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Abstract

Market liquidity risk is the potential loss, because assets cannot be sold
at the price previously thought. Although evidence suggests that liquid-
ity e�ects are signi�cant, they often remain neglected in practical risk
management. One of the reasons is the limited scienti�c research in the
area of liquidity risk measurement.
This thesis provides an up-to-date overview on market liquidity risk

research. It covers all aspects of market liquidity that are relevant to risk
management as well as existing liquidity risk models.
The empirical analysis is based on weighted spread, a relatively new

liquidity measure, which can be extracted from the limit order book of
electronic exchanges. A unique, representative sample of weighted spread
allows to provide estimates on the e�ect of order size on liquidity costs,
as well as the dynamics, distributional characteristics and cross-sectional
structure of this liquidity measure.
The thesis also proposes two new liquidity risk models. The modi-

�ed liquidity risk model introduces a new way to account for the non-
normality in liquidity with the help of the Cornish and Fisher (1937)-
approximation. The empirical net-return model based on weighted
spread analyzes the use of the weighted spread liquidity measure in risk
measurement.
Both models are tested empirically in daily data. The modi�ed liquid-

ity risk model implemented with the bid-ask-spread proves to be supe-
rior to the standard model of Bangia et al. (1999). Common backtests
by Kupiec (1995) demonstrate that risk is forecasted with much higher
precision when non-normality is taken into account via the proposed
Cornish-Fisher approximation.
With the help of the empirical net-return model, I �nd that liquid-

ity risk strongly increases with the size of the position. The impact of
liquidity on risk is signi�cant - even at 10-day horizons. Liquidity risk
models neglecting this e�ect must necessarily underestimate total risk.
Further, the correlation between liquidity and return is signi�cant and
reduces the liquidity impact by about 50 % compared with the standard
assumption of perfect correlation. These results are robust to change in
risk measure, e�ects of time variation as well as portfolio diversi�cation.
A �nal test runs a performance benchmark of nine di�erent liquidity

risk models implementable in daily data, including the new propositions.
I �nd that available data is the main driver of model preciseness. Models
with extensive data from the limit order book generally outperform. My

iii



new propositions, modi�ed add-on with weighted spread and empirical
net-return with weighted spread as well as Giot and Grammig (2005),
are all recommendable. The �rst model delivers precise results most con-
sistently. If only transaction data are available, the model by Cosandey
(2001) performs best. With bid-ask-spread data the proposed modi�ed
add-on model with bid-ask-spread achieves superior results.
Overall, this thesis underlines the usefulness of the weighted spread

measure in liquidity risk modeling. If the analyzed structure of liquidity
costs, i.e. non-normality as well as increase with order size, is properly
integrated, the preciseness of risk forecasts can be greatly improved. The
new model contributions prove to be particularly helpful in practical risk
management.
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1 Introduction

1.1 Delimitation and relevance of topic

Liquidity has lately received much attention in the academic world and

in practice.1 In reality, a stock position cannot be bought or sold without

cost or delay in execution. The most important cost is the spread, the

di�erence between the achievable transaction price and the fair price of

a stock. This spread serves as important measure of the liquidity of an

asset. Moreover, if volume traded in the stock is not large enough, the

investor has to delay his trade, which induces further costs. From an

investor perspective, the liquidity of an asset can be measured by the

total cost required to trade a position in an asset.

In general, the term 'liquidity' is used in three di�erent settings.2 First,

liquidity can designate the liquidity of a �rm, also called solvency. From

the corporate perspective, solvency is the net liquidity of assets and li-

abilities. Liquidity of the liability side is also called 'funding liquidity'.

Second, liquidity is a characteristic of an asset, also called 'asset liquid-

ity' or 'market liquidity' depending on whether the balance sheet or the

market is in focus. From an investor's perspective it describes the mar-

ketability or ease of trading an asset3. Third, liquidity is also used from a

monetary perspective and addresses the liquidity of the whole economy.

This thesis addresses issues of market and asset liquidity, which have

more recently been brought into focus.

1For this section, cp. Stange and Kaserer (2008a,c,b); Ernst, Stange and Kaserer
(2008, 2009).

2Extended from Jorion (2007), p. 334.
3Cp. also Longsta� (1995).
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Chapter 1. Introduction

Many recent crises have been liquidity crises. The two large hedge

fund breakdowns of LTCM in 1998 and Amaranth Advisors in 2006 were

mainly caused, because they took positions that were too large to be liq-

uidated without substantial price impact.4 In the recent sub-prime crises

of 2007/08 banks around the world were troubled by funding liquidity

shortages and had to liquidate assets to reduce risk exposure. Stock

prices slumped because many funds were forced to sell-o� positions due

to margin calls and fund out�ows.

The regulators are alert and the Basel II committee has already pub-

lished several reports and guidelines on liquidity in recent months. Banks

are requested to �use appropriately conservative assumptions about the

marketability of assets� and �incorporate liquidity costs, bene�ts and

risks in the internal pricing, performance measurement and new product

approval process for all signi�cant business activities�5. Still, a BIS sur-

vey among banks revealed, that market liquidity remains the single risk

factor across all asset classes, that is not easily captured.6

Today, the most popular tool to measure, control and manage �nan-

cial risk within corporations and �nancial institutions is the Value-at-

Risk (VaR) concept.7 VaR measures the worst expected loss over a given

horizon and a certain con�dence level. In most institutions the standard-

ized VaR-methodology is used to determine capital requirements.8

One often criticized downside of the traditional VaR-model is its in-

ability to capture liquidity risk, because its computation generally relies

on market prices.9 Due to the neglect of liquidity risk the real risk of

an institution is generally underestimated.10 In this context, liquidity

risk, more speci�cally market liquidity risk, can be understood as the

di�culty or cost of trading assets in crises. Market liquidity risk has

4Cp. Jorion (2007).
5Cp. Basel committee (2008), p. 6 and p. 9.
6Cp. Basel committee (2005), p. 10.
7Cp. Dowd (2001), pp. 4-5.
8Cp. Basel Committee on Banking Supervision (1996).
9Cp. Jorion (2007) p. 333.
10Cp. Bangia et al. (1999); Stange and Kaserer (2008c) and others.
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Chapter 1. Introduction

to be distinguished from funding risk, which is the potential shortfall of

meeting liabilities and having su�cient cash available.

Market liquidity risk has already acquired a great deal of attention.

During the last few years several academic papers have been written

on the consideration of liquidity risk in the VaR framework. The pro-

posed solutions can be classi�ed into two groups: The �rst one focuses

on indirect risk measures by determining price quantity functions from

transaction data. In this stream, the approaches of Cosandey (2001), Jar-

row and Protter (2005a), Berkowitz (2000b), Jarrow and Subramanian

(1997) and Almgren and Chriss (2000) are widely cited. In contrast, the

second group makes use of direct liquidity cost measures such as the bid-

ask-spread or the order-size-dependent weighted spread. For instance

Bangia et al. (1999), Francois-Heude and Van Wynendaele (2001) and

Giot and Grammig (2005) propose models that can be classi�ed into this

latter category.11

A major issue in all liquidity risk models is the assumed distributional

properties of asset returns and liquidity measures. For reasons of sim-

plicity most often either a normal or empirical distribution is used. Since

the distributions of continuous asset returns and liquidity costs are often

skewed and leptocurtic or platycurtic, inappropriate normality assump-

tions necessarily lead to incorrect risk estimates. The use of empirical

distributions might also be suboptimal, because large data sets are re-

quired and historical distributions might poorly proxy for the future.

In other risk management contexts, non-normal distributions have al-

ready been addressed. Zangari (1996) and Mina and Ulmer (1999) sug-

gested and analyzed the Cornish and Fisher (1937)-approximation as

method to account for the non-normality in the case of derivatives. Favre

and Galeano (2002) propose to apply this method to hedge fund risk, Lee

(2007) use it in the context of real estate asset allocation.

Another major issue is the precise integration of the price impact of

order size, i.e. the fact that liquidity costs rise with the position size

11Detailed description in section 2.2.
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Chapter 1. Introduction

traded. Simple models such as Bangia et al. (1999) neglect price impact,

other models try to approximate it, for example Cosandey (2001), Jarrow

and Protter (2005a) and Berkowitz (2000b). More recently, a new price

impact measure has been brought into the discussion. Irvine et al. (2000)

suggested to use the price impact implicit in the limit order book of

exchanges, a measure also called weighted spread. While weighted spread

has been used by Giot and Grammig (2005) to analyze intraday variation,

the aspects of size impact as such and the mechanics of precise liquidity

integration have not been addressed.

Both issues, distributional assumptions and precise integration of price

impact of order size have not been resolved yet.

1.2 Research questions and contribution

This thesis aims to clarify, how liquidity risk can be precisely integrated

into a risk measurement framework. It concentrates on two issues, the

problem that liquidity is non-normally distributed, and the precise mea-

surement of price impact. Speci�cally, I address the following research

questions:

1. How can the Cornish Fisher approximation account for non-

normality in liquidity risk?

a) How can a liquidity risk model on the basis of the Cornish

Fisher approximation be set up?

b) Does this approach yield more precise results than existing

methods?

2. How can weighted spread as price impact measure be precisely in-

tegrated into a risk management framework?

a) In which situations is weighted spread a valid liquidity mea-

sure?

b) What are the distributional properties of weighted spread?

4



Chapter 1. Introduction

c) Is the liquidity risk impact of order size substantial enough

to justify the use of this type of data - especially at longer

forecast horizons, where the importance of liquidity declines?

d) What is the e�ect of liquidity-return correlation on risk mea-

surement, a commonly discussed issue?

3. How do liquidity risk models compare empirically with respect to

their preciseness?

a) Which model preforms best and can be recommended?

b) Are there structural di�erences in the precision of risk fore-

casts on the basis of data used, position size or market seg-

ment?

The hypothesis implicit in these research questions will be empirically

tested in a large sample of daily stock data.

The relevance of these questions is quite apparent. The Cornish-Fisher

method has been helpful in other areas of risk management and is there-

fore a promising candidate for liquidity risk measurement. The use of the

weighted spread as liquidity cost measure is relatively new in risk man-

agement and its structure and precise application have not been clari�ed

yet.

An empirical comparison of liquidity risk models has not been con-

ducted in academia so far. Its results will help to judge which models

should be used in practice. Comparative backtests also identify which

simplifying model assumptions have the largest distorting e�ects, which

can provide impetus for promising directions of future model develop-

ment.

1.3 Structure of analysis

Chapter 2 provides an overview of the existing literature on liquidity and

liquidity risk, which includes an overview of all relevant aspects of market

5



Chapter 1. Introduction

liquidity. It also surveys existing liquidity risk models and discusses their

explicit and implicit assumptions. In chapter 3, I present a description of

the data set used for the empirical analysis as well as a discussion of the

characteristics of the new liquidity measure, weighted spread. On this

basis, chapter 4 proposes two new liquidity risk models. The modi�ed

add-on model is a new approach to account for non-normality in liquidity

risk. The net return approach with weighted spread suggests a framework

to analyze the importance of weighted spread as risk measure as well as

the question of precise measurement of price impact. Chapter 5 contains

the empirical test of the newly suggested liquidity risk models and a

comparison with other approaches. Chapter 6 summarizes, concludes

and outlines questions for further research.
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2 Background and existing

literature

This chapter provides an overview of the existing literature on market

liquidity and its risk. The discussion of market liquidity risk requires an

understanding of the characteristics of liquidity itself that are relevant

from a risk perspective. Section 2.1 clearly de�nes liquidity, describes its

characteristics, and surveys existing market liquidity measures.

Based on an understanding of market liquidity, section 2.2 turns to

market liquidity risk. It provides a general liquidity risk de�nition fol-

lowed by detailed descriptions of existing liquidity risk models. I also

analyze these existing models from a theoretical perspective and clarify

their explicit as well as implicit assumptions. The section concludes with

a model overview.1

2.1 Background on market liquidity

2.1.1 De�nition of market liquidity

Market liquidity can be de�ned as the cost of trading an asset relative

to fair value.2 Fair value is set at the middle of the bid-ask-spread, the

mid-price. This has the advantage that it is most objective, but the

disadvantage, that the fair, fundamental value �uctuates heavily, which

is slightly less intuitive.

1For this chapter, cp. Stange and Kaserer (2008b).
2Cp. Dowd (2001), p. 187 �. and Buhl (2004); Amihud and Mendelson (2006).
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I distinguish three components of liquidity cost Lt(q) in percent of the

mid-price for an order quantity q at time t3

Lt(q) := T (q) + PIt(q) +Dt(q) (2.1)

where T (q) are direct trading costs, PIt(q) is the price impact vs. mid-

price due to the size of the position, Dt(q) are delay costs if a position

cannot be traded immediately.

Direct trading costs comprise exchange fees, brokerage commissions

and transaction taxes. They are also called explicit transaction costs,

because they are known beforehand and time invariant, i.e. determinis-

tic.4 The price impact is the di�erence between the achieved transaction

price and the mid-price.5 They result from imperfectly elastic demand

and supply curves for an asset at a speci�c point in time, which makes

the price impact increase with the size traded.

Liquidity costs increase with order size for two reasons. First, investors

have heterogeneous expectations with respect to the fair value of an asset

and are subject to capital restrictions. They are therefore willing to trade

only a limited quantity at their own prespeci�ed price. When trading a

small position, a trader is likely to �nd a counterparty which is willing

to exchange the full position at or close to the trader's fair value expec-

tation. The larger the position to be traded, the more counter-parties

have to be found. The achievable transaction price falls. Compared to

the trader's fair value expectation, the liquidation cost rises with the size

of the position. Second, liquidity costs are also a price for immediacy.

An immediate transaction at a certain price is essentially an American

option paired with an exchange.6 The option component comprises the

3This closely follows Amihud and Mendelson (2006), but additionally di�erentiates
by the size of the position. Compare also similar in Aitken and Comerton-Forde
(2003); Torre (1997).

4Also cp. Loebnitz (2006), p.18 f.
5Similarly Demsetz (1968) de�nes transaction cost as the price concession needed for
an immediate exchange of an asset into money (p.35). This is also called market
impact.

6Cp. Chacko et al. (2008).
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right to receive a certain amount of shares at order execution with the

current market price as strike. This optionality has an immanent value,

which depends on price volatility and the order size relative to expected

transaction volume, because this determines the future liquidity of the

position for the buyer. Due to these two components, price impact cost

can be expected to rise with the size of the position.

Delay costs comprise the cost for searching a counterparty and the

cost imposed on the investor due to bearing risk, because prices and

price impact cost might change during the delay.7 For many assets, like

most stocks and bonds on an exchange, search costs are negligibly small,

but costs of additional risk during delay can remain substantial.

Because liquidity costs increase with size, a trader faces a possible

trade-o� between price impact cost and delay. He can save on price

impact cost by deliberately delaying parts of the transaction. But then

he has to face delay risk for the delayed portion of the position. This

deliberate delay is optimal if the savings on price impact costs exceed

the additional delay cost. These strategies are analyzed in the literature

on optimal trading strategies.8 As a consequence, there are two types

of delay, forced and deliberate. Forced delay occurs if a position can

currently not be traded in the market. Deliberate delay occurs if the

trader does not want to trade a certain position strategically, because he

expects savings on total liquidation costs.

Relation to other liquidity de�nitions Above cost de�nition takes a

practical, concrete investor's perspective and can integrate other de�ni-

tions in the literature. In my view, it also provides a suitable framework

to integrate the multitude of available perspectives and makes liquidity

a less elusive concept.

7Almgren (2003) calls price impact risk �trading enhanced risk�.
8Cp. for example Bertsimas and Lo (1998); Almgren and Chriss (1999, 2000); Almgren
et al. (2005); Almgren (2003); Subramanian and Jarrow (2001) and the discussion
in section 2.2.2.4.
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The most often cited dimensions of liquidity are tightness, depth, re-

siliency and immediacy.9 They can be easily understood in above cost

framework. Tightness, �the cost of turning a position around in a short

time�, corresponds to the sum of direct trading costs T and price im-

pact costs PI. Depth, �the size of an order �ow innovation required to

change prices a given amount�, is the quantity q transactable at a spe-

ci�c price impact PI, i.e. PI−1(q) = q(PI). Resiliency, �the speed with

which prices recover from a random, uninformative shock�, is the mean

reversion speed of liquidity cost after a shock, i.e. the time dimension of

liquidity cost. Immediacy, the time between order submission and settle-

ment, directly corresponds to the delay time of the delay cost component

D. Thus, all four dimensions can be analyzed in the cost framework

introduced above.

In the cost framework, liquidity is the e�ect a transaction has on an

investor. The importance of other, more indirect liquidity measures like

transaction volume, zero trading days, depth, etc.10 can be much better

understood from a cost perspective. If a liquidity aspect results in high

liquidity costs in economic downturns, it will have a large e�ect on asset

prices. The cost perspective provides the economic explanation for the

validity of many liquidity measures.11

Kempf (1999) de�nes liquidity in more abstract terms and cites the

dimensions price and time. Price directly corresponds to cost, but time

should - in above view - also be converted into a cost component via

delay costs. While time is a more direct aspect of liquidity, its conversion

into cost make it more concrete from an investor's perspective. Longsta�

(1995) de�nes liquidity as �the ease of trading an asset�, which is similarly

abstract and needs to be broken down into more tangible aspects as

suggested above.

9Cp. Kyle (1985), p. 1361 for the �rst three dimensions and the citations and Black
(1971), p.30 for the latter. Tightness is also sometimes called 'width' or 'breadth'.

10Cp. Datar et al. (1998); Liu (2006); Bekaert et al. (2007); Goyenko et al. (2008)
and others.

11Cp. Stange and Kaserer (2008a), p.4.

10



Chapter 2. Background and existing literature

2.1.2 Overview of important aspects

2.1.2.1 Degrees of market liquidity

Liquidity is a continuous characteristic. Hence, assets can have di�erent

degrees of liquidity.12 The liquidity degree is determined by the type

of the asset, the size of the position and the liquidation horizon. It

is useful to distinguish at least four categories of liquidity degrees as

illustrated in �gure 2.1 on the following page. They are closely related

to the magnitude of liquidity costs and require substantially di�erent

treatment.

If an asset is 'fully liquid' any position in the asset can be immedi-

ately traded without a cost. Cash is the primary example. For practical

purposes, liquidity adjustments to its value are not necessary. An asset

can be called 'continuously tradable' when most positions can be traded

albeit with a cost. A good example are limit order books of developed

stock markets. The determination of the costs of trading is the main

issue from a liquidity perspective. If liquidity deteriorates further, the

asset becomes 'disruptively tradable', i.e., it can be traded from time

to time. While market price provides an indicator for the fair value of

the asset, delay and its incorporation into liquidity measures is a major

issue - in addition to trading costs. A good example are over-the-counter

markets of exotic bonds. Finally, an asset is 'illiquid' if no position size

can be traded. Market prices are thus non-observable and value has to

be determined by intrinsic methods. Rare art or currently collateralized

debt obligations can be considered illiquid.

Not only the type of the asset, but also the size of the position deter-

mines the degree of liquidity. In most cases, it is the position size relative

to the prevailing trading volume, that determines the degree of liquidity,

which also shows the relation between asset and market liquidity. Is the

position size much larger than traded volume, we can expect signi�cant

trading delay. The asset position is only interruptedly tradable. If it is

12Cp. also discussion in Stange and Kaserer (2008a), p. 4f.
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Chapter 2. Background and existing literature

too large, it might even be illiquid in the short term due to the lack of

counterparties.

The liquidation horizon is another determinant of a position's liquidity

degree. A security might be illiquid in the short term because of a lack of

counterparties, but interruptedly tradable at longer liquidation horizons.

If an asset is held to maturity, then, obviously, liquidity costs are zero

and irrelevant, because they are a transaction feature.

2.1.2.2 Characteristics of market liquidity

When measuring market liquidity, ex-ante committed liquidity and possi-

ble hidden liquidity have to be distinguished.13 The advantage of market

organization on the basis of order books lies in the fact, that more liq-

uidity is ex-ante committed and transparent to market participants.

The price impact component of asset liquidity can be described in a

price-quantity diagram, which collects all potential counterparty orders

with their order size and their willingness to pay. In case of committed

liquidity in a limit order book, these are limit orders. These counterparty

orders, if sorted by best price construct the buy- or sell-price function.

The cost of liquidity of a round-trip14 can be then described by a price-

quantity function, which is the di�erence between the buy- or sell-price

function and the mid-price as displayed in �gure 2.2 on the next page.

The trader buys at the buy price function and sells at the sell price

function. The di�erence between the two is the liquidity cost from the

transaction.

For small orders, not larger than the quote depth, this cost of a round-

trip corresponds to the bid-ask-spread. For larger orders the liquidity

cost of a round-trip is the weighted spread between the buy- and sell-

side functions up to the traded quantity. The spread of the individual

limit orders are weighted with their respective limit order quantity. In

13Cp. Irvine et al. (2000).
14I.e. buying and immediately selling a position.
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general, this weighted spread is called 'price impact'.15 Because the limit

order book only measures committed liquidity, due to hidden liquidity,

transactions can and do occur inside the bid-ask-spread. Therefore the

commonly used quoted-spread as well as the weighted spread measure

ex-ante committed liquidity.

Up to the quote depth, liquidity costs are sometimes called exogenous

and beyond endogenous.16 It is argued, that bid-ask-spread up to the

quote depth is exogenous, because it is common to all market partici-

pants while the weighted spread is endogenous depending on the indi-

vidual trader's position. I believe that this argument is imprecise with

respect to the structure of liquidity costs. The whole price impact curve

is exogenously given, because it is determined by the market. This is

also true beyond the quote depth. The size of the trade (endogenously)

determines the point on the curve valid for a speci�c trade. In this way,

the bid-ask-spread is also endogenous - determined by a very small spe-

ci�c trade position. As a consequence, the cost itself is neither exogenous

nor endogenous - at any size - but can be decomposed into an exogenous

price-quantity curve and an endogenous point on this curve.

A possible cause for this misleading distinction is the usual graphi-

cal representation, which shows a �at price impact curve similar to the

display above, but a continuous increases of liquidity cost beyond the

spread. This falsely implies that liquidity costs would be structurally

di�erent beyond the spread.

Above graphical display necessarily neglects the temporal dynamics

of liquidity. Important is the distinction between temporary and per-

manent price impact.17 Temporary price impact is the portion of the

price impact, that will dissipate over time and is closely related to the

notion of resiliency.18 It is driven by order imbalances when trades are

purely motivated by liquidity needs. Temporary price impact might also

15A detailed description will be provided in section 3.1.1.1.
16Cp. Bangia et al. (1999), p.68 f., also in Jorion (2007), p. 336 or Bervas (2006), 3.
17Holthausen et al. (1987) �rst introduced this setup.
18Cp. section 2.1.1..
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occur under information asymmetries, if the market reacts on perceived

informational content, i.e. it occurs due to adverse e�ects. Permanent

price impact is the portion of the price impact that will permanently

move mid-prices. In an e�cient market, the permanent part is directly

related to the true informational content of the trade. Measurement of

temporary and permanent price impact separately is still di�cult.19

2.1.3 Existing liquidity cost measures

How can one measure the cost of trading a position? Academic literature

has brought forward a multitude of cost measures. Starting with Roll

(1984) and Amihud and Mendelson (1986), many papers have analyzed

variants of the bid-ask-spread, data which is easily available. But this

measure neglects that spread di�ers for di�erent order sizes. Only small

positions, smaller than the bid-ask-depth, can be traded at such a cost.

