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Determinants for successful reforestation of abandoned pastures in the 

Andes: soil conditions and vegetation cover 
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The Andes of Ecuador are known for their outstanding biodiversity but also as the region with 

the highest deforestation rate in South America. This process is accompanied by accelerating 

degradation and loss of environmental services. Despite an extraordinary richness in native 

tree diversity, more than 90 % of all forest plantations established in Ecuador consist of exotic 

species, primarily Eucalyptus spp. and Pinus spp. This is mainly due to the lack of 

information about the autecological and synecological requirements of the native species.  

The present study aims at providing basic knowledge on the early height development of 

native species in comparison to exotics. 12,000 seedlings of exotic and native species were 

planted in experimental trials at three sites of different successional stages: recently 

abandoned pastures (Setaria sphacelata), bracken (Pteridium arachnoideum) and shrubs. 

Results presented in this study refer to the status of the seedlings three years after planting. 

Soil data were revealed from soil core analysis from a total of 1008 soil samples distributed 

systematically over all plots. Soil chemical data derive from a subsample of 125 randomly 

selected soil core sites. Soil properties in the study area emerged to be extremely 

heterogeneous. More than 60 % of all plots presented two or more soil clusters. Soils in 

general were very poor in plant available N. Soil heterogeneity affected extractable Mn and 

Mg, dominating vegetation cover in turn affected Mn and P. Differences in soil properties had 

a strong effect for Eucalyptus saligna and Alnus acuminata. Manual above ground weeding 

showed species specific effects: Tabebuia chrysantha and Heliocarpus americanus showed 

improved height growth, while that of Cedrela montana was reduced. There is evidence that 

Alnus acuminata can compete in growth with exotic species. Early successional species and 

exotics performed best on pasture dominated sites. Height growth of the mid successional 

species Cedrela montana was facilitated by bracken fern under certain soil conditions, and 

shrubs facilitated growth of Tabebuia chrysantha. The results indicate that reforestation with 

native species in Ecuador is possible but requires intensive consideration of interactions with 
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soil properties and accompanying vegetation. Macroscopic soil core analysis can be a suitable 

instrument for detecting small scale variation of soil properties. Nevertheless, a 

characterisation of both small scale variation as well as variation on higher spatial scales, for 

instance by aerial photographs, is essential for effective planning of reforestation measures in 

the Andes.  

 

Key words: reforestation, native species, soil, site factors, competition, Andes, montane 

forests 

 

Introduction 

Tropical mountain forests in general and the Ecuadorian Andes in particular are known for 

their outstanding biodiversity (Brummit & Lughada, 2003). Besides their richness in vascular 

plants, the montane forests of Southern Ecuador even hold some world records of diversity, 

for instance for bryophytes (Parolly et al., 2004) and geometrid moths (Brehm et al., 2005). 

However, this exceptional diversity is threatened by habitat loss as a result of the highest 

deforestation rate within South America (FAO 2006, Mosandl et al., 2008). Thus, two aspects 

in this context deserve major attention: resolving the causes for deforestation and fostering 

reforestation activities.  

The deforestation cycle in the South Ecuadorian Andes is usually initiated by extraction of 

high value timber species, resulting in an economical degradation of the forest value for the 

land users. Similar to other areas in the tropics (Otsama et al., 1995; Hooper et al., 2002), 

these forests are burned and converted into pastures for cattle raising (Mosandl et al. 2008). 

Frequent burning of the pastures reduces germination, growth and survival of tree seedlings 

(Hooper et al., 2002) and frequently leads to degraded landscapes, dominated by bracken fern 

Pteridium arachnoideum. The introduced pasture grass Setaria sphacelata is frequently used 
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in our study area due to its high productivity (Rhoades et al., 2000; Makeschin et al., 2008). 

Both grasslands and bracken are described to be major barriers for the establishment of tree 

seedlings (Holl, 2002; Hartig & Beck, 2003; Griscom et al., 2007).  

Tropical ecosystems are not only important refuges for biodiversity (Barthlott et al., 2005) but 

play also an existential role for livelihood as indicated by the heavy deforestation (Stoian, 

2005; Quang & Nato, 2008). Thus, the need for subsistence is a major driver for deforestation 

(Davidar et al., 2007, Wunder, 2000; Lopez, 2006). The success of reforestation efforts 

strongly depends on species that can fulfil the demands of the people and cope with the given 

site conditions and predominant competing vegetation.  

Today, about 90% of all forest plantations in Ecuador consist of introduced species (FAO 

2006), mainly Eucalyptus spp. and Pinus spp.  (i.e. E. saligna, E. globulus, P. patula, P. 

radiata). This can be explained by the good availability of planting material, existence of 

clear silvicultural management concepts, proven good productivity, but also the lack of 

knowledge regarding the silvics of the native species (Stimm et al., 2008). It is known that 

plantations with exotic species can facilitate secondary succession of native species 

(Brockerhoff et al. 2008, Feyera et al. 2002). However, large-scale exotic plantations lead to 

landscape homogenization (Lamb et al., 2005), and can even raise ecological problems, for 

instance with soil properties (Islam et al. 1999), fire susceptibility, stability, diseases and low 

diversity (Manchester & Bullock, 2000, D´Antonio & Meyerson, 2002, Lamb et al., 2005).   

Unfortunately scientific studies on reforestation in Ecuador particularly with native species 

are very sparse (Brandbyge & Holm-Nielsen, 1986, Knoke et al., in press). Therefore, 

comparative studies with exotics and native species are of major importance. A special focus 

has to be given to the synecological and autecological site requirements of the native species 

as how a species accommodates itself to the environmental conditions at a given site is 

keystone to ensuring low mortality and good growth performance. However, autecological 
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requirements depend strongly on soil properties, while synecological requirements depend on 

the surrounding vegetation. Consequently, for best planting success both aspects must be 

considered (Evans & Turnbull, 2004, Lamb et al,. 2005).  

Surrounding vegetation can either facilitate (e.g. nutrient input of litter, shading effects) or 

hamper growth of planted trees (e.g. light or root competition). Competition can be regulated 

by several measures (e.g. weeding, plowing, herbicides, fertilization) to optimize the growth 

of naturally regenerated or planted seedlings (Evans & Turnbull, 2004). Another option is to 

take advantage of the facilitating effects of the surrounding vegetation by choosing tree 

species whose synecology corresponds to the situation at the given site. For instance, the fast 

growth of most exotic tree species can be attributed to their early successional (pioneer) status 

(Sawyer, 1993). It is well established that mid and late successional species have completely 

different physiological behaviour than early successional species (Bazzaz & Picket, 1980) and 

thus should respond to different vegetation stages of planting sites (Dobson et al., 1997; 

Parrotta & Knowles, 1999; Ashton, 2001; Feyera et al., 2002; Piotto et al., 2004; Kelty 2006).  

