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Abstract—The resource allocation problem at the downlink
of a wireless multiuser multicarrier system is addressed, where
each end user in the cell has two QoS requirements that
need to be fulfilled, namely the minimum data throughput
and the maximum latency time. Under these QoS constraints
and with limited available radio resources (frequency band and
transmit power), the capacity of the system in terms of the
number of servable users is to be maximized. A cross-layer
framework is introduced where subchannel assignment, power
allocation, adaptive modulation and coding, and ARQ protocol
are jointly taken into account. Due to the complex structure of the
optimization a suboptimal solution is proposed, which is shown
by numerical experiments to be computationally tractable yet
yielding relatively satisfactory system performance.

I. I NTRODUCTION

By jointly adapting variables from several layers in a
communication system and thus making more efficient use
of the radio resources,cross-layer optimizationhas become
one of the key approaches to meet the increasing demand
for better quality of service (QoS) in current and future
wireless networks. On the other hand, due to their ability to
overcome frequency selective fading and support high data
rates, multicarrier systems have drawn much research and
industrial attention. In this work, the application of cross-layer
optimization technique to a multicarrier system that serves as a
downlink transmitter is investigated, aiming at allocating radio
resources to the end users in the cell in an efficient manner.

The resource allocation problem in multicarrier systems has
long been studied. In the early work of [1], a multiuser OFDM
subcarrier, bit, and power allocation algorithm to minimize the
total transmit power is proposed. In [2], the Lagrange dual
decomposition method is employed to solve both weighted
sum rate maximization and weighted sum power minimization
problems in OFDMA systems. When cross-layer techniques
come into play, such optimizations would involve variables
from different layers and can be categorized into two classes,
namely thebottom-up optimizations, where the amount of
resources is given and users’ QoS are to be optimized, and the
top-downoptimizations, where the QoS requirements of users
are given and the resources needed to provide such QoS are
to be optimized. In [3], the maximization of a utility function
takes both efficiency and fairness of resource allocation into
account. Such a framework falls into the bottom-up category
where the utility value serves as a QoS metric.

The cell capacity maximization problem under considera-
tion is a bottom-up optimization, and throughout the paper
we refer to the module that solves this optimization as the
resource allocator(RA). We propose a RA algorithm that
gives a suboptimal solution by solving a sequence of top-
down optimizations,i.e., iteratively, the minimum amount
of resources needed to serve a specific subset of users is
computed and compared with the total amount available. The
cross-layer framework from [4] is adopted and adjusted to the
special features of multicarrier systems.

II. SYSTEM MODEL

Consider the downlink scenario of an isolated single-cell
multicarrier system withD users each having one data stream
to be served.1 The data streams, or equivalently the users, are
characterized by two QoS parameters each, namelythroughput
and latencywhich are defined as:
Definition 1: The throughputρk of userk is the data rate that
is available on top of channel coding. LetT be the length of
a transmission time interval(TTI), i.e., the time slot in which
a packet is transmitted, andBk be the number of information
bits that are successfully transmitted during one TTI, then
ρk = Bk/T .
Definition 2: The latencyτk of a packet from userk is the
delay it experiences until received correctly with an outage
probability of no more than the predefined valueπ(out). Let
fk[m] be the probability that it takes exactlym TTI’s to
transmit a packet error-free, thenτk = (Mk−1)(RTD+T )+T
where RTD representsround trip delay, and

Mk = min
M

M s.t.
M
∑

m=1

fk[m] ≥ 1− π(out).

In the following subsections, the mathematical descriptions
of the regarded system components are derived which lay the
basis for cross-layer optimization.

A. Channel Model

The downlink broadcast channel is modeled as frequency-
selective fading over the total system bandwidth and
frequency-flat fading over eachsubchannel, which is consist
of Nc adjacent subcarriers. FDMA is employed meaning the

1The case where each user has more than one data stream can be easily
extended from this work.



assignment of every subchannel is exclusive to one user,
and intercarrier interference(ICI) is not taken into account.
Moreover, we restrict ourselves here to the single-antennacase
both at the base station (BS) and at the mobile stations (MS).

