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Prüfer der Dissertation : 1. Univ.-Prof. Dr. Folkmar Bornemann

2. Univ.-Prof. Dr. Peter Rentrop
3. Prof. Dr. Yudong Zhu

— New York University, USA (schriftliche Beurteilung)

Die Dissertation wurde am 15.07.2009 bei der Technischen Universität München
eingereicht und durch die Fakultät für Mathematik am 24.11.2009 angenom-
men.



ii



To my wife Xiaohong, our Kuan
and my parents.





Acknowledgements

This thesis would not be possible without the help and support I got from
many sides.

At first I would like to express my deep thanks to Prof. Bornemann. I
first got to know Prof. Bornemann through his four semester lecture series
of “Numerical Mathematics” and the subsequent lecture of “PDE in Image
Processing”. They are by far the best lectures I’ve ever had. As my PhD
advisor he always provides constructive suggestions and valuable insight to
the underlying mathematical problems. At the same time, he encourages
independent work and grants sufficient freedom for trying and developing
my own idea. The most valuable thing I learned from him is how to think
and approach a problem.

The next I want to thank GE Global Research for supporting this
thesis. My daily work is at Imaging Technology Lab, GE Global Research
Center, Garching. This work is entirely embedded into the parallel transmit
project in the lab financed by GE Healthcare. I want to thank the project
supervisors I worked with during this period. I learned a lot from them
— their profound MRI knowledge, project-management skills and social
competence. They are Dr. Mika Vogel (Jan. 08 – Now), Dr. Yudong Zhu
(Jan.08 – Okt. 09), Dr. Hans-Peter Fautz (May. 07 – Dec. 08). Yudong
also keeps providing me helpful discussions and suggestions even after his
leaving GE for his academic career in NYU.

I want to thank Jonathan Sperl, Johannes Haas and Silke Lechner for
reading different parts of the thesis and provided very helpful suggestions.

At last but most important, I want to thank my family, my wife Xiaohong,
our son Kuan and my parents, for all the support Ive received.

iii



iv Acknowledgements



Contents

List of Symbols viii

List of Figures xi

List of Tables xii

1 Introduction 1

1.1 The Problem and Result Overview . . . . . . . . . . . . . . . 1
1.2 The Outline of the Thesis . . . . . . . . . . . . . . . . . . . . 9

I The Transfer from MRI to Sparse Approximation 11

2 Basic Principles of MRI 13

2.1 The Motion of Nuclear Magnetization . . . . . . . . . . . . . . 13
2.2 Nuclear Magnetic Resonance (NMR) Principle . . . . . . . . . 15

2.3 From NMR to MRI, how to enable resolution . . . . . . . . . . 16

2.4 Two Main Tasks: Excitation & Imaging . . . . . . . . . . . . 18

3 Imaging Problem 23
3.1 The Imaging Process . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Recall the problem . . . . . . . . . . . . . . . . . . . . 23

3.1.2 The Fourier transform relationship . . . . . . . . . . . 24
3.1.3 Feasible k space traveling . . . . . . . . . . . . . . . . 26

3.1.4 Accelerating the imaging process . . . . . . . . . . . . 27
3.2 Parallel Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Physical setting and the intuitive motivation . . . . . . 29

3.2.2 Mathematical justification . . . . . . . . . . . . . . . . 31
3.3 Compressed Sensing . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Compressed Sensing(CS) in MRI . . . . . . . . . . . . 34
3.3.2 Combining Parallel Imaging with CS . . . . . . . . . . 36

v



vi CONTENTS

4 Excitation Problem 39

4.1 Spatial Selective Excitation Problem (SSEP) . . . . . . . . . . 39

4.1.1 The spatial selective excitation problem . . . . . . . . . 39

4.1.2 The conventional approach . . . . . . . . . . . . . . . . 43

4.1.3 Two examples . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.4 Accelerating the spatial selective excitation . . . . . . . 49

4.2 Parallel RF Transmit . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Physical setting and intuitive motivation . . . . . . . . 52

4.2.2 The mathematical formulism . . . . . . . . . . . . . . . 55

4.2.3 An example for parallel RF transmit excitation . . . . 58

4.3 Adaptive Sparse Concept . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Single Channel . . . . . . . . . . . . . . . . . . . . . . 60

4.3.2 Parallel Transmit . . . . . . . . . . . . . . . . . . . . . 63

II The Math. – Sparse Approximation 65

5 Sparse Approx. 67

5.1 Definitions, Formal Problem Statement . . . . . . . . . . . . . 69

5.1.1 Definitions and terminology . . . . . . . . . . . . . . . 69

5.1.2 Formal problem statement . . . . . . . . . . . . . . . . 71

5.1.3 Computational complexity . . . . . . . . . . . . . . . . 71

5.2 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Greedy methods . . . . . . . . . . . . . . . . . . . . . . 73

5.2.2 Convex relaxation . . . . . . . . . . . . . . . . . . . . . 76

5.3 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.2 Uniqueness condition theorem . . . . . . . . . . . . . . 80

5.3.3 Optimality condition theorem for OMP algorithm . . . 83

5.3.4 The optimality condition theorem for l1-min. method . 87

6 Subspace Sparse Approx. 89

6.1 Subspace Sparse Approximation . . . . . . . . . . . . . . . . . 89

6.2 The Subspace-OMP Algorithm . . . . . . . . . . . . . . . . . 91

6.3 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3.2 Uniqueness condition theorem . . . . . . . . . . . . . . 106

6.3.3 Optimality condition theorem . . . . . . . . . . . . . . 112



CONTENTS vii

III The Transfer from Math. to MRI 117

7 Single Transmit Channel 119
7.1 Recall the Problem: Adaptive Single Channel . . . . . . . . . 119
7.2 ON Dictionary vs. Overcomplete Dictionary . . . . . . . . . . 121

7.2.1 Theoretical aspect . . . . . . . . . . . . . . . . . . . . 121
7.2.2 Benefit vs. cost — heuristic point of view . . . . . . . 123
7.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3 The Adaptive Energy Threshold Algorithm . . . . . . . . . . . 126
7.3.1 The algorithm of adaptive energy threshold . . . . . . 126
7.3.2 The physical interpretation . . . . . . . . . . . . . . . 127
7.3.3 The equivalence to the normal OMP . . . . . . . . . . 128
7.3.4 The numerical cost . . . . . . . . . . . . . . . . . . . . 128

7.4 The Gradient Design, k Space Traveling Problem . . . . . . . 129
7.4.1 The P kTrav problem . . . . . . . . . . . . . . . . . . . . 129
7.4.2 Step-i: connect the dots . . . . . . . . . . . . . . . . . 130
7.4.3 Step-ii: fast traveling covering the locations-sequence . 131

7.5 The Validation Strategy . . . . . . . . . . . . . . . . . . . . . 133
7.6 Validation Stage I: Sparse Approximation . . . . . . . . . . . 135
7.7 Validation Stage II: Bloch Equation Simulation . . . . . . . . 138

7.7.1 P kTrav and P RF-design . . . . . . . . . . . . . . . . . . . 138
7.7.2 Bloch equation simulation results . . . . . . . . . . . . 141

7.8 Validation Stage III: Phantom Experiments . . . . . . . . . . 144
7.9 The Adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8 Multi-Channel Transmit 151
8.1 Recall the Problem: Adaptive Parallel RF Transmit . . . . . . 151
8.2 Synchronized Sparsity . . . . . . . . . . . . . . . . . . . . . . 152

8.2.1 Dictionary: Gabor type dictionary . . . . . . . . . . . 152
8.2.2 The difficulty . . . . . . . . . . . . . . . . . . . . . . . 153
8.2.3 The idea: subspace atoms . . . . . . . . . . . . . . . . 154
8.2.4 The subspace OMP method . . . . . . . . . . . . . . . 155
8.2.5 The theoretical aspect . . . . . . . . . . . . . . . . . . 155

8.3 Validation Strategy for pTx Setting . . . . . . . . . . . . . . . 157
8.4 Validation Stage I: Subspace Sparse Approximation . . . . . . 158
8.5 Validation Stage II: Bloch Equation Simulation . . . . . . . . 162
8.6 Validation Stage III: Phantom Experiments . . . . . . . . . . 167

9 Comparison and Conclusion 169



viii CONTENTS

Symbol overview

The abbreviations:

Symbol Explanation

(D)FT/(F)FT (Discrete) Fourier Transform/(Fast) Fourier Transform

FOV Field Of View

MR(I) Magnetic Resonance (Imaging)

NMR Nuclear Magnetic Resonance

pTx Parallel excitation/Parallel RF transmit

pRx Parallel receive/Parallel imaging

R Reduction factor

RF Radio Frequency

RRMS(E) Relative Root Mean Squares (Error)

SLI Subspace Linear Independent

SNR Signal Noise Ratio

SSEP Spatial Selective Excitation Problem

STA Small-Tip-Angle

TOL, or ε User tolerance



CONTENTS ix

The symboles

Symbol Explanation

�B The magnetic field. �B : (ξ, t) �→ �M(ξ, t) ∈ �3

Bxy The xy field components. Bxy : (ξ, t) �→ Bxy(ξ, t) ∈ �

B, b ∈ �M (/ RF) The discrete RF waveform as a vector.

C ∈ �, ∼ O(10) the number of the parallel transmit channels (coils)

c ∈ {1, · · · , C} The index of the channels (coils)

Dom(A) Domain/row-space of matrix A,

E , or Ek ∈ �m×n The encoding matrix using k sampling locations k
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Chapter 1

Introduction

1.1 The Problem and Result Overview

This work is an applied mathematics thesis with Magnetic Resonance
Imaging (MRI) as application. It is an interdisciplinary work of applied
mathematics and medical imaging.

Magnetic resonance imaging is a rapidly developed medical imaging
technology. Compared to the other medical imaging modalities, it is
distinguished by its non-ionizing-radiation nature and the greater contrast
between different soft tissues of the body.

The functioning principle of MRI can be divided into two stages.

1. the excitation stage:
In order to be detected at all, the spins of the body need to be excited
at first.

2. the imaging stage:
The excited spins of the body emit electro-magnetic waveform, which
will be detected by the receive coil. The detected signal will be used
to reconstruct the image of the body.

An important task of the excitation stage is the so-called spatial selective
excitation. The goal is to control the spatially distributed spin ensemble to a
given spatial profile. One calls this given spatial profile the target (excitation)
profile.

There are two major reasons for a fast spatial selective excitation process.

1. The model of relaxation-free Bloch equation neglects the relaxation
process. The use of this simplified model leads to the restriction that

1



2 CHAPTER 1. INTRODUCTION

all the solutions based on it are only valid when the excitation duration
is small enough regarding the spin relaxation time. The solutions from
the current conventional method have usually such a long excitation
duration that it is not possible to perform a real 3D spatial selective
excitation, which is relevant for the praxis application.

2. In addition, the hardware realization accuracy is usually limited. By
very long excitation duration, the hardware imperfection could accu-
mulate to serious excitation artifact at the end. This issue is especially
problematic by the high field scanner like 3T or higher.

These two major reasons motivate the acceleration of the spatial selective
excitation problem. (In contrast, the motivation to accelerate the imaging
stage is to reduce the patient scanning duration.)

Physically, the excitation process is controlled by the external magnetic
field, �B : (ξ, t) �→ �B(ξ, t) ∈ �3, where ξ ∈ � is the spatial coordinate,

t ∈ [0, tf ] is the time. The �B is realized by two hardware controls, the
gradient and the RF :

1. The so-called gradient coil associates with the external magnetic field
in z-direction, Bz : (ξ, t) �→ Bz(ξ, t) ∈ �.

The Bz consists of two parts: Bz(ξ, t) = B0 + 〈ξ, g(t)〉

(a) The spatially and temporally constant component (e.g. 1.5T or
3T etc), one calls it B0.

(b) The spatially linearly varying part. Its spatial slope is called the
gradient.

The gradient coil controls the spatial slope of Bz. The gradient as a
function of time is called the gradient waveform g : [0, tf ] �→ g(t) ∈ �.

2. The so-called RF transmit coil controls the external magnetic field in
xy-direction, RF : t �→ RF (t) ∈ �. The spatial local xy magnetic field
Bxy(ξ, t) is the global RF (t) multiplied by a complex valued spatial
sensitivity factor s : ξ �→ s(ξ)�. The spatial function s is called the
sensitivity profile.

Bxy(ξ, t) = s(ξ) · RF (t)

From a physical aspect, the RF waveform control is responsible for that
the spin get flipped (excited) from the ground state (0, 0, 1)T at all. The
gradient waveform control is responsible for the capability to distinguish the
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spins from spatial location to spatial location (the voxels), so that the spatial
selectivity would be possible.

The MRI scanner components, the positioning of the gradient coil and
the RF coil are shown in the fig 1.1.

z

x

y

z

x

y

Figure 1.1: MRI scanner schematic

In a standard MRI scanner, there are a single Gradient control and a
single RF transmit control. An extension of the standard setting is the so-
called parallel RF transmit. By parallel RF transmit, instead of a single RF
transmit control (coil), there are a series of independent RF transmit controls
(coils). They are also called the RF transmit channels. Each RF transmit
coil has different spatial sensitivity profile. All transmit channels share the
same gradient control. Thank to the additional degree of freedom provided
by the parallel RF control channels, one gets the capability to shorten the
excitation duration.

This extension from the standard single channel RF transmit to multi-
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channel parallel RF transmit is schematically demonstrated in the fig 1.2.
The acceleration effect of the parallel transmit setting can be seen by the
comparison of the column A and column B in the fig 1.4.

Figure 1.2: Single channel RF transmit and Parallel RF transmit

The conventional paradigm to design the g(t) and RF (t) for the spatial
selective excitation problem is based on the so-called STA model [PNM89a].
In the STA model the spatial selective excitation problem can be transferred
to a linear representation problem using the Fourier vectors, f k

j = eikξj . The
discretely sampled gradient waveform control is associated with the frequency
parameter of the Fourier vectors k. There is a bijective mapping between g
and k,

k(t) :=

∫ t

tf

g(τ)dτ.

The discretely sampled RF waveform is the representation coefficients of the
according Fourier vectors.

In the conventional paradigm the frequency parameter k is determined
by the Shannon-Nyquist theorem. The discrete values of the RF waveform
are the according Fourier coefficients of the Nyquist sampling locations.

This paradigm is demonstrated in fig 1.3. One starts with the target
profile 1). From the spatial sampling grid of the target profile one determines
the according Nyquist grid (2). Using both (1) and (2) one calculates the
RF waveform as the coefficients of the Fourier vectors (3). The gradient
waveform is calculated as the derivative of the k space sampling trajectory,
(2) → (4). At the end the two control waveforms, RF and gradient, are
validated by the Bloch equation simulation (5) and the phantom experiment
on the MRI scanner (6).
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Target excitation profile
[33x33]

k space sampling [1/cm]
- (grey big dots): Nyquist  locations.
- (blue dot-line):  feasible trajectory.

Gradient waveform [mT/cm]
- (blue line):   x-component
- (green line): y-component

RF waveform [mT]
- (blue line):   x-component
- (green line): y-component

Bloch equation simulation result.
[65x65]

Phantom experiment image.
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Figure 1.3: The conventional paradigma of full Nyquist STA method
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At first sight, this paradigm provides for any target excitation profile
a successful excitation control. However, a problem of this paradigm is that
it fixedly requires covering all the Nyquist sampling locations, which results
a very long excitation duration. By 2D excitation, it makes the resulting
excitation profile very vulnerable to the hardware imperfection. The 3D
excitation is almost impossible due to the relaxation time.

However, the Shannon-Nyquist theorem is a sufficient but not a neces-
sary condition for the successful representation of a target vector with the the
Fourier vectors. We propose an adaptive concept to determine a sparse oblig-
atory sampling locations instead of just completely covering all the Nyquist
sampling locations in k space.

The realization of this adaptive concept leads to the mathematical topic
of sparse approximation. The topic will be discussed in Chapter-5.

Due to the gradient hardware feasibility, an additional step is necessary.
We call this step the fast covering κ problem. The goal is to fast cover
the selected obligatory locations κ ∈ �L in k space by a continuous trav-
eling trajectory with constraints on the traveling velocity and the traveling
acceleration. More details regarding this step is discussed in §-7.4.

At the end, the proposed adaptive paradigm can deliver solutions with
much shorter excitation duration than from the conventional paradigm.
(Compare column-A with column-C in fig 1.4.) More details on the vali-
dation result of the acceleration effect are discussed in §-7.7 and §-7.8.

Our second goal is to combine the adaptive method with the parallel RF
transmit setting to maximize the accelerating capability.

The combination of the adaptive concept with the parallel transmit set-
ting brings additional difficulty. By the single channel setting, each k sam-
pling location associates with a single Fourier vector. In the parallel transmit
setting, due to the fact that the gradient is “shared” by the multiple RF
transmit channels, each k space sampling location associates with several
modified Fourier vectors. Minimizing the number of k sampling locations
leads to the special sparsity requirement that not the number of the Fourier
vectors should be minimized, but the number of the groups of the vectors
associating with the same k locations should be minimized. We call this
special sparsity requirement the synchronized sparsity.

The problem of sparsifying the k space sampling can then be formulated
as a modified version of the conventional sparse approximation problem. We
call it the synchronized sparse approximation or subspace approximation
(Chapter-6). Accordingly, the numerical method is developed as a general-
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ized version of the conventional OMP method. We call it subspace-OMP. The
theoretical analysis of the subspace sparse approximation and subspace-OMP
method are also provided.

With the mathematical tool of subspace sparse approximation, we are
able to successfully integrate the adaptive concept to the parallel RF transmit
setting. One compares the column-B with the column-D,E in fig 1.4. (More
details on the combining the adaptive paradigm with the parallel transmit
setting are discussed in Chapter-8.)

We systematically validated the proposed adaptive paradigm in three
stages. (§-7.5, §-8.3)

I. The validation of mathematic tools — the algorithms for (subspace)
sparse approximation (§-7.6, §-8.4).

II. The validation of the concept via the simulation of the Bloch equa-
tion (§-7.7, §-8.5). A Bloch equation simulation tool are developed to
evaluate the method per simulation.

III. The validation of the practical applicability via the real-world phantom
experiment on the MRI scanner (§-7.8, §-8.6).

Fig 1.4 is a representative overview of the core results of this work. Top-
left is the excitation error vs. duration plot. Usually we don’t really care
about the errors below 5%, because the hardware realization imperfection is
already about 5%. The column A is the conventional non adaptive paradigm
with single transmit channel setting. The column B is the conventional non
adaptive paradigm using a six-channel parallel transmit setting. The column
C is the adaptive paradigm with single channel setting. The column D and
E are the adaptive parallel transmit approach with two difference accuracy
levels. One sees clearly the acceleration benefit of the adaptive solutions.
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1.2 The Outline of the Thesis

The thesis is divided into three parts according to their roles in the
interdisciplinary nature of this work:

In the first part, we transfer from the MRI application problems to
the according mathematical models and problems. We will go through the
two strongly related problems, 1) the acceleration of the imaging stage
and 2) the acceleration of the excitation stage. Our application focus is on
the acceleration of the excitation process. However, since a) the imaging
process and the excitation process have symmetric structure, b) the imaging
process and its acceleration have been more intensively investigated in
the MRI community than the excitation process, it is helpful to put both
problems and their existing methods together in a general common frame.
For that purpose, we will go through the major acceleration methods for
both imaging and excitation processes: the parallel imaging method and
the compressed sensing method from the imaging side and the parallel RF
transmit method from the excitation side. After putting them in a common
mathematical frame, the adaptive concept and its the connection with the
sparse approximation will appear straightforwardly.

The second part is the mathematical part. The goal of this part
is to develop the necessary mathematical tools to realize the adaptive
concept, especially the synchronized sparsity requirement, which is needed
by combining the adaptive approach with the parallel transmit setup.
We will introduce the sparse approximation topic and its state of the art
methods. We will then generalize the original problem statement to the
subspace sparse approximation problem for synchronized sparsity. The
standard Orthogonal Matching Pursuit(OMP) method will be generalized to
the so-called Subspace-OMP to approach the new problem. The according
theoretical analysis will also be extended.

In the third part we transfer from the mathematic tools back to the
MRI application. The developed method is implemented in a Matlab software
package. The validation of the proposed method is performed in two levels:
Computer simulation of the Bloch equation and the real world MRI scanner
phantom experiment on a GE 3T MRI scanner.

The realization of the adaptive concept in the application is divided into
two parts according to the two hardware setups. The first part is the imple-
mentation and validation of the adaptive method without interfering with
the existing accelerating method of parallel RF transmits. This part will be
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introduced in Chapter-7. The second part, and the final target, is to embed
the adaptive concept into the existing parallel RF transmit setting and thus
maximally exhaust the accelerating capability. This part of the work will be
introduced in the chapter-8.

We follow the spirit of the reproducible research [DMR+08]. The Matlab
codes are available as a CD-Rom for the verification and re-usage purpose.
After a short ’Getting-Started Guide’, the user can easily reproduce the
results in this work.



Part I

The Transfer from MRI to
Sparse Approximation

11





Chapter 2

Basic Principles of MRI

2.1 The Motion of Nuclear Magnetization

The nuclear spin is a quantum mechanical property. However, the typical
scale in the application of medical imaging is [mm]. At the scale of [mm] or
larger, one can sufficiently describe collective behavior of the spins macro-
scopically as the magnetization motion in the classical picture.

The macroscopic equation of motion for a collective behavior of the nu-
clear magnetization is the Bloch equation [Blo46][Jay55]. Let’s assume the
initial equilibrium magnetization state is in the z direction �ez, then the Bloch
equation is

�̇M(t) = �M(t)× γ · �B(t) +
M0

z −Mz(t)

T1
�ez +

Mx(t)�ex + My(t)�ey

T2
. (2.1)

Where:

− �ex,y,z are the canonical basis in �3.

− �M ≡ (Mx, My, Mz)
T : t �→ �M(t) ∈ �3 is the magnetization vector.

− �B : t �→ �B(t) ∈ �3 is the vector of the external magnetic field.

− ’×’ is the vector cross-product.

− M0
z is the z-direction magnetization at the initial equilibrium state.

Without loss of generality, we can assume M0
z = 1.

− T1, T2 are constants characterizing the relaxation process (the relax-
ation time).

13
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− γ is constant called gyromagnetic ratio. γ is of the unit radian per
second per Tesla: (s−1 · T−1).

Physically the dynamics of the nuclear magnetization consists of two types
of motions: precession and relaxation.

1. Precession: (the first term to the right side of the Bloch equation (2.1))

In an external magnetic field, �B, the magnetization vector �M will pre-
cess around �B. The precession frequency ω0 is proportional to the
magnitude of the external field | �B| and the angle α = ∠( �B, �M)

ω0(t) = γ · sin(α(t)) · | �B(t)|

One calls this frequency ω0 the Larmor frequency. With other words,
whenever �M ∦ �B, one will observe the precession motion around �B at
the Larmor frequency.

We know that any accelerating charges or magnetic dipoles will induce
electro-magnetic waveform. Hence the procession motion will always
emit an electro-magnetic waveform with a frequency equals the Larmor
frequency.

2. Relaxation: (the 2nd and 3rd term to the right side the Bloch equation
(2.1))

The precession process is accompanied by the relaxation process, which
is a process wherein the magnetization vector recovers towards the
lowest state of energy êz.

The relaxation process can be phenomenologically described by the
recovery process in two orthogonal directions. i) The Mz component
recovers towards value 1. This is described by the phenomenological
parameter T1 (2nd term right side the Bloch equation). ii) The |Mxy|
component recovers towards value 0. This is described by the phe-
nomenological parameter T2 (3rd term to the right side of the Bloch
equation (2.1)).

Physically, the relaxation process can be divided into two types accord-
ing to their physical properties:

i. Due to energy conservation, by emitting electro-magnetic waveform
and thus losing energy, the excited magnetization (α > 0) will
recover towards the energy ground state (α = 0).

In this type of relaxation, the magnetization vector exhibits norm
conservation.
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The recovery process in Mz is caused solely by this energy conser-
vation reason. In MR terminology, one calls this type of relaxation
the T1 relaxation.

ii. In addition, the |Mxy| component will decay faster due to the phase-
incoherency of Mxy among the nuclear spins within an individual
pixels (the dephasing effect). Collectively, one observes a faster
reduction of the |Mxy| than

√
1−M2

z . In MR terminology one
calls this type of relaxation the T2 relaxation.

This type of additional |Mxy| decay is responsible for the non norm-
conservation behavior of the magnetization vector during the re-
laxation process.

The dephasing mechanism has no effect on the Mz recovery process
and hence it has no influence on T1. That’s why T2 is usually much
smaller than T1.

2.2 Nuclear Magnetic Resonance (NMR)

Principle

By NMR one has certain object, e.g. certain complex material. The goal is
to obtain certain information about the microscopic properties of this object.
The basic concept doing that via the magnetic resonance principle can be
demonstrated in fig.-2.1.

RF in RF out

Bz

Figure 2.1: Schematic for the NMR principle (classic picture)

The concept consists of three steps: Polarization, Excitation and Signal
acquisition:

1. Polarization

Using an strong magnetic field �Bz, say in the direction �ez, a major
percentage of the nuclear magnetization is pointing in the direction �ez.
One call this process polarization.
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2. Excitation

One applies an electro-magnetic waveform in the xy-plane. If the wave-
form frequency equals the Larmor frequency, ωin = γ · |Bz|, a reso-
nance excitation will be induced, which means the magnetization vector
precessing-wise flips away from the energy lowest state |Bz| · �ez.

After this xy-plane electro-magnetic waveform is switched off, the nu-
clear magnetization has a non-zero angle to the external field. This is
an excited state.

3. Signal acquisition

The non-zero angle to the external magnetic field Bz results the pre-
cession motion around Bz at the Larmor frequency. This precession
motion will induce an electro-magnetic waveform with the according
Larmor frequency ωout = γ · |Bz|.
By detecting the frequency of the emitted (or absorbed) electro-
magnetic waveform one can get the information about the γ value,
(or the energy gap between the nuclear spin states | ↑〉 and | ↓〉). The
γ value is tightly correlated with the microscopic structure of the ma-
terial.

By detecting the magnitude of the emitted waveform, one can get the
information about the spin-density of the object. The temporal decay
of the magnitude tells the relaxation properties of the spin system,
which can be used to derive further microscopic structures.

Remark: only the excited spins can be “seen”.

The most medical imaging relevant Larmor frequencies are in the radio
frequency band. So we call the electro-magnetic waveform in the xy direction
the RF waveform.

2.3 From NMR to MRI, how to enable res-

olution

In the previous text we introduced the basic principle of nuclear magnetic
resonance, in which we treated the object as a whole and trying to read
its microscopic structure by observing its nuclear resonance excitation and
relaxation process. However, this process doesn’t offer any spatial resolution
of the object.

For a successful application in medical imaging with the goal of a topolog-
ical imaging of the inner structure of the human body, one need additional
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mechanism to differentiate the tissue voxel from tissue voxel on different
spatial locations within the object area. This means to deliver spatial resolu-
tion. For both excitation and signal acquisition steps, MRI requires enabling
spatial resolution.

For the excitation process, the input electro-magnetic waveform has the
same effect to all the local voxels. One controls them all together in the same
way. In MRI one wants to find a way to fully control excitations of the local
voxels individually. One call it the spatial selective excitation, which is the
focus of this thesis.

For the signal acquisition process, the emitted waveform signal one de-
tected is a superposition of the waveforms induced by different voxels in
different positions. One needs to find a way to decode the information of the
local voxels from the ’global’ superposed waveform.

The solution for enabling the resolution for both excitation and signal
acquisition stages is to add a linear varying component in the Bz. The basic
idea is

• Both the resonance frequency for excitation and the magnetization pre-
cession frequency equal the Larmor frequency ωL = γ · Bz.

• If one has a spatially varying Bz = Bz(ξ), the spins in different spatial
position will have different motion due to the different precession fre-
quency. So one may have the possibility to control and read the motion
of the voxels on different spatial positions individually.

• The most straightforward spatial varying type is ’linear’. One introduce
thus the spatial gradient of the magnetic field Bz(ξ).

Bz(ξ) = 〈ξ, g〉

For 1D it’s sufficient to have a temporally constant slope. We call it the
gradient g. However, for 2/3D imaging, one must go to temporally varying
gradient g = g(t) to enable a sufficient differentiation of the voxels distributed
on 2/3D spatial region. We call this temporally varying control function g(t)
the gradient waveform.

We will introduce in more detail how to enabling resolution using g(t) in
§-3.1 for signal-acquisition and in §-4.1 for excitation.