While the successional stage of a site can easily be revealed from field surveys or satellite 

imagery, it is much harder to consider the tremendous variation in the micro-site conditions as 

they prevail in the Ecuadorian Andes. In Mid Europe macroscopic soil core analysis is a 

proven valuable instrument for determination of suitable planting sites (Arbeitskreis 

Standortskartierung, 2003). However, there is limited knowledge regarding if these techniques 

can be transferred to the complex neotropical montane ecosystems. 

For detection of synecological requirements, we established experimental reforestation trials 

on abandoned pastures comparing exotic species with native species of different successional 

status. These were planted on three sites along a successional gradient in the montane forest 

ecosystem of Southern Ecuador. In the following text the term “successional status” will be 

used for the planted trees, the term “successional stage” in turn will be used for the 
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surrounding vegetation. The autecological requirements and their interactions with 

synecological requirements were detected by soil core analysis.  

The specific objectives of the study were to detect (1) effects of above ground weeding on the 

height development of planted tree species, (2) species-specific reactions to successional sites, 

(3) if macroscopic soil core analysis is a suitable method for predicting differences in height 

development, (4) if macroscopic soil core analysis can reveal differences in soil chemical 

properties, (5) possible interactions between dominating vegetation cover and soil properties. 

 

Materials and Methods 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

Study area 

The field experiment was conducted from 2003 - 2006 at the research station “Estación 

Científica San Francisco” at km 34 along the road from Loja to Zamora in South Ecuador. 

The station is geographically located at 3° 58’ 17.21’’ south, 79° 04’ 44.08’’ west at an 

elevation of 1840 m a.s.l. The study area is characterised by perhumid climatic conditions 

with 2200 mm annual rainfall and a slightly drier season around November. Average 

temperature is 15.3 °C with a very low annual fluctuation (1.2 °C) compared to the mean 

daily fluctuation (11.1 °C) (Bendix et al., 2006). Two dominant groups of rocks were 

identified for the study area: meta-siltstones/-sandstones/quartzites and slates/phyllites 

(Makeschin et al., 2008). The key elements for distinguishing the rock types are Al, K, Mg, 

Fe, Na, and Ca dependent from the mineral content. Makeschin et al. (2008) state that forest, 

pasture and sites with secondary vegetation of the study area are comparable in a priori soil 

mineralogy. Dominant soil types in the forest are Cambisols and Histosols (Wilcke et al., 

2008), those under pastures and secondary vegetation Cambisols, Podzols, Gleysols, whereby 

podzolisation dominates gleyic processes under pastures (Bahr, 2007). The soils display a 

high degree of small-scale heterogeneity (Wilcke et al., 2002). Natural disturbances like land 
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slides further increase the soil heterogeneity in the study area. (Wilcke et al., 2003). 

Anthropogenic replacement ecosystems recovering from slash-and-burn can be stratified into 

three major vegetation types (Martinez, 2008), which constitute a successional gradient from 

pasture, bracken to the shrub stage (Hartig & Beck, 2003), according to hypothesis (2) and 

(4). In each of these successional stages, four hectares were delineated for the establishment 

of experimental reforestation plots (Aguirre, 2007):  

a) “pasture”: 1800-2100 m a.s.l. (UTM coordinates 713475, 9560931), average 

inclination of 53 % (6-90), aspect South, dominated by the grasses Setaria sphacelata, 

Melinis minutiflora, Axonopus compressus,  

b) “bracken”: 1850-2100 m a.s.l. (UTM coordinates 714299, 9561044), average 

inclination of 69 % (10-90), aspect South, dominated by Pteridium arachnoideum, 

Ageratina dendroides, Baccharis latifolia,  

c) advanced successional stage “shrub”: 2000-2200 m a.s.l. (UTM coordinates 712269, 

9560293), average inclination of 44 % (5-55), aspect South, dominated by Ageratina 

dendroides, Myrsine andina, Brachyotum sp. 
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Study species 

We selected tree species from three different ecological groups (hypothesis H 2). The 

nomenclature follows Jørgensen and León Yanéz (1999). Heliocarpus americanus and Alnus 

acuminata are fast growing species of early successional status in their natural habitat. The 

mid successional species Tabebuia chrsyantha, Juglans neotropica and Cedrela montana are 

characterised by a very high timber value. Pinus patula and Eucalyptus saligna as exotic 

species are widely used for reforestation in Ecuador.  
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Experimental settings 

The experimental setting follows a randomized block design with different successional 

stages as blocks. Species and treatments are completely randomised. The three blocks have 

same altitude, same aspect, identical soil clusters (Fig. 3) and are located in the same valley at 

distances of less than 3 km between each other, so that climatic differences can be neglected. 

Thus, possible differences of tree development between blocks can mainly be attributed to 

effects of the dominating vegetation.  

Seeds of the exotic species were purchased from the local seed market; those of the native 

species were collected in the adjacent primary forest from at least 10 dominant healthy 

individuals with well developed crowns and straight stem forms and raised under semi-

controlled conditions in our experimental nursery in Loja (Stimm et al., 2008). The mean 

temperature of 15° C corresponds closely to the environmental conditions of the reforestation 

areas. After germination, the seedlings were transplanted into 560 cm³ polyethylene 

containers with a substrate that consisted of a 2:1:1 mixture of mine sand, Páramo humus and 

forest humus. Before planting to the field, all seedlings were subject to a two-month 

hardening phase in the nursery.  

In total, 336 plots were established, with 112 plots randomly distributed per successional 

stage. On each plot of 10.8 x 10.8 m, 25 seedlings were planted between May and September 

2003 with a spacing of 1.8 m and with 8 repetitions per species and treatment. In the present 

study we present the growth data of 3 years after planting. Before planting herbs, grasses and 

ferns were eliminated on all plots by machete, only woody vegetation was not removed. On 

half of the plots this weeding treatment was repeated every 6 months for 2 years, the 

remaining half was left as reference without further treatments (according to H1). 