Let Hk,n andσ2
k,n be the channel coefficient and Gaussian

noise variance of userk on thenth subchannel, andpn be the
amount of power allocated on subchanneln. When assigned
to userk, thesignal-to-noise-ratio(SNR) on subchanneln can
be computed as

γk,n =
|Hk,n|2
σ2

k,n

· pn. (1)

We choose the TTI to be of lengthT = 2 ms and
assume that the channel is constant during one TTI. Resource
allocation is updated on a per TTI basis, and one TTI contains
Ns = 16 symbols for data transmission.

B. FEC coding and modulation

We assume that modulation and coding across the subchan-
nels are done independently, and with reference to the WiMAX
standard8 modulation and coding schemes (MCS) are chosen
as candidates, which are listed in Table I.

Table I
MODULATION AND CODING SCHEMES (MCS)

Index Modulation Type Alphabet SizeA Code RateR R log2 A

1 BPSK 2 1/2 0.5
2 QPSK 4 1/2 1

3 QPSK 4 3/4 1.5
4 16-QAM 16 1/2 2

5 16-QAM 16 3/4 3

6 64-QAM 64 2/3 4

7 64-QAM 64 3/4 4.5
8 64-QAM 64 5/6 5

Since intersymbol interference is not present in the system
with the help of cyclic prefix or an equalizer, each subchannel
can be modeled as adiscrete memoryless channel(DMC) over
which thenoisy channel coding theorem[5] can be applied.
Let the modulation alphabet and the coding rate on subchannel
n beAn = {a1, . . . , aAn

} andRn respectively. Thecutoff rate
of subchanneln with SNR γk,n can be expressed as

R0(γk,n, An)

= log2 An − log2

[

1 +
2

An

An−1
∑

m=1

An
∑

l=m+1

e−
1
4
|al−am|2γk,n

]

.

(2)
Note that the cutoff rate is monotonically increasing with SNR
when the modulation alphabet is fixed, yet it is not monotone
with varying modulation levels when SNR is fixed.

The noisy channel coding theorem states that there always
exists a block code with block lengthl and binary code rate
Rn log2 An ≤ R0(γk,n, An) in bits per subchannel use, such
that with maximum likelihood decoding the error probability
π̃k,n of a code word satisfies

π̃k,n ≤ 2−l(R0(γk,n,An)−Rn log2 An). (3)

In order to apply this upper bound on code word error prob-
ability to the extensively used turbo decoded convolutional
code, quantitative investigations have been done in [4] and
an expression for theequivalent block lengthis derived based
on link level simulations. The result from [4] shows that the
performance of a turbo decoded convolutional code applied to
a packet of coded lengthLn in a very good approximation
equals the performance of a block code with block length

neq = β lnLn, (4)

where parameterβ is used to adapt this model to the specifics
of the employed turbo code, andLn = NsNc log2 An. Con-
sequently, the transmission ofLn bits is equivalent to the
sequential transmission ofLn/neq blocks of lengthneq and
has an error rate of

πk,n = 1− (1− π̃k,n)
Ln
neq

≤ 1−
(

1− 2−neq(R0(γk,n,An)−Rn log2 An)
)

Ln
neq

. (5)

C. Protocol

At the MAC layer anautomatic repeat request(ARQ) pro-
tocol is employed. The data sequence transmitted in one TTI
on one subchannel,i.e., a packet, is used as the retransmission
unit. Since with ARQ, the corrupted packets at the receiver are
simply discarded, we assume that the packet error probability
(PEP) of a retransmitted packet is the same as that of its
original transmission, which consequently gives

fk,n[m] = πm−1
k,n (1− πk,n), m ∈ Z+.

The number of transmissions needed to keep the outage
probability belowπ(out) is obtained as

Mk,n =

⌈

lnπ(out)

lnπk,n

⌉

. (6)

Now denote the set of subchannels assigned to userk as
Sk. The latencyτk is determined byMk = maxn∈Sk

Mk,n

according to Definition 2. Throughputρk on the other hand,
equals the sum throughput on every subchanneln ∈ Sk and
can be computed as

ρk =
NsNc

T

∑

n∈Sk

Rn log2 An(1− πk,n) (7)

The quantities mentioned in this section, their notations,as
well as their simulation values are summarized in Table II.

