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1 Introduction 

 

1.1 The phenomenon of charge transfer in DNA  

The discovery of the structure of DNA by Watson and Crick in 1953
1
 was the beginning of a 

breakthrough, which shaped a new world of biomolecular sciences. The ability of DNA to code 

the genetic information of the majority of known organisms, to conserve and to transfer it 

persistently in cell replications over millions of years brought up numerous fundamental 

questions about the mechanisms acting in living nature. The DNA of highly evolved species 

comprises milliards of subunits, but is constructed from only a few aromatic molecules. From 

the point of view of statistical physics, a molecule of this size can not sustain a stable structure 

and should inevitably undergo irreversible changes with time due to thermal fluctuations or 

solar radiation, resulting in a continuous series of bond breakages and subsequent aging and 

degradation of matter. Indeed, such processes take place in DNA but organisms have various 

means of protection and of repair of its damages.  

The amazing mechanism of self-repair and the stable coordinated expression of genes in 

different locations of DNA point to the idea that these complex processes should be 

orchestrated by currents flowing through the thread. In other words, DNA could serve as a 

molecular wire. A more detailed inspection of its structure and analogies with solid state 

physics resulted in a further support of this idea: the double helix is composed of a series of 

aromatic base-pairs stacked on top of each other and, to a certain extent, can be viewed as a 

one-dimensional molecular crystal. Not long after the structure of DNA had been unraveled, it 

was suggested that these π-stacked arrays might be conducting
2
 in a fashion similar to organic 

crystals, which demonstrate hopping or metallic conductivity.
3
 Despite numerous fruitful 

contacts with solid state physics outlined in later studies,
4–6 

DNA molecules turned out to 

possess distinctly different characteristics from conventional crystals, which rendered their 

description more complicated. It is not only the irregularity of the sequences, but also the very 

high flexibility of DNA with respect to conformational changes, which modulate the tightness 

and alignment of π-stacking of adjacent base-pairs. The latter is a crucial factor for expression 

of conductivity since it determines the degree of overlap between the electronic states of 

neighboring base-pairs. Other factors contributing to the complexity of electron transport in 
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DNA are the surrounding medium and the dynamics of counterions that balance negative 

charges of the sugar-phosphate backbone. Given these briefly outlined complications and the 

different experimental conditions at which DNA is processed, the scientific community could 

hardly come to consensus with regard to DNA conductivity during the last decades. 

 In the current era of nanoelectronics the problem of DNA conductivity received renewed 

attention due to the expected practical benefits, when in the middle of the 90s the group of 

Barton
7,8

 announced results, which suggested that native DNA could perform as a molecular 

nanowire. A very promising direction which appeared later is to enhance the intrinsic 

conductivity of DNA by its inclusion into hybrid composites
9,10

 like metal nanoparticle wires in 

which DNA serves as a template for the embedding of conducting species. There were already 

several attempts to create a new generation of electronic devices based on self-assembling 

materials where the inherent properties of DNA were exploited such as conformational 

transitions: few prototypes of nanodevices based on transitions between different DNA forms,
11

 

duplexes and triplexes,
12

 duplexes and quadruplexes
13

 were already produced. DNA with its 

extraordinary recognition and coding capabilities stemming from the complementarity of 

strands is a candidate for bio-computing, too.
14

 Together with the possible applications in 

medical diagnostics,
15,16

 where DNA could be implemented for fast sensing of various 

biological materials, this macromolecule represents a prospective source of fascinating 

discoveries and applications in different fields. 

 

1.2 Experimental approaches to charge transfer in DNA 

The most straightforward approach to explore the conductivity of DNA would be to measure 

directly the current through DNA fragments. Such experiments were already conducted either 

in the setting of Atomic Force Microscopy (AFM),
17,18

 where DNA was spread on mica plates, 

or in the setting of Scanning Tunneling Microscopy (STM),
19,20

 where DNA was commonly 

deposited on gold. A serious disadvantage of these setups are issues with “electrode contacts” 

that strongly affect the molecular structure when the tips touch the sample: DNA was found to 

be too short within these experiments.
21,22

 Moreover, the substrate pretreatment, which is 

necessary to deposit negatively charged DNA onto a mica surface, changes the electric 

properties of DNA from insulating to conducting.
23,24

 For both methods (AFM, STM) there are 

strong ongoing efforts to avoid non-specific substrate-molecule longitudinal contacts
25,26

 by 

performing measurements for standing molecules covalently bound to electrodes.
27,28

 The latter 

is achieved by forming thiol-gold covalent bonds
29

 between complementary strands of DNA, 

where one strand is attached to the gold surface and the other one to a gold nanoparticle.
30

 

These experiments
25,26

 undoubtedly demonstrated that significant currents exist in DNA, but 

nevertheless the mechanism of conductivity remains questionable.
31
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The original experiments
7,8 

which boosted the interest in electric properties of DNA, were 

carried out in solution mainly targeting oxidative damage processes of DNA. In these 

experiments an electron hole (the typical charge carrier in many experiments on DNA) was 

injected into oligonucleotides through an additional molecular species attached to DNA. 

