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Abstract

The rapidly growing volume of video material is creating a strong interest in

automated summarization and semantic indexing of video content. In many

cases this requires computer systems to recognize and interpret the activity

included in the video � a computational problem that is still unsolvable at this

level of generality. The interpretation of team sports videos forms an interesting

specialized sub-category of the general activity recognition problem because it

is, on the one hand an important real world problem but it also has, on the

other hand, some valuable simplifying structure: the visual distinctiveness of

the �eld as well as the actors and the rules of the game that restrict the class

of activities to be dealt with. The context of this research is the automated

interpretation of team games based on position data of the players. The goal of

perception is to automatically extract low-level trajectories labeled with their

corresponding players as well as high-level semantic abstractions of a game.

This thesis investigates the problem of keeping track of player positions and

identities in sports video during the games in real-time and abstracting the

resulting trajectories. This computational problem is all the more complex due

to four main di�culties: 1) players frequently interact and occlude each others,

2) players of the same team are very similar in appearance, 3) the appearance

and characteristics of players and the �eld are a priori unknown and often change

during the course of the game, and 4) this complex computational task must be

performed in real-time.

To solve the computational problem of multi-object tracking in sports videos,

we propose a distributed cognitive system that supports the probabilistic fusion

of di�erent information sources, structures the incoming perceptions by auto-

matically building models of the tracked players and adapting these concepts

online. Further, we present a method for summarizing team behavior from

spatio-temporal data and outline a knowledge-based system for conceptualiza-

tion.

The contributions of this thesis are (1) an innovative general multi-target

tracking approach that is theoretically founded in probability theory and that

exhibits linear runtime complexity in the number of measurements and targets

outperforming current state-of-the-art, (2) adaptive methods to identify players

based on positions as well as appearance, and (3) the implementation of a con-

crete real-time tracking system for soccer games ranging from the acquisition of

the input signal to the �nal supply of abstract analyses.

Research results are experimentally validated by challenging image sequences

of various domains. Further, we quantitatively evaluate the total system using

the complete halftime of a world championship �nal captured by dynamic cam-

eras, a publicly available dataset from English premier league captured by eight

static cameras as well as for broadcasted video material.





Zusammenfassung

Die Videoanalyse ist ein häu�g genutztes Werkzeug im Mannschafts-

sport. Die Hauptarbeit besteht dabei in der ständigen Lokalisation

aller Spieler während des Spiels und der semantischen Analyse der

beobachteten Bewegungen. Diese Dissertation stellt ein verteiltes

kognitives System zur Automatisierung dieser Tätigkeiten vor. Zur

Lösung der Aufgabe werden verschiedene Informationsquellen inte-

griert; das System verfolgt die Spieler und entwickelt sowie adap-

tiert Modelle von diesen während der Laufzeit. Es bietet die au-

tomatisierte Extraktion von Teamverhalten und ermöglicht weitere

Analysen über einen Konzeptualisierungsrahmen. Wissenschaftliche

Beiträge bestehen in 1) einem innovativen generellen Ansatz zur Ver-

folgung mehrerer Objekte, 2) adaptiven Methoden zur Identi�kation

von Spielern anhand von Erscheinung und räumlicher Relationen mit

der Hilfe von weiterentwickelten selbstorganisierenden neuronalen

Netzen, und 3) der konkreten Implementierung eines Echtzeitsys-

tems zur Verfolgung von Fuÿballspielern. Die Forschungsergebnisse

werden umfassend, unter anderem auf Fuÿballspielen in voller Länge

und auf Fernsehaufzeichnungen, validiert.
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Chapter 1

Introduction

There are over 20h of video

material being uploaded to

YouTube every single minute.

Dr. O. Heckmann, Tech Lead,

Google Zürich

Multimedia archives in private and business grow at an ever increasing rate.

The low cost of cameras and memory storage as well as their ease of use are the

catalyst for this development. With the increasing amount of videos, the need

for indexing and summarization rises to cope with the information overload.

Since activities form the main content of the captured videos, understanding

activities in image sequences is a key feature for future information retrieval

systems.

Sports videos are a special application domain; Motions of the athletes deter-

mine the central activities of interest in such footage and video motion analysis

is common practice in sports nowadays. In most sports, these motions can be

su�ciently described by trajectories of players and the ball. In addition to the

spatial data in terms of trajectories, the correct labeling of their originators is

crucial for further analysis. However, annotating sports videos for indexing is

a tedious task; the visual impression is similar throughout the game and iden-

tifying visible players can be exhausting or even impossible for the untrained.

Sports video analysis consists of the extraction of spatio-temporal data labeled

with the corresponding player as well as high level semantic abstractions of a

game which must be automatically extracted from sports videos and made avail-

able for later retrieval. Sports are highly dynamic and thus, training for meets

must be current. In the professional leagues, tactical analyses of recent games

are often required during the following 24 hours to �t into the tight training

1
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schedule. Real-time analysis meets the desires of coaches of the major clubs;

its automated application can help them gain the critical di�erence between

winning and losing.

In this work we will investigate methods for real-time tracking of the pro-

tagonists of team sports in digital video as well as automated tactical analysis

based on the gathered trajectories. Tracking is de�ned as the localization of

unique persons over time. The computational problem considered is illustrated

in �gure 1.1. We will develop e�ective and e�cient algorithms to estimate tra-

jectories and identities of all visible players during the game in footage that

may be captured by single or multiple static and dynamic cameras or received

from broadcast. Various features, including appearance and roles, are investi-

gated for the purpose of identi�cation inspired by the philosophic disquisition

of Carolyn Ray on the concept of identity [202]: �Each thing that exists, is some

way, or is characterized in various ways, and all these ways, including its dimen-

sions, the ways it interacts with its environment, etc., are part of its identity.�

Tactical analysis and summarization of team behavior based on trajectories is

subsequently addressed.

1.1 Motivation of Automated Sports Video Anal-

ysis

The research on tracking systems in sports videos provides a tool for under-

standing intentional activities and can make a direct impact on sports, business

and society by concretely a�ecting applications that enhance training methods

as well as viewing practices for the general public. Applications for tracking

identities in sports videos are manifold, as they prove advantageous for all par-

ticipants of sports events, namely coaches, judges, scientists and spectators. We

will point out possible applications and their likely impact, categorized accord-

ing to the di�erent bene�ciaries.

1.1.1 Improvements for training and coaching

Research on real-time tracking systems equips scientists and professionals in

sports with adequate methods for automatic game analysis and compound struc-

turing of the �eld that paves the way for applications of new technologies in

sports. Liebermann et al. give an overview of information technologies that are

used in sports [159]. The authors see the main objective of such systems as

providing feedback for athletes and coaches that will increase their probability

of learning. They state in [159]: �For general purposes of motor learning, the

impact of basic external feedback and collateral technologies � from simple video
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Figure 1.1: The computational problem considered in this thesis: Extract la-

beled trajectories of all athletes from several sports videos in real-time. On

the left side, several input video streams that record the same scene from dif-

ferent point of views are shown. The desired output is depicted on the right

side, which shows yellow trajectories as connected past positions �nalized with

the position at the current time as blue or white dots (according to their team

a�liation). These are labeled with the corresponding player identi�er. To em-

phasize the tracking of identities in contrast to arbitrary objects, the position of

player Materazzi (jersey number 23), who is zoomed in the broadcasted close-up

in the middle of the left input, is highlighted as a red dot in the output. For

convenience, the captured areas are visualized as polygons of the same color as

the border of the corresponding camera.

movies to complex simulators � are of major importance and should be seriously

considered in the normal practice scheme�.

The investigated technology allows coaches to collect trajectories and action

data during training or even during competitions and replay selected scenes to

the athletes to show them where improvements would be possible. The progress

in the athletes' performance becomes measurable and can be compared over a
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long period of time, allowing individual promotion of athletes. This advantage

does not only have tactical aspects but is also lasting from the medical point

of view. Physiological load diagnostics based on motion data captured during a

game allows �tness trainers to adapt their program to ensure optimally e�ective

training.

Immediate feedback is often assumed by coaches to improve skill (see [159]).

Tracking systems for sports analysis should therefore provide results in (or close

to) real-time. By providing immediate analysis, changes in tactics like substi-

tutions can be organized by the coach just in time. Thus, tracking systems

may substantially in�uence the outcome of a game. Additionally, Liebermann

et al. recall in [159]: �Sometimes it may be just as e�ective [for learning] to

give feedback information after some longer delay in a more speci�c and lim-

ited manner.� Databases with tracked data and videos will provide many more

opportunities for information retrieval than experts have ever had. For scout-

ing purposes, future professionals may have to advertise themselves with per-

formance curves covering their present career, just as fashion models have to

present their portfolios today. The analysis of competitors is simpli�ed (if the

data are available) and weaknesses of opponents can be better taken advantage

of. Teams without the technology will be forced to invest in tracking systems

sooner or later to compensate the competitive disadvantage. However, since

such systems come currently at a substantial price, the specter of exclusion to

well �nanced clubs is as omnipresent as for other sports equipment (see [129]).

In addition to the undisputed advantages of tracking systems, questionnaires

signal that the use of the new technology still depends heavily on the decision

makers' personality. In [158] senior coaches' attitudes toward technology was

studied: �Despite the fact that the coaches surveyed were generally highly ex-

perienced, those with higher education backgrounds viewed technology more

favorably, but those for whom coaching was their primary livelihood did not

view technology as a signi�cant contributor to their success�. Future coaches

will have to bring su�cient IT knowledge to use automated sports video analy-

sis systems or have to obtain the needed skills by trained personnel as e.g. the

common use of technical sta� in the NBA indicates.

1.1.2 Automatic judgment and opportunities for sport sci-

ence

In the USA, instant replay judging is now common practice in hockey and foot-

ball. Tracking systems can support the on-�eld decision by signaling irregulari-

ties via wireless communication to handheld devices worn by the referee. Larry

Katz adds in [128], that �[t]he head referee on the �eld can be overruled by the
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instant replay judges who sit and watch the replay of the action to determine

the accuracy of the on-�eld decision�. In other sports, new technologies replace

the judges for detecting breaches of speci�c rules. Nowadays, line calls in ten-

nis are based solely on ball tracking systems [174]. In addition to the referee

assistance during video replay, tracking systems can detect goals, side-outs and

o�side based solely on spatial data.

As a yet disregarded operational area, anomalous performance data � de-

tected by data mining methods in the gathered trajectories � can hint at the

possible illicit use of drugs before the sporting event, although medical evidence

would be still vital for �nal judgment. Tracking systems could also provide

realistic data for simulations, which could, in the next stage, improve the ed-

ucation of referees and judges by allowing di�erent viewpoints of critical game

situations.

Automatic sports video analysis generates sophisticated and objective infor-

mation about sports performance. Due to its design, the results are reproducible

as well as comprehensible and therefore, tracking systems �t perfectly into the

methodological reservoir of sports scientists. They may also give new insights

into the nature of team sports because they o�er precise, previously unavailable

spatial data of competitions. The objective of sports science remains to inves-

tigate the applicability, advantages and shortcomings as well as the impact of

the technical state-of-the-art for sports.

1.1.3 Enhancement of presentation for sports spectators

Sports spectators can bene�t in various ways from the output of tracking sys-

tems. Television and media companies search for technologies to enhance images

of big sports events to create greater entertainment for spectators and fans. The

focus seems to be on the presentation of scenes from every possible perspective.

Some research has already been done in this area of free viewpoint video gen-

eration [111, 264, 22, 276]. Grau et al. [95, 94, 96] at the British Broadcasting

Corporation (BBC) investigated methods to use existing TV cameras to replay

interesting incidents enhanced by 3D spatial scene information. Accurate cam-

era calibration and player segmentation are required to produce good results;

both result as part of the tracking process. With 3D models for each player �

learned online by the tracking system � a virtual but still realistic image from

arbitrary views would be possible even if only a few cameras are available.

Augmented reality enhancement of sport scenes is already common practice

when broadcasting popular sports. But the technology is still restricted to static

camera views and simple overlays. The results of tracking systems could lift

this augmentation to active scenes allowing complex issues to be visualized in a
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simple way. When broadcasting alpine downhill skiing, the German Television

Broadcasting company ZDF superimposes the momentarily best athlete in the

live video in order to increase the suspense for spectators. In the debrie�ng

of important scenes in soccer, ghost players could visualize correct defensive

behavior in the same way, thus explaining complex circumstances and tactical

analyses in an appealing way.

Tracking systems can also assist in the broadcasting process (c.f. [265]) by

automatic replay generation and camera view switching or selection respectively.

No interesting scenes would be missed anymore by the director if signaled au-

tomatically by the system at the right time.

For the growing business segment of video-on-demand, automatic video in-

dexing and retrieval is an important issue. Tracking systems can o�er �ne-

grained segmentation of sports video even if the search query is not known be-

forehand. A huge multimedia resource center can be collected and tagged with

reproducible and objective semantic information. In some cases, the tagging by

tracking would be even possible for archived video footage in a batch process,

creating new value for the old data. The locations of all identi�ed players can be

aggregated and matched with arbitrary patterns that could be developed in the

future. In contrast to manually tagged video sequences for a special purpose,

these queries would be applicable to the complete game database once instanti-

ated. Answers to such requests can be provided as video segments augmented

with query-related information. Based on the trajectories of the players and

the visible areas of the cameras, the best perspective can be chosen automati-

cally. Katz predicted the realization of elaborate audiovisual databases of player

performance with instant and customizable access in [129].

The transmission of sports videos over networks with low bandwidth is still

an issue. It can bene�t directly from tracking system output; communication

can be restricted to the position data which requires low memory compared

to image sequences. After transmission, the scene is presented as virtual re-

construction on the receiving device. Mobile sports video adaption has been

investigated in [265, 236]; their approach detects interesting events �rst and

supplies video clips in turn. These clips are compressed by exploiting domain

knowledge and the semantics of the presented scene.

1.2 Scienti�c Indexing

The research described in this dissertation was done as a part of the Aspogamo

project. Aspogamo is an acronym for Automated Sport Game Analysis Model.

It aims at establishing an automatic and comprehensive model for sports video

analysis (see [27] for details).
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The conversion from raw video data to meaningful representations of team

sports is the focus of the collaborative research with sports science. Thus, the

automatic abstraction of information [246] based on the positional data gath-

ered is investigated. This process forms a key problem of Arti�cial Intelligence

research [211] called the semantic gap, which marks the shift between raw sensor

data and symbolic representations. The symbol grounding is a key problem that

is faced while tracking identities. Raw input signals must be subsumed under

speci�c player labels (or symbols); although the raw data can change over time

(e.g. colors become darker due to lighting), they consistently represent the same

object.

The excellence cluster CoTeSys [25] (abbreviation for cognitive technical

systems) points out the importance of symbolic representations grounded in

perception and action for cognitive systems. Ronald J. Brachman, Director

of the Defense Advanced Research Projects Agency's (DARPA's) Information

Processing Technology O�ce (IPTO), denominates the four core capabilities of

a cognitive system as Computational perception, Representation and reasoning,

Learning and Communication and interaction [34]. He designates these as the

main research areas for the DARPA for mid and long term and declares: �In

addition, we will be looking at the architecture of an individual cognitive system

and how all of these pieces can be integrated in the most e�ective way.� [34].

Although one may correlate the tracking of players in sports videos with the

computational perception area on �rst sight, a closer look reveals that a track-

ing system for identities constitutes a complete cognitive system: it perceives

the game through various sensors and it relies on an internal representation of

the di�erent player identities that can adapt over time by statistical learning;

tracking results are communicated and corrective interactions can help to im-

prove the system continuously by automatic adaption of the models. Hence,

insights in tracking systems for automated sports video analysis contribute to

the research of cognitive systems.

Sports embody an optimal test bed for the development and evaluation of

cognitive algorithms at an early stage. They provide a wide range of complex

human actions and motions on the one hand, while on the other hand, they

restrict and constrain the number of protagonists and the diversity of actions

in a manageable set-up. Game rules o�er almost complete and already unam-

biguously speci�ed domain knowledge including the main goals and intentions

of each team. Visual recognition of the players is often eased by visually dis-

tinct jerseys to increase the entertainment value for the audience. Only speci�c

interactions between players are permitted by the laws of the game to ensure

fairness and thrilling competitions. Finally, the popularity of sports can boost

the social acceptance of arti�cial cognitive systems for the average citizen.
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The topic of sports video analysis can be subsumed under the Robot World

Cup Initiative (RoboCup) [138], which aims to foster AI and intelligent robotics

research by providing a standard problem as the future soccer world cup with

robot versus human teams. Tracking identities in sports video also has its own

scienti�c raison d'être. It opens up a great range of opportunities for further

research. Inspection of the data gained by tracking systems can help us un-

derstand group behavior and natural multi-agent systems in a manageable area

[112]. Human motion analysis provides a vast source for imitation learning

and development of simulations for autonomous robot control. The detection

of actions and their intended aims will constitute the key technology for inte-

grating arti�cial cognitive systems in human society, allowing collaboration and

providing a natural interface to humans.

Besides Arti�cial Intelligence, this dissertation touches various research ar-

eas inside computer science: Methods of computer vision are developed and

used for perception. Tracking and sensor fusion is grounded in probabilistic es-

timators as part of control theory [13] and statistics [93], multi-target tracking

of a �xed number of targets builds a sub�eld of these domains. Adaptivity and

the segmentation inside the proposed tracking system build on results of ma-

chine learning and the nearby knowledge discovery in data bases (KDD), which

include research in data mining methods[72]. The identi�cation of persons con-

stitutes an objective for visual surveillance; an overview is given by [108]. Due

to our claim to present tracking results immediately, the proposed application

can be indexed below the �eld of real-time systems.

Beside the methodologically based classi�cation, this work constitutes re-

search in automated sports video analysis as a subdivision of sport science.

Surveys concerning advances in this �eld can be found in [254] or [275]. The

area is divided in semantic and tactic analysis (see [277]). The �rst focuses on

the detection of semantic events and the latter recognizes and discovers tactic

patterns in the games. Event detection exploits cinematic features and various

information sources like the World Wide Web. Tactic analysis is mostly based

on the trajectories of the players and the ball which were extracted from sports

videos. This work belongs largely to the area of tactical analysis. However,

there is no sharp boundary between these subdivisions, as the integration of

semantic analysis into the tracking framework demonstrates.

1.3 Challenges

Every tracking system for sports video analysis faces a number of technical chal-

lenges inherent in the problem and the domain of interest. Multiple interacting

targets must be tracked concurrently, while occlusions of single protagonists
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occur frequently and on purpose, as interactions are part of the game. The

motion of human players is complex and hitherto unknown for real competition

scenarios (one aim of the tracking system is to investigate the typical motions of

these). Hence, the position of unseen athletes can be predicted only for a lim-

ited time horizon, which hampers the processing of cut broadcasted material.

Despite good visual discrimination between di�erent teams, athletes of the same

club are hardly distinguishable, which exacerbates their re-identi�cation after

an intermission of the video stream. Although identi�ers like jersey numbers

are attached to the players, their usage is unreliable as they are mostly facing

away from the camera or appear covered or distorted in the video image.

(a) Overlays in broadcast (b) Shadows and re�ections

(c) Small players (d) Motion blur

Figure 1.2: Several challenges for tracking systems inherent in sports video

footage.

Often, the sensory set-up of the system cannot be chosen freely or cannot

even be controlled at all (in the case of broadcasted material). This restriction

remains valid for the quality of the video stream input, where players occupy

merely small regions in the images in order to capture a big fraction of the

playing �eld; motion blur and compression artifacts degrade the quality even

further. In addition, background clutter is typically introduced by imperfect

segmentation, which cannot be excluded in practice due to the diversity of
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the video and conditions of the scene input. Broadcasted material contains

overlays and visual e�ects that block the scene of interest. The problem of

synchronization and fusion of several sensors like multiple cameras is given most

of the time, since a balance between coverage and level of detail must be found.

Some of these challenges that are due to the characteristics of the sensor input

are depicted in �gure 1.2.

Many processing-relevant details like lighting conditions or the actual sta�ng

of tracked teams are not known beforehand. Adaptivity of the tracking system

is therefore required to cope with these imponderabilities. Last but not least, all

of these di�culties must be handled close to real-time to gain acceptance from

potential users of the system. The processing of huge amounts of data, due

to the high entropy of the underlying image sequences, still exhausts modern

computer hardware. Despite the expected improvements of processing speed

according to Moore's law, the bulk of visual data and thus, the computational

requirements, grow at a similar rate, too, due to a quasi-simultaneous upgrade

of sensors and communication bandwidths, as shown by the recent introduction

of the high de�nition format.

1.4 Contributions

The contributions of this dissertation are twofold: �rstly, we propose novel

algorithms that can be applied to tracking and identi�cation of humans and

athletes in general, thus advancing the state-of-the-art in the �eld and secondly,

we incorporate and extend these methods to implement an adaptive real-time

tracking system for soccer video streams.

Novel general algorithms are developed for multi-target tracking and online

unsupervised vector quantization. The Rao-Blackwellized Resampling Particle

Filter is especially designed to track several easily confusable targets which in-

teract and occlude frequently. The method constitutes a sampling importance

resampling particle �lter for complete formations modeled as multi-Gaussians,

where importance sampling is achieved by analytically solving an optimal (in

the sense of maximum a-posteriori) fusion of predicted positions and measure-

ments based on sampled associations between them. Our approach allows for

constraining the multiplicity of measurements per target is possible in contrast

to classical methods like JPDAF or MHT. All assumptions made in the devel-

opment of the algorithm are explicated and justi�ed. The proposed method

exhibits robust real-time performance due to the linear runtime complexity in

the number of measurements and targets and its inherent potential to be par-

allelized. While preserving or improving accuracy, it is signi�cantly faster than

the state-of-the-art MCMC approach by [135] and su�ers from less theoretical
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faults than state-of-the-art Rao-Blackwellized Particle Filter (RBPF) approach

by [213]. Thorough evaluations of competing applications demonstrate the ef-

fectiveness and e�ciency of our method.

Further, we propose novel enhancements of the state-of-the-art incremental

vector quantization method Growing Neural Gas (GNG) by Fritzke [82], which

forms a self-organizing neural network based on Competitive Learning with a

variable number of prototypes as cluster centers. The learning algorithm is

improved to also handle continuous data by delaying the update to a change in

the best matching cluster for the current record and applying a more informed

adaption of the past cluster prototype. We called the revised method LateGNG

and observed better accuracy and faster runtime performance than the original

method. The method was also extended to unsupervised clustering of time-

series. The proposed Merge Growing Neural Gas (MGNG) combines the state-

of-the-art recursive temporal context of Merge Neural Gas (MNG) [232] with the

incremental GNG and thereby enables the analysis of unbounded and possibly

in�nite time series in an online manner. The algorithm has no need to de�ne

the number of clusters a priori and only constant parameters are used. In order

to focus on frequent sequence patterns, an entropy maximization strategy is

utilized that controls the creation of new neurons (prototypes). Experimental

results demonstrate reduced time complexity compared to MNG while retaining

similar accuracy in time series representation. The novel vector quantization

methods are applied to learn appearance models, spatial distributions including

formations of the athletes, and also utilized for the analysis of team behavior.

This dissertation discusses all steps needed to implement a real-time track-

ing system for computer-aided soccer game analysis. We propose a distributed

adaptive real-time architecture for tracking systems in sports, integrating se-

mantic sports video analysis. The complete process, ranging from the input

sensors to the �nal information retrieval system for tactical analysis is covered.

We provide a robust and e�cient segmentation of soccer players in image se-

quences captured by static or dynamic cameras. Color histograms and texture

are investigated and evaluated for their usefulness as features for the identi�ca-

tion of players at a distance. Negative information is employed in tracking for

players who are not captured by dynamic cameras. We further develop novel

methods to extract the labeling of players based on tactical lineups and spatial

information. The system is evaluated with videos captured by single or multiple

static and dynamic cameras including broadcasted material, demonstrating the

e�ective application of the developed algorithms. We are the �rst to publish

quantitative results on soccer matches of full length.
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1.5 Thesis Outline

The present thesis is organized as follows:

Chapter 2 proposes a general real-time tracking framework for sports videos

with an emphasis on the big picture. After a review of scienti�c and com-

mercial work, the main components and the data �ow of such � across-the-

board distributed � systems are identi�ed and a framework connecting all

components is explained in depth. The theoretical background for sensor

fusion forms the backbone of the integration of localization, identi�cation

and tracking modules. As part of the framework, we introduce the idea

behind the adaptivity and cognitivity of our system, which is able to im-

prove its tracking capabilities over time. The chapter o�ers a broad view of

the complete work and provides a roadmap through the following sections,

which are speci�c to single or combined components of the framework.

Chapter 3 is concerned with the data acquisition and input of tracking sys-

tems. It thus surveys typical sensors that have been used for tracking in

the sports domain. For the rest of the thesis we focus on digital cameras

for the visible spectrum. Several methods for segmenting the player in

images as a region of interest are presented and our approach is deduced.

We review works on camera calibration and estimation that provide the

basis for integrating several (possibly dynamic) sensors on a common co-

ordinate system. Prospects for contributing event detection in broadcasts

and additional information sources to a tracking system are discussed as

well. In addition, the localization of players in the foreground regions is

explicated in order to discern true player regions from wrong ones and ro-

bustly deducing the most probable position of athletes in individual and

merged regions.

Chapter 4 proposes an innovative and general method for tracking multiple

targets. After reviewing di�erent approaches for single and multi-target

tracking, we deduce our method as an estimation of the posterior proba-

bility distribution of all target positions from the theoretical point of view,

elaborating all the assumptions made. We discuss implementational issues

which improve tracking performance based on the theoretical foundation.

The resulting algorithm is demarcated to two representative approaches of

the state-of-the-art in multiple target-tracking. The evaluation of the pro-

posed method was done independently from the system for sports video

analysis and includes tracking of simulated targets, ants and of basketball

players which were captured by laser range �nders.



CHAPTER 1. INTRODUCTION 13

Chapter 5 considers the capability of spatial information to identify protago-

nists in team sports, where typically a stringent role allocation is present.

We transform this problem to a search for the best assignment of all per-

sons to their identity. Several solutions like searching, sorting, graph

matching and sampling are discussed and compared for e�ectiveness as

well as e�ciency. The model for the position of each role is either bor-

rowed from the tactical lineup (as an excerpt from a broadcast or the

internet) or learned during the game. We also investigate di�erent models

for the incremental accumulation of previous positions and their impact

on identi�cation performance.

Chapter 6 reveals appearance as a key feature for identi�cation of the pro-

tagonists on the sports �eld. We use the literature to extract a general

framework to specify the steps for this task. The disposition of visual

information for the purpose of identi�cation is investigated in terms of

increasing complexity of appearance ranging from color histograms via

appearance models to gestures and gait. We propose methods for learn-

ing and classifying the appearances online and in real-time. The di�erent

methods for labeling foreground regions with player identities are com-

pared experimentally.

Chapter 7 evaluates the real-time tracking system for soccer videos by com-

bining the various methods of the former chapters. We investigate the

performance for broadcasted material and videos that have been recorded

for the purpose of tracking. Experiments include challenging sequences

and soccer games of full length.

Chapter 8 is concerned with the utilization of the trajectory data that have

been gathered from video footage. We survey recent works on automatic

tactical sports video analysis by providing analyses of static scenes and

team behavior. A novel approach for team behavior analysis is proposed

in terms of automatically extracted probabilistic automatons which repre-

sents behavior by a Markov process. Further we outline a novel framework

that integrates learning and logics to provide a service for elaborate infor-

mation retrieval.

Chapter 9 draws �nal conclusions of the research done for this dissertation.

We summarize the work presented in this thesis and emphasize the scien-

ti�c contributions. Finally, we discuss directions for future research.

Each chapter typically begins with the computational problem under in-

spection and a review of related work on the speci�c topic. It then devises and
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evaluates e�ective methods for solving the task in question and concludes by

highlighting our contributions to the discussed �eld. Soccer provides the exem-

plary domain for the task of tracking identities throughout the thesis, but we

mark methods explicitly if they are tailored speci�cally to soccer and cannot be

easily transferred to other sports.

We have tried to keep dependencies between the chapters low; although the

overall structure follows the data �ow of the investigated tracking systems, the

reader can simply skip sections and read those of most interest.
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Chapter 2

Cognitive Real-time Tracking

Framework

All tracking systems share common structures induced by the data processing

pipeline from raw input to estimated trajectories. This chapter presents an

overall picture of such systems. After a review of existing tracking systems in

business and research, objectives and similarities are identi�ed and structured.

The components of a typical realization can be subsumed under �ve layers,

namely the sensor, the preprocessing, the information, the tracking and the

analysis layer. Based on this categorization, we develop a general framework

for sports video analysis that is of a cognitive nature. The real-time require-

ment demands hard response times and makes parallel execution of subtasks

by a cluster of computers obligatory. The necessary organization of separate

modules and their intercommunication is explicated. The proposed framework

suggests the processes on the tracking layer to synchronize the submodules uti-

lizing standard network protocols, while they integrate the computed evidence.

We adopt the Bayesian approach to handle this task of information fusion in a

natural and sound way. Finally, a systematic method is outlined that supports

the adaptivity of the total system and thus changes its nature to a cognitive

one.

2.1 Related Work

To get an idea of present implementations of tracking systems, we survey com-

mercial products that are available for automatic tracking in the sports envi-

ronment as well as frameworks published in the scienti�c literature for the same

purpose.

17
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2.1.1 Commercial tracking technologies in sports

The business �eld for tracking systems in sports video analysis is evolving rapidly

and gaining increasing interest. An overview of existing commercial soccer tech-

nologies can be found in [219, 179]. Many companies have been founded as

spin-o�s of universities or big companies with separate research departments

due to the great technological requirements needed to develop such systems.

AMISCO is one of the leading systems for automated analysis of professional

soccer matches captured by multiple stationary static cameras. It was devel-

oped at the University of Nice [86]. LiberoVision [157] o�ers free viewpoint video

generation for several kinds of sports and evolved from the ETH Zurich [264].

LucentVision, a real-time analysis system for tennis matches, was developed at

the Bell Laboratories (former R&D organization of AT&T) of Alcatel-Lucent

[191, 192, 193]. The TRACAB Image Tracking System [241] tracks soccer play-

ers in real-time based on Saab's military tracking technologies. These companies

primarily provide the service of delivering the extracted spatial data of selected

games, often enriched by further semantic annotations like events and actions,

after these data have been manually gathered. The tracking system is controlled

and maintained as a black box transparent to the purchaser. The customer is

usually equipped with software for reviewing the data and accessing prede�ned

statistics.

Instead of supplying analysis as service, Ascensio System Ltd. [166] o�ers the

installation of soccer tracking systems which are then operated by the purchaser.

ProZone Sports Ltd. primarily provides software tools for visual game analysis,

but their MatchInsight system is capable of tracking soccer players as well.

Other systems focus on video enhancing aspects. Piero, iview or Hawk-Eye

have been commissioned by broadcasting companies such as the BBC [96, 228];

TrackVision has been developed by Orad Hi-Tec Systems [183]; the FoxTrax

Hockey Puck Tracking System is used by the Fox Broadcasting Company [41].

Companies like Impire or Opta Sportsdata, which o�er game databases and

statistics for media and fans, will be switching from manual annotation to au-

tomatic tracking systems sooner or later, either by taking over new technologies

or developing them from scratch. An example of the latter is Impire (subsidiary

�rm of Cairos), which is developing the VIS.TRACK system [3].

Such systems rely on multiple stationary, controlled cameras in the stadium,

preprocessing the image sequences on the spot with the help of computer clusters

supervised by salaried experts. They subsequently defer the �nal association of

trajectories and player identities as well as semantic enrichment to remote of-

�ces. Most commercial systems have (obviously) not published their algorithms;

neither have these been evaluated scienti�cally in respect to their tracking qual-
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ity. In many cases, statistical and agglomerated data are supplied as a �nal

product, what makes con�rming their results even more di�cult. Due to the

black box architecture, the amount of human interaction needed for aiding the

tracking process cannot be assessed externally.

2.1.2 Tracking frameworks for sports analysis

Athletes in almost all kinds of sports have been tracked in videos so far. In

the following, various sports are listed annotated with an exemplary publica-

tion describing some kind of tracking in that domain: soccer [252], American

football [113], hockey [154], ice hockey [36], tennis [193], volleyball [173], hand-

ball [188], badminton [44], basketball [143] and squash [143]. Although most

approaches are tailored to speci�c domains, several more general frameworks

have been proposed for tracking players in sports videos. The vast majority of

these propose an implementation in the form of a distributed system to cope

with the high computational demand for real-time performance. Usually, six

to eight static cameras are used to cover the whole playing �eld while keep-

ing the computational demand feasible for each sensor. Each camera is usually

connected via optical �ber cable to an individual processing unit, which allows

local tracking of the players in its �eld of view. An additional processing unit

typically synchronizes and merges these tracks in the playing �eld coordinate

system. In the following paragraphs, we will look at several proposed system

architectures in more detail.

The Institute of Intelligent Systems for Automation in Bari has developed

a distributed real-time system for ball and player tracking in soccer [151, 58].

Six high-de�nition (HD) camera signals are processed by multiple dual-core

units with high-end graphic cards to form local tracks. A single supervisor unit

synchronizes the data using a queue and merges them as the mid-point of the

lines connecting the di�erent projections.

Researchers from the Digital Imaging Research Centre have proposed a sim-

ilar system [268, 269, 270]. The individual processing units for each of the eight

static cameras are called Feature Servers. The centralized Tracker is responsi-

ble for collecting and synchronizing the local tracks. To keep the load of the

network that connects these modules low, a single (broadcast) request is issued

by the Tracker at a given time. This is handled by all Feature Servers. A

message-based network protocol has been developed for communication. The

Tracker acts as a single interface unit that initializes and controls the di�erent

components. The estimated game-state is �nally converted to XML output that

is used by third-party applications to deliver results to their respective target

audiences.



CHAPTER 2. COGNITIVE REAL-TIME TRACKING FRAMEWORK 20

The commercial LucentVision system uses eight static cameras placed around

a tennis stadium to track the players and the ball in real-time [193]. The frame-

work follows a competitive multi-threaded approach to select the camera that

should be used for high-speed ball tracking, while only a single view is used for

player tracking.

Müller Junior and de Oliveira Anido describe a distributed real-time system

composed of four modules in [122]. One Frame Reader process per camera

provides synchronized frames that are sent periodically (at a low frame rate) to

Global Detector modules. These modules detect players in the full frame image.

Based on what it detects, new Object Tracker processes are originated by a

centralized Initiation/Veri�cation module. The Object Trackers request a small

rectangular sub-image from the Frame Reader and track the allocated player

locally. The Initiation/Veri�cation component merges the positions provided

based on their proximity, skipping occluded players. They justify their solution

by claiming that most computational time is usually spent on preprocessing

large camera signals rather than tracking.

In semantic sports video analysis, the fusion of di�erent information sources

can be achieved by temporal alignment [266]. Duan et al. proposed a generic

mid-level representation framework [60], focusing on the scalability of systems

to di�erent types of sports.

2.2 Distributed Real-time System Architecture

As the review of implementations has revealed, a tracking system for sports

analysis usually employs multiple sensors to gather the raw input data. This

shows the need for a distributed architecture that allows the delivery of con-

tinuous position estimates of all players (and possibly of the ball) in real-time,

while simultaneously providing robustness, reliability and scalability of the total

system. We propose a distributed framework that is applicable for the major-

ity of di�erent types of sports. We identify the main types of components of

this framework and itemize their dynamic interaction. Figure 2.1 depicts the

categorization of a typical tracking system for ball games with opposing teams.

We explain the proposed conceptualization in the next section and detail the

dynamics in the a�liating one, always referring to the scheme of �gure 2.1.

2.2.1 Main components

The components of a tracking system for sports analysis can be ascribed to the

following �ve abstract layers according to their contribution to the data �ow

which is shown in �gure 2.1:
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Figure 2.1: The main components of a sports video analysis system are sub-

sumed under �ve layers (visualized as blocks). The data �ow between them

is visualized as well. Components are illustrated by rectangles inscribed by

their class, while staggered rectangles point to (possibly) multiple instances of

these modules. Data �ow can be followed with the help of arrows: Fine arrows

depict directed connections for data transmission; broad arrows represent an

omnidirectional supply of data that must be subscribed to in order to receive

data (multiple subscriptions are also possible). The links are labeled with the

transmission protocol suggested by the framework, otherwise arbitrary, custom

protocols can be used.

Sensor layer This layer contains raw signal sources that capture coarse data

from the real world and send them to the next layer in digital form. The

Sensor layer primarily contains separate hardware with specialized proces-

sors and software. Typical representatives are cameras, laser range �nders

and other kinds of mechanical and electronic devices. The choice in favor

of speci�c components determines the rate and complexity of the total

system, since non-trivial software problems can mostly be avoided by a

clever application of the right sensors.

