Orq = ——5 — = (3.76)
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The integral equation (3.72) for the coefficients & has a trivial kernel and can be solved
formally

;o 1 ’ Mkq
e T zq: B (3.77)
where the constant c¢ is given by
2
9% 1 'z I ' "ka
c= 20~ - Sl 3.78
oV Ek k 72 qu S B (3.78)

and we have defined
— (3.79)
k

By inserting & from Eq. (3.77) into Eq. (3.73) the four coupled equations (3.63)-(3.66)
finally reduce to a single homogeneous Fredholm equation of the second kind!'!

1 /
72 2 KBk K q) meg = 0. (3.80)
k/7q/
The associated Kernel K(E;k,q; k', q’) is given by

Vo 1 Vg o
K(E:k,qk.,q) = o e V2 s S — a,9
( q q ) Ek ’YEkEk’ kq k.k’ Oq,q Ek’kq

(3.81)

Now, the ground state energy can be obtained in a rather straightforward manner. The
homogeneous integral equation (3.80) has a nontrivial solution only if the Fredholm deter-
minant of the Kernel vanishes (dety C = 0). Since an analytic solution to this problem is
hardly possible, we evaluate the Fredholm determinant numerically by discretizing the in-
tegral equation and calculating the determinant of the corresponding homogeneous linear
equation system. Schematically this works in the following way'?

/dl‘/’C(:L',:E/)u(:L'/) =0
l

N
ZAJE’C(JEn,ZEm)u(l’m) = 0 Vne{l,...,N}

N |

det K(zp, ) L0

1We note that the description within the two-channel model allowed us to reduce the problem to a single
integral equation for the coefficients nkq. Within the single-channel model, we would get an equation for
the coefficients {y/kq, Which is in principle equivalent but much harder to solve numerically due to the
third momentum dependence.

2Note that we use a Gauss-Legendre quadrature instead of an equidistant discretization in our calcula-
tion. This leads to a much faster convergence with less sampling points.
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relative error

6 8 10 12
order of quadrature

Figure 3.7: Relative error of the ground state energy in the (q = 0)-approximation as a
function of the order m of the Gauss-Legendre quadrature, plotted for different interaction
strengths. The ground state energy at order m = 15 (in the (q = 0)-approximation) has

been taken as reference value, i.e. we plot ]E((;Z%) / E((llj()) — 1|. Red with circles: unitarity;
green with squares: v = w/(2kpa) = 1; blue with diamonds: v = 2; orange with up-

triangles: v = 3. At order m = 11 the relative error at unitarity is already below 107°.

The root of the determinant then determines the ground state energy F. For an efficient
numerical calculation of the Fredholm determinant we need to reduce the dimensionality
of the integral equation, however'?. In the following, this will be done in two ways.
At first approximately, by pinning to hole-wavevector at q = 0. This leads to an one-
dimensional integral equation, which is easy to solve numerically. Secondly, we show how
the numerical solution to the full variational problem can be obtained by reducing (3.80)
to a three-dimensional integral equation. This is possible because in an isotropic system
the scalar coefficients nxq = n(k, ¢, cos fkq) only depend on the magnitude of the two

momenta k and q, as well as the angle between them.

Evaluation of the ground state energy in the (q = 0)-approximation

Pinning the hole wavevector q in Eq. (3.80) at ¢ = 0 leads to the simplified integral
equation

1 / Vék Kk’ nT nT 1
v S B —axoVokk | Mo = 82
4 %: ( Ex vExEyw  Eyyo ooV ok | Mo =0 (3.82)

13A simple discretization of the integral equation (3.80) in cartesian coordinates with only ten points
per axis would already lead to a 10° x 10° matrix, the determinant of which can hardly be evaluated on a
usual computer in reasonable time.
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3. POLARON TO MOLECULE TRANSITION

Figure 3.8: Ground state energy (binding energy E} subtracted) as a function of the inverse
interaction parameter (kra)~!. The blue line with dots corresponds to the (q = 0)-
approximation, the red line with squares are the results from the full solution of the
variational problem. The inset shows the error of the (q = 0)-approximation with respect
to the full solution, which is at most 3% in the regime (kpa)~! > 0.8, where the ansatz
(3.55) is valid.

/
where the factors nq arise from the remaining q'-integral, i.e. (1/V) Z 1 = ns. Since
q

Nko depends only on the magnitude of k/, we switch to spherical coordinates and choose
a frame where k points in z-direction and the polar angle 6’ corresponds to the angle
between k’ and k. In dimensionless form one obtains

) 25(k — k/ 41{3/2 1 k/2
/ dk/ {¥ — dkoé(k — k/) - == — / dCOS 9/ = }nk/ (383)
1 3Ek 3’7EkEk’ -1 Ek’kO

where the energies and momenta are measured in units of e and kp. The angular integral
in the equation above can be evaluated analytically. The Fredholm determinant of (3.83)
can now be evaluated numerically as sketched above. The discretization of the integral
using a Gauss-Legendre quadrature [68] of order'* m = 10 already leads to very accurate
results, as can be seen from Fig. 3.7. If a simple rectangular equidistant quadrature is
applied, more than 200 sampling points are needed to reach the same level of accuracy.
The results for the ground state energy are shown in Fig. 3.8.
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Qkyk/

Figure 3.9: Coordinate frame for evaluating the integral in Eq. (3.86). In the text we use
the abbreviated notation fxq = 6 and b = 6.

Full solution of the variational problem

We now proceed with the solution of the full variational problem. As mentioned above, we
need to reduce the six-dimensional integral equation (3.80) to a three dimensional integral
equation of the form

00 kp 1
/ dk"/ dq'/ decos @' K(E;k,q,cos 03k’ ¢ ,cos ') n(k',q ,cos0') =0 (3.84)
kg 0 -1

where k = k|, ¢ = |q| and € denotes the angle between k and q. We start by writing the
original integral equation (3.80) in dimensionless form and take the thermodynamic limit

Bk — K
o= [ f dgk,{é e egd(a— )5 - K)
i<t 1 « T
5@ (g —d
—((}7(1)} Nk'q - (385)
27TEk’kq

Here, E = E/ep and & = o272 /(kpm) (same for 4) and the momenta are measured in
units of kr, but are denoted with the same symbols. Since nyq and ayxq depend only
on the lengths and the angle between k and q, the first three terms on the RHS can be
brought easily to the form (3.84). Only the last term needs a more careful analysis, since
Eyxq depends on the magnitudes and angles between the three momenta k', k and q. At

M The order m of the quadrature is equal to the number of support points.
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first, we evaluate the d3k’ integral of the last term using spherical coordinates in the frame
depicted in Fig. 3.9, where q = ¢’ is taken along the z-axis and k lies in the xz-plane,
WLOG (i.e. ¢k = 0 in spherical coordinates). Inserting Ey/kq from Eq. (3.75) explicitly,
the d®k’ integral of the last term on the RHS of Eq. (3.85) takes the form

0 1 27 / !
/ dk:/k:IQ/ dCOS 9// d(pk n(k ,q 70080 )/(27T)
1 1 0 — 2k? — 2k'? — 2k’ cos Oy w + 2kq cos 0 + 2k'q’ cos 0
(3.86)

Since q = q’, we can express the angle between k and k' as
cos Oy = cos O cos 0’ + cos @), sinfsin ' | (3.87)

and perform the dyj, integral directly. Thus, we find the kernel K of the dimension-reduced
integral equation (3.84) in dimensionless form to be given by

/12 12112
kK = Loth—w)- 20k

—0(k — k(g — ¢')d(cos O — cos 0" )a (k' , ¢, cos 0)
Ek IVEkEk’

N2
+ k26(q — q’){ (2I<:2 + 2k + 2kk cos O cos 0’ — 2qk cos 0 — 2¢'k' cos 6’ — E)

~1/2
— (21{:1{:/)2 (1- cos? 9) (1 - cos? 0" } (3.88)

The integrals (3.76) and (3.79) for the coefficients dkq and 7 in the above expression for
the kernel I can be evaluated analytically. For the sake of completeness, we give here the
results without derivation'®

- —l— 1
¥y o= 2/<;Fa \/ arctanh\/ (3.89)

N T 1 1—X\—p? (1 ,u
- In .
R [ o ‘A AR ]-'] (3.90)
i Ln ‘ (LVA)?—pe? if A>0
2 0| (vne—e
F= (3.91)
m — arctan \1;% arctan ﬁ if A<0
and
E+1—|k-q]?2-k +¢
oo BEle ‘;' 2=k +a (3.92)
Kk —
y - k=dl (3.93)

2

5Note again that ~ denotes the dimensionless quantities, i.e. 5 = v 2w2/(mkr).
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(E-Ey/e.

Figure 3.10: Groundstate energy F — Ej, (binding energy Ej, = —1/(ma?) subtracted) of
a single down-Fermion immersed in an up-spin Fermi sea in units of the Fermi energy ep
as function of the inverse interaction strength (kra)~'. Blue solid line: Chevy’s ansatz
(3.4); red line with full squares: ansatz Eq. (3.42); black dashed line: BEC-asymptotics
(3.12); orange dash-dotted line: Thouless criterion (3.70). The open black diamonds and
green triangles correspond to the QMC results for the molecule- and the polaron energy
from Prokof’ev and Svistunov [23]. For (kpa)~! > 0.84 our variational ansatz (3.55) leads
to a lower ground state energy than Chevy’s ansatz (3.4). This point marks the phase

transition from a polaron to a molecular state. Picture taken from [65].

In order to perform the numerical calculation of the Fredholm determinant we change the
variables k and %’ in the integral equation (3.84) and its corresponding kernel (3.88) to the
new variables y = 1/k and ¢y = 1/k’ and discretize the resulting integral equation using a
Gauss-Legendre quadrature with eleven sampling points for the k£ and ¢ integrals and four
points for the cos # integral, leading to an absolute error of order 10~% of the ground state
energy at the unitarity point, where the convergence is slowest. The results are shown in
Fig. 3.10. For (kra)~! = 0.84, our variational ansatz leads to a lower ground state energy
than Chevy’s ansatz. It is quite remarkable, that our variational results are in perfect
agreement with diagrammatic Monte-Carlo results from Prokof’ev and Svistunov [23].

3.2.4 Quasiparticle residue and contact coefficient

As shown previously, Chevy’s ansatz for the polaron problem leads to a finite quasiparticle
residue Z| of the minority atom for all interaction strengths, implying that there is always
a finite probability that the down-Fermion can propagate freely. However, in the regime
where the minority particle forms a molecule with one of the up-Fermions, it is clear that
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3. POLARON TO MOLECULE TRANSITION

it can no longer propagate as a free particle, thus the quasiparticle residue Z| has to
vanish identically. From this point of view Z| can be interpreted as order parameter for
the transition from the polaron to the molecular state. In the following we show that our
ansatz indeed leads to a vanishing quasiparticle residue for the minority Fermion, thus
implying that the intersection point of the ground state energies obtained using Chevy’s
ansatz and our ansatz for the molecule marks the position of a first order quantum phase
transition.

Since the variational ground state wave function does not allow to calculate the full
down-spin Green’s function, the definition (3.20) of the quasiparticle residue is not applica-
ble. Instead, we use the standard connection between Z| and the jump in the momentum
distribution at the Fermi momentum kr |, which is zero in the limit of a single down-spin.
The momentum distribution of the |-Fermion within the variational ansatz (3.55) is given
by

’5}3’2 +2 Z/ |§k’kq‘2 5p,q—k’—k (394)
k’kq

np

and is normalized via

1= 0= S e 23 Jael - (3.95)
p k

k’kq

The normalization condition requires the coefficients to scale with the system volume as
& ~ 1/\/7 and Eyrkg ~ 1/V3/2. Since an upper bound to the quasiparticle residue Z| is
given by the momentum distribution at p = 0 and £, = 0 for p < kp, we find that

1
Zy<nb_o =23 Gonal Sqpei ~ — (3.96)

Vv
k'kq

As aresult, the quasiparticle residue Z| of the molecular wave function scales inversely with
the volume of the system and thus vanishes in the thermodynamic limit. This is in contrast
to Chevy’s wave function, where Z| = |po|? is always finite. The two wave functions (3.4)
and (3.42) therefore describe qualitatively different ground states. In particular, no sharp
peak is expected in the minority rf-spectrum at coupling strengths v > vy, consistent
with the experimental observation [57]. This point will be discussed in more detail in the
subsequent section.

In the q = 0 approximation, which captures the essential properties of the variational
ansatz (3.42), the quasiparticle residue Z| in fact vanishes identically. Indeed,

/
7, <2 6 al’ =0, (3.97)
K

since, as can be seen from Eq. (3.66), the coefficients &_xkxo X ko — 7—xo = 0 vanish
because 1y only depends on the length of k.

In Fig. 3.11 we plot the dimensionless contact coefficient s, which has been defined
in Eq. (2.39), for the two variational wave functions (3.4) and (3.55), using the adiabatic
theorem (2.38). Quite generally, the ground state energy density u = E/V of the strongly
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Figure 3.11: Dimensionless contact coefficient s, calculated using the adiabatic theorem
(2.38) and the ground state energies from the two variational wave functions (3.4) and
(3.55). The black dashed line indicates the BEC-asymptotics sppc = 4v/3m.

imbalanced Fermi gas can be expanded in powers of the minority density n|. The definition
of the minority atom chemical potential 1| implies that this expansion is of the form

3
u:gaEFTTLT—I-,ul’I’Ll—I—... (3.98)

where the first term is simply the energy of a non-interacting gas of spin-up Fermions. The
dimensionless contact coefficient s defined in Eq. (2.39) for a strongly imbalanced Fermi
gas can thus be obtained from the derivative

5 = Lw (3.99)

3r ov

of the negative down-spin chemical potential in units of the majority Fermi energy with
respect to the coupling constant v. Since p| is precisely the energy F associated with
adding a single down-spin, our result for the ground state energy of the (NN 4 1)-particle
problem immediately gives the contact density of an almost fully polarized attractive Fermi
gas (note that this applies even on the molecular side v > wvy;, where the single added
down-spin is not a propagating quasiparticle). Because the ground state energies of the
two variational wave functions as a function of the inverse interaction strength cross with
a finite slope, the contact coefficient jumps at the critical point M, indicating a first order
transition.

3.2.5 Minority spectral function and rf-response

As in Sec. 3.1.4 we can calculate the hole-part of the minority spectral function "41_ (k,w)
and the minority rf-spectrum at zero temperature using the variational ansatz (3.55) for
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the BEC regime. For simplicity we use the approximation {x/xq = 0, i.e. we do not include
particle hole excitations. This approximation gives the correct results for large frequencies
and momenta, because the molecule formation is described already by the & term alone.
Using Eq. (3.34) the hole-part of the minority spectral function at 7" = 0 in the BEC
regime is thus given by

Al (k,w) = 27|&* O(k — kr) 6(w + 2x) (3.100)

We note that |&|? = n,t equals the minority momentum distribution in this approximation.
Furthermore, the inclusion of the {i/iq term in the ground state wave function would give
rise to non-zero spectral weight in the regime w < er and k < kp. The minority rf-
spectrum can be obtained straightforwardly from the spectral function above and can be
expressed as

3
1) = [ G 6Ok — k) 6e = ). (3.101)

The coefficients & have been determined in Eq. (3.67) as & ~ (i) +er — 2ex) ™1, apart
from a normalization factor. In the molecular limit, where y| ~ Ej, = —1/(ma?), the
ri-spectrum thus takes the form

w+ @(w—ﬂ” —€F)
1)~y [ (w2_EF)2 , (3.102)

Note that the e terms are a remnant of the Pauli blocking of the molecular wave function
for k < kp and lead to a sharp cutoff of the rf-spectrum at low frequencies (deep in the
molecular limit the € p-terms are negligible, however). This cutoff is washed out, if particle
hole excitations ({x/kq # 0) are taken into account.

Compared to the result for the polaron rf-spectrum in Sec. 3.1.4, the sharp peak at
w = —p is missing on the molecular side of the transition. However, the tail of the
rf-spectrum at large frequencies is again determined by

1 C

Iw—=oo)~ T 5

(3.103)

3.2.6 Three particle limit

As mentioned previously, our variational ansatz (3.55) solves the three particle problem
exactly, since it corresponds to the most general three particle state that one can write
down. In this section we show explicitly how the connection between our result and the
exact solution of the three Fermion problem by Skorniakov and Ter-Martirosian can be
established.

If we take our variational wave function (3.55) and reduce the (N — 1)-particle Fermi
sea to a single Fermion, it is clear that only the q = 0 term survives in the ansatz. Now,
if we start from our integral equation (3.80) for the full variational problem and take the
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limit of a one particle Fermi sea, i.e. we set q = 0 and take krp — 0, it is easy to see that
one arrives at the equation (in the thermodynamic limit)

4>k "k’0
= [ — 2 104
k0 k0 / (271')3 Ek’kO (3 0 )

Note that the first two terms from Eq. (3.81) vanish in the limit kr — 0 due to the lack
of the Delta-functions in the d3¢’ integral. Inserting the coefficients ayo and Eysyo from
equations (3.76) and (3.75) explicitly (keeping in mind that the k-integration covers the
whole R? in the limit kp — 0), equation (3.104) takes the form

1 3k2 d3kl 47T77k/
a Vot B . 1
<a 4 m >77k /(27T)3 2+ k2+k-K —mE (3.105)

The above equation corresponds to the Schrodinger equation for the relative wave function
between the molecule and the third Fermion in the three particle problem. It is exactly
equivalent to the one derived by Skorniakov and Ter-Martirosian [63] for the three nucleon
problem with total spin S = 3/2 and total pseudospin 7" = 1/2 (see Eq. (29) in [63]), which
corresponds exactly to our problem?!S.

3.3 Conclusions

Using two complementary variational wave functions we have shown that a phase transition
from a polaronic ground state to a molecular bound state shows up in the (/N 4 1)-particle
problem at an interaction strength vy; ~ 0.84. Our result is close to the value vy =~ 0.90
obtained from exact diagrammatic quantum Monte-Carlo simulations [23, 24]. The little
discrepancy is entirely due to the fact that the variational ansatz (3.4) for the polaronic
side of the transition is not precise near vy, as can be seen from Fig. 3.10.

The analysis of the polaron to molecule transition in this chapter leaves two important
questions open: what is the nature of the transition and what are its implications for
the phase diagram of the strongly imbalanced gas? Now for the case of a single minority
Fermion in an up-spin Fermi sea, the transition from a polaronic to a molecular state is
a first order transition, where the quasiparticle residue Z| exhibits a discontinuous jump
from a finite value to zero at the critical coupling vy; ~ 0.9. This is a result of the fact
that the energies of the two ground states, which have different quantum numbers, cross
with a finite slope at vy (see Fig. 3.10.). It is important to note that this crossing
is not an artefact of extending the different variational states beyond their domain of
validity. Indeed, as shown by Prokof’ev and Svistunov [23, 24], both the polaronic and the
molecular state exist as stable excitations for v > vy or v < vy respectively because the
phase space for decay vanishes linearly with the magnitude of the energy difference. Both
states are thus reachable as metastable configurations coming from the weak coupling or
the molecular side, as expected for a first order transition.

6Note that in the case S = 3/2 the spin part of the wave function only gives rise to an unimportant
overall prefactor.
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Concerning the implications for the phase diagram, the results for the minority atom
chemical potential ) = F in this chapter completely determine the saturation field line
hs(v) as a function of v = (kra)~! in the phase diagram shown in Fig. 2.1. This is because
the effective magnetic field is determined by h = (1 — p))/2 and the majority chemical
potential y; = ep is equal to the Fermi energy at hs, where ex = (67%n)%/3/(2m) and
n = nq. The saturation field is thus given by

ho(v) = £ (1 - ‘”—(U)> . (3.106)

2 EFR

One open question that has been mentioned at the end of Sec. 2.1 cannot be answered
within the (N + 1)-particle problem, however, namely if phase separation occurs at finite
minority atom concentrations close to the point M. This question is interesting from a
theoretical point of view but not important for experiments, because the mixing entropy
disfavors phase separated states at finite temperature.

70



Chapter 4

Quench dynamics of Heisenberg
spin chains

The experimental ability to control systems of ultracold atoms with high accuracy and
prepare states with high fidelity triggered lots of theoretical work on so called quantum
quench problems recently. In a quantum quench problem, the system under consideration
is described by a Hamiltonian H(g) that is dependent on a parameter g, such as the
interaction strength for example. Initially, the system is prepared in the ground state of
the Hamiltonian with respect to a given parameter gg. At time ¢ = 0 the parameter g
is suddenly ’quenched’ to a different value g # go and the subsequent time evolution of
the system is studied. Up to now mainly questions concerning thermalization of quenched
quantum systems have been addressed. Obviously, the unitary time evolution of a pure
initial state can never lead to a thermal mixed-state. Nevertheless, it was suggested that
the expectation values of local observables after large evolution times can be expressed in
terms of a thermal average at an effective temperature corresponding to the energy of the
initial state [69, 70, 71, 72].

The first experimental realization of a quantum quench problem with ultracold atoms
was reported by Greiner et al. [73] in 2002. In this experiment, ultracold bosonic atoms
were loaded into an optical lattice at a lattice depth where the ground state is superfluid.
Then, the lattice depth was ramped up rapidly to a value, where the equilibrium ground
state is a Mott-insulator. After this interaction quench Greiner et al. observed collapse
and revival oscillations of the order parameter. Deep in the Mott-insulating regime, this
can be understood rather easily in terms of a single site Hamiltonian. Indeed, in that case
the time evolution of the initial on-site coherent state is governed by the interaction term
~ U alone, leading to a phase factor that is periodic if Ut is an integer multiple of 2.

The following theoretical work was triggered partly by a recent experiment with ul-
tracold atoms in optical lattices, which has demonstrated the control of super-exchange
interactions in such systems for the first time [74]. In particular, a one-dimensional array
of decoupled double wells was generated by superposition of lasers with different wave-
lengths. Atoms in two different hyperfine states (which we refer to as pseudospin ”up”
and "down” in the following) were loaded into the lattice and manipulated in such a way,
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Figure 4.1: Left: schematic picture of the experimental setup studied by Trotzky et al.
[74]. Right: results. Both pictures were taken from [74].

that in each left well a spin up atom and in each right well a spin down atom was present
(see Fig. 4.1). This initial state corresponds to a perfectly Néel ordered state of the spins
in the array of decoupled double wells

[VNee) = | TITL -+ TL) (4.1)

Deep in the Mott-insulating regime, i.e. at large lattice depths, where double occupancies
of a single well are heavily suppressed by the strong on-site repulsion of the atoms, the
simplest theoretical description for each double well is provided by a two-site Heisenberg
model

H=JS,-S,= g (SiSy +h.c.) +JS7 S5 . (4.2)

The Heisenberg model accounts for the interaction of localized spins via virtual second
order hopping processes, commonly known as superexchange interactions. The superex-
change coupling J ~ t2/U is related to the hopping ¢ and onsite-interaction U of the
atoms in the double well!. Since the initial state [1)(0)) = | T|) is coupled solely to the
state ||T) via the Hamiltonian (4.2), it is sufficient to diagonalize the Hamiltonian in the
subspace of those two states. The eigenstates are the singlet |s) = (|T]) —[11))/v/2 and
the triplet-state [t) = (| T1) 4+ | [1))/v/2 with respective eigenenergies Ey = —3.J/4 and
E, = J/4. Obviously, after preparation of the initial state, the system will start to oscillate
between the singlet- and the triplet state

W}(t» _ % eth/4 (e_i‘]t/2‘t> + 6th/2‘S>) (43)

with a characteristic frequency given by the exchange coupling J. Indeed, such oscillations
have been observed in the experiment, the results of which are shown in Fig. 4.1.

In the subsequent sections we are going to study the many-body analogon of the above
mentioned singlet-triplet oscillations in the double-well, i.e. instead of a double well we

'The coupling between neighboring double wells can be neglected if the potential barriers between the
double wells are large enough.

72



4.1. XXZ-MODEL

focus on a Heisenberg chain with N — oo sites and nearest neighbor superexchange cou-
pling. Experimentally, this situation can be realized easily by ramping down the barriers
between the initially decoupled double wells.

The outline of this chapter is as follows. In Sec. 4.1 we present the basic XXZ-model,
which is a generalization of the isotropic spin-1/2 Heisenberg chain to anisotropic spin-spin
couplings, and discuss approximative and numerical methods to study the time evolution
of the initial Néel state. A slightly different model for a spin-chain, the so called XZ-
model, is analyzed in Sec. 4.2. It has the advantage of being analytically diagonalizable
and shows a similar behavior in the time evolution of the Néel state as the XXZ-model.
In Sec. 4.3 we discuss the time evolution of weakly antiferromagnetically ordered initial
states. In particular, we focus on the applicability of Luttinger liquid theory, which has
been extremely successful in describing the equilibrium properties of 1D systems. Finally,
in Sec. 4.4, the time evolution of the Néel state in higher dimensional XXZ-models is
considered.

4.1 XXZ-Model

As mentioned above, the Heisenberg model provides an effective description of two com-
ponent Bose- or Fermi gases in optical lattices deep in the Mott insulating regime?. In
the following, we are going to study the time evolution of a Néel state (4.1) in the one-

dimensional, anisotropic spin-1/2 Heisenberg- (or XXZ-) chain, defined by the Hamiltonian

Hxxz = JY (SiSfa+S{S{, +ASiSi,)
l
1 - - zZ Qz
- JZ [5 (S Sp + 87 80) +ASESE (4.4)
l

where the index ¢ labels the lattice sites and the spin operators S*, SY and S* obey the
usual angular momentum algebra [S®, SY] = iS* on a given lattice site and commute if
taken at different sites. The spin raising and lowering operators are defined as ST =
S* +4SY. In the rest of this thesis we take J to be positive.

The XXZ-Hamiltonian is a slight generalization of the usual isotropic (A = 1) Heisen-
berg model and has some interesting properties. First of all it is an integrable model and
can be solved exactly using the Bethe-ansatz [76]. The zero temperature phase diagram
of the XXZ-Hamiltonian is shown in Fig. 4.2. Since the total magnetization S, = >, 57
is a conserved quantity in the XXZ-model and we start from an initial Néel state, which
has zero total magnetization, we restrict our discussion to the line SZ;, = 0 in the phase
diagram. Here, the ground state has antiferromagnetic order in z-direction if A > 1 and
ferromagnetic order if A < —1. In the regime |A| < 1, the ground state of the XXZ-model
is paramagnetic. At finite temperatures no long range order exists in the one dimensional
XXZ-chain. This is true for any one dimensional system at finite temperature with short
range interactions. In the limit A — oo, the XXZ-chain reduces to an antiferromagnetic

For details see for example [4, 75].
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Figure 4.2: Zero temperature phase diagram of the XXZ-Hamiltonian (4.4) with J > 0 as
function the anisotropy parameter A and of the total magnetization per lattice site.

Ising model, where the Néel state is one of the two degenerate ground states which are
related via a translation by one lattice site. From this point of view the time evolution of
a Néel state is equivalent to a quench of the XXZ-chain from Ay = oo to a finite value of
the anisotropy A.

Our goal is to study the relaxation timescales in the XXZ-chain that are a consequence
of the quantum quench from the initial Néel state. In principle, we have to calculate the
unitary time evolution of the initial state, i.e.

[9(t)) = X el (4.5)

This is a non-trivial problem, however, because we are dealing with an interacting many-
body system. Since it is practically impossible to study the time evolution of the full wave
function in the thermodynamic limit, we focus on one particular observable, namely the
staggered magnetization
_ 0z
me= £ S0 (1.6)
l
where N denotes the number of lattice sites. The staggered magnetization mg is the
order parameter of the antiferromagnetic phase and takes its maximal value for a Néel
state (4.1), where |mg| = 1/2. Contrary, a state with ferromagnetically aligned spins has
mg = 0. In contrast to spin-spin correlation functions, the staggered magnetization is well
suited to extract nontrivial relaxation timescales from our quench problem. This is in part
a consequence of the light-cone effect, which leads to a rather generic behavior of spin-spin
correlation functions and will be discussed in more detail later.
To get more insight into the problem under consideration and for certain practical
calculations it is useful to map the XXZ-Hamiltonian (4.4) to a model of spinless Fermions
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on a lattice using the well known Jordan-Wigner transform [77]
S? = Ny — 1 / 2
S; c} exp (z’w Z nj> (4.7)

j<t

S, = « exp(—iﬂan).

j<t

Here, the fermionic operators ¢, and c}; obey the standard anti-commutation relations

and ny, = c}cz counts the number of Fermions on site £. The idea of this transformation
becomes clear when one realizes that the string operators ensure the commutativity of the
spin operators at different lattice sites. Using this transformation, the XXZ-Hamiltonian
(4.4) maps to a model of spinless Fermions on a lattice with nearest neighbor interactions

J
Hxxz = —3 Z {C}Ceﬂ + CEHCZ —2A(ng — 1/2) (g1 — 1/2)} : (4.8)
¢

Note that we have used a sublattice rotation ¢; — (—1)7¢; on every other site to transform
the antiferromagnetic exchange coupling in the xy-plane to a ferromagnetic exchange?, i.e.
J — —J and A — —A. We note that the Néel state and the staggered magnetization mg
are invariant with respect to this sublattice rotation, thus the time evolution of mg(t) is
invariant as well. In the fermionized picture, the Néel state (4.1) corresponds to a state
with one Fermion at every second lattice site, i.e. spin-up corresponds to an occupied site
and spin-down to an empty site?.

Before procceding, we prove that the time evolution of the staggered magnetization
ms(t) following a quench from the Néel state is invariant with respect to a change of sign
of the exchange coupling J — —J and/or of the anisotropy A — —A. This is a remarkable
property, because it means that mg(t) is the same in a ferromagnetic and in an antifer-
romagnetic spin-chain, which have a completely different excitation spectrum, however.
Above, we have already argued, that mg(t) is invariant with respect to a combined change
of sign of J and A. Now we show that ms(t) is also invariant with respect to a change
of J alone. Indeed, the change J — —/J is equivalent to a time reversal transformation of
the time evolution operator. We thus get

ms(tv _J) ¢Néel| T_lethT ms T_le_thT |71Z)Néel>

¢Néel| T_lethTr ms Tr_le_thT |¢Néel>
¢Néel| T_lTTeZHt mg e_ZHtTr_lT |¢Néel>
¢Néel| eZHt ms e_ZHt |¢Néel> = ms(tv J) (4'9)

3We note that this transformation is not necessary for the subsequent calculations. Its only purpose is
to bring the kinetic energy term in the fermionized Hamiltonian to the conventional form.

1A similar setup with Bosons instead of Fermions at every second lattice site and on-site interactions
instead of nearest neighbor interactions was studied by Cramer et al. [78]. Note however, that their model
exhibits no quantum phase transition, because the equilibrium ground state for Bosons is always superfluid
at half filling.

(
(
(
(
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where T" and 7. denote the time-reversal and lattice translation operators and we have used
the facts that T-'m,T = Tr_lmsTr = —my, the Hamiltonian is translation invariant and
the Néel state is invariant under the combination of time reversal and lattice translation.

4.1.1 Free Fermion limit (A = 0)

The fermionized Hamiltonian (4.8) is especially useful to study the limit A = 0, which is
commonly known as the XX-limit, where the XXZ-chain maps to a model of free Fermions.
Going over to momentum representation via®

s

cp = % Z exp(—ikl) ¢, , (4.10)

k=—m

the fermionized Hamiltonian (4.8) with A = 0 becomes diagonal

Hxx = Z €k C;Lck with e =—J COS(k’) (4'11)

k=—m

and the staggered magnetization (4.6) is given by

™

me = S0 e = 7 3 (ehaar) (4.12)

l k=—m

In this special case the time evolution of the staggered magnetization starting from an
initial Néel state can be calculated exactly

1 ™
ma(t) = 7 Y (Wnealely (Bex(t) )
k=—m

T dk
_ / %ezzlt cos(k) (d;NéCl’cL_i_ﬂck‘wNéoﬁ

1

= 5J0(2J1), (4.13)

where we have used that (wNéd]c}; 4rCkl¥Neel) = 1/2 and Jp denotes the zeroth Bessel
function of the first kind. At times Jt > 1, the asymptotic behavior is given by

Jt>1 1
- A Jt

ms(t) cos(2Jt — m/4) (4.14)

Thus, the staggered magnetization oscillates with a characteristic frequency ~ 2.J and
decays algebraically as ~ 1/v/t. The oscillations can be viewed as the many body analogon

5We set the lattice spacing to unity throughout, thus the length L of the chain equals the number of
lattice sites N.
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of the singlet-triplet oscillations in the two site model. The connected spin-spin correlation
function can be calculated equally easy in the free Fermion limit. We obtain

(S557) — (S3S7) = § (9n0 — TA2TD) (415)

where J; denote the Bessel functions of the first kind.

