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1 Introduction

1.1 The phenomenon of charge transfer in DNA

The discovery of the structure of DNA by Watson and Crick in 1953" was the beginning of a
breakthrough, which shaped a new world of biomolecular sciences. The ability of DNA to code
the genetic information of the majority of known organisms, to conserve and to transfer it
persistently in cell replications over millions of years brought up numerous fundamental
questions about the mechanisms acting in living nature. The DNA of highly evolved species
comprises milliards of subunits, but is constructed from only a few aromatic molecules. From
the point of view of statistical physics, a molecule of this size can not sustain a stable structure
and should inevitably undergo irreversible changes with time due to thermal fluctuations or
solar radiation, resulting in a continuous series of bond breakages and subsequent aging and
degradation of matter. Indeed, such processes take place in DNA but organisms have various
means of protection and of repair of its damages.

The amazing mechanism of self-repair and the stable coordinated expression of genes in
different locations of DNA point to the idea that these complex processes should be
orchestrated by currents flowing through the thread. In other words, DNA could serve as a
molecular wire. A more detailed inspection of its structure and analogies with solid state
physics resulted in a further support of this idea: the double helix is composed of a series of
aromatic base-pairs stacked on top of each other and, to a certain extent, can be viewed as a
one-dimensional molecular crystal. Not long after the structure of DNA had been unraveled, it
was suggested that these m-stacked arrays might be conducting® in a fashion similar to organic
crystals, which demonstrate hopping or metallic conductivity.> Despite numerous fruitful
contacts with solid state physics outlined in later studies,*® DNA molecules turned out to
possess distinctly different characteristics from conventional crystals, which rendered their
description more complicated. It is not only the irregularity of the sequences, but also the very
high flexibility of DNA with respect to conformational changes, which modulate the tightness
and alignment of n-stacking of adjacent base-pairs. The latter is a crucial factor for expression
of conductivity since it determines the degree of overlap between the electronic states of
neighboring base-pairs. Other factors contributing to the complexity of electron transport in
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DNA are the surrounding medium and the dynamics of counterions that balance negative
charges of the sugar-phosphate backbone. Given these briefly outlined complications and the
different experimental conditions at which DNA is processed, the scientific community could
hardly come to consensus with regard to DNA conductivity during the last decades.

In the current era of nanoelectronics the problem of DNA conductivity received renewed
attention due to the expected practical benefits, when in the middle of the 90s the group of
Barton”® announced results, which suggested that native DNA could perform as a molecular
nanowire. A very promising direction which appeared later is to enhance the intrinsic
conductivity of DNA by its inclusion into hybrid composites®° like metal nanoparticle wires in
which DNA serves as a template for the embedding of conducting species. There were already
several attempts to create a new generation of electronic devices based on self-assembling
materials where the inherent properties of DNA were exploited such as conformational
transitions: few prototypes of nanodevices based on transitions between different DNA forms,**
duplexes and triplexes,* duplexes and quadruplexes® were already produced. DNA with its
extraordinary recognition and coding capabilities stemming from the complementarity of
strands is a candidate for bio-computing, too.** Together with the possible applications in
medical diagnostics,*®
biological materials, this macromolecule represents a prospective source of fascinating

where DNA could be implemented for fast sensing of various

discoveries and applications in different fields.

1.2 Experimental approaches to charge transfer in DNA

The most straightforward approach to explore the conductivity of DNA would be to measure
directly the current through DNA fragments. Such experiments were already conducted either

17,18

in the setting of Atomic Force Microscopy (AFM), where DNA was spread on mica plates,

or in the setting of Scanning Tunneling Microscopy (STM),**%

where DNA was commonly
deposited on gold. A serious disadvantage of these setups are issues with “electrode contacts”
that strongly affect the molecular structure when the tips touch the sample: DNA was found to
be too short within these experiments.”*?> Moreover, the substrate pretreatment, which is
necessary to deposit negatively charged DNA onto a mica surface, changes the electric
properties of DNA from insulating to conducting.®?* For both methods (AFM, STM) there are
strong ongoing efforts to avoid non-specific substrate-molecule longitudinal contacts™*® by
performing measurements for standing molecules covalently bound to electrodes.?”? The latter
is achieved by forming thiol-gold covalent bonds® between complementary strands of DNA,
where one strand is attached to the gold surface and the other one to a gold nanoparticle.*
These experiments®>?® undoubtedly demonstrated that significant currents exist in DNA, but

nevertheless the mechanism of conductivity remains questionable.*



Chapter 1 Introduction 3

The original experiments”® which boosted the interest in electric properties of DNA, were
carried out in solution mainly targeting oxidative damage processes of DNA. In these
experiments an electron hole (the typical charge carrier in many experiments on DNA) was
injected into oligonucleotides through an additional molecular species attached to DNA.
Covalent binding of such species to DNA is an important prerequisite for efficient ET.%
Modified bases or dyes capping (intercalating) the macromolecule served as sources of
holes.®**** The propagation of the hole, after initial oxidation, from a cation G* along a DNA 7-
stack puts an additional requirement on the choice of hole injector which should be suitably
charged in order to avoid Coulomb attraction.* The guanine cation G* can undergo several side
reactions like deprotonation or reaction with water/oxygen®*3**® forming various products,
which are normally described as G*.3” A hole injection system introduced by Giese et al.**
employes a chemical reaction that yields a sugar radical cation which exhibits a higher
oxidation potential than G and injects a hole into the nearest guanine.** The hole injection
systems works from the ground state and thus has the advantage that there is no fast back
charge transfer process.®® The incorporation of the latter system allowed first detailed and
consistent studies of charge transfer mechanisms in DNA.*® The advancement of the hole is
sequence dependent:*® a hole is transmitted from its source to the DNA sites with lowest
oxidation potentials. The hierarchy of increasing oxidation potentials*** for the four DNA
nucleobases is: guanine (G) < adenine (A) < cytosine (C) and thymine (T). Thus, mainly G or a
sequence® of several adjacent guanines serve as hole acceptors. If guanine G is not present in
the sequence context or if there are at least 4 AT base-pairs between nearest guanines, then hole
propagation goes through adenines A.* The corresponding rates of hole transfer are measured
in solution as a function of the distance between hole donor and acceptor by fluorescence
quenching methods”*®
of Barton and collaborators”® showed that the hole propagates along the DNA stack essentially
distance-independently and at much higher rates than those typical for proteins. The mechanism

and time-resolved pump-probe spectroscopy.*®*” The first experiments

with detailed quantitative information on this process was provided later.*®

Biochemical methods deliver an alternative scheme for detecting electron transfer (ET)
processes.*® The approach relies on gel electrophoresis, which allows the location of oxidatively
damaged base-pairs within a DNA strand. These experimentally studied oxidation processes
can occur in vivo in situations that lead to damages of DNA within cells.*® The photooxidant is
covalently tethered to DNA and intercalated into the double strand; holes are produced, which
travel over long distances and preferably damages guanine® by performing “chemistry at a

distance”.*®

This brief overview of experimental approaches clearly suggests that complementary
theoretical studies are required to achieve a consistent picture of ET in DNA.
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1.3 Theoretical treatment of charge transfer in DNA

Many experiments on charge transport (CT) in DNA address hole transfer. Therefore
theoretical efforts often also describe hole propagation. However, experiments on transfer of
electrons were recently reported.”* For the mathematical formalism involved in the present
work, such distinction is irrelevant and we will use these terms interchangeably. According to
the latest studies,”*** the holes in DNA are confined to a single base-pair and quantum effects
play a crucial role.®® The latter are affected by the local environment of a base-pair, its
alignment and geometric distortions caused by thermal fluctuations. With respect to
propagation along the DNA =n-stack, the two competing mechanisms, short-range tunneling
(superexchange) and long-range hopping, were finally combined into one superexchange-
mediated charge hopping model.***®**" This combined model emphasized the rather
complicated character of charge transfer in DNA complexes that contain sequential, interstrand,
intrastrand  superexchange-mediated and direct interstrand hole transfer.’’ These two
mechanisms initially stemmed from interpretations of contradictory data that had been obtained
in solution experiments: some results pointed to a rather weak dependence of the CT rates with
the donor-acceptor distance*®® and other results, from studies of oxidative damage, suggested a
strong distance dependence of the rates.*® It was shown that for short separations (less than four
intervening AT base-pairs) hole transfer rates decay exponentially with the distance as is typical
for a direct tunneling mechanism.*® In this case the CT rate decays dramatically with the
distance between donor and acceptor sites, where usually guanine moieties are separated by
bridges comprised of an increasing number of AT units.*® When the separation between donor
and acceptor sites increases beyond about 3-5 intervening base-pairs, then the mechanism
changes to hopping> governed by thermal fluctuations.’®®®®" According to this mechanistic

62,63

representation of CT, single G or A moieties act as stepping stones for hole transport, since

they have the lowest oxidation potential among the four native nucleobases.

One of the advantages of hopping theory®®®%®*

is that its description incorporates one main
phenomenological parameter, namely the relative rates of elementary hopping steps between G
sites that are separated by AT-bridges of different length. Knowledge of the relative rates also
enables one to evaluate®® the distance dependence of charge transfer in experiments on DNA
duplexes.®**#%567 Knowledge of relative hopping rates, however, is insufficient for determining
how fast a hole generated in DNA can be transferred over a certain distance. To address this
issue, absolute rates of different hopping steps should be obtained. This has been done
experimentally by performing time-resolved measurements on DNA containing either different
charge donor and acceptor moieties*®%°

DNA hairpins.”®"*

or identical ones, namely, guanine nucleobases in
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1.4 Motivation and overview

In general, elementary CT steps are considered to be affected mainly by two factors: (i) the
magnitude of the electronic coupling between donor and acceptor; (ii) the intensity of molecular
motions that ensure an overlap of initial and final quantum states. Electronic coupling and its
conformational and distance dependence have received much attention from theoreticians in the
recent years.’>’® Meanwhile, the evaluation of the contribution of molecular motions to transfer
rates still seems to be a serious bottleneck when modeling CT reactions.

All theoretical descriptions of electron transfer have two common quantities within the
Boltzmann factor which regulates the degree of electronic overlap between donor and acceptor
states: the free energy difference AG® between donor and acceptor states, and the so-called
“reorganization energy”’, conventionally denoted as A. Theoretical estimates of CT rates depend
crucially on them, as both enter an exponential term in the mathematical expressions. Marcus
originally introduced the reorganization energy’® to characterize the comparatively slow
reorganizational process that occurs as the originally polarized medium, assisted by molecular
vibrations, responds to the relocation of the charge. In short, it is via the reorganization energy
that the molecular vibrations affect the rate of a CT reaction in an extremely sensitive way.

From experiment one knows that a hole propagates along the DNA z-stack on a scale of tens
to hundreds of picoseconds*’ or even of up to nanoseconds,” depending on the acceptor moiety
and on the number of intervening AT base-pairs. During this time, not only the surrounding
water undergoes structural changes (reorientation times of several picoseconds),”® but also the
dynamics of sodium ions (in the range of hundreds of picoseconds)’’ strongly affects the hole

81,82

energetics.”®’® As it was recognized both theoretically®® and experimentally,*®? the solvent

substantially affects the rate of charge transfer. In addition, experimental studies on

oligonucleotides®*8

indicate that structural distortions of DNA may play a major role in CT.
Therefore, modeling of ET rates necessitates a full atomistic description of the system (DNA
and solvent) at least on the scale of hundreds of picoseconds. Based on atomistic considerations
of CT, the present work establishes a method that allows one to determine the solvent
contribution to the reorganization energy in a direct, accurate way by means of molecular

dynamics simulations.

Molecular dynamics (MD) simulations operating on the timescale of nanoseconds are well
established tools for studying the structure and its thermal fluctuations of DNA and its
environment.®>®® Based on empirical force fields, they describe the time evolution of DNA
motion®’ and they complement the corresponding information from experimental methods like
X-ray crystallography and nuclear magnetic resonance (NMR).

In the present study, MD simulations with an explicit description of DNA and its solvent
environment by advanced polarizable force fields are applied in order to estimate the solvent
reorganization energy in a quantitative fashion in the framework of the semi-classical Marcus
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treatment of CT. A series of studies had been reported®®*® to evaluate the solvent
reorganization energy by MD methods. The current work aims at improving this approach by
paying close attention to the electronic polarization.®? The suggested computational procedure
is first established for the classical two-spheres model of Marcus and subsequently transferred
to large-scale simulations of biomolecules like DNA and its complexes with the dye
Rhodamine 6G (R6G).

Chapter 2 reviews the original concept of the reorganization energy by considering changes
in the medium in terms of the reaction coordinate. The physical picture underlying the
molecular distortions caused by CT is illustrated. Finally, this chapter provides a brief overview
of classical ET theory as developed by Marcus and its most important outcomes. Chapter 3
summarizes modern ET rate theories which show how quantum effects influence the
reorganization energy.

Chapters 4 and 5 are devoted to methodological issues related to the computational method
for evaluating the solvent reorganization energy. Chapter 4 summarizes existing methods and
their shortcomings and justifies the choice of MD for the purposes of the present work. Chapter
5 contains a brief synopsis of key issues related to MD simulations: force fields, electrostatic
and van der Waals interactions, electronic polarization, periodic boundary conditions,
temperature and pressure control.

Chapter 6 addresses two methodological issues. It introduces MD simulations with a
polarizable force field for account of solvent reorganization energy and it compares various
ways to analyze the MD data. The evaluation methods and their outcomes are thoroughly tested
against the classical two-spheres solute model formulated for CT reactions by Marcus.*® Special
attention is paid to the solvent, the distance dependence of the reorganization energy, the role of
the electronic polarization and the application of effective optical dielectric constants for
theoretical estimates. Chapters 7 and 8 apply this procedure to the calculation of solvent
reorganization energies of DNA duplexes and their complexes with Rhodamine 6G. The results
from simulations with and without an explicitly incorporated electronic polarization are
compared. The chapters discuss the influence of charge sets, separate contributions of solute
and solvent electronic polarizations, and partial contributions of different molecular groups to
changes of the solvent reorganization energy. In addition, the distance dependence of the
solvent reorganization energies, the influence of DNA conformations and the flexibility of
duplexes in ET processes are addressed. Reorganization energies calculated with the polarizable
force field are tested against experimental data.

The last chapter provides a summary of the results and an outlook.
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2 The Classical Marcus Picture of Electron Transfer.

Reorganization Energy

2.1 Solvent response to ET. Reaction coordinate

Before addressing the standard classical approach to electron transfer (ET) due to Marcus,’*%*

a rather simple model® of the solvent reorganization enery will be introduced which is restricted
to ET between two equivalent electron localization sites A and B in an aqueous solvent. In other
words, for simplicity the free energy change AG® between the two CT states is assumed to be
zero. This is the so-called symmetric case. As an example of typical solvent response to ET
between A and B only one physical effect is included, namely, the water dipole moment
reorientation.

Also for simplicity, the response due to water reorientation is described for one water
molecule only with its oxygen atom fixed at a certain distance above the midpoint of the line
connecting sites A and B. Rotation of the water molecule around this point is allowed. The
dipole moment u of the water molecule forms an angle & with the perpendicular bisector of the
line between A and B (Figure 2.1). If the electron is localized on A, the dipole will tend to point
towards A; similarly, if the electron is localized on B, then the dipole will be redirected towards
B. If the distance between A and B is large enough, there will be two stable orientations of the
dipole of the water molecule, characterized by angle 6: 8 = —6, with the electron at A, and 6 = 6
with the electron at B. Thus, the angle 0 is a measure of the solvent response to ET (or,
alternatively, of the polarization change after ET) and could be treated as a reaction coordinate.
If the water molecule is situated far from A and B (or the interaction of the water dipole with
both centers is weak), then the total potential curve for the rotation of the water molecule around
the two ET minima may be approximated as parabolae. With the electron at B one has:

U(6)=U, +%u"(0)(<9—<90)2 o, (2.2)

Terms of higher order than second are neglected. The two ET-relevant parabolae, with
minima located at the centers of sites A and B, are shown in Figure 2.1. The constant term Uy is
omitted as long as it is the same for both potential energy curves. The states with the electron
residing on site A or B, together with the corresponding potential energy curves, are referred to
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in the following text as “reactant”, R, and “product” states, P, respectively. Introducing the force
constant f = U"(0) as the second derivative of U(#) along the reaction coordinate 4, one therefore
has:

U (0)==f(6+6,) (2.2)

U.(8)==f(6-6,)". (2.3)

NI, NP

The difference between the two energy expressions, Ugr — Up = 2f8,6, can be rewritten as:

e:%%(uR—uP). 2.4)

From Eg. (2.4) one notes that the solvent coordinate and the potential energy difference are
proportional. Thus either quantity could be used as reaction coordinate. Moreover, the
representation of the potential energy as a function of the variable 4 reflects only the dependence
of the ET energy on one specific geometric parameter, while the representation as a function of
(Ur — Up) implicitly includes all possible factors influencing the charge transfer. Also, the choice
of the angle & used for the present illustration is rather arbitrary; in a similar fashion any other
structural parameter, such as bond lengths, bond angles, etc. could be selected. Therefore, in
order to be more consistent further on with a general description, we shall present the ET picture
only as a function of the potential energy difference (Ugr — Up) and the force constant f will be
treated as an average reflecting the overall response of the (aqueous) environment.

Another remark is due regarding a relationship between the free energy and the potential
energy. Unlike done so far, one normally considers the whole medium surrounding the donor
and the acceptor centers. When the solvent environment in addition is at a certain temperature,
then entropic effects may be noticeable and have to be accounted for, i.e. the process of charge

AU
Oxygen

13

0

Reactant

A

Y

=0; +6,

Figure 2.1. Water dipole orientation as a result of electron (negative charge) transfer. The
water dipole is oriented towards initial state A.
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transfer has to be characterized in terms of free energy. The O—H bond length can be taken as an
example. ET from the donor to the acceptor causes bond extension within the water molecules
surrounding the donor and bond contraction within those around the acceptor. This process not
only causes structural change that affects the orientation of the solvent molecules, but also shifts
their vibrational frequencies due to restricted internal atomic motions. The latter results in an
additional entropic contribution classically expressed through vibrational statistical sums.®

Despite that some vibrational modes could undergo substantial variations, the overall
response of the solvent bath coupled to the ET system is usually linear®” or close to linear,®
which explains the considerable success of the linear response approximation introduced first by
Marcus.”**% It preserves the parabolic shape of the solvent potential energy surface and transfers
the same parabolic character to the free energy surfaces, i.e. one assumes a constant entropic
correction to the potential energy.”*®* Accepting these two simplifications, the potential energy
surface from Figure 2.1 is generalized in terms of the free energy as a function of (Ug — Up) to
give the curves shown on Figure 2.2.

The ordinate of Figure 2.2 is the free energy rather than the potential energy. The abscissa is a
reaction coordinate that reflects the differences in the polarization energy and the vibrational
energy between reactant and product states to the overall change of the potential energy. This
model, which approximates the solvent potentials by parabolae of equal force constants for
reactant and product states, Egs. (2.2) and (2.3), is suitable for describing a limited number of ET
processes but, nevertheless, adequately explains ET in aqueous solutions. The symmetric case
AG° = 0 considered here applies to systems where the solute either does not undergo any net
geometric changes during ET (e.g. in self-exchange reactions like the ferrous-ferric exchange
Fe¥*+Fe’* —Fe?*+Fe®"), or when the structural transformations can be neglected, as in some
approximately symmetric ET reactions in DNA duplexes (e.g. between guanine units G (in
italics) in the reaction 5-GG'GTTTGGG-3'<>5-GGGTTTGG G-3"). The Marcus model will be
applied to situations similar to the latter within the present thesis.

A AG

Reactant Product

-
>

U-U,

Figure 2.2. Marcus generalization of the solvent response to CT in terms of the free energy AG.
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2.2  Marcus theory

Now let us consider the more general asymmetric case, where the equilibrium free energies at
the equilibrium positions of the product and the reactant states differ, AG® # 0. In other words,
unlike above, sites A and B stand either for different chemical species or for substantially
different sites within the same solute. It is also assumed that the behavior of all water molecules
of the surrounding medium complies with the previously discussed parabolae model
approximation (Figure 2.2). Then the free energy barrier AG” for the charge transfer reaction is
the energy difference between the crossing point of the parabolae and the bottom of the free
energy curve of the reactants (Figure 2.3). If one ignores entropy changes, then the free energies
are equal to potential energies and the charge transfer occurs at the point Uy where Ur(Up) =
Up(Uy).

Using the definition of the potential energy curves (Egs. (2.2) and (2.3)), this condition can be
expressed as:

1 2 1

> 1 (U, -Uy) :AG°+§f(U9—UP)2 (2.5)
This equation for the crossing point can be solved:
AG° 1 1
u,= +—=(U,+U,). 2.6
=2 G e 26

The free energy barrier, or the potential energy barrier when entropy changes are neglected, is:

- 1 2
AG” =G, (U,)-Gq (UR):UR(UQ)_UR(UR):E f(U,-Ug)". (2.7)
If one introduces formally the quantity 4 = (1/2)f(Ur — Up)? and substitutes here the expression
for Uy, Eq. (2.6), one obtains the following simple formula:

o1 o2
AG :E(/HAG ) (2.8)
The parameter formally defined as 4 = (1/2)f(Ug — Up)? is a fundamental physical quantity, the
so-called reorganization energy. The term “reorganization energy” could be understood as the
“free energy change that would be required to reorient all atoms and molecules as if they were
forming and solvating the product state, but without actual transfer of charge.”® The physical
meaning of this definition will be illustrated and discussed in detail in the next chapters.

From the standard Arrhenius relationship between the free energy of activation and the rate
constant of a chemical reaction, the ET rate constant is given as:
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Y

Reaction Coordinate

Figure 2.3. Marcus picture of the solvent reorganization energy.
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where the pre-exponential factor A has a complex form that reflects its quantum origin. This will
be discussed in the following chapter. Equation (2.9) predicts the so-called “bell-shaped”
dependence of the ET rate constant ker as a function of the free energy. An important
consequence of Eq. (2.9) is illustrated in Figure 2.4, namely that the rate constant depends on
AG°® in a somewhat counter-intuitive way. Normally, the rate of a chemical reaction depends
notably on whether it is exothermic, AG® < 0, or endothermic, AG° > 0. However, according to
Marcus theory of ET reactions, the reorganization energy (4 > 0) serves as a reference. In the so-
called normal region, —1 < AG® (Figure 2.4), the rate constant increases with higher (corresponds
to the so-called inverted region, see Figure 2.4) free energy values, but only on the absolute
value of the free energy difference between the initial and final states. The quadratic dependence
of the ET rate on AG® and on the reorganization energy A was first derived by Marcus and

In(k_.)

|

|

|

|
Normal | Inverted
region ' region
|
|
|
|
|

>

A —AG®

Figure 2.4. Bell-shaped ET rate constant dependence on the free energy.
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Hush.**% They represented the total reorganization energy 4 as the sum of two contributions:
one due to the solvent, /s, and another one due to the solute, 4; (the so-called intramolecular
reorganization energy):

A=A+ (2.10)

Since their pioneering works, the latter notations became standard in the scientific literature.

2.3  Solvent reorganization energy (4s)

The solvent molecules adjacent to the solute, which are polarized due to the presence of the
charge on the solute, form its solvation shells. Due to thermal fluctuations, the solvent molecules
within these solvation shells (along with the rest of the solvent molecules) are in permanent
motion leading to fluctuations of the potential energy of the entire system. Translation and
rotation of the solvent molecules bring the system at certain moments to the state along the
reaction path, where ET can take place; then the charge relocates to a new site and the additional
solvent polarization around the previous site vanishes. Even when a solute with rigid geometry is
assumed, the thermal perturbations of the electrostatic field generated by the solvent molecules
lead to changes in the solute quantum structure, expressed in terms of elevation or depression of
the electronic energy levels. This gives rise to an additional requirement for the charge transfer
reaction: only when the energies of the solute electronic quantum levels coincide in the initial
and the final state, ET will take place. Despite the fact that in reality the solute geometry is never
rigid and that, when it is immersed in the solvent, the two moieties form one common quantum
system, the simplification of a rigid geometry is often invoked. It can be accompanied by another
approximation, namely, the solvent can be treated as a structureless continuum, in which the
discrete character of individual solvent molecules is neglected.

In the following the original idea of Marcus’™ shall be presented how one can determine the
solvent polarization P(r) that arises from the electrostatic field E(r) of solute and separate it into
two contributions, a “slow” one Py(r) and a “fast” one Pg(r),

P=P,+P, (2.11)

where for convenience the dependence on coordinate r has been omitted.

In general the polarization P is comprised of electronic, atomic and orientational parts, which
undergo their adjustment with respect to the change of electrostatic field, i.e. in an ET process,
on the scale of 107° sec, 10 sec, and 10™* sec, respectively.”* As immediate response to an ET
only the fast (electronic) P. contribution will adjust itself, while the two other (slow)
components, combined in the term Py, will relax much later. Therefore, the situation right after
an ET is a non-equilibrium one with respect to the slow polarization of solvent.
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According to the schematic representation in Figure 2.3, the solvent reorganization energy As
can be understood as the difference between the equilibrium free energy G(Ug) and the non-
equilibrium free energy G (Up):

2, =G (Uy)-G(Uy), (2.12)

where contributions correspond to the same parabola, e.g. the left one in Figure 2.3 which
represents the reactants. In the free energy state G(Ug), the minimum energy at Ug on the left
parabola (Figure 2.3), both the slow component P, and the fast component P, of the solvent
polarization are in equilibrium with the charge distribution of the reactant. In the non-

equilibrium free energy state G'(Up), only the fast component Pis relaxed, while the slow

polarization component P, is not. The latter corresponds to another configuration where the
atomic and the orientational characteristics of the solvent are already in equilibrium with the
product charge distribution, the minimum energy at point Up of the right parabola (Figure 2.3).

Following Marcus,™ one evaluates the initial equilibrium free energy G(Ug) from Eq. (2.12)
by exploiting a general property of the polarization P, which in principle may be considered as a
dipole moment p per unit volume dV,

p="Pdv. (2.13)
The interaction energy of the dipole p with the electric field E is
U=-uE. (2.14)

If the dipole p is an induced dipole, then the work W required to produce it, is

E=E, 2

w=- [ pe=-F (2.15)

)
E=0 20,

where ayg is the polarizability of the medium. The value of the induced dipole p is proportional to
the electric field E,

p=opE. (2.16)
When the field E is suddenly switched off, as is the case in a fast non-adiabatic ET, then the

dipole still stores some free energy F,

2
F=w-U=}F_, (2.17)

20,
The total polarizability ag also contains two contributions (Eg. 2.11),
o, =a,+a,. (2.18)
where oy and o, are the contributions to the solvent polarizability that correspond to “slow” and

“fast” components, respectively. If one considers the induced dipole moments, that correspond to
either polarization process, as independent of each other, then the free energy is given by
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2 2
F,= ZPU +2P—e. 2.19)
(04 (04

However, in addition, it is necessary to take into account that there are other interactions of
medium induced dipoles with the total electrostatic field E,

E=E.+E,+E,, (2.20)
where E., E, and E. are field contributions that correspond to the charges, the slow and the fast

polarization, respectively. The interactions of electrostatic field E with slow P, and fast
componenets Pe give rise to separate free energy contributions:

-P,(E.+E, +E,) (2.21)
and

-P,(E.+E, +E,). (2.22)
One further term contributing to the free energy of the medium arises from the electrostatic field
generated by the solute charges themselves,

E2

g .

Summing all contributions represented in Eq. (2.19)—(2.23) and avoiding double counting, after

(2.23)

integration over the entire volume of the solute-solvent system one arrives at the main formula
for the total free energy G derived as by Marcus:"

2 2
G=J E., R PE _RElw ipy (2.24)
87 2q, 2 2

Here the additional term PV is the work against the external pressure P. Assume that the
expression in Eq. (2.24) for the free energy G corresponds to the equilibrium state of the reactant
(minimum energy point Ug of the left parabola, Figure 2.3):

G=G(U,). (2.25)

One can write a similar expression for the non-equilibrium state G (Up),

. EZ2 P* P.E, P -E
G(UP):J(QJFZ%_ 2

jdv +PV, (2.26)

where a star “*” denotes non-equilibrium quantities.

In Egs. (2.24) and (2.26) it is assumed that in both states the volume of the system stays the
same, i.e. is independent of the slow (orientational) polarization P,. Therefore, the solvent
reorganization energy /s results as the difference between the free energies of the equilibrium
and the non-equilibrium states, given by Eq. (2.24) and (2.26):

1/
AS:—EJ(P ~P)-E dV . (2.27)
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The polarizations P of the equilibrium state in Eq. (2.27) is formed by both slow (polarizability
ay) and fast (polarizability ae) responses of the solvent, because the solvent is fully adjusted to
the electrostatic field E,

P=agE=—Y
1+4rna

(2.28)

In contrast, the non-equilibrium state with polarization P is characterized only by fast electronic
response (polarizability o), While the orientational component corresponds to another (final)
equilibrium state, i.e. the minimum energy of right parabola Up on Figure 2.3.

P =qfFE =% E (2.29)
1+4ra,

The corresponding polarizabilities, Egs. (2.28)—(2.29) are related to the optic dielectric constant
SOP,

4o =g® -1, (2.30)
and the static dielectric constant ™

Ara, =™ -1, (2.31)

respectively. Substituting the expressions for polarizations P and P, Egs. (2.28)—(2.29), into Eq.
(2.27) for s with corresponding polarizabilities from Egs. (2.30)—(2.31) one arrives at

PR [1 1jE§dV. (2.32)

s T 5 T st
8rdle® &

Next, one considers the special case of a simplified model where the solute is represented by
two rigid spherical units of radii ap and aa (for donor and acceptor, respectively) with their
centers separated at distance Rpa. In the present discussion one considers the model of ionic
species, where each of the spheres holds a point charge at its center: in the ion-pair (IP) state the
point charges are qp = €, (a = — €; in the neutral-pair (NP) state the charges are gp =qa=0e.

By separating the fast electronic polarization from the slow atomic and orientation
polarization, Marcus calculated the free energy difference between these two states. Assuming
that the static dielectric constant and the high-frequency (optical) dielectric constants in Eq.
(2.32) do not vary in space, in other words ¢ = ., and £ = &, one can reduce the calculation of
solvent reorganization energy s to the evaluation of the work required to charge this Marcus
two-spheres system in vacuum

1 1)E 1 1) fq ®q "or AE?
A=l ——=|[=dv=|=-=1 [ 2dq,+ [2dg, + [ —dr]|. 2.33
s [‘9 SOJJ.S” (g 80J|:'([ an 4 '([aD 4 i r’ 239

The first two integrals in the square brackets represent the work required for charging of each
sphere and the last term is the electrostatic interaction between the spheres A and D. Finally, this
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simplified ET model yields the famous Marcus expression for the solvent reorganization energy

Js in the form represented below: %1219

PRV PE N I | (2.34)
&, & )\2a, 2a, Ry,

0

Here & is the static dielectric constant, &, is the high-frequency (optical) dielectric constant of
the solvent, and Ae is the charge transferred from the donor to the acceptor unit.

In case of water as solvent'® with &, = 1.78 and &, = 78.4 at T = 298 K, Eq. (2.34) gives
estimates for the solvent reorganization energy in the range 1.0-3.0 eV for Rpa = 5-10 A and ap
= aa= 3.0 A. The latter radii are typical for ET reactions between small organic molecules, like
guanine or some organic dye.

It is noteworthy that the dielectric continuum model breaks down if there are specific solute-
solvent interactions,'® dielectric saturation effects’®%% or solute quantum modes coupled to

109

the solvent™“which will be discussed in detail in Chapter 3.