Covalent binding of such species to DNA is an important prerequisite for efficient ET.
32

  

Modified bases or dyes capping (intercalating) the macromolecule served as sources of 

holes.
8,33,34

 The propagation of the hole, after initial oxidation, from a cation G
+
 along a DNA π-

stack puts an additional requirement on the choice of hole injector which should be suitably 

charged in order to avoid Coulomb attraction.
35

 The guanine cation G
+
 can undergo several side 

reactions like deprotonation or reaction with water/oxygen
34,36,38 

forming various products, 

which are normally described as G
ox

.37 A hole injection system introduced by Giese et al.
34,38

 

employes a chemical reaction that yields a sugar radical cation which exhibits a higher 

oxidation potential than G and injects a hole into the nearest guanine.
39 

The hole injection 

systems works from the ground state and thus has the advantage that there is no fast back 

charge transfer process.
39 

The incorporation of the latter system allowed first detailed and 

consistent studies of charge transfer mechanisms in DNA.
35 

The advancement of the hole is 

sequence dependent:40 a hole is transmitted from its source to the DNA sites with lowest 

oxidation potentials. The hierarchy of increasing oxidation potentials
41,42

 for the four DNA 

nucleobases is: guanine (G) < adenine (A) < cytosine (C) and thymine (T). Thus, mainly G or a 

sequence
43

 of several adjacent guanines serve as hole acceptors. If guanine G is not present in 

the sequence context or if there are at least 4 AT base-pairs between nearest guanines, then hole 

propagation goes through adenines A.
44

 The corresponding rates of hole transfer are measured 

in solution as a function of the distance between hole donor and acceptor by fluorescence 

quenching methods
7,45

 and time-resolved pump-probe spectroscopy.
46,47

 The first experiments 

of Barton and collaborators
7,8 

showed that the hole propagates along the DNA stack essentially 

distance-independently and at much higher rates than those typical for proteins. The mechanism 

with detailed quantitative information on this process was provided later.
35

 

Biochemical methods deliver an alternative scheme for detecting electron transfer (ET) 

processes.
48

 The approach relies on gel electrophoresis, which allows the location of oxidatively 

damaged base-pairs within a DNA strand. These experimentally studied oxidation processes 

can occur in vivo in situations that lead to damages of DNA within cells.
49

 The photooxidant is 

covalently tethered to DNA and intercalated into the double strand; holes are produced, which 

travel over long distances and preferably damages guanine
50

 by performing “chemistry at a 

distance”.
48

 

This brief overview of experimental approaches clearly suggests that complementary 

theoretical studies are required to achieve a consistent picture of ET in DNA. 
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1.3 Theoretical treatment of charge transfer in DNA 

Many experiments on charge transport (CT) in DNA address hole transfer. Therefore 

theoretical efforts often also describe hole propagation. However, experiments on transfer of 

electrons were recently reported.
51,52

 For the mathematical formalism involved in the present 

work, such distinction is irrelevant and we will use these terms interchangeably. According to 

the latest studies,
53,54

 the holes in DNA are confined to a single base-pair and quantum effects 

play a crucial role.55 The latter are affected by the local environment of a base-pair, its 

alignment and geometric distortions caused by thermal fluctuations. With respect to 

propagation along the DNA π-stack, the two competing mechanisms, short-range tunneling 

(superexchange) and long-range hopping, were finally combined into one superexchange-

mediated charge hopping model.
35,56,57

 This combined model emphasized the rather 

complicated character of charge transfer in DNA complexes that contain sequential, interstrand, 

intrastrand superexchange-mediated and direct interstrand hole transfer.
57

 These two 

mechanisms initially stemmed from interpretations of contradictory data that had been obtained 

in solution experiments: some results pointed to a rather weak dependence of the CT rates with 

the donor-acceptor distance
46,58

 and other results, from studies of oxidative damage, suggested a 

strong distance dependence of the rates.
48

 It was shown that for short separations (less than four 

intervening AT base-pairs) hole transfer rates decay exponentially with the distance as is typical 

for a direct tunneling mechanism.
35 

In this case the CT rate decays dramatically with the 

distance between donor and acceptor sites, where usually guanine moieties are separated by 

bridges comprised of an increasing number of AT units.
38 

When the separation between donor 

and acceptor sites increases beyond about 3–5 intervening base-pairs, then the mechanism 

changes to hopping
59

 governed by thermal fluctuations.
56,60,61

 According to this mechanistic 

representation of CT, single G or A moieties act as stepping stones for hole transport,
62,63

 since 

they have the lowest oxidation potential among the four native nucleobases.  