For finite anisotropies A # 0 it is no longer possible to calculate the exact time
evolution of the staggered magnetization analytically in a simple way, since one deals with
an interacting many-body problem. In this case, one has to use approximations or resort to
numerical simulations. We mention however, that it might be possible to calculate mg(t)
exactly using the Bethe ansatz. Using this method, it would be necessary to evaluate the
expression

ms(t) =Y (tholn) (' [vo) e Fr =B nmin) (4.16)

n,n’

where {|n)} denotes a full set of Bethe eigenstates with corresponding eigenenergies E,,,
which are in principle known exactly. However, the calculation of the overlap of the initial
state with the Bethe-eigenstates and of matrix elements of the staggered magnetization
operator is a highly non-trivial task, which we did not attempt in this thesis.

4.1.2 Time-dependent mean-field theory

In this section, as a first step to analyze the interacting many-body problem, we employ a
simple time-dependent mean field theory to account for the interaction term in (4.8)%. We
expand the interaction term to linear order in fluctuations ény around the mean density

ng = (ng) + ong . (4.17)

The mean field value of the Fermion density at site £ is related to the staggered magneti-
zation via (note the time dependence)
1 ¢
(ng) = 3 + (—1)"ms(t) (4.18)
Using this approach, the Hamiltonian (4.8) reduces to the time dependent mean-field
Hamiltonian in momentum space, given by

Hyr(t) = —J Z {cos(k‘)clck + 2Ams(t)c};+ﬂck} (4.19)

k=—m

Note that the time dependent mean field ms(t) = L= 5", (cLJHT (t)ci.(t)) has to be evaluated
selfconsistently.

In order to calculate the time evolution of the staggered magnetization within this
mean field Hamiltonian, we map (4.19) to a pseudospin model as follows. Since the

6 After we had obtained the tMFT results which are presented in this section, a preprint of Hastings and
Levitov appeared on the arXiv [79], who had studied the same problem using exactly the same method.
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symmetry of the initial Néel state is always present in the mean-field Hamiltonian, the
unit cell is effectively doubled and we can employ a reduced zone scheme by restricting the
pseudo-momentum to the interval |k| < 7 /2. Furthermore, we define pseudospin operators
via

OF = ClinCh+ i (4.20)
o) = iclﬂck — i c};ckJr7r (4.21)
o = chk - c};+ﬂck+ﬂ (4.22)

The mean-field Hamiltonian (4.19) thus maps to the pseudospin Hamiltonian

w/2
Hyp =—J > {cos(k)of + 28m,(t) o} (4.23)
k=—m/2

and the staggered magnetization ms(t) in the pseudospin formulation is given by

w/2

mi(t) =1 3 (of) (121)

k=—m/2

In the pseudospin model, the initial Néel state corresponds to a state where all spins point
in x-direction, i.e. (of)o = 1. The Heisenberg equations of motion for the pseudospin
operators are now easily obtained and take the form

O (o) = —2ep(o]) (4.25)
oo}y = 2ex (o) +4Am(t) (of) (4.26)
O (of) = —4Amy(t)(o}) . (4.27)

Note again, that the staggered magnetization mg(t) has to be evaluated selfconsistently
via Eq. (4.24). In order to calculate the time evolution of the staggered magnetization, we
solve the equations of motion for the pseudo-spin operators numerically using the Euler
method. The results are shown in Fig. 4.3.

In the paramagnetic regime A < 1, the numerics shows that the staggered magnetiza-
tion decays faster if A is increased. This result is somewhat surprising, because naively one
would expect that a repulsive nearest neighbor interaction between the Fermions would
stabilize the initial Néel order. This argument doesn’t work however, since we have shown
earlier that the time evolution of the staggered magnetization is invariant with respect to
J — —J and/or A — —A. Thus replacing the repulsive with an attractive interaction
doesn’t change mg(t). From the pseudospin formulation of the mean-field Hamiltonian
it becomes clear, why the staggered magnetization decays faster if the anisotropy A is
increased. In the free Fermion limit A = 0 the pseudospins precess independently around
the z-axis, each with a different precession frequency due to the different Zeeman field for
every spin. The total spin in x-direction, which equals the staggered magnetization in the
Heisenberg model, thus decays due to the dephasing of the individual spins. Now, if the
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Figure 4.3: Time evolution of the staggered magnetization mg(t) in the XXZ-chain for
various anisotropy parameters A, starting from an initial Néel state. The results shown
in this picture were obtained within our time dependent mean-field theory. For easy axis
anisotropies (A > 1) our tMFT predicts a saturation of the staggered magnetization in
the long time limit ¢ — oco.

anisotropy A is nonzero, the precession axis is slightly tilted in the x-z-plane, thus reduc-
ing the projection of the pseudospins on the x-axis, which amounts to a smaller staggered
magnetization.

In the antiferromagnetic regime A > 1, our mean field theory predicts a saturation of
the staggered magnetization at a nonzero value at large times. The saturation value

T
= Jim /0 dt m,(t) (4.28)
can be inferred from a time averaged Hamiltonian, because we know from our numerics
that the staggered magnetization exhibits decaying oscillations around the saturation value
in the easy axis regime at large times. Since the saturation value of the staggered moment
m is simply a time average over mg(t), we attempt to calculate m selfconsistently with a
time averaged Hamiltonian

H=> {exof — 2J.mo}} (4.29)
k

which is almost trivially soluble. Using (4.29) for the dynamics of the Néel state and the
Baker-Campbell-Haussdorff formula, we obtain

1 _/dk: 2.J2 cos? (k)

)=~ o
ms () 27 4J2m? + J? cos?

5 G sin <\/4J§m2 + 2 cos2(k)t> (4.30)
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Figure 4.4: Saturation value of the staggered magnetization m as a function of the
anisotropy parameter A, obtained within our time dependent mean field theory. The
solid line corresponds to the result (4.32), whereas the dots are obtained from the full
numerical solution of the mean field equations for /N spins. Close to the isotropic point
A =1, the numerics shows a finite size rounding of the transition.

corresponding to a saturation value of the staggered moment given by

1 2 2 27 P
P _/% Seos"h) __ mI )] (4.31)
2 21 4.J2m?2 + J2 cos? (k) 1+ (2mJ,/J)?

Solving for m, we get the following analytic expression for the saturation value of the
staggered moment as function of the anisotropy parameter A

1 1
n=-1/1—— 4.32
As can be seen from a comparison with numerically obtained saturation values from the
full solution of the mean-field equations in Fig. 4.4, the expression (4.32) is essentially
exact.

4.1.3 Numerical simulations

The time dependent mean-field theory described in the previous section is a simple method
to study the time evolution of the staggered magnetization in the XXZ-chain at finite
anisotropies A. Nevertheless, these results should be taken with care, since it is known
that mean field theories for low dimensional systems are problematic due to the increased
importance of quantum fluctuations and may lead to wrong conclusions. Thus, it is nec-
essary to complement the findings in the previous section with exact results in order to
validate or invalidate our time dependent mean-field theory. Since an exact solution of
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Figure 4.5: Numerical simulation of the time evolution of the staggered magnetization
ms(t) in a XXZ-chain with N = 12 spins and open boundary conditions, starting from an
initial Néel state. The different curves correspond to various anisotropies A.

the full interacting system is out of question, the next best thing to try is a numerical
simulation of the problem. However, an exact numerical calculation can be handled only
for small sized chains with up to 20 spins. This has the disadvantage, that the simulation
runs into Poincaré recurrences after rather short evolution times. Fortunately, there ex-
ist quite sophisticated numerical techniques for 1D systems commonly known under the
collective name ’density matrix renormalization group’ (DMRG)”, which can be used for
controlled simulations of large (in some situations even infinite) size spin chains. These
methods are based on matrix product state decompositions and allow to follow the time
evolution of the infinite chain as long as the entanglement entropy remains sufficiently
small. In the following we present results obtained using both techniques.

Direct numerical solution of the Schrodinger equation for a small spin chain

The easiest way to simulate a small sized spin chain is a brute force method using the
Euler algorithm to solve the Schrédinger equation directly. This is simply achieved via
a discretization of the time derivative by replacing it with the differential quotient and
calculating the state of the system iteratively using the discretized Schrodinger equation

Ot~

[%(t +6t)) = [ (t)) — i+ Hxxz|¢(t)) - (4.33)

"For a review see [80].
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This method has the disadvantage that very small time steps dt need to be chosen in order
to keep the error during the time evolution small®. In particular we have taken J §t = 10~%
for the data shown in Fig. 4.5. The state of the system is conveniently expanded in the
basis of the S} eigenstates. Since the total magnetization is a conserved quantity, the
dimension of the Hilbert space corresponding to our problem of an initial Néel state for a
chain with N spins is given by

dim(H) = ( N%) . (4.34)

which is slightly smaller than 2V and reduces the computational effort a little bit. The
numerical results for a chain with N = 12 spins and open boundary conditions are shown
in Fig. 4.5. Obviously, the small system size becomes apparent after evolution times on
the order of Jt ~ 10, where the first recurrence seems to appear. Comparing the numerical
simulation of the finite size chain with the mean-field results from the previous section
shows qualitative agreement for easy plane anisotropies A < 1, i.e. with increasing A
the oscillations of the staggered magnetization decay faster. Interestingly, the situation is
different in the easy axis regime A > 1. A comparison of the results for A = 1.6 shows a
fast decay of the staggered magnetization without oscillations up to times Jt = 5 in the
numerical simulation of the finite size chain (at larger times, a comparison is no longer
trustworthy due to the recurrence in the finite chain at Jt = 10). In contrast, mean-field
theory predicts a large saturation value even at such moderate easy axis anisotropies, to-
gether with a fast oscillation around the saturation value. This is a first indication that the
time dependent mean-field theory leads to questionable results in the easy axis regime. In
particular, the numerical results for the finite size chain at moderate easy axis anisotropies
seem to indicate that mg(t) decays to zero also for A > 1. Unfortunately, the numerical
simulation cannot rule out the possibility of a saturation of the staggered magnetization
for easy axis anisotropies because of the early appearance of Poincaré recurrences.

DMRG results

In the following we present numerical results on the time evolution of the staggered mag-
netization in the XXZ-chain starting from an initial Néel state, which were obtained using
the above mentioned DMRG technique. This method is far better suited to study infinite
spin chains, especially if the initial state is sufficiently uncorrelated such that the entan-
glement entropy is small. The number of matrix product states which have to be taken
into account for an accurate description of the system’s state within the DMRG-method
is directly proportional to the entanglement entropy, which is defined as the von Neumann
entropy of an arbitrary sub-system of the total system, i.e. S = Tr(pa logy pa), where pa
is the reduced density matrix of the subsystem A. Since this entropy usually increases

8 A direct numerical diagonalization of the Hamiltonian would be better suited to study the time evolu-
tion of finite size spin chains, because no time-slicing error is introduced that way. Furthermore one avoids
the problem of violating unitarity due to the discretization. In our case this is not relevant however, since
the Poincaré recurrences reduce the interesting time window to a size, where the time slicing error can be
kept small with little effort.
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Figure 4.6: Numerical calculation of the time evolution of the staggered magnetization
ms(t) in an infinite size XXZ-chain using the DMRG method, starting from an initial Néel
state. The different curves correspond to various anisotropies A. The lower panel shows
ms(t) on a logarithmic scale, indicating exponential relaxation for intermediate times.

linearly in time for Heisenberg spin chains, this method works particularly well to follow
the evolution up to intermediate times on the order of Jt ~ 15 for infinite size chains.
The results which are shown in Fig. 4.6 were obtained by Peter Barmettler in course of a
collaboration on this problem setup. For the details on the method see Peter’s thesis [81]
or our papers [82] and [83] and the references therein.

The DMRG results in Fig. 4.6 show several interesting features. First of all, the
behavior of the staggered magnetization in the easy axis regime A > 1 is different from
the findings of our time-dependent mean-field theory. In particular, ms(t) shows hardly
any oscillations and decays exponentially in the numerically accessible time window instead
of having a tendency to saturate as expected from tMFT. These results also agree with
the findings from the numerical simulation of the finite size spin chain at short times.
In the easy plane regime A < 1, the DMRG-results seem to agree qualitatively with
the tMFT data. A quantitative analysis of the data shows however, that tMFT leads
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to an algebraic decay of the oscillations, whereas DMRG shows ezxponential relaxation at
intermediate times. Surprisingly, for 0.6 < A < 1 DMRG predicts a relaxation of the
staggered magnetization that seems to be faster than exponential.

We have extracted the relaxation timescales from fits to the numerical data at suffi-
ciently large times using

my(t) ~ et/ (4.35)

in the easy axis regime A 2 1, and fits of the form
ms(t) ~ e Y™ cos(wt + B) (4.36)

in the easy plane regime A < 1. Note that this fit is only valid at intermediate timescales in
the easy plane regime, because the numerics shows an accelerated relaxation for A = 0.6
at large times, as mentioned above. Close to the critical point, the behavior of mg(t)
in the XXZ-model is rather complicated and cannot be reliably fitted with one of the
functions above. The relaxation times and the oscillation period are plotted in Fig. 4.7. It
is interesting to note that the relaxation is fastest close to the critical point? A = 1. In the
easy axis regime this can be understood using a simple phase space argument. Naively, the
initial state can be considered as a source of quasiparticles at ¢ = 0. In order to equilibrate,
these quasiparticles need to scatter. Since the gap of the quasiparticle excitations vanishes
at the critical point, the phase space for scattering is largest and thus the relaxation should
be fastest at the critical point. We also mention that, as far as the staggered magnetization
mg is concerned, our results are in agreement with a thermalization scenario, because the
equilibrium expectation value of m at finite temperature is zero in 1D. This is not true
for correlation functions in general, however.

4.2 XZ-Model

The previous numerical investigations of the time evolution of the staggered magnetiza-
tion ms(t) following a quench in the XXZ-chain revealed an interesting crossover in the
relaxation dynamics at the isotropic point A = 1 of the XXZ-model, but were not suitable
to draw any conclusions on the behavior of mg(t) at large times. The mean field theory
discussed in Sec. 4.1.2 predicts a saturation of the staggered magnetization in the easy axis
regime, which is presumably wrong, whereas the DMRG-numerics in Sec. 4.1.3 indicates
exponential relaxation of mg(t), although the accessible time scales do not suffice to rule
out saturation at long times for large anisotropies. In order to circumvent these draw-
backs, we look for a slightly different, analytically treatable model, that shows a similar
behavior of mg(t) as the XXZ-model in the easy axis regime A > 1 as far as the time
evolution of the Néel state is concerned. A suitable candidate is the so called XZ-chain,

9We mention that this is exactly the opposite as one would expect from the notion of ”critical slowing
down”, which holds only for small perturbations from equilibrium, however.
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Figure 4.7: Numerically extracted timescales for the quench from a Néel state in the
XXZ-model as a function of the anisotropy A. The relaxation times 7y and 7 have been
obtained from an exponential fit to the numerical data of the staggered magnetization
ms(t). Note that in the easy plane regime A < 1, the exponential fit from which 77 is
extracted is only valid in the intermediate time regime. The green dots correspond to the
period of the oscillations of mg(t) in the easy plane regime.

defined by the Hamiltonian

Hxz = JY (257Sf,+ASiSi,) (4.37)
l

J o
= Hxxz+5 ) (S{Sfa+5755) - (4.38)
¢

This Hamiltonian differs from the XXZ-chain (4.4) by the appearance the terms SZSLl +
h.c. that violate the conservation of the total magnetization in z-direction SZ, but in
the limit A > 1 one expects that the time evolution of the staggered magnetization in
this model is similar to that in the XXZ model. In particular, it is obvious that the
time evolution of the Néel state (4.1) in both models is equivalent for short times, since
the additional terms in the XZ-Hamiltonian give zero when acting on a Néel state. The
XZ-model as defined above also has a quantum phase transition at A, = 2 with long-range-
order in the ground state z-correlations for A > A. and thus resembles the XXZ-chain
in that respect. The situation is different in the regime A < A, however, where the
ground state of the XZ-model has LRO in the x-correlations, whereas the XXZ-model has
a paramagnetic ground state.

In contrast to the XXZ-model, the XZ-model can be diagonalized analytically by apply-
ing the Jordan-Wigner transform in a rotated frame of reference. Using the transformation
defined in Eq. (4.7) after a m/2 rotation around the x-axis (i.e. S} — S}) and going over
to momentum representation via (4.10) we map the Hamiltonian of the XZ-model to the
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fermionic Hamiltonian

2

k=—n

Hxy = J Z {(A +2) cos(k:)cLCk + %(A —2)sin(k) <CLCT—k + Ckc—k)} : (4.39)

In this form, the Hamiltonian can be diagonalized straightforwardly using a Bogoliubov
transformation to a new set of fermionic creation- and annihilation-operators oy, and aL
with the standard fermionic anti-commutation relations {cy, az} = 04, that are related
to the original Jordan-Wigner Fermion operators via

|:C—Tk:| _ [ cos O, —z’sin@k] [a_ﬂ _ My |:04—Tk] 7 (4.40)

¢, —isinf,  cosby a, oy,

where the constraint _;, = —#,. needs to be imposed in order to preserve the fermionic anti-
commutation relations of the cg-operators. Using (4.40), we finally obtain the diagonalized
XZ-Hamiltonian

Hxy = Z E, <04J12ak - %) with  Ep = J\/1+AZ/4 + Acos(2k)  (4.41)

k=—m

together with the equation that determines the rotation angle ;. of the Bogoliubov trans-
formation

tan(20y) = ; 12

The next step is to calculate the time evolution of the Jordan-Wigner Fermion operators
following the quantum quench. The time dependence of the Bogoliubov-quasiparticle
operators follows trivially from (4.41). Thus, the time evolution of the JW-operators in
momentum space can be immediately obtained using the Bogoliubov transformation (4.40)

s [ R[]

tan(k) . (4.42)

where M is the Bogoliubov-transformation matrix that has been defined in Eq. (4.40).
Note that Ma depends on the anisotropy parameter A via Eq. (4.42).

Since the initial Néel state is the ground state of the XZ-Hamiltonian (4.39) with
A = Ay — oo, we express the time dependent (Heisenberg-) Jordan-Wigner Fermion
operators ci(t) after the quench (i.e. at ¢ > 0) in terms of the Bogoliubov-quasiparticle

operators a,(ﬁo) that diagonalize the Hamiltonian (4.39) for the initial value A = Aq before
the quench. We thus get

i (0)
c—k(t) e B0 1 a’y
L* (t)} ~ Ma [ O b Ma M, | O (4.44)
k O

This mapping allows us to evaluate all expectation values as ground state expectation

values with respect to the Bogoliubov-quasiparticle operators a]go) that diagonalize the
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initial Hamiltonian, i.e. algo)|GS(t < 0)) = 0. Writing down Eq. (4.44) explicitly, we get
the following expression for the time dependence of the JW-Fermion operators after the
quantum quench

ck(t) = (e_iEkt cos(y) cos(Oy — 91(90)) + e'Prt gin(0;,) sin(0), — 9,(60))> oz,(CO)
. . 1
+ (elEkt sin(fy) cos(6 — 91(90)) — e Prt cos(0),) sin(0), — 91(;)))) a](€0) . (4.45)
Here, the angle 9,(60) that corresponds to the initial state is given by 291(90) = —Fk in the case
of an initial Néel state (i.e. Ay — 00).

Although the Jordan-Wigner transform makes an analytic diagonalization of the XZ-
Hamiltonian possible, it introduces complications to the calculation of the staggered mag-
netization. In terms of the Jordan-Wigner Fermions the staggered magnetization (4.6) is
no longer a local operator, because the spin operators S7 have the Jordan-Wigner strings
attached (remember that we had to rotate our frame of reference by 7/2 around the x-

axis in order to be able to diagonalize Hxz using the standard definition (4.7) of the
Jordan-Wigner transform), i.e.

i
S; = 5(63 — c}) exp (iﬂ' Zm) (4.46)
j<t
Thus it is no longer tractable to calculate the staggered magnetization as defined in Eq.
(4.6). Because of that, we use an equivalent definition of the staggered magnetization
which probes the long-range antiferromagnetic order

2= lim (=1)"(SfSf,.) (4.47)

mg
n—00

where £ can be set to any value due to the translational invariance of the spin chain in the
thermodynamic limit (later we take ¢ = 0 for convenience). In terms of Jordan-Wigner
Fermions the S#S%-correlation function is given by [84]

l4+n—1
Z QZ 1 .
(S{STn) = —Z<(Ce - CZ) exp (“T Z "j) (Coyn — CZ+n)>
j=¢
1
= _Z<(Cé - C}) H (1 - 2nj) (Cé-i-n - Cz+n)>
(<j<tl+n
1 n
= 10 —a) TT (=) +e) (e — )
(<j<t+n
1 n
= 10+ T (e +ep) (el —eon))  (448)
(<j<l+n
where the last line follows from (c} —¢,;)? = —1. The last equation can be written in a

more compact form by introducing the Majorana-Fermion operators

Ay = c} + ¢y and B, = cz — ¢ (4.49)
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In this notation the S*S*-correlation function is given by

1
(8557 = 7(-1)" (A BiABoAs ... By Ay By) (4.50)

As is obvious from Wick’s theorem (see e.g. [46]), the basic building blocks of the correla-
tion function (4.50) are the pairwise contractions (A4;B;), (4;A;) and (B;B;) between all
Majorana operators. Indeed, the correlation function (4.50) can be written as a Pfaffian
of pairwise contractions (c.f. [85] and references therein)

(S§S7) = Li)n Pf [(AoA1) (AoA2) - (AoAn-1) (AoB1) (AoB2) (Ao Bn)
(A1A2) - (A1An_1)  (AaB1)  (A1B2) - (A1By)
. <An72:An71> <An:2B1> h (An,:an>
(An-1B1) (Ap-1Bs) - (An—1B,) | (4.51)
(B1B2) (B1B3) - (B1Bn)
(B2B3) -+ (B2Bn)
‘ (an‘an>

This expression is further simplified in the thermodynamic limit, where all pairwise con-
tractions depend only on the distance between the Majorana operators due to the trans-
lational invariance. Using (4.10), (4.45) and (4.49), we are now able to calculate the time
dependent pairwise contractions between the Majorana operators following the quantum
quench and thus get an explicit expression for the time evolution of staggered magnetiza-
tion via (4.47) and (4.51). In particular, after a tedious but straightforward calculation, we
obtain the following expressions for the contractions in the thermodynamic limit (define

¢ = 0 — 9;(60))

aj_r1 = (4;By) :/ % e‘ik(j_z)ei%k[cos@(bk) — isin(2¢y,) cos(2Ext)| (4.52)

—Tr

bio = (AjA) = (B;By) = / %e_““(j_é)sin(QEkt)sin(ZQSk) Vj # £(4.53)

g 2m
we note that the above expressions have been derived before by Sengupta, Powell and
Sachdev [86] in the context of quench problems in the transverse field Ising-model. In
terms of the above coefficients a,, and b, for the pairwise contractions, which depend
explicitly on time, the Pfaffian (4.51) now takes the simplified form

_1\n

(S50)Sz(1)=""7"PE| b1 by = b_(no1y a0 a1 - a_(po1)
bo1 o b(no2y a1 ap - a_(n—2)

bil an;z ' a;l

An_1 Gn_o - ao (4.54)

b_1 b2 - b_(n_1)

b1 v b_(n_2)

by

The integrals for the coefficients a,, and b, in the defining equations (4.52) and (4.53)
simplify considerably for three special cases:
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e t = 0: In this somewhat trivial limit the evaluation of the Pfaffian gives the staggered
magnetization of the initial state via (4.47). The coefficients a,, and b, at t = 0 are
given by

Tdk  _ipin_1) 20 Néel
0 = / G kn-1) 20" Neel 5 (4.55)
by = 0 (4.56)

e t — 0o: The behavior of the staggered magnetization at large times t — oo is
particularly interesting, since this is precisely the regime which is not accessible
numerically. Indeed, as will be shown below, the Szego lemma allows us to get a
rigorous result for long time limit of the staggered magnetization mg(t — oo) in the
XZ-model. At t — oo, the coefficients a,, and b,, take the form

a, = / j—ke_ik(”_l)ei%kcos@(bk) (4.57)
»2m

by = 0 (4.58)

where the time-dependent oscillating terms vanish due to the Riemann-Lebesgue
lemma.

e Quench from the Néel state to the critical point: For the special case of a
quench from the Néel state (Ag = o0) to the critical point (A = 2), i.e. for 9,(60) =—k
and 6 = 0, the integrals can be evaluated explicitly and we get

g, = {@noton2)/24 (M2 (n—1) T forneven o)
0 for n odd
B ACD

. i(—1)"2n =g for n even (n #0) (4.60)

0 for n odd

4.2.1 Staggered magnetization m4(t — o) in the long time limit

As we have shown above in Eqgs. (4.57) and (4.58), the coefficients of the Pfaffian (4.54)
simplify considerably in the long time limit ¢ — oco. In particular, since the coefficients b,,
vanish, the Pfaffian reduces to a Toeplitz determinant, as can be seen easily by applying
Wick’s theorem to (4.50) for the case b, = 0 (see [84]). The staggered magnetization is
thus given by

ap G- a—(n-1)
aq ag A_(n—
m2(t = 00) = lim (n-2) (4.61)
an_l “ e ao

The reduction of the Pfaffian to a Toeplitz determinant in the case of vanishing b,, con-
tractions can also be inferred by using the fact that the Pfaffian is equivalent to the square
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root of the determinant of the antisymmetric 2n x 2n matrix (apart from a sign, which
is obvious in our case) obtained by mirroring the triangular scheme (4.54) at the main
diagonal. Thus, for b, = 0 one is left with

1 1
O 0= Jim A = Tim [der A (4.6)

(t - 00) = lim — ‘_

where A;, is the n x n-Toeplitz matrix built from the coefficients a;, i.e. the matrix
shown in equation (4.61). In order to calculate the asymptotics n — oo of the Toeplitz
determinant in Eq. (4.61), we apply Szegos lemma, which can be stated as follows:

Szeg6’s Lemma [87]: Let a(k) be the generating function

of the n x n-Toeplitz matriz A, i.e. the coefficients ay of the
Toeplitz matriz

ap  a-1 o G_(p_1)
aj ap cer A (p—
A= . , =2 (4.63)
an—l DTS ao

are obtained via the Fourier-integral

ag = /7r %e_wkoz(k:) . (4.64)

x 2T

If a has no singularities in the integration interval and has
winding number zero, i.e. arga(k + 2w) —arga(k) = 0, then
the asymptotic behavior of the Toeplitz matrix A, for large n
s given by

T dk
lim det(A,) = exp [n / %loga(kz)] Fla)  (465)
where log denotes the natural logarithm and the function F

contains subleading corrections of order O(n°).
In our case, the generating function a(k) = e**e’?% cos(2¢;) can be read off directly from
(4.57). For a quench from the Néel state (29,20) = —k) it can be simplified to

A + 2cos(2k)
(A +2)cos(k) — i(A — 2)sin(k)
The generating function has no singularities and winding number zero in the easy axis
regime A > 2, thus we can apply Szegds lemma in order to obtain the staggered magne-

tization at t — co. The integral in Eq. (4.65) using the generating function (4.66) can be
calculated analytically and we obtain finally

alk) = e (4.66)

(4.67)
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Figure 4.8: Cartoon of the light-cone in quantum mechanical spin systems. Two initially
uncorrelated spins at a distance n are not causally connected up to a time given by the
light-cone condition ¢t = (n — &p)/(20Umax ), Where vy is the maximum (classical) speed of
the quasiparticles and &g is the correlation length of the initial state.

Thus, the staggered magnetization ms(t — o) in the XZ-model vanishes at long times
for any finite A > 2, if we start from an initial Néel state.

4.2.2 Staggered magnetization m(t) and the light-cone trick

In the section above we have shown how the staggered magnetization can be calculated
explicitly in the long time limit by the application of Szegd’s lemma to obtain the asymp-
totics of the Toeplitz determinant (4.61) for n — oo. Now we are interested not only in
the long time limit, but in the full time evolution of the staggered magnetization in the
XZ-model. Unfortunately, Szegd’s lemma as stated above cannot be applied in this case,
since the contractions b, do not vanish and thus the Pfaffian (4.54) does not reduce to
a Toeplitz determinant. In this section we use a trick based on the so called horizon- or
light-cone effect to calculate the time evolution of m4(t) semi-analytically. However, an
analytic solution of this problem might be possible via a generalization of Szegd’s lemma
to block Toeplitz determinants, as will be shown in the subsequent section 4.2.3.

The light-cone trick is based on an observation by Lieb and Robinson [88], who have
shown that information in quantum spin systems with finite range interactions propagates
with a finite group velocity. From this follows, that correlations in a spin chain can only
build up within a ’light-cone’ determined by the maximal group velocity of the quasipar-
ticles. Or stated otherwise, two initially uncorrelated spins are not causally connected up
to a time which is given by the ratio of the distance between the two spins to the max-
imal group velocity of the quasiparticles. Calabrese and Cardy [89] have constructed an
intuitive picture of this situation, which holds quite generally and works extremely well.
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The main message can be summed up in three points:

e In the context of a quench problem, the initial state is a source of quasiparticles which
propagate through the system with a finite (classical) group velocity v = 0FE}/0k.
Here, E}, denotes the dispersion relation of the quasiparticles, which is given by Eq.
(4.41) in our case.

e Quasiparticles originating from points that are separated by a distance which is
larger than the correlation length &y of the initial state are incoherent and lead to
the relazation of local observables.

e Quasiparticles originating from closely separated points, i.e. two points within the
correlation length &y of the initial state, are entangled and induce correlations be-
tween local observables.

The situation is sketched in the cartoon in Fig. 4.8. It needs to be mentioned however,
that the light cone is not perfectly sharp in a quantum mechanical system. Nevertheless,
the corrections are exponentially small [88] and can be safely neglected for our purpose.

Our initial Néel state is completely uncorrelated, i.e. the correlation length £y defined
via the connected correlation function

Gao(n) = (S557) — (S§)(S7) ~ e ™/ (4.68)

is identically zero for the Néel state: fgléol = 0. Thus, two spins at a distance of n lattice
sites are not causally connected up to a time given by the light-cone condition

. no_n
 QUmax 4

(4.69)

where vpax = 2J is the maximum group velocity for our quasiparticles with dispersion
(4.41). In order to calculate the time evolution of the staggered magnetization starting
from a Néel state it is thus sufficient to evaluate the Pfaffian in Eq. (4.54) for a finite size
n numerically, as long as we are interested in times smaller than Jt < n/4

met)| = (=1)"{55S%) (4.70)
Jt<
This means that the size of the Pfaffian that we have to evaluate numerically increases
linearly in time. If we want to follow the time evolution of the staggered magnetization
starting from an initial Néel state up to times Jt = 10, we need to evaluate the Pfaffian
corresponding to an antisymmetric 80 x 80 matrix. Since the light-cone is not perfectly
sharp, we increase the distance between the spins by two lattice spacings as compared to
the light-cone condition in the numerical calculation. Using this method, we follow the
time evolution up to Jt = 40 for arbitrary anisotropies A and up to Jt = 100 for a quench
to the critical point A = A, = 2. The results are plotted in Fig. 4.9. In order to show how
well the light-cone trick works, we have plotted the staggered magnetization evaluated
using Eq. (4.70) for different fixed distances between the spins as a function of time in
Fig. 4.10. As can be seen in the figure, the result for a fixed distance r starts to deviate
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Figure 4.9: Time evolution of the staggered magnetization mg(t) at different anisotropies
starting from an initial Néel state in the XZ-model, calculated semi-analytically using the
light-cone trick. The solid lines for A < 2 are fits to the numerical data using Eq. (4.72).
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Figure 4.10: Time evolution of the staggered magnetization m(t) at A = 4, evaluated
using Eq. (4.70) for different distances r between the spins. The results start to deviate
from the true mg(t) curve precisely at the times given by the light-cone condition (4.69).
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Figure 4.11: Numerically extracted timescales for the quench from a Néel state in the
XZ-model as a function of the anisotropy A. The relaxation times 7 and 7o have been
obtained from an exponential fit to the numerical data of the staggered magnetization

ms(t). The green dots correspond to the period of the oscillations of mg(t) in regime
A <A,

from the true time evolution of the staggered magnetization mg(t) precisely at the times
given by the light-cone condition (4.69).

We note that the above mentioned method also works for a general quench problem,
where a ground state with arbitrary Ay is chosen. One has to keep in mind however,
that for a general quench the light-cone condition (4.69) has to be modified, since the
correlation length & of the initial state is usually nonzero. Indeed, the distance between
the two spins in Eq. (4.70) has to be increased by & in order to obtain reliable results.
This means that the computational effort increases considerably, if the correlation length
of the initial state is large. Thus, the light-cone method for calculating ms(t) works well
for sufficiently uncorrelated initial states, i.e. quenches with Ag > 1, but breaks down for
quenches with Ag close to the critical value A. = 2, where the correlation length of the
initial state diverges.