The basic principle of MRI can be schematically represented in the (fig-
2.2):
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RF transmit coil RF receive coil

Figure 2.2: Schematic for the MRI principle

2.4 Two Main Tasks: Excitation & Imaging

Assume a sufficient polarization as given. Analog to the NMR principle, the
MRI task can be roughly divided into two stages:

Excitation + Imaging .

Excitation We at first describe the excitation stage.

One has a nuclear spin system over certain spatial region � ⊂ �. We
call it our object. The spatial coordinates for the individual pixels
within this spin system is notated as ξ ∈ �.

The magnetization vectors on each pixel obey the Bloch equation. It
has a polarized initial state: ∀ξ ∈ �, �M(ξ, t0) = (0, 0, 1)T

One has two control functions to influence the magnetization of the
voxels: the electro magnetic RF waveform in xy-plane and the gradient
waveform g as the spatial slope of Bz.

The task is to control the spatial magnetization profile of the nuclear
spin system from the polarized initial state to a certain given spatial
magnetization profile: �Mtarget : ξ �→ �Mtarget(ξ) ∈ �, ξ ∈ �. We call
this profile the target excitation profile.

Imaging After the excitation stage, one want to ‘read-out’ the xy-
magnetization Mxy as a function of ξ. This is the task of the imaging
stage.

One has the magnetization profile, Mxy : ξ �→Mxy(ξ) ∈ �, ξ ∈ �, to be
reconstructed. The precession motion in the external magnetic field Bz

induces superposition-wisely a RF waveform S, S(t) =
∫
�

Mxy(ξ)dξ.
This RF waveform will be detected by the receive coil. During this
process, the gradient waveform g can be applied as a control. The
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signal function S of time t can be seen as a functional of the gradient
waveform g of time t and the magnetization profile Mxy of ξ.

The task is to design the g : [0, tf ] �→ � in such a way that one can
reconstruct the magnetization image Mxy : � �→ � from the detected
RF waveform signal S : [0, tf ] �→ �.

The value of Mxy tells the spin density distribution within the object.
From the temporal decaying of the magnetization value one gets the
mapping of the relaxation-time parameters, T1 : � �→ T1(ξ) ∈ �+ and
T2 : � �→ T2(ξ) ∈ �+, which correlated strongly with the biological
properties of the tissue at the location ξ. In this way a MRI image can
be produced (fig-2.3). (Using different excitation techniques, one can
indeed measure separately the T1 and the T2. Since the two parame-
ter correlated with different tissue properties, the resulting images are
slightly different. Depending on what kind of tissue properties is inter-
ested in, one chooses respectively T1-weighted or T2-weighted image.)

50 100 150 200 250 300 350 400 450

50

100

150

200

250

Figure 2.3: MRI brain image.
(left: T1 weighted brain image; right: T2 weighted brain image)

The relationship between the excitation and the imaging stages:
The xy-magnetization at certain spatial location is determined by two

factors,

1. how strong is the local spin excitation,

2. the local tissue property, e.g. spin density, relaxation time, etc.

The factor-2, tissue property, is target information we want to reconstruct.
The factor-1, excitation profile, can be seen as a possibility to decide, where
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Figure 2.4: Excitation and Imaging
(A): the tissue topology, B): the excitation profile, C): the resulted image)

to look at. The MRI image can be seen as a superposition of the excitation
profile and the tissue topology profile.

Figure-2.4 is an example to demonstrate the principle. Figure-2.4-A)
shows a tissue topology of a human brain. Figure-2.4-B) is a excitation
profile over the same region as A), where the bright region is the excited
region. Since only the excited region can be seen, the resulting MRI image is
a superposition of the tissue topology and the excitation profile, figure-2.4-C).

Physically there are many analogies between the excitation and the imag-
ing process. One can be seen as an inverted process of the other. This sym-
metry between the two physical processes leads to strong analogy between
the methods for the imaging stage and the excitation stage.

In the praxis there are strong wishes to shortening both the excitation and
the imaging process. Although the motivations are slightly different(§-4.1),
the methods for the acceleration in both stages turn to have many common
part. In this thesis we concentrate on the acceleration of the excitation
process.

Table-2.1 shows an overview of some related methods in both imaging
and excitation sides. We will discuss them one by one in this chapter.

We discuss the standard method for imaging task in section 3.1. In section
3.2 and section 3.3 we will discuss the two important methods for accelerating
the imaging process.

In section 4.1 we will discuss the standard approach for the spatial se-
lective excitation problem. In section 4.2 we discuss the parallel transmit
method in the aspect of accelerating the excitation process. It can be seen
as an equivalence of the Parallel Receive method for the fast imaging.

After having the overview of the current methods in both imaging and
excitation sides, we develop our own adaptive acceleration concept in section
4.3. Our concept can be seen as an analogue to the compressed sensing
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Imaging Excitation

Standard
Method

FT
reconstruction

STA mehod

Acceleration via
parallelization

Parallel RF
Recieve

Parallel RF Transmit

Acceleration via
prior-knowledge

Compressed
Sensing

Adaptive Sparse Excitation

Table 2.1: The overview of the concepts

method for the fast imaging. Both enable the acceleration by utilizing the
prior-knowledge. The information sparsity of the medical images and the
excitation target profiles is essential for these both concepts.
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Chapter 3

Imaging Problem

3.1 The Imaging Process

We devote this section to introduce the Fourier Transform reconstruc-
tion for imaging process to readout the individual voxel magnetization
[LL99][BKZ04].

Since the focus of this thesis is the MR excitation process, this section
and the following two sections are rather aimed to 1) set the view of the
correspondence structure between the excitation process and the imaging
process, 2) give a more complete picture of MRI for the non-MRI reader.

After recall the problem of imaging process, we will derive the method of
Fourier Transform image-reconstruction, which reduces the task of imaging
problem to a matrix inversion problem plus a so-called fast covering κ prob-
lem, where κ is a set of obligatory locations to be covered under velocity and
acceleration constraints. At last we discuss the motivation and the challenge
of the acceleration of the imaging process.

3.1.1 Recall the problem

We formulate the problem of imaging process as following:

(P Imaging)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

One has the control function g : t �→ g(t) ∈ �;

The signal S is a functional of g and Mxy;

Find g, to reconstruct Mxy(ξ).

(3.1)

The imaging process can be schematically demonstrated in the fig-3.1.

23
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RF receive coil

Figure 3.1: Schematic for the imaging process

3.1.2 The Fourier transform relationship

Let M̂xy : � �→ � be the xy magnetization at t0 = 0. By neglecting the
relaxation effect, the motion of the Mxy(ξ, t) is the precession motion caused
by the external magnetic field Bz(ξ, t) = B0+〈g(t), ξ〉. The according Larmor
frequency is ω0 = γ ·B0 + γ〈g(t), ξ〉. The according magnetization motion is

Mxy(ξ, t) = M̂xy · ei·γ·B0·t · ei·γ·∫ t
0
〈g(τ),ξ〉dτ .

Since 1) the oscillation ei·γ·B0 is spatially and temporally constant and
2) B0 � 〈g(t), ξ〉, it’s convenient to make a notational simplification here
to drop the term of ei·γ·B0 and keep in mind that Mxy(ξ, t) = M̂xy(ξ) ·
ei·γ·∫ t

0
〈g(τ),ξ〉dτ is the envelope function of the true magnetization motion with

a underlying carrier waveform ei·γ·B0 .
The notational simplification can be physically understood as switching

to the rotating frame of reference with rotating frequency of γ · B0. In MRI
community one talks conventionally about the waveforms usually only in the
rotating frame of reference. We will follow this convention in the rest of this
work.

The detected RF waveform is the superposition of the Mxy(ξ, t) ∈ � over
the whole object domain.

S(t) =

∫
�

M̂xy(ξ) · ei·γ·∫ t
0 〈g(τ),ξ〉dτdξ

We see the clear similarity with the Fourier transform formulation proper
definition of the frequency parameter:

k(t) := γ

∫ t

0

g(τ)dτ. (3.2)

The quantity k(t) ∈ � is a very important concept in MRI. We call the
according space the k space. We will have very similar concept also for the
excitation problem.
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Accordingly Mxy(ξ, t) = M̂xy(ξ) · ei〈k(t),ξ〉, and

S(t) =

∫
�

M̂xy(ξ) · ei·〈k(t),ξ〉dξ

Since k is uniquely determined by t, one can express S(t) as S(k) =
S(k(t)). Then we get

S(k) =

∫
M̂xy(ξ) · ei·〈k,ξ〉dξ (3.3)

We identify the Mxy(ξ) as the image to be reconstructed. With a finite
image resolution, and a finite frequency resolution, one has a discrete Fourier
Transform similar relationship, S(k) =

∑
ξ ei·〈k,ξ〉 ·Mxy(ξ). We notate the

pixel number in the image domain as n := nx × ny and the pixel number in
the frequency domain as m := mx ×my.

We define the so-called encoding matrix ,

Ek(i, j) := ei·〈ki,ξj〉 ∈ �M×N , ∀i : ki ∈ k ⊂ �M ,

where k ∈ �M is the vector of the discrete k space sampling locations. Then
(3.3) can be written as

S = Ek ·M (3.4)

We call it the encoding equation. It can be seen as the core equation for the
imaging process. The encoding equation can be schematically plotted as:

S = Ek · M

EΛ

ei
〈k

,ξ
〉

=

ξ

k

If the encoding matrix Ek is invertible, one can reconstruct the image by

M = E−1
k · S

With the spatial grid ξ given, whether Ek is invertible is decided by the
k space sampling k.

From Shannon-Nyquist theorem we know if a set of discrete sampling
locations fulfills the following two relationships

δκ = 1
ξmax

κmax = 1
δξ

,
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a successful reconstruction can be guaranteed. We’ll call this special k space
sampling set required by the Shannon Nyquist theorem the Nyquist (sam-
pling) grid . With the Nyquist sampling grid the encoding equation is reduced
to a discrete Fourier transform, EkNyq

= DFT. The reconstruction is reduced
to an inverse discrete Fourier transform.

S = DFT ·M
M = DFT−1 ·S

Numerically it can be performed economically by FFT.

3.1.3 Feasible k space traveling

We recall that the actual control function to be designed is the gradient
waveform g(t). The hardware realization of the gradient waveform gives the
physical upper limit of the maximal gradient value and the maximal gradient
slew rate:

g(t) � Gmax

ġ(t) � Smax

In the equivalent k space picture, (3.2), it has the equivalent form

k̇(t) � γ ·Gmax =: C1 (3.5)

k̈(t) � γ · Smax =: C2 (3.6)

In the previous subsection we derived a sufficient condition that with the
Nyquist sampling grid being covered, one can always successfully reconstruct
the desired image M . Combined with the hardware feasibility constraints
(3.5, 3.6), we have a problem of design a continuous fast traveling trajectory
covering a given set of obligatory locations with the feasible constraints of
traveling velocity and traveling acceleration. We call this problem the fast
covering κ problem, where κ is the set of the obligatory locations to be
covered. Here the obligatory location set takes the special form of Nyquist
sampling grid: κNyq. The problem will be introduced in (§-4.1)-(4.15) as
P kTrav(κNyq).

At last, the feasible gradient waveform can be calculated straightfor-
wardly by

g(t) = k̇(t).
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3.1.4 Accelerating the imaging process

One of the major challenges of MRI in medicine is how to shortening the
total scanning duration. One also call this topic the fast imaging. The total
scanning duration consists of the excitation duration plus the duration of
the imaging stage. Usually the excitation duration only takes a fractional
portion of the time. (The excitation acceleration is motivated by rather other
reasons than the scanner duration shortening, more detail in Chapter-4.1).
The scanning duration can be hence roughly seen as proportional to the
duration of the imaging stage, which is the data acquisition time.

The data acquisition time is equal the duration of the k space trajectory
covering the entire Nyquist sampling grid. Therefore a straightforward idea
for acceleration is to undersample the Nyquist sampling grid, i.e. to reduce
the number of the obligatory locations to be covered.

Generally, if one just simply undersamples the k space without any ad-
vanced treatment, one will get serious artifact by the reconstructed image.
In the next two sections we will briefly discuss the two advanced approaches,
the parallel imaging and the compressed sensing . Before that, we want to
take a look at what issues and challenges we will have, if we just naively
perform a direct undersampling of the Nyquist k grid.

Reducing the image pixel number such that the according Nyquist grid
has less member is not an option, because

− If one reduces the spatial pixel number by increase the pixel size (spa-
tial sampling distance), one just uncontrollable lost the detail image
infomation of high spatial frequency part (the blurring artifact).

− If one reduces the FOV, the signal from the object part outside the
FOV will be indistinguishably folded into the field of view (the aliasing
artifact).

This reduced FOV strategy could indeed have success, if one combines
it together with the spatial selective excitation. (Section-5)

So we must face the situation of “#(k-sampling) < # pixels”. The en-
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coding matrix Ek turns to have more columns than rows.

S = Ek · M (3.7)

EΛ=

ξ

k

(One can generally assume that all the row vectors are linear independent
by an appropriate positioning of the sampling location.)

The task is to identify the magnetization vector M ∈ �N from the Do-
main of Ek using the given S ∈ �M from the Range of Ek. The challenge we
face here is that the Range is smaller than the Domain due to the undersam-
pling of the Nyquist grid, Range(Ek) ⊂ Dom(Ek). This leads to the fact that
alone the information from the signal vector from Range(Ek) is not sufficient
to uniquely identify the the desired solution image vector M ∈ �N .

So the key question is how to generate a encoding matrix Ek with its
Range has the same dimension as its Domain :

Range(Ek) ⊇ Dom(Ek)

There are two alternative directions one can try:

1. artificially expand the Range(Ek) despite of the undersampled Nyquist
grid;

2. bring in additional information to scale down the Dom(Ek).

The two established approaches of enabling Nyquist grid undersampling
can be seen as exactly following the two directions above. The paral-
lel imaging approach provides the parallelization to artificially expand the
Range(Ek). The compressed sensing approach introduces additional prior-
knowledge to scale down the Dom(Ek).

In the following two chapters we will introduce these two approaches in
turn.

3.2 Parallel Imaging

In this section we will discuss the first one of the two major established ap-
proaches of enabling undersampling in the MR imaging process: the Parallel
Imaging , also called parallel receive [PWSB99] [GJH+02] [Pru04].
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We will at first introduce the additional physical setting and the intuitive
motivation for this concept, then give a mathematical explanation of why it
works. We will skip many important technical details and introduce only the
very simplified core concept.

3.2.1 Physical setting and the intuitive motivation

At first we want to introduce the receive sensitivity profile. The schematic
plot (fig-3.1) shows the normal imaging process. Here one has only a single
RF receive coil. The RF waveform detected by the receive coil is a superpo-
sition of the signals from all the voxels over the whole object region.

S(t) =

∫
�

Mxy(ξ, t)dξ

In general, the voxels of different locations will be observed by the receive
coil with different sensitivity. The superposition is indeed a weighted super-
position.

S(t) =

∫
�

s(ξ) ·Mxy(ξ, t)dξ

We call this spatial weighting function the receive sensitivity profile s : � �→
�. The hardware geometry and the positioning of the receive coil are the
essential factors to influence the sensitivity profile.

For the single receive coil setting like in fig-3.1, the receive coil is usually
constructed in such a way that its sensitivity profile is approximately constant
over the whole region (fig-3.3-left). In the parallel imaging, instead of one
single RF receive detector one has a series of receive detectors. Each of them
is intentionally constructed to have different receive sensitivity profile, e.g.
fig-3.3-right. The setting can be schematically described in the plot (fig-3.2):

parallel RF
receive coils

Figure 3.2: Schematic for the parallel imaging setting
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An intuitive motivation of the parallel receive concept can be demon-
strated in the following theoretical limit case. One has four ideal receive-
detectors. Each of them can only detect the signals from a restricted region
of the whole object (fig-3.3-right). The union of these four partial sensitive
regions however covers the whole FOV.
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Figure 3.3: The ideal (parallel) receive spatial sensitivity profiles
(Left: homogeneous single receive channel sensitivity.

Right: four ideally localized receive channel sensitivity profiles.)

One can receive the signals in parallel using all the detectors. Since
the all detectors have now smaller (but different) responsible regions, the
according Nyquist sampling grid has hence larger sampling distance (fig-3.4-
right) compared with the original one (fig-3.4-left). In this way one get the
capability of undersampling the k space without quality reduction.

In the praxis however, one will never have such ideal receive sensitivity
profiles as in (fig-3.3-right). But with the compromise on the undersampling
rate, one can still achieve the undersampling with reasonable quality. For
example 3× undersampling with 6 receive coils.
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Figure 3.4: Undersampling the Nyquist due to parallel setting.
(Left: Nyquist fullsampling. Right: the small-dots are the Nyquist grid, the

big-dots are the undersampled pattern.)

3.2.2 Mathematical justification

To concretely explain the principle of parallel imaging concept, we start with
the encoding equation:

S = Ek · M

EΛ

ei
〈k

,ξ
〉

=

ξ

k

If Ek is a regular invertible matrix, the magnetization profile can be re-
constructed by M = E−1

k · S. The core criterion for if it can also be done
by general case is decided by the size of the range and domain of the Ek.
The range of Ek is the signal space. The domain of Ek is the space of the
images (or the magnetization profiles) to be reconstructed. We call it the
magnetization space. The condition of if one can correctly reconstruct the
M from S is

if the range of Ek (the signal space) can cover the domain of Ek (the
magnetization space)

So, an equal- or over-determined encoding equation is wished, an under-
determined encoding equation is problematic.

With an undersampled Nyquist sampling grid, #(k) < #(kNyq) = N , one
will get a rectangular encoding matrix Ek ∈ �L×N , L < N . The encoding
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matrix is basically underdetermined.

S = Ek · M (3.8)

EΛ=

ξ

k

In this case the inversion without any advanced treatment is a ill-posed
problem due to the underdetermined nature. The way of parallel imaging to
release this problem is to “artificially” increase the column space of Ek (the
signal space).

Say, there are C parallel receive coils, whose sensitivity profiles are suf-
ficiently different from each other. We also call them C parallel receive
channels. One will get totally C different signal vectors from the different re-
ceive channels, S(c), c = 1 : C. Each channel has its own individual encoding
equation:

S(c) = Ek · S(c) · M = Ê (c)
k · M

= EΛ
Sens(q)

= E
(q)
Λ

ξ

k

Due to the parallel receive setting, one has up to C-fold redundant infor-
mation. The idea is to use this information redundancy to compensate the
information deficit caused by the undersampling.

One can write the new composite encoding equation, e.g. for a case of
C = 2:

S = Êk · M

S(1)

S(2)

E
(1)
Λ

E
(2)
Λ

=

ξ

k

k
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Where: S is the in two direction concatenated signal vector over all receive
channels. Êk is the in row direction concatenated encoding matrix over all
receive channels.

Whether the new defined Êk is invertible depends on 1) the undersam-
pling, 2) the number of independent receive channels and their sensitivity
profiles.

In the theoretical limit case as in (fig-3.3-right), the composite encoding
matrix will remain unitary. Thus it’s perfectly invertible with unit condition
number. Therefore it allows a undersampling rate as high as the number of
the parallel receive channels.

In the praxis, the realistic sensitivity profiles is far from the ideal one as in
(fig-3.3-right). It reduce the row orthogonality of the encoding matrix. Some
of the row vectors of Êk are linear dependent. Thus the dimension of the row
space of Êk will be smaller than C ·#(k). Therefore, in the praxis the allowed
undersampling rate is usually smaller than the number of the independent
receive channels, e.g. 2×undersampling using 3 receive channels.

S = Êk · M

S(1)

S(2)

S(3)

E
(1)
Λ

E
(2)
Λ

E
(3)
Λ

=

ξ

k

k

k

An important issue here to address is the condition number of the en-
coding matrix. For realistic sensitivity profiles, the condition number of the
concatenated encoding matrix Êk is usually quite high. The bad conditioned-
ness of the encoding matrix will cause a unwished effect that the noise in the
signal S got amplified through the encoding process. So one has the prob-
lem of having a reduced Signal to Noise Ratio (SNR) due to the increased
condition number of Êk. It can be seen as a cost of enabling undersampling.
In the praxis, to keep the condition number under control, one has to reduce
the undersampling rate or, equivalently, increase the number of independent
receives channels.

In MR parallel imaging terminology this SNR amplification effect due to
the bad conditioned encoding matrix is notated as the g-factor.

For conclusion, the core principle of parallel imaging is:



34 CHAPTER 3. IMAGING PROBLEM

Utilizing the information redundancy from parallelization to repair the
information deficit due to the undersampling. Key condition for that is the
numerical invertibility of the resulting composite encoding matrix.

3.3 Compressed Sensing

In this section we will discuss the second one of the two major established
approaches of enabling undersampling in the MR imaging process: com-
pressed sensing for MRI imaging , [LDP07], [LDSP08], [GBK08], [JSN+09],
[LKS+09]. It is based on the rapidly developed topic of Compressed Sensing
in applied mathematics, [CRT06], [Don06].

Like the section for parallel receive, the motivation of this section is not to
discuss the technique of compressed sensing and its application in MRI imag-
ing stage itself, but to high-light its basic idea and prepare the correspondent
relationship with the excitation side. Thus many important technical details
are skipped, only the very simplified basic ideas are introduced. Some fur-
ther technical detail will also be discussed in the next chapter for sparse
approximation.

3.3.1 Compressed Sensing(CS) in MRI

At first we recall the issue by the naive directly undersampling of the Nyquist
k grid.

S = Êk · M (3.9)

EΛ=

ξ

k

The major challenge here is that the magnetization space, Dom(Êk), can-
not be completely covered by the signal space, S. The signal space is equal
the range of the encoding matrix, Range(Êk). It means that the solution-
space of (3.9) can only be reduced from Dom(Êk) = �

N to a finite dimen-
sional subspace of �N , but not to a unique point in Dom(Êk). So one has
infinite many number of “correct” solutions subject (3.9).

The parallel imaging concept follows the strategy to increase the signal
space, S = Range(Êk), such one can have enough information to reduce the
solution space to a unique point in Dom(Êk).
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The alternative strategy to cover the magnetization space by the signal
space,

S ⊇ Dom(Êk)

would be to reduce the Dom(Êk). Or differently formulated, one could bring-
in additional criteria enabling selecting out the desired true solution from the
infinitive many possible solutions. In this way one could still successfully
reconstruct the image despite of the undersampling.

The realization of this alternative strategy can be reduces to two ques-
tions:

1. What’s the additional criteria, allowing to pick up the true unique
image from the infinite group of possible solutions. This is equivalent
to ask what makes our image special?

2. How to technically realize the selection mechanism regarding to the
additional criterion.

The answer for the first question is the information low dimensionality ,
which distinguishes the true image from the other solution candidates. Em-
pirically, one can say most natural images have very low information amount
compared with the number of pixels presenting them. In certain transformed
domain it can be represented with very low number of basis vectors. One calls
this property transformed sparsity . Empirically, this transformed sparsity
criterion is sufficient to uniquely identify the true image to be reconstructed.

The second question, how to technically realize the strategy of utilizing
the sparsity prior knowledge to enable the undersampling, leads us to the
topic of compressed sensing. [CRT06], [Don06]

Compressed sensing consists of two steps of tasks. Firstly, how to design
the undersampling pattern to maintain the essential information of the source
image despite of the undersampling. Secondly, how to reconstruct the image
from 1)the sampled data and 2)the additional transformed sparsity criterion.

The answer for the first task of sampling strategy is the random sam-
pling . If the sampling pattern has sufficient randomness, then the image is
reconstructable despite of the according undersampling rate.

In MRI the pure random sampling is not efficient because of the hard-
ware constraints of the k space traveling. Thus, instead of a pure random
pattern, one uses a randomly disturbed regular trajectory. This is a compro-
mise between the optimal information collection and the k space traveling
efficiency.

The second task of sparsity constraint reconstruction leads to the so-
called overcomplete sparse approximation problem. The sparsity of a vector
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is usually notated with the so-called l0 semi-norm. The l0-norm, ‖v‖0, is
defined as the number of the non-zero entries of the input vector v. The task
of the sparsity constraint reconstruction can then be formulated as

(P CS-MRI-L0)

⎧⎨
⎩ minimize ‖M‖0

s.t. S = Êk ·M
(3.10)

This problem is of combinatorial nature and in general NP hard.
A very popular approximate approach for that in the compressed sens-

ing community is to approximate the original combinatorial l0-regularized
underdetermined least squares problem with the l1-regularized underdeter-
mined least squares problem.

(P CS-MRI-L1)

⎧⎨
⎩ minimize ‖M‖1

s.t. S = Êk ·M
(3.11)

It can be reformulated as a linear programming problem, which is a convex
optimization problem. One can solve it with standard software. The l1-
regularization approach is also referred to as BP method (Basis Pursuit).

We will discuss the overcomplete sparse approximation problem in more
detail in next chapter.

The compressed sensing approach has demonstrated great success in MR
imaging process. As an independent mechanism, one can achieve significant
acceleration without a parallel imaging setting. The reader can find more
details about compressed sensing in the work of Candes et.al. [CRT06], and
Donoho, [Don06]. For applying the compressed sensing in MRI the works of
Lustig provide detailed information, [LDP07], [LDSP08].

3.3.2 Combining Parallel Imaging with CS

The parallel imaging method and the compressed sensing method represent
two independent mechanisms to enable the undersampling of the Nyquist
grid in k space. It’s desirable to combine the both concepts together to
achieve a maximal undersampling capability.

Indeed it turns to be a highly researched topic in the MRI community in
the recent two years, [Kin08], [MHB08], [LKS+09]. The underlying technique
comes from the recent development in the compressed sensing community,
the so-called simultaneous sparse approximation, [TGS06], [Tro06]. By si-
multaneous sparse approximation one wants to simultaneously, sparsely lin-
ear represent a series of target signals using the same overcomplete collection
of the elementary vectors.
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The recent work of [Kin08], [MHB08], [LKS+09] demonstrated successful
integration of parallel imaging and the compressed sensing. Indeed one can
achieve significant further acceleration of the imaging process compared with
applying only the one of two mechanisms separately.
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Chapter 4

Excitation Problem

4.1 Spatial Selective Excitation Problem

(SSEP)

In the previous three sections we’ve discussed the tasks and the methods
of the imaging stage. In the next two sections we are going to discuss the
tasks and the methods in the excitation stage, the spatial selective excitation
problem.

To simplify the notation, we sometimes abbreviate the “Spatial Selective
Excitation Problem” as SSE-Problem or SSEP.

The goal of this section is to derive the spatial selective excitation problem
to a linear least squares formulation, [PNM89a].

In subsection-1 we will discuss the motivation of the Spatial Selective
Excitation Problem and the formally formulate the problem, P SSEP.

In subsection-2 we will derive the conventional method based on the so-
called STA-model, which reduce the P SSEP to fast covering κNyq problem,
P kTrav(κNyq), plus a linear least squares problem to design the RF waveform,
P RF-Design.

In subsection-3 we will give two examples to demonstrate the STA ap-
proach.

In subsection-4 we will discuss the motivation and the challenges of ac-
celerating the spatial selective excitation process.

4.1.1 The spatial selective excitation problem

The Motivation

Depending on the concrete application situation, one wants to excite the
nuclear spins on different spatial locations with different target excitation

39
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magnitude. We call the given spatially varying excitation magnitudes the
target excitation profile. The control function to achieve that is the RF
waveform and the gradient waveform. The task is to design the RF and g to
reach the target excitation profile.

Schematically it can be demonstrated in fig-4.1.

RF transmit coil

Figure 4.1: Schematic for the spatial selective excitation process

The general spatial selective excitation problem turns to gain more and
more interest in the recent years. The motivations for the general spatial
selective excitation problem are basically of the following two points:

1. localized excitation:

By only exciting a well known small region of interest out of the whole
object region and not exciting elsewhere, one can reduce the effort of
the imaging stage. If staying with the same resolution, one can now
reduce the imaging acquisition time, because the total pixel number to
encoding is now smaller. Or, if one is willing to “pay” the same amount
of imaging encoding steps, one can achieve an accordingly higher reso-
lution.

This principle can be demonstrated in the following figures.

By “not exciting” certain uninterested region, which has artifact source,
(e.g. a beating heart causing motion artifact), one would have the
possibility to reduce the image artifact.

2. homogenization of the excitation

In the praxis the transmit rf coils has no spatially homogeneous re-
sponse property. Especially in the high B0 field setting, the spatial
inhomogeneity of the RF waveform is so high that for some region
there is no enough signal intensity to reconstruct the image.
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Figure 4.2: Principle of small region excitation.
A): the tissue topology, B): the excitation profile, C): the resulted image, D):

the “zoom-in” FOV

One approach to release this issue is to selectively excite the object
with the inversion of the RF spatial sensitivity as the target excitation
profile. In this way the low sensitive region will be intentionally excited
with larger magnitude to compensate the low sensitivity effect.

