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Abstract—Over the last one decade there has been an increas-
ing emphasis on driver-assistance systems for the automotive
domain. In this paper we report our work on designing a camera-
based surveillance system embedded in a “smart” car door. Such
a camera is used to monitor the ambient environment outside
the car – e.g., the presence of obstacles such as approaching
cars or cyclists who might collide with the car door if opened
– and automatically control the car door operations. This is
an enhancement to the currently available side-view mirrors
which the driver/passenger checks before opening the car door.
The focus of this paper is on fast and robust image processing
algorithms specifically targeting such a smart car door system.
The requirement is to quickly detect traffic objects of interest
from gray-scale images captured by omnidirectional cameras.
Whereas known algorithms for object extraction from the image
processing literature rely on color information and are sensitive to
shadows and illumination changes, our proposed algorithms are
highly robust, can operate on gray-scale images (color images
are not available in our setup) and output results in real-
time. To illustrate these, we present a number of experimental
results based on image sequences captured from real-life traffic
scenarios.

I. INTRODUCTION

Driver assistance systems are increasingly gaining impor-

tance in high-end cars. Examples of these include Lane

Departure Warning System (LDW), Adaptive Cruise Control

(ACC), Forward Collision Warning (FCW) and Blind-spot

detection (BSD) [1]. While there are many safety-oriented

driver-assistance systems that function when the car is moving,

a number of accidents happen while the car is stationary and

one of its doors is being opened. A standard practice is to

check the side-view mirrors of the car before opening the door.

However, it is still fairly common for approaching cyclists to

hit suddenly-opened car doors.

In this paper we report our work on designing a smart

car door, that is equipped with one omnidirectional camera

on each side of the car. These cameras monitor the ambient

environment outside the car and warn passengers (or car

door users) about obstacles like approaching cars, bicycles or

pedestrians. Collision avoidance systems use this information

to control, stop or lock car door operations in order to avoid

potential accidents. Figure 1 gives a high-level overview of our

smart car door system. In [2], we presented a generic control

system for intelligent, actuated car doors with arbitrary degrees

of freedom. The focus of this paper was the mechanical design

and the control of the door. However, an important component

Fig. 1. Smart Car Door System

of such a smart door is the image capturing and processing

subsystem, whose output serves as an input to the control

subsystem. In this paper we focus on the camera subsystem

and on robust algorithms for object extraction from image

sequences captured by the camera. The cameras in question

are omnidirectional vision sensors consisting of a perspective

camera focused on a cone-like hyperboloidal mirror (see Fig-

ure 2). Figure 3 shows such an omnidirectional camera system

integrated with the side-view mirror of a car for monitoring

the external environment. Given the large field-of-view of the

vision sensors, the camera is able to monitor the side of the

car door in its entirety (see Figure 4) and the associated image

processing algorithms enable early-detection of impending ob-

stacles. While opening a car door there is usually a small time

interval between parking and the door operation. It is important

to detect approaching traffic before any car door operation is

performed. Approaching cars or cyclists must be identified

even if they are relatively far away from the car. This allows

us to formulate certain preconditions under which our object

detection and extraction algorithms may and should operate:

(i) We may assume a static camera for a short time interval

(parking). This interval may be used to learn the environment

around the door. (ii) Objects that are further away from the

camera occupy less real estate on each video frame (i.e., they

occupy fewer pixels) and are hence not easy to differentiate

from the background. (iii) Due to the large field-of-view of the



Fig. 2. An omnidirectional camera system – a perspective camera focuses
on a hyperboloidal mirror and takes pictures with a field-of-view of 360∘.

Fig. 3. Our camera system integrated with the side-view mirror of a car.

Fig. 4. Panoramic image of the environment around a car door.

cameras used, there is a different view of same object (front,

side and back) as it moves (see Figure 5). (iv) Algorithms

to detect approaching traffic and obstacles must operate in

real-time. Cars driving at 13.89m/s (about 50km/ℎ) move

approximately 0.5m between two frames tracked with cameras

having frame rates of 30 frames/second. Hence, fast-moving

cars have to be detected within a maximum of two or three

frames.