From the results shown in Figs. 4.9 and 4.12 it can be seen that the staggered magneti-
zation mg(t) after a quench from the Néel state in the XZ-model indeed behaves similarly
as in the XXZ-model for large anisotropies A > A, i.e. my(t) decays exponentially with-
out oscillations. For A < A, the behavior is a little bit different than in the XXZ-model.
In this regime we find again exponentially decaying oscillations, but the oscillation period
increases upon approaching the critical point. Furthermore, in the limit A = 0 the time
evolution of mg(t) can again be calculated exactly, as in the XX-model. From this we
obtain

—o 1
ms(t) = 3 cos?(Jt), (4.71)
i.e. the staggered magnetization in the XZ-model steadily oscillates without decaying in
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the limit A = 0.

As for the XXZ-model, we have extracted the relaxation times using exponential fits
to the numerical data of ms(t). In the easy axis regime A > A., we use the same simple
exponential fit as for the XXZ data. In the regime A < A. however, we use a fitting

function of the form
m(t) ~ et/ (0052(wt) — const. ) (4.72)

where the constant is usually small and positive. Note that this function fits the XZ-data
perfectly for all times Jt 2 5 and all anisotropies A < A, in contrast to the XXZ-model,
where an accelerated decay is observed close to the critical point. The relaxation times
and the oscillation period are shown in Fig. 4.11. As can be seen from this figure, the
minimum of the relaxation time in the XZ-model is right at the critical point A, = 2.

4.2.3 A possible route to an exact analytic solution

As mentioned in the previous section, there exists a possible route to an exact analytical
calculation of the time evolution of the staggered magnetization in the XZ-model, which
is sketched in this section. This method is based on a generalization of Szegd’s lemma
to block-Toeplitz determinants that has been found by Widom [90]. Using this approach,
the computation reduces to a Wiener-Hopf factorization problem of the matrix-valued
generating function for the coefficients of the block-Toeplitz matrix, which we weren’t
able to solve, unfortunately. Nevertheless, since the method itself is interesting on its own
and might be useful for related problems, we present it here briefly.

We want to obtain a general expression for the time evolution of the staggered magne-
tization mg(t) in the XZ-model following a quantum quench, i.e. we have to evaluate the
Pfaffian defined in Eq. (4.54) in the limit n — co. We recall that Pfaffians can be written
as the square root of the determinant of the antisymmetric 2n x 2n matrix (apart from
a sign, which is obvious in our case) obtained by mirroring the triangular scheme (4.54)
at the main diagonal. Since in our case we have b_; = —b;, the correlator (4.50) can be
written as the square root of a block-Toeplitz determinant
¢ D|'?

o C (4.73)

(S6(6)Sn(t)) = 7 (=1)"

where the Toeplitz matrices C' and D have coefficients b, and a,, respectively. Alterna-
tively, by shuffling rows and columns, we can write

(S5(1)S3(0)) = (-1 det(T,) "2 (474

with a n x n block-Toeplitz matrix T;, with 2 x 2 matrix coefficients 7;:

O T-1 o T (n—1)
T T ot T—(n— . .

T, | " T = <_Z | Z) (4.75)
Tn_l oo TO
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All coefficients 7; of the block-Toeplitz determinant 7, are completely specified by the
2 x 2 matrix-valued generating function 7(k), whose Fourier coefficients are equal to 7;:

_ [ %E—MT (k) = Ak)  p(k)
Té_/WZTF (k) (k) <—,u(—k‘) )\(k)) (4'76)

and the coefficients of the generating function are obtained from Eqs. (4.52) and (4.53),
in particular

AEk) = sin(2¢y) sin(2Ext) (4.77)
(k) = FH2%) (cos(2¢y,) — isin(2¢y) cos(2Et)) (4.78)

and pu(—k) = p*(k). Now we can use the equivalent of Szegd’s lemma for block-Toeplitz
determinants [90], which is applicable if det7(k) # 0 and det 7(k) has winding number
zero (i.e. argdet7(k = 0) — argdet7(k = 27) = 0). In our case the matrix function
7(k) from Eq. (4.76) is unitary and has det 7(k) = 1, thus all prerequisites for applying
Widom’s theorem are met. This theorem provides an asymptotic formula for block Toeplitz
determinants and reads as follows

nh_)ngo det(T,,) = G[r(k)]"™ E[r(k)] (4.79)

with
G[r(k)] = exp [/_7T % log det 7(k) (4.80)
Elr(k)] = det(Tuo[r (k)] Toolr ™" (k) (4.81)

In our case the leading order term is unity, i.e. G[7(k)] = 1, because we have det 7(k) = 1.
This result has to hold because of physical reasons obviously, otherwise mg(t) would be zero
or infinity at all times. In order to obtain the time evolution of the staggered magnetization
at arbitrary times, we have to evaluate the sub-leading corrections E[r]. Unfortunately
the expression (4.81) is not very useful for explicit calculations. Nevertheless, Widom
was able to prove another theorem, which gives an explicit expression for the logarithmic
derivative of E[7] and can be used for explicit calculations. In order to be able to apply
this theorem directly to our problem, it is convenient to make a change of variables. In
particular, we write the generating function 7(k) as a function of the complex variable
z = e'*. Now suppose 771(2) (which is equivalent to 7f(z) in our case) has the left and
right Wiener-Hopf factorizations

77 (2) = up(2)u-(2) = v-(2)v(2) (4.82)

where u4 and v; (u— and v_) are analytic inside (outside) the unit circle, i.e. us and vy
(u— and v_) have only positive (negative) Fourier coefficients as functions of k. Further-
more let 7(z) be a differentiable function of a parameter ¢t. Then Widom’s theorem [90]

states that
d

9 tog Blr] = % ﬁ dztr {[(Dou Y — (D0 Yvs] By7) (4.83)
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where = denotes the unit circle and we have chosen the time ¢ as the parameter. Since
we now from our numerics that the staggered magnetization mg(t) decays exponentially
at large times, the expression (4.83) should tend to a constant value at large times.

The remaining problem is to find the Wiener-Hopf factorization in Eq. (4.82) of the
generating function 7(z). The only situation where an analytical factorization seems to be
possible is the quench from the Néel state to the critical point A, = 2 of the XZ-model,
where the expressions for the coefficients p and A in Egs. (4.77) and (4.78) of the generating

function simplify considerably. At the critical point A = 2 we get (again z = e'¥)
Az) = %Z(z — 2 Ysin(Jut(z + 27Y) (4.84)
u(z) = g {z+27" = (z— 2z Ycos(Lt(z +271))} (4.85)

Note that these functions have an essential singularity at z = 0. If we would have just
a pole of finite order n at the origin, the Wiener-Hopf factorization could be performed
easily by factoring out the singularity by a multiplication with 2.

Albeit we haven’t been able to solve the Wiener-Hopf factorization problem for the
matrix-valued generating function 7, the above formulation of the problem can be em-
ployed to justify the light-cone trick used in the previous section. Indeed, there is another
theorem by Widom [90] which states that E[r] is given by

E[r] = G[r])* det T;[r 1] (4.86)

if the Fourier coefficients 7,, vanish for m > ¢ or m < { for some fixed ¢. Thus one
only needs to calculate the determinant of a finite Toeplitz matrix Ty in order to obtain
the determinant of T,,. This is precisely what we do when using the light-cone trick at
intermediate times, where £ scales linearly with time. Indeed, it can be shown that the
coefficients 7, are exponentially small for m > ¢ at a given time t.

4.2.4 Relation between the XXZ- and XZ-model in the regime A > 1

The comparison between the results for the XXZ- and XZ-model in Fig. 4.12 shows, that
the time evolution of the staggered magnetization in both models is almost indistinguish-
able at large anisotropies A > 1. In the following we’re going to clarify this observation
by comparing the excitation spectra of the two models.

As has been shown in the previous section, the dispersion relation of the excitations
in the XZ-model for A > 2 is given by

By, (k) = J\/1 4+ AZ/4 + A cos(2k). (4.87)

For the XXZ chain, the dispersion relation of elementary excitations can be calculated
using the Bethe-ansatz [76]. In the antiferromagnetic regime (A > 1) one can write down
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Figure 4.12: Comparison between the results for the time evolution of the staggered
magnetization mg(t) following a quench from the Néel state in the XXZ- and XZ-model.

a parametric representation (define A = cosh()\))

o —ina

Egg(a) = 2msinh(h) Y —

4~ _cosh(n)) (4.88)

—ina/

kla) = —27 /O da/n;m(:(fT(n)\) (4.89)

A plot of both dispersion relations for different values of A is shown in Fig.4.13.
Now, one can easily establish that the dispersion relations of both models are asymp-
totically the same in the regime A > 1, where we get

E(k) = % + cos(2k) + O(1/A). (4.90)

Since the energy difference between the initial Néel-state and the ground state in the regime
A > 1 is small, the dynamics is completely determined by the elementary excitations,
which have identical dispersions in both models, up to corrections ~ 1/A. Thus it is not
surprising that the time evolution of the staggered magnetization in both models is almost
equivalent for large A.

4.3 Weakly antiferromagnetically ordered initial states and
Luttinger-Liquid theory

As an introduction to our discussion of quenches from correlated antiferromagnetic states
(i.e. quenches with Ay < 00), we consider the time evolution of weakly antiferromagnetic
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N

-3 -2-1 0 1 2 3
Figure 4.13: Dispersion relation of excitations in the XXZ-model (blue) and in the XZ-
model (red,dashed) for different values of A (A = 2,4,6,10 from top left to bottom right).

spin density wave (SDW) states under the XX-Hamiltonian (4.11) in the first part of this
section. This will provide a benchmark for the results obtained within Luttinger-liquid
theory in the second part of this section and allows for a brief discussion of the applicability
of effective low energy theories to the particular type of quench problems studied in this
thesis.
In the fermionic picture, antiferromagnetic SDW states can be written in analogy to
a BCS state as
SDOW) = [ (urc} +vic),)l0) (4.91)
—r/2<k<m/2

In particular, the SDW state reduces to a Néel state for up = vy = 1/\/5 The time
evolution of the staggered magnetization mg(t) in the XX-model (4.11) starting from a
SDW state at ¢ = 0 is thus determined by the coefficients uy and vy and Eq. (4.12) via

mo(t) = 7 37 (SDWiel.., (1ex(1)|SDW)

k=—m

- / %e‘mktukvk, (4.92)

—T

where we have taken the thermodynamic limit in last equality. In the following we consider
weakly antiferromagnetic SDW states, where

A
URVE = S — (4.93)
2\/€er + A2
Here, A4 denotes the SDW-gap and €, = —.J cos k is the free Fermion dispersion relation.

For a weak SDW state with Ay < J there are two main contributions to the integral in

99
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equ. (4.92). The first comes from the square root singularity in the vicinity of the two
Fermi points ky = 47 /2, whereas the second one comes from the square root singularity
of the density of states at &k = 0. Writing down these two contributions separately one
obtains

A A

37 Jo(27t) + =5 Ko(2A,1) (4.94)

1 As AS
\/ﬁ { U 76_2A8t + 7 COS(2Jt — 77/4)}

and the second equality holds for large times t > 1/Ag. Here, the first term is simply
the result of the linearized dispersion near the Fermi points, or stated otherwise, what
one would obtain from Luttinger-liquid theory. The algebraically decaying oscillations
which dominate the long time behavior are a result of contributions from the band edges,
hence are a lattice effect and thus cannot be captured within a Bosonization approach.
From this simple calculation it becomes clear that even for the time evolution of a very
weak SDW-state (Ag < J), where the deviation of the momentum distribution from a
Fermi distribution is significant only close to the Fermi points and a linearization of the
dispersion relation seems viable, Luttinger liquid theory gives reasonable results only in
the very restricted time interval AJ! <t < A7 In(J/Ay).

Although we have argued above that Luttinger liquid theory is not expected to correctly
describe the time evolution of the staggered magnetization following a quantum quench,
we briefly discuss the predictions of LL-theory for a quench from correlated initial states
to the gapless phase A < 1 in this section. In the paramagnetic regime A < 1, the
bosonized form of the XXZ model (4.4) up to irrelevant terms is given by the Luttinger
liquid Hamiltonian [91]

ms(t)

&

&Q

Hip= - / da {K (T1(z))? + % (8m¢($))2} . (4.95)

The bosonized form of the staggered magnetization is given by mg ~ (cos(2¢)),—o, where
we have used translational invariance. The remaining problem amounts to computing
the time evolution of (cos(2¢)), starting from a state where the field ¢ is initially locked
near 0 or /2. We mention that this is essentially the dual of the dephasing problem
studied in [92], and thus we expect an exponential decay of mg with a characteristic
timescale 7 ~ 1/(KAg). A convenient technique to solve this problem is the truncated
Wigner method [93], which is exact for quadratic Hamiltonians such as (4.95). Using this
approach, the time dependent expectation value of the staggered magnetization can be
written as a functional integral over the Wigner transform gy (o, gzao) of the initial density
matrix:

(cos(20)) = [ Do) / D(d0, o) ow (9o, do) cos(26) (6 — u202)
- / D(do, do) ow (o, do) cos(26a(x, ) (4.96)
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Here, the functional §—distribution ensures that one integrates only over solutions of the
classical equations of motion and ¢ (z,t) denotes the classical solution to the 1D wave
equation corresponding to the initial conditions ¢o(z) and ¢o(z). The speed of sound is
denoted by u. We have also used the fact that the operator cos(¢) is diagonal in the
¢—representation. The classical solution ¢¢(t) of the 1D wave equation can be explicitly
constructed using D’Alembert’s formula

r+ut

ba(z,t) = % [qﬁo(x — ut) + ¢o(x + ut) + % / dw’q'ﬁo(x’)} (4.97)

—ut

After switching to a dual field representation using Kud,0 = ¢, we get

(cos(2¢)) ~ /D(%,@o) ow (¢o,60) cos [@50(5'3 —ut) + ¢o(x + ut)

YK Oo(x + ut) — Kfo(z — ut)} (4.98)

Since in the initial state ¢ is locked near ¢y = 0, we factor out the ¢ dependent part of
the integral obtaining
m(t) ~ ( cos K (O (ut) — 0(—ut))>0 , (4.99)

where the brackets with the index 0 denote the expectation value taken with respect to the
initial state. In principle, the expectation value in Eq. (4.99) has to be calculated for the
ground state of the sine-Gordon model in the gapped phase, which is a nontrivial problem.
Alternatively, Eq. (4.99) can be evaluated within a semiclassical analysis, where the gap
of the initial state is relatively large. In this case, the cos-term in the sine-Gordon model
can be expanded around the minimum, thereby obtaining the Hamiltonian of a massive
scalar field. In particular, we take the ground state of the LL-Hamiltonian (4.95) with an
additional mass-term ~ Ay ¢? as initial state. Since this is a quadratic theory, Eq. (4.99)
can be simplified via

ms(t) ~ Re <eiK(9(ut)—0(—ut))>
K2

= exp ——- (((ut) — 0(—ut))2>0 (4.100)

0

After inserting the mode expansions of the dual field

o 7T \/w—q iqx T —iqx
e(x)_,/QuKLEq:—q <bqe +bhe ) (4.101)

with the dispersion relation wg = (uq)? + A2, we obtain
A /a2 + A2 /42
0 q

~ exp(—mTKA4t/2) . (4.102)

sin?(qut)
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The last line holds for Agt > 1, where A; again denotes the gap of the initial state.
Luttinger-liquid theory thus predicts an exponential decay of the staggered magnetization,
but it misses the oscillations of ms(t), which are a lattice effect. Furthermore, LL-theory
predicts a slowing down of the exponential decay as one gets closer to the Heisenberg
point K = 1/2 (the free Fermion limit corresponds to K = 1). Interestingly, this behavior
is in accordance with the naive picture of critical slowing down. We also mention, that
LL-theory doesn’t respect the exact symmetry of the time evolution under J, — —J,,
which in LL-theory corresponds to K — 1/K.

4.4 Quench dynamics in higher dimensions

So far we have discussed the time evolution of the staggered magnetization starting from an
initial Néel state only in one dimensional spin chains. Obviously, it would be interesting to
study the same setup in higher dimensional systems. Unfortunately there are not as many
sophisticated analytical tools available to study this problem in D > 1. In the following
section we use the simplest approach to study our quench problem in higher dimensional
models, namely spin-wave theory, where a Holstein-Primakoff transformation is utilized
to obtain an approximate description of the Heisenberg model in terms of non-interacting
spin-wave excitations. This approach should work reasonably well if the initial Néel state
is energetically not far from the equilibrium ground state after the quench and thus the
density of excitations is low, i.e. for A > 1. In the subsequent section we compare the
results with a thermalization scenario.

4.4.1 Quench from a Néel state using Holstein-Primakoff theory

We start from a D-dimensional, anisotropic, antiferromagnetic Heisenberg model with
nearest neighbor interactions on a cubic lattice

1 — y4 z
H=y (; {5 (S7 S +he) +AS; sm} | (4.103)

The cubic lattice is bipartite, thus we express the spin operators in terms of two Holstein-
Primakoff Bosons (see e.g. [75]), one for each sublattice. On sublattice A (index ¢) we
take

S; =25 —ala, Sy ~V2Sal (4.104)
and on sublattice B (index m)
Sz =—S+blbm , S~ V28 by, (4.105)

with ay and by, as bosonic annihilation operators and S = 1/2 for the spin-1/2 models un-
der consideration. By inserting these expressions in equ. (4.103), retaining only quadratic
terms and switching to momentum representation we obtain (setting the lattice constant
to unity)

H =~ —JAS2Nz/2 + ZJASZ {aLak + b;r(bk + Ak (aLbT—k + akb_k) } , (4.106)
k
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Figure 4.14: Saturation value m of the staggered moment at long times ¢t — oo for different
dimensions D as a function of the anisotropy A, obtained using the Holstein-Primakoff
approach. Black dotted line: D=1; red dashed line: D=2; blue solid line: D=3. In
three dimensions the saturation value at the isotropic point A = 1 is finite and given by

m = 0.277.

where z is the number of nearest neighbors, i.e. z1p =2, z9p = 4 and z3p = 6 on a cubic
lattice. Furthermore, ki—y . € {—7/2,7/2} and

Ak = 2 Z cos(k;) . (4.107)

me= =35 - =355 =5 % (af o+ Biic) (4.108)
B k

Now we want to calculate the time evolution of the staggered magnetization mg(¢) under
the Hamiltonian (4.106), starting from an initial Néel state. The Néel state is the ground
state of the Hamiltonian (4.106) for A — oo, i.e. it satisfies ax|¢(0)) = bkl (0)) = 0.
Because of that it is convenient to calculate the time evolution of mg(t) directly with the
Hamiltonian (4.106) instead of diagonalizing it first using a Bogoliubov transformation.
Using the Baker-Campbell-Hausdorff formula we get

2

(af- (t)ax (8))nea = (b ()brc(t))Neet = - ikAi sin’ <zJAS 1- A2 t) (4.109)

Thus, using the Holstein-Primakoff approach, we obtain the following expression for the

103



4. QUENCH DYNAMICS OF HEISENBERG SPIN CHAINS

time evolution of the staggered magnetization in a spin-1/2 Heisenberg model (S = 1/2)
after a quench from the Néel state

1 2Pk N, (zA 5
msup(t) = 3 —2/7r/2 @rP 1= A2 sin ( 5 1= t> (4.110)

The saturation value of the staggered magnetization

1 /7
m = lim ?/0 dt ms(t)

T—o0

/2 D 2

_ L Pk X (4.111)
2 2 D 2
—7r/2 ( 7'(') 1 _Ak

is shown in Fig. 4.14 for the dimensions D=1,2 and 3. As can be seen from this figure,
the HP-approach breaks down at the Heisenberg point A = 1 in one and two dimensions,
leading to an unphysical divergence of the saturation value of the staggered magnetization.
In D = 3 the HP approach gives a finite saturation value of m = 0.277 at the Heisenberg
point. In contrast to the 1D case, where we suspect from the analysis in the previous
sections that the staggered magnetization doesn’t saturate at a finite value at long times,
the saturation predicted by spin-wave theory in the 3D case is likely to be correct. Indeed,
within a thermalization scenario, the staggered magnetization should saturate at a value
corresponding to a thermal state at a temperature related to the energy of the initial state.
We will take a closer look at this scenario in the following section.

4.4.2 Comparison with a thermalization scenario in 3D

In the section above we have calculated the saturation value of the staggered magnetization
m using the Holstein-Primakoff spin-wave theory. Now we want to see if m can be inferred
from a thermalization scenario in the three dimensional case. As mentioned previously,
one naively expects that local observables should thermalize after a quantum quench.
Thus, after long evolution times ¢ — oo, the expectation values of local observables should
coincide with a thermal average at an effective temperature Teg = 1/cg corresponding to
the energy of the initial state |1)p). More precisely, the effective temperature is determined
by
(ol lluo) < - T [ e (1.112)
In the following we are going to compare the results for the saturation value of the staggered
magnetization m after a quench from the Néel state with the thermal expectation value
at an effective temperature given by the equation above. All calculations are performed
within the framework of spin-wave theory in order to get comparable results.
As a first step we need to diagonalize the Hamiltonian (4.106) in order to calculate

the thermal averages. This can be achieved easily using a Bogoliubov transformation to a
new set of bosonic operators ay and fy, defined by

ax = oy coshOy + ﬂT_k sinh 6, (4.113)
be_k = oy sinh 8, + ﬂT_k cosh 6. . (4.114)

104



4.4. QUENCH DYNAMICS IN HIGHER DIMENSIONS

1.3 T | T T T T 045

0.45

»n 04

0.35

03 —

Figure 4.15: Effective temperature Go¢ and staggered magnetization mg for the 3D antifer-
romagnetic Heisenberg model on a cubic lattice, calculated within spin-wave theory. Left:
Ber of the initial Néel state as a function of the anisotropy A in units of J; 1 = (JA)™L,
calculated using (4.112). Right: staggered magnetization as function of the anisotropy.
Blue dotted line: equilibrium value of my at zero temperature; red solid line: equilibrium
value of mg at temperature SBeg corresponding to the initial Néel state; black dashed line:
saturation value m of the staggered magnetization after a quench from the Néel state
(4.111).

The angle 0}, is determined by
tanh 20, = — Ay (4.115)

and Ax has been defined in Eq. (4.107). The diagonalized Hamiltonian reads
_ _:NJA 1-D "2 APk 5 (o i
=250 )+zNJAS/_ﬂ/2W1/1—)\k (ofonc + BLB+1) . (4116)

At finite temperatures, the number of Bogoliubov quasiparticle excitations is determined
by the Bose-Einstein distribution function

~1
(ozf(ozkm = (ﬁf{ﬁkm =np(Fy) = (exp [B2SJA/1 =X — 1> . (4.117)

Using this result it is straightforward to show, that the staggered magnetization in thermal
equilibrium is given by

<m8>16 _ % - /7r/2 dPk (1 +2nB(Ek) B 1) (4118)

— 2m)P /
7r/2(7T) 1_)\12{

The (inverse) effective temperature Geg corresponding to the initial Néel state can now be
calculated using (4.112), (4.116), (4.117) and (tn¢el| H|¥Néel) = —2NJAS? /2. For the 3D
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case, where HP works reasonably well, the numerical results for the effective temperature
Dot and the staggered magnetization mg are shown in Fig. 4.15. It seems that in 3D a
thermalization scenario is indeed valid, at least as far as mg is concerned. Apart from a
small region close to the critical point A = 1, the saturation value m after the quench and
the equilibrium value mg at the effective temperature practically coincide.

4.5 Conclusions

In this chapter we have calculated the time evolution of the staggered magnetization in
spin-1/2 Heisenberg chains starting from an initial Néel state, using different methods
and approximations. We have conjectured that the staggered magnetization vanishes
exponentially (at least at intermediate time scales) for all finite anisotropies 0 < A < oo
in the XXZ- as well as in the XZ-chain and the corresponding relaxation time exhibits
a minimum close to or at the critical point, where a quantum phase transition to an
antiferromagnetically ordered state occurs. Furthermore, we have observed a crossover
from oscillating to non-oscillating behavior of the staggered magnetization in both models
as the critical point is crossed.
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Appendix A

Regularization of the bare
interaction strength

In this appendix we show briefly, how the UV-divergence associated with the contact inter-
action V(x) = god(x) is regularized!. This can be done by replacing the bare interaction
potential with the low energy limit of the scattering T-matrix of two particles in vacuum,
which is well defined even if the potential is singular. The T-matrix is related to the
scattering amplitude f via

4
7T=-"g¢ (A1)
m
In the low energy limit k& — 0, where the scattering amplitude is given by

k) = —— (A2)

—a~1 —ik
The T-matrix is thus simply related to the s-wave scattering amplitude

-0 4
y gms Qi (A.3)
m
The remaining task is to replace the bare interaction V' with the T-matrix (A.3). This
can be done using the Lippmann-Schwinger equation for the T-matrix of two particles in
vacuum

T=V+vxOr, (A.4)

which takes an arbitrary number of repeated scattering events between the two particles
into account. Here, x(?) denotes the propagator of the two particles in vacuum. In case
of a contact interaction, the T matrix depends only on the total momentum and energy
of the two colliding particles. In particular we get

4
T(q) = g0 + 9o / %G@ — BG(K)T(q) (A5)

!Usually, a more physical interaction potential with a finite range ro would lead to a natural momentum
cutoff A ~ ryt.
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in momentum space, where G denotes the single-particle propagator. Taking the limit of
vanishing 4-momentum ¢ — 0 one obtains

3
70) =0~ 90T(0) [ 3o (A6)

Using T'(0) = 4”7“ from above, we finally arrive at

1_m / k1
go 4ma (27)3 2ex

This expression can be used to remove the UV-divergences in all ill-defined expressions
that arise due to the use of the contact potential.

(A7)
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Appendix B

BCS-BEC crossover at T = 0:
lifetime of fermionic excitations

Two types of low energy quasiparticle excitations are present in the BCS-BEC crossover
problem at temperatures below the superfluid transition, namely gapped fermionic single
particle excitations with a BCS-like dispersion and the collective Bogoliubov-Anderson
mode, which is a phonon excitation of the condensate with a linear dispersion relation. A
description of the BCS-BEC crossover in terms of effectively non-interacting quasiparticles
is only feasible, if the lifetime of these two excitation branches is sufficiently large. At
zero temperature, where no interaction with thermally excited quasiparticles takes place,
the only lifetime limiting process is the decay of a quasiparticle into a bunch of low
energy excitations. These processes need to obey the kinematic constraints from energy-
and momentum-conservation, however. For example, as long as the energy of a phonon
doesn’t exceed twice the fermionic excitation gap, it cannot decay into a fermionic particle-
and a hole-excitation. The only other process that can lead to a finite phonon lifetime is
Beliaev-damping [94], which is only possible if the non-linear part of the phonon dispersion
is positive, i.e. the dispersion bends slightly upward. Even if this is the case, Beliaev-
damping is negligible in the long-wavelength limit. In this appendix we want to ask the
question, to what extent the lifetime of the fermionic single particle excitations is limited
by the interactions. It is clear that the fermionic excitations have to be sharp at the
minimum of the dispersion, because at this point it is energetically not possible for the
fermionic excitations to decay.

Our starting point is the standard Hamiltonian of a two-component Fermi gas with an
attractive (g < 0) contact interaction

g
H = Z(Ek - M)nko— + V Z cI(—i—chT—klc—k,lck,‘FqT . (Bl)
k,o q.k’.k

The superfluid correlations of the ground state are very well described by the reduced
BCS-Hamiltonian

g
HBCS = Z(Ek - M)nko— + V Z CLTCT—kLC—k’le’T s (B2)
k,o k' k
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which only takes zero momentum pairs (i.e. ¢ = 0) into account. Unfortunately, this
approximate Hamiltonian is not capable of describing the collective Bogoliubov-Anderson
mode, which is connected to the spontaneous U(1)-symmetry breaking of the superfluid
ground state. The Bogoliubov-Anderson mode is a sound mode that is related to density
fluctuations of the condensate, which cannot be described without including finite momen-
tum pairs. However, the reduced BCS-Hamiltonian has the advantage of being exactly
diagonalizable. In terms of the fermionic BCS-quasiparticle operators ay, it takes the
form

Hpcs = E(])BCS + Z Ey O‘Laaka , (B.3)

ko

where Fyx = +/(ex — u)? + A? denotes the standard BCS-quasiparticle dispersion. The
quasiparticle operators oy, are related to the original fermionic operators via a Bogoliubov
transformation

o = ukosz—I—Ukoﬁ_kl (B.4)

C_kl = —UkaLT + uka—kl N (B5)

where the coefficients are given by ui = (1 + %) /2 and v} = 1 — u?. Note that the re-
duced BCS-Hamiltonian (B.2) cannot be mapped to (B.3) directly by simply applying the
Bogoliubov transformation. Indeed, a direct mapping is only possible if a mean field de-
composition of the interaction term in Eq. (B.2) is used beforehand. The interaction term
in the reduced BCS-Hamiltonian corresponds to an infinite range interaction, however,
thus the mean field treatment is essentially ezact!.

In the following we are interested in the lifetime of fermionic excitations in a neutral,
superfluid Fermi system at zero temperature. The dispersion and the lifetime of single
particle excitations are determined by the poles of the Green’s function

Go(k,t —t') = —i{T{cy, (t)cl, (1) }) , (B.6)

where the time argument denotes operators in the Heisenberg picture. In order to incorpo-
rate the superfluid correlations of the ground state without having to deal with anomalous
Green’s functions, we use the Bogoliubov transformation that has been defined in Eqgs.
(B.4) and (B.5) above, and express the fermionic Green’s function G from Eq. (B.6) in
terms of the BCS-quasiparticle Green’s functions G, (k,t — t') = —i(T {akg(t)aL S

Go(k,w) = us Gy (k,w) — 3 G_o(—k, —w) (B.7)

This mapping directly relates the lifetime of fermionic excitations to the lifetime of BCS-
quasiparticles. Within a description in terms of the reduced BCS-Hamiltonian alone, the
lifetime of the BCS-quasiparticles (and thus also the lifetime of the fermionic excitations)
is obviously infinite, i.e. ImG¥(k,w) = —76(w — Ex). Together with Eq. (B.6) this leads
to the BCS-approximation for the fermionic spectral function, see Eq. (2.57).

'For a more rigorous analysis of this mapping see [95].
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The residual interaction

g
Hyes = H — Hpcs = V Z CL+qTCJr_le_k/ler+qT, (B.8)
k’.k,q#0

that has been neglected in BCS-theory, describes interactions between BCS-quasiparticles
and their coupling to the collective Bogoliubov-Anderson mode. When expressed in terms
of the Bogoliubov quasiparticle operators, the residual interaction gives rise to three dif-
ferent types of quasiparticle interactions Hyos = Hyg + H31 + Hoo

1 40
Hio = 7 Y. Viong O10-k-qi0-K10K +q] T hec. (B.9)
kk’,q#0
1 3,1
Hs;p = V Z Vk(’kq) aLUozk_qUoz_k/lozkuqu + h.c. (BIO)
k7k/7q7é070—
1 @201+
H22 = V Z |:Vk’kq qu_kT aklak,laq_m
k.k/,q#0
(2,2),11,2 (2,2),11 t T
+Vk’kq akTa—k’Laq—k’lak—qT + Vk’kq ak+qTak’Tak’+qTakT
272 7J/l
+V(’kq) aL+qlaL/lak/+qlakl] (Bll)

corresponding to four-wave annihilation, quasiparticle decay and quasiparticle scattering.
The associated vertices are given by

Vk(fll;g) = 0 Vk4qUkUk/ UK/ +q (B.12)
Vk(,gk;) = g0 (vk/vk/+qvkuk_q — uk/uk/+qukvk_q) (B.13)
Vlf?li)’”’l = g (uq_kukukruq_kr + vq_kvkvkrvq_kr) (B.14)
Vé?ﬁ?’”’z = g0 (UKt —qUi'Vk—q + VkVik/—qUi’ Uk—q) (B.15)
Vk(?li)’” = g0 Uk+qUk/+qUk Uk (B.16)
Vk(?li)’u = g0 Vk+qUk/+qUKUK’ (B.17)

The only process that limits the lifetime of BCS-quasiparticles at zero temperature is
quasiparticle decay. A simple second order perturbation theory calculation with Hg;
shows, that there is a broad range around the minimum of the dispersion relation where
the BCS-quasiparticle has an infinite lifetime. This is simply because the decay into
three quasiparticles is suppressed by energy and momentum conservation (i.e. the quasi-
particle has to have at least an initial energy of 3A, otherwise the decay is impossible).
However, this is not the dominant contribution to the lifetime close to the dispersion
minimum. Indeed, it is possible that a BCS-quasiparticle emits a Bogoliubov-Anderson
phonon. This process has a much less restrictive phase space constraint than the decay
into three quasiparticles. In order to estimate this contribution, we need to know how the
BCS-quasiparticles couple to the collective Bogoliubov-Anderson mode. Quite generally,
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Figure B.1: Dominant contribution to the BCS-quasiparticle self-energy at 7' = 0.

collective modes show up as pole in the vertex function corresponding to the scattering of
two quasiparticles. In the case of the Bogoliubov-Anderson mode this can be understood
from the fact that a phonon can be considered as a bound state of two elementary excita-
tions with non-vanishing total momentum. As shown already by Galitskii [96], the vertex
function I'(q,w) for the scattering of an up- and a down- BCS-quasiparticle has a pole at
w? = c2¢? corresponding to the Bogoliubov-Anderson phonon mode, where ¢, is the sound
velocity. Within a diagrammatic formulation, the leading order self-energy contribution
corresponding to the emission of a Bogoliubov-Anderson phonon is shown in Fig. B.1.

