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Abstract

Market liquidity risk is the potential loss, because assets cannot be sold
at the price previously thought. Although evidence suggests that liquid-
ity effects are significant, they often remain neglected in practical risk
management. One of the reasons is the limited scientific research in the
area of liquidity risk measurement.

This thesis provides an up-to-date overview on market liquidity risk
research. It covers all aspects of market liquidity that are relevant to risk
management as well as existing liquidity risk models.

The empirical analysis is based on weighted spread, a relatively new
liquidity measure, which can be extracted from the limit order book of
electronic exchanges. A unique, representative sample of weighted spread
allows to provide estimates on the effect of order size on liquidity costs,
as well as the dynamics, distributional characteristics and cross-sectional
structure of this liquidity measure.

The thesis also proposes two new liquidity risk models. The modi-
fied liquidity risk model introduces a new way to account for the non-
normality in liquidity with the help of the Cornish and Fisher (1937)-
approximation. The empirical net-return model based on weighted
spread analyzes the use of the weighted spread liquidity measure in risk
measurement.

Both models are tested empirically in daily data. The modified liquid-
ity risk model implemented with the bid-ask-spread proves to be supe-
rior to the standard model of Bangia et al. (1999). Common backtests
by Kupiec (1995) demonstrate that risk is forecasted with much higher
precision when non-normality is taken into account via the proposed
Cornish-Fisher approximation.

With the help of the empirical net-return model, I find that liquid-
ity risk strongly increases with the size of the position. The impact of
liquidity on risk is significant - even at 10-day horizons. Liquidity risk
models neglecting this effect must necessarily underestimate total risk.
Further, the correlation between liquidity and return is significant and
reduces the liquidity impact by about 50 % compared with the standard
assumption of perfect correlation. These results are robust to change in
risk measure, effects of time variation as well as portfolio diversification.

A final test runs a performance benchmark of nine different liquidity
risk models implementable in daily data, including the new propositions.
I find that available data is the main driver of model preciseness. Models
with extensive data from the limit order book generally outperform. My
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new propositions, modified add-on with weighted spread and empirical
net-return with weighted spread as well as Giot and Grammig (2005),
are all recommendable. The first model delivers precise results most con-
sistently. If only transaction data are available, the model by Cosandey
(2001) performs best. With bid-ask-spread data the proposed modified
add-on model with bid-ask-spread achieves superior results.

Overall, this thesis underlines the usefulness of the weighted spread
measure in liquidity risk modeling. If the analyzed structure of liquidity
costs, i.e. non-normality as well as increase with order size, is properly
integrated, the preciseness of risk forecasts can be greatly improved. The
new model contributions prove to be particularly helpful in practical risk
management.
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1 Introduction

1.1 Delimitation and relevance of topic

Liquidity has lately received much attention in the academic world and
in practice.! In reality, a stock position cannot be bought or sold without
cost or delay in execution. The most important cost is the spread, the
difference between the achievable transaction price and the fair price of
a stock. This spread serves as important measure of the liquidity of an
asset. Moreover, if volume traded in the stock is not large enough, the
investor has to delay his trade, which induces further costs. From an
investor perspective, the liquidity of an asset can be measured by the
total cost required to trade a position in an asset.

In general, the term 'liquidity’ is used in three different settings.? First,
liquidity can designate the liquidity of a firm, also called solvency. From
the corporate perspective, solvency is the net liquidity of assets and li-
abilities. Liquidity of the liability side is also called ’funding liquidity’.
Second, liquidity is a characteristic of an asset, also called ’asset liquid-
ity’ or 'market liquidity’ depending on whether the balance sheet or the
market is in focus. From an investor’s perspective it describes the mar-
ketability or ease of trading an asset®. Third, liquidity is also used from a
monetary perspective and addresses the liquidity of the whole economy.
This thesis addresses issues of market and asset liquidity, which have

more recently been brought into focus.

'For this section, cp. Stange and Kaserer (2008a,c,b); Ernst, Stange and Kaserer
(2008, 2009).

2Extended from Jorion (2007), p. 334.

3Cp. also Longstaff (1995).
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Many recent crises have been liquidity crises. The two large hedge
fund breakdowns of LTCM in 1998 and Amaranth Advisors in 2006 were
mainly caused, because they took positions that were too large to be lig-
uidated without substantial price impact.* In the recent sub-prime crises
of 2007/08 banks around the world were troubled by funding liquidity
shortages and had to liquidate assets to reduce risk exposure. Stock
prices slumped because many funds were forced to sell-off positions due
to margin calls and fund outflows.

The regulators are alert and the Basel I committee has already pub-
lished several reports and guidelines on liquidity in recent months. Banks
are requested to “use appropriately conservative assumptions about the
marketability of assets” and “incorporate liquidity costs, benefits and
risks in the internal pricing, performance measurement and new product
approval process for all significant business activities”®. Still, a BIS sur-
vey among banks revealed, that market liquidity remains the single risk
factor across all asset classes, that is not easily captured.®

Today, the most popular tool to measure, control and manage finan-
cial risk within corporations and financial institutions is the Value-at-
Risk (VaR) concept.” VaR measures the worst expected loss over a given
horizon and a certain confidence level. In most institutions the standard-
ized VaR-methodology is used to determine capital requirements.®

One often criticized downside of the traditional VaR-model is its in-
ability to capture liquidity risk, because its computation generally relies
on market prices.” Due to the neglect of liquidity risk the real risk of
an institution is generally underestimated.'® In this context, liquidity
risk, more specifically market liquidity risk, can be understood as the

difficulty or cost of trading assets in crises. Market liquidity risk has

4Cp. Jorion (2007).

>Cp. Basel committee (2008), p. 6 and p. 9.

6Cp. Basel committee (2005), p. 10.

"Cp. Dowd (2001), pp. 4-5.

8Cp. Basel Committee on Banking Supervision (1996).

9Cp. Jorion (2007) p. 333.

10Cp. Bangia et al. (1999); Stange and Kaserer (2008c) and others.
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to be distinguished from funding risk, which is the potential shortfall of
meeting liabilities and having sufficient cash available.

Market liquidity risk has already acquired a great deal of attention.
During the last few years several academic papers have been written
on the consideration of liquidity risk in the VaR framework. The pro-
posed solutions can be classified into two groups: The first one focuses
on indirect risk measures by determining price quantity functions from
transaction data. In this stream, the approaches of Cosandey (2001), Jar-
row and Protter (2005a), Berkowitz (2000b), Jarrow and Subramanian
(1997) and Almgren and Chriss (2000) are widely cited. In contrast, the
second group makes use of direct liquidity cost measures such as the bid-
ask-spread or the order-size-dependent weighted spread. For instance
Bangia et al. (1999), Francois-Heude and Van Wynendaele (2001) and
Giot and Grammig (2005) propose models that can be classified into this
latter category.'!

A major issue in all liquidity risk models is the assumed distributional
properties of asset returns and liquidity measures. For reasons of sim-
plicity most often either a normal or empirical distribution is used. Since
the distributions of continuous asset returns and liquidity costs are often
skewed and leptocurtic or platycurtic, inappropriate normality assump-
tions necessarily lead to incorrect risk estimates. The use of empirical
distributions might also be suboptimal, because large data sets are re-
quired and historical distributions might poorly proxy for the future.

In other risk management contexts, non-normal distributions have al-
ready been addressed. Zangari (1996) and Mina and Ulmer (1999) sug-
gested and analyzed the Cornish and Fisher (1937)-approximation as
method to account for the non-normality in the case of derivatives. Favre
and Galeano (2002) propose to apply this method to hedge fund risk, Lee
(2007) use it in the context of real estate asset allocation.

Another major issue is the precise integration of the price impact of

order size, i.e. the fact that liquidity costs rise with the position size

HDetailed description in section 2.2.
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traded. Simple models such as Bangia et al. (1999) neglect price impact,
other models try to approximate it, for example Cosandey (2001), Jarrow
and Protter (2005a) and Berkowitz (2000b). More recently, a new price
impact measure has been brought into the discussion. Irvine et al. (2000)
suggested to use the price impact implicit in the limit order book of
exchanges, a measure also called weighted spread. While weighted spread
has been used by Giot and Grammig (2005) to analyze intraday variation,
the aspects of size impact as such and the mechanics of precise liquidity
integration have not been addressed.

Both issues, distributional assumptions and precise integration of price

impact of order size have not been resolved yet.

1.2 Research questions and contribution

This thesis aims to clarify, how liquidity risk can be precisely integrated
into a risk measurement framework. It concentrates on two issues, the
problem that liquidity is non-normally distributed, and the precise mea-
surement of price impact. Specifically, I address the following research

questions:
1. How can the Cornish Fisher approximation account for non-
normality in liquidity risk?
a) How can a liquidity risk model on the basis of the Cornish
Fisher approximation be set up?
b) Does this approach yield more precise results than existing

methods?

2. How can weighted spread as price impact measure be precisely in-

tegrated into a risk management framework?

a) In which situations is weighted spread a valid liquidity mea-

sure?

b) What are the distributional properties of weighted spread?
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¢) Is the liquidity risk impact of order size substantial enough
to justify the use of this type of data - especially at longer

forecast horizons, where the importance of liquidity declines?

d) What is the effect of liquidity-return correlation on risk mea-

surement, a commonly discussed issue?

3. How do liquidity risk models compare empirically with respect to

their preciseness?

a) Which model preforms best and can be recommended?

b) Are there structural differences in the precision of risk fore-
casts on the basis of data used, position size or market seg-

ment?

The hypothesis implicit in these research questions will be empirically
tested in a large sample of daily stock data.

The relevance of these questions is quite apparent. The Cornish-Fisher
method has been helpful in other areas of risk management and is there-
fore a promising candidate for liquidity risk measurement. The use of the
weighted spread as liquidity cost measure is relatively new in risk man-
agement and its structure and precise application have not been clarified
yet.

An empirical comparison of liquidity risk models has not been con-
ducted in academia so far. Its results will help to judge which models
should be used in practice. Comparative backtests also identify which
simplifying model assumptions have the largest distorting effects, which
can provide impetus for promising directions of future model develop-

ment.

1.3 Structure of analysis

Chapter 2 provides an overview of the existing literature on liquidity and

liquidity risk, which includes an overview of all relevant aspects of market
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liquidity. It also surveys existing liquidity risk models and discusses their
explicit and implicit assumptions. In chapter 3, I present a description of
the data set used for the empirical analysis as well as a discussion of the
characteristics of the new liquidity measure, weighted spread. On this
basis, chapter 4 proposes two new liquidity risk models. The modified
add-on model is a new approach to account for non-normality in liquidity
risk. The net return approach with weighted spread suggests a framework
to analyze the importance of weighted spread as risk measure as well as
the question of precise measurement of price impact. Chapter 5 contains
the empirical test of the newly suggested liquidity risk models and a
comparison with other approaches. Chapter 6 summarizes, concludes

and outlines questions for further research.



2 Background and existing

literature

This chapter provides an overview of the existing literature on market
liquidity and its risk. The discussion of market liquidity risk requires an
understanding of the characteristics of liquidity itself that are relevant
from a risk perspective. Section 2.1 clearly defines liquidity, describes its
characteristics, and surveys existing market liquidity measures.

Based on an understanding of market liquidity, section 2.2 turns to
market liquidity risk. It provides a general liquidity risk definition fol-
lowed by detailed descriptions of existing liquidity risk models. I also
analyze these existing models from a theoretical perspective and clarify
their explicit as well as implicit assumptions. The section concludes with

a model overview.!

2.1 Background on market liquidity

2.1.1 Definition of market liquidity

Market liquidity can be defined as the cost of trading an asset relative
to fair value.? Fair value is set at the middle of the bid-ask-spread, the
mid-price. This has the advantage that it is most objective, but the
disadvantage, that the fair, fundamental value fluctuates heavily, which

is slightly less intuitive.

!For this chapter, cp. Stange and Kaserer (2008b).
2Cp. Dowd (2001), p. 187 ff. and Buhl (2004); Amihud and Mendelson (2006).
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I distinguish three components of liquidity cost L;(q) in percent of the

mid-price for an order quantity q at time t3
Li(q) :==T(q) + PL(q) + Di(q) (2.1)

where T'(q) are direct trading costs, PI;(q) is the price impact vs. mid-
price due to the size of the position, D;(q) are delay costs if a position
cannot be traded immediately.

Direct trading costs comprise exchange fees, brokerage commissions
and transaction taxes. They are also called explicit transaction costs,
because they are known beforehand and time invariant, i.e. determinis-
tic.* The price impact is the difference between the achieved transaction

> They result from imperfectly elastic demand

price and the mid-price.
and supply curves for an asset at a specific point in time, which makes
the price impact increase with the size traded.

Liquidity costs increase with order size for two reasons. First, investors
have heterogeneous expectations with respect to the fair value of an asset
and are subject to capital restrictions. They are therefore willing to trade
only a limited quantity at their own prespecified price. When trading a
small position, a trader is likely to find a counterparty which is willing
to exchange the full position at or close to the trader’s fair value expec-
tation. The larger the position to be traded, the more counter-parties
have to be found. The achievable transaction price falls. Compared to
the trader’s fair value expectation, the liquidation cost rises with the size
of the position. Second, liquidity costs are also a price for immediacy.

An immediate transaction at a certain price is essentially an American

option paired with an exchange.® The option component comprises the

3This closely follows Amihud and Mendelson (2006), but additionally differentiates
by the size of the position. Compare also similar in Aitken and Comerton-Forde
(2003); Torre (1997).

4Also cp. Loebnitz (2006), p.18 f.

®Similarly Demsetz (1968) defines transaction cost as the price concession needed for
an immediate exchange of an asset into money (p.35). This is also called market
impact.

6Cp. Chacko et al. (2008).
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right to receive a certain amount of shares at order execution with the
current market price as strike. This optionality has an immanent value,
which depends on price volatility and the order size relative to expected
transaction volume, because this determines the future liquidity of the
position for the buyer. Due to these two components, price impact cost
can be expected to rise with the size of the position.

Delay costs comprise the cost for searching a counterparty and the
cost imposed on the investor due to bearing risk, because prices and
price impact cost might change during the delay.” For many assets, like
most stocks and bonds on an exchange, search costs are negligibly small,
but costs of additional risk during delay can remain substantial.

Because liquidity costs increase with size, a trader faces a possible
trade-off between price impact cost and delay. He can save on price
impact cost by deliberately delaying parts of the transaction. But then
he has to face delay risk for the delayed portion of the position. This
deliberate delay is optimal if the savings on price impact costs exceed
the additional delay cost. These strategies are analyzed in the literature
on optimal trading strategies.8 As a consequence, there are two types
of delay, forced and deliberate. Forced delay occurs if a position can
currently not be traded in the market. Deliberate delay occurs if the
trader does not want to trade a certain position strategically, because he

expects savings on total liquidation costs.

Relation to other liquidity definitions Above cost definition takes a
practical, concrete investor’s perspective and can integrate other defini-
tions in the literature. In my view, it also provides a suitable framework
to integrate the multitude of available perspectives and makes liquidity

a less elusive concept.

TAlmgren (2003) calls price impact risk “trading enhanced risk”.

8Cp. for example Bertsimas and Lo (1998); Almgren and Chriss (1999, 2000); Almgren
et al. (2005); Almgren (2003); Subramanian and Jarrow (2001) and the discussion
in section 2.2.2.4.
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The most often cited dimensions of liquidity are tightness, depth, re-
siliency and immediacy.” They can be easily understood in above cost
framework. Tightness, “the cost of turning a position around in a short
time”, corresponds to the sum of direct trading costs 7" and price im-
pact costs PI. Depth, “the size of an order flow innovation required to
change prices a given amount”, is the quantity ¢ transactable at a spe-
cific price impact PI, i.e. PI7'(q) = q(PI). Resiliency, “the speed with
which prices recover from a random, uninformative shock”, is the mean
reversion speed of liquidity cost after a shock, i.e. the time dimension of
liquidity cost. Immediacy, the time between order submission and settle-
ment, directly corresponds to the delay time of the delay cost component
D. Thus, all four dimensions can be analyzed in the cost framework
introduced above.

In the cost framework, liquidity is the effect a transaction has on an
investor. The importance of other, more indirect liquidity measures like

0 can be much better

transaction volume, zero trading days, depth, etc.!
understood from a cost perspective. If a liquidity aspect results in high
liquidity costs in economic downturns, it will have a large effect on asset
prices. The cost perspective provides the economic explanation for the
validity of many liquidity measures.'!

Kempf (1999) defines liquidity in more abstract terms and cites the
dimensions price and time. Price directly corresponds to cost, but time
should - in above view - also be converted into a cost component via
delay costs. While time is a more direct aspect of liquidity, its conversion
into cost make it more concrete from an investor’s perspective. Longstaff
(1995) defines liquidity as “the ease of trading an asset”, which is similarly
abstract and needs to be broken down into more tangible aspects as

suggested above.

9Cp. Kyle (1985), p. 1361 for the first three dimensions and the citations and Black
(1971), p.30 for the latter. Tightness is also sometimes called 'width’ or *breadth’.

10Cp. Datar et al. (1998); Liu (2006); Bekaert et al. (2007); Goyenko et al. (2008)
and others.

1 (Cp. Stange and Kaserer (2008a), p.4.
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2.1.2 Overview of important aspects
2.1.2.1 Degrees of market liquidity

Liquidity is a continuous characteristic. Hence, assets can have different

degrees of liquidity.'?

The liquidity degree is determined by the type
of the asset, the size of the position and the liquidation horizon. It
is useful to distinguish at least four categories of liquidity degrees as
illustrated in figure 2.1 on the following page. They are closely related
to the magnitude of liquidity costs and require substantially different
treatment.

If an asset is ’fully liquid’ any position in the asset can be immedi-
ately traded without a cost. Cash is the primary example. For practical
purposes, liquidity adjustments to its value are not necessary. An asset
can be called 'continuously tradable’ when most positions can be traded
albeit with a cost. A good example are limit order books of developed
stock markets. The determination of the costs of trading is the main
issue from a liquidity perspective. If liquidity deteriorates further, the
asset becomes ’disruptively tradable’, i.e., it can be traded from time
to time. While market price provides an indicator for the fair value of
the asset, delay and its incorporation into liquidity measures is a major
issue - in addition to trading costs. A good example are over-the-counter
markets of exotic bonds. Finally, an asset is ’illiquid’ if no position size
can be traded. Market prices are thus non-observable and value has to
be determined by intrinsic methods. Rare art or currently collateralized
debt obligations can be considered illiquid.

Not only the type of the asset, but also the size of the position deter-
mines the degree of liquidity. In most cases, it is the position size relative
to the prevailing trading volume, that determines the degree of liquidity,
which also shows the relation between asset and market liquidity. Is the
position size much larger than traded volume, we can expect significant

trading delay. The asset position is only interruptedly tradable. If it is

12Cp. also discussion in Stange and Kaserer (2008a), p. 4f.
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too large, it might even be illiquid in the short term due to the lack of
counterparties.

The liquidation horizon is another determinant of a position’s liquidity
degree. A security might be illiquid in the short term because of a lack of
counterparties, but interruptedly tradable at longer liquidation horizons.
If an asset is held to maturity, then, obviously, liquidity costs are zero

and irrelevant, because they are a transaction feature.

2.1.2.2 Characteristics of market liquidity

When measuring market liquidity, ex-ante committed liquidity and possi-
ble hidden liquidity have to be distinguished.!® The advantage of market
organization on the basis of order books lies in the fact, that more lig-
uidity is ex-ante committed and transparent to market participants.

The price impact component of asset liquidity can be described in a
price-quantity diagram, which collects all potential counterparty orders
with their order size and their willingness to pay. In case of committed
liquidity in a limit order book, these are limit orders. These counterparty
orders, if sorted by best price construct the buy- or sell-price function.
The cost of liquidity of a round-trip'* can be then described by a price-
quantity function, which is the difference between the buy- or sell-price
function and the mid-price as displayed in figure 2.2 on the next page.
The trader buys at the buy price function and sells at the sell price
function. The difference between the two is the liquidity cost from the
transaction.

For small orders, not larger than the quote depth, this cost of a round-
trip corresponds to the bid-ask-spread. For larger orders the liquidity
cost of a round-trip is the weighted spread between the buy- and sell-
side functions up to the traded quantity. The spread of the individual

limit orders are weighted with their respective limit order quantity. In

13Cp. Irvine et al. (2000).
141.e. buying and immediately selling a position.
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general, this weighted spread is called 'price impact’.!® Because the limit
order book only measures committed liquidity, due to hidden liquidity,
transactions can and do occur inside the bid-ask-spread. Therefore the
commonly used quoted-spread as well as the weighted spread measure
ex-ante committed liquidity.

Up to the quote depth, liquidity costs are sometimes called exogenous
and beyond endogenous.'® It is argued, that bid-ask-spread up to the
quote depth is exogenous, because it is common to all market partici-
pants while the weighted spread is endogenous depending on the indi-
vidual trader’s position. I believe that this argument is imprecise with
respect to the structure of liquidity costs. The whole price impact curve
is exogenously given, because it is determined by the market. This is
also true beyond the quote depth. The size of the trade (endogenously)
determines the point on the curve valid for a specific trade. In this way,
the bid-ask-spread is also endogenous - determined by a very small spe-
cific trade position. As a consequence, the cost itself is neither exogenous
nor endogenous - at any size - but can be decomposed into an exogenous
price-quantity curve and an endogenous point on this curve.

A possible cause for this misleading distinction is the usual graphi-
cal representation, which shows a flat price impact curve similar to the
display above, but a continuous increases of liquidity cost beyond the
spread. This falsely implies that liquidity costs would be structurally
different beyond the spread.

Above graphical display necessarily neglects the temporal dynamics
of liquidity. Important is the distinction between temporary and per-

t.17  Temporary price impact is the portion of the

manent price impac
price impact, that will dissipate over time and is closely related to the
notion of resiliency.'® It is driven by order imbalances when trades are

purely motivated by liquidity needs. Temporary price impact might also

15 A detailed description will be provided in section 3.1.1.1.

16Cp. Bangia et al. (1999), p.68 f., also in Jorion (2007), p. 336 or Bervas (2006), 3.
"Holthausen et al. (1987) first introduced this setup.

18Cp. section 2.1.1..
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occur under information asymmetries, if the market reacts on perceived
informational content, i.e. it occurs due to adverse effects. Permanent
price impact is the portion of the price impact that will permanently
move mid-prices. In an efficient market, the permanent part is directly
related to the true informational content of the trade. Measurement of

temporary and permanent price impact separately is still difficult.?

2.1.3 Existing liquidity cost measures

How can one measure the cost of trading a position? Academic literature
has brought forward a multitude of cost measures. Starting with Roll
(1984) and Amihud and Mendelson (1986), many papers have analyzed
variants of the bid-ask-spread, data which is easily available. But this
measure neglects that spread differs for different order sizes. Only small
positions, smaller than the bid-ask-depth, can be traded at such a cost.

Larger positions incur larger costs, the price impact (of the position’s
size). Initially the price impact was measured with proxies.?* The prob-
lem with estimating liquidity cost ex-post from transaction prices is to
distinguish between the informational and the liquidity component in
the price change. Pastor and Stambaugh (2003) used a method based
on price change with subsequent reversals, but were not able to distill
stock-specific liquidity measures.

More recently, a direct method of measuring size-specific spread has
been used. When order book data is available, the price of instant lig-
uidity for a position of a certain size can be extracted as weighted spread
from the limit order book. Under the assumption that a position is
transacted as a market-order against available limit-orders, the differ-
ence between the realized price and the mid-point of the bid-ask-spread
measures the price impact of the trade due to liquidity. As this is an

ex-ante measure of committed liquidity, informational effects of a trans-

19Cp. Amihud (2002); Pastor and Stambaugh (2003), who try to extract temporary
price impact from prices.
20Cp. for example Kyle (1985); Amihud (2002); Brennan and Subrahmanyam (1996).
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action cannot play a role here. Exchanges increasingly use transparent,
electronic limit order books, for example the London Stock Exchange,
the Nasdaq, the Frankfurt Xetra, the Euronext or the Australian Stock
Exchange. They also start to make these weighted spread data available
to researchers and practitioners. Hence, the above method of calculating
liquidity becomes more generally applicable.

Several papers have already used this new method of measuring lig-
uidity costs as displayed in table 2.1. Trvine et al. (2000) use the cost of
a round trip for trades of various sizes as a liquidity measure, which they
compare to quoted and effective spread. Empirically, they show that the
measure is correlated with other measures of liquidity and that it predicts
the number of trades of a certain size. Coppejans et al. (2001) employ a
similar measure to analyze the relation between market liquidity, returns
and volatility in an intraday sample. They reveal a large inter-temporal
variation and show that liquidity is concentrated on certain points in
time. Coppejans et al. (2004) discuss the stochastic dynamics of liquid-
ity with a measure similar to the cost of a round trip and find a negative
relation to volatility and a high degree of resiliency, i.e. high mean rever-
sion speed of liquidity prices after shocks. Domowitz et al. (2005) employ
the cost of round trip to analyze liquidity commonality and show that
market liquidity and returns can remain uncorrelated because they are
caused by different economic forces. While liquidity is driven by liquidity
supply and demand (i.e. cross-correlation between limit and market or-
ders), returns are driven by correlation in order flow (i.e. order direction
and size). Gomber et al. (2004) extract weighted spread from the limit
order book to show that resiliency is generally high after liquidity shocks
and public information has negligible impact on liquidity. They also show

that large transactions are timed on periods with high liquidity.
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2.2 Existing market liquidity risk models

2.2.1 General definition of market liquidity risk

Traditional risk measurement assumes that liquidity costs can be ne-
glected if the liquidation horizon is long enough.?! Therefore, there is no
adjustment for liquidity costs in many practical market valuation mod-
els: Liquidity cost is assumed to be zero and positions to be liquidated
at mid-prices.

Liquidity risk can generally be defined as the potential loss due to time-
varying liquidity costs. Several empirical papers have already shown that
liquidity risk is a substantial risk component, already when only cost
at the bid-ask-spread level is accounted for. Bangia et al. (1999) find
underestimation of total risk by 25-30% in emerging market currencies in
daily Value-at-Risk. Le Saout (2002) estimates that the bid-ask liquidity
component can represent over 50% of total risk for illiquid stocks. Lei
and Lai (2007) reveal a 30% total intraday risk contribution by liquidity
in small-price stocks.

Also, the adjustment for the full price impact cost - beyond the spread -
is significant. Francois-Heude and Van Wynendaele (2001) find a 2-21 %
contribution of price impact in one stock. Giot and Grammig (2005)
show that 30-minute liquidity-adjusted VaR is 11-30 % for three stocks.
Angelidis and Benos (2006) estimate that liquidity risk constitutes 11 %

of total VaR in low capitalization stocks.

Time horizon The time horizon in the VaR framework is usually the
time required to orderly liquidate an asset. It is differentiated between
asset classes but usually assumed constant within one asset class such as
stocks.??

There is an important conceptual distinction to be made when defin-

ing ’horizons’ in the liquidity risk management framework. The reaction

21Cp. Jorion (2007), p. 333.
2(Cp. for example Jorion (2007), p. 24.
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horizon is the time until management takes a decision vis-a-vis the lig-
uidation of an asset, while the liquidation horizon is the period during
which the position is liquidated. Although this distinction is usually ne-
glected, it has important consequences. Usually, the horizon is used as a
forecast period. Based on this information a decision is taken now, i.e.
the reaction horizon is zero and the liquidation horizon is equal to the
forecast period. Although the position is said to be orderly liquidated
during the liquidation horizon, its worst value is calculated for the end of
the liquidation horizon, which is logically inconsistent but conservative.

When directly adjusting for liquidity risk, it is possible to be more
precise and logically consistent. However, 'horizon’ then has to be dis-

tinguished into above aspects.

2.2.2 Model overview and evaluation

The choice of liquidity risk model strongly depends on the purpose as
well as the type of asset position in question. In the following, T will
look at models for regular risk measurement, which are not necessarily
suitable for stress testing. If intraday forecasts are not aimed for or
the integration of intraday data is too computational intensive, several
models based only on intraday data are ruled out.

For the choice of an appropriate liquidity risk model, assets on the
balance sheet have to be categorized according to the following three
criteria: General degree of market liquidity, typical size of a position and
data availability.

What is the general liquidity degree of the asset? If the asset is con-
tinuously traded, liquidity cost models are in focus, if it is only traded
with large interruptions, models incorporating execution delay have to
be applied. If the asset is illiquid, i.e. generally not traded, value has to
be determined with internal models. The same is true, if data is hardly

available or of limited quality, e.g. in some over-the-counter markets. In-
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ternal value models and possible liquidity adjustments therein are outside
the focus of this thesis.

How large is the typical position size relative to traded volume? If sizes
are relatively small, models which neglect the price impact of position
size can be applied, i.e. models based on bid-ask-spread data. If sizes get
larger, these models are naturally imprecise. If positions are especially
large, like block holdings, even models which incorporate price impact
will loose precision.

What type of data is available? The precision of the price impact
measurement depends directly on the amount of data available. On the
basis of spread data, price impact is generally neglected. On the basis of
transaction data, price impact approximations are possible.??> With limit
order book data, price impact can be quite precisely estimated. The type
of data determines the liquidity measure than can be used.