Larger positions incur larger costs, the price impact (of the position's

size). Initially the price impact was measured with proxies.20 The prob-

lem with estimating liquidity cost ex-post from transaction prices is to

distinguish between the informational and the liquidity component in

the price change. Pastor and Stambaugh (2003) used a method based

on price change with subsequent reversals, but were not able to distill

stock-speci�c liquidity measures.

More recently, a direct method of measuring size-speci�c spread has

been used. When order book data is available, the price of instant liq-

uidity for a position of a certain size can be extracted as weighted spread

from the limit order book. Under the assumption that a position is

transacted as a market-order against available limit-orders, the di�er-

ence between the realized price and the mid-point of the bid-ask-spread

measures the price impact of the trade due to liquidity. As this is an

ex-ante measure of committed liquidity, informational e�ects of a trans-

19Cp. Amihud (2002); Pastor and Stambaugh (2003), who try to extract temporary
price impact from prices.

20Cp. for example Kyle (1985); Amihud (2002); Brennan and Subrahmanyam (1996).
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action cannot play a role here. Exchanges increasingly use transparent,

electronic limit order books, for example the London Stock Exchange,

the Nasdaq, the Frankfurt Xetra, the Euronext or the Australian Stock

Exchange. They also start to make these weighted spread data available

to researchers and practitioners. Hence, the above method of calculating

liquidity becomes more generally applicable.

Several papers have already used this new method of measuring liq-

uidity costs as displayed in table 2.1. Irvine et al. (2000) use the cost of

a round trip for trades of various sizes as a liquidity measure, which they

compare to quoted and e�ective spread. Empirically, they show that the

measure is correlated with other measures of liquidity and that it predicts

the number of trades of a certain size. Coppejans et al. (2001) employ a

similar measure to analyze the relation between market liquidity, returns

and volatility in an intraday sample. They reveal a large inter-temporal

variation and show that liquidity is concentrated on certain points in

time. Coppejans et al. (2004) discuss the stochastic dynamics of liquid-

ity with a measure similar to the cost of a round trip and �nd a negative

relation to volatility and a high degree of resiliency, i.e. high mean rever-

sion speed of liquidity prices after shocks. Domowitz et al. (2005) employ

the cost of round trip to analyze liquidity commonality and show that

market liquidity and returns can remain uncorrelated because they are

caused by di�erent economic forces. While liquidity is driven by liquidity

supply and demand (i.e. cross-correlation between limit and market or-

ders), returns are driven by correlation in order �ow (i.e. order direction

and size). Gomber et al. (2004) extract weighted spread from the limit

order book to show that resiliency is generally high after liquidity shocks

and public information has negligible impact on liquidity. They also show

that large transactions are timed on periods with high liquidity.
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2.2 Existing market liquidity risk models

2.2.1 General de�nition of market liquidity risk

Traditional risk measurement assumes that liquidity costs can be ne-

glected if the liquidation horizon is long enough.21 Therefore, there is no

adjustment for liquidity costs in many practical market valuation mod-

els: Liquidity cost is assumed to be zero and positions to be liquidated

at mid-prices.

Liquidity risk can generally be de�ned as the potential loss due to time-

varying liquidity costs. Several empirical papers have already shown that

liquidity risk is a substantial risk component, already when only cost

at the bid-ask-spread level is accounted for. Bangia et al. (1999) �nd

underestimation of total risk by 25-30% in emerging market currencies in

daily Value-at-Risk. Le Saout (2002) estimates that the bid-ask liquidity

component can represent over 50% of total risk for illiquid stocks. Lei

and Lai (2007) reveal a 30% total intraday risk contribution by liquidity

in small-price stocks.

Also, the adjustment for the full price impact cost - beyond the spread -

is signi�cant. Francois-Heude and Van Wynendaele (2001) �nd a 2-21 %

contribution of price impact in one stock. Giot and Grammig (2005)

show that 30-minute liquidity-adjusted VaR is 11-30 % for three stocks.

Angelidis and Benos (2006) estimate that liquidity risk constitutes 11 %

of total VaR in low capitalization stocks.

Time horizon The time horizon in the VaR framework is usually the

time required to orderly liquidate an asset. It is di�erentiated between

asset classes but usually assumed constant within one asset class such as

stocks.22

There is an important conceptual distinction to be made when de�n-

ing 'horizons' in the liquidity risk management framework. The reaction

21Cp. Jorion (2007), p. 333.
22Cp. for example Jorion (2007), p. 24.
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horizon is the time until management takes a decision vis-a-vis the liq-

uidation of an asset, while the liquidation horizon is the period during

which the position is liquidated. Although this distinction is usually ne-

glected, it has important consequences. Usually, the horizon is used as a

forecast period. Based on this information a decision is taken now, i.e.

the reaction horizon is zero and the liquidation horizon is equal to the

forecast period. Although the position is said to be orderly liquidated

during the liquidation horizon, its worst value is calculated for the end of

the liquidation horizon, which is logically inconsistent but conservative.

When directly adjusting for liquidity risk, it is possible to be more

precise and logically consistent. However, 'horizon' then has to be dis-

tinguished into above aspects.

2.2.2 Model overview and evaluation

The choice of liquidity risk model strongly depends on the purpose as

well as the type of asset position in question. In the following, I will

look at models for regular risk measurement, which are not necessarily

suitable for stress testing. If intraday forecasts are not aimed for or

the integration of intraday data is too computational intensive, several

models based only on intraday data are ruled out.

For the choice of an appropriate liquidity risk model, assets on the

balance sheet have to be categorized according to the following three

criteria: General degree of market liquidity, typical size of a position and

data availability.

What is the general liquidity degree of the asset? If the asset is con-

tinuously traded, liquidity cost models are in focus, if it is only traded

with large interruptions, models incorporating execution delay have to

be applied. If the asset is illiquid, i.e. generally not traded, value has to

be determined with internal models. The same is true, if data is hardly

available or of limited quality, e.g. in some over-the-counter markets. In-
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ternal value models and possible liquidity adjustments therein are outside

the focus of this thesis.

How large is the typical position size relative to traded volume? If sizes

are relatively small, models which neglect the price impact of position

size can be applied, i.e. models based on bid-ask-spread data. If sizes get

larger, these models are naturally imprecise. If positions are especially

large, like block holdings, even models which incorporate price impact

will loose precision.

What type of data is available? The precision of the price impact

measurement depends directly on the amount of data available. On the

basis of spread data, price impact is generally neglected. On the basis of

transaction data, price impact approximations are possible.23 With limit

order book data, price impact can be quite precisely estimated. The type

of data determines the liquidity measure than can be used.

In the following, I will introduce relevant liquidity risk models and

indicate, which assumptions are made and when they can be applied. I

want to emphasize at this point, that my discussion is based on my very

own interpretation of the liquidity risk models, because many aspects

I point out are only implicit in the model structure and not explicitly

discussed by the original authors. If possible, I used my own, consistent

notation to allow for better comparisons between the di�erent models.

2.2.2.1 Models based on bid-ask-spread

Add-on model based on bid-ask-spread: Bangia et al. (1999)

Bangia, Diebold, Schuermann and Stroughair (1998, 1999) include

time-varying, empirical bid-ask-spreads into a parametric Value-at-Risk

23Cp. also Erzegovesi (2002), p. 9 ; Torre (1997) argues that large costs cannot be
observed because trades at such cost are not executed and transaction data is most
sparse in illiquid assets where expected price impact are largest.
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(VaR). Transaction price is modeled as mid-price with an add-on for the

bid-ask-spread,

Pmid,t+1 = Pmid,texp(rt+1)− 1

2
PtSt+1 (2.2)

where Pmid is the middle of the bid-ask-spread, r is the continuous

mid-price return between t and t+1 and S is the time-varying bid-ask-

spread. Relative liquidity-adjusted total risk (L-VaR) is then the sum

of the mean-variance-estimated price-risk percentile and the empirically-

estimated spread percentile.

L− V aR = 1− exp(zασr) +
1

2
Pmid (µS + ẑασS) (2.3)

where σr is the volatility of the continuous mid-price return and µS and σS

are the mean and volatility of the bid-ask-spread. zα is the α-percentile

of the normal distribution, ẑα is the empirical percentile of the spread

distribution. As spread is not normally distributed, it is not possible to

take percentiles from theoretical distribution tables. Therefore, Bangia

et al. take the percentile of the empirical spread distribution, which

ranges - in their 99% case - between 2.0 and 4.5, which is partially far

away from 2.33, the 99% cut-o� of the normal distribution.

Bangia et al. (1999) also address the problem of moving from single

asset to portfolio VaR. They argue, that aggregating single asset L-VaRs

by using the spread covariance matrix is of dubious value, because spreads

are non-normally distributed. Instead, they suggest to aggregate single

asset's price risk in a more traditional way and then deduct a weighted

average spread from the portfolio VaR. Single currency and portfolio

L-VaRs are calculated as illustration in their paper. Other empirical

applications of their model include Mahadevan (2001), Lei and Lai (2007)

and Roy (2005).

The great advantage of the methodology of Bangia et al. is the low

data requirement. Spread data is available at all frequencies for most

assets, often also in over-the-counter (OTC) markets. It is also quickly
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implementable, because the liquidity-adjustment can be simply added to

existing price risk measures.

The greatest drawback is the neglect of price impact, the fact that only

small order sizes can be traded at the spread and liquidity costs quickly

increase with order size. As consequence, liquidity risk can be heavily

underestimated for large positions.

Further, their add-on approach is logically inconsistent, because spread

is calculated on the current mid-price and not on the crises mid-price,

which is however easily correctable.24 Bangia et al. also make the as-

sumption of perfect tail correlation between spread and price, i.e. they

assume that worst liquidity costs and lowest prices occur simultaneously.

Because tail correlations can be much lower in reality, this technical as-

sumption probably overestimates liquidity risk.25

Another problem is the estimation of the spread distribution. As

stated in their paper, spreads are often far from normal, because regime-

switching leads to multi-modality and because trending creates skewness

and fat tails.26 Accounting for non-normality by using empirical per-

centiles remains di�cult, because this requires longer time series as a

basis for estimation, which might themselves exhibit structural breaks

with several modi. Structural breaks might especially occur in crises.

These distributional properties make further underestimation of liquid-

ity risk highly likely.

Although, the Bangia, Diebold, Schuermann and Stroughair (1999)-

model su�ers from several imprecisions, it is one of the few models of

choice, when data is scarce, especially on transaction volumes or trans-

actions. I recommend to keep the add-on approach under the assumption

of perfect correlation, because this (partially) compensates the tendency

24Critique noted and corrected by L − V aR = 1 − exp(ασr) × 1/2(µS + α̃σS) in
Loebnitz (2006), p.71 f.

25Cp. critique in Francois-Heude and Van Wynendaele (2001); Angelidis and Benos
(2006); Jorion (2007).

26Cp. discussion of the distributional characteristics of spread in section 3.3.4.
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to underestimate due to the neglect of position size and the empirical

approximation of percentiles.

2.2.2.2 Models based on volume or transaction data

Transactions regression model: Berkowitz (2000) Berkowitz

(2000a,b) estimates the liquidity price impact from past trades. While

controlling for the in�uence of other risk factors, price impact is measured

from the time-series of trades in a linear regression.

PTA,t+1 = Pmid,t + C + θNt + xt+1 + εt (2.4)

where PTA,t+1 is the transaction price at time t+ 1, Nt is the number of

shares sold, θ is the regression coe�cient, xt+1 is the e�ect of risk factor

changes on the mid-price, C is a constant and εt the error term of the

regression. The regression coe�cient θ acts as liquidity measure and can

be seen as the absolute return due to changes in volume, i.e. the absolute

liquidity cost per share traded.

To construct a liquidity-adjusted risk measure in a convenient way,

Berkowitz assumes that liquidity and other risk factors are independent

from each other, which is equivalent to zero liquidity-return correlation.

They also build on Bertsimas and Lo (1998), who show that under linear

price impact an optimal execution strategy within a horizon of h days is

to liquidate 1
h
th of the portfolio each day during the liquidation period.

Similar to equation (2.4), price then follows

PTA,t+1 = Pmid,t + xt+1 − θ
Nt

h
(2.5)

Risk can then be derived from the general probability distribution. The

choice of concrete risk measurement (numerical, simulation, parametric)

is left to the reader.

The advantage of the Berkowitz-approach is the integration of price

impact of order size beyond the bid-ask-spread. While being more com-
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putationally extensive through the regression methodology, it only uses

transaction data for the liquidity measurement, which is available in

many markets. However, intraday data are required to calculate the

price impact cost from single trades. Otherwise, the estimation can get

very approximate.

The liquidity measure used in their approach, however, is quite im-

precise. In general, it closely resembles the liquidity measure of Amihud

(2002). Berkowitz additionally controls for risk factor changes in his em-

pirical regression. One problem is, that θ can become positive or negative,

which is counter-intuitive as size should always lead to a price discount.

Further research should empirically verify in how far this measure proxies

for real liquidity cost.

Also the liquidity concept as such has to be criticized. Berkowitz as-

sumes linear, non-time-varying price impact, which is clearly not the

case and most likely underestimates liquidity risk impact. The assump-

tion of zero liquidity-return correlation in his risk estimates leads to fur-

ther underestimation, because, empirically, positive correlations can be

observed.27 Further, as will be discussed at the beginning of section

2.2.2.4, I doubt that an optimal trading strategy applied above is as such

a suitable approach in crises situation. A correction is however simple,

because traded volume does not have to be divided by the liquidation

horizon.

Overall, Berkowitz (2000a,b) provides an approach to integrate price

impact of order size into a risk framework, but liquidity measurement

remains highly approximate.

Crises transactions regression model: Jarrow and Protter (2005)

Jarrow and Protter (2005a) use a framework which is very similar to

Berkowitz (2000a). Price impact is also measured in a regression from

transaction data. However, they do not explicitly control for other risk

27See empirical analysis in section 5.2.3.
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factors and only take a sample of crises transactions to derive a crises

price impact coe�cient.

log

(
PTA,t+1

PTA,t

)
=

(
µrt −

1

2
σ2
rt

)
+ θc(Nt+1 −Nt) + εt (2.6)

where µrt and σ2
rt are continuous mean and variance of the mid-price

return, θc is the crises price impact coe�cient and Nt is the number

of shares traded at time t.28 The restriction to crises introduces time-

variation into the price impact which is neglected by Berkowitz. The

additional, relative liquidity component in a VaR when selling a position

immediately in crises can then be calculated as

V aRL = 1− θcN (2.7)

where N is now the trader's quantity to be traded.29

The advantage of Jarrow and Protter (2005a) is the integration of

time-varying price impact, because the crises coe�cient approximates

the distribution percentile of liquidity cost. The crises speci�c coe�cient

also implicitly accounts - at least in approximation - for the liquidity-

return correlation in crises. Similar to the Berkowitz critique, this type of

empirical liquidity measure remains generally highly approximate. Run-

ning the regression in crises periods only might, however, severely shrink

the sample, which further reduces the validity of the liquidity estimate

θ. Therefore, their approach is overall of similar value than Berkowitz

(2000b).

Volume-based price impact: Cosandey (2001) Cosandey (2001)

proposes a simple framework to estimate price impact from volume data.

The price is a function of the number of shares traded, P = Q/N , where

28To keep notation consistent, I used the Greek letters from Berkowitz (2000b), which
carry di�erent meaning than the original Greeks in Jarrow and Protter (2005a).

29To simplify, I neglect that in the original paper the position is only partially liqui-
dated.
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Q is the (constant) quantity of money traded and N is the number of

shares traded. Under the assumption, that traded amount of money Q is

independent of a single trade, price including the impact of trading ∆N

shares can be simply estimated as

Pmid,t(∆N) =
Q

N + ∆N
= Pmid,t ×

N

N + ∆N
(2.8)

where the number of traded sharesN is assumed to be constant over time.

The trade fully increases the number of shares traded in the market. The

price impact is thus assumed to be linearly related to relative traded

volume. Relative liquidity-adjusted total risk can then be calculated as

L− V aR(∆N) = perc

(
rt+1 ×

N

N + ∆N

)
(2.9)

where perc determines the percentile from simulated distributions. The

e�ect of mid-price change and order size is jointly modeled.

Cosandey (2001) already addresses his shortcoming of the linearity of

the price impact function in (2.8) and proposes to model it as

Pmid,t(∆N) = Pmid,t ×
(

N

N + ∆N

) 1
a

(2.10)

where a is the - possibly time-varying - curvature parameter, but leaves

its measurement to future research.

The approach of Cosandey o�ers a major improvement over Bangia

et al. (1999), because the price impact of order size is accounted for.

While the important determinant of order size is integrated, the integra-

tion of price impact remains simple and has very few data and computa-

tional requirements. Volume data are available for many markets and a

large range of frequencies. However, not only single transaction data, as

in Berkowitz (2000a) or Jarrow and Protter (2005a) are required, but the

overall market volume. The linear implementation is simple and straight

forward.
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At the same time, the linearity of the price impact in the standard

speci�cation is one main source of imprecision. Empirically, price impact

is shown to be concave, which makes a linear functional form overesti-

mate liquidity risk for large order sizes.30 Curvature parameters in this

functional speci�cation are di�cult to measure, which makes this prob-

lem hard to solve in this setup.

The second reason for imprecision is the assumption, that the amount

of trading in the market, N , does not vary over time. The dynamics of

trading volume in crises might signi�cantly alter the picture. The much

cited '�ight-to-liquidity' e�ect can introduce complicated mechanics, be-

cause liquid assets improve in liquidity while illiquid assets deteriorate.31

If this is consistently the case, the liquidity risk of more illiquid positions

will be underestimated, which should be a major concern. As a con-

servative solution, trading volume can be assumed to dry up in crises,

e.g. by assuming that trading volume falls to the lowest percentile of

the volume distribution. But if this suggestion more precisely captures

liquidity e�ects in reality is unclear. Overall, neglect of time variation is

a problem di�cult to solve.

Further, liquidity is assumed constant between stocks apart from dif-

ferences in trading volume. However, section 3.3.5.1 will show, that liq-

uidity cost also greatly vary with market capitalization. Integration of

this fact might possibly capture �ight-to-liquidity e�ects but requires

further research.

In summary, Cosandey o�ers a framework, which can integrate price

impact in a simple way, especially in markets where data availability is

limited.

Structurally implied spread: Angelidis and Benos (2006) Ange-

lidis and Benos (2005, 2006) develop an implied liquidity cost model

from structural considerations, i.e. liquidity is traced to its underlying

30Cp. section 3.3.
31Cp. Longsta� (2004).
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drivers. They combine an inventory model of a market maker with a

fundamental model of information asymmetry. This yields an implied

spread, where the impact of traded volume depends on the degree of in-

formation asymmetry and the price elasticity with respect to volume and

a volume-independent minimum cost component.

L =
√
Nt(θ + κ) + Φ (2.11)

where Nt is the absolute number of total shares traded, θ is the degree of

information asymmetry, κ is price elasticity with respect to volume and

Φ is the size-independent cost per share. The Greek letters are estimated

from intraday data with a Generalized Method of Moments.

This liquidity measure is then integrated into relative VaR as add-on

similar to the quoted spread in Bangia et al. (1999).

L− V aR = V aR +

[
(θ + κ)

√
Nα′
t + Φ

]
(2.12)

where VaR is mid-price risk and Nα′
t is the top α′ percentile of traded

volume.

Angelidis and Benos assume, that the individual position size of a

trader dissipates in the volume of the market and does not increase total

traded volume as long as the position size is smaller than traded volume.

This is the opposite extreme to Cosandey (2001), who assumed, that the

trader's volume fully increases traded volume. Angelidis and Benos take

a less conservative approach. On the other hand, the assumption that liq-

uidity cost is calculated for the top percentile of traded volume, probably

captures the volume increase in the case of liquidation implicitly.

Angelidis and Benos (2006) provide a new approach of liquidity mod-

eling by tracing liquidity cost to its underlying determinants. This allows

to estimate liquidity even in markets, where other liquidity cost estima-

tions are not available. However, their approach requires intraday data

and heavy computations to get estimates for the structural coe�cients.
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For practical purposes the main question is, if the structural model is

correct. If main liquidity e�ects are not captured, liquidity estimates will

be strongly biased. I would hypothesize for example, that volume elastic-

ity strongly varies over time, which is not captured. This might substan-

tially in�uence results if these e�ects are of large magnitude. Also, the

degree of information asymmetry can be expected to change over longer

periods. Therefore, this model is probably most useful when calculating

intraday risk.

The second critique addresses the mechanics of integrating liquidity

into the VaR-approach. As discussed above, adding liquidity risk to price

risk assumes perfect price-liquidity correlation, which might overestimate

risk. Since the dynamics of volume are not fully researched yet, it is

unknown if the assumption of increased volume in crises is really valid

and if it is safe to assume, that the trader's position disappears in the

generally increased market volume without additional impact.

Overall, Angelidis and Benos (2006) provide an interesting intraday

model of liquidity risk, but relies on a large amount of intraday data as

well as some strong structural assumptions. Testing the validity of the

structural approach or empirically verifying the real dynamics of traded

volume in crises could take this line of research to the next level.

2.2.2.3 Models based on limit order book data

Price impact from limit orders: Francois-Heude and Van Wynen-

daele (2001) Francois-Heude and Van Wynendaele (2001) estimate

price impact of order size by using information from the limit order

book. They suggest to estimate the price impact for a certain order

size by interpolating the price impact function from the best �ve limit

order quotes made available by the Paris Stock Exchange. This estima-

tion of the spread S(q) for a speci�c positions size q makes their approach

quite precise, at least for smaller order sizes.
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Relative liquidity-adjusted total risk is then calculated in the following

intraday model

L− V aR(q) = 1− exp(−zασr)
(

1− S̄(q)

2

)
+

1

2

(
S(q)− S̄(q)

)
(2.13)

where zα is the normally distributed mid-price return percentile and σr

the standard deviation of the mid-price return distribution. S̄t(q) is the

average spread in the market for order quantity q and St(q) is the spread

of the asset. Market spreads are subtracted from worst mid-prices. How-

ever, as market average spread and individual asset spread might di�er,

the second term tries to correct for this di�erence.

Because it seems logically inconsistent that the correction term is mul-

tiplied with current and not with worst mid-prices, I suggest to modify

the risk term into

L− V aR(q) = Pmid,t ×
[
1− exp(−zασr)

(
1− St(q)

2

)]
(2.14)

which is simpler, more consistent and does not require average market

spread data.

Still, time variation of liquidity is not accounted for in the Francois-

Heude and Van Wynendaele (2001)-model, but could be similarly imple-

mented as in Bangia et al. (1999) using mean and variance of the spread

distribution. This would, however, require the estimation of liquidity

cost distributions for all order sizes.