A number of techniques for object detection and extraction

Fig. 5. a) Large and b) very small road objects. c) - e) Different views of
a driving car.

exist in the image processing literature, viz., Hidden Markov

Models [3], Template Matching [4], feature-based detection

methods, optical flow-based methods [5],[6] and background

separating methods. Table I gives a brief overview of possible

methods and compares them in terms of the required compu-

tation time, parallelizability for fast implementation, and the

ability to handle perspective changes. Background estimation

and optical flow are not sensitive to perspective changes and

object size. Furthermore, they do not need prior knowledge

of the object’s property, e.g., color, shape and geometry.

One disadvantage of optical flow is that it can not detect

static or very slow moving objects. Although background

estimation solves this problem, it needs a small time interval

to learn the background. Fortunately, in our setting such an

interval is available, viz., the time interval between parking

and door operation. In this paper we focus on real-time moving

Fig. 6. Block diagram for object detection using background estimation,
shadow compensation and handling of illumination changes.

object extraction algorithms using background estimation-

based techniques. Figure 6 gives a high-level overview of our

smart car door system. In particular, we present extensions

to background estimation (e.g., illumination compensation



Initia-
lisation

Prior
Knowl.

Static Ob-
jects

Obj. Size
Changes

Perspective
Changes

Paralleliza-
bility

Exec.
Time

Template Matching no needed ind bad bad middle slow

HMM no needed ind bad bad middle slow

Feature Based no needed ind bad bad good fast

Optical Flow no no bad ind ind good middle

Background Estimation needed no ind ind ind good fast

TABLE I
COMPARISON OF DIFFERENT OBJECT DETECTION METHODS FOR ENVIRONMENT SURVEILLANCE. Background estimation SEEMS TO YIELD THE BEST

RESULTS IN OUR SETTING. (ind: independent)

and shadow elimination for gray-scale images) which are

specifically tuned to our setting of a smart car door equipped

with omnidirectional cameras. The details of our algorithm for

object extraction are described in what follows.

A. Related Work and Our Contributions

The problem of extracting objects from a video sequence

has been widely studied in surveillance [7], traffic monitoring

[8] and vehicle guidance. In most applications, separating

the foreground from the background is the first step for

object tracking. Background subtraction and foreground mod-

eling are powerful methods whose advantages are feature-

independent segmentation (e.g., textures, direction of move,

speed). Some common techniques for background subtraction

include Kalman filtering [9], kernel density estimation [10],

hidden Markov models [11], mixture of Gaussians [12], [13]

and the use of color-based intensity independent features [14].

Most of these algorithms represent each background pixel

using a probability density function (PDF) and classify pixels

from new images as background depending on the description

of pixels by their density functions. As an alternative, Bhaskar

et al. [15] developed a foreground detection algorithm using

cluster density estimation based on a Gaussian mixture model.

This algorithm is suitable for handling illumination changes

as well as dynamic backgrounds. Similar work was done in

[16] using Kalman filtering to iteratively estimate the dynamic

background texture and the regions of foreground objects.

Kalman filtering was also used by Karman et al. [9] to model

the background dynamics of each pixel by choosing two

different gains, thereby allowing fast adaptation of background

changes and slow adaptation of foreground pixels. Ridder

et al. [17] improved this approach and presented a shadow

detection method assuming only small differences between

overshadowed and non-overshadowed background.

Although many background subtraction techniques have

been proposed, the majority of the algorithms address shadow

detection and illumination compensation by exploiting color

information (see [10], [16]). In scenarios where monochro-

matic video cameras are used – such as ours – the existing

methods are no longer suitable. Furthermore, it is difficult

to differentiate between small illumination changes caused

by shadows or by small, valid foreground objects in gray

scale images. These problems, along with the accuracy of

background subtraction, the handling of sudden illumination

changes and the possibility of parallelizing the algorithms are

the underlying motivations of our work.

Inspired by the background estimator of Ridder et. al. [17]

and by the shadow detector proposed by Jacques Jr. et al.

[18], we develop robust background estimation and foreground

detection algorithms for gray scale images. Shadow borders

are identified in [17], but once detected as foreground it is

impossible to differentiate between a shadow and a foreground.

A good shadow detector for gray scale images was introduced

by Jacques et al. [18] using normalized cross correlation

(NCC). The detector assumes shadow pixels as scaled versions

(darker) of the corresponding background pixels, so that the

NCC in a neighboring region is close to unity. On the other

hand, this shadow detector misclassifies valid foreground pix-

els with small differences as shadow pixels. To overcome these

limitations, we combine and modify these different methods to

design a powerful background subtractor. We also extend the

shadow detector with zero means cross correlation (ZNCC)

in order to distinguish between shadows and valid foreground

pixels. Our proposed algorithm detects illumination changes

using local search windows and updates the background to

compensate for slow or sudden illumination changes.