In the following, T will introduce relevant liquidity risk models and
indicate, which assumptions are made and when they can be applied. I
want to emphasize at this point, that my discussion is based on my very
own interpretation of the liquidity risk models, because many aspects
I point out are only implicit in the model structure and not explicitly
discussed by the original authors. If possible, I used my own, consistent

notation to allow for better comparisons between the different models.

2.2.2.1 Models based on bid-ask-spread

Add-on model based on bid-ask-spread: Bangia et al. (1999)
Bangia, Diebold, Schuermann and Stroughair (1998, 1999) include

time-varying, empirical bid-ask-spreads into a parametric Value-at-Risk

23(Cp. also Erzegovesi (2002), p. 9 ; Torre (1997) argues that large costs cannot be
observed because trades at such cost are not executed and transaction data is most
sparse in illiquid assets where expected price impact are largest.
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(VaR). Transaction price is modeled as mid-price with an add-on for the

bid-ask-spread,

1
Pridi+1 = Priarerp(ri) — §PtSt+1 (2.2)

where P,,;y is the middle of the bid-ask-spread, r is the continuous
mid-price return between t and t+1 and S is the time-varying bid-ask-
spread. Relative liquidity-adjusted total risk (L-VaR) is then the sum
of the mean-variance-estimated price-risk percentile and the empirically-

estimated spread percentile.
1 .
L—VaR =1- exp(z40,) + §PMd (s + 2405) (2.3)

where o, is the volatility of the continuous mid-price return and pg and og
are the mean and volatility of the bid-ask-spread. z, is the a-percentile
of the normal distribution, Z, is the empirical percentile of the spread
distribution. As spread is not normally distributed, it is not possible to
take percentiles from theoretical distribution tables. Therefore, Bangia
et al. take the percentile of the empirical spread distribution, which
ranges - in their 99% case - between 2.0 and 4.5, which is partially far
away from 2.33, the 99% cut-off of the normal distribution.

Bangia et al. (1999) also address the problem of moving from single
asset to portfolio VaR. They argue, that aggregating single asset [-VaRs
by using the spread covariance matrix is of dubious value, because spreads
are non-normally distributed. Instead, they suggest to aggregate single
asset’s price risk in a more traditional way and then deduct a weighted
average spread from the portfolio VaR. Single currency and portfolio
L-VaRs are calculated as illustration in their paper. Other empirical
applications of their model include Mahadevan (2001), Lei and Lai (2007)
and Roy (2005).

The great advantage of the methodology of Bangia et al. is the low
data requirement. Spread data is available at all frequencies for most

assets, often also in over-the-counter (OTC) markets. Tt is also quickly
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implementable, because the liquidity-adjustment can be simply added to
existing price risk measures.

The greatest drawback is the neglect of price impact, the fact that only
small order sizes can be traded at the spread and liquidity costs quickly
increase with order size. As consequence, liquidity risk can be heavily
underestimated for large positions.

Further, their add-on approach is logically inconsistent, because spread
is calculated on the current mid-price and not on the crises mid-price,
which is however easily correctable.?? Bangia et al. also make the as-
sumption of perfect tail correlation between spread and price, i.e. they
assume that worst liquidity costs and lowest prices occur simultaneously.
Because tail correlations can be much lower in reality, this technical as-
sumption probably overestimates liquidity risk.?®

Another problem is the estimation of the spread distribution. As
stated in their paper, spreads are often far from normal, because regime-
switching leads to multi-modality and because trending creates skewness
and fat tails.?® Accounting for non-normality by using empirical per-
centiles remains difficult, because this requires longer time series as a
basis for estimation, which might themselves exhibit structural breaks
with several modi. Structural breaks might especially occur in crises.
These distributional properties make further underestimation of liquid-
ity risk highly likely.

Although, the Bangia, Diebold, Schuermann and Stroughair (1999)-
model suffers from several imprecisions, it is one of the few models of
choice, when data is scarce, especially on transaction volumes or trans-
actions. I recommend to keep the add-on approach under the assumption

of perfect correlation, because this (partially) compensates the tendency

24(Critique noted and corrected by L — VaR = 1 — exp(ao,) x 1/2(us + @og) in
Loebnitz (2006), p.71 f.

25Cp. critique in Francois-Heude and Van Wynendaele (2001); Angelidis and Benos
(2006); Jorion (2007).

26Cp. discussion of the distributional characteristics of spread in section 3.3.4.
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to underestimate due to the neglect of position size and the empirical

approximation of percentiles.

2.2.2.2 Models based on volume or transaction data

Transactions regression model: Berkowitz (2000) Berkowitz
(2000a,b) estimates the liquidity price impact from past trades. While
controlling for the influence of other risk factors, price impact is measured

from the time-series of trades in a linear regression.
Pragi1 = Prigs + C 4+ 0Ny + 2041 + € (2.4)

where Prag1; is the transaction price at time ¢ + 1, IV, is the number of
shares sold, 6 is the regression coefficient, x;,; is the effect of risk factor
changes on the mid-price, C' is a constant and ¢, the error term of the
regression. The regression coefficient 6 acts as liquidity measure and can
be seen as the absolute return due to changes in volume, i.e. the absolute
liquidity cost per share traded.

To construct a liquidity-adjusted risk measure in a convenient way,
Berkowitz assumes that liquidity and other risk factors are independent
from each other, which is equivalent to zero liquidity-return correlation.
They also build on Bertsimas and Lo (1998), who show that under linear
price impact an optimal execution strategy within a horizon of A days is
to liquidate %th of the portfolio each day during the liquidation period.
Similar to equation (2.4), price then follows

Ny

Pra1 = Prigy + T — 97 (2.5)

Risk can then be derived from the general probability distribution. The
choice of concrete risk measurement (numerical, simulation, parametric)
is left to the reader.

The advantage of the Berkowitz-approach is the integration of price

impact of order size beyond the bid-ask-spread. While being more com-
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putationally extensive through the regression methodology, it only uses
transaction data for the liquidity measurement, which is available in
many markets. However, intraday data are required to calculate the
price impact cost from single trades. Otherwise, the estimation can get
very approximate.

The liquidity measure used in their approach, however, is quite im-
precise. In general, it closely resembles the liquidity measure of Amihud
(2002). Berkowitz additionally controls for risk factor changes in his em-
pirical regression. One problem is, that 6 can become positive or negative,
which is counter-intuitive as size should always lead to a price discount.
Further research should empirically verify in how far this measure proxies
for real liquidity cost.

Also the liquidity concept as such has to be criticized. Berkowitz as-
sumes linear, non-time-varying price impact, which is clearly not the
case and most likely underestimates liquidity risk impact. The assump-
tion of zero liquidity-return correlation in his risk estimates leads to fur-
ther underestimation, because, empirically, positive correlations can be
observed.?” Further, as will be discussed at the beginning of section
2.2.2.4, T doubt that an optimal trading strategy applied above is as such
a suitable approach in crises situation. A correction is however simple,
because traded volume does not have to be divided by the liquidation
horizon.

Overall, Berkowitz (2000a,b) provides an approach to integrate price
impact of order size into a risk framework, but liquidity measurement

remains highly approximate.

Crises transactions regression model: Jarrow and Protter (2005)
Jarrow and Protter (2005a) use a framework which is very similar to
Berkowitz (2000a). Price impact is also measured in a regression from

transaction data. However, they do not explicitly control for other risk

2TSee empirical analysis in section 5.2.3.
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factors and only take a sample of crises transactions to derive a crises

price impact coefficient.

P 1
log (M) — (Iu” — —Uzt) —+ 90<Nt+1 — Nt) + € (26)
Proay 2

2

;. are continuous mean and variance of the mid-price

where ,, and o
return, 6. is the crises price impact coefficient and N; is the number
of shares traded at time t.2® The restriction to crises introduces time-
variation into the price impact which is neglected by Berkowitz. The
additional, relative liquidity component in a VaR when selling a position

immediately in crises can then be calculated as
VaR, =1-06.N (2.7)

where N is now the trader’s quantity to be traded.?

The advantage of Jarrow and Protter (2005a) is the integration of
time-varying price impact, because the crises coefficient approximates
the distribution percentile of liquidity cost. The crises specific coefficient
also implicitly accounts - at least in approximation - for the liquidity-
return correlation in crises. Similar to the Berkowitz critique, this type of
empirical liquidity measure remains generally highly approximate. Run-
ning the regression in crises periods only might, however, severely shrink
the sample, which further reduces the validity of the liquidity estimate
f. Therefore, their approach is overall of similar value than Berkowitz
(2000b).

Volume-based price impact: Cosandey (2001) Cosandey (2001)
proposes a simple framework to estimate price impact from volume data.

The price is a function of the number of shares traded, P = Q/N, where

28To keep notation consistent, I used the Greek letters from Berkowitz (2000b), which
carry different meaning than the original Greeks in Jarrow and Protter (2005a).

29To simplify, I neglect that in the original paper the position is only partially liqui-
dated.
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(@ is the (constant) quantity of money traded and N is the number of
shares traded. Under the assumption, that traded amount of money Q) is
independent of a single trade, price including the impact of trading AN

shares can be simply estimated as

0 N

Priat(AN) = —— = Prigy x ——
w(AN) = AN &t NTAN

(2.8)

where the number of traded shares NV is assumed to be constant over time.
The trade fully increases the number of shares traded in the market. The
price impact is thus assumed to be linearly related to relative traded

volume. Relative liquidity-adjusted total risk can then be calculated as

N
L— VCLR(AN) = perc <Tt+1 X m) (29)
where perc determines the percentile from simulated distributions. The
effect of mid-price change and order size is jointly modeled.
Cosandey (2001) already addresses his shortcoming of the linearity of

the price impact function in (2.8) and proposes to model it as

Priat(AN) = Poigy (ﬁ) ’ (2.10)
where a is the - possibly time-varying - curvature parameter, but leaves
its measurement to future research.

The approach of Cosandey offers a major improvement over Bangia
et al. (1999), because the price impact of order size is accounted for.
While the important determinant of order size is integrated, the integra-
tion of price impact remains simple and has very few data and computa-
tional requirements. Volume data are available for many markets and a
large range of frequencies. However, not only single transaction data, as
in Berkowitz (2000a) or Jarrow and Protter (2005a) are required, but the
overall market volume. The linear implementation is simple and straight

forward.
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At the same time, the linearity of the price impact in the standard
specification is one main source of imprecision. Empirically, price impact
is shown to be concave, which makes a linear functional form overesti-
mate liquidity risk for large order sizes.?® Curvature parameters in this
functional specification are difficult to measure, which makes this prob-
lem hard to solve in this setup.

The second reason for imprecision is the assumption, that the amount
of trading in the market, N, does not vary over time. The dynamics of
trading volume in crises might significantly alter the picture. The much
cited 'flight-to-liquidity’ effect can introduce complicated mechanics, be-
cause liquid assets improve in liquidity while illiquid assets deteriorate.?!
If this is consistently the case, the liquidity risk of more illiquid positions
will be underestimated, which should be a major concern. As a con-
servative solution, trading volume can be assumed to dry up in crises,
e.g. by assuming that trading volume falls to the lowest percentile of
the volume distribution. But if this suggestion more precisely captures
liquidity effects in reality is unclear. Overall, neglect of time variation is
a problem difficult to solve.

Further, liquidity is assumed constant between stocks apart from dif-
ferences in trading volume. However, section 3.3.5.1 will show, that lig-
uidity cost also greatly vary with market capitalization. Integration of
this fact might possibly capture flight-to-liquidity effects but requires
further research.

In summary, Cosandey offers a framework, which can integrate price
impact in a simple way, especially in markets where data availability is

limited.

Structurally implied spread: Angelidis and Benos (2006) Ange-
lidis and Benos (2005, 2006) develop an implied liquidity cost model

from structural considerations, i.e. liquidity is traced to its underlying

30Cp. section 3.3.
31Cp. Longstaff (2004).
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drivers. They combine an inventory model of a market maker with a
fundamental model of information asymmetry. This yields an implied
spread, where the impact of traded volume depends on the degree of in-
formation asymmetry and the price elasticity with respect to volume and

a volume-independent minimum cost component.

L=/NO+k)+ (2.11)

where NV, is the absolute number of total shares traded, # is the degree of
information asymmetry, x is price elasticity with respect to volume and
® is the size-independent cost per share. The Greek letters are estimated
from intraday data with a Generalized Method of Moments.

This liquidity measure is then integrated into relative VaR as add-on

similar to the quoted spread in Bangia et al. (1999).
L—-VaR=VaR+ [(9 + k) N + @] (2.12)

where VaR is mid-price risk and Nf‘/ is the top o percentile of traded
volume.

Angelidis and Benos assume, that the individual position size of a
trader dissipates in the volume of the market and does not increase total
traded volume as long as the position size is smaller than traded volume.
This is the opposite extreme to Cosandey (2001), who assumed, that the
trader’s volume fully increases traded volume. Angelidis and Benos take
a less conservative approach. On the other hand, the assumption that lig-
uidity cost is calculated for the top percentile of traded volume, probably
captures the volume increase in the case of liquidation implicitly.

Angelidis and Benos (2006) provide a new approach of liquidity mod-
eling by tracing liquidity cost to its underlying determinants. This allows
to estimate liquidity even in markets, where other liquidity cost estima-
tions are not available. However, their approach requires intraday data

and heavy computations to get estimates for the structural coefficients.
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For practical purposes the main question is, if the structural model is
correct. If main liquidity effects are not captured, liquidity estimates will
be strongly biased. I would hypothesize for example, that volume elastic-
ity strongly varies over time, which is not captured. This might substan-
tially influence results if these effects are of large magnitude. Also, the
degree of information asymmetry can be expected to change over longer
periods. Therefore, this model is probably most useful when calculating
intraday risk.

The second critique addresses the mechanics of integrating liquidity
into the VaR-approach. As discussed above, adding liquidity risk to price
risk assumes perfect price-liquidity correlation, which might overestimate
risk. Since the dynamics of volume are not fully researched yet, it is
unknown if the assumption of increased volume in crises is really valid
and if it is safe to assume, that the trader’s position disappears in the
generally increased market volume without additional impact.

Overall, Angelidis and Benos (2006) provide an interesting intraday
model of liquidity risk, but relies on a large amount of intraday data as
well as some strong structural assumptions. Testing the validity of the
structural approach or empirically verifying the real dynamics of traded

volume in crises could take this line of research to the next level.

2.2.2.3 Models based on limit order book data

Price impact from limit orders: Francois-Heude and Van Wynen-
daele (2001) Francois-Heude and Van Wynendaele (2001) estimate
price impact of order size by using information from the limit order
book. They suggest to estimate the price impact for a certain order
size by interpolating the price impact function from the best five limit
order quotes made available by the Paris Stock Exchange. This estima-
tion of the spread S(q) for a specific positions size ¢ makes their approach

quite precise, at least for smaller order sizes.
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Relative liquidity-adjusted total risk is then calculated in the following
intraday model

L—VaR(q) =1 — exp(—z40,) < — @) + % (S(q) — S(q)) (2.13)
where 2z, is the normally distributed mid-price return percentile and o,
the standard deviation of the mid-price return distribution. S;(q) is the
average spread in the market for order quantity ¢ and S;(q) is the spread
of the asset. Market spreads are subtracted from worst mid-prices. How-
ever, as market average spread and individual asset spread might differ,
the second term tries to correct for this difference.

Because it seems logically inconsistent that the correction term is mul-
tiplied with current and not with worst mid-prices, I suggest to modify

the risk term into

L —VaR(q) = Ppias % [1 — eap(—za0,) (1 _5 té‘”ﬂ (2.14)

which is simpler, more consistent and does not require average market
spread data.

Still, time variation of liquidity is not accounted for in the Francois-
Heude and Van Wynendaele (2001)-model, but could be similarly imple-
mented as in Bangia et al. (1999) using mean and variance of the spread
distribution. This would, however, require the estimation of liquidity
cost distributions for all order sizes.

This approach generally requires intraday data to estimate the price
impact function, which restricts its application to risk estimation at in-
traday frequencies. Also, the type of data described above needs to be
available. A suitable degree of precision is restricted to order sizes that
are not too large, because extrapolation much beyond the fifth limit order
quote is approximate.

Overall, it is difficult to judge whether the increased preciseness

through integration of price impact or the lacking time-variation dom-
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inate in a specific situation. If the approach of Francois-Heude and
Van Wynendaele (2001) is used, T would suggest to integrate time-

variation in a suitable way.

Price impact from weighted spread: Giot and Gramming (2005)
In order to address price impact, Giot and Grammig (2005) extend the
idea of Bangia et al. (1999) by using spread data beyond the spread depth.
They assume, that the position is immediately liquidated as market order
against limit orders in the limit order book. Liquidity costs can then be
calculated as the average weighted spread of those limit orders necessary
to liquidate a certain position size. In this way, the liquidity costs of
different order sizes can be extracted from the limit order book.
In detail, price impact is calculated as
WS (g) = 2= Pi) (215)
mid,t

where WS is weighted spread in percent and ¢ is the size of the position
in mid-price value. a;(n) is the weighted ask price of trading n shares

calculated as
D i iy
n

as(n)

with a;, being the ask-price and n;, being the ask-volume of individual
limit orders. Individual limit orders add-up to the size of the position,

ie. Y .n; =n=q/Puia. b:(n)is defined analogously as

_ ZZ bi,tni,t
v

by(v)

where n;; being the ask-price and n;,; being the ask-volume of individual
limit orders.
The liquidity measure defined above can be used to calculate the net
return, return net of liquidity cost at time ¢ over horizon h as
WSi(q)

rnety(h,q) = ri(h) x (1 — T) (2.16)
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where r,(h) is the h-period mid-price return at time ¢. Net return in-
cluding price impact is then integrated in a parametric, intraday VaR-
framework. Relative liquidity-adjusted total risk over horizon h is esti-

mated by using tails of the student distribution as
L—VaR(h,q) =1—exp (,umet(h,q) + Zt,aUmet(h,q)) (2.17)

where [+ 15 the mean and o,,,¢; ¢ is the volatility of net returns, while
allowing for diurnal variation of spreads and time-varying clustering of

return volatility by modeling conditional heteroskedasticity.??

Zt,q 1s the
a-percent percentile of the student distribution.

The main advantage of using weighted spreads is the precise modeling
of the price impact of positions size. However, a precise definition of
the situations where weighted spread is a valid liquidity measure is still
missing.

Time variation and non-normality is accounted for by using the para-
metric specification. While it is possible, that the assumption of the t-
distribution is a source of imprecision, this would need empirical testing.
A further advantage is the modeling of net-return instead of separating
mid-price return and liquidity cost, because the correlation between re-
turn and liquidity cost does not have to be explicitly modeled. Total risk
is measured when the combination of mid-price return and liquidity cost
are lowest.

Unfortunately, this method requires a transparent limit order book
market such as the London Stock Exchange, the NASDAQ), the Deutsche
Borse Xetra or the Euronext. If weighted spread data have to be man-
ually calculated from the full intraday limit order book, the method is
highly computationally intensive due to the large amount of data. How-
ever, some exchanges, like the German Xetra, provide weighted spread
data, which can be integrated into a risk framework with limited com-

putational requirements.??

32For details please refer to the original paper.
33 Available as Xetra Liquidity Measure (XLM).

33



Chapter 2. Background and existing literature

Overall, the weighted spread approach allows for highly precise inte-
gration of liquidity risk including price impact of order size - if limit order

book data is available.

2.2.2.4 Theoretical models

General remarks In addition to the models analyzed so far, a different
class of models has been suggested by academia in the context of lig-
uidity risk measurement. As discussed in section 2.1.1, optimal trading
strategies try to find an optimal balance between price impact costs and
delay cost by delaying parts of a transaction. They are very helpful in
determining a valid liquidity cost estimate when liquidating a large stock
position in normal situations.

I only provide a short overview, because I believe that in risk man-
agement the usefulness of these strategies is limited for three reasons.®*
First, I doubt that optimal trading strategies are suitable approach from
a risk perspective in general. They assume, that there is enough time to
delay portions of a trade, which is rather unrealistic in a crises situation.
Calls on margin accounts and strong expected momentum enforce a fast
liquidation, leaving little room for patient optimal delay. If we assume a
10-day forecast horizon and a crises occurs on day one, does a trader re-
ally wait the nine remaining days to liquidate the position? Second, even
if there is enough time, optimization parameters must be stable enough
to yield an optimized result. Otherwise, it might be that the optimized
trading strategy yields worse results than by trading as quick as possible.
This is especially the case, if a position is to be liquidated due to infor-
mational advantage with respect to the further development of a crises.
Third, optimal trading strategies are usually based on a large amount of
parameters that are difficult or impossible to estimate in practice. The

more aspects are mathematically integrated, the more difficult and possi-

34More detailed discussions of these theoretical models can be found in Erzegovesi
(2002), Loebnitz (2006) and Jorion (2007).
35This translates into high permanent vs. temporary price impact.
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bly unstable is the implementation. All of the model suggestions have yet
failed to demonstrate that they can be empirically applied in real crises
data.?® To prove the validity of optimal trading strategies, empirical es-
timation procedures need to be developed and it needs to be shown, that
the analytical optimal strategies are stable in crises situations. I believe
that optimal trading strategies have their greatest validity when trying
to liquidate block holdings in normal market situations, but have limited
applicability in risk management.

Nevertheless, for sake of completeness, 1 provide a brief overview. Pa-
pers with optimal trading strategies usually assume some form of price
impact function and a particular structure of the temporal dynamics. 1
will highlight those two main characteristics for each model to clarify the

differences.

Model overview Lawrence and Robinson (1995) include liquidation
costs, delay costs, which are measured as risk exposure during liquida-
tion, and hedging costs into a net sales value. Risk is then measured as
the maximum net sales price when setting the liquidation horizon in an
optimal way. Unfortunately, the problem of liquidity cost measurement
and its dynamics is left to be specified by the reader. It seems, that
liquidity costs are measured as constant bid-ask-spread only, i.e. price
impact and time variations are neglected. The general critique on op-
timal trading strategies applies as discussed above. In addition, it can
be doubted that maximizing expected proceeds and neglecting potential
shortfall due to proceed variance is a suitable way from a risk perspec-
tive. Also, using an unbounded liquidation horizon is a questionable
procedure in crises. Therefore, their approach can only serve as a very
general framework for analyzing the problem.

Jarrow and Subramanian (1997)/Subramanian and Jarrow (2001) in-
clude liquidity cost and execution delay in an optimized framework max-

imizing liquidation proceeds within a given horizon. They assume that

36Cp. also critique in Bangia et al. (1999), p. 69.
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liquidity costs are non-decreasing with order size and that trading has
economies of scale, i.e. that liquidating the full position at once is al-
ways optimal. Liquidity-price correlation is assumed to be zero. The
trader is treated as risk neutral. Under these assumptions, an analyt-
ically optimal solution is derived. Unfortunately the framework must
place heavy restrictions on reality to find an analytical solution. If the
optimal liquidation strategy is optimal in real data remains to be seen.
The critique on optimal trading strategies in general and on the neglect
of proceed variance analogously applies. How the parameters used in the
optimization are to be empirically estimated will have to be developed.

Almgren and Chriss (2000) construct an optimal trading strategy
within a given liquidation horizon. They decompose liquidation cost
into a temporary and a permanent component and construct a liquidity-
adjusted VaR by minimizing VaR itself. This approach is extended in
Almgren (2003) by including non-linearity in the price impact. However,
the question of measuring these parameters remains unsolved in both
papers. This especially concerns the magnitude and functional form of
permanent and temporary price impact as well as the duration of the
temporary price impact. If time-variation of liquidity is incorporated,
distributional estimations are also necessary.?” Concerns with respect to
the validity of optimal trading strategies in crises as such apply.

Hisata and Yamai (2000) also construct an optimal trading strategy
by minimizing the cost of liquidation, also including normally-distributed
permanent and temporary price impact. They determine the optimal
holding period at constant sales speed by maximizing expected sales pro-
ceeds with a penalty for proceed variance. Liquidity risk then is the price
impact variance under the condition, that the sales strategy is optimized.
Several variations as well as portfolio considerations are discussed. Un-

fortunately, the paper also fails to specify how to empirically estimate

37 Almgren et al. (2005) present a calibration procedure based on internal trade data.
This is, however, less helpful when trades are sparse for certain assets in general or
the specific institution.
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the parameters used in the framework.?® Several assumptions that are
required to technically find an analytical solution, might not be robust
in reality. Also using an unbounded liquidation horizon is questionable
as discussed above.

Dubil (2003) analyzes the optimal execution strategy between delaying
parts of a position and the price impact. Liquidation costs are also de-
composed into a permanent and a temporary component. He optimizes
the liquidation horizon by maximizing the total VaR of the transaction
when assuming a constant liquidation speed, i.e. when price impact is
linear. Above critique on optimization strategies, unbounded horizon
optimization in particular, as well as empirical parameter estimation ap-
plies.

Engle and Ferstenberg (2007) optimize the sales trajectory within a
given horizon to maximize expected proceeds with a penalty for pro-
ceed variance. Similar to Almgren and Chriss (2000), they assume that
permanent and temporary price impact can be measured and solve this
theoretical problem, but fail to address how these parameters can be
estimated.

This line of research will proceed quickest to practical implication, if
two questions are addressed. It needs to demonstrate the empirical esti-
mation technique for the multitude of parameters and prove if or under
which circumstances optimal trading strategies yield superior results in
crises situations compared with instant liquidation. In the end, integra-
tion of many aspects might not be the best way because implementation

and result stability are relevant aspects as well.

2.2.3 Synopsis

Liquidity risk measurement has to take two problematic steps: Measure-

ment of liquidity and integration of the measure into a risk framework.

38The numerical illustration takes important parameters such as temporary price
impact recovery and permanent price impact coefficient as given or sets them to
Zero.
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The measurement technique is closely connected to the data available.
The preciseness should increase the more information is used in deter-
mining the price impact curve. The correct risk integration technique
is generally a balance between simplicity and applying suitable, non-
distorting assumption. Table 2.2 summarizes the traceable models based
on these criteria. While this provides a theoretical indication, which
models should be most suitable, the ultimate test must be empirical.

This empirical comparison will be conducted in section 5.3.
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3 Description and analysis of

data sample

This chapter describes the type of data used in the liquidity risk mod-
els in chapter 4, and in the empirical analysis of chapter 5. Section 3.1
provides an overview of the data types used in the analysis. In par-
ticular, it defines weighted spread as liquidity measure, analyzes under
which assumptions it can be used and describes the weighted spread data
set. This is followed by short descriptive statistics in section 3.2, which
provide a useful background on general market conditions in the sample
period. In section 3.3, I provide a detailed empirical analysis of weighted

spread as liquidity measure.

3.1 Data types

3.1.1 The weighted spread liquidity measure
3.1.1.1 Definition

I define weighted spread liquidity measure from the cost perspective out-
lined in 2.1.1. Similarly to Giot and Grammig (2005) in section 2.2.2.3, I
define weighted spread as the liquidity cost of a round-trip of size ¢ when
liquidating against the limit order book.

The weighted bid-price b;(n) for selling » number of shares is calculated

_ Zl bi,tni,t
n

as

by(n) (3.1)

!For this chapter, cp. Stange and Kaserer (2008a).
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where b;; and n;; are the bid-prices in Euro and bid-volumes of individual
limit orders at time t sorted by price priority. Individual limit order
volume add up to n shares, ) . n; = n. The weighted ask-price a;(n)
is calculated analogously. Weighted spread is then calculated in basis

points (bp) as a function of predefined order sizes ¢

ay(n) — by(n)

WSl = —F% -

% 100 (3.2)
where P4 is the mid-price of the quoted (minimum) spread and ¢ =

n X P;q is the size of the position measured in Euro-mid-price value.

3.1.1.2 Range of applications

Under which assumptions can the weighted spread liquidity measure be
validly applied? The following lists the necessary assumptions with re-
spect to position size and type of asset.

First, [ assume that direct trading costs are zero, T(q) = 0. For very
large or institutional traders in developed markets, T(q) can generally
be considered negligible. On the Xetra system of the Deutsche Borse, for
example, institutional traders pay only around 0.5 bp as transaction fee.?
Transaction cost T(q) can also be neglected if time variation of liquidity
is of major interest.

The second characteristic concerns data availability. Because I focus
on the price impact of a specific position size, this type of price impact
data needs to be available. This is most probably true in markets with an
electronic limit order book, where limit order book data is made available,
such as the London Stock Exchange, the NASDAQ, the Frankfurt Xetra
or the Euronext.

Third, T look at assets positions, which are continuously tradable dur-
ing crises.®> This means, that no (or very few) zero trading days occur

and the position size is not larger than market depth. This is a close

2Cp. Deutsche Boerse (2008), p.6 ff.
3Cp. categorization of liquidity degrees in section 2.1.2.1.
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approximation for most stocks, which have no or very few zero trading
days. Therefore, investors are not forced to delay the execution of a
transaction and costs from forced delay are zero. Scanning the sample
data of 160 German stocks over 5.5 years (6/2002 to 1/2008) shows that
this assumption is less restrictive than it first seems. Even for less con-
tinuously traded stocks in my sample, trading gets continuous during
market turmoils. Zero trading days seem to occur mainly in calmer mar-
ket periods. I hypothesize that tumbling market prices attract traders,
who want to liquidate positions or to stop loss via limit orders, which
ensures continuous trading. However, I leave a rigorous analysis of this
aspect to future research.