Reliable simulations of the free energy curves are known only for the two-spheres model®?
because of the extreme computational efforts involved. In DNA, in view of a higher
delocalization of the charge, geometric factors and the strong native electrostatic field induced
by the negatively charged phosphates), one can expect additional solute-solvent interactions in
the presence of a hole to be even weaker than in a two-spheres model. Therefore, for electron
hole transfer in DNA the main approximation in the Marcus model associated with the linear
response of the solvent should hold, resulting in the parabolic character of the free energy curves
with equal curvature. Thus, this approximation was employed in the present thesis for the
description of ET in DNA oligomers.

2.4  Solute reorganization energy (4;)

Thermal fluctuations do not only set solvent molecules into motion, they also cause
distortions of the solute geometry, thereby being the source of a permanent shift of the electronic
levels between which ET occurs. This structural change of the solute gives rise to the “internal”
reorganization energy 4; of the solute. Due to the strong chemical bonds that are holding together
the atoms of the solute, these geometry distortions affect the positions of electronic levels to a
much lesser extent than the “external” causes, namely the polarization due to free rotation and
translation of the dipoles of the (small) solvent molecules (see Section 2.3). Mainly the
molecular vibrations of the solute contribute to the internal reorganization energy. The energy
spacing of the vibronic levels in general is large compared to the thermal energy; therefore, the
solute must be treated quantum mechanically. In the latter case, where #w > kgT, the vibrations
could be modeled as a system of harmonic classical oscillators and the internal reorganization

energy 4 is represented by; 3495:99.103.110.111



Chapter 2 The Classical Marcus Picture of Electron Transfer. Reorganization Energy 17

4=y AN (2.35)
o fo+ 1,

where the summation runs over all modes k coupled to the ET. " and f,” are the force constants
of mode k in the reactant and the product states, respectively. Ax is the change in the equilibrium
value of the kth normal mode; for modes uncoupled to ET Axi = 0. In case the geometry is rigid
enough, then f& = f°= f, and one arrives at a simplified expression for the internal
reorganization energy:

A = %Z f AX? (2.36)
k

Unlike the solvent reorganization energy /s, the theoretical evaluation of internal
reorganization energy 4; is well established due to the intensive development of quantum
mechanical calculations in recent years. Instead of discrete summation over the solute vibrational
modes coupled to ET [Egs. (2.35) and (2.36)], the present work refers to quantum chemical
calculations carried out in our group”®*2 at the B3LYP/6-31G(d) level,'** where the unrestricted
Kohn-Sham method was applied for radical-cation states of the base-pair GC and for estimating
A; in related ET processes.’**!** The following quantities were computed for the donor and the
acceptor: (1) energies of the neutral species at optimized geometries, Eo(D) and Eo(A), (2)
energies of the corresponding radical-cations at optimized geometries, E+(D*) and E+(A"), (3)
energies of neutral D and A, calculated at the geometries of the corresponding radical-cations,
E.+(D) and E.(A), and (4) energies Eo(D") and Eo(A") of the oxidized states D and A" at the
geometries of the corresponding neutral molecules. Then J; for the charge transfer reaction D* +
A — D+ A" is the sum of the reorganization energies of the donor and the acceptor, 4; = (D) +
Ai(A), where D and A were taken as a single GC base-pair (in vacuum). The energies 4i(X), X =
D, A, are

2i(X) = [E+(X) — E+(X") + Eo(X") — Eo(X)]/2. (2.37)
The resulting internal reorganization energy for ET between isolated GC base-pairs was 0.72
eV."2 A recent DFT study on J; in DNA duplexes corroborated this result: 4; was shown to
decrease with the length of the (GC), duplexes from 0.72 eV (n = 1) to 0.34 eV (n = 6).1*
Nevertheless, this model study did not account for the solvent stabilization on the geometry
relaxation. Therefore, one may consider the estimate of 4; = 0.34 eV as an upper limit for
hexamer DNA duplexes, which will be invoked also later on in the present study.
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3 Reorganization Energy within the Quantum
Picture of ET

3.1 Levich-Marcus-Jortner theory

3.1.1 Uncoupled states

Let us inspect once more Eq. (2.9) from Section 2.2, which is used to describe the ET rate.
There the constant A has not been defined so far. The exponential term reflects the probability
that the thermally fluctuating system reaches the activated complex (formally the crossing point
of the two parabolae in Figure 2.3), where the energy conservation law is fulfilled and CT can
take place (see Section 2.2). Assuming that this term, which is a function of AG®, has a
Gaussian shape distribution, it can be normalized to give:

1 (/1+AG°)2
Kep = P ——exp| —~———" |,
JAmAk,T 47kT

where P is a constant. The latter representation implies that, while the Gaussian shape function
is responsible for the classical probability to reach the cross-section, the constant P is related to
the quantum structure of the solute. Consideration of its quantum structure in the two ET states

(3.1)

is bound to the probability of the solute being found either in the initial or in the final state.

In the non-adiabatic limit, when nuclear motions are fast compared to the ET time scale, the
populations of the electronic levels of the solvent and the solute as well as the intramolecular
vibrational states remain in thermal equilibrium during ET.%*0117118 Thep

21 2
P:7<Hﬁ> ' (3.2)

where <Hﬁ> is the ET matrix element which reflects orbital mixing between initial and final
states.
In the adiabatic limit, <Hﬁ> is considerable, leading to tight coupling between electron and

nuclear coordinates. In the classical approximation, the constant A is then given by the weighted
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average of the frequencies of the ET-coupled solvent and solute intramolecular vibrational

modes Vk94,110,119,120

A= /ZME/ZXK : (3:3)

where 4, = %kaAxf is the energy shift of a classical harmonic oscillator due to the change
k

AXy of the equilibrium displacement. There are also other expressions for the constant A relating

it to the Debye relaxation time.**"'??

In the adiabatic and non-adiabatic cases summarized above, it was assumed that the
probability for the system to reach the parabolae crossing point and the coupling between the
quantum states are independent. This means that there are no coupled high (medium) frequency

modes or that the temperature is high (4, v:<< k,T). Actually, modes coupled to ET always

exist and must be modeled quantum mechanically in order to include transitions from low-lying
vibrational levels (nuclear tunneling) in the description of the process.

Moreover, the above treatment of intramolecular reorganization energy leads to problems
with the explanation of its temperature dependence at low temperatures. The Marcus expression
predicts that the ET rate constant at the zero temperature limit becomes equal to zero but

experimental data'®

at low temperatures demonstrate that the rate constant is essentially
temperature-independent. Another problem arises for the inverted region. The classical Marcus
formula predicts a symmetric fall-off of the ET rate constant in both regions. This is the result
of the Gaussian statistics of the solvent thermal bath that is linearly coupled to ET; this setup
leads to the picture of intersecting parabolae with equal curvatures. Whether the curvatures of
the free energy surfaces are parabolic or not, was intensively investigated.** It was found in

general that free energy dependence has a distorted bell shape with a steeper slope in the normal

In(k_)

I
|
|
|
Normal | Inverted
region ! region
|
|
|
|
|

A —AG°

Figure 3.1. ET rate dependence. Schematic comparison of Marcus symmetric bell-shape
(black curve) and asymmetric picture with linear dependence on AG® in inverted region (red
curve).
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region (see Figure 3.1). The bell shape due to the Marcus picture is observed only in the
vicinity of the maximum, while away from it in the inverted region the fall-off is linear, in
accordance with vibronic models.’®% One of the explanations proposed is that in the inverted
region preferential transitions to excited vibrational states occur, requiring the inclusion of the
quantum structure of the donor-acceptor complex in addition to taking into account solvent
fluctuations.

3.1.2 Coupled states

The ET rate can also be addressed from a more general perspective invoking the “Golden
Rule” of quantum mechanics, which relates the probability of a change of state per time unit to
a transition matrix element:

_2r

kET _7

(W[, ) 5(E'-E") (3.4)

Here W;, ¥ are the wave functions of the initial and final states (with eigenvalues E', E'),
respectively, and H « 1S the perturbation that induces the transition. The Dirac delta function

ensures that the energy is conserved when the transition takes place. This “Golden Rule” is
applicable only in case of weak coupling where the perturbation is small and the transition
probability is low.

Application of the Born-Oppenheimer and Condon approximations leads to a partitioning of

the total wave functions into an electronic and a nuclear part'%>27128
2z $ i\2 i \2 i
kET = 7<l//efl H fi ‘l//el> <l//vfib l//vib> S(E - Ef ) ! (35)

where .,y are total vibrational wave functions for the initial and final states and v,

are their electronic counterparts. The former are products of the wave functions of all normal

modes including collective solvent vibrations™***®°
Wi :HZL; (3.6)
k
k

Here Zik and ;gvfk are the wave functions of mode k in the initial and final states with the
corresponding quantum numbers v = E/Aiwy and v " = E/Ao.

If one assumes that during ET the characteristic frequencies wy of the harmonic oscillators

are preserved and only the quantum numbers are changed from v to v, the vibrational overlap

integrals have the form*281%°
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foi !

7)) =exp(-S,) gl ) :Ti!![d?f (s, )T , (3.9)

Yk

<va:

with L being a Laguerre polynomial:

£ vi f |(_S )V
(s, )=y ) 3.9
Y (54) ;(V;—v)!(ka—v,l+v)! (3.9)
S, is the electron-vibrational coupling constant, also referred to as Huang-Rhys factor: 23
1{ M, o 2
S, ==| —=% |(Ax 3.10
=5 M ) @10)

with the reduced mass M, of the oscillator k and the corresponding characteristic frequency wy.

AXy is the displacement of that mode. The vibrational overlap integrals account for the extent to
which the final and initial states are similar along a normal coordinate.

The vibronic levels of a system in the ground state are populated non-uniformly with
probability

( vliha),(}
TP T T
p(v)) = ——re (3.11)
with vibrational partition function
i 1\ o
Z, =) exp| —|vi+=|—=|. 3.12
- o[ -(1+3 )12 ] @12)

If iwox >> kgT, then only the lowest energy level v = 0 is populated, allowing a simplified
form of the overlap integral

<va;

Modes, which are coupled to ET, have S # 0 or Zwg # Awy'; in all other cases, i.e. if iwy =

i ka 1
Zv;:o>=exp(—3k)3k i (3.13)

hwy', these integrals in Eq. (3.13) are equal to 1. As the system moves from the initial to the
final state, the sum of all possible changes in Ax, reflects the geometrical change of the whole
solute structure upon ET. These ET-coupled modes are responsible for the electronic absorption
and emission band shapes, as well as for overcoming the ET energy barrier. All other modes are
not involved in ET. Quantum energy levels of the solvent modes related to charge transfer are
normally very closely spaced, i.e. they form a continuum and, hence, the solvent could be
treated classically.

Summarizing all these issues concerning the application of the “Golden rule”, one ends up
with the fOI’muIa:94'118'127'132
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2
(AG°+Z(Vk' —Vk)ha)k +/15j
k

42k, T

2z (va|H alwh)

ET_h \/m szp"k<

Vi v

(3.14)

k

2, Jouo| -

which describes ET through a series of vibrational channels from a set of initial levels v to a set
of final ones vi'. The solvent is treated classically and included in the exponential distribution
function. Frequency changes in the solvent modes due to ET and low-frequency vibrations of
the solute are part of AG® 34132133

In the classical limit where %y << kgT and the partitioning of the reorganization energy 1 =
s + 4; is valid,***? the expression for the ET rate constant, Eq. (3.14), simplifies to standard
Marcus expression:

A s\ 2
27 (wa [Hi|va) (AG®+ A’
k.. =223 71 1 77 axpl 21— "7 |, 3.15
Ton o JamakT P 42k, T (3.15)

If only one medium- or high-frequency mode is coupled to ET, then only the lowest
vibrational level v! = 0 is appreciably populated at room temperature, leading to the

expression;***1°
27z'<l//f| fi ‘//i|>2 S (AG°+Vv'hao +/1)2
k. =<t el el _5S _ k™ 7%) | 3.16
Toh JamakT ;eXp( )v X[ 42k, T } (3.16)

In the latter approximation for the ET rate constant there is no contribution of the vibrational
channels to the temperature dependence of the process, since the only involved reaction
channels originate from the ground state v = 0, which is always populated. If there are coupled
low-frequency vibrations, they can be treated classically and included in Eq. (3.16) by replacing
As With s, defined by:

A=A+ Shay (3.17)
|

where the summation is performed over the coupled modes.

In the adiabatic limit the frequency factor is controlled by repopulation of a few dominant
reaction channels at the crossing point rather than by electronic coupling®®** and the total rate
constant cannot exceed the rate feasible through the fastest channel.*

If one assumes that only one mode with characteristic frequency wx = w and structural factor
Sy = S is coupled to ET, then one obtains an approximately linear dependence of In(kgt) on AG®
in the inverted region. In this case, the transition is between ground vibrational levels of the
initial and the final states (v' = 0) and a thermally induced barrier crossing is not necessary. In
the limit where —AG® >> Shw and aw >> kgT, one derives an approximate expression for the

rate constant of ET;1313¢
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113 i\2
e Hi e AGO_& 2
- _%z <W' : W'> exp —S—y(| | 5)+(7/+1j AKeT |, (3.18)
I \Jne(jaGe|-4,) he he
with
|AG®|- 4,
=In|———|-1 A
4 n{ Sheo : (3.19)

This expression indeed yields a linear decrease of In(ker) with AG°. As discussed in Section
2.2, Eq. (3.15) reveals that the ET rate constant reaches a maximum at AG® = —4 and then
decreases with increasing —AG*® in the inverted region; see the black line in Figure 3.1. The
latter phenomenon was predicted by Marcus and also incorporated into the above semi-quantum

theory.1371%8

Nevertheless, theories which combine Gaussian statistics of the solvent nuclear fluctuations
with Poisson statistics of the quantum skeletal vibrations predict that in a charge separation
(CS) reaction (when a pair of opposite charges appears) and charge recombination (CR) (when
a pair of two opposite charges disappears) states the logarithmic dependence of ET rate on the
energy gap is still symmetric, which is not observed in experiments performed by Mataga. %"
Simulation of free energy surfaces taking into account effects of non-linear solvation on the CT

thermodynamics*9#1%713914% and dynamics'*' demonstrated much smaller distortions of the

parabolic shapes of free energy surfaces than those observed experimentally.?*942 To
rationalize the deviations of the theory from experiment, a new model was introduced which is
based on the idea that classical ET theories do not consider solute electron density polarization
effects, which are significantly larger than non-linear solvation effects.****** In addition, the

model accounts for the solvent polarization effects.

3.2 Harmonic bath model

3.2.1 General approach

The molecular system sometimes has insufficient kinetic energy to reach the transition state,
i.e. the crossing point of the two parabolic potential energy surfaces in the Marcus’s picture,
Figure 2.3. In that case, tunneling effects become of primary importance for ET to take place.
Tunneling processes occur because there is always a non-zero probability for the electronic
wave functions to spread beyond the classical turning points. Taking into account nuclear
tunneling effects can lead to substantial changes in ET rates either at low temperatures or at
high temperatures in the inverted region.**
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Several approaches have been suggested to include nuclear tunneling effects. One of them
has been demonstrated in Section 3.1, where we split all vibrational modes into two parts and
treated only a few high-frequency vibrations with the formalism of quantum mechanics. The
second part, containing low-frequency modes, could also be described but only as a classical

continuum,261%7

Another more general approach, which incorporates all frequency modes, is usually known
as ‘dispersed-polaron’*® or ‘spin-boson model’.> Warshel first suggested such a scheme® where
he also demonstrated that the two formulations are identical.**® The subsequent discussion
follows his scheme.*’

Consider a system of donor (D) and acceptor (A) molecules surrounded by a solvent. The
distance between D and A will be kept constant. Assume at the beginning that the molecular
vibrations of these two entities are frozen. The time-dependent wave function of the system can
be approximated as a product of donor, acceptor and solvent functions:

\Pi = WD* 'V/A 'lr//siolvent (320)

\Pf =Y, W, 'l//sfolvent (321)
where indices i and f reflect initial and final electronic states of the molecules, respectively.

The effective electronic Hamiltonian for the relevant states, which neglects charge transfer
interactions between the solvent and solute molecules, can be written as

H(ﬁ(t)f’(t)):[ﬁti UH;] (3.22)

where ﬁ(t) and T (t) represents the coordinates of the DA system and the solvent molecules,

respectively. Ui and U are the zero-order diabatic energies of ¥' and W'. These energies could
be approximated by semi-empirical potential functions,**® which describe the energy of the
given charged forms of the particular solute state (either DA™ or D*A) in a specific solvent.
These potential functions include interactions within the D-A system as well as with solvent-
induced dipoles. The off-diagonal term Hi; = Hy is composed of the mixed matrix elements in

the absence of the solvent <WD W

H ‘V/D* 7 > As an alternative, H can also be an empirical

valence bond Hamiltonian from MD simulations.

For convenience, further on the double subscripts ii and ff of the diagonal elements shall be
simplified to

U, =(¥'|H|¥') (3.23)

U, :<‘Pf \H\KM (3.24)
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To evaluate the rate constant of ET from state i to state f, one has to start from the probability
of ET during a period of time z, which is related to the time-dependent wave function. The latter
can be represented as

0

P(1)=C, (), exp{—%jui (t')dt'}cf (¥, exp{—%juf (t')dt}. (3.25)

Invoking the time-dependent Schrodinger equation for H and substituting the expression for
the time-dependent wave function into it:

ov(t) .
ih#: HWY(t), (3.26)

one obtains two differential equations for the amplitudes C; and C¢

ac:i (t) _ Hfi _lt ’ ’

Pl Cf(t)exp_h‘!AUﬁ(t)dt} (3.27)
oC,(t) . H, it .

=i Ci(t)exp_—%.!AUﬁ (t)dt} (3.28)

where AUsi = Us— U;. In the non-adiabatic approximation, one neglects the terms <‘P‘ \a\yf/at> :

(w'|aw!/et). Assuming the hole initially, at t = 0, to be located at D results in the initial
conditions C; (0) = 1, C;¢ (0) = 0. For the time range where C; = 1, one obtains
C, (r)z—iﬁj[exp —leUﬁ (¢")dr" |dt . (3.29)
h 0 hO

If ©Hu/h << 1, then C; changes fast in time. Then one has to invoke the adiabatic
approximation™*® which results in an expression for the amplitude in the final state:

i o' i
C,(z)=—|({¥"|—)exp| —— | AU, (¢')dt’ |dt 3.30
(7) I< &>p{hj f.()} (3:30)
Finally, one can write an approximate expression for the rate constant:
2
C.(7
Ke; = IimM (3.31)
T—>00 T

Eq. (3.31) was derived by assuming that at an arbitrarily chosen initial moment t = 0, the
electron is located at the donor C; (t) = 1. In order to obtain a rate constant independent of the
choice of the initial conditions, one has to introduce ensemble averaging over all possible initial
conditions C; (t). According to the ergodic hypothesis, one may replace an ensemble average
over the whole phase space, i.e. over all initial coordinates r and momenta p, by an average
along a classical MD trajectory. Therefore, one can write
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Key = |im<Cf—T)‘2>°, (3.32)

T—>0 T

where (...) denotes the ensemble average.

One may invoke the Wiener-Khintchine theorem™® to represent ket through the autocorrelation
function of the amplitude derivative Cs as:

(feoaf)
ker = lim - ij< jcf (t+1) dt> dt. (3.33)

0

Using the fact that for ergodic systems the correlation function is given by the corresponding
ensemble average, one arrives at:

Ker zmﬂcf (t)C, (t+t)>o dt. (3.34)

Substituting the expression for the coefficients C; one obtains:

ke, = <H > [.t <A‘; i)y J exp{ [aau,(t )dt’} dt, (3.35)
where
SAU (1) =AU (t)-(AU ) . (3.36)

In Appendix A it is shown that the last expression in Eg. (3.35) can be transformed to
-t
v(t)= expB [sau, (t’)dt} , (3.37)
0

Lrre :
i ! dt' (t—t) (3AU  (0)3AU 4 (t')), (3.38)
Finally, one obtains the rate constant ker as

|l
h

Gy exp[n@ . y(t)}dt . (339)

This expression dates back to the works of Lax'*! and Kubo®®

in solid-state physics,
addressing non-radiative transitions of an electron trapped in a crystal lattice. That earlier model
is based on an exact quantum mechanical formula for the electron transfer in a

multidimensional harmonic system.”
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3.2.2 Harmonic approximation

Let us inspect the parameter y(t) for the case of a molecular system that comprises several
harmonic oscillators. The initial and final potentials of the system in semi-classical
approximation are given as:

1
t)=§Zha)jqj2 (3.40)
j

_%Zhwj (¢, -Ax, )2+AU?i’ (3.41)
J

where g; is the dimensionless displacement coordinate of oscillator j in an arbitrarily chosen
moment t of the initial state i. Here, it is assumed that the transfer of an electron to the final

state f does not distort the frequencies w; of the harmonic oscillators. The quantity AUf

represents the potential energy difference between the equilibrium configurations of the
oscillators.

To carry out the ensemble average (rhombic brackets) of the potential energy gap between
two states, one assumes that an available trajectory is long enough to represent an ensemble
average:

(80 (1), =S noyg; (), Zhw (), <AUﬁ°>O=%Zj:hwj<AxJ?>o+AUﬂ° (3.42)
Therefore, according to the earlier definition Eq. (3.36)

AU, (t Zha} q,Ax; += Zha} sz——Zhw (Ax), (3.43)
Introducing the coordinates ¢, = /2, +1 0,), where i, + = ) btains th
ntroaucing the coorainates q; = n; + COS(a)J-t+ j)’ whnere n; +E—h—wj, one ontains the

autocorrelation function in the form
(8AU (0)3AU (1)) =1 ZAX ( %jcos(a)jt). (3.44)
Then the expression for y(t) becomes

ZMZ( j(cos(a)jt)—l), (3.45)

where fi; is the average occupation number of an oscillator at a given temperature
< 1

i, = 3.46
' exp(ho; /kyT)-1 (3:40)

Finally, the expression for quantum ET rate is
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<H>

Ker ~

j exp{lt< ol +2Ax( ](cos(w t)- 1)]dt (3.47)

The latter formula, derived after a series of approximations, is close to the exact quantum
mechanical solution for a harmonic case, obtained by Kubo.**

Next, one evaluates ker for the high-temperature limit, where fi; ~ kg T/%w; >> 1 and

o 1 kT

A = ~ . (3.48)
' exp(ho,; [k, T) -1 ho,
Expansion of the exponential phase (cosine- and sine-containing terms) up to t* yields:
1 2
<Hﬁ>200 ] <AUf|>O+ZZJ:hCOJAxJ 2kBT 1 )
kET =~ T :Lexp it 7 +t ?EZJ:/J;ICOJAXJ . (349)

Recalling that the integral

® 12 2
| = I exp (iot )exp(—at® ) dt = (gj EXp(_Z)_aJ (3.50)

one arrives at the famous Marcus expression,

i 2 £<Auﬁ>o+;Zhijxfj
I exp| — ’ (3.51)

k.. =
T leZh A 4kBT;Zha)ijf
J ]

Comparing to Eq. (3.15), one reads off the reorganization energy as:
_1 2
A—EZha)ijj. (3.52)
J

In other words, the reorganization energy is the sum of the energies of the harmonic
oscillators at average displacements of those modes which are coupled to the ET reaction. If the
electronic coupling strength Hy is known, records of AUs (t) from MD trajectories provide all
the information needed to obtain the rate constant and its temperature dependence. MD
simulations can supply the frequencies and the displacements in the so-called Huang-Rhys
factors [see Eg. (3.10)] of the vibrational modes that are coupled to the reaction coordinate.

In the present thesis one of the methods for calculating the solvent reorganization energy
employs formalism similar to Eq. (3.52). The methodological part, which describes how
essentially non-harmonic vibrations of atoms from MD trajectories can be used as a source of a
harmonic approximation, is given in Chapter 4. The application of that method for a simplified
solute model is described in Chapter 6.
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3.3  Q-model

153 102,154

Relatively recently™ an alternative to the Marcus scheme
quantum part accounts for internal molecular vibrations of the solute.********® According to the

former Marcus-Levich-Jortner (MLJ) theory, discussed in Section 3.1, one distinguishes two

was proposed where the

regions: the normal one with a parabolic rate constant/energy gap dependence and the inverted
region with linear-logarithmic variation of kgt with the free energy difference between initial
and final states. The MLJ theory combined Gaussian statistics for molecular fluctuations of the
solvent and for the vibrational excitations of the solute, but kept the main assumption of Marcus
theory which claims that solvent and solute vibrations are coupled linearly.

In the early days of ET theory the linear coupling between solute and solvent was seriously
questioned and a quadratic dependence was suggested.’®>**"* |n the following, the latter
theory is referred to as Q-model (Q for quadratic coupling), where oscillators are coupled to ET
with different force constants. A general solution to this problem was given by Kubo and
Toyozawa.™®® Application of that theory was hindered by the fact that the ET rate is not
expressed analytically through free energy surfaces Gijs as a function of the potential energy
gap between final and initial states of ET, which can be determined in MD simulations.

To interpret kinetic data adequately, alternative approaches to non-linear solvation were
suggested where free energy surfaces with parabolic shapes of different curvatures were
invoked.'2*9%%° The underlying hypothesis, originally introduced by Kakitani and Mataga,***¢
was that dielectric saturation of the first solvation shell in a charge separated (CS) state makes
the curvature of the free energy function much larger than in the charged recombined (CR)
state. However, Tachiya'®®%” and Warshel?"®%21% refuted those approaches as they were able to
demonstrate that the free energy surfaces of the final and the initial states are coupled in linear

fashion
G, (AU;)=G, (AU, )+AU, (3.53)

through the reaction coordinate AU5 which is the potential energy gap between the initial and
the final states. The result, first obtained by Warshel, is based on the transformation of the
statistical probability for the instantaneous potential energy difference between two states AU,
picked up along the trajectory, to have a particular value of the reaction coordinate AUj; .*®°

(3(aU—AU)) =(5(AU,-AU)) exp((AG,—AU ) /k.T). (3.54)
Consider two electronic states of the D-A complex which are harmonically coupled to a

collective solvent coordinate q with the different force constants k; and ks for the initial and final
states, respectively (see Section 2.1):
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U =1, -Ca— ke’ (355)

1
U, =If—qu—§qu2 (3.56)

where lis represent the sum of the electronic energies of the solute in vacuum and the solvation
free energies.” The parameter C; defines the strength of linear solute-solvent coupling, similar
to Marcus assumptions. The collective coordinate q driving the electronic transition can be
projected out from a microscopic liquid-solvent Hamiltonian or represented as a linear
combination of harmonic degrees of freedom characterized by spectral density functions.®
Thus, the reaction coordinate AUy can be defined as

AU = Al —ACq—%Aqu, (3.57)

where, Al = It —I;, AC = C; — C; and Ak = ks — k;, respectively. The 3-function in Eq. (3.61) can
be represented as a Fourier integral
5(AU, )= T d—fexp(igAUf. ). (3.58)
i J o i

Substituting this expression in Eq. (3.54) and integrating over q (for details see Ref. 153) yields

0

e_Gi(AUfi )+GOi/kBT ~ J. d_é: e(pi(f’AUfi).

3.59
) o (3.59)
where
C_Z
G.=1 -2 3.60
0=l 3 (3.60)
is the equilibrium energy of state i and
iE(AU, - AU o
@ (5AU,)= (8Ua-8U3) o (3.61)

ke keT(E-a)

is a generating function. The latter formulation is advantageous in Eq. (3.59) because it can
always be expanded as a series in powers of ¢ instead of the common practice to employ
truncated polynomials for the generation of non-parabolic free energy surfaces.’®**®! The
solvent reorganization energy 4 in state i is defined as the second cumulant of the reaction
coordinate

1 (&0 _(3aUy)

_ _ , 3.62
2k, T (3.62)

2
i

STOk,T o

o

where AUy is defined as in Eq. (3.36).
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The reorganization energy given by Eq. (3.62) is obtained in a straightforward way by
averaging over the equilibrium configurations from computer simulations. In order to evaluate
the reorganization energy according to Eq. (3.62) one needs to record only the standard
deviation of the potential energy gap AUs from its average value along MD trajectories. The
reorganization energies s for the initial and final states are not identical as in the standard
model of Marcus and are related to each other through the following equations:

ol =al)/ (3.63)
a; =a, +1, (3.64)

where o; = ki/Ak. EQs. (3.63)—(3.64) reduce the number of independent parameters to three:
AGy, a; and As. Compared to the two-parameter model (AGo and 1) of Marcus-Levich-Jortner,
the present Q-model introduces one variable more, which allows more flexibility in terms of a
variation of the force constant for the final and initial states, reflecting the difference between
fluctuations of the solvent molecules in these states. The standard MLJ theory corresponds to

the case when k; and k; are equal. The parameter AU defined through the equilibrium free

energy gap AGo = Ger — Goi and the reorganization energy As can be written as follows:
2
AU =AG, - 4, (3.65)
Oy
It defines limitations of the allowed energy fluctuations. This property follows from the
asympthotic behavior of the function @;(&X) and its properties in the complex plane.** In
contrast, Marcus theory'®*>* leads to an unrestricted band of energy fluctuations where energy

gaps of any size can be achieved with non-zero, albeit small, probability.

According to the Q-model, one has to evaluate the complex integral in Eq. (3.59) for AUy
values inside the fluctuation band, which includes the essential singularity at ia; . The final
analytic expression for ET rates is given™ by means of the first-order modified Bessel
function®®? 1,

/Isi ‘ai

AU - AUS

3
| AU -AU? AU - AU,

Ker = A exp [_(‘ai‘

+ /lsiaiz)/ksT}Xll (2\/0% 2

153

/kBrj (3.66)

Here, A; is a normalization factor. The asymptotic expansion— of the Bessel function in Eq.
(3.66) leads to the free energy potential surfaces which exhibit a linear dependence with
respect to the large values of the reaction coordinate AUs. The final free energy surfaces are

asymmetric with a steeper branch on the side of the fluctuation boundary AU? and are linearly
related to each other as required by the fundamental Eq. (3.60).
All parameters of the Q-model can be evaluated if the solvent reorganization energies A

are known. One of the computational methods in the next chapters [see method (1) in Section
6.4] is dedicated to an accurate evaluation of the potential energy gaps that define the solvent
reorganization energy according to Eq. (3.62).
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4 Evaluation of Solvent Reorganization Energy

4.1 Spectral data and methods of simulation

Any ET reaction causes a change in the electronic configuration of the reacting species.
According to the Franck-Condon principle, the electronic transition takes place much faster
than the motion of the nuclei; therefore, the latter could be regarded as effectively frozen during
the transfer. In the electronic state resulting from the fast transition, the surrounding solvent
molecules are suddenly subjected to a new electrostatic field and their current configuration
becomes unstable. Thus, a subsequent slow nuclear reorientation follows in order to reach the
equilibrium that corresponds to the changed solute electron density distribution. In the present
chapter a hypothetical solute, which does not undergo any structural changes, as well as only
vibronic transitions leading to internal energy conversion, are considered. The change of
solvent free energy from the transition ET state to equilibrium is described by the model of
Marcus in terms of reorganization energy.**%*% At the point U, along the energy surfaces,
where the ET takes place (Figure 2.3, Chapter 2), a solvent configuration, which has resulted
from a series of particular consecutive thermal fluctuations, serves as the driving force for the
reaction. The electronic transition could also occur while the ET complex is in an equilibrium
state, but then, in order to facilitate this transition, additional energy must be provided, e.g.,
through the absorption of light. The latter situation can be used as a rather simple model to
illustrate the methods available for describing the charge transfer. If a molecule undergoes an
electronic transition through photoexcitation, the subsequent relaxation can be quantified
spectroscopically by the Stokes shift,"®>**® which is the difference between the energy of
absorption and a selected fluorescence maximum. Comparison with the standard ET picture
demonstrates (e.g. see Figure 2.3, Chapter 2) that the energies Avy of absorption and 7v, of
emission (Figure 4.1) can be expressed as follows:

hv, = A+ AG, (4.1)
hv, =i—AG,. 4.2)

Therefore, the reorganization energy is half of the Stokes shift:
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Figure 4.1. Electron transfer reaction through photoexcitation.
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This expression for the reorganization energy is based on an assumption introduced by
Marcus that the solvent response is linear and, moreover, the changes in the dielectric
polarization of the solvent medium*®* for back (emission) and forward (absorption) reactions
are the same. In other words, the reorganization energies for transitions either from the reactant
to the product or from the product to the reactant are assumed to be equal.