The Problem

At first we make an assumption that the duration of the excitation process
is short enough that the relaxation effect can be sufficiently ignored. This
means we can neglect the last two terms for relaxation in the Bloch equation.

So the Bloch equation (2.1) can be simplified to

�̇M(ξ, t) = �M(ξ, t)× γ · �B(ξ, t)

where �B(ξ, t) is the 3D magnetization vector, B(ξ, t) =(
RFx(t), RFy(t), 〈g(t), ξ〉

)T

.

Write the vector cross-product ’×’ in matrix form, we get:
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⎛
⎜⎜⎜⎝

Ṁx(ξ, t)

Ṁy(ξ, t)

Ṁz(ξ, t)

⎞
⎟⎟⎟⎠ = γ ·

⎛
⎜⎜⎜⎝

0 Bz(ξ, t) −By(ξ, t)

−Bz(ξ, t) 0 Bx(ξ, t)

By(ξ, t) −Bx(ξ, t) 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

Mx(t)

My(t)

Mz(t)

⎞
⎟⎟⎟⎠ ,

(4.1)

Where:

Bx(ξ, t) := real(s(ξ) · RF(t))

By(ξ, t) := imag(s(ξ) · RF(t))

Bz(ξ, t) := 〈�g(t), �ξ〉

Initial value is the polarized state:

∀ξ, �M(ξ, t0) =

⎛
⎜⎜⎜⎝

0

0

1

⎞
⎟⎟⎟⎠

With the assumption of neglecting the relaxation process and the notation
used above, we give the formal problem statement of the Spatial Selective
Excitation Problem.

(P SSEP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p ∈ �N , (target profile)

s ∈ �N , (sensitivity profile)

TOL (user-tolerance)

Find: RF : [0, tf ] �→ �, g : [0, tf ] �→ �

Subject to:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

M : [0, tf ] �→ �
Nsatisfies the Bloch eq.(4.1),⎧⎨

⎩ ‖k̇‖∞ � C1

‖k̈‖∞ � C2

(feasibility constraints).

∃tf : ‖M(tf)− p‖2 � TOL

(4.2)

(4.3)
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The problem P SSEP can be seen as a control problem. Its controllability
has been proven in the work of Conolly et.al., [CNM86].

4.1.2 The conventional approach
(Small tip angle regime, single RF channel)

In previous subsection we’ve formally formulated the spatial selective excita-
tion problem. In this section we introduce the conventional approach to this
problem.

We call this method the Small-Tip-Angle approach (STA) due to its core
assumption of the small tip angle of the magnetization vector. This method
is introduced by J. Pauly at 1989, [PNM89a]. Since then it is the most
established design method for multi-dimensional selective excitation design
problem.

Let Mxy(ξ, t) := Mx(ξ, t)+ i ·My(ξ, t) be the xy magnetization in complex
form, and let Bxy(ξ, t) := Bx(ξ, t)+i·By(ξ, t) = s(ξ)·RF(t) be the xy magnetic
field. The relaxation-free Bloch equation (4.1) turns to be:

Ṁxy(ξ, t) = −i〈g(t), ξ〉B(ξ, t) + iB(ξ, t)Mz(ξ, t) (4.4)

Ṁz(ξ, t) = −iBxy(ξ, t)Mxy(ξ, t) (4.5)

due to the norm conservation property of the non-relaxation Bloch equa-
tion:

Mz =
√

1− |Mxy|2
= 1 +O(|Mxy|2)

In the first order approximation of |Mxy| � 1:

Mz ≈ 1

Ṁz ≈ 0

With this approximation the equation (4.4) and (4.5) can be successfully
decoupled. This approximation is physically an assumption that the flip
angle between the magnetization vector �M and the ground state �ez is small:

‖ �M‖2 ≡ 1 : θ = sin(θ) = Mxy

‖ �M‖2
= Mxy .

We call it the STA assumption (Small-Tip-Angle-assumption).
The relaxation-free Bloch equation then turns to be:

Ṁxy(ξ, t) = −i · 〈g(t), ξ〉 ·Mxy(ξ, t) + i · Bxy(ξ, t) (4.6)
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This is a linear ordinary differential equation with initial value: Mxy(ξ, t0) =
0, ∀ξ ∈ �. Solving (4.6) one gets:

Mxy(ξ, tf) = i

∫ tf

0

Bxy(ξ, t) · e−iξT
∫ tf

t g(τ)dτdt (4.7)

Eq-(4.7) has strong similarity with Fourier Transform. One defines the
frequency parameter k ∈ �:

k(t) :=

∫ t

tf

g(τ)dτ (4.8)

then eq-(4.7) becomes

Mxy(ξ, tf) = i ·
∫ tf

0

Bxy(ξ, t) · e−i〈ξT ,k〉dt (4.9)

With a discretization in both spatial and frequency domain, (4.9) turns
to be

M = S · T · b (4.10)

where M ∈ �N is the discrete spatial xy magnetization profile, b ∈ �M is
the discrete RF waveform as a function of the frequency domain sampling,
S := Diag(s), where s ∈ �N is the discrete form of s(ξ), and T ∈ �n×m is
the so-called transmit matrix, which has a DFT similar form:

T :=

⎛
⎜⎜⎜⎜⎜⎜⎝

eiξ1k1 eiξ1k2 · · · eiξ1km

eiξ2k1 eiξ2k2 · · · eiξ2km

...
...

...

eiξN k1 eiξN k2 · · · eiξNkm

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.11)

The frequency domain sampling k is a function of time t, k : t �→ k(t) ∈ �.
The function k is uniquely determined by g, and verse vise. Therefore the
task of designing RF and g in P SSEP can then be transfered to the task of
finding k and RF, in discrete form k and b, which satisfies

‖p− S · T · b‖2 < TOL . (4.12)

We also write it as
p

TOL
= T̂ · b, (4.13)

where T̂ = S · T .
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due to the similarity with the Fourier Transform, the Shannon-Nyquist
theorem can help us to determine a sufficient set of k space sampling loca-
tions, which guarantees a solution of (4.12).

Shannon-Nyquist theorem tells us that if one choose the k locations fulfill
the following two criteria:

(Shannon-Nyquist-criteria:)

⎧⎨
⎩ δk = 2π/ FOV

(kmax − kmin) = 2π/δξ
, (4.14)

then the existence of a solution of (4.12) is guaranteed.
In the rest of this work we call (4.14) the Shannon-Nyquist criteria. We

call the set of the k locations fulfilling the Shannon-Nyquist criteria the
Nyquist-grid. We notate the k space sampling locations followed by the
Shannon Nyquist criterion as κnyq.

After getting the Shannon Nyquist criterion as the sufficient condition for
the k space sampling, we have the following two steps to complete the task
of P SSEP:

I. Subject to the physical constraints (3.5) and (3.6), one wants to design a
feassible k(t) — thus also the gradient waveform g(t) — from κnyq. The
g(t) and thus k(t) are indeed then discretely realized in hardware level.
We notate their discrete form accordingly as g ∈ �M and k ∈ �M .

II. With the resulted k space sampling trajectory, the next task is to deter-
mine the correct RF waveform vector b according (4.12). It’s a linear
least squares problem.

One can formally formulate tasks of the step-I and -II accordingly as
P kTrav(κNyq) and P RF-Design.

The fast covering κ problem, P kTrav, has the task of finding a continuous
fast traveling trajectory covering a given set of obligatory locations with the
feasible constraints of traveling velocity and traveling acceleration:

(P kTrav)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

find: k : [0, tf ] �→ �

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

tf = minimal (minimal time)

range(k) ⊃ κ (covering)

‖k̇‖∞ � C1

‖k̈‖∞ � C2

(feasibility constraints) .

(4.15)
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With the notation P kTrav(κNyq) we mean the special case of P kTrav with
the very regular Nyquist grid as the input obligatory locations.

Completely solving the P kTrav with arbitrary input obligatory location
set is by no means trivial. (One just recalls the traveling salesman problem.)
The pragmatical approach we use for P kTrav with irregular input obligatory
locations is discussed in §-7.4. However since the Nyquist grid is highly
regular, it is easy to calculate sufficient fast trajectory for P kTrav(κNyq) . (In
the imaging process one has the same k space fast covering problem (§-3.1).)

From the feasible trajectory k one can get straightforwardly the feasible
gradient waveform g after (4.8).

The task of RF pulse design use the calculated k space trajectory sampling
points to compute the best RF waveform, a linear least squares problem.

(P RF-design)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given:

p ∈ �N ,

s ∈ �N ,

TOL

Find: b ∈ �M

Subject to: ‖P − S · T ·B‖2 � TOL

(4.16)

Where: S = Diag(s) ∈ �N×N

T ∈ �N×M according to (4.11).

(4.17)

The P RF-Design is a linear least squares problem, usually underdeter-
mined since #(k) � #(κnyq). It can be solved standard-wisely using pseudo-
inverse. The property that pseudo inverse for the underdetermined problem
picks up the solution with minimal L2-norm also matches the wish of min-
imizing the SAR, because L2 norm has the physical meaning of the global
energy stored in the waveform. Advanced numerical method like CG or
GMRES can be applied to accelerate the computational time.
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4.1.3 Two examples

In Chapter-1 an example with a heart shape profile is presented to
demonstrate the conventional paradigm approaching P SSEP. (fig-1.3) The
boundary smoothness of this profile represent roughly the requirement of
the small region excitation application. The chose of this heart shape profile
instead of more regular shapes like disk or rectangular is to demonstrate the
independency to the symmetry of the profile content. This profile of heart
shape represents a large class of profiles relevant for the application of small
region excitation.

To demonstrate the capability to achieve arbitrary complex target
profiles we present a second example with a much higher complexity level
of the target profile, the Mona-Lisa Portait (fig-4.3-top-left). Of course in
the real application one won’t excite a Mona-Lisa profile. The aim of this
example is to demonstrate the extreme case of complexe information content
of the target profile.

Since the Mona-Lisa portrait is represented at the same spatial sampling
grid as the previous heart shape profile, the according Nyquist grid and
thus the resulting k space trajectory and gradient waveform are identical to
their counterparts in the heart profile example. Therefore, despite of the
large difference at the content complexity level, one ends up with the same
excitation duration. The only essential difference here is the RF waveform.

The phantom experiments for the both examples were on a GE 3T MRI
scanner using a ball shape water phantom (fig-7.11).
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Target excitation profile
[33x33]

k space sampling [1/cm]
- (grey big dots): Nyquist  locations.
- (blue dot-line):  feasible trajectory.

Gradient waveform [mT/cm]
- (blue line):   x-component
- (green line): y-component

RF waveform [mT]
- (blue line):    x-component
- (green line):  y-component

Bloch equation simulation result.
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Figure 4.3: The conventional paradigma of full Nyquist STA method, Mona-
Lisa Portrait
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4.1.4 Accelerating the spatial selective excitation

The motivation for accelerating in the excitation process

With the introduced small tip angle method it seems one can theoretically
design the excitation for any excitation target profile in no matter 1 or 2 or
3-D. But indeed there are strong restrictions. One of the major limitations
is the too long excitation duration. This thesis is concentrated on this issue.

Else than in the imaging process, the motivation to accelerate the exci-
tation is not to shorten the whole scanning process. The process duration
of the excitation process is generally only a small fraction of the whole MRI
scanning process, it doesn’t make that much difference in the total time.

The indeed motivation to accelerate the selective excitation process comes
from two aspects:

1. The model of the relaxation free Bloch equation.

As the basis of the spatial selective excitation problem one used the
simplified Bloch equation and ignored the relaxation effect with the
argument that the excitation duration is much smaller than the relax-
ation time.

Since the relaxation time is a fixed object property, this assumption
gives effectively an upper boundary of the duration of the excitation
process, which can be designed under this relaxation free model.

This upper boundary turns to be a real restriction if one goes from
1D excitation to multi-dimensional excitation, since the according k
space will also grow from 1D to 2- or 3D. The number of the according
Nyquist sampling location grows from O(102) to O(103 ∼ 104).

A real 3D selective excitation is in general still very restricted because
of this reason.

2. The model of the spatially linear varying z direction magnetic field.

Bz(ξ, t) = B0 + 〈ξ, g(t)〉

In the model, we assume a perfect realization of Bz, the slope of which
is the gradient waveform g(t) as the control function.

But in the praxis, it usually cannot be perfectly realized by the
hardware. The B0 has indeed certain spatial inhomogeneity, B0 →
B0 + δB0(ξ). The gradient term on one hand has certain non-linearity,
on the other hands the slope of it has also certain error by the realiza-
tion, 〈ξ, g(t)〉 → 〈ξ, g(t) + δg(t)〉+ δBg(ξ).
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So in general one has both spatially and temporally error in Bz:

Bz(ξ, t) = B0 + 〈ξ, g(t)〉+ δBz(ξ, t)

The accumulation and propagation of this error δBz is strongly corre-
lated with the excitation duration. The shorter the excitation process,
the smaller is the effect of this error. By shortening the excitation
process one can largely reduce the resulting artifacts.

In MRI terminology one calls the artifact caused by the spatial in-
homogeneity error of Bz the off-resonance-artifact . The error δg(t) is
physically largely caused by the eddy-current in the gradient coils. One
call eddy current artifact .

Undersampling the Nyquist grid

In the STA method, the excitation duration equals the traveling duration
through the calculated k space trajectory. Beside the hardware feasibility
constraints, the traveling duration of the k space trajectory is largely de-
cided by how many obligatory sampling locations it needs to cover. In the
conventional approach the sampling location to be covered is the Nyquist
grid. The number of the Nyquist sampling locations increases dramatically
from 1D excitation profile to 2- or 3D excitation profile. A reasonable strat-
egy for shortening the excitation process is therefore to undersample the
Nyquist grid.

It is in general plausible that the less sampling locations need to be cov-
ered, the shorter the traveling duration would likely be. However one needs
to keep in mind that beside the number of the sampling locations to cover,
their distribution in the k space plays also a role on the effect of acceleration,
since one still needs to solve the feasible fast covery κ problem.

The challenge of undersampling the Nyquist sampling grid

Let’s take a look at what happens if we just naively undersample the Nyquist
sampling grid without any advanced treatment. What kind of issue and
challenge we would have.

Recall the imaging problem, where the k space sampling (S) happens
in the Range of the encoding matrix (3.4). An undersampling of the signal
vector S regarding to the Nyquist sampling grid causes an underdetermined
the problem.

The the k space sampling of the excitation process (b) happens in the Do-
main of the transmit matrix T̂ (4.13). In contrast to the undersampling of
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the imaging process, the undersampling of the excitation process has a differ-
ent nature of the challenge — an representation problem with undercomplete
set of elementary vectors.

p = T̂k · b

TΛ

ei〈k,ξ〉

=

k

ξ

The task is to represent the magnetization vector p ∈ �N in the target-
vector space with the column vectors of T̂k and the coefficient vector b ∈
�M from the Domain of T̂k. The challenge we face here is: Due to the
uncompleteness of the column vectors of the transmit matrix, there is always
a subspace in the target-vector space which cannot be reasonably mapped
to from the coefficient space. The uncompleteness of the column vectors is
caused by the undersampling of the Nyquist grid. The size of this unreachable
subspace is decided by how undercomplete the elementary vector set is. In
general there would be a non-zero distance between the target vector and the
representible subspace, Range(T̂k). In our excitation problem this non-zero
distance will appear as the discrepancy between the target profile and the
indeed achievable profile – the excitation artifact.

This observation leads us to the task, how to generate a transmit matrix
with its range covering the whole target-vector space. So if we notate the
target-vector space as P, then the target is to generate T̂k such that

Range(T̂k) ⊇ P

As for the imaging process, there are obviously two alternative directions:

1. artificially expand the Range(T̂k) despite of the undersampling of the
Nyquist grid;

2. try to scale down the P.

The currently emerging method, the parallel RF transmit approach, fol-
lows indeed the first direction – to expand the Range(Tk). The parallel trans-
mit method can be seen as a counterpart to the parallel imaging method in
the excitation side. We will introduce this approach in the next section.
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In this work we will propose a now approach based on adaptive concept.
It follows the second direction of scaling down the target-vector space. It
is an complementary mechanism to the redundancy principle by the parallel
transmit. It can be seen as having an correspondent role as the compressed
sensing from the imaging process side. We will discuss the adaptive idea in
§-4.3.

We recall that in the imaging process one can combine the parallel imag-
ing approach with the compressed sensing approach maximally undersample
the Nyquist grid. In this work we also combine the adaptivity principle with
the redundancy principle to maximize the sparsifying capability regarding
the Nyquist grid. The necessary mathematic tools for that will be intro-
duced in the Chapter 6. The concrete implementation and validation will be
introduced in the Chapter 8.

4.2 Parallel RF Transmit

This section is devoted to introduce the parallel RF transmit method, espe-
cially in the aspect of the mechanism of redundancy to enable Nyquist grid
undersampling. [KBLvdB03], [Zhu04], [GYZ+06]

We will at first introduce the physical setting of parallel transmit and its
intuitive motivation in §4.2.1. Then in §4.2.2, we will give the mathemati-
cal formulism of the parallel transmit problem and how it enables Nyquist
grid undersampling. After that, we’ll give an example to demonstrate its
acceleration effect in §4.2.3.

We use the abbreviation “pTx” for parallel Transmit.

4.2.1 Physical setting and intuitive motivation

In the parallel transmit setting, instead of using only one RF transmit coil,
one uses a series of independent RF transmit coils. Each of them has different
spatial sensitivity profile depending on their coil design and positioning. The
setting can be schematically described in (fig-4.4). (Compared fig-4.1)
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parallel RF
transmit coils

Figure 4.4: Schematic for the parallel RF transmit setting

The motivation of using parallel transmit setting used to undersample
the Nyquist sampling grid can be demonstrated intuitively in the following
theoretical limit case of the ideal sensitivity profiles.

For a single RF transmit coil with almost homogenous sensitivity profile
like fig-4.5-left , the according Nyquist k grid is a regular grid with the same
resolution as the target profile has, e.g. 33× 33, (fig-4.5-right).
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Figure 4.5: The ideal homogeneous sensitivity and its Nyquist grid
(Left:) the ideal homogenous RF transmit sensitivity profile; (Right:) The

according Nyquist grid.

If one has 4 independent RF coils, each of them has a ideally localized sen-
sitivity profile as shown in fig-4.6-left . For each RF transmit coil the effective
responsible spatial area is reduced to 1/4 of the original FOV. The accord-
ing Nyquist sampling grid has then a four times larger sampling distance in
ky-direction as the original one (fig-4.5-right). This means a four-fold under-
sampling of the Nyquist k grid in the ky direction can be allowed without
any issue with the representation quality.
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Figure 4.6: The ideal pTx sensitivity profiles and their Nyquist grid
(Left): the ideally localized pTx sensitivity profiles; (Right:) Their according

Nyquist grid.

Of course this is only an ideal case for intuitively demonstrating the prin-
ciple of parallel RF transmit. The realistic sensitivity profile of the RF trans-
mit coils looks different, for example in fig-4.7 are the sensitivity profiles of a
real 6 channel setting. It is by far not so ideal that a six fold undersampling
can be allowed.
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Figure 4.7: Realistic sensitivity profiles example from a 6 channel pTx setting

The pragmatic approach then is to undersample with a lower rate than
the number of the independent channels. For example, one can use an un-
dersample rate of 3∼4 with this 6 parallel channel setting. Empirically this
pragmatic compromise gives satisfying result. See the example in §-4.2.3.
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4.2.2 The mathematical formulism

At first we recall the naively undersampled transmit equation with respect
to the Nyquist sampling grid.

p
TOL
= T̂ · b

TΛ

ei〈k,ξ〉

=

k

ξ

As an undercomplete representation problem, one has the issue that the
column space of the transmit matrix T̂ is smaller than the target vector space
P.

The strategy of parallel RF transmit method is trying to expand the column
space of the transmit matrix T̂ despite of an undersampling of the Nyquist
grid.

We remember that the general transmit matrix T̂ is the original DFT
form transmit matrix T multiplicated by the RF spatial sensitivity matrix,
T̂ = S · T . The undersampling of the Nyquist sampling grid has the effect
that T turns to be a rectangular matrix with less column number than the
row number.

By parallel RF transmit, there are a multiple number of RF transmit coils,
say C coils. Each of them has different spatial sensitivity profiles, S(c=1:C).
In the STA regime, every RF channel contribute independently to the total
excitation profile. Their individual excitation process can be written as

M (c) = S(c) · TΛ · b(c) = T̂ (c) · b(c)

(4.18)

= Sens(q) TΛ

ei〈k,ξ〉

k

ξ

= T̂
(q)
Λ

.
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Within the STA model, because of the linear nature of the trans-
mit equation, the resulting collective excitation profile by all the channels
is just the complex sum of the individually generated excitation profiles:

M =
∑

c=1:C M (c). Then the total transmit equation, p
TOL
= M , turns to be

p
TOL
=

∑
c=1:C

(
T̂ (c)

Λ · b(c)
)

= T̂Λ · b (4.19)

= T̂
(q)
Λ

∑
q = 1, 2( )

k

ξ

q = T̂
(1)
Λ T̂

(2)
Λ

1

2

k k

ξ

where c = 1 : C

b :=

⎛
⎜⎜⎜⎝

b(1)

...

b(C)

⎞
⎟⎟⎟⎠ ∈ �L·C ; b(c) ∈ �N (4.20)

T̂Λ :=
(
T (1)

Λ , · · · , T (C)
Λ

)
∈ �n×L·C ; T (c)

Λ = (S(c) · T ) ∈ �n×L.

(4.21)

For the demonstration simplicity, the schematic is of a simple case of 2
channels setting. The principle is of course general and not restricted in the
two coils case.

Depending on how different to each other the sensitivity profiles S(c=1:C)

are, the dimension column space of the total transmit matrix can be increased
from the number of the k sampling locations, |Λ|. By ideal case it can be
maximally increased to C · (|Λ|).

How far one can maximally undersample the Nyquist grid is decided by
if the Range of the total transmit matrix T̂Λ can sufficiently approximate the
target vector space P = �N .

Range(T̂Λ) ≈ �N

For example in the two extreme case:

1. Optimistic limit case. The sensitivity profiles S(1:C) are like fig-4.6:
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All column vectors of T̂Λ are still orthogonal, thus Range(T̂Λ) = �
N .

One can thus have an undersampling rate equal the number of the coils
C.

2. Pessimistic limit case. All the S(1:C) are identical :

Since Range(T̂Λ) = Range(T̂ (c)
Λ ) ⊂ �N , in general no undersampling is

allowed.

3. Realistic case, For the realistic sensitivity profiles like in fig-4.7:

Some of the column vectors of the T̂Λ are still linear dependent. If one
has a undersampling rate equal the number of the coils, |Λ|

n
= C, The

range of the T̂ will not be able to cover the whole target profile space

Range(T̂Λ) ⊂ �N .

Therefore the possible undersampling rate is smaller than the number
of the independent transmit channels C. For example to achieve a twice
undersampling rate, one needs usually three independent RF channels:

p
TOL
= T̂ · b

= T̂
(1)
Λ T̂

(2)
Λ T̂

(3)
Λ

1

2

3

k k k

ξ

.

Remember in the conventional STA approach using single RF transmit
channel, the P SSEP can be formulated as P kTrav(κNyq) + P RF-Design.

For the parallel RF transmit setting, the parallel -P SSEP in the STA regime
can similarly be formulated as

P kTrav(κpTx) + P RF-Design-pTx

where P kTrav(κpTx) is a special case of P kTrav (4.15). It take the regularly
undersampled Nyquist grid κpTx as the input obligatory locations. Since
κpTx is usually highly regular, it is not difficult to approach.



58 CHAPTER 4. EXCITATION PROBLEM

The P RF-design-pTx extend the single channel P RF-design to the parallel
channel setting.

(P RF-design-pTx)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given:

p ∈ �N ,

s ∈ �N ,

TOL

To find: b ∈ �C·M

Subject to: ‖p− T̂ · b‖2 � TOL

(4.22)

Where: b ∈ �C·M according (4.20),

T̂k ∈ �N×C·M according (4.21)

(4.23)

4.2.3 An example for parallel RF transmit excitation

We present an example of the parallel RF transmit using realistic RF sensi-
tivity profiles as in (fig-4.7). We use the same heart shape target profile as
in the example (fig-1.3). A four times undersampling in the ky direction is
applied. One still get a reasonable result despite of the undersampling.
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Target excitation profile
[33x33]

k space sampling, 4x undersampling.
- (grey big dots): Nyquist  locations.
- (blue dot-line):  feasible trajectory.

Gradient waveform [mT/cm]
- (blue line):   x-component
- (green line): y-component

RF waveform [mT]
- (blue line):    x-component
- (green line):  y-component

Bloch equation simulation result.
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Figure 4.8: The conventional parallel transmit paradigm
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4.3 Adaptive Sparse Concept

In this section we develop the adaptive concept as an independent strategy
from the parallel RF transmit concept to enable the undersampling.

4.3.1 Single Channel

We start with the undersampled transmit equation as a representation prob-
lem using undercomplete set of elementary vectors.

p
TOL
= T̂Λ · b (4.24)

TΛ

ei〈k,ξ〉

=

k

ξ

The issue is that the Range of T̂Λ can not completely cover the target
vector space P = �N .

Range(T̂Λ) ⊂ �N

The parallel RF transmit concept follows the strategy of trying to expend
the column space of T̂Λ using an undersampled frequency parameter κ, so
that

Range(T̂Λ) ≈ �N

Instead of expand the range of T̂Λ, An alternative way is to analyze the
problem more carefully and trying to reduce the target vector space P from
the whole �N to a smaller subspace, so that

P ⊂ �N

Range(T̂Λ) ≈ P

In the imaging problem we have quite similar situation. There one wants
to use the signal space to cover the domain of the encoding matrix ÊΛ.

S
!≈ Dom(ÊΛ)

An undersampling of the signal vector causes the problem that the signal
space is smaller than the domain of ÊΛ, thus can not fully cover the Dom(ÊΛ)

S ⊂ Dom(ÊΛ)
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One way to release this issue is to expand signal space to match Dom(ÊΛ),
which is basically the parallel imaging approach. Another way is to reduce
the domain of ÊΛ from the whole �N to a smaller subspace, this is basically
the idea of compressed sensing.

By compressed sensing the Dom(ÊΛ) is basically the magnetization space.
The key to reduce the image space is the prior-knowledge of the information
sparsity of the images to be reconstructed.

In contrast to the imaging problem, where one don’t know concretely
the image to be reconstructed thus the information sparsity is more or less
the only general prior knowledge one has. The excitation problem has the
very convenient situation that one basically knows the target vector to be
reconstructed. Therefore, the reduction of the target vector space from �N

to a smaller subspace is indeed trivial. For each concretely given target vector
p ∈ �N , the target vector space is reduced from �

N to the one dimensional
subspace represented by this p.

Now since we have an only one dimensional subspace to cover, in principle
it’s possible that an appropriately selected small elementary vector subset
is sufficient to represent this subspace regarding the moderate user given
tolerance, e.g. ∼ 5%. Indeed in our application it’s very likely to happen
because most of our target profiles has the property of strong information
sparsity in the Fourier domain, which is the only relevant domain due to the
physical setting.

So the principle idea of our adaptive approach is: Tailored calculate the
k space undersampling pattern after the individual given target profile p and
user tolerance. The concrete task is then: To represent a given target vector
using as less elementary Fourier vectors as possible.

This task leads us to the class of the mathematical problem called sparse
approximation. Here one deals with a special form of the linear representation
problem. To represent a given target vector using as less vectors as possible
from a large, usually overcomplete, set of the elementary vectors.

The major difference of the sparse approximation problem with the typi-
cal linear representation problem is (1) the requirement on the representation
sparsity, (2) the use of the overcomplete set of elementary vectors. In gen-
eral, introducing overcompleteness to the elementary vector set can enhance
the sparsity. These two distinguishing points above causes the combinato-
rial nature of the sparse approximation problem. In general it’s a NP hard
problem.

The sparse approximation can be seen as the major underlying technique
behind the compressed sensing. The compressed sensing is indeed a spe-
cial extension of the sparse approximation topic with an additional part of
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random sampling to preserve the low dimensional information during the
undersampling.

We will introduce the general sparse approximation topic in a mathe-
matical aspect in Chapter-5. Concretely, for the spatial selective excitation
problem using a single RF transmit channel, the sparse approximation prob-
lem takes the special form that the large candidate vectors set is restricted
in Fourier vectors.