Our experiments in complex outdoor and indoor environ-

ments under various lightning conditions demonstrate promis-

ing results. We also evaluated and compared our approach with

a background estimator based on Gaussian Mixtures, with the

approach of Jacques Jr. et al. [18], as well as the approach

of Ridder et al. [17]. We also evaluated our algorithms for

their parallelizability potential and compared sequential and

parallel implementations (on an AMD Quad-Core CPU). Our

results indicate that they work in real-time and are suitable for

implementation on embedded platforms.

The rest of the paper is organized as follows. We describe

the image rectification techniques in Section II, the background

estimator, the shadow detector, as well as our handling of

illumination changes in Section III. The results obtained are

discussed in Section IV. Finally, we conclude by briefly

outlining some possibilities for future work.

II. CALIBRATION AND IMAGE RECTIFICATION

In this section we provide the technical details related

to the omnidirectional camera subsystem. Original images

from omnidirectional vision sensors are distorted and are not

easy to handle for conventional image processing algorithms.

The main problem is in extracting geometric and perspective

relations like size and position of objects. To overcome this



limitation, original images are transformed into panoramic

(rectified) images. But in this case the camera model and

the calibration must be precisely known. We designed an

omnidirectional vision system based on the well-known single

point of view (SPOV) theorem of Nayar and Baker [19]. SPOV

is also known as the projection center of the mirror onto which

the perspective camera should focuses. This is a prerequisite

for geometrically correct panoramic image transformation.

Our omnidirectional camera uses a mirror whose surface is

based on a hyperboloidal equation. Using such mirrors, the

SPOV constraint is only valid for an accurate alignment of the

mirror and the camera. However, this is difficult to realize and

hence the camera system must be calibrated to compensate for

misalignments as well as to obtain a precise relation between

3d world point coordinates and the camera sensor coordinates.

A. Calibration

To determine the 3d position of object points projected on

the sensor plane, the function f(p⃗) (see Eq. (1)) describing a

relation between p⃗ in world coordinates xP , yP and zp and

the camera coordinates uP and vP has to be found (see Eq.

1).

P⃗ =

[

uP

vP

]

= f(p⃗) with p⃗ = � ⋅

⎡

⎣

xp

yp
zp

⎤

⎦ , � > 0 (1)

Different techniques are known for determining the function

f(p⃗) [20], [21]. We use the calibration method developed by

Scaramuzza et al. [22]. All points on a vector p⃗ in world

x

y

z

0
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Fig. 7. The camera model (a) used in this paper. The world point P is
mapped on a virtual sensor plane E′′ (b) and the projection transformed to
the real sensor plane (c) using affine transformations.

coordinates (see Figure 7(a)) are projected to the correspond-

ing point P ′′ on the virtual plane E′′ (see Figure 7(b)) and

are then transformed to the real sensor plane which concerns

to misalignments of the camera sensor (see Figure 7(c)).

Scaramuzza et al. propose the relation between world and

virtual sensor plane as

p⃗ =

⎡

⎣

xp

yp
zp

⎤

⎦ = � ⋅

⎡

⎣

uP ′′

vP ′′

f(�)

⎤

⎦

=

⎡

⎣

xp

yp
a0 + a2�

2 + . . .+ aN�N

⎤

⎦ (2)

with � = 1 and � =
√

x2
p⃗ + y2p⃗. Furthermore, they approxi-

mate the component z of f(p⃗) depending on the curvature as

a polynomial function. The relation between the real sensor

plane and the virtual or ideal sensor plane is given as an affine

transformation (see Eq. 3).

P⃗ ′′ = A ⋅ P⃗ + t⃗ with A =

[

c d
d 1

]

P⃗ =

[

uP

vP

]

and t⃗ =

[

ucenter

vcenter

]

(3)

The parameters a0 . . . an, A and t⃗ are the calibration param-

eters.