One of the advantages of hopping theory
56,60,64

 is that its description incorporates one main 

phenomenological parameter, namely the relative rates of elementary hopping steps between G 

sites that are separated by AT-bridges of different length. Knowledge of the relative rates also 

enables one to evaluate
65

 the distance dependence of charge transfer in experiments on DNA 

duplexes.
34,38,66,67

 Knowledge of relative hopping rates, however, is insufficient for determining 

how fast a hole generated in DNA can be transferred over a certain distance. To address this 

issue, absolute rates of different hopping steps should be obtained. This has been done 

experimentally by performing time-resolved measurements on DNA containing either different 

charge donor and acceptor moieties
44,68,69

 or identical ones, namely, guanine nucleobases in 

DNA hairpins.
70,71 
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1.4 Motivation and overview  

In general, elementary CT steps are considered to be affected mainly by two factors: (i) the 

magnitude of the electronic coupling between donor and acceptor; (ii) the intensity of molecular 

motions that ensure an overlap of initial and final quantum states. Electronic coupling and its 

conformational and distance dependence have received much attention from theoreticians in the 

recent years.
72,73

 Meanwhile, the evaluation of the contribution of molecular motions to transfer 

rates still seems to be a serious bottleneck when modeling CT reactions. 

All theoretical descriptions of electron transfer have two common quantities within the 

Boltzmann factor which regulates the degree of electronic overlap between donor and acceptor 

states: the free energy difference ΔG° between donor and acceptor states, and the so-called 

“reorganization energy”, conventionally denoted as λ. Theoretical estimates of CT rates depend 

crucially on them, as both enter an exponential term in the mathematical expressions. Marcus 

originally introduced the reorganization energy
74

 to characterize the comparatively slow 

reorganizational process that occurs as the originally polarized medium, assisted by molecular 

vibrations, responds to the relocation of the charge. In short, it is via the reorganization energy 

that the molecular vibrations affect the rate of a CT reaction in an extremely sensitive way. 

From experiment one knows that a hole propagates along the DNA π-stack on a scale of tens 

to hundreds of picoseconds
47 

or even of up to nanoseconds,
75

 depending on the acceptor moiety 

and on the number of intervening AT base-pairs. During this time, not only the surrounding 

water undergoes structural changes (reorientation times of several picoseconds),
76

 but also the 

dynamics of sodium ions (in the range of hundreds of picoseconds)
77

 strongly affects the hole 

energetics.
78,79

 As it was recognized both theoretically
80

 and experimentally,
81,82

 the solvent 

substantially affects the rate of charge transfer. In addition, experimental studies on 

oligonucleotides
83,84

 indicate that structural distortions of DNA may play a major role in CT. 

Therefore, modeling of ET rates necessitates a full atomistic description of the system (DNA 

and solvent) at least on the scale of hundreds of picoseconds. Based on atomistic considerations 

of CT, the present work establishes a method that allows one to determine the solvent 

contribution to the reorganization energy in a direct, accurate way by means of molecular 

dynamics simulations.  

Molecular dynamics (MD) simulations operating on the timescale of nanoseconds are well 

established tools for studying the structure and its thermal fluctuations of DNA and its 

environment.
85,86

 Based on empirical force fields, they describe the time evolution of DNA 

motion
87

 and they complement the corresponding information from experimental methods like 

X-ray crystallography and nuclear magnetic resonance (NMR).  

In the present study, MD simulations with an explicit description of DNA and its solvent 

environment by advanced polarizable force fields are applied in order to estimate the solvent 

reorganization energy in a quantitative fashion in the framework of the semi-classical Marcus 
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treatment of CT. A series of studies had been reported
88–91

 to evaluate the solvent 

reorganization energy by MD methods. The current work aims at improving this approach by 

paying close attention to the electronic polarization.
92

 The suggested computational procedure 

is first established for the classical two-spheres model of Marcus and subsequently transferred 

to large-scale simulations of biomolecules like DNA and its complexes with the dye 

Rhodamine 6G (R6G).  

Chapter 2 reviews the original concept of the reorganization energy by considering changes 

in the medium in terms of the reaction coordinate. The physical picture underlying the 

molecular distortions caused by CT is illustrated. Finally, this chapter provides a brief overview 

of classical ET theory as developed by Marcus and its most important outcomes. Chapter 3 

summarizes modern ET rate theories which show how quantum effects influence the 

reorganization energy.  

Chapters 4 and 5 are devoted to methodological issues related to the computational method 

for evaluating the solvent reorganization energy. Chapter 4 summarizes existing methods and 

their shortcomings and justifies the choice of MD for the purposes of the present work. Chapter 

5 contains a brief synopsis of key issues related to MD simulations: force fields, electrostatic 

and van der Waals interactions, electronic polarization, periodic boundary conditions, 

temperature and pressure control.  