This approach generally requires intraday data to estimate the price

impact function, which restricts its application to risk estimation at in-

traday frequencies. Also, the type of data described above needs to be

available. A suitable degree of precision is restricted to order sizes that

are not too large, because extrapolation much beyond the �fth limit order

quote is approximate.

Overall, it is di�cult to judge whether the increased preciseness

through integration of price impact or the lacking time-variation dom-
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inate in a speci�c situation. If the approach of Francois-Heude and

Van Wynendaele (2001) is used, I would suggest to integrate time-

variation in a suitable way.

Price impact from weighted spread: Giot and Gramming (2005)

In order to address price impact, Giot and Grammig (2005) extend the

idea of Bangia et al. (1999) by using spread data beyond the spread depth.

They assume, that the position is immediately liquidated as market order

against limit orders in the limit order book. Liquidity costs can then be

calculated as the average weighted spread of those limit orders necessary

to liquidate a certain position size. In this way, the liquidity costs of

di�erent order sizes can be extracted from the limit order book.

In detail, price impact is calculated as

WSt(q) =
at(n)− bt(n)

Pmid,t
(2.15)

where WS is weighted spread in percent and q is the size of the position

in mid-price value. at(n) is the weighted ask price of trading n shares

calculated as

at(n) =

∑
i ai,tni,t
n

with ai,t being the ask-price and ni,t being the ask-volume of individual

limit orders. Individual limit orders add-up to the size of the position,

i.e.
∑

i ni = n = q/Pmid. bt(n) is de�ned analogously as

bt(v) =

∑
i bi,tni,t
v

where ni,t being the ask-price and ni,t being the ask-volume of individual

limit orders.

The liquidity measure de�ned above can be used to calculate the net

return, return net of liquidity cost at time t over horizon h as

rnett(h, q) = rt(h)× (1− WSt(q)

2
) (2.16)
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where rt(h) is the h-period mid-price return at time t. Net return in-

cluding price impact is then integrated in a parametric, intraday VaR-

framework. Relative liquidity-adjusted total risk over horizon h is esti-

mated by using tails of the student distribution as

L− V aR(h, q) = 1− exp
(
µrnet(h,q) + zt,ασrnet(h,q)

)
(2.17)

where µrnet,t is the mean and σrnet,t is the volatility of net returns, while

allowing for diurnal variation of spreads and time-varying clustering of

return volatility by modeling conditional heteroskedasticity.32 zt,α is the

α-percent percentile of the student distribution.

The main advantage of using weighted spreads is the precise modeling

of the price impact of positions size. However, a precise de�nition of

the situations where weighted spread is a valid liquidity measure is still

missing.

Time variation and non-normality is accounted for by using the para-

metric speci�cation. While it is possible, that the assumption of the t-

distribution is a source of imprecision, this would need empirical testing.

A further advantage is the modeling of net-return instead of separating

mid-price return and liquidity cost, because the correlation between re-

turn and liquidity cost does not have to be explicitly modeled. Total risk

is measured when the combination of mid-price return and liquidity cost

are lowest.

Unfortunately, this method requires a transparent limit order book

market such as the London Stock Exchange, the NASDAQ, the Deutsche

Börse Xetra or the Euronext. If weighted spread data have to be man-

ually calculated from the full intraday limit order book, the method is

highly computationally intensive due to the large amount of data. How-

ever, some exchanges, like the German Xetra, provide weighted spread

data, which can be integrated into a risk framework with limited com-

putational requirements.33

32For details please refer to the original paper.
33Available as Xetra Liquidity Measure (XLM).
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Overall, the weighted spread approach allows for highly precise inte-

gration of liquidity risk including price impact of order size - if limit order

book data is available.

2.2.2.4 Theoretical models

General remarks In addition to the models analyzed so far, a di�erent

class of models has been suggested by academia in the context of liq-

uidity risk measurement. As discussed in section 2.1.1, optimal trading

strategies try to �nd an optimal balance between price impact costs and

delay cost by delaying parts of a transaction. They are very helpful in

determining a valid liquidity cost estimate when liquidating a large stock

position in normal situations.

I only provide a short overview, because I believe that in risk man-

agement the usefulness of these strategies is limited for three reasons.34

First, I doubt that optimal trading strategies are suitable approach from

a risk perspective in general. They assume, that there is enough time to

delay portions of a trade, which is rather unrealistic in a crises situation.

Calls on margin accounts and strong expected momentum enforce a fast

liquidation, leaving little room for patient optimal delay. If we assume a

10-day forecast horizon and a crises occurs on day one, does a trader re-

ally wait the nine remaining days to liquidate the position? Second, even

if there is enough time, optimization parameters must be stable enough

to yield an optimized result. Otherwise, it might be that the optimized

trading strategy yields worse results than by trading as quick as possible.

This is especially the case, if a position is to be liquidated due to infor-

mational advantage with respect to the further development of a crises.35

Third, optimal trading strategies are usually based on a large amount of

parameters that are di�cult or impossible to estimate in practice. The

more aspects are mathematically integrated, the more di�cult and possi-

34More detailed discussions of these theoretical models can be found in Erzegovesi
(2002), Loebnitz (2006) and Jorion (2007).

35This translates into high permanent vs. temporary price impact.
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bly unstable is the implementation. All of the model suggestions have yet

failed to demonstrate that they can be empirically applied in real crises

data.36 To prove the validity of optimal trading strategies, empirical es-

timation procedures need to be developed and it needs to be shown, that

the analytical optimal strategies are stable in crises situations. I believe

that optimal trading strategies have their greatest validity when trying

to liquidate block holdings in normal market situations, but have limited

applicability in risk management.

Nevertheless, for sake of completeness, I provide a brief overview. Pa-

pers with optimal trading strategies usually assume some form of price

impact function and a particular structure of the temporal dynamics. I

will highlight those two main characteristics for each model to clarify the

di�erences.

Model overview Lawrence and Robinson (1995) include liquidation

costs, delay costs, which are measured as risk exposure during liquida-

tion, and hedging costs into a net sales value. Risk is then measured as

the maximum net sales price when setting the liquidation horizon in an

optimal way. Unfortunately, the problem of liquidity cost measurement

and its dynamics is left to be speci�ed by the reader. It seems, that

liquidity costs are measured as constant bid-ask-spread only, i.e. price

impact and time variations are neglected. The general critique on op-

timal trading strategies applies as discussed above. In addition, it can

be doubted that maximizing expected proceeds and neglecting potential

shortfall due to proceed variance is a suitable way from a risk perspec-

tive. Also, using an unbounded liquidation horizon is a questionable

procedure in crises. Therefore, their approach can only serve as a very

general framework for analyzing the problem.

Jarrow and Subramanian (1997)/Subramanian and Jarrow (2001) in-

clude liquidity cost and execution delay in an optimized framework max-

imizing liquidation proceeds within a given horizon. They assume that

36Cp. also critique in Bangia et al. (1999), p. 69.
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liquidity costs are non-decreasing with order size and that trading has

economies of scale, i.e. that liquidating the full position at once is al-

ways optimal. Liquidity-price correlation is assumed to be zero. The

trader is treated as risk neutral. Under these assumptions, an analyt-

ically optimal solution is derived. Unfortunately the framework must

place heavy restrictions on reality to �nd an analytical solution. If the

optimal liquidation strategy is optimal in real data remains to be seen.

The critique on optimal trading strategies in general and on the neglect

of proceed variance analogously applies. How the parameters used in the

optimization are to be empirically estimated will have to be developed.

Almgren and Chriss (2000) construct an optimal trading strategy

within a given liquidation horizon. They decompose liquidation cost

into a temporary and a permanent component and construct a liquidity-

adjusted VaR by minimizing VaR itself. This approach is extended in

Almgren (2003) by including non-linearity in the price impact. However,

the question of measuring these parameters remains unsolved in both

papers. This especially concerns the magnitude and functional form of

permanent and temporary price impact as well as the duration of the

temporary price impact. If time-variation of liquidity is incorporated,

distributional estimations are also necessary.37 Concerns with respect to

the validity of optimal trading strategies in crises as such apply.

Hisata and Yamai (2000) also construct an optimal trading strategy

by minimizing the cost of liquidation, also including normally-distributed

permanent and temporary price impact. They determine the optimal

holding period at constant sales speed by maximizing expected sales pro-

ceeds with a penalty for proceed variance. Liquidity risk then is the price

impact variance under the condition, that the sales strategy is optimized.

Several variations as well as portfolio considerations are discussed. Un-

fortunately, the paper also fails to specify how to empirically estimate

37Almgren et al. (2005) present a calibration procedure based on internal trade data.
This is, however, less helpful when trades are sparse for certain assets in general or
the speci�c institution.
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the parameters used in the framework.38 Several assumptions that are

required to technically �nd an analytical solution, might not be robust

in reality. Also using an unbounded liquidation horizon is questionable

as discussed above.

Dubil (2003) analyzes the optimal execution strategy between delaying

parts of a position and the price impact. Liquidation costs are also de-

composed into a permanent and a temporary component. He optimizes

the liquidation horizon by maximizing the total VaR of the transaction

when assuming a constant liquidation speed, i.e. when price impact is

linear. Above critique on optimization strategies, unbounded horizon

optimization in particular, as well as empirical parameter estimation ap-

plies.

Engle and Ferstenberg (2007) optimize the sales trajectory within a

given horizon to maximize expected proceeds with a penalty for pro-

ceed variance. Similar to Almgren and Chriss (2000), they assume that

permanent and temporary price impact can be measured and solve this

theoretical problem, but fail to address how these parameters can be

estimated.

This line of research will proceed quickest to practical implication, if

two questions are addressed. It needs to demonstrate the empirical esti-

mation technique for the multitude of parameters and prove if or under

which circumstances optimal trading strategies yield superior results in

crises situations compared with instant liquidation. In the end, integra-

tion of many aspects might not be the best way because implementation

and result stability are relevant aspects as well.

2.2.3 Synopsis

Liquidity risk measurement has to take two problematic steps: Measure-

ment of liquidity and integration of the measure into a risk framework.

38The numerical illustration takes important parameters such as temporary price
impact recovery and permanent price impact coe�cient as given or sets them to
zero.
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The measurement technique is closely connected to the data available.

The preciseness should increase the more information is used in deter-

mining the price impact curve. The correct risk integration technique

is generally a balance between simplicity and applying suitable, non-

distorting assumption. Table 2.2 summarizes the traceable models based

on these criteria. While this provides a theoretical indication, which

models should be most suitable, the ultimate test must be empirical.

This empirical comparison will be conducted in section 5.3.
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3 Description and analysis of

data sample

This chapter describes the type of data used in the liquidity risk mod-

els in chapter 4, and in the empirical analysis of chapter 5. Section 3.1

provides an overview of the data types used in the analysis. In par-

ticular, it de�nes weighted spread as liquidity measure, analyzes under

which assumptions it can be used and describes the weighted spread data

set. This is followed by short descriptive statistics in section 3.2, which

provide a useful background on general market conditions in the sample

period. In section 3.3, I provide a detailed empirical analysis of weighted

spread as liquidity measure.1

3.1 Data types

3.1.1 The weighted spread liquidity measure

3.1.1.1 De�nition

I de�ne weighted spread liquidity measure from the cost perspective out-

lined in 2.1.1. Similarly to Giot and Grammig (2005) in section 2.2.2.3, I

de�ne weighted spread as the liquidity cost of a round-trip of size q when

liquidating against the limit order book.

The weighted bid-price bt(n) for selling n number of shares is calculated

as

bt(n) =

∑
i bi,tni,t
n

(3.1)

1For this chapter, cp. Stange and Kaserer (2008a).
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where bi,t and ni,t are the bid-prices in Euro and bid-volumes of individual

limit orders at time t sorted by price priority. Individual limit order

volume add up to n shares,
∑

i ni = n. The weighted ask-price at(n)

is calculated analogously. Weighted spread is then calculated in basis

points (bp) as a function of prede�ned order sizes q

WS(q) =
at(n)− bt(n)

Pmid
× 100 (3.2)

where Pmid is the mid-price of the quoted (minimum) spread and q =

n× Pmid is the size of the position measured in Euro-mid-price value.

3.1.1.2 Range of applications

Under which assumptions can the weighted spread liquidity measure be

validly applied? The following lists the necessary assumptions with re-

spect to position size and type of asset.

First, I assume that direct trading costs are zero, T (q) = 0. For very

large or institutional traders in developed markets, T(q) can generally

be considered negligible. On the Xetra system of the Deutsche Börse, for

example, institutional traders pay only around 0.5 bp as transaction fee.2

Transaction cost T(q) can also be neglected if time variation of liquidity

is of major interest.

The second characteristic concerns data availability. Because I focus

on the price impact of a speci�c position size, this type of price impact

data needs to be available. This is most probably true in markets with an

electronic limit order book, where limit order book data is made available,

such as the London Stock Exchange, the NASDAQ, the Frankfurt Xetra

or the Euronext.

Third, I look at assets positions, which are continuously tradable dur-

ing crises.3 This means, that no (or very few) zero trading days occur

and the position size is not larger than market depth. This is a close

2Cp. Deutsche Boerse (2008), p.6 �.
3Cp. categorization of liquidity degrees in section 2.1.2.1.
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approximation for most stocks, which have no or very few zero trading

days. Therefore, investors are not forced to delay the execution of a

transaction and costs from forced delay are zero. Scanning the sample

data of 160 German stocks over 5.5 years (6/2002 to 1/2008) shows that

this assumption is less restrictive than it �rst seems. Even for less con-

tinuously traded stocks in my sample, trading gets continuous during

market turmoils. Zero trading days seem to occur mainly in calmer mar-

ket periods. I hypothesize that tumbling market prices attract traders,

who want to liquidate positions or to stop loss via limit orders, which

ensures continuous trading. However, I leave a rigorous analysis of this

aspect to future research.

Fourth, I assume that deliberate, strategic delay has no signi�cant ben-

e�t, i.e. I assume that positions can be equally good instantly liquidated

against the limit order book.4 So, I neglect any (potential) e�ect of op-

timal trading strategies, which balance the increased price risk of delay

against reduced liquidity cost by trading smaller quantities.5

In my view, this is a reasonable assumption in four cases. When I take

the worst case perspective of impatient traders, a common risk assump-

tion, potential bene�ts are consciously neglected.

Bene�ts are also non-existent, if informational content of the trade is

too high. The trader wants to trade immediately on an informational

advantage, which would be revealed by trading more slowly or which

would dissolve over time. Adverse informational e�ects are also possible,

i.e. trading more slowly could have price e�ects because the market

assumes informational advantage, which is not present in reality.6

Immediate liquidation is fair, too, if liquidity prices are e�cient and a

traders risk aversion is greater or equal to that of the market. If liquidity

costs are too high, liquidity providers will enter with limit orders, because

4This also neglects liquidation via limit instead of market orders as well as up-�oor
or over-the-counter trading.

5Cp. section 2.2.2.4.
6Technically expressed as high permanent price impact rendering optimal trading
strategies useless.
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liquidity costs, i.e. their pro�ts, will compensate for the additional risk

during the delay until the limit order is executed. If liquidity costs are

too low, market orders and withdrawn limit orders will deplete the order

book, because nobody is willing to take price risk during delay. In this

case, marginal gain from lower liquidity costs by delaying a transaction

balances the marginal loss due to higher price risk.

Finally, optimal trading strategies might not be feasible in times of

market stress,7 because the optimization parameters are not stable or

strategic trading is not always possible.

If there is no forced or deliberate delay, delay cost are zero (D(q) = 0)

and as a consequence, total liquidity cost can be fairly measured with

the price impact from immediate execution.

L(q) = PI(q)

The �rst two assumptions are generally less critical. Although the

latter two assumptions place restrictions on the range of applications,

the discussion shows, that the approach is still valid in a large variety

of situations, especially if markets are fairly liquid, positions are not too

large and a worst case perspective is of interest.

3.1.1.3 Data sample

I have obtained liquidity data from the Xetra system of the Frankfurt

Stock Exchange, which covers the bulk of stock transactions in Germany.

Deutsche Börse is among the top 10 largest stock exchanges in the world

and Xetra is its electronic trading platform. Trading can be conducted

from 9 a.m. to 5.30 p.m. and starts with an opening auction. It is

interrupted by an intraday auction around 1 p.m. and ends with a closing

auction. Between auctioning times, trading is continuously possible. An

electronic order book collects all limit and market orders from market

7A point raised in Jarrow and Protter (2005a), p.9.
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participants. Orders in the order book will be matched based on price

and time priority.

In general, the limit order book is anonymous, but transparent to all

participants. However, traders can also submit hidden, �iceberg� orders

to trade large volumina, where traded volume is only revealed up to a

certain size and a similar order of equal size will be initiated once the

�rst limit order is transacted. Market makers post bid- and ask quotes

up to a prespeci�ed minimum quotation volume.

The Xetra system automatically calculates the Xetra Liquidity Mea-

sure (XLM) from the visible and invisible part of the limit order book,

i.e. including �iceberg� orders. XLM is a weighted spread measure, calcu-

lating the cost of immediate execution of a round-trip order of a speci�c

size q compared to its fair value as de�ned in equation (3.2).

XLM(q) = WS(q) (3.3)

Gomber and Schweickert (2002) provide some further theoretical back-

ground.

My sample consists of 5.5 years of daily data (July 2002 to January

2008) for all 160 stocks in the four major German stock indices (DAX,

MDAX, SDAX, TecDAX). The DAX contains the 30 largest publicly

listed companies in Germany (by free-�oat market volume), the MDAX

the subsequent 50 largest8 and the SDAX the following 50 largest. The

TecDAX, introduced during the sample period on 24.03.2003, comprises

the 30 largest technology stocks. In total, I therefore cover a market

capitalization of approximately¿ 1.2 trillion, which represents the largest

part of the market capitalization in Germany.9 As far as I know, this is

the most representative sample on weighted spread available to academia

so far.

I received XLM data for all days, where a stock was included in one

of the above indices. Daily values are calculated by Xetra as the equal-

8MDAX contained 70 stocks before 24.03.2003 and 50 stocks thereafter.
9Values as of 1/2008.
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weighted average of all available by-minute data points.10 I break my

total sample into four sub-samples, each containing the stocks of one

major index.

With the data items above, I proceeded as follows. Liquidity costs

L(q) were calculated from a transaction perspective. As a per-transaction

�gure has much more practical meaning, than a per-round-trip �gure, I

assume that the order book is symmetrical on average, i.e. the liquidity

cost for buying and selling are equal. Therefore, I can calculate the price

impact per transaction under the assumptions outlined in section 3.1.1.2

as

L(q) = PI(q) =
XLM(q)

2
(3.4)

It is important to note that this measure captures the committed part

of liquidity only, while there might possibly be additional hidden liq-

uidity in the market. Since I assume a worst case, however, where I

transact immediately against the order book, there is no time for addi-

tional (hidden) liquidity to enter the market. This type of measure acts

as an upper bound to liquidity cost, because it only measures part of the

liquidity supply.11

Liquidity costs were provided for each stock for 10 out of the 14 volume

classes q of ¿ 10, 25, 50, 75, 100, 150, 250, 500, 750, 1.000, 2.000, 3.000,

4.000 and 5.000 thousand. Volume classes for DAX stocks went up to

¿ 5.000 thsd., but excluded ¿ 10, 75, 150 and 750 thousand. Stocks

in the other indices had liquidity costs for all volume classes up to ¿ 1

million.

I had to exclude 408 (<0.01% of total) observations, where liquidity

data were available outside the volume class structure described above.

As these values were available for connected periods of less than seven

days, I assume that the automatic calculation routine of the Xetra com-

puter was extended during trial periods. This procedure ensures that

10For liquid volume classes this comprises a maximum of 1,060 measurements during
continuous trading.

11Cp. also Irvine et al. (2000), p.4f.
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liquidity estimates remain representative. In total, my sample contains

1.8 million weighted-spread observations for the 1.424 trading days.

3.1.2 Price, bid-ask-spread and volume data sample

For each stock I de�ne the following variables in addition to L(q):

� P: mid-point of the bid-ask quote at day closing in Euro

� S: quoted bid-ask-spread at day closing relative to the mid-point in

bp

� MV: market value at day closing in million Euro

� VO: trading volume in number of traded shares

Data for all items were obtained from Thomson Financial Datastream.

Three stocks could not be included in the analysis due to missing XLM

or Datastream data.12 This left 99.9% of the total 323,953 stock-days13

in the sample. I also had to adjust mid-price data P, because Datastream

carries forward price data even if no transaction took place. I removed

all price data at days, when no transaction volume was recorded. Data

for market value MV and transaction volume V O were used as provided

by Datastream.

Quoted spread S measures the minimum ex-ante liquidity cost. While

XLM is standardized by size category, quoted spread is not. The largest

order size tradable at the quoted spread, i.e. the spread depth, di�ers

between stocks and changes over time. Spread measures di�erent eco-

nomic aspects for stocks which are covered by a market maker and for

those stocks without coverage. Therefore spread depth di�ers between,

but also within those categories.

12Procon Multimedia (in SDAX between 10/2002 and 03/2003) and Medisana (in
SDAX between 12/2002 and 03/2003). Data could not be obtained for Sparks
Networks (in SDAX between 06/2004 and 12/2005), because it was not available in
Datastream anymore.

13383 stock-days excluded.
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On Xetra, market maker coverage is required only for illiquid stocks -

as de�ned by past XLM and order book volume criteria.14 On 31.01.2008,

35% of my sample had coverage.15 In DAX and MDAX only one stock

was covered, in SDAX 86% of the stocks were covered.16 In the case with

coverage spread is the quoted spread of the market maker. Spread depth

can be freely selected by the market maker above the Xetra-regulated

minimum, called minimum quotation volume (MQV), which varies de-

pending on stock liquidity as measured by past-XLM. According to my

data, minimum quotation volume for covered stocks was ¿ 17.338.

In cases without coverage, spread is the minimum spread available in

the order book. It corresponds to the order size of the limit order with the

best price at a particular moment, which is naturally non-standardized.

While the Xetra MQV is valid for liquid, non-covered stocks as well,

the average minimum was ¿ 27, i.e. non-existent for practical purposes.

Spread depth for non-covered stocks therefore varies even more widely.

Two aspects should be kept in mind when comparing spread and the

XLM liquidity measure. First, spread for covered stocks is likely to follow

other dynamics, since the size of the spread has Xetra-regulated upper

bounds.17 In contrast, XLM liquidity prices result from free supply and

demand behavior. Second, there is potential overlap between spread and

the XLM. 51 stocks in my sample had minimum quotation volume above

¿ 10.000, 4 stocks between ¿ 25.000 and ¿ 30.000 (mostly in SDAX

and TecDAX). As a consequence, XLM measured quoted spread in small

volume classes q of ¿ 10 and 25 thousand for these 51 stocks. While no

historic data on MQV is available, it is safe to assume that this was valid

over the whole sample period.

14Market makers are called 'Designated Sponsors' on Xetra.
15Data taken from Deutsche Börse (2008).
16While historic data was not available, it is plausible that similar di�erences existed
during the whole sample period.