Apart from combinatorial factors, the BCS-quasiparticle self-energy is thus given by
. d3 d3 kl d3 k’” . . .
Yk, iwg) = ﬁ3 Z / a V_(t?)IZqV_(?f{’,l,Lq G (k — q,iwy, — iwy)G| (K, iwy)

X QT(q — k ,qu — ’ka/)r(q, iwq)gl (k”, iwku)gT(q — k”, iwq — iwk//) (B18)

Evaluating the Matsubara summations, setting 7" = 0 and performing the analytic con-
tinuation iwg — w + id, we obtain the retarded self-energy

Sew) = [CUEEEE VO VS M@ — Bq +10)
X G (K,w—Ex_q— Eq-x +10)G, (K", w — Ex_q — Eq—x» + 1) (B.19)
The important contribution to the imaginary part of the self energy comes from the pole
of the Vertex function I'(q,w) at w = ¢;|q| and is given by
dBqd3k dK"
/ (2m)?
x ReG| (K ,w— Fx_q — Eq-x)ReG|(K",w — Ex_q — Eq—x) (B.20)

Ime(k, w) V_(tizqv(i/%%{q Zpa(q) 6(w — Ex—q — csld])

where Zp4(q) is the quasiparticle weight of the Bogoliubov-Anderson mode and we have
neglected the terms originating from the imaginary parts of the two Green’s functions,
because they give rise to the stronger 3A constraint that has been discussed above. As-
suming that the real part of the self-energy is small, we evaluate the self-energy on-shell
at w = Ey and extract from (B.20) the — expected — kinematic constraint

Ey = Ek_q + cslq] . (B.21)
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For fermionic excitations with an energy close to the dispersion minimum it is clear that
only the emission of long wavelength (i.e. low-energy) phonons is possible. Expanding the
kinematic constraint for small phonon momenta we get the condition

|VE| > cs (B.22)

for the emission of a phonon, i.e. the emission of a phonon is impossible as long as the
group velocity |0y Fj| of the quasiparticle excitations is smaller than the sound velocity.
Thus, the spectral function of the fermionic single-particle excitations exhibits a sharp
peak in the interval
k—krl e A (B.23)
kF 2?)F EF
around the dispersion minimum.

Apart from this region close to the dispersion minimum, the fermionic excitations
have a finite liftime which scales as ~ (krpa)? in the weak coupling limit. This lifetime
broadening has observable consequences on the rf-spectra. Indeed, the sharpness of the
onset of the rf-spectra is determined by the quasiparticle width at k = 0. A more detailed
discussion of this issue can be found in Ref. [28].
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Appendix C

The Cooper problem in a
spin-polarized Fermi gas

In this appendix we briefly analyze the Cooper problem of two interacting Fermions in a
spin-polarized environment. Suppose we have a spin-polarized Fermi sea of noninteracting
up-Fermions and we add one more up-Fermion and one down-Fermion, which are inter-
acting via a pseudopotential with interaction strength g = 4mwa/m. Due to Pauli blocking,
the up-Fermion has to be added at a momentum |k| > kp, where kr = (6712nT)1/ 3 denotes
the Fermi-momentum of the up-Fermi-sea. The down-Fermion can be added at arbitrary
momenta, however. In the non-interacting limit it is thus energetically favorable to add
the down-Fermion at k| = 0 and the up-Fermion at |k;| = kr (without loss of generality
we add the up-Fermion at momentum k; = kpe,). Note that this 'Cooper-pair’ has a
total momentum of Q = ky + k| = kre, per construction. In the center of mass frame,
the Schrodinger equation for the ground state energy of the two interacting Fermions takes

the form ) ) )
- - = - C.1
g V Eq: E, —2¢eq (G-1)

with q = (k; — k|)/2 as the relative momentum between the two Fermions. Here E, is
the ground state energy in the CM-frame (i.e. without the kinetic energy of the center
of mass motion) and eq = ¢*/(2m) denotes the dispersion relation of the Fermions. The
bare interaction strength g is regularized in the standard form via (A.7).

In the usual Cooper problem, the g-sum in (C.1) is restricted to |q| < kr due to the
presence of a Fermi sea for both Fermion species. In the case of a spin-polarized up-
Fermi sea, virtual scattering processes are restricted to |ki| > kr and we get the following
condition for the g-sum in (C.1)

ki| =

k
7Fe2+q‘ > kp. (C.2)

The Schrédinger equation (C.1) can thus be written as

1 1 1
.1 . (C.3)
9V ngcp Er = 28p—c.kr/2
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0
2+ —
18 r 4
w
m :
O —
8+ —
-10 L Il | 1 | \
-1 0 1 2
1
(k)

Figure C.1: Blue line: ground-state energy of a Cooper-pair in a spin polarized Fermi sea
in units of e, as function of the inverse coupling strength (kpa)~'. The dashed red line
marks the two-particle bound-state energy E, = —1/(ma?) in the absence of a Fermi sea.

In fig. C.1 we plot the ground state energy of the Cooper pair, i.e. the numerical solution
of (C.3) plus the kinetic energy of the center of mass motion, as function of v = (kra)~!.
For v < 7! the ground state energy is the same as in the non-interacting case. For
v > 7!, however, the two Fermions form a two-particle bound state. Naively this should
happen when the binding energy of the two particle bound state is larger than the Fermi
energy |Ey| = (ma®)™! > ep, , ie. v > 1/4/2, because in this case it is energetically
favorable to lift the down-Fermion to an energy above er and form a bound state in a
relative (q, —q)-configuration with zero total momentum. This estimate is in reasonable
agreement with the result for the position of the critical point M from chapter 3, where
we have found va; ~ 0.84. For the case considered in this appendix, however, the situation
is a little bit different because the total momentum of the pair is finite and conserved.
Now it is also clear why molecule formation is more difficult in the presence of a
polarized Fermi sea than in its absence. Indeed, the minority Fermion has to overcome
an energy gap ~ ep in order to form a bound state with one of the majority Fermions.
Energetically, this process is favorable only if the binding energy is larger then the energy

gap.
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On the following pages we reprint the four most relevant of the papers that were published
in the context of this thesis:

e M. Punk and W. Zwerger
"Theory of rf-Spectroscopy of Strongly Interacting Fermions”
Phys. Rev. Lett. 99, 170404 (2007).

e M. Punk, P.T. Dumitrescu, and W. Zwerger
”Polaron-to-molecule transition in a strongly imbalanced Fermi gas”
Phys. Rev. A 80, 053605 (2009).

e R. Haussmann, M. Punk, and W. Zwerger
Spectral functions and rf-response of ultracold fermionic atoms
Phys. Rev. A 80, 063612 (2009).

e P. Barmettler, M. Punk, V. Gritsev, E. Demler, and E. Altman

"Relazation of Antiferromagnetic Order in Spin-1/2 Chains Following a Quantum
Quench”

Phys. Rev. Lett. 102, 130603 (2009).
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Theory of rf-Spectroscopy of Strongly Interacting Fermions

M. Punk and W. Zwerger

Physik-Department, Technische Universitit Miinchen, James-Franck-Str., D-85748 Garching, Germany
(Received 5 July 2007; published 25 October 2007)

‘We show that strong pairing correlations in Fermi gases lead to the appearance of a gaplike structure in
the rf spectrum, both in the balanced superfluid and in the normal phase above the Clogston-
Chandrasekhar limit. The average rf shift of a unitary gas is proportional to the ratio of the Fermi
velocity and the scattering length with the final state. In the strongly imbalanced case, the rf spectrum
measures the binding energy of a minority atom to the Fermi sea of majority atoms. Our results provide a
qualitative understanding of recent experiments by Schunck ef al.

DOI: 10.1103/PhysRevLett.99.170404

According to the 50 yr old microscopic theory of
Bardeen, Cooper, and Schrieffer, the phenomenon of
superfluidity in a system of fermions is connected with
the formation of bound pairs. In the weak coupling limit,
where the formation of pairs and their condensation ap-
pears simultaneously, the transition to the superfluid state
is associated with the appearance of a gap in the fermionic
excitation spectrum. For strong coupling, however, this
simple connection is no longer valid and bound pairs of
fermions may exist even in the normal state. This phe-
nomenon is well known from the pseudogap phase in high
temperature superconductors, where a d-wave pairing gap
appears on the Fermi surface at temperatures far above the
superconducting transition temperature [1]. A much sim-
pler example is realized by ultracold fermions near a
Feshbach resonance, which provide a perfectly control-
lable model system to study the effects of strong pairing
interactions [2]. In the case of an equal population of the
two hyperfine states undergoing pairing, the ground state is
superfluid at arbitrary values of the scattering length. A
microscopic signature of pairing in ultracold Fermi gases
has first been obtained by Chin et al. [3] through rf spec-
troscopy. The rf field drives transitions between one of the
hyperfine states |2) = | |) which is involved in the pairing
and an empty hyperfine state |3) which lies above it by an
energy hw,; due to the magnetic field splitting of the bare
atom hyperfine levels. In the absence of any interactions,
the spectrum exhibits a sharp peak at @ = w,3. Pairing
between the two lowest hyperfine states |1) and |2) leads to
an upward shift of this resonance. The shift essentially
follows the two-particle binding energy on the BEC-side
of the crossover but stays finite on the BCS side, where the
appearance of a bound Cooper pair is a many-body effect

|

PACS numbers: 03.75.Ss, 05.30.Fk, 32.30.Bv

[3]. A theoretical explanation of these observations can be
given by extending the BCS description of pairing to the
strong coupling regime and neglecting interactions involv-
ing state |3) [4,5]. In a homogeneous system, the resulting
rf spectrum exhibits a peak at energies around A%/,
which is of the order of the energy gap A = 0.5& at the
unitarity point. Since pairing appears already in the normal
state above T, the rf shift does not directly measure the
superfluid order, however [5]. The importance of under-
standing the relation between rf spectra and the nature of
the many-body states involved, is underlined by recent
experiments in imbalanced gases [6]. There, a shift in the
rf spectrum is observed which hardly changes between the
balanced superfluid and a normal ground state beyond a
critical population imbalance, where superfluidity is de-
stroyed by a sufficiently large mismatch of the Fermi
energies even at 7 = 0 (this is the analog of the
Clogston-Chandrasekhar limit in superconductors). In
this Letter, we present a theory of rf shifts in both balanced
and imbalanced Fermi gases, which provides a qualitative
understanding of these observations. In particular, we show
that the average frequency shift in the balanced superfluid
at unitarity (i.e., at infinite scattering length) is linear in the
Fermi velocity and inversely proportional to the scattering
length a 5. In the nonsuperfluid state beyond the Clogston-
Chandrasekhar limit, pair fluctuations give rise to sharp
peaks in the rf spectrum which are associated with the
binding of {] -pairs even in the absence of long range phase
coherence.

Within linear response theory, which is adequate for rf
pulses short compared to the Rabi oscillation period of the
bare 2-3 transition, the number of particles transferred
from state |2) to state |3) per unit time is given by

) ~ [ a0 ] (s 0, 5, 0,0, (1)

where @ = w; — w,; denotes the detuning of the rf field from the bare 23 transition. Since particles in state |3) have a
nonvanishing interaction with those in states |1) and |2) [7], the response function in Eq. (1) does not factorize into one
particle functions, making a full calculation of the spectrum very difficult. Nevertheless, near 7' = 0, where only a single
peak is observed in the rf spectrum, its position can be determined from a sum rule approach [8]. In particular, the first
moment @ = [dwwl(w)/ [dol(w) is given by

0031-9007/07/99(17)/170404(4) 170404-1 © 2007 The American Physical Society
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_ 8127 &3 ((Hh) _ <H12>)
Ny = N3 \ @13 812

Here H|, and H), denote the interaction Hamiltonians
between the respective states, while N, and N; denote
the total number of particles in states |2) and |3). The g;;
are the bare interaction constants arising in the pseudo-
potential interaction Hamiltonian

Hy= gy [ @l e uon@. ©)

They are related to their renormalized values g;; =
4mh*a;;/m by

11 [ d% 1 N
z 2 f @m) 260" (

where a;; are the s-wave scattering lengths between states i
and j, m is the mass of the particles and &, = h*k?/2m the
single particle energy. Note that the interaction g,3 be-
tween states 2 and 3 drops out quite generally, because
H'; and Hgy commute. Moreover, there is no shift of the rf
peak if the interaction strengths g, and g5 are equal, a
case, where all interaction effects are cancelled exactly
[8,9]. Since (H1,) is of order Nj, the first term in (3) is
negligible compared to the second term if N, >> N;. The
average shift of the rf spectrum then simplifies to

m:@(@, l)ﬁ@z@,%_ )
Ny \&n NoA 2\a;s  ap

Here, the second form is obtained by expanding 1 —
Z13/812 to leading order in the upper cutoff A of the
momentum integral in (4). Evidently, for vanishing inter-
actions g3 = g;3 = 0 with state 3, the rf shift just mea-
sures the (negative) interaction energy per particle in the
state 2. Within a pseudopotential description, however, the
interaction energy (H{,) ~ A diverges linearly with the
cutoff. It is thus sensitive to the range of the interactions,
which is set equal to zero in the pseudopotential. In terms
of the spectrum /(w), this divergence shows up as a slow
decay I(w) ~ ™32 at large frequencies, leading to a
divergent first moment, as is easily seen within a BCS
description with a constant gap A. Remarkably, for finite
interactions g;3 # 0, the second form of (5) gives a result
for the frequency shift which is well defined and finite in
the limit A — co0. As shown by Tan [10], the total energy of
the balanced gas can be obtained from the momentum
distribution ny via E = 25 ;& (n, — C/k*) up to a con-
stant, which is irrelevant for the calculation of the limit
{H},)/A. Here C is the constant arising in the asymptotic
behavior limn, = C/k* of the momentum distribution at
large momenta. Evidently, the interaction contribution to
the total energy is just (H),) = —2CY &, /k* ~ —CA.
Introducing a dimensionless constant s via C = sk}, the
shift of the rf spectrum

~ 4£2F 1 1
hw:s—(—f—) (6)
ny \812 813

of the balanced gas is completely determined by the uni-
versal constant s, the Fermi energy er = lek%/(lm) of the
balanced, noninteracting gas and the renormalized interac-
tion constants g;, and g,3. The expression is finite for all
coupling strengths g, and evolves smoothly from the BCS
to the Bose-Einstein condensation (BEC) limit. Within an
extended BCS description of the ground state wave func-
tion, the product s'”’4e% = A? is precisely the square of
the gap parameter. In weak coupling, our result then co-
incides with that obtained by Yu and Baym [8], except for
the mean field shift, which is not contained in the reduced
BCS Hamiltonian. In the BEC-limit, where the BCS
ground state becomes exact, the asymptotic behavior
Agpe = dep/3mkpa;; gives ha = 2g,(1 — ap/ays),
where &, = 1*/ma?, is the two-particle binding energy.
It is straightforward to show that this is precisely the
average shift for bound-free transitions following from a
detailed calculation of the rf spectrum in the molecular
limit by Chin and Julienne [11]. The most interesting
regime is that around the unitarity limit 1/g;, = 0. At
this point, the average rf shift is given by @ =
—0.46vp/a,3, which varies like the square root of the
Fermi energy & = mv%/2. The constant s = 0.098 is
obtained from the recent calculations of the crossover
thermodynamics by Haussmann et al. [12]. Our result for
the homogeneous gas can be compared directly with lo-
cally resolved rf spectra by Shin ef al. [13]. Accounting for
the enhancement of the local Fermi velocity at the trap
center by a factor =~ 1.25 due to the attractive interactions,
the predicted average shift @ = 27 X 28.9 kHz [14] is
considerably larger than the measured position of the
peak near 15 kHz. This is probably due to the fact, that
@ has a considerable contribution from the higher fre-
quency part of the spectrum. A crucial prediction of our
theory is the linear behavior of the average rf shift with the
Fermi momentum. Experimentally, the spatial resolution
necessary to distinguish this from the naive & scaling has
not yet been achieved [13].

To discuss the situation with a finite imbalance, it is
convenient to introduce two distinct chemical potentials
for the states undergoing pairing, defined by uy = u + h
and u; = p — h. Since the ground state of the spin bal-
anced gas is a superfluid with a gap for fermionic excita-
tions, it will be stable over a finite range i << h, of the
chemical potential difference. In the BCS limit, the associ-
ated Clogston-Chandrasekhar critical field h, = ABCS/\/E
is exponentially small. Near the unitarity point, the absence
of a second energy scale implies that the critical field A,
beyond which a nonzero polarization appears, is on the
order of the bare Fermi energy &y of the balanced two-
component Fermi gas. From fixed node diffusion
Monte Carlo calculations the resulting numerical value in
the continuum case at unitarity is h. = 0.96u = 0.4ep
[15]. The phase for 7 > h. is a nonsuperfluid, polarized
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mixture of the different spin states. For large enough fields,
the system will eventually be completely spin polarized. At
unitarity, the associated saturation field A, was determined
by Chevy [16] using a variational calculation of the energy
change ) associated with adding a single | -particle to a
Fermi sea of T -particles. This leads to an upper bound
My = —0.60u, at the unitarity point, where u; = 22/3g,
is the Fermi energy of the completely spin polarized gas.
The saturation field thus obeys the inequality 7, =
0.8 = 1.27gp. At unitarity, therefore, there is a wide
regime h, < h < h, of an intermediate phase between the
balanced superfluid and a fully polarized gas. While super-
fluidity is quenched in this phase, the strong interactions
between particles in states |1) and |2) still give rise to
large frequency shifts in the rf spectrum, as will be shown
below. To study the effect of pairing fluctuations on the
imbalanced Fermi gas above the Clogston-Chandrasekhar
limit, we calculate the pair-fluctuation spectrum from the
two-fermion Green function, using a non-self-consistent
T-matrix approach, similar to the approach by Combescot
et al. [17]. Such a perturbative analysis is reasonable, since
the states which are coupled through the interaction
Hamiltonian are separated by an energy gap of width 2h.
A usual ladder approximation is used to incorporate the
effects of the attractive | -interaction on the vertex part,
whereas the self-energy is calculated at the one-loop level,
including vertex corrections. The basic equations for the
polarization loop L, vertex part I" and self-energy part of
the minority species 3| are given by (see Fig. 1, we take
units such that i = 1)

(q’ [Q B;f( - k IQ - m)
x Gk, iw,), (7
g, Q)= (8)
SO e Ligin,)
dq
3 (k. iw,) = f I(q,i02,)
X G“” (q—k,iQ, —iw,), )

where G(O’ and G(U" are the bare Matsubara-Green’s func-

g—k1 q—k,1
F Yo Yo T
I'(q) k, |
FIG. 1. Lowest order self-energy diagram for the minority

component (|) Green’s function and Bethe-Salpeter equation
for the vertex part in ladder approximation.

tions of the majority and minority component, and 8 =
1/kgT is the inverse temperature. , = (2n + 1)/ and
Q, = 27n/B with n € Z denote fermionic and bosonic
Matsubara frequencies, respectively. After evaluating the
Matsubara summation and analytic continuation, the ver-
tex part can be calculated analytically at T = 0. In the
regime h> u (i.e., essentially beyond the Clogston-
Chandrasekhar field &> h. = 0.96u), one obtains for
q=0,w>—2u

2 1 +2
R0 = d - T
MKFp 2k]:]|a| 2 Z'LL]
1+ Jo+2u —1
X []n 72:2 +im®(w — 2h) ,
_ [e+2u
1 V 2m

(10)

where ©(x) is the unit step function and kg is defined via
kg = [2mp/h. For h > p the retarded vertex I'*(q =
0, w) has a single pole on the real axis at (,og =2h— Q.
with ), > 0 (note that for # < p the vertex has two real
poles). Physically, this pole describes an excitation in
which two fermions with opposite spin and vanishing total
momentum form a pair at the Fermi energy of the majority
component with binding energy ). A similar structure
was first discussed for weak coupling by Aleiner and
Altshuler [18] in the context of small superconducting
grains. Remarkably, as shown in Fig. 2, the pair binding
energy in units of u; is constant for & > u and agrees well
with the value 0.6u; for the binding energy of a single
down spin in the presence of a Fermi sea of majority atoms
as calculated by Chevy [16]. The retarded self-energy for
the minority component in the normal state is given by

dBq dz
Siw) = [ S 6 ok - w)
X ImI'®¥(g, 2) — np(2)ImGy (g =k, 2)

X TR(q,z + w)}, (1)

with ng and ny denoting the Bose and Fermi distributions.

0.9
0,
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h i
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FIG. 2. Pair binding energy )., in units of 4; at unitarity as a
function of hat T = 0. For h > u the binding energy is constant
and given by (, = 0.61 .
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In conclusion, we have given a theory of rf spectra in

— T — T
r I(w) h=hg] F I() h=15pn"
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FIG. 3. rf spectra at unitarity for different imbalances at T = 0

(Intensity in arbitrary units; 7. = 0.96u).

This result enables us to calculate rf spectra explicitly in
the limit of vanishing g,3 and g3, where the expectation
value in Eq. (2) can be factorized. In this case, one obtains
[4.5]
I 4k ImGR(k
(@)~ f G im0 gl 0 )

if state |3) is initially empty. In Fig. 3 we have numerically
evaluated the resulting rf spectra at unitarity for different
fields above the Clogston-Chandrasekhar limit. The calcu-
lation explains two features which are seen in the experi-
mental data [6], namely, the shift of the rf peak due to
pairing fluctuations in the normal state and the decreasing
linewidth with increasing population imbalance. The onset
of the rf spectrum coincides with the pair binding energy
Q, = 0.6 for h > h,, which is independent of the im-
balance. In the presence of a finite | 1) — |3) interaction, the
detailed spectrum /(@) cannot be calculated analytically.

- ultracold Fermi gases which includes interactions between

all three states involved. In the balanced unitary gas, the
average rf shift is proportional to —sv;/a,3, where s is a
universal constant characterizing the fermion momentum
distribution at large wave vectors. In the imbalanced
case, the rf spectrum exhibits a sharp peak arising from
the binding energy of a 1| -pair which is finite even in the
nonsuperfluid state. Including a finite value of a5, the
resulting average shift is close to the peak shift in the
balanced case.
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with W. Rantner, Yong-il Shin, and M. Zwierlein. This
work was supported by the DFG Forschergruppe ‘*Strong
Correlations in multiflavor ultracold Quantum Gases”.

Note added in proof.—Equivalent results for the rf shift
of balanced gases have been obtained independently by
Baym et al. [19]. In fact, our value for the prefactor in @ =
—0.46vy/a 5 agrees well with the value obtained in this
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A single down-spin fermion with an attractive zero-range interaction with a Fermi sea of up-spin fermions
forms a polaronic quasiparticle. The associated quasiparticle weight vanishes beyond a critical strength of the
attractive interaction, where a many-body bound state is formed. From a variational wave function in the
molecular limit, we determine the critical value for the polaron-to-molecule transition. The value agrees well
with the diagrammatic Monte Carlo results of Prokof’ev and Svistunov and is consistent with recent rf-
spectroscopy measurements of the quasiparticle weight by Schirotzek er al. [Phys. Rev. Lett. 102, 230402
(2009)]. In addition, we calculate the contact coefficient of the strongly imbalanced gas, using the adiabatic
theorem of Tan and discuss the implications of the polaron-to-molecule transition for the phase diagram of the

attractive Fermi gas at finite imbalance.

DOI: 10.1103/PhysRevA.80.053605

L. INTRODUCTION

The physics of single particles immersed in an environ-
ment is ubiquitous in physics. It appears, for example, in the
large polaron problem where a single electron is dressed by
its interaction with phonons [1] or in models for dissipation
and decoherence in quantum mechanics [2,3]. In recent
years, new directions for exploring quantum many-body
problems have been opened through ultracold atoms [4]. In
particular, for degenerate Fermi gases, the interaction
strength can be tuned over a wide range using Feshbach reso-
nances. This allows us to study impurity problems in a fer-
mionic environment. A specific example is a gas of fermionic
®Li, where the two lowest hyperfine states are populated in a
highly imbalanced situation. For this system, recent experi-
ments have shown that the minority atoms (“down spins”)
apparently form a liquid of quasiparticles [5]. Due to the
strong attractive interaction to the up-spin Fermi sea, the
associated quasiparticle weight—as determined from a sharp
peak in the rf spectrum—is found to vanish beyond a critical
interaction strength. This transition may be interpreted as the
one, in which a single | fermion immersed in sea of T fer-
mions can no longer propagate as a quasiparticle but forms a
many-body bound state with the Fermi sea. The existence of
such a transition has been predicted by Prokof’ev and Svis-
tunov [6,7]. Using a diagrammatic Monte Carlo method, they
have shown that, for strong attractive interactions, a molecu-
lar state is energetically favored compared to the one in
which the single down-spin forms a polaronic quasiparticle
in the up-spin Fermi sea. In the present work, we analyze this
problem by a simple variational wave function. It provides
an analytically tractable model for the physics on the mo-
lecular side, thus complementing the variational description
put forward by Chevy [8] for the polaronic quasiparticle. Our
wave function gives a ground-state energy that matches per-
fectly the results of the diagrammatic Monte Carlo method.
Moreover, it describes correctly the three-body physics of
repulsive atom-dimer interactions in the deep molecular limit
and has zero residue for the down-spin Green’s function. The
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variational wave function is also used to determine the satu-
ration field h; beyond which a two-component Fermi gas is
fully polarized and the behavior of the so-called contact co-
efficient introduced by Tan [9] in the limit of strong imbal-
ance.

II. FERMI POLARON AND ITS
QUASIPARTICLE WEIGHT

A simple variational wave function for the (N +1)-particle
problem of a single down-spin fermion immersed in a sea of
spin-up fermions has been introduced by Chevy [8]. It is
based on an expansion up to single particle-hole excitations
around the unperturbed Fermi sea

o) = (mdé +3 ’md;i,kuituq) ES). 1)
k.q

Here and in the following sums on k and q with a prime are
restricted to k> k. and g <k, respectively. Moreover, FS?/)
is the N-particle Fermi sea and the creation operators of up
and down fermions with momentum k are denoted by ui and
d; Despite the restriction to single particle-hole excitations,
which is difficult to justify for the relevant case of zero-range
interactions that can create particle-hole pairs at arbitrary
momentum, Monte Carlo calculations show that the ansatz
(2.1) gives a ground-state energy that is very accurate, in
particular at unitarity, where the scattering length a is infinite
[6,7]. The reason why the leading term in an expansion in the
number of particle-hole excitations gives very good results
for the ground-state energy can be traced back to the decou-
pling of higher-order terms for vanishing hole momenta q
=0 [10], i.e., contributions with more than one particle-hole
excitation interfere destructively.

The wave function (2.1) describes the added down-spin as
a quasiparticle dressed by its interaction with the up-spin
Fermi sea. The virtual cloud of particle-hole excitations leads
to a quasiparticle energy
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2
E(p)=Acp+ 2— - (2.2)
2m

at low momenta |p| <€k, that contains a “binding energy”
Aep<0 of a single down-spin to the Fermi sea and an effec-
tive mass m” [11]. Here, the Fermi energy is defined by ¢
:k%/(Zm) (we use fi=1 throughout the paper) with a Fermi
momentum kg that is related to the up-spin density by the
standard relation nT:kiv/(G 72) for a single-component Fermi
gas. Since we are interested in the limit of vanishing down-
spin density i) — 0, these are the relevant energy and mo-
mentum scales. The dimensionless coefficient A and the ef-
fective mass m”* have been determined from variational
Monte Carlo calculations at the unitarity point [11] and from
a T-matrix approximation at arbitrary values of the dimen-
sionless interaction strength v=1/(k,a) [12]. Very recently
they have also been measured experimentally, giving
A=-0.64(7) [5] and m*/m=1.17(10) [13] at unitarity, in
rather good agreement with the theoretical predictions.

From a many-body point of view, the criterion that a
single added down-spin is indeed a proper quasiparticle can
be expressed by defining the quasiparticle residue Z; from
the long-time limit

ZJ_=?1LIE|GI(p=O,Z)| #0 (2.3)

of the down-spin Green’s function at zero momentum.
Within the variational wave function (2.1) this residue is
simply given by the probability Z = \¢0|2 that an added
down-spin at momentum p=0 is not mixed with plane waves
at nonzero momenta q—k+ 0 through particle-hole excita-
tions. The fact that the coefficient |¢hg|* of the Chevy wave
function coincides with the quasiparticle weight can be de-
rived formally by noting that the ansatz (2.1) is equivalent to
a non-self-consistent T-matrix approach for the down-spin
Green’s function, which sums the particle-particle ladder for
the vertex part I'(k, @) [12]. Tt is then straightforward to see
that |¢h|*=|1=0,% |0/ " coincides with the standard defini-
tion of the quasiparticle weight via the energy derivative of
the down-spin self-energy 2 (p, ) at zero frequency and mo-
mentum. The numerical value of Z| at unitarity v=0 is
Z,(v=0)=0.78 within the Chevy ansatz. This is much larger
than the experimentally observed value Zl=0'39(9)* which is
likely to be a lower bound, however [5]. Smaller values
Z)(v=0)=047 of the quasiparticle weight at unitarity are
found from a 1/N expansion of the attractive fermion prob-
lem at strong imbalance, which is equivalent to a non-self-
consistent 7-matrix approximation with the bare chemical
potential [14].

In Fig. 1 we show the quasiparticle residue Z, for the
minority fermion as a function of v=1/(kza) within the an-
satz (2.1) in comparison with the recent experimental results
[5]. Apparently, the expansion up to single particle-hole ex-
citations considerably overestimates the quasiparticle residue
even though it gives reliable results for the ground-state en-
ergy. A much more basic shortcoming of the ansatz (2.1),
however, appears if one considers the Bose-Einstein conden-
sate (BEC) limit v> 1. Indeed, the ansatz predicts a finite
value of Z| at arbitrary interaction strengths, even in the deep

PHYSICAL REVIEW A 80, 053605 (2009)

Z{. = |¢0|2

o,

-1 0 1 2
(kea)'

FIG. 1. (Color online) Quasiparticle residue Z) of the minority
fermion as a function of (Icfa)’l, calculated using Chevy’s varia-
tional ansatz (2.1). In the regime where the ansatz (2.1) breaks
down, Z| is drawn as a dotted line. The red dots correspond to the
experimentally measured quasiparticle residue from the MIT group
[5] at a minority concentration of 5%.

molecular limit. In this limit, however, an added down-spin
will form a bound state with one of the up-spin fermions and
can no longer propagate as a coherent quasiparticle. One thus
expects that Z| vanishes identically beyond a critical strength
vy >0 of the interaction, consistent with the experimental
findings [5]. It is important to note that the formation of the
bound state is a genuine many-body effect at any finite den-
sity of the up-spin Fermi sea. Indeed, the binding is of a
two-body nature only in the trivial limit v > 1 (that is, effec-
tively, for k,— 0), where the bound state is formed with a
single up-spin fermion. By contrast, just beyond the critical
value v, the down-spin is effectively compensated by form-
ing a singlet with many up-spin fermions, somewhat similar
to the physics of a localized Kondo spin interacting antifer-
romagnetically with a sea of conduction electrons at tem-
peratures much below the Kondo temperature [15]. Note,
however, that in the Kondo problem the impurity spin is not
fixed and the transition from an uncompensated spin to an
effective singlet state appears as a continuous crossover from
high to low temperatures. In the present problem, instead,
there is a discontinuous transition in the ground state as a
function of the attractive coupling v.

An indication that the variational wave function (2.1) is
not applicable for strong attractive interactions is provided
by considering the Thouless criterion for a superfluid insta-
bility in which up and down spins are paired in an s-wave
superfluid [16]. Evaluating the relevant vertex function
within the T-matrix approximation for arbitrary values of the
down-spin chemical potential 4, it is found that the Thou-
less criterion T ~'(k=0, @=0)=0 leads to a critical value for
v that is below the value /.c|=E(p=O) obtained from the
ground-state energy of the variational state (2.1) provided
that v=1.27. A second argument that indicates the break-
down of the ansatz (2.1) in the regime v > 1 is the behavior
of the ground-state energy. Indeed, in a systematic expansion
in powers of the scattering length ¢— 0" the ground-state
energy of a single added down-spin relative to the free up-
spin Fermi sea is expected to be of the form
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a—0*

E = E,—ep+g,n +0(a). (2.4)

Its leading contribution is just the molecular binding energy
E,=—1/(ma*) < 0. The contribution &, of order a” accounts
for the removal of one T fermion from the Fermi sea that is
required for the formation of the molecule. The last term, of
order a, is the mean-field repulsion between the molecule
and the Fermi sea. Its interaction strength g,,=3ma,,/m is
related to the exact atom-dimer scattering length a,,=1.18a
that has first been calculated in connection with neutron-
deuteron scattering [17] (for a recent derivation in the cold
gas context, see Petrov et al. [18]). Tt lurnsoqut, however, that
a—

the variational ansatz (2.1) leads to E = E,—g./2+0(a),
which is too high by £,/2 compared to the exact asymptotics
(2.4). The reason for this discrepancy can be seen easily from
the structure of Chevy’s wave function. On the BEC side, the
dominant contribution comes from the ¢=0 terms, i.e.,

2 reod g FST) (2.5)
k

describing the molecule formation of up and down spins with
opposite momenta. This contribution is not optimal, how-
ever, since it creates a hole in the center of the T-Fermi
sphere. Energetically, it would be favorable to replace
uO\FS?’) with a (N=1)-particle Fermi sea \FS?P]), leading to a
ground-state energy that is lower by ep. Within the ansatz
(2.1), this would require terms with an arbitrary number of
particle-hole excitations in order to reshuffle the Fermi sea in
such a way that the hole vanishes.