Chapter 6 addresses two methodological issues. It introduces MD simulations with a 

polarizable force field for account of solvent reorganization energy and it compares various 

ways to analyze the MD data. The evaluation methods and their outcomes are thoroughly tested 

against the classical two-spheres solute model formulated for CT reactions by Marcus.
93

 Special 

attention is paid to the solvent, the distance dependence of the reorganization energy, the role of 

the electronic polarization and the application of effective optical dielectric constants for 

theoretical estimates. Chapters 7 and 8 apply this procedure to the calculation of solvent 

reorganization energies of DNA duplexes and their complexes with Rhodamine 6G. The results 

from simulations with and without an explicitly incorporated electronic polarization are 

compared. The chapters discuss the influence of charge sets, separate contributions of solute 

and solvent electronic polarizations, and partial contributions of different molecular groups to 

changes of the solvent reorganization energy. In addition, the distance dependence of the 

solvent reorganization energies, the influence of DNA conformations and the flexibility of 

duplexes in ET processes are addressed. Reorganization energies calculated with the polarizable 

force field are tested against experimental data.  

The last chapter provides a summary of the results and an outlook. 
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2 The Classical Marcus Picture of Electron Transfer. 

Reorganization Energy  

2.1 Solvent response to ET. Reaction coordinate 

Before addressing the standard classical approach to electron transfer (ET) due to Marcus,
74,94

 

a rather simple model
95

 of the solvent reorganization enery will be introduced which is restricted 

to ET between two equivalent electron localization sites A and B in an aqueous solvent. In other 

words, for simplicity the free energy change ΔG° between the two CT states is assumed to be 

zero. This is the so-called symmetric case. As an example of typical solvent response to ET 

between A and B only one physical effect is included, namely, the water dipole moment 

reorientation.  

Also for simplicity, the response due to water reorientation is described for one water 

molecule only with its oxygen atom fixed at a certain distance above the midpoint of the line 

connecting sites A and B. Rotation of the water molecule around this point is allowed. The 

dipole moment μ of the water molecule forms an angle θ with the perpendicular bisector of the 

line between A and B (Figure 2.1). If the electron is localized on A, the dipole will tend to point 

towards A; similarly, if the electron is localized on B, then the dipole will be redirected towards 

B. If the distance between A and B is large enough, there will be two stable orientations of the 

dipole of the water molecule, characterized by angle θ: θ = −θ0 with the electron at A, and θ = θ0 

with the electron at B. Thus, the angle θ is a measure of the solvent response to ET (or, 

alternatively, of the polarization change after ET) and could be treated as a reaction coordinate. 

If the water molecule is situated far from A and B (or the interaction of the water dipole with 

both centers is weak), then the total potential curve for the rotation of the water molecule around 

the two ET minima may be approximated as parabolae. With the electron at B one has: 

    
2

0 0

1
0 ...

2
U U U      .       (2.1) 

Terms of higher order than second are neglected. The two ET-relevant parabolae, with 

minima located at the centers of sites A and B, are shown in Figure 2.1. The constant term U0 is 

omitted as long as it is the same for both potential energy curves. The states with the electron 

residing on site A or B, together with the corresponding potential energy curves, are referred to 
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in the following text as “reactant”, R, and “product” states, P, respectively. Introducing the force 

constant ƒ = U"(0) as the second derivative of U(θ) along the reaction coordinate θ, one therefore 

has: 

   
2

0

1

2
RU f              (2.2) 

   
2

0

1

2
PU f    .         (2.3) 

The difference between the two energy expressions, UR − UP = 2fθ0θ, can be rewritten as: 

 
0

1

2
R PU U

f



  .          (2.4) 

From Eq. (2.4) one notes that the solvent coordinate and the potential energy difference are 

proportional. Thus either quantity could be used as reaction coordinate. Moreover, the 

representation of the potential energy as a function of the variable θ reflects only the dependence 

of the ET energy on one specific geometric parameter, while the representation as a function of 

(UR − UP) implicitly includes all possible factors influencing the charge transfer. Also, the choice 

of the angle θ used for the present illustration is rather arbitrary; in a similar fashion any other 

structural parameter, such as bond lengths, bond angles, etc. could be selected. Therefore, in 

order to be more consistent further on with a general description, we shall present the ET picture 

only as a function of the potential energy difference (UR − UP) and the force constant f will be 

treated as an average reflecting the overall response of the (aqueous) environment. 

 Another remark is due regarding a relationship between the free energy and the potential 

energy. Unlike done so far, one normally considers the whole medium surrounding the donor 

and the acceptor centers. When the solvent environment in addition is at a certain temperature, 

then entropic effects may be noticeable and have to be accounted for, i.e. the process of charge 

 

Figure 2.1. Water dipole orientation as a result of electron (negative charge) transfer. The 

water dipole is oriented towards initial state A.  
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transfer has to be characterized in terms of free energy. The O−H bond length can be taken as an 

example. ET from the donor to the acceptor causes bond extension within the water molecules 

surrounding the donor and bond contraction within those around the acceptor. This process not 

only causes structural change that affects the orientation of the solvent molecules, but also shifts 

their vibrational frequencies due to restricted internal atomic motions. The latter results in an 

additional entropic contribution classically expressed through vibrational statistical sums.
96

 

Despite that some vibrational modes could undergo substantial variations, the overall 

response of the solvent bath coupled to the ET system is usually linear
97

 or close to linear,
98

 

which explains the considerable success of the linear response approximation introduced first by 

Marcus.
99,100

 It preserves the parabolic shape of the solvent potential energy surface and transfers 

the same parabolic character to the free energy surfaces, i.e. one assumes a constant entropic 

correction to the potential energy.
92,101

 Accepting these two simplifications, the potential energy 

surface from Figure 2.1 is generalized in terms of the free energy as a function of (UR − UP) to 

give the curves shown on Figure 2.2. 