17Cp. Deutsche Boerse (2007), p. 5, 9.
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Table 3.1: Market conditions during sample period
a. annualized; b. Includes dividend returns, because price series are adjusted for cor-

porate capital actions; c. volatility estimated from daily cont. returns and annualized

with
√

250; All values equal-weighted.

3.2 Market background in sample period

As background to the empirical analysis, table 3.1 summarizes market

conditions during the sample period. Markets were bullish in the largest

part of the sample period. I also captured the downturns in the second

half of 2002 and the �rst month of 2008. Due to beginning and end

of period declines, overall return was rather average at 8% p.a.. Natu-

rally, market capitalization increased similar to returns. Average market

capitalization is several times larger in the DAX than in all other in-

dices. MDAX contained the second largest average market capitalization
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stocks. Volatility exhibited a similar, but reversed pattern than returns.

Consequently, my sample is rather positively biased.

Daily transaction volume increased strongly during the sample period,

which is already a plausible indicator for improving liquidity. Transac-

tion volume was largest in the DAX. Transaction volume in the other

indices were several magnitudes smaller. Contrary to the general trend,

transaction volume in the TecDAX remained rather steady after its initi-

ation in 2003 and exhibits a level slightly lower than the MDAX. SDAX

transaction volume was again several times smaller than in MDAX or

TecDAX. The high diversity in transaction volumes underlines the rep-

resentativeness of the sample.

3.3 Empirical analysis of weighted spread

3.3.1 Motivation

As such a large sample of weighted spread has never been available to

academia before, I conduct an empirical analysis of weighted spread as

liquidity measure. Section 3.3.2 presents representative weighted spread

estimates of the impact of order size on liquidity cost, which have not

been available so far due to short sample restrictions. Sections 3.3.3 and

3.3.4 analyze the time development and distributional characteristics of

weighted spread, which are important to evaluate the importance of the

weighted spread in the risk management context. As outlined in section

2.2, several liquidity risk models neglect the impact of order size on liq-

uidity cost. Therefore, this analysis will allow to judge the importance

of this assumption. Section 3.3.5 makes cross-sectional comparisons to

provide more insight into the structure of weighted spread.
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3.3.2 Descriptive statistics

I start with looking at detailed descriptive statistics of liquidity cost L(q),

which will serve as representative reference for practice and provide some

structural insight.

From an economic perspective, it is di�cult to aggregate liquidity cost

by absolute order size across stocks. It can be argued that, for example,

liquidating a ¿ 100.000 position in a large-cap stock is not comparable

to the same position in a small cap stock, as the position in the large

cap stock represents a much smaller part of the market value and should

therefore be more liquid and have consequently less liquidity costs. A

similar argumentation goes for the Euro-position in relation to the pre-

vailing transaction volume in the market. A position size relative to the

market value of the stock and prevailing transaction volume would be

more comparable across stocks.

While I do not want to empirically investigate into this argument fur-

ther in this section18 and to keep the provided statistics as simple as pos-

sible, I choose not to generate new relative size categories. I also want

to avoid reducing the generality of results by using a speci�c method for

re-categorizing liquidity data. To still account for the argument above,

my distributional statistics will not be calculated on liquidity data aggre-

gated across all stocks, but I calculate stock-speci�c distribution statis-

tics and present their cross-sectional mean and median. As reference, I

included spread in the distributional analysis. Because the order class

of spread di�ers widely between stocks, I designated this order class as

�min�.

I calculate the cross sectional averages for a speci�c sub-sample over

a speci�c period. Table 3.2 shows average liquidity cost over the whole

sample period by index and order size. The �rst columns present average

liquidity costs for di�erent order sizes. The min-column contains the bid-

ask-spread estimate for the minimum order size, the following columns

18Refer to 3.3.5.1 for a more detailed analysis.
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the cost estimates for higher order sizes according to weighted spread,

equations (3.2) and (3.4). I report the cross-sectional mean, median and

standard deviation in each sub-sample. Availability is available data in

percentage of the theoretical maximum. As the sample comprises 1.424

trading days, the maximum possible number of observations per volume

class is 42.720 for the DAX, 74.900 for the MDAX, 71.200 for the SDAX

and 37.170 for the TecDAX.

In the last column of table 3.2 I speci�cally estimated the impact of

doubling order size in absolute basis points on liquidity costs and in

percentage points on availability. This is done with an ordinary-least-

squared (OLS) regression. The speci�cation for each statistic stat(q) is

stat(q) = C + ln(q) + εq with C being the constant intercept. Statistics

of the minimum order size/spread do not enter the calculation, because

corresponding minimum order size is not available.19

Between 6/2002 and 1/2008, investors had to pay between 0.09 bp and

460 bp on average for buying or selling a stock position, which already

shows that liquidity costs varies largely between order sizes and can reach

substantial amounts. While in the DAX average liquidity costs start at

a negligible 0.09 bp for the minimum order size, they reach over 100 bp

when trading a position larger than of ¿ 3 million. Liquidity costs at

the smallest order size of ¿ 10 and 20 thsd. respectively is several times

the level of the spread. As many (institutional) investors rarely trade

positions lower than ¿ 10 thsd., the spread is therefore insu�cient as

liquidity estimate.

Comparing average and median liquidity level between di�erent in-

dices, the DAX was the most liquid on average, followed by the MDAX,

TecDAX and then the SDAX. A similar result shows when looking at

the size impact on liquidity. The size impact was statistically signi�cant

at the 1 %-level in all indices, smallest in the DAX and largest in the

SDAX. When doubling order size, liquidity costs in the DAX increase by

19OLS regression with availability has limited validity, because the statistic is dis-
tributed between 0 and 1 and is non-normal, but has been included for sake of
completeness.
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an absolute 28.28 bp in the average stock. In the SDAX liquidity impact

in the average stock was almost three times as high at 82.41 bp.

Median liquidity was lower than the mean in all order sizes, which

reveals a right-skewed liquidity cost distribution for all sizes and all in-

dices. Size impact in the median is very similar to the impact in the

average. The dispersion of liquidity cost across stocks is of a similar

order of magnitude as the liquidity level and increases with order size.

Liquidity variation seems to be closely connected to liquidity level.

Generally, as order size increases, availability decreases, which is un-

derlined by the statistically signi�cant size-impact statistic.20 This is

due to the fact already mentioned above that larger orders could not

be transacted against the limit order book for all stocks. Availability of

spread was in some cases slightly below 100 %, because Datastream did

not provide data for all stock-days. For small order classes up to ¿ 25

thousand, over 90 % of all stock positions could be instantly liquidated.

However, in the SDAX, for example, availability drops down to 13 % of

all stocks for the volume class of ¿ 1 million. In the DAX, even large

orders can be continuously executed against the limit order book as avail-

ability is below 90 % for the largest volume class of ¿ 5 million only. The

pattern of availability for the TecDAX underlines the conclusion above

that the TecDAX is much more liquid than the SDAX. Comparing the

TecDAX with the MDAX with respect to availability, the MDAX is only

very slightly more liquid in order sizes above ¿ 500 thousand.

The TecDAX was created in March 2003. Therefore, TecDAX numbers

are based on the mean from 3/2003 to 1/2008, in contrast to the rest

of the sample, which ranges from 7/2002 to 1/2008. Statistics for the

comparable sample (3/2003 to 1/2008) are shown in table 3.3. They are

similar in relative magnitude between the indices and structure.

20Because spread data in the min-column comes from a di�erent source than the
liquidity data, availability between these two is not directly comparable.
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All in all, the discussion shows that liquidity costs can be substantially

underestimated when looking at spread only. The impact of size is quite

substantial, especially in stocks with smaller market capitalization.

3.3.3 Time dynamics

To provide a �rst picture on the di�erent behavior of liquidity at dif-

ferent position sizes over time, I calculated pairwise-sample correlations

between spread and liquidity at larger order sizes as presented in table

3.4. Correlation between spread and liquidity in the rest of the order

book are relatively low below 65%, correlations between adjoining mea-

sures of L(q) are very close to one. Correlations drop to 30 to 40% when

looking at correlations between liquidity of very small and of very large

sizes. While correlations continuously drop as the di�erence between

order sizes gets larger, there is an increase in correlation between the

volume class of ¿ 750 thsd. and ¿ 1 million. This is due to the fact that

the sample at ¿ 1 million is dominated by DAX stocks. DAX stocks

have generally higher correlations as is shown in table 3.5 on page 57,

which explains the increase between ¿ 750 thsd. and ¿ 1 million in the

full sample.

This correlation analysis is an indicator that liquidity behaves very

di�erently across order sizes. Liquidity cost at the left side of the order

book, like spread, are a poor proxy for the liquidity cost of larger position.

Figure 3.1 shows the daily development of liquidity cost L(q), averaged

over all order sizes and cross-sections during the whole sample period by

index. Detailed mean estimates are provided in table 3.6. While the

equal average over all available volume classes is somewhat arbitrary,

because it is strongly in�uenced by the selection of volume classes, it

nevertheless gives a picture of the general liquidity trend. While the

underlying stocks change over time as stocks move in and out of indices,

the e�ect on the index mean should be negligible. The average can be
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Table 3.5: Correlation of liquidity costs across order size for DAX
Pairwise sample correlations between bid-ask-spread and weighted spread L(q) of

di�erent order sizes q in thsd. Euro.

Table 3.6: Liquidity costs by index, year and order size
Table 3.6 provides detailed mean liquidity cost estimates (bid-ask-spread and weighted

spread) by index, year and order size.
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Chapter 3. Description and analysis of data sample

interpreted as expected liquidity cost when trading a random position in

the speci�c index.

All index averages have experienced a strong decline in the last 5.5

years with a recent strong increase in 1/2008. In a �rst phase from 7/2002

to 3/2003 liquidity was highly volatile and showed side-way movement.

This phase corresponds to the end of the collapsing high-tech bubble.

From 3/2003 on, liquidity steadily declined, interrupted by short, but

substantial increases. Most of these increase spikes can be tracked to

major disturbances at the stock market. Liquidity cost increased around

August 2004 after the publication of low earnings forecasts in technol-

ogy stocks and during the stock market crash of May 2006, which spilled

over from emerging-market exchanges. The recent sub-prime crises is

also apparent in the data. Upward spikes can be observed during the

crash in February/March 2007 after bankruptcy declarations of sub-

prime lenders, in August 2007, where the in�uence of sub-prime on bank

portfolios became known, especially on the German IKB bank, and most

recently during the crash of January 2008 after equity shortages of major

banks around the world.

Increases occur over short periods of time, while decreases take place

over calm periods of slightly positive market conditions. This asymme-

try skews the distribution of liquidity changes to the right. The general

negative trend explains the slight positive skewness in liquidity level dis-

tributions. Index means move relatively synchronous, while changes in

liquidity seem to be connected to the liquidity level and are thus much

less pronounced in the less liquid indices.

To investigate into the time variation of liquidity costs by size, I �rst

look at the variation of availability over time. Figure 3.2 reveals that

availability has strongly increased, especially in larger sizes. In 100% of

the stocks, the volume classes of ¿ 25 and ¿ 100 thousand was tradable

in recent months. Tradability of ¿ 1 million strongly improved from

around 30% of the stocks in 2002 to above 60% lately. Therefore, sample

size increases with time for larger volumes. The availability picture by
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Chapter 3. Description and analysis of data sample

index shows a similar development as displayed in �gure 3.3. The sharp

increase of availability in the MDAX on 24.03.2003 was caused by the

reduction in number of stocks in this index from 70 to 50 stocks, as

mentioned earlier.

Due to the changing sample, I observe two contrary e�ects. As liquid-

ity improves, liquidity costs fall. At the same time, larger stock positions

become tradable. Availability in these order sizes increase. The suc-

cessive inclusion of comparatively illiquid stocks with high liquidity cost

drives up the average. As a consequence, the development of average

liquidity cost will not be representative for the development of liquidity

cost for a speci�c stock position. Non-constant sample average are up-

ward biased over time, especially in larger order sizes, where availability

strongly increases. Figure 3.3 reveals that the upward bias is especially

present in illiquid indices such as the SDAX.

To measure the development of liquidity cost for a speci�c stock po-

sition, I constructed a constant sample and recalculated the average liq-

uidity cost over time. I included only those stocks and sizes, which were

available at least 97% of the sample period.21 The caveat of this type

of analysis is that only very liquid stocks are included in the average

and the average is taken on a less-representative fraction of the market.

To make di�erent order sizes more comparable, I indexed liquidity cost

levels on the July 2002 mean.

Results in �gure 3.4 show that liquidity costs have decreased across all

order sizes. Absolute reduction is larger for bigger positions, but relative

decline was more similar across sizes. Relative reduction was larger in

smaller order sizes over the whole sample period. Spread declined by

80 %, weighted spread of a ¿ 25 thsd. position by about 50 %. In

contrast, liquidity in larger volumes have been brought up to near high,

historic levels in the recent crises. Larger volumes seem to be a�ected

more strongly in crises. This e�ect can be interpreted as another vari-

21I chose 97 % availability as cut-o�, because it provided a good balance between
non-distorted results and excluding too many stocks from the analysis.
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Chapter 3. Description and analysis of data sample

ant of �ight to liquidity, where stocks positions that are liquid remain

relatively liquid in crises, while less liquid stock positions su�er more.

The discussion shows that the dynamics of liquidity are similar in the

general direction across order sizes. However, the absolute magnitude of

change is di�erent. Absolute improvement has been greatest in larger

sizes. I have also revealed di�erent crises behavior, where I uncovered

a �ight-to-liquidity asymmetry between the liquidity of small and large

order sizes. This is a strong indication that liquidity risk will increase

strongly with increasing position size. Applying time dynamics from

liquidity measures of small positions such as the spread will be inappro-

priate for capturing the dynamics of the liquidity deeper in the order

book.

3.3.4 Distributional characteristics

Since I have access to a very representative sample, I will dedicate some

time and space to the distributional characteristics of weighted spread.

The analysis of the distributional characteristics is useful for several ap-

plications, for example in risk measurement and management, in asset

pricing models or in theoretical models to assume appropriate liquidity

processes.

As the selection of reported volume classes is arbitrary, it is impor-

tant not to calculate aggregate distribution statistics across order classes.

Fineness of the reported classes would directly impact distributional char-

acteristics. I therefore present all distributional statistics separate for

each order size. This also allows to investigate the impact of order size

on the liquidity distribution.

Table 3.7 presents distributional statistics on liquidity cost and abso-

lute liquidity cost change in bp. The size-impact statistic reveals that

there is a statistically signi�cant size-impact not only on the liquidity

level, but also on its variance, skewness and kurtosis. Variance seems to

be closely connected to the level of liquidity. The cost mean and also
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Chapter 3. Description and analysis of data sample

the variance at the spread level are much lower. Otherwise, the distribu-

tion of the spread behaves similar to the distribution at the ¿ 10 thsd.

volume class.

Looking at absolute liquidity changes removes the skewness, which

reveals that trend is a major cause of the skewness. The negative mean

and median re�ect the overall negative trend in the sample period. The

trend seems to be increasing with size, but only in the median stock.

The absolute value of the trend is very small, below 0.5bp per day on

average. But variance is large so changes in liquidity cost can be quite

signi�cant at certain times. There has been no overall trend in the spread.

Even when trend is removed, the distribution remains heavily fat-tailed.

Kurtosis also strongly increases with order size.

In order to create a distribution that is more closely normally dis-

tributed, I take the logarithm of absolute liquidity in basis points.22

Table 3.8 shows that this removes most of the kurtosis and skewness.

Distributions are now by tendency much more normal. Kurtosis is almost

removed, while some skewness remains in the data. While the economic

interpretation is more di�cult, this conversion is helpful in statistical ap-

plications, for example mean-variance estimations. Size impact remains

intact and statistically signi�cant for practically all statistics at the 1-5%

level.

To analyze the remaining kurtosis in more detail from an economic

point-of-view, I concentrate on outliers as potential source. To identify

outliers, I calculate standardized z values of log liquidity log(L(q)) by

subtracting the monthly mean and dividing by the monthly standard

deviation. Scanning of situations with absolute z-values above 3 (0.4%

of all observations), reveals four types of outlier situations, which all

present variants of market imperfections.

First, some records of L(q) exceed 100% (46 observations), i.e. trans-

action cost exceed the price. This could be due to data punching errors

22Please note that I take logarithm of liquidity cost in basis points, i.e. in 10−4, not
in decimal.
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Chapter 3. Description and analysis of data sample

or due to highly asymmetrical order books, where limit orders on the

ask-side in the depth of the book are much larger than 200% of the

mid-price. If the limit order book is highly asymmetrical, my estimation

procedure for a per-transaction liquidity cost in equation (3.4) produces

economically meaningless results. It is also very plausible that liquidity

prices were ine�cient in these situations. I removed these meaningless

records from further analysis.

Second, outliers occur after large changes in trading volume, i.e. either

if trading volume was very large on that day or on the day before. My

explanation is that large trading volume consumes limit orders and will

lead to large liquidity cost if resiliency for this particular stock is low. In

this case, new limit orders do not re�ll the order book quickly enough. As

a consequence, not all situations with exceptionally high volume exhibit

large liquidity cost, but only those where resiliency was low.

Third, outliers occur after large price returns, because limit orders are

�xed and do not necessarily adjust quickly to changing mid-prices. This

is another type of low resiliency.

Fourth, outliers can be identi�ed near the maximum order book depth

as measured by the maximum volume class available in the liquidity

data. This is also consistent with the fact that kurtosis increases with

order size. The higher the order size, the more stocks in the sample have

reached their maximum depth. In these cases, it is plausible that the price

priority rule does not lead to e�cient liquidity prices, because single or

very few limit orders determine liquidity cost. Because it is implausible

that large, single orders underestimate liquidity cost, because this would

generate losses to the liquidity provider, a reduction of the number of

limit orders will in�ate liquidity cost and cause outliers.

In summary, the distributional analysis revealed that applications

should use log versions of liquidity and respect liquidity trends that are

inherent in the data. Despite the trends, daily �uctuations seem to be

random over the longer term.
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3.3.5 Cross-sectional comparisons

3.3.5.1 The role of relative order size

In this section, I want to follow up on the hypothesis that order size

relative to market value and transaction volume is much more comparable

across stocks than absolute order size. As argued in section 3.3.4, this

is plausible using common sense. But it is also backed by analogous

application of existing theory on the bid-ask-spread.

A market maker quoting the bid-ask spread and a trader initiating

a limit order face a very similar situation.23 A bid-ask-quote or a limit

order commit to trade a certain quantity at a certain price. Both liquidity

providers will want to get compensated for bearing two risks. First,

they have to bear unwanted inventory risk that the price moves against

them, e.g. through new, favorable information, while the limit order

is in the order book. Second, they have to protect themselves against

adverse information risks that traders only trade against limit orders

when they are better informed. Liquidity costs, which are returns for

liquidity providers, therefore compensate for price risk (i.e. inventory

risk), informational asymmetry and possibly, in addition, the �xed cost

for providing liquidity.24 These risks get relatively more important for

larger order sizes as capital restrictions aggravate the situation of the

trader.

To analyze the impact of order size in the light of above consideration,

I use the following ordinary least squared (OLS) regression speci�cation

in a pooled panel. It also mirrors my assumption that liquidity cost

depend on relative order size. Sub-index t indicates time and super-

23This has been modeled for example by Rosu (2003) and Beltran et al. (2005).
24Cp. Grossman and Miller (1988) and the overview in Stoll (2000).
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index i the stock. Formulation in elasticities allows for smooth statistical

properties.25

log(Lit(q)) = C +
∑
j

βjz
i
jt +

4∑
k=1

αklog(Lit−k(q)) + εt (3.5)

L(q) is liquidity cost to be explained. C is a constant capturing the �xed

cost liquidity level. I use di�erent combinations of explanatory variables

zj. I included four lags of log liquidity to remove autocorrelation in

the error term. εt is the time-varying error term. The main dependent

variables zj are as follows:

� log(qit) is the log of the size of the position in thsd. Euro,

� log(V O) is the log of the trading volume in thsd. number of stocks,

� log(MV ) is the log of market value of the stock in million Euro,

� R is the continuous mid-price return of the day in percent,

� log(σR) is the log of the daily return volatility in percent, which I

measure with the 10-day backward looking, moving volatility.

� log(P ) is the log of the price level of the day in Euro.

Position size q is included to estimate the size impact. It proxies for

the importance of capital restrictions. Transaction volume V O is a good

proxy for low inventory risk due to higher participation in trading a par-

ticular stock. If transaction volume increases, the time until a limit order

is executed is reduced, which in turn reduces unwanted price risk. Mar-

ket value MV is a good proxy for both low inventory risk due to low

price risk and low adverse information risk. High market value stocks

experience higher coverage by analysts and traders. This reduces infor-

mation asymmetries. In total, the same position in a high market value

25Cf. discussion in section 3.3.4.
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Table 3.9: Variance in�ation factors for combined speci�cation

and high transaction volume stock should experience lower liquidity cost

due to lower risks.

Continuous return R controls for market conditions and is also a proxy

for increased trading and thus reduces inventory risk through shorter de-

lay. Return volatility σR directly captures inventory risk and is also a

control for market conditions. Price level P captures the �x cost of liquid-

ity provision as low price stock require a higher liquidity cost percentage

if �x costs exist.

I will have two main lines of regression speci�cation. One includes

market value as determinant and the other includes return volatility and

price level. A combined speci�cation leads to high multicollinearity as

can be seen from the variance in�ation factors (VIFs) in table 3.9 of the

combined regression. I assume that this is caused because market value

acts as proxy for di�erences in risk and will be correlated with the other

risk factors. While the �rst speci�cation line investigates into my hy-

pothesis of order size, relative to market value and transaction volume,

being a determinant of liquidity cost, the second speci�cation analyzes

liquidity cost when more �nely accounting for di�erences in stock char-
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acteristics. I also employ di�erent time-speci�c intercepts besides the

constant intercept to account for time variation.

Table 3.10 shows results of the speci�cation with market value. Model

1.0 reveals regression results with constant intercept. Coe�cients are

reported in percent. All variables are statistically signi�cant at the 1%

level. Adjusted-R2 is high, the Durbin-Watson statistic indicates that

autocorrelation has been successfully removed with four lags of the de-

pendent variable.

Coe�cient signs are as expected. Order size q is positively related to

liquidity costs. Increases in market value MV and transaction volume

VO decrease liquidity cost as does price return R. Liquidity is very per-

sistent as can be seen from the high coe�cients of the lagged variables.

Standardized coe�cients (reported in 104) reveal that return is, by far,

the most in�uential factor. Increasing returns by one percentage point

increases liquidity cost by 1.03 %. Order size and market volume are

more important than transaction volume.

Interesting is the absolute value of the coe�cients. When order size,

market value and transaction volume is proportionally increased, liquid-

ity cost remain approximately constant.26 This con�rms my hypothesis

that relative order size, i.e. order size relative to transaction volume

and market value, is a decisive category when comparing liquidity across

stocks and time. It is also a practical rule of thumb. The error of this

rule of thumb remains below 1.5% between speci�cations.