III. C ROSS-LAYER OPTIMIZATION

A. Problem Formulation

As introduced, the RA is provided withD data streams,
each with QoS parametersρ(rq)

k and τ
(rq)
k . The bottom-up



Table II
SYSTEM PARAMETERS

Total bandwidth 10 MHz
Center frequency fc 2.5 GHz

FFT size 1024
Number of data subcarriers 720

Number of subchannels N 30
Number of subcarriers per subchannel Nc 720/30 = 24

Transmission Time Interval (TTI) T 2 ms
Number of data symbols per TTI Ns 16

Round Trip Delay (RTD) RTD 10 ms
Turbo code dependent parameter β 32

Outage probability π(out)
0.01

Number of users in the cell D 24

optimization of maximizing system capacity is formulated as

max
K,{Sk},p,A,R

|K|
s.t. 1

Tp ≤ Ptot,
Si ∩ Sj = ∅, i, j ∈ K, i 6= j
∪k∈KSk ⊆ N ,

(An, Rn) ∈ M, n = 1, . . . , N

ρk ≥ ρ
(rq)
k , k ∈ K

τk ≤ τ
(rq)
k , k ∈ K,

(8)

where Ptot is the total available transmit power,K, N and
M are the set of users, the set of subchannels, and the set
of available MCS, respectively. The top-down optimizationof
minimizing transmit power with respect to user subsetK is
formulated as

min
{Sk},p,A,R

1
Tp

s.t. Si ∩ Sj = ∅, i, j ∈ K, i 6= j
∪k∈KSk ⊆ N ,

(An, Rn) ∈ M, n = 1, . . . , N

ρk ≥ ρ
(rq)
k , k ∈ K

τk ≤ τ
(rq)
k , k ∈ K,

(9)

and its optimum value is denoted byPmin. Note that sinceM
is a finite set of MCS, (9) can be infeasible.

As the latency requirement bounds the maximum number
of transmissions to

Mk =

⌊

τ
(rq)
k − T

RTD + T
+ 1

⌋

, (10)

the maximum tolerable PEP is computed asπ
(rq)
k =

Mk
√

π(out). This means, constraintτk ≤ τ
(rq)
k is equivalent

to πk,n ≤ π
(rq)
k , n ∈ Sk. As Rn log2 An is within the range

from 0.5 to 5, the minimum number of subchannels required
by userk, N

(l)
k , and the maximum number of subchannels

userk can possibly use,N (u)
k , are computed as

N
(l)
k =

⌊

ρ
(rq)
k T

5 ·NsNc

⌋

+ 1, N
(u)
k =

⌈

ρ
(rq)
k T

0.5 ·NsNc

⌉

. (11)

Therefore a sufficient condition for (9) to be feasible is
∑

k∈K N
(l)
k ≤ N .

As it is intractable to enumerate all user subsets, strict
priority order is imposed on theD users such that the reduction
and expansion ofK is simplified. The general RA procedure
is summarized in Algorithm 1.

Algorithm 1 Resource Allocation Procedure by RA
Require: PrioritizedD data streams with QoS requirements
Ensure: Maximum set of data streamsK that can be served

ComputeN
(l)
k , N

(u)
k

K ← max K ′ s.t.
∑K′

k=1 N
(l)
k ≤ N

K ← {1, . . . ,K}, solve (9) withK
while Pmin > Ptot do
K ← K \ {K}, K ← K − 1, solve (9) withK

end while
for K = K + 2, . . . ,D do

if N
(l)
K +

∑

k∈K N
(l)
k ≤ N then

Solve (9) withK ∪ {K}
if Pmin ≤ Ptot then
K ← K ∪ {K}

end if
end if

end for

B. The Three-step Approach

The non-convex top-down optimization has intrinsically a
complicated structure in that the optimization variables are
tightly coupled causing a direct decomposition of the original
problem impossible. In [6], a non-iterative method is proposed
to solve the sum-rate maximization problem in OFDMA
systems subject to the constraints on the proportionality on
user data rates. Based on this idea we propose a three-step
approach to solve (9),i.e., first the subchannel assignment
(SA) is determined, then power allocation (PA) is performed,
at last SA and PA are adjusted if there are free subchannels
left. At each step, some variables are kept fixed while some
others are being optimized: in the SA step, the MCS on every
subchannel is fixed and different assignments are compared by
computing the power needed on each subchannel to achieve
the required PEP; in the PA step, the subchannel assignment
is fixed and the best combination of MCS on each subset of
subchannels is found.