MD simulations allow one to evaluate the emission and absorption energies in terms of
differences between the potential energy surfaces which correspond to the product and the
reactant states. Assume that absorption and emission occur in the initial (reactant) and the final
(product) states described with the total Hamiltonians H; and Hs, respectively. Then the
absorption and emission energies can be expressed as follows

e, =H; (Re)—Hi(R:) (4.4)
hVen =H, (Re)—H, (R ), (4.5)

where the vectors R, and R, represent the total solvent coordinates in the reactant and the

product states, respectively. In case of vertical transitions the atomic nuclei are ‘seen’ by the
electrons as “frozen” and therefore, the kinetic energy part of the Hamiltonians before and after
the transition are equal. Thus, the difference between the full Hamiltonians could be
approximated by the difference between the (total) potential energies:

e =U; (Re)-U; (Re) =AU (Ry) (4.6)
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e =U; (Re)-U, (Rs ) =AU (R ). 4.7)

For simplicity we dropped the lower index of the total potential energy; formally a positive
sign is ascribed to the potential energy gap AU = AUj = Us — U,
The thermal fluctuations of the coordinates R, and R, reflect specific solvent

configurations. To deal with experimentally measured values, one has to average over all
possible configurations statistically achieved at a certain temperature according to a Boltzmann

distribution. These averages AU (ﬁR) and —AU (ﬁp) may be generated by MD simulations

which yield an ensemble of snapshots along each of the trajectories, which are interpreted to
span the configurational space for the reactant and product states, respectively. Then the final
expression for the (solvent) reorganization energy becomes

(), ()

° 2

, (4.8)

where <>I . denotes averaging over the corresponding trajectory. The quantities of Eq. (4.8)

are determined in two steps: (i) from two trajectories R and P (which reflect different ET states
of the solute, both in thermal equilibrium with their environment) the corresponding sequences

of the potential energy values U, (R, ) and U (R, ) result, see Eqs. (4.6)-(4.7); (ii) calculation

of the potential energy difference between two ET states for each snapshot from R and P
trajectories. Step (ii) is carried out by “twisting” the ET state (reflected in charge distribution of
solute) to the different one compared to one for which the snapshot was recordered. To span the
configuration space in the sense that a meaningful statistical ensemble is generated, the
(classical) MD trajectories have to be run for sufficiently long times. Eq. (4.8) represents the
main formula for evaluating the reorganization energy according to the classical picture of
Marcus; in the following this approach will be denoted as method (1).

The second method, also referred to as method (Il) in the following, is based on an
evaluation of the standard deviations of the potential energy gaps according to Eq. (3.62).
Method (I1) for determining solvent reorganization energies can be derived either from the
dispersed polaron model of Warshel® or seen as a second cumulant of the reaction coordinate in
the Q-model, as shown in Eq. (3.62). Yet, it seems preferable to demonstrate its meaning in the
spirit of Tachiya,*® who provided a detailed derivation in a more general fashion.

The physical origin of Eq. (3.62) also lies in the Marcus approximation of solvent linear
response. Consider a thermally driven ET reaction, where the transition occurs at some
potential energy value U?, which is achieved rather frequently due to instantaneous thermal
fluctuations. Then, the potential energy of the system can be seen as fluctuating around this
value. The fluctuations of the potential energy AU = U* — U are of a stochastic nature and it is
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obvious to assume that they follow a linear response model and therefore exhibit a Gaussian

distribution:
(U -u)

2 H

p(AU) = exp| —

270 20 (49)

where o is the standard deviation of AU.

Comparison with the normalized part of the Marcus formula responsible for the Franck-
Condon factors, e.g. as represented in Eq. (3.1), reveals that the solvent reorganization energy
can be expressed by Eq. (3.62). If one determines the reorganization energy via the standard
deviation of the potential energy gap, one does not necessary have to assume that the values of
/s are equal for the forward and the back reactions.

A third method for estimating /s, referred to as method (I11), is in general tightly related to
method (II) but provide more information as it yields insight into the structure of the
fluctuations of the potential energy gap. The method allows one to identify the vibrational
modes that drive the ET reaction and even to determine their relative contributions. The method
goes back to the dispersed polaron model,> which relates the non-harmonic vibrations of the
real system to a system of harmonic oscillators.

From the viewpoint of molecular dynamics, the fluctuations of the solute-solvent interaction
potential are caused by the (quasi-random) movements of the point charges assigned to each of
the solvent atoms. The motion of these point charges could be treated as composed of different
vibrational, translational and rotational contributions. To get insight into how the quantity As is
formed from contributions of the various modes, it is convenient to invoke the formalism of
time correlation functions (TCF) of the solute-solvent potential.

The main idea behind the TCF formalism given below is that the fluctuations of the energy
gap AUs along an MD trajectory of a real system in electronic state i (either charge separation,
CS, or charge recombination, CR) can be related to the fluctuations of an equivalent harmonic
system via the autocorrelation function

A(t)=(8Uq (t+7)3U (7)), (4.10)
where 38U (t)=AU ; (t)-(AU, (t)>i is the deviation of the energy gap fluctuation from its

thermal average. The exact expression for the autocorrelation function A;(t) of a harmonic
system is given by Eq. (3.44). According to the Wiener-Khintchine theorem,**® the magnitude
of the Fourier transform of the autocorrelation function is the power spectrum J (@)/e of the
fluctuations

(@) T A (t)exp(—ict)dt . (4.11)

(0]
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The autocorrelation function of the energy fluctuations of a particle that is coupled linearly
to a large number of harmonic oscillators is

ha)j

Ai(t):%Zcoth(2k Tj(ha)ijj )2 cos(a;t) (4.12)

Here w; is the frequency of vibrational mode j of the system and Ax; is the dimensionless
displacement of the normal coordinate. In spite of the fact that some modes could be highly
non-harmonic, the overall response of a large molecular system, like DNA or proteins, which
have numerous vibrational modes, is expected to be linear. In other words, it is identical to the
response of a multidimensional harmonic system.>*°2!%® \While the autocorrelation function
Ai(t) of Eq. (4.13) differs from the more exact formulation given by Kubo®? and Lax,™* both
forms of the autocorrelation function transform at high temperatures into [see Eq.(3.48)]:

A(t):kBTZhijszcos(mjt) (4.13)

Fourier transformation (FT) given by Eq. (4.12) of the above equation in the high-
temperature limit yields

(4

M:ﬂkBTZthAXjZS(a)—wj). (4.14)
j

The Fourier image of A;(t) picks out the vibrational modes, which are coupled to the ET
reaction because they feature significant nuclear displacements Ax; between the reactant and
product states, which results in a larger contribution to the power spectrum. Integration of the
power spectrum produces the solvent reorganization energy in the form referred to as method

(1,

1 1 tJ(o)
A== hoAx?= dw, 4.15
’ sz: o 27[kBT'[c @ (4.15)

which is an alternative representation of Eq. (3.52) (see Chapter 3).

When one evaluates the solvent reorganization energy according to one of the methods just
described, then the main bottleneck is a careful evaluation of the potential energy gaps between
the reactants and the products. In order to estimate them, mainly two computational methods
were applied, namely atomistic MD simulations or calculations invoking a continuum model.

4.2 Continuum model calculations of A

Marcus first derived a classical electrostatic model for calculating As of an intermolecular
electron transfer.’*#%1% To obtain an analytical expression for s, Eq. (2.34), with this model
that is based through the Poisson equation, Marcus approximated the donor and the acceptor
molecules as spherical regions separated at a distance Rpa (Section 2.3). The spheres are
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immersed in a dielectric medium that represents the solvent and is characterized by an optic, &,
and a static, ¢, dielectric constant. Naturally, this macroscopic scheme lacks atomistic detail.
Also, it is necessary limited by the spherical shapes assumed for the donor and the acceptor
species. Despite its simplicity, this model was quite popular for interpretation of experimental
data in biological systems: it successfully captures the general dependence of is on the D-A
separation Rpa, the polarizability of the surrounding medium and hence the effect of the solvent
not only for rather small molecules like hydrocarbons,™’ but also for estimates of s even in
DNA duplexes.'*?

The original Marcus electrostatic model for As also invoked a linear response approximation,

specifically for representating the solvent reorganization as a dielectric response.’*9163

Linear response models of the electrostatics, including those based on numerical solutions to
the Poisson-Boltzmann (PB) equation, have proven to be highly successful for modeling many
equilibrium electrostatic properties of biomolecules having complicated geometry. 268170 A
key point of these calculations was the ability to solve the PB equation rapidly and accurately
essentially for arbitrary charge and dielectric distributions using numerical methods. This
allowed the explicit incorporation of atomically resolved information provided by X-ray
crystallography and nuclear magnetic resonance (NMR), including the shape of the
biomolecule, the positions of charges and counterions, and the accessibility of solvated ions by

the solvent.

For many phenomena the advantages of realistically representing the structural detail of the
molecule outweights any approximations entailed by the use of a linear response dielectric
model. Another important feature of these models is the inclusion of rational, though implicit,
solvent and solvent ion screening effects. These advances in modeling the electrostatic

169,170

properties of biomolecules have been made possible by improvements in the numerical

methods and by the rapid increase in computer power.

In the continuum model, the starting point for determining the reorganization energy is the
evaluation of differences in the electrostatic free energies between two states, one of which is
not at electrostatic equilibrium with the surrounding medium. For further convenience,
following the abbreviation introduced in Section 2.3 for Marcus two-spheres model, the state
which is in equilibrium with surrounding medium will be denoted as (AD) and its
complementary excited analog as (AD)". For both states, the electrostatic potential ¢(r) as a
function of the coordinate r is given as solution of the following equation,*”

V-Vo=—-4rgp+47V-P (4.17)
where p(r) is the charge distribution of the fixed charges and P(r) is the polarization the of
medium. This equation is valid irrespective of whether or not the charges and polarization P(r)

of the medium are at equilibrium. It is assumed that the potential gradient arises from some
distribution of atomic charges. The latter could represent either a time-averaged equilibrium or
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an instantaneous non-equilibrium state of the system. The charge density p(r) is usually
composed of two contributions: atomic charges pa(r) of the main solute, e.g. a biomolecule,
and mobile charge, i.e. the counterions pion(r). Following the seminal paper of Marcus,” the
polarization P(r) is formed by two contributions: Py(r) reflecting the slow component (atomic
and orientational) of polarization and P¢(r) corresponding to the fast electronic component (as
discussed in Section 2.3).

The polarization P(r) at any point in space is proportional to the electrostatic field and to the
electric susceptibility a(r):

P=—-aVep. (4.18)

The susceptibility, defined in terms of the dielectric constant ¢ as a(r) = (e(r) — 1)/4x, can
have contributions ay(r) and ae(r) from the nuclear and electronic response, respectively, so that

oa=o,+a,. (4.19)

In the case of fast ET such as, for example, light absorption (see Figure 4.1) from
equilibrium state (AD) to non-equilibrium state (AD)", only the fast electronic polarization

Pe(r) responds to the sudden change in solute electrostatic field [pa(r) “jumps” to pa (r)], while
the slow polarization Py(r) stays the same for both states.

Therefore, substituting Egs. (4.18)—(4.19) into Eq. (4.17) yields for equilibrium state (AD)
VP (r)Vo=—4n(py + Pion ) » (4.20)
and for non-equilibrium state (AD)”
Ve (r)Ve' =4z (py + pin) (4.21)
where £¥(r) = 4zae(r) + 1 and €°°(r) = 4ma(r) + 1, respectively.

The charge density of the counterions pa(r) depends on the potential ¢ for (AD) and ¢ for
(AD)’ state, respectively, with the bulk solvent concentration c; of each ion of valence z:

Dion = eZ:cizi exp(—ziego/kBT). (4.22)

Evaluation of the electrostatic potentials ¢ and ¢” from Eqs. (4.21) and (4.22) for any given
spatial combination of charges is an important stepping stone towards calculating the solvent
reorganization energy As. Invoking Eg. (2.32) from Section 2.3 by adding and subtracting the
term that corresponds to the energy of the molecular system in vacuum, it is easy to represent
expression for 4s in a generalized form that is more convenient for the current discussion:

2, :I( _1JE_§_(%—1JE—§ dv = ESO,V(SOp)— Eeon (851). (4.23)

87 \& 87
Here E. is the electrostatic field obtained by solving Egs. (4.21)—(4.22) and Esy are the free
energies of solvation. Thus far, the solvent reorganization energy, as can be seen from Eq.

1
e”®

(4.23), is nothing else than the difference of solvation free energies in two solvents effectively
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characterized by the static dielectric constant ¢ and the high-frequency (optical) dielectric
constant ¢®. Considering the complicated case of a biomolecular system, where the change of
the charges occurs at numerous atomic sites and the dielectric constants vary in space, the
solvent reorganization energy As have to be represented in the following form utilized in the

previous work of our group:**?

/15 = Esolv (glop;g;p;“' gr?p;Aqfi )_ Esolv (gft;g;t;'“ g;t;Aqfi )’ (424)

where AQsi = gr — q; is the difference of the charge distribution in the initial and the final states
of D and A sites.'®” In the latter equation the dielectric function, ¢ = (r), in general a quantity
varying in space, is treated in a piecewise fashion as constant within each of n zones: ¢, j =1 -
n). The latter methodology is employed in the program Delphi 11,**"® which uses a finite
difference solver of the Poisson equation for systems composed of multiple zones. It also
affords an estimate of solvent reorganization energies for such complex systems as DNA
duplexes.’? In these calculations, the average geometry of a DNA duplex was initially obtained
from MD calculations as a series of snapshots along 1 ns trajectory and then the solvent
reorganization energy As for ET between different guanine units was obtained according to Eq.
(4.24) by solving the Poisson equation, Egs. (4.20)—(4.21), where the ions were included
explicitly. ™

Each system (solute and surrounding medium) was divided into five regions (n = 5) of
different dielectric constants ¢;. For the D (donor) and A (acceptor) zones (confined to a single

guanine G units) static and optic dielectric constants were set equal to &' = &® =1; the next

two zones were comprised of the bases and the sugar-phosphate backbones (static dielectric

112,172

constants & =3.4 and & =20.6, respectively ) with optic dielectric constants

&' =g =2. The water medium was considered to be comprised of two regions: “bound

water”, a layer of 3 A around the solute (corresponding to the first hydration shell explored by
X-ray diffraction'”**"*) and “bulk water” beyond it. The results of Beveridge et al.}"*'"* showed
that the bound water region has a substantially lower dielectric constant than bulk water. In the
vicinity of DNA, the local dielectric constant deviates from the bulk value as a consequence of
the much lower mobility of the water molecules which interact with the charged and polar
groups of DNA. The picture resulting from X-ray studies shows that the chain of phosphates is
surrounded by two solvation shells of regular geometry.'”* The first layer is partially occupied
by counterions, and, because of site-specific binding of cations, the structure of this “spine”
depends on the DNA sequence.'™ The static dielectric constant of the bound water region is not

112
d;

precisely define therefore a series of values, varying from 2 to 80, was employed for the

static dielectric constante;'. For the bulk water zone, &5 =80 was assumed and both water

regions were assigned identical optic dielectric constants &, = ¥ =1.8.
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The DNA model calculations of the solvent reorganization energy with the parameters just
described, carried out in our group,**? features improvements compared to earlier studies*’®*"’
in several ways: a larger number of different dielectric zones, more realistic values for the
dielectric constants, account for geometry fluctuations of DNA etc. Beratan et al.'’”’ had
assumed only two dielectric zones; the calculations of Tavernier and Fayer'’® may be expected
to overestimate somewhat the reorganization energy because a rather large value of the static
dielectric constant, ¢ = 12.4, was assigned to the base stack zone, in contrast to other
suggestions which favor the range from 2 to 4.1”® The possible role of structural fluctuations
had never been explored before.}”® Such fluctuations were expected to be significant for the
interaction of DNA with the surrounding counterions and water molecules.'”® Despite all these

issues,''?

the main outcoming of the studies of our group was to point out that the ambiguity in
the definition of the dielectric zones and the assignment of their dielectric properties (especially
dielectric constants for bound water region) lead to a wide variation of the results for As, but
with a noticeable difference, by 0.4-0.9 eV, from the values inferred from experiments, 0.4-1.7
eV, where the lower value corresponds to ET between adjacent guanines and the larger one
donor and acceptor separated by three base-pairs.*®*"® Later attempts to bring experimental
results and theoretical calculations into agreement by means of dielectric continuum model
used a redefinition of the DNA solute cavity as solvent accessible surface area, resulting in As =
0.4-1.0 eV for the same range of ET distances, instead of the conventional van der Waals
surface which lead to As = 1.4-2.3 eV. Overall, these latter calculations demonstrated that
calculated As results for ET in DNA could be reduced by a factor of 2-3 at a given D-A
separations, thereby formally reaching the experimental values.*®®

Thus far, As has been estimated mainly from dielectric continuum models!>168176:177180
dating back to the pioneering work of Marcus® and the results cover a wide range of values,
depending on the parameterization of the model. A notable drawback of dielectric continuum
models is the arguable choice of the spatial partitioning with different dielectric constants
assigned, in particular partitions of the solvent in the vicinity of the donor and the acceptor sites

of the solute.

4.3  Molecular dynamics calculations of A

Atomistic MD simulations with explicit treatment of the aqueous solvent provide an
alternative to the dielectric continuum models. They allow one to record all atomic positions of
the molecular system in time (see Chapter 5). For large biological molecules, these calculations
usually employ non-polarizable water models where molecules are represented by a system of
fixed (atomic) point charges. The most commonly cited of them are the simple point charge
(SPC)*! water model and three-point transferable intermolecular potential (TIP3P).*¥ These
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are two rigid 3-site water models which reproduce the basic phase structure of water and its
thermodynamical properties. There are some further developments of non-polarizable water
models like TIP4P'® (additional fourth site along H-O-H bisector) and TIP5P,'®* which yield
better agreement for the density and the radial distribution function at room temperature. One
common feature of all of them is that the average contribution of the electronic polarization is
implicitly taken into account by an appropriate choice of charges and a suitable
parameterization of bonded and non-bonded interactions.®**® These kinds of solvent models
with omitted electronic polarization have been thoroughly tuned to reproduce well the average
thermodynamic properties of molecules in solution and of bulk liquid water. A comparison of
non-polarizable models TIP3P,*®? TIP4P*® with different polarizable analogues like modified
fluctuating charge TIP3P-FQ,® TIP4P-FQ*™ concluded®® that explicit representation of
electronic polarization does not deliver any noticeable advantage for solvent reorganization
energy simulations, yet being significantly more demanding regarding the computational
resources.

Few attempts have been made to incorporate explicitly electronic polarization into MD
calculations of the solvent reorganization energy.®®® They showed either no effect,® a
negligibly small influence®®*®® or lower'® compared to the theoretical expectations.
Nevertheless, despite these negative computational results, the general understanding®>*® (that
electronic polarization plays an important role in the determination of solvent reorganization
energy values) was theoretically well founded and resulted in the common practice to reduce
these s values in a posteriori fashion by uniform scaling.’**®” Scaling is frequently used to
bring seemingly overestimated values in accordance with experimental data or with results from
dielectric continuum models. The choice of a suitalbe scaling factor represents a major
challenge; it rests on an average optical dielectric constant, but use of such macroscopic
quantitites itself is not well justified at the atomic scale. This is related to the problem of the
optical dielectric constant having a spatial variation, which strongly depends on the solute
cavity shape and the electrostatic field around it (see the discussion in Section 4.2). The
straightforward transfer of a scaling factor from the simplified two-sphere solute model to

DNA,***8" as well as incorporation®#’

104

of the optical dielectric constant from experimental data

for pure water™" was not regarded as a reliable method even by the authors themselves.

In a short note in one of his earlier works, Warshel concluded® that the solvent electronic
polarization may be important as it may substantially reduce /s in computational approaches.
Later attempts with polarizable force fields were rather disappointing and gave way to an
attitude where these effects were put aside.2®*° The earlier calculation of Warshel*® invoked
certain approximations to reduce the computational demands and therefore cannot be
considered as sufficiently accurate to allow an ultimate judgement on these issues. In fact, a
thorough quantitative treatment of solvent reorganization energies remained an open problem

88,89

till today, for small molecules®®®® as well as for complex biomolecular systems.” On the other
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hand, attempts were made to overcome the failure of the straightforward computations with
polarizable force fields by invoking more sophisticated theories,*® which also ultimately
required parameterizations that unfortunately were not transparent at a fundamental atomic
level.

Therefore, so far, a reliable general procedure for determining solvent reorganization
energies for complex systems remained an open question. Given this situation, the present work
revisites the application of MD simulations with polarizable force fields (see Chapter 5) for a
small model system (Chapter 6) and for large-scale simulations of DNA-related systems
(Chapters 7 and 8).
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5 Molecular Dynamics Simulations. Methodological

Aspects

5.1 Basic theory of molecular dynamics

The tremendous progress of computer science in recent years led to a development of fast
and efficient computational methods for the investigation of structure and dynamics of
molecular systems.'*®®® Quantum mechanical and force-field based molecular dynamics
calculations are probably the two most important tools of computational chemistry.'*
Nowadays, both approaches are proven to reproduce the properties of many materials at least
with experimental accuracy. Thus theoretical calculations serve as a main source when
experimental data are to be interpreted. Although quantum mechanical calculations have the
capacity to describe the electronic structure of molecules, they are still not suitable for studies
of macromolecules because of limited computational power. In addition, calculations of
thermodynamic properties and conformational analysis do not necessary require a detailed
knowledge of the electronic properties. This area is successfully served by (force-field based)
molecular dynamics simulations, which follow the classical motion of the nuclei (or ions) and
treat mechanical, van der Waals and electrostatic forces of a complex molecular systems as a
parameterized function of nuclear positions. The initial atomic coordinates are often provided
by X-ray or NMR analysis. The parameters of the interatomic forces are selected to reproduce
pertinent properties of the system or derived from results of quantum mechanical calculations.
Finally, the Newtonian equations of motions are solved for the nuclei (or ions):

2

F=ma, :mi%,

Here F; is the force acting on atom i with mass m; and acceleration a; (the second derivative of

(5.1)

the coordinate vector ri with respect to time t). The force exerted on atom i is obtained as
derivative of the total potential energy of a molecular system with respect to the coordinate
vector rj:

, (5.2)
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where R is a vector encompassing all atomic coordinates of the molecular system. At the core
of molecular dynamics there commonly is a “force field”, i.c. a parameterized description of the
potential energy surface for a class of systems.

5.2 Force fields

The force field or in other words the total potential energy of a system usually is taken to
consist of various energy contributions. Formally they can be divided into two groups: bonded
terms (bond stretching, changes of bond angles or torsion angles) and non-bonded terms
(mainly to represent van der Waals and Coulomb forces). Each of these terms contains
empirical parameters, which are adjusted to reproduce correctly general molecular properties.
This fitting is performed in a fragment-by-fragment fashion for families of small molecules or
their parts which possess similar physical or chemical properties; one compares force-field
results with results of ab initio quantum mechanical calculations or with experimental data. The
parameters are collected in libraries and usually automatically assigned to the atomic centers of
the molecule under study. Given a wide variety of chemical species, especially
macromolecules, force fields are normally designed for specific classes of molecules. For
example, AMBER,"* CHARMM'¥ and GROMOS'® force fields are developed to describe
proteins and nucleic acids, while the family of MMX** force fields is designed for treating
mainly small organic compounds.

The total potential energy of the molecular system is given by the general expression:

+U +U

angle torsion nonbond

U(R)=Upp +U (5.3)

The first term in this formula represents the potential energy associated with the stretching of a
bond between pairs of chemically bound atoms whose interactions are traditionally
approximated with harmonic potentials:

1
Ubond :E Z kb(r_r0)2 , (5.4)

bonds

where kj, is a force constant specific for each bond and ry is the corresponding equilibrium bond
length.

The second term in Eq. (5.3) is related to the deformations of a bond angles & between three
atoms, among which two pairs of atoms are chemically bound. Similar to Eq. (5.4), a harmonic
potential is employed as a rule:

Uangle :% Z k(} (0_60 )2’ (55)

angles

where ky is the force constant of the valence angle and &, is the angle of the equilibrium
structure.
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The third term is responsible for simulating rotational barriers between atoms separated by
three covalent bonds. The motion associated with this term is a rotation around the bond
between the two atoms in the middle of a set of four atoms. The torsion potential is assumed to
be periodic and can be expressed as a truncated cosine series expansion:

Ugrion =% > U, (1+cos(nw-y)), (5.6)

torsions

where U, is the energy barrier for the torsion rotation, n is the multiplicity constant describing
the number of minima on the potential energy surface, and w is the reference torsion angle. The
phase shift constant y defines the value at which the torsion angle has its first minimum.

The last term in Eq. (5.3) represents the non-bonded interactions. The non-bonded term
usually contains two parts which describe van der Waals and Coulomb interactions:

. B. ol
Unonbond ZZZL%__GJJ—{_ZZ%—FUPO' (57)

i o B i i €

In the case of a polarizable force field, an additional term is introduced that represents the
electronic polarization of a molecular system. The latter term will be discussed in detail in one
of the following subsections. The van der Waals interaction between two atoms i and j
separated at distance r;; arises from a balance between attractive dispersion and repulsive forces.
It is often assumed in the form of a Lennard-Jones potential; see the first term in Eq. (5.7). Ajj
and Bij are parameters specific to atom pairs. The Coulomb potential accounts for the
electrostatic interaction in a medium with dielectric constant ¢ between pairs of atoms i and j
with charges g; and g, respectively.

5.3 Integration algorithms

In MD simulations one solves the Newtonian equations of motion through integration
algorithms all of which necessary involve a discretization procedure. Also, one assumes that
positions, velocities, and accelerations, discretized on a grid, can be approximated by Taylor

expansions:
r(t+At)= r(t)+v(t)At+%a(t)At2 +%b(t)m3 +.. (5.8)
v(t+At)= v(t)+a(t)At+%b(t)At2 +%c(t)At3 ‘. (5.9)

Here r is the coordinate vector of an atom, v is the corresponding velocity, a is the acceleration;
b and c are derivatives of r of third and fourth order with respect to time.

If initial coordinates and velocities of all atoms of a system are defined, then the Newtonian
principles of dynamics guarantee an evolution of the system with time that can obtained by
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integrating the equations of motion. Hence, a representation of the motion as a series of discrete
velocity and coordinate values, instead of a continuum, leaves open the question how the
discretization procedure has to be implemented in the computations. There are several
commonly used algorithms, which perform this step in various ways.

Verlet algorithm. This method'® defines new positions r(t+At) on the basis of the current
positions r(t) and those of the previous time step r(t-At) and invokes accelerations a(t):

r(t+At)=2r(t)-r(t—At)+a(t)At’ (5.10)
The velocities v(t) at current time t are calculated from the coordinate values of the previous
and the subsequent time steps:

v(t)=[r(t+At)-r(t-At)]/2at, (5.11)

where coordinate vector r(t) is determined with respect to the centre of mass of the unit cell
(Section 5.8). The algorithm requires low computer memory although at the expense of
precision.

Leap-frog algorithm. This approach®® first calculates the velocities at a half-step t+At/2 of
time from the velocities at time t—At/2 and the accelerations at current time t,

v(t+%Atj:v(t—%Atj+a(t)At (5.12)
From these velocities the positions at time t+At are estimated:
r(t+At):r(t)+v(t+%At]At (5.13)

The main advantage of this method is an explicit calculation of velocities. However, the
positions and velocities are not synchronized, and, therefore, the calculated kinetic energy does
not correspond to the positions defined.

Velocity Verlet algorithm. The handling of the kinetic energy is substantially improved in the

currently employed velocity Verlet algorithm,*” which gives positions, velocities and

accelerations at the same time step and in addition, is rather accurate. The dynamic quantities
are computed as follows:

r(t+At)= r(t)+v(t)At+%a(t)At2 (5.14)

v(t+At)=v(t)+%[a(t+At)+a(t)]At (5.15)
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5.4 Treatment of electronic polarization

The last term in the non-bonded interactions of the force field, Eq. (5.7), represents the
electronic polarization:

atoms

1
UpoI = _E Z F.E? ' (516)

where ; is the dipole moment induced on atom i proportional to the total electric field E?

acting on atom i with polarizability tensor o
B = o,E (5.17)

The polarization in Eq. (5.16) includes mutual induction of the polarizable sites within a
molecule itself (intramolecular polarization) and the polarization induced by an external field.
The simplest way to mimic response of electronic polarization is based on isotropic atomic
polarizabilities assigned to the atoms to represent bond polarization in the environment of a
condensed phase.

The force fields augmented with an expression as Eq. (5.16), where the response due to
electronic polarization of a system depends on the field E;, are in essence non-additive ones,

because if a single dipole in the system is modified, then it affects the overall electrostatic field,
hence all other dipoles, which adjust themselves according to the new electrostic field.
Therefore, it is rather difficult to separate electrostatic contributions of different molecular
groups from each other and one has to talk about such individual terms with due caution. The
integration of the equations of motion for non-additive force fields employs at each time step a
number of other techniques in addition to the computational algorithms shown in the previous
section. Thus, polarizable force fields are computationally extremely demanding. One of the
ways out is a Lagrangian method.

Extended Lagrangian method. The Lagrangian of the molecular system L, used to describe
the motions of the nuclei in a standard additive (nonpolarizable) force field is augmented by a
Lagrangian term, which describes the changes of the dipoles. The total extended Lagrangian L
has the form:

1 N s 1 N 0 N 1 )
L= Lo""ZMui - __zp'iEi +Z_u’i , (5.18)
2T 2T i1 20

where M is a fictitious “mass” associated with the time evolution of the dipoles. The second
term on the right-hand side is a kinetic energy of the additional dipolar degrees of freedom. The
last two terms correspond to the potential energy of the dipoles and their polarization self-
energy. For each single induced dipole the Lagrangian function yields an equation of motion:

Mii, =25 — M o, (5.19)
o @
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This equation of motion is formally that of a harmonic oscillator subjected to a field E’. The
extended set of equations of motion for both ji, and ¥, is integrated by a standard
computational method as described above.

Self-consistent method. At each time step the self-consistent method minimizes the total
electrostatic energy in an iterative fashion only with respect to electronic polarization degrees of
freedom represented by the induced dipoles. Since the induced dipoles p; on all other atoms (i =
1, ... N) are also sources of electrostatic field contributions, one arrives at a set of N implicit
vector equations for the self-consistent field:

p=F(pwr..r), (5.20)
where p=(p,...p,) denotes the set of induced dipoles and the dependence on the

configuration (r,...r,). The last equation is adjusted by introducing a relaxation (mixing)

parameter o:
p=oF (p)+(1-o)p. (5.21)

At each MD time step the configuration of all atomic nuclei in the system is kept fixed, while
the polarization energy is minimized to fulfill the condition:

max", [, — 00| =Ap® <C (5.22)

where C is an arbitrarily chosen constant, which serves as criterion for the convergence of the
polarization energy associated with the induced dipoles.