Preprocessing layer The raw input data are preprocessed by modules of this

layer to reduce the need for information bandwidth. The resulting data

are provided to one or many consuming processes in the Information layer.

The Preprocessing layer is necessary for lowering the computational de-

mand by avoiding redundant computations and reducing the data by �l-

tering, aggregation and abstraction.

Information layer An information module provides evidence about probabil-

ity distributions of player locations and/or their identities. This informa-
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tion is based on some kind of internal semantic model for players that is

either hardcoded or could have been learned and adapted incrementally.

The modules must have a common interface for communicating with a

Tracking process of the next layer, so that they can easily be interchanged.

Tracking layer A module of the Tracking layer synchronizes multiple mod-

ules of the Information layer and merges evidence provided from these.

A conclusive estimate of the locations of all players together with their

identity labels is built and made available for further analysis. Processes

at this layer are time-critical and must provide some kind of scheduling or

dropping of outdated evidences. A queue of the time labeled evidences is

su�cient for this task.

Analysis layer The Analysis layer contains post-processing modules that re-

�ne the trajectories for persistent storage or visualization and present a

selection to interested end-consumers. These processes are usually de-

coupled from the rest of the tracking system and are not subject to the

real-time requirement.

A mainly vision-based system for sports analysis is illustrated in �gure 2.1.

Component classes are itemized for each layer and the typical data �ow is de-

picted. In the following, each module is explicated according to the layer it

belongs to:

The sensor layer contains static as well as panning, tilting and zooming

cameras that have been (not necessarily permanently) installed at the playing

�eld or in the stadium. Usually, multiple sensors of the same type are used,

although there is no restriction to this set-up. The camera(s) may be controlled

by the system or may have to be taken as given, like a broadcasted television

signal. When TV and custom signals are available, the broadcasted signal should

be exploited mostly as a secondary information source. Tracking in broadcasted

image sequences is more di�cult and time-consuming than in separate single-

camera streams since the TV signal only provides discontinuous and partial

views of the playing �eld. On the other hand, it is better suited for player

identi�cation due to its ability to zoom as well as due to informative overlays. It

thus constitutes a unique source for event detection based on cinematic features.

Active sensors, that belong to this layer as well, will be discussed in detail in

section 3.1.

Components located on the preprocessing layer are strongly coupled with

their corresponding sensors. From data of visual sensors, the foreground must

be segmented because it primarily contains the player regions. Foreground seg-

mentation processes can work on full frames of single cameras, partial images as
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in [122] or on a single image synthesized from multiple cameras. The mapping of

image to real-world coordinates is needed for the purpose of player localization.

Individual mappings must be provided by camera estimation processes for each

non-static camera. The broadcasted signal needs an additional partitioning into

shots as well as mappings of each shot to the camera in use. Processes providing

semantic sports video analysis can be integrated into our framework as event

detectors at the Preprocessing layer. Events can serve as additional input for

information processes. Corner kick detection, for example, can in�uence the

model selection and its certainty for an identity sensor which is based on the

tactical line-up of the players. Event detection may even facilitate hints con-

cerning a player's position. For example, the performer of the penalty kick is

roughly localized around an area in front of the goal. If ball tracking is employed,

the position of single players could be deduced from ball action events relying

on good synchronization of the di�erent sensors used. This type of deduction

of positions would be located on the information layer, although feedback from

the tracking layer is utilized.

Player localization and identi�cation components constitute the information

layer. They prepare and provide the relevant evidence for the tracking process.

While localization modules are usually restricted to the visual domain and im-

plemented by multiple instantiations of the same method, identi�cation modules

can vary greatly in quality since identity is conducted of manifold continuities in

appearance and behavior. Evidence about identities could have been encoded by

other agents which are external to the system, and may just need to be extracted

from symbolic representations. Likewise, live tickers in the World Wide Web

can be parsed to gather substitutions, for example. Human operators can be

modeled as processes at the information layer, providing player positions and/or

identities with probabilities based on the user interface (e.g. the resolution of

the presented scene image).

The tracking layer usually contains only a single tracker component for each

tracking task. Players as well as various pieces of sports equipment (ball, puck...)

constitute the objects of interest in most sports. Since we are concentrating on

player tracking in this work, the ball components of �gure 2.1 are shaded in

gray for convenience.

The analysis layer covers the widest variety of components. Databases and

knowledge discovery techniques are utilized to store the trajectories for later

retrieval or re�ne the spatio-temporal data for speci�c analyses and statistics.

This layer provides interfaces for information retrieval such as web services,

delivery of enhanced video material to mobile devices or layouted documents

that summarize aspects of the game. Semantic and tactical game analysis is

built on this layer.
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2.2.2 Distributed realization

The components of the di�erent layers of a tracking system are implemented by

hard- and software modules.

Sensors are primarily realized as separate special hardware (like CCD cam-

eras), although this does not necessarily have to be the case (as with the World

Wide Web). Contingent on their computational demand and the number of

consumers, preprocessors would be realized as threads on the same or on dif-

ferent machines than the sensor processes, whereas the latter is common for

image processing. Graphical processing units (GPU), however, could do this

work as well. In rare cases like laser scans, preprocessing is already included in

the sensor hardware. Video storage and preprocessing of camera frames can be

handled simultaneously on the same machine using special hardware like frame

grabber cards conveying the CPU usage exclusively for preprocessing. Real-time

capability by design is crucial for all preprocessing nodes. A su�cient reduction

of the amount of data is also important to avoid overloading the network and

likewise, avoiding data loss.

Information layer processes are not restricted to a speci�c implementation.

On the one hand, they can be located on the same machine as the preprocessing

node if they are enforced to by high communication requirements. On the other

hand, an information module can be distributed on several machines itself. In

addition to the mentioned hardware, network routers provide the local network,

where the preprocessed data are subscribed from by information modules.

We suggest an autonomous, centralized process for each tracking task (ball or

players). Since the tracker builds a fusing node, it should be located on a single

server with multiple high-performance network access and adequate computing

facilities.

Components of the analysis layer must be implemented according to their

objective. They should be implemented on separate computers as well as sepa-

rate networks than the ones used by the core real-time tracking system in order

to reduce interference and ensure compliance with the real-time requirement.

2.2.3 Connectivity inside the framework

To achieve the objective of delivering consistent trajectories, all modules must

work together. Therefore, the underlying communication networks play a crucial

role for the performance of the system as a whole. The connections between

sensors and preprocessing nodes are almost exclusively one-to-one links and

speci�c to the type of sensor used. There is no general way to describe this link;

the spectrum ranges from internal PCI cards to satellite connections (e.g. for

GPS). Camera signals can be transmitted directly via �ber optics or by Gigabit
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Ethernet network via CAT5 cables; specialized protocols like GigE-Vision exist

for this task. CAT5 cables can transfer signals over a distance up to 100m

without repeaters and are therefore well suited for connecting cameras installed

in stadium ceilings to the corresponding preprocessing nodes.

Distributed preprocessing modules should provide their information on the

(local) network via multicast (UDP). The main advantage of using multicast is

that data can be sent to multiple processes on the information layer in a �exible

way, requiring a �xed network bandwidth regardless of the number of consumers.

In addition, temporal decoupling is ensured since UDP is a connection-less net-

work protocol. Although dropping of UDP packets at overload of the network

bu�ers constitutes a prerequisite for real-time processing, care must be taken to

adjust the bu�er sizes for UDP to use the possible bandwidth to full capacity

and to avoid data loss.

Information processes must subscribe to the desired multicasted service in

order to receive the preprocessed data. We recommend detached bu�ering pro-

cesses on the receiving machines. These bu�er the incoming data to a �le; the

sensor process(es) work on these �les only and are therefore decoupled tempo-

rally. In addition, they do not have to share the same process space, which

increases the real-time capability and robustness of the total system. This

bu�ering can be done with minimal CPU usage since it is predominantly an

I/O task.

All components refer to a global clock, which can be achieved by a dis-

tributed clock via the network (a common tool in most operating systems). At

the beginning, input data are tagged by a time stamp at the preprocessing layer.

Synchronization of information �ow is achieved by the tracker via a queue of

parallel blocking TCP/IP connections to the information processes. Late in-

formation responses can be dropped by individual timeout thresholds inside

the protocol, assuring the real-time capability by standard software tools that

are available on every modern operating system. Information sources can be

included or detached �exibly by establishing or closing a TCP/IP connection.

This proves to be especially helpful for human monitoring modules.

Information is fused in a Bayesian framework (described in detail in the next

section 2.3.1): the tracker requests probabilities and innovations for the current

estimate given predicted positions of all players. Since this information usually

requires little memory for representation, a low communication bandwidth is

ensured. Although not covered in detail in this work, ball localization com-

ponents and a ball tracker are often part of sports analysis systems. Ball and

player tracking modules should be connected via a synchronized communication

channel over which they exchange estimates of the tracked state.

The analysis layer is decoupled from the remaining system by multicast
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connection (UDP). Care should be taken that no information is lost due to

insu�cient bandwidth or the workload of the retrieving components. An inter-

position component may be appropriate for providing reliable and lossless data

transmission.

2.3 Sensor Fusion

There are usually multiple sources providing evidence about the location or

identity of a player, be it due to the application of multiple sensors or due to ex-

ploitation of multiple cues inside a single signal. Although most of the evidence

refers to visual sensors exhibiting spatial measurements, various features based

on auditory or textual input could be used to obtain hints about the identity of

a player in the scene. In addition, supervision by human operators can be seen

as a further information source that produces measurements with presumably

high certainty. All of these inputs must be merged in order to exploit a max-

imum of information to estimate the players' locations and to correctly label

them.

2.3.1 Bayesian framework

Our framework adopts the Bayesian approach (c.f. [13, 47, 6]) to estimate the

tracked state by selecting one of the possible hypotheses based on its assigned

probability. This section recalls the applied concepts of probability theory.

The concept of probability Pr can be interpreted as a measure of belief in

events A,B ∈ Γ as outcomes of a random experiment. For a sound theory it

must satisfy the axioms

Pr (A) ≥ 0, Pr (Γ) = 1, A ∩B = ∅→ Pr (A ∪B) = Pr(A) + Pr(B). (2.1)

Porting discrete events to continuous values, random variables are introduced

as real-valued functions assuming a certain value to the outcome of a random

experiment. The probability of a realization r of a random variable is given by

its probability density function p (further abbreviated as pdf) satisfying

Pr (r ≤ ∞) =

∫ ∞
−∞

p (r) dx = 1. (2.2)

Several random variables ri are called independent i�

p (r1, . . . , rn) =

n∏
i=1

p (ri) . (2.3)

The conditional probability of a random variable r1 given another r2 is de�ned

as

p (r1|r2) =
p (r1, r2)

p (r2)
. (2.4)
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In our framework, the locations of all players constitute the state to track and

are modeled as a multi-dimensional random variable x attached with a (prior)

probability density function which evolves over time. Evidence about this state

can be observed (possibly partially or indirectly) in terms of measurements z.

The task of the tracking system is to estimate the most likely state sequence

x0:k up to time k given all observed evidence z1:k = {z1, . . . , zk} so far. A real-

time estimator supplies the current estimate xk according to the posterior pdf

p (xk|z1:k). The optimal Bayesian solution in �nding the mode of this posterior

pdf is given by the maximum a posteriori (MAP) estimate

xMAP
k = arg max

xk

p (xk|z1:k) . (2.5)

Since this posterior cannot be computed directly, we make use of the de�ni-

tion 2.4 of conditional probability to convert the posterior pdf to

p (xk|z1:k) =
p (xk, z1:k)

p (z1:k)
. (2.6)

Since the maximization of equation 2.6 is independent of the denominator

p (z1:k), it can be converted to

xMAP
k = arg max

xk

p (xk, z1:k) . (2.7)

If we assume that the measurements zi are conditionally independent given

the state xi at their corresponding observation time i, the connection of mea-

surements and states at time k can be described by the measurement model

hk : Rnx × Rnn → Rnz as

zk = hk (xk, nk) (2.8)

with nk denoting the independent and identically distributed (i.i.d.) measure-

ment noise at timepoint k.

Using Bayes' rule

p (r1|r2) =
p (r2|r1) p (r1)

p (r2)
, (2.9)

the MAP estimate for the posterior pdf results in

xMAP
k = arg max

xk

p (zk|xk) p (xk|z1:k−1) . (2.10)

If we further assume that all xi are conditionally independent given their pre-

decessor xi−1 (known as Markov assumption of order one), the evolution of the

state over time can be written using the process model fk : Rnx × Rnv → Rnx

as

xk = fk (xk−1, vk−1) (2.11)

with the subscripts k ∈ N denoting ordered points in time, which are not nec-

essarily equally distant. v denotes the process noise which is assumed to be

independent and identically distributed (i.i.d.).
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Based on the Markov assumption and the total probability theorem

p (r1) =

∫ ∞
−∞

p (r1, r2) dr2, (2.12)

we obtain the Chapman-Kolmogorov equation

p (xk|z1:k−1) =

∫
p (xk|xk−1) p (xk−1|zk−1) dxk−1. (2.13)

The joint distribution p (x0:k, z1:k) can be unfolded to

p (x0:k, z1:k) = p (x0)

k∏
i=1

p (xi|xi−1) p (zi|xi) (2.14)

with the initial pdf p (x0) assumed to be known a priori. The initial state

x0 can be assigned to be uniformly distributed over the whole state space if

no knowledge is available beforehand resulting in a maximum likelihood (ML)

estimation.

Combining equations 2.10 and 2.13 we can rewrite the MAP estimate in its

recursive form

xMAP
k = arg max

xk

∫
p (zk|xk) p (xk|xk−1) dxk−1. (2.15)

The pdf, that has to be maximized, decomposes into the prior p (xk|xk−1) and

the (measurement) likelihood p (zk|xk). The estimation can usually be divided

into two stages accordingly: the prediction stage, which relates the previous and

the current state, and the update stage which incorporates new evidence from

the measurements. The MAP estimate is unbiased since

E
[
xMAP
k

]
= E [xk] (2.16)

with E denoting the expectation of a random variable

E[r] =

∫ ∞
−∞

rp (r) dr. (2.17)

The positive de�nite (or semide�nite) covariance matrix of the MAP estimate

var
(
xMAP
k

)
= E

[(
xMAP
k − E [x]

) (
xMAP
k − E [x]

)T ]
(2.18)

describes its quality or rather its certainty by the expected deviation of the true

value.

2.3.2 Probabilistic combination

Various evidence is combined according to the equations of the Bayesian ap-

proach described in the previous section. We assume the observations of each
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sensor si to be conditionally independent of all other sensors given the current

state xk. Therefore, the measurement likelihood factors as

p (zk|xk) =
∏
i

p (zsik |xk) . (2.19)

The individual probabilities can be evaluated independently with distinct mem-

ory space for each information node. This kind of fusion resembles the boosting

principle [81], where multiple (albeit simple) experts vote for a decision resulting

in a stronger estimate than each single one, in a natural way.

Each Player Localization module si provides spatial measurements zsik in

compliance with its measurement model hsik similar to equation 2.8. Instead of

using a global measurement model hk mapping the tracked state to a stacked

version of zk = (zsik )
i
, we process each localization measurement sweep after

another. According to Welch and Bishop [260], this single-constraint-at-a-time

or SCAAT tracking approach allows to �generate estimates more frequently, with

less latency, with improved accuracy, and [...] to estimate the [...] positions on-

line concurrently while tracking�. The uncertainty in the measurement process is

provided by covariance matrices for the measured positions. Player Localization

components o�er the currently measured positions with their covariances and

the �eld of view they are observing.

Player Identi�cation modules estimate probabilities for the identity of a

player at a speci�ed position. They contribute to the �nal estimate by the

measurement likelihood of equation 2.19. All player identi�cation components

have to provide an interface to supply the probability for a given estimate of

player positions.

Bayesian �ltering seeks the posterior pdf which integrates all the available

evidence of past and present expressed in terms of probabilities [47] and is

therefore well suited for the task of sensor fusion.

2.4 Adaptivity and Cognitivity

In contrast to most industrial computer vision environments, sports provide a

lot of unforeseen conditions and events. This uncertainty is evident for the

measurement model hsik of some sensor si in particular; the model may be

unknown before the game taking place or could change over time. For instance,

the tactical line-up is published only shortly before the kicko� and lighting

conditions as well as the appearances of the athletes can be forecasted only

roughly in advance. Additionally, these attributes may be subject to signi�cant

change by adaptive team behavior, change in the weather pattern, bandages as

result of injuries and numerous other reasons from practice.
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To cope with this diversity, the internal representations and parameters of

the tracking system have to be adapted accordingly. Since not every single

information module is usually a�ected at once, the models can be learned and

adjusted based on the current estimate of the player positions which re�ect the

overall information extracted from all available sources.

With the location of a player given by the certain current estimate, super-

vised learning methods can be used to automatically model the relation between

raw sensor input and the corresponding position or identity. Several supervised

methods based on stochastic learning have been proposed in the machine learn-

ing area (see [211, 33] for an overview). Supervised learning tries to estimate

a function from an input sample to its corresponding output value given a se-

quence of input-output pairs. The methods di�er in the representation language

for the function, but the learning process is always based on the statistics of

the training sequence. The search for a mapping of raw sensor input to an

identity constitutes a multi-class learning problem, while the mapping to a po-

sition, which constitutes a continuous variable, can be found by regression. The

learning must be incrementally and online; the learned model must be avail-

able for classi�cation all the time. Probability distributions are required for

the Bayesian sensor fusion, so distributions should be learned supporting a soft

classi�cation.

Unsupervised learning methods [92] can be applied to train models given

the inputs only. These models can be used for classi�cation as soon as they are

assigned to an identity. Distances of unknown data to the learned models can be

transformed to the needed probability distribution. The unsupervised approach

o�ers the possibility of deferring the association to the time when it is known,

while the learning process can be active all the time. An analogous result can be

achieved for supervised methods only if models can be merged afterwards. To

ful�ll the real-time requirements, learning and especially classi�cation should

be executed in bounded time ranges. The class of online learning methods

accommodates suited candidates for this demand.

Following the bootstrapping idea, the knowledge gained from initial sensors

is spread to di�erent possibly not-initialized modalities over time which could

stabilize the former ones in return. This approach introduces cognition to the

tracking system, increasing its robustness. Since this bootstrap method is highly

self-referential, it is vulnerable for drifting away from the correct solution. This

can be prohibited if the adaptation is done in a very conservative manner by

setting high thresholds for the minimal certainty in the estimate that serves as

evidence for other sensors.

A somewhat similar approach was suggested by Song et al. quite recently

in [226]. They di�erentiate two phases, which they call �tracking for learn-
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ing� and �learning for tracking�. Bags of features (color and texture of image

patches) are sampled and learned for non-interacting targets forming several

weak Classi�cation and Regression Trees. After splitting of intersecting or oc-

cluding players, the identities are determined for further tracking according to

the boosting principle as the majority vote of the individual weak classi�ers.

2.5 Conclusions

In this chapter we proposed a real-time framework for computer-aided sports

analysis. The components of this scheme are categorized into �ve layers: the

sensor and preprocessing layer are tightly coupled. The latter rapidly processes

raw to enhanced data and provides these to various information sources via

multicast. Player localization and identi�cation components o�er probabilities

and spatial measurements to the tracking layer. Synchronization is ensured by

the tracker via queued TCP/IP connections on top of the network. The fusion of

information follows a Bayesian approach to estimate the maximum a posteriori

position of all players. The integration of semantic and tactical sports video

analysis was integrated seamlessly in the framework. The remaining analysis

layer re�nes the extracted trajectories for later retrieval and provides arbitrary

knowledge discovery tools.

Further we emphasized the idea of a bootstrapping system which improves

tracking performance over time by incremental adaptation through statistical

learning. The current estimate serves as labeled training data and allows for

supervised online learning. Destabilization of this self-referential process is in-

hibited by distributing evidence only if the certainty in the current estimate is

high. The system can be called cognitive because it develops its own represen-

tations and transfers knowledge between the di�erent sensor modules, enabling

it to cope with previously unseen environments. Moreover, the learned models

constitute interesting analyses in their own right.



CHAPTER 2. COGNITIVE REAL-TIME TRACKING FRAMEWORK 32



Chapter 3

Data Acquisition

This chapter enumerates the di�erent kinds of sensors that could or already have

been used as primary input for computer aided sports video analysis. In the

remainder we focus on sports videos captured by standard cameras and present

common methods for segmenting players in single video frames. This segmen-

tation is usually tailored to the domain it is applied to. Approaches therefore

di�er signi�cantly between all kinds of sports, especially if played indoors as op-

posed to outdoors, or if they are based, for example, on strong assumptions like

static cameras. Our approach for outdoor soccer is based on the homogeneity of

the playing �eld. It therefore states a nonparametric method which is robust in

di�erent lighting conditions. Two computational problems are discussed in this

chapter: the preprocessing phase must compute the segmentation of all poten-

tial player regions in the current video frame and the transformation of pixels

to real-world coordinates; given the segmented foreground in single or multiple

video streams and given known camera calibrations, the likely player locations

in real-world coordinates must likewise be determined. These tasks are depicted

in �gure 3.1. The output from preprocessing and localization becomes the basic

input for all further processing steps and is thus crucial for the performance of

the other modules.

3.1 Sensors

Several di�erent types of sensors have been used to analyze players in sports.

The most straight-forward approach to gathering individual information on the

players consists in a�xing gauges to the protagonists. These measure and send

various parameters together with an unique identi�er to a central processing

unit. At NFL football games, six accelerometers together with a transmitter

are placed in the helmets of the players; they measure the linear and rota-

33
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(0.47m,2.1m)

Figure 3.1: The preprocessing step segments potential player regions and pro-

vides a transformation of image to real world coordinates (visualized as the

projected right-handed world coordinate system of unit length 1m). The local-

ization determines the probable real-world positions based on these regions.

tional acceleration of the head and send the data to a sideline response system

for immediate analysis (c.f. [218]). The results are used primarily for medi-

cal purposes. Active transmitters have also been attached to balls and players

[216, 184, 201, 106, 239]. They send high frequency radio signals with identi�ers

to surrounding receivers, thus simplifying the tracking process to triangulation.

On the other hand, they are very expensive. This is so because they rely on

powerful transmitters and receivers that must be located around each playing

�eld. Systems for referee support are currently seldom in use; a tracking system

for soccer developed by the Cairos company in collaboration with the Fraun-

hofer Institute [239, 244] was stopped after preliminary tests during the U17

world championship 2005 in Peru, because of � among other things � low accu-

racy for the ball of about 10cm compared to an investment of 250,000 euros for

each stadium.

Laser range�nders provide an alternative which is frequently deployed in

robotics for self-localization. They constitute active localization sensors that

triangulate objects in 3D, relying on the time di�erences between re�ected laser

beams. Laser scans have the advantage of providing primarily depth information

and allow easy (and therefore fast) player segmentation by simple thresholding.

But this meal doesn't come for free. Because laser range�nders are highly sen-

sitive to occlusion, they can only be used up to a limited distance and lack

information about the identity of the detected objects other than shape. To

cope with these disadvantages, RFID tags have been attached to the players in

addition. These emit a unique signal for each athlete, such that they could sup-

port identi�cation of laser scan data. Unfortunately, experiments [10] revealed

that RFID tags are not suited for this task.

The BORG Lab at Georgia Tech experimented with multiple laser range�nd-
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ers in sports. Despite the fact that their projects are developed primarily for

tracking animals, experiments were conducted for tracking 4-on-4 basketball

and soccer games as well. Therefore, laser range�nders were positioned at the

border of the playing �eld; examples of perceived laser scans are depicted in

�gure 3.2. A non-technical drawback of laser lies in its nature as an active sen-

sor, which is typically not permitted in competitions because it could possibly

in�uence the play (e. g. by dazzling or distraction).

(a) Data of soccer game gathered by several

laser scanners placed around the pitch.

(b) A 4-on-4 basketball game observed by

four laser scanners which are depicted by col-

ored circles.

Figure 3.2: Combined scans of several long range lasers acquired by the BORG

Lab of Georgia Tech for player tracking in sports.

In some cases, infrared cameras have been applied. They have similar ad-

vantages and disadvantages as laser sensors. The body of the player can be

distinguished easily from the background based on the obvious temperature dif-

ference, but ranges are short and charateristic attributes of persons are lost. The

FoxTrax Hockey Puck Tracking System [41] turns infrared into an active sen-

sor; a modi�ed ice-hockey puck which emits infrared pulses is tracked by twenty

pulse detectors and ten synchronized infrared cameras for the purpose of aug-

mented broadcasting. Since only a single object is tracked by many cameras,

the di�culties mentioned above � namely occlusions and the lack of identi�ers

� are circumvented.

Charge-coupled device (CCD) cameras for the visual spectrum are the most

frequently applied sensory component by far because these passive sensors do

not in�uence the game, are comparatively cheap and provide rich information

about the game. An important parameter of a camera is its image format and

resolution. Commonly, raw image data, PAL, DigitalVideo (DV) or High Def-

inition (HD) are used. Videos with high resolution (like HD) reach the limit

of Gigabit ethernet real-time capability and are therefore usually transmitted

in a lossy compressed form. Still, e.g. HD requires a high bandwidth and also

more computational power due to the necessary decompression. To cover a big
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area, cameras with a wide focus are employed and thus the tracked players are

as small as down to 10 pixels height if resolution is not high enough. Multiple

perspectives of the same area can avoid occlusions more easily and are neces-

sary for generating free-viewpoint video. However, Xu et al. recommend that a

�[g]ood resolution of each area, especially the goal-mouths, is more important

[for tracking] than multiple views of each area� [268].

If possible, static cameras are used to reduce the computational burden

since special foreground segmentation techniques can be applied. Additionally,

dynamic cameras state the need for continuous camera calibration, although

special hardware solutions as e.g. Pan-Tilt units exist and can be utilized if the

camera is accessible.

In addition, one can make use of available data previously perceived and

digitalized by humans. Many sources for event detection exist, such as live

newstickers of the game in the internet or television and radio commentary

(c.f. [50] for automated extraction). The di�culties of extracting semantics

from text and spoken language have spawned their own research areas called

natural language understanding and speech recognition.

3.2 Camera Calibration and Estimation

Camera calibration is the process of determining the mapping of image to play-

ing �eld coordinates and vice versa. This mapping is commonly represented by

a so-called camera matrix of size 3 × 4, assuming that the camera satis�es the

pinhole camera model with projective geometry. The matrix is derived by the

intrinsic parameters of the camera (such as focal length, image size and principal

point) and the extrinsic parameters that determine the position as well as the

pose of the camera in the real world. If radial lens distortion is taken into ac-

count, the transformation becomes non-linear and can no longer be represented

by a matrix.

The homography from image- to world-coordinates can be estimated by

matching a minimum of four non-collinear points in the image to known points

in real-world coordinates using Tsai's method [242]. Intrinsic camera parame-

ters are mostly estimated with the help of a planar calibration board showing a

checker-board pattern. In the sports domain, the playing �eld itself can often be

used to calibrate the camera since its dimensions and the geometry of lines and

marks are usually determined by the rules of the game (at least in professional

competitions). In soccer, the �eld size is not �xed [76] and must be measured

or estimated as well. The calibration of static cameras can be completed before

the game starts.

In the case of non-static cameras, the calibration must be done continuously
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and is called camera (parameter) estimation. Pan-tilt units can be used for

measuring some of the changing extrinsic parameters by hardware. Contrary,

camera resectioning in broadcasted material must rely solely on information en-

coded in the images and the knowledge of the geometry of the playing courts.

Playing �eld lines are extracted mostly via Hough transform [234, 253, 274].

Bebie and Bieri use template matching to identify the lines in [22]. Advertise-

ment board detection and matching is applied by Yoon et al. in [274] to track

the camera at the sides of the playing �eld when not enough lines are visible.

Assuming stationary cameras that are variable in pan, tilt and zoom only, a

wire frame of the court can be tracked continuously by point correspondences

[258, 69, 68, 240, 42, 88]. RANSAC [79] has been used to improve the robust-

ness and the speed of the tracking to real-time [68, 240, 42, 88]. Gedikli [88]

additionally exploits optical �ow measurements to track the camera even when

no lines are visible.

We follow the approach of Gedikli [88] to estimate the camera parameters,

including a �xed radial lens distortion. The estimated coordinate transformation

is therefore non-linear, and represents the true mapping more precisely.

3.3 Foreground Segmentation

Foreground segmentation in sports videos can be categorized according to three

methods: background subtraction (mostly used for static cameras), color seg-

mentation and segmentation by motion. This preprocessing step takes up a

signi�cant amount of computational time since it must be applied to all of the

massive image data gathered by each camera. The last step in segmentation

usually includes cleaning the segmented image by morphological operations like

opening, closing or erosion [122]. A survey of image thresholding techniques and

a quantitative performance evaluation thereof is given in [220].

3.3.1 Background subtraction

For static cameras, time di�erencing and background subtraction is widely used

in sports analysis [126, 122, 111, 151, 90]. Background subtraction builds up a

model for the background and usually thresholds the di�erence between the cur-

rent image and this model to extract the foreground. Algorithms di�er mainly in

the complexity of the model, ranging from a preliminary gathered background

image (often called reference frame) to Gaussian color models for each pixel

[229] to joint color distributions for the whole image (i.e. extracted by PCA).

Piccardi [190] as well as Parks and Fels [185] give surveys about recent research

in background subtraction methods. Since shadows usually re�ect a change in
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the color values of their corresponding pixels, they are recognized as foreground

even if not intended to. Figueroa et al. [78] recover the background by omitting

shadows of the player.

The idea of background subtraction was also ported to dynamic cameras by

stitching together images over time (often called mosaicing), each usually show-

ing only a fragment of the �eld. This constructs a complete mosaic image, which

in turn can be used as background model [20, 161, 274, 136, 206]. The technique

is not restricted to color or intensity values. For instance, Müller Junior and

Ricardo de Oliveira Anido applied background subtraction with reference frame

based on the gradient image of the scene [122].

Broadcasted video footage poses an additional processing burden, because

frequent overlays decrease the e�ectiveness of background subtraction methods.

They can be blocked and excluded from the image if detected as static regions or

by template matching methods. The audience on the stands, which could also

have a negative impact on background subtraction, can be masked based on the

knowledge of all camera parameters. Cuts with a total change of perspective

must be handled by adequate selection of the background model. This, however,

is not a trivial task at all.

3.3.2 Color segmentation

Vandenbroucke et al. found the regions containing soccer players by adaptive

color space segmentation in [247]. Gaussian mixture models for colors have been

applied in several publications [178, 26, 89, 24]. Spagnolo et al. learn the color

classes for each team in an unsupervised manner in [227]. Instead of segmenting

the players by color directly, some methods [2, 109, 162] detect the players as

holes by connected component analysis on the playing �eld that is found by a

trained color histogram for the dominant color of the green.

Renno et al. [205] learns the color of shadows by an unsupervised learning

procedure and is therefore able to exclude these shadows from a foreground

image.

Since the jersey colors of the di�erent teams and the color of the playing �eld

are designed to be distinguishable by the referees and the audience, segmenta-

tion by color should be well suited for the task of foreground segmentation. For

outdoor sports, however, changing light conditions and shadows due to clouds

and stadium architecture complicate algorithms based on color only. The han-

dling of these cases require online learning. Also, commonly worn white jerseys

intersect with the color of the court lines. Artifacts based on video compression

and blurred motion further exacerbate the problem of detecting players. Special

care must be taken for handling advertisement boards which could be of same
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color than player jerseys.

3.3.3 Segmentation by motion

Rarely, segmentation by motion is used for foreground extraction [61, 90, 140,

102]. This method is based on the assumption of a consistent motion model of

the background (which can also be no motion) and is therefore suited for static as

well as dynamic cameras. The motion vectors for each pixel can be computed by

the optical �ow method by Lucas Kanade [167] or varieties thereof, which are all

based on the consistency of color intensities over time. The RANSAC (Random

Sample Consensus) algorithm [79] is often applied to handle outliers and improve

robustness for the background motion estimation. All pixels whose motion

vectors di�er from the expected background motion are marked as foreground.

Segmentation by motion is not very accurate since optical �ow methods are

mostly imprecise and not robust against image quality losses.

3.3.4 Our approach for soccer

Our approach tailors foreground segmentation to outdoor sports on grass �elds.

Since the playing �eld constitutes a large, homogeneous area, we use a local

variance �lter to segment the players as proposed in [27]. A small kernel (usu-

ally 3 × 3) is moved over the intensity (grayscale) image of the current frame

and the variance in this rectangular area is computed. Player regions typically

evoke high values since they di�er signi�cantly from the green and their texture

contains irregularities in color. Although this approach is not immune to shad-

ows of the players, the segmentation of light shadows is reduced if compared to

typical background subtraction with color models. Since variance in the stands

typically shows high local variance as well, the local variance �lter is applied to

the video image masked to the projected playing �eld (including an o�set from

the outer court lines) for additional speed-up. Di�erent foreground segmenta-

tion approaches are applied to video frames captured by static as opposed to

dynamic cameras. In both cases, the resulting foreground regions are delivered

to registered information modules as run-length encoded (RLE) regions includ-

ing their color information. This procedure reduces the bandwidth needs for

transmission as well as the computational time for decoding the received data.

Static cameras

In case of static cameras, raw local variance image cannot be utilized directly

since the court lines and markings as well as shadow and re�ection contours

arising from the stadium architecture induce high local variance as well. There-
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fore, background subtraction is applied directly to the local variance image. We

employ the technique of e�ective Gaussian mixture learning for each variance

pixel, following the proposal by Lee [150]. Because positions of artifacts and

lines in the image are constant or change slowly, they are incorporated into the

background and therefore omitted in the result of the subtraction. Unfortu-

nately, players passing the court lines are cut into several pieces. To handle

this problem, we learn an additional color background, as seen in �gure 3.3(d).

The update and di�erencing of the background image is masked by the vari-

ance background image to detect changes on the lines only. The sparse variance

background signi�cantly reduces the computational demands of this usually ex-

pensive step. Finally, the resulting intensity image is binarized by applying a

Gaussian blur followed by a thresholding operation. The blurring step is advan-

tageous because it closes small holes in the regions. The complete foreground

segmentation for static cameras is depicted in �gure 3.3. Our approach shows

su�cient accuracy while keeping the computational demand low. Four static

cameras, providing images with dimension 704 × 576 downsampled to half of

their size, are preprocessed in the described way on a single 2.5 GHz quad core

computer in real-time with 30fps.

Dynamic cameras

In case of dynamic cameras, the variance is thresholded adaptively, taking only

pixels with local variance larger than the mean of all values plus one standard

deviation. Hard shadows as shown in �gure 3.3(a) cannot be handled and remain

as artifacts in the foreground. But this problem is not as severe as for static

cameras, since dynamic cameras typically zoom in more closely, capturing a

smaller area. They can therefore adapt their lens aperture to provide a more

balanced illumination level, which avoids the problem.

The court lines, which also show up in the local variance image, are cleaned

by projecting the virtual lines into the image based on the camera estimation

by [88] and erasing these pixels. To prevent the erasure of pixels that belong to

player regions intersecting the lines, we make use of the fact that the line width

for soccer �elds is �xed to 13 cm by o�cial rules [76]. We delete pixels if and

only if the number of pixels that have a high local variance and that are located

on the normal to the projected court line is below a threshold determined by

the projected line width. In other words, pixels are kept if the width of the

line at that point is consistent with the forecast, otherwise an intersection with

a player is assumed. The center circle, all arcs and even the court lines are

approximated by line segments to take the non-linear camera transformation

into account. Bresenham's line algorithm [35] is used to iterate over the normals
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(a) Input (b) Local variance image

(c) Local variance background (d) Color background

(e) Final mask (f) Foreground

Figure 3.3: Segmentation for static cameras.

of the projected line segments and count the white pixels. The deletion of the

pixels is done accordingly if they are below the threshold. The algorithm is

visualized in �gure 3.4.

Players, or parts of them that visually extend beyond the playing �eld,

would be omitted due to the preliminary clipping of the video frame to the

playing �eld. But even without the clipping step, the problem would persist

since the boards with advertisements usually contain a high variability in color

values and appear together with the player as a single bright region in the local
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Figure 3.4: After smart line erasure, only white pixels remain in the �nal image.

The selective line erasure works as follows: non-black pixels are counted along

the normals (colored in green) of the projected line segments (colored in pink).

If their number is below a threshold derived from the projection of the real line

width of 13 cm, the pixels along the normal are deleted (colored in red). Due

to discretisation, some artifacts (white pixels surrounded by red ones) remain

in the image, but will be removed by morphological operations afterwards.