Fourth, T assume that deliberate, strategic delay has no significant ben-
efit, i.e. I assume that positions can be equally good instantly liquidated
against the limit order book.? So, I neglect any (potential) effect of op-
timal trading strategies, which balance the increased price risk of delay
against reduced liquidity cost by trading smaller quantities.?

In my view, this is a reasonable assumption in four cases. When I take
the worst case perspective of impatient traders, a common risk assump-
tion, potential benefits are consciously neglected.

Benefits are also non-existent, if informational content of the trade is
too high. The trader wants to trade immediately on an informational
advantage, which would be revealed by trading more slowly or which
would dissolve over time. Adverse informational effects are also possible,
i.e. trading more slowly could have price effects because the market
assumes informational advantage, which is not present in reality.’

Immediate liquidation is fair, too, if liquidity prices are efficient and a
traders risk aversion is greater or equal to that of the market. If liquidity

costs are too high, liquidity providers will enter with limit orders, because

4This also neglects liquidation via limit instead of market orders as well as up-floor
or over-the-counter trading.

5Cp. section 2.2.2.4.

6Technically expressed as high permanent price impact rendering optimal trading
strategies useless.

42



Chapter 3. Description and analysis of data sample

liquidity costs, i.e. their profits, will compensate for the additional risk
during the delay until the limit order is executed. If liquidity costs are
too low, market orders and withdrawn limit orders will deplete the order
book, because nobody is willing to take price risk during delay. In this
case, marginal gain from lower liquidity costs by delaying a transaction
balances the marginal loss due to higher price risk.

Finally, optimal trading strategies might not be feasible in times of
market stress,” because the optimization parameters are not stable or
strategic trading is not always possible.

If there is no forced or deliberate delay, delay cost are zero (D(q) = 0)
and as a consequence, total liquidity cost can be fairly measured with

the price impact from immediate execution.

L(q) = PI(q)

The first two assumptions are generally less critical. Although the
latter two assumptions place restrictions on the range of applications,
the discussion shows, that the approach is still valid in a large variety
of situations, especially if markets are fairly liquid, positions are not too

large and a worst case perspective is of interest.

3.1.1.3 Data sample

I have obtained liquidity data from the Xetra system of the Frankfurt
Stock Exchange, which covers the bulk of stock transactions in Germany.
Deutsche Borse is among the top 10 largest stock exchanges in the world
and Xetra is its electronic trading platform. Trading can be conducted
from 9 a.m. to 5.30 p.m. and starts with an opening auction. It is
interrupted by an intraday auction around 1 p.m. and ends with a closing
auction. Between auctioning times, trading is continuously possible. An

electronic order book collects all limit and market orders from market

TA point raised in Jarrow and Protter (2005a), p.9.
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participants. Orders in the order book will be matched based on price
and time priority.

In general, the limit order book is anonymous, but transparent to all
participants. However, traders can also submit hidden, “iceberg” orders
to trade large volumina, where traded volume is only revealed up to a
certain size and a similar order of equal size will be initiated once the
first limit order is transacted. Market makers post bid- and ask quotes
up to a prespecified minimum quotation volume.

The Xetra system automatically calculates the Xetra Liquidity Mea-
sure (XLM) from the visible and invisible part of the limit order book,
i.e. including “iceberg” orders. XLM is a weighted spread measure, calcu-
lating the cost of immediate execution of a round-trip order of a specific

size ¢ compared to its fair value as defined in equation (3.2).
XLM(q) =W5(q) (3.3)

Gomber and Schweickert (2002) provide some further theoretical back-
ground.

My sample consists of 5.5 years of daily data (July 2002 to January
2008) for all 160 stocks in the four major German stock indices (DAX,
MDAX, SDAX, TecDAX). The DAX contains the 30 largest publicly
listed companies in Germany (by free-float market volume), the MDAX
the subsequent 50 largest® and the SDAX the following 50 largest. The
TecDAX, introduced during the sample period on 24.03.2003, comprises
the 30 largest technology stocks. In total, I therefore cover a market
capitalization of approximately € 1.2 trillion, which represents the largest
part of the market capitalization in Germany.® As far as I know, this is
the most representative sample on weighted spread available to academia
so far.

I received XLM data for all days, where a stock was included in one

of the above indices. Daily values are calculated by Xetra as the equal-

8MDAX contained 70 stocks before 24.03.2003 and 50 stocks thereafter.
9Values as of 1/2008.

44



Chapter 3. Description and analysis of data sample

weighted average of all available by-minute data points.!® I break my
total sample into four sub-samples, each containing the stocks of one
major index.

With the data items above, I proceeded as follows. Liquidity costs
L(q) were calculated from a transaction perspective. As a per-transaction
figure has much more practical meaning, than a per-round-trip figure, I
assume that the order book is symmetrical on average, i.e. the liquidity
cost for buying and selling are equal. Therefore, I can calculate the price
impact per transaction under the assumptions outlined in section 3.1.1.2
as

L(q) = PI(q) = %M(Q) (3.4)

It is important to note that this measure captures the committed part
of liquidity only, while there might possibly be additional hidden lig-
uidity in the market. Since I assume a worst case, however, where I
transact immediately against the order book, there is no time for addi-
tional (hidden) liquidity to enter the market. This type of measure acts
as an upper bound to liquidity cost, because it only measures part of the
liquidity supply.!!

Liquidity costs were provided for each stock for 10 out of the 14 volume
classes q of € 10, 25, 50, 75, 100, 150, 250, 500, 750, 1.000, 2.000, 3.000,
4.000 and 5.000 thousand. Volume classes for DAX stocks went up to
€ 5.000 thsd., but excluded € 10, 75, 150 and 750 thousand. Stocks
in the other indices had liquidity costs for all volume classes up to € 1
million.

I had to exclude 408 (<0.01% of total) observations, where liquidity
data were available outside the volume class structure described above.
As these values were available for connected periods of less than seven
days, I assume that the automatic calculation routine of the Xetra com-

puter was extended during trial periods. This procedure ensures that

10For liquid volume classes this comprises a maximum of 1,060 measurements during
continuous trading.
1 Cp. also Irvine et al. (2000), p.4f.
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liquidity estimates remain representative. In total, my sample contains

1.8 million weighted-spread observations for the 1.424 trading days.

3.1.2 Price, bid-ask-spread and volume data sample

For each stock I define the following variables in addition to L(q):
e P: mid-point of the bid-ask quote at day closing in Euro

e S: quoted bid-ask-spread at day closing relative to the mid-point in
bp

e MV: market value at day closing in million Euro
e VO: trading volume in number of traded shares

Data for all items were obtained from Thomson Financial Datastream.
Three stocks could not be included in the analysis due to missing XLM
or Datastream data.'? This left 99.9% of the total 323,953 stock-days'?
in the sample. T also had to adjust mid-price data P, because Datastream
carries forward price data even if no transaction took place. I removed
all price data at days, when no transaction volume was recorded. Data
for market value MV and transaction volume VO were used as provided
by Datastream.

Quoted spread S measures the minimum ex-ante liquidity cost. While
XLM is standardized by size category, quoted spread is not. The largest
order size tradable at the quoted spread, i.e. the spread depth, differs
between stocks and changes over time. Spread measures different eco-
nomic aspects for stocks which are covered by a market maker and for
those stocks without coverage. Therefore spread depth differs between,

but also within those categories.

12Procon Multimedia (in SDAX between 10/2002 and 03/2003) and Medisana (in
SDAX between 12/2002 and 03/2003). Data could not be obtained for Sparks
Networks (in SDAX between 06/2004 and 12/2005), because it was not available in
Datastream anymore.

13383 stock-days excluded.
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On Xetra, market maker coverage is required only for illiquid stocks -
as defined by past XLM and order book volume criteria.'* On 31.01.2008,
35% of my sample had coverage.'> In DAX and MDAX only one stock
was covered, in SDAX 86% of the stocks were covered.'® In the case with
coverage spread is the quoted spread of the market maker. Spread depth
can be freely selected by the market maker above the Xetra-regulated
minimum, called minimum quotation volume (MQV), which varies de-
pending on stock liquidity as measured by past-XLM. According to my
data, minimum quotation volume for covered stocks was € 17.338.

In cases without coverage, spread is the minimum spread available in
the order book. It corresponds to the order size of the limit order with the
best price at a particular moment, which is naturally non-standardized.
While the Xetra MQV is valid for liquid, non-covered stocks as well,
the average minimum was € 27, i.e. non-existent for practical purposes.
Spread depth for non-covered stocks therefore varies even more widely.

Two aspects should be kept in mind when comparing spread and the
XLM liquidity measure. First, spread for covered stocks is likely to follow
other dynamics, since the size of the spread has Xetra-regulated upper
bounds.!” In contrast, XLM liquidity prices result from free supply and
demand behavior. Second, there is potential overlap between spread and
the XLM. 51 stocks in my sample had minimum quotation volume above
€ 10.000, 4 stocks between € 25.000 and € 30.000 (mostly in SDAX
and TecDAX). As a consequence, XLM measured quoted spread in small
volume classes ¢ of € 10 and 25 thousand for these 51 stocks. While no
historic data on MQYV is available, it is safe to assume that this was valid

over the whole sample period.

4 Market makers are called 'Designated Sponsors’ on Xetra.

5Data taken from Deutsche Borse (2008).

16While historic data was not available, it is plausible that similar differences existed
during the whole sample period.

17Cp. Deutsche Boerse (2007), p. 5, 9.
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Market segment overview 11,2002 2003 2004 2005 2006 2007 1/2008 pe:::::
Average continuous period return L
DA% -52% 24% 6% 2T 20% 22% -15%% 6%
MDA -23% 3% 15%% 25% 5% -1%% -13% 12%
ADAY -36%% 35% 11%% 28%% 29%% 4% -14%% 10%
TecDAX nfa 53% I 26% 24%% 32% -25% 23%
Total -35%% 24% 10% 26% 24%% 11%% -15%% 3%
Average period return volatility {annualized) *
DAY %% 41%% 22% 19%4 3% 5% 51%% 30%%
MDA 54%% 3% 28% 26% 30%% 5% 558% 35%%
3DAT 65%% 4% 35% 31%% 36%% 38% 58%% 40%
TecDAX nfa % 43% 31%% 33%% 4434 % 43%
Total a0%% 44%% 3% 2T 32% 36% 55% I
Average free-float market capitalization in million Euro
DAax 15217 14,615 17983 20,350 24357 29949 28325 21,008
MDA 1,043 1,330 1,940 2,537 3,734 3,797 3,121 2453
SDAY 106 235 320 393 500 TS 640 418
TecDATX nfa 725 863 898 995 1,221 1,204 955
Total 3,639 3483 4,319 4,993 fi,154 7379 7,009 5160
Average daily transaction volume in thsd. Euro
DA 93500 94329 95037 119563 165833 250,835 351,793 144,040
MDA 1,334 2,297 4,035 6,242 11,034 18243 22351 1557
3DAT 36 140 237 514 958 2,129 2,081 T80
TecDAX n/a 1,813 2,345 2,308 4,769 M6 11430 4,052
Total 20431 18543 20,268 25206 35797 54891 75739 31020

Table 3.1: Market conditions during sample period
a. annualized; b. Includes dividend returns, because price series are adjusted for cor-
porate capital actions; c. volatility estimated from daily cont. returns and annualized
with v/250; All values equal-weighted.

3.2 Market background in sample period

As background to the empirical analysis, table 3.1 summarizes market
conditions during the sample period. Markets were bullish in the largest
part of the sample period. I also captured the downturns in the second
half of 2002 and the first month of 2008. Due to beginning and end
of period declines, overall return was rather average at 8% p.a.. Natu-
rally, market capitalization increased similar to returns. Average market
capitalization is several times larger in the DAX than in all other in-

dices. MDAX contained the second largest average market capitalization
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stocks. Volatility exhibited a similar, but reversed pattern than returns.
Consequently, my sample is rather positively biased.

Daily transaction volume increased strongly during the sample period,
which is already a plausible indicator for improving liquidity. Transac-
tion volume was largest in the DAX. Transaction volume in the other
indices were several magnitudes smaller. Contrary to the general trend,
transaction volume in the TecDAX remained rather steady after its initi-
ation in 2003 and exhibits a level slightly lower than the MDAX. SDAX
transaction volume was again several times smaller than in MDAX or
TecDAX. The high diversity in transaction volumes underlines the rep-

resentativeness of the sample.

3.3 Empirical analysis of weighted spread

3.3.1 Motivation

As such a large sample of weighted spread has never been available to
academia before, I conduct an empirical analysis of weighted spread as
liquidity measure. Section 3.3.2 presents representative weighted spread
estimates of the impact of order size on liquidity cost, which have not
been available so far due to short sample restrictions. Sections 3.3.3 and
3.3.4 analyze the time development and distributional characteristics of
weighted spread, which are important to evaluate the importance of the
weighted spread in the risk management context. As outlined in section
2.2, several liquidity risk models neglect the impact of order size on lig-
uidity cost. Therefore, this analysis will allow to judge the importance
of this assumption. Section 3.3.5 makes cross-sectional comparisons to

provide more insight into the structure of weighted spread.
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3.3.2 Descriptive statistics

I start with looking at detailed descriptive statistics of liquidity cost T.(q),
which will serve as representative reference for practice and provide some
structural insight.

From an economic perspective, it is difficult to aggregate liquidity cost
by absolute order size across stocks. It can be argued that, for example,
liquidating a € 100.000 position in a large-cap stock is not comparable
to the same position in a small cap stock, as the position in the large
cap stock represents a much smaller part of the market value and should
therefore be more liquid and have consequently less liquidity costs. A
similar argumentation goes for the Euro-position in relation to the pre-
vailing transaction volume in the market. A position size relative to the
market value of the stock and prevailing transaction volume would be
more comparable across stocks.

While I do not want to empirically investigate into this argument fur-
ther in this section'® and to keep the provided statistics as simple as pos-
sible, I choose not to generate new relative size categories. I also want
to avoid reducing the generality of results by using a specific method for
re-categorizing liquidity data. To still account for the argument above,
my distributional statistics will not be calculated on liquidity data aggre-
gated across all stocks, but I calculate stock-specific distribution statis-
tics and present their cross-sectional mean and median. As reference, I
included spread in the distributional analysis. Because the order class
of spread differs widely between stocks, I designated this order class as
“min”.

I calculate the cross sectional averages for a specific sub-sample over
a specific period. Table 3.2 shows average liquidity cost over the whole
sample period by index and order size. The first columns present average
liquidity costs for different order sizes. The min-column contains the bid-

ask-spread estimate for the minimum order size, the following columns

18Refer to 3.3.5.1 for a more detailed analysis.
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Chapter 3. Description and analysis of data sample

the cost estimates for higher order sizes according to weighted spread,
equations (3.2) and (3.4). I report the cross-sectional mean, median and
standard deviation in each sub-sample. Availability is available data in
percentage of the theoretical maximum. As the sample comprises 1.424
trading days, the maximum possible number of observations per volume
class is 42.720 for the DAX, 74.900 for the MDAX, 71.200 for the SDAX
and 37.170 for the TecDAX.

In the last column of table 3.2 T specifically estimated the impact of
doubling order size in absolute basis points on liquidity costs and in
percentage points on availability. This is done with an ordinary-least-
squared (OLS) regression. The specification for each statistic stat(q) is
stat(q) = C 4 In(q) + ¢, with C being the constant intercept. Statistics
of the minimum order size/spread do not enter the calculation, because
corresponding minimum order size is not available.!?

Between 6,/2002 and 1/2008, investors had to pay between 0.09 bp and
460 bp on average for buying or selling a stock position, which already
shows that liquidity costs varies largely between order sizes and can reach
substantial amounts. While in the DAX average liquidity costs start at
a negligible 0.09 bp for the minimum order size, they reach over 100 bp
when trading a position larger than of € 3 million. Liquidity costs at
the smallest order size of € 10 and 20 thsd. respectively is several times
the level of the spread. As many (institutional) investors rarely trade
positions lower than € 10 thsd., the spread is therefore insufficient as
liquidity estimate.

Comparing average and median liquidity level between different in-
dices, the DAX was the most liquid on average, followed by the MDAX,
TecDAX and then the SDAX. A similar result shows when looking at
the size impact on liquidity. The size impact was statistically significant
at the 1 %-level in all indices, smallest in the DAX and largest in the
SDAX. When doubling order size, liquidity costs in the DAX increase by

19QLS regression with availability has limited validity, because the statistic is dis-
tributed between 0 and 1 and is non-normal, but has been included for sake of
completeness.
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an absolute 28.28 bp in the average stock. In the SDAX liquidity impact
in the average stock was almost three times as high at 82.41 bp.

Median liquidity was lower than the mean in all order sizes, which
reveals a right-skewed liquidity cost distribution for all sizes and all in-
dices. Size impact in the median is very similar to the impact in the
average. The dispersion of liquidity cost across stocks is of a similar
order of magnitude as the liquidity level and increases with order size.
Liquidity variation seems to be closely connected to liquidity level.

Generally, as order size increases, availability decreases, which is un-
derlined by the statistically significant size-impact statistic.?® This is
due to the fact already mentioned above that larger orders could not
be transacted against the limit order book for all stocks. Availability of
spread was in some cases slightly below 100 %, because Datastream did
not provide data for all stock-days. For small order classes up to € 25
thousand, over 90 % of all stock positions could be instantly liquidated.
However, in the SDAX, for example, availability drops down to 13 % of
all stocks for the volume class of € 1 million. In the DAX, even large
orders can be continuously executed against the limit order book as avail-
ability is below 90 % for the largest volume class of € 5 million only. The
pattern of availability for the TecDAX underlines the conclusion above
that the TecDAX is much more liquid than the SDAX. Comparing the
TecDAX with the MDAX with respect to availability, the MDAX is only
very slightly more liquid in order sizes above € 500 thousand.

The TecDAX was created in March 2003. Therefore, TecDAX numbers
are based on the mean from 3/2003 to 1/2008, in contrast to the rest
of the sample, which ranges from 7/2002 to 1/2008. Statistics for the
comparable sample (3/2003 to 1/2008) are shown in table 3.3. They are

similar in relative magnitude between the indices and structure.

20Because spread data in the min-column comes from a different source than the
liquidity data, availability between these two is not directly comparable.
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Chapter 3. Description and analysis of data sample

All in all, the discussion shows that liquidity costs can be substantially
underestimated when looking at spread only. The impact of size is quite

substantial, especially in stocks with smaller market capitalization.

3.3.3 Time dynamics

To provide a first picture on the different behavior of liquidity at dif-
ferent position sizes over time, I calculated pairwise-sample correlations
between spread and liquidity at larger order sizes as presented in table
3.4. Correlation between spread and liquidity in the rest of the order
book are relatively low below 65%, correlations between adjoining mea-
sures of L(q) are very close to one. Correlations drop to 30 to 40% when
looking at correlations between liquidity of very small and of very large
sizes. While correlations continuously drop as the difference between
order sizes gets larger, there is an increase in correlation between the
volume class of € 750 thsd. and € 1 million. This is due to the fact that
the sample at € 1 million is dominated by DAX stocks. DAX stocks
have generally higher correlations as is shown in table 3.5 on page 57,
which explains the increase between € 750 thsd. and € 1 million in the
full sample.

This correlation analysis is an indicator that liquidity behaves very
differently across order sizes. Liquidity cost at the left side of the order
book, like spread, are a poor proxy for the liquidity cost of larger position.

Figure 3.1 shows the daily development of liquidity cost L(q), averaged
over all order sizes and cross-sections during the whole sample period by
index. Detailed mean estimates are provided in table 3.6. While the
equal average over all available volume classes is somewhat arbitrary,
because it is strongly influenced by the selection of volume classes, it
nevertheless gives a picture of the general liquidity trend. While the
underlying stocks change over time as stocks move in and out of indices,

the effect on the index mean should be negligible. The average can be
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Spread  L{l0) L(25) L(50) L{75) L(100) L(150) L(250) L(500) L{750) L(1000) L(2000) L{3000) L(4000) L(5000)

Spread 100 58 057 0.54 0.52 051 037 046 0.45 044 043
L(10)

L(25) L.00 0.99 0.97 0.9t 0.87 077 .78 0.73 0.73 071
L(50) 100 0.99 095 0.90 0.80 0.81 077 0.78 0.76
L(75)

L(100) L.o0 098 0.93 082 0.83 07 0.80 07
L(150)

L(250) 100 0.97 0.85 n.86 0.3l 0.83 n.31
L(s00) 1.00 0.88 n.88 0.33 0.84 0.33
L(750)

L(1000) Lon 0.89 078 0.70 0.64
L(2000) L.00 093 0.36 07
L(3000) 100 0.95 0.90
L{4000) L.00 .97
L(5000) L.00

Table 3.5: Correlation of liquidity costs across order size for DAX
Pairwise sample correlations between bid-ask-spread and weighted spread L(q) of
different order sizes q in thsd. Euro.

Avg, liquidity cost Order size (in thsd. Euro)
(in bp) Min 10 25 50 75 100 150 250 500 730 1000 2000 3000 4000 5000 All
DAX 11,2002 0.26 nfa 1396  17.08 nfa 231.96 nfa 46,99 91.04 nfa 18750 320053 350.82 386.82 44247 16240

2003 0.15 nfa 9.36 11.51 nfa 15.82 nfa 2928 5466 nfa 12040 21123 25203 28611 31167 116.90
2004 0.06 nfa 4.99 579 nfa 734 nfa 1200 znio nfa 3901 7965 11646 14657 16830 5618
2005 0.05 nfa 380 438 nfa 524 nfa 8.09 12,65 nfa 2136 3885 5854 75T 9665 3224
2006 0.04 nfa 4.10 4.50 nfa 533 nfa 797 12.39 nfa el 3496 4974 6667 8302 28381
2007 0.4 nfa 383 4.27 nfa 5.21 nfa 8.14 1272 nfa 2048 3361 4612 6019 7575 2701
01/2008 0.05 nfa 488 5.58 nfa 706 nfa 1164 1881 nfa 306l 5058 7249 10043 12815 4295
All 0.09 nfa 5.99 704 nfa 9.22 nfa 1610 2856 nfa 5679 9751 11680 13630 15317 60.15

MDAX 112002 072 8500 11060 134.10 15738 17916 229.36 30114 41567 45224 46099 nfa nfa nfa nfa 189.32
2003 047 4370 5648 7338 9312 11271 15113 21518 29246 34223 36564  nfa nfa nfa nfa 141.79

2004 022 2152 2638 3489 4398 5342 7504 11636 19707 24291 27582  nfa nfa nfa nfa 9387

2008 0.17 144 1803 2329 2849 3371 4438 6664 12413 169.20 19875  nfa nfa nfa nla 66.69

2006 0.13 11.87 1402 1801 2222 2652 3518 5263 9800 13795 17171 nfa nfa nfa nla 5178

2007 0.13 1079 1288 1676 2079 2478 3248 4705 8213 11752 15213 nfa nfa nfa nla 51.39

01/2008 018 1569 1917 2548 3286 4010 5421 8090 14636 21170 27926 nfa nfa nfa nfa &8.70

Al 029 2848 3591 4501 5453 6379 B2a0 11275 16087 19279 21590  nfa nfa nfa nfa 90.57

SDAX 112002 133 24335 32798 43471 69259 92362 124833 95252 12658 9304 TDER nfa nfa nfa nla 394.36
2003 103 13192 17485 23188 28769 33410 397.62 49591 42185 STR60 51546 nfa nfa nfa nla 25375

2004 0.57 3038 11341 17549 22211 26532 31033 39168 43316 52172 680.02  nfa nfa nfa nla 203.29

2005 041 5283 67.97 9529 12277 146.23 184.83 23244 31266 411.80 48435 nfa nfa nfa nfa 141.50

2006 0.36 4458 5553 T34 9514 11668 15701 22508 32641 40338 45806 nfa nfa nfa nfa 141.34

2007 0.28 30.02 3746 4990 6293 7A48 10506 16450 28509 36726 43958  nfa nfa nfa nfa 13104

01/2008 036 4262 5431 7635 100.64  127.68 18192 30073 48545 63040 73620 nia nfa nfa nfa 194.33

All 064 30.80 9590 12521 15196 17438 2034 24341 32641 39892 46420 nfa nfa nfa nla 169.94

TecDAX 11:2002 nfa nfa nfa nfa nfa nfa nfa nfa nfa nfa nfa nfa nfa nfa

2003 043 5493 7438 10584 14345 18354 24196 320012 376.24 411.95 449.00 nfa nfa nfa nfa 187.05

2004 030 36.95 5007 7296 9870 12557 169.21 230080 31285 34955 34932 nfa nfa nfa nfa 141.58

2005 023 2680 3493 4749 40,09 7341 100.09 14512 23559 29306 32163 nfa nfa nfa nfa 107.33

2006 020 2280 29.07 4005 5104 6195 BABS 12853 222466 28576 336.10 nfa nfa nfa nfa 10%.40

2007 018 18.26 2330 3161 3887 4804 6381 8382 16925 22718 27338 nfa nfa nfa nfa 9139

012008 0.23 2823 3544 4827 617 7601 103.09 15804 29398 354.04 43106 nfa nfa nfa nfa 141.20

ANl 026 3083 4077 5726 7528 0387 12454 17017 24178 189.84 32697 nfa nfa nfa nfa 12272

All 112002 100 nfa 12384 13502  nfa 16727  nfa 20132 23266 nfa 25979 nfa nfa nfa nfa 0275
2003 0.58 nfa 3231 1457 nfa 146.37  nfa 20901 22272 nfa 23891 nfa nfa nfa nla 164.37

2004 0.31 nfa 53166 7864 nfa 11300 nfa 15337 17369 nfa 17978 nfa nfa nfa nla 118.36

2005 0.23 nfa 33194 4639 nfa 69.15 nfa 10820 140,82  nfa 16443 nfa nfa nfa nla 8548

2006 0.20 nfa 795 3734 nfa 57.20 nfa I07.06 14833 nfa 17873 nfa nfa nfa nfa B389

2007 016 nfa 2082 2756 nfa 41.62 nfa 8479 14003 nfa 190.64  nfa nfa nfa nfa FEat

01/2008 022 nfa 3052 4198 nfa 68.01 nfa 14367 23124 nfa 28095 nfa nfa nfa nfa 11830

All 0.3 nfa 4859  62.38 nfa 87.37 nfa 130.25 16360 nfa 18225 nfa nfa nfa nfa 108.36

Table 3.6: Liquidity costs by index, year and order size
Table 3.6 provides detailed mean liquidity cost estimates (bid-ask-spread and weighted
spread) by index, year and order size.
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Figure 3.1: Development of average liquidity cost by index
Figure 3.1 shows the development of the cross-sectional mean of all order sizes by day over the sample period. As noted before,

TecDAX was created in 3/2003.



Chapter 3. Description and analysis of data sample

interpreted as expected liquidity cost when trading a random position in
the specific index.

All index averages have experienced a strong decline in the last 5.5
years with a recent strong increase in 1/2008. In a first phase from 7/2002
to 3/2003 liquidity was highly volatile and showed side-way movement.
This phase corresponds to the end of the collapsing high-tech bubble.
From 3/2003 on, liquidity steadily declined, interrupted by short, but
substantial increases. Most of these increase spikes can be tracked to
major disturbances at the stock market. Liquidity cost increased around
August 2004 after the publication of low earnings forecasts in technol-
ogy stocks and during the stock market crash of May 2006, which spilled
over from emerging-market exchanges. The recent sub-prime crises is
also apparent in the data. Upward spikes can be observed during the
crash in February/March 2007 after bankruptcy declarations of sub-
prime lenders, in August 2007, where the influence of sub-prime on bank
portfolios became known, especially on the German IKB bank, and most
recently during the crash of January 2008 after equity shortages of major
banks around the world.

Increases occur over short periods of time, while decreases take place
over calm periods of slightly positive market conditions. This asymme-
try skews the distribution of liquidity changes to the right. The general
negative trend explains the slight positive skewness in liquidity level dis-
tributions. Index means move relatively synchronous, while changes in
liquidity seem to be connected to the liquidity level and are thus much
less pronounced in the less liquid indices.

To investigate into the time variation of liquidity costs by size, 1 first
look at the variation of availability over time. Figure 3.2 reveals that
availability has strongly increased, especially in larger sizes. In 100% of
the stocks, the volume classes of € 25 and € 100 thousand was tradable
in recent months. Tradability of € 1 million strongly improved from
around 30% of the stocks in 2002 to above 60% lately. Therefore, sample

size increases with time for larger volumes. The availability picture by
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Chapter 3. Description and analysis of data sample

index shows a similar development as displayed in figure 3.3. The sharp
increase of availability in the MDAX on 24.03.2003 was caused by the
reduction in number of stocks in this index from 70 to 50 stocks, as
mentioned earlier.

Due to the changing sample, I observe two contrary effects. As liquid-
ity improves, liquidity costs fall. At the same time, larger stock positions
become tradable. Availability in these order sizes increase. The suc-
cessive inclusion of comparatively illiquid stocks with high liquidity cost
drives up the average. As a consequence, the development of average
liquidity cost will not be representative for the development of liquidity
cost for a specific stock position. Non-constant sample average are up-
ward biased over time, especially in larger order sizes, where availability
strongly increases. Figure 3.3 reveals that the upward bias is especially
present in illiquid indices such as the SDAX.