5.5 Representation of the solvent

Conventional non-polarizable models of water such as the simple point charge force field
(SPC),™" or the three-point transferable intermolecular potential (TIP3P)'®? are based on fixed
atom-centered charges and have two significant limitations. One of them is that such
simplification leads to insufficient flexibility of the description of the molecular charge
distribution and results in an electrostatic potential of limited accuracy.*® Another shortcoming
is related to the fact that such models lack the property of an instantaneous electronic response
to the molecular environment, in striking disagreement with reality. For example, it is
experimentally known that the dipole moment of water changes from 1.85 Debye'®® in the gas
phase to 2.1 Debye for the water dimer,?® to higher values around 2.6 Debye for small water
clusters,”® and finally 2.95 Debye for bulk water.?®* Molecular dynamics simulations of the
dielectric properties suggest values of the dipole moment around 2.5 Debye?*?% for liquid
water in order to effectively reproduce bulk thermodynamic properties of water in biomolecular
simulations.’®* As non-polarlizable force fields are not sufficiently flexible to reproduce all
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pertinent properties of water, the latter choice is at the expense of correct electrostatic
potentials.

This conflict can be solved by introducing electronic polarization into the point charge water
models.?®* Polarizable water models do a better job with reproducing molecular dipoles in
contexts where the hydrogen bonding network of room-temperature bulk water is either
partially destroyed or significantly perturbed.?®?% Polarizability is essential for obtaining
accurate energetics in the vicinity of highly polar moieties and small ions.?*®?°” A recent MD
study demonstrated®® that the structure of ideal B-DNA in the polarizable water model
POL3?® (three-point charges per molecule) converges to the experimental structure with a
much lower RMSD compared to the standard non-polarizable TIP3P.

The POL3 model treats atoms as isotropically polarizable in the spirit of a shell model where
the induced dipole is constructed from two point charges connected via an elastic spring located
at the nucleus.”™® In addition to reorientations of water molecules with typical experimental
times of several picoseconds,’ this force field captures the fast electronic response and has to
be adjusted at each integration time step (typically 0.5-2 fs); the latter is essential for ET.”* The
TIP3P model is able to simulate only reorientational polarization. The present study attempts to
account also for the effect of a quasi-instantaneous electronic polarization on the solvent
reorganization energy and compares results from the two water models TIP3P (non-polarizable)
and POL3 (polarizable).

5.6  Assignment of charges

A key issue of all force fields is the assignment of atomic charges. Non-polarizable force
fields are commonly employed when one treats biomolecules in MD studies. The success of
non-polarizable force fields based on the effective two-body additive potentials, see Egs. (5.3)-
(5.7), is widespread.™®** For instance, the AMBER force field relies on ab initio Hartree-Fock
6-31G* calculations to derive RESP atomic charges.’*****?'2 Therefore, it would seem natural
to derive charges for polarizable models in a related manner. The charges used in non-
polarizable calculations systematically overestimate dipole moments because they implicitly
include electronic polarization effects.”**?!* In case of DNA simulations, the scaling of the
charges of nuclear bases by a factor of 0.9 yields approximately the charges used in polarizable
force fields.?™® However, such empirical scaling cannot be a satisfactory solution since scaling
factors need not be transferable. Therefore, a relatively sophisticated procedure is employed to
derive atomic charges; see Appendix B for details. At the basis of this procedure lies the
suggestion of Warshel®*® to represent the polarization energy with the help of induced dipoles
with an isotropic polarization, as introduced by Applequist.*’® In this scheme one first
calculates the electrostatic potential (ESP) of a molecule in the gas phase at an accurate
quantum mechanical level, employing DFT (B3LYP)?!" calculations with the cc-pVTZ basis
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set;?!® then one subtracts the contribution to electrostatic potential due to self-polarization of the
molecule before the potential is used for determining the atomic charges.?'® As demonstrated,
organic molecules or fragments of biomolecules can be incorporated into the library of the
polarizable force field following this procedure.

The present work used two all-atom force fields (FF) that are implemented in the program
package AMBER 8:%%°

(i)  ff99, which is the 1999 version of the force field by Cornell et al.,*** with the same
atom types, topologies (except for torsional parameters) and charges as the earlier

version ff94.1%

(i) ff02, which is a polarizable variant of ff99. The charges are closer to values in the
gas phase than those in the non-polarizable force fields. Polarizable dipoles based on
isotropic atomic polarizabilities are assigned to the atoms to represent the bond
polarization in the environment of a condensed phase. The ff02 force field uses
interactive polarization, which includes the mutual effects of polarizable sites within
a molecule (intramolecular polarizability), in addition to the polarization induced by

the external field.

5.7 Treatment of electrostatics

The calculation of electrostatic interactions forms the most time-consuming part of a
molecular dynamics simulation due to the long-range character of Coulomb interactions, which
fall off as the inverse of the distance between a pair of charges. In consequence, more solvent
molecules surrounding the solute have to be taken into account to estimate correctly the
electrostatic interactions in the system. Numerous approximations have been developed in an
attempt to decrease the computational efforts.***?*?22 They can be classified according to two
categories: truncation methods and Ewald summation methods.

Truncation methods neglect electrostatic interactions between two atoms at a separation
beyond a threshold also referred to as “cutoff” distance re..?>?** The interactions can be
abruptly truncated at the cutoff distance or smoothed by different schemes.??® The truncation
methods scale as O(N?) with the size of the system and become extremely expensive when the
size of the system increases. In addition to a higher demand of computational ressources, they
introduce numerous artifacts.??® For example, trajectories become unstable and biomolecules
tend to exhibit unphysical behavior.®” Therefore, truncation methods are no longer used in MD

simulations.

d227

Instead, the Ewald summation metho is now widely employed to handle the problem of

long-range interactions. The method was originally developed to treat the interactions of
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particles in a box and with periodic images. Ewald-based methods decompose the electrostatic
Coulomb interactions of the form 1/r into a sum of two error functions:
1 erfc(r) N erf(r)
roor r

, (5.23)

where the complementary error function is given by erfc(r) = 1 — erf(r).

The benefit of this decomposition is that erfc(r)/r, which gives rise to the “direct space sum”,
decays very fast, and therefore, a short cutoff can be used to compute this term. The other term
erf(r)/r, gives rise to the “reciprocal sum”; its terms do not decay fast but vary very smoothly
and therefore can be computed via Fourier transforms. The Particle Mesh Ewald (PME)
method, introduced by Darden et al.*? is a variant where one computes the reciprocal part very
efficiently using Fast Fourier Transform routines (FFT). The electrostatic forces computed in
the reciprocal space sum are then interpolated back to real space via B-splines. The PME
method scales as O(NInN), which is considerably faster than the O(N?) methods with a cutoff.
PME provides stable DNA simulations up to microseconds®® and is mainly used in expensive

biomolecular simulations with explicit solvent.

5.8 Periodic boundary conditions

Periodic boundary conditions can be used to simulate bulk properties of large molecular
systems surrounded by a solvent as they bypass the problem of simulating systems in “water
droplets” with extremely high surface tensions and artificial densities.?”’ Instead of considering
a single cell containing the dissolved solute, periodic boundary conditions treat an array of
replicas, infinite in three dimensions. All these cell images are identical and the molecules
inside exhibit synchronous movements with their original-cell counterparts. This approach
leads to a sufficiently realistic representation of systems in a condensed phase; it is the most
efficient method currently available for such MD simulations.

5.9 Temperature coupling algorithm

The absolute temperature T of a molecular system that contains N atoms is related to the total
kinetic energy:
2

1 Nmv
EkaBT:z 2 , (5.24)
i=1

where N¢ is the number of degrees of freedom of the molecular system. A popular schemes to
control the temperature is the Berendsen coupling algorithm,?*® which is based on a coupling of
the molecular system to a bath with a reference temperature To. One invokes:
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ar T-T,
dt T

where 7 is a time parameter that controlls the rate of the velocity scaling when the current

, (5.25)

temperature T deviates from To. This method is convenient for creating a correct initial
temperature distribution. It was applied in the present work for all calculations of the solvent
reorganization energy.

5.10 Pressure coupling algorithm

A real solvated molecular system changes its volume in order to maintain a constant
pressure. In such NPT simulations the volume of the unit cell, applied with periodic boundary
conditions, changes according to the pressure-controlling algorithm. This scheme is similar in
spirit to the temperature coupling algorithm just described.??® However, here the volume of the
unit cell is adjusted in small steps and the positions of all atoms are isotropically scaled.
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6 Solvent Reorganization Energy in Marcus Two-

spheres Model

6.1 Challenging electronic polarization

In recent years much effort was invested in calculations of the solvent reorganization energy
As, a key parameter of electron transfer (ET) theories ever since the pioneering work of
Marcus.” The solvent contribution As forms the major part of the overall reorganization energy.
Systems of increasing complexity have been treated theoretically, from simple ionic solute

% or DNA oligomers.***

models® to complex systems of biological interest, e.g. proteins®
168176177 The classic Marcus continuum model® relates the solvent reorganization energy to the
high-frequency dielectric constant, predicting a strong inverse dependence on the dielectric
constant in highly polar solvents like water. As the high-frequency dielectric constant is related

to the molecular polarizability through the Clausius-Mossotti relation,*3?%

accounting for the
electronic polarization in a theoretical approach should notably affect As. Incorporation of the
molecular polarizability of the solvent due to the spatial variation of the electrostatic potential

in the vicinity of the solute is an essential condition for estimating As.

Several methods have been employed to tackle this problem, like a dielectric continuum

112,168,176,177

model of the solvent (see Section 4.1) or a more sophisticated description of the

solvent in terms of a local response function'®®#* Ambigious aspects of implicit solvent

112176 in order to

(continuum) models are (i) the assignment of dielectric constants to regions
represent the heterogeneity of the solvent in the vicinity of the solute and (ii) the controversial
definition of the solute cavity in the dielectric medium.'®®*"® As a result, in case of complicated
systems like DNA, As values may vary by factors of up to 2-3, depending on the choice of

parameters.”2%17® Atomistic simulations offer an alternative®®*°

that affords an explicit
treatment of the aqueous environment without any ad hoc parameterization. Incorporation of
non-polarizable force fields for water, which is a common practice to reduce computational
efforts, leads to the substantial overestimation. of the solvent reorganization energy.*®"?* Thus,
the original (unscaled) A value, 1.68 eV, obtained recently®* from a simulation of ET in a DNA

hairpin complex using a non-polarizable force field deviates substantially, almost 0.5 eV, from
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the experimental estimate, 1.22 eV.?** To bring the resulting As values in accordance with
experimental data or with results from a dielectric continuum model, a rescaling factor has been

introduced to account for electronic polarization in a global post-hoc fashion.***%’

Such uniform scaling can be always questioned as an adequate approach for strongly
inhomogeneous solutes, which comprise regions of different polarizability, e.g. proteins or
DNA oligomers. In the middle of the 1980s, King and Warshel pointed out® that accounting for
the electronic polarizability of the solvent substantially reduces As, but the outcome of later

computational studies contradicted this result.®*®°

The present study re-investigates the approach to the solvent reorganization energy As via
molecular dynamics (MD) simulations, resorting as a first step to a popular simplified model of

89,235

a solute, where the DA complex is chosen to approximate the two-spheres model of

Marcus.*®

In the present chapter charge separation (CS) and charge recombination (CR) processes are
explored via MD calculations with an atomistic description of a polarizable aqueous solvent
and compared with predictions of the Marcus dielectric continuum model. The results from
polarizable and non-polarizable solvent models for various DA distances reveal that they differ

141b,185,186

by an essentially constant scaling factor, which incorporates the optical dielectric

constant at a value close to experiment.'%*

6.2 Two-spheres model parameters

To estimate the solvent reorganization energy As of an electron transfer reaction, Marcus
introduced a simplified representation of donor and acceptor as spheres of radii ap and aa,
respectively, with point charges in their centers, at a distance Rpa from each other (Figure 6.1).
With Ae being the charge transferred from the donor to the acceptor, this model yields’*®

Donor Acceptor

<—\ = ‘//' -
— quEZ lRDAﬁqu

/ \
\/ \T_, \\/\,

Figure 6.1. Sketch of a two-spheres model solute immersed in an aqueous medium of
randomly orientated solvent dipoles. The neutral-pair state (NP) that represents the initial
state (ga=qp =0 e) of a charge separation (CS) reaction is depicted.
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solvent reorganization energy given by Eq. (2.34), which relates As to the static & and the high-
frequency (optical) dielectric constant &, of the solvent i.e. the relative permittivities at zero and
very high frequencies, respectively.

To describe a simplified solute, which does not undergo any structural changes during MD
runs, K. Ando (KA) had suggested a model.?*® In a first step, the present study is aimed at
reproducing those MD model parameters as closely as possible with the available software.
Therefore, the DA pair, immersed in a solvent box with periodic boundary conditions, was
represented by two spherical cavities, defined by Lennard-Jones potentials U(r) = Do{(c/r}** —
(o/r}°}, as implemented in the program package AMBER 8. The parameters of these two
spherical “potential wells” were identical to those chosen by KA:**®* Dy = 2 kcal/mol and o= 7
A. All van der Waals interactions of the solute with atoms of the solvent as well as between
donor and acceptor were treated®?® as in that previous MD model.>® The Rpa distance was
restrained to the desired values by a harmonic potential with a force constant of 10000
kcal/mol-AZ. In the ion-pair (IP) state, the point charges o = 1 e, qa = —1 e were located at the
centers of the spheres; in the neutral-pair (NP) state o = qa = 0 e. The masses of the D and A
spheres were set equal to those of N,N-dimethylaniline (CgHi11N) and anthracene (Ci4Hio),

respectively, as in the original works on photoinduced intermolecular electron transfer.?*>2%

6.3 Molecular dynamics simulations

For the non-polarizable representation of the aqueous environment, the standard additive
AMBER force field ff94'°" together with the TIP3P model of water'®* were employed. In case
of the MD simulations with polarizable description of the medium, the non-additive force field
ff02, which is the polarizable variant of ff99'°*?!*27 and the POL3 model of water®® were used.
The polarizabilities of the solute, namely the “spheres” D and A, were always set to zero. The
system was created in module leap of AMBER 8 and then equilibrated with the module
sander,?? following a previously described procedure.?*®

During the heating stage hydrogen-containing bonds of water were always constrained with
the SHAKE algorithm®® and the temperature was increased from 0 K to 300 K within 50 ps,
using a NVT ensemble coupled to a heat bath with a Berendsen thermostat.?® Here and
elsewhere the time steps of the MD integration were 0.5 fs, unless explicitly stated otherwise.
The next step was an equilibration run of 120 ps in a NPT ensemble with rigid solvent
molecules. After the density had converged, atomic velocities were rescaled to 300 K,*°
employing an Andersen temperature-coupling scheme.?® Subsequently, rescaling to the target
temperature of 300 K, with a relaxation time parameter of 0.4 ps, took place 15 times, after
each 2000 steps of 0.25 fs. Then a final equilibration run of 20 ps was performed at 300 K in a
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NVT ensemble, employing a Berendsen thermostat.?® Finally, a NVE production run of total
length 50 ps was initiated in a NVE ensemble.

Three types of models were explored, varying the type of the solvent, the number of water
molecules, and the shape of the unit cell. To study CS and CR processes, for each model two
trajectories, for the NP and the IP state, respectively, were produced. The three models were:

(KA")  a cubic box with edges of 25.0 A containing 500 TIP3P water molecules, following
an earlier setup.?®® With this choice of parameters, the density equals that determined
for pure TIP3P water, 0.982 g/cm? 1%

(TIP3P) a cubic box with edges of 44 A containing 3000 TIP3P water molecules. The density
was set to 1.07 g/cm® as obtained from our MD equilibration results on the two-
spheres model, see Figure 6.2.

(POL3) A rectangular box of 42x43x51 A® containing 3000 POL3 water molecules. The
density was set to 1.00 g/cm?, as obtained from our MD equilibration results on the
two-spheres model.

Simulations (KA'") and (TIP3P) were carried out with the package NAMD (Version 2.6b1)%*°
and a smooth cutoff of 12.0 A, both for electrostatics and the non-bonded interactions, with the
switching function activated at a distance of 11.0 A. Trajectories (POL3) were produced with
the package AMBER 8,%® invoking the particle mesh Ewald method to describe electrostatic
interactions,??#?*12%2 an iterative scheme for treating the induced dipoles, and an atom-based
cutoff of 12.0 A for the non-bonded interactions and the direct part of the particle mesh Ewald
procedure. These initial trajectories were generated for the NP state of the CS reaction and for
the IP state of the CR reaction.

Density, glcm3

1.08 - a
1.04 -
1.00 -

b
0.96 —/
0.92 -

0 20 40 60 80 100 120
Time, ps

Figure 6.2. Convergence in time of the density of water in the unit cell (a) during the
equilibration stage, shown for the typical donor-acceptor distance Rpa = 8 A. Line (b)
illustrates the equilibration level obtained by K. Ando with the same setup, see Ref. 235.
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Along each production trajectory (KA"), (TIP3P), or (POL3), the snapshots were recorded at
intervals of 2 fs. The root-mean-squares (rms) fluctuations of the resulting Kinetic temperatures
were found in the range of 3—4 K. Conservation of the total energy was monitored via (i) the
rms deviation of the total energy AE(rms), which was always below 0.3 kcal/mol, and (ii) the
ratio AE(rms)/AKE(rms), with AKE(rms) being the rms deviation of the kinetic energy, which
was always below 0.005. These thresholds, typical for MD simulations of similar systems,??#?*

showed that the total energy was well conserved throughout the production runs.

6.4 Trajectory analysis and evaluation of 4

Each recorded snapshot was further submitted to a single-point energy calculation, simulated
as a single MD step of 0.005 fs, with the charges corresponding to the complementary state of
the ET reaction to be studied. All other parameters were preserved identical to the ones from
the corresponding production runs of the original MD simulation. The difference AU between
the total solute-solvent interaction energies of final and initial states of the ET reaction,
evaluated at the same nuclear positions of the solvent, is referred to further on as “potential
energy gap” (Figure 6.3). For example, in the case of the CS trajectory, the initial and final
states of each such calculation would be the corresponding NP and IP states of the DA
complex. During such a short single MD step, the nuclei essentially preserve their positions and
the Kinetic energy remains constant, as can be monitored by a negligibly small change, ~0.001

Initial Final

Figure 6.3. Sketch of the parabolic Gibbs free energy curves of the Marcus model, indicating
the free energy change AG° upon charge transfer, the reorganization energy As, and the

potential energy gaps (AU)_ and —(AU)_, along a reaction path from the initial to the final

CR
state of an electron transfer reaction within the two-spheres model.
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Figure 6.4. Potential energy gap —AUcgr calculated for a randomly selected IP snapshot,
invoking the extended Lagrangian scheme for the induced dipoles (see text).

kcal/mol, of the total kinetic energy of all particles in the simulation box. Therefore, one can
identify this “potential energy gap” as the “vertical” transition between potential energy

surfaces of donor and acceptor states (Figure 6.3).

In the (POL3) simulations with a polarizable force field, an iterative method was invoked to
determine the induced dipole moments.?*? To ensure good energy conservation during the NVE
production runs, the dipole convergence criterion was set to 10" Debye. The same convergence
threshold was employed in the subsequent single-point calculations, which resulted in 7-12
iterations per snapshot along each trajectory.

Recording the potential energy gap (Figure 6.3) is a crucial aspect in the evaluation of the
solvent reorganization energy via an atomistic simulation that involves a polarizable force
field.®*® How accurate the gap can be evaluated is intimately related to the method used to
determine the relaxation of induced dipole moments. The most economical approach is a
Lagrangian scheme (a modified Car-Parrinello method where fictitious masses are assigned to
the charges that represent the induced dipole moments),?**?** which was employed during the
initial phase of this work. (The fictitious mass parameter was set to 0.33 kcal/mol-ps*/Debye?
and the time step to 0.1 fs.) However, while recording potential energy gaps, it was noted that
the induced dipole moments oscillated in response to the instantaneous rearrangement of the
DA charge distribution (Figure 6.4). These oscillations make the evaluation of the solute-
solvent potential energy rather inaccurate. Therefore, despite of its rather high computational
cost, one had to resort to an iterative scheme,?*> where at each MD time step the induced

dipoles were adjusted to minimize the total electrostatic energy of the system.

() The solvent reorganization energy was calculated by averaging the potential energy gap
AU separately along the equilibrium trajectories for the NP and the IP states (which
correspond to CS and CR processes, respecively). The following formula was used:'*’
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A =(=(AU)_ +(AU) ) /2 (6.1)

This equation directly embodies the Marcus picture of two intersecting potential energy
curves (Figure 6.3).
(1) Alternatively, the solvent reorganization energy was calculated by averaging the standard

deviations o of the potential energy gaps as obtained by method (1):**’

4 = (ogs + o)1 4ksT (6.2)

Method 11 assumes that (i) the solute-solvent potential fluctuates in the vicinity of its
average value during MD simulations and (ii) its thermal fluctuations exhibit a Gaussian
distribution.'®® The two values for the forward and the backward reaction are averaged in
order to facilitate a direct comparison with the results obtained by approach (1).

(1) Finally, the solvent reorganization energy was evaluated through the integration of the

power spectrum: %%

4%
ﬂs—;‘([da)\](a))/a)_ (6.3)

The spectral density J(w) is obtained via a cosine transformation of the time correlation
function of the potential energy gap AU:
8k T

cl T

(58U (0)3AU (1)) Idwcos(a)t)J ()/o 6.0

Here, 8AU (t) = AU (t)—(AU ) is the fluctuation of the potential energy gap AU from its

(thermal) average <AU > It is noteworthy, that Eq. (6.3) is alternative representation of Eq.

(4.15), with the only difference that it utilizes autocorrelation function in a normalized
form. This method, along with a separate evaluation of the solvent reorganization energies
for CS and CR processes, reveals which modes of the solvent contribute to As. We will
present the spectral density in normalized form:**°

3 (@) =3 (w)/c with C:Ida)J(a))/a). 65)

6.5 Distance dependence of i in charge separation (CS) reaction

Using a charge separation (CS) / charge recombination (CR) reaction, as a first step before
switching to the model (TIP3P) with a non-polarizable force field for water, the results of
model (KA") are compared to those of that earlier study.”*® Subsequently, the effective optical
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dielectric constant of water that stems from these studies will be discussed; this effective
dielectric constand would have to be chosen in a Marcus treatment to reproduce these results.
Finally, the effect of a polarizable force field for water will be addressed by comparing the
present results from models (TIP3P) and (POL3).

In an attempt to reproduce the results of KA** for a similar two-spheres model of a CS/CR
reaction, a set of trajectories for model (KA") with a TIP3P water solvent at density of 0.982
glcm®, was generated. Inspection of Table 6.1 shows that the present data for model (KA')
closely reproduces those results reported earlier,®*® with few minor differences. The present

average Asvalues [Table 6.1, model (KA'), method (I)] agree up to 0.1 eV with the earlier

235

results,” corroborating that the present model variant and the computational protocol used

indeed match the original one. The resulting values of the reorganization energy also follow the
expected trend, namely, they increase with the DA separation.

Note, however, that the standard deviations (SD) of the As values of model (KA") are about
an order of magnitude larger (Table 6.1) than those reported previously.”®* Nevertheless, one
notes that the present notably larger SD values are in full agreement with the physical picture

underlying method (I1) where the SD value defines the curvature of potential surfaces of states

235

NP and IP in the vicinity of the minima. Unlike the earlier results,” the present A values for
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Figure 6.5. Solvent reorganization energy As for a charge separation process represented by a
two-spheres model and calculated with method (11). Comparison of various model results and the
corresponding linear relationships, fitted to the inverse Rpa* of the donor-acceptor distance (see
text): (a) (TIP3P) model, (b) Marcus model, Eq. (2.34), with dielectric constant ¢, = 1, (c)
(POL3) model, (d) Marcus model with dielectric constant &, = 2. To the accuracy of the plot, the
linear relationship fitted to the (TIP3P) results, scaled with <&_ >, = 1.80, coincides with curve
(c). Note, that methods (I) (Fig. 6.6) and (II) (Fig. 6.5) deliver almost identical results for As

(Table 6.1). The corresponding slopes (see Table 6.4, next section) are hardly distinguishable in
corresponding figures.
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Table 6.1. Solvent reorganization energy As (eV) of a charge separation/recombination reaction
for the range 5-10 A donor-acceptor distances Rpa, calculated with methods (1) and (I1) from
MD trajectories for three models: (KA"), (TIP3P), and (POL3) (see text).

KA? (KA (TIP3P) (POL3)

Roa 0) m o A m o A (1 (A
5 1.84+0.03 1.86+0.23 2.15 0.48 1.98+0.24 2.21 0.31 1.10+0.18 1.19 0.16
6 2.27+0.03 2.31+0.25 2.43 0.29 2.47+0.26 2.65 0.31 1.38+0.19 1.41 0.14
7 2.62+0.04 2.73+0.27 2.84 0.15 2.85+0.28 3.00 0.32 1.59+0.20 1.61 0.13
8 3.00+0.04 3.05+0.29 3.23 0.32 3.19+0.29 3.19 0.31 1.72+0.22 1.81 0.18
9 3.21+0.04 3.30+0.30 3.48 0.26 3.41+0.30 3.39 0.32 1.83+0.22 1.84 0.16
10 3.42+0.04 3.41+0.31 3.69 0.39 3.49+0.30 3.54 0.28 1.98+0.23 1.99 0.15
2 Ref. 235.

® The range A = |45 — ARY2 characterizes the difference of the A, values of charge
separation and recombination processes that are averaged for obtaining the result of method

().

model (KA") calculated with method (I1) based on standard deviations of the energy gap, are
consistent within 0.2-0.3 eV with the solvent reorganization energies obtained by method (1). In
contrast, if one applied method (I1) to SD results of the original KA set, the resulting As values
would be two orders of magnitude smaller than the corresponding values determined by method

(1); this casts some doubt on the standard deviations reported previously.?*®

It is noteworthy, that standard deviations obtained by method (1) [Table 6.1, models (KA') to
(POL3)] were calculated as average SD values for the CS and CR gaps, o= (ocs® + ocr)- 2/ 2.
The results obtained from thermodynamic integration show® that despite the different
amplitudes of the potential energy gap fluctuations for the CS and CR processes, the free
energy surfaces of the corresponding processes exhibit similar curvatures. Therefore method (1)
yields reliable average values of the solvent reorganization energy.

In Table 6.1 we chose to characterize the uncertainty of the average As values of method (1)
not by the standard error, but rather by the range A = |4°° — A, R|/2 , that results from the fact
that forward and backward ET processes are not symmetric, A" # As_". Individual values of
potential energy gaps, as well as the solvent reorganization energies A°° and AR are provided
in Table 6.2. Both methods (1) and (I1) may further be corrected to account for the non-linear
response of the solvent to an instantaneous charge transfer.’®* Such corrections, which are
beyond the assumptions of Marcus theory considered in this work, would not alter the values
presented in Table 6.1, because they change A°° and AR in opposite directions, by about 0.1
eV each.*™
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Table 6.2. Potential energy gaps of ion-pair (IP) and neutral-pair (NP) trajectories forming
solvent reorganization energy values for models (TIP3P) and (POL3). Solvent reorganization

energies A™ and AS° were calculated as 6%/2kgT where o is the standard deviation of the
corresponding potential energy gap. All values are in eV.
(TIP3P) (POL3)
IP NP IP NP

Roa  —(AU), AT (AU), A5 —{AU), A" (AU)g A7
3.99+£0.36 253 -0.02+0.31 190 2.48+0.27 1.39 -0.27£0.23 0.98
4.92+0.40 2.96 0.01+0.34 2.21 3.06£0.28 155 -0.29+0.26 1.27
5.74+041 3.32 -0.03+0.37 2.68 3.55+x0.30 1.77 -0.38+0.27 1.41
6.39x0.42 3.47 0.00£0.40 2.89 3.98+0.32 198 -0.52+0.29 1.63
6.84+x0.44 3.72 -0.03+0.40 3.07 4.29x0.32 2.01 -0.59+0.29 1.68
10 6.93x0.43 3.82 0.02+041 3.26 459+0.33 214 -0.63x0.31 1.84

© 00 N O O

With regard to model (KA it has to be noted that at DA separation of Rpa = 10 A, the
periodic box affords only one solvation shell along the direction from donor to acceptor,
because with a box length L = 25 A, Rpa = 10 A, and radius a = 3.5 A of donor and acceptor
spheres (see subsequent section of the text), one has (L — Rpa — 2a) / 2 =~ 4 A left to opposite
sides of the box. Therefore, model (TIP3P), which features a significantly larger unit cell (44 A,

Table 6.3. Solvent reorganization energy As (eV) of a charge separation/recombination reaction
for the range 5-10 A donor-acceptor distances Rpa, calculated with method (I11) from MD
trajectories for three models: (KA"), (TIP3P), and (POL3) (see text).

(KA (TIP3P) (POL3)

Roa I A® 1 A? nm A

213 046 221 030 120 0.3
244 030 265 032 142 0.14
282 016 300 033 162 0.4
325 031 319 032 180 0.15
349 025 339 033 184 0.6
10 370 039 354 031 202 0.16

© 00 N o Ol

2 The range A = |A°° — ALR|/2 characterizes the difference of the A values of charge
separation and recombination processes that are averaged for obtaining the result of method

(1.
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Figure 6.6. Solvent reorganization energy s (eV) for a charge separation process represented
by a two-spheres model and calculated with method (I). Comparison of various model results
and the corresponding linear relationships, fitted to the inverse Rpa* (A™) of the donor-
acceptor distance (see text): (a) model (TIP3P), (b) Marcus model, Eq. (2.34), with optical
dielectric constant &, = 1, (c) model (POL3), (d) Marcus model with optical dielectric constant
&» = 2. To the accuracy of the plot, the linear relationship fitted to the (TIP3P) results, scaled
with <£_ > = 1.80, coincides with curve (c).

see above) was employed; for that two-spheres model system, the density converged to 1.07
g/cm® during equilibration (Figure 6.2). Comparison of the results (KA") and (TIP3P) from
method (1) shows on average the latter As values to be larger at all distances studied, by about
0.1-0.15 eV (Table 6.1). Not unexpectedly, the improved solvation in model (TIP3P) increased
the potential energy gaps calculated both for NP and IP states. The A5 values of model (TIP3P)
from method (1) showed a slightly flatter distance dependence, with values higher at
separations Rpa up to 7 A and lower beyond (Table 6.1). The latter observation may be
rationalized as follows: for states which are not adequately solvated, as for model (KA") at
larger DA separation, the fluctuations of the solute-solvent potential energy due to thermal
motion will be larger, resulting in an artificially increased potential energy gap. This seems to
be especially noticeable for the As values of method (11) from model (KA") at DA separations of
8 A and beyond, where the local potential gradients from the two charges are higher.

The calculations with model (POL3) using the polarizable force field ff02 followed the same
protocol as for model (TIP3P). Further on, only the results of the two models (TIP3P) and
(POL3) will be discussed. When the effect of electronic polarization is represented with a
polarizable force field for water, the resulting values of the solvent reorganization energy from
model (POL3) are substantially reduced, to almost half of those from the model (TIP3P), for the
whole range of DA separations Rpa considered (Table 6.1, Figure 6.5 and Figure 6.6). It is
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Figure 6.7. (a) Time correlation functions of the deviation AU (t) of the potential energy gap

from its average for charge separation and recombination processes: comparison of neutral-pair
(NP) state (blue line) and ion-pair (IP) state (purple line) obtained with model (POL3) at the
donor-acceptor separation Rpa = 5A; (b) the corresponding normalized spectral density

functions J (@). The scale was chosen to facilitate comparison with the results of Ref. 235 (see
text).

gratifying to note that the A results of model (POL3) from methods (1) and (II) agree within 0.1
eVv.