(a) Player at border (b) Detected foreground region

Figure 3.5: Players extending beyond the border of the playing �eld are handled

in a special way. The bounding box of the region with high local variance

intersecting the border (depicted in blue) is enlarged to match the projected

height of a typical player (by the red rectangle).

variance image. We can make no assumptions about the appearance of the

boards (especially as the displayed advertisements are often replaced or change

frequently during a game) because they can even be the same color as the player
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(see �gure 3.5(a) for an example). To solve this problem, we enlarge the existing

region to match the height of a typical player, if the line width at the outer lines

exceeds the threshold analogously to the treatment of the court lines inside

the playing �eld. The procedure is depicted in �gure 3.5. For the �nal binary

mask, the area under the enlarged bounding box is combined by a logical AND

operation with the smaller region originating from the local variance if inside

the smaller bounding box. The resulting mask can be seen in �gure 3.6(d).

These di�culties with players at the borders occur rarely in images captured

by cameras with a high position and a steep viewing angle. Because this can be

taken into consideration when control over the stadium set-up is given � in which

case usually static cameras are employed �, this problem was not discussed for

static cameras.

(a) Input (b) Local variance image

(c) Smart line erasure (d) Players at the border

Figure 3.6: Segmentation for dynamic cameras.

Morphological operations are applied as a �nal step on the binary mask to

�lter out noise induced by variations in illumination and the smart line erasure.

The total process of an input frame is depicted in �gure 3.6.
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3.4 Broadcasted Material and Other Sources

Broadcasted material can be treated similarly to videos captured by dynamic

cameras. In addition, cuts, action replays and slow motion episodes must be

detected and the correct camera must be identi�ed in the current episode. We

rely on the work of Gedikli [88] to handle these non-trivial tasks.

Beside the plain image of the scene, broadcasted material provides a much

richer source of information. Events, which each describe a special set of cir-

cumstances that could provide special insights into the game, can be detected

in various ways. Recent research has focused primary on automatic detection in

broadcasted television footage that exploits cinematic features [62, 153]. Motion

vectors are used to �nd attack and defense situations in basketball [102]. In [265]

Xu et al. give an overview of their work in semantic sports video analysis. They

used audio keyword spotting and match reports in real-time from game logs

on the web [266, 267]. Coldefy and Bouthemy [50] proposed an excited speech

detection by modi�ed, short-term energy in the audio channel. Babaguchi et

al. [8, 9] detect events based on textual overlays (content description objects)

and the transcript of speech data as subtitles (closed caption). Zhu et al. [278]

extract route patterns (side-attack) and interaction patterns (dribbling-attack)

in broadcasted soccer videos and webcasting text.

Several of these events give hints about player identity. The most obvious

point is the announcement of the substitution of a player by another player of

the same team. This information could be extracted from textual overlays as

depicted in �gure 3.7, from transcripts, audio commentary or real-time weblogs.

Similar methods can be used to extract player identities for bookings or other

penalties. Halin et al. [98] provide a technique for extracting text from overlays.

The executor of a corner kick could be identi�ed by its position in combination

with the linguistic determination of the player's name.

(a) Substitution of a player (b) for a new substitute (c) or both on a single frame.

Figure 3.7: Substitutions signalised by overlays in broadcasted video can be

detected as events and assist player identi�cation.

In combination with ball tracking, penalties, passes, dribbling and shot
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events can reveal the identity of the actors involved. However, a big problem

is posed by the need of �ne-grained temporal alignment. The same di�culties

hold for audio keyword spotting in general, since it is not clear which player

the commentator is talking about. Face detection, which is possible in close-ups

only, can hardly be used in combination with a player's location. This marks

both procedures as nearly impractical (but still possible) choices for player iden-

ti�cation. Break detection, on the other hand, can be achieved more easily and

is helpful for tracking because people other than players and the referee can

enter the playing �eld solely in an adjourned game. In addition, events can

act as a prior for positional identi�cation based on the tactical player line-up.

The certainty in player assignment at a kick-o�, for example, is fairly high � in

contrast to the assignment during a corner kick.

3.5 Player Localization

The task of localization consists in mapping of potential regions to locations in

the image. So far, this transformation has mainly been done in a prede�ned de-

terministic fashion by computing agglomerative statistics of all positions inside

the shape. Because the bounding box of the targets is primarily tracked in many

projects, the locations of these targets can be easily deduced. Needham [179]

utilizes learned shape templates to extract these bounding boxes. Alternatively,

the mean shift method [117] has been applied to globally compute the positions

(of all players) by identifying the modes of the region densities.

We extract the positions from regions containing single or multiple players

di�erently. Firstly, the foreground regions are detected as connected components

by following their external contours along region pixels in a 3×3 neighborhood.
A single region found in that way can be described by so-called image moments:

there are its centroid, its area, its rotation around the center and its minimum

bounding box, which denotes the smallest rectangle containing the whole region.

Because the shape of a human is not arbitrary, valid regions are constrained by

their size as well as their area. We assume an average height of 1.80 meters

and an aspect ratio of 1
3 based on statistics of anthropometry. Considerably

smaller areas are discarded or merged with player regions if they fall inside the

bounding boxes of these to catch disconnected hands or feet.

Regions with appropriate area are assumed to contain a single player only.

The centroid of such regions projected on the lower base vertex of the bounding

box is taken as the position in image coordinates. This point can then be trans-

formed to real world coordinates by the known homography of the recording

camera. The localization for single players is depicted in �gure 3.8(a).

As players often interact, their contours overlap and they appear as a single
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big region. These merged regions are detected because they exceed the expected

size of a typical athlete. The binary image of the big region is convoluted by

a rectangular template of typical athlete size projected onto the image. This

convolution computes the area of the region under the current template. For

computational e�ciency, integral images are used which reduce area computa-

tions to three additions and a single subtraction. Hypotheses for player positions

are found as local maxima in the resulting convoluted image. Contour lines are

fragmented in single saddle points with reasonable distance. This approach ex-

ploits the physical constraints induced by perspective occlusionges in a simple

way. An example of this procedure is depicted in �gure 3.8(b). Although this

approach generates additional false positives, we prefer it over a more restric-

tive one since the tracking algorithm can better deal with surplus measurements

than with missing positions.

(a) Single player (b) Multiple occluding

players

Figure 3.8: Single players are localized as the lower intersection of the main

axis (colored in pink) and the bounding box of the corresponding region (colored

in blue). The red cross marks the computed position in the image, which is

transformed to world coordinates in turn. Multiple occluding players form a

single big region. Positions (colored in red) are extracted as local maxima of

the convolution of the region with a rectangular template (colored in pink)

representing the size of a typical player.
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3.6 Conclusions

In this chapter we surveyed di�erent kinds of sensors and their use for player

tracking. With the focus on cameras, the main methods of foreground seg-

mentation have been reviewed. These can be applied to segment players in

sports video footage. We presented a novel approach based on the local vari-

ance image of a video frame, exploiting the homogeneity of the playing �eld.

The foreground is segmented in this local variance image by background sub-

traction for static cameras and adaptive thresholding for dynamic cameras. We

showed two di�erent approaches of handling players who cross court lines by

selective erasure of the lines and color background subtraction. The methods

presented here are nonparametric in nature and exhibit real-time performance,

while being fairly robust in handling di�erent illumination conditions including

shadows and re�ections.

Extracting player locations from regions is handled di�erently for shapes

containing single or multiple players. The number of players inside a region is

estimated based on the expected area of a standard athlete. Shape-template

matching is applied to extract potential positions of multiple players inside a

large area.
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Chapter 4

Multi-target Tracking

The potential player locations gathered in every frame can be �ltered by exploit-

ing temporal consistency to provide a better estimate of the current positions.

Methods that try to �nd a good way to �lter these data are de�ned as belonging

to the multi-target tracking discipline. The computational problem of multiple

target tracking consists in the estimation of target trajectories from cluttered

and noisy measurements arriving over time at discrete time points. This task is

illustrated in �gure 4.1. Tracking typically includes a prediction and an update

step. The former is based on a motion model of the targets to form a common

ground with the current measurement scan. The latter combines the predicted

state of the targets with associated measurements of the current scan.

In this chapter we introduce the Rao-Blackwellized Resampling Particle Fil-

ter (RBRPF) as a novel multi-target tracking method suitable for real-time

performance. Our approach is designed to track a �xed number of targets be-

cause this is the case in almost all sports. We solve the data association problem,

which is part of the update step, by sampling individual associations accord-

ing to their likelihood. This approach reduces the tracking problem to several

single-target tracking problems. Single-target tracking is achieved in turn by the

popular Kalman �lter, which constitutes an optimal estimator (in the sense of

maximum a posteriori) and which has been used and veri�ed extensively in the

�eld. The Rao-Blackwellized Resampling Particle Filter belongs to the class of

Monte Carlo Joint Probabilistic Data Association Filters (MCJPDAF). In ad-

dition to its special applicability for player tracking in sports video, it provides

a general approach for multi-target tracking.

49
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Player Pr

Materazzi 15%

Grosso 6%

. . . . . .

Player Pr

Materazzi 15%

Pirlo 7%

. . . . . .

Figure 4.1: Multi-target tracking �lters the cluttered and noisy measurement
scans, which suggests potential player locations, to form consistent trajectories
over time.

4.1 Related Work

Tracking has been researched since the 1950s, primarily for air and ocean surveil-

lance by radar. Bar-Shalom and Fortmann de�ned �[t]racking [as] the processing

of measurements obtained from a target in order to maintain an estimate of its

current state [...]� [13]. Tracking predominantly follows the Bayesian approach

as described in section 2.3.1. Chen gives a thorough tutorial on Bayesian �l-

tering in [47]. The tracking approaches can be di�erentiated into single and

multi-target tracking. Both �elds are reviewed separately in the next sections.

4.1.1 Single-target tracking

Single-target tracking faces the problem of how to fuse di�erent measurements

with the predicted state of a single target to estimate its trajectory over time

correctly. Arulampalam et al. [6] provide a detailed tutorial over the �eld.
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Kalman �lter

The Kalman �lter [123, 124] has been used extensively for single-target tracking

and will continue to be used in the future. The algorithm constitutes an optimal

maximum a posteriori estimator if the state prior and measurement noise follow

a Gaussian distribution and the process as well as the measurement model are

linear (see section 2.3.1 for an explanation of the models). An optimal Bayesian

solution solves the problem of recursively calculating the exact posterior density;

if an algorithm deduces this solution, it is called an optimal algorithm.

The multivariate Gaussian or Normal distribution is given by

p (x) = N (x;m,V ) =
1√
|2πV |

e−
1
2 (x−m)′V −1(x−m) (4.1)

with mean m = x̄ and covariance V . The univariate (one-dimensional) and

bivariate (two-dimensional) standard normal distributions are depicted in �g-

ure 4.2, where the term �standard� implies that the mean equals zero in every

dimension and the covariance matrix is the identity matrix. The Gaussian

distribution has the nice property that it is closed under linear and a�ne trans-

formations. The central limit theorem states that the sum of a su�ciently large

number of independent random variables, each with �nite mean and variance,

approaches a Gaussian normal distribution in the limit.

x-3 -2 -1 0 1 2 3

p(x)

0.0
0.1
0.2
0.3
0.4

(a) univariate standard normal distri-

bution

x-3 -2 -1 0 1 2 3

y

-2
-1

0
1
2
3

p(x, y)

0
0.04
0.08
0.12
0.16

(b) bivariate standard normal distribution

Figure 4.2: The normal distribution also called Gaussian with mean m and

(co)variance V .

The Kalman Filter constitutes a set of recursive equations that can be dif-

ferentiated in a predictive and an update step (see [260] for a good tutorial).

The computation of the predicted state is reduced to a matrix product since the

process model of equation 2.11 is assumed to be linear:

x̂k = Fkxk−1 + vk (4.2)

and

V̂k = FkVk−1F
′
k +Qk. (4.3)
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As the measurement model of equation 2.8 is also linear, it can be written as a

matrix Hk, too. The state update equation reads as

xk = x̂k +

(
V̂kH

′
k

(
HkV̂kH

′
k +Rk

)−1
)

(zk −Hkx̂k) (4.4)

and the corresponding covariance update equation is

Vk = V̂k − V̂kH ′k
(
HkV̂kH

′
k +Rk

)−1

HkV̂k. (4.5)

The second summand of the state update of equation 4.4 constitutes the �lter

gain multiplied with the innovation (or measurement residual). The �lter gain

controls the in�uence (innovation) of the measurements versus the prediction

on the �nal estimate based on the proportion of their (un)certainties. Sev-

eral (mathematically equivalent) versions of the covariance update equation 4.5

have been proposed showing di�erences in numerical stability and computa-

tional performance. The equations adapted for the inverse covariance are called

Information Filter.

Extensions to the Kalman �lter

Several extensions for the non-linear case exist: the Extended Kalman Filter

(EKF) [118], which linearizes the model by Taylor expansion, and the Unscented

Kalman Filter (UKF) [121], which transforms the so called sigma points and

reconstructs the transformed Gaussian, are widely used. Figure 4.6 illustrates

these methods. Iterated versions of these extensions exist to improve the ro-

bustness of the linearization.

For maneuvering targets, a multiple-model approach was originally proposed

by Magill [169]. Bar-Shalom introduced the suboptimal Probabilistic Data As-

sociation Filter (PDAF) for handling clutter (measurements generated by noise

rather than the target) and false alarms by a parametric and a nonparametric

variant [15, 16]. The Optimal Bayesian Filter (OBF) [223] utilizes associa-

tion probabilities based on the entire measurement sequence observed so far (in

contrast to only the latest measurements for the PDAF). Suboptimal (N -scan-

back) algorithms soften the dependence on former measurements by a Markov

assumption of order N to decrease the high computational demand.

Grid-based methods discretize the state space into cells and utilize the

Viterbi or Baum-Welch algorithm [197] to calculate the maximum a posteri-

ori estimate of the path through these cells. They provide an optimal solution

i� the underlying state space is really discrete in its nature. This is not the

case for position tracking and these methods are rather ine�cient if one wants

to cover a large �eld with su�cient resolution.
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Particle �lter

The particle �lter is a tracking method that can handle arbitrary process and

measurement models and that approximates arbitrary probability distributions.

It is also known as bootstrap �ltering, CONDENSATION [116] or survival of

the �ttest. It has been successfully applied to various tracking tasks; its simple

implementation as well as appealing speed and performance explain the wide

usage in the �eld.

The �lter instantiates a sequential Monte Carlo method that solves problems

by statistically correct simulations. In Sampling Importance Sampling (SIS)

particle �ltering, the posterior probability density function is approximated by

a weighted sum of Np random samples xik (known as particles)

p (xk|z1:k) ≈
Np∑
i=1

wikδ
(
xk − xik

)
(4.6)

with δ denoting the Dirac function which is one at the origin and zero elsewhere.

The so called importance weights are normalized
∑
i w

i
k = 1 such that the

approximation forms a proper pdf (c.f. equation 2.2).

The Particle Filter consists of a sampling and a �ltering step. Particles for

the next time step are sampled according to a proposal q(.) called an importance

density. The new weights depend on the choice of the importance density and

are computed during the �ltering step. The recursive equation for the weights

up to a normalizing constant factor reads therefore as

wik ∼ wik−1

p
(
zk|xik

)
p
(
xik|xik−1

)
q
(
xik|xik−1, zk

) . (4.7)

If Np tends to in�nity, the approximation of equation 4.6 approaches the true

posterior density in the limit.

Doucet [59] showed that the optimal importance density function that min-

imizes the variance of the true weights conditioned on xik−1 and zk is

qopt
(
xk|xik−1, zk

)
= p

(
xk|zk, xik−1

)
=
p
(
zk|xk, xik−1

)
p
(
xk|xik−1

)
p
(
zk, xik−1

) . (4.8)

This optimal importance density would require sampling directly from the real

distribution, making the weights redundant. It can hardly be achieved in

practice. In the vast majority of applications in computer vision, the prior

p
(
xk|xik−1

)
is used as importance density leading to a weight update according

to the likelihood wik ∼ wik−1p
(
zk|xik

)
.

As can be seen in equation 4.6, the density at a speci�c point is calculated as

the sum of the weights of all particles at the same point. The same density can

be represented by a single particle with a high weight or multiple particles at
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the same location with proportional lower weights. After a few iterations, the

SIS particle �lter su�ers from the degeneracy phenomenon, where one particle

will have a high and the rest only negligible weights. Resampling utilizes the

mentioned relationship of the number and weights of particles to handle the

degeneracy problem by eliminating particles with small weights and duplicating

the ones with large weights. The resampling step of the SIR particle �lter

generates a new particle set
{
xik
}
by resampling (with replacement) Np times

from the current particle set and initializing the new weights with 1
Np

. The SIR

method is depicted in �gure 4.3.

SIR(
{
xik−1, w

i
k−1

}Np

i=1
, zk):

1. Draw
{
xik
}Np

i=1
from importance density q

(
x|xik−1, zk

)
2. Calculate importance weights wik = wik−1

p(zk|xi
k)p(xi

k|x
i
k−1)

q(xi
k|x

i
k−1,zk)

3. Normalize weights w̃ik =
wi

k∑Np
i=1 w

i
k

4. Resample with replacement
{
xjk

}Np

j=1
from

{
xik
}Np

i=1
, where

Pr
(
xj = xi

)
= w̃ik

5. Return
{
xjk, N

−1
p

}Np

j=1

Figure 4.3: One iteration of the SIR particle �lter.

The Mixture Kalman Filter (MKF) by Chen and Liu [46] is a special case

of a particle �lter that tracks mean and covariance of Gaussians for the target

position by using Kalman �lters inside each particle instead of the position itself.

The technique of replacing the state by parameters of a model describing the

entire state pdf is known as marginalization or Rao-Blackwellization [39]. Its use

is founded on the Rao-Blackwell theorem, which states that an estimate based on

su�cient statistics (an appropriate model) always improves the plain estimate

in terms of its variance. Rao-Blackwellization often improves the computational

e�ciency of particle �lters since (parts of) the sampling can be replaced by an

analytical solution. Khan et al. [133] proposed a particle �lter that was Rao-

Blackwellized with an appearance model by computing probabilistic PCA.

4.1.2 Multi-target tracking as data association problem

The sub�eld of multi-target tracking was introduced by Sittler in 1964 [224].

In addition to multiple single-target problems, multi-target tracking predom-
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inantly copes with the data association problem of associating measurements

with the correct target. Data association algorithms are constructed according

to either a deterministic or a probabilistic model. The former determines an

association and treats it as if it were certain and the latter utilizes the proba-

bilities of the di�erent possible associations. Multiple single-target trackers are

likely to coincide especially if interactions of targets occur. Most data associa-

tion methods thus rely on some kind of exclusion principle. We will review the

di�erent multi-target tracking approaches in view of how they solve the data

association problem.

Kalman �lter based approaches

Bar-Shalom and Fortmann [13] survey the classical Kalman �lter based ap-

proaches in multi-target tracking. Multiple Kalman �lters are applied for soccer

tracking in [17] resolving occlusions of multiple players by a rule-based method

that recognizes di�erences between removable and intrinsic ambiguities. The

Nearest-Neighbor Standard Filter (NNSF) associates targets to the closest mea-

surement and was state-of-the-art until the early 1970s, but it is still used for

tracking sport players, for instance in [268]. The Joint Probabilistic Data Asso-

ciation Filter (JPDAF) [12, 14] is an extension of PDAF to multiple targets by

evaluating the probabilities of the joint association events. The Joint Likelihood

Filter (JLF) was proposed as an advancement of the JPDAF for visual tracking

[200] but is seldom used. The Multiple Hypothesis Tracker (MHT) [203, 204]

lifts the Optimal Bayesian Filter to track multiple targets by constructing an

association tree for the history. Because it su�ers from even higher computa-

tional burdens as the OBF, N -backscan and pruning approaches or �nding only

the k-best assignments based on the Hungarian method [54] are used in facto as

[89] in soccer, for example. All methods described so far consider only feasible

associations. This means that measurements can be assigned to a maximum

of a single target and that each target exhibits no or only a single measure-

ment. Probabilistic Multiple Hypothesis Tracking (PMHT) [231, 230] joins the

advantages of JPDAF and MHT, also allowing merged measurements for a sin-

gle target, which are then selected by expectation maximization (EM). The

selection of associations by the Viterbi algorithm, analogous to the grid-based

methods, was proposed for ball tracking in soccer [271].

Particle �lter based approaches

While the former methods are all based on Kalman �lters, Monte Carlo ap-

proaches constitute the second class of multi-target tracking algorithms. Clus-

tering of the particles circumvents the data association problem for soccer
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[248, 77] or hockey players [182] by maintaining occluded targets as single

objects. It thus results in multimodal tracking as Mixture of Particle Filters

(MPF). Since identities are not preserved, identi�cation of individuals after

split is encouraged via AdaBoost [182] or learned decision trees [226]. Kristan

et al. [142, 143] exploit local motion of the players in indoor sports computed by

optical �ow to separate the particle �lters for each single target. The NNSF has

been ported to particle �lters by nearest neighbor association and applied to the

sports domain in [36, 155]. A Monte Carlo variant of the JPDAF (MCJPDAF)

replaces the underlying Kalman Filters of the JPDAF with Particle Filters for

each target to handle Non-Gaussian distributions, the data association is sam-

pled in the resampling step according to the joint probability and provides a

fast way of �nding the most likely assignments (c.f. [217, 127]). A joint Markov

Random Fields (MRF) particle �lter was proposed in [132]. This penalizes over-

lapping of particles for di�erent targets. The Variational Particle Filter [119]

utilizes the probabilistic data association scheme with the weak exclusion prin-

ciple of PMHT and applies variational inference rather than sampling from the

prior as the proposal distribution. A Particle �lter with joint probabilities for

the associations was proposed for soccer tracking by [90] handling the exclusion

via the weights rather than by selection of the associations. Rao-Blackwellized

Monte Carlo Data Association (RBMCDA) [213] employs the MCJPDAF idea

modeling the individual particles as Gaussians.

MCMC based approaches

Monte Carlo Markov Chain (MCMC) [93] as another Monte Carlo approach is

distinct from particle �ltering by its underlying idea and gains in popularity

recently. Instead of representing the posterior probability distribution by a

number of samples in parallel, one sample is continuously changed by proposals

and its trace approximates the distribution. A stochastic automaton is created

where each transition inside the state space is accepted by a specially designed

acceptance ratio such that the stationary distribution equals the posterior. The

transitions (also called proposals) and the acceptance ratios must be ergodic,

which means that every point in the state space can be reached, while wandering

through the state space, and no dead-ends capturing the current state exist.

Starting at an arbitrary state, the Markov Chain is usually run for a burn-in

period to �forget� this initial state. The frequencies of the visited states after

the burn-in form the desired probability distribution. Monte Carlo Markov

Chain Data Association (MCMCDA) was proposed in [181]. The joint Markov

Random Fields (MRF) particle �lter was ported to MCMCDA in [134]. A real-

time variant using Rao Blackwellization exists [135] and allows the tracking of
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variable dimensions inside the MCMC framework. Bardet et al. [18] parallelized

the originally sequential approach. MCMCDA was also used to track soccer

players [162, 87].

Variable number of targets

Most methods for multi-target tracking have been extended to track not only

a �xed but a variable number of targets. This has been achieved by assigning

unmatched measurements to virtual targets and init new tracks (called birth) if

the associated probability gives enough reason for their existence over time. If

the probability for a target drops below a threshold, the target is removed from

further tracking (called death).

4.2 Basic Idea

The Rao-Blackwellized Resampling Particle Filter (RBRPF) forms a recursive

estimator of the complete formations including all player positions. The previous

estimate is advanced to the time of the current measurement scan by predicting

the locations according to a given motion model. Particles for the current

estimate are gathered from the previous ones by sampling associations between

the predicted formations and the current measurements at a rate proportional

to the former weights and fusing the corresponding positions in an optimal way

(max-likelihood). The probability densities are determined by the frequencies

of the samples that resulted in the same association, as well as the likelihood of

this association. The RBRPF is sketched in �gure 4.4.

Stated more technically, the Rao-Blackwellized Resampling Particle Filter

constitutes a SIR particle �lter (c.f. �gure 4.3) as joint tracker in the product

multi-object state space. The �lter is Rao-Blackwellized by tracking mixtures

of Gaussians instead of the plain positions. Importance sampling is split into

prediction (which is solved analytically), sampling of associations and fusion

of predicted targets and measurements according to the sampled association

(also solved analytically). A measurement is assigned to a single target at max,

while the maximal number of measurements assigned to the same target can

be constrained. The fusion of identity evidence is achieved via the association

likelihood. Memoization and smart deterministic resampling improve the e�-

ciency of RBRPF, while the use of negative information gains performance. The

complexity of RBRPF is linear in the number of particles, targets and measure-

ments. The Rao-Blackwellized Resampling Particle Filter algorithm is depicted

in �gure 4.5. We will detail the algorithm in the next sections.
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Figure 4.4: The Rao-Blackwellized Resampling Particle Filter (RBRPF) at a

glance.
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RBRPF(
{
xmk−1, w

m
k−1

}Np

m=1
, zk):

1. i = 0

2. FOR m = 1 : Np

3. Draw prediction x̂k analytically according to sec. 4.6.1

4. Γ← ∅

5. FOR j = 1 : dNpwmk−1e
(Resampling according to sec. 4.5)

6. Draw association Jk according to sec. 4.6.2

7. IF Jk /∈ Γ

8. Γ← Γ ∪ {Jk}; i← i+ 1; Ni ← 1

9. Draw xik by fusing x̂k and zk given Jk

according to sec. 4.6.3

10. Calculate unnormalized importance weight wik
according to sec. 4.7

11. ELSE

12. Ni ← Ni + 1

13. Np ← i

14. Normalize weights wik ←
Niw

i
k∑Np

i=1 Niwi
k

15. Return
{
xik, w

i
k

}Np

i=1

Figure 4.5: One iteration of the proposed Rao-Blackwellized Resampling Parti-

cle Filter (RBRPF).

4.3 Assumptions

Our approach is designed for a �xed number of targets, since the number of

players seldom varies during a game (opposed to their visibility) and in such

cases, the change (e.g. due to penalty) is signaled and can be observed. For

the replacement of players, the identity of the new target is given anyway. The

restriction to a �xed number of targets does not imply that the tracked tar-

gets may be extended or reduced on the �y; it just states that the extension

or reduction is not done automatically but must be initiated externally. The
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proposed method can easily be extended to handle a variable number of targets

as described in section 4.1.2 or [213], but this extension would be misleading in

the sports domain, where the number of targets is known a-priori.

We assume that the individual state pdf of each player (his location) can

be modeled su�ciently by a Gaussian distribution, not taking the ambiguity

error into consideration. This is common practice and is presumed by most

multi-target approaches (at least for the initialization). Additionally, only the

two-dimensional position on the playing �eld is estimated since the 3D posi-

tion can hardly be extracted from sports video images and would be estimated

imprecisely.

Our approach is explained for a process model (or motion model as it is called

in position tracking) that is linear Gaussian with constant velocity. Despite the

fact that this is not true for the complex motions in sports, it is a su�cient

approximation for ordinary frame rates of sports videos (around 25 frames per

second) since the distance a player can travel in 40 milliseconds is reasonably

small and can be approximated with a linear model. For cases where a non-

linear model is essential, the proposed algorithm can easily be extended by the

suboptimal approaches that are in use for the Kalman �lter like EKF and UKF

(c.f. �gure 4.6). This extension can be done analogously to the linearization of

the measurement model, which will be described.

The measurements are observed in sweeps (possibly multiple times per time

step) and we expect no out-of-sequence measurements. These would have been

dropped to preserve real-time processing anyway. The measurements of one

sweep are assumed to be conditionally independent from other sweeps given

the positions of the players. Our method states the weak exclusion principle

of PMHT, where multiple measurements per target are allowed but each mea-

surement of a sweep results from a single target only. This assumption is made

by the most tracking algorithms to reduce the association space and holds �

in our opinion � also in reality for visual sensors. The objection that inter-

acting targets produce merged measurements due to imperfect segmentation as

stated in [135] is not conclusive. It should be solved by improving segmentation

because measurements that occlude other targets are still caused by a single

target.

4.4 State Space

The state at time-point k ∈ N0 that is estimated by the proposed particle �lter

aggregates the individual states of all players j explicitly as the stacked vector

xk = (xk,j) j = 1, . . . , Nt (4.9)
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with Nt ∈ N denoting the total number of targets. The state of each player j is

Rao-Blackwellized by supposing it to be normally distributed (see equation 4.1)

around a mean mj with covariance Vj

xk,j ∼ N (mk,j , Vk,j) . (4.10)

We track the two-dimensional position and velocity of each player on the playing

�eld; the z-component of the true three-dimensional location in space is omitted

for performance reasons. The state space for a single target can therefore be

written as

mk,j = (xpos, ypos, ẋpos, ẏpos)
′ ∈ R4 (4.11)

with a 4×4 real-valued symmetric positive (semi)de�nite covariance matrix Vk,j
(c.f. equation 2.18).

The posterior is approximated following the particle �lter equation 4.6 by a

set of Np ∈ N weighted particles
{
xik, w

i
k

}Np

i=1
. Although every player is assumed

to be Gaussian, the posterior probability distribution of the particle �lter de-

scribes a multimodal distribution that equals a mixture of Gaussians similar as

for Mixture of Kalman Filters [46].

4.5 Resampling Step

We change the order of the typical SIR �lter by bringing the resampling step

forward. This is mathematically equivalent to the common case, but gives our

approach a great gain in computational e�ciency.

Our resampling method is similar to residual resampling [163] and replicates

each particle deterministically Ni times (Ni can be zero) according to its weight

with

Ni = dwik−1Npe. (4.12)

Particles with larger weights thus allocate more particles in the next time step,

while particles with small weights are discarded. Since the resulting number of

resampled particles N̂s =
∑Np

i=0Ni does not necessarily equal Np, the proposed

RBRPF constitutes a particle �lter with a variable number of samples. This

is rather unusual for SIR �lters but there is no theoretical reason prohibiting

doing so. The importance weights of the resampled particles are set equal to

N̂−1
s . As we will see later in section 4.8 this will not be the �nal weights and

particles since some of the samples can be joined again.

Independent of the proposed method, Särkkä et al. suggested in [213] future

improvements for their RBMCDA approach, which are similar to ours:
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�By tuning the resampling algorithm and possibly changing the or-

der of weight computation and sampling, accuracy and computa-

tional e�ciency of the algorithm could possibly be improved [73].

An important issue is that sampling could be more e�cient without

replacement, such that duplicate samples are not stored. There is

also evidence that in some situations it is more e�cient to use a

simple deterministic algorithm for preserving the N most likely par-

ticles. In the article [195] it is shown that in digital demodulation,

where the sampled space is discrete and the optimization criterion

is the minimum error, the deterministic algorithm performs better.�

4.6 Sampling Step

The innovation of the proposed RBRPF algorithm is the choice of the im-

portance density which di�ers substantially from the commonly used prior

p
(
xk|xik−1

)
. The proposed importance sampling is composed of a prediction, an

association and a fusion step. After the last estimate is projected to the time of

the current measurement sweep, associations J between the measurements and

predicted positions are sampled proportional to their likelihood. The resulting

position sample is evaluated as the minimum variance fusion of the sampled

associations.

This approach can be mathematically derived. Based on the total probability

theorem of equation 2.12 and the assumptions of section 2.3.1, we can transform

the optimal importance density of equation 4.8 to

qopt
(
xk|xik−1, zk

)
=

∫
p
(
x̂ik|xik−1

)
p
(
Jk|x̂ik, zk

)
p
(
xk|Jk, x̂ik, zk

)
dJk (4.13)

with associations Jk and predicted state x̂ik. The predicted state x̂ik is often

referred to as the a priori state.

The integral of equation 4.13 is actually a sum since the associations consti-

tute a discrete and �nite set. We propose an approximative importance proposal

density de�ned on the optimal fusions according to the associations Jk only

q
(
xk|xik−1, zk

)
=
∑
Jk

p
(
x̂ik|xik−1

)
Pr
(
Jk|x̂ik, zk

)
δ
(
xk − arg max

x
p
(
x|Jk, x̂ik, zk

))
,

(4.14)

where δ denotes the Dirac function. This is reasonable since the probabilities for

fusions other than the optimal one would be lower and therefore approximately

negligible.
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4.6.1 Prediction step

The �rst step of sampling from p
(
x̂ik|xik−1

)
constitutes the prediction of the

states of all particles i according to a constant velocity model. Since this model

is linear Gaussian and Gaussians are closed under a�ne transformations, the

sampling according to the predicted state distribution can be solved analytically.

The constant velocity model assumes no acceleration, but since the velocity

can undergo small changes over time t, it is modeled by the mutually indepen-

dent white zero-mean Gaussian noises ṽ(t) ∼ N (0, q̃) and v̆(t) ∼ N (0, q̆) for

the 2-dimensional case as

ẋpos(t) = ẋpos, (4.15)

ẍpos(t) = ṽ(t), (4.16)

ẏpos(t) = ẏpos, (4.17)

ÿpos(t) = v̆(t). (4.18)

A noise v(t) is called white i� it has zero mean E [v(t)] = 0 and its value at

a speci�c time is statistically independent of the value at any other time also

written as E [v(t)v(τ)] = qδ (t− τ), i.e. it is completely unpredictable.

We process measurement sweeps observed at discrete time points with the

time di�erence ∆tk = tk − tk−1 between the (not necessarily equidistant) time

points k and k − 1. The process model of equation 2.11 for each player j can

now be written as

m̂i
k,j = Fkm

i
k,j−1 + vk−1 with Fk =


1 0 ∆tk 0

0 1 0 ∆tk

0 0 1 0

0 0 0 1

 (4.19)

where hat denotes the predicted state. The white process noise vk−1 between

k − 1 and k is written as

vk−1 =


∫∆tk

0
(∆tk − τ) ṽ (tk−1 + τ) dτ∫∆tk

0
ṽ (tk−1 + τ) dτ∫∆tk

0
(∆tk − τ) v̆ (tk−1 + τ) dτ∫∆tk

0
v̆ (tk−1 + τ) dτ

 , (4.20)

but fortunately it needs not to be computed explicitly since it is zero-mean and

can therefore be discarded for the prediction.

The covariance matrix evolves to

V̂k = FkVk−1Fk +


∆t3k

3 0
∆t2k

2 0

0
∆t3k

3 0
∆t2k

2
∆t2k

2 0 ∆tk 0

0
∆t2k

2 0 ∆tk

 q̃ (4.21)
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with the so called power spectral density q̃ as a constant factor. The second sum-

mand of equation 4.21 constitutes the covariance E
[
vk−1v

′
k−1

]
of the process

noise based on the covariances of the acceleration noises with q̃ = q̆. This ad-

ditive covariance grows exponentially with ∆t because it models the increasing

uncertainty in the position over time, when no evidence is given.

As already mentioned in section 4.3, the prediction step could be adapted

for other, also non-linear motion models with e.g. the unscented transformation

of UKF to compute the predicted Gaussian state x̂k given the previous one

(c.f. �gure 4.6).

4.6.2 Association step

Associations are sampled according to the likelihood Pr
(
Jk|x̂ik, zk

)
which is

based on consistency of motion and identity.

We model associations

Jk : {1, . . . , Nzk} → {0, 1, . . . , Nt} (4.22)

as function from the Nzk measurement indices of the current sweep at time k

to their assigned target index or 0 if not assigned. We denote

=k : {0, 1, . . . , Nt} → ℘ ({1, . . . , Nzk}) = (Jk)
−1 (4.23)

as the inverse mapping from target indices to their assigned observations for

convenience.

Independent measurement likelihoods

Direct sampling of a total association Jk is di�cult, since the enumeration of

every possible association Jk is infeasible because the number is exponential

in the number of measurements (there are (Nt + 1)
Nzk possible associations).