1) Subchannel Assignment (SA):In this step the same MCS
is assumed on every subchannel. If fact, whichever specific
MCS is chosen will yield the same SA. According to (2),
(4), (5), the minimum power required to achieveπ

(rq)
k on a

subchannel can be computed by using a binary search on the
cutoff rate curve, and the results are recorded in matrixP ∈
R

|K|×N
+ . The SA problem is formulated as

min
{Sk}

∑

k∈K

∑

n∈Sk

pk,n

s.t. Si ∩ Sj = ∅, i, j ∈ K, i 6= j
∪k∈KSk ⊆ N ,

|Sk| ≥ N
(l)
k , k ∈ K

|Sk| ≤ N
(u)
k , k ∈ K,

(12)



i.e., from each column ofP one entry is picked such that the
kth row has betweenN (l)

k and N
(u)
k picked entries, and the

sum of all picked entries is minimized.
Intuitively the minimum entry from every column inP is

picked up. If N
(l)
k ≤ |Sk| ≤ N

(u)
k , k ∈ K is not fulfilled,

then a set of unsatisfied usersKu with |Sk| < N
(l)
k , and a set

of oversatisfied usersKo with |Sk| > N
(l)
k are obtained. We

deprive from the oversatisfied users the subchannels with the
least advantage assigning to them, until∀k ∈ Ko, |Sk| = N

(l)
k .

All the deprived subchannels form a set of extra subchannels
Ne. The same assigning procedure is then repeated onKu and
Ne. The recursion stops when there are no more unsatisfied
users. The SA algorithm is summarized in Algorithm 2. It is
a greedy algorithm in the sense that during the assignment,
the unsatisfied and exactly-satisfied users never give up the
subchannels already assigned to them.

Algorithm 2 Subchannel assignment

Require: P = (pk,n), N
(u)
k andN

(l)
k

Sk ← ∅, k ∈ K
for n = 1, . . . , N do

k ← argmink pk,n, Sk ← Sk ∪ {n}
end for
Ku ← {k : |Sk| < N

(l)
k }, Ne ← ∅

while Ku 6= ∅ do
for eachk ∈ {k : |Sk| > N

(l)
k } do

while |Sk| > N
(l)
k do

n← argminn∈Sk
(mink′∈Ku

(pk′,n − pk,n))
Ne ← Ne ∪ {n}, Sk ← Sk \ {n}

end while
end for
for eachn ∈ Ne do

k = argmink∈Ku
pk,n, Sk ← Sk ∪ {n}

end for
Ku ← {k : |Sk| < N

(l)
k }, Ne ← ∅

end while
Ne ← {n : extra subchannels assigned to the lastk ∈ Ku}
Ka ← {k : |Sk| < N

(u)
k }

for eachn ∈ Ne do
k = argmink∈Ka

pk,n, Sk ← Sk ∪ {n}, updateKa

end for

2) Power Allocation (PA): With the SA result as input,
power allocation is no longer coupled among the users. The
top-down optimization (9) can therefore be decomposed into
|K| independent optimizations as

min
∑

n∈Sk

pn s.t. ρk ≥ ρ
(rq)
k , τk ≤ τ

(rq)
k . (13)

Firstly we look for allefficientMCS combinations onn ∈ Sk

such that
∑

n∈Sk

Rn log2 An >
ρ
(rq)
k T

NsNc
(14)

is fulfilled. A MCS combinationMc is said to beefficient
if ∄M ′

c 6= Mc, such that∀n ∈ Sk, (Rn log2 An)M ′

c
≤

(Rn log2 An)Mc
but still fulfills (14). Note that to achieve the

same PEP, the most power-saving MCS combination is always
an efficient one.