Remember in the conventional STA method, one just simply chooses the
complete orthogonal Fourier basis via the Shannon Nyquist theorem. The
whole problem P SSEP is then approached through the two subproblems:

Taking the Nyquist grid + P kTrav(κNyq) + P RF-Design.

Now the adaptive concept changes them accordingly to the following three
subproblems

P sparse + P kTrav + P RF-Design,

where, P sparse replaces the non-adaptive strategy of simply taking the Nqyiust
grid. Instead of that it tailored determines an undersampling pattern as
sparse as possible:

(P sparse)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p ∈ �N , (target profile)

s ∈ �N , (sensitivity profile)

TOL (user tolerance)

Find: κ ∈ �L with L as small as possible

Subject to: ‖p− S · Tκ · b‖2 � TOL

(4.25)

Where: S = Diag(s) ∈ �N×N

Tk ∈ �N×C·M according (4.11)

(4.26)

The second step P kTrav is formally the same as in the convenional
paradigm, except that now the input obligatory locations are not restricted
to the regular Nyquist one. They could be quite irregular in general.

The last step P RF-Design is the same as introduced in §-4.1 (4.16).

The formulation above of the adaptive sparse concept is based on the
conventional setting of single RF transmit channel. We will focus on the
adaptive sparse approach for the single channel setting in chapter-4.
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4.3.2 Parallel Transmit

The adaptive sparse concept proposed above is independent to the parallel
RF transmit concept. To maximize the sparsifying capability, it is desirable
to combine the two mechanisms together.

To applying adaptive sparse undersampling while at the same time uti-
lizing the parallel RF transmit setting can be formulated as

P sparse-pTx + P kTrav + P RF-Design-pTx,

The last two subproblems P kTrav and P RF-Design-pTx are the same as in (4.15)
and (4.22) respectively. The P sparse-pTx extends the P sparse to the parallel
RF transmit setting.

(P sparse-pTx)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p ∈ �N , (target profile)

s(c) ∈ �N , c = 1 : C (sensitivity profiles)

TOL (user tolerance)

Find: κ ∈ �L with L as small as possible

Subject to: ‖p−
∑C

c=1 S(c) · Tκ · b‖2 � TOL

Where: S(c) = Diag(s(c)) ∈ �N×N ,

Tk ∈ �N×C·M according (4.11)

(4.27)

In the sparse approximation aspect using the parallel transmit setting
to sparsely sample the k space can be seen as the benefit of getting more
sparsity by introducing overcomplete dictionary.

However, compared with the conventional sparse approximation problem,
the P sparse-pTx has the specialness that the sparsity requirement on the sam-
pling locations κ is not the same as the conventional column-sparseness of
the representing matrix, T̂κ :=

(
S(1) · Tκ, · · · ,S(C) · Tκ

)
. In contrast to the

single channel case, where each k space sampling location correlate with sin-
gle column vector in the representing matrix, in parallel transmit case each
k space sampling correlate with a group of column vectors with the same fre-
quency parameter. We call this special sparsity requirement the synchronized
sparsity or subspace sparsity.

The special requirement of synchronized sparsity causes additional math-
ematical complexity to approach this problem. We will need to extend the
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current standard numerical method and the according theoretical analysis to
match this special requirement. The mathematical aspect regarding this will
be discussed in the Chapter-5. The implementation and validation details of
the adaptive parallel transmit will be discussed in Chapter-8.
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Chapter 5

Sparse Approximation

In part-I we discussed the spatial selective excitation problem. Under the
STA model, the goal of the sparse undersampling of the k space leads to the
class of problems called sparse approximation.

The sparse signal approximation problem has gained more and more
popularity over the last decade. A wide range of applications, such as source
coding, denoising, source separation, and pattern analysis have benefited
from the progress made in this area. The current chapter focuses on this
topic.

The sparse approximation problem deals with the task of linear represen-
tating a given signal using a subset of vectors chosen from a large collection
of elementary vectors. The number of the used vectors for the representation
is should be minimized. The typical motivations for a sparse solution are,
for example:

i. The number of the used vectors correlates with certain cost which one
wants to control or minimize. For example, in data compression appli-
cation, it correlates with the required amount of storage. In our current
application of MRI, it correlates with the excitation duration, which we
want to minimize.

ii. In some situations, one has the prior-knowledge of the information low-
dimensionality. It means one can represent the information carried by the
signal with much less data points than the formal dimensionality of the
signal vector. One could to utilize this prior knowledge for eliminating
unexpected errors/noise, (denoising, auto-error-correction).

Obviously, the larger the available elementary vector collection, the higher
is the chance that a given target vector can be represented with very few ele-

67
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ment vectors out of this big collection. This motivates the use of the overcom-
plete vector collections for sparse representation. Mallat and Zhang in their
paper [MZ93] made the following comparison with the common experience
in linguistics:

Writing a text with a small vocabulary, although this vocabulary might
be sufficient to express all ideas, it requires to use circumvolutions that
replace unavailable words by full sentence. That’s why the human language
vocabulary has strong redundancy — a largely overcomplete system. This
overcompleteness makes the economic and elegant expression of complex
thought much easier.

Compared to the classical representation problem from the elementary
linear algebra, the sparse approximation using overcomplete element vector
collections has two essential differences.

Sparsity: while the classical representation problem focuses basically only
on how to represent the target correctly, the sparse approximation fo-
cuses on not only the representation quality but also the economic as-
pect of the representation, in the sense of using as few element vectors
as possible.

overcompleteness: while the classical linear representation problems usu-
ally uses either complete or incomplete elementary vector sets, the
sparse approximation problems usually deals with overcomplete vec-
tor collections.

These two major differences bring uncharted complexity and make the
sparse approximation problem in general NP hard [DMA97], [Nat95]. To ap-
proach this NP hard sparse approximation problem, there are several plausi-
ble heuristic methods proposed, which are backed by the successful numerical
experience. There is also a range of theoretical results providing the situation
when rigorous optimality can be guaranteed using these proposed heuristic
methods. [MZ93] [CDS99] [DETR06] [Tro04b]

Since the sparse approximation is essential technique for the implemen-
tation of our adaptive sparse concept for the selective excitation acceleration
problem, the goal of this chapter is to introduce the important results in this
topic.

In section 1 we introduce some terminology and the problem statement
of sparse approximation.

In section 2 we introduce two major numerical approaches, the greedy
approach and the convex relaxation approach. In section 3 we introduce
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the theoretical results concerning the uniqueness condition for the sparse
approximation problem and the optimality guarantee condition for the two
numerical approaches.

As discussed in Part-I, the application of MRI parallel transmit leads
to the generalization of the standard sparse approximation problem to an
extended version using multi-dimensional subspaces to sparsely represent the
target vector. We call it subspace sparse approximation. In the next chapter
we will develop this extension in both numerical and theoretical aspects.

5.1 Definitions, Formal Problem Statement

5.1.1 Definitions and terminology

1. The target-vector

The so-called target-vector space is an N dimensional inner-product
space � with the usual hermitian inner-product 〈·, ·〉 and the corre-
sponding Euclidean norm ‖ · ‖2.
An element of the target-vector space is called target vector p ∈ �N .
Usually they are also called signal and signal space in the sparse ap-
proximation literature. In this work we use the name target-vector
instead to avoid the potential confusion with the physically detected
signal in the imaging process of MRI.

The distance of two vectors is the Euclidean norm of their difference.

2. The dictionary and the atoms

The large collection of candidate vectors for the purpose of sparsely rep-
resenting the target vector is called dictionary Φ. It’s a finite collection
of normalized elementary vectors.

We notate the number of the dictionary elements as Ω. If a dictionary
is redundant, then Ω > N .

The elementary vectors ϕ ∈ �N is usually called atoms .

Two examples of simple dictionaries are the orthonormal Fourier basis
and the Dirac basis. Both are not redundant.

Redundant dictionary can be generated for example by concatenating
several complete dictionaries. For example the time-frequency dictio-
nary is a redundant dictionary generated by concatenating the Fourier
basis together with the Dirac basis.
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3. The coefficient space, �Ω. The coefficient space �Ω consists of the
coefficient vectors b representing a target vector p =

∑Ω
j=1 ϕj · bj.

4. The matrix form of the dictionary, Φ

The Dictionary (synthesis) matrix is defined as the matrix Φ ∈ �N×Ω.
Its column vectors are notated as ϕj . It is a mapping from the coeffient
space to the target-vector space:

Φ : �Ω �→ �
N : b �→

Ω∑
j

cj · ϕω

The dictionary analysis matrix is defined as the conjugate transpose of
the dictionary synthesis matrix, Φ∗. It is a mapping from the vector-
space to the coefficient space:

Φ∗ : �N �→ �
Ω : Φ∗(ω, :) · p = 〈ϕω, p〉

5. The subdictionary, ΦΛ

Subdictionary means a subset of vectors of the dictionary defined by
the index vector Λ. The matrix form accordingly: ΦΛ and Φ∗

Λ.

6. The semi l0-norm

The semi l0-norm is defined as the number of the non-zero entries:

‖b‖0 = | supp(b)|

where supp(b) is the support of the vector b, i.e. the set of indices
whose entry is non-zero.

The l0-norm is NOT a norm, because doesn’t have the positive scala-
bility. Its name comes from the connection with the general p-norm:

‖ · ‖p def
=

[∑
j |cj|p

]1/p

, where p > 0.

7. the sparsity

We define the sparsity of a linear representation of a given target vector
as the number of the elementary vectors whose representation coeffi-
cients are non-zero.

The sparsity can also be equivalently defined as the semi-l0-norm of the
coefficient vector, ‖b‖0.
Remark: The sparsity defined here is indeed rather a measure of the
“diversity” than the “sparsity” regarding the common language. But
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since no confusion would occur, we just chose this simple notation
instead of at first defining the diversity as the number of non-zero
entries and then defining the sparsity as its opposite, the number of
the zero-entries. So, a sparser representation corresponds to the smaller
zero-norm ‖ · ‖0.

5.1.2 Formal problem statement

The basic problem statement of sparse approximation can be formulated as:

(P 0)

⎧⎪⎪⎨
⎪⎪⎩

Given: p ∈ �N , Φ ∈ �N×Ω

min
b∈�Ω
‖b‖0, subject to Φ · b = p.

(5.1)

P 0 can be generalized to a version with a finite accuracy requirement ε:

(P 0,ε)

⎧⎪⎪⎨
⎪⎪⎩

Given: p ∈ �N , Φ ∈ �N×Ω, ε ∈ �+

min
b∈�Ω
‖b‖0, subject to ‖Φ · b− p‖2 � ε.

(5.2)

The problem P 0 can be seen as a special case of the problem P 0,ε with
ε = 0 (besides the numerical error).

5.1.3 Computational complexity

While for the special case of an orthonormal (ON) dictionary the compu-
tational complexity of the sparse approximation problem is relative small,
its complexity for the general non-orthogonal dictionary is NP hard. The
overcomplete dictionary is obviously non-orthogonal.

For ON dictionary, the (P 0) can be reduced to a matrix-inverse problem
and a successive process to find out sufficient number of basis vectors con-
cerning given user tolerance. (See chapter 7). The matrix inverse step costs
O(N2). For some special matrix structure it can be further reduced, e.g. ON
Fourier dictionary can use FFT with a cost of O(N · log(N)). The successive
part costs O(L · N), where L is the number of iterations, which equals the
number of the atoms with non-zero coefficient. Thus, for an ON dictionary
, the numerical cost of P 0 is O(N2).
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In case ON dictionary, the optimality regarding sparseness can always
be guaranteed, (see corollary-1)

Unfortunately, for general non-orthogonal dictionary the sparse approxi-
mation problem is NP hard. One can proof that by showing its equivalence
to the co-called Exact-Cover-by-3-Sets problem, which is a classic NP-hard
problem. It can be shown that any instant of Exact-Cover-by-3-Sets is re-
ducible in polynomial time to the sparse approximation problem, [DMA97]
[Nat95].

5.2 Numerical Methods

In this section we present the numerical methods for the sparse approxima-
tion problem. There are basically two main approaches, the greedy methods
and the L1-convex relaxation methods.

Because of the NP hard nature of the problem, both will be at first
introduced as plausible heuristic methods in this section. We will discuss
their theoretical aspects in the next section.

In §-5.2.1, we introduce the so-called Matching-Pursuit (MP) method
and the Orthogonal-Matching-Pursuit (OMP) method. Both methods follow
the the greedy concept. In §-5.2.2 we very briefly introduce the l1 convex
relaxation method. It is also called as Basis-Pursuit(BP) method.

All methods and algorithms discussed in this section have the following
inputs and outputs:

(Input :)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p (the normalized target profile)

Φ = [ϕ1, . . . , ϕΩ] (the dictionary)

0 � TOL < 1 (user tolerance)

(Output :)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Λ (the support index)

bΛ ∈ �Λ (the dictionary)

Required ‖p− ΦΛ · bΛ‖ � TOL
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5.2.1 Greedy methods

The basic idea of greedy is to decompose the optimization problem into a
sequence of sub-decision-making problems. This sequence of sub-problems
will be approached in turn. One hopes that by making optimal decision
for each sub-step the global optimal decision for the whole problem can be
approximated.

At first, we introduce Matching Pursuit (MP) as a direct application of
the intuitive greedy idea on the sparse approximation problem. Then we
introduce the Orthogonal Matching Pursuit (OMP) as an improved version
of MP.

Matching Pursuit

The basic idea of MP [MZ93] is to directly apply the greedy strategy on
the sparse approximation problem. One selects the atom vectors and its
coefficients one after another. In each successive step, one picks up the
’best’ next atom vector by checking which vector can maximally compensate
the current residual. The according coefficient of the chosen vector is its
projection on the current residual. All the selected atoms and their calculated
coefficients will not be changed in the later iterations.
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Algorithm 1 Matching Pursuit (MP)

1: l← 1, b← [ ], res0 ← p
2: {Find the next best index}

λl = arg max
ω
|〈res(l−1), ϕω〉|

3: {Update the index vector, coefficient vector}

Λl = (Λl−1, λl)

cl = (cl−1, 〈res(l−1), ϕω〉)
4: {Update the residual}

resl = resl−1−〈res(l−1), ϕλl
〉 · ϕ

λl

{Check for break}
5: if ‖ resl ‖2 > TOL then
6: l ← l + 1; → Step 2
7: else
8: return Λ, b with success!
9: end if

Numerical Cost. Let’s estimate the numerical cost of the MP algo-
rithm. Assume the greedy loop succeeds at iteration L. Step-2 requires
O(Ω ·N) operations. Step-3 and -4 require only O(N) operations. The total
cost of the MP algorithm is then O(L · Ω ·N).

Orthogonal Matching Pursuit (OMP)

The restriction of MP The MP algorithm is intuitive and numerically
efficient. However, one can easily find examples, for which the MP algorithm
clearly fails.

For example Pati et. al. [Pat93] constructed a two dimensional target
signal and used two non-orthogonal basis vectors as dictionary. The MP
algorithm did converge. However, in general it never succeeds within 2 iter-
ations.

The reason for that is the freezing of both the previously selected atoms
and their coefficients during the later iteration steps.

In general, the loss of the optimality using MP algorithm can have two
reasons. A) non-optimality due to the non global-optimally choosing of the
atoms, B) non-optimality due to the non-optimally determined coefficients.
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The reason A) is caused by the core combinatorial nature of the problem.
But optimality loss of B) is avoidable. A refined version of MP algorithm,
Orthogonal Matching Pursuit (OMP) is indeed constructed to eliminate the
optimality loss due to B). It adds a least squares minimization step at each
iteration to obtain the best approximation using the already selected the
atoms.

Algorithm 2 Orthogonal Matching Pursuit (OMP)

1: l ← 1, b← [ ], res0 = p
2: {Find the next best index}

λl = arg max
ω
|〈res(l−1), ϕω〉|

3: {Update the index vector}

Λl = (Λl−1, λl)

4: {Update the coefficient vector, the residual}

bl = argmin
b∈�l

(‖p− φΛ · b‖2)

resl := ‖p− φΛ · bl‖2
{Check for break}

5: if ‖ resl ‖2 > TOL then
6: l ← l + 1; → Step 2
7: else
8: return Λ, b with success!
9: end if

The improvement of the OMP algorithm compared with the MP algo-
rithm is due to the step-4. It induces the loop invariant property that the
residuals are always orthogonal to the subspace spanned by the chosen atoms.

〈resl, ϕλi
〉 = 0, ∀i = 1 : j

It follows that only the an atom that is linear independent from the
already chosen atoms will be selected. As a consequence, the algorithm
always succeeds at latest after N iteration steps. For instance taking the
previous example, for which the MP algorithm failed, the OMP algorithm
always succeeds within two steps.
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Numerical Cost. The numerical cost of the OMP algorithm is de-
termined by step-2 and step-4. The step-2 requires O(N · Ω) operations to
perform the inner product with all the atoms in dictionary. The step-4 is a
least squares task, which can be iteratively calculated based on the results
from the previous step. So, within the l-th iteration loop, it costs only addi-
tional O(N · l) operations. Totally it takes O(N ·L ·M + N ·L2) operations.
Since L � M , the numerical cost for OMP algorithm is:

O(N · L ·M).

5.2.2 Convex relaxation

An alternative concept to greedy approach is the convex relaxation approach.
That the sparse approximation problem is NP hard is mainly caused by

the combinatorial nature of the l0-norm. The basic idea of the convex relax-
ation is trying to approximate the NP hard combinatorial sparse approxima-
tion problem with a polynomial solvable convex programming problem.

The overcomplete signal representation has infinite many solutions be-
cause of the redundant nature of the dictionary. To get unique solution out
of them one needs additional selection criterion, e.g. a cost function to min-
imize. In the case of sparse approximation problem, this additional criterion
is the sparsity, which can be written as minimal-l0. However due to the com-
binatorial nature of the l0-norm, it’s NP hard. The basic idea of the convex
relaxation to approximate the NP hard combinatorial cost l0-norm with a
polynomial solvable convex cost function. So the question is to find a easier
cost function to replace the l0, but at the same time also has the property
to reasonably promote the sparsest solution. The l1-norm turns out to be a
good candidate for that purpose.

The approach using l1-minimization is also called Basis-Pursuit (BP). It
basically approximates the solution of the original NP hard problem (P 0)
with the solution of the following convex optimization problem (P 1)

(P 1)

⎧⎪⎪⎨
⎪⎪⎩

Given: p ∈ �N , Φ ∈ �N×Ω

min
b∈�Ω
‖b‖1 subject to Φ · b = p

(5.3)

From the computing aspect, the l1 minimization is a standard linear pro-
gramming problem There are standard software solving it reliably and rela-
tive economically . From the sparsity promoting aspect, numerous numerical
tests have shown that this approach can successfully select out the sparse so-
lution, [CDS99].
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5.3 Theoretical Analysis

In the previous two sections we discussed the sparse approximation problem
and the two main numerical approaches for it, namely the greedy method
and the l1-minimization method. However, We didn’t discuss the theoretical
aspects like the uniqueness or the optimality. We will devote this section to
these two questions:

1. Uniqueness

Regarding a given dictionary, has a given target profile an unique spars-
est representation?

2. Optimal Sparsity

Under which condition the numerical methods can indeed find the
sparsest representation?

5.3.1 Preliminary

To discuss the recent theoretical results, we at first need to introduce some
preparatory concepts and definitions to further characterize the dictionaries.

Dictionary Coherence

An important property of a given dictionary is how the atoms in this dictio-
nary differentiate from each other. The following observation may be very
intuitive and plausible: Are atoms in a dictionary nearly identical to each
other, then no matter how large this dictionary is, it doesn’t really help to
sparsely represent an arbitrary vector.

We characterize this dictionary property with the concept of coherence.

Definition 1 (Mutual) coherence

The (mutual) coherence µ is defined as the maximal absolute inner prod-
uct between two different atoms

µ := max
j �=k
|〈ϕj, ϕk〉|

Proposition 1 ([Tro04a])

• Obviously, every orthogonal basis has coherence zero.



78 CHAPTER 5. SPARSE APPROX.

• For general dictionary, assume Ω ≥ N , a lower bound of its coherence
is

µ �
√

Ω−N

N · (Ω− 1)

• Dictionaries consisting of concatenated orthonormal bases, a so-called

multi-ONB, has coherence lower bound µ �
√

1
N

The definition of the mutual coherence can be seen as measuring the sim-
ilarity between any single atom with the rest in the dictionary. A refinement
of it would be the measuring of the similarity between any group of the
atoms, assume with m member, with the rest atoms in the dictionary. This
is the motivation of the so-called cumulative coherence. To differentiate it
with the mutual coherence µ, we notate it as µ1:

Definition 2 Cumulative coherence µ1(m)
Let m be the #(atoms) in a subset of atoms from a dictionary,

µ1(m) := max
|Λ|=m

max
ω∈Λ

∑
λ∈Λ

|〈ϕω, ϕλ〉|

µ1(0) := 0

Since the mutual coherence regards only the maximal value, it reflects
only the extreme case of the “likeness” between the atoms in a dictionary.
However compared with the cumulative coherence, the mutual coherence has
the advantage of easy to calculate.

Proposition 2 Obviously:

µ1(1) = µ

µ1(m) � m · µ

Spark

Another property to characterize a dictionary is the linear dependency of
its atoms. For an overcomplete dictionary, all its atoms together are always
linear dependent due to the overcompleteness. But there is still difference
how “early” this linear dependency occurs as the #atoms increases: In some
dictionaries, there is already no linear independency between the atoms of a
very small subdictionary, while for some dictionaries one can still find linear
independency even by a quite large subdictionary. This property is important
for the uniqueness of a sparse representation.
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Definition 3 Spark
A spark of a dictionary σ = Spark(Φ) is the smallest possible number such

that there exists a sub-group of σ atoms from Φ that are linearly dependent.

Gram Matrix

An important instrument to study a property of a dictionary is the Gram
matrix .

Definition 4 Gram matrix, G
Let Φ ∈ �N×L be the synthesis matrix for a given dictionary or subdic-

tionary. We define the Gram matrix:

G := Φ∗ · Φ ∈ �L×L

Some properties
Gram matrix has the following properties:

• The Gram matrix is symmetric.

• If all column-vectors of Φ are linear independent, then G is non-
singular .

• For normalized atoms, the diagonal of a G contains only ones.

• For an orthogonal dictionary, all off-diagonal entries are zero.

• For a non-orthogonal dictionary, the off-diagonal entries indicate the
’similarity’ between the different atoms. The maximal absolute off-
diagonal entry is the mutual coherence µ.

• Due to the definition of µ1, one has the following boundary estimation

‖G‖∞ � 1 + µ1(m− 1)

Inverse Gram matrix
As a preparation for the optimality condition theorem, we want to study

the upper boundary estimation of the inverse Gram matrix.

Proposition 3 Let G be the Gram matrix of a (sub-)dictionary with m
atoms, if µ1(m− 1) < 1 then

i. ‖G−1‖∞ = ‖G−1‖1

ii. ‖G−1‖∞ � 1
1−µ1(m−1)
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Proof

i. The ‖ · ‖1 and ‖ · ‖∞ norm of the Gram matrix are identical because 1)
the matrix norm ‖ · ‖∞ is the maximum l1-norm of the rows, while the
‖ · ‖1 is teh maximum l1-norm of the columns. And 2) the Gram matrix
is symmetric.

ii. Now we proof the second part:

− We separate the diagonal and the off-diagonal part

G = Im + A

The diagonal part is the identity because the dictionary is assumed
to be normalized.

− From the definition of the cumulative coherence µ1 follows

‖A‖∞ = µ1(m− 1)

− With the assumption µ1(m − 1) < 1, we can apply the Neumann
series:

‖G−1‖∞ = ‖
∑∞

j=0(−A)j‖∞
�

∑∞
k=0 ‖A‖k∞

= 1
1−‖A‖∞

− We replace ‖A‖∞ by µ1(m− 1):

‖G−1‖∞ � 1

1− µ1(m− 1)

�

5.3.2 Uniqueness condition theorem

For an overcomplete dictionary, the representation of a given signal is in
general not unique. However the solution of (P 0) could be unique, i.e. the
unique sparsest solution.

Donoho et. al. found out [DETR06] If the signal is ‘sufficiently’ sparse
regarding the given dictionary, then it has unique sparsest representation.

The following discussion is based on the work of Donoho et. al.
[DETR06]. The concrete Lemmata structure slightly differs from the original
formulation.
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Theorem 1 Uniqueness [DETR06]
Let the dictionary Φ ∈ �N×Ω have coherence µ. If there exists p ∈ �N

and b ∈ �Ω satisfying,

1. p = Φ · b

2. ‖b‖0 < 1
2
( 1

µ
+ 1)

then b is the unique sparsest representation of p using the dictionary Φ.

The proof outline of Theorem-1 is:

i. Connect the uniqueness with the linear dependency property of the dic-
tionary, Spark(Φ).

ii. Connect the linear independency of a set of vectors with the diagonal
dominance property of its according Gram matrix:

∑
j �=i |〈ϕj, ϕi〉| <

‖ϕi‖22.

iii. Estimate the diagonal dominance property of the Gram matrix through
the dictionary coherence µ.

The complete Proof of theorem-1 consists of three lemmata corresponding
to these three steps in the outline above.

Lemma 1 A representation p = Φ · b is necessarily the sparsest possible if
‖b‖0 < Spark(Φ)/2
Proof

Let m = Spark(Φ). Assume p having two different representations p =
Φ · b1 and p = Φ · b2 with ‖b1,2‖ < m/2. One can construct a representation
of the null vector 0 = Φ · b3 with b3 = b1 − b2.

Since the l0-norm obeys the triangle inequality, ‖b3‖0 � ‖b1‖0+‖c2‖0, one
has ‖c3‖0 < m, which is a contradiction to with 0 = Φ · b3 and the definition
of the Spark as the cardinality of the smallest linear dependent subset.

�

Lemma 2 A set of vectors ϕ1:m are linear independent, if their according
Gram matrix is diagonal dominant, i.e.

∀ i = 1 : m,
∑
j �=i

|〈ϕj, ϕi〉| > ‖ϕi‖22.

( if ϕ1:m are normalized:
∑

j �=i |〈ϕj, ϕi〉| < 1 )
Proof
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a) One property of the Gram matrix is that if ϕ1:m is linear independent,
then their Gram matrix Gij = {〈ϕi, ϕj〉} is non-singular.

b) Recall the term for diagonal dominance: a matrix A = {aij} is diagonally
dominant, if |aii| >

∑
j �=i |aij| for ∀i. This means for the Gram matrix:

G is diagonally dominant, if ‖ϕi‖22 >
∑

j �=i |〈ϕi, ϕj〉| for ∀i

c) (Levy-Desplanques theorem): a strictly diagonally dominant matrix is
non-singular.

The combination of a), b), c) leads to the statement.
�

Lemma 3

Spark(Φ) >
1

µ
+ 1

Proof

a) Let Spark(Φ) = m. Any set of atoms, {ϕΛ}with |Λ| � m − 1, is linear
independent. Hence any (m−1)×(m−1)-leading-minor of the Gram ma-
trix, G(m−1), is non-singular. According to Lemma-2 this in turn means
‖G(m−1)

i,i ‖ >
∑

j �=i |G
(m−1)
i,j | for ∀i. For a normalized dictionary it follows

1 >
∑

j �=i |G
(m−1)
i,j | for ∀i.

b) The off-diagonal sum of the Gram matrix has the upper boundary the
cumulative coherence µ1. The off-diagonal sum of its m-leading-minor
G(m−1) has the upper boundery

∑
j �=i |G

(m−1)
i,j | < µ1(m− 1) for ∀i.

c) The upper boundary of µ1(m) can be estimated using mutual coherence:
µ1(m− 1) � (m− 1) · µ

combine a), b), c) one get: 1 < (m− 1) · µ. Thus

m = Spark(Φ) >
1

µ
+ 1

�

Proof of the Theorem-1
Due to Lemma-3: ‖b‖0 < 1

2
( 1

µ
+ 1)⇒ ‖b‖0 < 1

2
Spark(Φ).

Due to Lemma-1, c must be a unique representation, which is the claim
of Theorem-1.

�
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5.3.3 Optimality condition theorem for OMP algo-

rithm

After we discussed the OMP and l1-minimization methods themselves, we
want to discuss, under which conditions they can find the sparsest solution.

In this subsection we discuss the optimality condition for the greedy
method OMP. In the next subsection we briefly introduce the optimality
condition theorem for the l1-minimization method.

The following discussion is based on the work of J. Tropp, [Tro04b]. The
concrete Lemmata structure for the proof of the optimality theorem differs
slightly from the original formulation.