If we look at an individual association for a measurement zk,l ∈ zk, we can

enumerate all Nt+1 possible individual assignments easily as zk,l can be clutter

viz. a false alarm or assigned to one of the targets. The probability of an

association factors to individual associations assuming conditional independence

of individual associations given predicted state and measurements

Pr (Jk|x̂k, zk) =

Nzk∏
l=1

Pr (Jk(l)|x̂k, zk,l) . (4.24)

Based on Bayes' rule, the independence of associations Jk(l) and predicted

positions x̂k, the probability for an individual assignment can be converted to

Pr (Jk(l) = j|x̂k, zk) =
p (zk,l|x̂k, Jk(l) = j) Pr (Jk(l) = j)∑Nt

j=0 p (zk|x̂k, Jk(l) = j) Pr (Jk(l) = j)
. (4.25)
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Identi�cation

The probability of an individual association of measurement l and target j is

denoted by Pr (Jk(l) = j). It refers to the likelihood of l being identi�ed as a

measurement of j. The di�erent player identi�cation modules (c.f. section 2.2)

are assumed to identify the measurements independently or rather to provide

independent probability distributions for the identities. According to the total

probability theorem 2.12, the probability of an association is given by summing

the probabilities gathered by all di�erent identi�cation sources s as

Pr (Jk(l) = j) =
∑
s

Pr (Jk(l) = j|s) Pr(s). (4.26)

If we assume Pr(s) to be constant for all sources s, Pr(s) inserted in equa-

tion 4.25 cancels such that the likelihood of an individual association including

the sensor fusion of di�erent identity information sources s reads as

Pr (Jk(l) = j|x̂k, zk) =
p (zk,l|x̂k, Jk(l) = j)

∑
s Pr (Jk(l) = j|s)∑Nt

j=0 p (zk,l|x̂k, Jk(l) = j)
∑
s Pr (Jk(l) = j|s)

. (4.27)

Player assignment

The probability for a data association between player j and an observation

l according to the kinematic model is independent of the predicted positions

of the other players. Measurements and a priori states are connected by the

measurement model of equation 2.8. Since predicted state and measurement

are Gaussian and the measurement model is assumed to be linear Gaussian, the

pdf of a measurement given its assigned position can be computed analytically

as

p
(
zk,l|x̂ik, Jk(l) = j

)
= N

(
zk,l;Hk,lm̂

i
k,j , Hk,lV̂

i
k,jHk,l

′ +Rk,l

)
(4.28)

with measurement model Hk,l =

(
1 0 0 0

0 1 0 0

)
and Rk,l as measurement

noise covariance of zk,l.

The right side of equation 4.28 turns out to be the likelihood function of

the Kalman �lter (c.f. [13]) used in one way or the other by all Kalman �lter

based multi-target tracking approaches for data association. The measurements

zk,l of equation 4.28 only provide information about the position and not the

velocity because we process frames which are discretized in time. To include

measurements of the velocity, Hk,l would be formed by the identity matrix.

Although the likelihood of an association for a single measurement and a

single target is stated in equation 4.28 for linear Gaussian measurement models,

its calculation scales to the non-linear case easily. In that case, position z̆k,l and
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hk

hk(0) + h′k(0)

mz

x

(a) First order Taylor approximation (EKF) [118]

hk

mz

x

(b) Unscented Transformation (UKF) [121]

Figure 4.6: The most common approaches to propagate a Gaussian pdf by a

nonlinear function. Depicted is the one-dimensional case propagating from the

z-axis to the x-axis by the nonlinear function hk (images are adapted from [89]).

covariance R̆k,l of the measurement l result from the non-linear projection of the

original observations into the two- or four-dimensional target state space. This

can be achieved by applying the known measurement model hk to the positions

and covariances as proposed by one of the methods which extend the Kalman

�lter to the non-linear case. The two most common approaches EKF and UKF

are depicted in �gure 4.6.

Since our measurement model is given by the homography from image to

playing �eld coordinates with distortion and this transformation is non-linear,

we use the Unscented Transformation because it is fast and robust and �[i]t is

founded on the intuition that it is easier to approximate a Gaussian distribution

than it is to approximate an arbitrary nonlinear function or transformation� (see

Julier and Uhlmann [121]). The following sigma points s are transformed by

the nonlinear function:

s0 = z̆k,l W0 = κ
Nz̆k,l

+κ ,

si =
(
z̆k,l +

(
Nz̆k,l

+ κ
)
R̆k,l

)
i

Wi = 1
2(Nz̆k,l

+κ) and

si+Nz̆k,l
=
(
z̆k,l −

(
Nz̆k,l

+ κ
)
R̆k,l

)
i

Wi+Nz̆k,l
= 1

2(Nz̆k,l
+κ) ,

(4.29)

where we follow Julier and Uhlmann and set κ = 3 − Nz̆k,l
because the mea-

surements are assumed to be Gaussian. These sigma points are transformed by

the non-linear measurement function hk

s̊i = hk (si) . (4.30)



CHAPTER 4. MULTI-TARGET TRACKING 67

The transformed mean which is inserted into equation 4.28 is computed as

zk,l =

2Nz̆k,l∑
i=0

Wis̊i (4.31)

with covariance

Rk,l =

2Nz̆k,l∑
i=0

Wi (̊si − zk,l) (̊si − zk,l)′ . (4.32)

Clutter

Measurements are assigned to no target with probability p (Jk(l) = 0|x̂k, zk) as-

suming they were generated as clutter. If no informative clutter model for the

localization module is known, a uniform distribution over the total measure-

ment space with volume Z, which is independent from the predicted state and

measurement position, can be taken

p (Jk(l) = 0|x̂k, zk) ≈ |Z|−1. (4.33)

Despite the fact that this uniform clutter model usually deviates from the truth,

since the probability for a false measurement increases around the real target

positions, it gives more or less good results.

The clutter likelihood p (Jk(l) = 0|zk) functions as a soft gating: because of

the normalization in equation 4.25 and the exponential decrease of target associ-

ation probabilities of equation 4.28 on the distance, it decreases the probability

for far targets to be sampled.

Modeling of multiple measurements

As can be seen from the de�nition of associations in equation 4.22, we assume

the same weak exclusion principle like the PMHT: multiple measurements can

be assigned to one player, but a measurement is exclusively assigned to a single

target. The number of multiple measurements inside a single sweep that are

associated with a single target is usually bounded. This restriction can be

modeled in di�erent ways dependent on the sensor characteristics.

Prior to the sampling of associations for particle i, the maximal number of

associations N̄ i
k,j ≥ |=k(j)| for each target j is drawn according to a model

which constrains the multiplicity of the associations. We prefer to sample the

maximal number instead of the actual one, contrary to what is usually done.

The typical approach of drawing the actual number directly cannot be easily

achieved correctly in a sequential process, because it causes several problems in

respect to the data association induced. The number of associations cannot be

sampled in isolation from each target because the total number of associations
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must match the number of available measurements
∑Nt

j=0 |=k(j)| = Nzk , but

also the number of measurements in the vicinity of the target j should have

an in�uence on the actually sampled number. This forms a complex pdf from

which one cannot sample directly given a uniform distribution which is mostly

the only distribution provided by common random generators.

In the following, we propose a sequential sampling scheme excluding targets

from being assigned multiple times during the sampling process. Let Aik denote

the set of all targets that can be assigned to an additional measurement of the

current sweep. This set is assigned to all targets initially for each particle Aik =

{1, . . . , Nt}. If a target j was drawn to be associated according to equation 4.27,

it is excluded from further associations according to the proposal probability

q (j /∈ A) = 1− Prj (n = |=k(j)|)
1−

∑|=k(j)|−1
k=0 Prj (n = k)

(4.34)

where Prj (n = k) denotes the probability that target j is assigned to exactly k

measurements. After each exclusion, the association proposal density of equa-

tion 4.27 for the following measurements of the current sweep is normalized,

omitting the removed target in the denominator

Pr (Jk(l) = j|x̂k, zk) =
p (zk,l|x̂k, Jk(l) = j)

∑
s Pr (Jk(l) = j|s) δj,A∑Nt

j=0 p (zk,l|x̂k, Jk(l) = j)
∑
s Pr (Jk(l) = j|s) δj,A

(4.35)

with δj,A =

{
1 if j ∈ A
0 if j /∈ A

.

Several plausible models can be regarded to constrain the number of asso-

ciations per target. The Kronecker delta function constitutes a model for a

maximum threshold

Pr (n = k) = δ (k −max) =

{
1 if k = max

0 if k 6= max
. (4.36)

If the exclusion principle of JPDAF holds, i.e. targets can be assigned to one

measurement at max, a maximum threshold model with max = 1 should be

used. For an unconstrained number of associations per target, the threshold is

set to a high number max→∞. Alternatively, the Poisson distribution

Pr (n = k) = e−λ
λk

k!
(4.37)

is frequently suggested for this task. If one wants to di�erentiate the proba-

bilities of one detection at all (pd) and multiple measurements, the following

function can be used

Pr (n = k) =

{
1− pd if k = 0

pdp
k−1
sd (1− psd) if k > 0

, (4.38)
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where psd adjusts the probability for multiple associations by a binomial distri-

bution. In general, an arbitrary probability distribution de�ned on N0 can be

chosen as a model for the number of associations Pr (n = k) (except δ (k − 0),

which makes no sense anyway).

Because the model distribution must be evaluated on integer numbers only

and these numbers are bounded below

min

(
|Z|, minimal k such that

k∑
i=0

Pr (n = k) = 1

)
,

a look-up table for the exclusion probabilities can be precomputed and used for

computational e�ciency.

Unfortunately, the set A is updated sequentially, violating the independence

assumption of the individual associations in equation 4.24. If the number of

associations per target is constrained, the order in which the individual associ-

ations are drawn in�uences the sampling probability. To reduce the impact of

violating the independence assumption on the importance density, the ordering

of the measurements of one sweep is shu�ed uniformly at random preliminary

to each individual association step if multiplicity is constrained.

Sampling

Taken together, we sample a total association J ik by sequentially sampling an

individual association J ik(l) for each of the Nz measurements according to the

proposal probability of equation 4.35. This is achieved by drawing a number

uk,l uniformly at random in (0, 1) and taking the minimal j such that

uk,l ∼ U (0, 1) ≤
j∑
i=0

Pr (Jk(l) = i|x̂k, zk) . (4.39)

The individual associations J ik(l) are combined to form the total association J ik
afterwards.

4.6.3 Fusion step

Given the sampled association J ik, the predicted player positions x̂k must be

fused with the assigned observations optimally in the sense of minimal variance

to result in samples for the current state

xik = arg max
x

p
(
x|J ik, x̂ik, zk

)
. (4.40)
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The Kalman update was shown to be an optimal solution for this problem [13],

and it can be applied individually for each player j as

mi
k,j = m̂i

k,j + V̂ ik,jH
′
k,=i

k(j)

(
Hk,=i

k(j)V̂
i
k,jH

′
k,=i

k(j) +Rk,=i
k(j)

)−1

× (4.41)

×
(
zk,=i

k(j) −Hk,=i
k(j)m̂

i
k,j

)
,

with Hk,=i
k(j) denoting the linear measurement model (4.28) as stacked matrix

of Hk,l, zk,=i
k(j) as stacked vector of zk,l and Rk,=i

k(j) as diagonal matrix of

measurement covariances Rk,l for all l ∈ =k (j). The covariances are updated

as

V ik,j =

((
V̂ ik,j

)−1

+H ′k,=i
k(j)

(
Rk,=i

k(j)

)−1

Hk,=i
k(j)

)−1

. (4.42)

4.7 Filtering Step

After the sampling of new particle states according to the important density

of equation 4.14, the weights for these particles must be set appropriately by

equation 4.7. We assume that the sampled association J ik, which led to xik, con-

stitutes the only reasonable association given the sample and the measurements,

therefore p
(
J ik|xik, zk

)
= 1, and equation 4.7 can be rewritten as

wik ∼ wik−1

p
(
zk|xik, J ik

)
p
(
J ik|xik

)
p
(
xik|xik−1

)
q
(
xik|xik−1, zk

) . (4.43)

The posterior pdf of each target is conditionally independent given J ik and we

can factorise the numerator such that

wik ∼ wik−1

p
(
J ik|xik

)∏Nt

j=1 p
(
zk,=i

k(j)|xik,j , J ik
)
p
(
xik,j |xik−1,j

)
q
(
xik|xik−1, zk

) . (4.44)

The likelihood of the association J ik given x
i
k is determined by the constraints

on the multiplicity of assignments only

p
(
J ik|xik

)
=

Nt∏
j=0

Pr
j

(
n = |=ik(j)|

)
(4.45)

assuming the independence of each target and clutter.

The prior p
(
xik,j |xik−1,j

)
can be evaluated based on the predicted state x̂ik

via the likelihood function as

p
(
xik,j |xik−1,j

)
= N

(
mi
k,j ; m̂

i
k,j , V

i
k,j + V̂ ik,j

)
. (4.46)

The measurement likelihood can be calculated in an analogue way (c.f. equa-

tion 4.28) as

p
(
zk,=i

k(j)|xik, Jk
)

= N
(
zk,=i

k(j);Hk,=i
k(j)m

i
k,j , Hk,=i

k(j)V
i
k,jH

i,′
k,=i

k(j)
+Rk,=i

k(j)

)λ
(4.47)
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with λ = 1
|=i

k(j)| and zk,=i
k(j), Hk,=i

k(j) as well as Rk,=i
k(j) de�ned in the same way

as for equation 4.41. The exponent λ for the likelihood function is due to the

compensation of di�erent dimensionalities of zk,=i
k(j) for di�erent associations

J ik.

4.8 Implementational Remarks

This section speci�es issues that should be considered when the proposed track-

ing algorithm is implemented as a computer program. Several improvements

have been used to enhance the performance of the RBRPF method.

4.8.1 Memoization and smart resampling

Since p
(
x̂ik|xik−1

)
is conditionally independent given the state xik−1, the predic-

tion step can be executed once for all Ni replicates of the previous particle xik−1

that have been resampled according to equation 4.12. The importance density

which was used for sampling the associations (c.f. section 4.6.2) is stored and

reutilized for �ltering in equation 4.44. These memoizations save computation

time and improve the e�ciency of the proposed RBRPF.

To save computational time in future iterations of the RBRPF, the Ni sam-

pled, discrete associations J ik are checked for equality and particles with identical

associations are joined to a single particle. The state of this particle is trivially

set to the state of the combined particles, while its importance weight is com-

puted as the number of the combined particles times the weight of one of these

particles. This is done before the fusion step 4.6.3 to avoid redundant computa-

tions. The number of clutter measurements should be compared �rst to detect

if two associations di�er, to avoid unnecessary comparisons.

4.8.2 Parallelization

The proposed algorithm is well suited for parallelization because all particles

can be independently sampled and �ltered. The individual associations can

be drawn in parallel if the multiplicity of associations for a single target is

unconstrained; otherwise an appropriate partition of the measurements is pre-

supposed.

4.8.3 log-space and restricted codomain

Because the likelihoods can be very small, all probabilities are computed in log-

space to avoid numerical problems. Because the probabilities must be added
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frequently for normalization (especially in equation 4.25), we propose a fast

version for summing two numbers that are given in log-space

log
(
ea + eb

)
=

{
a+ log

(
1 + eb−a

)
if a > b

b+ log
(
1 + ea−b

)
if a ≤ b

(4.48)

This saves the computation of one power operation by an extra of one compari-

son, two additions and a subtraction and reveals an average saving of 20% time

for this operation. We also use a fast version of log based on look-up tables

which needs also 20% less computation time than the standard operation.

Due to constraints inherent in the domain, we bound the position and veloc-

ities of all players to reasonable values so that players are assumed to be located

inside the playing �eld and velocities cannot exceed the speed of a 100 m world

class runner (10ms ); the covariances are bound accordingly.

4.8.4 Final estimate

The �nal estimate which serves as output of the method should be selected as

the particle with maximum probability. Although it is common to choose the

weighted mean of all or clustered subsets of the particles, the inherent multi-

modality in the design of the proposed method based on the sampling of associa-

tions would lead to the so called ghost phenomenon. The ghost phenomenon [31]

refers to the appearance of a ghost target at the mean of the di�erent modes of

the distribution, where the target is known not to be for sure. Induced by mem-

oization and the smart resampling procedures, the particles already represent

clusters somehow.

4.8.5 Negative information

Up to now, we have described how to exploit all available evidence given by

spatial measurements. On the other hand, the absence of observations carries

information as well. This type of information is called negative information

and has been exploited for tracking already. For example, Patterson et al. [186]

utilized it in tracking based on GPS:

�In particular, most buildings and certain outdoor regions are GPS

dead-zones. If signal is lost when entering such an area, and then

remains lost for a signi�cant period of time while the GPS device

is active, then one can strengthen the probability that the user has

not left the dead-zone area.�

We take advantage of negative information (especially for tracking in broad-

casted videos) in two ways.
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Its �rst usage is based on the assumption that players are occluded only

for a fairly short time due to interactions. If a player is thus not assigned to

measurements obtained by a certain camera over a reasonably long period of

time, the probability that this player is outside the visible area of this camera

rises. If the probability exceeds a prede�ned threshold, the player is pushed to

the closest point outside of the polygon which describes the visible area and

its velocity is set to zero. Since the time a player is not detected also depends

on the quality of vision-based segmentation, we utilize this kind of negative

information very conservatively with a high probability threshold.

Secondly, if a player has left the visible area of a camera for a reasonable

time, he is assumed to remain outside the visible area if no measurements suggest

otherwise. Such players are repeatedly pushed to the closest point outside of the

observed area until they can be assigned to measurements again. This approach

is especially useful for panning cameras that do not capture the total playing

�eld as is the case in broadcasted soccer games.

4.8.6 Runtime analysis

We give a rough worst case complexity analysis of the RBRPF algorithm, which

is depicted in �gure 4.5. One iteration of the algorithm needs in the worst case

O (NtNpcp +Np (NzNtca + (Nt +Nz) cf + (Nt +Nz) cw) +Npcn) (4.49)

steps with

cp constant steps for the prediction of a single target,

ca constant steps for the computation of the likelihood function for a single

measurement and a single target (for association sampling),

cf constant steps for the fusion of a single target with a single measurement,

cw constant steps for the computation of the likelihood function for a single

measurement and a single target (for �ltering) and

cn constant steps for normalization of a single weight.

The RBRPF algorithm is linear in the number of particles, measurements and

targets (or players respectively) because the runtime complexity can be written

as

O (NpNtNz) . (4.50)

For this reason, it constitutes a well scalable multi-target tracking method.
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4.9 Demarcation to State-of-the-art

Our RBRPF approach shares most characteristics with other recent Rao-Black-

wellized multi-target tracking methods as there are the RBPF by Särkkä, Vehtari

and Lampinen [213] and the RBMCMCDA method by Khan, Balch and Dellaert

[135]. Contrary to RBRPF, JPDAF and MHT are exponential in the number

of measurements and targets and can be used for real-time tracking only if a

rather low number of measurements per time-step or small gating thresholds

are considered. The following section describes the similarities and di�erences

between the proposed RBRPF and RBPF as well as RBMCMCDA.

4.9.1 RBPF

The Rao-Blackwellized Particle Filter (RBPF) [213], which extends the Rao-

Blackwellized Monte Carlo Data Association (RBMCDA) method [212], ap-

plies a SIR particle �lter to track multiple target positions. The �lter is Rao-

Blackwellized by tracking associations instead, assuming that individual data

associations provide a su�cient model for the positions. They process one mea-

surement at a time, instead of processing measurement sweeps at once as we

do. Their importance density p
(
ck|z1:k, c

i
k−1

)
(with association ck ≈ Jk(l)) for

individual associations is analogue to equation 4.25. The target states are de-

duced analytically from the sampled association, similar to our fusion step in

section 4.6.3 but with a single measurement only. Constraints on the multiplic-

ity of associations for one target are modeled in a di�erent way, namely by a

mth order Markov chain on single associations. Since the importance density as

well as the weight update di�ers from ours, the likelihood of the measurements

given the sampled single association and the prior of the target is used instead

of equation 4.44. They apply adaptive resampling triggered by the e�ective

number of the particles.

RBMCDA su�ers from a theoretical drawback. The authors describe the

RBMCDA process in [212]:

�Measurements are processed one at a time in sequential fashion in-

stead of parallel fashion. The sequential and parallel update schemes

are mathematically equivalent�.

This statement is deceptive since sequential and parallel update schemes are

equivalent but sequential and parallel processing are not. The sampling in a

parallel fashion is independent of the ordering of the measurement sequence in

contrast to the sequential one. We will proof this fact by showing a simple

counterexample.
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Figure 4.7: Example depicting the relevance of the order of intermediate fusions

for the sampling probabilities. The fused Gaussian pdf of t with a followed by

b is equivalent to the fusion of (t, b) with a, so the Gaussian curves of (t, a, b)

and (t, b, a) coincide. However, the probabilities that these associations have

been sampled di�er greatly, as can be seen from the discrepancy of the bars at

the mean of each estimate, which depict the probability for that estimate to be

sampled with the corresponding probability value displayed on the right in an

exp-scale.

The example is one-dimensional for convenience and contains just one target

t ∼ N (x; 0, 0.3) and two measurements a ∼ N (x;−1, 0.25) and b ∼ N (x; 2, 0.25)

of a single sweep for simplicity. The clutter probability P (J(a) = 0) = P (J(b) =

0) = 1.25 · 10−6 was set comparatively low. Figure 4.7 shows the state distri-

butions for the target t, the measurements and the di�erent intermediate fused

estimates with labels beneath the modes of each distribution. One can see that

the fused pdf of t and a followed by b is equivalent to the fusion of (t, b) with

a (the Gaussian curves of (t, a, b) and (t, b, a) coincide). But the probabilities

that these associations have been sampled di�er greatly. One can imagine that

a target Gaussian fused with a measurement with very low uncertainty is rarely

associated with another measurement afterwards. In the �gure, a bar at the

mean of each estimate depicts the probability for that estimate to be sampled

with the corresponding probability value displayed on the right in an exp-scale.

Fusing immediately after the association, the association of the target with both

measurements is signi�cantly more unlikely to be sampled if the measurement

sequence is a followed by b, (P ((t, a, b)) = 0.025) than sampling associations of
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the measurement sequence in the reverse order (P ((t, b, a)) = 0.789):

P ((t, a, b)) = P ((t, a, b) | (t, a)) = P (a|t)P (b| (t, a))

6= P (b|t)P (a| (t, b)) = P ((t, b, a) | (t, b)) = P ((t, b, a))
(4.51)

Associating all measurements �rst and then fusing the assigned measurements

with the corresponding targets at once (as done in our RBRPF approach) results

in the same target posteriors sampled with the (correct) probability indepen-

dently of the association sequence.

P ((t, a, b)) = P ((t, a))P ((t, b)) = P (a|t)P (b|t)
= P (b|t)P (a|t) = P ((t, b))P ((t, a)) = P ((t, b, a))

(4.52)

The dependence on the ordering of the measurement sequence is even more

severe if the targets are constrained to be assigned to a single measurement

at max. The RBPF approach behaves almost deterministically in some cases,

omitting likely associations with a high probability. Imagine two targets t1 and

t2 and two measurements a, b on a straight line with the same covariances, where

the measurements a, b have the same distance as t1, t2 and t1 is placed in the

midst of a and b. Figure 4.8 depicts this scenario. If we assume no clutter

and the strong exclusion principle of PMHT, the RBPF method would assign

J(a) = t1, J(b) = t2 with the same probability as J(a) = t2, J(b) = t1 if the

sequence is b followed by a while these associations are obviously not equally

likely.

a t1 b t2

Figure 4.8: Thought experiment showing a pitfall for RBPF which samples the

highly probable association of measurements a and b (depicted in green) to

targets t1 and t2 with the same frequency as the second but unlikely association

(depicted in red).

In our approach, shu�ing the order of all measurements of a sweep prevents

this pitfall, resulting in a much higher probability of J(a) = t1, J(b) = t2.

This solution is not applicable for the RBPF approach due to its design as one

measurement at a time, where only a single order can be chosen (even if this is

done at random). One could argue that the order of measurements is random

by nature, but this does not hold for most of the applications, since the order of

measurements is predetermined by the sensor. For instance in computer vision,

measurements are read typically top-down from left to right.
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4.9.2 RBMCMCDA

The Rao-Blackwellized Markov Chain Monte Carlo Data Association approach

[135] uses an Auxiliary Variable Sampling particle �lter in which a separate

Markov Chain is run for each of the Rao-Blackwellized particles. The same

Rao-Blackwellization scheme is applied as in our approach, so a single state

is formed by the combined Gaussians of each target. Also, their importance

sampling focusing on optimally fused states is similar to equation 4.14.

On the other hand, there are many di�erences. Instead of separate Kalman

updates, the optimal samples for a given association are found by solving a lin-

ear least squares problem with updating and downdating for e�ciency (which

results in the same solution). The di�erent associations are visited during the

Markov Chain, which is constructed following the Metropolis Hastings (MH)

algorithm, which samples proposals with an acceptance ratio according to the

likelihood ratio of the proposed state versus the current one. The di�erent kinds

of proposals are 1) the auxiliary variable proposal, which jumps between the par-

ticles and the di�erent Markov Chains respectively, and 2) the edge proposal,

which adds or removes an individual association, producing a new clutter or a

newly assigned measurement. All types of associations are permitted, including

merged measurements which are assigned to several targets. No constraints on

the multiplicity of associations for a single target can be modeled, but these

restrictions could possibly be integrated into the likelihood term of the assigned

measurement proposal. Additionally, the authors claim that multiple associa-

tions are penalized automatically due to higher deviance of the measurements to

their assigned target, which in turn results in a lower likelihood. Measurement

gating is used as a heuristic to reduce the selection of possible associations. In-

teractions are modeled explicitly by common covariances of interacting targets.

However, two targets are assumed to be independent if their distance exceeds

a prede�ned threshold. The Markov Chains are initialized by nearest neighbor

association and run for a prede�ned burn-in period (4, 000 steps in their case)

for mixing the chain, ensuring independence from the initial association.

The computational demand of the Markov Chain burn-in period restricts

the RBMCMCDA to a small number of particles (one or six in their case) for

real-time tracking. Thus, only a weak multimodality of the posterior can be

tracked e�ciently, in contrast to our approach. Their design of interactions

by interfering covariances of the targets' states seems odd, since typically the

motions of interacting targets are not aligned. At least this assumption does

not hold for interacting athletes of di�erent teams in sports, if the attacker

intentionally tries to avoid the defending opponent. Since RBMCMCDA is

heavily based on sequential Markov chain sampling, it is hard to be parallelized,
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although an approach has been published recently [18]. We will experimentally

compare the RBMCMCDA approach with ours in the next section.

4.10 Evaluation

We conducted three experiments for the proposed Rao-Blackwellized Resam-

pling Particle Filter. The �rst experiment was a simulation demanding the

ability to handle a large number of measurements as well as targets. The sec-

ond experiment was taken from the sports domain where positions of basketball

players were observed by laser range �nders without any identity information.

The third one called for tracking ants and was selected for the purpose of com-

parison with the RBMCMCDA method [135].

4.10.1 Simulation

To investigate the ability of the proposed method of tracking a high number of

targets with multiple measurements through clutter, we adopted a simulation

similar to the one described in [107]. Hundred targets are initialized to positions,

which are uniformly distributed in [−2000; 2000]2, and velocities drawn from the

distribution N
(
0; 102

)
. The targets are tracked for 100 measurement sweeps

with the time between measurement sweeps set to 1. Measurements are taken of

the true targets' positions, while each position measurement has an independent

error which is distributed according to N
(
0; 202

)
. The number of measurements

generated by one single target is Poisson distributed with λ = 3. Clutter is

drawn according to a Poisson with λc = 100, uniformly distributed over the

whole tracking areaM = [−4000; 4000]2. The last point in time of an exemplary

simulation is shown in �gure 4.9.

We initialized our tracker with the true target positions and zero velocity; the

uncertainty in the target state was set to 100.0I4. The power spectral density

of the process noise was set to q̃ = 1.0. We used Nmax = 50 particles to track

the hundred targets.

Assignment Single only Multiple

Failures 37.01 8.21

Time(ms) 473.5 561.1

Table 4.1: Tracking results for the simulation experiment.

We counted tracking as a failure if the tracked target position di�ered by

more than 100.0 from the true target position at the last point in time. We
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Figure 4.9: Tracking of hundred simulated targets which generate multiple mea-

surements in clutter.

tracked the targets in a �rst run assuming single assignments only and the

second run assumed the correct Poisson distribution. Table 4.10.1 depicts the

mean number of failures during 100 simulation runs. Failed tracking is mostly

due to very close initial target positions getting swapped or misled by clutter

at the beginning. One can see the higher robustness due to the incorporation

of more measurements and hence more information. Figure 4.10 graphs the

median distance of the tracked targets to their true position with 0.25 and 0.75

quantiles for a single simulation run tracking with multiple measurements. This

error remained within the measurement generation distribution N
(
0; 202

)
as

desired.

The original simulation of [107] generated 400 tracks without clutter. Unfor-

tunately, Horridge and Maskell [107] did not provide tracking errors but compu-

tation time only. We also conducted the same experiment, but tracking seemed

futile since the measurement density was very high, as well as accompanied by
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Figure 4.10: Median distance of the tracked targets to their true position for a

single simulation run tracking 100 targets with multiple measurements in clutter.

a high uncertainty of each measurement, so arbitrary traces could be supported

by observations resulting in low tracking performance.

4.10.2 Basketball

At the Georgia Tech BORG Lab, Balch, Dellaert and Starner are investigating

algorithms for automatically tracking and modeling the behavior of multi-agent

systems. The Laser Tracking Project also conducted an experiment that tracked

a 4-on-4 basketball game over 22 minutes with eight players. Measurements were

gathered using four SICK LMS291 laser range �nders. �Each of these laser range

�nders scans, in half degree increments, an arc of 180 degrees, out to a range of

up to 80 meters.� (see [75]). The basketball court is covered by placing the laser

range �nders in the center of each surrounding vertex. Sometimes, players leave

the observed area to get the ball from outside and can therefore not be observed
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in that period of time. Occlusions are a big problem since laser scanners cannot

perceive agents that are blocked by other agents or stationary objects. One

of the lasers was knocked over at around 18 minutes after the beginning of the

game. After the laser was reset for the rest of game, it was noticeably unaligned.

Some hard scenes of the evaluated basketball game are depicted in �gure 4.11.

The laser data are published on http://www.kinetrack.org.

Feldman et al. [74, 75] applied clustering to these data to form trajectories

of a variable number of targets. They planned to include identity information

by RFID tags worn by each athlete. However, the authors did not track the

identities since RFID measurements turned out to be unsuited for this task [10].

The ratio of the correctly detected number of targets was used to measure the

performance of their approach.

We used a video of the background-subtracted laser data for the evaluation of

RBRPF. The video contains 22 minutes or 81774 frames recorded with 37.5 Hz.

Measurements were extracted by color thresholding. Around 1000 measurement

points were detected in a single frame of size 400 × 576 pixels, yielding about

100 measurements per target. Since no identity hints are available, the tracking

is exclusively based on the motion (model) of the targets.

Due to the lack of ground truth provided, we gathered these data ourselves by

manually marking the players in each video frame image with the mouse pointer.

We thereby encountered situations in which a target left the �eld of view for

several frames and re-entered the scene at a di�erent position. Since these

cases violated our assumption of total visibility, failures are reported without

the 49 failures that were due to re-entrances. Failures have been counted if the

estimated position di�ered from the ground truth at least 30 pixels in Euclidean

distance.

We set the parameters as follows: Nmax = 50 particles, a very low clutter

probability of p (Jk(l) = 0|zk) = 1.0 × 10−11 due to the characteristics of the

laser range �nders, λ = 100 as an expected number of measurements per target

for the Poisson constraint, q̃ = 0.1 as growing factor for uncertainty and vmax =

20, both deduced from frame rate and typical human velocity thresholds; the

measurement covariance matrix was de�ned as Vz = I due to the high accuracy

of the laser scans. Computation times were measured on a 2.5 GHz Quad-Core

PC.

We encountered 1234 failures for the whole video, which equals a rate of

98.49% correctly tracked frames. The average time to process a single frame

was 81.8ms and therefore not real-time. To cope with this de�ciency, we down-

sampled the images by halving width and height and tracked the video again

with an adapted parameter λ = 37. This procedure decreased the computa-

tional demand to an average time of 22.5ms or a frame rate of 44fps, which

http://www.kinetrack.org
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(a) Misaligned laser (b) Tracked

(c) Occlusion (d) Tracked

Figure 4.11: The laser data provide challenging scenes for every multi-target

tracking method due to the inaccurate motion model in combination with the

lack of separability of the players inherent in laser range data.

therefore provides a real-time tracking system for these data, because they were

recorded with 37.5fps. The linear runtime complexity of the RBRPF is at-

tested to empirically since the runtime was quartered according to quartering
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the measurements. Happily, the failures also decreased slightly to 1209 failures,

resulting in a correct tracking rate of 98.52%.

The failures which arose were primarily due to the inaccurate motion model

in combination with the lack of separability of the players. In addition, the

misalignment of one laser about one �fth of the time disturbed the tracking

process by adding additional noise.

4.10.3 Ants

In [135] Khan et al. tested their proposed RBMCMCDA tracker on a challenging

ground truth sequence of twenty ants in a small container. The image data and

ground truth are available online at http://www.kinetrack.org.

Figure 4.12: Tracking twenty visually similar ants through 10,400 frames with

frequent interactions. Traces of the ants are shown as orange lines.

The ants that were to be tracked to gain insights in social behavior of in-

sects are about 1 cm long and move as quickly as 3 cm per second, frequently

interacting with up to �ve or more ants in close proximity. The test sequence

presents a substantial challenge for any multi-target tracking algorithm and was

selected for comparison purpose. One frame of the sequence is depicted in �g-

ure 4.12. The sequence consists of 10,400 frames recorded at a resolution of

720× 480 pixels at 30 Hz. We used the same simple thresholding procedure of

the blurred and downsampled video as [135] to obtain the measurements. The

original images were blurred and downsampled twice to obtain an image that

http://www.kinetrack.org
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was 180× 120 pixels. Pixels with the following YUV ranges were considered as

detections: 1 < Y < 75, 122 < U < 128, and 128 < V < 135. The x, y locations

on the smaller images were then scaled up to the original 720× 480 image.

We used the same parameters as given in [135]. Target motion was modeled

using a constant velocity model with time step ∆t = 0.033 and q̃ = 32. The

initial covariance was set to V0 = 32I4N and the measurement noise was set to

R = 32I4N . All positions and covariances are speci�ed in pixels. We evaluated

the proposed RBRPF with the same number of particles to provide a maximum

of accordance to the experiment of Khan et al. Failures are counted when an

estimated target position deviates from the ground truth position by more than

60 pixels. After a failure, all of the targets are reset to ground truth position

and tracking is resumed.
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Figure 4.13: Average distance of tracked ants to groundtruth. The red vertical

lines depict failures of the tracking process.

The number of failures detected on the ground truth sequence for the RBM-

CMCDA tracker with di�erent numbers of particles and our tracker are shown

in table 4.2. Results are also listed for a delayed version of our algorithm, which

returns the estimated positions after a delay δ. The positions are taken from
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Algorithm Failures Runtime

RBMCMCDA [135] N = 1 24 23.03± 0.87 fps @ P4-M 3Ghz

RBMCMCDA [135] N = 6 21 8.75± 0.55 fps @ P4-M 3Ghz

RBRPF Nmax = 6 19 8.38± 1.5 fps @ P4-M 1.6GHz

40.68± 1.0fps @ Dual Core 2.5GHz

RBRPF Nmax = 6 13 8.38± 1.5 fps @ P4-M 1.6GHz

with delay δ = 4 40.76± 1.0fps @ DualCore 2.5GHz

Table 4.2: Experimental results for tracking ants through 10,400 frames.

the precedent particle of the current estimate. This method reduced the fail-

ure because it takes more information into account. The results in table 4.2

show the supremacy of our approach in accuracy, although the failure rate of

both approaches is so low (99.77% correct tracking!) that this di�erence is not

essential for the application.

We measured the runtime by the average frame rate in frames per second

(fps) including image processing time. With current standard hardware, our

method is able to track the twenty ants faster than real-time (40 fps) and with

low failure rate. The delay reduces the number of failures even further while

maintaining the frame rate at 40 fps. Our algorithm exhibits higher quality in

tracking than the state-of-the-art tracker of [135]. This performance is achieved

twice as fast, as the same time is needed for tracking but on a CPU with half

the GHz (unfortunately, we had not the same processor on hand).

Contrary to [135], we do not allow merged measurements because these result

mostly from the target in front occluding the target in back and may mislead

the tracker. We restricted the number of detections of one target by a Poisson

distribution, yielding less (possibly wrong) associations. Speed-up is achieved

because we directly sample the associations instead of running a Markov chain,

allowing a better constriction to necessary computations by memoization with-

out the need for uninformative burn-in steps. The average distance over all ants

is depicted in �g. 4.13. Analogous distance graphs have been published for the

RBMCMCDA approach in [135]. The distance for tracking without delay obvi-

ously di�ers only minimally to the ones with delay, because both approaches use

Kalman �lters to predict and update target states. The mean for the average

tracking error, at 3.16 pixels, is very low regarding the systematic error caused

by downsampling to one fourth of the original resolution.