The ordinate of Figure 2.2 is the free energy rather than the potential energy. The abscissa is a 

reaction coordinate that reflects the differences in the polarization energy and the vibrational 

energy between reactant and product states to the overall change of the potential energy. This 

model, which approximates the solvent potentials by parabolae of equal force constants for 

reactant and product states, Eqs. (2.2)
 
and (2.3), is suitable for describing a limited number of ET 

processes but, nevertheless, adequately explains ET in aqueous solutions. The symmetric case 

ΔG° = 0 considered here applies to systems where the solute either does not undergo any net 

geometric changes during ET (e.g. in self-exchange reactions like the ferrous-ferric exchange 

Fe
3+

+Fe
2+

↔Fe
2+

+Fe
3+

), or when the structural transformations can be neglected, as in some 

approximately symmetric ET reactions in DNA duplexes (e.g. between guanine units G (in 

italics) in the reaction 5'-GG
+
GTTTGGG-3'↔5'-GGGTTTGG

+
G-3'). The Marcus model will be 

applied to situations similar to the latter within the present thesis. 

 

Figure 2.2. Marcus generalization of the solvent response to CT in terms of the free energy ΔG. 



Chapter 2 The Classical Marcus Picture of Electron Transfer. Reorganization Energy 10 

 

2.2 Marcus theory 

Now let us consider the more general asymmetric case, where the equilibrium free energies at 

the equilibrium positions of the product and the reactant states differ, ΔG° ≠ 0. In other words, 

unlike above, sites A and B stand either for different chemical species or for substantially 

different sites within the same solute. It is also assumed that the behavior of all water molecules 

of the surrounding medium complies with the previously discussed parabolae model 

approximation (Figure 2.2). Then the free energy barrier ΔG
≠
 for the charge transfer reaction is 

the energy difference between the crossing point of the parabolae and the bottom of the free 

energy curve of the reactants (Figure 2.3). If one ignores entropy changes, then the free energies 

are equal to potential energies and the charge transfer occurs at the point Uθ where UR(Uθ) = 

UP(Uθ).  

Using the definition of the potential energy curves (Eqs. (2.2) and (2.3)), this condition can be 

expressed as: 

   
2 21 1

2 2
R Pf U U G f U U             (2.5) 

This equation for the crossing point can be solved: 

 
1 1

2
R P

P R

G
U U U

f U U


  
   

 
.       (2.6) 

The free energy barrier, or the potential energy barrier when entropy changes are neglected, is:  

         
21

2
R R R R R R RG G U G U U U U U f U U  

       .   (2.7) 

If one introduces formally the quantity λ = (1/2)f(UR  − UP)
2
 and substitutes here the expression 

for Uθ, Eq. (2.6), one obtains the following  simple formula: 

 
21

4
G G



             (2.8) 

The parameter formally defined as λ = (1/2)f(UR − UP)
2
 is a fundamental physical quantity, the 

so-called reorganization energy. The term “reorganization energy” could be understood as the 

“free energy change that would be required to reorient all atoms and molecules as if they were 

forming and solvating the product state, but without actual transfer of charge.”
95

 The physical 

meaning of this definition will be illustrated and discussed in detail in the next chapters. 

From the standard Arrhenius relationship between the free energy of activation and the rate 

constant of a chemical reaction, the ET rate constant is given as:  
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 
2

exp
4

ET

B

G
k A

k T





   
  

  

,        (2.9) 

where the pre-exponential factor A has a complex form that reflects its quantum origin. This will 

be discussed in the following chapter. Equation (2.9) predicts the so-called “bell-shaped” 

dependence of the ET rate constant kET as a function of the free energy. An important 

consequence of Eq. (2.9) is illustrated in Figure 2.4, namely that the rate constant depends on 

ΔG° in a somewhat counter-intuitive way. Normally, the rate of a chemical reaction depends 

notably on whether it is exothermic, ΔG° < 0, or endothermic, ΔG° > 0. However, according to 

Marcus theory of ET reactions, the reorganization energy (λ > 0) serves as a reference. In the so-

called normal region, –λ < ΔG° (Figure 2.4), the rate constant increases with higher (corresponds 

to the so-called inverted region, see Figure 2.4) free energy values, but only on the absolute 

value of the free energy difference between the initial and final states. The quadratic dependence 

of the ET rate on ΔG° and on the reorganization energy λ was first derived by Marcus and 

ΘΘ

 

Figure 2.3. Marcus picture of the solvent reorganization energy. 