Theorem 2 Optimality condition for the OMP algorithm [Tro04b]

Let p be a target vector and Φ a dictionary with the coherence µ. If p has
a representation:

p = Φ · b
s.t. ‖b‖0 < 1

2
(µ−1 + 1),

then the OMP method always finds the unique sparsest representation of
p using the dictionary Φ.

The proof outline of Theorem-2:

A. Show that a sufficient condition for an exact catching of the sparsest
solution using OMP method is

‖Φ∗
optr‖ > ‖Φ∗

restr‖ (5.4)

where Φopt is synthesis matrix with the optimal atoms used for sparsest
representation of p, Φrest is the synthesis matrix of the non-optimal atoms,
r is the residual vector, r ∈ Span(Φopt).

B. Show that max
ω∈rest

‖Φ†
optϕω‖1 < 1 implies (5.4). We notate Φ†

opt as the

pseudo inverse of Φopt.

C. Estimate the upper boundary of max
ω∈rest

‖Φ†
optϕω‖1 by

max
ω∈rest

‖Φ†
optϕω‖1 < 1− 1− µ1(m− 1)− µ1(m)

1− µ1(m− 1)
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D. Combine A) B) C) one get the necessary condition for finding the sparsest
representation as following:

µ1(m− 1) + µ1(m) < 1.

Due to µ1(m) � m · µ, the condition formulated in µ becomes

m = ‖p‖0 <
1

2
(µ−1 + 1)

The complete proof consists of three following lemmata according to (A),
(B) and (C) in the above proof-outline.

Lemma 4 Let Φopt be the synthesis matrix of the mopt optimal atoms used
by the sparsest representation of p. Let Φrest be the synthesis matrix of the
non-optimal atoms and r be in the linear span of the optimal atoms. Then

‖Φ∗
optr‖ > ‖Φ∗

restr‖ (5.5)

is a sufficient condition for the OMP method to find the sparsest representa-
tion.

Proof (Induction)

We show the step from n-th iteration to (n+1)-th iteration of the OMP
algorithm, under the assumption that the n previously chosen atoms are all
in the optimal atom set.

Since p ∈ Span(Φopt) and all chosen atoms are in the optimal set, the
residual vector rn must lie in the span of the optimal atoms: rn ∈ Span(Φopt).
Since the optimal atom of current iteration step is chosen by the maximal
inner-product of the atoms and the residual, condition (5.5) guarantees that
only an atom from the optimal set is chosen.

After mopt steps, all elements of the optimal set are chosen. The aimed
optimal representation is then obtained by the least squares step.

�

Lemma 5 For ∀r ∈ Span(Φopt), a sufficient condition for (5.5) is

max
ω∈rest

‖Φ†
optϕω‖1 < 1
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Proof
Since the ∞-norm of a matrix is its maximum of the absolute row-sum,

‖A‖∞ = max
i

(∑
j |aij|

)
, one has the following relation:

max
ω∈rest

‖Φ†
optϕω‖1 = ‖

(
Φ†

opt · Φrest

)∗
‖∞ = ‖Φ∗

rest(Φ
†
opt)

∗‖∞ (5.6)

Since r ∈ Span(Φopt), its projection on Span(Φopt) is itself. i.e. P̂opt · r =

r. Where P̂opt notes the projection operator on Span(Φopt): P̂opt := Φopt ·
Φ†

opt.

Since P̂opt is conjugate symmetric, i.e. P̂opt = (Φ†
opt)

∗ · Φ∗
opt,

‖Φ∗
restr‖∞ = ‖Φ∗

rest · P̂opt · r‖∞ = ‖Φ∗
rest · (Φ

†
opt)

∗ · Φ∗
opt · r‖∞

With the triangle inequation of ‖ · ‖∞, one further gets

‖Φ∗
restr‖∞ < ‖Φ∗

rest · (Φ
†
opt)

∗‖∞ · ‖Φ∗
opt · r‖∞

Together with (6.19), the sufficient condition for (5.5) then is

max
ω∈rest

‖Φ†
optϕω‖1 < 1 (5.7)

�

Lemma 6 let mopt be the number of atoms in the optimal set, then

max
ω∈rest

‖Φ†
optϕω‖1 < 1− 1− µ1(mopt − 1)− µ1(mopt)

1− µ1(mopt − 1)
(5.8)

Proof

a) Due to the triangle inequation for the matrix ‖ · ‖1-norm, one has:

max
ω∈rest

‖Φ†
optϕω‖1 = max

ω∈rest
‖(Φ∗

opt · Φopt)
−1 · Φ∗

opt · ϕω‖1
� ‖(Φ∗

opt · Φopt)
−1‖1 · max

ω∈rest
‖Φ∗

opt · ϕω‖1

b) Due to the boundary estimation (Proposition-3) for the inverse Gram ma-
trix G = Φ∗

opt · Φopt, one has:

‖(Φ∗
opt · Φopt)

−1‖1 = ‖G−1
opt‖1 <

1

1− µ1(mopt − 1)
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c) Due to the definition of cumulative coherence µ1, one has

max
ω∈rest

‖Φ∗
opt · ϕω‖1 = max

ω∈rest

( ∑
λ∈opt

|〈ϕω , ϕλ〉|
)

� µ1(mopt)

One combines a), b), c) to get (6.21).
�

With the three lemmata above, Lemma-4, -5, -6, we can further complete
the proof for theorem 2.

Proof for the Theorem 2
Combining Lemma-4, 5 and 6, one gets

1− µ1(mopt − 1)− µ1(mopt)

1− µ1(mopt − 1)
> 0

as a sufficient condition for a successful OMP approach finding the spars-
est solution. This condition can be further reformulated to µ1(mopt − 1) −
µ1(mopt) < 1. Using the inequalty relation between the coherence and cu-
mulative coherence, i.e.

µ1(mopt) � mopt · µ,

one can express the sufficient optimality condition in µ:

‖b‖0 = mopt < 1
2
· (µ−1 + 1).

�
As a corollary, one can straightforwardly see that for an orthogonal dic-

tionary the OMP algorithm always finds the best solution.

Corollary 1 Sparse Optimality of the Orthogonal Dictionary
For an orthogonal dictionary, the OMP algorithm always finds the spars-

est solution.

Proof
An orthogonal dictionary has a mutual coherence zero:

µorth . = 0

Thus 1
2
(µ−1 + 1) =∞. The ON dictionary optimality condition follows from

theorem-2.
�
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5.3.4 The optimality condition theorem for l1-min.

method

The l1-minimization method is a very popular method to approach the sparse
approximation problem. However, for our application of fast spatial selective
excitation in MRI, it turns out to be either not necessary (more detail see
chapter-5, ON basis) or not suitable (more detail see chapter-6, synchronized
sparsity).

In this work we thus concentrate on the greedy method based on OMP
and present the l1-minimization method mainly for the aim of completeness.
Therefore, in this sub-section we just given the theorem itself. The proof of
the theorem can be find in the paper of [DETR06]

Theorem 3 Optimality condition for the l1-minimization method [DETR06]
Let p be a target vector and Φ be a dictionary with the coherence µ, if p

has a representation:

p = Φ · b
s.t. ‖b‖0 < 1

2
(µ−1 + 1),

then the representation b is the unique solution of both P 0, and P 1.

This means by solving the convex optimization problem P 1 one can get
the solution of the combinatorial problem P 0.
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Chapter 6

Subspace Sparse
Approximation

The current chapter is devoted to discuss the so-called subspace sparse ap-
proximation problem. Both numerical and theoretical aspects will be dis-
cussed.

In §-6.1 we formulate the problem of subspace sparse approximation. In
§-6.2 we extend the conventional OMP method to subspace level to approach
the subspace sparse approximation problem. We call the extended version
the subspace OMP method. In §-6.3 we focus on the theoretical aspects of
the subspace sparse approximation. The theoretical analysis for the subspace
sparse approximation is structured in an analog fashion as the theory section
(§-5.3) of the conventional sparse approximation problem.

6.1 Subspace Sparse Approximation

Sometimes the special application circumstances leads to special require-
ments on the sparsity. In this section we generalize the conventional sparse
approximation problem regarding such a modified sparsity requirement. We
call it synchronized sparsity or subspace sparsity. We call the modified prob-
lem statement the subspace sparse approximation. This problem is raised
from the effort to combine the adaptive sparse excitation concept with the
parallel transmit setting in MRI (See chapter 8).

The Subspace Sparse Approximation Problem

Let {vj ∈ �N |j = 1 : Ω} be a collection of elementary vectors. The
vectors are grouped into equal-sized small groups

sk := {vλc
k
|c = 1 : C; λc

k ∈ {1 : Ω}}, k = 1 : M, Ω = MC.

89
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Let p ∈ �N be a target vector. The task of subspace sparse approx-
imation is to represent the target vector using a minimal number of
groups.

The conventional sparse approximation problem can be seen as a special
case of C = 1.

We easily see, that the standard approaches for the conventional sparse
approximation problem can not be directly applied for the subspace sparse
approximation problem. Because they promote as few participating elemen-
tary vectors as possible, while the subspace sparse approximation problem
requires as few participating groups as possible.

In general, directly applying the approaches like OMP or l1-minimization
leads to the situation that many groups drop a part of their member vectors.
But since not all the members are eliminated, one cannot disregard the whole
group, which is the objective.

To release this issue, we take OMP approach as starting point and modify
it accordingly to match the special sparsity requirement. The next subsection
introduce the modified OMP algorithm.

To prepare the further discussion, we at first extend the definition of
atoms and dictionary to subspace atom and subspace dictionary.

Definition 5 Subspace Atom, Subspace Dictionary
Let {vj ∈ �N |j = 1 : Ω} be a collection of elementary vectors. Where

Ω = M · C, M ∈ �, C ∈ �. The grouping index vector λc
k ∈ {1 : Ω} orders

the elementary vectors into a sub-group structure with M groups, each group
has C members:

{{vc
λk
∈ �N}|k = 1 : M, c = 1 : C}

The subspace atom sk is defined as the linear span of the vector members
of the group with index k = 1 : M .

sk := Span(vλ1
k
, . . . , vλC

k
)

The subspace dictionary is defined as the collection of the M subspace atoms.

D := {sk, k = 1 : M}

The subspace atoms are linear spaces and the subspace dictionaries are set
of linear spaces. We use the fraktur font to notate them respectively. For the
discussion convenience we also define the matrix form of both. To distinguish
the subspace atoms and dictionary with their matrix form, we notate the
matrix forms with a hat above, ŝ, D̂.
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Definition 6 The matrix form of subspace-atom and subspace-dictionary
The subspace-atom matrix ŝ is defined as a N × C matrix. Its column

vectors are the members of the vector group with index k:

ŝk := (vλk(1), . . . , vλk(C)) ∈ �N×C .

The subspace-dictionary matrix D̂ is defined as a N × M · C matrix,
column-wise concatenated by all the subspace-atom matrix ŝ:

D̂ := (ŝ1, . . . , ŝM) ∈ �N×CM .

Definition 7 Subspace-subdictionary and its matrix form
Similar to vector-atom subdictionary, we define the subspace subdictionary

as a subset of D. The subset is notated with an index vector Λ, which picks
out L values from 1 : M :

DΛ := {sΛ(1), . . . , sΛ(L)}; Λ(j) ∈ {1 : M}, j = 1 : L

Sometimes we also directly notate it as sΛ or sk.
Accordingly, its matrix form is

D̂Λ :=
(
ŝΛ(1), . . . , ŝΛ(L)

)
∈ �N×CL.

6.2 The Subspace-OMP Algorithm

The special requirement on group sparsity leads to a modified OMP
algorithm: the so-called subspace-OMP algorithm.

The basic idea. The basic idea of the subspace OMP algorithm is the
following:

1. We take the greedy spirit of the OMP, but instead of compare and
select the elementary vectors in each iteration we compare and select
the whole group of the elementary vectors.

2. The OMP weights the importance of each elementary vector by looking
at its “similarity” with the current residual. It picks up the most
“similar” one to compensate the residual in each iteration.

We can extend this “comparing similiarity” concept to our goal of com-
paring not only the single elementary vectors but the whole group of
vectors.



92 CHAPTER 6. SUBSPACE SPARSE APPROX.

The “similarity” of a elementary vector to the residual vector can be
measured by the absolute value of their inner product, which is the
projection of the residual vector on the subspace spanned by the ele-
mentary vector.

The “similarity” of a group of vectors to the residual vector can be
measured by the euclidean norm of the projection of the residual vector
on the multi-dimensional subspace spanned by all the member vectors
in the group.

The idea above straightforwardly induced the subspace-OMP algorithm.
The algorithm has the following input and output parameters.

(Input :)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p ∈ �N (the normalized target profile)

{vj ∈ �N |j = 1 : Ω, Ω = C ·M} (the collection of elementary vectors)

λc
k ∈ {1 : Ω}, k = 1 : M, c = 1 : C (grouping index)

0 � TOL < 1 (user tolerance)

(Output :)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Λ (the support index)

bΛ ∈ �Λ (the coefficient vector)

Required ‖p− D̂Λ · bΛ‖ � TOL

The symbole P̂sk
(v) stands for the projection operator. It gives the pro-

jection of the vector v on the subspace sk.
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Algorithm 3 Subspace OMP

1: {Initial.}
l ← 1, Λ← [ ], res0 ← p

2: {Find the next best index}

λl = argmax
k

(
‖P̂sk

(resl−1)‖2
)

3: {Update the index vector}

Λl = (Λl−1, λl)

4: {Update the coefficient vector, the residual}

bl = argmin
b∈�l

(‖p− φΛ · b‖2)

resl := ‖p− φΛ · bl‖2
{Check for break}

5: if ‖ resl ‖2 > TOL then
6: l ← l + 1; → Step 2
7: else
8: return Λ, b with success!
9: end if

Compared with the OMP algorithm (§-5.2.1), the subspace OMP only
differs in step-2. Here one extends the “maximal inner-product” selection
criterion by the maximal of the projections on the multi-dimensional
subspace atoms.

The computational cost. The dominant computational cost of the
subspace OMP algorithm is caused by step-1. For each iteration loop, a
N × C least squares problem for each candidate group has to be solved.
Each least squares problem has the computational cost O(N · C2). With M
the total number of the candidate groups, the cost of step-1 in each iteration
is O(M ·N · C2).

The remaining steps, basically step-3, have the same numerical cost as in
the OMP algorithm. It’s about O(N · L), which is an order of magnitude
smaller than the cost of step-1.

Totally, one ends up with a computational cost of O(L ·M ·N ·C2), where
L is the number of iterations.
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This algorithm is supported by successfull numerical tests, (chapter-5).
Beside the heuristical success via numerical tests, we also want to give a
theoretical analysis of the uniqueness and the optimality condition, which is
the topic of the next section.

6.3 Theoretical analysis

6.3.1 Preliminary

Before we give the theorem for the optimality condition and its proof, we
at first do some preparatory work extending the essential concepts for the
vector-atoms and -dictionaries to subspace-atoms and -dictionaries.

The Concepts Extension

In §-6.1 we defined the subspace atom, subspace dictionary (def.-5). In
this section we generalize the conventional transpose operation for their
according synthesis matrix form (def.-8). We will also define the appropriate
vector and operator norm for the coefficient space.

For a conventional matrix D the conjugate transpose D∗ is indeed a pro-
jection of the input vector to each of the column-vector of D and the output
vector is their projection coefficients. In the case of a subspace dictionary
matrix, the appropriate extension is to project the input vector onto all its
subspace atoms rather than the directly projection onto their underlying
column vectors. This consideration leads us to the following definition:

Definition 8 Generalized transpose for a subspace dictionary matrix
Let D̂ := (ŝ1, . . . , ŝM) ∈ �N×CM be a subspace dictionary matrix. Its

conjugate transposed matrix is defined as

D̂∗̂ :=

⎛
⎜⎜⎜⎝

ŝ†1
...

ŝ†M

⎞
⎟⎟⎟⎠ ∈ �CM×N

where ŝ† := (ŝ∗ŝ)−1ŝ∗ ∈ �C×N is the Moore-Penrose pseudoinverse of the
subspace matrix ŝ.

At this point it’s not obvious whether the new defined transposed matrix
D̂∗̂ has the same matrix multiplication property like conventional matrix,
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e.g. association rule etc. However, for orthogonal subspace atoms matrix the
generalized transpose of their dictionary matrix is identical with the normal
transpose matrix. We will discuss the orthogonalization of the subspace
atoms in the next subsection.

Definition 9 Coefficient Space, Target Space
The target-vector space is a finite-dimensional, complex linear space �N .

It has standard definitions of multiplication-with-scalars, addition, and inner-
product.

The representation of a target vector via the a set of C dimensional sub-
spaces is parametrized by the coefficients regarding each subspaces. Each
coeffient of a subspace is itself a C-dimensional vector, uj ∈ �C , j = 1 : M .
We concatenate them all into one single column vector:

u :=

⎛
⎜⎜⎜⎝

u1

...

uM

⎞
⎟⎟⎟⎠ ∈ �C·M×1, uj=1:M ∈ �C×1 (6.1)

We call it coefficient vector of the regarding set of subspaces. We call the
associated space the coefficient space.

The coefficient space has standard definition of multiplication-with-
scalars and addition. However the inner-product is different. The inner-
product is indeed a 1D special case of the matrix conjugate transpose and a
matrix vector multiplication. We have a generalized definition of the conju-
gate tranpose. Hence the vector inner-product and the norm in the coefficient
space must be accordingly re-defined.

Definition 10 The inner product and the vector norm of the coefficient
space. We define the inner product of the coefficient space as:

〈v, u〉 = v∗̂ · u. (6.2)

We define the vector norm of coefficient space as:

‖u‖q|p :=

∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎝
‖u1‖q

...

‖u
M
‖q

⎞
⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥
p

. (6.3)

where ‖ · ‖p and ‖ · ‖q are the Hölder norm
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One can easily see that ‖ · ‖2|2-norm is induced by the inner-product
(6.2). One can also see that this definition makes sense regarding step-2 in
the algorithm 5 (Subspace-OMP) .

Lemma 7 Let u be the coefficient vector defined as 6.1, let ‖u‖q|p be defined
as in (6.3). The ‖u‖q|p is a norm in the sense of

1. u �= 0⇒ ‖u‖q|p > 0; u = 0⇒ ‖u‖q|p = 0

2. a ∈ �, ‖a · u‖q|p = |a| · ‖u‖q|p

3. ‖u(1) + u(2)‖q|p � ‖u(1)‖q|p + ‖u(2)‖q|p

Proof

Let w :=

⎛
⎜⎜⎜⎝

w1

...

wM

⎞
⎟⎟⎟⎠, wj = ‖uj‖q, then ‖u‖q|p = ‖w‖p.

The hoelder norm fulfills the three norm criteria above, i.e.

1. x �= 0 ⇒ ‖x‖p > 0

2. a ∈ �, ‖a · x‖p = |a| · ‖x‖p

3. ‖x1 + x2‖p � ‖x1‖p + ‖x2‖p

By applying these three points on the new defined ‖ · ‖q|p norm, one can
verify their according properties:

1. u �= 0, ⇒ ∃j, wj = ‖uj‖q > 0, ⇒ w �= 0 ⇒ ‖u‖q|p = ‖w‖p > 0

2. a ∈ �, ∀j, ‖a · uj‖q = |a| · wj = |a| · ‖uj‖q,
⇒ ‖a · u‖q|p = ‖|a| · w‖p = |a| · ‖w‖p = |a| · ‖u‖q|p

3. Let w(1) :=

⎛
⎜⎜⎜⎝
‖u(1)

1 ‖q
...

‖u(1)
M ‖q

⎞
⎟⎟⎟⎠, w(2) :=

⎛
⎜⎜⎜⎝
‖u(2)

1 ‖q
...

‖u(2)
M ‖q

⎞
⎟⎟⎟⎠, w(+) :=

⎛
⎜⎜⎜⎝
‖u(1)

1 + u
(2)
1 ‖q

...

‖u(1)
M + u

(2)
M ‖q

⎞
⎟⎟⎟⎠
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Then w(+) � (w(1) + w(2)). (“�” means componenten-wise).

Therefore:

‖u(1) + u(2)‖q|p = ‖w(+)‖p � ‖w(1) + w(2)‖p
� ‖w(1)‖p + ‖w(2)‖p = ‖u(1)‖q|p + ‖u(2)‖q|p

�
Since we have now two spaces: the target vector space with a euclidian

vector norm and the coefficient space with the norm defined as in (6.3).
We should distringuish the four types of linear operators accordingly: the
operators between the signal spaces, between the coefficient spaces, from
coefficient space to signal space, and from signal space to coefficient space.
For the purpose of this work, we are mostly interested in the linear operator
between the coefficient spaces.

Definition 11 Linear operators between the coefficient spaces
Let A be a linear operator between the coefficient spaces. A can be writen

as block matrix:

A :=

⎛
⎜⎜⎜⎝

α1,1 · · · α1,M

...
. . .

...

αM,1 · · · αM,M

⎞
⎟⎟⎟⎠ ∈ �MC×MC (6.4)

where αi,j ∈ �C×C .

We define the norm for the linear operators between coefficient spaces
according to the vector norm ‖ · ‖q|p:

Definition 12 Norm for the linear operators between the coefficient space
Let A be a matrix form of the operator between coefficient spaces as de-

fined in (6.4), then ‖A‖q|p is defined as:

‖A‖q|p := ‖

⎛
⎜⎜⎜⎝
‖α1,1‖q · · · ‖α1,M‖q

...
. . .

...

‖αM,1‖q · · · ‖αM,M‖q

⎞
⎟⎟⎟⎠ ‖p

where ‖αi,j‖q is the matrix (q, q)-Hölder norm for αi,j ∈ �C×C, and ‖ · ‖p is
the matrix (p, p)-Hölder norm.
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Analog to the proof of Lemma-7, one can show that this definition fulfills
also the three (vector) norm requirements.

What remains to show is, whether this definition provides a consistent
norm concerning matrix multiplication.

Lemma 8 The matrix norm ‖ · ‖q|p is consistent in the sense of

‖A ·B‖q|p � ‖A‖q|p · ‖B‖q|p

Proof
Let A and B be defined as in (6.4). The letters αi,j, βi,j ... denote their

sub-block matrices.
We introduce the following notation rules:

− For αi,j, the i, j are the indexes for the sub-blocks, not the element of
the sub-blocks, for which we write αi,j(k, l).

− Define: ai,j := ‖αi,j‖q ∈ �, bi,j := ‖βi,j‖q ∈ �,

A := (ai,j) ∈ �N×H , B := (bi,j) ∈ �H×M

⇒ ‖A‖q|p = ‖A‖p, ‖B‖q|p = ‖B‖p

− The compact notation of sum (Einstein’s convention):

αj
i · βk

j :=

H∑
j=1

αi,j · βj,k

For A ∈ �QN×QH, B ∈ �QH×QM , j = 1 : C ·H , one can write

A ·B =

⎛
⎜⎜⎜⎝

αj
1β

1
j · · · αj

1β
M
j

...
. . .

...

αj
Nβ1

j · · · αj
NβM

j

⎞
⎟⎟⎟⎠

Since the normal matrix Hölder norm are consistent in the sense of ‖A ·
B‖p � ‖A‖p · ‖B‖p, we have

‖αi,j · βj,k‖q � ‖αi,j‖q · ‖βj,k‖q
⇒ ‖αj

i · βk
j‖q � ‖αj

i‖q · ‖βk
j‖q ∀i = 1 : N, ∀j = 1 : M

(The compact notation of sum is applied in the last row)
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Since

0 �

⎛
⎜⎜⎜⎝
‖αj

1β
1
j‖q · · · ‖αj

1β
M
j ‖q

...
. . .

...

‖αj
Nβ1

j‖q · · · ‖α
j
NβM

j ‖q

⎞
⎟⎟⎟⎠ �

⎛
⎜⎜⎜⎝
‖αj

1‖q · ‖β1
j‖q · · · ‖α

j
1‖q · ‖βM

j ‖q
...

. . .
...

‖αj
N‖ · ‖β1

j‖q · · · ‖α
j
N‖q · ‖βM

j ‖q

⎞
⎟⎟⎟⎠

where “�” stands for component-wise “�”, we have

‖A ·B‖q|p =

∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎝
‖αj

1β
1
j‖q · · · ‖αj

1β
M
j ‖q

...
. . .

...

‖αj
Nβ1

j‖q · · · ‖α
j
NβM

j ‖q

⎞
⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥
p

�

∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎝
‖αj

1‖q · ‖β1
j‖q · · · ‖α

j
1‖q · ‖βM

j ‖q
...

. . .
...

‖αj
N‖ · ‖β1

j‖q · · · ‖α
j
N‖q · ‖βM

j ‖q

⎞
⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥
p

=

∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎝
‖αj

1‖q · · · ‖αj
1‖q

...
. . .

...

‖αj
N‖q · · · ‖α

j
N‖q

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝
‖βj

1‖q · · · ‖βj
1‖q

...
. . .

...

‖βj
N‖q · · · ‖β

j
N‖q

⎞
⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥
p

= ‖A · B‖p
� ‖A‖p · ‖B‖p
= ‖A‖q|p · ‖B‖q|p

�

The Normalization of the Subspace Atom

There are two reasons for introducing the concept of “normalization” for the
subspace dictionary:

− the analogy to normal vector dictionary, where one can restricts the in-
vestigation normalized atom vectors without loss of generality to avoid
the unnecessary complication due to the scaling of atoms.

− the technical difficulty to treat the generalized transpose for a sub-
space dictionary and the induced special ‘matrix’ multiplication, inner-
product concept, and the further derivative concepts like pseudo in-
verse, etc. We will see that with the orthogonalized subspace atoms
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the generalized transpose reduced to normal transpose. The “orthogo-
nalization” of the subspace atoms is an extension of the “normalization”
of the conventional vector atoms.

The core idea of a normalized conventional dictionary is the standariza-
tion of the dictionary. In this way one can keep only the characteristic
information of a dictionary, which are its atom directions and shift the un-
necessary information — the scaling of the atoms — out to the coefficient
vector. We will apply the same concept to the subspace dictionary/atoms.

To represent a C-dimensional subspace one need C linear independent
vectors of this subspace. But this representation is of course not unique.
The different representations of the same subspace bring in distracting infor-
mation, which have nothing to do with the characterization of the subspaces.
Thus we want to eliminate these distractions by standarizing the subspace
representation. One straightforward option is the orthogonalization.

By performing a QR-decomposition of an arbitrary representation A ∈
�N×C of a subspace, one can get an orthonormal representation C ∈ �N×C of
the subspace. While the coefficient for a conventional vector atom is a scalar,
the generalized “coefficient” of the subspace is a C-dimensional vector. The
upper matrix R ∈ �C×C can then be seen as generalized scaling factor for
a multi-dimensional subspace. If the subspace is one dimensinoal, the whole
concept reduces to the conventional normalization of the vector atoms, where
both the coefficient and the scaling factor are scalar.

With this QR-normalization concept one can restrict the investigation to
the case of orthogonal representation of the subspaces without loss of gener-
ality. Any non-orthogonal representation can be reduced to it by multiplying
the according scaling matrix R to its C-dimensional coefficient.

The orthogonal matrix representation of a subspace has a very nice prop-
erty:

ŝ† = ŝ∗

Hence the generalized transpose for a subspace dictionary turns out to be
the same as a conventional transpose. Therefore it obeys the same matrix
multiplication rules. We can thus use all the derivative concepts based on
matrix transpose such as the inner-product, the pseudo-inverse etc as usual.
This property is essential for the later derivation of both, uniqueness and
optimality theorems.

In the rest of this thesis, all the matrix representations of the subspace
atoms are assumed to be orthogonal.
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The dictionary coherence quantity under the subspace aspect

Due to the “QR-normalization” of the subspace atoms, the subspace dictio-
nary has formally the same Gram matrix as for the according conventional
dictionary with the same elementary vectors.

However, the difference lies in the treatment of its block strucure, defined
as in (6.4), and its quantitative “measure” using the ‖ · ‖q|p norm.

G = D̂∗ · D̂ ∈ �CM×CM

=

⎛
⎜⎜⎜⎝

ŝ∗1ŝ1 · · · ŝ∗1ŝM

...
. . .

...

ŝ∗M ŝ1 · · · ŝ∗M ŝM

⎞
⎟⎟⎟⎠ .

We introduce the notation: gi,j := ŝ∗i ŝj ∈ �C×C

G =

⎛
⎜⎜⎜⎝

g1,1 · · · g1,M

...
. . .

...

gM,1 · · · gM,M

⎞
⎟⎟⎟⎠ (6.5)

Since ŝk is column-orthonormal matrix, the diagonal blocks of the Gram
matrix are identity matrices: gi,i = �C , ‖gi,i‖2 =

√
C.