We also conducted experiments on a second ant dataset of [135] in which ants

move on two glass layers. Khan et al. provide 16 image sequences. These video

clips have been preprocessed in the same way as above to extract measurements

but with di�erent thresholds for the YUV ranges (39 < Y < 101, 116 < U <
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125, and 128 < V < 136). The RBMCMCDA approach could track 12 of the 16

demanding sequences successfully with parameters ∆t = 0.1, V0 = 32I4N , q̃ = 4

and R = 150I4N but failed on sequences 5, 8, 12 and 14. Our approach could also

handle 12 of the 16 sequences using the multiplicity constraint of equation 4.38

with psd = 0.14 but failed on 3, 8, 12 and 16 instead. With psd = 0.4, our

method also tracked through sequence 16 successfully. All sequences include

longer partial or full occlusions or sudden changes in direction and velocity,

which makes it di�cult for every tracker, assuming a constant velocity model.

On an average, about 40 fps could be achieved on the Core 2 Duo with 2.5 GHz,

emphasizing the real-time capability of RBRPF.

4.11 Conclusions

In this chapter we have proposed the Rao-Blackwellized Resampling Particle Fil-

ter as a novel approach for probabilistic real-time multi-target tracking, solving

the problem of building consistent estimates of trajectories from noisy, clut-

tered measurements. RBRPF constitutes a Rao-Blackwellized SIR particle �l-

ter where importance sampling is solved partially in an analytic manner and

partially by drawing associations based on predictions and measurements. We

explicated the theoretical foundations and assumptions of the proposed algo-

rithm in detail, justifying our decisions based on the characteristics of sports

videos and mathematical conclusiveness. The approach is designed to track mul-

tiple targets of similar appearance, which is a challenge for every multi-target

method. RBRPF is suitable for real-time performance, thanks to the linear run-

time complexity which is due to Rao-Blackwellization, memoization and smart

resampling. Constraints on the multiplicity of single target associations can be

stated in a natural (mathematical) way and are integrated seamlessly, while the

method � in contrast to others � is independent on the order of the measurement

sequence of one sweep. We demarcated our approach against the state-of-the-art

both from a theoretical and an empirical perspective, as it outperforms current

multi-target tracking methods. The performance of RBRPF was evaluated on

several demanding applications, proving its e�ectiveness and real-time capabil-

ity.



Chapter 5

Position-based Identi�cation

A typical game in team sports consists of structured and intentional motions

of players who can be dichotomized in two teams. Because the motions of a

team are synchronized and every player is allocated a speci�c role, the spatial

positions can provide evidence about the identities of the corresponding players.

The computational problem considered here is identi�cation based on positions.

It is illustrated in �gure 5.1. We distinguish between initialization without a-

priori knowledge and re-identi�cation during the game. The tactical line-up is

often the only information about identities that is available beforehand, and it

o�ers a potential source for initializing the tracking module. During the game,

plenty of estimated spatial data labeled with identi�ers are made available as

the main tracking output. Models of the players can be learned for the purpose

of re-identi�cation, exploiting these positions as training data. We assume that

� together with the spatial information � their team a�liation is known as

well. This information can be extracted from the video frames by appearance

as described in section 6.2. At kick-o� time, the positions themselves reveal

their team a�liation, because the rules of the game typically permit all players

of the same team to stay within their half of the �eld.

After a review of related work, we will discuss several methods for automatic

initialization based on the tactical line-up. Further, we will investigate identi�-

cation methods based on incrementally learned models of player positions. The

di�erent approaches are evaluated using real soccer games. The focus of this

chapter is the exploitation of spatial data solely for the purpose of identi�cation,

while chapter 8 presents a discussion about tactic analysis in general, which sees

models of positions themselves as one main subject of interest.

87
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Figure 5.1: This chapter investigates the computational problem of assigning

identi�ers to plain positions which are already tagged with their team a�liation.

5.1 Related Work

Despite the advanced research in tracking methods, not much analysis of snap-

shots of athlete positions has as yet been done.

Visser et al. [250] classify formations in simulated RoboCup games. The

bounding box of all players of one team is discretized into a grid and binary

indicators are fed as input vectors to an Arti�cial Neural Network for training.

Ramos and Ayanegui [199] build topological structures of player positions based

on triangular planar graphs. Despite the fact that both approaches aim at

detecting formations instead of identifying players, they have the potential to

be expanded for that purpose.

Identi�cation methods based on spatial data have been published in disser-

tations only. Needham [179] trains a Gaussian Mixture Model (GMM) for each

player based on simulated data for 5-on-5 soccer. Identi�cation is achieved by

a graph algorithm. A fully-connected graph between the unknown players and

the identities is generated, where the vertices are weighted by the probabilities

based on the GMMs. Multilevel recursive bisection is applied to this associa-

tion graph to extract valid and unambiguous labeling with approximate optimal

probability. Vector Quantization was also applied on position and velocity data

to model behavior as states of graphical models like HMMs, but �initial ex-
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periments have shown that [they did] not have enough data to do this� [179].

Altruistic Vector Quantization (AVQ) was proposed by Johnson [120] of the

same group to learn behavior models, but the approach has been evaluated on

trajectories of pedestrians only. Intille proposes consistent player labeling in

[115] based on logical rules (Horn clauses). A blackboard technique is used to

infer the consequences of the rules, which denote the assignment of locations

to identities. The inferred hypothesis for an association that covers the most

players is selected as the �nal one. The approach was evaluated on American

football with complex role models. However, the choice of the rules is essen-

tial for the algorithm and Intille states: �Encoding the rule sets is a laborious

process�. Further, he recommends a probabilistic framework: �Rules that softly

weight relative evidence � modeling some important dependencies between re-

lated rules and evidence � seems necessary to make the algorithm practical given

noisy trajectory data� [115].

5.2 Identi�cation based on Tactical Lineup

We propose a novel method for labeling player positions with identities based

on tactical line-up information. The method is suited not only for initialization

at kick-o�s but also for re-initialization after cuts in broadcasted video. The

comparison of estimated labels with real identities forms an interesting analyti-

cal tool for sports scientists and coaches on its own and provides a measurement

method for compliance of a team with the decreed line-up.

5.2.1 Tactical lineup

Besides manual submission, the tactical lineup can be gathered automatically

from the web or from the broadcasted video itself. Websites providing live

tickers of a game usually o�er visualization of the formations as well. Because

encoding is mostly based on HTML, the corresponding web page content needs

to be parsed to extract relative or absolute positions of the players of both

teams. Names and jersey numbers can often be captured from the same site. A

general approach for extraction is not possible, because web pages vary highly

in presentation and in code, but learning methods for easy parser generation

by marking the �elds of interest exist (e.g. [37]). Figure 5.2 depicts an example

for the presentation of the formations based on HTML tables taken from http:

//www.kicker.de.

Figure 5.3(b) shows an example for the broadcasted lineup for a single team.

Each broadcaster uses di�erent visualizations, one for each type of tournament

and season. Often semi-transparent overlays are used, which complicates the

http://www.kicker.de
http://www.kicker.de
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(a) Visualization.

...

<table style="background: ...;

width: 579px; height: 1050px; ..."

summary="Taktische Aufstellung">

<tbody>

<tr>

<td>

<div style="position: absolute;

width: 103px; left: 233px; top: 5px;

text-align: center;">

<img class="bild_s" style="width:

44px; height: 52px;" src="..." alt="">

<br>

<a class="link" href="...">Butt

(2)</a>

</div>

<div style="position: absolute;

width: 103px; left: 15px; top: 113px;

text-align: center;">

<img class="bild_s" style="width:

44px; height: 52px;" src="..." alt="">

<br>

<a class="link" href="...">Lucio

(3)</a>

</div>

<div style="position: absolute;

width: 103px; left: 179px; top: 113px;

text-align: center;">

...

(b) HTML code.

Figure 5.2: Example for a website (http://www.kicker.de) providing the tac-

tical lineup for a Bundesliga soccer game.

extraction task. The same methods used for other overlays can be applied to

extract player names (c.f. [98]) or numbers (c.f. [29, 273]). The real player

positions at the kicko� and their mean taken over the �rst halftime is shown in

�gure 5.3 for comparison.

5.2.2 Relative distance of associations

Assuming that positions of all players and their team a�liation is available, the

problem of labeling consists in assigning these positions to identi�ers, such that

the distance of the resulting association to the tactical lineup is minimal with

respect to a given distance measure. This measure should re�ect the similarity

http://www.kicker.de
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(a) Lineup from the web. (b) Lineup from tv.

(c) Real lineup at kicko�. (d) Average positions of �rst half.

Figure 5.3: Tactical lineups for the �nal game of the soccer world championships

2006.
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of the labeling to the real (but unknown) identities. To keep notation simple,

an association of elements between two ordered sets of positions is given by the

ordering of these sets; for instance, the �rst position of a set A is associated with

the �rst position of B. If a mapping of positions to player identities is known

for one of these sets as it is the case for the tactical lineup, the mapping can be

easily transferred to the other set.

The absolute positions gathered from formation images are neither very ac-

curate nor reliable, as information is carried mainly by the relative positioning

of the players to each other. Therefore, we propose the following symmetric

distance d(A,B) based on relative constraints for an ordered set of positions A

and B of same size |A| = |B| = Nt

d(A,B) =
∑

j=1,...,Nt

cj (A,B) (5.1)

with

cj (A,B) = αl (|{(x, y) ∈ A|y < yj}| − |{(x, y) ∈ B|y < yj}|) (5.2)

+ αr (|{(x, y) ∈ A|y > yj}| − |{(x, y) ∈ B|y > yj}|)

+ αf (|{(x, y) ∈ A|x < xj}| − |{(x, y) ∈ B|x < xj}|)

+ αb (|{(x, y) ∈ A|x > xj}| − |{(x, y) ∈ B|x > xj}|) .

The proposed distance measures the compliance with weighted relative con-

straints for each player j. The constraints compare the number of players rel-

ative to each other and are induced by the given formations A and B. There

are four di�erent constraints: to the left l, to the right r, in front of f and

behind b. For �exibility, the constraints are weighted by weights α describing

their rigidity. Note that the numbers of players in one direction and its oppo-

site are only bounded by the total number of players from above, but they do

not have to match it |{(x, y) ∈ A|y < yj}|+ |{(x, y) ∈ A|y > yj}| ≤ |A| − 1 and

|{(x, y) ∈ A|x < xj}|+ |{(x, y) ∈ A|x > xj}| ≤ |A| − 1.

5.2.3 Searching

The association problem can be solved by searching for the permutation of

the input positions with minimum distance to the ordered set induced by the

tactical lineup. The distance is computed according to the previous section.

For an exhaustive search, all 11! possible associations would have to be listed

and sorted. Since this is too costly, approximate gradient descent methods like

simulated annealing could be used; Russell and Norvig [211] give an introduc-

tion in directed search methods. Unfortunately, the branching factor for the

association search is fairly high
(

11
2

)
= 55, if the state space is traversed by
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swapping two individual associations. A good heuristic for selecting the most

promising assignments would be needed for acceptable runtime performance.

Additionally, gradient descent methods typically require a continuous (and ide-

ally convex) rating function for reasonable performance. Because this is not the

case, searching provided bad and unreliable results in preliminary experiments.

We thus abstained from further research in this direction and do not present

the results here.

5.2.4 Sorting

The choice of the relative distance measure of section 5.2.2 permits computa-

tion of the association by sorting the positions with subsequent deterministic

labeling. The formation is usually given in the form of lines as goalie, defense

line, defensive mid�elder, o�ensive mid�elder and striker. We exploit this struc-

ture by sorting the positions by their x-coordinate �rst, partitioning the list by

taking the number of players building each line and sorting these subvectors by

their y-coordinates. A one-to-one mapping of position indices to identities is

computed by tracing the identities of the positions of the given tactical line-up,

which have been processed in the same way beforehand. This mapping is used

for the �nal labeling of the unassigned positions. The lineup of France at the �-

nal of the FIFA world championships 2006 as depicted in �gure 5.3 would result

in the labeling according to �gure 5.4.

<x <y <y <y <x <y <x <y <y <x

1 2 3 4 5 6 7 8 9 10 11

4 5 8 3 10 1 6 7 11 2 9

4 8 3 10 5 6 1 2 11 7 9

16 3 5 15 19 6 4 7 10 22 12

Figure 5.4: Hierarchical sorting of input positions (at the top row) down to

association with the tactical lineup (at the bottom row), where the IDs are

taken from �gure 5.3 and lines are boxed.

Another approach consists in sorting the positions primarily according to

their y-coordinates and ordering them by their x-coordinates if the distance

between the y values is below a given threshold θXY . The association procedure
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remains the same as for the other sorting approach.

5.2.5 Graph matching

We can transform the association problem to the problem of �nding a min-

weight bipartite graph matching of input positions A to the positions induced

by the tactical lineup B. This is advantageous because fast algorithms for the

graph matching already exist. The transformation is de�ned such that the

matching provides the solution of the minimization problem which is imposed

by the distance measure between B and any permutations of A.

We review the necessary terminology of graph theory in a nutshell: a weigh-

ted graph G = (V,E,w) is called complete bipartite, if there exists a partition

of nodes V = A ∪ B with A ∩ B = ∅ and edges E = A × B with weights

w : A×B → N0. A matching is a subset of edges M ⊂ E, such that every node

is connected with at most one other node ∀v ∈ V.| {u|(u, v) ∈M} | ≤ 1. The

size of a matching is written as |M |, denoting the number of edges in M . A

Maximum Matching is a matching Mmax with the maximum number of edges

such that ∀M.|M | ≤ |Mmax| (which is not an unique property). A matching

is called perfect, if every vertex is connected once ∀u ∈ V.∃v ∈ V.(u, v) ∈
M ∨ (v, u) ∈ M . The weight of the matching M is the sum of the weights of

edges in M , w(M) =
∑

(x,y)∈M w(x, y). Within the context of matchings, a

path is called alternating, if its edges alternate between M and E \ M . An

alternating path is called augmenting, if both endpoints of the path are not

connected in M (also called free). A complete bipartite graph and a perfect

matching is exempli�ed in �gure 5.5.

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11
w
1,3

Figure 5.5: A maximum matching (depicted in green) of the complete bipartite

graph (depicted in gray).

The Hungarian method proposed by Kuhn [145] solves the problem of �nding

a max-weight maximum matching in polynomial time O
(
|V |3

)
by reducing it to

a search for a feasible vertex labeling l and a perfect matching M in its equality

subgraph Gl. A vertex labeling is a function l : V → N0 and is called feasible

if the combined labels always exceed the true weights ∀(x, y) ∈ E.l(x) + l(y) ≥
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w(x, y). The equality graph Gl = (V,El) of a vertex labeling l contains all

edges, where the labeling matches the true weights, or stated formally

El = {(x, y)|x ∈ V ∧ y ∈ V ∧ l(x) + l(y) = w(x, y)} .

The algorithm is depicted in �gure 5.6. It starts with a feasible labeling

l, which is divided into lx and ly by domains X,Y , and a matching M in El
(step 1). As long as the matching is not perfect (step 2), an augmenting path for

M in El is searched (step 9&10). Therefore, an augmenting tree (represented by

S and T with edges from Gl), initialized with an unmatched vertex (step 3&4),

is repeatedly expanded by adding alternating edges of El (step 11). If the tree

forms an augmenting path, the matching M is set to the �ipped augmented

path (step 14), since this path contains one edge more than the augmenting

path itself; in the next step a new augmenting tree will be created. If no

augmenting path exists and the tree cannot be expanded (step 5), l is improved

to l′ such that El ⊂ El′ (step 6-8). Since either the size of M or El is increased

in every iteration, the process must �nally terminate. The complexity is reduced

to O(|V |3) by using bu�ering slacks slackj = mini∈S (l(x) + l(y)− w(x, y)) (for

step 5).

To compute the min-weight maximummatching with the Hungarian method,

the weights have to be inverted (and shifted to be non-negative) as

w(x, y) = max
k,l

(w′(k, l))− w′(x, y). (5.3)

There are also modi�ed versions of the Hungarian method, which �nd a

speci�c number of best associations. Cox and Miller [54] proposed a method for

�nding the k-best assignments in polynomial time that is linear in k.

For the purpose of assigning input positions based on the tactical line-up, the

weights are initialized with the di�erence of the relative constraints for position i,

which was extracted from the input, to position j, which was deduced from the

tactical lineup

w′(i, j) = cj(À, B) with À = (1 2 3 4 5 6 7 8 9 10 11)
i
A. (5.4)

The equation utilizes the repeated application of the permutation cycle which is

denoted by (1 2 3 4 5 6 7 8 9 10 11) for the correct mathematical notation. As the

sum of these weights and therewith the individual constraints are minimized by

the min-weight maximum matching, the distance between the tactical lineup

B and the input positions A, which were reordered according to the resulting

matching, is minimal as well.
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HungarianMethod({wxy ∈ N0}x=1..N
y=1..N):

1. Init M = ∅, lxx = maxy (wxy) , lyy = 0

2. WHILE |M | < N

3. Select r ∈ {x|∀y.(x, y) /∈M}

4. Init augmenting tree rooted in r: S = {r} , T = ∅

5. IF
⋃
x∈S {y|lxx + lyy = wx,y} = T

6. a = minx∈S,y/∈T (lxx + lyy − wxy)

7. lxx = lxx − a ∀x ∈ S

8. lyy = lyy + a ∀y ∈ T

9. Select y ∈ {y|y /∈ T ∧ x ∈ S ∧ lxx + lyy = wxy}

10. IF ∃z.(z, y) ∈M

11. S = S ∪ {z} , T = T ∪ {y}

12. Goto step 5

13. ELSE

14. M = inverted augmenting path starting from y in M

15. Goto step 2

16. return M

Figure 5.6: The Hungarian method �nds the max-weight maximum matching

for a given bipartite graph, which was generated as a transformation of the

assignment problem.

5.3 Identi�cation based on Previous Positions

The tracking system estimates the locations of all players at every frame. To

make use of these data, they have to be compressed in an adequate represen-

tation that is suited for the task of re-identi�cation. In contrast to dimension

reduction, the data have to be reduced in terms of their number.
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5.3.1 Modeling positions by their mean

The law of large numbers from probability theory states that the average of the

results running the same experiment a large number of times becomes closer to

the expected value as more trials are performed. The experiment in our case

consists in drawing the position of each player from its distribution by localizing

it with the tracking system. We assume that the spatial distribution of each

player is the same for the whole game (despite its re�ection around the center

after each halftime). Although this assumption does not hold in practice because

athletes usually adapt their play to their competitors, it is a fairly reasonable

approximation.

The average position m1:l,j of player j is computed as the sample mean of

the positons of the most likely estimates provided by the tracking system up to

the past time l

m1:l,j =
1

l

l∑
k=1

m
arg maxi p(xi

k|z1:k)
k,j . (5.5)

An example for the average positions is depicted in �gure 5.3(d).

Taking the probability distribution of positions as unimodal, the Hungarian

method constitutes the method of choice for labeling the input such that the

overall distance from input to expected values is minimized. The weights of the

bipartite graph are thus given as

w(i, j) = ‖(xi, yi)−m1:l,j‖ . (5.6)

Alternatively, the pdf of the positions can be modeled by a normal distribu-

tion with the same mean but additional unbiased sample variance

V 1:l,j =
1

l − 1

l∑
k=1

(
arg max

i
p
(
xik|z1:k

)
−marg maxi p(xi

k|z1:k)
k,j

)2

. (5.7)

The weights for the Hungarian method are changed to the Mahalanobis distance

of each input position i to the learned Gaussian distribution j

w(i, j) ∼
√(

(xi, yi)
′ −m1:l,j

)′
V
−1

1:l,j

(
(xi, yi)

′ −m1:l,j

)
. (5.8)

In practice, these distances take small values and must thus be scaled, since

the Hungarian method requires the weights to be nonnegative integers. For

speed-up, we compute the squared Mahalanobis distance instead, omitting the

expensive square root operation, while still minimizing the same distance.

5.3.2 Learning vector quantization of player positions

The modeling of the players' spatial distribution by their expected value (mean)

has some shortcomings. Contrary as one might understand, the expected value
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of a distribution does not always coincide with the most probable one. Regard-

ing multimodal distributions, this even makes only the exceptional case. In this

section, we assume the spatial distribution of a single player to be multimodal.

Therefore, we apply vector quantization, which extracts multiple prototype vec-

tors intending to match the modes of the underlying distribution.

Related work

Di�erent methods for extracting the modes from training data have been pro-

posed (c.f. section 6.1.3). In this section, we will focus on arti�cial neural

networks which follow the competitive learning paradigm.

Growing Neural Gas (GNG) was introduced by Fritzke [82] as an incremental

and unsupervised neural network for vector quantization including a similarity

graph. The prototype vectors are represented as neurons with an attached

weight vector w. Starting with two neurons, GNG grows in regular time in-

tervals λ up to a maximum size θ. Connections between neurons are created

by topology preserving Competitive Hebbian Learning [171] and form the sim-

ilarity graph. Only the neuron that is closest to the input (also known as the

best matching unit and abbreviated BMU) and its direct topological neighbors

are updated towards each input signal leading to lower time complexity than

comparable approaches (e.g. Self-Organizing Maps [139] or Neural Gas [172]),

where the total network is updated. All used learning parameters of GNG are

constant and enable the handling of in�nite input streams. The complete al-

gorithm is depicted in �gure 5.7. The exponential decay of past values in the

update step favors samples from the recent past over initial values, depending

on the learning rates εb and εn. This behavior supports an adaption to (slowly)

changing distributions and is therefore well suited for approximating the spatial

distribution of the players.

GNG-U has been introduced as a variant of GNG for non-stationary data

distributions [83]; it deletes neurons according to their utility of approximating

the target distribution. This modi�cation allows estimating prototypes for fast

changing distributions. Kyan and Guan proposed Self-Organized Hierarchical

Variance Map (SOHVM) [146] as another incremental network. It showed bet-

ter accuracy than GNG because of the higher complexity (nodes include also

the sample covariance computed by incremental PCA). Unfortunately, SOHVM

lacks the capability of online processing due to declining parameters.

LateGNG

For the purpose of re-identi�cation, prototypes must be built for the probability

distribution of each player's location. Growing Neural Gas would constitute the
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GNG-Learn-PDF(p(x), εb, εn, γ, η, λ, θ):

1. time variable t = 1

2. initialize neuron set

K = {a, b}, ea = eb = 0, wa ∼ p(x), wb ∼ p(x)

3. initialize connection set E ⊆ K ×K = ∅

4. LOOP

5. Draw xt ∼ p(x)

6. find winner r = arg minn∈K ‖xt −wn‖2

7. find second winner s = arg minn∈K\{r} ‖xt −wn‖2

8. GNG-Update(xt, t, r, s, εb, εn, γ, η, λ, θ)

9. t = t+ 1

GNG-Update(x, t, r, s, εb, εn, γ, η, λ, θ):

1. increment error of r: er = er + ‖x−wn‖

2. connect r with s: E = E ∪ {(r, s)}

3. age(r,s) = 0

4. increment the age of all edges connected with r
age(r,n) = age(r,n) + 1 (∀n ∈ Nr \ {s})

5. remove old connections E = E \ {(a, b)|age(a,b) > γ}

6. delete all nodes with no connections

K = K \ {n|∀k ∈ K.(n, k) /∈ E ∧ (k, n) /∈ E}

7. update r and its direct topological neighbors Nr:
wr = wr + εb · (x−wr), wn = wn + εn · (x−wi) (∀n ∈ Nr)

8. IF t mod λ ≡ 0 ∧ |K| < θ

9. find neuron q with greatest error q = arg maxn∈K en

10. find neighbor f of q with f = arg maxn∈Nq
en

11. new node l:K = K ∪ {l}, wl = 1
2 (wq + wf ), el = δ · (ef + eq)

12. adapt connections E = (E \ {(q, f)}) ∪ {(q, n), (n, f)}

13. eq = (1− δ) · eq

14. ef = (1− δ) · ef

15. decrease all errors en = η · en (∀n ∈ K)

Figure 5.7: Growing Neural Gas (GNG) training algorithm for data pdf p(x).
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method of choice for this task. But if the GNG algorithm is applied continuously

to the positions in an online manner, one encounters the unwanted behavior of

overshooting the prototypes over their expected values. Decreasing the adap-

tion parameters εb and εn cannot solve the problem, since this phenomenon is

inherent to the GNG algorithm because the value of the current BMU is more

strongly in�uenced by more recently learned data.

To overcome this problem, we propose LateGNG as a variant of GNG, which

applies a delayed (or late) update of the weights. If the same neurons are re-

peatedly determined as best and second best matching units, the input vectors

are accumulated and the cumulative update is deferred until a di�erent neu-

ron pair is selected. The LateGNG algorithm is depicted in �gure 5.8. This

change successfully enables LateGNG to cope with uniformly continuous input

streams. Figure 5.9 illustrates the di�erent behavior of GNG and LateGNG

for a simulated signal. In contrast to GNG, the nodes of LateGNG are able to

approximate continuous distributions in a stable way. As an additional bene�t,

this variant also exhibits better runtime performance than the original GNG

since some computations are omitted if the same BMU is selected.

Identi�cation

LateGNG provides a neural network that can learn and classify arbitrary data

online. For the purpose of identi�cation based on individual positions, a single

LateGNG model is learned for each player based on the estimates of the tracking

system during the game. To retrieve an association for unknown positions, we

apply the Hungarian method to �nd an association that minimizes the distances

of the unlabeled positions xj to the corresponding best matching units of the

LateGNG models of each player i

w(i, j) = min
n∈Ki

‖xj −wn‖2 . (5.9)

To also model the dependencies between the player positions, we learned

the complete formations with LateGNG. A single formation is represented as

the stacked vector of player positions ordered by their identi�er. Because this

agglomerated information constitutes the training data, the network learns the

spatial interdependence of the team members as well. We expect this model

to capture more details of the players' positions compared to the other models,

which take only uncoupled player positions into account. The optimal associ-

ations with respect to each prototype formation are determined again by the

Hungarian method. However, the association corresponding to the overall min-

imum matching weight of all prototypes is taken as the �nal association.
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LateGNG-Learn(x, εb, εn, γ, η, λ, θ, λa):

1. IF |K| < 2

2. K = K ∪ {n} with wn = x

3. t = |K|, ta = 1,xacc = x, slast = rlast, rlast = n

4. ELSE

5. find winner r = arg minn∈K ‖x−wn‖2

6. find second winner s = arg minn∈K\{r} ‖x−wn‖2

7. IF r = rlast ∧ s = slast ∧ ta < λa

8. xacc = xacc + x

9. ta = ta + 1

10. ELSE

11. xacc = t−1
a xacc

12. IF ta = λa ∧ |K| < θ

13. Add new node l: K = K ∪ {l} with wl = xacc

14. add connections E = E ∪ {(rlast, l), (l, slast)}

15. ELSE

16. ε′b = 1− (1− εb)ta

17. ε′n = 1− (1− εn)
ta

18. GNG-Update(xacc, t, r, s, ε
′
b, ε
′
n, γ, η, λ, θ)

19. ta = 1, rlast = r, slast = s,xacc = x

20. t = t+ 1

Figure 5.8: Late Growing Neural Gas (LateGNG) is a variant of GNG that

handles uniformly continuous input streams.
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Figure 5.9: Comparison of GNG and LateGNG quantizing a one-dimensional

sinoidal signal. The graph depicts the values of the input and of each node of

GNG and LateGNG over time. Best matching units of GNG tend to follow the

signal and overshoot the right cluster center. LateGNG handles this problem by

delaying the update resulting in a stabilized behavior with better approximation

of the underlying data distribution.

5.3.3 Assigning and learning partial data

Since absolute spatial information is provided by models learned on previous

positions, they can be utilized for the assignment of partial data as well. Partial

data occur frequently if only a single camera is used to provide the total input

of the system, only capturing a fraction of the playing �eld. In this case, the

estimates of the positions of unseen players are also inaccurate; therefore the

quality of the models that are trained using these data is reduced as well.

The Hungarian method requires the same number of nodes in each part of

the bipartite graph. If the number of positions does not match the number
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of players, arti�cial nodes must be generated for the association graph to bal-

ance these numbers. The weights of edges starting at these arti�cial points are

initialized with the maximum weight such that the min-weight matching still

provides a solution to the original minimization problem. The assignment of

positions that exceed the targets by number can be handled analogously by

arti�cial nodes on the target side with zero weighted connections to all input

nodes.

One could also ask for the identi�ers of a subset of the players only, assuming

that the identities of the rest are known. This scenario occurs when an unknown

player comes into sight of the single camera that is capturing the game. This

single player must be initialized with an identi�er, while the other visible players

are already assigned. This problem can be solved in the case of independent

player models by applying the Hungarian method to the subset of unknown

players and remaining identities or models respectively. Obviously, solving this

minimization needs less computational time than the uninformed case. Special

care must be taken for models representing complete formations, because these

models cannot be reduced in their dimensionality. First, the model that �ts

the formation, which is induced by the known identities, best must be searched.

Given this model, the best association of the unknown players can be found in

the same way as in the case of independent player models.

If not all players are visible all the time, player models must provide the

possibility for learning from partial data. This limited visibility is given almost

permanently for broadcasted video. Because a simple motion model is a feasi-

ble approximation for the real movement of players only if restricted to short

time windows, the estimated locations for the unseen players become quickly

inaccurate and are therefore not suited for learning. Hence, higher order models

like formations are not quali�ed for this scenario, but the representations for

individual players like mean, Gaussian or GNG and LateGNG with multiple

prototypes can still be utilized, while only the models of players in sight are

updated.

5.3.4 Support of probability distributions

The methods proposed so far provide the single best association of the positions.

However, to make use of this information in the tracking process, a probability

distribution over identities is needed for each position (or measurement respec-

tively). Obviously, the Dirac function at the classi�ed association can be used

to form a proper pdf, but it is too restrictive for most cases. Although this pro-

cedure seems to provide the only choice for models based on relative distance,

alternative methods can be applied for absolute models.
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If the player models have been learned separately for each athlete, the prob-

abilities can be deduced directly from the normalized distances to these models.

In the case of vector quantization, only the distances to the corresponding best

matching unit are taken into account.

For complex models like complete formations, the distributions cannot be

achieved that easily because the associations are not independent of each other.

Instead, a Monte Carlo Markov Chain (abbreviated as MCMC) sampler based

on the Metropolis-Hastings algorithm must be applied to turn an arbitrary

distance metric into a probability distribution.

The MCMC algorithm is designed to sample from arbitrary distributions

that can be evaluated easily at given points, but which may not be known

in total. The method sequentially provides its internal state as a next sam-

ple. The state space is traversed pursuant to proposals that change this state

locally if accepted with an acceptance ratio α. The probability distribution

can be obtained by the reciprocal relative frequencies of the sampled states.

The Metropolis-Hastings algorithm is depicted in 5.10. A so called burn-in

phase, where the samples are excluded from frequency counting, is assumed to

be needed for the algorithm to be independent of the initial state. As a key

property of the MCMC method, the target pdf π must be known only up to a

normalizing factor and must be evaluated solely on sampled states, which avoids

the infeasible listing of the complete state space.

In our case, the complete formations are taken as state space and the re-

ciprocal distance to the given or learned model forms the un-normalized proba-

bility distribution. The proposals for the Metropolis-Hastings algorithm denote

changes in the ordering of the given positions or the swapping of single associ-

ations uniformly at random. The probability distribution for a single position

can be computed as the frequency of the assigned identities inside the sampled

sequence.

5.4 Evaluation

We evaluated the di�erent models on the spatial data of 21 games of the �rst

Bundesliga during the 2008/09 season played by the FC Bayern München team.

Prior to the evaluation of the proposed methods, we de�ne a performance mea-

sure to compare the algorithms and provide a worst case algorithm as the basis

of this comparison.



CHAPTER 5. POSITION-BASED IDENTIFICATION 105

Metropolis-Hastings(p(x), N,Nburn-in):

1. Draw x0 ∼ p(x) from prior density

2. FOR i = 1 : (N +Nburn-in)

3. Draw x′ ∼ q (x|xi−1)

4. Draw u ∼ U (0, 1) uniformly at random

5. α (x′, x) =

{
min

(
π(x′)q(x,x′)
π(x)q(x,x′) , 1

)
if π(x)q(x, x′) > 0

1 otherwise

6. IF u < α (x′, xi−1)

7. xi = x′

8. ELSE

9. xi = xi−1

10. return {xi}N+Nburn-in

i=Nburn-in

Figure 5.10: Metropolis-Hastings algorithm to sample from an arbitrary pdf.

5.4.1 Performance measure

We select the cumulative probability function Pr(x ≤ k) for the occurrence of

failures as performance measure. This measure provides the probability that

the algorithm in question results in less or equal than k failures on the average.

The higher this probability for smaller values of k the better the performance

of the algorithm, since it results in fewer failures on the average.

5.4.2 Random association as worst case algorithm

The algorithm, which assigns each position to a player randomly, provides the

theoretical lower bound for the identi�cation performance. Every algorithm

that performs worse than this random algorithm should be rejected. The per-

formance of the random method can be evaluated analytically by looking at

relative frequencies. The probability that a random association will result in

exactly k failures is given as the ratio of the number of associations with k

failures and the total number of associations. A single association can be repre-

sented by a speci�c ordering (or permutation) of the numbers in 1 . . . Nt with the

total number of players Nt. The total number of associations is thus Nt!. The

number of associations with exactly k failures can be evaluated as follows: we
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select k indices out of the NT indices that form the correct association and count

the number of permutations of this k-element set that leave no element �xed,

thus really resulting in exactly k failures. These derangements of length k are

given by the subfactorial of k written as !k (see [32, p. 118]). The subfactorial

!k can be computed recursively by !0 = 1, !1 = 0, !k = (k−1) (!(k − 1)+!(k − 2))

as proven by Euler [66] or can be evaluated as !k = k!
∑k
i=0

(−1)i

i! . Putting the

parts together, the cumulative probability for exactly k failures in a random

association is

Pr(x ≤ k) =

k∑
i=0

!i
(
n
i

)
n!

=

k∑
i=0

∑i
j=0

(−1)j

j!

(n− i)!
. (5.10)

5.4.3 Initialization performance

In this section, we investigate the ability of the di�erent non-learning approaches

to provide good initialization for the tracking module. We concentrate on iden-

tifying all players at kick-o�s by approaches based on the tactical lineup only.

Potential methods are 1) sorting by formation lines, which �rst sorts the posi-

tions longitudinally and afterwards, the partitioned lines laterally, 2) minimiz-

ing the relative distances by the Hungarian method and 3) sorting by position,

which sorts mainly on the y-coordinate but on the x-coordinate inside a given

threshold, which was set to θXY = 3.0 meters.

Figure 5.11 depicts the probabilities of having fewer than x failures for each

approach. Kick-o�s at the beginning of a halftime and an average of all kick-o�s,

including the ones during the games after a goal, are shown separately.

It turned out that methods which are based solely on relative spatial informa-

tion outperform the sorting approach that is based on absolute positions. This

method also has the disadvantage of demanding the threshold parameter θXY to

be set, while the optimal value in respect to performance varies for every game

and is hard to guess. Sorting by formation lines exhibited the best identi�cation

performance while providing a fast and easy-to-implement algorithm.

The performance of every approach exceeds the uninformed strategy of ran-

dom association by far. Despite this fact, one would expect a higher overall

identi�cation rate since the positioning of the players at kick-o� time should

match the tactical line-up. This assumption obviously does not hold: the play-

ers performing the kick-o� are so close to each other, as they typically never are,

and the wing mid�elders of the team with ball possession stand literally on the

midline � and therefore on the same y-coordinate as the strikers � to speedily

advance into the opponent's half after the opening whistle. Additionally, the

lineups extracted from broadcast or the web are inaccurate or even incorrect: A

4-4-2 diamond formation, also written as 4-1-2-1-2, is often displayed as an or-

dinary 4-4-2, which causes assignment errors in the center mid�eld. The lineup
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of the second halftime may also be di�erent from the �rst: besides substitu-

tions, red cards and the resulting reduction of the number of players on the �eld

causes a reorganization in play. Taking into account that we cannot make hard

assumptions on the accuracy of the input model, the proposed coarse methods

show fairly good performance.
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Figure 5.11: Mean failure rates of di�erent approaches for initialization based

on tactical lineups only. Visualized is the cumulative probability function which

evaluates the probability that the number of failures is less than or equal to x.

Higher values on the left state better performance.