Method (lI11) yields the values of the solvent reorganization energy (Table 6.3) via
integration of the spectral density function (see above), which agree within a few percents with
the corresponding results of method (11) (Table 6.1). The rather negligible differences likely are
related to details of the numerical procedure, where the cosine transform of the TCF was
calculated from the first 5000 points (20 % of the full data set, representing 10 ps). After a
symmetrization of the data set, a discrete Fourier transform was employed in combination with
a Blackman window to reduce the bias of the truncation. The resolution of the resulting spectral
density was 1.67 cm ™.
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Figure 6.8. Time correlation functions of the deviation 5AU (t) of the potential energy gap

from its average for charge separation and recombination processes. Comparison of (a) neutral-
pair (NP) and (b) ion-pair (IP) states for different donor-acceptor separations Rpa (A) obtained
with model (POL3).

Whereas the solvent reorganization energies calculated with the present polarizable water
model POL3 differ from those reported earlier with the TIP3P-FQ force field,®® the time
correlation functions from both computational approaches in general are quite similar, for both
the NP and the IP states. The time correlation function for Rpa = 5A shows a slightly slower
relaxation in the IP than in the NP state (Figure 6.7), as found earlier.?’ This trend is preserved
for larger donor-acceptor distances Rpa (Figure 6.8).%

The spectral density functions J (a)) of the NP and IP states clearly illustrate the qualitative

differences between the CS and CR processes (Figure 6.7), which do not seem to have been
reported earlier. The curvatures of the potential energy surfaces are very similar, as is reflected
by the fact that differences A between the solvent reorganization energies 4> and A" are
almost constant, ~0.15 eV, in the range of Rpa distances studied [Table 6.1, method (I1), model
(POL3)]. At larger Rpa separations, entropic differences, reflected in the differences between
the spectra of the NP and IP states, become more important, hence imply larger deviations from
the situation of uniform curvatures of the corresponding “parabolae” that are assumed in the
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Marcus model.”® The fact that entropic differences between NP and IP states increase with
distance Rpa was not discussed in the context of earlier work,* where the equality of curvatures
of free energy parabolae was tested for relatively small separation distance of 5 A within the
two-spheres model. Indeed, the electrostatic field of two closely located charges of A and D
spheres in the IP state is negligibly small above mid-range distances. The latter results in
relatively small differences between the electrostatic fields of the NP and IP states and a similar
mobility of the surrounding water molecules; note the similarity of the spectra of Figure 6.7. At
large donor-acceptor separations Rpa in the IP state stronger gradients of the electrostatic field
in the vicinity of the solute reduce the mobility of the surrounding water molecules, which leads
to increasing deviations from the Marcus picture of parabolae of equal curvature; see Ref. 244
and references therein.

6.6 Electronic polarization and effective optical dielectric constant in a CS
reaction

The distance dependence of the solvent reorganization energy is one of the crucial aspects of
ET.2**?* Figures 6.5 and 6.6 compare results of methods (1) and (I1) for various computational
strategies. The A values from both the (TIP3P) and the (POL3) models vary linearly with Rpa™*
as predicted by the dielectric continuum model of Marcus.”** The results for both methods (1)
and (I1) are very similar; cf. Figures 6.5 and 6.6. Details of the various least-squares fits are
provided in Table 6.4. In Figures 6.5 and 6.6, for comparison, are shown the results of the
Marcus model, Eq. (2.34), for the same two-spheres solute, calculated for the high-frequency
dielectric constants &, = 1 and &, = 2, respectively; see Table 6.5. Here, the error bars are due to
the uncertainty with which the radii ap = a5 = 3.18+0.10 A could be determined from the radial
distribution functions, calculated as the distance between the center of each sphere, A or D, and
the oxygen atoms of the surrounding water molecules. These results of the Marcus model show

Table 6.4. Coefficients A and B of linear fits y = A + Bx of the solvent reorganization energy
Js (€V) as function of the inverse x = Rpa '(A™) of the donor-acceptor distance.
Method ~ Model A, eV B, eV-A R* SD°
0] (TIP3P) 5.11+0.48 -15.68+3.17 0.998 0.148
(POL3) 2.80+0.36  -8.51+2.38 0.999 0.096
(1 (TIP3P) 4.87+0.52 -13.26+£3.63 0.999 0.055
(POL3) 2.77+0.27  -7.99+1.87 0.995 0.222

Correlation coefficient of the linear fit of the solvent reorganization energy as function of
the inverse Rpa * (A™) of the donor-acceptor distance.

Standard deviation of the linear fit of the solvent reorganization energy as function of the
inverse Rpa* (A ™) of the donor-acceptor distance.
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Table 6.5. Solvent reorganization energy As (eV) calculated for the Marcus two-spheres model
(sphere radii ap = as = 3.18+0.10 A) in a dielectric continuum medium with optical dielectric
constants &, =1 and &, = 2.

As

Rpa & =1 &0 =2

1.63+0.14 0.81+0.07
2.10+0.14 1.04+0.07
2.44+0.14 1.21+0.07
2.70+0.14  1.33+0.07
2.89+0.14 1.43+0.07
10 3.05+0.14 1.51+0.07

© 00 N O O

essentially a linear variation with Rpa *. The least-squares fit to the (KA) data®® on the basis of
Eq. (2.34) results in an effective optical dielectric constant £, = 0.90+£0.02 (Table 6.6). This

value, obtained by means of method (I), underestimates the optical dielectric constant &, = 1
that one expects for a non-polarizable force field.?** As the standard deviation of the s values
of model set (KA)** is too small, method (11) does not lead to meaningful results. Setup (KA'")
respresents our attempt to reproduce the original model.”®* It resulted in the values z, =
0.89+0.17 for methods (1) and £, = 0.83£0.22 for method (11); see Table 6.6. These results are

still below the expected value, &, = 1, but the results of method (1) for models (KA) and (KA')
are in accordance with each other. Also, taking into account the determined standard deviations,
both results (KA"), for methods (I) and (1), agree very well with each other and, within the
reported standard deviations, reproduce the value of the optical dielectric constant for a non-
polarizable force field.

Similar to previous findings,?* the (TIP3P) results for A are uniformly ~0.5 eV larger than
those of the Marcus model for &, = 1; see Figures 6.5 and 6.6. The corresponding effective
optical dielectric constants, ¢, = 0.91+0.18 for method (1) and 1.07+0.29 for method (I1) (Table
6.6) show similar trends as the values from model (KA"), but now almost symmetrically bracket
the target &, = 1.

To examine the influence of electronic polarization of the solvent on As, Ando carried out
MD simulations with the TIP3P-FQ force field of water’*’ where the atomic charges are
allowed to vary in response to the local electrostatic field. In these simulations, the TIP3P-FQ
library was slightly modified for technical reasons.*® When fitted to the Marcus model, Eq.
(2.34), the distance dependence of solvent reorganization energies obtained from this
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Table 6.6. Effective high-frequency dielectric constants &, and &, derived for charge

separation and recombination from calculated results for the solvent reorganization energy As
of various solvent models, applying methods (1) and (II).

Model ()] ()
g KA 0.90+0.02 -
(KA) 0.89+0.17 0.83+0.22
(TIP3P) 0.91+0.18 1.07+0.29
TIP3P-FQ°  1.110.07 -
(POL3) 1.66+0.45 1.7620.40
& 1.79+0.29  1.81%0.25

From fits of the distance dependence of A to the Marcus model, Eq. (2.34).

TIP3P (non-polarizable force field). Standard deviation calculated from the original data of
Ref. 235.

TIP3P-FQ (polarizable force field). Standard deviation calculated from the original data of
Ref. 235.

From scaling the result for As from model (TIP3P) (non-polarizable force field) to the result
obtained with model (POL3) (polarizable force field).

polarizable solvent treatment translates into the effective optical dielectric constant z, =
1.11+0.07 (Table 6.6).

The computational strategy elaborated for model (TIP3P) was further employed but
accounted for electronic polarization with the polarizable water model POL3, which features
fixed charges and induced dipoles on each atom. The latter model yielded £, = 1.66+0.45 for

methods (I) and £, = 1.76+0.40 for method (Il) (Table 6.6) from the distance dependence of

the solvent reorganization energy. Both values of the present study are substantially closer to
the conventional experimental estimate of the high-frequency dielectric constant for water,
1.79,% than the value £, = 1.11+0.07 previously derived from the TIP3P-FQ calculations. In
this context, it is noteworthy to emphasize once again that the present improved results for the
effective optical dielectric constant are likely a consequence of the computational procedure
that was chosen for estimating the potential energy gap, rather than an argument for the
superiority of one solvent model over the other.

When the solvent reorganization energy was determined from MD simulations with a
(standard) non-polarizable force field,®**¥” then in various cases the effect of the electronic
polarization of the solvent has been introduced in an a posteriori fashion***1#18¢ by anplying a
scaling factor, derived from the Marcus model:
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k=(8'-5")/(1-&") (6.6)

Here, &

o0

denotes yet another effective high-frequency (optical) dielectric constant, that

differs from g

o0

which was derived from fitting the distance dependence of the solvent

reorganization energy (see above). The scaling factor x can be derived from quantum
mechanical considerations with model Hamiltonians, where one separates slow orientational
and fast electronic polarizations of the solvent.**!#18 |n 3 more straightforward fashion, one
can also obtain x from Eq. (2.34) when one relates A values obtained with polarizable and non-
polarizable solvent models. Various scaling factors have been suggested to bring theoretical

91,187
9

results closer to experiment, & =¢_(exp.)= 1.7 or & =z, = 1.11% (see above). In these

cases, as in the present work, the experimental value &, = 78.4 (water at 298 K) was used.***®’

However, rather than introducing such scaling ad hoc, it seems more consistent to derive a
scaling factor x by relating two As values from corresponding simulations with polarizable and
non-polarizable force fields, e.g. as in models (POL3) and (TIP3P) of the present work (Table
6.1). The scaling factors x obtained in this fashion translate to effective optical dielectric
constants £, = 1.7940.29 for method (I) and 1.81+0.25 for method (I1), Table 6.5. These latter

results are in excellent agreement with the standard experimental value ¢, = 1.79 for water.'**

Figures 6.5 and 6.6 also show the results of model (TIP3P) [method (I1)], rescaled with the
average effective high-frequency dielectric constant <&, >, = 1.80+0.27 as obtained with

methods (1) and (I1). In both cases, the rescaled (TIP3P) data sets essentially coincide (to the
accuracy of the plot) with the corresponding results obtained for model (POL3) [linear fit (c) of

either figure]; for details see Table 6.7.

Ultimately, one would like to derive an average effective high-frequency dielectric constant
by relating results of classical MD calculations with a non-polarizable force field to those of ab
initio MD calculations instead of classical MD with a polarizable force field. For some time,
this likely may not be achievable for realistic models due to the computational effort needed.
Nevertheless, a rough estimate of the optical dielectric constant, obtained for a charge
separation reaction in a photosynthetic reaction center (Rps. viridis) in the latter way, yielded a
value & =1.9,%™ in fair agreement with our estimate of the average effective high-frequency

dielectric constant <&, >, = 1.80+0.27 for water.

Overall, the present findings on the solvent reorganization energy seem to corroborate the
quality of the POL3 water model, which tends to underestimate the electronic polarization. The
latter property has been related®*® to the neglect of mutual induction of atoms in 1-2 and 1-3
positions in the AMBER force field ff02.1*%'%%" |n consequence, the resulting effective high-
frequency dielectric constant may slightly underestimate the experimental optical dielectric

constant.
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Table 6.7. Solvent reorganization energies As (eV) obtained for the model (POL3) as well as
for the model (TIP3P) scaled with the factor <&, >;; = 1.80. Results from both methods (I)

and (1) are shown.

() (13
Roa (POL3)  (TIP3P)@d  (pOL3)  (TIP3p)*caled
1.10+0.18  1.09+0.13  1.19+0.16 1.22+0.17
1.38+0.19  1.36+0.14  1.41+0.14 1.46+0.17
1.59+0.20  1.57+0.15  1.61+0.13  1.65+0.18
1.72+0.22  1.7620.16  1.81+0.18 1.75+0.17
1.83+0.22  1.87+0.17  1.84+0.16 1.86+0.18
10  1.98+0.23  1.92+0.17  1.99+0.15 1.95+0.16

© 00 N o O

® The range A = |As"° — ARJ/2 characterizes the difference of the s values of charge
separation and recombination processes that are averaged for obtaining the result of method

(1).

The appreciable reduction of the solvent reorganization energy, by ~45 %, found when the
polarization of the solvent is properly accounted for, nicely agrees with the dielectric continuum
model of Marcus.”® The present results are at variance with those of quite a few earlier

184 or almost negligible (6%)% changes
4

simulations, which either resulted in smaller (~30%)
from those of reference calculations with non-polarizable force fields. In the former case,™
Monte-Carlo simulations, aiming at a generic solvent, modeled electronic polarization by Drude
oscillators.®*® The latter studies® used the polarizable TIP4P-FQ water model,®*’ which
employs adjustable atomic charges, as mentioned above.®

King and Warshel were the first to demonstrate and analyze the effect of electronic
polarization on values As of the solvent reorganization energy that were obtained from MD
simulations.*® In contrast to the present work, the simpler model of that earlier study did not
afford a quantitative reproduction of the dielectric continuum model which requires a reduction
by ~45 %. King and Warshel simulated the polarizability of water via induced dipoles®*® and,
probing the two-spheres donor-acceptor model at a single distance Rpa, found a reduction by
~35%. This discrepancy may be related either to the choice of a solvent model®* or the
screening parameter introduced in order to reduce computational efforts.”? Indeed, the
computations with the earlier model® are substantially less demanding than the present iterative

method (see above).

The response of the surrounding solvent to an instantaneous transfer of charge from the
donor to the acceptor site comprises two contributions: fast electronic polarization on the
timescale of femtoseconds and slow orientation polarization on the timescale of ten
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picoseconds.”® The latter contribution is reproduced in MD simulations with both polarizable
and non-polarizable force fields. In polarizable force fields, electronic contributions are
commonly simulated by assigning induced dipoles to atomic centers which effectively reduce
fixed atomic charges of the force field. The parameters of either type of solvent model are
adjusted to accurately reproduce static properties. In this way, a non-polarizable force field may
implicitly account for some aspects of the electronic polarization. However, as demonstrated by
the present systematic study, such simpler force fields result in a significant overestimation of
solute-solvent potential energy gap between final and initial states of an ET process, as

recorded along an MD trajectory.

It does not seem possible to rationalize here why earlier simulations®®®°

using the polarizable
water TIPnP-FQ models lead to results for the effective optical dielectric constant substantially
different from those of the present work. Both force fields describe the electronic polarization,
albeit by different mechanisms, via the propagation of induced dipole moments, similar to the
POL3 polarizable force field® used here. One possibility may be instabilities due to
oscillations of the polarization contribution (Figure 6.4). After all, the FQ approach®’ is similar
in spirit (Lagrangian constraints, fictitious masses) to the “Car-Parrinello” treatment of induced
dipoles built into AMBER?**%* which did not seem to afford the same stability for evaluating
potential energy gaps (Figure 6.4) as the computationally more elaborate iterative method®*?
ultimately chosen for the present work. The latter method ensures full, stable adjustment of the

induced dipoles to the new electrostatic field.

6.7 Solvent reorganization energy in a Charge Shift (CSh) reaction

The present two-spheres model, embedded in an environment described by the water models
TIP3P and POL3, can be adapted to afford a rough comparison with results of earlier
computational efforts from our group on the reorganization energy of hole transfer in DNA.1*?
To estimate the solvent reorganization energy in DNA, a charge shift reaction within the two-
spheres model was employed. The earlier treatment relied on a dielectric continuum
method.*?*%" The size of the spheres and range of distances Rpa used in the present work will
furnish an estimate of A for the shift of an electron hole along the =n-stack of DNA. The
currently employed radii of the spheres, 3.18+0.10 A, are close to the estimate ~3A for guanine
bases as obtained from fitting the solvent reorganization energies in those earlier studies on
DNA."2 The range Rpa = 5-10 A covers donor-acceptor distances between guanine units in
DNA separated by one (6.8 A) or two (10.1 A) intervening base-pairs. Nevertheless, despite the
general similarities between the descriptive geometric parameters of the system (which enter
the expression for solvent reorganization energy in Marcus two-spheres model), one should
note that the latter one could serve as a source of preliminary estimates, but require further
justification.



74 Chapter 6 Solvent Reorganization Energy in Marcus Two-spheres Model

Table 6.8. Solvent reorganization energy As (€V) of a charge shift reaction for various donor-
acceptor distances Rpa (A) from a two-spheres model embedded in TIP3P or POL3 water
models, determined with methods (I) and (I1).

(TIP3P) (POL3)
Rpa () (11) (1 (11)
5 1.52+0.28 1.54 0.81+0.21  0.85
6 1.87+0.33 2.03 0.99+0.23 1.02
7 2.23+0.36 2.50 1.23+0.25 1.21
8 2.52+0.36 2.46 1.35+0.26 1.34
9 2.85+0.40 3.07 1.48+0.28 1.54
10 3.06+0.41 3.27 1.56+0.29 1.57
g° 0.94+0.24 0.85+0.10  1.85+0.68 1.84+0.14
SDP 0.270 0.166 0.139 0.048
R° 0.990 0.973 0.995 0.989
£ - - 1.87+0.48 1.94+0.11

From fitting the distance dependence of As to the Marcus model, Eq. (2.34).

Standard deviation of the linear fit of the solvent reorganization energy as function of the
inverse Rpa * (A ™) of the donor-acceptor distance.

¢ Correlation coefficient of the linear fit of the solvent reorganization energy as function of
the inverse Rpa * (A™) of the donor-acceptor distance.

From scaling the result for As from model (TIP3P) (non-polarizable force field) to the result
obtained with model (POL3) (polarizable force field).

Table 6.8 displays the resulting solvent reorganization energies As. The values for model
(TIP3P) lie in the range from 1.5 eV to 3.1 eV, depending on the separation Rpa. In contrast,
the results of model (POL3) are just about half as large, ranging from 0.8 eV to 1.6 eV. These
values are 0.3-0.5 eV smaller than the corresponding two-spheres results of the CS and CR
reactions for the analogous water model (Table 6.1). Method (1) yields slightly higher values of
As (by ~ 0.2 eV) than method (I). The rather good agreement of the results of model (TIP3P)
between the two methods in the case of the CS/CR reactions was due to some error
compensation; the values A" and As°° of the individual half reactions differ notably (Table
6.2). In case of a charge shift, the evaluation of the reorganization energy is based only on one
trajectory and such error compensation will not occur. In contrast, the results of methods (1) and
(1) for model (POL3) agree substantially better, within 0.06 eV for the whole range of
distances studied (Table 6.8). This may be due to the specifics of the iterative adjustment of the
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electrostatic field in the case of water model POL3, where the reduction of electrostatic energy
fluctuations caused by thermal motions of nuclei is expected.

The results of both models, (POL3) and (TIP3P), show the anticipated linear behavior with
Roa ' for the quality of the least-squares fits see Table 6.8. From the slopes of these linear

relationships one derives effective optical dielectric constants £_, which agree with the

appropriate theoretical results (1 and 1.79, respectively) within the standard deviations, just as
for the CS/CR reactions (Table 6.5). If one relates As values from the two water models in a
point-by-point fashion, one obtains scaling factors x, Eqg. (6.6), which also give rise to the
values of the effective optical dielectric constant, £, ~ 1.9 [methods (1), (I); Table 6.8] that are
slightly larger than for the CS/CR reaction (Table 6.6).

Solvent reorganization energies of two particular points, namely for the Rpa distances of 7 A
(1.23+0.25 eV) and 10 A (1.56+0.29 eV) [method (I), model (POL3), Table 6.8], may be
helpful for further comparison with solvent reorganization energies of a charge shift reactions
in DNA-related systems.*®12176251 Before doing this, a caveat is in order. The present solute
model does not undergo any geometrical changes during the MD runs. However, the internal
reorganization energy of a DNA-derived solute (nucleotides, backbone vibrations) is known to
contribute to the total reorganization energy several tenths of an electron volt.* From quantum
chemical calculations,**? this internal reorganization energy was estimated at ~0.7 eV for a
charge shift between two GC base-pairs. On the other hand, the two-spheres model is notably
more compact than donor and acceptor in a DNA-derived system. Therefore, in the present
model, donor and acceptor are more exposed to interactions with the nearby solvent than, for
instance, a cationic guanine unit between adjacent base-pairs in a =m-stack. Thus, a larger
polarization of the neighboring solvent, hence a higher solvent reorganization energy can be
expected in the two-spheres model. These two effects, missing internal reorganization energy
and overestimated solvent reorganization energy, partially compensate each other in the two-
spheres model, as the following discussion suggests.

Experimental reorganization energies for hole transfer between guanines in DNA duplexes
containing the sequences GA,G or GT,G (n = 1, 2) fall into the ranges 0.72-1.4 eV forn = 1
and 1.7-2.0 eV for n = 2;%! for each n, the lower value corresponds to the sequence GA,G.
These values indeed are rather similar to the corresponding results of our two-spheres model
(Table 6.8). For another approximate comparison with experimental data one may refer to the
(non-symmetric) shift of an electron hole from 9-amino-6-chloro-2-methoxyacridine to a
guanine unit in the DNA stack.“® Those experimental values for the reorganization energy of
hole transfer from the dye to a guanine, separated by one (AT) base-pair, fell into the range
0.85-1.20 eV,*® which again is close to our estimate for Rpa = 7 A.

Finally, we compare the present MD results obtained with a polarizable force field for a
charge shift reaction to results of dielectric continuum models for hole transfer between guanine
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units in the DNA stack employed.'*2%!® As this latter type of modeling relies on a space
partitioning associated with suitably assigned dielectric constants, results often depend notably
on this parameterization. This is nicely illustrated in a study*** where the dielectric constant ey,
assigned to the “bound water” region around the DNA stack was varied from 2 to 32. The
smallest results, 1.21+0.03 eV at Rpa = 6.8 A and 1.46+0.04 eV at Rpa = 10.1 A, obtained with
epw = 2, agree well with those of the present two-spheres model (Table 6.8), which in turn are
expected to overestimate the solvent reorganization energies of DNA systems (see above).
Thus, results of that dielectric continuum model**? seem to overestimate somewhat solvent
reorganization energies of hole transfer in DNA. Indeed, other studies using dielectric

178 or notably smaller values.'®® The latter low values show

234

continuum models suggested slightly
the desired agreement with some experiments™" and results derived from a method that relies

on approximate “polarization structure factors”.

6.8 Conclusion

In the present chapter a computational protocol for determining solvent reorganization
energies for complex systems from atomistic simulations was established. The approach relies
on the use of a force field, which adequately accounts for electronic polarization. While this
issue has long been understood in principle,®® the present results appear to be the first that agree
quantitatively with the predictions of the two-spheres donor-acceptor model of Marcus.*®
According to the present study, it is of primary importance to choose a computational method
that quantifies the potential energy gap, namely the dipole contribution to the solvent
polarization at the atomistic level in a reliable fashion. For this purpose, a self-consistent

2

iterative treatment of polarization®”® was successfully employed despite its relatively high

computational cost.

Current results for charge separation and recombination reactions demonstrate a strictly
linear dependence of the solvent reorganization energy As on the inverse of the donor-acceptor
distance Rpa. Unlike other earlier studies discussed in this chapter, the present results for As
agreed quantitatively with the predictions of the Marcus dielectric continuum model, yielding
the theoretically expected reduction by ~45% due to electronic polarization effects. The
distance dependence of As from the present MD simulations with a polarizable water model
suggests a scaling which is fully consistent with an experimental value of 1.79 for the effective
optical dielectric constant of water. Thus, it was possible to clarify the situation of controversial
choices between scaling factors that had been suggested in the literature to facilitate a
consistency between the results of polarizable and non-polarizable simulations. Overall, a
computational procedure was established that allows one to determine scaling factors for
families of related molecular systems.
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Preliminary results on a charge shift reaction for a two-spheres model yielded estimates of A
that suggest a substantial reduction of the values of published DNA-related systems. These
results encourage further applications of the computational strategy elaborated here to estimate
solvent reorganization energies in complex, heterogeneous systems that involve biomolecules,
particularly DNA-based donor-acceptor complexes. A fully atomistic modeling avoids the
ambiguities of continuum methods and the uncertainties when setting parameters for both the
spatial partitioning and the corresponding dielectric constants. However, such studies put strict
requirements on the quality of the polarizable force field used. The present model study probed
(almost exclusively) the polarizable force field POL3 for water, which seems to serve well for
that purpose.
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7 Solvent Reorganization Energy in A-DNA and B-
DNA Duplexes

7.1 State of the art

In recent years many efforts have been invested into studies of electron transfer (ET) in
DNA because of its importance for oxidative damage and photorepair processes.?*>%>3 Expected
benefits from possible applications of DNA in nanoelectronic devices are also of current
interest.”>*?*> As shown by experiments,* electron holes generated in DNA can propagate
along the m-stack over long distances. The rates of such non-adiabatic hole transfer processes
were found to depend on the structure of DNA, both on the base-pair sequence and the helical
conformation.®*3*% Another important source controlling the rate constants is the structural
relaxation of the solvent that surrounds the donor (D) and the acceptor (A) involved in the
electron transfer.®*!?® This relaxation is taken into account through an exponential Franck-
Condon factor (Eqg. 3.1) via two key quantities, namely, the free energy difference AG®° between
D and A states and the reorganization energy 2.7

The contribution of the solvent to the reorganization energy is one order of magnitude larger
than the contribution of the solute and is usually estimated by dielectric continuum
models, 21788 \which exhibit serious drawbacks and limitations as discussed in Chapter 4.
Despite well-known disadvantages, these models still represent the most popular simulation
method, which, however, delivers contradicting results within a wide range: either a modest
(less than 0.1 eV) distance dependence of the reorganization energy of ET in DNA,"® or a
prominent change of s with the D-A distance.!*#!%®17® Experimental results being contradictory
themselves, e.g. yielding essentially distance-independent values®**%’

distance dependence,*®?*!

of As or a notable
cannot be used to resolve the discrepancies between various

predictions from dielectric continuum models.

In Chapter 6, it has been demonstrated®®

that electronic polarization is key for obtaining
correct solvent reorganization energies and the procedure on the example of the two-spheres
model of Marcus was elucidated. The current Chapter 7 describes the application of this

protocol to evaluate As of electron transfer in ideal A-DNA and B-DNA duplexes. The
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following Chapter 8 illustrates MD results on solvent reorganization energies for ET processes
in experimentally studied chromophore-DNA complexes and represents the first report of large-
scale MD simulations on such systems where an atomistic treatment of water and a polarizable
force field are applied.

7.2 ldeal A-DNA and B-DNA models

The MD simulations were carried out with two force field versions: polarizable 02723729
and non-polarizable ff99?*° as implemented in the package AMBER 8.%° The initial structures
of the DNA duplexes were created with modules nucgen and leap. The appropriate number of
Na* ions was added to neutralize the negative charges of the DNA phosphates; terminal ribose
moieties were left without external phosphates and were capped by O5'H and O3'H groups. In
all cases studied, the electrostatic interactions for fixed charges and induced dipoles were
determined with the particle mesh Ewald (PME) method.??>?*1%*2 Four groups of DNA
duplexes were treated in the MD simulations:

(i) The first group dealt with a symmetric ET reaction (AG® = 0) between the 2nd and the
5th guanine (in italic font) of the 6-mer duplex 5-GG'GGGG-3', embedded in a periodic box of
3500 water molecules. For this system several model variants were explored: (a) force field
(additive ff99 vs. non-additive ff02), (b) water model (non-polarizable TIP3P®? vs. polarizable
POL3%), (c) ensemble (NVE vs. NPT), (d) absence or presence of electronic polarization

simulated by induced dipoles for various molecular groups.

(if) The second group included simulations of an ET reaction between guanines separated
by AT-bridges of different length, which were modeled by a set of seven duplexes 5'-
GG'GT,GGG-3' (n = 0-6), in A-DNA and B-DNA conformations (Figure 7.1a), each
embedded in a periodic box filled with water molecules. For each of these systems two
simulations were carried out: with polarizable (ff02, POL3) and non-polarizable force fields
(ff99, TIP3P). For each AT base-pair, 250 water molecules were added to the amount used in
model (i). Separate atomic charges were derived to describe the guanine radical-cation G* with
ff02 and ff99; details are provided in Appendix B (Table B1, Figures B1, B2).

(iii) The third group of simulations addressed four B-DNA duplexes of nucleotide sequence
5-GAG™XWGAG-3' (XY = A, X@ = AA, X® = T, XW = TT; k = 1-4; Figure 7.1b), with the
polarizable force field ff02. In these calculations we used the same number of POL3 water

molecules as in the analogous models of group (ii).
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a 5-GG*G(T),GGG-3' n=0-6

b 5'-GAG+x<k)GAG-3'

X® = A AA T, TT

Figure 7.1. (a) Ideal structures of the hexamer duplex 5-GG'GGGG-3' as A-DNA (left
panel) and B-DNA (right panel). (b) Schematic representation of model duplexes
constructed in B-DNA form to simulate structures studied experimentally in Ref. 251.

7.3  MD simulations and evaluation of A

The previously described equilibration procedure?®’ was applied (Chapter 6), which

employed an atom-based cutoff of 12 A for the Lennard-Jones interactions and a heating stage
of 50 ps where the temperature was increased from 0 K to 300 K. After heating the system to
300K, additional pre-production runs of 150 ps in an NPT ensemble for models (i) to (iii) were
carried out. Throughout all stages of the simulation with a "rigid" solute geometry, the atoms of
the solute were restricted to the coordinates of the ideal DNA structure by harmonic constraints
with force constants of 500 kcal mol™* A2,

For the NVE simulations of model (i) we introduced an additional stage after the NPT pre-
production run.?*® First, an NVT ensemble was invoked for 20 ps with an Andersen temperature
coupling scheme (relaxation time of 0.4 ps).?*° After each of 15 cycles containing 2000 MD
steps of 0.25 fs, the velocities were rescaled to the target temperature of 300 K. Finally, before
beginning production runs in an NVE ensemble, an equilibration run of 20 ps at 300 K in a

NVT ensemble was carried out, employing a Berendsen thermostat.??°

Model (ii) aimed at a thorough evaluation of the D-A distance dependence of 4. Therefore,
in an NPT ensemble with Berendsen thermostat at 300 K, a series of production runs of lengths
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50 ps, 100 ps, or 150 ps for duplexes with 0, 1 to 3, and 4 to 6 intervening AT base-pairs,
respectively, were conducted. The same atom-based cutoff of 12 A for the Lennard-Jones
interactions was applied. These simulations demonstrated that reorganization energies are rather
stable and that an extension of a trajectory by 50 ps shifted the average s value at most by 0.15
eV. Therefore, in all other cases, only trajectories of 50 ps were used.

All production runs were carried out with "frozen™ hydrogen-containing bonds. For this
purpose the SHAKE?® algorithm with an integration time step of 0.5 fs was employed. The
induced dipoles that simulated the electronic polarization were determined with an iterative
procedure.?**?*® The convergence criterion for the minimization of the potential energy of the
induced dipoles, which simulate the electronic polarization in the electrostatic field of the
nuclei, was set to 10 " Debye for the iterative procedure performed at each time step.