B. Image Rectification

Using the camera model and the calibration data, the

corresponding 3d object points of all pixels on the sensor plane

can be calculated and vice versa. This allows us to determine a

projection area based on individual projection parameters like

width M , height N as well as a region of interest (ROI) for

image rectification as a first step. Secondly, each pixel [m,n]T

of the projection area is stored in a M ×N × 3 dimensional

matrix F containing its world coordinates X(m,n), Y(m,n)
and Z(m,n). Lastly, the corresponding pixel position of each

point on the projection area is calculated and stored in a look

up table (LUT). Using this information in the LUT, every

original image from the camera can be transformed into a

panoramic images. Figure 8 illustrates this flow.

),,( ZYXf
v

u
=ú

û

ù
ê
ë

é

Interpolation

Undistorted Image

Projection-
parameters

Calibration Data

Source

Camera model

0 u

v

0

n

m

World coordinates
of projection surface

X, Y, Z

Calculation of
projection surface

Fig. 8. Proposed image rectification process.

III. BACKGROUND MODEL

As discussed in Section I, we used background estimation

for extracting objects of interest from the captured images.

Our background model is based on the approach of Karman

et al. [9] and Ridder et al. [17]. It is extended to provide better

shadow detection and to be more robust against illumination

changes for our application. We present the mathematical

details of the background model along with the shadow

detector and a method to account for illumination changes.

We describe the background model based on Kalman filtering

proposed by Karman and Ridder to model the dynamics of

each background pixel in Section III-A. Secondly, we classify

pixels as background or possible foreground pixels using

thresholding. Possible foreground pixels are then classified as

valid foreground or shadow pixels using the NCC and the



ZNCC (see Section III-B and III-C). Finally, we present a

method to account for global illumination changes in Section

III-D.

A. Kalman Background Estimation

In this section, we describe the background model on which

our approach is based. The intensity of a pixel at position (x,y)

at time t is given by Ix,y(t). The estimated system state of

the background model is denoted as Îx,y(t) and its derivative

as
ˆ̇Ix,y(t). The estimation on the background is

[

Îx,y(t)
ˆ̇Ix,y(t)

]

=

[

Ĩx,y(t)
˜̇Ix,y(t)

]

+Kx,y(t) ⋅

(

Ix,y(t)−H ⋅

[

Ĩx,y(t)
˜̇Ix,y(t)

])

(4)

Following Eq. 5, the prediction Ĩx,y(t) of the system state

Îx,y(t) and its derivative
˜̇Ix,y(t) at time t is given by:

[

Ĩx,y(t)
˜̇Ix,y(t)

]

= S ⋅

[

Îx,y(t− 1)
ˆ̇Ix,y(t− 1)

]

(5)

With the system matrix S, the measurement matrix H and the

Kalman gain K is:

S =

[

1 s1,2
0 s2,2

]

, H =
[

1 0
]

and Kx,y(t) =

[

k1x,y(t)
k2x,y(t)

]

(6)

In [9], s1,2 = s2,2 = 0.7 was used for modeling the

background dynamics. Because the camera returns only the in-

tensities Ix,y(t), the measurement matrix H is a constant. The

Kalman gain was chosen depending on detected foreground or

background using a pre-estimation of the next system state (see

Eq. 7 and Eq. 8).

mx,y(t) =

⎧









⎨









⎩

1, if
[

d′x,y(t) ≥ tℎbg

]

∨
[

(d′x,y(t) < tℎbg) ∧
(d′′x,y(t) ≥ tℎbg)

]

0, if
[

d′x,y(t) < tℎbg

]

∧
[

d′′x,y(t) < tℎbg

]

(7)

d′x,y(t) = ∣Ix,y(t)− Ĩx,y(t)∣

d′′x,y(t) = ∣Ix,y(t)− Î ′x,y(t)∣

with Î ′x,y(t) = Ĩx,y(t) + � ⋅
[

Ix,y(t)− Ĩx,y(t)
]

(8)

Pixels whose differences of the intensity to the system state are

smaller than a fixed threshold (d′ < tℎbg), do not necessarily

indicate background. To identify such pixels, a pre-estimation

Î ′x,y(t) of the next system state is calculated assuming that

these pixels belong to background. If the pre-estimated value

d′′ is greater than tℎbg this pixel nevertheless belongs to

foreground. A binary map mx,y(t) represents the segmentation

of pixels (1 for foreground and 0 for background), and the

Kalman gain k1, 2x,y(t) = � or k1, 2x,y(t) = � is chosen

depending on the binary map mx,y(t) (see Eq. 9).

k1, 2x,y(t) =

{

�, if mx,y(t) = 1
�, if mx,y(t) = 0

(9)

If an image only contains background objects, the initialization

of the background can be done using one image. The pixel

information of this image will be the initial background state.