5.4.4 Overall identi�cation performance

We evaluated the adequacy of all methods, this time also including the learned

models, for both halftimes of all 21 games separately for each team. In order

to give a comprehensive view of the performance, we show the mean, the best
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and the worst performances in �gures 5.13, 5.14 and 5.15, respectively. The

mean is taken as an average over all halftimes; best performance depicts the

single halftime, where the algorithm under inspection encountered the highest

probability of no failures. The halftime with the worst performance is selected

analogously. All learning models have been trained on the �rst 2000 frames

and evaluated for the rest of the game. Parameters for GNG have been set

empirically to εb = 0.05, εn = 0.005, θ = 30 δ = 0.1, η = 0.9, γ = 100, with the

additional parameter for LateGNG set to λa = 15.

As expected, all methods outperformed the random algorithm by far. The

learned models of formations by LateGNG showed the best performance of

all models throughout. This is not surprising since these models incorporate

the most information about the players' locations, including the dependencies

between them. The second best approach is sorting according to the lineup,

which had fairly robust results. Despite its simplicity and use of relative relations

only, it outperforms the other learning models clearly on the average. It is

noteworthy that LateGNG, when learning player positions, showed a very good

best performance compared to the others, but only medium quality on the

average. One can see that LateGNG outperforms GNG in all cases, which

emphasizes the e�ectiveness of our enhancement of the original algorithm.

The individual position models applying the Euclidean distance dominated

the Mahalanobis distance signi�cantly, which is astonishing since it is based

on less knowledge. We explain this behavior with sideward over�tting of the

Gaussian models: positions of the players are estimated badly and the variance

degenerates to a narrow ellipse in a speci�c direction, if the game started mostly

on one speci�c side. Figure 5.12 depicts an example of this situation.

The best classi�cation rate with zero failures in 40% of the time is promising,

but the average case is lower, at around 10%. This is due to the variability in

the play inherent to sports. Soccer teams try to change their tactics if they are

not successful, therefore increasing the problem of automatic re-identi�cation.

Substitutions and conjunct changes in the assignment of roles degrade the iden-

ti�cation rate � especially in second halves of the games. Sometimes the in-

terchange of players is part of a team's tactics, with the aim being to confuse

the opponent as well as any automatic identi�cation approach. The number of

wrong associations in our evaluation strongly depends on the conformity of the

play with either the tactical lineup or the play at the beginning of the game. If

the learning approaches are applied continuously, better results can be expected.
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Figure 5.12: Gaussians with 1-sigma contours for all players gathered from the

�rst 2000 frames of a second halftime of a single game. The covariances are very

narrow, resulting in bad performance for identi�cation.

5.4.5 Identi�cation performance during the game

This section investigates identi�cation performance with a focus on changes

from a temporal perspective. For the sake of clarity, only the performance of

the best algorithm (LateGNG learning formations) is shown in detail for the

halftime where this method performed best. The average number of failures

during a time window of 140 frames is depicted in �gure 5.16. Four di�erent

types of events are visualized as vertical lines of di�erent colors.

One can see clearly that the algorithm performs badly when corner kicks take

place. This is not surprising because the formation of the players in such scenar-

ios di�ers strongly from the normal play. Also, the identi�cation performance

is reduced during fouls or free kicks respectively.

The detection rate stays below four failures during the �rst ten thousand

frames. In the middle of this halftime, the play gets more aggressive, as seen by

the high number of fouls. As the behavior of the team changes, the identi�cation

method makes more failures. A low identi�cation rate can be seen as an indicator

for the change of play and could therefore also be used for analyzing tactics.

We will look at this idea in more detail in section 8.2.
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Figure 5.13: Mean failure rates of the di�erent approaches for all games. Vi-

sualized is the cumulative probability function, which evaluates the probability

that the number of failures is less than or equal to x. Higher values on the left

state better performance.

5.4.6 Identi�cation performance according to roles

The identi�cation performance is di�erent for each player role. For evaluation,

we selected two games played by FC Bayern München with an identical lineup.

The team played a 4-4-2 diamond formation, which is a common formation

in soccer today. 4-4-2 diamond denotes the formation of playing with four

defenders, a defensive and three o�ensive mid�elders and two forwards/strikers.

The classi�cation rate is enumerated for each player in the upper part of

table 5.1 for one game and in the lower part for the other game. One can

see that although the club played against di�erent teams, the identi�cation

rates are nearly the same. Besides the SortingXY strategy, all approaches show
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Player role F SL P LGNG GNG G SXY R

goalkeeper 98% 97% 96% 98% 98% 84% 96% 97%

left fullback 67% 53% 58% 65% 53% 51% 3% 55%

left center back 70% 56% 56% 70% 54% 42% 41% 50%

right center back 78% 67% 58% 77% 64% 41% 7% 55%

right fullback 81% 71% 66% 77% 64% 47% 14% 71%

defensive mid�elder 22% 33% 41% 30% 30% 34% 28% 34%

left mid�elder 64% 62% 50% 57% 52% 49% 12% 62%

central mid�elder 27% 42% 35% 33% 33% 29% 17% 45%

right mid�elder 52% 55% 56% 34% 37% 27% 27% 56%

left forward 30% 31% 30% 32% 23% 22% 32% 24%

right forward 36% 39% 37% 31% 39% 34% 49% 31%

Player role F SL P LGNG GNG G SXY R

goalkeeper 94% 94% 94% 94% 94% 88% 92% 94%

left fullback 79% 78% 68% 82% 65% 38% 35% 79%

left center back 79% 73% 65% 80% 59% 42% 37% 74%

right center back 83% 73% 67% 83% 57% 62% 31% 71%

right fullback 85% 77% 74% 81% 63% 64% 41% 77%

defensive mid�elder 45% 38% 33% 33% 51% 30% 31% 39%

left mid�elder 82% 66% 67% 79% 50% 22% 26% 67%

central mid�elder 39% 41% 30% 33% 22% 21% 32% 42%

right mid�elder 77% 63% 67% 77% 48% 38% 39% 66%

left forward 47% 18% 30% 47% 36% 32% 22% 15%

right forward 53% 24% 32% 51% 38% 16% 35% 21%

Table 5.1: Comparison of the di�erent approaches for each player role of a 4-4-2

diamond soccer formation during two games with the same lineup but di�erent

opponents. The approaches are abbreviated as follows: Formations2000 (F),

SortingLines (SL), Positions2000 (P), LateGNG2000 (LGNG), GNG2000 (GNG),

Gaussians2000 (G), SortingXY (SXY ), Relative distance (R).
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Figure 5.14: Failure rates of the di�erent approaches for the halftime in which

each algorithm performed best. Visualized is the cumulative probability func-

tion which evaluates the probability, that the number of failures is less than or

equal to x. Higher values on the left state better performance.

similar distributions, implicating a systematic error induced by play rather than

method.

The goalkeeper was identi�ed correctly throughout, because he is for the

most part allocated the most distinctive role. The defensive line also seems to

be more easily assignable. This is reasonable since defending roles are stricter

in terms of responsibility for a spatial area. The higher classi�cation rates for

the left and the right mid�elder can be explained by the same rationale. Low

identi�cation of the central mid�elders might be due to a less strict role or could

also be caused by their special additional roles as the taker of corners for the

o�ensive and the team captain for the defensive mid�elder respectively. The

lower rates of the forwards can be explained by the higher �exibility of their



CHAPTER 5. POSITION-BASED IDENTIFICATION 113

0 1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

P
r

(F
a
il
u
re
s
≤
x

)
Formations2000

SortingLines
Positions2000

LateGNG2000

GNG2000

Gaussians2000

SortingXY
Relative distance

Random

Figure 5.15: Failure rates of the di�erent approaches for the halftime, in which

the algorithm performed worst. Visualized is the cumulative probability func-

tion which evaluates the probability that the number of failures is less than or

equal to x. Higher values on the left state better performance.

roles and a more frequent mix-up between them.

5.4.7 Runtime requirements

All methods exhibit real-time performance. The di�erent runtimes for assigning

and learning the positions of a single frame and a single team are depicted in

table 5.2. Computational time was evaluated on an AMD 2.5GHz processor and

averaged over a complete halftime. One can see that LateGNG computes an

assignment twice as fast as GNG and learns four times faster than GNG. This

is due to the deferred update, which bundles computations and results in fewer

prototypes while increasing accuracy.
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Figure 5.16: Identi�cation rate of learned formations from a temporal perspec-

tive, also showing breaks of the game. The graph depicts the moving average of

the failures during a time window of 140 frames.

5.5 Conclusions

In this chapter, we proposed several innovative methods to re-identify players

based on spatial information only. The computational task is not trivial, since

spatial variability is inherent to tactics in sports. The tactical lineup extracted

from other information sources like the World Wide Web can be useful for ini-

tializing the multi-target tracking module. We applied two main approaches

to solve the identi�cation problem: special sorting for relative positions and

minimizing the di�erence of the total association to a prede�ned model accord-

ing to some distance measure. The minimization is solved using the Hungarian

method, after transforming the problem into a search for a min-max weight

graph matching. Di�erent distance measures for models with rising complexity
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Approach Assignment Learning

SortingXY 0.009ms -

SortingLines 0.009ms -

Relative distance (R) 0.049ms -

Positions2000 (P) 0.086ms 0.002ms

Gaussians2000 (G) 0.074ms 0.002ms

GNG2000 (GNG) 0.198ms 0.028ms

LateGNG2000 (LGNG) 0.105ms 0.007ms

Formations2000 (F) 0.100ms 0.029ms

Table 5.2: Runtime comparison of di�erent methods for identi�cation by posi-

tion. Times are given for a single frame and a single team and were evaluated

on a AMD 2.3GHz processor.

have been investigated. Inaccurate lineups motivated the use of learning ap-

proaches. These complex models are therefore learned online and incrementally

in real-time by aggregation or by the use of growing self-organizing networks.

We enhanced state-of-the-art Growing Neural Gas (GNG) towards continuous

(ordered) data and demonstrated the improvement of the resulting LateGNG

empirically.

Evaluation of real games revealed that most players could be identi�ed quite

well, while learned formation prototypes provided the best model for doing so.

In addition to formation learning, special sorting presents a competitive algo-

rithm that is very fast and easy to implement. According to our experiments,

this relative sorting method is preferable for initializing the tracker based on a

tactical lineup when no data could have been learned so far. Evaluation revealed

that corner as well as free kicks decrease identi�cation performance. Also, the

more defensive the player role, the more easily the player can be assigned.

Our scienti�c contributions consist in novel approaches for identifying players

using relative sorting based on the tactical lineup, by transforming the search

for the best association according to a given model to a search for the min-

max weight graph matching solved by the Hungarian method and by proposing

LateGNG as a novel extension of Growing Neural Gas towards an online vector

quantization method for continuous data.
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Chapter 6

Appearance-based

Identi�cation

Appearance denotes the characteristic outward aspect of a person. It is com-

posed of shape, which denotes the spatial extension, and texture, which rep-

resents the physical characteristics of the surface. In addition, the individual

change of these features over time can be subsumed under the concept. Standard

cameras capture solely two-dimensional projections of the appearance; these

appear as colored regions in the image and constitute the exploitable visual

information at a speci�c time. The computational task of this chapter is to ex-

tract the appropriate probability distributions for the assignment of identities

to single regions of a speci�c frame or frame sequence. The task is visualized in

�gure 6.1.

Player Pr
Zidane 15%
Henry 6%
. . . . . .

Figure 6.1: Potential player regions are labeled with the probability distribution
for their identity assignment.

While localization was merely based on shape, identi�cation relies heavily

on color and texture. Since images contain only partial views of the underlying

appearance, we propose building models for each player incrementally, hence
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agglomerating these data over time. In this chapter, we discuss di�erent models

of increasing complexity for identi�cation purposes, while attention is paid to

the real-time capabilities of the investigated methods.

6.1 Related Work

After a review of published work for identi�cation of athletes in sports videos,

the literature for identi�cation in general is surveyed according to the catego-

rization of Wang and Suter [257].

6.1.1 Face and jersey number recognition in sports

Re-identi�cation of players at a distance is based on recognition of exclusive fea-

tures like faces, jersey numbers or gait. Yang et al. [272] �nd a speci�c person

in broadcasted video by classifying the transcript and utilizing face detection.

Bertini et al. [29] identify soccer players in close-ups based on face, jersey number

and overlay recognition, where player names and faces are correlated automat-

ically by the system. They apply an Adaboost face detection; recognition is

achieved by matching SIFT descriptors. Jersey number recognition as well as

the interpretation of superimposed text captions is achieved by optical charac-

ter recognition (OCR) applied to maximally stable extremal regions. Faces are

learned given the extracted textual cues (name or jersey number) in a supervised

way. Although they report acceptable results, the problem of correlating these

close-ups with the player position is apparent for the systematic identi�cation

of tracked players.

Ye et al. [273] recognize jersey numbers on several types of sports video by

voting for the tracked number after a dozen frames using k-Nearest Neighbor

classi�cation. Andrade et al. [4] transform each frame into a picture tree as a

Region Adjacency graph (RAG) to track players for the purpose of extracting

their shirt numbers on broadcasted soccer videos.

The above-mentioned papers report good results for the identi�cation dur-

ing close-ups and selected scenes. Typical scenes of a recorded match, however,

provide material that is more di�cult to handle, because faces and jersey num-

bers occasionally occupy just a few pixels, are heavily contorted or only visible

for a short period of time. Exclusive features may not be found if the resolution

of a single player drops below a certain threshold and the total player region is

represented by only a limited number of pixels.
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6.1.2 Identi�cation of humans at a distance

We follow the framework of Wang and Suter in [257] to review the work on

re-identifying humans in image sequences at a distance. Therefore, the identi-

�cation process is composed of three basic steps: feature extraction, dimension

reduction and classi�cation. These steps are reviewed in more detail in the next

sections.

Feature extraction

An appearance is quali�ed by texture, shape and its change over time (named

as motion). Features represent speci�c aspects, agglomerations or abstractions

of the plain image regions that could be helpful to reveal the correct identity.

The selection of adequate features has a great impact on later identi�cation

performance.

Color supplies the �rst feature for re-identi�cation because this information

is directly encoded in the image. A color denotes characteristic wavelengths of

visual light. Many di�erent color spaces have been proposed for representation

until now (see [221] for an overview). Some general-purpose color models are

RGB, YUV and HSV, but also task-specialized ones as the adapted hybrid

color space [247] exist. Colors are represented mostly as three-dimensional byte

vectors with 256 distinct values per channel.

Shape seems to be an unsuited feature for the purpose of identi�cation as

shapes may be nearly identical at a distance, regardless of the corresponding

identity. It does, however, serve as prior information for other features. Shape

can be described as a connected and closed region inside the image or its con-

tour respectively. These regions are detected by splitting the foreground, which

could have been extracted aided by one of the various foreground segmenta-

tion methods mentioned in section 3.3, into several connected components by

repeated region growing [11]. Representations for shapes are manifold: they

range from basic binary masks, run-length encoded regions and skeletons [109]

to silhouettes which are also known as contour models. These contours are de-

scribed occasionally by polar coordinates, snakes, B-splines, projections onto the

bounding box [64], point distribution models or active shape models [53]. Wang

et al. provide a survey of the di�erent representations for shapes [255, 256], while

a more comprehensive overview, including recent work, is outlined by [176].

In the context of computer vision, texture refers to the distribution of colors

inside an area or a so-called pattern. It combines spatial and color-coordinated

information and is usually represented by histograms or bags of image patterns

(see f.i. [226]). Often, statistics are gathered only at special points like corners

or edges. SIFT [165] or SURF [21] are popular features for texture following
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that approach.

Time-varying appearances are modeled in two ways: on the one hand, a

model of shape variation is combined with a model of texture (or color) variation

as done by active appearance models [52] or, on the other hand, several speci�c

appearance regions are tracked forming a complex body model [198].

6.1.3 Dimension reduction

Because the features for appearance constitute a huge amount of data that

must be processed and classi�ed for every point in time, several dimension

reduction techniques have been applied to reduce the computational demand

of classi�cation.

Histogram analysis is a basic method that is frequently used to quantize a

high dimensional space. Histograms constitute relative or absolute frequencies

of the data that are matched to a selection of bins. A general way to de�ne these

bins is achieved by a uniform discretization of the data space. More sophisti-

cated methods for selecting appropriate bins are based on a distance measure.

The binning is called quantization and is often done via nearest neighbor classi�-

cation to prototype vectors. These vectors can be de�ned by a set of prede�ned

examples also called templates or determined in an unsupervised way. Clus-

ter analysis builds such representative positions in the high dimensional space

(which are called clusters) annotated with additional model parameters based

only on a training set. Clustering techniques state a wide research area in

unsupervised learning: hierarchical, agglomerative and iterative methods exist.

Vector quantization denotes a variant of clustering that assigns data to mutually

exclusive prototypes using the winner-take-all principle. A variety of methods

for vector quantization have been proposed as there are the Lloyd algorithm

(better known as k-Means clustering) [164], Gaussian Mixture Models (GMM)

extracted by Expectation Maximization (EM) [56], Self-organizing Maps (SOM)

[139] or Neural Gas (NG) [170] with its variant Growing Neural Gas (GNG) [82].

Other approaches try to directly extract an information preserving transfor-

mation of the training data to a lower dimensional space. Exponents of these

are the Principal Component Analysis (PCA) [243], Non-negative Matrix Fac-

torization (NMF) [148, 149], isometric feature mapping (ISOMAP) [237] and

Local Linear Embedding (LLE) [208] (with no intention to be exhaustive).

In addition, polar histograms [126] and histograms extracted at prede�ned

rectangular sub-regions [182, 89] encode texture with a reduced dimensionality

by also taking spatial information into account.
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6.1.4 Classi�cation

We refer to classi�cation as the automated mapping of dimensionally reduced

features extracted from a foreground region to player labels. Although most

methods in the area of supervised machine learning are suited for this task, the

need for online, real-time classi�cation eminently reduces the number of choices.

Hulten and Domingos [110] postulate an online data-mining system to provide

constant time and memory per incoming datum, single scan of data, availability

of a usable model at any time, equivalence to an ordinary data-mining algorithm,

and adaption of time-varying concepts, while preserving unchanging concepts.

In the �eld of image recognition, only nearest neighbor classi�cation as well as

decision trees have been applied to real-time online learning and classi�cation

until now.

The k nearest neighbor classi�cation (k-NN) approach determines the re-

sulting class by majority voting of the k closest labeled templates or examples

to the date in question. If k = 1, the k is omitted and the method is just called

nearest neighbor classi�cation. Odd ks usually outperforms even ones due to

voting without draws. Online learning is achieved by substituting or updating

templates during execution. The method is simple to implement but costly if

the number of templates and/or dimensions are high. The costs of �nding the

closest template can be softened by constructing e�cient search structures or

can be precluded by the use of e�ective dimension reduction as a preceding pre-

processing step. Kirstein et al. [137] applied k-NN to image prototypes acquired

by vector quantization of a visual hierarchical model for the purpose of online

object recognition in real-time.

Decision trees represent undirected acyclic graphs with simple conditions at

inner nodes and class labels at leaves (c.f. [211]). Classi�cation is done by top

down traversal beginning at the root, taking the decision for the left child if the

condition holds for the record in question and the right child otherwise; the class

label at the ultimately reached leaf provides the result. Decision trees provide

fast methods if they are balanced, because only a small number of decisions must

actually be evaluated to classify a record. A tree is constructed by recursively

selecting the conditions or features that are best suited for discriminating the

data for classi�cation based on entropy or the Gini measure. Typically, trees are

pruned based on statistics afterwards to reduce model size and avoid over�tting.

Several approaches building decision trees in an online manner have been

proposed in the literature. Incremental Decision Tree Induction (ITI) [245]

is based on e�cient restructuring of a given decision tree to incorporate the

new training examples as they arrive. The Very Fast Decision Tree algorithm

(VFDT) [85] builds upon the Hoe�ding tree algorithm. The split conditions are
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selected based on sub-sampling of a stationary data stream. The number of suf-

�cient examples is estimated by exploiting the Hoe�ding inequality to achieve

a probabilistic bound on the accuracy of the constructed tree. VFDT exhibits

higher accuracy than ITI, according to [85]. The Incremental On-Line Informa-

tion Network (IOLIN) [49, 48] incrementally updates an Information Network

(also called Info-fuzzy Network). This multi-layered network is constructed in

order to test the Mutual Information (MI) between the input and target at-

tributes. The operations for updating the network include checking the validity

of conditions, examining the replacement of the last layer and adding new layers

as necessary. IOLIN shows superior accuracy to VFDT, according to [49].

Song et al. [226] learned and applied decision and regression trees for classify-

ing image patches to identify soccer players. Regular non-incremental decision-

tree-learning algorithms were utilized to learn stubs from limited training data.

These stubs are constantly discarded and spawned according to their predic-

tion accuracy. The persistent forest that incorporates all these stubs forms the

incremental classi�cation model. Unfortunately, no insights concerning the run-

time of this approach are given in the paper [226], so the real-time criterion

remains questionable. Due to the intricacy inherent in player re-identi�cation,

this method has problems distinguishing players of the same team as stated

in [226]:

For the SCEPTRE [soccer] dataset, we discovered that when some

similar appearance players merged or split, our method might fail

due to the similar score map obtained by the classi�ers. Majority of

the failed tracking in this dataset was caused by this condition.

6.2 Identi�cation based on Color

There are typically �ve di�erent appearances in ball games: the dress of both

teams, both goalies and the referee. The o�cial FIFA rules [76] for soccer state:

The two teams must wear colours that distinguish them from each

other and also the referee and the assistant referees. Each goalkeeper

must wear colours that distinguish him from the other players, the

referee and the assistant referees.

These appearances refer mainly to the players' colors, which is the case in most

types of sports with opposing teams. Although individual players of the same

team wear the same colors, they may still di�er in hair and skin color or by the

footgear worn. Each video image is typically represented as a matrix of color

values, so the direct use of this information for the purpose of identi�cation is
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obvious. The colors at the player regions selected by the localization module

of section 3.5 are the feature which is investigated in this section. These colors

are quantized into histograms which constitute the individual player models

for subsequent identi�cation. We review quantization methods and histograms,

before our approach for identi�cation by color is explained in detail.

6.2.1 Color quantization

Because the number of three-dimensional color values inside a player region is

on the order of ten thousands, an e�ective and e�cient dimension reduction

technique is necessary to reduce this information. As an additional advantage,

this process enables the resulting model to be invariant against a�ne transfor-

mations and minor changes in lighting conditions. Color quantization is the

process of reducing a large set of colors to a small palette.

The popularity algorithm was invented in 1978 by Tom Boyle and Andy

Lippman for this task and published in [104]. The method simply selects the

k most frequent colors as the color palette. Octree quantization [91] is a fast

and fairly accurate algorithm that builds an octree data structure of the col-

ors. Octrees are undirected acyclic graphs, where every inner node has eight

children that are indexed by the bits of the three-dimensional color at the cor-

responding level. The leaves are labeled with the frequency of traversal; the

trees are pruned by repeatedly collapsing the sub-trees with the lowest frequen-

cies until the number of leaves is smaller than the given k. In 1997, Denis

Lee provided the DL3Quant algorithm as source code distribution only (it was

probably developed as part of IBM's QBIC system [80]): the algorithm applies

quantization on the upper two bits of each color band and reduces the result-

ing bins by repeatedly merging the two bins, which approximately induces the

minimum error compared to the other merges, until the desired grade of quan-

tization is achieved. Median cut [104] is a hierarchical clustering method that

splits the color space recursively into rectangular partitions at median planes.

Dekker proposed NeuQuant [55] as a competitive color quantization approach

based on Self-ordering Maps. The Lloyd algorithm (k-Means) [164] is widely

used for color quantization and iteratively moves k cluster centers in an ex-

pectation maximization manner until a stopping criterion (usually a threshold

on the movement of the clusters) is matched. Scheunders gives a comparison

of k-Means and competitive learning approaches (CL) applied to color image

quantization in [214]. Hautamäki surveys several color quantization algorithms

in his master thesis [103].
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6.2.2 Color histograms

Color histograms represent appearance by frequencies of matching the colors of

all pixels inside the region of interest to a vector of bins. Histograms are invari-

ant to a�ne transformations if they are normalized. Several distance measures

for histograms are surveyed and compared by Rubner et al. in [209]. According

to their results, the χ2 distance performed best for histograms with �xed bins;

the Manhattan distance (also known as L1-norm) showed good results as well.

For adaptive histograms with variable bin size or di�erent binning, the earth

mover's distance (EMD) [210] (which equals the Mallows distance [152]) per-

formed best and dominated the approaches for �xed bins in the case of small

number of bins. Similar to the edit distance for strings, EMD computes the min-

imal amount of �earth� that must be moved such that two histograms converge.

It can be applied to arbitrary distributions. Because the distance computation

includes solving a minimization problem, it is more costly by far than the other

distances. The fast version ÊMD [187] reduces the computational complexity

to empirical O(n2.3) by thresholding distances between the bins and simpli-

fying the minimization problem (The worst time complexity is O(n2U log(n))

assuming integral supply and demands that are bounded by U).

6.2.3 Identi�cation of individual players

The re-identi�cation of individual players is achieved as follows: an individual

reference histogram is initialized for each player and constantly updated. The

histogram of colors inside the region of an unknown player is compared to these

reference histograms according to a distance measure. Individual players are

classi�ed using the nearest neighbor algorithm by selecting the best-matching

label. In our case, the reciprocal normalized distances of the histogram in

question to the ones of the players provide a probability distribution for the

tracking process. Team a�liation states a reduced problem. It can be seen as a

rough identi�cation because it assigns equal probability to all members of the

classi�ed team and zero to the others.

The individual reference histogram of a speci�c player is �lled with colors

from the region that maximally overlaps with the expected bounding box above

the player's position. This box can be determined according to a rectangle with

typical extension of humans which is projected into the image at the current

position estimate provided by the tracking system. Contamination of the his-

tograms, which could be introduced by occlusions, is avoided by incorporating

regions only if they belong to a freestanding player and exhibit an area inside

the expected boundaries (c.f. section 3.5). The restrictions are not applied to

unlabeled regions which should be identi�ed only. The histograms are normal-



CHAPTER 6. APPEARANCE-BASED IDENTIFICATION 125

ized before distance computation to compensate for the di�erence in the number

of pixels used to build them. As Gengembre and Pérez remark for the soccer

domain in [90], �the initial reference histogram is common (the colors of the

team that can be introduced in a color based detector) but some di�erences

(e.g. hair color) [can be] learnt with [an] adaptation procedure�. In our case,

adaptation is achieved by incorporating new frequencies into the reference his-

tograms, when an additional region of the corresponding player is detected in

the current frame, and subsequent normalization.

Preliminary experiments have revealed that uniform spacing of the color

space requires at least 403 = 64000 bins to capture the di�erent colors of the

players, because these are � especially for players of the same team � very similar

to each other. Because of the high number of dimensions, the computation of

distances to all reference histograms becomes too slow for real-time processing.

Therefore, we employ color quantization to reduce the number of bins while pre-

serving the accuracy. A single sparse histogram, which contains the frequencies

of all colors of the �ltered foreground regions, is maintained during an initial

phase. After a su�cient number of regions has been extracted for each player,

dimension reduction is applied once to this initial histogram. All reference

histograms are then binned in the same way as the reduced initial histogram.

Because previously unseen players come into sight, the initial histogram is ex-

tended by their colors. After a su�cient amount of regions is included for each

of them, the initial histogram is quantized again and all reference histograms are

rebinned. This re-quantization process can also be started at regular intervals

to adapt the selection of bins to changes in illumination. Alternatively, a moni-

toring module can trigger this process when the distances between the reference

histograms and the region in question exceed a given limit. This monitoring

comes for free, since the distances are computed during the nearest neighbor

search or the probability estimation anyway.

Preliminary quantization allows the use of the χ2 distance. The χ2 distance

can be applied to histograms with �xed bins as suggested by the comparative

survey of [209]:

χ2 (H1, H2) =

n∑
i=1

(
H1(i)− H̄(k)

)2
H̄(k)

with H̄(k) =
H1(k) +H2(k)

2
. (6.1)

This distance is utilized for the nearest neighbor search or the estimation of

association likelihoods respectively.

We also evaluated the use of histograms with adaptive bins for each player.

These require a quantization step for each player region in question and the use

of the earth mover's distance for each identi�cation. Beside its unacceptable

computational expense ([209] restricted EMD to 32 bins not for nothing), the
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accuracy was even (slightly) worse than that achieved by the proposed method.

These results emphasize that the adaptive selection of the bins is more important

for the classi�cation rate than the use of the earth mover's metric.

The matching of color to its corresponding bin states the bottleneck of his-

togram initialization and update. We therefore use a sorted balanced binary tree

with bins attached to the nodes for fast selection of the bin corresponding to a

speci�c color. Because colors are three-dimensional, no unique one-dimensional

ordering between them exists. Hence, we interleave the bits of the three color

channels to provide a Morton ordering of the colors (c.f. [1]), which approximates

the spatial ordering in 3D by a space-�lling curve.

6.2.4 Evaluation

We compared di�erent color quantization methods, namely Median Cut, Octree

and DL3Quant, according to their in�uence on the resulting correct identi�ca-

tion rate. A set of 1500 �gure-centric images was automatically extracted from

videos of the world championship �nal 2006 that were captured by two panning,

tilting and zooming cameras. The videos constitute the clean feed for broad-

cast without cuts and overlays and the tactical zoom-out view (see section 7.3

for details). We split the image sets into a training set of 500 images and a

test set with the remaining 1000 images. Quantization and histogram creation

are based on the training set. Classi�cation of the test images was achieved

by nearest neighbor assignment. Due to automated extraction, the data also

contain misaligned images; even wrong labels appear.

Table 6.1 shows the classi�cation rates for three di�erent quantization meth-

ods applied to two player resolutions. The Octree quantization signi�cantly

outperformed the others in terms of speed, also exhibiting higher accuracy. The

di�erence in runtime, however, cannot be expected to be that much during on-

line processing, because quantization is applied rarely; in addition, fewer data

samples are typically used. The overall classi�cation rate is around 41% on the

average for players zoomed-in and 30% for the view at a distance. This rate in-

creases with the number of bins for the broadcasted view and is fairly constant

for the tactical view. Despite their clear supremacy over random assignment

with an expected classi�cation rate of 1
23 = 0.04, they are lower than typical

rates of image recognition tasks. This emphasizes once again the di�culty of

player identi�cation, as this task requires classifying non-rigid and highly dy-

namic objects of varying and small sizes that contain little structure and are

very similar in appearance.

Table 6.2 depicts the confusion matrix for classi�cation of players taken from

broadcasted view. The color histograms were quantized by the Octree method.
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Bins
Tactical zoom-out view Broadcasted view

Octree DL3 MedianCut Octree DL3 MedianCut

64
Class .309 .303 .297 .381 .311 .372

Time 7ms 580ms 7884ms 14ms 8103ms 8524ms

128
Class .305 .313 .273 .404 .359 .382

Time 7ms 581ms 8643ms 15ms 8123ms 9411ms

256
Class .301 .312 .234 .424 .369 .363

Time 7ms 575ms 9812ms 15ms 8046ms 10764ms

512
Class .312 .312 .307 .433 .359 .344

Time 7ms 559ms 11016ms 15ms 8079ms 11797ms

1024
Class .289 .287 .286 .436 .227 .335

Time 6ms 515ms 12190ms 15ms 7849ms 12802ms

Table 6.1: Comparison of di�erent color quantization methods for identi�cation

by color histograms. The table lists classi�cation rates and the computational

time needed for quantization.

Referee and goalkeepers are classi�ed almost perfectly, but mix-ups occur for

players on the same team. The reason for the misclassi�cation is obvious: the

players' appearance is simply too similar. The rare cases when players of di�er-

ent teams are confused may be due to motion blur, which smudges the colors,

or defective segmentation of the test data during the gathering process.

To illustrate the performance of estimating the probability distribution of

correct association, the di�erence between the trained (and normalized) his-

tograms are depicted in table 6.3 for the broadcasted view and in table 6.4

for the tactical zoom-out view. Closer proximity of the histograms results in a

more similar probability for the association with any player of the same team

and degrade to team a�liation, if there is no di�erence between histograms of

players of the same team. This behavior emphasizes the advantage of soft as-

sociation based on an identity distribution over the hard classi�cation, which

would simply converge in the uninformed classi�cation rate of 1
23 or which may

depend on the ordering of players in nearest neighbor classi�cation. The dis-

tance matrices exhibit similar structure for both views. Members of the same

team form a subgroup with lower distances. The distances re�ect the similarity

of the jerseys shown in the �rst row and column of the tables quite well.

Incorporating a single �gure-centric image of size 160 × 120 into the his-

togram needed about 0.45 ms on the average, while the classi�cation of one

region took about 0.7 ms. During online processing, the player regions are

not downsized, but all information is incorporated into the histogram, which
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844 13 40 10 0 6 48 28 9 0 0 0 2 0 0 0 0 0 0 0 0 0 0

161 173 4 377 1 74 131 52 2 4 0 0 1 2 0 2 0 16 0 0 0 0 0

372 32 156 40 11 8 329 41 6 0 0 0 0 1 0 0 0 4 0 0 0 0 0

56 115 12 496 23 35 104 107 39 3 0 0 3 0 0 0 0 4 0 3 0 0 0

17 95 6 177 267 69 74 227 64 2 0 0 1 0 0 0 1 0 0 0 0 0 0

6 86 1 361 33 228 181 42 10 2 0 0 3 27 0 0 4 5 5 1 5 0 0

151 20 55 56 10 6 674 11 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0

43 85 2 219 44 80 18 471 35 1 0 0 2 0 0 0 0 0 0 0 0 0 0

30 212 12 248 72 46 135 143 94 3 0 0 3 0 0 0 0 0 0 0 1 0 1

12 207 91 126 21 23 104 181 44 188 0 0 3 0 0 0 0 0 0 0 0 0 0

4 3 0 43 3 6 9 1 1 1 870 0 10 0 38 6 0 2 0 0 0 0 3

0 2 0 4 0 0 7 0 0 0 0 982 5 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 5 0 1 0 46 2 945 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 2 6 0 0 0 0 0 0 422 1 0 53 330 28 98 57 0 3

0 0 0 0 0 1 5 0 1 0 4 0 13 0 808 149 0 2 0 3 0 7 7

0 0 0 0 0 0 6 0 0 0 0 0 0 0 348 260 2 64 8 14 39 50 209

0 0 0 0 0 0 5 0 1 0 0 0 0 103 0 1 171 239 140 120 195 0 25

0 0 0 0 0 0 6 0 0 0 0 0 0 37 93 69 2 555 98 73 52 1 14

0 0 0 0 0 2 6 0 0 0 0 0 2 22 28 31 4 605 131 120 21 8 20

0 0 0 0 0 0 6 0 0 0 0 0 0 13 112 48 10 291 91 285 67 8 69

0 0 0 0 0 0 6 0 0 0 0 0 0 10 5 59 69 316 22 19 414 4 76

0 0 0 0 1 0 6 0 0 0 0 0 0 0 461 183 6 7 1 3 0 228 104

0 0 0 0 0 1 6 0 0 0 0 0 0 0 118 206 0 166 0 10 27 94 372

Table 6.2: Confusion matrix of players based on color histograms from broad-

casted view (quantized to 1024 bins by Octree). Stronger colors relate to higher

confusion for convenience. Concrete numbers of classi�cations out of 1000 are

depicted, too. Mix-ups predominantly occur between players of the same team

who are similar in appearance.

is normalized in turn before each comparison. The computational demand is

self-regulating because a more zoomed in camera leads to bigger regions but

also fewer histograms that must be created and compared, since the number of

visible and unoccluded players decreases.