Consequently, the experimental design for the reforestation is: 7 species x 3 successional sites 

x 2 weeding treatments x 8 repetitions = 336 plots.  
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 3, H 4, and H 5). Therefore we extracted three soil samples per reforestation 

plot using a soil core “Pürckhauer”. Every soil sample was extracted between four 

surrounding tree seedlings at fixed positions within the plot, at distances of 0.9 m between soil 

sample and plants. For each soil horizon the following parameters were recorded in the field, 

applying the guidelines of Arbeitskreis Standortskartierung (2003): size (cm), texture, colour 

by Munsell (Hue, Value and Chroma), stone content, root intensity, bulk density, and pH 

(H2O). Besides the soil core parameters, we registered also the site factors of inclination and 

altitude for every soil sample. In total, we analyzed 1008 soil core samples (336 plots x 3 soil 

core samples).  

For further chemical analysis, 125 soil samples were extracted randomly from all mineral soil 

horizons of the 1008 soil core sites by digging a soil pit for each sample. Soil samples were 

oven-dried at 40°C. All samples were homogenized. CEC and pH were analysed on soil 

fraction <2mm. C and N were analysed on ground soil material (smaller than 63µm). 

Effective cation exchange capacity (CEC) was calculated by percolation with 0.5 N NH4CI-

solution at pH 4.3 as sum of exchangeable Ca, Mg, K, Na, Mn, Al, and Fe  (see Lüer & 

Böhmer, 2000). Base saturation was calculated as the proportion of charge equivalent of 

extractable Ca+K+Na+Mg of the effective CEC. Plant available P was extracted by citric acid 

after VDLUFA (1991). The concentrations of organic C and N were determined with a CHNS 

analyzer. In order to detect whether different site clusters, based on macroscopic soil core 

analysis, can reveal differences in chemical parameters (hypothesis H 4), an additional two-

factorial, univariate ANOVA was conducted separately for horizon A, B and subsoil.  For 

analysis of individual chemical soil parameters as dependent values we defined site cluster 

(cluster 1-3) and vegetation units (pasture, bracken, shrub) as the two major independent 

factors and analyzed the other chemical parameters as covariates.  
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Data processing 

According to the top height approach, which is frequently used for characterisation of site 

potentials (Sharma et al., 2002), we analyzed the growth of the highest plant out of the four 

seedlings surrounding each of the soil core samples. This corresponds to the top height of the 

25% highest plants. Additional parameters like root collar diameter, leaf area, etc. were 

measured, too, but as the aim of the present study is to characterize the site potential for tree 

growth we chose the top height approach. 

A factor analysis was used as a starting point (SPSS 16.0) in order to reduce the number of 

variables by building background factors which are correlated to the initial variables. The 

model with the best adaptation (Kaiser-Mayer-Olkin value =0.688, Bartlett test p<0.001) and 

concomitantly lowest number of components (n=5) could explain 63% of the variation. All 

variables were standardized before analysis. For the extraction of the factors we used the 

principal component analysis. We only included factors with Eigenvalues > 0 into the model. 

(Table 1). The corresponding factor values were attributed to each soil core sample.  

In hypothesis H 3 and H 4 we wanted to investigate whether differences in macroscopic soil 

parameters can reveal differences in height growth. Thus by conducting a cluster centre 

analysis, the five factors resulting from factor analysis were clustered into three groups with 

highest possible similarity of factor combinations within and highest possible differences 

between the groups.  

The growth of the 25% highest plants was used as the dependent variable for two different 

ANOVA models.  

Firstly: independent variables for a three-factorial ANOVA on the species level: site factors as 

result from cluster analysis (cluster 1-3), vegetation units (pasture, bracken, shrub), above 

ground competition (with above ground weeding and without).  
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Secondly: independent variables for a, four-factorial ANOVA: successional status of planted 

trees (early successional, mid successional, exotic tree species), site factors as result from 

cluster analysis (cluster 1-3), vegetation units (pasture, bracken, shrub), above ground 

competition (with above ground weeding and without). 

 

Results 

Management of aboveground competition (H 1) 

The multifactorial ANOVA (light ecology, vegetation cover, site cluster, weeding and 

interactions) did not reveal any effect of aboveground weeding neither as independent factor 

nor as interacting factor. However, on the species level, Cedrela montana reacted 

significantly negatively to weeding as single independent factor (p=0.015); Heliocarpus 

(p=0.053) and Tabebuia chrysantha (p=0.055) in contrast reacted positively (see Fig. 1). 

Aboveground weeding of Cedrela montana interacts on a lower significance level with 

vegetation cover (p =0.07, Fig. 2) and with site cluster plus vegetation cover (p=0.084)). 

Pinus, in contrast, showed significant response only for the interaction vegetation 

cover*weeding (p=0.026), but the effect is rather poor (Fig. 2). It is notable that weeding 

under shrub cover had no effect for any species.  

 

Species-specific differences between successional sites (H 2) 

The vegetation cover had significant effects (Fig. 1) for the three species Alnus acuminata 

(p=0.001), Pinus patula (p<0.001) and Eucalyptus saligna (p<0.001), with Tabebuia 

chyrsantha almost reaching the significance level (p=0.054). Alnus and Pinus behave like 

typical early successional species with the significantly best height growth on the pasture site. 

Tabebuia chrysantha showed the opposite behaviour, with best growth on shrub followed by 
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bracken and least on the pasture site. The exotic species Pinus and Eucalyptus are the only 

species that reacted poorly on the bracken site, where in contrast Heliocarpus and Juglans 

surprisingly showed the best height growth. However, vegetation cover in general had no 

significant effect for the latter species.  
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Soil core parameters as predictor for top height of planted trees (H 3) 

Based on soil and site parameters obtained directly from the field, we could identify three 

different site clusters. The frequency of plots with homogeneous site conditions was relatively 

low; in more than 60 % of all plots with dimensions of only 10.75 m x 10.75 m we could 

identify two or more site clusters. The three site clusters were present in all the three 

successional stages. However, Cluster 3 prevailed at the shrub and bracken sites, while for the 

pasture, Cluster 1 had the highest frequency (Fig. 3).  

The differences between the soil core parameters were relatively small. The pH under shrub 

(5.1±0.03, mean and STE) was slightly lower than under pasture (5.2±0.01) and bracken 

(5.3±0.02). Cluster 3 is characterised by a slightly taller A-horizon and higher silt and clay 

proportions in the first two horizons. Cluster 1 is slightly steeper and sandier than the others. 