I11. VARIATIONAL ANSATZ IN THE
MOLECULAR REGIME

In order to describe the physics of bound-state formation
in the regime v > 1, we propose a variational ansatz for the
(N+1)-body problem that complements the ansatz (2.1) de-
scribing a Fermi polaron with a finite quasiparticle residue.
Our ansatz gives the exact behavior (2.4) of the ground-state
energy in the BEC limit up to linear order in a. The associ-
ated variational wave function

[y = (E ’fkdik”:c + E ,gk’kqd;—k—k’“l’ “lt"q) ‘FS?JA)
K

k' k.q
(3.1)

is a natural generalization of the Chevy ansatz and is con-
structed by adding a (7,]) pair to a (N—1)-particle Fermi sea
of T fermions, together with the leading term in an expansion
in particle-hole excitations. Again, sums on k, k', and q are
restricted to k,k' >k, and q <k, respectively. The first term
accounts for the formation of the molecule in the presence of
the T-Fermi sea and gives the correct next-to-leading-order
ground-state energy in the BEC limit, avoiding the problem
of creating a hole in the T-Fermi sea. The single particle-hole
excitation in the second term describes the leading-order
contribution to the interaction of the dimer with the Fermi
sea apart from Pauli-blocking effects that are already ac-
counted for in the first term. An important feature brought
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about by the inclusion of the second term in Eq. (3.1) is that
it amounts to an exact treatment of the three-particle prob-
lem. Indeed, as is shown in detail in the Appendix, the set of
coupled equations (3.6)—(3.9) that determine the coefficients
of the variational many-body wave function reduce, in the
three-particle limit, precisely to the integral equation for the
exact solution of the three-body problem by Skorniakov and
Ter-Martirosian [17]. As a result, the exact atom-dimer scat-
tering length a,,=1.18a appears in the asymptotic behavior
of the ground-state energy (2.4), giving rise to the correct
next-to-next-to-leading-order behavior of the ground-state
energy in the BEC limit.

Obviously, the ansatz (3.1) is not capable of describing
the whole range of scattering lengths correctly. In particular,
it does not capture the weak-coupling limit a— 0. Indeed,
the | fermion in the first term is always added at momenta
k> ky, leading to a ground-state energy that is too high by &,
in the weak-coupling limit. Our ansatz (3.1) is therefore
complementary to the Chevy wave function (2.1), which cor-
rectly describes the situation at weak coupling up to and
slightly beyond the unitarity limit.

From a physical point of view, the two variational wave
functions (2.1) and (3.1) characterize very different ground
states. Chevy’s ansatz describes a Fermi polaron with a finite
quasiparticle residue, which allows us to build a normal
Fermi liquid at a finite concentration of the down-spin fer-
mions, provided that interactions between the quasiparticles
have no attractive channels (see Sec. IV below). By contrast,
the wave function (3.1) describes a bosonic molecule inter-
acting with a Fermi sea. At a finite concentration n # 0, the
resulting ground state is expected to be a superfluid, coexist-
ing with unpaired up-spin fermions. The critical coupling v ,,
where the ground-state energies of the two variational wave
functions intersect, is thus expected to separate a normal
fluid from a superfluid ground state of the attractive Fermi
gas in the limit of very strong imbalance.

The variational ansatz (3.1) is based on a single channel
model that describes the attractive interactions between both
spin states. For computational purposes, however, it turns out
to be easier to start from the more general two-channel
model, which is defined by the Hamiltonian

e ' .
H=> (EE + vo)b;bp +2 £5Cp.oCp.o
P p.c

+ B80S (i

— i (3.2)
/ P PP
s

p.p

ch,‘l+H.c.).

Here, b; denotes the bosonic creation operator of a molecule
with momentum p and c;U are the fermionic creation opera-
tors for the two species o= T, ]|. The free particle dispersion
is denoted by &,=p?/(2m) and the factor of 1/2 in the first
term accounts for the factor of 2 in the molecule to single
fermion mass ratio. The bare values of the detuning v, and
the Feshbach coupling strength gy can be related to the
physical s-wave scattering length @ and the interaction range
ro via [19]
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vy m 1 1

=——+=2, —, 3.3

gé 4ma V7 2e, (3.3)
8

Fp=— "3 3- (3.4)
8o

The two-channel Hamiltonian (3.2) is equivalent to a single-
channel model in the interesting limit of zero-range interac-
tions rp— 0 (i.e., for broad Feshbach resonances), as can be
seen easily by integrating out the bosonic degrees of free-
dom.

The corresponding variational ansatz to Eq. (3.1) in the
two-channel model has two additional terms (~ 7, qu)
where the closed-channel state is occupied

i) = (ﬂob{; +2 lfkdik“:} +> ’?kqb;—k“ii“q
k kq

+ > ’§k’kqd;7kfk'“l'5’itl’q)|FS?L]>< (3.5)
k' k.q

Calculating the expectation value {(ig|H—E|yp), taking the
derivatives with respect to the infinite set of variational pa-
rameters 7o, &k, 7kqs Ek'kq and setting them equal to zero
leads to the following set of coupled equations:

(E+ep-v)m=- 234, (3.6)
vV ok
8 3
(E+ep-2008== =m+ =2 ng.  (3.7)
' VWiyq

£qk 8o 280
(E+EF— vy — —"2— - sk+sq) Mg = bk — Tzfgk.kq,

vV Wi
(3.8)
8o
(E+er—eqw ==+ E9)fong == = = (Mg = Mo g)-
2V
(3.9)

Note that the ground-state energy E is measured with respect
to the N-particle Fermi sea, which explains the occurrence of
the ey terms in the above equations. Moreover, using the
N-particle Fermi sea, as the reference scale, the ground-state
energy E is equivalent to the chemical potential u; =E of the
single down-spin.

A. No particle-hole excitation

Neglecting for a moment the contribution of particle-hole
excitations in Eq. (3.5), ie., setting 7q=&rq=0, the
ground-state energy is determined by Egs. (3.6) and (3.7)
alone. Performing the integrations and taking the zero-range
limit ro— O, they reduce to a simple transcendental equation
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T E+ep E+ep
——=141/- arctan -—]. (3.10)
2kpa 2ep 2ep

In the BEC limit a— 0%, Eq. (3.10) gives rise to a ground-
state energy of the form (2.4). The associated atom-dimer
scattering length, however, is given by its value a®}”
=(8/3)a in the Born approximation. More generally, it turns
out that Eq. (3.10) is exactly equivalent to the Thouless cri-
terion T '(k=0, w=0)=0 if the vertex function is calcu-
lated within a non-self-consistent T-matrix approach where
only the particle-particle ladder is summed, as discussed in
Sec. II. The resulting ground-state energy is below that of the
Fermi polaron if v=1.27.

B. Full variational treatment

In the general case 7q#0, &oiq#* 0, Egs. (3.6)-(3.9)
can be reduced to a single homogeneous Fredholm equation
of the second kind for the variational parameters 7, in the
thermodynamic limit (again, the zero-range limit has been
taken already)

1
= 2 KBk q:k',q") ey =0. (3.11)
V W'
The associated Kernel K(E:k,q:;k’.q') is given by
Véw 1 Vi
K= - - = Vg Sy
Ee  YEEw Euwg
(3.12)
with
E.=E+ep- 28y, (3.13)
Egng = E+ep—0q i — 6= 8w +8¢,  (3.14)
vy 1 , 1
oy = -2~ , (3.15)
Yog VY B
vy 1 ;1
y= > (3.16)
85 Vi Ex

Due to the isotropy of the system, the variational parameters
g = 1k .q.cos Oyy) depend only on the magnitudes of the
two momenta k and q and the angle between them. This
allows Eq. (3.11) to be reduced to a three-dimensional inte-
gral equation.

The ground-state energy E is now simply obtained by the
condition that the Fredholm determinant of the kernel K van-
ishes. We evaluate the Fredholm determinant numerically by
discretizing the integral equation using a Gauss-Legendre
quadrature and calculating the determinant of the corre-
sponding linear equation system. The order of the quadrature
for the k, ¢. and cos @4 integral were chosen as 11, 11, and
4, leading to an error of ~ 107~ of the ground-state energy at
the unitarity point a— %, where the convergence is slowest.

The ground-state energy as function of (ka)~! is shown
in Fig. 2. Apparently, our ansatz (3.1) leads to a ground-state
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(E-Ep)ee

FIG. 2. (Color online) Ground-state energy E—E,, [binding en-
ergy E,=—1/(ma”) subtracted] in units of the Fermi energy & as a
function of (kza)~'. Blue solid line: Chevy’s ansatz (2.1): red line
with full squares: ansatz (3.1); black dashed line: BEC asymptotics
(2.4); orange dashed-dotted line: Thouless criterion (3.10). The
open black diamonds and green triangles correspond to the QMC
results for the molecule and the polaron energies from Prokof’ev
and Svistunov [6].

energy that is below that of Chevy’s ansatz for interaction
strengths larger than (kfa)i,IL:O.84. This value is in good
agreement with the diagrammatic Monte Carlo results by
Prokof’ev and Svistunov [6,7], who obtained (kfa)&l=0.90.
In fact, the small discrepancy is entirely due to the fact that
we intersect our molecular ground-state energy with that ob-
tained using the Chevy wave function, which is not precise
near v, The Monte Carlo results in turn give better values
for the polaron energy, shifting the intersection slightly to-
ward the BEC regime, as can be seen in Fig. 2. Yet, as far as
the molecular ground-state energy is concerned, our results
agree perfectly with the Monte Carlo data, down to the
smallest coupling v = 0.6 where they have been calculated.

It is interesting to note that the approximation q=0 in the
wave function (3.5) (i.e., pinning the hole wave vector at
zero momentum) leads to a ground-state energy that differs
from the calculation with the full wave function by at most
3% in the regime (kya)™'>0.84, where the ansatz is valid.
The situation thus appears similar to that in the polaron case,
where Combescot and Giraud [10] showed that an expansion
in hole wave vectors works very well for Chevy’s ansatz at
unitarity.

C. Quasiparticle residue

We now show that the quasiparticle residue Z; of the |
fermion, which can be thought of as a kind of order param-
eter of the transition from the polaron to the molecular state,
vanishes identically in the thermodynamic limit for the varia-
tional wave function (3.5) that gives a lower ground-state
energy on the molecular side of the critical coupling v,.
Since the variational ground-state wave function does not
allow us to calculate the full down-spin Green’s function,
definition (2.3) of the quasiparticle residue is not applicable.
Instead, we use the standard connection between Z| and the
jump in the momentum distribution at the Fermi momentum
kg, and the latter is zero in the limit of a single down-spin.
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The momentum distribution of the | fermion within the
variational ansatz (3.5) is given by

,
"II, = [fp‘z +2 E ‘ﬁc’kq'zﬁp,q—k’fk

k'kq

(3.17)

and is normalized via

122 ”,\,:E"fk‘z"'z Z’\‘fwkqp‘
P k

k'kq

(3.18)

The normalization condition requires the coefficients to scale
with the system volume as & ~ 1/yV and &okg™ 1/v372,
Since an upper bound to the quasiparticle residue Z| is given
by the momentum distribution at p=0 and &,=0 for p <k,
we find that

1
7 Snl!HFzZ’[gk,kqizaqvk,+k~‘7. (3.19)

k'kq

As a result, the quasiparticle residue Z, of the molecular
wave function scales inversely with the volume of the system
and thus vanishes in the thermodynamic limit. This is in
contrast to Chevy’s wave function, where Z, =|¢py|? is always
finite. The two wave functions (2.1) and (3.1) therefore in-
deed describe qualitatively different ground states. In par-
ticular, no sharp peak is expected in the minority rf spectrum
at coupling strengths v > v, consistent with the experimen-
tal observation [5].

In the q=0 approximation, which captures the essential
properties of the variational ansatz (3.1), the quasiparticle
residue Z| in fact vanishes identically. Indeed,

7 =22 [ ol =0 (3.20)
k

since, as can be seen from Eq. (3.9), the coefficients &
% o= No=0 vanish because 7, only depends on the
length of k.

IV. CONTACT COEFFICIENT AND PHASE DIAGRAM

The analysis of the polaron-to-molecule transition in the
previous section leaves two important questions open: what
is the nature of the transition and what are its implications
for the phase diagram of the strongly imbalanced gas? Now
for the case of a single down-spin in an up-spin Fermi sea,
the transition from a polaronic to a molecular state is a first-
order transition, where the quasiparticle residue Z exhibits a
discontinuous jump from a finite value to zero at the critical
coupling v,,=0.9. This is a result of the fact that the ener-
gies of the two ground states, which have different quantum
numbers, cross with a finite slope at v, (see Fig. 2). It is
important to note that this crossing is not an artifact of ex-
tending the different variational states beyond their domain
of validity. Indeed, as shown by Prokof’ev and Svistunov
[6,7], both the polaronic and the molecular states exist as
stable excitations for v > v, or v <uv,,, respectively, because
the phase space for decay vanishes linearly with the magni-
tude of the energy difference. Both states are thus reachable
as metastable configurations coming from the weak coupling
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or the molecular side, as expected for a first-order transition.

A different perspective on the first-order nature of the
polaron-to-molecule transition is provided by considering the
so-called contact coefficient C. As shown by Tan [9], the
momentum distribution of Fermi gases with zero-range inter-
actions generically decays with a power law n (k) — C/k*
for large momenta. The associated coefficient C is identical
for both spin components a=1,| [20] and is a measure of
the probability that two fermions with opposite spins are
close to each other [21]. Using the adiabatic theorem derived
by Tan [22]. the contact density can be determined from the
derivative

du 2
=— "
d(1/a) 4m

4.1

of the ground-state energy density u=FE/V with respect to the
inverse scattering length. Now the definition of the down-
spin chemical potential w| implies that the energy density u
of the strongly imbalanced Fermi gas n| <<n; to linear order
in the minority density n| is of the form

3
“=59F1"1+M|"¢+ e (4.2)
where the first term is simply the energy of a noninteracting
gas of spin-up fermions. The dimensionless contact coeffi-
cient s defined by C:sl’c‘.,—.k‘%l for a strongly imbalanced Fermi
gas can thus be obtained from the derivative

Lﬁ(_ l'%/SF)

s= E— 4.3
T dv (4-3)

W

of the negative down-spin chemical potential in units of the
Fermi energy with respect to the coupling constant v. Since
w, is precisely the energy E associated with adding a single
down-spin, our result for the ground-state energy of the
(N +1)-particle problem immediately gives the contact den-
sity of an almost fully polarized attractive Fermi gas (note
that this applies even on the molecular side v >uv ), where
the single added down-spin is not a propagating quasiparti-
cle). The associated dimensionless constant s is shown in
Fig. 3. It increases monotonically from weak coupling to
unitarity and up to the critical coupling v,,. At this point,
there is a discontinuous jump upward that reflects the transi-
tion to a molecular state. Note that the proportionality C
~ k.::'| ~n, of the contact to the down-spin density makes C
vanish in the limit of full polarization. This is expected, be-
cause the fully polarized gas at zero temperature is an ideal
Fermi gas, with no tails in the momentum distribution. Apart
from the jump at v,,, the behavior of the dimensionless con-
tact coefficient s is rather close to that obtained for the con-

tact coefficient C=sk;* of the balanced superfluid along the

BCS-BEC crossover [23] [note that the Fermi momentum &
of the balanced gas is related to that of the up-spin compo-
nent used here by k?,:kf(l +0), where o=(n;-n)/(n,
+n|) is the degree of polarization at a fixed total number of
particles]. Indeed, in weak coupling one obtains s,
=(2/37v)? from the mean-field attraction of the polaron to
the up-spin Fermi sea, while s=0.08 at unitarity and sgzc
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(kea)'

FIG. 3. (Color online) Dimensionless contact coefficient s as a
function of (kfa)'l, calculated from the two variational wave func-
tions (2.1) and (3.1). Within this approach s is discontinuous at the
critical coupling vy;. The black dashed line marks the asymptotics
in the molecular limit, where s=4v/3 is fixed by the two-particle
bound-state wave function in momentum space.

=4v /3 in the molecular limit, very similar to the behavior
that is found for s in the balanced superfluid [23].

The solution of the (N+1)-body problem for arbitrary
coupling strengths v has also implications for the phase dia-
gram of the imbalanced Fermi gas in the regime of near
complete polarization. For a discussion of this issue, it is
convenient to introduce an effective magnetic field i that
couples to the two different spin states o=1,]| in the stan-
dard form

H' =—-h(N;-N)) (4.4)
of a “Zeeman” field that favors a finite population imbalance
o=(ny—n)/(ny+n))>0. At a fixed total density n, the
ground-state energy u per volume is then a function of n and
h. It determines the chemical potentials of the majority and
minority species from gy =u* h, where p=du(n,h)/dn is
the average chemical potential. In addition, it also fixes the
imbalance from n;—n;==du(n,h)/dh. The choice of an en-
semble with fixed values of n and h is convenient for a
discussion of the ground-state phase diagram of the attractive
Fermi gas at arbitrary coupling v, both in the homogeneous
case and in the presence of a harmonic trap [24]. Indeed,
there are two critical fields 4 (v) and h (v) that separate two
simple limiting phases from a regime, in which nontrivial
ground states are expected: the lower critical field &, is de-
fined by a(h) =0 for h<h, and determines the boundary of
the balanced superfluid phase (denoted by SF; in Fig. 4,
following the notation used by Pilati and Giorgini [25]). The
upper critical (or “saturation”) field h,, in turn, is defined by
the condition of complete polarization o(h)=1 for h>h,.
Since a single-component Fermi system has vanishing inter-
actions in the ultracold limit, this regime is just an ideal
Fermi gas, i.e., it is a normal fully polarized state. The quali-
tative structure of the zero-temperature phase diagram as a
function of the interaction parameter v=1/(kza) and the ef-
fective magnetic field /i in units of the bare Fermi energy ep
of the fully polarized gas is shown in Fig. 4.
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FIG. 4. Qualitative phase diagram of the imbalanced Fermi gas
as a function of the inverse coupling strength (kpa)~! and the effec-
tive magnetic field /2/ey. The thick line indicates a first-order phase
transition and the different phases are labeled as in [25], i.e., pr:
fully polarized normal phase; N,: partially polarized normal phase;
SFy: balanced superfluid; SF,: polarized superfluid. The points M
and § are discussed in the text. The precise structure of the phase
diagram in the nontrivial regime h.<<h<h; is likely to contain
unconventional superfluid phases in addition to the Ny, and SF,
phases, which are not shown in our figure.

In this diagram, the upper line A (v) is completely fixed
by our calculation above of the energy u, associated with
adding a single down-spin to an up-spin Fermi sea. Indeed,
since p;=egp along this line, we have h =(gp—p;)/2. In
terms of the constant A(v) introduced in Eq. (2.2), this leads
to hy/ep=(1-A)/2, giving h,;=0.81¢, at unitarity from the
precise numerical value of the polaron energy [7]. On the
molecular side, Eq. (2.4) gives

h, ) dgqla

—=v+1- oo
&p 27

(4.5)

which is very accurate even at v=v,,. The point M along this
line separates a regime where a single down-spin is a well-
defined fermionic quasiparticle from the one, in which it is
bound to the up-spin Fermi sea. The first-order nature of the
transition shows up as a discontinuity of the slope in A (v) at
M which is, however, hardly visible in Fig. 4. For a finite
density of down spins, the point M appears as an end point of
a line that separates a phase with a finite Fermi surface vol-
ume ) #0 to its left from one with Q=0 [26]. Using the
generalized Luttinger theorem derived by Sachdev and Yang
[27], the expected polarized superfluid (SF,) phase on the
molecular side has a condensate of “dimers” plus an up-spin
Fermi sea, whose volume Q[:(2‘n’)3(n1—nl) is set by the
imbalance. This is consistent with the naive picture that the
density of unpaired up spins is simply n;—n) even though the
dimers in the vicinity of the transition are far from local
(7,1) pairs. In principle, this simple picture of the SE, phase
as a BEC coexisting with a sharp single Fermi surface of
unpaired up spins is unstable with respect to p-wave pairing
due to the induced interactions between the unpaired fermi-
ons through the superfluid [28]. In practice, the nontrivial
superfluid phase of the unpaired up spins is exponentially
suppressed for strong imbalance. Moreover, quantitative re-

PHYSICAL REVIEW A 80, 053605 (2009)

sults for the p-wave instability can be derived only in second
order in 1/v <€ 1, where the resulting energy scales are expo-
nentially small compared with &. In practice, therefore, the
phase with p-wave pairing among the unpaired up spins
seems hardly accessible experimentally.

A nontrivial issue that has been neglected in the discus-
sion so far is the question whether a gas of polarons or bound
molecules is indeed stable at low but finite densities 7). On
the weak-coupling side, there is again an induced attractive
interaction in the p-wave channel among both the up spins
and the down spins, mediated by the other species. The
ground state is thus expected to be a two-component p-wave
superfluid and not a normal Fermi-liquid state [28]. Similar
to the situation in the BEC limit, however, the energy scale
for this instability is exponentially small in the regime where
the calculation can be controlled. More importantly, as has
been shown recently by Nishida [29], the effective interac-
tion between two heavy down-spin fermions immersed in an
up-spin Fermi sea is attractive in the p-wave channel only for
weak coupling. Approaching unitarity, the p-wave interaction
becomes repulsive. Assuming that this result carries over to
the relevant case of equal masses of the up- and down-spin
fermions, a finite density gas of down spins will indeed form
a normal Fermi liquid at unitarity, as was implicitly assumed
in the calculations of the equation of state and density pro-
files of the unitary gas beyond the critical imbalance o,
=0.4, where the balanced superfluid is no longer stable
[11,30]. On the molecular side, the phase immediately below
the saturation field line h,(v) is expected to be a superfluid of
(1.1) pairs at a very low density n— 0 immersed in an
up-spin Fermi sea. The fact that the atom-dimer repulsion
a,,=1.18a is much larger than the dimer-dimer repulsion
a,,=0.6a [18], however, indicates that a low density gas of
molecules tends to phase separate from the up-spin Fermi
gas. This phase separation has indeed been found from an
extended BCS description of the BCS-BEC crossover in an
imbalanced gas [31-34]. It has recently been seen also in the
variational Monte Carlo calculations by Pilati and Giorgini
[25]. Their results indicate that a section between v y=0.73
and a triple point at v;=1.7 along the A, line is actually a
first-order line, where the polarized superfluid disappears
with a finite jump in density as the effective field /1 increases
through /1,. As shown above, the point M lies in the interval
between vy and v, and thus the polaron-to-molecule transi-
tion would not be accessible at any finite minority density, at
least not in an equilibrium situation. Clearly, our variational
calculation for the single down-spin problem cannot address
the question of phase separation. An unexpected feature of
the h, line in the presence of phase separation is the fact that
the transition across A is predicted to be continuous up to vy,
first order between vy and v, and continuous again for v
>uvy. The rather large value v;=1.7 up to which phase sepa-
ration is predicted also appears surprising. Indeed, in this
regime a mean-field theory describing a Fermi gas coexisting
with a BEC of molecules gives for the energy per volume as
a functional of the density difference dh=n;-n| and the di-
mensionless field E:h/sf- the simple form
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u(n,on,h) _ é(&)m&—vz(n— )+ @(n— Sn)dn
21v n

e 5

dy (n—-on)?

- hén. (4.6)

1270 n

Here, a,,=a,,/a and a,,=a,,/a are the atom-dimer and the
dimer-dimer scattering lengths measured in units of the
atom-atom  scattering length and v=(kza)™'. The true
ground-state energy density u(n,h) as a function of the total
density n and the effective magnetic field 4 is determined by
the minimum of the Landau energy (4.6) with respect to the
density imbalance

Auler) (@)m+u2+ A (1 —2@)
dén n 2

+ﬂ(@— 1) -iko.
6mu\ n

This equation determines the imbalance o=é&n/n as a func-
tion of the field A and, indeed, it correctly describes the exact
asymptotic results for both the saturation field h; and the
lower critical field /i, in the limit v > 1 [see Egs. (4.5) and
(4.9)]. In this simple model, phase separation between a po-
larized superfluid phase and a fully polarized Fermi gas ap-
pears for coupling constants v <v, g5, below which the en-
ergy density (4.7) has a second minimum at full polarization
o= 1. This occurs at

3(_ A,y
Ueps= E(aad_ ?)

With the exact values a,,=1.18 and a,,=0.6 one obtains
v.ps=0.516, where the simple expansion (4.6), however, is
no longer valid. From the calculation above, the triple point
vy beyond which phase separation appears in an almost fully
polarized gas lies at a much smaller value of the coupling
strengths than found previously [25,34]. At finite tempera-
tures, phase separation is suppressed by the presence of a
mixing entropy, which may explain that it is not observed in
the experiments, where T~ 0.15T}.

Concerning the lower critical field h(v), its weak-
coupling limit is determined by the well-known
Chandrashekar-Clogston result 4, =A/+2, beyond which the
balanced BCS pairstate is unstable [35,36]. In the molecular
limit v > 1, the critical field

h, 5, 1 ( a[,[,)
—=v+—\au-— |+
e 2mva 6

(4.7)

(4.8)

(4.9)

follows essentially the two-particle binding energy with cor-
rections due to the atom-dimer and dimer-dimer scattering
lengths a,, and a_,, respectively. At unitarity, h.=0.26e, is a
universal constant times the bare up-spin Fermi energy e,
[11]. As a result, there is a wide range h,/h =3.12 between
the balanced superfluid and the fully polarized gas, much
larger than that found in an N=oc theory of the imbalanced
attractive Fermi gas, where /i,/h.=1.24 [37]. For h>h, the
balanced superfluid is destroyed by the onset of a finite po-
larization o# 0, which leads to a mismatch of the Fermi
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energies. An effective-field theory due to Son and Stephanov
[38] indicates that the phase beyond the balanced superfluid
exhibits a spatially varying superfluid order of the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) type as also found at
weak coupling. The transition is first order with a jump both
in polarization o an total density, a situation that is also
found in the case of a direct transition between a balanced
superfluid and a partially polarized normal phase [11,30]. In
an ensemble with a given density that is used here, the A_ line
would then split into two distinct lines 4., and h,,, as noted
by Sheehy and Radzihovsky [32]. In our diagram in Fig. 4,
h. denotes the boundary of the balanced superfluid at given
density, which is well defined without specifying the state
that is reached at nonzero polarization. The first-order nature
of the transition is found only up to a splitting point S, be-
yond which the fermionic excitations have their minimum at
p=0. When this is the case, additional up-spin fermions can
be added by filling up a Fermi surface whose volume ),
~a~ (h=h,)*? increases continuously from zero. The tran-
sition from the balanced superfluid to a polarized superfluid
with unpaired excess fermions is therefore continuous and
preserves superfluidity. The precise location of the splitting
point S has been determined recently from a calculation of
the fermionic excitation spectrum along the BCS-BEC cross-
over of the balanced gas [23]. It is located at ve=0.63 and
h(vs)=A=0.6e; at considerably larger coupling strengths
than predicted by mean-field theory where the splitting point
coincides with the zero crossing of the chemical potential
(note the factor-of-2'/3 difference with the result in Ref. [23],
which is due to the fact that the up-spin Fermi wave vector
and not that of the balanced case appears in our present cou-
pling constant v). This is in agreement with the calculation of
the splitting point within an e—4-d expansion by Nishida
and Son [39] but is larger than the value v¢=0.5 found for
the splitting point in the Monte Carlo calculations of Pilati
and Giorgini [25]. Note that the possibility of extracting the
critical coupling vy of the splitting point from a calculation
of the balanced gas relies on the fact that the ground-state
energy is independent of the field 4 in the whole regime
=h, because the polarization o=-ndu(n,h)/dh vanishes.
The nature of the phase diagram near the splitting point has
been discussed by Son and Stephanov [38] using an
effective-field theory. In particular, the phase immediately
beyond h, is expected to be of the FFLO type, with a spa-
tially oscillating superfluid order parameter that appears also
in weak coupling beyond the Chandrasekhar-Clogston limit
[40]. It is an open question of how this nontrivial superfluid
evolves into a normal phase in which the two spin compo-
nents each form a Fermi liquid. In fact it is this latter phase,
which describes the experimentally observed density profiles
[41] at unitary extremely well [11,30]. It is also an open issue
of how to separate in detail the regime between the lower
critical field and the saturation field into a regime where an
imbalanced Fermi liquid or a polarized superfluid phase ap-
pears as ground states. In the phase diagram of Pilati and
Giorgini, the first-order line that bounds the balanced super-
fluid up to the splitting point § extends as a first-order line up
to /1, at the coupling v, and then continues along h; up to the
tricritical point v 4.
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V. CONCLUSIONS

From a variational wave function that describes the (N
+1)-particle problem of a single down-spin interacting
strongly with an up-spin Fermi sea, we have discussed the
physics of the strongly imbalanced Fermi gas. In particular,
we have focused our attention on the quasiparticle residue
and the contact coefficient C. The latter exhibits a discon-
tinuous jump at the polaron-to-molecule transition, which
might be detected by measurements of the closed-channel
fraction similar to the analysis of the experiments by Par-
tridge et al. [42] due to Werner et al. [43]. A motivation for
this work were the recent experiments of Schirotzek et al.
[5], who observed a transition from a Fermi-liquid phase of
polaronic quasiparticles near unitarity to a phase in which the
quasiparticle residue vanishes. As shown above, this transi-
tion is expected to be a discontinuous one in the single
down-spin limit. Apparently, however, Z| vanishes in a con-
tinuous manner in the experiment (see Fig. 1). Apart from
the uncertainty in extracting Z, from the sharp structure in
the minority rf spectrum, this discrepancy is probably due to
the fact that the Chevy wave function (2.1) strongly overes-
timates the quasiparticle residue Z near the polaron-to-
molecule transition. A reliable quantitative calculation of the
rf spectra for both finite concentrations and at finite tempera-
tures is, unfortunately, not available. The existence of a
stable finite density gas of polarons in the regime up to v
=10.9 however indicates that the interaction between them is
repulsive, so that they indeed form a Landau Fermi liquid
below the critical coupling v,,. As discussed in Sec. IV, the
detailed structure of how this phase connects to the nontrivial
superfluid phases expected near the splitting point § and on
the BEC side is a major and still open problem.

Note added. The variational wave function (3.1) for the
(N+1)-particle problem in the molecular regime has been
found independently by Mora and Chevy [44]. For the cal-
culation of the ground-state energy they have assumed a van-
ishing hole wave vector q=0, which reduces the resulting
integral equation to a one-dimensional problem.
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APPENDIX: THREE-PARTICLE LIMIT

In the following we briefly show how the exact solution
of the three-fermion problem can be obtained from the inte-
gral equation (3.11) for the full variational wave function
(3.5). If the (N—1)-particle Fermi sea is reduced to a single T
fermion, only the q=0 terms remain in the variational wave
function (3.5). Thus, starting from the integral equation
(3.11) in the thermodynamic limit, taking the limit k.— 0
and setting q=0, one arrives at the simplified equation

&Pk Mo
Q2m? Epyo

o ko == (A1)

Inserting the coefficients ay, and Eyryo from Egs. (3.14) and
(3.15) explicitly, the integral equation (A1) takes the form

(1 3K2 E) Jd3k’ 4o
a 4 ") ] ok kK —mE

(A2)

Note that #= 7 corresponds to the Fourier transform of
the relative wave function between the (7,]) molecule and
the additional 7 fermion. The integral equation (A2) is ex-
actly the same as the one obtained by Skorniakov and Ter-
Martirosian [17] for the three-fermion problem. In particular
it is equivalent to Eq. (29) in [17], which corresponds to
three-nucleon scattering with total isospin T=1/2 and total
spin §=3/2 (note that the spin part only contributes an un-
important prefactor to the wave function in this case).

[1] See, e.g., R. P. Feynman, Statistical Mechanics (W. A. Ben-
jamin, Reading, MA, 1972).

[2] A. O. Caldeira and A. I. Leggett, Phys. Rev. Lett. 46, 211
(1981).

[3] A.J.Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.
Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).

[4] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80,
885 (2008).