Although the classi�cation rate is obviously better for the broadcasted view

with higher resolution than for the zoom-out view, confusion and distance ma-

trices turn out to have similar structures. The distance matrix for the zoom-out

view is shown in table 6.4. The decrease in performance is due to the lower en-
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360 375 374 383 384 396 381 376 381 381 682 610 569 621 694 686 638 644 650 643 649 695 667

385 377 392 375 389 380 382 384 391 387 613 572 506 567 627 620 588 580 592 585 600 633 611

380 385 381 388 389 398 381 388 396 397 670 612 560 614 685 676 631 634 641 635 641 686 658

357 341 357 337 350 345 348 345 349 355 601 571 496 558 619 613 578 571 581 574 593 626 605

371 357 370 359 355 364 366 356 362 372 640 610 530 563 628 620 576 580 585 579 591 629 603

433 416 430 408 421 406 416 419 426 432 613 588 518 571 626 620 589 580 591 585 601 632 612

374 377 372 376 379 384 362 384 392 389 648 587 537 604 677 668 626 623 633 626 636 680 654

391 380 396 379 384 385 392 375 383 393 636 604 528 573 635 628 588 590 595 588 603 637 615

349 334 351 336 340 341 345 336 339 346 620 590 513 560 623 616 577 575 583 577 591 626 602

343 330 344 336 340 345 340 335 339 335 636 609 535 585 644 639 600 602 607 600 613 647 621

690 641 687 614 664 605 648 649 655 655 357 581 520 630 582 595 654 593 624 614 669 612 645

628 618 628 590 633 586 601 625 625 637 554 405 490 617 674 664 657 612 640 635 668 693 686

610 566 603 522 587 513 558 575 575 586 407 415 341 527 545 545 574 505 544 533 591 580 596

582 538 572 513 530 449 547 533 540 560 571 565 434 301 356 339 317 306 314 310 327 348 337

680 613 676 586 625 531 639 615 621 623 492 629 472 395 303 312 416 353 386 375 417 327 379

670 608 662 586 613 522 631 609 616 624 554 647 496 362 319 316 372 334 357 351 368 321 344

618 571 607 550 564 483 584 566 573 589 605 616 484 332 379 364 333 335 333 333 338 363 346

615 555 604 529 555 461 573 554 560 575 534 581 433 297 309 299 312 283 299 294 319 307 311

625 567 613 539 566 475 583 564 569 583 545 588 445 336 348 341 351 323 336 331 359 349 352

629 572 619 548 572 482 592 568 574 586 559 609 461 333 339 335 342 322 327 322 349 338 339

631 580 617 562 576 496 594 579 587 601 607 633 501 342 376 359 339 339 342 344 335 353 338

679 612 670 590 619 526 637 613 622 626 530 662 499 372 314 317 378 339 361 353 376 315 342

651 589 638 568 592 503 610 591 598 605 561 637 491 352 335 331 356 330 346 342 353 328 331

Table 6.3: Distance matrix between color histograms of each player captured

from the broadcasted view and quantized to 1024 bins by Octree. Stronger

colors relate to higher distance for convenience. Concrete distances are depicted

as well. Distances between players of the same team are very low, which makes

the identi�cation task di�cult.

tropy of the player regions captured in coarse resolution. The size of the players

captured by the tactical camera are circa 10px×30px and players from the main

center view vary in size from typically 30px × 100px to zoomed 65px × 290px.

The proposed method based on color histograms, which provides identity dis-

tributions, is fairly robust against the di�erent scales.

We also investigated the use of very fast decision trees [85] for classifying

the histograms. Preliminary results with VFDT show much lower performance

than the nearest neighbor classi�cation, however. This may be due to the high

dimensionality compared to the small amount of training data, which makes it
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263 299 320 451 417 356 283 360 373 311 786 756 781 655 705 681 652 683 714 710 698 716 679

307 291 349 428 404 350 300 338 373 314 747 721 737 575 636 611 572 612 638 631 622 638 600

334 350 385 466 452 393 338 393 420 362 758 722 746 625 672 650 614 654 680 676 666 680 646

393 366 332 279 295 297 349 286 305 345 666 609 557 462 557 515 456 499 521 495 508 538 499

343 324 323 342 331 312 317 296 319 319 717 675 661 507 586 550 506 542 571 555 554 581 542

400 377 366 332 349 326 363 324 351 359 655 609 578 477 549 517 459 508 529 509 518 536 505

237 249 269 376 346 289 236 295 310 250 746 711 727 579 642 609 576 607 647 636 622 646 604

297 287 296 364 336 305 285 290 312 289 738 705 708 543 615 580 543 575 610 598 588 615 573

288 281 303 373 349 304 276 303 320 282 726 696 701 537 603 572 535 569 603 591 581 605 564

277 265 321 395 375 315 264 315 342 277 719 694 703 555 619 595 550 595 618 610 602 621 581

803 773 785 724 763 730 772 739 768 762 244 467 564 694 697 704 621 715 669 669 706 654 672

738 713 726 662 710 672 703 679 716 706 524 314 511 685 712 704 628 708 692 686 712 687 690

808 786 780 709 757 729 774 739 769 772 451 371 441 735 765 759 676 760 731 719 757 725 734

660 585 615 494 531 517 608 508 550 572 637 632 589 330 333 335 293 346 334 332 344 323 335

672 595 628 517 548 530 622 522 562 581 623 641 611 289 258 273 249 298 280 286 304 257 292

659 595 625 547 570 550 617 530 577 587 671 661 665 349 317 299 287 314 388 364 325 311 300

693 599 631 466 521 503 626 514 551 579 530 559 472 278 282 304 235 318 241 248 309 253 300

655 578 608 489 526 510 602 500 544 565 614 612 582 302 285 284 251 297 312 300 301 271 288

667 575 613 472 510 497 607 494 530 560 620 643 575 272 284 294 249 307 259 268 303 272 296

642 549 581 439 477 468 576 459 499 527 617 622 564 246 269 267 223 279 255 252 277 257 271

596 517 543 447 472 459 538 437 483 500 643 639 621 276 281 235 218 238 346 300 241 259 214

674 603 642 565 588 562 630 546 592 597 627 652 651 366 333 320 293 330 396 370 324 306 295

620 540 570 471 497 482 564 463 508 523 637 637 619 269 258 228 206 236 321 284 242 243 215

Table 6.4: Distance matrix between color histograms of each player captured

from tactical zoom-out view and quantized to 1024 bins by Octree. Stronger

colors relate to higher distance for convenience. Concrete distances are depicted

as well. Distances between players of the same team are very low, which makes

the identi�cation task di�cult.

hard for the tree learning to �nd a good cut in the continuous color frequencies.

In addition to the higher computational demand caused by additional training of

negative examples, the problem of extracting a probability distribution remains

unsolved when decision trees are used.

6.3 Identi�cation based on Texture

This section investigates texture as the identi�cation feature by exploiting colors

in combination with spatial information.
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6.3.1 Texture

We model texture by complete, �gure-centric regions containing free-standing

players. These regions, which are delivered by the foreground segmentation,

are normalized to images of the same size that preserve their aspect ratio, and

centered. Some examples are shown in �gure 6.2. The idea is to keep a selection

of textures for each of the players and perform nearest neighbor classi�cation

or estimate the probability distribution based on normalized distances respec-

tively. We take the total texture into account because most texture-related

features seem to concentrate on the pose or shape of the player instead of his

exclusive details. Because this appearance model is much richer than the color

histograms, one may expect better classi�cation, but its use also requires more

computational time.

(a) Zoom-in of Player (b) Player at a distance

(c) Motion blur (d) Imperfect segmentation

Figure 6.2: Figure-centric images constitute the texture used for identi�cation.

The �gure-centric idea is similar to the method in [61], where motion vectors

are extracted from �gure-centric soccer player image sequences. The motion has

been used to recognize actions like walking left or running right at a distance.

However, the authors Efros et al. remark:

The main requirement is that the tracking be consistent � a person in

a particular body con�guration should always map to approximately
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the same stabilized image.

Good stabilization is especially crucial for motion vectors but remains important

for texture learning as well. Their paper presents very clear and well stabilized

�gure-centric sequences. Unfortunately, they do not detail how the preceding

image extraction is achieved. The training sequences have been selected in a

supervised way, discarding images which include overlapping or court marks.

The same accuracy as given in their paper can hardly be achieved for arbitrary

videos inside a bootstrapping process with unavoidable, imperfect segmentation

due to the variety inside a game.

6.3.2 Vector quantization

The straight-forward approach for identi�cation is to cache all textures for every

player seen so far and compare these to the player region in question. However,

this method reveals itself as impractical, even for short videos because it is in-

creasingly expensive in terms of memory and computational complexity. Grow-

ing neural gas and our delayed variant LateGNG can be applied to reduce the

incoming images to a constant number of prototypes online. The �gure-centric

normalized player images are vectorized by appending all rows and then fed to

the self-organizing network of the corresponding player. In contrast to GNG,

LateGNG requires additional conversion of the images from interleaved byte

representation into a vector of �oating points to avoid numerical problems like

over�ow during the summarization for the deferred update. Figure 6.3 shows

the nodes of an exemplary LateGNG network that forms the texture model for

a single player. The classi�cation of player regions is achieved by nearest neigh-

bor search in the models. During the tracking process, the normalized distances

are inverted, thus forming an approximation of the identity likelihood, which

is incorporated in the sampling probability of associations during the tracking

process.

6.3.3 Evaluation

We compare three di�erent approaches, namely the caching approach, GNG

and LateGNG for identifying players by texture. The caching approach was

evaluated for comparison purpose because it should exhibit the upper boundary

of identi�cation performance that can be achieved. We trained the models

with 500 �gure-centric images and tested them on another 1000 images. These

images were automatically gathered during the tracking process. They also

contain badly segmented players and even wrong identity assignments. Better

results would be achieved with cleared training and test sets, but the evaluation
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Figure 6.3: Texture model of a single player learned by LateGNG.

as presented here allows better predictions about identi�cation performance

during the real process of tracking in our cognitive system. We applied GNG and

LateGNG for vector quantization of the data to a maximum of 64 prototypes.

Runtimes for incorporating and classifying a single image were measured using

a 2.5 GHz mobile CPU. The results for distant and medium zoom are depicted

in table 6.5.

One can see that the identi�cation based on caching all images exhibits �

as expected � the best classi�cation rate, while demanding the most computa-

tional time. However, the di�erence in identi�cation is only marginal compared

to GNG and LateGNG. Unfortunately, the classi�cation rate is lower than that

achieved by identi�cation based on color histograms, albeit the prototypes in

�gure 6.3 demonstrate that the images are learned correctly. The lower identi-

�cation rate can be explained by the high variability of the di�erent poses that

the color histograms abstract from. It is noteworthy that the identi�cation rate
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Image size Tactical zoom-out view Broadcasted view

Cache GNG LateGNG Cache GNG LateGNG

160 Class .281 .289 .288 .282 .275 .265

× Time 783.1ms 64.7ms 28.1ms 618.3ms 64.3ms 27.6ms

120 Learn 0.85ms 3.44ms 1.57ms 1.07ms 3.39ms 1.61ms

80 Class .275 .276 .270 .284 .275 .266

× Time 205.1ms 18.8ms 8.2ms 235.6ms 18.8ms 7.9ms

60 Learn 1.00ms 1.98ms 1.18ms 1.34ms 1.95ms 1.21ms

53 Class .279 .275 .269 .270 .272 .262

× Time 94.2ms 10.0ms 4.4ms 94.6ms 9.9ms 4.4ms

40 Learn 1.03ms 1.68ms 1.11ms 1.06ms 1.69ms 1.14ms

40 Class .278 .261 .264 .285 .274 .263

× Time 56.6ms 6.8ms 3.0ms 56.7ms 6.8ms 2.9ms

30 Learn 1.03ms 1.57ms 1.07ms 1.05ms 1.64ms 1.09ms

Table 6.5: Comparison of di�erent vector quantization methods for identi�cation

by total texture. The table lists classi�cation rate and computational time for

classi�cation (Time) and learning (Learn) of a single �gure-centric image of

given size.

is fairly constant regardless of the resolution. This might be due to scaling from

an originally lower resolution; it might also be caused by the abstraction of un-

necessary details that compensates for information loss. The results for di�erent

views do not di�er signi�cantly, which might be due to the same reason.

The learned networks represent the images well, as can be deduced from the

small reduction below 0.01 in the classi�cation rate compared to the caching

version. LateGNG performs slightly worse than GNG, which might be due to

the higher averaging, while GNG more accurately �ts the recent images. Dif-

ferences in terms of identi�ability between players are depicted in table 6.6.

The confusion matrix was created using the LateGNG model with images of

size 40 × 30 captured from a broadcasted view. Its structure is similar to ta-

ble 6.2, which depicts a confusion matrix for identi�cation by color histograms.

Erroneous training data have a higher impact on the identi�cation rate if vec-

tor quantization is applied to the �gures in contrast to their representation

by color histograms. Vector quantization creates a separate prototype for the

misassigned player image since it di�ers from the other prototypes and that

information needs a long time to be removed. Many misclassi�cations are due

to this � actually correct � behavior of self-organizing networks.

Despite the marginal de�ciency in classi�cation rate, LateGNG is more than
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275 99 100 77 48 84 93 74 61 51 3 22 1 0 5 0 0 6 1 0 0 0 0

40 242 42 54 61 81 152 102 89 83 5 9 15 0 5 2 6 2 5 1 0 1 3

155 65 145 50 75 113 213 60 38 43 3 23 8 0 1 0 1 2 3 0 2 0 0

50 71 86 173 185 55 78 60 120 81 1 10 17 1 4 0 1 3 2 2 0 0 0

63 67 69 87 207 86 79 86 148 91 4 3 3 0 4 0 2 1 0 0 0 0 0

48 64 48 155 99 195 108 75 86 52 3 32 5 0 2 1 7 2 2 11 0 2 3

157 103 161 39 55 106 255 35 25 37 1 20 1 0 1 0 0 3 0 0 0 0 1

75 71 84 142 131 57 87 124 82 92 9 14 23 4 4 0 0 0 0 0 0 0 1

33 61 93 80 169 86 53 79 243 85 1 4 6 0 4 2 0 1 0 0 0 0 0

52 57 40 55 73 51 106 55 238 234 2 18 13 0 2 0 1 2 0 1 0 0 0

15 32 17 33 5 122 10 16 18 23 477 20 27 25 7 19 14 19 24 31 8 24 14

68 37 6 26 20 26 33 18 15 17 10 671 47 0 2 0 0 4 0 0 0 0 0

12 33 14 25 33 42 48 23 21 26 63 72 583 0 2 0 0 2 1 0 0 0 0

2 2 1 0 0 29 0 0 1 0 7 1 1 275 23 82 103 120 77 167 27 61 21

2 0 2 1 0 3 1 0 0 0 0 9 7 20 302 49 47 48 94 183 93 128 11

0 1 4 0 1 17 4 0 2 0 6 0 1 66 80 162 124 50 87 94 142 119 40

3 5 2 6 1 22 6 0 7 4 19 0 3 39 43 28 236 97 90 231 92 33 33

0 1 1 0 0 9 1 0 1 0 5 0 0 333 56 59 37 101 93 122 28 111 42

1 4 2 2 0 19 0 0 0 0 7 0 2 142 43 30 107 151 212 150 58 48 22

0 1 0 1 2 31 5 2 2 0 1 0 7 67 46 62 128 73 142 285 80 30 35

5 4 1 0 3 25 4 2 3 3 1 0 0 39 42 101 157 68 71 149 248 52 22

0 0 0 2 1 18 1 0 2 6 8 1 1 50 99 110 99 86 62 93 112 205 44

1 1 1 7 0 20 2 0 4 3 5 0 3 126 46 24 101 113 99 131 29 83 201

Table 6.6: Confusion matrix between texture models of each player captured

from a broadcasted view quantized by LateGNG. Stronger colors relate to higher

classi�cations for convenience. Concrete numbers of mix-ups are depicted as

well. Mix-ups of players on the same team are highly demonstrative of the

di�culty of identifying these similar objects.

twice as fast in classi�cation and also needs less time for learning a player

region than the Growing Neural Gas. While the caching approach increases

its computational demand with every image incorporated, the requirement of

self-organizing networks converges to a time which will be slightly above the

values shown in table 6.5. The classi�cation is more costly in terms of runtime

because the distances to all player models must be evaluated, while the learning

step requires only the search for the best matching unit inside a single network.

LateGNG is suited for processing both teams on a multicore CPU in real-time.
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6.4 Gait as Appearance over Time

Experts for video-based tactical analysis (Dirk Sobottka, Executive Manager of

Sports Analytics GmbH, personal discussion) reported that they also identify

players according to their running style or gait. We therefore review the related

work in this �eld and discuss an approach for identifying athletes at a distance

by gait.

6.4.1 Gait recognition

Much work has been done in gesture and motion analysis of humans for surveil-

lance and Human Machine Interface (HMI). Gesture analysis requires prelimi-

nary sequence alignment and matching of sequences of postures (shapes) that

have been recognized in advance. Hu et al. survey visual surveillance of object

motion and behaviors [108]. Hidden Markov Models (HMM) [197] are frequently

used for probabilistic sequence alignment and action recognition. Weinland et

al. [259] have proposed motion history volumes (MHV) as a free-viewpoint rep-

resentation for human actions, where time is encoded by color in aggregated

shape images.

Cassel et al. [40] recognize acrobatic gestures in gymnastics and trampoline

competitions by matching position and orientation of the bounding box of the

athlete region which was detected by block �ltering. Sullivan and Carlsson [233]

classify tennis postures in video by matching shapes against stored templates.

Similar actions are recognized in broadcasted tennis by Roh et al. [206, 207].

The shapes are represented by curvature scale spaces (CSS); posture matching

is achieved by RANSAC and the sequences are matched to templates by contin-

uous dynamic programming (CDP). Classi�cation of actions, transfer of 2D/3D

skeletons as well as synthetization of novel action sequences in broadcasted low

resolution videos has been proposed for ballet, tennis and soccer by Efros et

al. [61]. Actions are recognized by nearest neighbor matching of local motion

vectors gathered by optical �ow on �gure-centric image sequences to a database

of learned actions. Shechtman and Irani [222] detect postures in images and

recognize actions in videos based on local self-similarities, given only single ex-

amples of each action. They applied their method successfully to gymnastics,

ballet and ice-skating.

In biometrics, human identi�cation at a distance is done by analyzing gait

patterns extracted from video; approaches are either based on a model (explicitly

tracking parts of the body) or silhouettes. Ekinci [64, 63] represents shapes as

distance vectors between the bounding box and silhouette; these are compressed

by PCA and �nally matched by nearest neighbor classi�cation.

Hu et al. [108] stated in 2004 that �[a]lthough many researchers have been
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working on gait recognition, current research of gait recognition is still in its

infancy�. Most of these approaches rely on very good foreground segmentation

and su�cient resolution of the videos (often captured by several cameras in

parallel). No gait recognition has been applied to the sports domain until now.

6.4.2 Identi�cation by gait

Gait constitutes the characteristic motion during walking and running. These

activities are cyclic by nature and can be modeled as a discrete Markov process,

where shapes form the discrete states. This approach is similar to Schödl et

al. [215], who introduce the term �video textures� as Markov processes of images.

The foreground region masks can be taken as shapes; sequences of these shapes

build the Markov process.

We tested several dimension-reduction techniques speci�c to shape represen-

tation: scaled images containing the complete raw mask, polar coordinates as

distances of the contour to the centroid at several degrees as well as projections

to the bounding box forming one-dimensional functions as in [63]. Figure 6.4

depicts a LateGNG network that has learned the player's shape. As expected,

preliminary experiments showed that shape on its own is not an appropriate

feature for distinguishing between players.

Merge Growing Neural Gas (MGNG) (see section 8.2.2 for detail) can be

used to learn a probabilistic automaton for each player representing his gait by

a Markov process. The idea is to track the best matching unit inside the network

by recording the sequence of visited nodes and the frequencies of transitions.

These statistics allow computing the likelihood of a sequence having been gener-

ated from the model. Unfortunately, we lack su�ciently long training sequences

for each player to learn a proper model. The players frequently overlap or leave

the �eld of view and therefore the sequence is interrupted after a short period.

Long sequences were captured for standing players, but obviously no gait can be

extracted from these data. Gait recognition therefore seems to be impractical

for automated re-identi�cation inside the cognitive tracking system. However,

the model could be used for visualization or action recognition by matching

against preselected sequences.

6.5 Conclusions

This chapter has investigated appearance as a feature for re-identi�cation of

soccer players. Prototypes of appearance are learned online for each player

given sequences of �gure-centric regions; the reciprocal, normalized distances to

these models provide a probability distribution for the identity of an unassigned
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Figure 6.4: Shape model of a soccer player learned by LateGNG.

region. Three di�erent models of rising complexity have been examined: color,

texture and gait. Color is represented by adaptive, quantized histograms; it

shows the best identi�cation performance. Texture is captured by �gure-centric

image templates that are bounded to a �xed number by applying LateGNG

online. Gait is modeled as a Markov process of shapes, but revealed itself as

inappropriate for identi�cation purposes due to a shortage of su�cient train-

ing material. Identi�cation by color and texture has been evaluated on players

captured from distant and broadcasted views. Training and also test images

were automatically gathered during the cognitive tracking process, and thus

provide an unsupervised labeled data set. Training as well as identi�cation can

be achieved by both approaches in real-time. Although their identi�cation per-

formance is far better than a random approach, distinguishing between players

of the same team cannot be accomplished with high accuracy. Identi�cation

based on appearance will, however, support tracking based on motion.



Chapter 7

Experimental Results

The total system is evaluated using three common scenarios for computer aided

sports video analysis according to the kind of cameras used for capturing a

soccer game. First, we describe the evaluation metric that is used throughout

the chapter and detail each experiment quantitatively.

7.1 Evaluation Metric

There are many metrics available to evaluate multi-target tracking systems.

Bernardin and Stiefelhagen propose the general CLEAR MOT Metrics [28] and

give a good overview of recent tracking performance metrics. Needham and

Boyle introduced metrics and statistics to compare two trajectories spatially

as well as temporally [180]. Li, Dore and Orwell suggest methods to evaluate

identity and category tracking of players and the ball in soccer [156].

All proposed metrics have in common that they are designed to evaluate fully

automated tracking without identity management (during short sequences) only.

At the current stage of research, however, a semi-automated process is much

more likely. Identities are mostly not taken into account or they are assumed

to be not given either in ground-truth or in the output of the tracking method.

We apply the evaluation method for identity tracking that has already been

used in [135] and in chapter 4: The output of the tracking system in real-

world coordinates is continuously compared to ground-truth data in terms of

the Euclidean distance between targets with the same label. The average of

the distances correlates reciprocally with the precision of the system under in-

vestigation. When a single distance exceeds a prede�ned threshold θ, tracking

of the corresponding player is marked as a failure, the failed player is reset to

the ground-truth position and tracking continues. The number of failures corre-

sponds with the accuracy of the system under investigation, since mix-ups are

139
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implicitly taken into account (although one mix-up is counted twice: once for

each target).

The proposed performance metric is easy to implement, scales well with the

length of the tracking sequence and provides an intuitive measure. The failures

also indicate how often a human operator would have to take corrective action

during a semi-automated tracking process to ensure the given upper bound θ

of deviation from the correct position. In addition, immediate correction by

resetting the target is necessary for the adaptive tracking process. Otherwise,

models would have been trained based on wrong data.

There is no real ground-truth available for most of the recorded or broad-

casted soccer games, because players can be tracked only visually and camera

parameters are only known vaguely. To provide a de�nite evaluation of accuracy,

a second reference system based on laser range �nders or other active sensors

would be needed. We provided ground-truth by manually marking the position

of the players in the videos with a camera calibration that was continuously

estimated as described in section 3.2.

The camera calibration adds a systematic error to any vision-based tracking.

If multiple cameras are used, the coherence of their calibration directly in�uences

tracking performance because evidence is fused in real world coordinates. In

addition, the assumption that the playing �eld can be described by a plane is

not valid in reality due to the construction of sports �elds: �Most �elds are

crowned down the longitudinal axis of the �eld to promote positive surface

drainage, although �at �elds sloping towards one touchline or sideline are not

uncommon. [...] Probably the best overall design is a side-to-side sloped �eld

with 1% slope and an installed drain system.� (see [194], p. 279). The resulting

height di�erence of about 30 cm at the sidelines can cause even higher positional

error due to inverse projection computations. The same argumentation holds

for position errors induced by inaccurate segmentation and low resolution of the

videos. For example, a single pixel in the video corresponds to more than 10 cm

height di�erence at the opposing sidelines of a typical soccer �eld of size 105 m ×
68 m if captured side by side by two cameras in high de�nition 1440px×1080px.

The best achievable accuracy, assuming perfect calibration and segmentation,

would be about 1 m in the direction of the center line due to the projection of

the height di�erence.

7.2 Multiple Static Cameras

Static cameras have the advantage that an initial calibration is su�cient for

the complete game without the need for further camera estimation. This setup

should be preferred over dynamic cameras if there is a choice, because it saves



CHAPTER 7. EXPERIMENTAL RESULTS 141

much computational time and also makes monitoring easier. We evaluate our

tracking system on a publicly available data set to ensure comparability of the

performance. Li and Orwell [156] o�er a Service to Evaluate the Performance

of Tracking and Recognition of Events (SCEPTRE) at http://sceptre.king.

ac.uk/sceptre/default.html. The English premier league soccer match Ful-

ham vs. Manchester United was recorded on December 30, 2001 by eight static

cameras in parallel, covering the whole pitch. The di�erent views are depicted

in �gure 7.1. The authors provided videos and calibration data for each cam-

era. A XML format to upload tracking results for evaluation is also provided.

Unfortunately, the site is not maintained anymore, so the tracking results could

not be validated against their ground-truth (which is not downloadable).

Nevertheless, the evaluations of some tracking approaches have been pub-

lished for this benchmark, so far. Their results are discussed in the following

paragraphs.

Li et al. [156] applied the tracking system of [270] and provided a spatio-

temporal evaluation of identity tracking as a curve showing the proportion

PI(∆d,∆t) of correctly tracked players over 2000 frames. This metric provides

information about the time during which targets could be tracked continuously

with a maximal deviation of ∆d = 5 meters from ground-truth.

Song et al. [226] provide qualitative and quantitative results for tracking

in a single view (camera 2) through a part of the video. They describe the

dataset as �very challenging, where complex interactions frequently occurred.

[... Their] ground truth was obtained by software ViPERGT, and the failed

tracking were including target missed, false location and identity switch.� The

conditions for these di�erent types of failures have not been detailed, which

makes a direct comparison impossible. In their paper, two graphs and two

tables depict the number of failed tracking and a success rate for various track-

ing methods. The �rst compares variable multiple target tracking methods on

2000 frames by tracking rate (BPF [182] 68.66%, MCMC-PF[135] 75.63% and

theirs [226] 83.75%). The second validates the tracking of seven players during

1200 frames (NNSF 62.17%, JPDAF[14] 73.13%, MC-JPDAF[217] 82.75% and

their approach [226] 86.20%). Despite the fact that these success rates look

nice, more detailed information that could reveal their true meaning is missing.

The authors published another paper [225] at about the same time, where �the

detected results of sports video were obtained by Adaboost detection�. Four

methods were evaluated on a continuous part of the video (again recorded by

camera 2), consisting of 300 frames and showing 12 targets at maximum. A

graph depicts the number of correct tracking over time. No true identity track-

ing was evaluated in either publication, because the number of failures in the

graphs always drop to zero again after a while, which is highly unlikely if real

http://sceptre.king.ac.uk/sceptre/default.html
http://sceptre.king.ac.uk/sceptre/default.html
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Camera 1 Camera 2

Camera 3 Camera 4

Camera 5 Camera 6

Camera 7 Camera 8

Figure 7.1: The publicly available SCEPTRE dataset provides 3 minutes of a
soccer match captured by eight static cameras in parallel.
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identities had been tracked.

Gengembre and Pérez [90] provide a qualitative analysis of their tracking

results by showing still frames of a selected scene captured by camera 5 to

illustrate correct tracking of two players of the same team through an occlusion.

Khan and Shah [131] tracked the players by fusing all frame-synchronized

views. They remark that �occlusions are quite abundant due to the large number

of players. There is also a lot of clutter due to jitter of the cameras. We believe

this is a result of wind or the shaking of the platform on which the cameras

were mounted. Another challenge is the lack of pixel resolution on players.

Depending on the view, player patches could be as small as 5 x 25 pixels.�

Three frames were shown in the paper to support qualitative evaluation of the

tracking performance.

We tracked all players and the referee through the full length of the given

videos (4024 frames or 161 seconds of the match respectively). A maximum of

Nmax = 50 particles was used to track the 23 targets with real world coordinates

in meters. The constant velocity model was parameterized as follows: ∆t = 0.04

(due to 25fps) and q̃ = 0.0008 (due to the maximum acceleration of humans).

The multiplicity of measurements is constrained by the model of equation 4.38

with pd = 0.5 and psd = 0.2. Covariances were initialized with the identity

matrix V0 = I4N . The probability for clutter was set to p (Jk(l) = 0|x̂k, zk) =

0.001.

A total of 538 failures was detected during tracking with identi�cation by

color in 4024 frames, resulting in a tracking rate of 86.63%. Figure 7.2 depicts

the cumulative failures for each player in detail. Results for tracking with iden-

ti�cation by texture are 535 failures (correct tracking rate 86.71%). Details

per player di�er only marginally from the ones shown in �gure 7.2, so we omit

depicting them here. It is noteworthy that one goalkeeper was tracked without

failures while the other one caused the most failures in tracking. The failing

goalie wears a black jersey and is mainly captured by camera 8. Failures are

due to mixing with the perimeter advertising boards and occlusions. The rest

of the players are tracked with a signi�cantly lower failure rate.

Preprocessing of all eight cameras and the tracking were executed on a sin-

gle Quadcore computer. A single measurement sweep of one camera needed

11.80 ms on an average (with a standard deviation of 11.25) for identi�cation

by color and 11.73 ms per frame (with a standard deviation of 11.02), when

texture was used as feature. This means that up to three cameras could be

processed on a single machine in real-time. When preprocessing was run dis-

tributed, the tracking achieved real-time (25fps).
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Figure 7.2: The graphs depict cumulative failures for each player during the

4024 frames of the SCEPTRE dataset. Failures for the goalkeeper shown in red

are mainly due to similarity with the advertising boards.

7.3 Single Dynamic Camera

Digital videos captured by a single panning, tilting and zooming camera, which

is located at one corner of the stadium roof about 13 m above the playing

�eld, provide the basic raw material for the second experiment. The videos are

encoded in Digital Video (DV) format with a frame rate of 25Hz in interlaced

resolution of 720× 576 pixels.

We tracked all players and the referee through a complete halftime of 48 min-

utes. To the best of our knowledge, no quantitative evaluation of sports video
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analysis of comparable length has been published so far. The videos show the

�nal game of the FIFA world championship 2006 with France vs. Italy. Ex-

amples of typical views and some challenging scenes are depicted in �gure 7.3.

Although the changes in zoom are usually moderate, some extreme close-ups

are also included in the material. Players are 10 × 30 in size but may be less

when they are closer to the French goal.

Typical view Typical view

Zoom in Zoom out

Occlusions at corner kicks Medical sta� on the �eld

Figure 7.3: The �rst halftime of the 2006 world championship �nal provides

71778 frames recorded with 25Hz by a single panning, tilting and zooming cam-

era.
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The number of particles was set to Nmax = 50 to track the 23 targets. We

used the following parameters for the constant velocity model: ∆t = 0.04 (due

to 25fps) and q̃ = 0.0008 (due to max acceleration of humans). The multiplicity

of associations was constrained by the model of equation 4.38 with pd = 0.9

and psd = 1.0 allowing only feasible associations. Covariances were initialized

with V0 = 0.001I4N . The probability for clutter was set to p (Jk(l) = 0|x̂k, zk) =
1

720·576 ≈ 0.000002. Failures were encountered when a target deviated from the

ground-truth position by more than θ = 5.0 meters. After a failure, the failed

player was reinitialized to the ground-truth position and tracking was resumed.
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Figure 7.4: The graphs depict cumulative failures for each player during tracking
with identi�cation by color of the 71778 frames of the world championship �nal
2006. The French team is colored orange and the Italian team is blue. The
French goalkeeper with number 16 is often too small to be detected.



CHAPTER 7. EXPERIMENTAL RESULTS 147

A total number of 9646 failures was counted during tracking of 71778 frames,

if identi�cation by color histogram was applied, resulting in correct tracking of

all 22 players and the referee in 86.57% of the time. Figure 7.4 visualizes the

failures for each player. Each frame needed 22.64 ms (with a standard deviation

of 11.14) to be processed on a single machine with an Intel Quad CPU at 3.0GHz.
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Figure 7.5: The graphs depict cumulative failures for each player during tracking
with identi�cation by texture of the �rst halftime of the world championship
�nal 2006. The French team is colored orange and the Italian team is blue. The
French goalkeeper with number 16 is often too small to be detected.

Tracking with identi�cation by texture failed 9474 times during the halftime

of 71778 frames, which means a correct tracking rate of 23 targets in 86.80%

of the time. Figure 7.5 visualizes the failures for each player. A single frame

needed 22.65 ms in average (with a standard deviation of 11.07) to be processed
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on the same 3.0 GHz Quadcore computer as used for evaluation of identi�cation

by color. The time translates to a frame rate of 44 fps which demonstrates again

the real-time capability of the proposed system.

For both tracking experiments, the goalkeeper of the French team (with

jersey number 16) was much harder to track than the other players, as can be

seen in �gures 7.4 and 7.5. This is due to the small size of this athlete in the

image, as he constitutes the athlete who is farthest from the camera. Therefore,

he is often not detected as a valid player region but discarded as noise, causing

tracking to fail. A change in the position or the focal length of the camera,

however, would solve this problem. Alternatively, the negative information-

handling could be turned o� especially for this player, because the goalkeeper

does not move that far from the goal anyway. Omitting this goalkeeper, the

correct tracking rate would increase to more than 90%.

7.4 Broadcasted Material

The third dataset consists of 1000 continuous frames of broadcasted material

without cuts. Some still frames are depicted in �gure 7.6. The camera is

panning, tilting and zooming during the scene. The video provides a typical

view for broadcasts from a camera located at the height of the center line about

19 m above the playing �eld and 36 m away from the sideline. The video shows

about two minutes (minute 24:58 until 25:38) of the UEFA Champions League

soccer match Sporting Lissabon versus FC Bayern München on February 22,

2009. We recorded the game from a normal broadcast with a DVB-T converter

card.

Similar parameters as in the other tracking experiments were used. The mul-

tiplicity of associations was constrained by the model of equation 4.38 with pd =

0.6 and psd = 1.0 allowing only feasible associations. Covariances were initial-

ized with V0 = I4N . The probability for clutter was set to p (Jk(l) = 0|x̂k, zk) =

0.001 due to more clutter induced by motion blur and compression artefacts.

We encountered 165 failures with identi�cation by color (corresponds to a

tracking rate of 83.5%) demanding 10.91 ms on an average for a single frame

(with standard deviation of 13.14). If the players are identi�ed by texture, a

correct tracking rate of 87.0% (130 failures) could be achieved. Tracking needed

14.26 ms on an average (with standard deviation of 17.95) including the training

and classi�cation by the texture models. Times were measured on a 2.2 GHz

DualCore AMD processor. The di�erence between the performances can be

explained by the ability of the texture models for faster learning, which makes

the di�erence for this short sequence, where players are visible during parts of

the video only. The failures are depicted individually for each player in �gure 7.7
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Start Frame 337

Frame 454 Frame 1000

Figure 7.6: A broadcasted UEFA Champions League soccer match provides an

uncut scene of 1000 frames for evaluation.

and 7.8. One can see that a mix-up of player 11 and 106 could be resolved by

the texture models in contrast to the color models.

The main problem of tracking broadcasted video is the lack of complete

visibility of the match. Cuts and zoom-ins occur frequently, stating the need to

estimate which camera is currently recording the visible scene. It is almost never

the case that all players are shown in the image. Overlays shorten the visible

area even further. Data quality is also an issue because the DVB-T stream

we recorded is compressed and shows typical MPEG block artifacts. Tracking

rates could be improved if a second camera stream from a further-o� perspective

would be added. This would also support human interaction, since the identities

of all players are hard to monitor in the broadcasted footage.

7.5 Towards Normal Operating Conditions

The proposed tracking system is currently in use by sports scientists of Prof. Mar-

tin Lames's group. Several soccer matches have already been tracked to provide
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Figure 7.7: The graphs depict cumulative failures for each player during the

tracking with identi�cation by color of 1000 frames of broadcasted material.

analyses of the �rst and second German Bundesliga for the FC Bayern München

and the FC Augsburg as well as statistics of national competitions for the female

German soccer team. Usually, three stationary but portable static cameras were

used to record the games in high de�nition. One or two operators monitored

and corrected the tracking process. We found that the human capacity to mon-

itor a single team with eleven or 23 players limits the processing speed � rather

than the computational demand.

In addition to a distributed graphical user interface for monitoring the track-

ing process, tools for post-processing trajectories and for visualizing analyses by

chroma keying were developed. The user can navigate through a virtual view of

the game and watch the play from an arbitrary perspective. Augmented videos
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Figure 7.8: The graphs depict cumulative failures for each player during the

tracking with identi�cation by texture of 1000 frames of broadcasted material.

can be generated in batch mode via movie scripts written in XML format,

which also enables automated video generation as an answer to user queries.

Some of these augmented videos were included in the video installation �Deep

Play� by Harun Farocki and were presented at the international art exhibition

documenta 12. Figure 7.9 illustrates some of these visualizations.