Cluster 2 is intermediate with all parameters with the exception of a slightly lower pH than 

the other clusters (Table 2).  

Despite these relatively small differences in parameters revealed directly from soil cores in 

the field, significant differences could be revealed for Eucalyptus (p=0.015) with Cluster 3 

showing the best height growth. Alnus, Cedrela, and Tabebuia however, performed best on 

cluster 1 (n.s.). Alnus and Eucalyptus showed the biggest difference (almost by a factor of 2) 

between the means of their best and worst site clusters, whereas Pinus, Juglans and 

Heliocarpus showed almost no differences between the site clusters (Fig. 1).  
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Macroscopic soil core analysis as predictor for chemical soil properties (H 4) 

Despite relatively low differences in parameters derived directly from macroscopic soil core 

analysis, pronounced differences in several chemical parameters could be identified for the 

site clusters. For instance, cluster analysis revealed significant differences in chemical soil 

properties for Mn and Mg in the B-horizon and the C-N ratio in the subsoil (Table 3). While 

site cluster 1 is characterised by higher extractable Mn and lowest K values, site Cluster 3 

shows higher extractable K and plant available P (Table 3). Site Cluster 2 exhibits lower 

available P, and on the pasture site significantly higher C-N ratio in the subsoil in comparison 

to Cluster 2 and 3 (p=0.035).  

The dominating vegetation cover on the successional sites had a significant effect on P and 

extractable Mn in the B-horizon. Pastures showed high P concentrations in the first two 

horizons, and high extractable Ca and K. Bracken stages in contrast were richer in extractable 

Mn, Mg, and N (Table 4) and poor in available P. In general the Al concentrations were very 

high, accompanied by low base saturation. The base saturation in the A-horizon follows the 

succesional gradient from pasture, bracken to shrub stage. It is notable that the shrub stage in 

general had very low C and cation values in the A-horizon in comparison to the other 

successional stages. 

 

Interactions between successional stage, site cluster and above ground weeding (H 5) 

It is notable that both, successional status of planted species and stage of surrounding 

vegetation had a significant effect on the height growth of planted trees as single factors and 

as well as interactions (p < 0.001). Exotic species performed significantly better than light 

demanding species. Mid successional species performed in general worse than light 

demanding species but significantly only on pastures. For exotic species and the light 
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demanding species the earliest successional stage “pasture” is by far the best environment. 

However it is important to note that no species group showed significant differences between 

the advanced successional stages “bracken” and “shrub”. In contrast to exotics and light 

demanding species, mid successional species performed worse on pastures than on other 

successional stages, but this effect was not significant. 

Fig. 4 shows that exotic species perform significantly the best on pastures and site cluster 3, 

which in contrast is the worst site cluster for the light demanding species on the pasture site. 

This highlights the importance of deliberate matching of site conditions and successional 

stage for successful reforestation. The differences between site clusters are relatively low for 

the other successional stages and for the mid-successional species. Including “weeding” in the 

analysis as an additional factor results in tremendous differences between the treatments. For 

example, the best environmental setting for Cedrela (p=0.84, Fig. 5) is site cluster 1 in the 

bracken stage without mechanical weeding (74.0 cm). However, in the bracken and pasture 

stage cluster 2 also results in acceptable growth with 38.3 cm and 57.3 cm respectively.  

Planting in the shrub stage or weeding lead to very poor growth for all site clusters with this 

species.  

 

Discussion 

Above ground competition and performance of planted tree species (H 1)  

Suppressing weedy vegetation is recommended as one technique for assisting natural 

regeneration (Shono et al., 2007). As small scale farmers in developing countries often cannot 

afford the investment in chemical site preparation, manual weeding will continue to play an 

important role, especially for reforestation measures by land users who depend on livelihood. 

Grasses, bracken fern and many other competing plants survive manual above ground 
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weeding and resprout quickly (Hooper et al., 2002). Thus, the ecological effect of this 

management technique on abandoned pastures is mainly limited to control of light conditions.  

In the present study the enormous investment in the manual control of the competitive 

vegetation was not compensated for by appropriate height growth of the seedlings, except in 

the cases of Tabebuia chrysantha and Heliocarpus americanus. As Eckert (2006) revealed, 

chemical treatment of the ground vegetation with glyphosate was much more efficient than 

manual control for Cedrela and Tabebuia. However, similar to plowing, large scale 

application of herbicides on the steep slopes of the Andes may lead to higher erosion and 

disturbances of the water budget (Evans & Turnbull, 2004) and consequently should be 

restricted to areas with lower slope angles only.  

Growth rates of Cedrela apparently suffered under the manual weeding which may be an 

effect of reduced shading and subsequent drought stress during the dry season, and high root 

competition (Castro et al., 2002; Eckert, 2006; Weber et al., 2008). In the old-growth forest 

adjacent to the reforestation site, Cedrela already showed drastically reduced growth when 

canopy openness exceeded 30 % (Kuptz et al., unpublished data). These findings are 

supported by Uhl (1987) who found that especially large seeded and more shade tolerant 

species have poor performance under the higher irradiances, higher temperatures and 

decreased humidity characteristic of such patches. Similar to the behaviour of Cedrela in our 

study area, many native species also reacted negatively to mowing in reforestation trials in 

Sacharum grasslands as a result of increased radiation (Hooper et al., 2002). Thus, these 

environmental factors are the most likely behind the poor development of Cedrela and 

possibly Juglans in our mowed plots, too.  

Davidson et al. (1998) found much better growth for Heliocarpus americanus in northern 

Ecuador than did we. This can mainly be attributed to their initial herbicide treatment with 
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glyphosate prior to planting. Eckert (2006) showed clearly that tree growth in pastures is 

much better after glyphosate treatment in comparison to mechanical weeding.  