Results are robust when controlling for time variation in liquidity cost

with yearly intercepts in models 1.1 or even �ner, quarterly intercepts

in model 1.2. Only coe�cient levels vary very slightly. There is, how-

ever, high multicollinearity in the latter speci�cation as revealed by the

variance in�ation factors at the bottom of the table, which distort results.

Time varying intercepts reveal that the descriptive results of section

3.3.3 must be di�erentiated. Liquidity levels improved over the last years,

26With an error of only 0.74% (=5.27% - 3.15% - 2.85%).
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Table 3.10: Regression results on relative order size
Dependent variable is log(L(q)), which is log liquidity cost of order size q in bp, q
is order size in thsd. Euro, MV is market value in million Euro, VO is transaction
volume in thsd. stocks, RSIGMA10 is the 10-day backward rolling volatility, P is the
mid-price, R is the cont. mid-price return, SCOM is the average log half-spread at
time t.

Heteroskedasticity consistent coe�cient errors and covariances (White (1980)) used;

standard errors in brackets; ***, ** and * indicate signi�cance at 1%, 5% and 10%

level; Coef.* contains coe�cients standardized by coe�cient variance over dependent

variable variance in 104.
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but almost reached past levels in the recent crises when accounting for

improved market values and transaction volumes.

In model 1.3, I use the prevailing spread level as daily intercepts.

Spread level is measured as the average daily half-spread across all stocks

SCOM, also dubbed liquidity commonality. When �nely accounting for

time variation, results remain unchanged.

I now turn to the second main speci�cation, which precludes market

value MV but includes return volatility RSIGMA10 and price level P to

control for stock characteristics in a more di�erentiated way. Table 3.10

shows regression statistics. Model 2.0 has been speci�ed with constant

intercept. The regression shows no autocorrelation and high adjusted-R2.

This speci�cation is slightly preferable as shown with the lower Schwarz

criterion compared to models 1.x.

All e�ects work in the expected direction. Liquidity cost is negatively

related to transaction volume, price return and price level. It is posi-

tively correlated with order size and mid-price return volatility. Return

keeps its dominant role and the coe�cient is very similar to prior speci-

�cations of 1.x. In contrast, transaction volume VO takes a more impor-

tant role. Increase of transaction volume by 100% decreases liquidity by

7.65 % in model 1.0 compared to 3.15 % in model 2.0. Return volatil-

ity's (RSIGMA10) in�uence is smallest. Absolute order size q has higher

coe�cients when more �nely controlling for di�erences in stocks.

E�ects are again robust when accounting for time variation in the

various forms in models 2.1 to 2.3. Time coe�cients show that time

patterns are similar to the models 1.x, but more robust here because

there is no multicollinearity.

In summary, I have shown that order size is a signi�cant determinant

of liquidity cost, even when controlling for di�erent stock characteristics

and time variation. I can also safely conduct that relative order size is a

much better category for comparing liquidity across cross-sections than

absolute order size depending on the question at hand. Liquidity of an

absolute order size might be of interest when holding a similar position
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Table 3.11: Regression results on detailed stock characteristics
Dependent variable is l(q), which is liquidity cost of order size q in bp, q is order size

in thsd. Euro, MV is market value in million Euro, VO is transaction volume in num-

ber of stocks, RSIGMA10 is the 10-day backward rolling volatility, P is the mid-price,

R is the continuous mid-price return, SCOM is the average log half-spread at time t.

Heteroskedasticity coe�cient errors and covariances (White (1980)); standard errors

in brackets; ***, ** and * indicate signi�cance at 1%, 5% and 10% level; Coef.* con-

tains coe�cients standardized by coe�cient variance over dependent variable variance

in 10^4.
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in di�erent stocks. Liquidity of a relative order size will be more suitable

when investing in a certain fraction of a company or when predicting

liquidity cost across stocks. The rule-of-thumb of constant liquidity costs

for relative order size (position relative to market value and transaction

volume) is quite robust across speci�cations and has an approximation

error of below 1.5 %. The interrelations are astonishingly stable, which

might provide an indication, that they are driven by �xed structures yet

to be analytically described.

3.3.5.2 Day-of-the-week and holiday e�ects

Chordia et al. (2001) have found a day-of-the-week e�ect in the quoted

bid-ask-spread. Quoted spread is found to decline from Monday to Fri-

day and be signi�cantly lower next to holidays. I retest this hypothesis

on the liquidity cost of di�erent order sizes by including weekday dum-

mies and dummies for days before and after holidays in my regression

speci�cation. However, in contrast to Chordia et al. I control for all

stock characteristics. Table 3.12 on the next page shows the results. In

all my speci�cations Monday and Fridays have signi�cantly higher liq-

uidity costs. Monday is the least liquid day of the week with liquidity

cost around 5% higher than average, Tuesday is the most liquid day.

Liquidity then continually deteriorates from Tuesday until the end of the

week. Days adjoining holidays are similarly illiquid than start and end

of the week.

This contrasts to Chordia et al., because I �nd Monday to be similarly

illiquid than Fridays when looking at position size relative to transaction

volume and market capitalization or relative to transaction volume alone.

Investors should know that relative position size is more expensive to

trade on Mondays, Fridays and on days adjoining holidays.
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Table 3.12: Day-of-the-week and holiday e�ect
Dependent variable is log(L(q)), which is log liquidity cost of order size q in bp, q

is order size in thsd. Euro, MV is market value in million Euro, VO is transaction

volume in thsd. stocks, RSIGMA10 is the 10-day backward rolling volatility, P is the

mid-price, R is the cont. mid-price return, SCOM is the average half-spread at time t.

Heteroskedasticity consistent coe�cient errors and covariances (White (1980)) used;

standard errors in brackets; ***, ** and * indicate signi�cance at 1%, 5% and 10%

level; Coef.* contains coe�cients standardized by coe�cient variance over dependent

variable variance in 104.
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3.3.6 Synopsis

Based on a representative sample of weighted spread for over 320 thou-

sand stock-days, I analyzed the impact of size on liquidity cost, its vari-

ation and generally its distributional characteristics. My main �nding is

that the impact of order size on liquidity is substantial and cannot be

neglected. Easily available bid-ask-spread data can only poorly proxy for

cost level and its variation in larger position sizes.

Average liquidity costs varied greatly between order sizes and stocks,

strongly increasing with order size up to 460 bp. DAX was the most liquid

with the lowest cost, followed by MDAX, TecDAX and than SDAX. Even

in the DAX, liquidity cost surpassed 100 bp for order sizes larger than

¿ 2 million. The possibility of being able to liquidate a position against

the order book also strongly declined with size and showed a similar

cross-sectional rank than the cost level. Availability was > 90% for small

sizes, but dropped to 13 % for ¿ 1 million in the SDAX.

Liquidity strongly improved over the last 5.5 years. Liquidity costs

continuously decreased during calm, positive market periods. Sudden

increases occurred at stock market crashes such as the events of the sub-

prime crises in 2007 and 2008. These spikes are especially pronounced

in larger order sizes. The fact that illiquid, large order sizes su�ered

worse than liquid, small order sizes, presents another aspect of the �ight-

to-liquidity asymmetry. Trading against the order book was increasingly

possible over the sample period. Availability of limit order book increased

to 100 % in small orders below ¿ 100 thousand across all indices. DAX

and MDAX of any size were almost 100 % tradable in recent months.

Distributional characteristics of liquidity costs di�er greatly between

order sizes. Not only do mean liquidity costs increase with order size,

so does its variance. In the last 5.5 years, liquidity experienced a steady

decline. Outliers due to ine�cient liquidity prices generate fat tails in

the liquidity distribution, especially in large order sizes.

I also investigated into the fact that the liquidity of absolute-Euro order

sizes shows very di�erent behavior across stocks. My explanation is that

78



Chapter 3. Description and analysis of data sample

absolute order size is not very comparable across stocks. I show that

order size relative to market volume and prevailing transaction volume

has very stable liquidity cost across stocks and time. Liquidity of relative

order size is therefore much better measure in cross-sectional analysis and

can act as a rule-of-thumb in comparisons.

In summary, my main conclusions is that liquidity strongly di�ers

across sizes. An impact of size is traceable in distributional characteris-

tics and liquidity dynamics. The empirical evidence presented here can

provide new impetus into theoretical modeling of liquidity. In addition,

it has impact on practical applications, where liquidity cost and its vari-

ation play a role, especially on risk management.
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4 New liquidity risk models

In this chapter, I suggest two new approaches to model liquidity risk.

The modi�ed add-on approach in section 4.1 provides a new, alternative

framework to account for non-normality in liquidity risk.1 In section 4.2

I propose a framework to analyze the integration of the weighted spread

liquidity measure in liquidity risk measurement.2

4.1 Modi�ed add-on model

Many studies show that the assumption of normally distributed returns

is rejected for most �nancial time series, including those for individual

stocks, stock indices, exchange rates, and precious metal prices. Specif-

ically, continuous returns for these �nancial assets have empirical distri-

butions which are leptocurtic relative to the normal distribution and in

many cases skewed. Bollerslev (1987), for example, �nds leptocurtosis

in monthly S&P 500 returns, while French et al. (1987) report skewness

in daily S&P 500 returns. Engle and Gonzales-Rivera (1991) �nd excess

skewness and kurtosis in small stocks and in exchange rates.3

The argument of non-normality equally holds for liquidity costs. In

section 3.3.4 I analyze the distributional properties of liquidity costs and

showed that they are heavily skewed and fat tailed. Bangia et al. (1999)

1For this section, cp. Ernst, Stange and Kaserer (2008).
2For this section, cp. Stange and Kaserer (2008c).
3 Cp. also Mandelbrot (1963), Fama (1965), Theodossiou (1998).
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and Giot and Grammig (2005) account for non-normality in the context

of liquidity risk management.

In the following, I outline a simple model of liquidity-adjusted risk

based on Bangia et al. (1999) as a basis for discussion. Applicability to

other risk models is discussed later. I then propose an adaption based

on the Cornish-Fisher expansion which is a technique to correct the per-

centiles of a standard normal distribution for non-normality.4

4.1.1 Liquidity risk approach

I use the straight forward liquidity risk model of Bangia, Diebold, Schuer-

mann and Stroughair (1998, 1999), which has been surveyed in section

2.2.2.1, to show how the risk calculation proceeds. Bangia et al. include

time-varying bid-ask-spreads into a parametric Value-at-Risk. They also

assume that liquidity costs of a transaction can be measured with the bid-

ask-spread. They assume that continuous mid-price returns are normally

distributed. Relative liquidity risk can then be calculated as the mean-

variance estimated price-return percentile and the empirically estimated

spread percentile.5

L− V aR = 1− exp(zα × σr)×
(

1− 1

2
(µS + ẑα(S)× σS)

)
(4.1)

where σr is the volatility of the continuous mid-price return assuming

zero daily mean returns, µS and σS are the mean and volatility of the

spread - all over the chosen horizon. zα denotes the percentile of the

4Mina and Ulmer (1999) investigate four possible methods to compute the Value-at-
Risk for non-normally distributed assets: Johnson transformation, Fourier method,
partial Monte-Carlo and Cornish-Fisher expansion. They �nd that Cornish-Fisher is
simple to implement in practice, fast and traceable while the other three approaches
requires a much larger implementation e�ort, but have higher precision for extreme
distributions.

5I slightly deviate from the original model and incorporate the improvement suggested
by Loebnitz (2006) as I deduct the worst half spread from the worst price and not
from the current mid-price, which is conceptually more consistent. Notation is my
own.
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normal distribution for the given con�dence level and ẑα(S) is the em-

pirically estimated percentile of the spread distribution.6 By estimating

the percentile empirically, Bangia et al. avoid distortions from the non-

normality in spreads, which they show to be highly present in several

currencies.

The model by Bangia et al. represents an intuitively plausible and

simple way to incorporate liquidity risk into a conventional Value-at-

Risk framework. Data requirements are manageable as mid-price data

and spread information are usually easily accessible. Another merit of

this model is the additivity of price risk and liquidity risk which facilitates

implementation in practice. There is no need to modify existing programs

for determining VaR. The only necessary system change is to compute

the cost of liquidity and add it to the existing VaR-�gure.

Despite its appeal, the model has been subject to criticism in the liter-

ature. As extensively discussed and empirically analyzed in section 3.3,

the assumption of perfect correlation between mid-price return and liq-

uidity costs leads to distortions. In addition, the model does not account

for the price impact of order size, i.e. the fact that liquidity costs strongly

increase with the size of the order traded. Further, price risk is assumed

as normally distributed and the use of empirical percentiles might not

su�ciently capture the non-normality of the future spread distribution.

The following approach addresses this issue of non-normality, which

is also present in other modeling solutions. Giot and Grammig (2005),

section 2.2.2.3, assume a t-distribution in order to adjust for fat-tails

in net returns, i.e. returns net of order-size-adjusted weighted spread.

A t-distribution might, however, be similarly misleading than a normal

distribution.

6The empirical percentile is calculated as α̂S = (Ŝα − µS)/σS , where Ŝα is the per-
centile spread of the historical distribution.
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4.1.2 Cornish-Fisher expansion

A normal distribution is fully described by its �rst two moments, mean

and variance. Higher centralized moments like skewness and excess-

kurtosis are zero. However, if the distribution is non-Gaussian higher

moments will also determine loss probabilities. For this reason it is not

accurate to use standardized percentiles of a normal distribution for the

calculation of L-VaR of non-normally distributed returns. Cornish and

Fisher (1937) have been the �rst to modify the standardized percentiles

of a normal distribution in a way that higher moments are accounted

for. Their technique is based on the following coherence: If any distri-

bution is �tted by making the �rst n moments of the �tted and actual

distributions agree, it is possible to calculate the percentiles of the �tted

distribution and to regard these as approximations to the corresponding

percentiles of the actual distribution. Basically the �tted percentiles are

functions of the n �tted moments.7

Cornish and Fisher (1937) obtain explicit polynomial expansions for

standardized percentiles of a general distribution in terms of its standard-

ized moments and the corresponding percentiles of the standard normal

distribution.8 Their proceeding is widely known as Cornish-Fisher expan-

sion. The corresponding formula approximates percentiles of a random

variable based on its �rst few cumulants.9 Using the �rst four moments

(mean, variance, skewness and kurtosis), the Cornish-Fisher expansion

for approximate α−percentile z̃α of a standardized random variable is

calculated as10

z̃α ≈ zα +
1

6
(z2
α − 1) ∗ γ +

1

24
(z3
α − 3zα) ∗ κ− 1

36
(2z3

α − 5zα) ∗ γ2 (4.2)

7Cp. Johnson and Kotz (1994), p. 63f.
8Cp. Johnson (1978), p. 537.
9The cumulants of a distribution are closely related to its moments and can be infor-
mally thought of as standardized moments. For a detailed de�nition of cumulants
see Cornish and Fisher (1937).

10Cp. Mina and Ulmer (1999), p. 6.
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where zα is the α- percentile of a N(0, 1) distribution, γ denotes the

skewness and κ the excess-kurtosis of random variable.11 Note that in

case of a normal distribution, skewness γ and excess-kurtosis κ are equal

to zero, which leads to z̃α = zα. The approximate α−percentile z̃α can

now be used in a classic Value-at-risk approach.

4.1.3 De�nition of liquidity-adjusted risk

Substituting zα and ẑα(S) from equation (4.1) with the modi�ed per-

centile z̃α from (4.2) I obtain the following modi�ed VaR estimate

L−V aR = 1−exp(µr + z̃α(r)×σr)×
(

1− 1

2
(µS + z̃α(S)× σS)

)
(4.3)

where z̃α(r) is the percentile of the return distribution accounting for its

skewness and kurtosis and z̃α(S) and the corresponding spread distribu-

tion percentile.

This approach constitutes a simple parametric approach accounting for

mean, variance, skewness and kurtosis of the underlying non-normal dis-

tributions. Although skewness and kurtosis are also di�cult to estimate

it induces less heavy data requirements than any ad-hoc or empirical ap-

proach and might possibly more accurately determine the distribution of

future returns. However, the expansion is, after all, only a proxy for the

real distribution. Therefore, if the real distribution is not su�ciently de-

scribed by the �rst four moments or those moments cannot be estimated

with su�cient accuracy, this method yields false risk estimates.12

11 The skewness of y is computed from historical data over n days as γ = 1
n

∑n
t=1(yt−

ȳ)3/σ̂3 with ȳ being the expected value and σ̂ the volatility of y. The excess kurtosis

for y is κ = 1
n

∑n
t=1(yt − ȳ)4/σ̂4 − 3.

12Cp. also Zangari (1996), p. 10f.
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While I applied the Cornish-Fisher approximation to the basic spread

model of Bangia et al. (1999), analogous use in other liquidity models

such as the weighted spread model in Giot and Grammig (2005) is also

easily feasible. Section 5.1 will proceed with an empirical test of this new

model suggestion.

4.2 Empirical net-return model with

weighted spread

The model of Giot and Grammig (2005) as described in section 2.2.2.3

used weighted spread to calculate intraday liquidity-adjusted risk. As de-

veloped in section 2.2, two issues will be addressed. Section 4.2.1 develops

a new liquidity-risk model based on weighted spread which correctly ac-

counts for correlation between liquidity cost and mid-price return. The

empirical, instead of parametrical speci�cation allows to avoid distri-

butional assumptions such as the t-distribution in Giot and Grammig

(2005). Section 4.2.2 develops a decomposition which allows to extract

liquidity and correlation e�ects separately.

4.2.1 De�nition of liquidity-adjusted risk

Before I turn to de�ning liquidity risk, I start with the de�nition of

price risk. Standard risk statistics will be used to measure the impact of

liquidity risk.

Price and return are described in the usual framework of

Pmid,t = Pmid,t−∆t × exp(rt,∆t)

where Pmid is de�ned as the mid-price Pmid,t = at+bt
2

with at and bt being

the (best) ask- and bid-price at time t respectively. rt,∆t is the ∆t-period

continuous mid-price return at time t, i.e., rt,∆t = ln(Pmid,t/Pmid,t−∆t). I

take a traditional approach from a value-at-risk (VaR) perspective and
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de�ne price risk as the relative VaR at the (1 − α)-percent con�dence

level over the horizon ∆t

V aRα,∆t
price = 1− exp(rαt,∆t) (4.4)

where rαt,∆t is the α-percentile of ∆t-period return distribution. Conse-

quently, V aRprice measures the maximum percentage loss over the period

∆t with a con�dence of (1− α)-percent.

Analogously, I measure total risk including liquidity risk. To calculate

the impact of liquidity, I de�ne the ∆t-period net return in t as the sum

of the continuous mid-price return and the liquidity discount converted

to a continuous value, lt(q) = ln (1− Lt(q)).

rnett,∆t(q) = rt,∆t + lt(q) (4.5)

Please note the di�erence of (4.5) to net-price returns.13 Using net

returns instead of net-price returns, I implicitly assume that the liquidity

cost of entering a position has already been properly accounted for. If I

used net-price returns, the implicit assumption would be that not only

the liquidity cost of entering a position, but also the expected liquidity

cost of the liquidation is properly accounted for already when entering

it. I believe that my assumption is more realistic in practice.

Transaction price is calculated as

Pnet,t(q) = Pmid,t−∆t × exp(rt,∆t + lt(q)) (4.6)

where Pnet,t(q) is the achievable transaction price.

The ∆t-period liquidity-adjusted total risk is de�ned in a VaR-

framework as the empirical α-percentile of the net-return distribution.

V aRα,∆t
total(q) = 1− exp(rnetαt,∆t(q)) (4.7)

13I.e. ln ([Pmid,t × (1− Lt(q))] / [Pmid,t−1 × (1− Lt−1(q))]).
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V aRtotal is the maximum percentage loss due to mid-price risk and liq-

uidation cost over the period ∆t with a con�dence of (1− α)-percent.

This speci�cation covers the real dynamics of the net return on a cer-

tain stock position. It is practical but also more general than existing

approaches in the following ways:

1. I use a more precise liquidity measure than most papers by covering

more aspects of liquidity. Speci�cally, I account for the impact of

order-size on liquidity. This extends the approach of Bangia et al.

(1998, 1999), where liquidity costs of any order size is proxied for

with the bid-ask-spread. The XLM measure can be assumed to be

more precise than the ones used in Berkowitz (2000a), Francois-

Heude and Van Wynendaele (2001) or Angelidis and Benos (2006),

because it uses more and direct liquidity data.

2. As I take empirical percentiles instead of a parametric method, I

avoid any distributional assumption, especially on liquidity cost,

such as in Giot and Grammig (2005). My approach will capture

non-normality of the distribution as well, which is made possible

by my large sample size.

3. My approach takes percentiles of the net return distribution and

does not treat price risk and liquidity separately. I look at the

dynamics of net returns which combines the mid-price-return dy-

namics and liquidity cost dynamics. Instead of adding distribu-

tion percentiles of liquidity and price risk separately, I acknowledge

that liquidity cost and mid-price might not be perfectly correlated.

While it is possible that large liquidity discounts and low prices

coincide, this must not be the case.

4.2.2 Risk decomposition

To uncover the structure of the liquidity impact, I decompose total risk

into its components. I de�ne relative liquidity impact λ(q) as
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λ(q) =
V aRtotal(q)− V aRprice

V aRprice

(4.8)

λ(q) is the maximum percentage loss due to the liquidity in relation to

price risk. It can be interpreted as the error made when ignoring liquidity.

It is therefore a measure of the relative signi�cance of liquidity in the risk

management context. In addition, it can be used as a scaling factor with

which price risk would need to be adjusted in order to correctly account

for liquidity. I measure it relative to price risk, because absolute liquidity

impact has little meaning by itself for this type of analysis.

In order to uncover the e�ect of tail correlation between liquidity and

price, I de�ne liquidity cost risk as the relative worst liquidity cost

V aRα
liquidity(q) = 1− exp(lαt,∆t(q)) (4.9)

with lαt,∆t being the empirical percentile of the continuous liquidity dis-

count. This is the maximum percentage loss due to liquidity cost at an

(1− α)-percent con�dence level.

I can now apply a further decomposition of total risk and de�ne the

correlation factor κ(q) as residual of

V aRtotal(q) = V aRprice + V aRliquidity(q) + κ(q)× V aRliquidity(q) (4.10)

Naturally, this is just a further decomposition of the liquidity impact

λ(q) =
V aRliquidity

V aRprice

(1 + κ(q)) (4.11)

κ(q) measures the tail correlation factor between mid-price return and

liquidity cost, the proportion of liquidity risk, that is diversi�ed away due

to tail correlation. In this de�nition the correlation factor is always non

positive, κ(q) ≤ 0. If tail correlation is perfect, κ(q) is zero and worst

mid-prices and worst liquidity costs can be added to get total risk. This

corresponds to the add-on approach of Bangia et al. (1999) in section
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2.2.2.1. If there is some diversi�cation between cost and price, κ(q) will

become negative.

The liquidity impact λ(q) contains the following conceptual compo-

nents. First, it contains the mean liquidity discount for the position of

size q - in contrast to other approaches. This is suitable as positions

are usually valued at mid-prices already neglecting mean liquidity costs.