[5] A. Schirotzek, C. H. Wu, A. Sommer, and M. W. Zwierlein,
Phys. Rev. Lett. 102, 230402 (2009).

[6] N. Prokof’ev and B. Svistunov, Phys. Rev. B 77, 020408(R)
(2008).

[7] N. V. Prokof’ev and B. V. Svistunov, Phys. Rev. B 77, 125101
(2008).

[8] F. Chevy, Phys. Rev. A 74, 063628 (2006).
[9] S. Tan, Ann. Phys. (N.Y) 323, 2952 (2008).

[10] R. Combescot and S. Giraud, Phys. Rev. Lett. 101, 050404
(2008).

[11] C. Lobo, A. Recati, S. Giorgini, and S. Stringari, Phys. Rev.
Lett. 97, 200403 (2006).

[12] R. Combescot, A. Recati, C. Lobo, and F. Chevy, Phys. Rev.
Lett. 98, 180402 (2007).

[13] S. Nascimbene, N. Navon, K. Jiang, L. Tarrruel, M. Teich-
mann, J. McKeever, F. Chevy, and C. Salomon, e-print
arXiv:0907.3032.

[14] M. Veillette, E. G. Moon, A. Lamacraft, L. Radzihovsky, S.
Sachdev, and D. E. Sheehy, Phys. Rev. A 78, 033614 (2008).

[15] K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).

053605-9

130



PUNK, DUMITRESCU, AND ZWERGER

[16] D. J. Thouless, Ann. Phys. (N.Y.) 10, 553 (1960).

[17] G. V. Skorniakov and K. A. Ter-Martirosian, Zh. Eksp. Teor.
Fiz. 31, 775 (1956) [Sov. Phys. JETP 4, 648 (1957)].

[18] D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, Phys. Rev. A
71, 012708 (2005).

[19] G. M. Bruun and C. J. Pethick, Phys. Rev. Lett. 92, 140404
(2004).

[20] The fact that C is identical for both spin components o im-
plies, for instance, that the minority and majority rf spectra are
identical at high frequencies, as observed experimentally [5].
Indeed, as shown recently by W. Schneider, V. Shenoy, and M.
Randeria, e-print arXiv:0903.3006, the rf spectra normalized to
the total particle number decay like C/ »*? at high frequencies.

[21] E. Braaten and L. Platter, Phys. Rev. Lett. 100, 205301 (2008).

[22] S. Tan, Ann. Phys. (N.Y.) 323, 2971 (2008).

[23] R. Haussmann, M. Punk, and W. Zwerger,
arXiv:0904.1333.

[24] Within a local-density approximation, the different phases that
appear in a trap with a spatially dependent coupling constant
v(x) due to the decrease in the local Fermi wave vector kx(x)
from the center of the trap to its edge simply follow from a
parabolic (vertical at unitarity) line in Fig. 4, h/ep(x)
=(2h!|Ep|)v*(x), where |E,|=1/(ma?) for both positive and
negative scattering lengths a. Its curvature 24/ |E,| is fixed by
the global imbalance, while the initial point v(x=0) is deter-
mined by the local Fermi wave vector at the trap center x=0.
Note that in a trap different phases are spatially separated for
both continuous and first-order transition lines. By contrast,
genuine phase separation is associated with a first-order tran-
sition and appears only in the homogeneous system.

[25] S. Pilati and S. Giorgini, Phys. Rev. Lett. 100, 030401 (2008).

[26] Note the down-spin Fermi surface volume ()| vanishes also
along the /g line to the left of M. This continuous transition,
however, becomes a smooth crossover at any finite tempera-
ture. By contrast, the transition between normal and superfluid
states that are both partially polarized also remains at finite
temperature.

e-print

PHYSICAL REVIEW A 80, 053605 (2009)

[27] S. Sachdev and K. Yang, Phys. Rev. B 73, 174504 (2006).

[28] A. Bulgac, M. McNeil Forbes, and A. Schwenk, Phys. Rev.
Lett. 97, 020402 (2006).

[29] Y. Nishida, Phys. Rev. A 79, 013629 (2009).

[30] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys.
80, 1215 (2008).

[31] P. F. Bedaque, H. Caldas, and G. Rupak, Phys. Rev. Lett. 91,
247002 (2003).

[32] D. E. Sheehy and L. Radzihovsky, Phys. Rev. Lett. 96, 060401
(2006).

[33] C.-H. Pao, S.-T. Wu, and S.-K. Yip, Phys. Rev. B 73, 132506
(2006); 74, 189901(E) (2006).

[34] M. M. Parish, F. M. Marchetti, A. Lamacraft, and B. D. Si-
mons, Nat. Phys. 3, 124 (2007).

[35] B. S. Chandrasekhar, Appl. Phys. Lett. 1,7 (1962).

[36] A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962).

[37] P. Nikoli¢ and S. Sachdev, Phys. Rev. A 75, 033608 (2007).

[38] D. T. Son and M. A. Stephanov, Phys. Rev. A 74, 013614
(2006).

[39] Y. Nishida and D. T. Son, Phys. Rev. A 75, 063617 (2007).

[40] The Sarma phase predicted in Ref. [38] near the splitting point
beyond the FFLO regime maybe a metastable phase due to
interactions between the quasiparticles (D. T. Son, private
communication). The existence of an FFLO phase at unitarity
and for small polarizations ¢ is supported by recent density-
functional calculations; see A. Bulgac and M. McNeil Forbes,
Phys. Rev. Lett. 101, 215301 (2008).

[41] Y. Shin, C. H. Schunck, A. Schirotzek, and W. Ketterle, Nature
(London) 451, 689 (2008).

[42] G. B. Partridge, K. E. Strecker, R. I. Kamar, M. W. Jack, and
R. G. Hulet, Phys. Rev. Lett. 95, 020404 (2005).

[43] F. Werner, L. Tarruell, and Y. Castin, Eur. Phys. J. B 68, 401
(2009).

[44] C. Mora and F. Chevy, Phys. Rev. A 80, 033607 (2009).

[45] R. Combescot, S. Giraud, and X. Leyronas, e-print
arXiv:0907.3197.

053605-10

131



D. PAPERS

PHYSICAL REVIEW A 80, 063612 (2009)

Spectral functions and rf response of ultracold fermionic atoms

R. Haussmann,' M. Punk,” and W. Zwerger2
'Fachbereich Physik, Universitiit Konstanz, D-78457 Konsianz, Germany
ZPhysikdepamnenL lechnische Universitdr Miinchen, D-85748 Garching, Germany
(Reccived § April 2009; published 4 December 2009)

We present a calculation of the spectral functions and the associated 1t response of ultracold fermionic atoms
near a Feshbach resonance. The single-particle spectra are peaked at cncrgics that can be modeled by a
modificd BCS dispersion. However, even at very low temperaturcs their width is comparable to their encrgy
cxcept for a small region around the dispersion minimum. The structure of the cxcitation speetrum of the
unitary gas at infinite scattering length agrees with recent momentum-resolved rf speetra ncar the critical
tempcrature. A dctailed comparison is made with momentum intcgrated, locally resolved rf spectra of the
unitary gas at arbitrary tempceraturcs and shows very good agrecment between theory and experiment. The pair
size deflined [rom the width ol these spectra 1s found (o coincide with that obtained [rom the leading gradient

corrections o the elfective-field theory of the super(luid.
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I. INTRODUCTION

The existence of well-defined noninteracting quasiparti-
cles above a possibly strongly correlated ground state is a
central paradigm of many-body physics. In interacting Fermi
systems, this concept applies both in a Fermi liquid and in a
BCS-like superfluid state, whose elementary excitations have
an infinite lifetime at the Fermi surface. More generally, the
nature of quasiparticle excitations may be used to character-
ize many-body ground states both with and without long-
range order [1]. Typically, it is only near a quantum phase
transition between ground states with different types of order
where a quasiparticle description fails and is replaced by a
continuum of gapless excitations [2]. In our present work, we
discuss ultracold fermionic atoms with a tunable attractive
interaction. The ground state is a neutral s-wave superfluid at
arbitrary coupling. Thus, it has gapless bosonic quasiparti-
cles of the Bogoliubov-Anderson type with a linear spectrum
w=cq. Its fermionic excitations have a finite gap. Within a
BCS description. the associated Bogoliubov quasiparticles
are exact eigenstates of the interacting system at arbitrary
momenta. As will be shown below, this central feature of the
BCS picture of fermionic superfluids fails for the strong cou-
pling situation that is relevant in the cold gases context,
where the excitation energy is no longer exponentially small
compared with the Fermi energy. In this regime, the fermi-
onic particle excitations acquire a significant lifetime broad-
cning cven al zero lemperature, cxeepl near the dispersion
minimum (or maximum [or holes), where there is no avail-
able phase space [or decay. The lifetime broadening ariscs
both [rom the residual interaction between quasiparticles and
their coupling o the colleetive sound mode. Morcover, the
particle-hole symmetry characteristic for the Bogoliubov
quasiparticles of the BCS theory is violated in the strong
coupling regime. With increasing temperatures, the particle-
like and holelike branches merge into a single broad excita-
tion branch with a free-particle-like dispersion shifted by the
binding energy.

Fermions with a tunable attractive interaction and the as-
sociated BCS-BEC crossover have been studied experimen-
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tally using ultracold Fermi gases near a Feshbach resonance
[3-5]. The fact that the balanced system with an equal num-
ber of particles in the two different hyperfine states (“spins”)
that undergo pairing is superfluid at sufficiently low tempera-
lures has been inferred from the observation ol a [inile con-
densate fraction on the BCS side [6] and from the collective
mode frequencies in a trap that agree with superfluid hydro-
dynamics [7,8]. It was demonstrated quite dircetly by the
observation of a vortex lattice in the rotating gas. which
evolves continuously from the Bose-Einstein condensate
(BEC) to the BCS side of the transition [9]. To study the
excitation spectrum, in particular the evolution of the ex-
pected gap for fermionic excitations duc 0 pairing, rf spece-
troscopy was performed by Chin ef al. [10]. The interpreta-
tion of these measurements [11] in terms of an effective
“puiring gap,” however, is made dilficult by the exislence ol
strong final state interactions and the fact that the signal is an
average over the whole cloud, with a spatially dependent
excitation gap. For a homogeneous system, the average rf
shift is in fact dominated by large mean-field effects and final
stale interactions [12—15] and is hardly chunged, cven if su-
perfluidity is suppressed by a rather strong imbalance [16].
The problems associated with final state interactions and the
inhomogeneity of the cloud have heen overcome only re-
cently by the possibility to perform spatially resolved rf mea-
surements [ | 7], combined with a suitable choice of the hy-
perfine states which undergo pairing and the final state of the
rf transition [18]. Moreover, it has also become possible to
mcasurc f speetra in a momentum-resolved way [19]. This
opens the possibility (o infer the [ull spectral functions as
suggesled theorclically by Dao ef al. [20].

QOur aim in the [ollowing is Lo present a caleulation ol the
speetral functions and the associated rf response of strongly
interacting fermions which covers the whole regime of tem-
peratures both above and below the superfluid transition and
also arbitrary coupling constants. The theory is based on a
conserving, so-called ®d-derivable approach to the many-
body problem due to Luttinger and Ward, in which the exact
one-particle Green’s functions serve as an infinite set of
variational parameters. This approach has been used previ-
ously to describe the thermodynamic properties of the uni-
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form [21] and the trapped gas [22]. The Luttinger-Ward for-
mulation of the many-body problem relies on expressing the
thermodynamic potential Q[G] in terms of the exact Green’s
function (5. The condition that the functional Q[G] is station-
ary with respect to small variations in the Green’s functions
then leads to a set of integral equations for the matrix
Green’s function G which have to be solved in a self-
consistent manner. Since the Green's functions contain infor-
mation about the full dynamical behavior via the imaginary
time dependence of the Matsubara formalism, the Luttinger-
Ward approach not only provides results for the equilibrium
thermodynamic quantities but also determines the full spec-
tral functions upon analylic continuation [rom Malsubara (o
real [requencies. This is done explicilly in our present work
using the maximum-entropy technigue.

The paper is organized as [ollows: in Sce. [I we introduce
the Luttinger-Ward formalism and discuss the caleulation of
the momentum and [requency-dependent spectral [unctions.
The relation between the spectral functions and the experi-
mentally measured rf spectra is outlined in general and dis-
cussed in the BCS and BEC limit, where analytical results
are available. We also discuss the behavior of the if spectra
at high frequencies and the associated contact coefficient in-
troduced by Tan [23] and by Braaten and Platter [24]. In Sec.
111, we show that a pair size can be defined via the momen-
tum dependence of the superfluid response in analogy to the
nonlocal penetration depth in superconductors. Using an
effective-field theory due to Son and Wingate [25], we find
that the resulting pair size of the unitary gas coincides with
that inferred experimentally from the width of the rf spec-
trum [18]. The numerical results and the physical interpreta-
tion of spectral functions and rf spectra obtained within the
Luttinger-Ward approach are discussed in Sec. IV, both in the
normal and superfluid phase. These results are compared
quantitatively with measured data. A summary and discus-
sion are given in Sec. V. There are two appendixes, one on
the maximum-entropy method and one on a perturbative cal-
culation of the quasiparticle lifetime due to interactions with
the collective mode.

I LUTTINGER-WARD THEORY, SPECTRAL
FUNCTIONS, AND RIF RESPONSE

QOur calculation of the spectral functions for a dilute sys-
tem of ultracold fermionic atoms is based on a Luttinger-
Ward approach to the BCS-BEC crossover that has been pre-
sented in detail previously [21.26]. As a starting point, we
use the standard single-channel Hamiltonian that contains the
essential physics of the BCS-BEC crossover in a dilute gas
of ultracold fermionic atoms with a short-range (s-wave) in-
teraction [4]

X f s P,
H= | &2 VgV i (r)]
- 2m

+ % J A, )Y (0 (D, (r).  (2.1)

Here ¢r,(r) and ¢(r) are the usual fermion field operators.
The formal spin index o labels two different hyperfine states
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which interact via a zero-range delta potential g;8(r). Since a
delta function in three dimensions leads to no scattering at
all, the bare coupling strength

g

20D
- 2allm e

go(A) = :

needs Lo be expressed in terms of renormalized scattering
amplitude g=47#%a/m that is proportional lo the s-wave
scallering length @ and an ultraviolet momentum cutofl A
that is taken to infinity at fixed g. The limiling process
go{A—2)——0 accounts for the replacement of the bare
delta potential by a pseudopotential with the proper scatter-
ing length. The description of a Feshbach resonance by a
single-channel Hamiltonian of the form given in Eq. (2.1) is
valid for the experimentally relevant case of broad Feshbach
resonances, where the effective range " of the resonant in-
teraction is much smaller than the Fermi wavelength A, [4].

We consider a homogeneous situation described by a
grand canonical distribution at fixed temperature and chemi-
cal potential. The grand partition function

Z=Tefexp(- B - uN])} (2.3)
then determines the grand potential
Q=0(1p)=-p"InZ. (2.4)

For a quantitative discussion of the results, it is more conve-
nient to switch to a canonical description at a given density n
by a Legendre transformation to the free energy F={+uN.
‘Within our zero-range interaction model, the Fermi system at
total density rz:k}/ﬁﬂ2 is then completely characterized by
two parameters: the dimensionless temperature O=kz7/ep
and the dimensionless inverse interaction strength v=1/k.a.
In the special case of an infinite scattering length (the so-
called unitarity limit), the parameter v drops out. The result-
ing spectral functions A(Kk, &) are then universal functions of
@ and the dimensionless momentum and energy scales k/k,
and ¢/¢p that are set by the density of the gas.

A. Luttinger-Ward formalism

In thermal equilibrium at temperature 7 the properties of
an interacting fermion system which exhibits a superfluid
transition are described by two Matsubara Green's functions,
the normal Green’s function (T denotes the standard time
ordering)

(Tl (v, D, (0, 7)) =68, Glr—1', 7= 7) (2.5)
and the anomalous Green’s function

(Tl (0, i (1, 7)) = 80 Flr =1, 7= 7). (2.6)
where the antisymmetric Levi-Civita tensor £/ represents

the spin structure of s-wave pairing. In the translation invari-
ant and stationary case studied here, it is convenient to
switch to a Fourier representation of the Matsubara Green’s
functions. The normal and anomalous functions (2.5) and
(2.6) can then be combined into a matrix Green’s function
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gk, m,)

Fkw,)
) . ) (2.7
Flk.w,)

(—’aa‘(ksm") = ( _ g(k. w”)*
with momentum variable k and fermionic Matsubara fre-
quencies w,=2m(n+1/2)/Bh with ne Z. The nondiagonal
elements represent the order parameter of the superfluid tran-
sition. Using matrix Green’s function (2.7). it is possible to
generalize the Luttinger-Ward formalism [27] to superfluid
systems [21,26]. In particular, the grand thermodynamic po-
tential (2.4) can be expressed as a unique functional of
Green’s function (2.7) in the form

s

Qe]=p7" - %Tr{f In G+[G;'G- 1]} - ©[G] ).
(2.8)

The interaction between the fermions is described by the
functional ®[G], which can be expressed in terms of a per-
turbation series of irreducible I'eynman diagrams. The full
matrix Green's function G is then determined uniquely by
the condition that the grand potential functional (2.8) is sta-
tionary with respect to variations in G, i.e.,

GG =0. 2.9)
It is important to note that the thermodynamic potential
Q[G] is a functional of the exact Green’s function G. The
formalism of Luttinger and Ward thus leads via Eq. (2.9) to a
self-consistent theory for the matrix Green’s function.

Since the exact form of ®[G] is unknown, we employ a
ladder approximation [21,26,28]. In the weak-coupling limit,
this is exactly equivalent to the standard BCS description of
fermionic superfluids. In the BEC limit, where the fermions
form a Bose gas of strongly bound pairs. the ladder approxi-
mation correctly accounts for the formation of pairs (i.e.. the
two-particle problem). The residual interaction between the
pairs, however, is described only in an approximate manner.
Indeed, it turns out [21,28] that in the BEC limit the ladder
approximation for the functional ®[G] gives rise to a theory
for a dilute Bose gas with repulsive interactions that are de-
scribed by a dimer-dimer scattering length a,;,=2a. This is a
qualitatively correct description of the BEC limit of the
crossover problem; however, from an exact solution of the
four-particle problem in this limit the true dimer-dimer scat-
tering length should be a,;=0.6a [29].

The ladder approximation leads to the following closed
set of equations for the matrix of single-particle Green’s
functions (2.7) [21,26,28]:
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5&(1’ 3 dok
;LK) = +J
8 2m?

ﬂ% G ot (K, )

) m
X Gy (K~ k,ﬂ,, - w,) - W‘S‘na’} :

(2.12)
Ilere,
[—iw, +e—u] 0 )
i
G 2] R —
(2.13)

. . B ‘ 95 3%
is the inverse free Green's function where s, =#°k?/2n1. Tur-

thermore,
(’o A
21: i )
AT 0

is a k- and w,-independent matrix, whose off-diagonal ele-
ments represent the order parameter ot the superfluid transi-
tion. By definition. A is related to the anomalous Green’s
function F(k, 7) by the renormalized gap equation

_gj Qo

The vertex function I' ,/(K.Q,) defined in Eq. (2.12) may
be identified with the T matrix for the scattering of two par-
ticles in a many-body Fermi system. Since G (K. w,) is the
exact one-particle Green’s function, the vertex function is
that of a self-consistent T-matrix approximation. The
Luttinger-Ward approach in ladder approximation is thus
equivalent to a self-consistent T-matrix approximation. The
specific structure of the GG term in Eq. (2.12) with respect
to the Nambu indices @ and a' implies that the particle-
particle ladder is considered here, which properly describes
the formation of Termion pairs in normal and superfluid
Tlermi systems.

As a result of the Goldstone theorem. a neutral superfluid
Tlermi system must exhibit a gapless Bogoliubov-Anderson
mode. Iormally, this is guaranteed by a Ward identity, which
can be derived from the Luttinger-Ward formalism for any
gauge invariant functional ®[G]. This functional defines an
associated inverse vertex function which in short-hand nota-
tion is given by

(2.14)

{f(k 7= 0)+_\ } (2.15)

[l =] (ALE 57 (2.16)

where T =—&D[G]/8G? is the irreducible verlex and y=
—GG is the pair propagator. The existence of a Bogoliubov-
Anderson mode is then guaranteed by the property that T'™!
has an cigenvalue A(K,{),) which has (0 vanish for K=0
and (2,=0 [26]. This Ward idcnlity is cquivalent, in the

1

G (K 00,) = Oaa (K@) = Zpp(kom,), (210 present casc, Lo the well known Thouless criterion [30]. Un-
fortunately, the inverse vertex (2.12) obtained from our self-
consistent ladder approximation does not agree with the ex-
p ] &K act inverse vertex function as defined by Eg. (2.10). As

Bt = ' : ; e i
a0l 0,) = 2 0 +f (2 E Loo (K. 02,) shown in our previous publication [21], however, the re-
quirement of a gapless Bogoliubov-Anderson mode can be
XG ook + Koo, + Qn]’ 2.11) imposed on Eq. (2.12) as an additional constraint by choos-
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ing a modified coupling constant in the renormalized gap [q.
(2.15). This modified approach is still compatible with the
Luttinger-Ward formalism so that our method is both con-
serving and gapless. In the following numerical calculations
we always employ this modified approach which is described
in detail in Ref. [21].

In a homogeneous gas, the normal to superfluid transition
is a continuous phase transition of the 3D XV type along the
complete BCS to BEC crossover. By contrast, our approach
[21] gives rise to a weak first-order superfluid transition be-
cause the superfluid phase of the Luttinger-Ward theory does
not smoothly connect with the normal-fluid phase at a single
critical temperature .=kpT,/&p. Fortunately, this problem is
confined o a rather narrow regime of (emperatures. In par-
ticular, at unitarity, the upper and lower valucs for @, are
0.1604 and 0.1506, which is within the present numecrical
uncerlaintics in the determination of the critical temperature
of the unilary gas [31,32]. For our discussion of speetral
functions in the present work, which does not focus on the
critical behavior near 7, the problem with the weak first-
order nature of the transition is therefore not relevant.

Keeping these caveats in mind, the ladder approximation
for the Luttinger-Ward functional provides quantitatively re-
liable results for the thermodynamic properties of the BCS-
BEC crossover problem [21,22]. This applies, in particular,
for the most interesting regime near unitarity, where weak-
coupling approximations fail. As an example, the value of
the critical temperature T,./Tp=0.16 right at unitarity agrees
with recent quantum Monte Carlo (QMC) results T./Tf
=0.152(7) for this problem within the error bars [31,32]. It is
also consistent with recent calculations of the onset tempera-
ture of a finite condensate density [33]. Moreover, there is
also quite good agreement with field-theoretic results for
ground-state properties, which are characterized by a single
universal constant, the so-called Bertsch parameter g(OJ de-
fined, e.g.. by w(1'=0)=£(0)e; at unitarity [4]. In fact, the
value &(0)=0.36 obtained within the Luttinger-Ward ap-
proach [21] agrees perfectly with the result £(0)=0.367(9)
from an e€=4-d expansion up to three loops [34] and—in
particular—with the more recent value £=0.36*0.002 ob-
tained by Nishida [35]. Variational Monte Carlo calculations
[36.37] or a Gaussian fluctuation expansion around the BCS
mean-field results [38,39], in turn, give somewhat higher val-
ues £(0)=0.42(1) or £(0)=0.40, respectively.

B. Spectral functions

The Matsubara Green’s function G(k,w,) can be ex-
pressed in terms of a spectral function A(k,&) by using the
Lehmann spectral representation [40]

Glk,m,) = j a‘sL

- (2.17)
—ihw, + 8- p

The spectral function associated with the normal, single-
particle Green’s function G(k, w,) is positive A(k,e) =0 and
normalized according to

PHYSICAL REVIEW A 80. 063612 (2009)

fdex\(k.e,l:l. (2.18)
It can be decomposed into two contributions
Alk,g)=A.k.e)+A_(k,e), (2.19)

which describe the particle and hole excitation part of the
complete excitation spectrum. The individual contributions

Ak, e)=Z7 e BN (| g (0)] )2 (277)

X 6(k . [Pn . Pm]/ﬁ) ﬁ(s - [E” - Em])
(2.20)

and

A (k) =Z "> e BEHND) (|, (0) ) 22 )

Hék=[P,-P,lih)de - [, - L£,])
2.21)

can be expressed in terms of matrix elements of single fer-
mion field operators i,(0) at the origin between the exact
eigenstates |n) of the many-body system. Ilere P, I/, and N,
are the corresponding eigenvalues of momentum, energy,
and particle number, respectively. In thermal equilibrium. the
partial spectral functions are related by the detailed balance
condition

A_(k.g)=eP"MA (ke). (2.22)

At zero temperature, therefore, the hale part A_(k,g) of the
spectral function vanishes for e > g and vice versa the par-
ticle part A.(k,e) vanishes for e< . The total spectral
weight in the hole part

J— de A_(k,c) =n,(k) (2.23)
al arbitrary lemperatures is cqual Lo the [ermion occupation
number n,(k)=—G(k, 7=-0) [or a single spin oricntation &
(in the balanced gas discusscd here, both componenls o
= ' 1 have the samce occupation, of course).

Within the BCS description of fermionic superfluids, the

spectral function consists of two infinitely sharp peaks [40]
Alke) = 8e - EP) v opdle - ED).  (2.24)

which represent the particle and hole part of the speetral
[unction. The associated cnergies

=]

EE":#i \"“(sk—,u)z+A2 (2.25)

describe the standard dispersion of the Bogoliubov quasipar-
ticles. They exhibit a finite gap, whose minimum value A is
taken at a finite momentum &,,= \2mpif (note thal w—ep
>0 in the BCS limit). Within the standard BCS theory. these
excitations have infinite lifetime at arbitrary momenta k and
there is no broadening or incoherent background. Going be-
yond the exactly solvable BCS Hamiltonian, however, gives
rise to a finite lifetime of the fermionic excitations and thus
will broaden the two delta peaks in Eq. (2.24) even at zero
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temperature. It is our aim in the following to calculate these
effects quantitatively for the simple model [Iamiltonian LEq.
(2.1) in the whole range of coupling strengths and tempera-
tures.

Cquation (2.17) has the form of a Cauchy integral in the
theory of complex functions. Tt is therefore convenient to
define a complex Green’s function G(k,z) depending on a
complex frequency z. which is analytic in the upper and
lower complex half planes Im(z) =0, respectively. This com-
plex Green’s function is related the Matsubara Green's func-
tion and to the spectral function by

Glk,m,)=Gk,z= wh+iw,), (2.26)

Ak.e) = + 7! Im(Gk.z=e/f +i0)]. (2.27)

respectively. Thus, in a first step we obtain the complex
Green’s function G(K,z) as an analytic continuation from the
Matsubara Green’s function G(k,®,). In a second step, we
insert the complex frequency z=¢/A+i0 and obtain the
spectral function A(k.e) from Eq. (2.27). The fact that
G(k.®,) uniquely determines the spectral function has been
proven by Baym and Mermin [41].

In practice the analytic continuation for calculating the
spectral function A(K,s) is done by using the maximum-
entropy method [42] which is described in detail in Appendix
A. We have checked the accuracy of our results a posteriori
by inserting the calculated spectral functions in Lq. (2.17).
The given “initial” data G(k, ®,) are then found to be repro-
duced with a relative accuracy that is typically in the 107>
range.

C. rf response

In radio-frequency experiments, the external rf field trans-
fers atoms from one of the two occupied spin states (as initial
state) into an empty final state. In the following, we assume
that the final state, which is denoted by an index f, has a
negligible interaction with the initial one. It can thus be de-
scribed by the free-fermion spectral function

Aflk.2) = e - [Ep+ &), (2.28)

where Ej is (he excitation energy of the final state, which has
a [ree parlicle dispersion ex=7’k>/2m. Within lincar re-
sponsc, the rale of transitions out of the initial state induced
by the rf ficld with [requeney o and wave veelor g is given
by a convolution

3

X )*fj‘ﬁJ-d[A (K +q.e + Fi)A_(k.s)
q.w)="h Yy slA, q.c +hiw)A_(K.s

—A; (k+q.8+hw)A.(k g)] (2.29)

of the spectral functions A and A of the initial and final
states. Here, an unknown prefactor that depends on the inter-
action parameters for the coupling to the rf field has been set
equal to 72, which provides a convenient normalization for
the total weight integrated over all frequencies [see Eq.
(2.36) below]. This overall constant drops out in normalized
spectra by dividing out the zeroth moment [dwl(q,w) or
has—in any case—to be adjusted to the measured signal in
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comparison with experimental data. Since the wave vector q
of the rf field is much smaller than those of the atoms. it is an
excellent approximation to set =0. In the absence of a
probe that selects atoms according to their momenta Kk, the
spectrum [(q=0,m)={(w) is thus only a function of the rf
frequency . In addition, for the standard situation with an
empty final state f, the partial spectral functions are
Ari(k,8)=A/k, &) and A _(k,&)=0. Using Eq. (2.28), the
resulting rf spectrum

N L
Hw)=f | ——=A (ke fiw) (2.30)

(2m)
is an integral over the hole part A_(k, &) of the single-particle
spectral function in the initial strongly ecorrelated state. For
convenience we have taken E;=0), which redefines the posi-
tion of zero frequency w=0 in the rf spectrum.

Within a BCS description, the spectral function is given
by Eq. (2.24). Tts hole excitation part has a delta peak at E:;'
whose weight is equal to the occupation number 1,(k)=v,.
This reflects the simple fact that a hole with momentum k
can only be created if a fermion is present with this momen-
tum. The resulting rf spectrum in our normalization is

w2 [#w A2 12 a2
| g
22252 # 2he)

TBCS(V{.J) £

5-

2 " 2w
(2.31)

It exhibits a sharp onset at fiw,,;,=VA%+u’— . As will be
shown below, such a sharp onset is not found from our nu-
merical results for the spectral function even in the weak-
coupling limit v € —1. The origin of this discrepancy may be
traced back to the fact that the dominant contributions to the
rf spectrum near w,;, arise from the spectral function
A_(k, &) in the limit K— 0. i.e., far from the Fermi surface at
k. Now, deep in the Fermi sea, the true spectral function is
not described properly by an extended BCS description,
which has sharp quasiparticles at arbitrary momenta. In fact,
the simple form (2.24) of the single fermion spectral function
holds only if the interaction part of the full Ilamiltonian Lq.
(2.1) is approximated by the exactly soluble reduced BCS
Hamiltonian [43]. Tts interaction term

A 8o
ey = 72 2 O O 77 - (2.32)

2 g Kk’

involves only pairs with vanishing total momentum Q=0.
This approximation excludes density fluctuations and there-
fore does mnot account for the collective Bogoliubov-
Anderson mode [4]. Moreover, its fermionic quasiparticles
are exact eigenstates of the reduced BCS Hamiltonian at ar-
bitrary momenta. The difference

2 &
1= .,702 E

+ +
v Ck+Q,0C—k —C k! ~oCk'+Q.00
=00 kK Q#0

(2.33)
between the full Hamiltonian Eq. (2.1) and thal of the rc-
duced BCS model therelore gives rise (o residual interactions
between the quasiparticles and their coupling o the collee-
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tive Bogoliubov-Anderson mode. This will be discussed in
more detail in Appendix B. As will be shown quantitatively
in Sec. IV, the residual interactions result in an appreciable
broadening (k) of the spectral functions. In particular, the
hole part hecomes increasingly broad as k— 0 [see Tig. 2(a)
for a coupling strength v=—1]. A BCS-type rf spectrum
(2.31) requires that Wk=0)<hw,,,=A%/2e;, in weak cou-
pling. This condition is never fulfilled in practice, because
the gap A~exp(mv/2) vanishes exponentially in the BCS
limit v<—1, while ¥(k=0) can be shown to be of order
(kpa)® as kgla|< | due to the decay via intermediate states
involving three quasiparticles [see Eq. (B8) in Appendix B].
As a resull, the onscl and peak shilt of the rf spectrum in
weak coupling arc dominated by the Hartree contributions
and do not reflleet the appearance of a pairing gap.

In the limit v 2 +1 of a molecular BEC, the [ermions form
a superfluid of strongly bound dimers. In this regime, the gap
parameter A becomes negligible compared with the magni-
tude of the chemical potential and hole excitation energy
(2.25) approaches EL“’%Q#*SR. Since the extended BCS
description of the crossover becomes cxacel again in the mo-
lecular limit, where it reduces to an ideal Bose gas of dimers,
one can use Eq. (2.24) for the associated spectral function of
fermionic excitations, which gives

A_(k,&) = vidle +8,-2u) (2.34)

in the BEC limit. The weight ui:47‘ma?(l +k%¢*)™ now co-
incides with the square of the bound state wave function in
momentum space. The resulting rf spectrum

n (ho+2u)*

Iggc(w) = (2.35)

wam o’
is a special case of that derived by Chin and Julienne [44] in
the molecular limit for bound-free transitions in the absence
of final state interactions. It has an onset fim,;, sgrc=—24
—+ &, that is determined by the molecular binding energy
g,=h>/ma* as expected. This energy also sets the scale for
the half width of the rf spectrum. which is E, =ys, with a
numerical factor y=1.89.