 

Species-specific differences between succesional sites (H 2) 

In conventional reforestation activities, trees are usually planted directly in areas that are 

manually or chemically cleared or burned. These conditions may be more favourable for 

pioneer and many exotic species but not for mid and late successional species. It is not yet a 

very well established reforestation measure in the tropics to adapt tree species to the 

successional stage of the dominating vegetation at the reforestation site (Dobson et al., 1997; 

Wishnie et al., 2007, Lamb et al., 2005). The widespread intensive site preparation prior to 

planting and the corresponding limitation to monocultures of early successional and exotic 

species are some of many obstacles for the establishment of mixed forests with high 

biodiversity. Some studies have already proven that for the tropics, a combination of early and 

late successional species can provide ecological and economical benefits (Parrotta & 

Knowles, 1999; Ashton et al., 2001; Kelty 2006). Many valuable timber species belonging to 

the mid successional group require a slight shelter, in our case Cedrela montana, Juglans 

neotropica and Tabebuia chrysantha. Thus, one key question for the consideration of these 

species in reforestation measures is which successional stage and which combination of site 

factors corresponds best for which species? Besides the obvious advantages for biodiversity, 

planting one or several valuable tree species into an area of advanced natural succession 

(enrichment planting) could provide a facilitating effect for the establishment of the plants 

(Vandermeer, 1989; Carpenter et al., 2004), and a more effective recovery of soil properties 

(Zheng et al,. 2005).  

Some authors assume that bracken hinders reforestation (Humphrey & Swaine, 1997). Our 

data show that this is not valid for our mid-successional species. In general, these species 
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performed similar or even better under bracken or shrubs in comparison to pastures (Fig. 2 

and Fig. 5). Under cluster 1 conditions (high Mn, low P) Cedrela montana achieved best 

height growth at the bracken site (high N, Mg, Mn, and low available P, Fig. 6). It is 

surprising that the mid successional species could not profit more from the environmental 

conditions at the shrub site. This can possibly be attributed either to the inferior shading 

capacity of the shrubs compared to the dense cover of bracken (Humphrey & Swaine, 1997) 

or to reduced nutrient supply in the soil due to higher plant uptake by the shrubs. External 

factors like microclimate, which could not be included in the experimental settings as 

covariables could also cause differences between the experimental blocks, which consist of 

the three succesional stages (Nepstad et al., 1990; Vieira & Nepstad 1994; Aide et al., 1995). 

Thus, the influence of ths dominating vegetation cover has tioo be discussed with caution. 

The height growth of light demanding and exotic species at the shrub site was also not 

convincing (Fig. 5) indicating that this site may be characterized by generally poorer 

environmental conditions.   

Pastures can be very competitive and cause high mortality and slow growth of tree species in 

many cases (Otsamo et al., 1995, Pedraza & Williams-Linera, 2003). Despite higher root 

competition on pastures, some tree species apparently grow better in grasses than under 

shrubs. This can be explained by possible allelopathic effects of shrubs, differences in root 

depths and fine root density (Gerhardt & Frederikkson, 1985; Sun et al., 1995; Holl, 1998). 

Another reason could be the intensive C-dynamic under Setaria leading to high C contents in 

comparison to other land use types (Rhoades et al., 2000; Makeschin et al., 2008).  

It is well established that exotic species generally grow very fast, but some native species are 

able to compete in survival and growth (González & Fisher, 1994; Islam et al., 1999; Wishnie 

et al.; 2007) Thus, the good height growth of Alnus is in line with these findings. From 

hundreds and thousands of tree species in Ecuador, broader experiences for reforestation 
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exists for only less then 10, mainly due to limited knowledge on seed ecology and plant 

propagation (Stimm et al., 2008). Thus, success of reforestation efforts with native species in 

Ecuador depends strongly on future research on these topics. Our data support the general 

finding that early successional species perform better than mid-successional species in the 

first years of plantation (Davidson et al., 1998). However, it must be recognized that site 

conditions and surrounding vegetation are of major importance and adequate management 

concepts to cope with these items are not yet available. Furthermore, the slower growth of 

mid-successional species Tabebuia and Cedrela could be a temporal effect in the initial stage 

of plantations. For instance, in long term reforestation trials in Puerto Rico, surprisingly many 

merchantable tree species grew faster in the second 33-year period than in the initial 22 years 

of observation (Silver et al., 2004). If the interactions between sites factors and the single tree 

species are properly understood, the micro-environmental conditions at the shrub and bracken 

stages could be used to facilitate the establishment of newly planted trees, especially from 

later successional stages (Pedraza & Williams-Linera, 2003; Parrotta et al., 1997). 
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pes.  436 

Slowcroft et al. (2004) could not reveal interactions between vegetation cover (grasslands and 

plantations with Metrosideros polymorpha Gaud.) and topographic position. Their findings do 

not necessarily contradict the significant interactions found in our study, as such significances 

depend strongly on the number of repetitions in the experimental design.  

 

Suitability of macroscopic soil core analysis for planning of reforestation measures (H 3, H 

4) 

In temperate zones site classification is a common and valuable tool for forest management 

planning. Despite their importance for planning of reforestation and selection of appropriate 

species for given site conditions, these instruments are largely missing for tropical landsca
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Being representative for many regions in the Andes, our study area is characterised by an 

extremely rugged topography accompanied by a high frequency of landslides which leads 

extreme small scale heterogeneity and a mosaic of soil conditions (Wilcke et al., 2003; Oesker 

et al., 2008). Makeschin et al. (2008) confirm a very high standard error for the chemica

parameters under pasture and fallow stages. Our results show that on 60% of all 10.8 x 10.8 m 

plots were occupied by more than one site cluster, and site clusters showed sign

437 

to 438 

439 

l 440 
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ificant 442 
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447 

448 

 in some countries of the 449 

 450 

451 

452 

hibited 453 

454 

455 

n 456 

457 

ctive only for some species, 458 

459 

460 

differences in soil chemical properties, especially for Manganese. Thus, soil conditions in the 

study area apparently vary on a very low spatial scale of less than ten meters.  

Site classification is commonly based on identification of soil types (FAO, US classification), 

which requires the detailed analysis of soil profiles in the field combined with chemical soil 

analysis in the laboratory. The detection of edaphic differences on very low spatial scales with 

this approach would be extremely laborious, expensive and ineffective. Alternatively, field 

description of soil cores are successfully used for site characterisation

world, for instance in Germany (Arbeitskreis Standortskartierung, 2003), but little is known

about the transferability of this methodology to tropical landscapes.  