To measure the development of liquidity cost for a specific stock po-
sition, I constructed a constant sample and recalculated the average lig-
uidity cost over time. I included only those stocks and sizes, which were
available at least 97% of the sample period.2! The caveat of this type
of analysis is that only very liquid stocks are included in the average
and the average is taken on a less-representative fraction of the market.
To make different order sizes more comparable, I indexed liquidity cost
levels on the July 2002 mean.

Results in figure 3.4 show that liquidity costs have decreased across all
order sizes. Absolute reduction is larger for bigger positions, but relative
decline was more similar across sizes. Relative reduction was larger in
smaller order sizes over the whole sample period. Spread declined by
80 %, weighted spread of a € 25 thsd. position by about 50 %. In
contrast, liquidity in larger volumes have been brought up to near high,
historic levels in the recent crises. Larger volumes seem to be affected

more strongly in crises. This effect can be interpreted as another vari-

2T chose 97 % availability as cut-off, because it provided a good balance between
non-distorted results and excluding too many stocks from the analysis.
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Chapter 3. Description and analysis of data sample

ant of flight to liquidity, where stocks positions that are liquid remain
relatively liquid in crises, while less liquid stock positions suffer more.

The discussion shows that the dynamics of liquidity are similar in the
general direction across order sizes. However, the absolute magnitude of
change is different. Absolute improvement has been greatest in larger
sizes. I have also revealed different crises behavior, where I uncovered
a flight-to-liquidity asymmetry between the liquidity of small and large
order sizes. This is a strong indication that liquidity risk will increase
strongly with increasing position size. Applying time dynamics from
liquidity measures of small positions such as the spread will be inappro-
priate for capturing the dynamics of the liquidity deeper in the order
book.

3.3.4 Distributional characteristics

Since I have access to a very representative sample, I will dedicate some
time and space to the distributional characteristics of weighted spread.
The analysis of the distributional characteristics is useful for several ap-
plications, for example in risk measurement and management, in asset
pricing models or in theoretical models to assume appropriate liquidity
processes.

As the selection of reported volume classes is arbitrary, it is impor-
tant not to calculate aggregate distribution statistics across order classes.
Fineness of the reported classes would directly impact distributional char-
acteristics. I therefore present all distributional statistics separate for
each order size. This also allows to investigate the impact of order size
on the liquidity distribution.

Table 3.7 presents distributional statistics on liquidity cost and abso-
lute liquidity cost change in bp. The size-impact statistic reveals that
there is a statistically significant size-impact not only on the liquidity
level, but also on its variance, skewness and kurtosis. Variance seems to

be closely connected to the level of liquidity. The cost mean and also

64



Chapter 3. Description and analysis of data sample

"1S9) PO[IR}-0M} ® TUO Pase( 0IdZ WOIJ JUIIHIP
Sureq JO [0AQ] POUBPHUOD YOT PUR %G ‘04T OYRIIPUL 4 PUR 4o ‘4yy f-0T UL sonep ‘e jdeotojur ue SUIpnOUI 0ZIs-10pIo J0[ U0 JIISIe)s
UOTINLISIP 91} JO UOISSDIFOI-GT() UR Ul 9ZIS-19pIo S0] JO JUaIdIe0d oYy st oeduut oz1g {(b)Tp pue (b)7 peeids pajySom 10] so13s1R)S
9} UrejUOd SUMWN]OD JZIS IOPIO ISYJ0 ‘9ZIS I9PIO WNWIUIW € 10] peaids-Jey o1} JO O19s1)e)s UOTINGLIISIP 9} SUTRIUOD UWN[OI-, UTA],, 9],

Ayrpmbry Jo $OISLIONORIRYD [RUONNALIISI(] 1L°¢ O[qRL

c0o- o £zl o0 ¥z 0- 80°0- 810 Ivn- F0°0- s0°0- Lo 1o w0 o0 onn 1oo- oo repa AL
1o 50°0- A 0so- eF0- 810 1¥0- 65°0- aro- F10- so0o w0 a1 F10 00 ] oo Ueay UEIpAIY - Wea A

wee SEE 1261 SFIE [ 052 L6 0E F0E Tasl 10781 19781 66 8l 9891 [ 1eel L9 e Lol Wepa A
s EL8 0z or SFal 6FLL 98 8L 0t +#8 oak LEEF Ller Felr LELE 9ELr DRI FlLE et el 6l 9ZLE wea iy SIs03.m3]

s00- ooo 12°0- ¥ - AN 10 F00- oro- AN soo- Lao- on s1o | Znn 00 1m0 Wepa A
L00- s0o- ¥ - 990 [N eno- s00- L2 0- [en- L00- mo soo LZn 10- on- 1mo- 00 weay SSIURIAY

2 55711 556 3999 [A e FE 51 9 SL I8 7kl SEFR LBEF FhLE [A [ al'@ 01t LET oo Wepa A
vy POBE IR £0asl La 151 OZ0L1 oorott FL GFE 98102 LE PRl L5601 FEGII 91 [N 21z 7881 LOEE i00 weay JIIUEBLIRA

sxe 200 1oo- g0n o 910 500 PAn] 210 o 1o o o 1o F0°0- 1on- zoo- oo repa AL
22 2070 F0°0- 600 ¥zl 220 aro oF0 £50 o PNy L20- Lro- 6z'0- LID- soo- Loo- oo wea gy wetpa A

zno- Lo LID- zro- a0°0- s0°0- zoo- o Lo PNy 50°0- o F0°0- zno- o zoo- oo repa AL
£00- 01'o- S0 LED- a10- 80°0- oo o0°0- 0z°0- L10- 210 £10- F10- £00- 100- £00 oo wea gy e [A
yaedun ¥ 000s ooor oonoe oooz oot 0sL 00s 0sT 0sT oot SL 0= ST 118 WA anspEs anspms
a7y (apqeandde azaym omy "psiy) ur) azs IapIgy UOT)IBS-SSOI) UOTINGENST]

U1} 3503 AJTpIHY U a5Ues aInjosqy

vy 208 ZEFl AN 12Es 005k [L2F 99°4L 0°TF 0F'1E 2CET F0'GE S1El SOET (i) So'F L't a0 WETpa AL
wyy 000 [ 14728 L2089 c0'ss vk 92 TF 680 {3 ¥o'lE 2L il it bt E8L1 i1 sna aF0 Weaq] WEIpAIy - Wea [y

wy L0 ES'B Izt 8601 FLTT FITI LE°T1 Lol SLTI 2801 £9°El 1z°01 SLa 184 ] 20 92 WETpa AL
we 6L i S FICE 21tk 02 'FE LFLE gEEL TLEE SLET ZFEE L8°EE 6eLT 2681 LOET SHET 08'1% wea Al SIS 03.IM3]

we P10 81 85 05 (I FeE EFE 61'e 8FT FrE gu'e ¥E'E ¥E'E | 6L] a7 L0'E WeTpa AL
wee L2700 [I}:43 SLE joh Fa'E A £TE oee e [ ooe 08¢ 182 Ly ¥z o6°7 66'g wea A $5IUMAN]

sy 187TE OFEE 20°FR1 On°TLl 807001 20°Z0 Fr Ll 1) R:14 IT°281 b al'18 1691 2502 s L858 LBE oo WeTpa AL
wue 06°LL FORal LE'LEY 0L0EF 10°L0% L6 2L 9EY 0L aEY TEalE 0822 0L°EEE 11asl AR 4 £5°89 20°8L £0bE 99°0 weas (AIUELTEA

» 990 Z0°0s L5718 1669 RS 6f Tk a9 0ET L0°ELT L0l 91 1L EFEL 1Tey 0% ot 8TIE FLFE i OF se0 WETpa AL
Li9°@ L2772 G¥ 08 L0°BL 210 [INI}S ooret IFZ0z IOLET 12784 ¥ SEC G9Z0L L5°8F I 62 '0F 2¢0 wea A Werpa 1A

we PLEI £7'a8 erbsl 620zl 1046 Ia'Ly 09101 2012 LEel s0°ent LLF0T [AN 22 19°L8 £0'6E A} LT 20 WeTpa AL
v OLLT OE801 LIEST 020L] 06071 I5'L6 cZzal 076k 08°E81 STOET SEDLT LLLR 2078 878 6% 8F Lk 't weaq e [A
1aedun L 00o0s ooor ooog oooz oot 0sL 00s 0stT 0sT oot SL 0= T 118 Al ansnes anspes

azy (apqeandde atays o.my “psy) uI) JZS J1APIG WOT)23S-S50I UOnngLYS]

65



Chapter 3. Description and analysis of data sample

the variance at the spread level are much lower. Otherwise, the distribu-
tion of the spread behaves similar to the distribution at the € 10 thsd.
volume class.

Looking at absolute liquidity changes removes the skewness, which
reveals that trend is a major cause of the skewness. The negative mean
and median reflect the overall negative trend in the sample period. The
trend seems to be increasing with size, but only in the median stock.
The absolute value of the trend is very small, below 0.5bp per day on
average. But variance is large so changes in liquidity cost can be quite
significant at certain times. There has been no overall trend in the spread.
Even when trend is removed, the distribution remains heavily fat-tailed.
Kurtosis also strongly increases with order size.

In order to create a distribution that is more closely normally dis-
tributed, I take the logarithm of absolute liquidity in basis points.??
Table 3.8 shows that this removes most of the kurtosis and skewness.
Distributions are now by tendency much more normal. Kurtosis is almost
removed, while some skewness remains in the data. While the economic
interpretation is more difficult, this conversion is helpful in statistical ap-
plications, for example mean-variance estimations. Size impact remains
intact and statistically significant for practically all statistics at the 1-5%
level.

To analyze the remaining kurtosis in more detail from an economic
point-of-view, I concentrate on outliers as potential source. To identify
outliers, I calculate standardized z values of log liquidity log(L(q)) by
subtracting the monthly mean and dividing by the monthly standard
deviation. Scanning of situations with absolute z-values above 3 (0.4%
of all observations), reveals four types of outlier situations, which all
present variants of market imperfections.

First, some records of L(q) exceed 100% (46 observations), i.e. trans-

action cost exceed the price. This could be due to data punching errors

22Please note that I take logarithm of liquidity cost in basis points, i.e. in 107%, not
in decimal.
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or due to highly asymmetrical order books, where limit orders on the
ask-side in the depth of the book are much larger than 200% of the
mid-price. If the limit order book is highly asymmetrical, my estimation
procedure for a per-transaction liquidity cost in equation (3.4) produces
economically meaningless results. It is also very plausible that liquidity
prices were inefficient in these situations. I removed these meaningless
records from further analysis.

Second, outliers occur after large changes in trading volume, i.e. either
if trading volume was very large on that day or on the day before. My
explanation is that large trading volume consumes limit orders and will
lead to large liquidity cost if resiliency for this particular stock is low. In
this case, new limit orders do not refill the order book quickly enough. As
a consequence, not all situations with exceptionally high volume exhibit
large liquidity cost, but only those where resiliency was low.

Third, outliers occur after large price returns, because limit orders are
fixed and do not necessarily adjust quickly to changing mid-prices. This
is another type of low resiliency.

Fourth, outliers can be identified near the maximum order book depth
as measured by the maximum volume class available in the liquidity
data. This is also consistent with the fact that kurtosis increases with
order size. The higher the order size, the more stocks in the sample have
reached their maximum depth. In these cases, it is plausible that the price
priority rule does not lead to efficient liquidity prices, because single or
very few limit orders determine liquidity cost. Because it is implausible
that large, single orders underestimate liquidity cost, because this would
generate losses to the liquidity provider, a reduction of the number of
limit orders will inflate liquidity cost and cause outliers.

In summary, the distributional analysis revealed that applications
should use log versions of liquidity and respect liquidity trends that are
inherent in the data. Despite the trends, daily fluctuations seem to be

random over the longer term.
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3.3.5 Cross-sectional comparisons
3.3.5.1 The role of relative order size

In this section, I want to follow up on the hypothesis that order size
relative to market value and transaction volume is much more comparable
across stocks than absolute order size. As argued in section 3.3.4, this
is plausible using common sense. But it is also backed by analogous
application of existing theory on the bid-ask-spread.

A market maker quoting the bid-ask spread and a trader initiating
a limit order face a very similar situation.?® A bid-ask-quote or a limit
order commit to trade a certain quantity at a certain price. Both liquidity
providers will want to get compensated for bearing two risks. First,
they have to bear unwanted inventory risk that the price moves against
them, e.g. through new, favorable information, while the limit order
is in the order book. Second, they have to protect themselves against
adverse information risks that traders only trade against limit orders
when they are better informed. Liquidity costs, which are returns for
liquidity providers, therefore compensate for price risk (i.e. inventory
risk), informational asymmetry and possibly, in addition, the fixed cost

24 These risks get relatively more important for

for providing liquidity.
larger order sizes as capital restrictions aggravate the situation of the
trader.

To analyze the impact of order size in the light of above consideration,
I use the following ordinary least squared (OLS) regression specification
in a pooled panel. It also mirrors my assumption that liquidity cost

depend on relative order size. Sub-index t indicates time and super-

23 This has been modeled for example by Rosu (2003) and Beltran et al. (2005).
24Cp. Grossman and Miller (1988) and the overview in Stoll (2000).
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index i the stock. Formulation in elasticities allows for smooth statistical

properties.?’
4
log(Li(q)) = C+ > _ Bz, + Y awlog(Li_(q)) + & (3.5)
j k=1

L(q) is liquidity cost to be explained. C'is a constant capturing the fixed
cost liquidity level. I use different combinations of explanatory variables
z;. I included four lags of log liquidity to remove autocorrelation in
the error term. ¢; is the time-varying error term. The main dependent

variables z; are as follows:

e log(q}) is the log of the size of the position in thsd. Euro,

log(V O) is the log of the trading volume in thsd. number of stocks,

log(MV) is the log of market value of the stock in million Euro,

R is the continuous mid-price return of the day in percent,

log(or) is the log of the daily return volatility in percent, which I

measure with the 10-day backward looking, moving volatility.
e [og(P) is the log of the price level of the day in Euro.

Position size ¢ is included to estimate the size impact. It proxies for
the importance of capital restrictions. Transaction volume VO is a good
proxy for low inventory risk due to higher participation in trading a par-
ticular stock. If transaction volume increases, the time until a limit order
is executed is reduced, which in turn reduces unwanted price risk. Mar-
ket value MV is a good proxy for both low inventory risk due to low
price risk and low adverse information risk. High market value stocks
experience higher coverage by analysts and traders. This reduces infor-

mation asymmetries. In total, the same position in a high market value

25Cf. discussion in section 3.3.4.
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Variance inflation factors (VIFs)

[ntercept Constant
Logix) £.36
Log(WVO) £.24
Log(MV) 527
R 1.00
log(RSICMALD) 1.50
Log(P) 2.52
LogiL{z) t-1) 18.24
Log(L{z)_t-2 2233
LogiL(x) t-3) 22.38
LogiL{x)_t-4) 17.84

Table 3.9: Variance inflation factors for combined specification

and high transaction volume stock should experience lower liquidity cost
due to lower risks.

Continuous return R controls for market conditions and is also a proxy
for increased trading and thus reduces inventory risk through shorter de-
lay. Return volatility o directly captures inventory risk and is also a
control for market conditions. Price level P captures the fix cost of liquid-
ity provision as low price stock require a higher liquidity cost percentage
if fix costs exist.

I will have two main lines of regression specification. One includes
market value as determinant and the other includes return volatility and
price level. A combined specification leads to high multicollinearity as
can be seen from the variance inflation factors (VIFs) in table 3.9 of the
combined regression. I assume that this is caused because market value
acts as proxy for differences in risk and will be correlated with the other
risk factors. While the first specification line investigates into my hy-
pothesis of order size, relative to market value and transaction volume,
being a determinant of liquidity cost, the second specification analyzes

liquidity cost when more finely accounting for differences in stock char-
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acteristics. I also employ different time-specific intercepts besides the
constant intercept to account for time variation.

Table 3.10 shows results of the specification with market value. Model
1.0 reveals regression results with constant intercept. Coefficients are
reported in percent. All variables are statistically significant at the 1%
level. Adjusted-R? is high, the Durbin-Watson statistic indicates that
autocorrelation has been successfully removed with four lags of the de-
pendent variable.

Coefficient signs are as expected. Order size q is positively related to
liquidity costs. Increases in market value MV and transaction volume
VO decrease liquidity cost as does price return R. Liquidity is very per-
sistent as can be seen from the high coefficients of the lagged variables.
Standardized coefficients (reported in 10%) reveal that return is, by far,
the most influential factor. Increasing returns by one percentage point
increases liquidity cost by 1.03 %. Order size and market volume are
more important than transaction volume.

Interesting is the absolute value of the coefficients. When order size,
market value and transaction volume is proportionally increased, liquid-
ity cost remain approximately constant.?® This confirms my hypothesis
that relative order size, i.e. order size relative to transaction volume
and market value, is a decisive category when comparing liquidity across
stocks and time. It is also a practical rule of thumb. The error of this
rule of thumb remains below 1.5% between specifications.

Results are robust when controlling for time variation in liquidity cost
with yearly intercepts in models 1.1 or even finer, quarterly intercepts
in model 1.2. Only coefficient levels vary very slightly. There is, how-
ever, high multicollinearity in the latter specification as revealed by the
variance inflation factors at the bottom of the table, which distort results.

Time varying intercepts reveal that the descriptive results of section

3.3.3 must be differentiated. Liquidity levels improved over the last years,

26With an error of only 0.74% (=5.27% - 3.15% - 2.85%).
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Model 1.0 Model 1.1 Model 1.2 Model 1.3

Coef. Stdev. Coef' Coefl Stdev. Coef' Coef. Stdev. Coef Coef. Stdev. Coef'
Log(i) 527 ¥ (0.00) 0.12 6.27 ¥ (0.00) 0.17 6.43 ¥ (0.00) 0.17 TIF (000 0.18
Log(VO) S315 ¥ (00m) -0.05 S340 %000y -0.05 -3.46 ¥ (o0 -0.05 S3.00% o0y -0.04
Log(MV) -2.85 ¥ (0.00) -0.07 S3E7 R (000)  -0.10 -39 (om0 286 % 00y -0.07
R -I0Z67 ¥ (001)  -103.36 -99.16 *H% - (001)  -98.37 SBTIT AR (01)  -96.63 -99.43 #%%(01)  -98.22
Const. mtercept 4456 ¥4 (1.00) 1042 5369 ¥ (0.00)  12.80
Log(SCOM(L) 563 ¥ (0.00) 0.13
Intercept 2002 60.23 ***  (0.00) 17.96
Intercept 2003 S6.60 %% (0.00) 1554
Intercept 2004 5334 %% (0.00) 1401
Intercept 2005 S1.09 % (0.00y 1287
Intercept 2006 5206 %% (0.00) 13.33
Intercept 2007 SZETHE {000y 1353
Intercept 2008 5914 %% {000y 17.40
Intercept 2002 Q3 G265 ¥¥* (000) 1988
Intercept 2002 Q4 G1.02 *¥* (0o0) 1920
Intercept 2003 Q1 60.06 ***  (0.00) 1862
Intercept 2003 Q2 58.65 %% (L00) 1751
Intercept 2003 Q3 58.20 ***  (0.00) 1673
Intercept 2003 Q4 56.26 *** (0.00) 1587
Intercept 2004 Q1 55.34 *%* (000) 1563
Intercept 2004 Q2 54.72 %% (000) 1543
Intercept 2004 Q3 5543 %% (000) 1542
Intercept 2004 Q4 53.58 *%* (0.00) 1453
Intercept 2005 Q1 5231 %% (000) 1398
Intercept 2005 Q2 52.56 *%*  (0.00) 1399
Intercept 2005 Q3 5214 %% (000) 1374
Intercept 2005 Q4 52.82 *%*  (0.00) 1398
Intercept 2006 Q1 5261 %% (000) 1403
Intercept 2006 Q2 5565 %% (000 1522
Intercept 2006 Q3 53.02 ¥%* (000 1431
Intercept 2006 Q4 52.60 ¥¥*(000) 1385
Intercept 2007 Q1 5258 ¥¢*(000) 1397
Intercept 2007 Q2 52774 ¥R 000y 14.05
Intercept 2007 Q3 5485 %% (000) 1487
Intercept 2007 Q4 55.69 ¥F*(000) 1508
Intercept 2008 Q1 G065 *¥* (0.00) 1814
Log(L{g)_t-1) 50.20 ¥+ (0.00) 447 4962 %% (0.00) 442 49.50 ¥ (0.om 441 4881 ¥ (0.00) 431
Log(L{g)_t-2) 16,13 ¥**  (0.00) 1.44 15,80 ***  (0.00) 141 1574 %% (0.00) 1.41 1547 %% (0.00) 1.37
Log(L{g_t-3) 1139 %% (.00} 0.93 1109 %% (0.00) 0.95 1105 %% (0.00) 0.95 10,83 ***  (0.00) 0.93
Log(Liy)_t-4) 13,69 #*  (0.00) 1.04 13.25 ***  {0.00) 1.01 13.21 ***  (0.00) 1.01 12,93 ¥ (0.00) 0.98
No. of obs. 1,772,853 1,772,853 1,772,853 1,764,198
Adj. R-squared 0.95 0.95 0.95 0.95
Durbin-Watson stat. 2.01 2.00 2.00 201
Schwarz crit. 0.39 0.39 0.39 0.37
Variance inflation factors (VIFs)
Intercept constant vearly quarterly constant
Log(y) 377 4.29 438 432
Log(VO) 258 2.65 2.68 258
Log(MV) 4.62 5.02 5.09 441
R 1.00 1.00 1.01 1.00
SCOMIE) 2.05
Log(Liy)_t-1) 18.13 18.24 18.26 18.26
Log(Liy)_t-2) 22.62 22.65 22.66 22.61
Log(Liy)_t-3) 22.61 22.64 22.64 2259
Log(Lig) t-4) 17.09 18.07 18.08 18.00

Table 3.10: Regression results on relative order size
Dependent variable is log(L(q)), which is log liquidity cost of order size q in bp, g
is order size in thsd. Euro, MV is market value in million Euro, VO is transaction
volume in thsd. stocks, RSIGMA10 is the 10-day backward rolling volatility, P is the
mid-price, R is the cont. mid-price return, SCOM is the average log half-spread at

time t.

Heteroskedasticity consistent coefficient errors and covariances (White (1980)) used;

standard errors in brackets; *** ** and * indicate significance at 1%, 5% and 10%

level; Coef.* contains coefficients standardized by coefficient variance over dependent

variable variance in 10%.
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but almost reached past levels in the recent crises when accounting for
improved market values and transaction volumes.

In model 1.3, T use the prevailing spread level as daily intercepts.
Spread level is measured as the average daily half-spread across all stocks
SCOM, also dubbed liquidity commonality. When finely accounting for
time variation, results remain unchanged.

I now turn to the second main specification, which precludes market
value MV but includes return volatility RSIGMA10 and price level P to
control for stock characteristics in a more differentiated way. Table 3.10
shows regression statistics. Model 2.0 has been specified with constant
intercept. The regression shows no autocorrelation and high adjusted-R2.
This specification is slightly preferable as shown with the lower Schwarz
criterion compared to models 1.x.

All effects work in the expected direction. Liquidity cost is negatively
related to transaction volume, price return and price level. It is posi-
tively correlated with order size and mid-price return volatility. Return
keeps its dominant role and the coefficient is very similar to prior speci-
fications of 1.x. In contrast, transaction volume VO takes a more impor-
tant role. Increase of transaction volume by 100% decreases liquidity by
7.65 % in model 1.0 compared to 3.15 % in model 2.0. Return volatil-
ity’s (RSIGMA10) influence is smallest. Absolute order size q has higher
coefficients when more finely controlling for differences in stocks.

Effects are again robust when accounting for time variation in the
various forms in models 2.1 to 2.3. Time coefficients show that time
patterns are similar to the models 1.x, but more robust here because
there is no multicollinearity.

In summary, I have shown that order size is a significant determinant
of liquidity cost, even when controlling for different stock characteristics
and time variation. I can also safely conduct that relative order size is a
much better category for comparing liquidity across cross-sections than
absolute order size depending on the question at hand. Liquidity of an

absolute order size might be of interest when holding a similar position
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Maodel 2.0 Model 2.1 Model 1.2 Model 1.3

Coef. Stdev. Coef.' Coef. Stdev. Coef' Coef. Stdev. Coef' Coef. Stdev. Coef.'
Loa(q) 972 %% (000) 028 10,13 ** 000y 030 10.21 ¥ [0o0)  0.30 1066 #**  [0.00)  0.31
Log(VO) SLES MR 000y 017 S78E MR 000y -0.19 804 R 000y -0.19 SFAT 000 o016
R 8579 K (001 8075 83,20 % (001 -87.52 8123 ¥ (001 -85.60 9472 (0.01)  -88.97
log{RSIGMALD) 439 %% (000)  0.09 398 *% (000 0.09 386 %% (000 0.09 396 (000)  0.09
Log(F) 024 R 000y -0.32 D06 R (000) 037 1009 ** @ony 037 41 ™ (000)  -0.20
Const. intercept 11714 %% (O01) 4379 114,99 ¥ (I D1) 4278
Log(SCOM() 422° @00y 0.10
Intercept 2002 12181 % (0.01)  47.10
Intercept 2003 11960 ***  (0.01) 4518
Intercept 2004 11732 %% (0.01) 4419
Intercept 2005 11582 %% (0.01) 4335
Intercept 2006 117.91 *%  (0.01) 4457
Intercept 2007 118,78 %% (001} 4572
Intercept 2003 127.00 %% (001) 5447
Intercept 2002 Q3 12311 ¥ (01)  45.20
Intercept 2002 Q4 120,64 ¥ (0.01)  47.62
Intercept 2003 Q1 12215 % (0.01)  48.60
Intercept 2003 Q2 11917 #*  (0.01) 4631
Intercept 2003 Q3 11976 % (0.01)  46.35
Intercept 2003 Q4 117.91 #*  (0.01)  44.39
Intercept 2004 Q1 118.68 #**  (0.01) 4581
Intercept 2004 Q2 116,52 ¥ (001)  45.14
Intercept 2004 Q3 117.48 ¥ (001} 45.20
Intercept 2004 Q4 1571w (01)  44.23
Intercept 2005 Q1 115.96 ¥ (001) 4437
Intercept 2005 Q2 1512 ¥ (01 4176
Intercept 2005 Q3 115.52 % (0.01)  43.94
Intercept 2005 Q4 115.64 % (0.01)  43.92
Intercept 2006 Q1 1715 % (0.01)  44.67
Intercept 2006 Q2 11984 % (0.01)  46.25
Intercept 2006 Q3 117.26 ¥ (0.01)  45.00
Intercept 2006 Q4 11728 ¥ (001)  44.99
Intercept 2007 Q1 118,80 ¥ (001} 4583
Intercept 2007 Q2 L1785 ¥ (001)  46.36
Intercept 2007 Q3 12029 ¥+ (0.01) 4644
Intercept 2007 Q4 120.58 ***  (0.01) 4651
Intercept 2008 Q1 128.03 ***  (0.01) 54.56
Log(L{g)_t-1) 47014 %% (000 438 46.35 %% 000 435 46774 B¢ 000 434 4644 ¥ 000 4.30
Log(L{g)_t-2) 14.90 **  (000) 133 14.76 ¥ (000) 136 14.72 ¥ (000) 136 1457 %% (000) 134
Log(L{)_t-3) 1019 *** (@00 0.90 1006 *** (000 0.8 1006 *** (000 0.8 000w (0D (.88
Log(L(y)_t-4) 12.00 ¥ (000 0.96 1105 %% (@om 095 1107 ¥ (@om  0.95 1180 ¥ (mon) 093
Mo. of obs 1,582,762 1,582,762 1,582,762 1,574.913
Ady. R-squared 095 0.95 0.95 095
Durhin-Watson stat. 1.9% 1.97 1.97 1.98
Schwarz crit. 0.34 0.34 0.34 0.33
Variance inflation factors (VIFs)
Intercept constant yearly quarterly quarterly
Loa(q) 4,80 4.94 4.97 5.00
Log(VO) 4.51 4.67 4.69 4.61
R 1.00 1.01 1.01 1.0o0
log(RSIGMALD) 149 1.57 1L.é0 1.51
Log(F) 220 240 242 226
SCOM(E) 207
Log(L{y)_t-1) 18.45 18.49 18.51 18.49
Log(Lig)_t-2) 22.56 22.57 22.57 22.53
Log(L{g)_t-3) 22.50 22.51 22.51 22.46
Log(L{g)_t-4) 1797 17.99 18.00 17.95

Table 3.11: Regression results on detailed stock characteristics
Dependent variable is 1(q), which is liquidity cost of order size q in bp, q is order size
in thsd. Euro, MV is market value in million Euro, VO is transaction volume in num-
ber of stocks, RSIGMA10 is the 10-day backward rolling volatility, P is the mid-price,
R is the continuous mid-price return, SCOM is the average log half-spread at time t.
Heteroskedasticity coefficient errors and covariances (White (1980)); standard errors
in brackets; *** ** and * indicate significance at 1%, 5% and 10% level; Coef.* con-
tains coefficients standardized by coefficient variance over dependent variable variance
in 1074.
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in different stocks. Liquidity of a relative order size will be more suitable
when investing in a certain fraction of a company or when predicting
liquidity cost across stocks. The rule-of-thumb of constant liquidity costs
for relative order size (position relative to market value and transaction
volume) is quite robust across specifications and has an approximation
error of below 1.5 %. The interrelations are astonishingly stable, which
might provide an indication, that they are driven by fixed structures yet

to be analytically described.