The system state can be given by one image following Eq. 10.

[

Î(x, y, t0)
ˆ̇I(x, y, t0)

]

=

[

I(x, y, t0)
0

]

(10)

Otherwise, if images contain background along with moving

objects, the method proposed in [18] extract background

information from an image sequence and can be used to learn

the initial background.

B. Shadow Detection

For a safe door operation, it is important to predict the risk

of possible collisions in advance. This prediction is based

on the object’s positions and on recognizing if there are

objects with dangerous trajectories. Shadows could cause an

inaccuracy in determining the position that could lead to a

wrong prediction of possible collisions. Hence, shadow pixels

must be detected and suppressed. We use the normalized cross

correlation (NCC, [18]) as an initial step for shadow detection

and refined it using zero means normalized cross correlation

(ZNCC) to handle foreground pixels with small differences

with the background. Let Ĩx,y(t) be the estimated background

image and Ix,y(t) an image given by the camera system.

For each foreground pixel, we generate a template Txy(n,m)
such that Txy(n,m) = Ix+n,y+m(t) for −N ≤ (n,m) < N
where t̄ is the mean of the template Txy(n,m). Furthermore,

let Bxy(n,m) be the template of the background such that

Bxy(n,m) = Îx+n,y+m(t) where b̄ is the mean of template

Bxy(n,m). The ZNCC as well as the NCC (t̄ = 0, b̄ = 0)

between Txy(n,m) and Bxy(n,m) at pixel (x, y) can be

calculated using Eq. 15:

ZNCCx,y =
EZRx,y

EZBx,y ⋅ EZTx,y
(11)

with

EZRx,y =

N
∑

n=−N

N
∑

m=−N

∣(Bxy(n,m)− b̄)∣∣(Txy(n,m)− t̄)∣

EZBx,y =

√

√

√

⎷

N
∑

n=−N

N
∑

m=−N

(Bxy(n,m)− b̄)2 (12)

EZTx,y =

√

√

√

⎷

N
∑

n=−N

N
∑

m=−N

(Txy(n,m)− t̄)2

where EZTx,y considers the energy of the image template and

EZBx,y considers the energy of the estimated background. A

pixel may potentially be classified as shadow if its NCC in the



neighborhood is close to unity and its energy ETx,y is lower

than the energy of the background EBx,y (see Eq. 13).

NCCx,y ≥ tℎNCC and EBx,y > ETx,y (13)

EBx,y as well as ETx,y can be determined by calculating

EZBx,y(b̄ = 0) and EZTx,y(t̄ = 0).

C. Shadow Refinement

Depending on the chosen threshold tℎNCC with (tℎNCC <
1.0), many foreground pixels with small differences to back-

ground pixels may be misclassified as shadow pixels. To over-

come this limitation, we refined the classification of shadow-

and nonshadow-pixels using the ZNCC. The advantage of

ZNCC is light invariance, so that only differences in texture

cause significant changes in its value. The refinement stage

verifies if there are significant changes through textures and

not through illumination. Although the ZNCC is light invari-

ant, image noise (texture changes) influence the ZNCC and

cause an offset. This offset � can be determined while learning

the background model or can be accounted for by the threshold

tℎZNCC . Similar to the NCC, a pixel is a shadow candidate if

the ZNCC in the neighborhood is close to the learned initial

value and the energy ETx,y of the template is lower than the

energy of the background EBx,y . But contrary to the NCC,

EZTx,y and EZBx,y represent only the energy of the textures

from the background and the template. Hence, the energy of

texture from valid foreground pixels can be lower than the

energy of texture from background which is the case for large

homogenous objects like cars. So, a pixel must then be a

shadow candidate if the energy EZTx,y is approximately as

equal as the energy EZBx,y . Eq. 15 expresses this relation.

∣ZNCCx,y − (1.0− �)∣ ≤ tℎZNCC and

∣EZBx,y − EZTx,y∣ ≤ tℎcomp and (14)

ETx,y < EBx,y

D. Active Light Adaptation

Background models based on Kalman filtering can follow

slow illumination changes in the background. However, when

foreground objects cover the background, illumination changes

in the background cannot be detected. Furthermore, sudden

illumination changes cannot be respected by the background

because depending on the chosen threshold sudden illumi-

nation changes cannot be classified as valid foreground or

illumination changes. So there is a need to modify the back-

ground, taking illumination changes into account. Therefore,

we subdivide every new image into m subimages at each

position px(m) and py(m) fitting the hole image and calculate

their mean gray values (see Eq. 15).