In our study we could identify some distinct species dependent effects between special site 

clusters and the growth of young seedlings. For instance Alnus, Cedrela, Tabebuia ex

better height growth on site cluster 1, while Eucalyptus grew best on site cluster 3 indicating 

species-specific requirements to environmental conditions. The results indicate that 

parameters derived from soil core description could be used to estimate tree development o

abandoned pastures in neotropical mountain areas. However, this methodology requires 

intensive statistical processing of the data and is actually effe

although the results still suggest that this approach is a promising perspective for better 

consideration of natives in future reforestation endeavours.   
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Ca, K, Mg and BS values on an average are comparable to those of Makeschin et al. (2008) in

the same study area. All these elements and additionally Al and Fe were key elements for

distinguishing between the major rock groups of the study area, which have variable 

magnitudes of the easily weath

 461 
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erable minerals muscovite/illite, chlorite and albite according 464 
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cation/podzolisation 468 
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. For 472 

P 473 

2) 474 

475 

476 

477 

478 

479 

480 

481 

482 

t 483 

fected rather by the vegetation type 484 

an by the topographical position. These results support the hypothesis  that early sucessional 485 

to these authors. Thus, significant correlations between these minerals in the subsoil and 

horizon B and differences in Mg between site clusters could be attributed to the respective 

geological parent material.     

Mn mobilization and/or lateral Mn removal is often related to acidifi

and/or reduction conditions in soils (Zech & Drechsel, 1991). In addition to the high spatial 

heterogeneity of the soil conditions on land slides (Wilcke et al. 2002 and 2003), this could 

explain the differences in extractable Mn between the site clusters.  

Studies of several authors confirm that P availability might be less problematic than N

instance, in a study by Haridasan (1985) Eucalyptus grandis performed well with available 

(46 ppm) and extractable cations comparable to our results. As Newberry et al. (200

reported, P did not limit growth of ectomycorrhizal trees on soils with extremely low 

phosphorous supply. Pinus radiata plantations in Northern Ecuador were growing well on 

soils with higher N values in the A-horizon (0.17-0.22 %) (Farley & Kelly, 2004). 

Experimental reforestation trials with good performance of several native species on 

Hydrandept soils were much higher in N (0.24%), only slightly higher in extractable cation 

concentrations and much lower in Aluminium saturations (Davidson et al. 1998). Thus, in 

comparison to those studies, low N values and high Aluminium toxicity in general could be 

limiting factor for plant growth for our study region, rather than P or extractable cations. In 

line with our findings of low base cations at the shrub sites, Slowcroft et al. (2004) show tha

concentrations of extractable base cations and P can be af

th
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stages are rather N limited, but they become more P-limited in later stages (Vitousek et al., 

1993; Herbert & Fownes, 1995; Newberry

486 

 et al., 2002).  487 

488 

ation 489 

490 

In addition to the difficulties in predicting small scale variations of autecological conditions 491 

and their impact on the growth of tree species, it is essential to assess the impact of the 492 

493 

s 494 

495 

For the three major vegetation types, pastures, bracken and shrubs, there exist several possible 496 

limiting factors for tree species. For instance, C4 plants generally have a better water use 497 

efficiency than trees. Thus, Setaria sphacelata apparently has competitive advantages on the 498 

sun exposed areas in comparison to forest species, especially the mid successional species 499 

which are adapted to slight shading (Bazzaz & Picket, 1980). Setaria can store enormous 500 

amounts of C due to its extended fine root system (Rhoades et al., 2000, Makeschin, 2008). 501 

This rather advantageous effect for soil fertility, however, is combined with a negative effect 502 

 503 

504 

505 

In our study the vegetation cover had significant effects on N and P-values. These typical 506 

slash- and burn effects were also confirmed by Makeschin et al. 2008 for our study area: N 507 

and P are strongly influenced by burning, accompanied by an increase of pH, resulting from 508 

alkaline ashes which in turn reduces availability of P. Farley & Kelly (2004) showed that 509 

forest plantations in Ecuador can effectively reduce N concentrations in the soil via nutrient 510 

 

Vegetation cover and site differences are independent factors for the success of reforest

with native and exotic tree species (H 5)  

competing vegetation. Numerous authors studied plant-soil interactions during the last 

decades (Cuevas & Medina, 1988; Vitousek et al., 1993), however very limited attention i

given to these aspects for planning plantations.  

for the planted trees: Eckert (2006) has proven that root competition of this grass species is

one of the most important barriers for growth of reforestation species, especially for mid 

successional species.  
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uptake and allocation processes in the biomass. Accordingly, differences of P under di

vegetation covers in the present study, could likewise have been caused by nutrient uptake

and reallocation. 

N is generally considered to be a limiting factor in grasslands (Davidson et al., 1990; 

Scowcroft et al. 2004). In general N values were very low in our study area, too. Thus, it 

follows that proper N management could allow for better plan

fferent 511 

 512 
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t growth. For example, 516 

ormance 517 
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 521 
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528 
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530 

d with 531 

 532 
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 534 

e535 

intercropping nitrogen fixing trees with reforestation species may result in better perf

than initial fertilization (Carpenter et al., 2004). Our data support the findings of Murcia 

(1997) that Alnus grows rapidly even in nitrogen-poor soils.  

Bracken is able to recover burned areas and generates a closed canopy very quickly, 

preventing the establishment of a shade intolerant vegetation (Hartig & Beck, 2003). Our data

confirm that this could also be a problem for the planted trees, because light demanding 

species and exotics were significantly smaller here than on the open pasture sites. However, 

for the height development of light demanding species, bracken apparently is not worse than 

the shrub stage. Mid successional species are even favoured in this environment.  

It is well known that vegetation cover can shape the site conditions via nutrient uptake, litte

fall, shading regimes and hydrological functions (Haridasan, 1985; Bruijnzel, 2004, Jobb

& Jackson, 2004). The latter authors show that grasses have lower Manganese cycling than 

Eucalyptus and that vegetation cover alters the vertical distribution and bio-availability of 

mineral elements. This could explain why Manganese is significantly different between 

pastures, bracken and shrub in our study. On Gleysols, Mn deficiency is often combine

P deficiency (Kreutzer 1970), and Mn mobilization and/or lateral Mn removal can be caused

by acidification and groundwater podsolization (Zech & Drechsel, 1991). Hydromorphy is 

frequent, too, in our study area, but under the predominant steep slopes hydromorphic

processes are rather connected with percolating than groundwat r. In the study area we can 
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find both processes for Mn-mobilization: podzolisation and reduction conditions (Makesch

et al., 2008). Podzolization causes the complexation of Mn by fulvo acids; reduction 

conditions in turn favour the transformation of non-soluble Mn

in 536 

537 

538 

uld 539 

540 

ater content of soils via transpiration, and plant roots can produce 541 

cids for better nutrient availability, which in turn affects Mn-mobility. This could be one 542 

explanation of how site clusters and vegetation cover are interacting and thus influencing the 543 

nutrient status of the soils.  544 

 545 
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 the 555 
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557 