D. rf spectra at high frequencies and contact density

Our definition of the rf spectrum in Eq. (2.30) and nor-
malization (2.23) of the hole part of the spectral function
imply that the total weight integrated over all frequencies

J dm (@) =n,=n/2 (2.36)
is determined by the density n, of atoms from which the
transfer to the empty final state f occurs. This normalization
fixes the overall prefactor and determines the normalized
form of the rf spectra in which the zeroth moment is divided
out. An analysis of the spectra in terms of their nontrivial
higher moments, however, does not seem to work. Indeed, it
follows from Egs. (2.31) and (2.35) that the rf spectra at high
frequencies fall off like w2 both in the BCS and the BEC
limit. Thus, already the first moment of the spectrum di-
verges. The issue of the behavior at high frequencies has
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been investigated recently by Schneider er al. [45]. They
have shown that the exact expression (2.30) quite generally

implies an @™ power-law decay
Cc (R |
](Lu »00) = F — mf"ﬂ. (2.37)
T \m/

Here. the coefficient C is defined by the behavior n,(k)
— C/k* of the momentum distribution at large momenta. It
was introduced by Tan [23] as a parameter that characterizes
quite generally fermionic systems with zero-range interac-
tions. As shown by Braaten and Platter [24], this coefticient
is a measure of the probability that two fermions with oppo-
site spin are close together and is thus called a contact den-
sity or simply the contact. In the balanced superfluid, it has
actually been determined from a measurement of the closed
channel fraction by Partridge et al. [46], as analyzed in detail
by Werner ef al. [47). In the BCC limit, the well known
expression for ng(k) in terms of the square of the bound state
wave function yields Cyp-=4mmn/a, consistent with the ex-
plicit form (2.35) of the spectrum in the BEC limit.

There are two important points in this context, which we
discuss in the following. First of all, the asymptotic @™*
power-law decay of the exact rf spectrum is valid only in the
ideal case of rzero-range interactions and identically vanish-
ing final statc cfleets. Indeed, an explicit caleulation of the rf
speetrum in the molecular limit by Chin and Julicnne [44]
shows thal in the presence of a nonzero scallering length
a;# 0 between the hyperfine state that is not allected by the
1l pulse and the [inal state of the rf (ransition, the speetrum
decays like w2 al large frequencics. The short-range part of
the interaction, which is responsible for the slow decay of the
spectrum, is therefore cancelled out by the interaction be-
tween the final state and the state that remains after the rf
transition. This result remains valid quite generally along the
whole BCS-BEC crossover as discussed by Zhang and Leg-
gett [48.49]. In particular, this behavior guarantees that the rf
spectrum has a finite first moment. As shown in Refs.
[12,13], it allows to define an average “clock shift”

4s2(1 1
el
e \8 8¢/

(2.38)
o
that is again determined by the contact coefficient C =sk?-
and the renormalized interaction constants g=47#i°a/m and
gf=4'n'flzaj/m. In particular, there is a perfect “atomic peak”
I{w) ~ d(w) and no clock shift at all if a=a;. The existence of
higher moments of the rf spectrum relies on accounting for
the nonzero range r,# 0 of the interaction. Since this is ex-
pected to affect the spectrum only at frequencies of order
ﬁ/mrﬁ, this regime, however, will hardly be accessible ex-
perimentally.

As a second point, we consider the behavior of the contact
coefficient € in the weak-coupling limit. Standard BCS
theory for the momentum distribution at large k predicts that
the corresponding dimensionless factor SZC//ki is exponen-
tially small, sgzes=(A/2ex)% This is in agreement with the
high frequency asymptotics of the ideal BCS spectrum (2.31)
without final state interactions according to the result in Eq.
(2.37).
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It turns out, however, that the exponentially small value of
the contact coefficient in the BCS limit is an artifact of work-
ing with a reduced BCS Ilamiltonian. which only takes into
account pairing part (2.32) of the interaction. By contrast, the
full ITamiltonian gives an additional contribution that is as-
sociated with noncondensed close pairs. For weak coupling,
this is much larger than that of the condensed pairs described
by the BCS theory. More precisely, it turns out that the co-
efficient

s=[A2=T,(r=0.7=-0))/(4c}) (2.39)

in front of the n,(k)=s(kp/k)* behavior of the momentum
distribution al large & contains a nontrivial conlribution as-
sociated with the upper diagonal clement T'yy of the vertex
function defined in Eq. (2.12) in the limit of vanishing spatial
and lcmporal scparation. In the molccular limit, the contri-
bution from this term is ncgligible. The asymplolic result
Agpe=284v/37r for the gap parameter then gives rise to a
lincarly increasing dimensionless conlacl parameter spze
=4v /34 consistent with the naive resull discussed above. On
the contrary, in the weak-coupling limit, the contribution
from noncondensed closc pairs is dominant comparcd with
the exponentially small BCS contribution from condenscd
pairs. In the limit v<€—1 the leading behavior is given by

! g X2
—Fn(u—m:(i).

(2.40
\ 3 )

The resulting dimensionless contact coefficient s,
=(2/3mw)* in weak coupling is therefore much larger than
the exponentially small BCS contribution. It is remarkable
that the leading term in the weak-coupling contact density of
the superfluid with @<C0 is identical to the one that is ob-
tained in a repulsive dilute normal I'ermi liquid with a>>0,
which has first been calculated by Belyakov [50]. This shaws
that the dominant contribution to the contact density is inde-
pendent of the sign of the interaction consistent with the
“adiabatic theorem”

Ju At
—==——C(a)
d(1/a) 4am

(2.41)

that relates the derivative of the encrgy per volume u with
respect to the inverse scattering length to the contact coeffi-
cient C [24,51]. In fact, the simple mean-field interaction
energy linear in @, which is the leading correction to the
ground-state energy of the ideal Fermi gas, shows that
Cla)~ a* is independent of the sign of interactions to lowest
order. The BCS pairing effects, that appear in the case of a
negative scattering length, only give a subdominant, expo-
nentially small reduction in the energy that is reflected in a
corresponding tiny enhancement of the contact density. The
full dependence of s(v) along the BCS to BEC crossover for
the balanced gas at zero temperature is shown in Fig. 1. The
particular value s(0)=0.098 at unitarity has in fact been de-
termined before in the context of the average clock shift
(2.38) [12] and is close to our present value s(0)=0.102 that
follows from Tq. (2.39). Since the contact density is a short-
range correlation property, it is not very sensitive to tempera-
ture; see [32].
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FIG. 1. (Color online) The dimensionless contact coefficient s is
shown as a function of the dimensionless coupling strength
v=1/kzu. The red solid line represents our numerical result ob-
tained from Iig. (2.39). The left and right black dashed lines repre-
sent the asymplotic formulas s,,. and sgz- given in the (ext,
respectively.

An important consequence of the failure of naive BCS
theory to account for the correct value of the contact density
C in weak coupling is the fact that the weight of the rf
spectrum at high frequencies that is determined by Tiq. (2.37)
in the absence of final state interactions or by the average
clock shift (2.38) is strongly underestimated by using the
idealized form (2.24) of the spectral functions that follow
from a naive BCS theory. It is an interesting open problem to
determine analytically the explicit form of the spectral func-
tions in the weak-coupling limit which is consistent with the
correct high frequency asymptotics (2.37) with the proper
value for the contact density.

III. EFFECTIVE-FIELD THEORY AND PAIR SIZE

For a molecular BEC that consists of tightly bound
dimers, the notion of a pair size is well defined. In the rel-
evant case of a zero-range two-particle interaction with posi-
tive scattering length a, it is determined by the rms extension
&,=a/\2 of the two-body bound state. Since kpa<€1 in the
BEC limit, the size of the pairs in this regime is much
smaller than the average interparticle spacing (37°)'3/k,
= 3.1/k; of the fermionic gas in the absence of an attractive
interaction. Motivated by the fact that rf spectroscopy in this
limit etfectively reduces to a two-body molecular spectrum,
a spectroscopic pair size &, has been determined from the
halt width of the measured rf spectrum /(w) by the relation
& =yX h%2mE,, [18]. By its definition. this pair size coin-
cides with the molecular size &,=a/V2 in the appropriate
limit. Extending this definition to arbitrary coupling
strengths, one obtains a ground-state pair size &,
=0.86%u /Ay in the opposite BCS limit, which correctly de-
scribes the exponentially large size of Cooper pairs charac-
teristic for weak-coupling BCS superconductors [33]. It is
thus plausible to use this spectroscopic definition of the pair
size for the complete range of couplings. in particular also
near the unitarity limit [18]. The measured tf spectrum at the
lowest temperature, that has been reached experimentally, is
then found to give an effective pair size &, =2.6/k; at uni-
tarity [18]. This is somewhat smaller than the average inter-
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particle spacing indicating that the unitary gas has pairs that
no longer overlap. The numerical value for the pair size is in
fact close to that obtained from calculating the width of the
pair wave function in a variational ansatz for the ground state
of the BCS-BEC crossover [54].

An obvious question in this context is whether there are
independent measures of the pair size which do not rely on
the spectroscopic definition that is motivated by the extrapo-
lation from the molecular limit or on the related variational
approximation for the ground state in terms of a product of
two-body wave functions. In the following, we will show
that a many-body definition of the pair size can be obtained
from the g-dependent superfluid response function [ollowing
the basic concepl of a nonlocal penctration depth in super-
conductors [53]. This response can be calculated [rom an
clfective-ficld theory of the superfluid state including the
next-to-leading order corrections o the standard quantum
hydrodynamic Lagrangian. Remarkably, the value of the pair
size at unitarity that follows from the g-dependent superfluid
response is close to that inferred spectroscopically from the
half width of the rf spectrum.

The basic idea that allows to define a characteristic length
&, of a fermionic superfluid without reference to an approxi-
mate BCS or molecular description of the many-body ground
state is related to the well known calculation of the
q-dependent penetration depth A(g) in charged superconduct-
ors. The latter is defined by the nonlocal generalization
j(@)=—A(g)/4a\*(g) of the London equation relating the
current density induced by a transverse vector potential in
linear respanse [33]. The square of the inverse effective pen-
etration depth determines the superfluid density n,(g), which
obeys n(g=0)=n in any Galilei invariant superfluid. Tor fi-
nite momentum ¢ the superfluid response is reduced by a
correction that has to vanish like ¢ in an isotropic system.
The correction defines a characteristic length £, according to

ny(q):n(l - (3.1)

T30

in the limit of small wave vectors g. Here, the prefactor in
the ¢ correction has been chosen in such a way that the
characteristic length &, coincides with the Pippard length
Ep=hiw,/wA| in the weak-coupling limit.

In order to determine the value of §, at unitarity. one
needs the leading order corrections in an expansion in small
gradients to the universal quantum hydrodynamic Lagrang-
ian density

En| 1, 5
Ly=——| 3¢ - (Vo) (3.2)
2m | ¢}
of a translation invariant, neutral superfluid with

(Bogoliubov-Anderson) sound velocity ¢.. For the unitary
Fermi gas, where cf:-,u./?sm exactly, these corrections have
been discussed in detail by Son and Wingate [25]. Restrict-
ing ourselves to the harmonic description of the Goldstone
mode described by Eq. (3.2) to leading order, the next-to-
leading terms in the etfective-field theory are of the form

[25]
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- -
=8l e/ D(VerR r e 2202 |, (3.3)
1\, " z\, -

The associated dimensionless coefficients ¢, > can only be
determined from a microscopic theory. Their physical mean-
ing becomes evident from the fact that ¢, determines the
reduction of the superfluid response for finite wave vectors ¢
as described in Eq. (3.1). In terms of the pair size &, defined
there, one finds

e

3.4
P (3.4)

T
EQF 9ey
which also makes clear that ¢, has to be positive. In contrast
to c,, the coefficient ¢; has no direct physical interpretation.
From the plane-wave solution of the linear equations of mo-
tion for the phase fluctuations that follow from the total La-
grangian density £+ L’ it is easy to see, however, that this
coefficient appears in the next-to-leading corrections in the
dispersion w(g)=c,g(1—ag*/k,+ --) of the Bogoliubov-
Anderson mode with a dimensionless coefficient [25]

5 ‘;—,‘3 1 .
a:w—vlg(U)( ECZ+C|)4 (3.3)
[Tere £(0)=0.36 is the Bertsch parameter, which relates the
sound and bare I'ermi velocities by 1‘?:5(0)1:%/3. Similar to
the Bertsch parameter, which appears in the leading order
Lagrangian (3.2), the coefficients ¢, ; can be calculated in an
expansion around the upper critical dimension four of the
unitary I'ermi gas as suggested originally by Nussinov and
Nussinov [55] and started by Nishida and Son [36]. A one-
loop calculation of the coefficients ¢, has recently been
performed by Rupak and Schiifer | 57]. The resulting value of
c at e=4—-d=1 turns out to be ¢; = —0.02. Unfortunately, for
c>, the one-loop calculation is not sufficient, because a finite
value of ¢, only appears at order € [57]. This is easy to
understand from connection (3.4) between ¢, and the pair
size, which is expectled (o vanish lincarly in e=4—d. Indced
in four dimensions, a two-particle bound stale in a zcro-
range polential only appears al infinilcly strong attraction
[55]. The unitary gas in d=4 therefore has a vanishing dimer
size and is cffectively an ideal Bose gas similar Lo the situa-
lion in the BEC limit in d=3 [58]. In order (o [ix the value of
¢5 [or the unitary gas in three dimensions, we usc connectlion
(3.5) between the next-to-leading order coefficients of the
effective-field theory and the ¢” corrections to the dispersion
w(g) of the Bogoliubov-Anderson mode. This dispersion has
been calculated within a Gaussian fluctuation approximation
for arbitrary coupling strengths v [39] and exhibits a nega-
tive curvature with a = 0.06 right at unitarity [59]. Combined
with the value of ¢; from the e expansion, this leads to the
estimate ¢, = 0.02 for the unitary gas in three dimensions. As
a result, the pair size that follows from Eq. (3.4) turns out to
be §,=2.62/kp. It is remarkable that this value essentially
coincides with that inferred from the spectroscopic definition
in Ref. [18] or the width of the pair wave function in Ref.
[54]. 1t should be noted. though, that apart from the uncer-
tainties in the precise values of ¢ ,, there is a certain amount
of arbitrariness in defining a “pair size.” both from the rf
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TIG. 2. (Color) Density plots of the spectral function A(k,=) at temperature T=0.01T; for the interaction strengths v=1/(kga)=—1.0.
+1 [rom left o right. The white horizontal lines indicate the chemical potential z. The gray lines are [its to the maxima of A(k, &) using Eq.

4.1).

spectrum or from the g-dependent superfluid response via
[q. (3.4). This is related to the precise choice of the prefactor
both in the spectroscopic definition and in Bq. (3.4), where
the Pippard length has been used as a reference scale. The
naive conclusion that the unitary gas has nonoverlapping
pairs in its ground state should therefore be viewed with a
great deal of caution.

The fact that the coefficients ¢, of the next-to-leading
order Lagrangian (3.3) have a comparable magnitude at uni-
tarity has a further interesting consequence. Indeed, these
coefficients determine the magnitude of the Weizsicker in-
homogencily correction [60,61]

72 [Vn(x)]?
gw(x):b—l n(x)]

2m  n(x) =

to the ground-state energy density of the unitary Fermi gas
[57]. The associated dimensionless coefficient & is related to
the ¢° corrections of the density response [25]

X(q)=x(0){1 w(’i—q)}..}_

\ HIC )

(3.7)

For the unitary Fermi gas, the coefficient b is again deter-
mined by the next-to-leading order Lagrangian (3.4) via [57]

T \
i L—f[\fzg(r))]»*(?c:—c, ). (3.8)
3 2 /

Using our estimates for ¢, ,, this leads to b=0.22, a value
that is almost one order of magnitude larger than the result
H9=1/36=0.028 which is obtained for an ideal Fermi gas.
The unitary gas is therefore remarkable in the sense that its
kinetic energy density ¢y, (x)~ &0)n”*(x) is reduced by the
Bertsch parameter &(0)=0.36 compared with the noninter-
acting gas, yet the coefficient » of the Weizsidcker inhomo-
geneity correction is strongly enhanced [57].

IV. NUMERICAL RESULTS

In the following, we present numerical results for the
spectral function A(k.e) and the rf spectrum /(w) which can

be compared with experimental data. The numerical calcula-
tions are performed in two steps. [irst, the Matsubara
Green’s function G(k,,) is calculated by solving the self-
consistent [iqs. (2.10)=(2.15). In a second step the spectral
function A(k,¢) is calculated from Liq. (2.17) by analytical
continuation as described in Sec. IT B. For this purpose we
employ a maximum-entropy method that is described in Ap-
pendix A. BEventually, the rf spectrum /(m) is calculated by
evaluating momentum integral (2.30) numerically.

A. Spectral functions

Our numerical results for the spectral functions A(k,¢) in
the experimentally relevant range of interaction strengths v
=—1. 0, and +1 are shown in I'ig. 2. The associated tempera-
ture is 7=0.017, i.e., deep in the superfluid regime in all
three cases. Lvidently, both at p=-1 and at unitarity v=0. a
BCS-like quasiparticle structure appears with an excitation
gap whose minimum is at a finite value of the momentum.
On the BEC side, at v=+1, the backbhending in the dispersion
curve has apparently disappeared. This is consistent with the
expected existence of a critical value © >0, beyond which
the fermionic excitations have their minimum at k=0. From
our numerical data on the momentum dependence of the fer-
mionic excitation spectrum, the associated critical coupling
constant is v,=0.8. This is about a factor of 2 larger than the
mean-field prediction, which is determined by the zero cross-
ing of the chemical polential. The fact thal v, occurs in the
regime where the chemical polential is already negative has
been noled before in an e=4—d cxpansion by Nishida and
Son [62]. Extrapolaling their onc-loop result to e=1 gives
y=—0.5e; al the critical coupling v, in rather good agree-
ment with our result w,=-0.54¢. In population imbalanced
gases the change in the curvature of the fermionic excitation
spectrum at v, determines the critical coupling of the split-
ting point S at which the continuous transition from a bal-
anced to an imbalanced superfluid on the BEC side splits
into two first-order transitions [63].

Empirically, the form of the quasiparticle dispersion rela-
tions may be extracted from the peak position of the spectral
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TABLE I. Effective mass m” and Hartree shilt U of the quasiparticle dispersion relations al T7=0.01T
obtained by fitting Eq. (4.1) to the peak maxima of the spectral functions in Fig. 2.

Particle Hole
v Mmley Aley m*/m Ulep m*/m Ulep
=l 0.73 0.14 1.05 -0.26 112 -0.17
0 0.36 0.46 1.00 -0.50 1.19 -0.35
+1 -0.93 1.10 1.02 -042 1.28 -0.37

function. It turns out that these peaks fit reasonably well to a
modified dispersion

- I m 2
E{\':ﬂ+\/(ﬁsk+(/—,u +A? (4.1)
\ ¢

of Bogoliubov quasiparticles, in which the effective mass m"
and an additional Hartree shitt U are used as fit parameters.
The associated values for m”~ and U that follow from the
spectral functions shown in I'ig. 2 are summarized in Table 1.
It is interesting to note that both the masses and the Ilartree
shifts are different for particle and hole excitations. The
particle-hole symmetry of the standard BCS description of
the quasiparticle dispersion is therefore broken at these large
coupling strengths. A second feature of interest is that the
hole dispersion relation Lf's:' starts to deviate from BCS form
(4.1) only for momenta k= 1.5k, when the spectral weight
of the hole peak is smaller than 0.5%.

Using QMC methods, the particle dispersion relation at
unitarity and 7=0 has been calculated previously by Carlson
and Reddy [64]. Our values for the Hartree shift I/ and the
effective mass m" of the particle dispersion relation agree
reasonably well with the QMC values. Experimentally, the
Hartree shift I/ was extracted recently from rf measurements
by Schirotzek ef al. [65]. Tn this work, the measured peak
positions of the rf speetra were fitted with the peak position
obtained from BCS formula (2.31) including an additional
Hartree shift: o3 =4[\(u—1)7+ 1542 16— pu+T14]/3. 1
we apply this method to our calculated rf spectra, we obtain
different values for U than those listed in Table I. In particu-
lar, this method gives U=-0.28,-0.52,-0.22 for v=-1.0,
+1 at 7=0.01Tp and does not tuke the cffective mass into
account (we note that the rf spectrum is only sensitive (o the
hole cxcitation part of the spectral function). This discrep-
ancy is probably duc (o the fact that the assumption of hav-
ing sharp quasiparticles is nol reliable in this regime.

Tt is evident from the quantitative form of the spectral
functions that the parametrization of the fermionic excita-
tions by a modified dispersion (4.1) is not an adequate de-
scription of the excitation spectrum because of the rather
strong broadening of the quasiparticle peaks even at very low
temperatures. The physical origin of this broadening is the
residual interaction between the quasiparticles that follows
from the Hamiltonian in Eq. (2.33). As shown in Appendix
B, this interaction leads to a finite width of the spectral func-
tions even at 7=0, except near the minimum of the disper-
sion curve for the particle excitations and close to the maxi-
mum of the dispersion for the hole excitations. Here, the

quasiparticle lifetime broadening has to vanish because there
are no available final states into which it may decay. I'ocus-
ing on the interaction ol the quasiparticles with the collective
Bogoliubov- Anderson mode, which is the dominant mecha-
nism for decay near the minimum (maximum) of the particle
(holc) dispersion curve, it is straightforward (o sce that there
is actually a finite interval in momentum space where the
spectral width vanishes identically. This width is determined
by the kinematic constraint that that the quasiparticle decay
by emission of phonons is possible only if the group velocity
dE,/dk of the fermionic excitations becomes larger than the
sound velocity c,. In fact a similar situation appears for a
hole in a Néel-ordered antiferromagnet, whose spectral func-
lion is sharp as long as its group velocity is below the spin-
wave velocity of antiferromagnetic magnons [66]. The fact
that our numerically calculated spectral functions A(k, &) ex-
hibit a finite broadening at the lowest temperature 7
=0.01Ty even near the dispersion minimum is probably re-
lated bolh (o the numerical procedure of evaluating A(k, &)
using the Maxent technique which can never give rise to
perfectly sharp peaks, but also to the self-consistent structure
of our Lullinger-Ward formulation. Indeed, in a diagram-
matic language, the latter implies summation of diagrams
with identical intermediate states for fermions, which—in an
exact theory—are excluded by the Pauli principle. Unfortu-
nately, to our knowledge, there exist no analytical results on
the broadening of the Bogoliubov quasiparticles beyond the
perturbative treatment outlined in Appendix B. Experimen-
tally, this question may in principle be resolved by studying
momentum-resolved rf spectra that have recently been ob-
tained by Stewart ef al. [19]. Unfortunately, at present, ex-
perimental data on spectral functions are available only near
the critical temperature of the superfluid transition, where the
finite lifetime arises due to the scattering with thermally ex-
cited quasiparticles.

To discuss the situation at finite temperature, we plot the
spectral function A(k,e) at unitarity for different tempera-
tures above and below 7' in I'igs. 3 and 4. It is interesting to
ohserve how the two BCS-like quasiparticle peaks evolve
with increasing temperature and finally merge into a single
excitation structure with a quadratic dispersion at tempera-
tures around 7.. Note, however, that the spectral peak in the
normal phase is shifted to negative energies compared to the
free fermion dispersion relation s,=h°k?/2m. This Hartree
shift is responsible for the observation of shifts in experi-
menlally measured rf spectra above 7. which will be dis-
cussed in detail below. The observation of such 4 shifl in the
r[ spectra in the normal state is therelore not neeessarily a
signature of pscudogap clfcets.
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TIG. 3. (Color) Density plots of the spectral function A(k,e) at unitarity [v=1/(kpa)=0] for different temperatures. I'rom top left to
boltom right: T/Ty=0.01, 0.06, 0.14, 0.160(T,), 0.18, and 0.30. The whilte horizontal lines mark the chemical polential . At temperatures
smaller than the superfluid transition temperature 7, two quasiparticle structures with a BCS-like dispersion can be seen. The width of the
spectral peaks is of the same order as the quasiparticle energy. With increasing temperature the two branches gradually merge into a single
quasiparticle structure with a quadratic dispersion above T,. Note, however, that the quadratic dispersion is shifted to negative frequencies
compared to the bare fermion dispersion relation. This llartree shift is of the order of /=—=0.46¢, and is essentially respansible for the

shilted rf spectra in the normal phase in Fig. 6.

Tinite temperature QMC calculations of the spectral func-
tion at unitarity by Bulgac et al. [67] indicate the presence of
a gapped particle excitation spectrum of form (4.1) also

FIG. 4. (Color online) The spectral function A(k,&) as a func-
tion of ¢ for selected fixed values k at unitarity v=1/ (kpa)=0 and at
criticality 1/1+=0.160(T.). The sclected valucs of the wave number
f are represented by the colors of the lines corresponding to the
peaks from left to right: k/k,=0.00 (black), 0.52 (red), 0.77 (or-
ange), 1.00 (green), 1.26 (cyan), 1.51 (blue), and 2.02 (magenta).
The different methads for calculating the spectral function are dis-
tinguished by the line styles: maximum-cntropy mcthod (solid
lines) and Pudé approximation (dashed lines).

above the critical temperature, which is not found in our
approach. More generally, it is evident [rom the spectral
functions of the unitary gas above 7, which are shown in
Fig. 3 that a simple pseudogap ansatz for the spectral func-
tion [69] is not consistent with our results. As can be seen
from the lower three graphs in Fig. 3, our approach leads to
a single, broad, ungapped excitation peak with a quadratic
dispersion at temperatures 7> T, instead of two excitation
branches with a gapped BCS-like dispersion as expected
from the pscudogap approach, In particular we do not ob-
serve a strong suppression of spectral weight near the chemi-
cal potential.

Apart from the dominant peaks discussed above our spec-
tral functions show some additional structures that have
much smaller weight, however. Specifically, at unitarity and
temperatures above T, a small second peak is visible for k
=k in I'ig. 3. At =031 this residual peak contains ~17%
of the speetral weight, The situation is similar on the BEC
side of the Feshbach resonance at v=1, where above T, a
second peak at negative energies is present for k= k;, with a
spectral weight of ~22%.

Recent experiments by Stewart et al. [19] have succeeded
to perform rf spectroscopy in a momentum-resolved manner
from which one directly obtains the hole spectral function
A_(K,e) as a function of both momentum and energy. A
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FIG. 5. (Color) Density plot of the holc part of the spectral
function A_(k.e) at unitarity v=1/{k;a)=0 and 7/T,=0.150
slightly below T, (left) and in the BIC regime at v=1/(kpa)=+1
and T/Tz=0.207 al the superfluid transition temperature (right).
The white horizontal line marks the chemical potential . The color
scheme is the same as in Figs. 2 and 3.

quantitative comparison with our calculated speetral func-
tions is difficull, however, since the measured specetral func-
tions involve an average over the inhomogencous densily
profilc of the trapped atoms. Nevertheless, as shown in Fig.
5. the qualitative structure of our hole spectral function of the
uniform system near the critical temperature is similar to that
observed experimentally. To separate the intrinsic from an
inhomogeneous broadening in a trap requires combining mo-
mentum and local reselution, which is currently investigated
in the group at JILA. Experiments of this kind would allow
to distinguish between different models for the spectral func-
tions, in particular for the “pseudogap™ phase immediately
above T,. The existence of preformed pairs in this regime is
often described by sharp spectral functions of form (2.24)
with a nonvanishing gap parameter A,,. As shown recently
by Chen et al. [70] and Dao et al. [71], this assumption is
also consistent with present experimental data due to the
inhomogeneous averaging associated with the position-
dependent gap parameter in a trap.

B. rf respouse

In Fig. 6 we show the caleulated rf spectra together with
the locally resolved experimental data of Schirotzek ef al.
[65] from MIT. The measured rf data shown in Fig. 6 have
been correceted for the small mean-field (inal stale interaction
cnergy, which allows for a dircet comparison with our caleu-
latcd spectra. For a detailed comparison we must lake the
finite experimental resolution into account, however. Schi-
rotzek et al. use an approximately rectangular f pulse with a
length of T=200 us in order to transfer atoms to the empty
hyperfine state. Thus, the Fourier spectrum of the radio-
frequency source has a finite width and the calculated spectra
obtained using Eq. (2.30) need to be convolved with

sinc?(wT/2), ie.,
Iexp(m) = j daoy' Il — ' )sincX (' T/2). (4.2)
The finite experimental resolution thus leads to a slight
broadening and a small shift to higher frequencies of the
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FIG. 6. (Color online) Comparison of the calculated tf spectra at
unitarity with the experimental data of Schirotzek et al. [65] from
MIT at different temperatures 7. Our numerical resull is shown by
the red solid line. The experimental data are represented by open
diamonds connected by straight thin dashed lines. Apart from ad-
justing the peuk heights, no (iting paramelers have been used.

calculated of spectra. At unitarity and T=0.017,, the broad-
ening is ~0.07e, and the shift ~0.01e,.

As can be seen in Fig. 0, the rf spectra in the homoge-
neous system show a single peak that is shifted compared to
the bare transition frequency, which is set to w=0 for con-
venience. Apart from slightly overestimating the width of the
spectral lines, our numerically obtained spectra agree very
well with the experimental data. Note that no fitting param-
eters have been used apart from adjusting the absolute
height.

In the first rf measurements by Chin et al. [10] a second-
ary peak at the bare transition frequency has been observed
and attributed to the presence of unpaired atoms. In these
experiments, however, the measurement of the spectra in-
volved an average over the inhomogeneous density profile of
the trapped atoms. Since more recent locally resolved rf mea-
surements [ 17] did not show signs of an atomic peak, it is
likely that these peaks either originate from the low density
regions at the edge of the atomic cloud or are an effect of the
strong final state interactions.

It is important to notice that there are essentially two con-
tributions to the rf peak shift. The first one is due to pairing
corrclations, which arc particularly important in the super-
fluid phase and give the dominant contribution o the peak
shift on the BEC side of the crossover, where the [ermions
are paired in two-body bound stales. The sceond contribution
comes [rom Hartree-type correlations. The Hartree contribu-
lion dominales the peak shift in the normal phase, where
pairing correlations are small. Furthermore, it also dominates
in the BCS regime, since the gap is exponentially small
whereas the Hartree contribution scales linearly with ka.
Together with the discussion of the residual interaction be-
tween the quasiparticles in Sec. II C this implies that BCS
formula (2.31) for the rf spectrum in weak coupling is com-
pletely misleading.

G12-12

143



D. PAPERS

SPECTRAL FUNCTIONS AND RF RESPONSE OF...
V. DISCUSSION

The resulls presented above on the speetral [unclions and
the associated rf spectra of ultracold fermionic gases near a
Feshbach resonance have two major aspects. First of all, they
provide a guantitative description of recent cxperiments on
the excitation spectra of the near unitary gas. The theory
covers the complete range of temperatures from the super-
fluid near zero temperature to the anomalous normal state
above T. which is characterized by strong pairing fluctua-
tions. From a theoretical point of view, our results are of
relevance as a simple example, where the standard quasipar-
ticle description of BCS theory is strongly modified. As a
result of interactions between quasiparticles and their cou-
pling to the collective Bogoliubov-Anderson phonon, the
spectral funclions acquirc a finitc broadening cven at zero
temperature excepl for a small range of momenta around the
dispersion minimum (maximum) of the particle (hole) exci-
tations. ElTcctively, the fermionic excitations along the BCS-
BEC crossover arc nol a Fermi gas as in BCS theory but arc
described by a Fermi-liquid picture. The spectral [unctions
therefore have vanishing width at zero temperature at a
sharply defined surface in momentum space, where the exci-
tation energy has its minimum [68]. Within a perturbative
calculation around the BCS limit, this has been shown ex-
plicitly in Appendix B. More generally, it is expected to be
valid for arbitrary coupling because the phase space for qua-
siparticle decay vanishes near the dispersion minimum. We
are not aware, however, of a general proof of this statement
for the simple model (2.1) of attractively interacting fermi-
ons studied here.

As discussed in Sec. 1l C, the finite lifetime of the fermi-
onic excitations at small momenta is particularly important
for the onset of the rf spectra shown in I'ig. 6. In the BCS
picture. where the spectral funcrion has vanishing width at
arbitrary momentum K. the rf spectra would exhibit a sharp
onset. As argued above, however, the fermionic excitations
near k=0 have a finite width even at 7=0 up to the critical
coupling v, because they are far away from the maximum of
the hole dispersion. As a result, the rf spectra have no sharp
onset in agreement with the experimental observation. A fur-
ther important aspect of our results is that the naive descrip-
tion of the BCS-BEC crossover problem by an extended
BCS ansatz |4], that appears to work qualitatively at least for
the ground state, is completely inadequate as far as dynami-
cal correlations are concerned. In particular, the simple form
of the spectral function in Eg. (2.24) that lollows [rom a
naive BCS theory is never valid because the pure pairing
Hamiltonian on which it is based misses both the broaden-
ing, c.g., duc o colleclive excitations, and the large contri-
bution (o the contact cocflicient due to noncondensed close
pairs. A rather surprising conclusion of our work is that the
next-to-leading terms in the effective-field theory for the
Bogoliubov-Anderson mode allow us to give a many-body
definition of the pair size which agrees quite well with the
result found experimentally from the half width of the rf
spectrum.