�(m, t) =
1

J ⋅ I

J/2
∑

j=−J/2

I/2
∑

i=−I/2

I(px(m)+j, py(m)+i, t) (15)

Here, J and I are the subimage sizes. The global illumination

change Δ(t) can now be detected by calculating the median

tℎbg FG: � BG: � Size NCC/ZNCC

7 0.00004 0.004 5 × 5

tℎNCC tℎZNCC tℎΔ NoW : Size(J × I)

0.992 0.2 2.0 90 (30 × 18)

TABLE II
OVERVIEW OF OPTIMIZED PARAMETERS.

of all local illumination changes �(m, t):

Δ(t) = median
m

�(m, t) (16)

with

�(m, t) = �(m, t)− �(m, t− 1) (17)

Because small illumination changes are adapted by the back-

ground model, we decided to use simple thresholding in order

to avoid modifying the background model too frequently.

Δ(t) =

{

0, if Δ(t) < tℎΔ

Δ(t), if Δ(t) ≥ tℎΔ
(18)

Finally, Eq. 5 for background estimation is modified to over-

come illumination changes.
[

Ĩx,y(t)
˜̇Ix,y(t)

]

= S ⋅

[

Îx,y(t− 1)
ˆ̇Ix,y(t− 1)

]

+

[

Δ(t)
0

]

(19)

Using this approach, the background model can account for

slow as well as for sudden illumination changes.

E. Parallelization

For all our proposed techniques, it may be seen that different

pixels may be processed in parallel. In other words, image

rectification, the background estimator, the shadow detector as

well as the illumination compensation can all be run in parallel

on a multi-core CPU. As mentioned before, our algorithm have

to work in real-time and hence such parallelization is highly

desirable. This is useful for speeding up the system for time

critical task like detection of traffic participants. The original

image returned by the camera subsystem is divided into n
subimages and the same number of threads is generated to

run on a multi-core platform. After processing each image

the results from all threads must be merged and interpolated

(e.g., when an object being detected is split across two or

more subimages) for further object detection and classification

algorithms. Figure 9 illustrates our parallelization technique.

IV. EXPERIMENTAL RESULTS

To verify and evaluate our approach, we conducted exper-

iments in complex environments containing weak and strong

shadows as well as small differences between foreground and

background using an omnidirectional vision system (ODVS).

Image rectification was used to transform the captured images

into panoramic images of size 480× 204 pixels. Images from

the ODVS were used to test the algorithm under various

conditions (dark and light regions, image noise and different

resolutions due to image rectification and interpolation). Table

II gives an overview of the optimized parameters.



Fig. 9. Parallelization of the object detecting algorithm.

A. Detection of Shadow Pixel Candidates

To detect small differences in intensity between foreground

and background objects, the threshold tℎbg (see Eq. (7)) must

be low. An experimentally obtained value was tℎbg ≥ 7
which allows the detection of small intensity differences, but

still many shadow pixels and noise are detected. Figure 10

illustrates the result of foreground detection (BG/FG) for one

pixel over time using NCC and ZNCC. NCC was useful to

pre-estimate shadow pixels, but valid foreground pixels are

often misclassified as shadow pixels which can be seen on

the noisy characteristic for the foreground (BG/FG NCC).

ZNCC overcomes these limitations by taking textural changes

into account, so that foreground pixels are not misclassified

as background. The result is a smoother characteristic of the

foreground / background characteristic (BG/FG ZNCC).