558 

 559 

e ground 560 

4+O2 into soluble Mn2+. Mn 

can be discharged in both cases (Haubrich, unpublished data). These processes possibly co

explain differences in extractable Mn between the different site clusters. It is well established 

that vegetation influences w

a

Conclusions 

Exotic species in Ecuador are generally considered to perform better than native species

our study Alnus acuminata was able to compete in height development with the exotics at 

least in the first three years after planting. Reforestation trials with native and exotic specie

in Costa Rica for instance revealed the enormous potential of several native species for 

reforestation and restoration (Piotto et al., 2003, Wishnie et al., 2007). In Central America 

experiences with native species started already several decades ago, while in Ecuador the 

discussion has only recently started. Consequently, we assume that among the extremely hig

number of 2736 tree species in Ecuador (Jørgensen and León-Yánez, 1999) it is very probable 

to find other and perhaps even more promising species. However, the crux is to identify

best candidates for reforestation and to provide adequate knowledge on their seed ecology, 

propagation and silvicultural requirements. As expected, mid-successional species performed 

much slower than the exotics and light demanding species. However, if planted under 

adequate environmental conditions the height development of such species improves. Cedrela

montana, for instance, showed acceptable development under bracken without abov
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weeding. Furthermore, the slow initial growth may be compensated for by their extremely 

high timber value. Thus, from the economical point of view, mid-successional species could 

be a very valuable contribution in a portfolio of species for reforestation purposes.  

In contrast to the findings of other authors, ours do not support the hypothesis that bracken

hinders the establishment of native tree species in general. One soil cluster under bracken was 

even indicated as the best environment for mid-successional species. Exotic and light 

demanding species in contrast, performed better on the pasture plots, which indicates less 

susceptibility to root competition than to light competition. Thus, established young seedli

of light demanding species are shaded out under bracken, while bracken can be facilitative fo

the more shade tolerant mid-successional species which are more susceptible to h
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nning. Large scale site classification based on soil properties 580 

lone will hardly uncover all of the constraints for the establishment of tree seedlings. Thus, 581 

 should imply site classification at different spatial scales including 582 

dominating vegetation cover.  583 

584 

Acknowledgements 585 

pressure deficits at open sites. Above ground weeding should be evaluated on the spec

level, as no general positive trends could be revealed neither for light demanding nor exot

species and no general negative trends were found for mid-successional species. 

Soil properties revealed by soil core analysis showed significant effects on the height 

development of some tree species, in particular Eucalyptus saligna and to a lesser extent 

Alnus acuminata. These differences were accompanied by differences in Mn and Mg status. 

However, significant interactions between soil cluster and dominating vegetation cover could

be revealed for Mn, too. P was not affected by soil clusters, but only by vegetation cover. On

more than 60 % of plots more than two soil clusters could be identified. This extremely hig

small-scale heterogeneity is stu

a

reforestation planning
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Table 1: Correlation coefficients of site factors and corresponding principal components. Site 

factors include plot based parameters (inclination, altitude) and horizon based parameters (A 

and B horizon). The five extracted components were used for subsequent cluster analysis. 

Correlations with r > 0.5 in bold show no overlap of soil parameters between components.  

787 

788 

789 

790 

Component 
Site factor 1 2 3 4 5 
Inclination 0.223 0.124 0.213 -0.479 0.062
Altitude -0.669 -0.386 0.001 0.150 0.159
Roots.cm 0.311 0.588 0.043 0.475 0.193
Core.cm -0.387 0.334 0.412 0.108 0.429
A.size 0.414 0.491 0.005 0.539 0.261
A.Sand 0.774 0.151 -0.161 -0.389 0.054
A.Clay -0.715 -0.142 0.139 0.452 -0.065
A.Stones 0.425 -0.037 -0.148 -0.072 0.465
A.pH 0.360 0.360 0.596 -0.016 -0.294
B.size -0.375 -0.280 0.568 -0.334 0.296
B.Sand 0.616 -0.492 0.145 0.234 -0.171
B.Clay -0.480 0.569 -0.171 -0.422 0.159
B.Stones 0.352 -0.496 0.145 -0.026 0.479
B.density 0.433 -0.518 -0.091 0.170 0.158
B.pH 0.250 -0.019 0.798 0.014 -0.137
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Table 2: Differences of site factors between the site clusters 1-3 in the first two horizons (A 

and B). The values represent means and standard errors.  

Site factors Horizon Cluster 1 Cluster 2 Cluster 3 

Inclination [%]  62.2±1.0 58.7±1.2 60.2±1.0 

A 44.6±1.1 46.1±1.3 55.0±0.9 Size [cm] 

B 41.0±0.9 33.6±0.8 31.2±0.5 

A 35.6±1.2 31.6±1.2 29.5±0.7 Sand [%] 

B 29.1±0.7 26.4±0.8 23.2±0.5 

A 31.0±0.8 33.1±0.8 33.7±0.5 Silt [%] 

B 34.9±0.5 35.8±0.5 37.5±0.3 

A 33.0±0.8 35.3±0.8 36.8±0.5 Clay [%] 

B 36.2±0.5 38.2±0.6 39.5±0.4 

A 5.2±0.02 5.1±0.02 5.2±0.02 pH 

B 4.8±0.02 4.6±0.02 4.7±0.02 
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Table 3: Differences in chemical soil parameters (mean ± Standard deviation) between the three site clusters 1-3 for the first three horizons of the 

mineral soil. All exchangeable ion values are presented in ion equivalents [IE µmol g-1]. Significant parameters and values are presented in bold, 

different letters indicate significant differences. Asterisks symbolize levels of significance. 