Second, it includes negative deviations from the mean cost as measured

by volatility and higher moments. Third, possible diversi�cation e�ects

between price and liquidity are included and reduce liquidity risk. If

liquidity cost and mid-prices have a less than perfect, negative tail cor-

relation (κ(q) < 0), a liquidity risk estimate based on the α-percentile of

the liquidity cost distribution as in (4.9) will be incorrectly higher than

based on the net-return distribution as in (4.8).
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5 Empirical analysis of

liquidity risk models

Chapter 5 contains the empirical analysis of the suggested liquidity risk

approaches. Section 5.1 analyzes the performance of the modi�ed add-

on model based on bid-ask-spread data.1 In section 5.2, I analyze the

question of precise weighted spread risk measurement.2 In the last section

5.3, all existing and newly proposed models will be benchmarked.3

5.1 Modi�ed add-on model

5.1.1 Motivation

To evaluate if the modi�ed add-on model proposed in section 4.1 is not

only a mere alternative but o�ers any improvement, I conduct an em-

pirical backtest. Sections 5.1.2 and 5.1.3 describe the implementation in

detail and provide some descriptive statistics on the magnitude of risk

estimates. Section 5.1.4 contains a detailed empirical benchmark of the

newly proposed model against the original speci�cation of Bangia et al.

(1999). I used the large representative set of spread data described in

section 3.1.2.

1For this section, cp. Ernst, Stange and Kaserer (2008).
2For this section, cp. Stange and Kaserer (2008c).
3For this section, cp. Ernst, Stange and Kaserer (2009).
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5.1.2 Implementation speci�cation

For the risk estimation I chose a 1-day horizon and a 99 % con�dence

level, conforming to the standard Basel framework, to calculate daily

risk forecasts. Mean continuous mid-price return in the Bangia model

is set to zero. Spread means as well as returns means in the modi�ed

L-VaR model are estimated using a 20-day rolling procedure. I account

for volatility clustering using a common exponential weighted moving

average (EWMA) method. Volatilities are also calculated rolling over 20

days as

σ2
t = (1− δ)

20∑
i=1

δi−1r2
t−i + δ20r2

t−20

with a weight δ of 0.94.4 Skewness and excess-kurtosis are calculated

as 500-day rolling estimates. I choose a very long estimation horizon,

because moment estimates with the standard method gain signi�cantly

in accuracy with the length of the horizon. This approach therefore aims

to evaluate the potential of the Cornish Fisher methodology. Other esti-

mation procedures are available and might generate more precise results

with smaller estimation samples.5 This might be explored in future re-

search.

Table 5.1 provides an overview of skewness and excess-kurtosis es-

timates. Continuous mid-price returns are only very slightly skewed.

However, excess-kurtosis can become quite substantial with values of

around 6, which is far from zero of the normal distributions. Spreads are

heavily right-skewed and also exhibit fat tails. As exemplary illustration

�gure 5.1 shows the sample period histogram of the spread for Comdi-

rect, an SDAX stock. It is clear, that the normal distribution hardly �ts

4In correspondence with JP Morgan (1996) and practical implementation of the last
term as squared return instead of squared volatility in Hull (2006), p.575. I neglected
the GARCH model class, because it is less common in practice and has higher com-
putational requirements.

5Cp. for example Sengupta and Zheng (1997); Joanas and Gill (1998); Kim and White
(2004).
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Table 5.1: Skewness and kurtosis estimates

Figure 5.1: Sample period spread histogram and �tted normal distribu-
tion for the Comdirect stock
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Table 5.2: Empirical 99 %-percentile estimates for the Bangia model

Table 5.3: Cornish-Fisher 99 %-percentile estimates

the empirical distribution and that the distribution is right-skewed with

skewness of 2.24 and fat-tailed with excess kurtosis of 6.97.

In the Bangia framework, I determined the empirical percentiles and

calculated ẑα(s). Descriptive statistics are shown in table 5.2 and are

similar to the range of results between 2 and 4.5 for currencies in the

original paper. Average empirical 99 %-percentiles range from 3.35 to

4.01 with a mean of 3.69, which is far from the 2.33 for the normal dis-

tribution. Worst losses are much more probable than would be expected

from the normal distribution.

For the modi�ed L-VaR estimation, I calculated percentiles based on

the Cornish-Fisher approximation (4.2). Statistics are shown in table

5.3. Estimates also deviate from the 2.33 expected from the normal dis-

tribution. The spread estimates are, however, substantially di�erent from

the empirical estimates of the original Bangia approach and in general

slightly lower.
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Table 5.4: Risk estimates by index

5.1.3 Magnitude of liquidity risk

Table 5.4 shows the mean and median risk levels by index and year for

each risk estimate. This allows to compare the magnitude of estimates

when calculating normally distributed mid-price risk, liquidity-adjusted

total risk of the original Bangia model (equation (4.1)) and the new

modi�ed L-VaR (equation (4.3)). Liquidity adjusted total risk estimated

with the original Bangia model is naturally higher at an average 5.57 %

than normally estimated price risk at 4.81 %, which neglects liquidity.

The modi�ed L-VaR provides the highest risk estimates with 7.47 %

average daily VaR. As could be expected, SDAX and TecDAX are the

indices with the highest overall risk level. The DAX has the lowest risk

level, especially pronounced if liquidity risk is also taken into account.

Overall, neglecting liquidity risk leads to a severe underestimation of

the total risk of an asset. The deviation between the Bangia method and

the Cornish-Fisher method is largest for the less liquid indices SDAX and

TecDAX. I will now analyze which liquidity adjustment is more precise.

5.1.4 Model preciseness

5.1.4.1 Backtesting framework

L-VaR models are only useful insofar as they predict risk reasonable well.

Therefore I will evaluate their validity through a comparison between ac-

tual and predicted loss levels. If a model is perfectly calibrated, the per-

centage of days where losses exceed the VaR-prediction exactly matches
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the con�dence level. If there are more exceedances than predicted, the

model underestimates risk and too little regulatory capital is allocated to

the position. However, too little exceedance, hence overestimation, leads

to ine�cient use of capital.6 Since parameters are backward-estimated,

the backtesting is, of course, out-of-sample.

Since I calculate L-VaR for a con�dence level of 99 %, I expect the

frequency of exceedances to equal 1 %. I use the standard test by Kupiec

(1995) to determine if the realized frequency deviates from the predicted

level of 1 % on a statistically signi�cant basis.7 Kupiec (1995) shows, that

the probability of observing losses in excess of VaR on d days over the

forecast period T at con�dence α is governed by the binomial process8

P (d) = (1− α)T−NαN

The question if the realized frequency of losses in excess of VaR d/T

is signi�cantly di�erent from the predicted α can be answered with the

likelihood ratio (LR) test statistic

LRuc = −2ln
[
(1− α)T−NαN

]
+ 2ln

[
(1− d/T )T−N(d/T )N

]
(5.1)

which is chi-squared distributed with one degree of freedom under the null

hypothesis that α = d/T . Taking a con�dence interval of 95% for the test

statistic, the null hypothesis would be rejected for LRuc < 3.84.9 The test

statistic will reject an L-VaR model if the actual exceedance frequency is

signi�cantly below 1 % (model overestimates risk) or signi�cantly above

1 % (model underestimates risk).

6Cp. Jorion (2007) p. 140.
7Cp. Jorion (2007), p. 142.
8Cp. Kupiec (1995), p. 79.
9Please note that the choice of the con�dence region for the test statistic is not related
to the con�dence level selected for the L-VaR-calculation, but merely refers to the
decision rule to accept or reject the model.
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Realized losses are calculated as realizable net return when liquidating

the position

rnett = ln

(
Pmid
t

Pmid
t−1

)
+ ln(1− 1

2
St)

For my sample of stocks, I calculated the percentage of stocks where

the realized loss frequency did not deviate from the predicted frequency

on a statistically signi�cant basis. For the fraction of stocks, where the

Kupiec-statistic could not accept the VaR-approach, I further investigate

the reason. Either the model has been rejected due to too many L-VaR-

exceedances and overestimates risk or too few, i.e. it underestimates

risk. I also determine the respective fraction of stocks with under- and

overestimation.

In addition I will analyze the magnitude M of VaR-exceedances cal-

culated as di�erence between realized and predicted loss

M = (−rnett − LV aRt|rnett < −LV aRt) (5.2)

M can be seen as the unpredicted loss and characterizes the level of un-

derestimation of the risk measure. It shows if the realized loss is only

marginally or substantially larger than estimated, therefore being an ad-

ditional indicator for the accuracy of a L-VaR-approach.

5.1.4.2 Backtesting results

Figure 5.2 shows the breakdown of stocks, where risk has been correctly,

under- or overestimated. The risk measure is de�ned as incorrect, if the

Kupiec statistic (equation (5.1)) produces a statistically signi�cant de-

viation between risk forecast and return realization. The results demon-

strate the vast improvement of the Cornish-Fisher parametrization over

the original Bangia model. Risk has been correctly predicted for 83 %

of the stocks with the modi�ed L-VaR compared with 44 % with the

empirical percentiles model of Bangia et al. The Bangia model seems to

generally underestimate risk in all indices, although there is also slight

96



Chapter 5. Empirical analysis of liquidity risk models

Figure 5.2: Comparison of acceptance rates by index

overestimation in the MDAX and SDAX as well. The modi�ed L-VaR

model produces around 8 % under- and 8 % overestimation across all

stocks. The performance in the TecDAX is worst compared to all other

indices. Especially from a regulatory perspective, the substantial under-

estimation by the Bangia model poses a signi�cant problem. Risk does

not seem to be adequately measured by the normal price distribution

and empirical spread percentiles.

Table 5.5 shows the magnitude of exceedances M as calculated by

equation (5.2). As shown already by the acceptance rate, the number

of exceedances is much higher in the Bangia than in the modi�ed L-

VaR model. The level of exceedance is comparable between both mod-

els. There seem to a large number of small exceedances in the Bangia

model, which slightly downward biases the mean exceedance for DAX

and MDAX stocks. This is also underlined by the higher standard devia-

tion in the Bangia model. The maximum exceedance can reach 90-100 %

of the estimation, slightly higher for the modi�ed L-VaR model than for

the original Bangia. However, maximum exceedance is only higher in the
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Table 5.5: Magnitude of exceedances

Table 5.6: Acceptance rate by sub-period

MDAX, in the other indices, the Bangia model surpasses the modi�ed

L-VaR. All in all, exceedances seem to be similar in both models.

While results already seem robust when looking at di�erent indices, I

will look at time sub-samples as further robustness test. I split the full

period and calculated the percentage of stocks with correct risk estima-

tion separately for each sub-period. While the absolute acceptance level

of the Kupiec-statistic is less reliable, because the sample is smaller, the

relative level between the two models is of interest. Results are shown in

table 5.6. In both sub-periods, the modi�ed L-VaR-model performs con-

sistently better than the original Bangia model across all indices. This

provides an indication, that the higher preciseness of the suggested model

is not speci�c to the period used in the comparison.

Overall, the higher acceptance rate and the comparable level of ex-

ceedance magnitude make the modi�ed L-VaR model highly superior to
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the original Bangia et al. speci�cation. While these results are restricted

to situations where positions can be liquidated at bid-ask-spread costs,

I hypothesize that results similarly improve when using other, possibly

more comprehensive liquidity risk measures.10 Results might also be fur-

ther improved if more sophisticated estimation techniques for skewness

and kurtosis are incorporated. I leave this point for further research.

Overall, backtesting results demonstrate the vast superiority of the sug-

gested liquidity risk estimation technique based on a Cornish-Fisher ap-

proximation.

5.1.5 Synopsis

In this section I tested the newly proposed modi�ed L-VaR, as well as

a standard speci�cation by Bangia et al. (1999) in a sample of daily

frequency for 160 stocks over 5.5 years. The modi�ed L-VaR proves

to be highly superior. The Kupiec test statistic indicates that risk is

correctly estimated for substantially more stocks. Accounting for non-

normality via the Cornish-Fisher approximation provides signi�cantly

more accurate results than with the empirical method of Bangia et al..

While these results are restricted to situations where positions can

be traded at the bid-ask-spread the method can be analogously applied

to other liquidity measures such as weighted spread. As other liquidity

cost measures like weighted spread are similarly non-normal, as has been

discussed in section 3.3.4, I hypothesize that the proposed method is also

superior in other liquidity risk approaches.

10This hypothesis will be tested in section 5.3
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Table 5.7: Price risk (VaR, 10 day, 99%)
This table contains distribution statistics on price risk calculated as 10-day, 99% VaR

according to equation (4.4).

5.2 Empirical net-return model with

weighted spread

5.2.1 Motivation

In this section I present results of the empirical net-return model with

weighted spread. In section 5.2.2, the impact of order size on the overall

risk level will be analyzed. This analysis will allow to accept or reject

the hypothesis that order size is an important factor in liquidity risk

determination. I also empirically look at the e�ect of tail correlation on

the overall risk estimate in section 5.2.3. Section 5.2.5 presents several

robustness tests of the results.

5.2.2 Magnitude of liquidity impact

As background, table 5.7 contains average 10-day, 99 % VaR price risk

estimates for each index. Overall average price risk was 18.9 %. As could

have been expected, price risk is lowest in the DAX with an average of

16.3 %, followed by MDAX, SDAX and TecDAX. However, there is still

quite large variation within the indices.

Table 5.8 contains the total risk estimates. Overall average total risk is

21 %, i.e. signi�cantly higher than the price risk estimate. The increase

of total risk with order size is already apparent in all indices. While the

price risk in the TecDAX was signi�cantly larger than in the MDAX and

100



Chapter 5. Empirical analysis of liquidity risk models

T
ab
le
5.
8:
A
b
so
lu
te

li
q
u
id
it
y
-a
d
ju
st
ed

to
ta
l
ri
sk

(V
aR

,
10

d
ay
,
99
%
)

T
h
is
ta
b
le
s
sh
ow

s
cr
o
ss
-s
ec
ti
o
n
a
l
st
a
ti
st
ic
s
o
n
em

p
ir
ic
a
l,
a
b
so
lu
te

to
ta
l
ri
sk

in
cl
u
d
in
g
a
li
q
u
id
it
y
a
d
ju
st
m
en
t
a
cc
o
rd
in
g
to

eq
u
a
ti
o
n

(4
.7
);

m
in
-c
o
lu
m
n
m
ea
su
re
s
ri
sk

a
t
m
in
im
u
m

sp
re
a
d
le
ve
l;
a
ll
-c
o
lu
m
n
is

av
er
a
g
e
ov
er

a
ll
st
a
n
d
a
rd
iz
ed

o
rd
er

si
ze
s,

i.
e.

w
it
h
o
u
t

m
in
im
u
m
;
si
ze

im
p
a
ct

is
th
e
in
cr
ea
se

in
ri
sk

in
p
er
ce
n
ta
g
e
p
o
in
ts
w
h
en

d
o
u
b
li
n
g
o
rd
er

si
ze
,
m
ea
su
re
d
a
s
co
e�

ci
en
t
in

10
−

2
o
f
lo
g-
si
ze

in
a
re
g
re
ss
io
n
o
f
th
e
d
is
tr
ib
u
ti
o
n
st
a
ti
st
ic
o
n
lo
g
-s
iz
e
in
cl
u
d
in
g
a
n
in
te
rc
ep
t;
*
in
d
ic
a
te
s
1
0
%
,
*
*
5
%

an
d
*
*
*
1
%

co
n
�
d
en
ce

le
ve
l
o
f

b
ei
n
g
d
i�
er
en
t
fr
o
m

ze
ro

b
a
se
d
o
n
a
tw
o
-t
a
il
ed

te
st
.

101



Chapter 5. Empirical analysis of liquidity risk models

SDAX, when looking at total risk, SDAX is slightly more risky with 24 %

than the TecDAX with 23 %. This must be explained by the impact of

liquidity. I will now investigate into this liquidity impact in detail.

I look at the total impact of liquidity λ(q) on risk in a standard 10-

day, 99% con�dence-level VaR-setting according to equation (4.8). These

parameters are typically used in a Basel II framework.11 Table 5.9 on

page 103 presents statistics on the overall liquidity impact λ(q) by order

size and index. On average over all stocks and across all order sizes,

total risk - including liquidity risk - is 10% higher than price risk alone.

DAX is generally the index with the lowest liquidity risk, while MDAX

and TecDAX are second. SDAX consistently shows the highest liquidity

risk levels across all order sizes. This �nding is consistent with trading

volumes and market values discussed in the market background section

3.2.

There is strong variation in liquidity impact between indices and within

indices as indicated by standard deviations. Variation is of the same order

of magnitude than the level. Impact is practically zero (≤1%) in small

order sizes of the DAX (<¿ 250 thsd.). Liquidity impact can easily

rise above 20% in large stock positions of the DAX or medium stock

positions in small stocks. In an average ¿ 1 million SDAX-positions,

liquidity impact on risk rises to 30% of price risk at a 10-day horizon.

Especially interesting is the liquidity impact calculated with spread as

revealed in the min-column.12 Impact remains rather small across all

stocks and comparable to the liquidity impact measured with XLM(10)

and XLM(25) respectively. In SDAX and TecDAX it is slightly higher

than in the smallest XLM bracket. Since median risk levels are compa-

rable, this e�ect is probably due to few outliers as XLM and spread data

come from two di�erent databases.

11Cp. Dowd (2001), p.51.
12This corresponds to the risk measurement approach suggested by Bangia et al.
(1999) applied to stocks.

102



Chapter 5. Empirical analysis of liquidity risk models

T
ab
le
5.
9:
L
iq
u
id
it
y
im
p
ac
t
on

ri
sk

(V
aR

,
10

d
ay
,
99
%
)

T
a
b
le
sh
ow

s
cr
o
ss
-s
ec
ti
o
n
a
l
st
a
ti
st
ic
s
o
f
la
m
b
d
a
,
w
h
ic
h
is
th
e
im

p
a
ct
o
f
li
q
u
id
it
y
in
p
er
ce
n
t
o
f
p
ri
ce

ri
sk

a
cc
o
rd
in
g
to

(4
.8
);
m
in
-c
o
lu
m
n

m
ea
su
re
s
ri
sk

a
t
m
in
im
u
m

sp
re
a
d
le
v
el
;
a
ll
-c
o
lu
m
n
is
av
er
a
ge

ov
er

a
ll
st
a
n
d
a
rd
iz
ed

o
rd
er

si
ze
s,
i.
e.

w
it
h
o
u
t
m
in
im
u
m
;
si
ze

im
p
a
ct

is
th
e
co
e�

ci
en
t
o
f
lo
g
-s
iz
e
re
g
re
ss
ed

o
n
th
e
lo
g
d
is
tr
ib
u
ti
o
n
st
a
ti
st
ic

in
cl
u
d
in
g
a
n
in
te
rc
ep
t;

*
in
d
ic
a
te
s
1
0
%
,
*
*
5
%

a
n
d
*
*
*
1%

co
n
�
d
en
ce

le
ve
l
o
f
b
ei
n
g
d
i�
er
en
t
fr
o
m

ze
ro

b
a
se
d
o
n
a
tw
o
-t
a
il
ed

te
st
.

103



Chapter 5. Empirical analysis of liquidity risk models

Liquidity impact generally increases with order size.13 To more sys-

tematically analyze this size e�ect, I separately estimated the impact of

doubling order size on λ(q) in percent in the last column. To do so,

I regress the log row statistics on log order size including a constant

intercept.14 Size impact is the coe�cient on log-size and indicates the

curvature of the price impact function. It speci�cally investigates into

the importance of price impact data in contrast to spread data only and

abstracts from the di�erent levels in liquidity risk between indices. Gen-

erally, the estimated price impact statistic is positive but smaller than

one, which shows, that the liquidity impact (risk) function is concave.15

The price impact is larger in the DAX, than in the other indices. Here,

the di�erence between small, liquid and larger, less-liquid positions is

especially pronounced. With size impact of 0.78, liquidity impact al-

most doubles in the DAX when doubling order size. In the other indices,

liquidity impact is already large at small positions - hence the lower cur-

vature. All size impacts are statistically signi�cant at the 1%-level. The

economically large size-impact statistic underlines the importance of us-

ing order book information beyond the spread for risk estimation - even

in the DAX.

These results have important consequences for risk estimation tech-

niques. First, I �nd that liquidity is an important component in total

risk, especially in larger order sizes, where the price impact estimation

error relative to price risk rises up to 30% at 10-day horizons. Second,

estimating liquidity risk with spread data is no valid alternative, as liq-

uidity risk impact in this size class is very small and strongly increases

with size. Third, large variations indicate that constant scaling of price

13The decrease in the average SDAX position between ¿ 250 thsd. and ¿ 500 thsd.
results from a non-constant sample e�ect. Large SDAX positions were continuously
tradable only in later years. Therefore, risk estimates for large SDAX positions are
calculated on a more liquid period depressing liquidity impacts compared to more
continuously traded small positions. Cp. discussion in section 3.3.3.

14Ordinary least-squared regression equation is log(Stat(q)) = c + log(q) + ε, with
stat being the row statistic and c a constant intercept.

15This is consistent as already the price impact cost function is empirically found to
be concave; cp. Hasbrouck (1991); Hausman et al. (1992).
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risk across all stocks, often dubbed �hair cuts�, are probably insu�cient

and liquidity has to be accounted for speci�cally for each stock.

5.2.3 Correlation e�ect

Next, I speci�cally look into the tail correlation between mid-price return

and liquidity cost. A correlation factor κ(q) of zero corresponds to perfect

tail correlation between liquidity and mid-price return. It mirrors the

case that liquidity costs are highest when prices are lowest. Table 5.10 on

page 106 shows the results based on 10-day, 99% VaR according to (4.10).

Mean correlation factors range between 40% and 60% of liquidity risk. On

average, 60% of the liquidity cost risk is diversi�ed away. The negative

correlation factor reveals that large, illiquid positions are relatively more

liquid in crises. Stock market crashes seem to attract liquidity, which

allows to liquidate less-liquid positions more cost-e�ciently, however at

lower prices. Since over half of the liquidity risk is diversi�ed away,

liquidity risk would be overestimated by about 100% at larger sizes when

neglecting correlation (cp. equation (4.11)).

Correlation factors are quite uniform across order sizes and indices at

around a negative 55 to 65 %. Only in the DAX it is slightly lower at

about -40 %. Correlation plays an even larger role at the spread level,

where it is consistently higher than in larger order sizes. This underlines

the di�erent dynamics between the spread, quoted by market makers, and

weighted spread, which emerges from free market competition. Cross-

sectional standard deviation is also quite constant. The size-independent

nature is underlined by the statistically and economically insigni�cant

price impact statistic.16

The κ(q)-statistic should be treated with care. The e�ect of correlation

on total risk is substantial only if the liquidity risk is also substantial

(cp. equation (4.11)). As liquidity risk is quite low at small positions the

overall error remains small and the violation is less critical.