The special “measure” via the ‖·‖q|p norm induces a generalized definition
of dictionary mutual coherence and the cumulative coherence.

Definition 13 (Generalized) mutual coherence for a subspace dictionary
The (generalized) mutual coherence for a subspace dictionary is defined

as
µ(C) := max

i�=j
(‖gi,j‖2)

The superscript ·(C) is to denote the dimension of the subspace: gi,j ∈ �C×C .
Obviously, µ(1) = µ

Definition 14 (Generalized) cumulative coherence
Let 1 ≤ m ≤M , the cumulative coherence regarding m is defined as:

µ
(C)
1 (m) := max

|Λ|=M
max
w �∈Λ

∑
λ∈Λ

‖gω,λ‖2
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Obviously, µ
(1)
1 = µ1

Lemma 9 Estimating µ
(C)
1 by µ(C):

µ
(C)
1 (m) < M · µ(C)

Proof the Lemma follows directly from the definitions.

Lemma 10 Estimating the upper bound of the inversed Gram matrix
For µ

(C)
1 (m − 1) <

√
C the inverse of the sub Gram matrix ‖G−1

Λ ‖2|∞,
|Λ| = m, has the following upper bound:

‖G−1
Λ ‖2|∞ = ‖G−1

Λ ‖2|1 � 1

1− µ
(C)
1 (m− 1)

(6.6)

Proof
One can proof this estimation exactly the same way as for the estimation

of ‖G−1‖∞, Proposition-3. Here is the outline:

− Seperate the diagonal and the off-diagonal parts: G = IM + A.

− ‖A‖2|∞ = µ
(C)
1 (m− 1), per definition of µ

(C)
1 .

− For µ
(C)
1 (m− 1) <

√
C, the Neumann series of (‖gi,i‖2) converges

‖GΛ‖2|∞ = ‖
∑∞

k (−A)k‖2|∞
�

∑∞
k ‖(−A)k‖2|∞

= (1− ||A‖2|∞)−1

− Replace ‖A‖2|∞ with µ
(C)
1 (m− 1) yielding the estimation (6.6)

�
One should be aware that this estimation is only justified under the

assumption of (µ
(C)
1 (m− 1) <

√
C).

Now we extend the concept of linear (in)dependency to subspaces.

Definition 15 Subspace-linear-independency
A set of subspaces {si|i = 1 : L} is linear independent, if no element

subspace can be represented by the others:

∀ξj=1:L ∈ �C :
∑

j �=i ŝj · ξj �= ŝi · ξi, ∀i = 1 : L (6.7)

The linear dependent set of subspaces is defined as the opposite

∃ξj=1:L ∈ �C :
∑

j �=i ŝj · ξj = ŝi · ξi, ∃i = 1 : L (6.8)
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Recall that in the vector atom dictionary case one defines the Spark as
the smallst number of the linear dependent atoms from the given dictionary.
We extend this spark concept accordingly to the subspace dictionary.

Definition 16 Subspace-dictionary-spark SSpark(D)

SSpark(D) is the cardinality of the smallest possible linear dependent sub-
set of a subspace-dicitonary D.

Lemma 11 Given a set of subspaces DΛ := {sΛ|Λ = 1 : L} and the accord-
ing Gram matrix GΛ = D̂∗

Λ · D̂Λ. If the Gram matrix is block-wise strictly
diagonally dominant in the sense of

∀i ∈ {1 : L} : ‖gΛ
i,i‖2 >

∑
j

‖gΛ
i,j‖2,

then this set of subspace is subspace-linear-independent in the sense of (6.7)
in (def. 15).

Proof

We show that if a subspace set is subspace-linear-dependent, its Gram
matrix cannot be block-wise diagonally dominant.

Let {s0, s1, . . . , sL} be linear dependent in the sense of (6.8)

∃ξ0:L ∈ �C
∑

j=1:L ŝj · ξj = ŝ0 · ξ0 (6.9)

Without loss of generality, one can re-number the index such that

‖ξ0‖2 < ‖ξj‖2, ∀j = 1 : L (6.10)
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We introduce the following notation

D̂′
Λ := (ŝ1, . . . , ŝL) ∈ �N×CL

D̂Λ := (D̂′
Λ, ŝ0) ∈ �N×C(L+1)

GΛ := D̂Λ · D̂∗
Λ ∈ �C(L+1)×C(L+1)

g0 :=

⎛
⎜⎜⎜⎜⎜⎜⎝

s∗0 · s0

s∗1 · s0

...

s∗L · s0

⎞
⎟⎟⎟⎟⎟⎟⎠
∈ �C(L+1)×1

�
C(L+1)×CL � FΛ : GΛ =: (FΛ, g0)

x :=

⎛
⎜⎜⎜⎝

ξ1

...

ξL

⎞
⎟⎟⎟⎠ ∈ �CL×1

By multiplying D̂
′∗
Λ on both side of (6.9) one get

FΛ · x = g0 · ξ0

The first block row of FΛ reads:

g̃0 := (ŝ∗1 · ŝ0, . . . , ŝ
∗
L · ŝ0) = (g1,0, . . . , gL,0) ∈ �C×L

Hence: ∑
j=1:L

gj,0 · ξj = g0,0 · ξ0

⇒
‖

∑
j=1:L

gj,0 · ξj‖2 = ‖g0,0 · ξ0‖2

Since all s are orthonormal, all gi,i are identity matrices. Thus the right
hand side reads

‖g0,0 · ξ0‖2 = ‖g0,0‖2 · ‖ξ0‖2 =
√

C · ‖ξ0‖2.

The left hand side is bounded:

‖
∑

j=1:L

gj,0 · ξj‖2 �
∑

j=1:L

‖gj,0 · ξj‖2 �
∑

j=1:L

‖gj,0‖2 · ‖ξj‖2
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Since ξ0 has been chosen chosen to have the minimal l2 norm (6.10), we get
the situation of non diagonal dominance∑

j=1:L

‖gj,0‖2 � ‖g0,0‖2 =
√

C

So, subspace-linear-dependency implies block-wise non-diagonally-
dominance of their Gram matrix, which means equivalently: The block-wise
strictly diagonally dominance implies subspace linear independency.

�

Lemma 12

SSpark(D) >
C

µ(C)
+ 1

Proof

i. Since µ
(C)
1 (m− 1) � (m− 1) · µ(C) (Lemma 9), we get

µ
(C)
1 (m− 1) <

√
C.

So, M <
√

C

µ
(C)
1

+ 1 implies µ
(C)
1 (m− 1) <

√
C.

ii. To show: µ
(C)
1 (m − 1) <

√
C implies the blockwise strict diagonally

dominance of the according Gram matrix:

µ
(C)
1 (m− 1) = max

i

∑
j

‖gΛ
i,j‖2 �

∑
j

‖gΛ
i,j‖2, ∀i

Since the ŝ are column-wise orthonormal, ‖gi,i‖2 =
√

C. Together with

µ
(C)
1 (m− 1) <

√
C one gets

∀i = {1 : m} :
∑

j ‖gΛ
i,j‖2 � µ

(C)
1 (m− 1) <

√
C = ‖gi,i‖2

⇒
∑

j ‖gΛ
i,j‖2 < ‖gi,i‖2.

This is the blockwise strictly diagonally dominance.

iii. Together with lemma-11 one get the following statement:

Given a subspace dictinoary D with a mutual coherence µ(C), any m-

member-subdictionary with m <
√

C

µ
(C)
1

+1 is subspace linear independent,

which means SSpark(D) > m. Thus

SSpark(D) >

√
C

µ
(C)
1

+ 1

�
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6.3.2 Uniqueness condition theorem

Preparations

We defined the subspace linear independency in (Definition 15). We can also
formulate this definition in a dimensionality aspect.

Definition 17 Subspace linear independency (dimensionality aspect)
A set of subspaces {si ∈ �C |i = 1 : M} is linear independent, if its matrix

representation has a kernel with the dimension smaller than C.

dim (ker(ŝ1, . . . , ŝM)) < C

It’s obvious that the two definitions (Definition 15) and (Definition 17)
are equivalent.

Definition 18 Subspaces representating subspace
A subspace p̂ ∈ �N×C can be represented by the subspace dictionary D =

{sΛ(1), ...sΛ(L)} means

∀ξ0∃ξ1:L

∑
j=1:L

ŝΛ1(j) · ξj = p̂ · ξ0

We call p̂ the target subspace.

Lemma 13 Subspace-subspace uniqueness
Let p̂ ∈ �N×C represent the target subspace. The C column vectors of p̂

are linear independent. Let D be the subspace dictionary.
If p̂ can be represented by a number of subspaces smaller than

1
2
SSpark(D), Then this representation is the unique sparsest representation

for this subspace.

Proof
We assume there exist two representations of p̂ with the same number

of participating subspaces. Let two index vectors Λ1, Λ2 parameterize the
representations, |Λ1| = |Λ2| = L:

∀ξ0∃ξ1:L

∑
j=1:L ŝΛ1(j) · ξj = p̂ · ξ0

∀β0∃β1:L

∑
i=1:L ŝΛ2(i) · βi = p̂ · β0.

This means the intersection of Im(ŝΛ1) and Im(ŝΛ2) is at least as large as
p.

p ⊂ (Im(sΛ1) ∩ Im(sΛ2))
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which means
dim(Im(sΛ1) ∩ Im(sΛ2)) � C

We notate the union index vector Λ := Λ1 ∪ Λ2. Further we get

dim(ker(sΛ)) � C

Which in turn means the set of subspaces {sΛ} is linear dependent. At the
same time one has |Λ| � |Λ1|+ |Λ2| = 2L < SSpark(D). Recall SSpark(D)
is per definition the smallest number of the subspace elements, which can
form a linear dependent subset. So it’s contradictory to the claim: |Λ| <
1
2
SSpark(D) and {sΛ} linear dependent.

So the representation of the subspace p ∈ �N×C with less than 1
2
M

subspace elements must be unique.
�

Untill now the analysis is very analog to the proof for the uniqueness of
representions using vector atoms, [DETR06]. The difference is that lemma 13
deals with the situation using subspaces to represent subspaces. However, we
want to deal with the situation using subspace to represent a vector instead
of a whole subspace.

Compared with the subspace-target-subspace-atoms case, the problem-
atic part of the vector-target-subspace-atoms case is that there could be a
non-zero intersection of the linear independent subspaces. For those target
vector, which lie in this intersection area, it could happen that some sub-
spaces are equal-valued, which would destroy the uniqueness.

This situation will not happen for the vector-target-vector-atoms case
because all intersections between linear independent atoms are zero. For
the subspace-target-subspace-atoms case, this situation will also not happen
because of the definition of subspace-linear-independency.

Hence we want to restrict our statement to the non-intersection region.
At first we want to characterize the intersection region.

Definition 19 Intersection region H
Given a set of subspaces {sΛ(1), ..., sΛ(L)}:

H(sΛ) :=
⋃

i=1:L

(
si ∩ Span

j �=i
(sj)

)

Definition 20 SLI Intersection Region (SLI stands for Subspace-Linear-
Independent)

Given a subspace dictionary D = {s1, · · · , sM}:

Ĥ(D) :=
⋃

∀ SLI subset: ΛSLI

(H(sΛSLI
)) (6.11)
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The following (Lemma 14) and (Corollary 2) will show that the intersec-
tion region is a zero-set in �N .

Lemma 14 If a set of subspaces {sΛ(1), ..., sΛ(L)} is subspace linear indepen-
dent as Def.-15, then

H(sΛ) ⊂ Span(ŝΛ)

dim(H(sΛ)) < dim(Span(ŝΛ))

Proof
Since subspace-set {sΛ} is subspace-linear independent, then for any index

vector |Λ2| < L = |Λ|:
Span(ŝΛ) ⊂ Span(ŝΛ).

It means for ∀i

(si ∩ Span(ŝj|j = {1 : L}\{i})) ⊂ Span(ŝΛ)

Since L is finite, we have

H(sΛ) :=
⋃
i∈Λ

(
si ∩ Span(ŝΛ\{i})

)
⊂ Span(ŝΛ)

�

Corollary 2 For an overcomplete subspace dictionary D = {s1:M} with
Span(D) = �N ,

H(D) = �N

�
N\H(D) = ∅

For a linear independent subspace set {sΛ} with Span(ŝΛ) = �N ,

�
N\H(sΛ) �= ∅

H(sΛ) is a subspace of �N and thus a null set. Since H(D) is a union of
finite number of null sets, H(D) is also a null set.

Definition 21 Vector-Subspace linear independency
Let {sΛ(1), · · · , sΛ(L)} be a set of equal-dimensional subspaces. Let the

intersection region H(sΛ) defined as (6.11).
The set {sΛ(1), · · · , sΛ(L)} is said to be vector-subspace-linear-

independent, if for ∀i = 1 : L, ∀p ∈ Span(si) and p �∈ H(sΛ):

∀ξj �=i ∈ �C :
∑

j �=i ŝj · ξj �= p
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Lemma 15 The subspace linear independency (Definition 15) implies
vector-subspace linear independency (Definition 21).

Proof

i. If {s1:L} is subspace linear independent, then

∀i = 1 : L, {p ∈ si|p �∈ H(s1:L)} �= ∅.

ii. follows from definition 21:

If p ∈ si could be represented by the other subspaces, then p ∈ Span(sj �=i).
It’s contradictory to the two other properties:

p ∈ si

p �∈ (si ∩ Span(sj �=i)) ⊂ H(s1:L).

�

Lemma 16 Uniqueness and subspace linear independency
Given subspace dictionary D with subspace Spark SSpark(D) = L.
If a vector p ∈ �N\Ĥ(D) can be represented by both subsets of subspaces

Λ1 and Λ2, i.e.

p ∈ Span(ŝΛ1)

p ∈ Span(ŝΛ2),

then {sΛ1∪Λ2} must be subspace linear dependent and

|Λ1 ∪ Λ2| � L

Proof
We devide {sΛ1} into one member subspace and the rest: {s1}+ {sΛ′

1
}.

We notate p1 := P̂s1(p), p′ := P̂Span(sΛ′
1
)(p) ⇒ p = p1 + p′

If p can also be represented by another subset of subspaces Λ2 and
{sΛ1∪Λ2} is subspace linear independent, then

p ∈ Span(ŝΛ2),
thus p′ ∈ Span(ŝΛ2),
and thus p1 = (p− p′) ∈ Span(ŝΛ′

1∪Λ2
).

On the other hand p1 ∈ s1. Together with p �∈ Ĥ(D) and lemma 15, it’s
contradictory to the assumption that {sΛ1∪Λ2} is supspace linear indepent.

Hence {sΛ1∪Λ2} is must be subspace linear dependent and |Λ1 ∪ Λ2| � L.
�
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Uniqueness theorem and its proof

Theorem 4 Uniqueness Condition

Let p < �
N be a target vector. Let D be a subspace dictionary with the

coherence µC.

If p can be represented by a set of L subspaces {sΛ(1), · · · , sΛ(L)} with

L <
1

2
·
(√

C

µ(C)
+ 1

)
(6.12)

Further if

p �∈ Ĥ(D), (6.13)

then this representation is unique.

Since Ĥ(D) is a null-set in �N , one can also formulate in a loose way:

If (6.12) is true, then it’s very likely the unique representation. “Very
likely” in the sense of (6.13) and Ĥ(D) is a null set in �N .

Proof
Outline: The proof goes in two stages: (i)We express the uniqueness con-

dition with the quantity of the subspace dictionary spark (SSpark(D)). (ii)We
estimate SSpark(D) by the more calculable quantity of subspace mutual coher-
ence.

(i) If one has another subspace set {sΛ′} with |Λ′| � |Λ|, then according
to Lemma-16 {sΛ∪Λ′} must be linear dependent in the subspace sense. This
means

2 · |Λ|0 � |Λ ∪ Λ′|0 � SSpark(D) (6.14)

where | · | notates the length of the index vector, which is the number of the
participating subspaces.

Hence, if p can be represented by a subspace set with the number of
members L less than half of the subspace spark, i.e.

L <
1

2
· SSpark(D), (6.15)

then the uniqueness of this representation is guaranteed, because then (6.14)
cannot be hold.

(ii) From Lemma-12 we get the estimation

SSpark(D) >

√
C

µ(C)
+ 1
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together with (6.15), we get the uniqueness condition in µC :

L <
1

2
·
(√

C

µ(C)
+ 1

)

�
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6.3.3 Optimality condition theorem

Theorem 5 Optimality of Subspace-OMP
We assume the target vector p ∈ �N has a unique sparsest subspace

representation out of the subspace dictionary D := {sΛ(1), · · · , sΛ(M)}.
If the number of the participating subspaces m satisfies the upper bound

condition:

m <
1

2
(

1

µ(C)
+ 1),

then the subspace-OMP algorithm is guaranteed to find the optimal sparsest
representation.

After all the preparationary work, the proof of the subspace-OMP
optimality theorem follows an analog way as the proof of OMP optimality,
(§5.3.3).

The proof outline:

i. We show that a sufficient condition for an exact recovery of the sparsest
solution using Subspace-OMP is ‖D̂∗

opt · r‖2|∞ > ‖D̂∗
rest · r‖2|∞, where

D̂opt is the subspace subdictionary matrix form of the optimal subspace
atoms of the sparsest representation and Drest is the one of the non-
optimal subspace atoms. r ∈ �N is the residual vector.

ii. We show that max
ω �∈opt
‖D̂∗

opt · sω‖2|1 < 1 implies ‖D̂∗
opt · r‖2|∞ < ||D̂∗

rest · r‖2|∞

iii. We derive an upper bound of max
ω �∈opt
‖D̂∗

opt · sω‖2|1 using the subspace cu-

mulative coherence: max
ω �∈opt
‖D̂∗

opt · sω‖2|1 < 1− 1−µ
(C)
1 (m−1)−µ

(C)
1 (m)

1−µ
(C)
1 (m−1)

iv. We combine i. ii. iii. to get µC
1 (m − 1) + µC

1 (m) < 1 as an optimality
condition. Since µC

1 (m) � m · µC, we have the theorem statement m <
1
2
( 1

µC + 1).

The complete proof is based on three lemmata covering accordingly the
steps i, ii, iii above.

Lemma 17 Let D̂optbe the matrix form of the optimal subspace atoms used

by the sparsest representation of p, D̂rest be the matrix form of the non-
optimal subspace atoms, r be the residual vector calculated in the subspace-
OMP-algorithm. Then, the condition ‖D∗

restr‖∞ < ‖D∗
optr‖∞ is a sufficient

condition for the Subspace-OMP method to always find the sparsest represen-
tation.
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Proof
In the subspace OMP algorithm, (Algorithm 5), the initial value of the

residual are set to be r := p ∈ Span(D̂opt). The optimal atom of each
iteration step is chosen by the maximal inner-product of the subspace atoms
and the residual vector, i.e. the ‖ · ‖2|∞-norm.

‖D∗
restrn‖2|∞ < ‖D∗

optrn‖2|∞.

It guarentees that from n-th iteration to (n+1)-th iteration, only atoms from
the optimal set will be chosen.

Since p ∈ Span(Dopt) and all the chosen atoms are from the optimal set,
the resulting new residual vector also lies in the span of the optimal atoms:
rn+1 ∈ Span(Dopt).

After M steps, all elements of the optimal set are chosen. The aimed
optimal representation is then obtained by the least squares step.

�

Lemma 18 ∀r ∈ Span(D̂opt), a sufficient condition for

‖D̂∗
restr‖2|∞ < ‖D̂∗

optr‖2|∞ (6.16)

is
max
ω �∈opt
‖D̂∗

optsω‖2|1 < 1

Proof
Since r ∈ Span(D̂opt), its projection on Span(D̂opt) is r itself. P̂opt(r) = r,

where P̂opt is the projection operator onto Span(D̂opt). P̂opt = D̂opt · D̂†
opt.

Since P̂opt is conjugate symmetric: P̂opt = (D̂†
opt)

∗ · D̂∗
opt. We get:

‖D̂∗
restr‖2|∞ = ‖D̂∗

rest · P̂opt · r‖2|∞ = ‖D̂∗
rest · (D̂

†
opt)

∗ · D̂∗
opt · r‖2|∞

Together with the triangle inequation of ‖ · ‖2|∞, we get

‖D̂∗
restr‖2|∞ < ‖D̂∗

rest · (D̂
†
opt)

∗‖2|∞ · ‖D̂∗
opt · r‖2|∞ (6.17)

Then the sufficient condition for (6.16) is

‖D̂∗
rest · (D̂†)∗‖2|∞ < 1 (6.18)

We set the connection between the ‖ · ‖2|∞- and ‖ · ‖2|1-norm. Since the
∞-norm of a matrix is the maximum of the absolute row-sum: ‖A‖∞ =

max
i

(∑
j |aij |

)
, we get the following relation:

‖D̂∗
rest(D̂

†
opt)

∗‖2|∞ =
∥∥∥(

D̂†
opt · D̂rest

)∗∥∥∥
2|∞

= max
ω �∈opt
‖D̂∗

optŝω‖2|1 (6.19)
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Combining (6.17) and (6.19), the neccessary condition for (6.16) reads

max
ω �∈opt
‖D̂†

optŝω‖2|1 < 1 (6.20)

�
So we’ve derived the sufficient condition for (6.16) as a up boundary for

max
ω �∈opt
‖D̂†

optsω‖2|1 . Now we estimate the quantity max
ω �∈opt
‖D̂†

optsω‖2|1 itself by the

subspace dictionary cumulative coherence µC
1 .

Lemma 19 Let the number of the optimal subspace atoms be M , then

max
ω �∈opt
‖D̂†

optsω‖2|1 < 1− 1− µ
(C)
1 (m− 1)− µ

(C)
1 (m)

1− µ
(C)
1 (m− 1)

. (6.21)

Proof

a) We express the quantity by the Gram matrix, and apply the triangle
inequalty:

max
ω �∈opt
‖D̂†

optsω‖2|1 = max
ω �∈opt
‖(D̂∗

opt · D̂opt)
−1 · D̂∗

opt · ŝω‖2|1

� ‖(D̂∗
opt · D̂opt)

−1‖2|1 · max
ω �∈opt
‖D̂∗

opt · ŝω‖2|1

b) Using the boundary estimation for the inverse Gram matrix Gopt (Lemma-
10), we get

‖(D̂∗
opt · D̂opt)

−1‖2|1 = ‖G−1
opt‖2|1 <

1

1− µ
(C)
1 (m− 1)

c) Due to the definition of cumulative coherence µ
(C)
1 (m), we get

max
ω �∈opt
‖D̂∗

opt · ŝω‖1 = max
ω �∈opt

( ∑
λ∈opt

‖ŝ∗
ω
· ŝλ‖2

)
� µ

(C)
1 (m)

We combine a), b), c) to get (6.21).
�

Proof of Theorem 5
Combining the sufficient condition (6.18) for (6.16) with the upper bound

estimation (6.21), we get the sufficient condition for (6.16):

1− µ
(C)
1 (m− 1)− µ

(C)
1 (m)

1− µ
(C)
1 (m− 1)

< 0. (6.22)
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A sufficient condition for (6.22) in turn is

µ
(C)
1 (m− 1) + µ

(C)
1 (m) < 1 (6.23)

Together with lemma-17, we get that (6.23) is a sufficient condition for
the subspace-OMP to find the optimal solution.

The last step is to replace the subspace cumulative coherence with the
more calculatable mutual coherence µ(C). Since µ

(C)
1 (m− 1) < (m− 1) · µ(C)

(lemma-9), we get the optimality condition for subspace-OMP:

m <
1

2
(

1

µ(C)
+ 1)

�
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Chapter 7

Application Setting 1: Sparse
Single Channel RF Transmit

7.1 Recall the Problem: Adaptive Single

Channel Transmit

In the Chapter 4 we discussed the Spatial Selective Excitation Problem
P SSEP. The task is to design two waveforms, RF(t) and g(t) to excite a
spatially distributed spin ensemble from their ground state to an user given
spatial magnetization target profile.

RF transmit coil

Figure 7.1: Schematic for selective excitation process

Else than in the imaging problem, where we don’t have concrete knowl-
edge of the images to be acquired, in the excitation problem we have the
full knowledge of the target magnetization profile to be excited. This full
prior information of the target profile leads us to the adaptive concept. We
want to individually shorten the excitation process tailored to the individual
target profile.

119
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In the STA model the conventional non-adaptive paradigm reduces P SSEP

to two subproblems P kTrav(κNyq) and P RF-design. (See section 4.1.) The
P kTrav(κNyq) is a task of fast covering the Nyquist sampling grid with the
traveling velocity and acceleration constraints. The P RF-design is a linear
representation problem using the according Fourier vectors.

Also under the STA model, the proposed adaptive paradigm approaches
the P SSEP with three subproblems P sparse (4.25), P kTrav (4.15) and P RF-design

(??). The P sparse is a sparse approximation problem using a pure Fourier
dictionary. Its task is to represent the target profile vector p with as less
Fourier harmonics as possible.

The P sparse can be schematically demonstrated as following:

p = T · b

=

k

ξ

After selecting out the most important k sampling locations, we trans-
late the sampling location {k1:L} to feasible physical control of the gradient
waveform g(t), with the gradient and slew-rate boundary: g(t) � Gmax and

ġ(t) � Smax. Since k(t) =
∫ Tf

t
g(τ)dτ , this step is equivalent to a problem of

fast covering the obligatory k space locations with the traveling velocity and
the acceleration constraints. This is the task of subproblem P kTrav.

Compared with the problem P kTrav(κNyq), the P kTrav doesn’t assume
regularly distributed obligatory locations like the Nyquist grid. Usually the
input obligatory locations are quite irregularly distributed. Thus solving
P kTrav is not easy.

In section 7.2 we’ll discuss the question of choosing the appropriate dic-
tionary for P sparse: Concretely, whether the overcomplete Fourier dictionary
or the orthonormal Fourier dictionary. We will come to the conclusion of
choosing the orthonormal Fourier dictionary.

In section 7.3 we’ll discuss the numerical algorithm of P sparse tailored to
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the orthogonal Fourier dictionary. We will come to an algorithm with very
intuitive physical interpretation of the adaptive energy threshold .

In section 7.4 we’ll discuss our approach for the P kTrav. We follow two
alternative empirical methods, one from convex optimization perspective,
one from time optimal control perspective.

In the section 7.5 we stablish the validation strategy of three stages.
In section 7.6 we’ll validate the undersampling-enhancing property of the

adaptive energy threshold algorithm approaching P sparse.
In section 7.7 we’ll validate the actual acceleration effect of the whole

concept via simulation of the relaxation free Bloch equation.
In section 7.8 we’ll validate the praxis applicability via the “real-world”

phantom experiment on a GE 3T MRI scanner.
In section 7.9 we’ll demonstrate the adaptive capability of the proposed

approach via several examples.

7.2 Dictionary Choosing: ON vs. Overcom-

plete Fourier Dictionary

The choose of dictionary for P sparse is physically restricted to the pure Fourier
dictionary. Hence we indeed choose between the overcomplete Fourier dic-
tionary or complete orthonormal Fourier basis.

We consider this question from a pragmatic benefit-cost perspective. We
ask if the additional complexity of the overcomplete Fourier dictionary can
be justified with the benefit of additional acceleration effect.

We at first compare the two dictionaries from a theoretical point of view.
Then we compare them at a heuristic point of view with numerical example.

7.2.1 Theoretical guarantee of finding the optimal
sparse solution

In chapter 5 we discussed the theoretical result concerning the optimality
condition for the two major heuristic methods for sparse approximation.
After the work of J. Tropp et al.[Tro04b] and D. Donoho et al.[DETR06]
both OMP method and L1-minimization methods are guaranteed to find the
sparsest solution when the target vector has indeed a sparse representation:

‖c‖0 = (µ−1 + 1)/2

The dictionary coherence property µ is essential here.
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If the overcomplete dictionaries are constructed by concatenating mul-
tiple orthogonal dictionaries, the dictionary coherence µ could still be well

bounded, µ �
√

1
N

(Proposition 1). However, the dictionary coherence µ of

the pure Fourier dictionary grows unfortunately very fast as the overcom-
pleteness increases.

To demonstrate that we take an example of an overcomplete Fourier
pure dictionary with the frequency sampling rate twice than required by
the Nyquist theorem. We have atoms:

ϕj(ξ) = exp{ 2π

ν ·N · i · ξ}, (7.1)

where ξ is the spatial coordinate, N is the dimension of the target vector, ν is
the oversampling rate regarding the Nyquist sampling grid in the frequency
domain. The factor ν = 1 is equivalent to an ON Fourier basis fulfilling
Shannon-Nyquist theorem. ν > 1 is the oversampling factor. For ν = 2 one
has a twice oversampled dictionary. This twice overcomplete dictionary has a
coherence µ(N) = 1

N ·sin(π/N)
[DETR06]. For the limit π

N
� 1 the µ converges

to 1/π:

lim
N�1

(µ) =
1

π
= 0.3183

For example for a 2D profile N = 33× 33 = 1089, µ(1089)=̇0.3183.
The according critical sparsity for a theoretical guarantee then turns to

be

‖c‖0 � 1

2
· ( 1

µ(1089)
+ 1) ≈ 2.07.