 

Figure 2.4. Bell-shaped ET rate constant dependence on the free energy. 
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Hush.
94,102

 They represented the total reorganization energy λ as the sum of two contributions: 

one due to the solvent, λs, and another one due to the solute, λi (the so-called intramolecular 

reorganization energy): 

s i               (2.10) 

Since their pioneering works, the latter notations became standard in the scientific literature.  

 

2.3 Solvent reorganization energy (λs) 

The solvent molecules adjacent to the solute, which are polarized due to the presence of the 

charge on the solute, form its solvation shells. Due to thermal fluctuations, the solvent molecules 

within these solvation shells (along with the rest of the solvent molecules) are in permanent 

motion leading to fluctuations of the potential energy of the entire system. Translation and 

rotation of the solvent molecules bring the system at certain moments to the state along the 

reaction path, where ET can take place; then the charge relocates to a new site and the additional 

solvent polarization around the previous site vanishes. Even when a solute with rigid geometry is 

assumed, the thermal perturbations of the electrostatic field generated by the solvent molecules 

lead to changes in the solute quantum structure, expressed in terms of elevation or depression of 

the electronic energy levels. This gives rise to an additional requirement for the charge transfer 

reaction: only when the energies of the solute electronic quantum levels coincide in the initial 

and the final state, ET will take place. Despite the fact that in reality the solute geometry is never 

rigid and that, when it is immersed in the solvent, the two moieties form one common quantum 

system, the simplification of a rigid geometry is often invoked. It can be accompanied by another 

approximation, namely, the solvent can be treated as a structureless continuum, in which the 

discrete character of individual solvent molecules is neglected.  

In the following the original idea of Marcus
74

 shall be presented how one can determine the 

solvent polarization P(r) that arises from the electrostatic field E(r) of solute and separate it into 

two contributions, a “slow” one Pu(r) and a “fast” one Pe(r), 

u e P P P ,          (2.11) 

where for convenience the dependence on coordinate r has been omitted.   

 In general the polarization P is comprised of electronic, atomic and orientational parts, which 

undergo their adjustment with respect to the change of electrostatic field, i.e. in an ET process, 

on the scale of 10
–15

 sec, 10
–13

 sec, and 10
–11

 sec, respectively.
74

 As immediate response to an ET 

only the fast (electronic) Pe contribution will adjust itself, while the two other (slow) 

components, combined in the term Pu, will relax much later. Therefore, the situation right after 

an ET is a non-equilibrium one with respect to the slow polarization of solvent.  
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According to the schematic representation in Figure 2.3, the solvent reorganization energy λs 

can be understood as the difference between the equilibrium free energy G(UR) and the non-

equilibrium free energy G
*
(UP): 

   *

s P RG U G U   ,         (2.12) 

where contributions correspond to the same parabola, e.g. the left one in Figure 2.3 which 

represents the reactants. In the free energy state G(UR), the minimum energy at UR on the left 

parabola (Figure 2.3), both the slow component Pu and the fast component Pe of the solvent 

polarization are in equilibrium with the charge distribution of the reactant. In the non-

equilibrium free energy state G
*
(UP), only the fast component *

eP is relaxed, while the slow 

polarization component *

uP  is not. The latter corresponds to another configuration where the 

atomic and the orientational characteristics of the solvent are already in equilibrium with the 

product charge distribution, the minimum energy at point UP of the right parabola (Figure 2.3). 

Following Marcus,
74

 one evaluates the initial equilibrium free energy G(UR) from Eq. (2.12) 

by exploiting a general property of the polarization P, which in principle may be considered as a 

dipole moment μ per unit volume dV, 

dV P .           (2.13) 

The interaction energy of the dipole μ with the electric field E is  

U   E .           (2.14) 

If the dipole μ is an induced dipole, then the work W required to produce it, is 

 
0 2

00
2

W d






  
E E

E

E =


 ,         (2.15) 

where α0 is the polarizability of the medium. The value of the induced dipole μ is proportional to 

the electric field  E, 

 μ = α0 E.           (2.16) 

When the field E is suddenly switched off, as is the case in a fast non-adiabatic ET, then the 

dipole still stores some free energy F, 

02
F W U


  


.          (2.17) 

The total polarizability α0 also contains two contributions (Eq. 2.11),  

0 u e    .          (2.18) 

where αu and αe are the contributions to the solvent polarizability that correspond to “slow” and 

“fast” components, respectively. If one considers the induced dipole moments, that correspond to 

either polarization process, as independent of each other, then the free energy is given by 
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2 2

,
2 2

u e
u e

u e

F
 

 
P P

.          (2.19) 