B. Illumination Changes and Background Adaptation

Figure 11 illustrates our experiments with various illumina-

tion changes. The reference characteristic of the background

is presented in Figure 11(a), various characteristics of the

background disturbed by illumination changes in Figure 11(b)

and Figure 11(c). The background model accounts for slow

illumination changes even if the background was covered for

a short time interval and illumination changes were not to

large (see Figure 11(c), frames 0− 100). Sudden illumination

changes, which are larger than tℎbg , cause wrong foreground

information (see frames (280 - 310) and (380 - 400)). Lastly,

figure (11(d)) demonstrates, that detected illumination changes

can successfully be compensated if they are accounted for

by the background model (see Eq. (19)). We also conducted

experiments to find the optimal number of search windows

(NoW) for detecting global illumination changes. The number

of search windows must be chosen so that influence of illumi-
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Fig. 10. Top: Characteristic of NCC and ZNCC from an image pixel. Middle
and Down: Classification of foreground (FG/BG = 1/0) using NCC and
refined by ZNCC. ZNCC can better distinguish valid foreground from shadow.

nation changes caused by foreground objects is minimized (see

Eq. (16)). We generated a test profile of illumination changes

(IC) and tracked it by detecting illumination changes with

different numbers of search windows. Experiments showed

that at least 60 search windows were necessary to track the

light profile sufficiently. The main problem of less then 60

search windows is the high influence of lighting changes
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Fig. 11. (a) One pixel and the detected foreground over time (reference). (b)
Misclassification of foreground pixels caused by fast illuminations changes. (c)
Misclassification of foreground pixels caused by slow illuminations changes.
(d) Adaptation of fast and slow illumination changes.
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Fig. 12. The more number of search windows (NoW) can be used for
detecting illumination changes(IC), the better is the detection result. Good
results give a NoW of 60 - 90.

caused by foreground objects. The influence of foreground

objects is almost suppressed using 90 NoW. Our measurements

of tracking the test profile using different numbers of search

windows illustrates Figure 12. We also derived from our

experiments that one search window should not be smaller than

(15×15) pixels due to the increased influence of image noise

from smaller window size. An offset less than 2 (less than

tℎΔ) in tracking the profile was tolerable and automatically

adapted by the background model.

C. Validation of Foreground Pixels

Not all detected foreground pixels need to be valid (true

positives = t.p.), i.e., there might also be false positives.

For example, shadow pixels are often misclassified as valid

foreground (false positives = f.p.). On the other hand, pixels

having small differences to background can falsely be clas-

sified as background pixels (f.n., false negatives). Figure 13

gives an example of a typical road scenario containing both

true and false positives as well as false negatives. We evaluated

Fig. 13. a) Detected pixels of a foreground object. b) Some pixels are not
detected as background or shadow pixels and highlighted as true positives.
There are also valid foreground pixels which are not highlighted as foreground
(false negatives).

our algorithm under various conditions like diffused light,

direct sunlight and indoor conditions. We compared the results

obtained with a perfect detection. These results are shown

in Table III, where the percentages were computed based on

200 test images. Good detection rates were achieved for large

Scenario Obj. Size t.p. f.n. f.p.

Diffuse light
small 85% 15% 2%
large 95% 5% 3%

Sunlight
small 76% 24% 7%
large 93% 7% 10%

Indoor cond.
small 90% 10% 1%
large 97% 3% 4%

TABLE III
OVERVIEW OF OUR VALIDATION RESULTS.

foreground objects in all tested scenarios. Clearly, having a

large fraction of misclassified pixels results in an object not

being detected. Furthermore, shadow pixels in images with

sunlit scenarios can easily be misclassified as valid foreground

pixels.

D. Computation Time and Parallelization

We chose a complex indoor environment with three walking

people, shadow effects and some illumination changes (switch-

ing light on/off) to measure the execution time of the proposed

algorithm. We use about 400 test images of this data set and

calculated the mean execution time as well as the standard

deviation (Std. Dev.). Table IV demonstrates the execution

times for rectification, background modeling as well as shadow

detection and illumination changes using a single CPU of a

2.3 GHz AMD Phenom 9650 quad-core CPU. As discussed in

Section III-E, we parallelized our object detection algorithm

using multithreading on the quad-core CPU and measured the

execution times for the same test data set. The image was

divided into n subimages, each of which was processed by a

different concurrent thread. The result of all threads is then

merged using small thread called interpolation. Clearly, as

the total computation time will be decreased with increasing



Mean Time Std. Dev. Image Size

Rectification ≈ 3.6 ms 0.7 ms 640 × 480

Background ≈ 30.1 ms 1.2 ms 480 × 204

Shadow Dect ≈ 24.1 ms 2.3 ms ”

Ill. Comp ≈ 10.4 ms 1.6 ms ”

Total Time 68.2 ms

TABLE IV
THIS TABLE ILLUSTRATES THE COMPUTATION TIME ON A 2.3 GHZ AMD
PHENOM 9650 QUAD-CORE FOR THE NON PARALLELIZED ALGORITHM.

number of threads, the time for merging and interpolation

increased. Table V gives an overview of the measured times.