3.3.5.2 Day-of-the-week and holiday effects

Chordia et al. (2001) have found a day-of-the-week effect in the quoted
bid-ask-spread. Quoted spread is found to decline from Monday to Fri-
day and be significantly lower next to holidays. I retest this hypothesis
on the liquidity cost of different order sizes by including weekday dum-
mies and dummies for days before and after holidays in my regression
specification. However, in contrast to Chordia et al. T control for all
stock characteristics. Table 3.12 on the next page shows the results. In
all my specifications Monday and Fridays have significantly higher lig-
uidity costs. Monday is the least liquid day of the week with liquidity
cost around 5% higher than average, Tuesday is the most liquid day.
Liquidity then continually deteriorates from Tuesday until the end of the
week. Days adjoining holidays are similarly illiquid than start and end
of the week.

This contrasts to Chordia et al., because I find Monday to be similarly
illiquid than Fridays when looking at position size relative to transaction
volume and market capitalization or relative to transaction volume alone.
Investors should know that relative position size is more expensive to

trade on Mondays, Fridays and on days adjoining holidays.
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Model 5.2 Model 5.3 Model 6.2 Model 6.3

Coef. Stdev. Coef Coef. Stdev. Coef Coef. Stdev. Coef' Coef. Stdev. Coef'
Log(i) 6,38 #%*(0.00) 0.17 730 (0.00) 0.19 1013 ***  (0.00) 0.30 10.58 *+% (0.00) 0.31
Log(VO) S342 ¥ (000 o005 -Z.96 ¥ {000y -0.04 S798 R omy -0.19 ST06 R mom -0.16
Log(MV) SRR (0ooy -0t -ZB7T ¥ {000y -0.07
R -93.20 *** (0.01) -97.88 -100.20 ***(0.01) -99.16 SBLST R (001)  -35.97 -54.96 *** o 0.01) -89.21
lng(REIGMA10) 384 ¥ (0.00) 0.09 3.92 %% (0.00) 0.08
Log(P) -10.03 ¥**  (0o0y  -0.37 -8.36 ¥+ (o0 -0.29
Maonday 0 I (IN11)] 0.28 532%%  {0.00) 0.29 4.29 ¥ (0.00) 0.25 4.49 ¥ (0.00) 0.26
Tuesday -0L63 ¥ (000 -0.03 <050 ¥** {000y -0.03 -0.83 % (000) -0.05 S0.75 9 (0om -0.04
Thursday 242 %% (000 0.13 Z41 %% (0.00) 0.13 2017 %% (0.00) 0.1z 217 (000 0.12
Friday 351 ¥ (000 019 338 ¥ (0.00) 018 3.05 %+ (0.00) 0.17 295 %% (000 0.17
Before/after holday 289 %% (0.0 070 307 (0.00) 071 571 %% (0.00) 1.54 549 ¥ (0.00) 148
Const. mtercept 5153 % (000y 1239 112,56 *** @001y 4222
Log(SCOME) 562 %% (0.00) 0.13 422 (0.00) 0.10
Intercept 2002 Q3 6027 ¥¥* (000 19.21 12076 %% (0.01) 48.63
Intercept 2002 Q4 5865 ¥F*(0.00) 1854 11836 ***  (0.01) 4710
Intercept 2003 Q1 ST.64 ¥ (000 17.98 1873 %% (001) 4802
Intercept 2003 Q2 56,33 ¥%* (0.00)  16.89 116,38 ¥4 (001)  46.24
Intercept 2003 Q3 5595 %% (0.00) 1618 L7533 ¥ (001) 4535
Intercept 2003 Q4 5397 (0m) 1532 11563 ¥ (001} 4438
Intercept 2004 Q1 53.06 ¥** (0.00) 1513 116.41 *¥** @01y 4529
Intercept 2004 Q2 5251 %% {000y 1489 114310 ¥ [@001) 44.60
Intercept 2004 03 5313 %% (0.00) 1487 11519 ¥ [001) 4466
Intercept 2004 Q4 5133 %% (000 14.01 11345 ¥ (001) 4371
Intercept 2005 Q1 S0.14 ¥%* - (0.00) 1350 1372 %% (001) 4336
Intercept 2005 Q2 S0.29 *%* (0.00) 1348 11292 ¥ (01) 4326
Intercept 2005 Q3 49.86 ¥F*(0.00) 1326 113.25 ¥ [001) 4342
Intercept 2005 Q4 SO61*¥* (000 1349 11339 ¥ (001) 4341
Intercept 2006 Q1 5035 ¥*(0.00) 1353 114.93 %% @01y 4418
Intercept 2006 Q2 5346 ¥4* (000 1471 L7683 ¥ (01) 4575
Intercept 2006 Q3 SO76 *RF O (0.00)  13.80 11500 ¥ (.01} 44.50
Intercept 2006 Q4 S0.35 ¥4+ (000 13.35 11502 ¥ (001} 4448
Intercept 2007 Q1 5036 ¥¢*(0.00) 1349 L16.66 *¥** (0.01) 4535
Intercept 2007 Q2 S0.46 ¥*(000) 1353 11552 %% [@001) 4573
Intercept 2007 Q3 SZET¥EE {000y 1435 118.01 ***  [@001) 4593
Intercept 2007 Q4 5339 ¥+ (000 1456 11831 ¥ (001)  46.01
Intercept 2008 Q1 SE13 ¥ (000 1755 12577 ¥ (01) 5470
Log(Lig)_t-1) 4945 ¥ (0.00) 441 4575 ¥ (0.00) 431 4677 (000} 435 46.45 ¥ (0.00) 4.31
Log(Liy)_t-2) 16.04 ¥ (0.00) 143 1576 ¥+ (0.00) 140 14.97 ¥+ (0.00) 1.38 1483 ¥ (0.00) 1.37
Log(Liy)_t-3) 11L14 % (000 0.96 10,97 *¥**  (0.00) 0.54 1015 *** (0,00} 0.80 10,07 #* - (0.00) 0.59
Log(Lig)_t-4) 1287 ¥ (0.00) 0.98 12.66 ***  (0.00) 0.96 1166 ***  (0.00) 0.93 11.50 **  (0.00) 0.91
No. of obs 170,606 1,761,951 1,580,593 1,572,744
Adi R-squared 0.95 0.95 0.95 0.95
Durbin-Watson stat. 2.00 2.01 1.98 1.98
Schwarz crit, 0.38 0.36 0.33 0.33
Variance inflation factors (VIFs)
Intercept constant vearly quarterly quarterly
Log(i) 4.38 4.32 4.98 501
Log(VO) 2.68 2.59 471 4.63
Log(MV) 5.00 4.61
R 1.01 1.00 1.01 1.00
log(RSIGMAILD) 1.60 151
Log(P) 243 2.26
SCOMIE) 2.05 207
Log(Lig)_t-1) 18.37 18.37 18.62 18.50
Log(Liy)_t-2) 22.77 22.72 22.68 22.64
Log(L{y)_t-3) 22.75 22.70 22.61 22.57
Log(L{g)_t-4) 18.17 18.09 18.10 18.05

Table 3.12: Day-of-the-week and holiday effect

Dependent variable is log(L(q)), which is log liquidity cost of order size q in bp, g
is order size in thsd. FEuro, MV is market value in million Euro, VO is transaction
volume in thsd. stocks, RSIGMA10 is the 10-day backward rolling volatility, P is the
mid-price, R is the cont. mid-price return, SCOM is the average half-spread at time t.
Heteroskedasticity consistent coefficient errors and covariances (White (1980)) used,;
standard errors in brackets; *** ** and * indicate significance at 1%, 5% and 10%
level; Coef.* contains coefficients standardized by coefficient variance over dependent
variable variance in 10%.
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Chapter 3. Description and analysis of data sample

3.3.6 Synopsis

Based on a representative sample of weighted spread for over 320 thou-
sand stock-days, I analyzed the impact of size on liquidity cost, its vari-
ation and generally its distributional characteristics. My main finding is
that the impact of order size on liquidity is substantial and cannot be
neglected. Easily available bid-ask-spread data can only poorly proxy for
cost level and its variation in larger position sizes.

Average liquidity costs varied greatly between order sizes and stocks,
strongly increasing with order size up to 460 bp. DAX was the most liquid
with the lowest cost, followed by MDAX, TecDAX and than SDAX. Even
in the DAX, liquidity cost surpassed 100 bp for order sizes larger than
€ 2 million. The possibility of being able to liquidate a position against
the order book also strongly declined with size and showed a similar
cross-sectional rank than the cost level. Availability was > 90% for small
sizes, but dropped to 13 % for € 1 million in the SDAX.

Liquidity strongly improved over the last 5.5 years. Liquidity costs
continuously decreased during calm, positive market periods. Sudden
increases occurred at stock market crashes such as the events of the sub-
prime crises in 2007 and 2008. These spikes are especially pronounced
in larger order sizes. The fact that illiquid, large order sizes suffered
worse than liquid, small order sizes, presents another aspect of the flight-
to-liquidity asymmetry. Trading against the order book was increasingly
possible over the sample period. Availability of limit order book increased
to 100 % in small orders below € 100 thousand across all indices. DAX
and MDAX of any size were almost 100 % tradable in recent months.

Distributional characteristics of liquidity costs differ greatly between
order sizes. Not only do mean liquidity costs increase with order size,
so does its variance. In the last 5.5 years, liquidity experienced a steady
decline. Outliers due to inefficient liquidity prices generate fat tails in
the liquidity distribution, especially in large order sizes.

I also investigated into the fact that the liquidity of absolute-Euro order

sizes shows very different behavior across stocks. My explanation is that
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Chapter 3. Description and analysis of data sample

absolute order size is not very comparable across stocks. I show that
order size relative to market volume and prevailing transaction volume
has very stable liquidity cost across stocks and time. Liquidity of relative
order size is therefore much better measure in cross-sectional analysis and
can act as a rule-of-thumb in comparisons.

In summary, my main conclusions is that liquidity strongly differs
across sizes. An impact of size is traceable in distributional characteris-
tics and liquidity dynamics. The empirical evidence presented here can
provide new impetus into theoretical modeling of liquidity. In addition,
it has impact on practical applications, where liquidity cost and its vari-

ation play a role, especially on risk management.
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4 New liquidity risk models

In this chapter, I suggest two new approaches to model liquidity risk.
The modified add-on approach in section 4.1 provides a new, alternative
framework to account for non-normality in liquidity risk.! In section 4.2
I propose a framework to analyze the integration of the weighted spread

liquidity measure in liquidity risk measurement.?

4.1 Modified add-on model

Many studies show that the assumption of normally distributed returns
is rejected for most financial time series, including those for individual
stocks, stock indices, exchange rates, and precious metal prices. Specif-
ically, continuous returns for these financial assets have empirical distri-
butions which are leptocurtic relative to the normal distribution and in
many cases skewed. Bollerslev (1987), for example, finds leptocurtosis
in monthly S&P 500 returns, while French et al. (1987) report skewness
in daily S&P 500 returns. Engle and Gonzales-Rivera (1991) find excess
skewness and kurtosis in small stocks and in exchange rates.®

The argument of non-normality equally holds for liquidity costs. In
section 3.3.4 I analyze the distributional properties of liquidity costs and
showed that they are heavily skewed and fat tailed. Bangia et al. (1999)

!For this section, cp. Ernst, Stange and Kaserer (2008).
2For this section, cp. Stange and Kaserer (2008c).
3 Cp. also Mandelbrot (1963), Fama (1965), Theodossiou (1998).
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Chapter 4. New liquidity risk models

and Giot and Grammig (2005) account for non-normality in the context
of liquidity risk management.

In the following, I outline a simple model of liquidity-adjusted risk
based on Bangia et al. (1999) as a basis for discussion. Applicability to
other risk models is discussed later. I then propose an adaption based
on the Cornish-Fisher expansion which is a technique to correct the per-

centiles of a standard normal distribution for non-normality.*

4.1.1 Liquidity risk approach

I use the straight forward liquidity risk model of Bangia, Diebold, Schuer-
mann and Stroughair (1998, 1999), which has been surveyed in section
2.2.2.1, to show how the risk calculation proceeds. Bangia et al. include
time-varying bid-ask-spreads into a parametric Value-at-Risk. They also
assume that liquidity costs of a transaction can be measured with the bid-
ask-spread. They assume that continuous mid-price returns are normally
distributed. Relative liquidity risk can then be calculated as the mean-
variance estimated price-return percentile and the empirically estimated

spread percentile.’
1
L—VaR =1—-exp(zq X 0,) X (1 ~3 (s + 2a(S) x 05)) (4.1)

where o, is the volatility of the continuous mid-price return assuming
zero daily mean returns, ugs and og are the mean and volatility of the

spread - all over the chosen horizon. 2z, denotes the percentile of the

4Mina and Ulmer (1999) investigate four possible methods to compute the Value-at-
Risk for non-normally distributed assets: Johnson transformation, Fourier method,
partial Monte-Carlo and Cornish-Fisher expansion. They find that Cornish-Fisher is
simple to implement in practice, fast and traceable while the other three approaches
requires a much larger implementation effort, but have higher precision for extreme
distributions.

51 slightly deviate from the original model and incorporate the improvement suggested
by Loebnitz (2006) as I deduct the worst half spread from the worst price and not
from the current mid-price, which is conceptually more consistent. Notation is my
OW1l.
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normal distribution for the given confidence level and Z,(S) is the em-
pirically estimated percentile of the spread distribution.’ By estimating
the percentile empirically, Bangia et al. avoid distortions from the non-
normality in spreads, which they show to be highly present in several
currencies.

The model by Bangia et al. represents an intuitively plausible and
simple way to incorporate liquidity risk into a conventional Value-at-
Risk framework. Data requirements are manageable as mid-price data
and spread information are usually easily accessible. Another merit of
this model is the additivity of price risk and liquidity risk which facilitates
implementation in practice. There is no need to modify existing programs
for determining VaR. The only necessary system change is to compute
the cost of liquidity and add it to the existing VaR-figure.

Despite its appeal, the model has been subject to criticism in the liter-
ature. As extensively discussed and empirically analyzed in section 3.3,
the assumption of perfect correlation between mid-price return and lig-
uidity costs leads to distortions. In addition, the model does not account
for the price impact of order size, i.e. the fact that liquidity costs strongly
increase with the size of the order traded. Further, price risk is assumed
as normally distributed and the use of empirical percentiles might not
sufficiently capture the non-normality of the future spread distribution.

The following approach addresses this issue of non-normality, which
is also present in other modeling solutions. Giot and Grammig (2005),
section 2.2.2.3, assume a t-distribution in order to adjust for fat-tails
in net returns, i.e. returns net of order-size-adjusted weighted spread.
A t-distribution might, however, be similarly misleading than a normal

distribution.

6The empirical percentile is calculated as &g = (5'0, — usg)/os, where S, is the per-
centile spread of the historical distribution.
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4.1.2 Cornish-Fisher expansion

A normal distribution is fully described by its first two moments, mean
and variance. Higher centralized moments like skewness and excess-
kurtosis are zero. However, if the distribution is non-Gaussian higher
moments will also determine loss probabilities. For this reason it is not
accurate to use standardized percentiles of a normal distribution for the
calculation of L-VaR of non-normally distributed returns. Cornish and
Fisher (1937) have been the first to modify the standardized percentiles
of a normal distribution in a way that higher moments are accounted
for. Their technique is based on the following coherence: If any distri-
bution is fitted by making the first n moments of the fitted and actual
distributions agree, it is possible to calculate the percentiles of the fitted
distribution and to regard these as approximations to the corresponding
percentiles of the actual distribution. Basically the fitted percentiles are
functions of the n fitted moments.”

Cornish and Fisher (1937) obtain explicit polynomial expansions for
standardized percentiles of a general distribution in terms of its standard-
ized moments and the corresponding percentiles of the standard normal
distribution.® Their proceeding is widely known as Cornish-Fisher expan-
sion. The corresponding formula approximates percentiles of a random
variable based on its first few cumulants.® Using the first four moments
(mean, variance, skewness and kurtosis), the Cornish-Fisher expansion
for approximate a—percentile z, of a standardized random variable is
calculated as'®

L

~ 1 1
Zo R 2o + é(za —1)xy+ 2—4(22 —3%4) ¥ K — %(222 —524) % 7° (4.2)

"Cp. Johnson and Kotz (1994), p. 63f.

8Cp. Johnson (1978), p. 537.

9The cumulants of a distribution are closely related to its moments and can be infor-
mally thought of as standardized moments. For a detailed definition of cumulants
see Cornish and Fisher (1937).

10Cp. Mina and Ulmer (1999), p. 6.
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where z, is the a- percentile of a N(0,1) distribution, v denotes the
skewness and s the excess-kurtosis of random variable.!! Note that in
case of a normal distribution, skewness v and excess-kurtosis « are equal
to zero, which leads to z, = z,. The approximate a—percentile Z, can

now be used in a classic Value-at-risk approach.

4.1.3 Definition of liquidity-adjusted risk

Substituting z, and Z,(S5) from equation (4.1) with the modified per-
centile Z, from (4.2) I obtain the following modified VaR estimate

L—VaR =1—exp(p, + Z,(r) x 0,) X (1 — % (s + Za(5) x as)) (4.3)
where Z,(r) is the percentile of the return distribution accounting for its
skewness and kurtosis and Z,(S5) and the corresponding spread distribu-
tion percentile.

This approach constitutes a simple parametric approach accounting for
mean, variance, skewness and kurtosis of the underlying non-normal dis-
tributions. Although skewness and kurtosis are also difficult to estimate
it induces less heavy data requirements than any ad-hoc or empirical ap-
proach and might possibly more accurately determine the distribution of
future returns. However, the expansion is, after all, only a proxy for the
real distribution. Therefore, if the real distribution is not sufficiently de-
scribed by the first four moments or those moments cannot be estimated

with sufficient accuracy, this method yields false risk estimates.!?

! The skewness of y is computed from historical data over n days as y = = "7 | (1 —
7)3 /63 with j being the expected value and & the volatility of y. The excess kurtosis

for yis k=230 (y —y)*/6* — 3.

12Cp. also Zangari (1996), p. 10f.
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While I applied the Cornish-Fisher approximation to the basic spread
model of Bangia et al. (1999), analogous use in other liquidity models
such as the weighted spread model in Giot and Grammig (2005) is also
easily feasible. Section 5.1 will proceed with an empirical test of this new

model suggestion.

4.2 Empirical net-return model with

weighted spread

The model of Giot and Grammig (2005) as described in section 2.2.2.3
used weighted spread to calculate intraday liquidity-adjusted risk. As de-
veloped in section 2.2, two issues will be addressed. Section 4.2.1 develops
a new liquidity-risk model based on weighted spread which correctly ac-
counts for correlation between liquidity cost and mid-price return. The
empirical, instead of parametrical specification allows to avoid distri-
butional assumptions such as the t-distribution in Giot and Grammig
(2005). Section 4.2.2 develops a decomposition which allows to extract

liquidity and correlation effects separately.

4.2.1 Definition of liquidity-adjusted risk

Before 1 turn to defining liquidity risk, I start with the definition of
price risk. Standard risk statistics will be used to measure the impact of
liquidity risk.

Price and return are described in the usual framework of

Priat = Piai—at X exp(reat)

where P,,;q is defined as the mid-price P4 = ‘“T“” with a; and b; being

the (best) ask- and bid-price at time t respectively. 7, a; is the At-period
continuous mid-price return at time t, i.e., 1 ar = In(Priat/Pridt—at)- 1

take a traditional approach from a value-at-risk (VaR) perspective and

85



Chapter 4. New liquidity risk models

define price risk as the relative VaR at the (1 — a)-percent confidence
level over the horizon At

VaR*2 =1 — exp(rias) (4.4)

price

where 75, is the a-percentile of At-period return distribution. Conse-
quently, VaR,, ;.. measures the maximum percentage loss over the period
At with a confidence of (1 — «)-percent.

Analogously, I measure total risk including liquidity risk. To calculate
the impact of liquidity, I define the At-period net return in t as the sum
of the continuous mid-price return and the liquidity discount converted

to a continuous value, l;(q) = In (1 — Li(q)).

Tnett,At(Q) =TiAt T lt(Q) (4-5)

Please note the difference of (4.5) to net-price returns.'® Using net
returns instead of net-price returns, I implicitly assume that the liquidity
cost of entering a position has already been properly accounted for. If I
used net-price returns, the implicit assumption would be that not only
the liquidity cost of entering a position, but also the expected liquidity
cost of the liquidation is properly accounted for already when entering
it. I believe that my assumption is more realistic in practice.

Transaction price is calculated as

Pnet,t(Q) = Pmid,t—At X exp(rum + lt(Q)) (4-6)

where P,.;:(q) is the achievable transaction price.
The At-period liquidity-adjusted total risk is defined in a VaR-

framework as the empirical a-percentile of the net-return distribution.

VaRyeH(q) = 1 — eap(rnet? s, (q)) (4.7)

PLe. In ([Prias x (1= Li(@)] / [Pmia.e—1 % (1= Le-1(q))])-

86



Chapter 4. New liquidity risk models

VaR;oq 18 the maximum percentage loss due to mid-price risk and lig-

uidation cost over the period At with a confidence of (1 — ar)-percent.
This specification covers the real dynamics of the net return on a cer-

tain stock position. It is practical but also more general than existing

approaches in the following ways:

1. I use a more precise liquidity measure than most papers by covering
more aspects of liquidity. Specifically, I account for the impact of
order-size on liquidity. This extends the approach of Bangia et al.
(1998, 1999), where liquidity costs of any order size is proxied for
with the bid-ask-spread. The XLM measure can be assumed to be
more precise than the ones used in Berkowitz (2000a), Francois-
Heude and Van Wynendaele (2001) or Angelidis and Benos (2006),

because it uses more and direct liquidity data.

2. As I take empirical percentiles instead of a parametric method, I
avoid any distributional assumption, especially on liquidity cost,
such as in Giot and Grammig (2005). My approach will capture
non-normality of the distribution as well, which is made possible

by my large sample size.

3. My approach takes percentiles of the net return distribution and
does not treat price risk and liquidity separately. I look at the
dynamics of net returns which combines the mid-price-return dy-
namics and liquidity cost dynamics. Instead of adding distribu-
tion percentiles of liquidity and price risk separately, T acknowledge
that liquidity cost and mid-price might not be perfectly correlated.
While it is possible that large liquidity discounts and low prices

coincide, this must not be the case.

4.2.2 Risk decomposition

To uncover the structure of the liquidity impact, I decompose total risk

into its components. I define relative liquidity impact A(q) as
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_ VaRtotal(q) - VaRprice

A
<Q) VaRprice

(4.8)

A(q) is the maximum percentage loss due to the liquidity in relation to
price risk. It can be interpreted as the error made when ignoring liquidity.
It is therefore a measure of the relative significance of liquidity in the risk
management context. In addition, it can be used as a scaling factor with
which price risk would need to be adjusted in order to correctly account
for liquidity. I measure it relative to price risk, because absolute liquidity
impact has little meaning by itself for this type of analysis.

In order to uncover the effect of tail correlation between liquidity and

price, I define liquidity cost risk as the relative worst liquidity cost

Vaquuidity(Q) =1- exp(lgAt(q» (49)

with /iy, being the empirical percentile of the continuous liquidity dis-
count. This is the maximum percentage loss due to liquidity cost at an
(1 — a)-percent confidence level.

I can now apply a further decomposition of total risk and define the

correlation factor k(q) as residual of
VaRtotal(q) = VaRprice + VaRliquidity(Q) + K(Q) X VaRliquidity(q) (410)

Naturally, this is just a further decomposition of the liquidity impact

o VaRliquidity

Aq) VR
price

(1+x(q)) (4.11)

k(q) measures the tail correlation factor between mid-price return and
liquidity cost, the proportion of liquidity risk, that is diversified away due
to tail correlation. In this definition the correlation factor is always non
positive, k(g) < 0. If tail correlation is perfect, x(q) is zero and worst
mid-prices and worst liquidity costs can be added to get total risk. This

corresponds to the add-on approach of Bangia et al. (1999) in section
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2.2.2.1. If there is some diversification between cost and price, k(q) will
become negative.

The liquidity impact A(q) contains the following conceptual compo-
nents. First, it contains the mean liquidity discount for the position of
size q - in contrast to other approaches. This is suitable as positions
are usually valued at mid-prices already neglecting mean liquidity costs.
Second, it includes negative deviations from the mean cost as measured
by volatility and higher moments. Third, possible diversification effects
between price and liquidity are included and reduce liquidity risk. If
liquidity cost and mid-prices have a less than perfect, negative tail cor-
relation (k(q) < 0), a liquidity risk estimate based on the a-percentile of
the liquidity cost distribution as in (4.9) will be incorrectly higher than

based on the net-return distribution as in (4.8).

89



5 Empirical analysis of

liquidity risk models

Chapter 5 contains the empirical analysis of the suggested liquidity risk
approaches. Section 5.1 analyzes the performance of the modified add-
on model based on bid-ask-spread data.! In section 5.2, I analyze the
question of precise weighted spread risk measurement.? In the last section

5.3, all existing and newly proposed models will be benchmarked.?

5.1 Modified add-on model

5.1.1 Motivation

To evaluate if the modified add-on model proposed in section 4.1 is not
only a mere alternative but offers any improvement, I conduct an em-
pirical backtest. Sections 5.1.2 and 5.1.3 describe the implementation in
detail and provide some descriptive statistics on the magnitude of risk
estimates. Section 5.1.4 contains a detailed empirical benchmark of the
newly proposed model against the original specification of Bangia et al.
(1999). T used the large representative set of spread data described in

section 3.1.2.

!For this section, cp. Ernst, Stange and Kaserer (2008).
2For this section, cp. Stange and Kaserer (2008c).
3For this section, cp. Ernst, Stange and Kaserer (2009).
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5.1.2 Implementation specification

For the risk estimation I chose a 1-day horizon and a 99 % confidence
level, conforming to the standard Basel framework, to calculate daily
risk forecasts. Mean continuous mid-price return in the Bangia model
is set to zero. Spread means as well as returns means in the modified
L-VaR model are estimated using a 20-day rolling procedure. 1 account
for volatility clustering using a common exponential weighted moving
average (EWMA) method. Volatilities are also calculated rolling over 20

days as
20

Ut2 =(1-9) Z 5i_17“t2—z‘ + 520@2—20
i=1

with a weight & of 0.94.% Skewness and excess-kurtosis are calculated
as b00-day rolling estimates. I choose a very long estimation horizon,
because moment estimates with the standard method gain significantly
in accuracy with the length of the horizon. This approach therefore aims
to evaluate the potential of the Cornish Fisher methodology. Other esti-
mation procedures are available and might generate more precise results
with smaller estimation samples.® This might be explored in future re-
search.

Table 5.1 provides an overview of skewness and excess-kurtosis es-
timates. Continuous mid-price returns are only very slightly skewed.
However, excess-kurtosis can become quite substantial with values of
around 6, which is far from zero of the normal distributions. Spreads are
heavily right-skewed and also exhibit fat tails. As exemplary illustration
figure 5.1 shows the sample period histogram of the spread for Comdi-
rect, an SDAX stock. It is clear, that the normal distribution hardly fits

4In correspondence with JP Morgan (1996) and practical implementation of the last
term as squared return instead of squared volatility in Hull (2006), p.575. I neglected
the GARCH model class, because it is less common in practice and has higher com-
putational requirements.

5Cp. for example Sengupta and Zheng (1997); Joanas and Gill (1998); Kim and White
(2004).
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) Index
Return moment estimates DAY MDAX SDAY TECDAX Al
Skevwness Mean 0.11 -0.06 013 0.23 008
Median 0.10 0.09 0.1a 0.22 014
5td. Dev. 65.0% 140.1%% 111.3% F70%% 112.9%
Excess- Mean 321 749 6,38 £.39 6.12
Kurtosis Median 1.a7 2.67 340 371 2.85
Std. Dev. 85 2% 1A6B.0%h 9607 955 2% 1221.2%
Spread moment estimates Index
DAY MDAX SDAXY TECDAX All
Skevwness Mean 1.90 1.23 1.22 1.26 1.37
Median 1.7 122 1.06 1.23 1.27
5td. Dev. 63.4% 69.4% 126.6% T5.A4% 94, 6%
Excess- Mean 6.19 2.93 4.35 277 398
Kurtosis Median 4.52 .54 1.29 1.81 2.09
5td. Dev. 647 4% AM3% 1a58.4%  B03.0%  1060.46%

Table 5.1: Skewness and kurtosis estimates

24

204

Density

0.8

0.4 4

0.0 T T T i T
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[ Histograrm —— Mormal

Figure 5.1: Sample period spread histogram and fitted normal distribu-
tion for the Comdirect stock
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Emp. spread percentile Index

estimate z(5) DAX MDAX SDAX TECDAX All
Mean 4.01 355 335 343 359
Median 4.02 3.66 340 3.30 37
Std. Dev. 22.8% 378% §3.8% 53 52.2%

Table 5.2: Empirical 99 %-percentile estimates for the Bangia model

Cornish-Fisher Index

percentile estimates z DAX MDAX SDAX TECDAX All

Return Mean -2.84 -3.39 -3.26 -3.29 -3.23
Median -2.60 <285 -2.84 <287 =279
Std. Dev. 1255%  209.6% 161.3% 157 3% 173.3%

Spread Mean 367 317 jog 3.1n 323
Median 3.48 3.09 297 3.08 313
Std. Dev. Th. 3% 5. 2%a 28. 5% 42.2% ATV

Table 5.3: Cornish-Fisher 99 %-percentile estimates

the empirical distribution and that the distribution is right-skewed with
skewness of 2.24 and fat-tailed with excess kurtosis of 6.97.