Site 
Cluster 

Horizon C [%] N [%]        C:N* P [µg/g] Al Fe Mn*** Ca K Mg* CEC BS [%] 

1 A 5.4±0.54 0.26±0.04 21.3±1.41 38.2±15.7 71.6±25.5 1.12±0.16 0.23±0.27 6.5±5.0 1.45±0.65 1.92±1.35 90.1±20.1 13.0±9.7 
  B  0.8±0.16 0.06±0.01 14.2±1.05 12.6±14.8 23.4±11.0 0.31±0.27 0.14±0.32A 1.0±0.8 0.68±0.29 0.27±0.15A 26.6±11.9 10.2±5.4 
  Subsoil 0.4±0.03 0.04±0.00 10.8±1.72A 3.5±5.0 20.8±7.7 0.06±0.05 0.02±0.01 0.6±0.2 0.46±0.20 0.13±0.06 22.8±8.0 8.1±2.9 
              
2 A 5.3±0.75 0.25±0.05 22.3±1.65 26.2±4.9 78.1±21.3 3.59±2.00 0.11±0.06 7.4±4.5 1.95±0.69 4.04±1.44 105.0±15.0 14.0±5.6 
  B 0.9±0.10 0.08±0.01 12.8±1.15 10.0±9.5 26.7±9.6 0.23±0.18 0.09±0.15 0.9±0.8 0.82±0.31 0.39±0.43 30.0±9.6 9.9±5.6 
  Subsoil 0.5±0.29 0.04±0.01 14.2±10.0 4.1±2.3 11.3±0.1 0.01±0.01 0.09±0.08 0.7±0.2 0.71±0.06 0.15±0.09 13.4±0.1 15.4±0.2 
              
3 A 4.9±0.51 0.26±0.03 18.8±0.66 39.5±25.8 78.2±28.9 2.27±1.83 0.15±0.17 5.3±3.1 2.97±3.46 3.45±2.00 99.4±29.7 14.3±10.2 
  B 1.1±0.19 0.08±0.01 12.4±0.70 9.7±14.5 32.6±14.1 0.23±0.29 0.07±0.14B 1.1±1.4 0.81±0.91 0.40±0.69B 36.7±16.1 8.2±4.8 
  Subsoil 0.8±0.12 0.06±0.01 11.7±1.21B 6.3±8.2 22.4±9.5 0.18±0.25 0.04±0.06 0.8±0.7 0.87±0.60 0.51±0.91 25.6±9.8 11.7±5.5 
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Table 4: Differences in chemical soil parameters (mean ± standard deviation) between the three successional sites pasture, bracken and shrubs for 

A- and B-horizon and subsoil. Al exchangeable ion values are presented in ion equivalents [IE µmol g-1]. Significant parameters and values are 

presented in bold, different letters indicate significant differences between successional sites. Asterisks symbolize levels of significance. 

Successional 
Site 

Horizon C [%] N [%] C:N 
P ** 
[µg/g] 

Al Fe Mn*** Ca K Mg CEC BS [%] 

Pastures A 5.2±0.49 0.26±0.03 20.8±0.94 45.9±26.5 65.7±23 1.46±1.2 0.14±0.20 7.8±4.3 2.84±3.8 2.79±1.6 87.9±20.5 17.4±11.1 
  B  1.2±0.12 0.07±0.01 15.1±0.79 14.3±13.4A 30.1±14 0.24±0.2 0.03±0.05A 0.9±0.7 0.73±0.4 0.24±0.1 33.1±14.0 8.3±4.4 
  Subsoil 0.7±0.15 0.05±0.01 12.6±1.61 8.0±9.0 20.2±7 0.09±0.2 0.01±0.01 0.9±0.7 0.68±0.5 0.16±0.1 22.8±7.2 10.3±4.9 
              
Bracken A 5.8±0.73 0.31±0.03 18.3±0.71 22.6±10.0 93.0±28 4.29±2.0 0.23±0.20 3.9±2.4 2.65±0.7 4.63±2.6 113.6±27.5 11.6±6.4 
  B 0.9±0.09 0.09±0.01 10.3±0.59 5.1±6.2B 25.2±12 0.19±0.17 0.08±0.08A 0.5±0.5 0.94±0.4 0.48±0.4 28.2±12.1 9.6±4.7 
  Subsoil 0.7±0.15 0.07±0.01 10.2±1.63 2.4±4.0 19.5±10 0.21±0.31 0.08±0.08 0.5±0.3 1.09±0.6 0.87±1.2 22.8±10.8 13.9±4.9 
              
Shrubs A 3.7±0.53 0.18±0.02 20.5±1.39 30.2±8.7 76.5±28 1.53±0.8 0.14±0.13 3.7±1.5 1.40±0.4 2.38±0.8 97.5±29.1 9.0±3.3 
  B 0.8±0.33 0.06±0.02 11.4±0.76 7.7±15.4 32.8±13 0.32±0.4 0.15±0.29B 1.5±1.7 0.73±1.2 0.51±0.9 39.1±16.4 8.5±5.8 
  Subsoil 0.7±0.19 0.05±0.01 13.7±2.08 9.3±10.6 25.1±11 0.14±0.1 0.02±0.01 1.5±1.1 0.36±0.1 0.18±0.1 28.0±11.4 10.3±6.8 
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Fig. 1. Influence of competing vegetation cover on the growth performance of three year old 

seedlings from five native species (Alnus acuminata, Cedrela montana, Juglans neotropica, 

Heliocarpus americanus, Tabebuia chrysantha) and two introduced species (Pinus patula and 

Eucalyptus saligna). From left to right: pasture (white bars), bracken (bright grey), shrub 

(dark grey), site cluster 1-3 from left to right and above ground weeding (without and with 

from left to right). Note that figures on the right have different scales than those on the left. 

Confidence intervals represent p=0.95. 
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Fig. 2. Effects of interactions weeding*competing vegetation on growth performance for the 3 

yr. old plants of Pinus patula and Cedrela montana). Different letters correspond to 

significant differences (confidence level p = 0.95).  
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Fig. 3. Frequency of site clusters among sites with the dominant vegetation on experimental 

block “pasture” (white bars), “bracken” (light grey), “shrub” (dark grey), total = 100 %.  
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Fig. 4. Interaction (successional status*dominating vegetation*site cluster, ANOVA p=0.003) 

between successional status of planted seedling (from top to bottom), dominating vegetation 

on experimental block (x-axis) and site cluster 1 (squared), 2 (horizontally hatched) and 3 

(vertically hatched) with confidence intervals p=0.95.  Note that graphs have different scales.  
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Fig. 5.  Interactions for Cedrela montana (weeding*dominating vegetation*site cluster, 

ANOVA, p = 0.084) between dominating vegetation on experimental block (x-axis), site 

cluster (1= white bars, 2 = horizontally hatched, 3 = vertically hatched) and weeding of above 

ground vegetation (without and with from left to right), confidence intervals p= 0.95.  
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