However, in addition, it is necessary to take into account that there are other interactions of 

medium induced dipoles with the total electrostatic field E, 

c u e  E E E E ,          (2.20) 

where Ec, Eu and Ee are field contributions that correspond to the charges, the slow and the fast 

polarization, respectively. The interactions of electrostatic field E with slow Pu and fast 

componenets Pe give rise to separate free energy contributions: 

 u c u e  P E E E           (2.21) 

and  

 e c u e  P E E E .         (2.22) 

One further term contributing to the free energy of the medium arises from the electrostatic field 

generated by the solute charges themselves, 

2

8

c



E
.           (2.23) 

Summing all contributions represented in Eq. (2.19)–(2.23) and avoiding double counting, after 

integration over the entire volume of the solute-solvent system one arrives at the main formula 

for the total free energy G derived as by Marcus:
74

  

2 2

8 2 2 2

c u c u

u

G dV PV
 

  
      

 


E P P E P E
      (2.24) 

Here the additional term PV is the work against the external pressure P. Assume that the 

expression in Eq. (2.24) for the free energy G corresponds to the equilibrium state of the reactant 

(minimum energy point UR of the left parabola, Figure 2.3):  

 RG G U .          (2.25) 

One can write a similar expression for the non-equilibrium state G
*
(UP), 

 
2 *2 *

*

8 2 2 2

c u c u
P

u

G U dV PV
 

  
      

 


* *
E P P E P E

,     (2.26) 

where a star “*” denotes non-equilibrium quantities. 

In Eqs. (2.24) and (2.26) it is assumed that in both states the volume of the system stays the 

same, i.e. is independent of the slow (orientational) polarization Pu. Therefore, the solvent 

reorganization energy λs results as the difference between the free energies of the equilibrium 

and the non-equilibrium states, given by Eq. (2.24) and (2.26):  

  
1

2
s c dV     

*P P E .        (2.27) 
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The polarizations P of the equilibrium state in Eq. (2.27) is formed by both slow (polarizability 

αu) and fast (polarizability αe) responses of the solvent, because the solvent is fully adjusted to 

the electrostatic field E, 

 
1 4

c





 


P E E .         (2.28) 

In contrast, the non-equilibrium state with polarization P
*
 is characterized only by fast electronic 

response (polarizability αe), while the orientational component corresponds to another (final) 

equilibrium state, i.e. the minimum energy of right parabola UP on Figure 2.3. 

1 4

e
e c

e





 



* *
P E E          (2.29) 

The corresponding polarizabilities, Eqs. (2.28)–(2.29) are related to the optic dielectric constant 

ε
op

, 

op4 1   ,          (2.30) 

and the static dielectric constant ε
st

 

st4 1e   ,          (2.31) 

respectively. Substituting the expressions for polarizations P and P
*
, Eqs. (2.28)–(2.29), into Eq. 

(2.27) for λs with corresponding polarizabilities from Eqs. (2.30)–(2.31) one arrives at 

2

op st

1 1 1

8
s c dV

  

 
   

 
 E .        (2.32) 

Next, one considers the special case of a simplified model where the solute is represented by 

two rigid spherical units of radii aD and aA (for donor and acceptor, respectively) with their 

centers separated at distance RDA. In the present discussion one considers the model of ionic 

species, where each of the spheres holds a point charge at its center: in the ion-pair (IP) state the 

point charges are qD = e, qA = – e; in the neutral-pair (NP) state the charges are qD = qA = 0 e.  

By separating the fast electronic polarization from the slow atomic and orientation 

polarization, Marcus calculated the free energy difference between these two states. Assuming 

that the static dielectric constant and the high-frequency (optical) dielectric constants in Eq. 

(2.32) do not vary in space, in other words ε
op

 = ε∞ and ε
st
 = ε0, one can reduce the calculation of 

solvent reorganization energy λs to the evaluation of the work required to charge this Marcus 

two-spheres system in vacuum  

DA2 2

A D
A A 2

0 0 A D0 0

1 1 1 1

8

Re e

c
s

q q e
dV dq dq dr

a a r


    

 

  

     
          

      
   

E
.  (2.33) 

The first two integrals in the square brackets represent the work required for charging of each 

sphere and the last term is the electrostatic interaction between the spheres A and D. Finally, this 
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simplified ET model yields the famous Marcus expression for the solvent reorganization energy 

λs in the form represented below:
94,102,103

 

2

0 D A DA

1 1 1 1 1

2 2
s e

a a R


 

  
      

  
.       (2.34) 

Here ε0 is the static dielectric constant, ε∞ is the high-frequency (optical) dielectric constant of 

the solvent, and Δe is the charge transferred from the donor to the acceptor unit.  

In case of water as
 
solvent

104
 with ε∞ = 1.78 and ε0 = 78.4 at T = 298 K, Eq. (2.34) gives 

estimates for the solvent reorganization energy in the range 1.0–3.0 eV for RDA = 5–10 Å and aD 

= aA = 3.0 Å. The latter radii are typical for ET reactions between small organic molecules, like 

guanine or some organic dye.  