In the Bangia framework, I determined the empirical percentiles and
calculated Z,(s). Descriptive statistics are shown in table 5.2 and are
similar to the range of results between 2 and 4.5 for currencies in the
original paper. Average empirical 99 %-percentiles range from 3.35 to
4.01 with a mean of 3.69, which is far from the 2.33 for the normal dis-
tribution. Worst losses are much more probable than would be expected
from the normal distribution.

For the modified L-VaR estimation, I calculated percentiles based on
the Cornish-Fisher approximation (4.2). Statistics are shown in table
5.3. Estimates also deviate from the 2.33 expected from the normal dis-
tribution. The spread estimates are, however, substantially different from
the empirical estimates of the original Bangia approach and in general

slightly lower.
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Risk estimates DAY MDAX SDAX TECDAX All
Price Risk Mean 4.14% 4.55%% 5.30% 5.59% 4.51%
Median 3.31% 3970 4.56% 4.89%% 4.09%
L-VaR (Bangja et al.) Mean 4.42% 5.25% 6.84%% 6.29% 55T
Median 3.51% 4.60% 5T 5.57%% 4.30%
Modified L-VaR Mean 4.48% 7.40%% 8.11% 9.58% TAT
Median 3.95% 5.78% 6.97%% 6.94% 5.88%

Table 5.4: Risk estimates by index

5.1.3 Magnitude of liquidity risk

Table 5.4 shows the mean and median risk levels by index and year for
each risk estimate. This allows to compare the magnitude of estimates
when calculating normally distributed mid-price risk, liquidity-adjusted
total risk of the original Bangia model (equation (4.1)) and the new
modified I-VaR (equation (4.3)). Liquidity adjusted total risk estimated
with the original Bangia model is naturally higher at an average 5.57 %
than normally estimated price risk at 4.81 %, which neglects liquidity.
The modified 1.-VaR provides the highest risk estimates with 7.47 %
average daily VaR. As could be expected, SDAX and TecDAX are the
indices with the highest overall risk level. The DAX has the lowest risk
level, especially pronounced if liquidity risk is also taken into account.
Overall, neglecting liquidity risk leads to a severe underestimation of
the total risk of an asset. The deviation between the Bangia method and
the Cornish-Fisher method is largest for the less liquid indices SDAX and

TecDAX. T will now analyze which liquidity adjustment is more precise.

5.1.4 Model preciseness
5.1.4.1 Backtesting framework

L-VaR models are only useful insofar as they predict risk reasonable well.
Therefore I will evaluate their validity through a comparison between ac-
tual and predicted loss levels. If a model is perfectly calibrated, the per-

centage of days where losses exceed the VaR-prediction exactly matches
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the confidence level. If there are more exceedances than predicted, the
model underestimates risk and too little regulatory capital is allocated to
the position. However, too little exceedance, hence overestimation, leads
to inefficient use of capital.® Since parameters are backward-estimated,
the backtesting is, of course, out-of-sample.

Since I calculate L-VaR for a confidence level of 99 %, I expect the
frequency of exceedances to equal 1 %. I use the standard test by Kupiec
(1995) to determine if the realized frequency deviates from the predicted
level of 1 % on a statistically significant basis.” Kupiec (1995) shows, that
the probability of observing losses in excess of VaR on d days over the

forecast period T at confidence o is governed by the binomial process®

P(@)=(1-a)" Yo"

The question if the realized frequency of losses in excess of VaR d/T
is significantly different from the predicted o can be answered with the
likelihood ratio (LR) test statistic

LR, =—=2In[(1—a)" Mo +2in [1—d/T)"N(@/T)V] (5.1)

which is chi-squared distributed with one degree of freedom under the null
hypothesis that & = d/T. Taking a confidence interval of 95% for the test
statistic, the null hypothesis would be rejected for LR, < 3.84.° The test
statistic will reject an L-VaR model if the actual exceedance frequency is
significantly below 1 % (model overestimates risk) or significantly above

1 % (model underestimates risk).

6Cp. Jorion (2007) p. 140.

"Cp. Jorion (2007), p. 142.

8Cp. Kupiec (1995), p. 79.

9Please note that the choice of the confidence region for the test statistic is not related
to the confidence level selected for the L-VaR-calculation, but merely refers to the
decision rule to accept or reject the model.
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Realized losses are calculated as realizable net return when liquidating
the position
mid

1
rnet; = In (Ptmid) +In(1— §St)
t—1

For my sample of stocks, T calculated the percentage of stocks where
the realized loss frequency did not deviate from the predicted frequency
on a statistically significant basis. For the fraction of stocks, where the
Kupiec-statistic could not accept the VaR-approach, I further investigate
the reason. Either the model has been rejected due to too many L-VaR-
exceedances and overestimates risk or too few, i.e. it underestimates
risk. I also determine the respective fraction of stocks with under- and
overestimation.

In addition I will analyze the magnitude M of VaR-exceedances cal-

culated as difference between realized and predicted loss
M = (—rnet; — LVaR;|rnet; < —LVaRy) (5.2)

M can be seen as the unpredicted loss and characterizes the level of un-
derestimation of the risk measure. It shows if the realized loss is only
marginally or substantially larger than estimated, therefore being an ad-

ditional indicator for the accuracy of a L-VaR-approach.

5.1.4.2 Backtesting results

Figure 5.2 shows the breakdown of stocks, where risk has been correctly,
under- or overestimated. The risk measure is defined as incorrect, if the
Kupiec statistic (equation (5.1)) produces a statistically significant de-
viation between risk forecast and return realization. The results demon-
strate the vast improvement of the Cornish-Fisher parametrization over
the original Bangia model. Risk has been correctly predicted for 83 %
of the stocks with the modified L-VaR compared with 44 % with the
empirical percentiles model of Bangia et al. The Bangia model seems to

generally underestimate risk in all indices, although there is also slight
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Figure 5.2: Comparison of acceptance rates by index

overestimation in the MDAX and SDAX as well. The modified L-VaR
model produces around 8 % under- and 8 % overestimation across all
stocks. The performance in the TecDAX is worst compared to all other
indices. Especially from a regulatory perspective, the substantial under-
estimation by the Bangia model poses a significant problem. Risk does
not seem to be adequately measured by the normal price distribution
and empirical spread percentiles.

Table 5.5 shows the magnitude of exceedances M as calculated by
equation (5.2). As shown already by the acceptance rate, the number
of exceedances is much higher in the Bangia than in the modified L-
VaR model. The level of exceedance is comparable between both mod-
els. There seem to a large number of small exceedances in the Bangia
model, which slightly downward biases the mean exceedance for DAX
and MDAX stocks. This is also underlined by the higher standard devia-
tion in the Bangia model. The maximum exceedance can reach 90-100 %
of the estimation, slightly higher for the modified L-VaR model than for

the original Bangia. However, maximum exceedance is only higher in the
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Magnitude of exceedances Index
DAX MDAX SDAX TECDAX All
No. Bangia et al. 653 291 670 458 2,672
Modified L-VaR 0 115 249 78 512
Mean Bangia et al. 1.4 1.75% 2.45% 243%% 1.88%
Modified L-VaR 0.87%% 1.14% 2.56% 337 2.13%
Median Bangia et al. 0.59%% 0.87%% 1.25% 1.18% 0.90%
Modified L-VaR 0.41%% 0.84%% 2.24% 1.41% 1.31%%
Max. Bangia et al. 45674 50.72% 47.85% 87.09%% 87.09%%
Modified L-VaR  33.22%  10376%  33.11% TLAT4A 103.76%
Std. Dev. Bangia et al. 2.21% 351%% 4.13% 5474 3.87%%
Modified L-VaR 1.03% 1.16% 2.07%% 8.33%% 371%

Table 5.5: Magnitude of exceedances

Risk correctly estimated DAY MDAX SDAX TECDAX All
Sub-period 112002 - 12005
L-VaR (Bangia et al.) 50.00% 62.50% T3.58% 67.50% 6. 17%%
Modified L-VaR 34.38% 85.39% 83.18% 85.00% 84.33%

Sub-period II/2005 - 11,2007
L-VaR (Bangia et al.) 33.33% 38.33% 51.25% 52.50% 4507
Modified L-VaR 93.75% 50.00% 83.54% 90.00% §5.31%

Table 5.6: Acceptance rate by sub-period

MDAX, in the other indices, the Bangia model surpasses the modified
L-VaR. All in all, exceedances seem to be similar in both models.

While results already seem robust when looking at different indices, I
will look at time sub-samples as further robustness test. I split the full
period and calculated the percentage of stocks with correct risk estima-
tion separately for each sub-period. While the absolute acceptance level
of the Kupiec-statistic is less reliable, because the sample is smaller, the
relative level between the two models is of interest. Results are shown in
table 5.6. In both sub-periods, the modified L-VaR-model performs con-
sistently better than the original Bangia model across all indices. This
provides an indication, that the higher preciseness of the suggested model
is not specific to the period used in the comparison.

Overall, the higher acceptance rate and the comparable level of ex-

ceedance magnitude make the modified L-VaR model highly superior to
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the original Bangia et al. specification. While these results are restricted
to situations where positions can be liquidated at bid-ask-spread costs,
I hypothesize that results similarly improve when using other, possibly
more comprehensive liquidity risk measures.'® Results might also be fur-
ther improved if more sophisticated estimation techniques for skewness
and kurtosis are incorporated. I leave this point for further research.
Overall, backtesting results demonstrate the vast superiority of the sug-
gested liquidity risk estimation technique based on a Cornish-Fisher ap-

proximation.

5.1.5 Synopsis

In this section I tested the newly proposed modified L-VaR, as well as
a standard specification by Bangia et al. (1999) in a sample of daily
frequency for 160 stocks over 5.5 years. The modified L-VaR proves
to be highly superior. The Kupiec test statistic indicates that risk is
correctly estimated for substantially more stocks. Accounting for non-
normality via the Cornish-Fisher approximation provides significantly
more accurate results than with the empirical method of Bangia et al..
While these results are restricted to situations where positions can
be traded at the bid-ask-spread the method can be analogously applied
to other liquidity measures such as weighted spread. As other liquidity
cost measures like weighted spread are similarly non-normal, as has been
discussed in section 3.3.4, I hypothesize that the proposed method is also

superior in other liquidity risk approaches.

10This hypothesis will be tested in section 5.3
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Index Mean Median Std. Dev. Obs.

DaX 16,3% 14, 7% 4 4% 43 Ta7
MDA 17,2% 15,8% 8 1% TE.TA0
SDAT 19,5% 17,7%% 7, 3% EERETE]
TECDAX 24 3% 22 % 9, 2% 38.070
Al 18,9% 174% 7,9% 230,960

Table 5.7: Price risk (VaR, 10 day, 99%)
This table contains distribution statistics on price risk calculated as 10-day, 99% VaR

according to equation (4.4).

5.2 Empirical net-return model with

weighted spread

5.2.1 Motivation

In this section I present results of the empirical net-return model with
weighted spread. In section 5.2.2, the impact of order size on the overall
risk level will be analyzed. This analysis will allow to accept or reject
the hypothesis that order size is an important factor in liquidity risk
determination. I also empirically look at the effect of tail correlation on
the overall risk estimate in section 5.2.3. Section 5.2.5 presents several

robustness tests of the results.

5.2.2 Magnitude of liquidity impact

As background, table 5.7 contains average 10-day, 99 % VaR price risk
estimates for each index. Overall average price risk was 18.9 %. As could
have been expected, price risk is lowest in the DAX with an average of
16.3 %, followed by MDAX, SDAX and TecDAX. However, there is still
quite large variation within the indices.

Table 5.8 contains the total risk estimates. Overall average total risk is
21 %, i.e. significantly higher than the price risk estimate. The increase
of total risk with order size is already apparent in all indices. While the
price risk in the TecDAX was significantly larger than in the MDAX and
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SDAX, when looking at total risk, SDAX is slightly more risky with 24 %
than the TecDAX with 23 %. This must be explained by the impact of
liquidity. I will now investigate into this liquidity impact in detail.

I look at the total impact of liquidity A(g) on risk in a standard 10-
day, 99% confidence-level VaR-setting according to equation (4.8). These
parameters are typically used in a Basel II framework.!! Table 5.9 on
page 103 presents statistics on the overall liquidity impact A(q) by order
size and index. On average over all stocks and across all order sizes,
total risk - including liquidity risk - is 10% higher than price risk alone.
DAX is generally the index with the lowest liquidity risk, while MDAX
and TecDAX are second. SDAX consistently shows the highest liquidity
risk levels across all order sizes. This finding is consistent with trading
volumes and market values discussed in the market background section
3.2.

There is strong variation in liquidity impact between indices and within
indices as indicated by standard deviations. Variation is of the same order
of magnitude than the level. Impact is practically zero (<1%) in small
order sizes of the DAX (<€ 250 thsd.). Liquidity impact can easily
rise above 20% in large stock positions of the DAX or medium stock
positions in small stocks. In an average € 1 million SDAX-positions,
liquidity impact on risk rises to 30% of price risk at a 10-day horizon.

Especially interesting is the liquidity impact calculated with spread as

12 Impact remains rather small across all

revealed in the min-column.
stocks and comparable to the liquidity impact measured with XLM(10)
and XLM(25) respectively. In SDAX and TecDAX it is slightly higher
than in the smallest XLM bracket. Since median risk levels are compa-
rable, this effect is probably due to few outliers as XLM and spread data

come from two different databases.

1 Cp. Dowd (2001), p.51.
12This corresponds to the risk measurement approach suggested by Bangia et al.
(1999) applied to stocks.
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Liquidity impact generally increases with order size.!* To more sys-
tematically analyze this size effect, I separately estimated the impact of
doubling order size on A(g) in percent in the last column. To do so,
I regress the log row statistics on log order size including a constant
intercept.!* Size impact is the coefficient on log-size and indicates the
curvature of the price impact function. It specifically investigates into
the importance of price impact data in contrast to spread data only and
abstracts from the different levels in liquidity risk between indices. Gen-
erally, the estimated price impact statistic is positive but smaller than
one, which shows, that the liquidity impact (risk) function is concave.'®
The price impact is larger in the DAX, than in the other indices. Here,
the difference between small, liquid and larger, less-liquid positions is
especially pronounced. With size impact of 0.78, liquidity impact al-
most doubles in the DAX when doubling order size. In the other indices,
liquidity impact is already large at small positions - hence the lower cur-
vature. All size impacts are statistically significant at the 1%-level. The
economically large size-impact statistic underlines the importance of us-
ing order book information beyond the spread for risk estimation - even
in the DAX.

These results have important consequences for risk estimation tech-
niques. First, I find that liquidity is an important component in total
risk, especially in larger order sizes, where the price impact estimation
error relative to price risk rises up to 30% at 10-day horizons. Second,
estimating liquidity risk with spread data is no valid alternative, as lig-
uidity risk impact in this size class is very small and strongly increases

with size. Third, large variations indicate that constant scaling of price

13The decrease in the average SDAX position between € 250 thsd. and € 500 thsd.
results from a non-constant sample effect. Large SDAX positions were continuously
tradable only in later years. Therefore, risk estimates for large SDAX positions are
calculated on a more liquid period depressing liquidity impacts compared to more
continuously traded small positions. Cp. discussion in section 3.3.3.

4QOrdinary least-squared regression equation is log(Stat(q)) = c + log(q) + €, with
stat being the row statistic and c a constant intercept.

15This is consistent as already the price impact cost function is empirically found to
be concave; cp. Hasbrouck (1991); Hausman et al. (1992).
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risk across all stocks, often dubbed “hair cuts”, are probably insufficient

and liquidity has to be accounted for specifically for each stock.

5.2.3 Correlation effect

Next, I specifically look into the tail correlation between mid-price return
and liquidity cost. A correlation factor k(q) of zero corresponds to perfect
tail correlation between liquidity and mid-price return. It mirrors the
case that liquidity costs are highest when prices are lowest. Table 5.10 on
page 106 shows the results based on 10-day, 99% VaR according to (4.10).
Mean correlation factors range between 40% and 60% of liquidity risk. On
average, 60% of the liquidity cost risk is diversified away. The negative
correlation factor reveals that large, illiquid positions are relatively more
liquid in crises. Stock market crashes seem to attract liquidity, which
allows to liquidate less-liquid positions more cost-efficiently, however at
lower prices. Since over half of the liquidity risk is diversified away,
liquidity risk would be overestimated by about 100% at larger sizes when
neglecting correlation (cp. equation (4.11)).

Correlation factors are quite uniform across order sizes and indices at
around a negative 55 to 65 %. Only in the DAX it is slightly lower at
about -40 %. Correlation plays an even larger role at the spread level,
where it is consistently higher than in larger order sizes. This underlines
the different dynamics between the spread, quoted by market makers, and
weighted spread, which emerges from free market competition. Cross-
sectional standard deviation is also quite constant. The size-independent
nature is underlined by the statistically and economically insignificant
price impact statistic.'6

The r(q)-statistic should be treated with care. The effect of correlation
on total risk is substantial only if the liquidity risk is also substantial
(cp. equation (4.11)). As liquidity risk is quite low at small positions the

overall error remains small and the violation is less critical.

16Estimated in a linear regression of the distribution statistic on size.
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Overall, these empirical results refute the common assumption of per-
fect tail correlation, i.e. that it is reasonable to simple add up price and
liquidity risk. Doing so would overestimate total risk, especially in large,
more illiquid order sizes. These results resolve the discussion, whether the
perfect tail correlation assumption is valid or not. The representative,
empirical results are in line with the argument of Francois-Heude and
Van Wynendaele (2001), who criticize the perfect correlation assumption
of Bangia et al. (1999). However, the overall effect of this assumption
remains small if the liquidity impact is small in total. It might also be
different in other assets like currencies, which were analyzed by Bangia
et al. (1999), but I see no a priori reason why this should be the case.
I also hypothesize that correlation effects should be similar for other
liquidity cost measures, because these proxy for the same phenomenon.
Overall, my results indicate, that tail correlation is important and should

be taken into account in illiquid stock positions.

5.2.4 Liquidity impact at shorter horizons

Risk on a 10-day horizon calculated above, provides a comparable refer-
ence to the standard statistics usually requested by financial regulators.
However, as noted already in section 2.1.2.2, when correctly and directly
accounting for liquidity risk, the 10-day horizon gets the notion of man-
agement reaction time instead of liquidation time. In order to stick to
the original intention behind VaR, what a portfolio is worth in the worst
case, I also calculate VaR at a 1-day horizon. This statistic is also more
comparable to the intraday results available so far.

In table 5.11 the average daily price risk for each index is shown.
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Index Mean Median Std. Dev. Obs.
DAY 5,6%a 5,5% 1,.1%a 43,710
MDA fi,1%a 57 2,2% T1.458
sDAX T2%% 6,5% 3.0%% T2.313
TECDAZ 5,2% T 8% 36.801
All 6,7 f1,0% 2,5%% 224 282

Table 5.11: Price risk (VaR, 1 day, 99%)
This table contains distribution statistics on price risk calculated as 1-day, 99% VaR

according to equation (4.4).

Overall average price risk is significantly lower at 6.7 % than in the
10-day case at 18.9 %, which is slightly smaller than the common square-
root of time rule would suggest. The index rank is the same as in the
10-day calculation.

Table 5.12 presents the daily total risk estimates. The structure of
the 10-day case is preserved. SDAX overtakes the TecDAX in the risk
level. Similarly to above, I proceed with a more detailed analysis of this
liquidity impact.

Table 5.13 shows the liquidity impact A(q) for a 1-day, 99% VaR. ac-
cording to equation (4.8). As expected, the relative liquidity impact
magnifies when shortening horizons, because price risk is reduced while
absolute liquidity risk remains unchanged. The structure between indices
remains unchanged. While still being negligible in small DAX positions,
total risk including liquidity is almost double the price risk for large po-
sitions. Average € 1 million SDAX positions have a >90% liquidity risk
impact. Even in some small positions, liquidity plays a substantial role
with liquidity impact surpassing 10% in the SDAX for small position
sizes. Overall, these results are comparable to the 2-30% range found in
other studies.!”

The size-impact statistic reveals a very similar curvature in magni-
tude in the daily compared with the 10-day case. All size impacts are

statistically significant at the 1% level. Correlation effects are similar

'"Cp. Francois-Heude and Van Wynendaele (2001); Giot and Grammig (2005); An-
gelidis and Benos (2006).
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in structure and magnitude when compared to the 10-day horizon as
can be seen from table 5.14. The importance of the correlation effect is

confirmed.

5.2.5 Robustness tests
5.2.5.1 Effects of change of risk measure

Recently, literature has discussed coherent risk measures as alternative to
Value-at-Risk to overcome the shortfalls of VaR like non sub-additivity.'®
This raises the question, if results would change significantly when switch-
ing to a different risk measure. To test if results are robust or specific
to the VaR, I calculate expected shortfall,'® which is the expected loss
in the worst a-percent of the cases. I continue to use the basic approach
detailed in section 4.2.1 on page 85, but I replace VaR with expected
shortfall (ES) defined as follows.

ES*A = B(r|r < r®) (5.3)

When I calculate risk based on expected shortfall instead of value-
at-risk as displayed in table 5.15 effects of order size get accentuated.
Generally speaking, results are structurally similar when measuring risk
as ES compared to VaR. While total risk estimates increase, the impact of
liquidity is comparable even in the tail of the distribution. Methodology
and results are therefore quite robust to a change to the expected shortfall

risk measure.

5.2.5.2 Effects of time variation

As further robustness test, I calculate monthly, rolling estimates of
lambda to counter concerns that results are due to the long estimation

period. This test also addresses any concerns for non-constant-sample

18Cp. Artzner et al. (1997); Acerbi and Scandolo (2007).
19 Also called ’conditional value-at-risk’ or ’expected tail loss’.
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bias, because I calculate risk estimates only on stocks included in the
index due to data availability. Because empirical percentiles cannot be
calculated on monthly samples of daily data, I chose a straight-forward
mean-variance estimation procedure. For each date, I calculate the 20-
day backward variance o, of continuous price return and assume that
daily expected return is zero. Relative price risk on a 99% confidence
level is then defined as

VaR))

price

=1—exp(—2.33 x 0,) (5.4)

Similarly, I calculate liquidity-adjusted total risk with the mean fi, et

and standard deviation o,,.; of 20-day backward net-return distribution

VaR$,(q) =1 — exp (frnet(q) — 2.33 X Ornet(q)) (5.5)

with net returns calculated according to equation (4.5). I then calculate
the liquidity impact A(q) according to equation (4.8). Neglect of negative
skewness and high kurtosis (fat tails) makes this procedure simple, but it
might underestimate risk. Due to the underestimation, absolute values
need to be treated with care, but are still - as lower bound - a suitable
indicator for the time variation of the liquidity impact on risk, especially
if skewness and kurtosis are fairly constant.

Rolling total risk estimates are presented in table 5.16.
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L-adj. VaR(10d, 99%) Order size (in thsd. Euro) Size
in % Min 10 25 0 75 100 150 250 500 750 1000 2000 3000 4000 SODD Al impact
DAY 2002 24% nfa 24% 24% nfa 24% nfa 24% 25% nfa 26% 8% 20% 30% 3% 26% 132 **%
2003 16% nfa 7% 170 nfa 17% nfa 7% 170 nfa 18% 20% 21%6 21% 23% 18% 0.94 *¥**
2004 % nfa % 9% nfa 9% nfa 10% 1% nfa 10% 1% 2% 12% 13% 10% 0.70 ***
2003 8% nfa 8% 8% nfa 8% nfa 8% 8% nfa 8% 9% 5% 9% 10%% % 0.29 ***
2006 9% nfa % 9% nfa 9% nfa 10% 1054 nfa 10% 1% 10% 10%% 1% 10% 0.29 ***
2007 10% nfa 10% 109% nfa 10% nfa 10% 105% nfa 10% 1% 1% 1% 1% 1% 0.22 ***
2008 16% nfa 15% 1590 nfa 15% nfa 15% 1595 nfa 15% 1590 16%6 16% 16% 15% 0.1 **
All 12% nfa 12% 12% nfa 12% nfa 12% 12% nfa 13% 13% 13% 14% 4% 13% 0.37 ¥+
420022008 -12%  nfa  -12%  -12% nfa  -13% nfa  -12% -13%  nfa  -14%  -15%  -16%  -16%  -17%  -14%  -0.96
MDAX 2002 21% 21%% 21% 22% 23% 23% 24%% 26% 28%% L) AT na nfa nfa nfa 23% 169 ¥
2003 16% 16% 16% 16%% 16%6 16% 170 19% 21% 23% 24% nia nfa nfa nfa %% 1.87 ¥
2004 1% 12% 12% 12% 12% 12% 13% 13% 16% 17 19% nla nfa na nfa 13% 1.46 %
2008 11% 1% 1% 1% 1% 11% 1% 1% 1395 14% 15% nia nfa nfa nfa 12% 0.80 ***
2006 12% 12% 2% 12% 2% 12% 13% 13% 13% 4% 15% nla nfa na nfa 13% 0.59 ***
2007 13% 13% 13% 134 13% 13% 14%% 14% 1494 15% 15% na nfa nfa na 4% 0.48 *¥**
2008 20% 19% 19% 0% 20% 20% 0% 20% 0% 2% 22% nla nfa na nfa 20% 0.50 ***
All 14% 14% 4% 14%% 4% 14% 14%% 15% 16% 16% 1% na nfa nfa nfa 15% 0.65 ***
420022008 T -Th T 8% % g - 1% -13% -11% -10% nla nfa nia nia &% 112
SDAX 2002 24% 3% 2% 3% 41% 4T% 4% 2% 4% nfa nfa nla nfa na nfa 28%  -145
2003 19% 19% 20% 21% 23% 25% 28% 31% 35%% 28% 29% nia nfa nfa nfa 22% 2.08 ¥
2004 14% 15% 15% 16% 18% 20% 2% 25% 31% % 33% nla nfa na nfa 18% 4.49 **¥
2003 13% 13% 13% 13% 4% 15% 16% 18% 24%% L) 30% na nfa nfa nfa 15% 3.83 ¥+
2006 14% 14%% 14% 15%% 15% 15% 16% 18% 23% ) 31% nfa nfa nfa nfa 7% 3.53
2007 15% 15% 15% 15% 15%% 16% 16% 7% 209 23% 26% na nfa nfa nfa T 2.22 ¥+
2008 20% 22% 22% 22% 21% 21% 22% 4% 28% 33% 35% nia nfa nfa nfa 23% 2.80 ¥**
All 16% 16% 16% 16% 7% 1% 18% 20% 3% 5% 28% nfa nfa nfa nfa 18% 2.59 ¥+

420022008 8% PA 1% -18%  -24% %% -28%  -13% 1% 3% 1% oa nfa afa ofa  -11% 395

TecDAX 2002 nia nfa nfa nla nfa nfa nfa nfa nla nfa nfa nfa nfa nia nfa nfa nfa
2003 21% 21%% 21% 22% 23% 23% 24%% 25% AT 29% 28% na nfa nfa nfa 23% LB7 ¥
2004 17 174 7% 175 7% 18% 1995 20% 2% 4% 25% nfa nfa nfa nfa 18% 136 ¥
2003 13% 13% 13% 13% 13% 14% 14%% 15% 1% 20% 21% na nfa nfa nfa 15% 176 %
2006 15% 15% 15% 1590 15% 15% 16% 16% 1890 20% 23% nia nfa nfa nfa 16% 1.49 ¥
2007 16% 16% 16% 6% 16%% 16% 17 1% 18% 0% 2% na nfa nfa nfa T4 1.03 ¥
2008 24% 23% 23% 3% 23% 23% 23% 4% 26%% 26%%6 29% nia nfa nfa nfa 4% 111
All 16% 16% 16% 16% 1% 1% 1% 18% 0% 2% 23% nla nfa na nfa 18% 1.45 **%
A2002-2008% 5% 5% % 5% S 6% 6% T 8% T 6% nfa nfa nfa nia 5% -0.54

All 2002 22% nfa 23% 3% nfa 24% nfa 25% 26%% nfa 26% nia nfa nfa nfa 4% 0.96 ***
2003 18% nfa 18% 18% nfa 19% nfa 20% 21% nfa 2% nfa nfa nfa nfa 20% 0.96 ***
2004 13% nfa 13% 1494 nfa 15% nfa 15% 16%% nfa 15% nia nfa nfa nfa 15% 061 **
2005 1% nfa 1% 1% nfa 12% nfa 13% 14% nfa 14% nla nfa na nfa 2% 0.96 ***
2006 13% nfa 13% 1395 nfa 13% nfa 14% 1595 nfa 16% nia nfa nfa nfa 14% 0.84 ¥**
2007 14% nfa 14% 14% nfa 14% nfa 15% 16% nfa 1% nla nfa na nfa 15% 0.54 ***
2008 0% nfa 20% 209 nfa 0% nfa 21% 22% nfa 23% na nfa nfa nfa 21% 0.84 ***
All 14% nfa 14% 15%% nfa 15% nfa 16% 16%% nfa 17% nfa nfa nfa nfa 15% 0.72 ***

A2002-2008 * -3% nfa -5%% -0% nfa 9% nfa 9% -10% nfa -9 nfa na nia nfa - -0.30

Table 5.16: Liquidity-adjusted total risk (rolling VaR, 10-day, 99%)
Table shows liquidity-adjusted total risk by sub-sample according to equation (4.8)
calculated with a rolling mean-variance estimation; a. statistic shows absolute change
between 2003 and 2008 when 2002 number not available; min-column measures risk
at minimum spread level; all-column is average over all standardized order sizes, i.e.
without minimum; size impact is the coefficient in 10~2 of log-size in a regression of
the distribution statistic on log-size including an intercept; * indicates 10%, ** 5%
and *** 1% confidence level of being different from zero based on a two-tailed test.