16Estimated in a linear regression of the distribution statistic on size.
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Overall, these empirical results refute the common assumption of per-

fect tail correlation, i.e. that it is reasonable to simple add up price and

liquidity risk. Doing so would overestimate total risk, especially in large,

more illiquid order sizes. These results resolve the discussion, whether the

perfect tail correlation assumption is valid or not. The representative,

empirical results are in line with the argument of Francois-Heude and

Van Wynendaele (2001), who criticize the perfect correlation assumption

of Bangia et al. (1999). However, the overall e�ect of this assumption

remains small if the liquidity impact is small in total. It might also be

di�erent in other assets like currencies, which were analyzed by Bangia

et al. (1999), but I see no a priori reason why this should be the case.

I also hypothesize that correlation e�ects should be similar for other

liquidity cost measures, because these proxy for the same phenomenon.

Overall, my results indicate, that tail correlation is important and should

be taken into account in illiquid stock positions.

5.2.4 Liquidity impact at shorter horizons

Risk on a 10-day horizon calculated above, provides a comparable refer-

ence to the standard statistics usually requested by �nancial regulators.

However, as noted already in section 2.1.2.2, when correctly and directly

accounting for liquidity risk, the 10-day horizon gets the notion of man-

agement reaction time instead of liquidation time. In order to stick to

the original intention behind VaR, what a portfolio is worth in the worst

case, I also calculate VaR at a 1-day horizon. This statistic is also more

comparable to the intraday results available so far.

In table 5.11 the average daily price risk for each index is shown.
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Table 5.11: Price risk (VaR, 1 day, 99%)
This table contains distribution statistics on price risk calculated as 1-day, 99% VaR

according to equation (4.4).

Overall average price risk is signi�cantly lower at 6.7 % than in the

10-day case at 18.9 %, which is slightly smaller than the common square-

root of time rule would suggest. The index rank is the same as in the

10-day calculation.

Table 5.12 presents the daily total risk estimates. The structure of

the 10-day case is preserved. SDAX overtakes the TecDAX in the risk

level. Similarly to above, I proceed with a more detailed analysis of this

liquidity impact.

Table 5.13 shows the liquidity impact λ(q) for a 1-day, 99% VaR ac-

cording to equation (4.8). As expected, the relative liquidity impact

magni�es when shortening horizons, because price risk is reduced while

absolute liquidity risk remains unchanged. The structure between indices

remains unchanged. While still being negligible in small DAX positions,

total risk including liquidity is almost double the price risk for large po-

sitions. Average ¿ 1 million SDAX positions have a >90% liquidity risk

impact. Even in some small positions, liquidity plays a substantial role

with liquidity impact surpassing 10% in the SDAX for small position

sizes. Overall, these results are comparable to the 2-30% range found in

other studies.17

The size-impact statistic reveals a very similar curvature in magni-

tude in the daily compared with the 10-day case. All size impacts are

statistically signi�cant at the 1% level. Correlation e�ects are similar

17Cp. Francois-Heude and Van Wynendaele (2001); Giot and Grammig (2005); An-
gelidis and Benos (2006).
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in structure and magnitude when compared to the 10-day horizon as

can be seen from table 5.14. The importance of the correlation e�ect is

con�rmed.

5.2.5 Robustness tests

5.2.5.1 E�ects of change of risk measure

Recently, literature has discussed coherent risk measures as alternative to

Value-at-Risk to overcome the shortfalls of VaR like non sub-additivity.18

This raises the question, if results would change signi�cantly when switch-

ing to a di�erent risk measure. To test if results are robust or speci�c

to the VaR, I calculate expected shortfall,19 which is the expected loss

in the worst α-percent of the cases. I continue to use the basic approach

detailed in section 4.2.1 on page 85, but I replace VaR with expected

shortfall (ES) de�ned as follows.

ESα,∆t = E(r|r < rα) (5.3)

When I calculate risk based on expected shortfall instead of value-

at-risk as displayed in table 5.15 e�ects of order size get accentuated.

Generally speaking, results are structurally similar when measuring risk

as ES compared to VaR. While total risk estimates increase, the impact of

liquidity is comparable even in the tail of the distribution. Methodology

and results are therefore quite robust to a change to the expected shortfall

risk measure.

5.2.5.2 E�ects of time variation

As further robustness test, I calculate monthly, rolling estimates of

lambda to counter concerns that results are due to the long estimation

period. This test also addresses any concerns for non-constant-sample

18Cp. Artzner et al. (1997); Acerbi and Scandolo (2007).
19Also called 'conditional value-at-risk' or 'expected tail loss'.
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bias, because I calculate risk estimates only on stocks included in the

index due to data availability. Because empirical percentiles cannot be

calculated on monthly samples of daily data, I chose a straight-forward

mean-variance estimation procedure. For each date, I calculate the 20-

day backward variance σr of continuous price return and assume that

daily expected return is zero. Relative price risk on a 99% con�dence

level is then de�ned as

V aR1%
price = 1− exp (−2.33× σr) (5.4)

Similarly, I calculate liquidity-adjusted total risk with the mean µrnet

and standard deviation σrnet of 20-day backward net-return distribution

V aR1%
total(q) = 1− exp (µrnet(q)− 2.33× σrnet(q)) (5.5)

with net returns calculated according to equation (4.5). I then calculate

the liquidity impact λ(q) according to equation (4.8). Neglect of negative

skewness and high kurtosis (fat tails) makes this procedure simple, but it

might underestimate risk. Due to the underestimation, absolute values

need to be treated with care, but are still - as lower bound - a suitable

indicator for the time variation of the liquidity impact on risk, especially

if skewness and kurtosis are fairly constant.

Rolling total risk estimates are presented in table 5.16.
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Table 5.16: Liquidity-adjusted total risk (rolling VaR, 10-day, 99%)
Table shows liquidity-adjusted total risk by sub-sample according to equation (4.8)

calculated with a rolling mean-variance estimation; a. statistic shows absolute change

between 2003 and 2008 when 2002 number not available; min-column measures risk

at minimum spread level; all-column is average over all standardized order sizes, i.e.

without minimum; size impact is the coe�cient in 10−2 of log-size in a regression of

the distribution statistic on log-size including an intercept; * indicates 10%, ** 5%

and *** 1% con�dence level of being di�erent from zero based on a two-tailed test.

Average total risk, measured as 10-day, 99 % VaR, declined from 2002

to 2008 by 9 percentage points from 24 % to 15 %. This decline is visible

in all indices. In all sub-periods there is an increase in risk with order

size in all indices and sub-periods. I will now turn to the analysis of the

liquidity component itself.
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Results for λ(q) on the basis of a 10-day, 99% VaR according to (4.8)

and (5.5) are displayed in table 5.17.

Table 5.17: Liquidity impact on risk (rolling VaR, 10-day, 99%)
Table shows mean lambda, which is liquidity impact in percent of price risk by sub-

sample calculated with a rolling mean-variance estimation of Value-at-Risk (10-day,

99%) according to (4.8) based on (5.5); a. Statistic shows absolute change between

2003 and 2008 when 2002 number not available; min-column measures risk at mini-

mum spread level; all-column is average over all standardized order sizes, i.e. without

minimum; size impact is the coe�cient in 10−2 of log-size in a regression of the log

distribution statistic on log-size including an intercept; * indicates 10%, ** 5% and

*** 1% con�dence level of being di�erent from zero based on a two-tailed test.

The impact of liquidity on risk has generally declined over time across

all indices. In all years, the liquidity impact strongly increased with order
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size as the size-impact statistic reveals. The prior �nding of the index

rank (DAX, MDAX / TecDAX, SDAX) is con�rmed and stable over time.

TecDAX, however, was shortly more liquid after its initiation in 2003

until 2004. Although to be interpreted with care, the liquidity impact

probably remained non-negligible during the low-risk period from 2006-

2007. The impact of liquidity on total risk was certainly economically

signi�cant in the crises periods of 2002-2003 and in 2008.

Results for the whole panel ('all') have to be treated with care, because

they are distorted by the non-constant sample e�ect. Over the years, the

liquidity of less-liquid stocks strongly improved, which made their liquid-

ity cost data increasingly available. As consequence, less-liquid, high-cost

stocks are increasingly included in the sample, which increases the av-

erage risk estimate. However, individual year estimates have almost no

sample bias and underline, that liquidity impact is economically signi�-

cant.

If skewness and kurtosis would be included, these �ndings are also

likely to get con�rmed, as the one-time liquidity cost deduction will prob-

ably introduce additional skewness, which keeps the relation between

price and liquidity risk valid. Overall, this con�rms that liquidity price

impact is economically signi�cant enough to encourage integration into

risk measurement systems.

5.2.5.3 E�ects of portfolio diversi�cation

I showed, that liquidity risk is economically signi�cant when looking at

individual stocks in the di�erent indices. But does this result persist

when looking at portfolios of stocks? If diversi�cation between mid-prices

of di�erent stocks is larger than between liquidity of di�erent stocks,

liquidity impact might be substantially reduced.

To test the robustness of results against e�ects of portfolio diversi�-

cation, I calculated daily value-weighted index returns and determined

liquidity impact λ(q) based on a 10-day, 99% VaR according to (4.8).

While this methodology does not use optimized position weights, a value-
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weighted portfolio should show e�ects of diversi�cation if there are any.

Results are displayed in table (5.18). Estimates demonstrate, that liq-

uidity impact on the portfolio level is of similar magnitude than on the

average individual stock level (cp. table 5.9 on page 103). Especially

in larger sizes, liquidity impact is increased at the portfolio level, e.g. it

rises to 54% for the ¿ 1 million position in the SDAX portfolio compared

to 30% for the average individual stock position. This must be driven by

larger liquidity commonality in larger sizes, i.e. diversi�cation in liquidity

between stocks decreases with larger sizes. Even for the all-stock portfo-

lio liquidity impact levels are higher than for the average stock. Overall,

my results are robust to diversi�cation e�ects in stock portfolios.

5.2.6 Synopsis

In this section, I empirically tested the empirical net-return model based

on weighted spread and its structure. Empirically, I �nd that impact of

liquidity relative to price risk is small at small order sizes, especially at

the spread level (<10% for 10-day, 99% VaR). However, it increases to

20-30% of price risk in larger sizes in illiquid indices as well as in the

DAX. Results aggravate if I switch to daily VaR-horizons.

I also took a detailed look at tail correlation between liquidity and mid-

price returns and showed that it is non-negligible. Liquidity risk would be

overestimated by 100% if correlations are ignored. In the cases I identi�ed

above, where liquidity risk is an economically signi�cant component of

total risk, total risk will be severely overestimated if liquidity cost risk

is simply added to existing risk measures. Therefore, several common

approaches should be adapted to avoid this distortion.

I �nd that results are structurally similar when using expected short-

fall instead of VaR risk measures. Results are therefore transferable. To

check the time robustness of these �ndings, I employ a monthly, rolling

mean-variance estimation method. Results are con�rmed. Results are
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also similar for portfolios of stocks, when portfolio diversi�cation is ac-

counted for.

Overall, I strongly advocate the use of weighted spread data like XLM

to improve risk estimates. Liquidity constitutes a large part of total risk,

especially in larger positions and at short horizons - even in more liquid

market segments.

5.3 Comparison of liquidity risk models

5.3.1 Motivation

As �nal analysis, I will run a horse race of liquidity risk models that are

implementable in daily data. Based on the large data set described in

chapter 3, I benchmark a large selection of models taken from section 2.2

as well as the propositions from chapter 4, an exercise that has not been

conducted in the scienti�c literature so far. It will help to understand

strengths and weaknesses and allows to devise concrete recommendations

for practical liquidity risk measurement.

5.3.2 Selection of models

I sort liquidity risk models into two broad categories: Traceable and

theoretical. A large stream of literature has developed theoretical mod-

eling approaches, where implementation procedures are still missing

and not obvious. These include Lawrence and Robinson (1995), Alm-

gren and Chriss (2000) and Almgren (2003), Subramanian and Jarrow

(2001), Hisata and Yamai (2000), Dubil (2003) and Engle and Fersten-

berg (2007).20 These models generally use optimal trading strategies

to minimize the Value-at-Risk of a position including liquidity. However,

empirical estimation techniques for the large range of parameters of these

models still need to be developed.

20A more detailed discussion has been provided in section 2.2.2.4.
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Among those liquidity risk models that are empirically traceable, sev-

eral work on intraday or transaction data only. Berkowitz (2000a), Jar-

row and Protter (2005b) and Angelidis and Benos (2006) belong to this

class. In order not to completely neglect these, I choose Berkowitz

(2000a), which seemed most promising to adapt for daily data. I in-

clude all traceable models available for daily data: Bangia et al. (1999),

Cosandey (2001), Francois-Heude and Van Wynendaele (2001), Giot and

Grammig (2005) as well as the modi�ed add-on model (section 4.1) and

the empirical net return model based on weighted spread (section 4.2).

For all models I choose a straight forward implementation for daily stock

data. I group the chosen models by the type of data required for their

estimation: bid-ask-spread models, transaction or volume data models,

and models requiring limit order book data.

5.3.3 Implementation speci�cation

5.3.3.1 General approach

For all models, I calculate a standard, daily, relative Value-at-Risk (VaR)

at a 99 % con�dence level. In general, I tried to keep the implementation

procedure as straight-forward as possible to allow for best comparisons.

Means, including those of liquidity costs, are generally calculated with

a 20-day rolling procedure. If mid-price return is separately estimated

in a normal-distribution framework, I set its mean to zero, as is common

practice. I account for volatility clustering with the standard exponential

weighted average (EWMA) model over 20 days by JP Morgan (1996)

using a weight δ of 0.94 de�ned as

σ2
t = (1− δ)

20∑
i=1

δi−1r2
t−i + δ20r2

t−20 (5.6)

Where applicable I estimate skewness and excess-kurtosis with a simple

non-weighted rolling procedure. The skewness of y is computed from

historical data rolling over the last 500 days as γ = 1
500

∑500
t=1(yt−µy)3/σ3

y
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with µy and σy as mean and volatility of y. The excess kurtosis for y is

κ = 1
500

∑500
t=1(yt − µy)4/σ4

y − 3.21

To allow for best comparison, I use the ten standardized order size

classes to calculate the the liquidity risk for a stock position of a speci�c

size from section 3.1.1.3.

For some models, I had to choose speci�c implementation approaches,

that are not covered by above general description. These will be de-

scribed in the following subsections. Liquidity risk models that can be

implemented with the general implementation comments given in the

previous section, will not be included.

5.3.3.2 Berkowitz (2000)

For Berkowitz (2000a) (section 2.2.2.2), future price is driven by risk

factor changes and the liquidity impact of trading Nt number of shares

as follows

Pmid,t+1 − Pmid,t = C + θNt + xt+1 + εt (5.7)

where θ is the regression coe�cient, xt+1 is the e�ect of risk factor changes

on the mid-price, C is a constant and εt the error term of the regression. θ

can be understood as absolute liquidity cost per share traded. Although

the original model is constructed on the basis of transaction data, I have

tried to tune it as best as possible for the use in daily risk forecasts.

Therefore, I approximated the transaction price with Pmid,t+1.

As the author does not go into implementation detail, I choose to

estimate market risk e�ects as

xt+1 = β × rM,t × Pmid,t (5.8)

21To keep the sample as large as possible, I reduced the rolling window up to 20 days
at the beginning of the sample, in order to also include the �rst two years into the
results period. This discriminates models using skewness and kurtosis, but they
nevertheless show superior performance as will be shown in section 5.3.5.
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Table 5.19: Estimates of the liquidity measure θ
Table shows cross-sectional statistics of the estimated liquidity coe�cient θ. The All-

column contains the average over all indices. Signi�cant fraction shows percentage

of stocks with statistically signi�cant theta at con�dence level of 95 % and 99 %

respectively.

where β = Cov(r, rM)/σrmarket
is the beta factor for each individual stock

return on the 160-stock, value-weighted market portfolio return rM over

the sample period.22

Table 5.19 presents the regression estimates of the liquidity measure

θ̂ for the sample period. The regression produces positive and negative

estimates, which is slightly counter-intuitive as the liquidation of a po-

sition should always induce a price discount. θ̂ also varies strongly as

indicated by standard deviation, minimum and maximum. In general,

average liquidity costs per share are very small, in the order of one Euro

per million shares. Only about half of the stocks have θ̂-values that are

statistically signi�cant di�erent from zero. Therefore, I already doubt

at this stage, that the liquidity measure implemented in daily data will

produce accurate results.

I now calculate continuous, liquidity-adjusted net return as

rnett(q) = ln

(
1 +

[
β × rM,t − θ̂ ×

Nt + n

Pmid,t

])
(5.9)

22Although this proceeding leads to a conceptually doubtful overlap between esti-
mation and forecast period, this overlap generates a bias in favor of the model.
Nevertheless, even positively biased estimates for this model provide poor results
as is shown later in section 5.3.5. Risk-free rate is neglected due to the short time
period.
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for each standard-volume number of shares n = q/Pmid,t to allow for later

comparison with other liquidity risk models. The optimal trading strat-

egy of the original model requires 1/h'th of the position to be liquidated

each day of the h-day horizon. For the daily horizon, the full position

will be liquidated at once. I then de�ne relative, liquidity-adjusted total

risk as

L− V aR(q) = 1− exp
(
µrnet(q) + ẑασrnet(q)

)
(5.10)

where µrnet(q) is the 20-day rolling net return mean and σrnet(q) is the

EWMA-estimated net return volatility. ẑα is the empirical percentile of

the net return distribution.

5.3.3.3 Cosandey (2001)

The relative, liquidity-adjusted VaR of Cosandey (2001) (section 2.2.2.2)

is implemented similar to the Berkowitz (2000a) approach described

above but with net return de�ned as

rnett(q) = ln

(
rt+1 ×

Nt

Nt + n

)
(5.11)

where r is the mid-price return, N is the number of shares traded in the

market and n = q/Pmmid is the position size in number of shares. Risk

is then de�ned as

L− V aR(q) = 1− exp
(
µrnet(q) + ẑασrnet(q)

)
(5.12)

where µrnet(q) is the 20-day rolling net return mean and σrnet(q) is the

EWMA-estimated net return volatility. α̂ is the empirical percentile of

the net return distribution.23

23I deviate from the original simulation approach, because, in my view, the key fea-
ture of this approach is new liquidity measure. Using a parametrization keeps
approaches as comparable as possible. I also work with smoother continuous rather
than discrete returns.
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5.3.3.4 Francois-Heude and Wynendaele (2001)

In the original paper, Francois-Heude and Van Wynendaele (section

2.2.2.3) interpolate the liquidity cost function only from the best �ve

limit-order-quotes made available by the Paris Stock Exchange. In favor

of their approach, I use the liquidity cost function estimated as weighted

spread from the whole limit order book as described at the beginning of

this section.

I specify risk in this model as

L− V aR(q) = 1− exp(−zσr)
(

1− µ(q)WS

2

)
+

1

2
(WSt(q)− µ(q)WS)

(5.13)

where z is the normal percentile and σr the standard deviation of the mid-

price return distribution. µ(q)WS is the average spread for a security for

order quantity q, and WSt(q) is the spread at time t.

5.3.3.5 Giot and Gramming (2005)

The relative, liquidity-adjusted total risk of Giot and Grammig (2005)

(section 2.2.2.3) is calculated as

L− V aR(q) = 1− exp
(
µrnet(q) + zt,ασrnet(q)

)
(5.14)

where zt,α is the chosen percentile of the student distribution.24 In or-

der to ensure comparability, I stay with the EWMA-modeling of volatil-

ity and do not replicate their approach accounting for conditional het-

eroskedasticity. Because I implement their approach to daily instead of

intraday data, I ignore their adjustment for diurnal variation in weighted

spread.

24I take percentiles from the student distribution with 19 degrees of freedom due to
the 20-day rolling window.
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5.3.3.6 Modi�ed liquidity risk model

As the modi�ed add-on model can be used with bid-ask-spread as well as

with weighted spread data, I include both versions. Similar to equation

4.3 in the modi�ed add-on model with bid-ask-spread, I de�ne the modi�ed

add-on model with weighted spread as

L−V aR = 1− exp(µr + z̃α(r)× σr)×
(

1− 1

2
(µWS + z̃α(WS)× σWS)

)
(5.15)

where z̃α(r) is the percentile of the return distribution accounting for

its skewness and kurtosis and z̃α(WS) and the corresponding weighted

spread distribution percentile. Accounting for four moments is performed

with the Cornish-Fisher approximation 4.2.

In analogous application of the net-return model outlined in section 4.2,

I also test another variant, the modi�ed net-return model with weighted

spread. It is also possible to use Cornish-Fisher approximated percentiles

of the net return distribution, i.e. return net of weighted spread, and

calculate risk as

L− V aR(q) = 1− exp
(
µrnet(q) + z̃α(q)× σrnet(q)

)
(5.16)

where z̃α is the percentile estimated with the Cornish-Fisher approx-

imation (4.2). This alternative parametrization does not rely on the

assumption of t-distributed net returns or perfect return-liquidity corre-

lation. This modi�ed net-return model will be also included in the model

selection.

5.3.4 Backtesting framework

I test the validity of risk forecasts for each model by comparing pre-

dicted risk with actual returns out-of-sample, similar to the backtesting

approach described in 5.1.4.1. Actual realized losses are, however, cal-
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culated speci�c for each position q with the weighted spread under the

assumption that the position has to be immediately liquidated against

the limit order book

rnett(q) = rt + ln

(
1− 1

2
WSt(q)

)
(5.17)

That this assumption is valid in a large range of risk-related situations

has been discussed in 3.1.1.2.

I calculate a L-VaR for all models at 1 − α = 99% con�dence. If the

L-VaR model correctly predicts risk, actual return should exceed VaR in

only 1 % of all cases. Statistical signi�cant deviations between predicted

and actual risk are determined with the Kupiec (1995)-statistic according

to equation 5.1.

Similar to section 5.1.4.1, I calculate the percentage of stocks, where

the Kupiec statistic cannot reject precise risk estimation. This percent-

age will be called acceptance rate. If acceptance rates are averaged over

all order sizes, I excluded bid-ask-spread rates to avoid double count-

ing.25 For stocks, where the deviation between predicted and real loss

rates was signi�cant, I determined if the violation occurred because risk

was overestimated (fewer actual losses than predicted) or underestimated

(more actual losses than predicted). These respective stock fractions are

also determined.

When comparing models, I used a common sample. The large period

of 5.5 years, i.e. 1.423 days, allows for very robust results of the Kupiec-

statistic.

5.3.5 Backtesting results

5.3.5.1 Overall model ranking

Figure 5.3 shows the overall ranking of the tested liquidity risk models.

Liquidity risk models are ranked by the overall average percentage of

25As bid-ask-spreads are reported for non-standardized order sizes only, there is po-
tential overlap with weighted spread of small sizes.
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Figure 5.3: Ranking of liquidity risk models by overall acceptance rate
Figure shows overall acceptance rate averaged over all stocks and order sizes for each

model. Acceptance rate is the percentage of stocks with statistically signi�cant precise

risk estimation according to Kupiec (1995).

stocks, for which risk was correctly estimated according to the Kupiec-

statistic. In general, models based on the larger data set, limit order

data, show superior performance with an acceptance rate of above 70 %.