1 CPU 2 CPU 4 CPU

Rectification ≈ 3.6 ms ≈ 1.9 ms ≈ 1.0 ms

Background ≈ 30.1 ms ≈ 15.1 ms ≈ 7.5 ms

Shadow Dect ≈ 24.1 ms ≈ 12.2 ms ≈ 6.3 ms

Ill. Comp ≈ 10.4 ms ≈ 5.6 ms ≈ 2.8 ms

Interpolation 0.0 ms ≈ 2.0 ms ≈ 2.2 ms

Total Time 68.2 ms 36.8 ms 19.8 ms

TABLE V
THIS TABLE ILLUSTRATES THE COMPUTATION TIME ON A 2.3 GHZ AMD

PHENOM 9650 QUAD-CORE FOR THE PARALLELIZED ALGORITHM.

Figure 14 illustrates the single computation time for each

processing step as well as the overall computation time for

more than 4 CPUs. This estimation is based on our measure-

ments for 1, 2 and 4 CPUs and is extrapolated up to 16 CPUs.

Due to the increasing time for merging and interpolation the

results of all threads there is no appreciable speed up using

more than 16 CPUs.

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

Number of concurrent threads

E
x
e
c
u
ti
o
n
 t
im

e
 [
m

s
]

 

 

Rectification

Background

Shadow

Ill. Comp

Interpolation

Total Time

Fig. 14. Estimation of computation time using more than 4 CPUs.

Finally, we evaluated our proposed method using various

scenarios and compare our approach with other well known

algorithm described in Section I-A. Figure 15 illustrates one

of our evaluated scenarios containing up to 500 test frames.

Difficulties of this scenario are a less textured environment

as well as weak and strong shadows induced by different

lightning sources. While the approach in [17] modeled the

background well, shadow detection failed in some cases. Sim-

ilarly, while the shadow detector in [18] performed well, the

background model has some limitations. One limitation is that

once the background is learned the background is not updated,

which results in many noisy foreground pixels caused by

illumination changes etc. The combination of both algorithms

and the modification of the shadow detector as well as the

light compensation led in a powerful background estimator

which resulted in better foreground detection on grayscale

images, when compared with state of the art techniques (see

Figure 15).

Original image sequence.

Foreground detection using Mixture of Gaussian and low

thresholding results misclassification (shadows, noise).

Less noise in background modeling based on [17], but still detected

shadows pixels.

There is a good shadow detection in [18], but still image noise.

Our approach with proposed shadow and foreground detection.

Noise as well as shadows can be better suppressed.

Fig. 15. Evaluation of our approach with different background models and
shadow detection algorithms.

After successful and precise extracting of traffic participants

(foreground) object classification and recognition would be the

next step for consequent task. Figure 16 demonstrates detected

road users and the prediction of possible collision using the

object’s image positions as well as their trajectories.

V. CONCLUDING REMARKS

We proposed algorithms for robust background estimation

and foreground detection in gray scale images captured by om-

nidirectional cameras embedded inside a smart car door. Our



Fig. 16. Detected traffic participants and road user.

algorithms segment the foreground based on Kalman-filtering

as a first step. Shadow pixel candidates are determined using

NCC, and a refinement is carried out using ZNCC to distin-

guish between foreground pixels with small differences from

background or shadow pixels. In order to reduce the influence

of illumination changes that cause foreground detection to fail,

illumination changes were detected by local search windows

and compensated for by updating the background model. The

proposed algorithms were successfully implemented to track

objects like walking humans, motorbikes, bicycles and cars.

They were parallelized to obtain attractive speedups on multi-

core processors. Finally, they were evaluated against other

state-of-the-art methods and showed enhanced foreground

detection in our setting. We believe that further studies on

optimally selecting the different parameters associated with

the algorithms are necessary to make them work better in

a wide variety of traffic scenarios and lighting conditions.

Another interesting direction to explore would be to implement

our algorithms on small form-factor embedded platforms (e.g.,

ones made up of a heterogeneous collection of reconfigurable

and general-purpose processors) which blend well with a

standard automotive electronics setup. Such platforms might

also lead to more efficient/fast implementations and therefore

better reaction times for the smart door.
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