Average total risk, measured as 10-day, 99 % VaR, declined from 2002
to 2008 by 9 percentage points from 24 % to 15 %. This decline is visible
in all indices. In all sub-periods there is an increase in risk with order
size in all indices and sub-periods. T will now turn to the analysis of the

liquidity component itself.
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Results for A(¢) on the basis of a 10-day, 99% VaR according to (4.8)
and (5.5) are displayed in table 5.17.

Avg. M(g), VaR(10d, 99%) Order size ({in thsd. Euro) Size

in % of price risk Min 10 25 50 75 100 150 250 500 750 1000 2000 3000 4000 5000 AN impact

DAX 2002 1% wa 1% 1% w2 1% na % 4% wa 0% L8% 1% 1T 18%  §% 0.7 R
2003 1% wa 1% 1% fa 1% wa ™ 4% wa 946 19%  23% 2% 5% 10% 082 %%
2004 1% wa 1% 1% w2 1% na 1% 2% wa e 1% 1% 1% 9% L% 083
2005 1% wla 1% 1% wfa 1% wfa 1% % wla % T % 4% 1% 6% 070 %
2006 0% wa 0% 1% ufa 1% na 1% 2% wa % s% T 10% 4% 4% 065 %
2007 0% wa % % w2 1% ofa 1% 1% wa % 4% 5% % % I 0.60 %5
2008 0% wa 0% 0% ufa 0% na 1% 1% wa % % 5% % 8% I 0.63 ¥
Al 1% wa 1% 1% w2 1% na 1% 2% wa e W% 13% 6% 18% % 0T R
A2002-2008 * -1%% nfa 0% %% nfa 0% nfa 1% -1%% nfa 4% 5% 4% -2% 0% 1%

MDAY 2002 4% 6% T s 1% 1% 6% L9%  28% 31% 3% nfa ufa la ofa  12% 047
2003 % % 4% s%o e 1% 16% 4% 3% 40% 3% nfa wa wla fa 4% 063 %
2004 2% 2% W% 4% % 6% 1%  18% 3% 35% 3™  nfa fa wa na 1% 073
2005 2% W 2% k1 % 4% & 0% 2% 1% M%  na wa wa na  10% 074w
2006 1% 1% 1% % % % 4% 6% 1% 1% 1% o wa wa wa T D71
2007 1% 1% 1% 20 2% 2% % 4% 86 1% 1T nha ufa wa ofa E R
2008 1% 1% 1% 1% 1% 2% % % &  10% 1% nha wa wla nfa 4% 06T
Al 2% 2% % W 4% % 86 12%  20% 4% 26%  nfa fa wa na  10% 061 %

A2002-2008 * -2% -3% 4% 4% 5% 6% T Bkl 8% 6% 4% na nfa nfa nfa -2%

SDAX 2002 13% 12% I 61%% 91% 120%  153%  119% T8 nfa nfa nfa nfa nfa nfa 36% 0.56 **
2003 10% 1290 17 26% 36% 42% 40% % 40% 51% 64%% nfa nfa nfa nfa % 0.32
2004 6% T 1% 20% 7% 35% 40% 5% 46% e 120% nfa nfa nfa nfa 24% 0.49 *¥
2005 % 5% T 1% 15% 19% 24%% 29%% 3% 41% I nfa nfa nfa na 7% 0.46 **
2006 k) 4% % o 10% 13%% 19% 28% 3% 36%% e nfa nfa nfa nfa 15% 0.56 **
2007 2% 2% 3% 4% b T¥a 10%% 1T 31% 389 43% nfa nfa na nfa 13% 0.71 ¥+
2008 2% 2% 2% W % 6% 10% 16% 26% 32% 9% nfa nfa nfa nfa 10% 0.75 **x
All 6% 6% ¥ 14%% 17%% 2% 3% 28% 4% 8% 43% nfa nfa nfa nfa 18% 0.47 *¥

A2002-2008 * - -6% -18% -4 -14% -98%  -130% -B6%% -45% -13% -21% nfa nfa nfa nfa -18%

TecDAX 2002 nfa aa  oa  na nfa aa  oa  na nfa aa  oa  na fa na  oa  na
2003 4 B 4% % B®e 1% 1% 2% 2% 2% % aa 2 wa  owa L% D57
2004 3 B 4% % 86 1% 18% 6% 26% 2% 3%  nA fa afa ooa 13% 0600
2008 S EE TR Y 3 8% 1% 1T 2B 8% 41% nfa nfa wa ool 12%  DE7 e
2006 3 B % I 4% % 6 13% 2% B 3% nha fa ol ola 10% D680
2007 1% 1% %% ™% W 4% W 8% 15% 1% 3% aA fa nla  ola 8% D66
2008 1% 1% % 4 B 4% &% 1% 1% 1% aa 2 wa w065
Al 3 T ¥ 4% % 8% 1% 16%  23%  IB% %% nfa fa afa ooa L% 0620
AZOO2-2008% 0% 1% 1% 1% m6 4% 4% S B 1% 1% nfa nfa wa o -l%

Al 2002 i wa 6 10%  wa 1% wa 1% 4% wla 15%  afa 2 wa  owa 1% D14
2003 B3 aa T W% na 4% ofa 3% 2% o 2%  0A fa ala ool 15% D310
2004 £ nla % % nfa 4%  nfa 0% 2% ol 3% nA nfa nfa onla 15% D420
2005 3 ala 4% % aa 9%  wa 4% 1% na 4% aa aa ala owla L% 0530
2006 3 na ¥ W nfa 6%  oa 1% 16% e 1% na fa na ol % D590
2007 1% wa % M wa 4% o 8% 14%  wa 1% ah 2 wa  owa WA 070
2008 1% afa % % fa 3% nla ™ 1% na  13%  na fa ol nla 6% D690
Al £ nla 4% 6% nfa 9% ol 4% 1% nla  20%  nfa nfa nfa onla 1% D45

A2O02-2008> - nla 4% %% nfa 4% nla % 3% wa 5% nfa ufa wa  nla 2%

Table 5.17: Liquidity impact on risk (rolling VaR, 10-day, 99%)
Table shows mean lambda, which is liquidity impact in percent of price risk by sub-
sample calculated with a rolling mean-variance estimation of Value-at-Risk (10-day,
99%) according to (4.8) based on (5.5); a. Statistic shows absolute change between
2003 and 2008 when 2002 number not available; min-column measures risk at mini-
mum spread level; all-column is average over all standardized order sizes, i.e. without
minimum; size impact is the coefficient in 1072 of log-size in a regression of the log
distribution statistic on log-size including an intercept; * indicates 10%, ** 5% and

*** 1% confidence level of being different from zero based on a two-tailed test.

The impact of liquidity on risk has generally declined over time across

all indices. In all years, the liquidity impact strongly increased with order
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size as the size-impact statistic reveals. The prior finding of the index
rank (DAX, MDAX / TecDAX, SDAX) is confirmed and stable over time.
TecDAX, however, was shortly more liquid after its initiation in 2003
until 2004. Although to be interpreted with care, the liquidity impact
probably remained non-negligible during the low-risk period from 2006-
2007. The impact of liquidity on total risk was certainly economically
significant in the crises periods of 2002-2003 and in 2008.

Results for the whole panel ('all’) have to be treated with care, because
they are distorted by the non-constant sample effect. Over the years, the
liquidity of less-liquid stocks strongly improved, which made their liquid-
ity cost data increasingly available. As consequence, less-liquid, high-cost
stocks are increasingly included in the sample, which increases the av-
erage risk estimate. However, individual year estimates have almost no
sample bias and underline, that liquidity impact is economically signifi-
cant.

If skewness and kurtosis would be included, these findings are also
likely to get confirmed, as the one-time liquidity cost deduction will prob-
ably introduce additional skewness, which keeps the relation between
price and liquidity risk valid. Owverall, this confirms that liquidity price
impact is economically significant enough to encourage integration into

risk measurement systems.

5.2.5.3 Effects of portfolio diversification

I showed, that liquidity risk is economically significant when looking at
individual stocks in the different indices. But does this result persist
when looking at portfolios of stocks? If diversification between mid-prices
of different stocks is larger than between liquidity of different stocks,
liquidity impact might be substantially reduced.

To test the robustness of results against effects of portfolio diversifi-
cation, I calculated daily value-weighted index returns and determined
liquidity impact A(g) based on a 10-day, 99% VaR according to (4.8).

While this methodology does not use optimized position weights, a value-
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weighted portfolio should show effects of diversification if there are any.
Results are displayed in table (5.18). Estimates demonstrate, that lig-
uidity impact on the portfolio level is of similar magnitude than on the
average individual stock level (cp. table 5.9 on page 103). Especially
in larger sizes, liquidity impact is increased at the portfolio level, e.g. it
rises to 54% for the € 1 million position in the SDAX portfolio compared
to 30% for the average individual stock position. This must be driven by
larger liquidity commonality in larger sizes, i.e. diversification in liquidity
between stocks decreases with larger sizes. Even for the all-stock portfo-
lio liquidity impact levels are higher than for the average stock. Overall,

my results are robust to diversification effects in stock portfolios.

5.2.6 Synopsis

In this section, I empirically tested the empirical net-return model based
on weighted spread and its structure. Empirically, I find that impact of
liquidity relative to price risk is small at small order sizes, especially at
the spread level (<10% for 10-day, 99% VaR). However, it increases to
20-30% of price risk in larger sizes in illiquid indices as well as in the
DAX. Results aggravate if I switch to daily VaR-horizons.

I also took a detailed look at tail correlation between liquidity and mid-
price returns and showed that it is non-negligible. Liquidity risk would be
overestimated by 100% if correlations are ignored. In the cases I identified
above, where liquidity risk is an economically significant component of
total risk, total risk will be severely overestimated if liquidity cost risk
is simply added to existing risk measures. Therefore, several common
approaches should be adapted to avoid this distortion.

I find that results are structurally similar when using expected short-
fall instead of VaR risk measures. Results are therefore transferable. To
check the time robustness of these findings, I employ a monthly, rolling

mean-variance estimation method. Results are confirmed. Results are

118



Chapter 5. Empirical analysis of liquidity risk models

"1S9} PI[IR}-0M) B UO PIse( 0197 WOI} JUSISPIP SUID] JO [9AS] OUSPYUOD

%T s PUR %C e “%0T SOYEOIPUT 4 $9dodI0gul e SUIPN[OUL O1ISIIRIS UONN|LIISIP SO oY) U0 PassaISal 9z1s-S0] JO JUIIIIYE0D oY) SI

joedwl 9ZIS {WNWIUT JNOYIM "°T ‘SOZIS IOPIO PIZIPIRPURIS [[B ISAO 9FeIdAR ST UTIN[OI-[[@ ‘[9Ad] peaids WINWIUIUL Je JSII SOINSBIU

uwnjoo-ur {(g'y) 04 Surpioooe ysu1 oo1u1d jo ueoted ur Aypmbip Jo joedwil oY) ST YOTYM ‘epquie] JO sO1ysTie)s 01j0J1I0d SMOTS 9[(R],

otfopr0d Xoput Aq (%66 ‘Aep 0T “eA) joeduwt Lypmbry QT G d[qr],

SLUERRT B B BT B 6SEFTT EU EI0%ST  TOZ'GRI B 0ZF107 B 6I0°GTE  O9T6I1E B 712181 SO0

wr 550 ol B B BT B YollZ EU Yl Yalr B 6L B Yl Yol B Yok EMMSY  SHI0IS IV
£71°02€E B B B B 162°91 29207 LLOLE 270°%E £7ene £L6DE 660°LE 051°LE LETLE LSTYLE 026°9E S0

wex 190 ol B B BT BfU ELTA %o ECA Yol kS bl kS e YhE %5l %ol ajpumsy  XVIDAL
L1 FRR B Bl BT BfU TIs SEFFI THFET 0Z6°6E 01¥6k 000°ss 266°LE 611718 FIGHD LET69 250°0L SO0y

+ 810 5L E/U B Eu B Yl bcin EC1s T i YeES VeEh WLl EA9 Eas ol JEMNS xvas
£1L70L0 B B BT BfU £6L0F 105§ 22L°09 £75'30 GOFTL LELTL SOEEL OF0FL 6LOL 208 6LT'EL S0

wrx 0970 el B B B B Yl %1l el Yol B b ES YoE Yol Yol Yol JEMMS XVaW
2EOTTIR BREDE PAZEE Z00°0f 65L° T £99°7F B BOLTE 01LZF B 01L2F B 01L°2F 1) Fvd B 6212k S0

wrx ¥80 601 VLT WET %581 WEE A B Ve el BT 4l BT %41 EClS B/ el ajemms Xva

yedun ¥ 0oos ooo¥ ooog oooz 000T 0sL oos 0st 0sT oot SL 0% st 0t Wy s AppmbT 7o 94

a7y (o.m3 psyy up) oz1s 1BPI

(266 ‘Sep oDAeRA ()Y

119



Chapter 5. Empirical analysis of liquidity risk models

also similar for portfolios of stocks, when portfolio diversification is ac-
counted for.

Overall, I strongly advocate the use of weighted spread data like XLM
to improve risk estimates. Liquidity constitutes a large part of total risk,
especially in larger positions and at short horizons - even in more liquid

market segments.

5.3 Comparison of liquidity risk models

5.3.1 Motivation

As final analysis, T will run a horse race of liquidity risk models that are
implementable in daily data. Based on the large data set described in
chapter 3, I benchmark a large selection of models taken from section 2.2
as well as the propositions from chapter 4, an exercise that has not been
conducted in the scientific literature so far. It will help to understand
strengths and weaknesses and allows to devise concrete recommendations

for practical liquidity risk measurement.

5.3.2 Selection of models

I sort liquidity risk models into two broad categories: Traceable and
theoretical. A large stream of literature has developed theoretical mod-
eling approaches, where implementation procedures are still missing
and not obvious. These include Lawrence and Robinson (1995), Alm-
gren and Chriss (2000) and Almgren (2003), Subramanian and Jarrow
(2001), Hisata and Yamai (2000), Dubil (2003) and Engle and Fersten-
berg (2007).2 These models generally use optimal trading strategies
to minimize the Value-at-Risk of a position including liquidity. However,
empirical estimation techniques for the large range of parameters of these

models still need to be developed.

20A more detailed discussion has been provided in section 2.2.2.4.
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Among those liquidity risk models that are empirically traceable, sev-
eral work on intraday or transaction data only. Berkowitz (2000a), Jar-
row and Protter (2005b) and Angelidis and Benos (2006) belong to this
class. In order not to completely neglect these, I choose Berkowitz
(2000a), which seemed most promising to adapt for daily data. T in-
clude all traceable models available for daily data: Bangia et al. (1999),
Cosandey (2001), Francois-Heude and Van Wynendaele (2001), Giot and
Grammig (2005) as well as the modified add-on model (section 4.1) and
the empirical net return model based on weighted spread (section 4.2).
For all models I choose a straight forward implementation for daily stock
data. I group the chosen models by the type of data required for their
estimation: bid-ask-spread models, transaction or volume data models,

and models requiring limit order book data.

5.3.3 Implementation specification
5.3.3.1 General approach

For all models, I calculate a standard, daily, relative Value-at-Risk (VaR)
at a 99 % confidence level. In general, I tried to keep the implementation
procedure as straight-forward as possible to allow for best comparisons.

Means, including those of liquidity costs, are generally calculated with
a 20-day rolling procedure. If mid-price return is separately estimated
in a normal-distribution framework, I set its mean to zero, as is common
practice. T account for volatility clustering with the standard exponential
weighted average (EWMA) model over 20 days by JP Morgan (1996)
using a weight ¢ of 0.94 defined as

20
of = (1=08)) 61}, +6%r] 5 (5.6)

=1

Where applicable I estimate skewness and excess-kurtosis with a simple
non-weighted rolling procedure. The skewness of y is computed from

historical data rolling over the last 500 days as v = =5 00 (e —y)? /o]
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with u, and o, as mean and volatility of y. The excess kurtosis for y is
R = o T (g — ) o — 32

To allow for best comparison, I use the ten standardized order size
classes to calculate the the liquidity risk for a stock position of a specific
size from section 3.1.1.3.

For some models, I had to choose specific implementation approaches,
that are not covered by above general description. These will be de-
scribed in the following subsections. Liquidity risk models that can be
implemented with the general implementation comments given in the

previous section, will not be included.

5.3.3.2 Berkowitz (2000)

For Berkowitz (2000a) (section 2.2.2.2), future price is driven by risk
factor changes and the liquidity impact of trading N; number of shares
as follows

Pridis1 — Priay = C+ 0N+ 1001 + & (5.7)

where @ is the regression coefficient, x;, is the effect of risk factor changes
on the mid-price, C'is a constant and ¢, the error term of the regression. 6
can be understood as absolute liquidity cost per share traded. Although
the original model is constructed on the basis of transaction data, I have
tried to tune it as best as possible for the use in daily risk forecasts.
Therefore, I approximated the transaction price with P;q441.

As the author does not go into implementation detail, I choose to

estimate market risk effects as

Tipr = B X Tt X Pridt (5-8)

21To keep the sample as large as possible, I reduced the rolling window up to 20 days
at the beginning of the sample, in order to also include the first two years into the
results period. This discriminates models using skewness and kurtosis, but they
nevertheless show superior performance as will be shown in section 5.3.5.
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Liguidity Coefficient 8 Index

itn Euro per million shares DAY  MDAY SDAY TECDAX All
Mean 003 0.20 524 037 184
Median 0ot 0.05 0.17 004 0.03
Max. 0.3 1250 177700 440 177700
Min. 0.1z -14.30 -53.10 -305 -53.10
Sid. Dev. 0.0s 1.37 91.00 194 52.20
Signif. fraction ai 95 % confidence 53% 36% 45% 4%, 4%
Hignif. firaction ai 99 % confidence 44% 7% 37% 4% 36%

Table 5.19: Estimates of the liquidity measure
Table shows cross-sectional statistics of the estimated liquidity coefficient . The All-
column contains the average over all indices. Significant fraction shows percentage
of stocks with statistically significant theta at confidence level of 95 % and 99 %

respectively.

where 5 = Cov(r,ry) /0,0, 18 the beta factor for each individual stock
return on the 160-stock, value-weighted market portfolio return r; over
the sample period.??

Table 5.19 presents the regression estimates of the liquidity measure
6 for the sample period. The regression produces positive and negative
estimates, which is slightly counter-intuitive as the liquidation of a po-
sition should always induce a price discount. 6 also varies strongly as
indicated by standard deviation, minimum and maximum. In general,
average liquidity costs per share are very small, in the order of one Euro
per million shares. Only about half of the stocks have f-values that are
statistically significant different from zero. Therefore, I already doubt
at this stage, that the liquidity measure implemented in daily data will
produce accurate results.

I now calculate continuous, liquidity-adjusted net return as

rnety(q) = In <1 + {ﬁ X Ty — 0 % N: + n}) (5.9)

maid,t

22 Although this proceeding leads to a conceptually doubtful overlap between esti-
mation and forecast period, this overlap generates a bias in favor of the model.
Nevertheless, even positively biased estimates for this model provide poor results
as is shown later in section 5.3.5. Risk-free rate is neglected due to the short time
period.
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for each standard-volume number of shares n = ¢/ P4+ to allow for later
comparison with other liquidity risk models. The optimal trading strat-
egy of the original model requires 1/h’th of the position to be liquidated
each day of the h-day horizon. For the daily horizon, the full position
will be liquidated at once. I then define relative, liquidity-adjusted total

risk as
L—VaR(q) =1—exp (umet(q) + éaamet(q)) (5.10)

where fi,pe(q) is the 20-day rolling net return mean and oy, q) is the
EWMA-estimated net return volatility. Z, is the empirical percentile of

the net return distribution.

5.3.3.3 Cosandey (2001)

The relative, liquidity-adjusted VaR of Cosandey (2001) (section 2.2.2.2)
is implemented similar to the Berkowitz (2000a) approach described

above but with net return defined as

Ny
t =1 X 5.11
rmets(g) = in (s x o) (5.11)
where r is the mid-price return, /N is the number of shares traded in the
market and n = q/P,niq 1s the position size in number of shares. Risk
is then defined as

L—VaR(q) =1—exp (umet(q) + ﬁaarnet(q)) (5.12)

where flyne(q) is the 20-day rolling net return mean and o,pe(q) is the
EWMA-estimated net return volatility. & is the empirical percentile of

the net return distribution.??

2] deviate from the original simulation approach, because, in my view, the key fea-
ture of this approach is new liquidity measure. Using a parametrization keeps
approaches as comparable as possible. I also work with smoother continuous rather
than discrete returns.
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5.3.3.4 Francois-Heude and Wynendaele (2001)

In the original paper, Francois-Heude and Van Wynendaele (section
2.2.2.3) interpolate the liquidity cost function only from the best five
limit-order-quotes made available by the Paris Stock Exchange. In favor
of their approach, I use the liquidity cost function estimated as weighted
spread from the whole limit order book as described at the beginning of
this section.

I specify risk in this model as

L VaR(a) =1 - eap(-z0,) (1= 002 ) 4 L 0vi) - o)
(5.13)
where z is the normal percentile and o, the standard deviation of the mid-
price return distribution. u(q)ws is the average spread for a security for

order quantity ¢, and WS,(q) is the spread at time t.

5.3.3.5 Giot and Gramming (2005)

The relative, liquidity-adjusted total risk of Giot and Grammig (2005)

(section 2.2.2.3) is calculated as

L— VCLR(Q) =1- exrp (Mrnet(q) + Zt,ozo-rnet(q)) (514)

where z;, is the chosen percentile of the student distribution.?* In or-
der to ensure comparability, I stay with the EWMA-modeling of volatil-
ity and do not replicate their approach accounting for conditional het-
eroskedasticity. Because I implement their approach to daily instead of
intraday data, I ignore their adjustment for diurnal variation in weighted

spread.

241 take percentiles from the student distribution with 19 degrees of freedom due to
the 20-day rolling window.
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5.3.3.6 Modified liquidity risk model

As the modified add-on model can be used with bid-ask-spread as well as
with weighted spread data, I include both versions. Similar to equation
4.3 in the modified add-on model with bid-ask-spread, 1 define the modified

add-on model with weighted spread as

L—VaR =1—exp(u, + Z,(r) X 0,) X (1 - % (tws + Za(WS) x UWS))

(5.15)

where Z,(r) is the percentile of the return distribution accounting for

its skewness and kurtosis and Z,(W.S) and the corresponding weighted

spread distribution percentile. Accounting for four moments is performed
with the Cornish-Fisher approximation 4.2.

In analogous application of the net-return model outlined in section 4.2,

I also test another variant, the modified net-return model with weighted

spread. Tt is also possible to use Cornish-Fisher approximated percentiles

of the net return distribution, i.e. return net of weighted spread, and

calculate risk as

L—VaR(q) =1—exp (umet(q) + Z4(q) X amet(q)) (5.16)

where Z, is the percentile estimated with the Cornish-Fisher approx-
imation (4.2). This alternative parametrization does not rely on the
assumption of t-distributed net returns or perfect return-liquidity corre-
lation. This modified net-return model will be also included in the model

selection.

5.3.4 Backtesting framework

I test the validity of risk forecasts for each model by comparing pre-
dicted risk with actual returns out-of-sample, similar to the backtesting

approach described in 5.1.4.1. Actual realized losses are, however, cal-
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culated specific for each position ¢ with the weighted spread under the
assumption that the position has to be immediately liquidated against
the limit order book

rnety(q) =1 +In (1 - %WSAQ)) (5.17)

That this assumption is valid in a large range of risk-related situations
has been discussed in 3.1.1.2.

I calculate a L-VaR for all models at 1 — a = 99% confidence. If the
L-VaR model correctly predicts risk, actual return should exceed VaR in
only 1 % of all cases. Statistical significant deviations between predicted
and actual risk are determined with the Kupiec (1995)-statistic according
to equation 5.1.

Similar to section 5.1.4.1, I calculate the percentage of stocks, where
the Kupiec statistic cannot reject precise risk estimation. This percent-
age will be called acceptance rate. If acceptance rates are averaged over
all order sizes, I excluded bid-ask-spread rates to avoid double count-
ing.?> For stocks, where the deviation between predicted and real loss
rates was significant, I determined if the violation occurred because risk
was overestimated (fewer actual losses than predicted) or underestimated
(more actual losses than predicted). These respective stock fractions are
also determined.

When comparing models, I used a common sample. The large period
of 5.5 years, i.e. 1.423 days, allows for very robust results of the Kupiec-

statistic.

5.3.5 Backtesting results
5.3.5.1 Overall model ranking

Figure 5.3 shows the overall ranking of the tested liquidity risk models.

Liquidity risk models are ranked by the overall average percentage of

25 As bid-ask-spreads are reported for non-standardized order sizes only, there is po-
tential overlap with weighted spread of small sizes.
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Figure 5.3: Ranking of liquidity risk models by overall acceptance rate
Figure shows overall acceptance rate averaged over all stocks and order sizes for each
model. Acceptance rate is the percentage of stocks with statistically significant precise
risk estimation according to Kupiec (1995).

stocks, for which risk was correctly estimated according to the Kupiec-
statistic. In general, models based on the larger data set, limit order
data, show superior performance with an acceptance rate of above 70 %.
Best performing with 74 % is the Cornish-Fisher modified add-on ap-
proach with weighted spread and the empirical net return model based
on weighted spread . This is closely followed by modified weighted spread
net return and the t-distributed net-return approach by Giot and Gram-
mig (2005) with a 71 % acceptance rate.

I would have expected the net-return Cornish-Fisher approach to be
higher ranked than if return and liquidity percentiles are separately es-
timated, because correlation between return and liquidity are correctly
accounted for. I hypothesize that forecasting of return and liquidity costs
are more precise because the dynamics of both components are mod-
eled separately. This compensates for the neglect of correlation. The
t-distribution approach by Giot and Grammig (2005) seems to only par-
tially account for the non-normality. The limit-order-book approach by
Francois-Heude and Van Wynendaele (2001) is far behind on the second
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last place. I believe this is caused by the conceptual weakness of this
model as described in section 2.2.2.3.

Although the modified add-on model based on bid-ask-spread, section
4.1, does not account for the price impact via weighted spread data, it
surpasses with 44 % acceptance rate the Cosandey (2001) with 32 %
acceptance. Bangia et al. (1999) is with 16 % overall acceptance better
than Francois-Heude and Van Wynendaele (2001) and Berkowitz (2000a).
The implementation attempt of the latter in daily data does not provide

satisfactory results.

5.3.5.2 The impact of order size

The overall rank calculated as order-size average is influenced by the se-
lection of size classes included. 1 therefore also calculated averages by
individual order sizes. Table 5.20 shows the acceptance rate of the tested
liquidity risk models by order size. The modified add-on model with
weighted spread performs best in small to medium order sizes, while the
best performing model in larger order sizes is Giot and Grammig (2005).
The t-distribution seems to capture liquidity risk in larger order sizes very
efficiently. The relatively low performance of the modified risk models
with weighted spread in larger sizes is probably due to rising skewness
and kurtosis for weighted spread in larger sizes caused by single outliers,
which leads to imprecise Cornish-Fisher estimates.?® Also, the assump-
tion of perfect correlation leads to an overestimation of risk which has a
significant impact in larger order sizes.?” The hypothesis that the lower
performance of the modified net return model with weighted spread is
driven by the low forecastability of net return dynamics is substantiated.
In lower order sizes, performance is more acceptable, because dynamics
are mainly driven by mid-price return and liquidity is neglectable. In
larger order sizes performance drops as liquidity dynamics are lost in the

compounding of the net return.