7.6 Conclusions

In this chapter, the real-time tracking system for soccer videos has been eval-

uated using three di�erent application scenarios for sports video analysis in
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(a) Monitoring (b) Postprocessing

(c) Augmented reality (d) Virtual view

(e) One of four contributions to Deep

Play by Harun Farocki at documenta 12

(f) Another contribution to Deep Play

Figure 7.9: Tools for monitoring and visualization.

terms of the camera set-up used. We introduced an intuitive performance mea-

sure for identity tracking which encountered failures by a thresholded deviation

from ground-truth. The proposed system exhibited robust tracking of all play-

ers and the referee with a failure rate of around 86% on an average in these

domains. Tracking with identi�cation by texture showed � contrary to the re-

sults of chapter 6 � better performance than tracking with identi�cation based
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on color histograms. It is especially suited for short video clips. The perfor-

mance on a publicly available dataset demonstrated the capability of fusing

multiple cameras. Accurate camera calibration was revealed as important be-

cause errors may be magni�ed due to projective geometry. Further, we provided

quantitative results on a full-length soccer match, tracking all 22 players and

the referee including challenging scenes through 48 minutes of play. To the

best of our knowledge, nobody has published quantitative evaluation of track-

ing systems for sports video analysis on footage of comparable length so far.

Broadcasted material is the most challenging due to frequent cuts and necessary

re-initialization, because only a subset of the players is shown most of the time.

Our tracking system could also handle this scenario well. To reduce manual

correction and re-initialization, the use of additional cameras is recommended

in practice. The experiments demonstrate that the proposed system enables

semi-automated tracking of all players and the main referee during complete

soccer games in real-time.
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Chapter 8

Tactical Sports Video

Analysis

Until now we have described how to gather trajectories of all players from sports

videos in real-time. The next question is what can be done with these data. Po-

sition data of all players provide a rich base for further analysis. In this chapter,

we review the work on automated tactical sports video analysis. We introduce

a method for a speci�c analysis of team behavior and give an outlook on further

analysis inside an action model logics framework. The considered computational

problem of tactical sports video analysis is illustrated in �gure 8.1.

8.1 Related Work

A wide range of literature for soccer tactics from the coaching perspective exists,

f.i. [168]. The scienti�c analysis of soccer and soccer players based on physics

and statistical data is described in [261].

Research in automated tactical analysis based on trajectories can be cat-

egorized as either situational or team behavior analysis. The former analyzes

situations as static snapshots of the game and the latter focuses on the temporal

aspect of behavior. We subdivide the research of team behavior further as to

its use of either unsupervised or supervised learning methods, which allow the

detection of unknown or prede�ned patterns in the game.

8.1.1 Situational analysis

Kawashima et al. [130] propose a qualitative group analysis. Medium and large

player groups are extracted by multi-scale analysis in image sequences. They

state in [130]: �The exact information, such as the velocity, direction, or its

155
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Figure 8.1: Tactical sports video analysis provides insights into the game and

supports humans to extract knowledge from the players' trajectories.

distribution is not used in the interpretation. These parameters are, of course,

useful in accurate analysis.� Taki and Hasegawa [235, 234] suggest the use of

minimum moving time patterns and dominant regions of a player for analysis

of soccer game scenes. Therefore, the playing �eld is partitioned into Voronoi

regions. These regions are de�ned by the contour consisting of positions that

can be reached in the same minimal time from di�erent players. Kang et al. [125]

quantitatively evaluate the performance of soccer players based on the average

size of catchable and safe areas and according to a safe pass ratio. Catchable

and safe regions are de�ned similarly to the minimum moving time and the

dominant regions. The performance measure was evaluated on data obtained

from a soccer simulation game.

A quantitative analysis of trajectories of Brazilian soccer players was done

in [19]. Pingali et al. [193] describe coverage maps as a visualization of the

positions of a (tennis) player for tactical analysis based on real data. The

time a player stays inside a bin of the quantized �eld is integrated and �nally

visualized by color mapping similar to infrared images. Little and Gu [160]

split motion trajectories into paths and speed curves by extracting their spatial

or temporal component only. A query-by-example interface is supplied for fast

retrieval of similar motions based on the proposed representations. Wünstel et

al. [263] train self-organizing maps (SOM) with trajectories that are represented
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in a spatially focused manner (SFR) for clustering. As already mentioned in

section 5.1, Visser et al. [250] as well as Ramos and Ayanegui [199] classify

formations in simulated RoboCup games.

8.1.2 Unsupervised team behavior analysis

In the RoboCup community, the topic of team behavior analysis attracts high at-

tention because simulated trajectory data are available in huge amounts. Visser

and his group investigated online learning of team behavior [249] using Time

Series-Based Decision Tree Induction and extending it for real-time analysis and

prediction [175] based on qualitative description of motion scenes.

Kubo and Kakazu [144] propose the arti�cial soccer agent MATEUS to gen-

erate goal-directed behavior based on Stochastic Learning Automata. They

evaluated the simulation traces of MATEUS and concluded that �[i]n [their]

model, the expected coordinated motion and strategy emerge but they are too

much sensitive with the pre-�xed or given system parameters so [they] should

tackle to this proposed formulae more mathematically.�

The Advanced Scout system by Bhandari et al. [30] applies data-mining

techniques to NBA basketball games to help coaches �nd interesting patterns

in their players' and opponents' behaviors. Attribute Focusing (AF) compares

the overall distribution of an attribute with the distribution of this attribute

for various subsets of the data. If the distribution of a certain subset of data

signi�cantly di�ers from the overall one, the constraints on the attributes that

de�ne this subset are marked as interesting statistical anomalies.

Nair et al. [177] proposed an automated team analyst called ISAAC for post-

hoc, online agent-team analysis. Decision trees are learned from the external

behavior traces of the teams. These models can be used for detecting possi-

ble agent improvements and allow comparison of di�erent teams based on the

human readable form of the learned decision trees.

In [105], Hirano and Tsumotoa studied the discovery of meaningful pass pat-

terns and sequences from ball trajectories of soccer games. Multiscale Matching

was used as a distance measure between two planar curves, partly changing ob-

servation scales. Given this metric, the trajectories are hierarchically clustered

to identify similarities.

8.1.3 Classi�cation of team behavior

For the purpose of video indexing and retrieval, prede�ned team behavior must

be recognized in the trajectories. Intille [114, 115, 112] proposes a framework for

the recognition of highly structured, multi-person action from noisy trajectories.

Visually grounded goal-based primitives and low-order temporal relationships
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are integrated in a probabilistic manner by automated generation of Bayesian

networks that classify single-agent and multi-agent actions. A system was eval-

uated for American football.

Li and Woodham [154] developed a proof-of-concept system to represent and

reason about hockey play. Finite State Machines (FSM) model domain knowl-

edge of actions, where each transition is associated with an Event Evaluation

Function (EEF) that assigns the immediate outcome as a reward. The system

emits a description of the game and identi�es key plays.

Complex multi-player behavior has been recognized in basketball games by

Perse et al. [189]. A probabilistic play model is applied to player-trajectories

to segment the game into phases (o�ense, defense, time out). Trajectories of a

single phase are classi�ed by nearest neighbor classi�cation to activity templates

that were prede�ned by experts.

Feldman [75] recognized the behavior of protagonists (ants and bees), an-

alyzing the trajectories with Hidden Markov Models (HMMs). HMMs [197]

constitute the status quo for modeling sequences as transitions between discrete

states. They are also used to recognize actions in videos or spoken language.

8.2 Merge Growing Neural Gas for Team Behav-

ior Analysis

Team behavior denotes the temporal organization of actions of individual agents

towards a common goal. This is re�ected in the trajectories of all players by

temporal patterns in the formations of each team. In order to extract these

patterns automatically, we extend the LateGNG algorithm (c.f. section 5.3.2)

to cluster time-series.

8.2.1 Related work

Several vector quantization methods based on Hebbian learning have been ex-

tended to handle time series. Common approaches use hierarchies [38], non-

Euclidean sequence metrics [101], time-window techniques [172] and mapping

to spatial correlations [67] and a wider �eld of recursive sequence models also

exists. These recursive models feed the past input to the learning method,

albeit with a delay (see [99] for a survey and [100] for a unifying notation).

Temporal Kohonen Map (TKM) [43], Recurrent SOM (RSOM) [141], Recur-

sive SOM (RecSOM) [251], SOM for structured data (SOM-SD) [97], Merge

SOM (MSOM) and Merge Neural Gas (MNG) [232] represent popular recursive

models which have been applied in several applications [147, 70, 71, 65]. The

speci�c models di�er primarily in their internal representation of time series,
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which in�uences the capacity of the model, the �exibility with respect to net-

work topology and the processing speed. MNG has shown superior performance

to the other recursive models for acceptable time complexity.

8.2.2 Merge Growing Neural Gas

We propose Merge Growing Neural Gas (MGNG), which advances the vector

quantization algorithm LateGNG towards clustering of time-series. Each neuron

is extended to hold an additional context vector cn representing all past time

steps of a sequence in addition to the prototype vector of the static case. This

temporal context is also used by MNG [232]. By incorporating the past into

the clustered data, the snapshots of the incoming sequence are quantized in

conditional dependency to the preceding sequence. Because the input data

(snapshots of the sequence) are noisy, the corresponding cluster prototypes are

incorporated in the temporal context instead of the real data.

An input sequence x1, . . . ,xk is assigned to the best matching neuron by

�nding the neuron n with lowest distance dn in time step k according to

dn(t) = (1− α) · ‖xk −wn‖2 + αt · ‖Ck − cn‖2 . (8.1)

The parameter αt ∈ [0, 1] weights the importance of the recent input signal over

the past. Ck is called the global temporal context and is computed as a linear

combination (merge) of the weight and the context vector from the winner r of

time step k − 1

Ck := (1− β) ·wr + βt · cr. (8.2)

The parameter βt ∈ [0, 1] controls the in�uence of the more distant over the

recent past. The global temporal context is initialized as C1 := 0.

When the network is trained, Ck converges to the optimal global temporal

context vector Copt
k , which can be written as (c.f. [232]):

Copt
k :=

k−1∑
j=1

(1− βt) · βt−1−j
t · xj . (8.3)

The temporal context therefore represents the entire sequence encoded as an

exponentially decreasing series (also called fractal encoding of sequences [232]).

We apply an entropy maximization strategy for node insertion instead of the

error minimization approach typically used in GNG and LateGNG. This strat-

egy is justi�ed due to the fact that we are more interested in a representation

of frequent sequence patterns than in the detailed reconstruction of the data at

discrete time-points. The entropy of a network is highest if the activation of

all neurons is balanced. At high entropy, more neurons are used for frequent

sequences, reducing the representation capacity for rare ones. This helps to
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MGNG-Learn(x, εb, εn, γ, η, λ, θ, λa, αt, βt):

1. IF |K| < 2

2. K = K ∪ {n} with wn = x

3. t = |K|, ta = 1,xacc = x, slast = rlast, rlast = n

4. initialize global temporal context C1 := 0

5. ELSE

6. dn(t) = (1− αt) · ‖xt −wn‖2 + αt · ‖Ct − cn‖2

7. find winner r = arg minn∈K dn(t)

8. find second winner s = arg minn∈K\{r} dn(t)

9. IF r = rlast ∧ s = slast ∧ ta < λa

10. xacc = xacc + x

11. ta = ta + 1

12. t = t+ 1

13. Ct := (1− βt) ·wr + βt ·Ct

14. ELSE

15. IF ta = λa ∧ |K| < θ

16. Add new node l: K = K ∪ {l} with wl = xacc, cl = Ct

17. add connections E = E ∪ {(rlast, l), (l, slast)}

18. ELSE

19. xacc = t−1
a xacc

20. ε′b = 1− (1− εb)ta

21. ε′n = 1− (1− εn)
ta

22. εcb
′ = 1− (1− εcb)

ta

23. εcn
′ = 1− (1− εcn)

ta

24. MGNG-Update(xacc,Ct, t, r, s, ε
′
b, ε
′
n, εcb

′, εcn
′, γ, η, λ, θ)

25. ta = 1, rlast = r, slast = s,xacc = x

26. t = t+ 1

27. Ct := (1− βt) ·wr + βt · cr

Figure 8.2: The training algorithm of Merge Growing Neural Gas (MGNG) for
time series analysis.
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MGNG-Update(x, c, t, r, s, εb, εn, εcb , εcn , γ, η, λ, θ):

1. increment counter of r: ιr = ιr + 1

2. connect r with s: E = E ∪ {(r, s)}

3. age(r,s) = 0

4. increment the age of all edges connected with r
age(r,n) = age(r,n) + 1 (∀n ∈ Nr \ {s})

5. remove old connections E = E \ {(a, b)|age(a,b) > γ}

6. delete all nodes with no connections

K = K \ {n|∀k ∈ K.(n, k) /∈ E ∧ (k, n) /∈ E}

7. update r and its direct topological neighbors Nr:
wr = wr + εb · (x−wr), wn = wn + εn · (x−wi) (∀n ∈ Nr)
cr = cr + εcb · (c− cr), cn = cn + εcn · (c− ci) (∀n ∈ Nr)

8. IF t mod λ ≡ 0 ∧ |K| < θ

9. find neuron q with greatest counter q = arg maxn∈K ιn

10. find neighbor f of q with f = arg maxn∈Nq
ιn

11. new node l:K = K ∪ {l},
wl = 1

2 (wq + wf ),
cl = 1

2 (cq + cf ),
lιl = δ · (ιf + ιq)

12. adapt connections E = (E \ {(q, f)}) ∪ {(q, n), (n, f)}

13. ιq = (1− δ) · ιq

14. ιf = (1− δ) · ιf

15. decrease all counters ιn = η · ιn (∀n ∈ K)

Figure 8.3: Update step of the MGNG network maximizing the entropy.

focus on quantization of important information in addition to the usually com-

binatorial explosion of time series. Following Fritzke's [84] proposed strategy,

we insert a new node in regions with high activation frequency, leading to an

increase of the entropy of the network. Frequency is tracked by a counter ι of

every neuron and this counter is incremented every time the neuron is selected

as the winner. New nodes are inserted between the most active neuron q and its

most frequent topological neighbor f , reducing the likelihood of both nodes q

and f to be selected as the winner and therefore increasing the overall entropy of

the network. The new node l is initialized as the mean of the two selected nodes

and inserted between them. The counters of q and f are reduced to re�ect the
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expected decrease of activation, while the new neuron takes over this activation.

The parameter δ controls the amount of the activation shift. All counters are

subject to exponential decay by the parameter η in order to give recent changes

a higher relevance. To further increase the entropy, nodes with no connections

are deleted because the last selection as the �rst or second best matching unit

was too long ago.

In order to represent the temporal structure in the series, all transitions

between the nodes are counted as well. The sequence of the best matching

unit inside the net forms a discrete �rst-order Markov process. Probabilities for

observing a given sequence can be computed recursively by combining the prob-

ability for the current state, for the previous transition and for the remaining

sequence as described in [197].

The complete training algorithm for MGNG is depicted in �gures 8.2 and 8.3.

8.2.3 Evaluation

The binary automaton experiment was proposed by Voegtlin [251] in order to

evaluate the representational capacity of temporal models. This experiment

uses a Markov automaton with the discrete states 0 and 1 and the probabilities

P (0) = 4
7 , P (1) = 3

7 , P (0|1) = 0.4, P (1|1) = 0.6, P (1|0) = 0.3, P (0|0) = 0.7.

This automaton is depicted in �gure 8.4. A sequence with 106 elements was

generated and trained in a network with 100 neurons. After training, the win-

ning units for the 100 most probable sequences are determined and the longest

sequence that can still be di�erentiated is associated with multiple winners. An

optimal result would be achieved if each of the 100 sequences would have an

unique winner. The experiment was carried out comparing MNG and MGNG

by using the following parameters in compliance with [232]: α = 0.5, β = 0.75,

θ = 100, λ = 600, γ = 88, εb = 0.05, εn = 0.0006, δ = 0.5, η = 0.9995.

0

4
7

0.7

1

3
7

0.6

0.4

0.3

Figure 8.4: The binary automaton experiment proposed by Voegtlin [251] eval-

uates the representation capacity of temporal models.

Compared to MNG, MGNG shows a slight improvement in the representa-

tion capacity as well as a clear advantage in computational time. A total number

of 64 longest sequences could be discriminated by MGNG requiring 69 s, while
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62 sequences have been discriminated by MNG in 131 s, running non-optimized

Java code. Unfortunately, both models cannot distinguish all 100 sequences,

because recursive models that represent the temporal context as a weighted

sum are not able to discriminate between sequences with repeated '0' signals

(such as: 0, 00, 0000...0). Choosing other values like '1' and '2' would improve

the results considerably. We have published more experiments comparing MNG

and MGNG in [5]. To conclude, one can say that MGNG never exhibited worse

accuracy than MNG but reduced the computational time signi�cantly by a fac-

tor of two. Contrary to MNG, MGNG is suited for online learning of time series

because only constant parameters are used. In addition, the combination of

the temporal context and delayed update improves the clustering of continuous

data.

8.2.4 Application to team behavior analysis

We model a soccer game as a sequence of coarse formations to provide a sum-

marization. The dynamics can be represented by a probabilistic automaton

with states consisting of the formations and edges between them. The edges are

labeled with the probability of the transition they denote. MGNG is applied

to construct this automaton automatically. The input data comprise positions

of all players of interest stacked to a vector in a �xed ordering. The selection

of players determines the type of analysis. One can look at a single team or

at both teams to summarize the game. If only players with a speci�c role are

selected, e.g. the defense line, the interplay within this group can be analyzed.

An interesting investigation is formed by the reduction of data to the positions

of a single player with its associated opponent. There are reams of more analy-

ses, all having in common that they are easy to instantiate by simply selecting

a subgroup of players and they result in comprehensible graphs. These facts

emphasize their potential use by nontechnical persons like coaches, because our

approach can be applied as a kind of black box solution. Figure 8.5 depicts

an exemplary analysis of the defense line of a single team. The MGNG was

trained by passing 30 times (epochs) over the trajectories. Parameters were set

as follows: εb = εcb = 0.1, εn = εcn = 0.0001, γ = 50, λ = 30, η = 0.95, θ = 50,

βt = 0.5 and αt = 0.8.

8.3 Grounded Action Models

As already mentioned, this work is part of the Aspogamo research project [23].

The central part of the analysis system of Aspogamo is the acquisition of an

informative model of the observed games. This model is constructed by applying
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Figure 8.5: The probabilistic automaton shown was extracted by MGNG from

a single halftime, selecting the defensive players only. Probabilities of the tran-

sitions are visualized by the line width of their corresponding arrow; the proba-

bility of being in a speci�c state is depicted by the line width of its surrounding

box.

statistical learning to a number of games, resulting in a model of the type of

sports in general. The model provides not only a high abstraction level for

investigating the game as a whole, but also allows performing detailed analyses

of special aspects of the game. The system adapts the model automatically to

data of new games whenever they are available.

The analysis system needs a common interface for user queries. We chose the

Web Ontology Language (OWL) as the interfacing language. OWL constitutes

an instance of description logics (DL) [7]. Description logics exhibit a balance

between expressiveness and complexity because e�cient inference methods ex-

ist, but the language is weaker than �rst-order logics. Classes (also known as

concepts) and individuals, the subclass relationship and the properties of objects

constitute the building blocks of DL. Classes de�ne a group of individuals that

belong together because they share common properties. The classes together
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with the subclass relationship form a specialization hierarchy on classes: the

ontology. Properties represent binary predicates, and can be used to state rela-

tionships between individuals or from individuals to data values. The language

is designed in a set-theoretic manner and is therefore well suited for interrogator-

responder systems (c.f. the OWL Query Language). OWL is speci�ed as XML

and is in common use in the semantic web community.

The game model of Aspogamo is stated in OWL and can be divided into

two parts: the static part, which does not depend on a speci�c game or class of

games, and the dynamic part, which must be adapted for the context it is used

in.

The static part contains the domain knowledge about the speci�c type of

sports as concrete de�nitions that are independent of a speci�c game or game

class. This part can be speci�ed once for the various types of sports and applied

to all games in the same way. It contains general rules and classi�cations, such as

the o�side rule, what a successful shot is or the number of allowed substitutions,

to name only a few examples.

The dynamic part consists of concepts that relate to the same de�nition but

have di�erent speci�cations. For example, the concept of scoring opportunity

has a well de�ned meaning, but depends on the quality of the involved teams.

A given situation would be a scoring opportunity e.g. for a World Cup player,

because he would always score in that circumstance, but it could not be classi�ed

as such for a junior player, for example. So some (unfortunately most) parts of

the model are speci�c to the game, to the teams or to the players and therefore

must be de�ned in relation to their context. We solve this problem by enabling

our system to automatically learn the dynamic part from observed games using

machine learning techniques and given the abstract meaning, which is consistent

through all contexts.

We propose GrAM (Grounded Action Models), a novel integration of actions

and action models into the knowledge representation and inference mechanisms

for tactical sports video analysis. Grounded action models correspond to agent

behavior and can be speci�ed explicitly and implicitly.

The explicit representation is an action-class-speci�c set of Markov logic

rules that predict action properties (Markov Logics is a kind of probabilistic

�rst-order logics and has been proposed as an interface layer for AI by Domin-

gos [57]). Stated implicitly, an action model de�nes a data-mining problem

that, when executed, computes the model's explicit representation. When in-

ferred from an implicit representation, the prediction rules are learned from a

set of training examples, or in other words, grounded in the respective context,

enabling the system to forecast typical behavior in turn. Therefore, GrAM al-

lows for the functional and thus adaptive speci�cation of concepts such as the
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class of situations, in which a special action is typically executed successfully,

or the concept of protagonists that tend to execute certain kinds of actions.

The explicit representation of an action class is seamlessly integrated into the

description logics inference mechanism by taking the highly probable rules (ac-

cording to a threshold) as the concept de�nition.

The implementation of GrAM includes an extension of OWL that allows the

de�nition of classes in a functional manner as well as the equipment of the Java

Theorem Prover (JTP), a hybrid reasoner for OWL, with additional mechanisms

that allow automated acquisition of action models and the solution of a variety

of inference tasks for actions, action models and functional descriptions.

As an example, we examine a model for passes in soccer games. We can

easily specify statically that a successful pass denotes a ball contact by one

player of a team followed by ball contact of another player of the same team.

Unsuccessful passes, however, are much harder to de�ne in a general way. But

we can state that the characteristics of unsuccessful passes should be similar

to passes in regard to ball velocity, the direction the ball was played in, or the

positions of team members and opponents. This de�nition holds for all games,

even if the attributes are highly correlated with the abilities of the players

and therefore depend on the league or competition in which the speci�c game

took place. Transforming this static de�nition into a data-mining task, the

system can learn rules for each league that specify which ball actions should

be considered as passes and which ones rather as shots. Taking the known set

of successful passes, shots and dribbling as training data, a decision tree [196]

or respectively a regression tree [262] is automatically learned for each binary

classi�cation (pass or no pass, shot or no shot, dribbling or no dribbling). The

tree is split into several rules by logical disjunction of the nodes on all possible

paths beginning at the root and ending at a leaf. The abstraction comes into

play by the pruning of the tree, which is part of the learning algorithm to

avoid over�tting. The rules are transformed to descriptions in the ontology.

In this manner, they are integrated into the knowledge base. The description

(consisting of the rules) as well as the concept itself (referring to the classi�cation

of instances), can be transparently inspected.

There is also a second class of de�nitions that contains a dynamic part. Most

of the continuous attributes of actions in team sports are discretized into classes

like slow, normal and fast, or short to long. This is usually done by simple

thresholding at prede�ned ranges. If we look closely at these kinds of concepts,

the sensitiveness to their context becomes evident. The velocity of a fast sprint

in an international competition obviously di�ers from values for a burst of speed

in the minor league. Still, there is a common de�nition that partitions the usual

velocity range in a prede�ned number of parts, naming the part with the highest
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velocities as fast. This partitioning can be achieved by data-mining techniques

called clustering [72], which iteratively �nd a locally optimal subdivision. In

addition, smooth fragmentation can be automatically achieved by using proba-

bilistic assignment to clusters obtained by fuzzy clustering [72]. The partition

and naming of each part is again transformed into descriptions in the ontology

to provide a seamless interface.

All these models, the static and dynamic ones, are accessible to the system

due to their integration in the ontology. Their de�nition and semantics can be

inspected and analyzed by the user, resulting in more alternatives for analyzing

a game and more objectivity, which is due to the transparency of the models.

For example, the user can retrieve the scoring opportunities of the teams and

then analyze how they might arise by interpreting the rules generated for the

concept. A concept for all situations in which the ball was lost could be stated,

and from the resulting rules, some reasons for the failed ball action may be

derived. Clustering situations in which the ball was lost can help in gaining

insights concerning how the opposing team forced the loss of ball possession,

etc.

The proposed framework of GrAM has been successfully transferred to mo-

bile manipulation actions performed by an autonomous household robot in sim-

ulation and reality [238].

8.4 Conclusions

In this chapter, existing methods for tactical sports video analysis based on

trajectories have been surveyed. The approaches cover the three sub�elds of

situational analysis, unsupervised team behavior analysis and classi�cation of

team behavior. We contribute to the state-of-the-art by proposing modeling a

game as a Markov process of player formations. The underlying probabilistic

automaton is extracted automatically by Merge Growing Neural Gas (MGNG),

a novel self-organizing network for time-series clustering. The proposed MGNG

constitutes an extension of LateGNG, incorporating temporal information by an

additional context vector for every cluster prototype. The context vector repre-

sents a fractal encoding of the previously presented sequence elements. MGNG

is able to learn temporal automatons with the same accuracy as state-of-the-art

MNG [232] but in an online manner and with improved runtime performance.

Further, we introduced grounded action models as a novel means of pro-

viding a descriptive logics interface extended by functional descriptions. These

new constructs allow de�nition of context-dependent concepts. Instantiations

of these concepts are deduced by solving data-mining tasks transparently in

the inference process. Grounded action models prescind natural descriptions
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of action-related concepts from speci�c instantiations that may depend on the

skills of the protagonist. This fact is especially bene�cial for modeling sports,

since most of the concepts used are action-related and skill-dependent, such as

scoring chances or room for maneuvers.



Chapter 9

Conclusions

This dissertation has presented a thorough investigation of automated track-

ing for sports video analysis. We summarize the work of this thesis in the

next section, recapitulating the contributions afterwards. Finally, we present

an overview of future work.

9.1 Compendium

This dissertation has investigated real-time tracking systems of identities in

sports videos for computer-aided analysis. The work was motivated by the need

for automated analysis and indexing in the ever growing multimedia databases as

well as by various concrete applications within sports. The research was indexed

as a cognitive system that touches various sub-�elds of arti�cial intelligence and

computer vision.

We proposed a distributed cognitive framework for tracking systems in sports,

pointing out the main components and their interconnections. Several informa-

tion sources provide evidences about locations and identities of players; their

fusion is done according to probability theory and the Bayesian approach. The

idea of a bootstrapping system was introduced, in which player models are built

and adapted online and evidence is distributed over the di�erent information

sources.

With this large picture in mind, the complete data processing cycle was in-

vestigated, ranging from acquisition of the input signal to the supply of abstract

sports video analysis.

After an overview of passive and active sensors, we focused on signals cap-

tured by static as well as dynamic standard cameras and broadcasted material

for the remainder of the thesis. The detection of players in sports videos is

achieved by foreground segmentation. After a review of general methods for

169
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this task, a robust approach for segmentation and localization of athletes in

soccer videos was detailed as a specialized preprocessing step, exploiting the

homogeneity of the green.

Because temporal and spatial consistency allow for the concept of identity

in the �rst place, this constraint is utilized to track and fuse evidences about

identities. We proposed the Rao-Blackwellized Resampling Particle Filter as

an innovative and general multi-target tracking algorithm. Assumptions and a

theoretical derivation of this variant of an SIR particle �lter were explicated in

detail. A �exible approach to restrict the multiplicity of measurements assigned

to a single target was integrated in the tracking framework. We went into

implementational details because the real-time claim demands e�cient methods,

especially for this time-critical process. Parallel computation and computational

adaptivity to the uncertainty in the association is a design feature of RBRPF

that helps keep runtime low; the complexity analysis revealed linear runtime in

the number of measurements and targets. We demarcated our RBRPF approach

of the state-of-the-art in theory and praxis. The performance of the proposed

method was demonstrated in simulation, in basketball as well as in ant tracking

experiments.

Because team sports athletes are usually assigned speci�c roles, which man-

ifest themselves in spatial arrangements, we considered the use of positions for

identifying players. Several methods based on relative and absolute position

models were developed and compared according to their performance in de-

termining the correct label for each team member. Relative sorting based on

tactical line-ups gathered from TV or the web was revealed to be the method

of choice for initializing the tracker at kick-o�s. Learned models representing

absolute spatial information can be utilized as soon as su�cient data are avail-

able. Statistical aggregation and vector quantization were considered in regard

to building such models online. We introduced LateGNG as an extension of

growing self-organizing neural networks for the automated abstraction of con-

tinuous data. The learning of complete formations by LateGNG performed best

in identi�cation, while individual position clusters provided by LateGNG are

suited for this task if only partial data are available for learning and classi�ca-

tion.

Further we researched the usefulness of appearance for automated associa-

tion of foreground regions to player labels. Two approaches were considered:

color histograms and the complete texture provided the space for nearest neigh-

bor search. Although both methods are e�ective for representing the individual

characteristics of the athletes, players of the same team are often hard to distin-

guish. Color information was shown to be superior to texture for identi�cation

due to the high variability of appearance of each player over time. As expected,
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the identi�cation rate decreases together with the resolution of the players.

While the proposed methods of each processing step were evaluated sepa-

rately, experiments with challenging soccer video sequences demonstrated the

e�ectiveness of the system as a whole. Three possible scenarios were investi-

gated: multiple static cameras capturing the playing �eld in parallel, a single

panning, tilting and zooming camera and broadcasted material. We provided

comprehensible performance metrics for tracking soccer matches in full length

and covering all kinds of exceptions from typical play.

Finally, the use of the gathered trajectories for tactical sports analysis was

examined. We proposed Merge Growing Neural Gas (MGNG) for online clus-

tering of time-series. The self-organizing MGNG network was used to extract

probabilistic automatons of formations which summarize team behavior as a

Markov process. The subset selection of the players provides a rich although

simple source for comprehensive behavior analysis. An information retrieval sys-

tem based on description logics allows de�ning context-related concepts of the

speci�c sports domain in a general form, abstracting away from the skill level

present in speci�c games. We explained how these concepts can be integrated

into the inference process by transparently solving data-mining tasks.

9.2 Contributions

This thesis contributes to the current research in cognitive systems by imple-

menting a computer-aided video analysis system for soccer. The process run

includes the robust extraction of player regions, player localization and tracking

as well as adaptive re-identi�cation by appearance and player role. All of these

tasks can be computed in real-time. The resulting trajectories can be automat-

ically summarized to analyze team behavior. In addition, a conceptualization

framework combining logics and data-mining allows for further analyses. This

dissertation is the �rst to present experimental results on full length soccer

games. The system has shown to be applicable for challenging video footage

recorded in various setups, also including broadcasted material. The 22 players

and the referee can be correctly tracked for about 86% of the time.

Along the way, several general methods were developed or extended in an

innovative way:

We proposed the Rao-Blackwellized Resampling Particle Filter as a multiple

target tracking method, estimating formations based on the sampling of associ-

ations. A thorough deduction from Bayesian theory was given which explained

the assumptions made. This approach is suitable for real-time tracking since its

runtime complexity is linear in the number of measurements and targets due

to smart resampling and memoization. Experimental results of di�erent chal-
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lenging domains demonstrated the generality of our approach and revealed its

supremacy over current state-of-the-art algorithms.

Novel incremental methods were developed to identify players based on their

appearance or spatial relationships between them. Among other things, a self-

organizing growing neural network approach was extended to achieve an adap-

tive vector quantization online. The improved networks can cluster continuous

data and time-series incrementally. In addition to their ability to build models of

appearance and positions for identi�cation, they were utilized for unsupervised

team behavior analysis and to form a general unsupervised learning tool.

9.3 Outlook on Future Work

Xu et al. [265] identi�ed four future topics in sports video analysis: cross-media

semantic annotation and retrieval, generic solution and knowledge integration,

robust performance on large scale test data as well as user study and personal-

ization. Despite the fact that this thesis contributed to all of these topics, many

open issues remain for future research.

The framework and algorithms presented can be transferred to the �eld of

surveillance. The main di�erence to sports is that the assumption of a �xed

number of targets (closed world assumption) must be dropped. The necessary

steps for extending RBRPF to track birth and death have been outlined in sec-

tion 4.1.2, but the approach remains to be evaluated empirically. Additionally,

alternative foreground segmentation methods must be applied as described in

section 3.3. We expect a better identi�cation rate based on appearance for

surveillance, because the targets will not be as similar as soccer players of the

same team.

We already mentioned how ball tracking and action recognition could im-

prove player identi�cation. These tasks, however, cannot be solved in isolation

to provide evidence, but are intertwined with player tracking and require bidirec-

tional communication. As our framework suggests, many preprocessing results

can be shared between these modules. In contrast to player tracking, ball track-

ing requires handling long periods of continuous occlusion and the modeling of

positions and motions in three-dimensions.

Because adaptivity is desirable in many applications, we need to understand

bootstrapping systems and self-reference in more detail. Although such systems

have been modeled by attractors of di�erential equations already, implications

for the design of arti�cial systems remain open. Practical conditions for the

stability of such systems are required to ensure their reliability.

The tracking and fusion process may still be improved in di�erent ways.

Variable-Bandwidth Density-based Fusion (VBDF) [51] states an alternative to
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the Kalman update for the merger of multiple measurements, which are associ-

ated with a single target. VBDF results in positions and covariances of fused

estimates that better �t intuition and therefore may improve tracking results.

The runtime for this time-critical step must be evaluated. Incorporating learned

motion models for players into tracking can improve prediction of their positions

� especially for times when they are outside the �eld of view � and therefore

ease the sampling of associations. Despite their potential for tracking, they will

also be of interest for physiotherapists and sports medicine. A prerequisite is

a su�cient training set of trajectories covering all common motions. The chal-

lenge is to segment the trajectories into smaller pieces without global or future

information being available. In addition to these improvements, measurements

could be discarded if the localization module is given the expected number of

measurements to detect inside a region. In this way, the idea of negative infor-

mation handling could also be extended to long-lasting occlusions that are due

to tight man-marking. The e�ect of this stronger connection of tracking and

localization remains to be evaluated, however.

There are various unconsidered image features that can be used for identi-

fying players at a distance by their appearance as well. Texture can be repre-

sented as a bag of features, or the popular SIFT [165] or SURF [21] can be used.

Although these features are mainly designed for rigid and highly structured ob-

jects, and preliminary experiments with SURF have shown discouraging results,

a clever combination of these could reveal their potential to identify non-rigid

players in foreground regions. Alternatively, our proposed identi�cation by color

histograms could be extended towards spatial information by partitioning the

region and creating separate histograms for each sub-region. Polar histograms

could be used as well, subdividing the region into segments of a circle and pos-

sibly providing a more promising approach. Independent of the models used,

various two-dimensional views of the same player could be exploited to extract

a textured three-dimensional model of this player for improved identi�cation or

later visualization.

Despite their inspiration by nature, self-organizing networks are often said to

su�er from high computational requirements. The search for the best matching

unit inside the self-organizing networks constitutes the step that demands most

runtime for learning as well as for classi�cation. This step could be accelerated

by the use of approximate nearest neighbor search. We did some preliminary

experiments transforming the images into the (Haar) wavelet domain and there-

fore enabling a kind of hierarchical search. This is advantageous because the �rst

pixel in the wavelet domain contains the coarse information and further pixels

entail more and more details. However, not only the data but also the update

step itself must be transferred to the wavelet domain because the computations
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of wavelet transforms of the nodes and their inverse cancels the computational

surplus gained from accelerated search. Alternatively, the Hilbert encoding [45]

of data as described by [1] could be used for faster nearest neighbor search.

Thus, transfer of the update step into the new domain forms the crucial point

as well.

Spatial data gathered by tracking systems open a rich source for countless

kinds of analyses. Future research must develop innovative (semi)-automated

methods for higher level abstractions of the gathered trajectories. The analyses

should be non-parametric or intuitively adjustable in nature to be accepted in

practice. Xu et al. [265] remark, that �[o]ne limitation of current sports video

analysis research and sports video services is [that they seldom] consider users'

real needs.� Therefore, the collaboration of sports science and informatics must

be intensi�ed: sport scientists should put more e�ort into formal and mathe-

matical modeling of sports and attach it to what is technically feasible, while

computer scientists should look more for the demands in the �eld and investi-

gate novel frameworks for solving the real (albeit di�cult) problems instead of

solving problems determined by currently popular frameworks.
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