Snapshots from the trajectories were recorded every 2 fs during all production runs. For the
analysis of the potential energy gap between the initial and final hole states of ET "single-point”
energy calculations were performed. The analysis procedure was identical to the one described
in Chapter 6: the nuclei were fixed at the positions of the snapshot, but the charge distribution
was adjusted to represent the final state of the ET process during a single MD step of 0.005 fs,
accompanied by the iterative procedure to determine the induced dipoles of the final state.?*?
For ET between chemically different donor and acceptor moieties, the reorganization energy
can be obtained by averaging the potential energy gaps AU of forward (i) and backward (f)
processes [see method (1) in Chapter 6)], As = (AU>; — <AU>;)/2. Here, AU is the difference
between the two potential energies, calculated at the same solvent configuration, but with the
hole located at the initial or final states of each of the two reactions. For such non-symmetric
ET at the shortest distances, 3.4 A and 6.8 A, the standard deviations S; and S¢ of the
corresponding potential energy gaps were averaged according to S? = (Si2 + S)Y%/2. Further

details of the procedure have been discussed in Chapter 6.2°

7.4  Polarization effects of DNA molecular groups

7.4.1 Computational strategy

Despite the fact that the following discussion will deal with polarization in the framework of
non-additive force fields, the polarization contributions will still be discussed in terms of
additivity because this approach offers a convenient, albeit approximate way of interpreting the
various energy contributions in such a complex system as DNA.
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Table 7.1. Solvent reorganization energy /s (eV) of hole transfer between G, and Gs in the rigid
ideal B-DNA duplex 5-GG'GGGG-3' from calculations with polarizable (ff02) and non-
polarizable (ff99) force fields (FF) of DNA and the corresponding water models POL3 and
TIP3P, respectively. In the model (ff02, POL3), the electronic polarization was also partially
switched off for various groups: guanosines G, and Gs, all backbone phosphates (PO, ), or the
whole DNA duplex. Results from experiment and a dielectric continuum model (DCM) shown
for comparison.

Setup FF? Pol. DNA” Pol.G,5¢  Solvent Ensemble JPd g pole
1 ff99 off off TIP3P NVE  2.23+0.29 2.18+0.33
2 off off NPT  2.21+0.34 2.19+0.32
3 ff02 on on 1.75+0.29 1.73+0.30
4 on off 1.72+0.28 1.73+0.30
5 ff99 off off POL3 1.95+0.29 1.93+0.28
6 ff02 on on 1.44+0.26 1.43+0.24
7 on off 1.44+0.25 1.43+0.26
8 on, PO, off on - 1.54+0.24
9 off off - 1.77+0.27
DCM' 99 off off Eow = 1.46+0.03 -
Epw = 1.64+0.02 -
epw = 80 2.04+0.07 -
Exp.? 1.60+0.10

Force field assigned to DNA, except for the charges of the guanine units G, and Gs.

Polarizabilities assigned to DNA within corresponding force fields except for the units G, and
Gs.
Polarizabilities assigned to the units G, and Gs.

Reorganization energy As"" from a simulation with the charges of the units G, and Gs derived
for the non-polarizable force field ff99; see section 7.2.

Reorganization energy A" from simulations with the charges of the units G, and Gs derived
for the polarizable force field ff02; see section 7.2.

Results for a dielectric continuum model (DCM); &y, is the dielectric constant of the region of
bound water. See Ref. 112.

9 Experimental total reorganization energy 4, Ref. 46.

The simplification of keeping the DNA rigid permitted to leave aside the internal
reorganization energy. Furthermore, the partial polarization contributions of various atomic
groups were probed by setting to zero their pertinent induced dipoles. Comparison of the
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resulting reorganization energy to those of the completely polarized system provided indirect
access to the polarization effects of specific groups of atoms.

Set (i) of the simulations aimed at a study of the overall influence of electronic polarization
on the reorganization energy and at separating the effects of solute and solvent polarizations. In
addition, an attempt was made to identify the effect of specific groups in the systems of interest.
Two sets of simulations with charges assigned to guanines G, and Gs that had been derived for
non-polarizable ff99 and polarizable ff02 force fields for different setups of B-DNA were
conducted; see Table 7.1 where the corresponding reorganization energies are denoted as As™
and 4. The absolute differences 2" — 4| between two corresponding values ranged up to
0.05 eV (Table 7.1, Setups 1-7), which is significantly lower than the typical standard deviation
of the method (~0.3 eV). Therefore, we refrained from interpreting these differences. Thus,
only the overall charge transferred between the two guanine sites, but not the individual atomic
charge distribution, is essential for the reorganization energy. Later on, we will discuss only
AP values, unless stated otherwise (Table 7.1).

7.4.2 Sensitivity of 4 to force field parameters in TIP3P water

In the following three subsections, the effects of polarizable force fields, for the example of
a 6-mer B-DNA duplex with a donor-acceptor distance Rpa = 10.1 A will be discussed in detail;
see model (i) of section 7.2.

The calculations of reorganization energies of B-DNA were started from the completely non-
polarizable setup (ff99, TIP3P) in NVE and NPT ensembles. These results, derived with the
same force field, were the largest among all values of our study: (2.18+0.33) eV and
(2.19£0.32) eV, respectively (Table 7.1). The results for the two ensembles for both sets of
charges on G, and Gs are identical to the accuracy of the method. In the following, only the
results from NPT ensembles will be discussed, as they are the most straightforward to compare
to experimental data.

As a next step the internal electronic polarization in the DNA solute by means of the
polarizable force field ff02 in the presence of a non-polarizable TIP3P solvent (Table 7.1, Setup
3) was introduced. The resulting reorganization energies, 1.73-1.75 eV, were 0.4-0.5 eV
smaller than the values from completely non-polarizable setups (ff99, TIP3P). Setup 4 (ff02,
TIP3P) allows one to examine the partial contributions due to the polarization of the guanines
G, and Gs, where induced dipoles on the two bases were switched off. The results obtained with
either set of atomic charges demonstrate that the induced dipoles on the guanine moieties
contribute very little (0.01-0.02 eV) to the overall reorganization energies. Thus the
reorganization energy of the ET process in the DNA related systems under study is
overwhelmingly dominated by the cooperative effect of the induced dipoles of the whole DNA
molecule (and the contribution due to the reorientation of the water molecules).
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7.4.3 Sensitivity of s to force field parameters in POL3 water

The simulations with the polarizable solvent model POL3 permit one to elucidate in more
detail the effect of the atomic charges and the electronic polarization of the nucleobases (Table
7.1, Setups 5-9). The solvent reorganization energy is lowered by 0.5 eV, from 1.93+0.28 eV to
1.43+£0.24 eV, when stepping from model (ff99, POL3) to the fully polarized model (ff02,
POL3); cf. Setups 5 and 6. The latter model yields the lowest value among all setups studied.
Interestingly, the reduction of the solvent reorganization energy due to electronic polarization
of the entire DNA is independent of the choice of the solvent model: it is 0.5 eV in both POL3
(Table 7.1, Setups 5 and 6) and TIP3P solvents (Table 7.1, Setups 2 and 3). From this finding
one concludes that the electrostatic field patterns generated by non-polarizable TIP3P water and
polarizable POL3 water are similar; after all, the atomic descriptors of the ff99 force field are
intended to represent simultaneously atomic charges and electronic polarizations. As in the case
of TIP3P water, the local polarization of G, and Gs in POL3 water does not seem to exert a
notable effect; cf. Setups 6 and 7.

Also, in the simulation with the force fields ff02 and POL3, the polarizability of the PO,
groups of the entire DNA backbone was switched off (Table 7.1, Setup 8); these groups mainly
carry the negative charge of the system. Apparently, the polarization of the phosphate groups
reduces the reorganization energy by 0.11 eV; cf. Setups 6 and 8. This rather modest
perturbation corroborates previous results.’®? Finally, the effect of the electronic polarization of
the entire DNA duplex was examined; for this purpose, all induced dipoles of the solute (Setup
9) were switched off. The result, 1.77+0.27 eV, of this latter setup should be treated with
caution because the DNA solute is artificially underpolarized. Therefore, this perturbation
cannot be considered as small, as the energetics is notably affected. Comparison with the fully
polarized model (ff02, POL3) (Setup 6) shows that the (intrinsic) electronic polarization of the
duplex reduces As by 0.34 eV; this reduction is twice as large as the effect of the charge set of
the DNA, 0.16 eV; cf. Setups 5 and 9.

7.4.4 Comparison to dielectric continuum models of the solvent

Recently our group reported a computational study on solvent reorganization energies of
charge shift reaction in rigid duplexes of B-DNA structure where a dielectric continuum model
(DCM) had been used.'? A notable ambiguity of that computational approach, in addition to
the spatial partitioning itself, was the uncertainty in assigning dielectric properties to the various
regions of the solvent. In particular, As values of a hexamer duplex varied from 1.46+0.03 eV to

2.04+0.07 eV as the dielectric constant &, of the bound water region changed from 2 to 80;'*
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see also Table 7.1, Setup DCM). Note that the charges of the force field ff94'*! used in that

earlier work were the same as those of the force field ff992°° used in the present study.

In the DCM calculations,**? various regions of the DNA duplex (bases, sugar-phosphate
backbone) were assigned different dielectric screening properties to mimic the electronic
response of the solute. Therefore, those results of the reorganization energies are compared to
those of the fully polarizable model (ff02, POL3), rather than to model (ff99, POL3). The bare
correction due to the changes of charge sets is the difference of 0.16 eV between the As values
of models (ff99, POL3) (Setup 5) and (ff02(off), POL3) (Setup 9). With this correction added to
the result of (ff02, POL3), the reorganization energy, 1.59 eV, falls between the two lowest As
values of the DCM model that correspond to epy = 2 and &y, = 4 (Setup DCM). This remarkable
consistency between results of the parameterized DCM model and the “parameter-free” explicit
polarizable force field calculations of the present work does not guarantee adequate As values
because of the systematic, though small underestimation of the induced polarization that is
intrinsic to the force field ff02.2** The latter does not fully account for self-polarization because

mutual induction arising from 1-2 and 1-3 atomic interactions is neglected.??

This underestimation of the polarization is expected to cause As values to be too large. This
tendency for DNA as solute will be estimated by comparison with similar effects in the water
model POL3 where 1-2 and 1-3 interactions are missing as well. Water model POL3 vyields a
polarizability of water, 0.87 A3, that is only ~60% of the gas phase value, ~1.46 A% which is
also obtained in the simulations when those interactions are included.”**> MD simulations with a
reduced molecular polarizability of 1.0 A% reproduced properties of bulk liquid water, including
the static polarizability, in an excellent fashion.?*® Further support for a reduced value comes

from ab initio calculations on small water clusters,2%42%°

where the polarizability was
determined 7-9% below the experimental value for a single molecule in the gas phase.”®®
Modeling of A for a Marcus two-spheres model (Chapter 6) suggested®® that the POL3 force
field satisfactorily reproduces the dielectric properties of water as solvent despite this slight
underestimation of the polarizability, 0.87°2 vs. 1.0 A%*° The fact that the polarizability of
bulk water is notably lower than that of a water molecule in the gas phase was attributed to
Pauli repulsion between neighboring solvent molecules.?®® Therefore, assuming that Pauli
repulsion plays a similar role when modeling DNA as solute (without 1-2 and 1-3 interactions),
it seems appropriate to scale the resulting As values by a factor x = 0.87/1.0 before comparing
with experiment (see below). Such scaling should be valid if the change of the polarization
contribution induces a small perturbation of the total energy of the system. Therefore, the
response is expected to be linear, even though the formal expressions of the polarizable force

field are not.?™



Chapter 7 Solvent Reorganization Energy in A-DNA and B-DNA Duplexes 87

7.5 Comparison of 4; with experimental studies on hole transfer in DNA

To facilitate a direct comparison of calculated reorganization energies with experimental
data, a series of simulations with a polarizable force field was carried out for some recently
studied DNA duplexes.?! In these duplexes of 14 or 15 base-pairs (with tethered naphthalimide
and phenotiazine), hole transfer occurs between two guanine bases separated by various bridges
(Table 7.2). For the simulations, the experimentally studied systems were reduced to the models
5-GAGXYGAG-3' (XM = A, X@ = AA, X® = T, X® = TT) by simplifying the terminal units
to 5'-GA and AG-3' (Figure 7.1, Table 7.2). The two base-pairs GA and AG were left as termini
of the strands to limit edge effects. Edge effects were found to be negligible. For instance, the
reorganization energy As = 1.23+0.24 eV was obtained for the sequence 5-GG'GGGG-3' (Rpa=
6.8 A) and 1.43+0.24 eV for the sequence 5'-GG'GGGG-3' (Rpa = 10.1 A), both for B-DNA.
The terminal sequences are different from the standard cases of the present work (Table 7.3),
but the As values are essentially the same within standard deviations: 1.17+0.22 eV (Rpa = 6.8
A, X® =T)and 1.5120.25 eV (Rpa = 6.8 A, X = TT).

Simulations of rigid as well as flexible duplexes showed a slight increase of the
reorganization energies by 0.1 eV (A-bridges) and 0.2 eV (T-bridges) due to vibrations of the
DNA backbone; one should recall that solvent reorganization energies are overestimated
because 1-2 and 1-3 electrostatic interactions are missing in the force field.

For an adequate comparison with experimental results, (i) the calculated solvent

reorganization energies As were scaled by x = 0.87 to account for the missing 1-2 and 1-3

Table 7.2. Reorganization energies (eV) of hole transfer in the rigid B-DNA duplexes 5'-
GAG*™XYGAG-3"

e e Js 2@ (49 ° A° Aexp
G'AG  1.32+0.24 1.41+0.25 1.15+0.21 1.49+0.21 0.72+0.14
G'TG  1.17+0.22 1.40+0.30 1.02+0.19 1.36+0.19 1.40+0.28
G'AAG 1.53+0.25 1.62+0.28 1.33+0.22 1.67+0.22 1.70+0.34
G'TTG 1.51+0.25 1.73+0.26 1.31+0.22 1.67+0.22 2.000.40

Solvent reorganization energy calculated for a flexible duplex, reflecting the partial
contribution from the internal reorganization energy due to DNA backbone vibrations.

Scaled solvent reorganization energy As* = 0.87 s to account for the reduced polarization in
the force fields ff02 and POL3 solvent due to lack of 1-2 and 1-3 interactions (see text).
Estimated total reorganization energy A = A" + 4 where 4; = 0.34 eV is the internal
reorganization energy of a GC pair of the hexamer duplex (GC)s, calculated at the UB3P86/6-
311+G” level, Ref. 116.

¢ Experimental errors estimated according to the reported value of 20%:; Ref. 251.
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polarization, and (ii) the internal reorganization energy /; was added. There was no account for
quantum effects,?®” because it was assumed that in the rigid model duplexes ET occurs only
through one vibronic channel. For correction (ii) one should note that although the hole seems
to be confined to a single base-pair due to solvation effects,****?% the estimate 4; = 0.72 eV for
the (GC) base-pair at the B3LYP/6-31G(d) level** is probably too high because it was
determined for an isolated base-pair. Yet, the structure relaxation of a base-pair inside a DNA
duplex should be sterically hindered from adjacent base-pairs and solvent, thereby leading to a
lower value. A recent DFT study on 4; in DNA duplexes supports this expectation: 4; was
shown to decrease with the length of the (GC), duplexes from 0.72 eV (n=1)to 0.34 eV (n =
6).'® This model study did not account for solvent stabilization on the geometry relaxation.
Therefore, one may consider the estimate of 4;, 0.34 eV as an upper limit for hexamer DNA
duplexes.

Scaling the four As values of rigid DNA duplexes by x and subsequent addition of 1; = 0.34
eV resulted in total reorganization energies for the duplexes GAGX®GAG-3' from 1.36+0.19
eV (X® = T) to 1.6740.22 eV (X®¥ = AA, TT) (Table 7.2). Two of these adjusted
computational results agree remarkably well with the corresponding experimental values:?*
1.40%0.28 eV (X® = T) and 1.700.34 eV (X = AA). The computed result 1.67+0.22 eV for
the duplex with X = TT agrees with the corresponding experimental estimate, (2.00+0.40) eV,
within standard deviations.®* Only one MD result, 1.49+0.21 eV, for the oligomer 5-
GAGAGAG-3' (X! = A), is more than twice larger than the corresponding experimental value,
0.72 eV. On the one hand, the calculated result is fully consistent with the other calculated
results of the series; on the other hand, the experimental result seems to be an outlier among the

reported experimental data.?>

From this success one can conclude that solvent reorganization energies s, calculated for
rigid duplexes with the polarizable force fields (ff02, POL3) and scaled by a factor x = 0.87 for
the missing 1-2 and 1-3 polarization effects in ff02,*

estimates of total reorganization energies A for ET in DNA-related systems when combined

ultimately yield sufficiently accurate

with recently reported values of 4; for base-pairs in DNA duplexes.’*® In the following sections
the main aim will be to relate solvent reorganization energies As obtained by means of
polarizable and non-polarizable force fields; therefore, the scaling factor x = 0.87 will not be
applied further on.

7.6  Distance dependence of 4 in ideal A-DNA and B-DNA

Computer experiments®®?*® showed that A-DNA is able to change its conformation into B-
form within several hundred picoseconds, given an appropriate nucleotide sequence and
suitable simulation conditions. Before comparing calculated reorganization energies with
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experimental results for systems where the macromolecule may undergo a conformational
transformation, the influence of the DNA conformation on As for hole transfer via a range of D-
A distances Rpa was tested. For the two setups, (ff02, POL3) and (ff99, TIP3P), fully
polarizable and fully non-polarizable, respectively, MD simulations on the ideal rigid duplexes
5-GG'GT,GGG-3' (n = 0-6) were carried out, both in A- and B-DNA conformations (Figure
7.1a). Hole transfer was assumed to occur between the moieties G, and Gs, separated by (TA)
bridges. In Table 7.3 the distance-dependent results are represented together with a formal Rpa
parameter, defined as the distance between the molecular planes of the two pertinent (GC) base-
pairs.

Inspection of Table 7.3 reveals that, within standard deviations, corresponding rigid models
of duplexes in A- and B-forms exhibit essentially equal solvent reorganization energy at all D-
A separations studied. Yet, /s values of the three shortest distances, Rpa = 3.4-10.1 A, tend to
be slightly lower for the B-form (by ~0.1-0.2 eV) for either setup, i.e. with non-polarizable and
polarizable force fields. This observation is consistent with the 3D shape of A and B duplexes
(Figure 7.1a) possessing different widths: the bases G, and Gs are slightly farther apart in the A-

Table 7.3. Solvent reorganization energies 4™ and A" (eV) from simulations with non-
polarizable® and polarizable® force fields, respectively, for hole transfer between guanine units
(G) in the rigid duplexes 5'-GG"GT,GGG-3' of A- and B-DNA. Donor-acceptor distances Rpa
(A) and available experimental reorganization energies are also shown.

A-DNA B-DNA
Roa n A" 25 &t AP 25 &f Aexp °
3.4° 0 1.10+0.20 0.72+0.20 1.52+0.49 0.94+0.20 0.66+0.14 1.42+0.42 0.6x0.1
6.8" 0 2.00£0.33 1.39+0.23 1.43+0.33 1.92+0.27 1.23+0.24 1.55+0.37 1.2+0.1
10.1 0 2.34+0.32 1.58+0.27 1.47+0.32 2.21+0.34 1.43+0.24 154+0.34 1.6+0.1
135 1 2.53+0.33 1.68+0.31 1.50+0.33 2.46+0.34 1.71+0.28 1.43+0.30
16.9 2 2.63+0.34 1.84+0.30 1.42+0.29 2.78+0.34 1.82+0.28 1.52+0.29
20.3 3 2.75+0.37 1.96+0.31 1.40+0.29 2.82+0.38 2.00£0.29 1.40%0.27
237 4 2.85+0.35 2.02+0.30 1.40+0.27 2.94+0.38 2.05+0.28 1.43+0.26
27.0 5 2.98+0.37 2.06+0.29 1.44+0.27 3.04+0.37 2.07+0.31 1.46%0.28
304 6 3.00+0.37 2.08+0.30 1.43+0.25 3.14+0.34 2.12+0.30 1.47+0.26

2 Setup (ff99, TIP3P). P Setup (ff02,POL3).

¢ Effective optical dielectric constant, Eq. (4). Averages over the whole range of Rpa distances
(£,) =1.45+0.32 for A-DNA and (£, ) = 1.47+0.31 for B-DNA.

¢ Experimental values of the total reorganization energy, Ref. 251.

¢ Hole transfer G3—G,. " Hole transfer G,—G,.
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form, with its wider loop, than in the B-form. As these small differences between
reorganization energies of A and B forms are of the same order as the standard deviations, they
will be not treated as meaningful; rather, both sets of values will be considered as essentially
identical.

The solvent reorganization energies from the simulations on the three flexible duplexes are
similar to those of the analogous rigid duplexes of both forms of DNA also with respect to their
distance dependence (Table 7.4). Comparison with the experimental data® listed in Table 7.3
for the three shortest distances Rpa = 3.4 A-10.1 A demonstrates that the theoretically obtained
average values are slightly higher (~0.1-0.2 eV). Still, calculated and experimental results agree
within the standard deviations.

It is also interesting to compare the present results from the polarizable force fields (ff02,
POL23) to those obtained earlier by our group with a DCM approach (see above).'*? For large D-
A separations, the As values from both theoretical procedures are very similar (Figure 7.2a). A
more detailed inspection shows that for Rpa > 13.5 A /s values for both A- and B-DNA from
the (ff02, POL3) setup agree best with the DCM results obtained with &, = 4. Recall that the
present MD approach on the basis of the polarizable force fields (ff02, POL3) avoids
ambiguities of a DC model that are associated with the various parameters,*® e.g., the spatial

partitioning and the assignment of the corresponding dielectric constants.

Table 7.4. Variation of the solvent reorganization energy As (eV) for hole transfer between
guanines (G) in flexible duplexes 5'-GG*GT,GGG-3' of A- and B-DNA type with the donor-
acceptor distance Rpa (A). Comparison of results from MD simulations with the solute flexible
or kept rigid.?

A-DNA B-DNA
Roa n isb As j~sb As’
349 0 0.7240.20 0.95+0.20 0.66+£0.14 0.84+0.20
6.8° 0 1.39+0.23 1.23+0.24
10.1 0 1.58+0.27 1.74+0.27 1.43+0.24 1.75+0.27
135 1 1.68+0.31 1.71+0.28
169 2 1.84+0.30 1.94+0.31 1.82+0.28 1.95+0.30

& The simulations were carried out in an NPT ensemble with the AMBER force field ff02 and
the POL3 water model. n designates the number of A-T base pairs between donor and
acceptor.

Solvent reorganization energy for rigid DNA duplexes.
Solvent reorganization energy for flexible DNA duplexes.
Hole transfer Gs—G,. ¢ Hole Transfer G,—Ga.
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Plots of the reorganization energies of A- and B-DNA forms from the polarizable force
fields as a function of the reverse distance Rpa * clearly demonstrate two ranges of linear
behavior, below and above Rpa = 10.1 A (Figure 7.2b; for details of the linear fits, see Table
7.5).

The two-spheres model of Marcus® predicts a strictly linear dependence of A as function of
Roa * and this behavior can be expected to hold even for systems which strongly depart from
that idealized geometry.'®"?"® A plausible rationalization attributes the unusual behavior of /s,
determined in the present MD simulations, to artifacts due to an insufficient representation of
the polarization (or electronic screening) if donor and acceptor moieties are located too closely.
In this context, one has to recall the inadequate self-polarization due to missing 1-2 and 1-3

inductions of the induced dipoles.?

47,176,251

Experimental studies of charge transport in DNA duplexes noted an exponential
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Figure 7.2. (a) Solvent reorganization energies (eV) for A-DNA and B-DNA duplexes 5'-
GG'GT,GGG-3' (n = 0-6) from the MD simulations of this work and, for B-DNA, from the
dielectric continuum model (DCM) approach for different choices e, Of the optical dielectric
constants assigned to the region of bound water; see Ref. 112. (b) For the same model systems,
dependence of the reorganization energy (eV) on the inverse of the donor-acceptor distance Rpa.



92 Chapter 7 Solvent Reorganization Energy in A-DNA and B-DNA Duplexes

decay of the rate of ET with the donor-acceptor separation Rpa:

kET (RDA) = ko exp(_ﬂRDA) (7-1)
With the Marcus expression for non-adiabatic ET in mind,**?*®
2
o 2 (AG°(Ron )+ 4(Ron))
K, (RDA):7‘<HDA(RDA)>‘ exp[ AR )T (7.2)

one distinguishes two contributions to the falloff parameter f: . originating from the decay of
the electronic coupling [Hpal? and fs steming from the distance dependence of AG® together
with that of the reorganization energy . In the present case of ET between equivalent sites,
AG° = 0. If one neglects the distance dependence of the internal reorganization energy A;, then
the expression for the falloff parameter gs simplifies to
1 oA
* 7 4k,T R,

(7.3)

Here, kg is the Boltzmann constant and T is the temperature. The present results for A- and
B-forms of DNA duplexes yield falloff parameters s (The derivative is approximated as finite

Table 7.5. Coefficients A and B of linear fits y = A + Bx of the solvent reorganization energy
s (€V) as a function of the inverse x = Rpa * (A™) of the donor-acceptor distance Rpa.

Model Setup Roa (A) A (eV) B (eV-A) R® spP
A-DNA (ff99, TIP3P) <10.1 2.95+0.41 -6.29+1.74 0.999 0.084
>10.1 3.37+0.53  -11.89+10.0 0.980 0.122
All 3.10+0.17  -6.91+1.00 0.995 0.261
(ff02,POL3) <10.1 2.03£0.35  -4.45+1.77 0.999 0.070
>10.1 2.43+0.45 -9.95+8.84 0.995 0.056
All 2.18+0.15 -5.11£1.10 0.989 0.267
B-DNA (ff99, TIP3P) <10.1 2.88£0.40 -6.57%£1.73 0.999 0.061
>10.1 3.62+0.52  -15.35+10.0 0.985 0.134
All 3.20+0.17  -7.88+1.00 0.989 0.448
(ff02,POL3) <10.1 1.81+0.33  -3.92+1.33 0.999 0.033
>10.1 2.47+0.43  -10.33+8.39 0.986 0.105
All 2.17+0.14  -5.26+0.74 0.983  0.506

& Correlation coefficient of the linear fit of the solvent reorganization energy as function of
the inverse x = Rpa * (A™) of the donor-acceptor distance.

® Standard deviation of the linear fit of the solvent reorganization energy as function of the
inverse Rpa * (A ™) of the donor-acceptor distance.
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difference, 04s/ORpa = (Ai+1—4i)/ARpa With ARpa = 3.4 A in all cases.) that change fast with
donor-acceptor separation, from 1.6-1.9 A™ for Roa = 3.4 A via 0.6 A at Rpa = 6.8 A to ~0.1
A at the largest separations Rpa ~ 25-30 A. This distance dependence of f is slightly stronger
than that determined at the DCM level.**? Before comparing to experimental values of 4, one
has to add the electronic contribution S, which can be obtained from quantum chemical
calculations of the coupling |Hpal?, usually estimated in the range 0.7-1.7 A™."3%™ Thus, with
Bs ~ 0.5 A for Rpa = 6-10 A, one estimates g ~ 1.2-2.2 A™, similar to other theoretical
studies.'®® These values corroborate fairly well the experimental results, 0.6-1.8 A, of Takada
et al.,>! but are notably larger than those reported®”? by Lewis et al.,”>?* 0.7-0.9 A™.

7.7  Scaling factors for A in DNA hole transfer

Simulations of the solvent reorganization energy with a polarizable force field, especially of
extended DNA-derived systems, require a notably larger computational effort than those with a
non-polarizable force field. Therefore, attempts have been reported®*®’ to capture the effect of
electronic screening via a posteriori scaling of solvent reorganization energies As™ determined
with a non-polarizable force field. Such a scaling factor may be derived from the Marcus two-
spheres model® by relating solvent reorganization energies for polarizable and non-polarizable

solvents; see the corresponding discussion in Chapter 6. Thus, one has: 18728

= (80 e [(1-4) (7.4

Here gy = 78.4 is the static dielectric constant of water at the temperature 298 K and &, is an
effective optical dielectric constant; results of a non-polarizable force field are associated with
£, = 1. One of the scaling factors recently applied to scale down Asin ET for dye-DNA hairpin

complexes relied on the optical dielectric constant &, = 1.11.%* This value arises from a study

on the Marcus two-spheres model®®

and is considerably lower compared to our estimate 1.80
for polarizable water solvent.?®® Given the dissimilarity of the two-spheres model and a DNA
duplex, before transferring® the scaling factors derived for a two-spheres model to DNA a

thorough justification is expected.

Therefore, it is more reliable to use directly the data for calculated solvent reorganization
energies for rigid A- and B-DNA duplexes from simulations with non-polarizable (ff99, TIP3P)
and polarizable setups (ff02, POL3) to estimate the values of such a scaling factor and to judge
their uniformity for different DNA duplexes and donor-acceptor distances. In Table 7.3 the

resulting effective optical dielectric constants &, are listed. Averaging performed over the

0

range of distances Rpa = 3.4-30.4 A studied yields (&, ) = 1.45+0.32 for A-DNA and (£, ) =

1.47%0.31 for B-DNA. Detailed inspection of Table 7.3 shows that there is no other apparent
trend: neither related to donor-acceptor distance, nor to the type of DNA (A or B). This allows
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us to suggest an overall average value (éw) = 1.46+0.32 for all data represented in Table 7.3.

The latter result is significantly larger than the value mentioned above, & = 1.11,%° but it is

also notably smaller than the estimate, 1.80+0.27, derived via MD simulations on models that

reproduced quantitatively the classical Marcus two-spheres model®*®

and corresponded well to
the experimentally established effective optical dielectric constant 1.78 of pure water.’** From

the present results (Table 7.3), one may suggest that the difference between the estimates of &,

for the Marcus two-spheres model®*®

polarizability within DNA. The region of the DNA stack is usually characterized by an optical
dielectric constant close to 2,**#*"® which, in combination with static dielectric constants that
172176 ragults in scaling factors close to that of the
solvent water. In the present study the decay in the dielectric response, observed in the MD

and DNA reflects mainly the reduced effective

vary from 3.4 to 20 for different DNA regions,

calculations and reflected in a scaling factor of ~1.5, is attributed to the reduced screening effect
of induced dipoles within the guanine units G involved in the ET, where the effect of missing 1-
2 and 1-3 interaction has to be most prominent.

This finding demands a thourough evaluation of the strategy, which suggests to transfer the
scaling of a simple two-spheres model in aqueous solvent to a biomolecule, a practice that
seems to be very effective for reducing the computational effort when modeling DNA-derived
systems.” Another argument is that ET donor and acceptor sites of biomolecules are hardly
ever fully accessible to the aqueous solvent, but rather surrounded by organic matter.
Nevertheless, the idea of scaling reorganization energies obtained with non-polarizable force
field to account for electronic polarization effects remains attractive. The question then arises:
how to determine suitable scaling factors and to what extent they are transferable? It is tempting
to assume that such transferability exists at least within a “family” of structurally similar
biomolecules. In the following chapter this idea is explored by extending the study to
chromophore-DNA complexes where the chromophore is semi-capped on top of DNA.

7.8 Conclusion

The solvent reorganization energy As for hole transfer in a variety of DNA duplexes was
estimated from MD simulations which employed the polarizable force field ff02 in combination
with the explicit water model POL3. The distance dependence of As for A- and B-DNA
duplexes (donor-acceptor distances 3.4-30.4 A), the choice of the solvent model and the force
field (including the influence of charge sets), and various molecular groups affecting the results,
were discussed in detail. Results from MD simulations with the standard non-polarizable force
field ff99 and the TIP3P water model were used as reference to account for electronic
polarization effect. It was demonstrated that values of As are reduced by about 30% compared to
those derived with the non-polarizable setup when one includes the electronic polarization with
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a polarizable force field. The results from these atomistic calculations with a polarizable force
field, which do not demand any “re-parameterization”, are consistent with the lowest values of

4 from earlier elaborations that employed an implicit solvent model.**?