26Cp. Jaeger (2004), p.16. and Zangari (1996), p.10.
27Cp. Stange and Kaserer (2008a).
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Models based on bid-ask-spreads - not accounting for order size - show
expectedly declining performance with rising order size, while the modi-
fied add-on model (4.1) consistently dominates. Cosandey (2001) shows
a quite good performance for medium sizes, but very low at large order
sizes. The assumption of linear price impact probably distorts results at
order size extremes.

The discussion shows that overall ranking results remain valid with
one exception. The rank of the top-performing limit order models is not
fixed and - depending on the order size in question, the modified add-on
model, the empirical net-return model and the Giot and Grammig (2005)

model are probably all good choices in practice.

5.3.5.3 Type of misestimation

To allow a more detailed analysis of the reasons behind the individual
model performance, table 5.21 shows the over- and underestimation rate
of the tested liquidity risk models by order size. The first four limit order
models are quite balanced and show underestimation as well as overes-
timation. The empirical net return model, for example, overestimates
the risk of 14 % of the stocks and underestimates the risk for 13 % of
the stocks. As mentioned earlier, the severe underestimation of bid-ask-
spread models in large order sizes is expected due to their design. The
strong general underestimation of the Francois-Heude and Van Wynen-
daele (2001) can probably be traced to the neglect of time variation,
because the crises increase of liquidity cost has not been incorporated.
The failure of the implementation of the Berkowitz (2000a)-model in
daily data, probably lies in the fact that I had to use mid-price instead
of transaction prices, which seems to smooth and therefore underestimate
any liquidity effects. Based on these arguments, these two models should

probably be ruled out for practical implementation.
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Index

Acceptance rate

DaX MDAX SDAX TECDAX All
Mod. add- on with weighted spread 0% 2% 6% 4%, T4
Emp. net-return with weighted spread 61% a9, 9 23% T,
Mod. net ret. with weighted spread LA 70%, 4%, B3%, 1%
Giot & Gramming (2005) 0% 2% 75%, T 1%
Mod. add- on with hid-ask-spread A46%, 49%, 38% 44%, 44,
Cosandey (2001) 29%. 3%, 36% 3% 2%,
Bangia et al. (1999} 10%% 16%% 16%% 16%% 16%%
F.-Heude & v. Wynendaele (2001) 5% 9% 18% 19%. 15%
Berkowitz (2000) 2% ¥ 5] 4% 10%

Table 5.22: Acceptance rate of liquidity risk models by index
Table shows acceptance rate by index sub-sample averaged over all order sizes and all
stocks for each model. Acceptance rate is the percentage of stocks with statistically
significant precise risk estimation according to Kupiec (1995).

5.3.5.4 Robustness of model rank

As natural sub-samples, I used the four indices in my sample to check
for the robustness of the model rank. Table 5.22 shows the acceptance
rate of the tested liquidity risk models by index. The performance in
the least liquid SDAX where liquidity effects are largest, is of particular
importance. The first four models based on limit order data keep their
superior performance, but switch ranks in some sub-samples. The modi-
fied add-on models delivers high acceptance rates more consistently than
other models with acceptance rates never below 70 %. Therefore, the
modified add-on model is recommendable when limit order book data
are available.

The modified add-on model based on bid-ask-spread data consistently
outperforms all other non-limit order data models as well as Francois-
Heude and Van Wynendaele (2001). My adaptation of Berkowitz (2000a)
has particular low acceptance rates in the less liquid indices. Its per-
formance is best in the DAX, where liquidity is of minor importance.
Hence, it cannot be recommended for daily risk forecasts. Above results
are therefore generally confirmed.

Although a shortening of the period length reduces the reliability of

the Kupiec-statistic, I split the period into two sub-periods and calculate
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Sub-period
Acceptance rate
/2002 - 12005 /2005 - 102007

Mod. add-on with weighted spread T2V T9%%
Emp. net-return with weighted spread T T
Mod. net ret. with weighted spread £9% T3%%
Giot & Gramming (2005) 79% 74%
Mod. add-on with hid-ask-spread 43% £0%
Cosandey (2001) 330 28%
Bangia et al. (1009) 24% 3%
F.-Heude & v. Wynendaele (2001) 26%0 22%
Berkowitz (2000) 6% 11%

Table 5.23: Acceptance rate of liquidity risk models by sub-period
Table shows acceptance rate by sub-period averaged over all order sizes and all stocks
for each model. Acceptance rate is the percentage of stocks with statistically signifi-
cant precise risk estimation according to Kupiec (1995).

separate results for each sub-period as another robustness test. The ac-
ceptance rate by sub-period is presented in table 5.23. As the sub-period
is significantly shorter than the full period, results of the Kupiec statistic
are not directly comparable to the full period statistic. Levels can there-
fore not be compared across tables. I will look at the relative model rank
only. In the first sub-period (II/2002 to 1/2005), the model ranking is
slightly different. The empirical net-return model with weighted spread
(section 4.2) and Giot and Grammig (2005) now dominate the modified
risk models. T hypothesize that this effect is driven by inefficient skewness
and kurtosis estimates which are themselves caused by outliers during the
turbulent first sub-period. An improved estimation technique for higher
moments might help improve results in this particular situation, a point
which is, however, left to future research. The ranking of the second
sub-period (II/2005 to II/2007) is preserved.

The first four limit-order models therefore switch ranks in some sub-
periods but keep their superiority as a group. The remaining ranking is

preserved.
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5.3.5.5 Detailed model performance
In the following I discuss the performance of each liquidity risk model in

a more differentiated and detailed manner.

Models based on bid-ask-spread The model of Bangia et al. (1999)

(section 2.2.2.1) has mediocre performance as displayed in table 5.24.

Acceptance rate Order size (in thsd. Euro)

in % of stocks Min. 10 25 50 75 100 150 250 500 750 1000 2000 3000 4000 5000 Al

DAX 23% n@a  26% 23% na 20% na 1% 6% nfa 0% 0% 0% 0% 0% 10%
MDAX 41%  30%  28% 18% 18% 11% 11% 7% 4% 4% 2% nfa nla na  nfa 16%
SDAX 4% 42%  31%  13% 1% 8% % % 6% % 8% na na nla na 6%
TECDAX 4% 4% 32% 4% 12%  10%  10% 6% 8% 6% 6% na na na na 6%
All 30%% 4%  31%  18%  16% 13% 11% 8% 1% 6% % 0% 0% 0% 0% 16%

Table 5.24: Acceptance rate of Bangia et al. (1999)-approach by index

and order size
Table shows the fraction of stocks, where the L-VaR-model has been accepted by

Kupiec-statistics. The min-column measures the acceptance rate for the minimum
spread level, i.e. the bid-ask-spread. The All-column measures the average over all

standardized order sizes, i.e. without the min-column.

Because the Baniga model does not account for order size, it has par-
ticularly poor performance in large order sizes where liquidity costs are
heavily underestimated by the bid-ask-spread. This is consistent in all
indices. The acceptance rate in the DAX is particularly low, but com-
paratively high in larger sizes. Therefore the spread estimate seems to
underestimate the real, crises liquidity cost even in smaller sizes.

Loebnitz (2006) suggests a correction of the Bangia et al. (1999) model.
He argues that worst spreads should be conceptionally deduced from
worst, not from current mid-prices. I also tested this variation. Results

are displayed in table 5.25.

135



Chapter 5. Empirical analysis of liquidity risk models

Acceptance rate Order size (in thsd. Furo)

in % of stocks Min. 10 25 50 75 100 150 250 500 750 1000 2000 3000 4000 5000 Al
DAX 23% nfa  20% 20% na 20% na 11% 3% nfa e 0% 0% 0% 0% 3%
MDAX 38% 39%  28%  18% 18% 10%  10% % 4% 4% 2% n'a n'a n'a n'a 16%
5DAX 40%  40%  28% 13% 10% 3% 6% 3% 6% % 3% n'a n'a 1na n'a 13%
TECDAX 26% 38% 32% 14% 12% 10% 8% 6% 3% 6% % na nla nz na 15%
All 35%  42%  29%  18%  16%  12% 10% 3% 6% 6% 3% 0% e %% 0% 16%

Table 5.25: Acceptance rate of Bangia et al. (1999) with Loebnitz cor-

rection by index and order size
Table shows the fraction of stocks, where the L-VaR-model has been accepted by

Kupiec-statistics. L-VaR is calculated as L — VaR = 1 — exp(ao,) x (1 —1/2(us +
Gds0s)). The min-column measures the acceptance rate for the minimum spread level,
i.e. the bid-ask-spread. The All-column measures the average over all standardized

order sizes, i.e. without the min-column.

Acceptance rates are slightly lower than in the original specification
across all order sizes and indices. The overestimation of the original
model caused by the conceptual imprecision seems to balance the general
underestimation tendency, which yields overall more satisfactory results.
Therefore, the suggested correction cannot be recommended.

In table 5.26, acceptance rate for the modified add-on approach with
bid-ask-spread (section 4.1) is detailed.

Acceptance rate Order size (in thsd. Euro)

in % of stocks Min. 10 25 50 75 100 150 250 500 750 1000 2000 3000 4000 5000 Al
DAX T6% nfa 8% 8% na T8% na 2% 0% nfa 26% 15% 10% 7% 4%  46%
MDAX 85% B3% 80% T2% 61% 2% 41% 32% 16% 10% 7% =na nla nla na 49%
SDAX 1% 79%  68% 32% 3%%  34% 21% 15% 12% 12% 13% =na nla nla na 38%
TECDAX T6% B4% 82% 67% 33% 49% 33% 20% 12% 10% 10% =na nla nla na H4%
All J9%  B2%  T77%  63%  353%  S51%  33%  20% 19%%  11% 13% 13% 10% 1% 4% H4%

Table 5.26: Acceptance rate of modified add-on approach with bid-ask-

spread by index and order size
Table shows the fraction of stocks, where the L-VaR-model has been accepted by

Kupiec-statistics. The min-column measures the acceptance rate for the minimum
spread level, i.e. the bid-ask-spread. The All-column measures the average over all

standardized order sizes, i.e. without the min-column.

Compared with the models discussed in this paragraph so far, the
modified add-on approach with bid-ask-spread offers substantial improve-
ments with acceptance rates more than doubling. The detailed results at

the spread level are as high as the overall results of the limit order models.
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Therefore, risk seems to be adequately forecasted with this model when
looking at positions tradable at the bid-ask-spread. The performance
decline with order size is natural because this model does not account

for the liquidity cost increase with size.

Models based on volume or transaction data My adaptation of the
Berkowitz (2000a), as described in sections 2.2.2.2 and 5.3.3.2, does not

perform very well across order sizes and indices as shown in table 5.27.

Acceptance rate Order size (in thsd. Euro)

in % of stocks Min. 10 a5 50 75 100 150 250 500 750 1000 2000 3000 4000 5000 Al
DAX n'a nia 24% 24% nfa  M% nfa  23% 2% nfa  25% 17% 14% 17% 19% 12%
MDAX na  10% 4% 3% 12% 6%  16% 6% 4% 9%% 4% n'a n'a n'a n'a 8%
SDAX n'a % 4% T% 3% 3% 3% T% 4% 4% 8% n'a n'a n'a n'a 6%
TECDAX n'a 3% 3% 3% 3% 0% 0% 8% 8% 4%  16% nfa n'a n'a n'a 4%
All n'a % 9% 10% 8% 10% 8% 12% 10% 3% 14% 17T%  14% 17% 19% 10%

Table 5.27: Acceptance rate of Berkowitz (2000a) by index and order size
Table shows the fraction of stocks, where the L-VaR-model has been accepted by
Kupiec-statistics. The min-column measures the acceptance rate for the minimum
spread level, i.e. the bid-ask-spread. The All-column measures the average over all
standardized order sizes, i.e. without the min-column.

Results for the min-column (spread level) cannot be calculated be-
cause order size of spread is non-standardized and therefore missing in
the adjustment procedure of Berkowitz (2000a). The original model is
designed for transaction data. As described in section 5.3.3, the calcu-
lated acceptance rates are tuned to daily data. Unfortunately the results
are not very promising. For daily data, at least in this implementation,
the model of Berkowitz (2000a) cannot be recommended.

The Cosandey (2001) model (section 2.2.2.2 and 5.3.3.3) performs

much better as can be seen from table 5.28.
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Acceptance rate Order size (in thsd. Furo)

in %o of stocks Min. 10 25 50 75 100 150 250 500 750 1000 2000 3000 4000 5000 Al
DAX n'a na T1% T7% na 0% na 4% 14% na 0% 9% 6% 6% 6%  29%
MDAX na  46% 30% 28% 19% 16% 16% 14% 13% 18% 20% nfa n'a n'a nfa 23%
SDAX na  3%% 30% 23% 21% 19% 21% 31% 47% 63% 73% nfa n'a n'a na  36%
TECDAX na  47% 33% 22% 20% 18% 22% 27% 33% 40% 0% nfa n'a n'a na 31%
All na  47%  39%  35%  22%  23%  21%  28% 33% 43%  M4% 9% 6% 6% 6%  32%

Table 5.28: Acceptance rate of Cosandey (2001) by index and order size
Table shows the fraction of stocks, where the L-VaR-model has been accepted by
Kupiec-statistics. The min-column measures the acceptance rate for the minimum
spread level, i.e. the bid-ask-spread. The All-column measures the average over all

standardized order sizes, i.e. without the min-column.

Acceptance rates partially reach levels above 70 %, even in larger order
sizes. However, performance is not consistently high. It varies between
indices and order sizes with no apparent structural driver. Nevertheless,

if only transaction data are available, it is the best model in the test.

Models based on limit order book data [ now turn to the detailed
performance results of the weighted spread models. Table 5.29 shows the
Kupiec-accepted fraction of stocks for Francois-Heude and Van Wynen-
daele (2001) (section 2.2.2.3 and 5.3.3.4).

Acceptance rate Order size (in thsd. Furo)

in % of stocks Min. 10 25 50 75 100 150 250 500 750 1000 2000 3000 4000 S000 Al
DAX 3% n'a 3% 3% n'a 3% n'a 3% 3% n'a 3% 8% 9% 5% 12% 3%
MDAX 4% 11% 6% 6% 9% T 0%  12% 9% 12% 12% nfa n'a n'a n'a 9%
SDAX 2% 13% 19% 13% 14% 13% 15% 19% 21% 24% 32% nfa n'a n'a n'a 18%
TECDAX 6% 16% 16% 16% 20% 18% 12% 15% 29% 23% 24% na nfa nla nla 19%
All 3%  15% 15% 13% 16% 12% 14% 14% 18% 21% 20% 8% 9% 6%  12% 13%

Table 5.29: Acceptance rate of Francois-Heude and Van Wynendaele

(2001) by index and order size
Table shows the fraction of stocks, where the L-VaR-model has been accepted by

Kupiec-statistics. The min-column measures the acceptance rate for the minimum
spread level, i.e. the bid-ask-spread. The All-column measures the average over all

standardized order sizes, i.e. without the min-column.

The detailed results are not very satisfactory. The model practically
fails to predict risk well in the DAX, but performance is also quite low

in the other indices. Especially, if compared to the other limit order
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models, the model of Francois-Heude and Van Wynendaele (2001) cannot
be recommended.

In table 5.30, detailed acceptance rates for Giot and Grammig (2005)
(section 2.2.2.3 and 5.3.3.5) are shown.

Acceptance rate Order size (in thsd. Euro)

in % of stocks Min. 10 25 50 75 100 150 250 500 750 1000 2000 3000 4000 5000 Al
DAX 3% nfa  33% 33% nfa 38% nia  61% 61% na T2%  92%  B86% 82% 88%  T0%
MDAX 37% 41%  43%  45% S51%  53% 65% T4% 86% 83% 87% nfa n'a n'a na  62%
SDAX 7% 63% 63% 63% 67% T6% 81% 90% 89% 85% 87% nfa n'a n'a na 73%
TECDAX 64% 61% 67% 67% T6% 73% 80% 83% 91% 93% 83% nia n'a n'a na T7%
All 62%  59%  58%  57% 63%  63%  T6%  B1%  83%  88% B4% 92% B6% 82% 88%  T1%

Table 5.30: Acceptance rate of Giot and Grammig (2005) by index and

order size
Table shows the fraction of stocks, where the L-VaR-model has been accepted by

Kupiec-statistics. The min-column measures the acceptance rate for the minimum
spread level, i.e. the bid-ask-spread. The All-column measures the average over all

standardized order sizes, i.e. without the min-column.

Acceptance rates are very high, often above 70 %. Performance is
especially high in large order sizes in illiquid indices, i.e. where the
liquidity adjustment is most needed. However, risk forecasts work less
well in smaller order sizes.

The net-return model proposed in section 4.2 performs also quite well

as can be seen the details in table 5.31.

Acceptance rate Order size (in thsd. Euro)

in %o of stocks Min. 10 25 50 75 100 150 250 500 750 1000 2000 3000 4000 5000 Al
DAX 6% mna T8% T8% nfa B83% nfa T8% 64% na  §T% 0% 42% 41%  34%  61%
MDAX 7% 69%  T4%  T7%  T72% 68% 73% 63% 8% 64% T0% =nla na nfa  nla  69%
SDAX T6%  T8%  T8%  B4%  TT%  T3% B2% 82% 80% 78% 83% nfa n'a n/a n'a 9%
TECDAX T4%  T1%  B0% B2%  90% 92% 90% 83% TT% o W%  nfz n'a n'a n'a 83%

All 8%  T3%  Te%  T9%  T7%  T7% B2 TT% T1% T3%  50%  42% 41% 34% Ti%

Table 5.31: Acceptance rate of empirical net-return approach with

weighted spread by index and order size
Table shows the fraction of stocks, where the L-VaR-model has been accepted by

Kupiec-statistics. The min-column measures the acceptance rate for the minimum
spread level, i.e. the bid-ask-spread. The All-column measures the average over all

standardized order sizes, i.e. without the min-column.

As discussed above in the overview, performance is higher than in Giot

and Grammig (2005) at smaller sizes but lower in larger order sizes. The
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detailed results show that this is mainly driven by DAX stocks. In the
more important illiquid indices, the net-return model is slightly superior.

Similarly well are acceptance rates of the proposed modified add-on
model with weighted spread (section 4.1 and 5.3.3.6) as is apparent from
table 5.32.

Acceptance rate Order size (in thsd. Euro)

in %o of stocks Min. 10 25 50 75 100 150 250 500 750 1000 2000 3000 4000 5000 Al
DAX 38% nfa 64% 69% nla 69% nm B1% T8% na B1% T78% 63% 58% 36% 0%
MDAX 34% 86% 80% T73% B4% B1% 78% 68% 4% 1% 49% =na nfa nla na T2%
SDAX T7% 84% 81% 78% B1% 79% T3% T73% T0% 67% 33% =na nfa nla na  Té%
TECDAX T8% 63% 67% T3% 78% B0% 82% 7% T6% 73% T1% =na nfa nla na  Ti%
All 81% B80% 76% T7% B2% 79% T9% 73% 66% 63% 60% 78% 63% 5R% 56% T4%

Table 5.32: Acceptance rate of modified add-on approach with weighted

spread by index and order size
Table shows the fraction of stocks, where the L-VaR-model has been accepted by

Kupiec-statistics. The min-column measures the acceptance rate for the minimum
spread level, i.e. the bid-ask-spread. The All-column measures the average over all

standardized order sizes, i.e. without the min-column.

Performance is slightly better in larger indices than in the empirical
net-return model, but has some outliers in large MDAX sizes and small

TecDAX sizes.
Finally, table 5.33 presents detailed results for the modified net-return

model with weighted spread.

Acceptance rate Order size (in thsd. Euro)

in % of stocks Min. 10 25 50 75 100 150 250 500 750 1000 2000 3000 4000 5000 Al
DAX 85% nfa  61% 61% nfa 8% nla 7% Ti% nla  T4%  B83% 67% 3% 4% 64%
MDAX Té%  T8%  T6% 3% T6%  T0%  T4%  68% 60% %% 63% na nla  nfa na  T0%
SDAX 7% 80%  T7%%  Té%  T3%  T1%  T6% 69% T4%  66% 8% nfla nla  nfa na  T4%
TECDAX 2% 35%  61%  T1%  73%  T6%  82% T1%  62% 60% T1% na na nfa na  68%
All 7%  T3%  72%  T2%  73% T2%  TT%  T1%  67%  62% 63% B3% 67% 3% 2% Ti%

Table 5.33: Acceptance rate of modified net return approach with

weighted spread by index and order size
Table shows the fraction of stocks, where the L-VaR-model has been accepted by

Kupiec-statistics. The min-column measures the acceptance rate for the minimum
spread level, i.e. the bid-ask-spread. The All-column measures the average over all

standardized order sizes, i.e. without the min-column.

As with the empirical net-return model, acceptance rates are lower in

larger order sizes, quite consistent in all indices. Both models impreci-
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sions seems to be driven by the compounding of mid-price return and
liquidity cost processes in the net-return. This compounding limits fore-
castability if processes are very different, as is the case in larger order

sizes. Overall, detailed results can be said to confirm earlier findings.

5.3.6 Synopsis

In this section, I have put a large selection of traceable liquidity risk
models to the test in order to find out which is most suitable for daily
risk estimation. I implemented Bangia et al. (1999), Berkowitz (2000a),
Cosandey (2001), Francois-Heude and Van Wynendaele (2001), Giot and
Grammig (2005) as well as the two model propositions from chapter 4 in a
large sample of daily stock data over 5.5 years. T used a standard Kupiec
(1995)-statistic to determine if models provide precise risk forecasts on a
statistically significant basis.

I find, that available data is the main driver of the preciseness of risk
forecasts. Models based on limit order data generally outperform mod-
els based on bid-ask-spread or transaction data. The latter (Cosandey
(2001) and Berkowitz (2000a)) are highly approximate and should only
be used if no other data are available. If limit order book data is avail-
able, an approach based on empirical or t-distributed net returns (section
4.2 or Giot and Grammig (2005)) as well as the modified add-on model
(section 4.1) all show satisfactory results. The modified add-on model
with limit order data shows the most consistent outperformance. If only
bid-ask-spread data can be obtained, the modified add-on model with
bid-ask-spreads (section 4.1) is recommendable. On the basis of transac-

tion data, Cosandey (2001) provides suitable results for daily forecasts.
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6 Conclusion

6.1 Summary and implications

In this thesis, I provided an up-to-date overview of the current state
of market liquidity risk measurement. Chapter 2 summarized aspects of
liquidity that are relevant to liquidity risk management. It clearly defined
market liquidity from a cost perspective and showed that this perspective
is consistent but advantageous to other existing liquidity definitions. I
also provided an overview of liquidity risk models and described their less
explicit assumptions and made similarities and discrepancies transparent.

Chapter 3 described the data set I used in the empirical analysis. Be-
sides standard price, spread and volume data, I used a large data set of
the weighted spread measure by Deutsche Borse, called Xetra Liquidity
Measure (XLM). The weighted spread measure extracts liquidity costs by
order size from the limit order book. It is a data-type made available by
electronic exchanges only in recent years. With daily data of 160 stocks
of the four major German stock indices over 5.5 years, it comprises the
largest weighted-spread sample so far analyzed in academia. I outline un-
der which assumptions weighted spread is a valid liquidity cost measure.
I also provide a detailed empirical analysis of this weighted spread sam-
ple, which allows representative liquidity cost estimates by order size for
the first time in literature. I find that liquidity cost significantly increase
with order size. Time variation is significantly different for larger than
for smaller order sizes. Both findings make it highly likely that weighted

spread proves to be a superior liquidity measure in risk management as
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well. In general, assuming no effect of order size on liquidity cost will
lead to significant distortions.

In chapter 4 I suggested two new liquidity risk models. The modi-
fied add-on model concerns a new way to account for non-normality in
liquidity risk. With the help of the Cornish-Fisher approximation, the
first four moments (including skewness and kurtosis) of a distribution
can be taken into account when estimating percentiles of a distribution.
The net-return model with weighted spread extends the approach of Giot
and Grammig (2005). It provides a framework to analyze the use and
effect of weighted spread in liquidity risk measurement. I developed a
risk decomposition which allows to distill the effect of size and liquidity
on risk as well as to extract the effect of liquidity-return correlation, an
issue that has been disputed in the literature.

Chapter 5 contains the empirical analysis of this thesis. In a first step,
I benchmarked the newly suggested modified add-on model against the
original specification of Bangia et al. (1999). My new suggestion proves
to be highly superior in terms of preciseness. The superiority is robust
when looking at different stock or time sub-samples.

In a second step, I calculated liquidity risk with the net return model
and weighted spread in daily horizons. Liquidity is found to be non-
neglectable even at ten-day horizon. Liquidity risk is shown to signif-
icantly increase with order size. I also find that liquidity-return corre-
lations are large and incur an overestimation of liquidity risk by 100 %
when neglected. These results are robust when looking at the expected
shortfall risk measure, risk over time and risk in a diversified stock port-
folio.

In a final step, I ran a benchmark between all liquidity risk models
available in daily data, an exercise that has not been done before. 1
find that models based on weighted spread, i.e., limit order data, provide
risk forecasts with the highest preciseness. The newly suggested modified
add-on model with weighted spread provides precise risk forecasts in sub-

samples most consistently. When having only transaction data available,
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the model by Cosandey (2001) is recommendable. When working with
bid-ask-spread data, the modified add-on model with bid-ask-spread has
the highest preciseness.

Overall, this thesis summarized the current state of research and ex-
tends it into several new directions. By using a unique, representative
data-set and by suggesting new liquidity risk models, the thesis provides

new and superior ways to account for liquidity in risk management.

6.2 Outlook

Market liquidity risk still provides a large realm of topics that require fu-
ture research.! I believe, that answers to the following questions, which
are - to the best of my knowledge - still open, would be especially in-
teresting. A better understanding of certain aspects of market liquidity
would be helpful and liquidity risk management also shows some loose
ends.

First, although I hypothesized that optimal trading strategies do not
provide any significant benefits from a risk perspective, they are certainly
valid in normal market conditions and for block sales. The pressing ques-
tion is how to estimate the parameters required for the optimal trading
algorithms. What is the empirical benefit of different optimal trading
strategies? In which situations are they (most) valid?

This issue can get tackled from a different perspective as well: When
are liquidity prices efficient? If they are, then any optimal trading strat-
egy will have to fail. It also only makes sense to add liquidity cost risk to
price risk if prices not yet suitably reflect liquidity. If mid-prices already
reflect overall liquidity, must any further adjustment be restricted to the
individual trader’s situation, must common liquidity effects be neglected?

Second, asset pricing questions based on more precisely estimated price
impact curves would clarify the importance of liquidity costs to investors.

Combining the weighted spread measure of the price impact curve with

!For this section, cp. Stange and Kaserer (2008b).
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the distribution of trading volume yields the total cost paid by investors
per stock. Is this total cost reflected in prices? It might also be possible
to describe the whole price impact curve with theoretical, calibrated lig-
uidity processes - similar to theoretical descriptions of the interest rate
curve. This might help in situations, where the price impact curve is
non-observable or where forecasting is very difficult.

Third, the most important issue for liquidity risk measurement is, in
my view, the under-researched treatment of delay risk. The dynamics
of delay (in crises) and its relation to the price dynamics is still unclear.
When and for which assets does trading break down in crises? Further
insight into empirical delay properties would help to choose an appropri-
ate approach to integrate delay risk into liquidity risk measurement. This
research topic would also have to tackle the question of how to measure
and forecast delay, especially in markets where delay is important and
market data is quite perforated. A subsequent empirical comparison of
methods and magnitudes of liquidity risk in different asset classes would
be interesting.

Fourth, the specification of size has been handled differently by differ-
ent authors. When analyzing liquidity cost and risk, which specification
is most suitable? Size can be defined as number of shares, volume in
currency units or volume relative to the traded volume in the market.
From the theoretical as well as the empirical perspective an analysis could
be fruitful, which determines liquidity in a more precise and stable way.
Section 3.3.5.1 can provide impetus here.

Fifth, the literature on market liquidity has been enriched by ap-
proaches that have not yet been used in liquidity risk management.
Chacko et al. (2008) calculate liquidity cost in an option pricing frame-
work, which is possible because liquidity can be interpreted as mar-
ketability option as discussed in section 2.2.1. Because it is imple-
mentable based on transaction data, it provides a traceable approach
that is theoretically rigorous at the same time. It might be an interest-

ing venue to explore from a liquidity risk perspective.
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Sixth, liquidity risk management could still need some refinement.
Duffie and Ziegler (2003) describe optimal liquidation strategies of port-
folios in crises. I believe, that liquidity risk treatment of portfolios still
has neglected potential for further insight. It might also be interest-
ing to understand if it is possible to construct specific liquidity options,
that could be used to hedge away the liquidity cost risk. Not long ago,
volatility options became a traded contract in financial markets. Is there
similar potential for liquidity options?

Market liquidity risk is still a relatively young research topic where
further insight is possible beyond the refinement of existing ideas. With
this thesis I hope to have contributed with new approaches and new
empirical findings. Further insight is also very necessary as demonstrated
by high interest from practitioners and regulators during the recent sub-
prime events. Market liquidity risk can break financial institutions and
reoccurs as topic in almost every modern financial crises. Understanding
its structure and making true risks transparent is essential for steering

financial institutions through turbulent times.
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