For each MCS combination, the optimal power allocation
is the solution to problem

min
{πk,n:n∈Sk}

∑

n∈Sk

pn

s.t. 0 ≤ πk,n ≤ π
(rq)
k , n ∈ Sk,

∑

n∈Sk

Rn log2 An(1− πk,n) ≥ ρ
(rq)
k T

NsNc
.

(15)

Since the mapping from PEP to transmit power is monotonic,
the second constraint in (15) must be active at optimality. What
is more, if the MCS combination satisfies

∑

n∈Sk

Rn log2 An >
ρ
(rq)
k T

(1− π
(rq)
k )NsNc

,

then πk,n = π
(rq)
k , n ∈ Sk is optimum. However, other

properties of the mapping which provide more insight on
solving (15), such as differentiability and convexity, arehard
to prove. As the expense to further reduce the PEP when
it is already small can be very high, central points in the
polyhedron defined by the constraints of (15) could serve as
good approximations to the optimal solution. In the implemen-
tation we choose theanalytic center[7] of the polyhedron in
particular.

3) Adjustment: The outcome of PA might indicate zero
MCS on some subchannels, which means these subchannels
are released from occupation, and can be assigned again to
other users. As higher MCS are much more power consuming
than lower MCS, we find the subchannels using the relatively
highest MCS as well as their possessors, and compare each
alternative of assigning the empty subchannels to these users.
The adjustment phase is in fact an amendment to SA.

IV. SIMULATION RESULTS

24 users uniformly located in a cell of radius2 km are
assumed, each having one data stream to be served. The data
streams are characterized by the typical QoS parameters from
3 classes of traffic, namely voice traffic, video streaming, and
other interactive streaming applications such as gaming. The
QoS requirements of the data streams used in the simulations
are listed in Table III according to their priority order, where
the unit ofρ is kbit/s and the unit ofτ is ms.

Table III
QOS REQUIREMENTS OF20 USERS FOR SIMULATION

User ρk τk User ρk τk

1-6 128 20 13-18 384 40
7-12 1600 40 19-24 200 50

The wireless channel is modeled as a frequency-selective
fading channel consisting of six independent Rayleigh multi-
paths with an exponentially decaying power profile. The delay
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Figure 1. Probability density of the minimum power to serve all20 users

spreads are uniformly distributed within 1µs, resulting in a
rms delay spread of about 0.3µs which is consistent with the
assumed channel coherence bandwidth. The path loss in dB
is computed asPL(d) = 140.6 + 35.0 log10 d following the
COST-Hata model, whered is the distance between MS and
BS in km. We assume a receiver noise level of−174 dBm/Hz
and a total transmit power ofPtot = 10 W, which plus antenna
gain and minus BS internal loss results in aneffective isotropic
radiated power(EIRP) of 54 dBm.

For the purpose of comparison, the allocation schemes
with static SA, where each user is assigned with adjacent
fixed subchannels, with static PA where the same MCS and
PEP are applied on every subchannel the user occupies, and
with static SA+PA which combines the former two are also
simulated. The program is executed with 1000 independent
channel realizations. In Fig. 1-3 it is clearly shown that the
allocation scheme proposed in this paper, under the name
CLARA, outperforms the other three static schemes in reducing
power consumption and providing service to more users,
whereas static SA+PA performs the worst as expected. The
importance of an efficient dynamic SA scheme is also stressed
by the larger gain obtained going from static SA to CLARA.

From Fig.3 where the probabilities of each user getting
served under the four allocation schemes are shown, it can
be seen that fairness is a big issue for the proposed scheme
due to the strict priority imposed on users. This situation can
be improved by adding another scheduling unit on top of
RA, which by delicate algorithms can provide the RA with
consecutive user lists that maintain fairness to a certain extent.

V. CONCLUSION AND OUTLOOK

In this paper a cross-layer assisted resource allocation
scheme for multicarrier systems is proposed. Based on a three-
step approach the transmit power minimization subject to
target QoS values is solved, which is employed by an outer
capacity maximization algorithm to validate the ability ofthe
system to serve a certain subset of QoS demanding users.
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Figure 2. Cumulative distribution of the number of servable users
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Figure 3. Probability of each user to get served

Numerical experiments have demonstrated the effectiveness
of the proposed scheme, which can serve as a good starting
module for a more sophisticated cross-layer framework.
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