Best performing with 74 % is the Cornish-Fisher modi�ed add-on ap-

proach with weighted spread and the empirical net return model based

on weighted spread . This is closely followed by modi�ed weighted spread

net return and the t-distributed net-return approach by Giot and Gram-

mig (2005) with a 71 % acceptance rate.

I would have expected the net-return Cornish-Fisher approach to be

higher ranked than if return and liquidity percentiles are separately es-

timated, because correlation between return and liquidity are correctly

accounted for. I hypothesize that forecasting of return and liquidity costs

are more precise because the dynamics of both components are mod-

eled separately. This compensates for the neglect of correlation. The

t-distribution approach by Giot and Grammig (2005) seems to only par-

tially account for the non-normality. The limit-order-book approach by

Francois-Heude and Van Wynendaele (2001) is far behind on the second
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last place. I believe this is caused by the conceptual weakness of this

model as described in section 2.2.2.3.

Although the modi�ed add-on model based on bid-ask-spread, section

4.1, does not account for the price impact via weighted spread data, it

surpasses with 44 % acceptance rate the Cosandey (2001) with 32 %

acceptance. Bangia et al. (1999) is with 16 % overall acceptance better

than Francois-Heude and VanWynendaele (2001) and Berkowitz (2000a).

The implementation attempt of the latter in daily data does not provide

satisfactory results.

5.3.5.2 The impact of order size

The overall rank calculated as order-size average is in�uenced by the se-

lection of size classes included. I therefore also calculated averages by

individual order sizes. Table 5.20 shows the acceptance rate of the tested

liquidity risk models by order size. The modi�ed add-on model with

weighted spread performs best in small to medium order sizes, while the

best performing model in larger order sizes is Giot and Grammig (2005).

The t-distribution seems to capture liquidity risk in larger order sizes very

e�ciently. The relatively low performance of the modi�ed risk models

with weighted spread in larger sizes is probably due to rising skewness

and kurtosis for weighted spread in larger sizes caused by single outliers,

which leads to imprecise Cornish-Fisher estimates.26 Also, the assump-

tion of perfect correlation leads to an overestimation of risk which has a

signi�cant impact in larger order sizes.27 The hypothesis that the lower

performance of the modi�ed net return model with weighted spread is

driven by the low forecastability of net return dynamics is substantiated.

In lower order sizes, performance is more acceptable, because dynamics

are mainly driven by mid-price return and liquidity is neglectable. In

larger order sizes performance drops as liquidity dynamics are lost in the

compounding of the net return.

26Cp. Jaeger (2004), p.16. and Zangari (1996), p.10.
27Cp. Stange and Kaserer (2008a).
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Models based on bid-ask-spreads - not accounting for order size - show

expectedly declining performance with rising order size, while the modi-

�ed add-on model (4.1) consistently dominates. Cosandey (2001) shows

a quite good performance for medium sizes, but very low at large order

sizes. The assumption of linear price impact probably distorts results at

order size extremes.

The discussion shows that overall ranking results remain valid with

one exception. The rank of the top-performing limit order models is not

�xed and - depending on the order size in question, the modi�ed add-on

model, the empirical net-return model and the Giot and Grammig (2005)

model are probably all good choices in practice.

5.3.5.3 Type of misestimation

To allow a more detailed analysis of the reasons behind the individual

model performance, table 5.21 shows the over- and underestimation rate

of the tested liquidity risk models by order size. The �rst four limit order

models are quite balanced and show underestimation as well as overes-

timation. The empirical net return model, for example, overestimates

the risk of 14 % of the stocks and underestimates the risk for 13 % of

the stocks. As mentioned earlier, the severe underestimation of bid-ask-

spread models in large order sizes is expected due to their design. The

strong general underestimation of the Francois-Heude and Van Wynen-

daele (2001) can probably be traced to the neglect of time variation,

because the crises increase of liquidity cost has not been incorporated.

The failure of the implementation of the Berkowitz (2000a)-model in

daily data, probably lies in the fact that I had to use mid-price instead

of transaction prices, which seems to smooth and therefore underestimate

any liquidity e�ects. Based on these arguments, these two models should

probably be ruled out for practical implementation.
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Table 5.22: Acceptance rate of liquidity risk models by index
Table shows acceptance rate by index sub-sample averaged over all order sizes and all

stocks for each model. Acceptance rate is the percentage of stocks with statistically

signi�cant precise risk estimation according to Kupiec (1995).

5.3.5.4 Robustness of model rank

As natural sub-samples, I used the four indices in my sample to check

for the robustness of the model rank. Table 5.22 shows the acceptance

rate of the tested liquidity risk models by index. The performance in

the least liquid SDAX where liquidity e�ects are largest, is of particular

importance. The �rst four models based on limit order data keep their

superior performance, but switch ranks in some sub-samples. The modi-

�ed add-on models delivers high acceptance rates more consistently than

other models with acceptance rates never below 70 %. Therefore, the

modi�ed add-on model is recommendable when limit order book data

are available.

The modi�ed add-on model based on bid-ask-spread data consistently

outperforms all other non-limit order data models as well as Francois-

Heude and Van Wynendaele (2001). My adaptation of Berkowitz (2000a)

has particular low acceptance rates in the less liquid indices. Its per-

formance is best in the DAX, where liquidity is of minor importance.

Hence, it cannot be recommended for daily risk forecasts. Above results

are therefore generally con�rmed.

Although a shortening of the period length reduces the reliability of

the Kupiec-statistic, I split the period into two sub-periods and calculate
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Table 5.23: Acceptance rate of liquidity risk models by sub-period
Table shows acceptance rate by sub-period averaged over all order sizes and all stocks

for each model. Acceptance rate is the percentage of stocks with statistically signi�-

cant precise risk estimation according to Kupiec (1995).

separate results for each sub-period as another robustness test. The ac-

ceptance rate by sub-period is presented in table 5.23. As the sub-period

is signi�cantly shorter than the full period, results of the Kupiec statistic

are not directly comparable to the full period statistic. Levels can there-

fore not be compared across tables. I will look at the relative model rank

only. In the �rst sub-period (II/2002 to I/2005), the model ranking is

slightly di�erent. The empirical net-return model with weighted spread

(section 4.2) and Giot and Grammig (2005) now dominate the modi�ed

risk models. I hypothesize that this e�ect is driven by ine�cient skewness

and kurtosis estimates which are themselves caused by outliers during the

turbulent �rst sub-period. An improved estimation technique for higher

moments might help improve results in this particular situation, a point

which is, however, left to future research. The ranking of the second

sub-period (II/2005 to II/2007) is preserved.

The �rst four limit-order models therefore switch ranks in some sub-

periods but keep their superiority as a group. The remaining ranking is

preserved.
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5.3.5.5 Detailed model performance

In the following I discuss the performance of each liquidity risk model in

a more di�erentiated and detailed manner.

Models based on bid-ask-spread The model of Bangia et al. (1999)

(section 2.2.2.1) has mediocre performance as displayed in table 5.24.

Table 5.24: Acceptance rate of Bangia et al. (1999)-approach by index
and order size

Table shows the fraction of stocks, where the L-VaR-model has been accepted by

Kupiec-statistics. The min-column measures the acceptance rate for the minimum

spread level, i.e. the bid-ask-spread. The All-column measures the average over all

standardized order sizes, i.e. without the min-column.

Because the Baniga model does not account for order size, it has par-

ticularly poor performance in large order sizes where liquidity costs are

heavily underestimated by the bid-ask-spread. This is consistent in all

indices. The acceptance rate in the DAX is particularly low, but com-

paratively high in larger sizes. Therefore the spread estimate seems to

underestimate the real, crises liquidity cost even in smaller sizes.

Loebnitz (2006) suggests a correction of the Bangia et al. (1999) model.

He argues that worst spreads should be conceptionally deduced from

worst, not from current mid-prices. I also tested this variation. Results

are displayed in table 5.25.
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Table 5.25: Acceptance rate of Bangia et al. (1999) with Loebnitz cor-
rection by index and order size

Table shows the fraction of stocks, where the L-VaR-model has been accepted by

Kupiec-statistics. L-VaR is calculated as L − V aR = 1 − exp(ασr) × (1 − 1/2(µS +
α̂SσS)). The min-column measures the acceptance rate for the minimum spread level,

i.e. the bid-ask-spread. The All-column measures the average over all standardized

order sizes, i.e. without the min-column.

Acceptance rates are slightly lower than in the original speci�cation

across all order sizes and indices. The overestimation of the original

model caused by the conceptual imprecision seems to balance the general

underestimation tendency, which yields overall more satisfactory results.

Therefore, the suggested correction cannot be recommended.

In table 5.26, acceptance rate for the modi�ed add-on approach with

bid-ask-spread (section 4.1) is detailed.

Table 5.26: Acceptance rate of modi�ed add-on approach with bid-ask-
spread by index and order size

Table shows the fraction of stocks, where the L-VaR-model has been accepted by

Kupiec-statistics. The min-column measures the acceptance rate for the minimum

spread level, i.e. the bid-ask-spread. The All-column measures the average over all

standardized order sizes, i.e. without the min-column.

Compared with the models discussed in this paragraph so far, the

modi�ed add-on approach with bid-ask-spread o�ers substantial improve-

ments with acceptance rates more than doubling. The detailed results at

the spread level are as high as the overall results of the limit order models.
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Therefore, risk seems to be adequately forecasted with this model when

looking at positions tradable at the bid-ask-spread. The performance

decline with order size is natural because this model does not account

for the liquidity cost increase with size.

Models based on volume or transaction data My adaptation of the

Berkowitz (2000a), as described in sections 2.2.2.2 and 5.3.3.2, does not

perform very well across order sizes and indices as shown in table 5.27.

Table 5.27: Acceptance rate of Berkowitz (2000a) by index and order size
Table shows the fraction of stocks, where the L-VaR-model has been accepted by

Kupiec-statistics. The min-column measures the acceptance rate for the minimum

spread level, i.e. the bid-ask-spread. The All-column measures the average over all

standardized order sizes, i.e. without the min-column.

Results for the min-column (spread level) cannot be calculated be-

cause order size of spread is non-standardized and therefore missing in

the adjustment procedure of Berkowitz (2000a). The original model is

designed for transaction data. As described in section 5.3.3, the calcu-

lated acceptance rates are tuned to daily data. Unfortunately the results

are not very promising. For daily data, at least in this implementation,

the model of Berkowitz (2000a) cannot be recommended.

The Cosandey (2001) model (section 2.2.2.2 and 5.3.3.3) performs

much better as can be seen from table 5.28.
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Table 5.28: Acceptance rate of Cosandey (2001) by index and order size
Table shows the fraction of stocks, where the L-VaR-model has been accepted by

Kupiec-statistics. The min-column measures the acceptance rate for the minimum

spread level, i.e. the bid-ask-spread. The All-column measures the average over all

standardized order sizes, i.e. without the min-column.

Acceptance rates partially reach levels above 70 %, even in larger order

sizes. However, performance is not consistently high. It varies between

indices and order sizes with no apparent structural driver. Nevertheless,

if only transaction data are available, it is the best model in the test.

Models based on limit order book data I now turn to the detailed

performance results of the weighted spread models. Table 5.29 shows the

Kupiec-accepted fraction of stocks for Francois-Heude and Van Wynen-

daele (2001) (section 2.2.2.3 and 5.3.3.4).

Table 5.29: Acceptance rate of Francois-Heude and Van Wynendaele
(2001) by index and order size

Table shows the fraction of stocks, where the L-VaR-model has been accepted by

Kupiec-statistics. The min-column measures the acceptance rate for the minimum

spread level, i.e. the bid-ask-spread. The All-column measures the average over all

standardized order sizes, i.e. without the min-column.

The detailed results are not very satisfactory. The model practically

fails to predict risk well in the DAX, but performance is also quite low

in the other indices. Especially, if compared to the other limit order
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models, the model of Francois-Heude and Van Wynendaele (2001) cannot

be recommended.

In table 5.30, detailed acceptance rates for Giot and Grammig (2005)

(section 2.2.2.3 and 5.3.3.5) are shown.

Table 5.30: Acceptance rate of Giot and Grammig (2005) by index and
order size

Table shows the fraction of stocks, where the L-VaR-model has been accepted by

Kupiec-statistics. The min-column measures the acceptance rate for the minimum

spread level, i.e. the bid-ask-spread. The All-column measures the average over all

standardized order sizes, i.e. without the min-column.

Acceptance rates are very high, often above 70 %. Performance is

especially high in large order sizes in illiquid indices, i.e. where the

liquidity adjustment is most needed. However, risk forecasts work less

well in smaller order sizes.

The net-return model proposed in section 4.2 performs also quite well

as can be seen the details in table 5.31.

Table 5.31: Acceptance rate of empirical net-return approach with
weighted spread by index and order size

Table shows the fraction of stocks, where the L-VaR-model has been accepted by

Kupiec-statistics. The min-column measures the acceptance rate for the minimum

spread level, i.e. the bid-ask-spread. The All-column measures the average over all

standardized order sizes, i.e. without the min-column.

As discussed above in the overview, performance is higher than in Giot

and Grammig (2005) at smaller sizes but lower in larger order sizes. The
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detailed results show that this is mainly driven by DAX stocks. In the

more important illiquid indices, the net-return model is slightly superior.

Similarly well are acceptance rates of the proposed modi�ed add-on

model with weighted spread (section 4.1 and 5.3.3.6) as is apparent from

table 5.32.

Table 5.32: Acceptance rate of modi�ed add-on approach with weighted
spread by index and order size

Table shows the fraction of stocks, where the L-VaR-model has been accepted by

Kupiec-statistics. The min-column measures the acceptance rate for the minimum

spread level, i.e. the bid-ask-spread. The All-column measures the average over all

standardized order sizes, i.e. without the min-column.

Performance is slightly better in larger indices than in the empirical

net-return model, but has some outliers in large MDAX sizes and small

TecDAX sizes.

Finally, table 5.33 presents detailed results for the modi�ed net-return

model with weighted spread.

Table 5.33: Acceptance rate of modi�ed net return approach with
weighted spread by index and order size

Table shows the fraction of stocks, where the L-VaR-model has been accepted by

Kupiec-statistics. The min-column measures the acceptance rate for the minimum

spread level, i.e. the bid-ask-spread. The All-column measures the average over all

standardized order sizes, i.e. without the min-column.

As with the empirical net-return model, acceptance rates are lower in

larger order sizes, quite consistent in all indices. Both models impreci-
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sions seems to be driven by the compounding of mid-price return and

liquidity cost processes in the net-return. This compounding limits fore-

castability if processes are very di�erent, as is the case in larger order

sizes. Overall, detailed results can be said to con�rm earlier �ndings.

5.3.6 Synopsis

In this section, I have put a large selection of traceable liquidity risk

models to the test in order to �nd out which is most suitable for daily

risk estimation. I implemented Bangia et al. (1999), Berkowitz (2000a),

Cosandey (2001), Francois-Heude and Van Wynendaele (2001), Giot and

Grammig (2005) as well as the two model propositions from chapter 4 in a

large sample of daily stock data over 5.5 years. I used a standard Kupiec

(1995)-statistic to determine if models provide precise risk forecasts on a

statistically signi�cant basis.

I �nd, that available data is the main driver of the preciseness of risk

forecasts. Models based on limit order data generally outperform mod-

els based on bid-ask-spread or transaction data. The latter (Cosandey

(2001) and Berkowitz (2000a)) are highly approximate and should only

be used if no other data are available. If limit order book data is avail-

able, an approach based on empirical or t-distributed net returns (section

4.2 or Giot and Grammig (2005)) as well as the modi�ed add-on model

(section 4.1) all show satisfactory results. The modi�ed add-on model

with limit order data shows the most consistent outperformance. If only

bid-ask-spread data can be obtained, the modi�ed add-on model with

bid-ask-spreads (section 4.1) is recommendable. On the basis of transac-

tion data, Cosandey (2001) provides suitable results for daily forecasts.
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6 Conclusion

6.1 Summary and implications

In this thesis, I provided an up-to-date overview of the current state

of market liquidity risk measurement. Chapter 2 summarized aspects of

liquidity that are relevant to liquidity risk management. It clearly de�ned

market liquidity from a cost perspective and showed that this perspective

is consistent but advantageous to other existing liquidity de�nitions. I

also provided an overview of liquidity risk models and described their less

explicit assumptions and made similarities and discrepancies transparent.

Chapter 3 described the data set I used in the empirical analysis. Be-

sides standard price, spread and volume data, I used a large data set of

the weighted spread measure by Deutsche Börse, called Xetra Liquidity

Measure (XLM). The weighted spread measure extracts liquidity costs by

order size from the limit order book. It is a data-type made available by

electronic exchanges only in recent years. With daily data of 160 stocks

of the four major German stock indices over 5.5 years, it comprises the

largest weighted-spread sample so far analyzed in academia. I outline un-

der which assumptions weighted spread is a valid liquidity cost measure.

I also provide a detailed empirical analysis of this weighted spread sam-

ple, which allows representative liquidity cost estimates by order size for

the �rst time in literature. I �nd that liquidity cost signi�cantly increase

with order size. Time variation is signi�cantly di�erent for larger than

for smaller order sizes. Both �ndings make it highly likely that weighted

spread proves to be a superior liquidity measure in risk management as

142



Chapter 6. Conclusion

well. In general, assuming no e�ect of order size on liquidity cost will

lead to signi�cant distortions.

In chapter 4 I suggested two new liquidity risk models. The modi-

�ed add-on model concerns a new way to account for non-normality in

liquidity risk. With the help of the Cornish-Fisher approximation, the

�rst four moments (including skewness and kurtosis) of a distribution

can be taken into account when estimating percentiles of a distribution.

The net-return model with weighted spread extends the approach of Giot

and Grammig (2005). It provides a framework to analyze the use and

e�ect of weighted spread in liquidity risk measurement. I developed a

risk decomposition which allows to distill the e�ect of size and liquidity

on risk as well as to extract the e�ect of liquidity-return correlation, an

issue that has been disputed in the literature.

Chapter 5 contains the empirical analysis of this thesis. In a �rst step,

I benchmarked the newly suggested modi�ed add-on model against the

original speci�cation of Bangia et al. (1999). My new suggestion proves

to be highly superior in terms of preciseness. The superiority is robust

when looking at di�erent stock or time sub-samples.

In a second step, I calculated liquidity risk with the net return model

and weighted spread in daily horizons. Liquidity is found to be non-

neglectable even at ten-day horizon. Liquidity risk is shown to signif-

icantly increase with order size. I also �nd that liquidity-return corre-

lations are large and incur an overestimation of liquidity risk by 100 %

when neglected. These results are robust when looking at the expected

shortfall risk measure, risk over time and risk in a diversi�ed stock port-

folio.

In a �nal step, I ran a benchmark between all liquidity risk models

available in daily data, an exercise that has not been done before. I

�nd that models based on weighted spread, i.e., limit order data, provide

risk forecasts with the highest preciseness. The newly suggested modi�ed

add-on model with weighted spread provides precise risk forecasts in sub-

samples most consistently. When having only transaction data available,
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the model by Cosandey (2001) is recommendable. When working with

bid-ask-spread data, the modi�ed add-on model with bid-ask-spread has

the highest preciseness.

Overall, this thesis summarized the current state of research and ex-

tends it into several new directions. By using a unique, representative

data-set and by suggesting new liquidity risk models, the thesis provides

new and superior ways to account for liquidity in risk management.

6.2 Outlook

Market liquidity risk still provides a large realm of topics that require fu-

ture research.1 I believe, that answers to the following questions, which

are - to the best of my knowledge - still open, would be especially in-

teresting. A better understanding of certain aspects of market liquidity

would be helpful and liquidity risk management also shows some loose

ends.

First, although I hypothesized that optimal trading strategies do not

provide any signi�cant bene�ts from a risk perspective, they are certainly

valid in normal market conditions and for block sales. The pressing ques-

tion is how to estimate the parameters required for the optimal trading

algorithms. What is the empirical bene�t of di�erent optimal trading

strategies? In which situations are they (most) valid?

This issue can get tackled from a di�erent perspective as well: When

are liquidity prices e�cient? If they are, then any optimal trading strat-

egy will have to fail. It also only makes sense to add liquidity cost risk to

price risk if prices not yet suitably re�ect liquidity. If mid-prices already

re�ect overall liquidity, must any further adjustment be restricted to the

individual trader's situation, must common liquidity e�ects be neglected?

Second, asset pricing questions based on more precisely estimated price

impact curves would clarify the importance of liquidity costs to investors.

Combining the weighted spread measure of the price impact curve with

1For this section, cp. Stange and Kaserer (2008b).
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the distribution of trading volume yields the total cost paid by investors

per stock. Is this total cost re�ected in prices? It might also be possible

to describe the whole price impact curve with theoretical, calibrated liq-

uidity processes - similar to theoretical descriptions of the interest rate

curve. This might help in situations, where the price impact curve is

non-observable or where forecasting is very di�cult.

Third, the most important issue for liquidity risk measurement is, in

my view, the under-researched treatment of delay risk. The dynamics

of delay (in crises) and its relation to the price dynamics is still unclear.

When and for which assets does trading break down in crises? Further

insight into empirical delay properties would help to choose an appropri-

ate approach to integrate delay risk into liquidity risk measurement. This

research topic would also have to tackle the question of how to measure

and forecast delay, especially in markets where delay is important and

market data is quite perforated. A subsequent empirical comparison of

methods and magnitudes of liquidity risk in di�erent asset classes would

be interesting.

Fourth, the speci�cation of size has been handled di�erently by di�er-

ent authors. When analyzing liquidity cost and risk, which speci�cation

is most suitable? Size can be de�ned as number of shares, volume in

currency units or volume relative to the traded volume in the market.

From the theoretical as well as the empirical perspective an analysis could

be fruitful, which determines liquidity in a more precise and stable way.

Section 3.3.5.1 can provide impetus here.

Fifth, the literature on market liquidity has been enriched by ap-

proaches that have not yet been used in liquidity risk management.

Chacko et al. (2008) calculate liquidity cost in an option pricing frame-

work, which is possible because liquidity can be interpreted as mar-

ketability option as discussed in section 2.2.1. Because it is imple-

mentable based on transaction data, it provides a traceable approach

that is theoretically rigorous at the same time. It might be an interest-

ing venue to explore from a liquidity risk perspective.
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Sixth, liquidity risk management could still need some re�nement.

Du�e and Ziegler (2003) describe optimal liquidation strategies of port-

folios in crises. I believe, that liquidity risk treatment of portfolios still

has neglected potential for further insight. It might also be interest-

ing to understand if it is possible to construct speci�c liquidity options,

that could be used to hedge away the liquidity cost risk. Not long ago,

volatility options became a traded contract in �nancial markets. Is there

similar potential for liquidity options?

Market liquidity risk is still a relatively young research topic where

further insight is possible beyond the re�nement of existing ideas. With

this thesis I hope to have contributed with new approaches and new

empirical �ndings. Further insight is also very necessary as demonstrated

by high interest from practitioners and regulators during the recent sub-

prime events. Market liquidity risk can break �nancial institutions and

reoccurs as topic in almost every modern �nancial crises. Understanding

its structure and making true risks transparent is essential for steering

�nancial institutions through turbulent times.
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