This means the theory can only offer an optimality guarantee when the 2D
profile can be represented by maximally two atoms. This is practically never
the case.

Conclusion: for a overcomplete pure Fourier dictionary, the current the-
oretical result cannot provide praxis meaningful help.

Remark: The theorems of the theoretical guarantee play indeed the worst
scenario. It doesn’t mean for the target vectors beyond that critical sparsity
the two numerical methods are unusable, but just there is no guarantee any
more for optimality. Also not be said is, when fails, how far away it is from
the optimal solution, whether it is still somehow acceptable or disastrous.

On the other hand, Orthonormal basis always has optimality guarantee,
even when it is not sparse, (Corollary 1). due to µ(ON) = 0, the critical
sparsity level turns to be infinity:

‖c‖0 � 1

2
· (1

0
+ 1) =∞
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So the optimality is guaranteed for any target vector.

Remark: The overcomplete dictionaries are weak at the guarantee of
optimum-finding, but it has generally better optimum. In contrast, orthogo-
nal basis have generally less good optimum, while it always has the guarantee
of being able to find the optimum.

7.2.2 Benefit vs. cost — heuristic point of view

We compare the overcomplete and orthonormal dictionaries in a heuristic
point of view.

We recall that the actual acceleration is achieved by two steps: 1) sparsi-
fying the obligatory sampling locations from the Nyquist grid, 2) designing
a traveling trajectory in k space covering those sparse obligatory locations.
Therefore the solution quality offered by the dictionary should be checked
accordingly in two levels: 1. sparsity of the k space obligatory locations, 2.
the actual traveling duration of the k space trajectory, which is indeed the
excitation duration we want to shorten.

We take the heart shape as our target magnetization profile as in (fig-
1.4-top-left). We choose the user tolerance 10%. We perform the tests for
the two candidate dictionaries: Dictionary-1: the twice oversampled Fourier
dictionary, ν = 2 in (7.1); Dictionary-2: the orthonormal Fourier basis. For
the sparse approximation we use the OMP algorithm.

Dictionary-1: Overcomplete Fourier Basis, ν = 2 (fig-7.2-top-row)

For the sparse approximation level, the OMP calculation using the
orthonormal Fourier basis ends up with 56 obligatory k space location.
The computational time for that is 176 s.

For the actual acceleration level, the k trajectory design ends up with
1070 sampling points with 4µs sampling distance. This k trajectory
has accordingly a traveling duration of 4.2ms. (For more detail regard-
ing k space traveling design step, please see §-7.4.)

Dictionary-2: Orthogonal Fourier basis (fig-7.2-bottom-row)

For the comparison level-1, the sparse approximation, the OMP calcu-
lation using the complete orthogonal Fourier dictionary ends up with
60 atoms. The computational time for selecting out these 60 locations
is 60 s.

For the comparison level-2, the actual acceleration, the k trajectory
design covering these 60 k-locations ends up with 458 sampling points
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Figure 7.2: Overcomplete- vs. ON-dictionary: k space sampling
(Top-left: Sparse approximation result with overcomplete dict. Top-right:

designed trajectory covering the overcomplete sparse approx. results.
Bottom-left: sparse approx. result with ON dict. Bottom-right: designed

trajectory covering the ON sparse approx. results)

with 4µs sampling distance. The k trajectory has accordingly a trav-
eling duration of 1.83ms.

Specially for the ON Fourier basis a tailored algorithm can further
reduce the numerical cost. (For details please see §-7.3.) As the re-
sults one get the same output of k-locations and k-trajectory as above.
However the computational time is much shorter: 3 s

To summary up we bring together the facts into table 7.1.

If we only look at the sparsity of the k-sampling-locations, the overcom-
plete dictionary gives slightly sparser solution, 56 vs. 60.



7.2. ON DICTIONARY VS. OVERCOMPLETE DICTIONARY 125

Overcomplete ON

# k locations: 56 60

# k trajectory: 1070 (=4.2ms) 458 (=1.83ms)

computational time (OMP): 176 s 60 s

specified for ON: 3s

Table 7.1: The numerical cost comparison

If we look at the more important quantity, the traveling duration of the k-
trajectory, the solution of the overcomplete dictionary has surprisingly even
longer duration than the ON-dictionary solution with slightly more obliga-
tory locations to cover: 4.2ms vs. 1.83ms.

There are basically two reasons that to recover 56 locations costed more
time than to cover 60 locations:

1. The 56 locations from the overcomplete dictionary are more loosely
distributed than the second set of 60 locations.

2. The 56 locations are more irregular distributed than the 60 locations
from the orthogonal Fourier basis. Solving P kTrav is more demanding
with more irregular distributed locations.

Remark: The big gap between the durations (458 vs. 1070) might be
reducible to certain level if one has more advanced k traveling design strat-
egy. However the core massage will still remain: the slight advantage in the
sparsity, like 56 vs. 60, doesn’t guarantee the actual acceleration at all.

Let’s take a look a the computational cost.
The numerical cost of OMP is of O(L ·N ·M). Here N is the dimension

of the target vector, M is the number of the atoms in the dictionary, L is
the number of iteration.

If one use OMP algorithm, the difference of the numerical cost comes
basically from the number of atoms in the dictionary: M . For our over-
complete Fourier dictionary case we twice oversampled in both kx and ky

direction, thus it has 4×the number of the atoms as the ON Fourier basis
elements. Therefore we also expect a numerical cost difference up to this
fact. The numerical test result roughly confirmed this estimation (176s vs
60s, table-7.1).
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For the orthogonal dictionary, the OMP algorithm can be further opti-
mized to a much cheaper algorithm based on orthogonal decomposition. Us-
ing this tailored algorithm for ON dictionary one can reduce the numerical
cost further fromO(L·N ·M) toO(N2), with FFT even toO(N ·ln(N)+L·N).
In the example above it reduced the computational time from 60s to 3s. We
will discuss this ON basis tailored algorithm in more detail in next section.

7.2.3 Conclusion

Combine all these factors, especially the cost benefit comparison, it turns out
clearly that introducing the overcomplete Fourier dictionary will bring large
additional complexity and numerical burden, while the benefit of it is very
small or even not guaranteed. It can well happen that regarding the actual
acceleration the overcomplete dictionary delivers even less optimal solution
than the ON dictionary.

So we will chose the complete orthonormal Nyquist Fourier basis as our
dictionary for the application setting of single channel RF transmit.

7.3 The Algorithm Tailored for Orthogonal

Dictionary

For the special case of orthogonal dictionary the OMP algorithm can not
only guarantee the optimality, but also be further optimized to reduce the
cost from O(L · N2) to O(N2). In this section we will introduce this ON
dictionary tailored algorithm.

7.3.1 The algorithm of adaptive energy threshold

For orthogonal dictionary, the greedy algorithm OMP can be reduced to an
orthogonal decomposition step and an adaptive break check step. It results



7.3. THE ADAPTIVE ENERGY THRESHOLD ALGORITHM 127

the Algorithm 7.3 with the following input and output:

(Input :)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p (the normalized target profile)

Φ = [ϕ1, . . . , ϕN ] (the orthonormal dictionary)

0 � TOL < 1 (user tolerance)

(Output :)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Λ (the support index)

b ∈ �Λ (the dictionary)

Required ‖p− ΦΛ · b‖ � TOL

Algorithm 4 Adaptive Energy Threshold (AET)

1: {Orthogonal decomposition}

b← Φ∗ · p

2: Order the index vector Λ after |bΛ(1)| > . . . > |bΛ(N)|;

3: {Init. for adaptive Break Check}

l ← 1, res← p

4: {Update the residual}

res← res−ϕΛ̂(l) · bΛ̂(l)

5: if ‖ res ‖2 > TOL then
6: l ← l + 1; → Step 3
7: else
8: return Λ← {Λ(1), · · ·Λ(l)}, b← {bΛ(1), · · · bΛ(l)} with success!
9: end if

7.3.2 The physical interpretation

This algorithm has a very intuitive physical interpretation: Adaptive RF
energy threshold.
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The physical meaning of the orthogonal decomposition coefficient b =
(b1, . . . , bN ) is the complex RF waveform value as a function of the k sam-
pling locations. The quantity b2

j has the meaning of the energy of the RF
waveform at the j-th k sampling point. Therefore ranking the index Λ after
|bΛ(1)| ≥ . . . ≥ |bΛ(N)|, is nothing else than ranking the k locations after their
corresponding RF energy. Choosing only the first L sampling-locations in
k space with higher RF energy means nothing else than a cut-off after an
energy threshold. The number L is determined adaptively by the criterion
whether the user accuracy requirement is reached with the current sampling
locations in use. It is equivalent to an adaptively decreasing threshold of the
RF energy.

Due to this physical interpretation, we call this method the Adaptive
Energy Threshold method (AET).

7.3.3 The equivalence to the normal OMP

The essential point here is: Because of the orthogonality of the atom-vectors,
the projections of the residual vectors on the individual atoms will never
change from iteration step to iteration step. Indeed, also due to the or-
thogonality, the projections of the residual vector on the individual atoms
are always identical to the projection of the target profile on the individual
atoms.

Therefore it allows us to calculate the projection coefficient regarding
each atoms once for all at the very beginning of the algorithm. It is the
orthogonal decomposition step. After that we iteratively check the residuals
for break and terminate the algorithm by sufficient accuracy.

After the corollary-1 in §-5.3 OMP always finds optimum for orthogonal
dictionary. Due to the equivalence to the OMP, the same is true for the
Algorithm 4: AET.

7.3.4 The numerical cost

The numerical cost of this algorithm consists basically of two parts. i) The
orthogonal decomposition, step 1. It has the numerical cost ofO(N2). ii) The
successive residual check, step 4-9. It has the numerical cost of O(L·N). The
L notates the number of the iterations, where L < N due to the convergence
nature of the algorithm. Thus the total numerical cost has the order of
O(N2).

We compare it with the cost of the general OMP algorithm, which is
O(L·N ·M). Since we’ve chosen the complete Fourier basis as our dictionary,
we have M = N . Thus the cost of OMP algorithm is O(L ·N2).
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For example, for a solution with 60 participating atoms L = 60. Thus the
AET algorithm has a cost reduction of about factor 60. This the reason that
in the example in previous section the numerical cost dramatically reduced
from 60s to 3s by applying the AET algorithm.

This algorithm can be further optimized by

1. using FFT in the orthogonal decomposition step: It reduces the O(N2)
cost to O(N · ln N).

2. applying Parseval’s theorem: The residual-L2-norm in the spa-
tial domain is simply the L2-norm of the rest-coefficient-vector:
‖(bj+1, . . . bN)‖2. In this way the cost in part-ii) is then:

L ·N − (1 + L) · L
2

= N + (N − 1) + . . . + (N − L)

However in our operating order of magnitude (N = O(103)) these slight
improvements in the numerical efficiency doesn’t make essential difference
any more.

Remark: The Parseval’s theorem is only applicable if one uses the L2

norm as error measure. If one wants to use more flexible error measure, e.g.
the magnitude only error: ‖(|b1|, . . . , |bN |)‖2, one still needs to calculate the
errors in the spatial domain.

7.4 The Gradient Design, k Space Traveling

Problem

7.4.1 The P kTrav problem

We recall that our task is to design the gradient waveform g(t) and the
RF waveform. In the STA model we introduced the substitutional quantity
k(t) ∈ � to replace the gradient waveform: k(t) =

∫
g(τ)dτ . This substitu-

tion helped us to set the connection with the Fourier transform formulism
and transferred the problem to a linear representation problem.

On the one hand, in the k space picture the linear representation for-
mulism using Fourier vector helps us to find certain obligatory k space sam-
pling locations. It thus also delivers the according criterion for the gradient
waveform, so that a successful excitation to the target magnetization profile
can be guaranteed.

On the other hand, the gradient waveform must subject to the hardware
feasible constraints of the maximal gradient value, g(t) � Gmax < ∞, and
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the maximal slew-rate, ġ(t) � Smax < ∞. These two gradient hardware
constraints have the equivalent form in the k space picture that the k space
traveling must subject to the velocity constraint, κ̇(t) � C1 < ∞, and the
acceleration constraints, κ̈(t) � C2 <∞.

Till now we’ve selected out the sparse obligatory sampling locations adap-
tive to the target profile and TOL. The next step is to approach the fast
covering κ problem, P kTrav (4.15).

If the obligatory locations to be covered, κ := {κ1, · · · , κL}, are fully
random, the problem P kTrav can be seen as a special form of the well-known
traveling salesman problem with the velocity and acceleration constraints.
We all know that the traveling salesman problem is NP hard.

However, our target is not to solve the P kTrav optimally, but to find a
sufficiently good solution somehow, such that the sparsity of the obligatory
locations can be sufficiently transferred to the actual acceleration of the k
space traveling. The acceleration of the k space traveling duration is exactly
the acceleration of the whole excitation process.

We approach the P kTrav in two steps:

i. Connecting the set of the unordered obligatory locations κ to a ordered
sequence of locations κ̂.

ii. Designing k(t) covering the location-sequence κ̂ and fulfilling the velocity
and the acceleration constraints at the same time. The traveling duration
should be as short as possible.

7.4.2 Step-i: connect the dots

To order the set of the obligatory locations to a sequence, we following a
very simple strategy to connect the locations line by line in the k-space with
a alternating line direction. (In MRI terminology it can be called as a EPI-
style.)

It’s obvious that this strategy doesn’t always give the best solution. But
since the obligatory locations are selected from a regular grid (Nyquist sam-
pling grid), one has reason to hope that in most cases it will deliver a rea-
sonable sequences for the step-ii) to start with. Empirically, together with
the heuristic approach in the step-ii), it delivers a sufficiently good solution
to transfer the sparsity to the actual acceleration. In fig 7.3 is an example of
how we connect a set of 55 unordered locations to a sequence.
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Figure 7.3: Example of connecting the obligatory locations in k space

7.4.3 Step-ii: fast traveling covering the locations-
sequence

To fast traveling through the sequence of the obligatory locations subject to
the velocity and acceleration constraints, we use two alternative heuristic ap-
proaches. The two approaches are based on convex optimization and optimal
control respectively. We will discuss them one by one.

Local approach

To introduce our local approach, we starts with a intermediate task of de-
signing a time optimal trajectory connecting only two sampling locations. If
the starting and the final velocities are given, the problem can be reduced
to a linear programming problem [HNC04]. Since linear programming is a
standard convex optimization problem, the optimal solution can be obtained
using standard convex optimization software like (CVX, Stanford [GB09]).

Our actual task is to design a trajectory traveling through a sequence of
more than two locations. Only the velocities of the initial and final locations
are given. All velocities of the interior locations, both magnitude and di-
rection, are to be optimized too. However, if these velocities at the interior
sampling locations are given, the rest of the problem is then straightforward.
One just solve (L− 1) linear programming problems.

Our pragmatic approach is to empirically set the velocity values at the
interior locations using some simple calculation rule from the information
of the previous and the later k sampling locations. The experience with
numerous numerical tests shows that even this kind of very simple strategy
can deliver sufficiently good result.

For solving the linear programming problem, we used the nice convex



132 CHAPTER 7. SINGLE TRANSMIT CHANNEL

optimization software package from M. Grant and S. Boyd [GB09].
In fig 7.4 is an example applying the local approach. It use the input

location sequence as in the previous example (fig 7.3):
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Figure 7.4: Result of P kTrav using local approach

It ended up with 4.2ms to cover the 55 obligatory locations. (For com-
parison: to cover the whole Nyquist grid with 1089 obligatory locations, it
ended up with 16ms)

Global approach

To introduce our global approach, we start with a given continuous curve
in k space, ky = C(kx). The time optimal traveling k(t) through C can be
calculated using optimal control approach [LKP08]. In this case the time
optimality can be guaranteed.

For our actual task P kTrav we need to at first construct a continuous
curve covering the given location sequence ourselves. The concrete shape of
the continuous curve covering the discrete location sequence influences the
time optimality of the final traveling duration.

A straightforward way to connect a sequence of discrete locations to a
continuous curve is the Spline fitting. In our implementation we do take this
pragmatic approach of the Spline fitting to at first construct a continuous
curve. Then we calculate the traveling movement k(t) through it. The
heuristics shows this approach also delivers sufficiently good result to transfer
the sparsity to actual acceleration.

For implementation, we basically use the nice matlab package from Miki
Lustig, “timeOptimalGradient” [Lus].

However, it needs to be mentioned that the Spline fitting might be a
pragmatic choice but in general it is not an optimal strategy to construct the
continuous curve. Because on the one hand the Spline fitting corresponds
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to finding a continuous curve covering a discrete location sequence with the
property of minimal L2 norm, on the other hand one can easily verify that
for fast traveling with the velocity constraints, the optimal continuous curve
corresponds to a one with minimal L 1

2
-norm.

In fig 7.5 is an example applying the local approach. It use the input
location sequence as in the previous example (fig 7.3):
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Figure 7.5: Result of P kTrav using global approach

It ended up with 3.2ms to cover the 55 obligatory locations. (Nyquist
grid with 1089 obligatory locations: 16ms)

Remark: In this example the global approach have better performance
as the local approach. But we should be cautious to derive any general
conclusions from it. Because of two reasons:

1. The performance depend strongly on the concrete distribution of the
sampling locations to be covered. For some examples there are almost
no difference in the final traveling duration.

2. The performance of the local approach is very strongly determined by
the heuristic rule setting the velocities at the interior obligatory loca-
tions. The current rule is very simple and unoptimized. So the perfor-
mance of the local approach has still strong margin to be improved.

7.5 The Validation Strategy

From the beginning of this thesis till now we have derived the original ap-
plication task of spatial selective excitation to P sparse + P kTrav + P RF-design.
We’ve also developed and implemented the according methods to approach
these sub-problems. Along the way we have a number of critical points, which
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are essential for a successful realization of our approach. Some of them are
assumptions made by the model. Some of them are about the performance
of our methods.

These critical points are the focuses of a systematical validation. We
want to at first list these critical points for an overview. Then we design
the validation strategy in such a way that we can check them separately as
possible.

1. The performance of solving the sparse approximation problem P sparse

2. The performance of our approach to P kTrav

—— whether the sparsity of the obligatory sampling locations can be
sufficiently transferred to the actual acceleration of the k space traveling
duration covering those locations.

3. The STA assumption.
That the spin flip angle is sufficiently within the small tip angle regime
is an essential assumption for the STA model. The whole linear repre-
sentation formulism of the problem is based on this assumption.

4. Sufficiently accurate Bz realization.
The P SSEP assumes that the z-direction external magnetic field can
indeed be sufficiently described by a spatially linear varying function,
whose slope is the gradient waveform g(t):

Bz(ξ, t) = B0 + 〈ξ, g(t)〉.

But in the reality there are realization imperfections in the form of a)

small additional non-linear spatial variation, B0 = B̂0 + B
(err)
0 (ξ), b)

error by the gradient waveform realization: g(t) = ĝ(t) + g(err)(t).

5. The neglecting of relaxation.
It’s a model assumption of P SSEP.

Now we separate our implementation and validation procedure in three
major stages accordingly. We should be able to isolate the problematic part
in case of any unexpected observation. These three stages are: Sparse ap-
proximation stage, Bloch equation simulation stage and Phantom experiment
stage.

Stage-I: Sparse approximation :
Within the STA model, we validate the sparse approximation result.
In this stage we can separately check the performance of our method
solving P sparse, Checklist-No.1.
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Stage-II: Simulation after P kTrav, P RF-design :
We take the selected sparse obligatory sampling locations and design
a feasible k trajectory covering it. Taking the 4µs discretely sampled
k trajectory sampling points, we solve the linear least squares problem
P RF-design, which delivers the RF waveform. From the feasible k tra-
jectory we calculate straightforwardly the feasible gradient waveform.
We simulate the Bloch equation using the calculated gradient and RF
waveform. We expect a simulation result very similar to the target
profile and also the STA model prediction.

This stage separately validate the check-list No.2 and No.3.

Stage-III: Phantom experiment with MRI scanner :
After the validation via the Bloch equation simulation we replace the
simulator with the real MRI scanner phantom experiment. This stage
can validate the check-list No.4 and No.5.

A successful phantom experiment is a strong evidence for the practical
applicability of our adaptive sparse concept in the praxis.

In section-7.6 we introduce the validation result of the sparse approxima-
tion level.

In section-7.7 we introduce the implementation and the validation of the
Bloch equation simulation stage.

In section-7.8 we introduce the phantom experiment validation.

7.6 Validation Stage I: Sparse Approxima-

tion

In this section we will introduce the validation result of the sparse approx-
imation stage. The target of this stage is to check the performance of the
solving of P sparse, the checklist No.1.

The same heart shape target magnetization profile as previous is used, (fig
7.6 top-left). The complete ON Fourier dictionary is used, whose frequency
domain sampling locations are determined after the Shannon Nyquist criteria
4.14. The P sparse is approached by the AET algorithm. The error is measured
by relative l2-norm of the representation error.

The (fig-7.6-top-right) shows the error decaying behavior using the adap-
tive energy threshold algorithm. The x axis is the number of the partici-
pating atoms. The y axis is the representation error (RRMS). The error is
represented in a logarithmic scalar.
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As expected, the error decays very fast as the number of the participat-
ing k sampling locations increases. The point corresponding to the case of
Nyquist grid fullsampling (1089, 1.6E(−6)), is far outside the plot range at
the right side. In the table 7.2 are some representative data:

TOL Number of Atoms Representation Error

A). full Nyquist 1089 1.6E(−6)

B). 1% 431 0.9987%

C). 5% 121 4.96%

D). 10% 65 9.85%

E). 15% 43 14.87%

Table 7.2: The sparse approximation result.

The represented profiles and their participating k sampling locations re-
garding different accuracy requirement are shown in the bottom columns of
(fig-7.6).

By Nyquist fullsampling (fig.-7.6-block-A) one gets exactly the target pro-
file, as expected. With TOL = 1% one gets essentially the same as the
Nyquist fullsampling result. But one has a significant reduction of the k
sampling points, from 1089 to 431.

The number of atoms reduces further by TOL= 5% to 121. The discrep-
ancy is restricted. The 5% is a very typical user accuracy requirement. Since
the Hardware realization accuracy is also typically about 5%, it usually won’t
bring in more quality benefit at the end for the accuracy better than 5%.

Further to 10% and 15% the number of the necessary atoms get further
reduced to 65 and 43 respectively. At the same time one also starts to
observe significant quality reduction. Especially in the TOL=15% case. The
discrepancy appears in the forms of the blurring effect in the heart figure.
The Gibbs ring at the outside can also be observed, which means we really
cut into the area where the frequency coefficients are not small.
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Figure 7.6: The validation of the sparse approximation algorithm
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7.7 Validation Stage II: Bloch Equation Sim-

ulation

In this stage we do the following four steps to obtain the two control wave-
forms, G and RF, and perform in turn the simulation validation:

1. Solving P kTrav.
The P kTrav is approached as described in (§-7.4). (The local approach
is used here.)

2. Solving P RF-design.
The actual RF waveform is obtained by solving the according linear
least squares problem regarding the physically feasible k space trajec-
tory with the discrete sampling distance of 4µs. The LSQR algorithm
[PS82] is used here.

3. Calculating the gradient waveform k(t) �→ g(t).
The actual gradient waveform is obtained by the derivative of the fea-
sible k space trajectory k(t).

4. Validation via the Bloch equation simulation.
The obtained g(t) and RF(t) will be used as the input waveform of the
Bloch equation simulation for validation.

7.7.1 P kTrav and P RF-design

(Fig-7.7) demonstrates the paradigm concretely for the single channel
example case-D: (TOL=10%,R = 7.1).

After selecting out the sparse obligatory sampling locations κ :=
κ1, · · · , κL in the frequency domain, we calculate a feasible k space traveling
trajectory k(t) to cover κ and subject to the feasibility constraints 4.15. it
is the problem (P kTrav). We approach it as discussed in section 7.4.

To see how the actual traveling duration correlates with the sparsity of the
obligatory sampling locations from the sparse approximation stage, we plot
the k-traveling-duration vs. the number of the obligatory sampling locations
to be covered.
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Figure 7.7: The example case-D, single channel setting
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Figure 7.8: #(Obligatory locations) vs. actual traveling duration
x: #(obligatory sampling locations) vs. y: #(feasible k trajectory

sampling-points with 4µs sampling distance)

We see it is a very linear trend. This means the assumption that the
undersampling effect can be sufficient transferred to the final acceleration
effect is valid.

The resulting feasible trajectory k(t) is in turn discretely sampled with
a fixed sampling rate of [4µs−1] due to the concrete hardware realization
circumstance. At the end the Fourier vectors with those discrete sampling
points as frequency parameters are the indeed participating vectors to rep-
resent the target profile.

Therefore, the best achievable representation is calculated by solving
the linear least squares problem using all the participating Fourier vectors,
P RF-design.

Mostly it ends up with more k sampling points than the number of the
target profile pixels. One hat formally an under-determined linear least
squares problem. By just applying the Moore-Penrose pseudo inverse one
get a solution with the least l2-norm among all the other possible solutions
fulfilling the least squares requirement. The l2-minimal solution has the
physically meaning of a minimal global energy deposition (SAR: Specific
Absorption Ratio). Minimizing the energy deposition is exactly what we
want beside acceleration. Therefore the Moore-Penrose pseudo-inverse is
just the natural choice for this formal underdetermined linear least squares
problem.

Remark: The under-determinedness is only formal. Because additional
sampling points are on the connecting path between the neighboring Nyquist
grid members. The according Fourier vectors are a linear dependent vector
set.
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7.7.2 Bloch equation simulation results

We generate the gradient waveform g(t) directly as a differential form of k(t).
We take g(t) and RF(t) as input of the Simulation for the relaxation

free Bloch equation (4.1). If there would be any inconsistency due to the
STA assumption, it would be shown by the simulation result of the Bloch
equation. Because the simulation of the Bloch equation is independent from
the STA model.

Since at the end we use more sampling points (atoms) than the origi-
nal obligatory sampling location, the actual excitation quality will usually
get improved from the representation quality from the sparse approximation
stage. The fig-7.9 is the plot of the user TOL vs. the actual error predicted
by Bloch simulation.
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Figure 7.9: The user tolerance for the sparse approx. algorithm vs. the
actual error predicted by Bloch simulation

We see a very linear behavior. This means the end quality is good pri-
dictable by multiplying an empirical coefficient to the user tolerance.

To check any unwished oscillation within the pixels size regarding the
target profile resolution, the Bloch simulation are performed with a finer
spatial resolution as the target profile. Because the later imaging process is
at a much finer resolution as the current target profile resolution. If we don’t
perform such a finer resolution check. It could happen that the actual image
have strong oscillations at higher resolution, while in the lower target profile
resolution level very thing looks fine. (Usually the excitation target profile
resolution are set much lower than the final imaging resolution to reduce
the numerical burden of the waveforms design. The reason one can do that
is that most excitation target profiles have information low dimensionality
nature in frequency domain. 33 × 33 or 65 × 65 are empirically confirmed
good resolutions.)
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We measure the quality of the result by taking the relative-error of the l2-
norm of the difference of the target profile and the Bloch equation simulated
profile.

The plot of (fig-7.10-top-right) shows the actual error vs. excitation du-
ration behavior.

In table-7.3 is some representative data. The conventional paradigm of
Nyquist full-sampling ends up with a feasible k trajectory of 15.7ms (3931
sampling points with a sampling distance of 4µs). We take this value as
reference for calculating the reduction factor R to measure the acceleration:

R :=
Excitation duration [ms]

15.7 ms
.

TOL Excitation Duration Reduction Factor Excitation Error

A). full Nyquist 15.7ms R ≡ 1 1.0E(−6)

B). 1% 8.9ms R = 1.8 0.7%

C). 5% 3.3ms R = 4.7 3.6%

D). 10% 2.24ms R = 7.1 7%

E). 15% 2.0ms R = 10.5 11%

Table 7.3: Some Bloch simulation data.

The excitation profiles and their according k space trajectories regarding
different accuracy requirement are shown in the bottom blocks of (fig-7.10).

Through the validation via Bloch equation simulation we see that the
sparsity of the k space obligatory sampling locations can be sufficiently trans-
ferred to the desired benefit of actual acceleration.