There are of course a number of open problems which
should be addressed in future work. In particular, it would be
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interesting to understand to which extent the normal phase
above T can be understood in terms of a pseudogap model,
which has been applied with reasonable success to under-
stand angle-resolved photoemission spectroscopy experi-
ments in the context of high T, cuprates [69]. As far as
pseudogap effects are concerned, our spectral functions close
to T, show a different behavior than previous non-self-
consistent calculations [72—74] and more recent QMC calcu-
lations [67], which exhibit a pseudogap. Quite generally it is
known that non-self-consistent calculations favor pseudogap
bhehavior, whereas self-consistent calculations  suppress
pseudogap effects (cf. [75] and references therein). We em-
phasizc, however, that in the context of ultracold gascs, the
available momentum and energy resolulion in experiments al
present is not good cnough to map out the spectral [unction
in sufficient detail. Apart [rom the rather good agreement
between the observed 1l speetra and our results [or the un-
derlying spectral function, the conflidence that our sclf-
consistent Luttinger-Ward approach to the BCS-BEC cross-
over gives quantitatively reliable results is supported by the
very precise description it provides for thermodynamic prop-
erties (see the discussion at the end of Sec. IT A) much better
than non-self-consistent approaches. It is an open problem to
determine spectral functions, e.g.. from QMC data, at the
level of accuracy that has now been achieved for equilibrium
properties.
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APPENDIX A: MAXIMUM-ENTROPY METHOD

In order to solve Eq. (2.17) explicitly for A(k,e) the in-
tegral is discretized. We chose equally spaced energies € in
the inner interval —10g,<e¢<+10g, and logarithmically
spaced energies in the outer regions —10%, < &< —10s and
+108p < e<+10%. We evaluate the integral by using the
trapezoid tformula. On the right-hand side of Eq. (2.17) the
Matsubara Green's function G(k,w,) is given for selected
Matsubara frequencies wfj” on a logarithmic scale, which are
ordered according to 0 < wf[“ << < w][,[m“‘] ~ 10%;.. In
this way, Eq. (2.17) is transformed into a set of linear equa-
tions which can be solved by standard numerical methods.

Unfortunately, the linear equations are nearly singular
even if the number of discrete energies ¢ (number of un-
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known variables) is smaller than /. (number of equations).
Many eigenvalues of the linear matrix are very close to zero,
so that small numerical errors in the Matsubara Green’s func-
tion G(k,m,) are enhanced exponentially. As a result, the
spectral function A(K, &) cannot be calculated by this simple
method.

In order to improve and stabilize the method we need
some prior information. We assume that a smooth back-
groundlike prior spectral function Ag(e) is given. We define
the entropy

S(k)= jda{A(k,s] —Agle) —A(k,e)n[A(k,e)/Ay ()]},
(A1)

where the integral is evaluated numerically by the trapezoid
formula tor the above defined discrete energies ¢. The spec-
tral function A(Kk,¢) is obtained by maximizing the entropy
(Al) for given wave vectors k where Eq. (2.17) is used as a
constraint. This procedure is known as the maximum-entropy
method and can be derived by Bayes inference [76]. It has
been applied successfully for calculating the spectral func-
tion A(K,e) from the Matsubara Green's function G(K,m,) in
Monte Carlo simulations [42].

In order to implement the constraints we define the chi
square

!

max

KT = -—2 Ja(k,)Fro?, (A2)
max /=1
where
Alk.g
d(k,m,)=— iﬁmn|:g(k,mn) - f de —”}
—ihw,+e—pu
(A3)

is a dimensionless difference and o is a dimensionless stan-
dard deviation. Minimizing [ x(k)]* we recover the conslraint
cquations (2.17).

By solving the scll-consistent equations of See. I we cal-
culate the Matsubara Green’s function G(k,w,) with a rcla-
tive accuracy of aboul 107, For this rcason, we expect
[k, w,)|~10~F and chose the fixed value =103 for the
standard deviation. As a result we observe y(k)~1 in our
numerical calculations where variations occur by a factor of
10 for different wave vectors k.

Using Bayes inference [76] it can be shown that

O(k) = S(k) - %[x(k)]2 (A4)

is the functional which must be maximized by variation in
the spectral function A(k.c) for every fixed wave vector k.
The related necessary condition is

d00) i
ke (45)

which implies the equations to be solved numerically for
A(k.e). In Eq. (A4) a is a Lagrange parameter which
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balances the weight hetween entropy (Al) and constraints
(A2). T'or @=0 we recover constraint equations (2.17). On
the other hand, in the limit o — ® we obtain the prior spectral
function A(K,s)=Ag(e). Thus, a is a parameter which must
be adjusted to an intermediate value in order to obtain an
optimum result for the spectral function A(k.s). For low
values @« the constraints are overweighted. A more accurate
result is obtained for A(k,&); however, instabilities may oc-
cur. On the other hand. for higher values « the entropy is
overweighted. A more stable result is obtained which, how-
ever, may be less accurate.

We have defined entropy (Al) and chi square (A2) as
dimensionless quantitics which arc ol order unity. For this
reason, we expectl thal ¢ must be of order unity, loo. Actu-
ally, we find that @=1 is an oplimum choicc in most arcas of
the phasc diagram cxcept [or low temperatures. For this rea-
son, we use a¢=1 in most cases. However, for low tempera-
lurcs T=<0.57, the spectral function A(K, &) is very closc Lo
zero in the gap region. Since the numerical algorithm con-
siders the logarithm In[A(k,e)] an instability occurs. Hence,
in this latter case for low temperatures we choose a=100 in
the crossover and BEC regime, and a=1000 in the BCS
regime.

For the success of the method an appropriate choice for
the prior spectrum Ay(e) is very important. First of all the
prior spectrum Ay(c) should be a smooth function of the
energy ¢ which models a broad background spectrum. The
special form of entropy (A1) does not require Ay(c) to be
normalized. Constraint equations (2.17) will determine the
spectral function A(K.¢) for small and intermediate energies
in the inner interval —10e; < e =<+10g;. However, the con-
straints will provide less information in the tail regions e
<€ —10g; and e3> +10e. Tor this reason our method is con-
siderably improved if the prior spectrum Ay(e) already shows
the correct wings for £ — + oo,

Investigating the Matsubara Green’s function for large
Matsubara frequencies @, — + o we obtain the asymptotic
formula

Gk .w,) = (—ihe,) " + al—iho,) 7 + wb(- ihm,) ™,
(AG)

where ay=—(g,—u) and b=(2/377)(28,)%. The analytic
conlinuation by substitution fw,—fiz—u yiclds the
asymplotic complex Green’s [unction

G(k,2) = (=hz) ' = ay(= k) 2+ wh(-h2) 7 (A7)

for |z]—ce. Eventually from Eq. (2.27) we obtain the
asymptotic spectral function A(k.c)=b@(c)c™? for ¢
— + oo, Thus, the weight of the asymptotic power law of the
spectral function is described by the constant factor b which
is real. positive, and independent of k.

A prior spectrum which meets all these requirements and
which shows the correct wings is given by

[e24+ ]+

Agle) =b At AT

(A8)

The denominator represents a modificd Lorentz spectrum
with a nontrivial exponent. In order to have a smooth func-
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tion, we choose a large spectral width y=20eg. The specific
form of the numerator and the exponent of the denominator
guarantee the correct wings for € — + o in leading order. It
turns out that the prior spectrum Agy(e) can he chosen inde-
pendent of K.

Tn our implementation of the method we solve Eq. (A5)
numerically by using Bryan’s algorithm [77]. The rectangu-
lar matrix of the discretized constraint equations (2.17) is
decomposed by using a singular-value decomposition. Even-
tually we observe that only a small fraction of about 15-20
eigenvalues provide essential contributions for the spectral
function A(k,s).

The maximum-cntropy method must be applicd for cach
value of the wave veclor k in order (o oblain the complete
specetral [unction A(k, e). We [ind that the parameters of the
method o, a, ¥, and b can be chosen independent of k. We
obscrve that entropy (Al) together with the prior speetrum
(A8) guarantees a posilive speetral function A(K,&) > 0. Fi-
nally, in our numerical calculations we observe that the di-
mensionless difference (A3) has the same order ~10~" over
the whole range of Matsubara frequencies w, and for all k
which is essential for the quality of our implementation of
the maximum-entropy method.

APPENDIX B: LIFETIME OF FERMIONIC EXCITATIONS
AT ZERO TEMPERATURE

In this appendix we outline an analytical calculation of
the lifetime of fermionic excitations at zero temperature,
which is perturbative in deviations from the exactly soluble
reduced BCS Ilamiltonian (2.32). lor arguments that indi-
cate a breakdown of well-defined fermionic excitations in the
opposite BOC limit see [78].

Quite generally a quasiparticle description of the BCS-
BIC crossover problem requires that the low lying excita-
tions above the exact ground state with energy E; can be
described by a noninteracting gas of quasiparticles,

=1+ 2 wblb + X B0, (B1)

4 P

The first term accounts for the Bogoliubov-Anderson
phonons with linear dispersion @y=c,q for momenta  that
are small compared to the inverse healing length. The second
term describes the fermionic excitations which have a
gapped speetrum Ek. The crucial requirement that the lile-
time of the quasiparticles by [ar cxceeds their energy is trivi-
ally [fulfilled for the bosonic cxcitations. In the weak-
coupling BCS regime their lifetime is actually infinite up to
an cnergy 2A, which is necessary for a deeay into (wo [er-
mionic quasiparticles. On the BEC side they can decay
through nonlinear corrections to the quantum hydrodynamic
Lagrangian (3.2). Provided that the curvature parameter «
introduced in Sec. III is negative, this leads to a width ~g”°
by Beliaev damping, which is negligible in the ¢ >0 limit.

Regarding the fermionic quasiparticles, their lifetime
turns out to be infinite near the dispersion minimum despite
the fact that their excitation energy becomes of the order of
the Fermi energy in the experimentally relevant regime near
a Feshbach resonance. At unitarity, for instance, the zero-
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temperature gap is A=0.46g [21] in very good agreement
with recent quantum Monte Carlo results [79]. The fermionic
spectral function should therefore exhibit a sharp peak near
the dispersion minimum at zero temperature. Indeed, the rel-
evant process that limits the lifetime close to the dispersion
minimum is the emission of a Bogoliubov-Anderson phonon
with momentum g. Due to energy and momentum conserva-
tion, this process must obey the kinematic constraint

i (B2)

Ex=E\_q +clq

where K is the initial momentum of the fermionic excitation
with dispersion Ey=u+(e,—x)*+A? and ¢, is the sound
velocity. Equation (B2) implies that the emission of a phonon
is impossible as long as the group velocity of the fermionic
excitations is smaller than the sound velocity |dE,/ k| <c,.
This condition is always true for a small interval of momenta
around the dispersion minimum implying that the lifetime of
a fermionic excitation is infinite in this region.

In the following we show briefly how the kinematic con-
straint (B2) arises, if the residual interaction (2.33) between
BCS quasiparticles is taken into account perturbatively. Our
starting point is a reformulation of BCS-BEC crossover
[lamiltonian (2.1) in terms of BCS quasiparticle operators.
The reduced BCS llamiltonian (2.32) can be diagonalized
exactly [43,80] and takes the form

cs 3
Hyeg= E€ + E Ey gty
k.o

(B3)

It has the form of the more general quasiparticle [Tamiltonian
(B1), but is actually valid at arbitrary momenta and energies.
However, it misses completely the Bogoliuhov-Anderson
phonons. The quasiparticle operators . are related to the
fermionic operators cy, via the usual Bogoliubov transfor-
mation

(B4)

- -
Crp = Uy . Uk »

= UkClL + Uy, (B3)
with the coefficients u,=[1+(g,—p)/(Ex-p)]/2 and v
=[1=(eg—p)/(Ex—)]/2. The ground state is determined by
the condition m,|GS)=0. Before proceeding, we mention
that the lifetime of the fermionic excitations is directly re-
lated to the lifetime of the BCS quasiparticles, since the fer-
mionic Green’s [unction G(k, ) can be cxpressed in terms
of the BCS quasiparticle Green’s [unction Gk, @) as

Gk, 0) = 26, (k,0) — v3G_ (- k.— o) (B6)

using the Bogoliubov transformation defined in Egs. (B4)
and (B5). Note that the second term in Eq. (BG) leads to the
fermionic hole excitation spectrum with dispersion Ei}_} [see
Eq. (2.25)], even though the excitation energies of the BCS
quasiparticles are strictly positive. The residual interaction
(2.33) describes the interaction between BCS quasiparticles
and their coupling to the collective Bogoliubov-Anderson
mode. Explicitly, Eq. (2.33) gives rise to three different types
ot quasiparticle interactions I;"ﬁzl;'40+l-:f3|+1:123 that have
heen discussed previously, e.g., in nuclear physics [81],
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corresponding o four-wuve annihilation, quasiparticle decay,

lifctime of a quasiparticle excilation al zero temperalure arc
the decay into three (or more) quasiparticles and the emis-
sion of a Bogoliuboy-Anderson phonon or a combination
thereof. The decay into three quasiparticles via Hy, has a
threshold energy of 3A and is forbidden in a rather broad
range around the dispersion minimum. As discussed above,
the emission of a Bogoliubov-Anderson phonon has a much
less restrictive kinematic constraint and thus is the relevant
lifetime-limiting process close to the dispersion minimum. In
order to estimate this contribution, we need to know how the
BCS quasiparticles couple to the collective Bogoliubov-
Anderson mode. It is important to notice that the phonons in
Hamiltonian (B1) are not independent excitations but are ac-
tually bound states of two BCS quasiparticles. Indeed, as
shown already by Galitskii [82], the vertex function T'(q, m)
for the scattering of an up- and a down-BCS quasiparticle
with total energy  and total momentum q has a pole at
zv)gchql carresponding to the Bogoliubov-Anderson phonon
mode. Within a diagrammatic formulation, the leading order
self-energy contribution to the BCS quasiparticle Green’s
function § corresponding to the emission of a Bogoliubov-
Anderson phonon is thus given by the diagram shown in I'ig.
7. Explicitly, this gives rise to an imaginary part of the re-
tarded self-energy given by

T Pk K"
2m?
X o =Ly _g=cql)

(13 3.0 -
Viak VigrZaald)

Im 3Rk, 0) = J

XRe G_y(k' 0 - Ey_g—Ey_r)
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k—gq,0

q— k”,o

FIG. 7. Dominant contribution to the BCS-quasiparticle self-
cnergy at zero tecmperature.

XRe G (K" w—Ey ¢—Eq )+ '+,
(B10)

where Zj;a(g) denotes the quasiparticle weight of the
Bogoliubov-Anderson mode and V{13 is the bare vertex re-
lated to H3,. The dots indicate two more terms coming from
the imaginary parts of the two BCS quasiparticle Green’s
functions in Eq. (B 10). However, these terms are not impor-
tant close to the minimum of the dispersion curve, since they
give rise to a kinematic constraint related to the decay into
three quasiparticles which has a threshold cnergy of 3A.

Assuming thal the real part of the scll-energy is small, we
cvaluate the self-cnergy al w=E, and extract [rom Eq. (B10)
the kinematic constraint (B2). Thus, in thc weak-coupling
limit, the spectral funetion cxhibits sharp peaks in an expo-
nentially small interval

|k = ki G A

—_—

g (B11)
ky 2upep

around the minimum of the dispersion relation. Extrapolated
to unitarity, the range where no broadening of the spectral
function is expected is lk—k#|£0.lk,,u In the BEC regime,
where the chemical potential is negative and the minimum of
the dispersion relation is at k=0, I!q. (B2) indicates that the
spectral function is sharp for momenta k <mec,.
Interestingly, kinematic constraint (B2) that leads to an
infinite lifetime of the fermionic excitations around the dis-
persion minimum is implicitly also present in our Luttinger-
Ward theory. Indeed, if Eq. (2.11) is reformulated in terms of
mean-field Green's functions, the second term corresponds
exuctly to the scll-cnergy contribution coming [rom the vir-
lual emission ol a Bogoliubov-Anderson phonon due to the
phonon pole of the vertex [unction T'. Again, this process
causes constraint (B2). Nevertheless, our numerics show a
finite lifetime at the dispersion minimum. Apart [rom the fact
that a sharp [caturc in the spectral [unction can hardly be
resolved numerically, we altribute the finite lifetime (o the
self-consistent solution of the equations, since the replace-
ment of bare with dressed Green's functions gives rise to
diagrams that explicitly violate the Pauli principle.
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We study the unitary time evolution of antiferromagnetic order in anisotropic Heisenberg chains that

are initially prepared in a pure quantum state far from equilibrium. Our analysis indicates that the
antiferromagnetic order imprinted in the initial state vanishes exponentially. Depending on the anisotropy
parameter, oscillatory or nonoscillatory relaxation dynamics is observed. Furthermore, the corresponding
relaxation time exhibits a minimum at the critical point, in contrast to the usual notion of critical slowing

down, from which a maximum is expected.

DOI: 10.1103/PhysRevLett.102.130603

Introduction.—Experiments with ultracold atoms offer a
highly controlled environment for investigating open ques-
tions of quantum magnetism. In particular, coherent spin
dynamics in a lattice of double wells has been observed in
recent experiments, which have demonstrated remarkable
precision in tuning magnetic exchange interactions [1].
The ability to observe quantum dynamics over long time
intervals allows one to study strongly correlated states
from a new perspective. The idea is to prepare the system
in a simple quantum state which, in general, is not an
eigenstate of the Hamiltonian and investigate the dynamics
that follows. In the two-spin system, studied in Ref. [ 1], the
dynamics is completely tractable and describes simple
oscillations between a singlet and a triplet state.

In the present Letter, we investigate how the nature of
the dynamics changes in the case of a macroscopic number
of spins interacting via nearest neighbor magnetic ex-
change. Are there new effects, and, in particular, new
time scales, dynamically generated by the complex
many-body evolution? Our starting point for investigating
this question is the spin—% anisotropic Heisenberg (or XXZ)
model on a one-dimensional lattice

Hyyz = J3 (SIS, + SI8%, + ASiSE L (1)
J

avas 7

This model provides a good effective description of two-
component Bose or Fermi systems deep in the Mott-
insulating phase. The interaction parameters are dynami-
cally tunable [2], realizing ferro- (J < 0) or antiferromag-
netic (J > 0) couplings over large ranges of the anisotropy
parameter A = 0. We take the initial state to be a perfect
antiferromagnetic (Néel) state | o) = |11 ... [T]). Such a
state has been achieved with high fidelity by Trotzky er al.
[1] using decoupled double wells. Note that |¢) is the
ground state of the Hamiltonian with A = oo. We study the
subsequent time evolution of the staggered magnetic mo-
ment m, (1) = 3 (= 1)/(4h| S3(1)| ) under the influence
of the Hamiltonian (1) at different values of anisotropy A

0031-9007/09/102(13)/130603(4)

130603-1
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using a numerical matrix-product method [3]. The dynam-
ics is independent of the sign of J/, and the results are valid
for both ferro- and antiferromagnetic couplings. To sub-
stantiate our findings, we consider another, closely related
model, given by the XZ Hamiltonian [see Eq. (5)], which
allows exact calculation of the dynamics and displays
similar behavior.

Theoretical interest in this class of problems, known as
quantum quenches [4-8], has been invigorated by advances
in experiments with ultracold atoms [9]. In particular,
macroscopic order parameter oscillations have been pre-
dicted to occur following a quantum quench in a variety of
such systems [10-13]. We shall see that such oscillations
are also found in the XX Z chain with easy-plane anisotropy
(A < 1) and that they are essentially the same as the
singlet-triplet oscillations observed in the two-spin system
[1]. Accordingly, the oscillation frequency is directly re-
lated to the magnetic exchange interaction J. More impor-
tantly, for nonzero A we find a fundamentally new mode of
many-body dynamics which always leads to exponential
decay of the staggered moment regardless of whether the
short-time dynamics is oscillatory or not. In contrast with
the oscillation frequency, the relaxation time is an emer-
gent scale generated by the highly correlated dynamics and
hence cannot be simply related to the microscopic parame-
ters. We find a diverging relaxation time in the two limits
A — 0 and A — oco. Of particular interest is the relaxation
time at the isotropic point A = 1, which for the ground
state properties marks a quantum phase transition from a
gapless “Luttinger liquid” phase (A < 1) to a gapped,
Ising-ordered antiferromagnetic phase (A > 1). Interest-
ingly, the relaxation time is minimal in the vicinity of the
critical point, where its value is simply determined by the
magnetic exchange interaction 7 ~ 1/J. This accelerated
relaxation stands in remarkable contrast to the notion of
critical stowing down, valid for a small perturbation of the
order parameter from equilibrium. In fact, if the prepared
initial state is close to the equilibrium state, then the

© 2009 The American Physical Society
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relaxation time of the order parameter is expected to
diverge as the system approaches the critical point [14].
We find an opposite trend in the dynamics of the prepared
Néel state. In the long-time limit, our results suggest that
local magnetic order vanishes for all values A < oo,

The solution of the quench dynamics in the XXZ chain
involves, in principle, all energy scales of the Hamiltonian,
and approximative methods become essentially inaccurate
in many cases. The mean field approximation, for example,
leads to contradictions with our results—an algebraic de-
cay for A = I and a nonvanishing asymptotic value of the
staggered moment for A > 1 [13]. Renormalization group
based approaches [5] are restricted to low-lying modes,
which is not sufficient in the present case. The exact
numerical results presented in this study go further than
the predictions of low-energy theories [5].

Before delving into a more detailed study, it is instruc-
tive to consider the so-called XX limit (A = 0) of the
Heisenberg chain (1), which can be mapped onto the
problem of free fermions. In this case, one easily obtains
an analytic expression for the time evolution of the stag-
gered magnetization: m,(1) = J,(2J1)/2 (Fig. 1). Here J,
denotes the zeroth-order Bessel function of the first kind.
Thus, after a short transient time ¢~ J !, the staggered
magnetization displays algebraically decaying oscillations
originating from the finite bandwidth of the free-fermionic
model:

1
At

In general, we are interested in generic behavior of the
relaxation dynamics on large time scales. We adopt a
definition of relaxation which does not rely on time-
averaged equilibration of the observable but instead re-

my(t) ~

cos(2]f = g) 2)

2 4 6 § 10 12 14 16 18

T T T T A0
0.4 (a) XXZ model A=05|
* A=l

FIG. 1 (color online). Dynamics of the staggered magnetiza-
tion m(1) in (a) the XXZ chain and (b) the XZ chain. Symbols
correspond to numerical results, and lines represent analytical
results or fits by corresponding laws (see text). For A = 0 the
typical behavior of the error is illustrated by comparing the
numerical iTEBD result with 2400 retained states to the exact
curve: The absolute deviation from the exact curve is less than
107 for ¢ < Luniway- FOT A # 0 data beyond Trunaway 15 Onitted.

quires exact convergence to the asymptotic value, as de-
fined in Ref. [15]. From this point of view, the oscillations
in the XX limit are characterized by an infinite relaxation
time.

XXZ model.—In the general case of A # 0, the problem
is no longer analytically treatable, and we have to resort to
numerical techniques. We use the infinite-size time-
evolving block decimation (iTEBD) algorithm [3], which
implements the ideas of the density matrix renormalization
group (DMRG) method [16] for an infinite system. The
algorithm uses an optimal matrix-product representation of
the infinitely extended chain, keeping only the dominant
eigenstates of the density matrix of a semi-infinite subsys-
tem, in combination with a Suzuki-Trotter decomposition
of the evolution operator. This method is very efficient for
small #; however, the increasing entanglement under time
evolution [17] requires one to retain an exponentially
growing number of eigenstates. We find that the error of
our calculations behaves in a similar way to that of the
finite-size DMRG algorithm, and the methodology devel-
oped in Ref. [18] can be applied in order to control the
accuracy [19]. By carefully estimating the runaway time
via comparing results with different control parameters
[18], the absolute error in the plotted data is kept below
107°. Using 2000 states and a second-order Suzuki-Trotter
decomposition with a time step 8 ~ 1073/ 7! for large A
and up to 7000 states with 8 ~ 1072/~ for small A, an
intermediate time regime Jt = 16 can be reached, which,
in general, far exceeds the short transient time.

An overview of the results is presented in Fig. 1(a). For
small anisotropies we find oscillations of the order parame-
ter similar to those in the XX limit but with a decay time
decreasing upon approaching the isotropic point A = 1. In
the easy-axis regime A > 1 of the XXZ model, the relaxa-
tion slows down again for increasing A, and we observe
nonoscillatory behavior for A > 1.

Figure 2 focuses on easy-plane anisotropy 0 << A < 1.
The results for 0 < A = 0.4 are well described, for acces-
sible time scales, by exponentially decaying oscillations

my (1) = e 7 cos(wt + o). 3)

The oscillation frequency is almost independent of the

FIG. 2 (color online). Absolute value of the staggered magne-
tization in the XXZ model. Symbols represent numerical results,
solid curves correspond to fits by the exponential law (3), and
straight lines point out the exponential decay.
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anisotropy, while the relaxation time 7 increases with
decreasing A. Logarithmic divergence of the relaxation
time in the limit A — 0 is suggested by the fit shown in
Fig. 4(a). The picture is less clear closer to the isotropic
point. For the range 0.5 = A < 1, there appears to be an
additional time scale after which the oscillations start to
decay even faster than exponentially; simultaneously, the
period of the oscillations is reduced. Therefore, the relaxa-
tion times plotted in Fig. 4(a) are valid only within an
intermediate time window, whose width shrinks upon ap-
proaching the critical point.

For intermediate easy-axis anisotropies 1 = A = 3, the
magnetization does not reach a stable regime within the
numerically accessible time window [Fig. 3(a)]. The com-
plicated behavior of m(7) in this parameter range can be
ascribed to the interplay of processes at all energy scales.
Nevertheless, the numerical data suggest that the relaxation
is fastest close to the isotropic point, in the range between
A = 1and A = 1.6. A simple generic type of behavior is
recovered for large anisotropies A = 3. The numerical
data in Fig. 3(b) indicate exponential relaxation of the
staggered magnetization

my(1) = e=!/7, “)
The relaxation time scales roughly quadratically with A
[Fig. 4(a)]. Oscillations do persist on top of the exponential
decay, but they fade out quickly.

X7 model.—We now turn to the study of the XZ
Hamiltonian

Hyy = JY {28384, + AS3S3, )L (5)

i

In this model, a quantum phase transition separates two
gapped phases at A, = 2, with antiferromagnetic order in
the z direction for A > A_ and in the x direction for A <
A.. Unlike the XXZ model, it can be easily diagonalized
analytically. In order to study the staggered magnetization
of the XZ model, we have to calculate the two-spin corre-
lation function C(n, 1) = (= 1)"(|S{(D)S5(D| ) in the
infinite-range limit, since mZ2(f) = lim,_,,,C(n, t). Using

o
e
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FIG. 3 (color online). (a) Focus on the XXZ chain close to the
critical point A = 1. (b) Comparison of the XXZ chain (sym-
bols) and the XZ chain (dashed lines) for strong anisotropies;
solid lines correspond to an exponential fit. The dynamics of the
staggered magnetization of the XXZ and XZ chains converge
towards each other in the large-A limit.

standard techniques (see [4] and references therein), we
express this two-spin correlator as a Pfaffian, with coeffi-
cients calculated in a similar manner as for the Ising model
in a transverse field [12]. Exploiting the light-cone effect
[17,20], we are able to evaluate numerically the order
parameter dynamics up to times of the order of J¢ =~ 100.
The results are displayed in Fig. 1(b). An analytic expres-
sion can be derived for A = 0, which is given by m (1) =
0.5cos?(J1). For A < A_, exponentially decaying oscilla-
tions

my(r) = e "7[cos?(wi) — const] (6)

reproduce the numerical results at large times very well.
For A = A, the staggered magnetization decays exponen-
tially with no oscillations at large times [Eq. (4)]. In con-
trast to the XXZ model, the oscillation period in the XZ
model diverges at the isotropic point A = A, and the latter
exactly marks the crossover between oscillatory and non-
oscillatory behavior of m(r). We have extracted the re-
laxation times from exponential fits to the numerical data,
showing a clearly pronounced minimum right at the iso-
tropic point [see Fig. 4(b)]. The relaxation time scales as
T A7 for A=A, andas 7 A% for A > A

Apart from the numerical evaluation of the Pfaffian, we
can prove rigorously that in the infinite-time limit the
staggered magnetization vanishes for all anisotropies in
the range A, < A < 0. Indeed, since the Pfaffian reduces
to a Toeplitz determinant at 7— oo [12], we can use Szegd'’s
lemma to calculate the large-distance asymptotics of the
two-spin correlator in the above-mentioned regime, obtain-

ing, for n > 1, lim,_,,C(n, 1) ~ I[(1 + /1 — 4/A%)/2]",
which immediately implies that m(t — c) = 0.
Discussion.—We have analyzed the dynamics of the
staggered magnetization in the XXZ and XZ models fol-
lowing a quantum quench. Our main result is that in both
models there is a dynamically generated relaxation rate
which is fastest close to the critical point. This point also
marks a crossover between oscillatory and nonoscillatory
dynamics of the order parameter. The dynamics of the
magnetic order parameter turns out to be a good observable
for the quantitative extraction of nontrivial time scales. In

(a) XXZ model (b) XZ model
T =

+ relaxation time | /| 5
e period T

critical point

FIG. 4 (color online). Relaxation time 7 and oscillation period

= %’ as a function of anisotropy in the XXZ and XZ models.
Logarithmic or algebraic laws are emphasized by solid lines. In
the region close to the critical point of the XXZ model (indicated
by the question mark), it becomes impossible to extract a

relaxation time from the numerical results.
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general, this is not possible from other observables such as
correlation functions, which reveal interesting features
such as the horizon effect [5] but exhibit only slow relaxa-
tion dynamics [8,19]. Furthermore, we have focused on the
Néel state as an experimentally relevant initial condition.
‘We point out, however, that our results are generic and hold
for all antiferromagnetic initial states with sufficiently
small correlation length [19].

The existence of a minimal relaxation time at the critical
point is opposite to what one would expect from the
phenomenon of critical slowing down of order parameter
dynamics near equilibrium. In the XZ model and the easy-
axis phase of the XXZ model, where the excitation spec-
trum is gapped, the effect can be understood using a phase-
space argument: The relaxation of the initial state is domi-
nated by scattering events between high-energy excitations
introduced into the system through the initial state. As a
result of the existence of the gap, the phase space for
scattering events is restricted. This leads to an increasing
relaxation time as the gap increases, whereas one expects a
minimal relaxation time at the critical point, where the gap
vanishes. The above argument cannot be applied directly to
a quench into the gapless phase in the easy-plane regime of
the XXZ model. Rather, the situation seems to be similar to
a quantum quench of the Bose-Hubbard model from a Mott
insulator to a superfluid phase. In the latter case, oscilla-
tions of the superfluid order parameter have been pre-
dicted, with a damping rate that diverges at the critical
point in one and two dimensions [10].

The absence of a sharp signature of the quantum phase
transition in the XXZ chain prepared in a Néel state is in
contrast with what one has in the case of the initially
prepared ferromagnet with a single kink impurity, studied,
for example, in Ref. [18], where the two phases are char-
acterized by clearly distinct transport properties. We note
that this initial state is much closer to the ground state of
the Hamiltonian and the important energy scales are con-
siderably smaller than in the case of the initial Néel state.
The opening of an exponentially small gap at the phase
transition is therefore more likely to be relevant.

The time evolution of an initial state which is equivalent
to the Néel state has been recently studied by Cramer et al.
[7] in the context of the one-dimensional Bose-Hubbard
(BH) model with on-site repulsion U as the interaction
parameter (the equivalence becomes apparent in the fer-
mionic representation of the XXZ Hamiltonian). Although
the BH Hamiltonian itself and the XXZ model share some
properties in the noninteracting limit, there is one substan-
tial difference: In the BH model at half filling, no equilib-
rium critical point is crossed by changing the interaction U
and the symmetry-broken initial state never becomes the
ground state. Unlike the XXZ model, the oscillations of the
local observable in the BH model appear to be decaying
algebraically for all values of interaction U, and no cross-
over to a nonoscillatory regime has been observed [7].
These differences point out the crucial role of the equilib-

rium phase transition to the reported behavior of the order
parameter dynamics of the XXZ chain.

Experimental results [1] suggest that effects of density
fluctuations beyond second-order magnetic exchange may
be important for reproducing the dynamics in full detail.
This statement is also supported by very recent numerical
results [21]. Nevertheless, we expect that our main result,
the existence of a minimum in the dynamically generated
relaxation time close to the critical point, is insensitive to
these details.
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