The As from MD simulations performed according to the procedure established®*®

(see
Chapter 6) for calculations with a polarizable force field, were compared with recently reported
experimental values. Simulations of ET between guanines G in experimentally studied
duplexes®™ G*XH®G (XW = A, X@ = AA, X® = T, X® = TT) agreed satisfactorily within the
standard deviations of the method. A slight overestimation of 1s was attributed to an intrinsic

property of the force field used, which tends to be underpolarized.?*®
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8 Solvent Reorganization Energy in Chromophore-
DNA Complexes

8.1 Experimental study on Rhodamine 6G-DNA complexes

d47,71,234,273,274

DNA complexes with chromophores have been studie very intensively due to

their potential application in the context of nano-electronic devices.***”> A chromophore
attached to a duplex can act either as electron acceptor or electron donor®’® enhancing ET along
the DNA n-stack.?”” The chromophore is usually covalently bound to one of the DNA strands

a R6G-CAA !
14 |

5 7
R6G-5'-CAAAGCGCCATTCGC!CATTC-3'

3'—GTTTCGCGGTAAGCG:GTAAG-S'
1 15

R6G-GAA |
1 5 7 14 1
R6G-5-GAAAGCGCCATTCGCICATTC-3'

3-CTTTCGCGGTAAGCG :GTAAG-S'

P~
Y
O/ \OO

|
C,Hs DNA

Figure 8.1. (a) Nucleotide sequence and designations of the R6G-DNA complexes studied. The
NMR structure was resolved for the complex labeled R6G-CAA where Rhodamine 6G is
tethered via a Cg linker to the 5'-end cytosine (R6G-CAA, upper panel); Ref. 279b. Dashed
lines indicate where the experimentally studied duplex was shortened to create models R6G-
CAA and R6G-GAA for the MD simulations. (b) Schematic structure of Rhodamine 6G and its
tether connection to the 5'-end of DNA.
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through m-conjugated or aliphatic linker.*®?"® The rate of electron transfer strongly depends on
the mutual alignment of the dye and DNA base-pair adjacent to it, influencing the degree of
electronic overlap between them. The structure of dye-DNA hairpins with potential for
effective hole transfer was studied by several groups.”®’®™*?"® Therefore, the structural

characteristics of such complexes was also explored computationally.?®

279,281,282 280,283,284

One of the chromophores studied both experimentally and theoretically
Rhodamine 6G (R6G) capping the DNA duplex (Figure 8.1a). The dye possesses zwitterionic
properties due to a positively charged xanthene and negatively charged benzene rings lying in

was

different planes; although bonded, these moieties are connected in a flexible fashion (Figure
8.1b). The xanthene ring acts as a source for electron holes in the DNA duplex. Recently two
models of modified R6G-DNA duplexes (Figure 8.1a) were the subjects of MD studies in our
group. For one of these complexes (Figure 8.1a, complex R6G-CAA), where the chromophore
(Figure 8.1b) is attached to the 5' end of the DNA duplex;, a fully resolved NMR structure?’%2%
suggested two distinct conformations of the dye. From experiments these two alignments of
R6G with respect to the adjacent base-pair were estimated to occur with 20% and 80%
population in R6G-CAA:?"® see Figure 8.2. The corresponding ratio was estimated to be 1:1 in
RGG-GAA.ZY%’%Z

8.2 Model characterization of Rhodamine 6G-DNA complexes with MD
refinement

To have more insight into the molecular structure and the dynamics of the R6G-DNA
complexes, 10 ns molecular dynamics simulations were performed in our group®® for two
model R6G-DNA hairpin complexes that resembled those studied experimentally. The models
were truncated along the dashed lines, shown in Figure 8.1a. With this MD study the presence

Figure 8.2. Top view of NMR resolved sub-structures of the R6G-CAA complex shown on
Fig. 8.1a (upper panel). The relative population in the sample is: (a) 80 %; (b) 20 %
(Adapted from Ref. 279a).
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Figure 8.3. Coordinate system and designation of the six base-step parameters illustrated on
the example of last GC pair of DNA capped with R6G; arrowheads indicate positive direction
of translation (rotation); positive direction of Shift is away from the reader.

of two alignments and their transformation into each other on a timescale of several
nanoseconds was confirmed.”® Their geometry was quantified by standard base-pair step
parameters®® (three distances and three angles) redesigned for the system R6G base-pair.”®
This set of six parameters, three distances (Shift, Slide, Rise) and three angles (Tilt, Roll,
Twist), delivers a detailed description of the mutual orientation of two stacked moieties (Figure
8.3).

In terms of these base-step parameters the realignment of R6G on top of DNA was analyzed

during the course of MD simulations (Figure 8.4).%%°

From this MD trajectories®® of length 10 ns four snapshots were selected (Figure 8.5) that
reflect different alignments of the dye. These snapshots also differed from the experimentally
studied structures by a short truncated segment at the end far from the dye (Figure 8.1a). Two
snapshots (at 3.25 ns and 5.75 ns) were taken from the trajectory of R6G connected to the 5'-
end of an adjacent cytosine (Figure 8.1a upper panel and Figure 8.5, upper panel) and two
snapshots (at 4.25 ns and 8.50 ns) were taken from the trajectory for the complex with R6G
connected to 5'-end of guanosine (Figure 8.1a, lower panel; Figure 8.5, lower panel). For the
present work, these R6G-DNA complexes were embedded into POL3 water and equilibrated
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Figure 8.4. Evolution of the base-step parameters between Rhodamine 6G and adjacent GC
base pair during 10 ns MD trajectory of R6G-CAA (top) and R6G-GAA (bottom).

with ff02, but subsequently kept rigid in their original geometries. The number of POL3 water
molecules in the periodic box was set to 8000. To prevent any transformation of the dye
alignment with respect to DNA during equilibration and production runs, the solute structures
was kept fixed throughout the simulations. The atomic charges of the neutral and charged forms
of R6G as well as those for the linker were derived separately for the force fields ff02 and ff99
(see Table B2, Figures B3a, b of Appendix B) to form the R6G-linker moiety (Figure 8.1b,
Figure B3c of Appendix B).

8.3 Dependence of 4, on Rhodamine 6G-DNA conformational alignment

First the influence of the dye alignment on the value of solvent reorganization energy was
addressed. The most prominent effect of the R6G-DNA conformation on s was expected for
the shortest hole transfer distance, namely that to the first G unit; for the numbering see Figure
8.1a. There the strong local electrostatic interactions, reflecting the specificity of charge



Chapter 8 Solvent Reorganization Energy in Chromophore-DNA Complexes 101

RG6G-CAA

Figure 8.5. Upper panel: structure snapshots of the chromophore-DNA complex R6G-CAA,
taken at 7= 3.25 ns and 7= 5.75 ns of a previously recorded MD trajectory (see text and Ref.
280); lower panel: similarly for the chromophore-DNA complex R6G-GAA, taken at 7= 4.25
ns and 7= 8.50 ns. The R6G-linker, cytosine (C), and guanosine (G) are marked in black, blue
and red color, respectively.

distributions of the dye and the base-pair, should play the most prominent role. These effects
will be discussed in terms of two parameters: the distance Rpa and the step parameter Twist

(Tables 8.1 and 8.2), which were defined via a standard procedure.?%%%

Estimates of A for hole transfer along the shortest distance of 3.4 A (Table 8.1) show that the
most significant differences between the two configurations are observed for the R6G-CAA
duplex (Figure 8.1a, upper panel), where the average values 0.61+0.16 eV (3.25 ns) and
0.79£0.19 eV (5.75 ns) differ by almost 0.2 eV. The latter difference, as anticipated, is mainly
the result of a drastic change in the Twist angle (~75°, Table 8.1), whereas the Rpa parameters
are rather similar, 4.20 A and 3.97 A, for the two selected configurations of R6G-CAA. The
duplex R6G-GAA, which does not undergo such drastic conformational changes as the other
one,”® has identical values of A for both snapshots: 1.04+0.19 eV (4.25 ns) and 0.97+0.23 eV
(8.50 ns). The latter two snapshots are characterized by similar values of Rpa and Twist,
respectively; the corresponding differences are 0.44 A and 17°. The observed larger difference
between the two configurations in R6G-CAA, as compared to R6G-GAA, can be rationalized in
terms of the more significant change in the rotational parameters of R6G?*° (Table 8.2) rather
than in the translational parameter Rpa (Table 8.1).
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8.4  Scaling factors and effective optical dielectric constants

The values of the effective optical dielectric constants & derived from the scaling factors,
Eq. (7.4), demonstrate a low sensitivity to the alignment of R6G on top of DNA (Table 8.1).
The values vary from &, = 1.41+0.25 (R6G-GAA, snapshot 4.25 ns) to £, = 1.63+0.37 (R6G-
CAA, snapshot 3.25 ns). Therefore, they may be considered as identical within the standard
deviations of the method (~0.3); the resulting average value is <&, > = 1.52+0.32 for all four
R6G-DNA conformations considered (see Footnote f of Table 8.1).

To confirm our assumption about the weak influence of the R6G-DNA conformation on the
reorganization energy for the next-nearest G situated at the fifth base-pair (16.9 A from R6G),
an additional simulation was carried out for the conformation of the R6G-CAA duplex taken at
3.25 ns (Table 8.3, Footnote d). The reorganization energy values for hole transfer to Gs
obtained for the snapshots at 3.25 ns and 5.75 ns were found to be identical, 1.73+£0.26 eV and
1.72+0.25 eV, respectively (see Footnote d in Table 8.3).

Table 8.1. Solvent reorganization energy As (eV) of hole transfer to the adjacent guanine unit of
a rigid complex R6G-DNA for different orientations of the chromophore R6G relative to the
DNA duplex.? Also shown is the time 7 (ns) of the simulation at which the snapshot was taken
to generate the structure used.

Duplex Roa®  Twist® A4 Aol e g
R6G-GAA  4.25 4.96 -43.9 1.47+0.18 1.04+0.14 1.41+0.25
8.50 4.52 -61.0 1.45+0.17 0.97+0.16 1.51+0.31
R6G-CAA  3.25 4.20 -42.3 1.00+0.14 0.61+0.11 1.63+0.37

5.75 3.97 -116.9  1.20+0.16 0.79+0.13 1.53+0.33

For the structures of the chromophore-DNA complexes see text and Figs. 8.1, 8.5.

® Distance Rpa = (Shift’+Slide?+Rize?)"? (A) defined here via standard DNA base-step
parameters; for details see Table 8.2.

Standard angular base step parameter (degree); see Table 8.2.

Solvent reorganization energy calculated with the non-polarizable setup (ff99,TIP3P).

Solvent reorganization energy calculated with the polarizable setup (ff02,POL3).

Effective optical dielectric constant, Eq. (7.4); the average over R6G-DNA conformations is
(£,)=1.52+0.32.
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Table 8.2. Standard base step parameters® Roll, Tilt, Twist (degree) and Shift, Slide, Rise, Rpa
(A) of four different R6G-DNA configurations. Also shown is the time z (ns) of the simulation
at which the snapshot was taken to generate the structure used.

Duplex T Roll Tilt Twist Shift Slide Rize RDAb
R6G-GAA 425 -12.89 -9.88 -43.93  -1.87 2.45 3.88 4.96
850 -10.04 -4.62 -60.98  -1.55 1.94 3.78 4.52

R6G-CAA 325 -20.22 048 -42.30  -1.67 0.59 3.80 4.20
575 -280 -10.18 -116.86 -0.48 -2.00 3.40 3.97

% Base step parameters calculated according to Refs. 280, 285.
® Parameter Rpa defined here as (Shift*+Slide>+Rize?)Y.

In view of the negligibly small differences between reorganization energies at separation
distances larger than 3.4 A, we investigated the distance dependence of As only for the R6G-
CAA duplex (snapshot at 5.75 ns). It has a similar trend (Table 8.3) as the one observed for the
pure A- and B-DNA duplexes 5-GG'GT,GGG-3' (Table 7.3) and asymptotically becomes
independent of distance beyond 17 A with the values of 2.0 eV [setup (ff02, POL3)] and 3.0 eV
[setup (ff99, TIP3P)]. The calculated distance dependence of the hole transfer rate with the
approximation that the driving force?’®® AG® = 0 for hole transfer to the first guanine results in

Table 8.3. Distance dependence of the solvent reorganization energy As (€V) and the resulting
effective optical dielectric constant &_, Eq. (7.4), for hole transfer from the chromophore R6G
to various guanine units of the rigid complex R6G-CAA.?

Roa(A) nP PRLE Aford it
34 1 1.20£0.16 0.79+0.14 1.52+0.32
169 5 2424022 1.72+0.18 1.40+0.19
237 7 2514024 1.86+0.19 1.34+0.18
476 14 2.84+0.25 1.98+0.21 1.42+0.19

50.0 15 2.96+0.27 1.99+0.24 1.54+0.23

Snapshot taken at z = 5.75 ns; for details see text and Figs. 8.1a and 8.5 (upper panels each).

For the numbering of the G bases in the chromophore-DNA complex R6G-CAA see Fig.
8.1a, upper panel.

Solvent reorganization energy from the non-polarizable setup (ff99,TIP3P).

Solvent reorganization energy from the polarizable setup (ff02,POL3). A simulation for the
conformation at = = 3.25 ns and the distance Rpa = 16.9 A yielded A" = (1.73+0.26) eV.
Effective optical dielectric constant, Eq. (7.4); average over all distances Rpa listed (g"w) =
1.45+0.31 eV.



104 Chapter 8 Solvent Reorganization Energy in Chromophore-DNA Complexes

Table 8.4. Coefficients A and B of linear fits y = A+Bx of the solvent reorganization energy /s
(eV) as a function of the inverse x = Rpa ' of the donor-acceptor distance Rpa in R6G-CAA
complex.

Model Setup Roa (A) A (eV) B (eV-A) R® SDP
R6G-CAA?  (ff99,TIP3P) All 2.87+0.14 -572+0.78  0.989  0.639
(ff02,POL3) All 2.02+0.12  -4.18+0.65 0.998  0.247

# Distance dependence of R6G-CAA (5.75 ns) conformation is considered.

Bs=0.740.1 A (n = 1-5) and to a substantially lower value gs ~ 0.1 A™ (n = 5-7, 14, 15) for
the setup (ff02, POL3). The linear fits of the As dependence on Rpa* for both setups are
provided in Table 8.4.

In the case of the non-polarizable setup (ff99, TIP3P), the parameter fs varies in a similar
range: 0.940.1 A™ (n = 1-5) to A ~ 0.1 A™ (n = 5-7, 14, 15). Optical dielectric constants
derived from the scaling factors, Eq. (7.4), for different ET distances (Table 8.3) show almost
no variation with the distance: from £, =1.34+£0.18 (n=7) to &, = 1.54+0.23 (n = 15) with an

average < &, > = 1.45+0.31 (Table 8.3) over the range Rpa = 3.4-50.0 A. The latter average of

the optical dielectric constant is identical (within the standard deviation) to the values derived
above for A-DNA, 1.45+0.32, and B-DNA, 1.47+0.31, as well as for the R6G-DNA conformers

studied, 1.52+0.32, evaluated from the polarizable setup. This suggests that the value <&, > =

1.5, which accounts for electronic polarization effects, can be used to scale solvent
reorganization energy values that were obtained from non-polarizable force field simulations of
similar DNA-related systems.

8.5 Conclusion

We applied the computational procedure developed within the present work to determine the
distance dependence of As upon charge transfer between Rhodamine 6G and guanine units in
Rhodamine 6G-DNA complexes (donor-acceptor distances 3.4-51.0 A). Comparison of
simulations for four distinctly different R6G-DNA conformations and A- and B-DNA forms for
the wide range of studied donor-acceptor distances suggested a uniform scaling factor of A that
relates results from MD simulations with non-polarizable and polarizable force fields,
independent of conformation and donor-acceptor distances. With the corresponding average
effective optical dielectric constant <&, > = 1.5, one obtains a computationally economic

scaling approach to solvent reorganization energies for DNA-related systems from MD
simulations with a non-polarizable force field.
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9 Summary

Electron transfer (ET) along the n-stack of DNA and practical benefits expected from its
potential utilization in nano-wires for electronics or as a source of genetic information in
medical diagnostics inspired research interest in many scientific groups all over the world.
While the physical principles of ET have been understood quite some time ago, contradictive
experimental data about the conductivity of DNA necessitated its quantitative examination.
Numerous theoretical descriptions attempting to approach the complexity of real processes in
DNA were trying to provide definite answers to the question about ET rates, which are the main
observables. Theories predict the values of rates based on three parameters: the free energy
difference AG® between final and initial ET states, the quantum electronic coupling Hy; between
them, and the energy associated with the structural reorganization of the surrounding medium.
The latter phenomenon takes place in DNA as a response of atoms to the change of electrostatic
field which is almost instantaneous compared to the thermal motion of atoms. Bridging the gap
between theory and experiment in solutions unavoidably has to deal with the solvent facilitating
electron transport along the m-stack of DNA, where its role is described in terms of the solvent
reorganization energy As. Being a corner stone of classical Marcus theory dating back to some
50 years, this parameter also is incorporated in numerous modern theories and its evaluation
represents a serious challenge that resulted in a broad range of values. The reorganization
energy enters the formal expression for ET rates through a quadratic form in an exponential
factor, thereby making the values of ET rates extremely sensitive to its variation. The latter fact
leaves much room for the interpretation of experimental Kinetic data. Theoretical methods
commonly used to evaluate solvent reorganization energies as a rule overestimate its values. To
corroborate experimental data, somewhat ad-hoc parametrizations have been introduced. This
parametrization is related to partitioning of the system into regions possesing distinctively
different spatial and dielectric properties. The questionable definition of the size of the solute
cavity and the artificial partitioning of the surrounding solvent medium into arbitrarily chosen
regions of different dielectric constants lead to a broad range of solvent reorganization energies
covering the entire spectrum of experimental data. Such computational practices in combination
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with contradicting experimental data help very little for a consistent picture of the actual values
of solvent reorganization energies.

The present work based on an atomistic treatment of DNA in aqueous solution by means of
molecular dynamics simulations advances to close the existing gap in the field of electron
transfer and to establish a thorough account of the role of solvent without invoking any ad hoc
parametrization. For the first time, molecular dynamics studies incorporating polarizable force
field with an explicit treatment of the solvent are employed to evaluate the solvent
reorganization energy of a large biomolecular system. The work establishes a straightforward
path and discusses complications which for some time prevented the application of polarizable
force fields for evaluating solvent reorganization energies. The method was successfully tested
on the original classical two-spheres model of Marcus and is then transferred to large-scale
simulations of experimentally studied DNA duplexes and their complexes with the dye
Rhodamine 6G.

The work started with establishing the computational method by considering the classic two-
spheres solute model of Marcus, where the surrounding solvent is treated as a dielectric
continuum. Despite the fact that this model served experimentalists for decades as a main tool
of interpretation, its validity had never been successfully proved in computational experiments,
which consider the atomistic nature of the solvent. Few attempts have addressed the
microscopic characteristics of the solvent by representing it with existing water models that
reproduce its thermodynamic properties and seems to serve well for other molecular dynamics
simulations. Yet these attempts were not successful thus far when targeting solvent
reorganization energies. The main conclusion, arising from those simulations with respect to the
Marcus model, was that the experimental dielectric constant of water assumed in the
mathematical expression for solvent reorganization energy cannot be reproduced. That
conclusion brought up a more general question about the extent to which the electronic
polarization expressed through the static dielectric constant affects the solvent reorganization
energy.

The present work revisited the role of electronic polarization predicted by Marcus theory. In
the current study it was shown that molecular dynamics simulations incorporating a polarizable
force field fully reproduce the experimental (high-frequency) dielectric constant of water and
reveal excellent agreement with the outcome of the Marcus two-sphere model, which predicts
that accounting for the electronic polarization leads to a strong reduction of the solvent
reorganization energy. According to the present methodological findings, it is of primary
importance to choose a computational method that quantifies correctly the donor-acceptor
potential energy gaps that lead to the solvent reorganization energy. For this purpose, a self-
consistent iterative treatment of electronic polarization was successfully employed despite its
relatively high computational cost. Full agreement was achieved between the results from three
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approaches, existing in the literature, to evaluate solvent reorganization energy via MD
simulations.

The present results for charge separation and recombination reactions in the two-spheres
model show a strictly linear dependence of the solvent reorganization energy As on the inverse
of the donor-acceptor distance Rpa, in accordance with the classical results of Marcus. Unlike
other studies, the present results for As agree quantitatively with the predictions of the Marcus
dielectric continuum model, yielding the theoretically expected reduction by ~45% due to
electronic polarization effects. The evaluation of the distance dependent character of As from
MD simulations with a polarizable water model suggests a scaling which is fully consistent
with the experimental value of 1.79 for the effective optical dielectric constant of water. Thus, it
was possible to clarify the situation of controversial choices between scaling factors that had
been suggested in the literature to achieve agreement between the results of polarizable and
non-polarizable simulations. Preliminary results on a charge shift reaction for a two-spheres
model fully confirmed the same reduction as obtained for charge separation and recombination
reactions.

The estimates based on results for the charge shift reaction suggested substantial reduction of
the values of As of DNA-related systems compared to existing ones in the literature; thus further
applications of this computational strategy for complex biomolecular systems were elaborated.
Particularly, DNA-based donor-acceptor complexes with experimentally known solvent
reorganization energies were studied by molecular dynamics simulations. The solvent
reorganization energy As for hole transfer between guanine units was calculated in a variety of
DNA duplexes with a polarizable force field. These results are among the lowest reported in the
literature. The dependence of s on the inverse donor-acceptor distance for a series of model A-
and B-DNA duplexes (donor-acceptor distances 3.4-30.4 A) shows a linear decay similar to the
one expected from the Marcus two-spheres model. For the long range ET (Rpa > 10 A) the
solvent reorganization energies of these DNA related systems are independent of whether DNA
is in A- or B-form. It was shown that vibrations of the DNA backbone have a rather small effect
on /s values. Besides that, the choice of the solvent model and the force field (including the
influence of charge sets) and various molecular groups affecting the results were investigated.
Results from MD simulations with the standard non-polarizable force field were used as
reference to account for electronic polarization effects. It was demonstrated that the values of A
were reduced by about 30% compared to those derived with the non-polarizable setup when one
accounts for the electronic polarization with a polarizable force field. The results from these
atomistic calculations with a polarizable force field, which do not demand any “re-
parameterization”, are consistent with the lowest values of As from earlier elaborations that
employed an implicit solvent model. The current reduction of about 30% of s due to electronic
polarization observed for DNA duplexes casts some doubt on the common practice to transfer
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scaling factors from simplified solute models to biomolecular systems in order to achieve
agreement with experimental data.

Besides a series of DNA model systems, MD simulations with a polarizable force field were
conducted also on fragments of DNA duplexes where experimental values of /s recently had
been obtained from kinetic studies.”* Solvent reorganization energies of ET between guanines
G from the present simulations for the fragments G*X®G (XP = A, X®@ = AA, X® =T, X@ =
TT) agreed well within the standard deviations of the method.

As a next step, this procedure to determine solvent reorganization energies was applied to
large-scale systems, namely to 15 base-pair DNA duplexes with the dye Rhodamine 6G
attached; the structure of these sytems had previously been resolved by NMR. The geometries
from MD refinement of these complexes with several distinctly different conformational
alignments of the dye were used for evaluating As. The distance dependence of is obtained upon
charge transfer between Rhodamine 6G and guanine units in Rhodamine 6G-DNA complexes
was studied for donor-acceptor distances from 3.4 A to ~50 A. Comparison of the simulations
for four considerably different R6G-DNA conformations and the wide range of studied donor-
acceptor distances suggested a uniform scaling factor for As that relates results from MD
simulations with non-polarizable and polarizable force fields, independent of conformation and
donor-acceptor distances. With the corresponding average effective optical dielectric constant
<&, > = 15, one obtains a computationally economic scaling approach to solvent

reorganization energies for these DNA-related systems from MD simulations even with a non-
polarizable force field.

As shown by the present results, improved polarizable force fields for water and biological
molecules are highly desirable. However, even now, the procedure established in this thesis
holds great promise for further applications to large-scale applications in the area of biophysical
chemistry.
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Appendix A — Cumulant Expansion for y(t)

Denoting the second exponential term in Eq. (3.35) as
y(t)= exp[ ISAU dt} (A1)

one can use the cumulant series expansion to represent it as

c

(.jmfdttjldttfdt J.dt (8AU (1,)...8AU (t,)) | (A2)

where (...)_ is the cumulant average.

The second-order approximation for y(t) gives

y(t)= (%)j(mu (t,)).dt, —%jdtltjdtz (8AU (t,)8AU (t,)) (A.3)
where

(8AU(1,))_=(8AU (t)) =0 (A4)
(8AU (1,)3AU (t,)) =(8AU (t,)3AU (t,)) —(3AU (t,)) (SAU (t,)). - (A5)

Finally one obtains an equation for y(t)

y(t) =~ ja’t _[dt SAU (,)8AU (1 j )(8AU (0)8AU (1)), (A.6)
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Appendix B — Derivation of Charges for G, G*
R6G and R6G™

When deriving atomic charges for the singly positively charged guanosine (G*) and
Rhodamine 6G (R6G) in case of the polarizable force field ff02, a previously described
procedure was applied.?'® Here, a more detailed overview of some specific parameters of this
procedure shall be given. All quantum mechanical calculations were carried out with the
program Gaussian 03.2%°

The geometry of charged guanosine was optimized at the UHF/6-31G* level. For this

geometry an initial electrostatic potential (ESP) was generated at the UB3LYP/cc-pVTZ level

211,212,287

and RESP atomic charges were fitted to this initial ESP. They were then used to

Table B1. Permanent, z4pem, induced, zing, and total, 44, dipole moments (Debye) calculated
with the polarizable version of the AMBER force field ff02 after one MD step for the
optimized geometry of a singly charged guanosine radical G*, the linker (Fig. B3a),
negatively charged Rhodamine R6G, and neutral R6G.*

N G’
Hperm  Hind  thot

Linker
Hperm  Hind

R6G™
Hperm  Hind Mot

R6G
Hperm  Hind Hiot

Hiot

6.744 1.305 5.757
7.213 1.379 6.140
7.257 1.385 6.179
7.260 1.385 6.181

12.235 1.374
12.610 1.534
12.633 1.541
12.638 1.542

11.374
11.642
11.664
11.668

13.791 1.056 12.833
14.222 1.130 13.206
14.242 1.134 13.221
14.241 1.134 13.221

14.359 1.551 12.947
15.032 1.586 13.593
15.090 1.591 13.646
15.093 1.592 13.649

A W N 2 O

7.260 1.385 6.181 12.637 1.542 11.668 - - - 15.093 1.592 13.648

# Dipole moments from single step MD calculations with the polarizable ff02 force field,
where charges were derived from the electrostatic potential obtained at the B3LYP/cc-pVTZ
level for subsequent iterations N of the procedure described in the text. For comparison note
the initial values of the total dipole moment at the B3LYP/cc-pVTZ level after geometry
optimization (in absence of any external point-charge field): G* — 6.849 Debye, linker —
12.606 Debye, R6G™ — 14.094 Debye, and R6G — 14.029 Debye.
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generate induced dipoles on the optimized geometry through one MD step of 0.05 fs in the
module sander of AMBER 8, treating the induced dipoles iteratively**® without periodic
boundary conditions. As initial guess, atomic polarizabilities were automatically invoked in the
module leap from the polarizable force field ff02. In response to the charges present on the
atoms, these induced dipoles, reflecting the atomic polarizations, adjusted their positions during
a single MD step with the module sander. As for normal production MD runs, we used the
iterative procedure?*? built into AMBER 8.°° After relaxation of the induced dipoles, their
positions and magnitudes were recorded and introduced as a point-charge field surrounding the
optimized structure in a B3LYP/cc-pVTZ single-point calculation where the ESP for the next
iteration was generated. The obtained ESP corresponds to the potential field without self-
polarization of the molecule. The newly obtained charge set was used for the subsequent step
where the induced dipoles were adjusted. After three to four cycles, the induced dipole
moments converged (Table B1). The corresponding ff02 RESP charges for neutral and charged
guanosine are given in Figures B1 and B2. The charge set for neutral guanosine, shown in
Figure B2 for comparison, is the one built into the ff02 force field; it was not obtained by the
current iterative procedure.

The charges for the force field ff02 for neutral and negatively charged R6G were obtained in
an analogous iterative procedure. The B3LYP/6-31G* geometry optimization with a PCM
water model® and the subsequent iterative procedure for generating the ESP at the B3LYP/cc-
pVTZ level were carried out separately for the two modified fragments of the dye (Figures B3a,
b): the R6G unit and the linker with methylated phosphate. Then the fragments with their
corresponding charges were merged (based on common atoms in both fragments, the final set
of charges was derived automatically in antechamber package) to deliver the final charges
listed for the neutral and the negatively charged systems R6G-linker (Table B2), along with the
charges for the non-polarizable force field ff99. The optimization was carried out with the PCM
approach because the structure corresponding to the zwitterionic form cannot be generated in
vacuum where the structure always converges to the lactone isomer.?®
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Table B2. Charges (e) for the polarizable (ff02) and the non-polarizable (ff99) version of the
AMBER force field for neutral (R6G) and negatively charged Rhodamine 6G (R6G™). See
Fig. B3c for the atom labels.

Atoms R6G R6G~ Atoms  R6G R6G™
ff99 ff02 ff99 ff02 ff99 ffo2 ff99 ff02

C1 -0.455 -0.310 -0.324 -0.313 H22 0.189 0.159 0.183 0.173
H1 0.163 0.126 0.126 0.104 C18 -0.416 -0.261  -0.103 -0.020
Cc2 0.252 0.105 0.214 0.140 C19 0.721 0.521 0.238 0.059
N1 -0.435 -0.311 -0.676 -0.507 C20 -0.221 -0.004  -0.033 0.064
C3 0.043 0.101 0.233 0.240 C26 -0.185 -0.195 -0.209 -0.154
C4 -0.286 -0.278  -0.377 -0.337 C25 -0.190 -0.108 -0.145 -0.171
H2,H3,H4 0.089 0.083 0.093 0.078 H24 0.170 0.115 0.119 0.102
H5,H6 0.088 0.060 0.040 0.022 H25 0.116 0.089 0.100 0.077
H7 0.325 0.280 0.362 0.307 C21 0.196 -0.027 0.039 -0.040
C5 0.034 0.126 0.068 0.079 C22 0.607 0.586 0.757 0.677
C6 -0.271 -0.267  -0.164 -0.147 02,03 -0.684 -0.608 -0.767 -0.700
H8,H9,H10 0.086 0.084 0.044 0.041 C23 -0.209 -0.112  -0.187 -0.151
Cc7 -0.097 -0.192 -0.268 -0.307 H23 0.162 0.114 0.136 0.107
H11 0.189 0.159 0.183 0.173 C24 -0.041 -0.131 -0.176 -0.124
C8 -0.416 -0.261  -0.103 -0.020 C27 0.691 0.566 0.749 0.573
C9 0.508 0.361 0.293 0.247 04 -0.559 -0.551  -0.559 -0.544
01 -0.335 -0.266  -0.342 -0.262 N3 -0.692 -0.507 -0.692 -0.500
Cc10 0.508 0.361 0.293 0.247 H26 0.321 0.262 0.321 0.262
Cl1 -0.455 -0.310 -0.324 -0.310 C28 0.097 0.156 0.097 0.156
H12 0.163 0.126 0.126 0.104 H27,H28 0.078 0.016 0.078 0.016
C12 0.252 0.105 0.214 0.140 C29 -0.114 -0.038 -0.114 -0.038
N2 -0.435 -0.311 -0.676 -0.507 H29,H30 0.044 0.011 0.044 0.011
C13 0.043 0.101 0.233 0.240 C30 0.005 0.042 0.005 0.042
Cl14 -0.286 -0.278  -0.377 -0.337 H31,H32 0.053 0.021 0.053 0.021
H13,H14,H15 0.089 0.083 0.092 0.078 C31 -0.263 -0.132  -0.263 -0.131
H16,H17 0.088 0.060 0.040 0.022 H33,H34 0.096 0.034 0.096 0.034
H18 0.325 0.280 0.362 0.307 C32 -0.034 0.013 -0.034 0.013
C15 0.034 0.126 0.068 0.079 H35,H36 -0.023 -0.012 -0.023 -0.012
C16 -0.271 -0.267  -0.164 -0.147 C33 0.396 0.268 0.396 0.211

H19,H20,H21 0.086 0.084 0.044 0.041 H37,H38 -0.024 -0.013 -0.024 -0.013
C17 -0.097 -0.192 -0.268 -0.307 05 -0.539 -0.382  -0.539 -0.367
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Atomic Charges for the Non-Polarizable Force Field. In the case of the non-polarizable
ff99 the atomic charge set for positively charged guanosine was obtained for a geometry
optimized at the B3LYP/6-31G* level with a subsequent generation of the ESP with the
UHF/6-31G* method. The geometries of the modified linker and of R6G (both in neutral and
negatively charged forms) were optimized separately at the B3LYP/6-31G* level (Figure B3a,
b). Then these optimized structures of the linker and the R6G unit were merged (based on
common atoms in both fragments the final set of charges was derived automatically in
antechamber package) to generate the ESP either at the RHF/6-31G* level (neutral R6G) or the
UHF/6-31G* level (negatively charged R6G). In all cases the generated ESP was submitted to
further RESP calculations as suggested for acquiring appropriate atomic charges for non-
polarizable AMBER force fields (Table B2). 211412287

Charged Guanosine O _5.391

-0.525 0163 H0.622 /H 0.404

N’o 698
0.875
)\ H
N N 0431

490
-0.647 | -0.797
Ho 431
0096  0.096
/e’ H 0.388
Residue —— = /
o[ 0.076 §0.075
0437 &

Residue

Figure B1. RESP atomic charges (e) of singly positively charged guanosine for use with the
polarizable force field ff02.