By high reduction factor, it has the same trend of the blurring and Gibbs
ring effect, which has already been observed in the sparse approximation
stage.
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Simulation Result
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Figure 7.10: The validation via the relaxation-free Bloch equation simulation
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7.8 Validation Stage III: Phantom Experi-

ments

In the previous two stages, I. sparse approximation and II. Bloch equation
simulation, we validated the critical points No. 1, 2, 3 in the checklist (§7.5).
In the section we introduce the validation stage of phantom experiment. The
target of this stage is a further proof of principle of the practical applicability
of the proposed method. Concretely, it aims to validate the checklist No. 4,
whether the hardware realization of Bz(ξ, t) is sufficiently accurate, and the
checklist No. 5, whether the relaxation process is negligible. If we can obtain
similar excitation images as the Bloch equation simulation predicted, then
we can say both the checklist points 1 and 2 are fine. It is strong evidence
that the proposed method is practically applicable.

We did our experiment with a GE MRI 3T scanner. We use a water
phantom. It has a ball shape with diameter about 15cm. In fig-7.11-right is
the phantom.

Figure 7.11: The phantom (left) and its no-selective excited MRI image
(right)

Without any selectivity by the excitation, everywhere in the phantom the
hydrogen atom in the water molecule will be excited more or less homoge-
neously. One will see a disk at a xy-plane 2D image (fig-7.11-right).

We show the images from the phantom experiment together with the
according images predicted by the Bloch equation simulation from the last
section. As the convention in the MRI literature, the MRI scanner experi-
ment image are shown in gray-scale and the simulated images are shown in
color.

An interesting observation is of the comparison between phantom image
A and B. The case B with user tolerance 1% and is about half of the excita-
tion duration as the case A of the conventional paradigm using the Nyquist
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full-sampling. The phantom image of the Nyquist full-sampling case shows
however some artifact which is not observed in the validation stage of Bloch
equation simulation. It has a less good quality than the phantom image of
case B. One probable explanation for that is the too long excitation duration
of the Nyquist full-sampling solution. Under this long duration the hardware
imperfection accumulates to excitation artifact. The relaxation of the spins
can also be the reason. Neither of these two facts are included in the Bloch
equation simulation. That’s why it wasn’t observable by the validation via
simulation.

This observation exactly demonstrated the needs for accelerating the ex-
citation process and the benefit of the proposed adaptive paradigm.

Except that, the phantom experiment images match the simulation pre-
diction very good. They also show the same excitation quality change of
blurring and Gibbs-ring as predicted by the Bloch simulation. (Due to the
printing quality, the Gibbs ring effect may be better observable in the elec-
tronic version (attached CD-Rom) of this thesis than in the printed version.)

The matching of the simulated images and the phantom experiment
images is a strong evidence that the proposed method is not only theoretical
consistent but is also applicable in the praxis.

Remark: A flaw by the experiment. The phantom images are a little
bit smaller than the simulation prediction. The reason for that flaw is a
wrong scaling coefficient of the gradient waveform by the phantom experi-
ment. Since k =

∫
g, an additional scaling coefficient g ← c · g cause the

scaling of the k space sampling grid. A general scaling of the k space loca-
tions, but not their coefficients cause a scaling of the images in the spatial
domain. But the content of the images will not be change no matter with or
without this scaling coefficient c. For the aim of proof of principle, this flaw
of the scaling factor doesn’t has any influence on the conclusion. To make
the comparison easier, the phantom images are scaled such that both profile
shape are of similar size.
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Simulation Result
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Figure 7.12: The validation results via the phantom experiments
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7.9 The Adaptivity

After implemented and successfully validated the proposed adaptive sparse
method, we devote this section to demonstrate the adaptive capability of this
method.

Concretely, the adaptive capability includes to components:

1. The adaptivity to the user given accuracy requirement “TOL”.
It means the capability of automatically adjust the solution depending
on the accuracy requirement. (fig 7.6 top-right), (fig-7.10-top-right).

2. The adaptivity to the user given target excitation profile.
It means, depending on the concrete target profiles, especially their
complexity levels, the proposed method automatically determines how
many and where to sparsely sample the k space.

The following four example cases together clearly demonstrate the adap-
tive character of the proposed method.

The three target excitation profiles (fig-7.13) represent three different
information complexity of the target profiles.

A). Low complexity (fig-7.13-A.) The sensitivity profile of a localized
RF transmit coil.
This is the sensitivity profile of a RF transmit coil for a ball-shape wa-
ter phantom. (The RF transmit sensitivity has been discussed in the
§-4.2.) The area outside the phantom has no signal, because the hy-
drogen atom distribution in this area is zero. We call it the don’t-care
region. Only the area within the circle is interesting for us. The sharp
boundary of the circle shape is not the core part of the information. It
can be removed by a smooth extrapolation from the interior data. This
profile represents the target profile with very low information complex-
ity. This level of complexity corresponds to the application type of “B1

homogenization”.

B). Intermediate complexity: (fig-7.13-B.) The heart figure.
The heart profile represent the intermediate complexity level of the
target profile. it is a representative profile for the application type of
small region excitation.

C). High complexity: (fig-7.13-C.) The Mona-Lisa profile.
This profile of Mona-Lisa portrait represents an extreme case of the
profiles with very high information amount. The investigation of this
kind of fancy profiles is rather of the theoretical interest. This kind of
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extreme complex profiles are still unlikely to really be applied in the
praxis.

All the profiles are represented in a spatial resolution of 33× 33, which is
a very widely used resolution for the spatial selective excitation task.

In the conventional non-adaptive paradigm, the k space trajectories are
based on the full-sampling of the Nyquist grid. Since all the three profiles
have the same spatial grid, they have all the same Nyquist sampling grid.
Therefore one ends up with the same k trajectory and thus the same excita-
tion duration. The obvious different complexity level of the profile content
and the different user accuracy requirement are not taken into account.

In contrast, the proposed adaptive method is constructed to automati-
cally recognize the complexity and the accuracy requirement and accordingly
design the excitation as short as possible.

The comparison of A, B and C demonstrates that the adaptive method
delivers automatically solutions with differently long excitation durations
tailored to the different information complexity of the target profile. The
comparison of C1) and C2) shows again the adaptivity to the accuracy re-
quirement as already be shown in (fig 7.6) and (fig-7.10).
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Figure 7.13: The adaptivity demonstration
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Chapter 8

Application Setting 2: Sparse
Parallel RF Transmit

8.1 Recall the Problem: Adaptive Parallel

RF Transmit

In chapter 4 we discussed the parallel transmit techniques. We recall the
application setting.

parallel RF
transmit coils

Figure 8.1: Schematic for the parallel transmit

With the STA model, the task of P SSEP using parallel transmit setting
can be reduced to two subproblems: P kTrav(κNyq) (4.15) and P RF-design-(pTx)

(4.22).

Also under the STA model, the proposed adaptive paradigm divides the
parallel-P SSEP to three subproblems P sparse-pTx (4.27), P kTrav (4.15) and
P RF-design-(pTx) (4.22). The P sparse-(pTx) can be seen as a special form of
sparse approximation problem. The P kTrav is formally the same as the one

151
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for the single channel setting (Chapter 7). However in the parallel RF trans-
mit setting the input obligatory sampling locations are more irregular. The
P RF-design-(pTx) remains essentially the same as in the non-adaptive parallel
transmit setting. In can be solved using standard numerical software, e.g.
LSGR. [PS82] [ZWS+07]

Like for the single channel setting, we follow the pragmatic strategy for
the first two subproblems: first concentrate on solving (P sparse-pTx) as good
as possible, then solve (P kTrav) sufficiently good such that the achieved un-
dersampling enhancement can be transferred to the final desired effect of
acceleration.

The structure of this chapter is similar to the last chapter.
In the section 8.2 we discuss applying subspace-OMP approaching

(P sparse-pTx).
Since the approach of P kTrav are the same as in the single channel setting,

we just point to the section 7.4 in the last chapter.
In section 8.3 we introduce the very similar validation strategy as in the

single channel setting.
In section 8.4 we validate the undersampling-enhancing property of the

subspace OMP algorithm in the STA model.
In section 8.5 we validate the final acceleration effect of our method via

simulation of the relaxation free Bloch equation.
In section 8.6 we validate the praxis applicability of our method via the

phantom experiment in a GE 3T MRI scanner.

8.2 The Synchronized Sparsity of P sparse-pTx

and the Subspace OMP Method

(The content of this section is partially redundant with the discussions in
§-4.3 and Chapter-6 — a kind of summary reorganized from an application
perspective. This is mainly for the MRI reader who skipped the Part-II.)

8.2.1 Dictionary: Gabor type dictionary

At first for the choosing the appropriate candidate set of k sampling locations,
we follow the similar arguments discussed in the last chapter for the single
channel setting (§-7.2). We choose the Nyquist sampling grid as the candidate
set of the k sampling locations.

The resulting dictionary consists of the atom vectors d
(q)
k ∈ �N with two

parameters k and q.
d

(q)
k = Diag(s(q)) · eikξ
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Where ξ ∈ �N is the vector for the spatial coordinates of the pixels, s(q) ∈ �N

the q-th spatial sensitivity profile of the RF waveform.

So the atom vector d
(q)
k turns to be a spatial Fourier harmonics with

the frequency parameter k modified by a spatial weighting profile s(q). This
remember us to the so-called Gabor dictionary.

Our dictionary can be seen as a special form of the Gabor dictionary
with two parameters: the frequency parameter k, and the spatial weighting
function parameter q.

8.2.2 What’s the problem if apply normal sparse ap-

proximation method

The P sparse-pTx looks very like the sparse approximation problem using Ga-
bor type of dictionary, which can be approached using standard heuristic
method like OMP or L1-minimization. However the PpTxSparse has a essen-
tial difference on the sparsity requirement compared with the normal sparse
approximation problem.

The conventional sparse approximation problem are discussed in Chapter-
5. Its the objective is to use as less atom vectors as possible from the dictio-
nary to represent the target vector p.

However the objective of P sparse-pTx is to use as less frequency parameters
k as possible. The spatial weighting function parameter q is not included as
a sparsity objective due to the application physical setting.

We call the later sparsity requirement the synchronized sparsity, to em-
phasis from the application side that all the RF transmit channels share
the same k space sampling pattern. Sometimes we also call it the subspace
sparsity, to emphasis from the sparse approximation methodology side that
here one doesn’t pursuit the sparsity of the individual atom vectors, but pur-
suit the subspaces spanned by a group of atoms with the same frequency
parameter k.

It’s obvious that the minimal participating atoms vectors (k, q) is not the
same as the minimal participating frequency parameters (k). This can be
demonstrated more clearly through the following schematics:
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=
∑
q = 1, 2(

ki kj

Tq
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q

) =
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2

ki kj

T1

ki kj
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r

Since both sparsity objective are not the same. The in chapter-5 intro-
duced standard numerical methods are in general not directly applicable for
solving P sparse-(pTx).

However if we extend the concept of vector atoms into a general concept of
subspace atoms, one can modify the greedy method to meet the synchronized
sparsity requirement.

8.2.3 The idea: subspace atoms

The special sparsity objective of P sparse-(pTx) can also be reformulated in the
following way. If one picks up a k sampling location, one has simultaneously
C available to linearly represent the given target vector. Here all C vectors
have the same frequency parameter k. To compare the importance of the
different k sampling locations is nothing else than to compare the importance
of C according vectors.

This view brings us straightforwardly to the idea of subspace atoms. In
the normal sparse approximation problem, the element atoms are vectors,
which compete each other for an economic linear presentation. By replacing
the vectors with the C-dimensional subspaces, the special sparsity require-
ment will be guaranteed.

We call this special form of sparse approximation the subspace sparse
approximation problem.

In our concrete context of Gabor dictionary, the subspace sparse approx-
imation varies only the frequency parameter, instead of varying both fre-
quency and spatial weighting parameters. If a frequency parameter is picked
up, all the spatial weighting parameter combinations will be taken.
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8.2.4 The subspace OMP method

The extension of the normal OMP algorithm to the subspace concept is quite
straightforward. The essential step is how to “compare” the atoms. In vector
atom case, it’s compared by their vector inner product with the residual
vector. This vector inner product is nothing else than the projection of the
residual vector to the one dimensional subspaces spanned by the according
vector atoms. Its equivalence in the subspace case is to project the residual
vector to the multidimensional subspace, and weighting the projection vector
by their Euclidean norm. Instead of the vector inner-product, one has the
more general form of a small linear least square problem of size N × C, to
project the residual to the subspace.

Algorithm 5 Subspace OMP

1: {Initial.}
l ← 1, Λ← [ ], res0 ← p

2: {Find the next best index}

λl = argmax
k

(
‖P̂sk

(resl−1)‖2
)

3: {Update the index vector}

Λl = (Λl−1, λl)

4: {Update the coefficient vector, the residual}

bl = argmin
b∈�l

(‖p− φΛ · b‖2)

resl := ‖p− φΛ · bl‖2
{Check for break}

5: if ‖ resl ‖2 > TOL then
6: l ← l + 1; → Step 2
7: else
8: return Λ, b with success!
9: end if

8.2.5 The theoretical aspect

In chapter-6 we discussed the theoretical two aspects for the subspace sparse
approximation, namely the uniqueness condition of the subspace sparse ap-
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proximation and the optimality condition of the subspace OMP algorithm.

Unfortunately, the presented results can still not offer much help to in the
praxis. There are several reasons for the current restriction for the practical
usage.

First of all, it’s a general nature of the current theoretical results in sparse
approximation. The investigation follows mostly the worst case scenario and
ends up with a most likely too pessimistic boundary estimation.

This is especially the case, if the used dictionary doesn’t have sufficient
incoherence. Our application case has exactly this problem. The physical
model restricts the choose of dictionary in basic on Fourier harmonics. The
spatial weighting function, the spatial sensitivity profile of the RF waveform
transmit coils, has normally not enough orthogonality due to the physical
restrictions by the hardware design.

This leads to the issue in the praxis that one can calculate the rigorous
condition for both uniqueness and optimality, but the sparsity requirement
of the guarantee mostly ends up at some unrealistic small number. The
theorem can only make concrete statement for some very special cases with
extreme high sparsity.

The second reason is specially due to the subspace extension. In the
uniqueness theorem for subspace sparse approximation, one must exclude a
intersection region Ĥ(D) to make a rigorous statement. However this Ĥ(D)
is very unpractical to calculate.

Thus the practical meaning of the statement is essentially reduced to an
unrigorous statement: For an arbitrary vector from �N , it’s unlikely to be
lying in the Ĥ(D) because the Ĥ(D) is a null-set in the �N .

Third reason is rather a temporal one due to the current state of the inves-
tigation. The current two theorems we introduced are rather for the subspace
sparse representation than the subspace sparse approximation, because we
discussed only the special case for zero user tolerance, ε = 0. In contrast, in
praxis we have quite large tolerance, about 5%. The restriction to the zero
tolerance makes the uniqueness and optimality condition unnecessary strict.

In the praxis, the heuristic experiments shows promising result. It shows
that the subspace OMP method can strongly enhance the sparsity. In the
next three sections we will introduce the implementation and the validation
of the proposed method.

We follow the same implementation and validation strategy as for the
single channel setting. (§-7.5)
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8.3 Validation Strategy for pTx Setting

The validation strategy for the adaptive sparse parallel RF transmit is very
analog to the validation strategy of the single channel setting (§-7.5).

We at first give a checklist for the critical points for a successful realization
of the adaptive sparse parallel transmit:

1. It checks the performance of solving the subspace sparse approximation
problem P sparse-pTx using subspace OMP method.

2. It checks the performance of our approach to P kTrav

It checks whether the sparsity of the obligatory sampling locations
can be sufficiently transferred to the actual acceleration. The adap-
tive pTx delivers usually sparser and at the same time more irregu-
lar distributed obligatory sampling locations. Therefore the sparsity-
acceleration transfer is more critical for the parallel transmit setting
than in the single channel case.

3. The STA assumption.
As for the single channel setting, one needs to check the availability of
the model assumption of small tip angle regime.

4. Sufficiently accurate Bz realization.
The spatially linear varying Bz is a model assumption in the problem
P SSEP. The problematic is basically the same as for the single channel
setting (§-7.5). However, since the adaptively calculated k trajecto-
ries by the parallel transmit setting are usually more irregular (non-
symmetric in the k space) than the trajectories by the single channel
setting, one expects the task of a sufficiently accurate hardware realiza-
tion of the according strongly irregular gradient waveform to be more
demanding.

5. The sensitivity profiles
One factor one doesn’t have by the single channel setting is the sensitiv-
ity profiles of the RF transmit channels. A correct sensitivity profiles
acquisition is essential for using parallel transmit setting. The concrete
methods to acquire the transmit sensitivity profiles is a seperate topic,
which is beyond the scope of this thesis. Here we just take them as
given. However since the successful realization of the parallel transmit
concept presume a sufficiently accurate knowledge of the sensitivity
profiles, we should keep in mind that an incorrect sensitivity profile
could cause mismatch between the simulation and the phantom exper-
iment result.
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6. The neglecting of relaxation.
As in the single channel case, it’s a model assumption of P SSEP.

Similar to the single channel case, we divide the validation in three stages:
Subspace sparse approximation stage, Bloch equation simulation stage and
Phantom experiment stage.

In section-8.4 we discuss the subspace sparse approximation stage. The
validation target is the checklist No.1.

In section-8.5 we the Bloch equation simulation stage. The validation
target of this stage is the checklist No.2 and 3.

In section-8.6 we the phantom experiment validation stage (Checklist
No.4, 5 and 6).

8.4 Validation Stage I: Subspace Sparse Ap-

proximation

The goal of this stage is to check the performance of the subspace OMP
method to approach P sparse-pTx.

We use a realistic setting of six independent RF transmit channels and
their sensitivity profiles of a ball phantom. Fig-8.2-left shows the originally
measured sensitivity profiles of the six transmit channels.
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Figure 8.2: The sensitivity profile
(left: the measured sensitivity (absolute value is plotted here). right: sensitivity

profile extrapolated into the don’t-care region (decaying to zero))

Since one get only signals from inside the ball. We have no information
about the RF sensitivity outside the ball region. But we also don’t care
about this region. Because the excitation process only happens inside the
object.
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The border between the phantom ball and the don’t-care region is a sharp
discontinuity jumping from the interior sensitivity value to zero outside. This
discontinuity is however not a part of the physical property of the sensitivity,
but purely caused by the lack of information from the don’t-care outside
region.

On the other side, we know the smoothness in the spatial domain de-
termines how compact is the distribution in the frequency domain. Any
discontinuity in the spatial domain causes additional sampling points in the
frequency domain.

So we should eliminate the unnecessary discontinuity caused by the phan-
tom boundary. We do it by smoothly extrapolate the original interior sen-
sitivity data to zero at the boundary of the FOV in spatial domain. In the
fig-8.2-right the extrapolated sensitivity profiles are shown We will use the
extrapolated sensitivity profiles instead of original discontinuous ones from
now on.

How to extrapolate the original data to eliminate the unnecessary discon-
tinuity has large influence on the resulting sparisty of the solution. It is not
a trivial task, especially because the original date varies very strongly in the
region near the phantom border. Hence it is not easy to “tell” the algorithm
from where on is the don’t-care region to start the extrapolation.

We believe the current extrapolation is still not the optimal one. By
tuning and optimizing this step, one can still improve the sparsity of the
result.

We take the heart shape target excitation profile (fig-8.3-top-left).

In (fig-8.3-top-right) is the error decaying curve using the subspace sparse
approximation method. The x axis is the number of the participating atoms.
The y axis is the representation error (RRMS).

As expected, the representation error decays very fast as the number of
the participating k sampling locations increases. Here is some representative
data:
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TOL Number of Atoms Representation Error

A). fixed 4× undersampl. in ky 297 13.33%

B). 5% 67 4.90%

C). 10% 30 9.98%

D). 15% 18 14.67%

E). 20% 13 19.94%

Table 8.1: Subspace OMP error-decaying behavior

The excitation profiles and their according k space sampling trajectory
regarding different accuracy requirement are shown in (fig 8.3).
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Figure 8.3: The validation of the subspace OMP algorithm for adaptive pTx
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8.5 Validation Stage II: Bloch Equation Sim-

ulation

The targets of the stage II is are solving P kTrav and P RF-design, validating the
result via the Bloch equation simulation. The validation aim of this stage is
the checklist No.2, the transfer from sparsity to acceleration, and the checklist
No.3, the availability of the STA assumption.

As in the single channel setting, we go through the following steps: 1)
P kTrav, 2) P RF-design, 3) k(t) �→ g(t), 4) Bloch equation simulation with RF(t)
and g(t).

Unless explicitly mentioned, the most implementation details here are
the same as in the single channel setting (§-7.7). One minor difference to the
single channel validation is in approaching P kTrav: the global approach in
(§-7.4) is applied here, while in the single channel setting we used the local
approach.

(Fig-8.4) demonstrates the paradigm concretely for the pTx example
case-D: (TOL=15%,R = 13.9).

The transfer from the sparsity to the actual acceleration is demonstrated
in the plot of actual feasible sampling trajectory duration vs. the number of
the obligatory sampling locations in k space (fig-8.5).
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Figure 8.5: The sparsity vs. actual duration
x-axis: The number of selected k locations; y-axis: The k trajectory length

(#(sampling-points) with 4mus sampling distance).

The linear relationship confirms that the sparsity can be sufficiently trans-
ferred to the actual acceleration.

As in the single channel case, since at the end more k space sampling
points are used than the obligatory locations, the actual excitation quality
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Target excitation profile
[33x33]

k space sampling [1/cm]
- (red small dots): Nyquist  grid.
- (grey big dots):   obligatory locations
- (blue dot-line):    feasible trajectory.

Gradient waveform [mT/cm]
- (blue line):   x-component
- (green line): y-component

RF waveform. [mT]
- (blue line):    x-component
- (green line):  y-component

Bloch equation simulation result.
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Figure 8.4: The example case-D, pTx setting
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predicted by the Bloch equation simulation is usually better than the accu-
racy requirement TOL. (Fig-8.6) shows the correlation between the TOL and
the actual error predicted by the simulation.
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Figure 8.6: TOL vs. simulation predicted actual error

The plot of (fig-8.7-top-right) shows the actual error vs. excitation dura-
tion behavior.

In table-8.2 is some representative data. As in the single channel case, we
use the fixed Nyquist full-sampling solution with 15.7ms excitation duration
as the reference to measure the acceleration. The reduction factor R is
defined as

R :=
Excitation duration [ms]

15.7 ms
.

TOL Excitation Duration Reduction Factor Excitation Error

A). 4× undersamp. 3.68ms R = 4.3 9.5%

B). 5% 2.47ms R = 6.35 4.5%

C). 10% 1.4ms R = 11.2 6.0%

D). 15% 1.13ms R = 13.9 7.6%

E). 20% 0.83ms R = 18.9 8.5%

Table 8.2: Some Bloch simulation data for pTx setting.



8.5. VALIDATION STAGE II: BLOCH EQUATION SIMULATION 165

The excitation profiles and their according k space trajectories regarding
different accuracy requirement are shown in the bottom blocks of (fig-8.7).

Compared with the conventional non adaptive parallel transmit
paradigm, the adaptive approach can achieve better quality with stronger
acceleration at the same time (fig-8.7: case-B vs case-A). Or with similar
quality the adaptive approach can achieve much stronger acceleration, 18.9
vs. 4.3 (fig-8.7: case-E vs. case-A).
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Simulation Result
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Figure 8.7: The validation results via the relaxation-free Bloch equation
simulation, pTx setting
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8.6 Validation Stage III: Phantom Experi-

ments

The phantom experiments are performed on a GE MRI 3T scanner with dual
channel Body coils. The same water phantom (ball-shape d ∼ 15cm) as in
the single channel case is used (fig-7.11).

Due to some hardware system issues, we performed the phantom experi-
ment validation data by a two channels parallel transmit setting (instead of
six or eight channels). But for the aim of proof of principle, it is sufficient to
demonstrate the practical applicability of our concept.

(Fig-8.8-top-left) shows the target profile we used for the phantom exper-
iment. (Fig-8.8-top-right) shows the RF transmit sensitivity profiles for the
two RF channels.

The experiments are conducted at two difference reduction levels,
R = 2.0 and R = 2.8. The k space sampling, Bloch equation simulation and
the phantom images are shown in the middle and bottom rows in (fig-8.8).
In the k space sampling plots, the big dots are the sparse obligatory sampling
locations and the blue dot-line are the feasible covering trajectory.

The phantom images essentially reproduced the simulation results. The
heart shape are good reproduced. In the reduction level R = 2.8 the phan-
tom image also showed the same trend of increasing artifact as predicted by
the simulation (at the left boundary area of the image). The matching of
the simulated images and the phantom experiment images provided strong
evidence for the praxis applicability of the proposed adaptive sparse pTx
method.

Remark: Although the presented phantom experiments provide sufficient
evidence for the first proof of principle, the quality of the phantom images
are however less good as the ones for the single channel phantom experiment.
Especially in both phantom images the left half of the heart shape are less
excited than the right side, which are not expected. There could be two
reasons for that:

1. the hardware synchronization of the two RF channels. This was also the
issue preventing us from doing the 6 or 8 channel phantom experiment.

2. The quality of the sensitivity profiles.

Both of them, especially the accurate acquisition of the transmit sensitivity
profile, are independent topics for themselves, which are beyond the topic
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of this thesis. However, as one of the to-do items, further phantom experi-
ments on more reliable hardware condition and sensitivity profiles should be
performed to further quantitative analyze the practical applicability of the
proposed adaptive parallel transmit.
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Figure 8.8: The validation results via phantom experiments, pTx setting



Chapter 9

Comparison and Conclusion

To conclude the advantage of using the adaptive paradigmen, for both single
channel and pTx setting, we compare the four approaches (adaptive/non-
adaptive, single-channel/pTx):

1. The conventional paradigma: single channel setting, non-adaptive k
space sampling.

2. The non-adaptive pTx approach.

3. The adaptive approach with single transmit channel setting.

4. The adaptive approach with parallel transmit setting.

The comparison at the linear representation level is demonstrated in the
(fig-9.1). The heart-shape target profile is used here. The error (y-axis) is
plotted in logarithmic scalar.

The red dot-line is the error decaying curve for the adaptive approach
with a six-channel parallel transmit setting. The blue dot-line is from the
adaptive approach with the single channel setting. For example, for a user
tolerance 10% the parallel transmit setting needs only about half so many
obligatory locations to represent target profile as the single channel setting
needs. This can be seen as the advatage of the dictionary overcompleteness
provided by the parallel setting. From the sparse approximation point of
view, it’s an example that the overcompleteness of the dictinoary can indeed
enhance the sparsity of the solution.

The solutions of the two non-adaptive approaches are represented with
the green and black big dots for conventional pTx and conventional single

169
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channel setting respectively. The advantage of the adaptive approach is very
obvious.

The comparison at the level of actual excitation duration and excitatiaon
quality is demonstrated with the (fig-9.2).

Comparing the adaptive with the non-adaptive approaches, the conclu-
sion is quite obvious. For both single channel and pTx setting the adaptive
paradigmen demonstrate strong acceleration capability. Taken the practical
accuracy value ∼ 5%, the adaptive solution can provide very strong accerler-
ation without any practically meaningful quality reduction. (We don’t really
care about the regime with error much smaller than 5%, since the hardware
cannot realize the solution much better than 5%.)

Comparing the single channel adaptive approach with the parallel trans-
mit adaptive approach, one also observes the advantage of the combination
of the adaptivity and the parallelization. Especially for the low accuracy
high reduction segment, the parallel transmit adaptive solution can clearly
outperform the single channel adaptive solution. Compare case-III with
case-IV or case-V, with similiar excitaiton quality the adaptive parallel
transmit can further reduce the excitation duration to less than half of the
adaptive single channel solution.

To conclude. In this work we’ve studied the acceleration of the spatial se-
lective excitation process of magnetic resonance imaging. In contrast to the
state-of-the-art non-adaptive approach we’ve developed a new paradigma
based on adaptive concept. To our best knowledge this change from the
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Shannon-Nyquist theorem based fixed sampling strategy to adaptive sam-
pling location determination for acceleration is new in the community.

The adaptive concept is developed for both single channel setting and the
emerging parallel transmit setting. With the adaptive parallel transmit we
can combine the adaptive and the redundancy mechanism to maximize the
acceleration capability.

The according mathematical tools are developed.
The proposed methods are implemented in Matlab. They are validated

via both the Bloch equation simulation and the phantom experiments on a
GE 3T scanner. The successful validation provides strong evidence for the
practical applicability of the proposed methods.
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