Neutral Guanosine

H
|_0_500 0.049

Residue

Figure B2. RESP atomic charges (e) of neutral guanosine used with the polarizable force
field ff02. The numbers are taken directly from the ff02 library implemented in AMBER 8.
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Appendix C — How to Record Potential Energy
Gaps

To estimate MD parameters needed for recording the potential energy gaps that are required
one evaluates the solvent reorganization energy, consider a typical spectral density of an ET
reaction coordinate coupled simultaneously to nuclear degrees of freedom of the solute and the
solvent. The spectral density decays exponentially with the frequency :’

J(@)

w

:nexp(—%j, (C.1)

where A is some constant referred to as the highest frequency cutoff and # is a friction
coefficient. From a typical spectral density calculated for DNA (Figure C.1) one notes that the
estimated value for A is about 750-1000 cm . Eq. (C.1) arises from an approximate solution of
the equations of motion for a system of harmonic oscillators coupled to one reaction
coordinate.’

10

Spectral Density, arb. units

5-GG'GTTTGGG-3'
TCF, 250 ps

\
0 500 1000 1500 2000 2500 3000 3500 4000

B
Frequency, cm

Figure C1. Typical falloff character of the spectral density function of the sovent calculated
from a time correlation function of 250 ps for a rigid DNA duplex (MD simulations).
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Despite an essentially non-harmonic character, in case of large systems one can regard such
a spectrum (Figure C1) as being produced by an array of harmonic oscillators.>**%*% Their
evolution in time can be approximated by a model function:

f(t)=exp(—%)-Zgi cos(2zvt), (C.2)

where g; [eV?] is the relative contribution of the oscillator with frequency v; (cm™). From MD
simulations it had been shown that for pure water,*®” DNA,** and other biomolecular systems,
97619 the decay in Eq. (C.2) has an approximately exponential character with I' estimated at
~500 fs. The spectrum covers the range 0-4000 cm* where the highest frequency peaks around
3500 cm correspond to vibrations involving H (Figure C1). In order to evaluate their
contribution to the reorganization energy, it is important to record properly these high-
frequency vibrations. Thus, using the upper limit of 4000 cm™ one can estimate the lowest

limiting frequency vy for dumping the snapshots from MD simulations:
vV, =4000cm™ =120 ps™ =120-10" Hz (C.3)

The limiting frequency v, corresponds to a vibration period Tjim = 1/viim = 10 fs, therefore
MD sampling has to be performed with a time step substantially less than the latter value. The
value usually chosen?**2#

by a factor of two, the trajectory snapshots were dumped each 2 fs.

is around 1 fs. To reduce the computational cost in the present work
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Appendix D — Calculation of the Time Correlation
Function (TCF)

According to the mathematical formalism the time correlation function (Eq. 4.11) is defined
for an infinitely long period of time T:

A(r) =lim %jsu J(t+7)3U, (L), (D.1)

On the other hand, data from MD trajectories are recorded during a finite period of time Trinit
< oo; thus, the autocorrelation function A(z) is accurate only for lags t << Tnit. As a rule of
thumb, only the first 10-20% of the calculated TCF data can be subjected to further Fourier

transform.2%%2%!

From Figure D1 one can see that the TCFs calculated for the data sets of different lengths

T T T T
0 50 100 150 200 250
time, ps

Figure D1. Convergence of TCF as a function of the trajectory length for ET between
guanine units (in italics) in a model duplex 5-GG'GTTTGGG-3. The trajectory was
recordered each 2 fs.
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1,0 4
TCF, arb. units
0,8
0,6-J (6AU(0)dAU(1))  ~exp(~t/7)

0,4

0,24

0,0 T 1 T T T 1 T T T 1
0 500 1000 1500 2000 2500
time, fs
Figure D2. High resolution (first 2.5 ps) of the typical falloff character of a TCF calculated
for the donor-acceptor energy gap.

converge for the lag © = 25-30 ps, where they remain positive. Only the latter part, which
empirically corresponds to the first 10-20%, is useful for a subsequent FT. The the first 2.5 ps
of one of the decaying TCFs is shown in Figure D2 at high resolution.

Increase of the lag z reduces the quality of the information recorded as can clearly be seen
from the discrete representation of the TCF:

17 1
?jauﬁ (t)8U, (t+7)dt =m28u o (68U (t, +nAt)-At, (D.2)
0 - k=0

where the lag = nAt in the denominator decreases the useful length NAt — nAt of the data set.
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Appendix E — Fourier Transform (FT) of TCF

Continuous cosine FT. According to Eq. (6.4) (Chapter 6), the spectral density function and
the autocorrelation function are related through a cosine Fourier transform. In order to find the
spectral density function from the known time correlation correlation, one has to extend it
artificially in a symmetric way into the area t < 0.

Consider an arbitrary function f(t) defined on t & (—oo;+e). Then one has:

o0

f(t)=}[[a(a))~cos(wt)+b(a))~sin(a)t)]dco, (E.1)
where

a(@)=2 ] 1 (1)-cos(et) E2)
b() ={D £ (t)-sin(at) dt. E3)

In order to represent it as an integral of cosines, one needs to have the second coefficient
b(w) = 0, too. Assuming now that f(t) corresponds to the time correlation function defined for

te(0;+o), the latter can be done if it would be extended into the negative region of t in an

even way:
.| f(t),t>0
f(t)—> f(t)'{f(|t|),t<0 (E4)
In this case the coefficients b(w) become identical to zero and only a(w) remains:
1 +00 2 +00
== f(t) t)dt=— | f(t) t)dt. E.5
a(w) ﬂ_J; (t)-cos(et) ;;! (t)-cos(at) (E.5)

Thus, if the correlation function is formally extended to negative values of t, even if

originally defined only for positive t €[0;+x), then Eq. (E.1) with b(w) = 0 and a(w) according
to Eq. (E.5) are also valid only for positive t e [0;+oo) .

Assume a TCF similar to one shown in Figure D2 that contains only one of the harmonic
contributions which comprise the spectral density function Eq. (C.2), namely the one with the
highest frequency vjin, at relative weight gjim:
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f(t)= exp(—%)- Gjim COS 277Vt (E.6)
The corresponding cosine FT according to Eq. (E.5) results in:
%zg‘[ firm (1) COS(@t) dt = gii ! +gii ! : (E7)
lim 0

Dy

where wjim = 27viim. The redundant part of Eq. (E.7), corresponding to the negative values of the
frequency w, should be omitted. From Eq. (E.6) one notices that the decay parameter I" of the
TCF defines the width of the FT peaks, which is independent of frequency wjin.

Discrete cosine FT. The discrete FT g'(k) of the function f(t,) defined on a series of values

t, €(0;T)for the arbitrary k is given by:

N-1
9'(k)= f(tn)-exp(—iz?”ktnj. (E.8)
Here, k corresponds to the frequency according to wy = 2nk/T. To relate continuous and discrete
FT, the sum in Eq. (E.8) has to be rearranged multiplying and dividing the expression by Az:
N-1
1. f Az‘ exp( iz_l_iktnj (E.9)

n=|

Choosing At to be rather small, one obtains the integral as limit of the sum g'(k) at Az —>0:
T
j f(t exp( |@tjdt (E.10)
0

Recalling that the index k numerates frequencies wy, the integral can be expressed for a
continous range of w:
1 T

9'(w)~—

v f(t)-exp(—iwt)dt (E.11)

0
Thus, discrete and continuous Fourier transforms are related through the constant multiplier

1/Az. The limit of the errors when stepping from a discrete summation to the integration can be
estimated by the “trapezoid formula™:

(o) ] £ (1) exp( Z’Tfkt]dt <

0

T-0

= AM (E.12)

where M :max{‘f '(2)‘;Ost£T}.
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Appendix F — Estimate of Leakage Artifacts

When taking a FT in approximate, discretized form, often artifacts can be observed that are
known as leakage errors. When data are not sampled long enough and a truncation occurs, the
intensities (peaks) resulting from the numerical procedure differ from the exact analytical
solutions. One of the reasons is that the quality of the TCF decreases at larger values of the
righthand side of Figures D1 and D2; see also the discussion in Appendix D. Truncation of
TCFs around the first 10-20% of the collected data series and application of different “window
functions”, which reduce the relative contribution of the values at the ends of data series,
improves the quality of FT, but still disrete FT unavoidably introduces a representation through
a finite set of frequencies instead of a continuum. The number of data points collected results in
the same number of discrete frequencies Eqg. (E.8). The deviation from the theoretical peak
intensity can be obtained for a particular implementation of the FT and the length of the
recorded TCF data set in a straightforward way:

‘FT (continuum)— FT (discrete)‘
Error = - -100%, (F.2)
FT (continuum)

where FT is the Fourier transform of an arbitrary analytical function.

292 Assume a data

set of 25000 points, recorded with a time step Az = 4 fs to represent the function given in Eq.

In the present work the FTs were calculated using the program xmgrace.

(E.6) with parameters I = 500 fs and vjim = 1000 cm™, and invoke the definition of cosine FT
similar to Eq. (E.5). Then integration of the function yields a peak height at o > O:

FT [ ()] :I f (t)cos(at)dt . -L. F2)

where o = 2zv. Note that the height of the peak is independent of the frequency w of the
assumed TCF.

Data (with a precision of 10 digits after the comma) for the TCF function, Eq. (E.6), with the
latter parameters, have been imported into the program xmgrace, where the cosine FT is
implemented as follows
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g'(k):ff(tn)-costz?ﬂtnj. (F.3)

n=0
This results in a peak height of 63.00158 (dimensionless units). To connect continuous and
discrete transforms, one has to recall Eq. (E.11), which relates them through the parameter Ar.
Finally, one estimates the relative leakage error according to Eq. (E.1):

 |1/250fs ~1/63.00158- 4 fs|

Error = -100% ~ 0.8% (F.4)
1/250 fs

This is a rather small value compared to experimental standard deviations.
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Appendix G — Integration of the Spectral Density

Function

The accuracy when one calculates reorganization energies depends not only on leakage
artifacts that arise from the discrete FT, but also on the subsequent numerical integration of the
spectral density function obtained from a FT,

iziafLw‘)-Aw, (G.1)

T o Cl)i

which is a discrete representation of Eg. (6.3). The integrand consists of sharp peaks (see Figure
C1); therefore, the resolution of the frequency grid Aw must be high enough, so that the area is
estimated precisely. The required grid resolution can be estimated from the “width” of the
peaks of the assumed TCF, see Eq. (E.6). As seen from the resulting FT in Eq. (E.7), the
characteristic width of the peak is

Ao~==. (G.2)

It is noteworthy, that the grid resolution Aw depends only on the decay constant I"of the
TCF.

Assuming one needs at least 10 points to estimate the area under a single peak at a
reasonable accuracy, one derives a grid resolution:
11
w==—~7cm"’. (G.3)
I'100

Given the latter condition, the total data length of a TCF submitted to FT can be estimated as

1
T=—=5ps, G4
Aw P ©4)

which directly follows from the definition of the discrete FT, Eq. (E.8). Recall that the useful

length of a TCF comprises only 10-20% of the total sampling time (see Appendix D). Then one
estimates that data have to be collected at least for about 25-50 ps.
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Appendix H — Bash Scripts for MD Calculations

H.1 General operations of the Bash scripts for energy gap calculations

The currently developed system of the bash scripts assists with analyzing the trajectory
simultaneously with its production. The resulting data is generated in standard AMBER 8%
energy output format as two files: MD.out and AN.out which correspond to the same series of

snapshots with initial and final ET states, respectively.

The trajectory is produced with a parallel version of module sander?®

that invokes program
mpirun and operationally is controlled by the script cycles.sh. Due to extremely voluminous
data to be operated by analysis scripts the main trajectory is partitioined into 25 sections with a
length of 2 ps each. The script ghost.sh ensures that the last snapshot of previous trajectory

piece becomes the starting snapshot for the next subsequent section of the trajectory.

The analysis is done as recommended (Appendices C—G) each 2 fs at every fourth snapshot
produced with a timestep 0.5 fs in accordance with the input parameters of sander (enlisted in
the command files AN.in and MD.in). The analysis is carried out as a set of single step MD
calculations (0.005 fs), also performed by sander. This analysis can be carried out in “parallel”
by invoking simultaneously several independent single processes; the number of simultaneous
runs on single processors depends on the current load of the available compute platform. Its
maximum target number NUM PROC is preset in the script analysis.sh, which controls the
single-step calculations. The two data streams, production and analysis, can be balanced with
the script bg_sander.sh which controls the load of the processors by adjusting the number of
simultaneous analysis runs relative to a target number NUM PROC. The best speed of
calculations is achieved on machines that feature a shared memory, where the total number of
sander executables (invoked in production and analysis runs together) does not exceed the
number of physically available processors by a factor of 2.

H.2 Main controlling script MD.sh

The system of communicating scripts operates is described in the following. The main script
MD.sh is supposed to be submitted to the machine queue of waiting tasks with the command:

> qgsub ./MD.sh
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It copies all start files (command files *.in, topology files *.prmtop, pre-equilibrated DNA
structure in a form of restart file 6equil md.restrt) needed for standard sander runs from
the (variable) directory STARTDIR. In MD.sh script represented below the latter variable has
the value /bigstuff/vladimirov/DNA/ .

The script creates two directories
/scratch/vladimirov/R6G-GNP6_to GNPO_MD
/scratch/vladimirov/R6G-GNP6_to GNPO_AN

in directory /scratch. The topology files (R6Gminus1-GNP6 6CAA.prmtop, With a
negative charge located on R6G) and (R6G-GNPO 6CAA.prmtop,With a positive charge
located on R6G) are assigned to environment variable names that correspond to the initial
(TOPOLOGY) and final (TOPOLOGYIT) ET states, respectively.

Then the script assigns environmental variables for parallelizing sander via mpirun, which
depend on the available software version and the architecture of the machine (for more
instructive commands, see the manual of AMBER). After the environmental variables are
assigned, script MD.sh invokes all other scripts which control the execution of simulations.

The scripts are designed such that no other parameter except those represented in MD.sh
have to be changed.

#!/bin/tcsh

#$ —-cwd

#S$ -pe * 4

#S -gq opt34,opt35,o0pt36,0pt37,0pt38,0pt39, quadl, quad?2

setenv dirI /scratch/vladimirov/R6G-GNP6 to GNPO MD

setenv dirII /scratch/vladimirov/R6G-GNP6 to GNPO AN

rm -rf $dirT

rm -rf $dirITl

mkdir -p /scratch/vladimirov/

mkdir -p S$dirI

mkdir -p $dirIT

FHAFHAHHAHHASH A H AR H AR H AR H AR AR H AR H AR
setenv TOPOLOGY R6Gminusl-GNP6 6CAA.prmtop

setenv TOPOLOGYII R6G-GNPO 6CAA.prmtop

setenv STARTDIR /bigstuff/vladimirov/DNA/

cd SSTARTDIR

FHAFHAFHAFHASH AR H AR A A H AR H AR H AR H AR H AR H A H AR H AR
cp 6equil md.restrt $dirI/8equil md.restrt

G i
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cp *.in *.prmtop ENERGY.dat ghost.sh egor.host cycles.sh
analysis.sh bg sander.sh S$dirI

cp ZERO VEL.restrt $dirII

cd $dirI

source /home/vladimirov/.cshrc

tHAFHAHEFFEFFEFFE mpirun  variables #####F#HFHHFHFFHFFHFFHEAHS
echo "+++++++++++++ ENV ++++++++++++++"

setenv

echo '"+++++++++ HOSTFILE +++++++++++++"

cat $PE_HOSTFILE

setenv TTFS HOSTFILE $PE_HOSTFILE

/home/ttfs/bin/pvmconf.pl -g -m > egor.host

echo '"+++++++++ HOSTFILE:N +++++++++++"

cat egor.host

##4###4##44# Don't use this command for analysis runs!!! ########

setenv  PARAL "mpirun -v -np 4 -machinefile egor.host
$AMBERHOME /exe/sander "

HHAFHAH A A A A AR AR A AR A ARSI HEHREHSE S
./ghost.sh &

./analysis.sh &

./cycles.sh

FHAFHHHHHFH A H A H A H A H A H AR H AR H AR S A HH

H.3 Trajectory production script cycles.sh

#!/bin/bash

#$ —-cwd

cd $dirI

#H###### The number of trajectory pieces R EE LT
maxi=25

#H###44#+ The number of steps in each trajectory piece #######
#H###### should be always of format e00+1 and the same ######+#

###4#### as in "MD.in" file FHEFHHS
nst1lim=4001

HH#fhHHHHHHHH RS A HHHHHHS CYCLES #H4H4##### 44444 HHHHHHHHHHHHH
ntwr=4

let prenstlim=Snstlim-1

let maxsnap=$prenstlim/S$Sntwr

FHAFHHFH AR EHH
cp 8equil md.restrt MD 1l.restrt
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cp ENERGY.dat MD ENERGY 0O.dat

FHAFHHHH AR A AR A AR AR AR H AR AR AR AR A HH
for ((i=1;i<=maxi;i++))

do

FHAFHHFH S H S H SRS S
let k=$i+1

FHAFHHHH AR A AR A A AR AR H AR AR AR EHH

SPARAL -O -i MD.in -o MD Si.out -p STOPOLOGY -c MD $Si.restrt
-ref MD Si.restrt -r MDf Si.restrt -x MDf $i.mdcrd

grep -v writing MD $i.out | grep -v COM > temp $i.out
let nlines=184+Snstlim*12

##### here

let plines=$prenstlim*12

##### here

mv temp $Si.out MD $i.out

head -$nlines MD Si.out | tail -S$plines > MD ENERGY S$i.dat
cp ENERGY.dat MD snapshot 0O.dat

for ((j=1;j<=maxsnap;j++))

do

let snapshot=$j*S$ntwr

let snapline=$snapshot*12

##### here

head -Ssnapline MD ENERGY $i.dat tail -12 >
MD snapshot $j.dat

#### here

let jp=$j-1

cat MD snapshot $jp.dat MD snapshot $j.dat > intermediate.dat
mv intermediate.dat MD snapshot $j.dat

done

mv MD snapshot Smaxsnap.dat MD ENERGY S$i.dat

rm —-f MD snapshot *.dat

#4444##44 Prepare files for the next MD cycle in dirl ######44
cp MDf $i.restrt Sprenstlim MD Sk.restrt

rm —-f MDf Si.restrt Snstlim

done

444444444 archive and copy to "home" directory ######4##44
tar -cvf MD.restrt.tar MD *.restrt

tar -cvf MD.mdcrd.tar MDf *.mdcrd

gzip MD.*.tar

for ((i=1;i<=maxi;i++))
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do

let ip=$i-1

cat MD ENERGY $ip.dat MD ENERGY $i.dat > intermediate.dat

mv intermediate.dat MD ENERGY $i.dat

done

mv MD ENERGY Smaxi.dat MD ENERGY.dat

rm —-f MD ENERGY *.dat

cp *.gz MD ENERGY.dat SSTARTDIR

HH##f444 44 ###HHH4E ki1l background job ########HFH#HHHHHEHEHH
cd $dirII

while [ ! -f AN ENERGY.dat ] ; do

wait

done

kill -9 analysis.sh

FHAFHHFH S H S H AR

H.4 Trajectory analysis script analysis.sh

#!/bin/bash

#$ —-cwd

cd $dirrT

FHEHHEHAHAFHEHEHEHE Parameter to change #######HFHFHFFFFEHES
NUM_PROC=3

#4444 444##F The number of trajectory pieces ########FFFFFH4H
maxi=25

#H###4#4#+ The number of the xyz lines in restart files #######

#H##### to be analyzed HH#4#444
atomlines=12532

#H####4##+ The number of snapshots analyzed in each #HHHHHH
#######+ trajectory piece FHEH#HH
#H##44#+ It should be always: maxl=(nstlim-1)/ntwr FHEFHHH
####### where nstlim corresponds to nstlim FHEH#HH
$H####44 in "MD.in" file #HEFHHH
max1=1000

FHAFHAHHHSH A H AR HHSHHFHS Cycles H##H#HHHHHHHHHHHHHHHHHHHHSHHH
ntwr=4

S
cp egor.host S$dirII

mv AN.in S$TOPOLOGYII bg sander.sh S$dirII

cp ENERGY.dat $dirII/AN ENERGY 1.0.dat
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cp ENERGY.dat $dirII/bgPID.dat

FHAFHHHH AR A AR A AR AR AR H AR AR AR AR A HH
for ((i=1;i<=maxi;i++))

do

S
for ((1=1;1l<=maxl;1l++))

do

let p=$ntwr*S$l-Sntwr

let m=$ntwr*s$l

let o=$ntwr*S$l+Sntwr

S
let maxm=$maxl*Sntwr

FHAFHFH A AR AR AR AR H A HH
while [ ! -f MDf $i.restrt So ] ;

do

wait

done

while [ ! -f rstdip So ] ;

do

wait

done

FHAFHHHHHSHHSH A H A S H A H AR AR H AR 4
if [ -f MDf Si.restrt Sm ]

then

cp MDf $Si.restrt Sm SdirII

fi

FHAFHHHHHSH A H A H A S H S AR H AR H AR H AR 4
cd $dirIrT

$HHE#HHHHHHEHS Prepare zero velocities file #######44444444444
head -Satomlines MDf $Si.restrt Sm > MDf XYZ.restrt

tail -1 MDf $Si.restrt Sm > MDf BOX.restrt

cat MDf_XYZ.restrt ZERO VEL.restrt MDf_BOX.restrt >
MDf Si.restrt Sm

FHAFHHHH A H A H AR H A H A H AR H AR H AR H AR H AR H AR A4S
cd $dirI

if [ -f MDf Si.restrt $So ]

then

cd $dirIT

##### The control of the number of background processes #####
num proc=( ls -1 bgPID*.dat | wc -1 ")
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echo $num proc >> num procIl.dat

while [ S$num proc -gt $NUM PROC ]; do
sleep 5s

num proc=( ls -1 bgPID*.dat | wc -1 ")
echo $num proc >> num procF.dat

done
G
echo $i S$p Sm S$Smaxm > ipm.dat

./bg _sander.sh S$TOPOLOGYII $dirI &
sleep 2s

cd $dirI

else

cd S$dirII

sander -0 -i AN.in -o AN Sm.out -p STOPOLOGYII -c
MDf $i.restrt Sm -ref MDf $Si.restrt Sm

head -186 AN S$m.out | tail -9 > AN S$m.mdinfo

cat AN Sm.mdinfo > AN ENERGY $i.S$m.dat

rm —-f AN Sm.mdinfo

rm —-f MDf S$i.restrt Sm MDf Si.rstdip Sm

cd $dirrT

FHEFHFFHHHFF#HES Clean MD directory from used files ############
if [ Sm -1t Smaxm ]

then

rm -f MDf $Si.restrt Sm MDf Si.rstdip Sm

fi

FHAFHFHH A A AR A AR A AR H AR AR H AR AR S
fi

done

#######4## Concatenate all the AN ENERGY*.dat files ##########
cd $dirII

##### Check that all analysis's sander RUNS are complete ####
complete=("1ls -1 AN ENERGY $i.*.dat | wc -1")

if [ Scomplete -eqg Smaxl ]

then

echo "complete" $i >> complete.dat

for ((l1=1;1l<maxl;1l++))

do

let m=$ntwr*s$Sl

rm -f $dirI/MDf $i.restrt Sm

rm -f $dirII/MDf Si.restrt Sm
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done

fi

while [ Scomplete -1t Smaxl ]; do
sleep 30s

complete=("1ls -1 AN ENERGY $i.*.dat | wc -1")
echo $complete >> complete.dat

for ((l1=1;1l<=maxl;l++))

do

let m=$ntwr*s$l

let maxm=$ntwr*Smaxl

if [ -f AN ENERGY $i.Sm.dat ] && [ $m -1t Smaxm ]
then

rm -f $dirI/MDf $i.restrt Sm

rm -f $dirII/MDf Si.restrt Sm

else

sander -0 -i AN.in -o AN Sm.out -p STOPOLOGYII -c
MDf $i.restrt Sm -ref MDf $Si.restrt Sm

head -186 AN S$m.out | tail -9 > AN Sm.mdinfo
cat AN Sm.mdinfo > AN ENERGY $i.S$m.dat

rm —-f AN Sm.mdinfo

rm -f $dirI/MDf $i.restrt Sm

rm -f $dirII/MDf Si.restrt $Sm

fi

done

let complete=$maxl

echo "complete checked" $i >> complete.dat
done

###### Concatenate the data of the current set of runs ######
for ((1=1;1l<=maxl;1l++))

do

let p=$ntwr*S$l-Sntwr

let m=Sntwr*S1l

cat AN ENERGY $i.S$p.dat AN ENERGY $i.$m.dat > intermediate.dat
mv intermediate.dat AN ENERGY $i.S$m.dat

done

let maxm=$maxl*Sntwr

echo $maxm > TEST.dat

mv AN ENERGY $i.S$maxm.dat AN ENERGY $i.dat

rm -f AN ENERGY $i.*.dat

cp $dirI/ENERGY.dat AN ENERGY 1.0.dat
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cd $dirT

#H#FHFFH##HF Copy result to "home" directory HHAHHHadddddd44
done

tHefHHFH#HFHEHF#HE Concatenate the data of all sets ############
cd $dirII

cp $dirI/ENERGY.dat AN ENERGY 0.dat

for ((i=1;i<=maxi;i++))

do

let ip=$i-1

cp AN ENERGY $i.dat AN ENERGYT $i.dat

cat AN ENERGY $ip.dat AN ENERGY $i.dat > intermediate.dat
mv intermediate.dat AN ENERGY $i.dat

done

mv AN ENERGY Smaxi.dat AN ENERGY.dat

rm -f AN ENERGY 0.dat AN ENERGY *.dat

FHAFHHFHHFHHSE S H S H SRS A
cp AN ENERGY.dat $STARTDIR

tar -cvf AN ENERGY.tar AN ENERGYT *.dat

gzip AN ENERGY.tar

cp AN ENERGY.tar.gz S$STARTDIR
FHAFHHFHHHHHSHHSH A H SRS A

H.5 Single step calculation script bg_sander.sh

#!/bin/bash

bgPID=$53

touch bgPID.SbgPID.dat

FHAFHAHH AR A AR AR AR AR AR AR AR A AR A
exec 3<> ipm.dat # Open file "ipm.dat" and assign fd 3 to it.
read i p m maxm <&3 # Read only varl var2 var3

exec 3>&-

G i

sander -0 -i AN.in -o ANbg Sm.out -p $TOPOLOGYII -c
MDf $Si.restrt Sm -ref MDf $Si.restrt Sm

### calculate how many sanders from analysis.sh are run ####
rm -f bgPID.SbgPID.dat

FHHHHH RS H A A A 4
head -186 ANbg $m.out | tail -9 > ANbg Sm.mdinfo

cat ANbg S$m.mdinfo > AN ENERGY S$i.S$m.dat

rm —-f ANbg Sm.mdinfo
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###### rm -f MDf Si.restrt Sm MDf $i.rstdip Sm ###########4
cd S$dirI

FH#FHFFHH#HHF#HF Clean MD directory from used files ######H##HFFH##
if [ Sm -1t Smaxm ]

then

rm -f MDf $Si.restrt $Sm MDf $Si.rstdip Sm

fi

FHAFHAFH AR A AR AR H AR A SRS H A

Trajectory concatenation script ghost.sh

#!/bin/bash

#$ —-cwd

ghostPID=S$$

maxi=25

for ((i=1;i<=maxi;i++))

do

while [ ! -f MDf Si.restrt 3996 ] ;

do

wait

done

if [ -f MDf Si.restrt 3996 ]

then

cp MDf S$i.restrt 3996 MDf Si.restrt 4004
cp rstdip 4 rstdip 4004

fi

done

kill -9 SghostPID

FHAFHHFHHSH A H A H A S H A H AR H A H A H AR A

H.6 Sander command file MD.in for trajectory production

Production RUN 10ps, NVE,H-bons are free

&cntrl

ipol =0,

ntx = 5, irest = 1, ntrx = 1, ntxo = 1,
ntpr =1, ntwx = 400, ntwv = 5, ntwe = 5,
ntwr = -4,
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ntf = 2, ntb = 2, ntr =1,
4, tol = 0.0000001,

cut = 12.0, nsnb 5, nscm

nstlim = 4001,
t = 0.0, dt

0.0005,

ig = 71277,
ntt =1, tempO = 300.0, tautp = 5.0,
vliimit = 20.0,

Il
o
K
()

~

ntp =1, presO = 1.0, comp
taup = 2.0, npscal = 1,

ntc = 2,

&end
&ewald

dsum tol 0.000001,
indmeth = 2, maxiter = 50,
irstdip = 1, diptol = 0.0000001,
&end

Constraints

500.0

RES 1 31

END

END

H.7 Sander command file AN.in for trajectory analysis

Input file for Analysis

&entrl

ipol =0,

ntx = 5, irest = 1, ntrx = 1, ntxo = 1,
ntpr =1, ntwx = 1, ntwv = 1, ntwe = 1,
ntwr =1,

ntf = 2, ntb =1, ntr = 1

cut = 12.0, nsnb = 4, nscm = 4, tol = 0.0000001,
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nstlim =1,

t = 0.0, dt = 0.00005,
ig = 71277,

ntt = 0,

vliimit = 20.0,

ntc = 2,

&end

&ewald

dsum tol = 0.000001,

indmeth = 2, maxiter = 50,
irstdip = 1, diptol = 0.0000001
&end

Constraints

500.0

RES 1 31

END

END
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