It is noteworthy that the dielectric continuum model breaks down if there are specific solute-

solvent interactions,
105

 dielectric saturation effects
100,106–108

 or solute quantum modes coupled to 

the solvent
109

which will be discussed in detail in Chapter 3. 

Reliable simulations of the free energy curves are known only for the two-spheres model
92

 

because of the extreme computational efforts involved. In DNA, in view of a higher 

delocalization of the charge, geometric factors and the strong native electrostatic field induced 

by the negatively charged phosphates), one can expect additional solute-solvent interactions in 

the presence of a hole to be even weaker than in a two-spheres model. Therefore, for electron 

hole transfer in DNA the main approximation in the Marcus model associated with the linear 

response of the solvent should hold, resulting in the parabolic character of the free energy curves 

with equal curvature. Thus, this approximation was employed in the present thesis for the 

description of ET in DNA oligomers. 

 

2.4 Solute reorganization energy (λi) 

Thermal fluctuations do not only set solvent molecules into motion, they also cause 

distortions of the solute geometry, thereby being the source of a permanent shift of the electronic 

levels between which ET occurs. This structural change of the solute gives rise to the “internal” 

reorganization energy λi of the solute. Due to the strong chemical bonds that are holding together 

the atoms of the solute, these geometry distortions affect the positions of electronic levels to a 

much lesser extent than the “external” causes, namely the polarization due to free rotation and 

translation of the dipoles of the (small) solvent molecules (see Section 2.3). Mainly the 

molecular vibrations of the solute contribute to the internal reorganization energy. The energy 

spacing of the vibronic levels in general is large compared to the thermal energy; therefore, the 

solute must be treated quantum mechanically. In the latter case, where ħω > kBT, the vibrations 

could be modeled as a system of harmonic classical oscillators and the internal reorganization 

energy λi is represented by:
 94,95,99,103,110,111
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2
R P

k k
i kR P

k k k

f f
x

f f
  


          (2.35) 

where the summation runs over all modes k coupled to the ET. fk
R
 and fk

P
 are the force constants 

of mode k in the reactant and the product states, respectively. Δxk is the change in the equilibrium 

value of the kth normal mode; for modes uncoupled to ET Δxk = 0. In case the geometry is rigid 

enough, then fk
R
 ≈ fk

P
= fk, and one arrives at a simplified expression for the internal 

reorganization energy: 

21

2
i k k

k

f x             (2.36)  

Unlike the solvent reorganization energy λs, the theoretical evaluation of internal 

reorganization energy λi is well established due to the intensive development of quantum 

mechanical calculations in recent years. Instead of discrete summation over the solute vibrational 

modes coupled to ET [Eqs. (2.35) and (2.36)], the present work refers to quantum chemical 

calculations carried out in our group
73,112

 at the B3LYP/6-31G(d) level,
113

 where the unrestricted 

Kohn-Sham method was applied for radical-cation states of the base-pair GC and for estimating 

λi in related ET processes.
114,115

 The following quantities were computed for the donor and the 

acceptor: (1) energies of the neutral species at optimized geometries, E0(D) and E0(A), (2) 

energies of the corresponding radical-cations at optimized geometries, E+(D
+
) and E+(A

+
), (3) 

energies of neutral D and A, calculated at the geometries of the corresponding radical-cations, 

E+(D) and E+(A), and (4) energies E0(D
+
) and E0(A

+
) of the oxidized states D

+
 and A

+
 at the 

geometries of the corresponding neutral molecules. Then λi for the charge transfer reaction D
+ 

+ 

A → D + A
+
 is the sum of the reorganization energies of the donor and the acceptor, λi = λi(D) + 

λi(A), where D and A were taken as a single GC base-pair (in vacuum). The energies λi(X), X = 

D, A, are  

λi(X) = [E+(X) − E+(X
+
) + E0(X

+
) − E0(X)]/2.       (2.37) 

The resulting internal reorganization energy for ET between isolated GC base-pairs was 0.72 

eV.
112

 A recent DFT study on λi in DNA duplexes corroborated this result: λi was shown to 

decrease with the length of the (GC)n duplexes from 0.72 eV (n = 1) to 0.34 eV (n = 6).
116

 

Nevertheless, this model study did not account for the solvent stabilization on the geometry 

relaxation. Therefore, one may consider the estimate of λi = 0.34 eV as an upper limit for 

hexamer DNA duplexes, which will be invoked also later on in the present study. 
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3 Reorganization Energy within the Quantum 

Picture of ET 

3.1 Levich-Marcus-Jortner theory  

3.1.1 Uncoupled states  

Let us inspect once more Eq. (2.9) from Section 2.2, which is used to describe the ET rate. 

There the constant A has not been defined so far. The exponential term reflects the probability 

that the thermally fluctuating system reaches the activated complex (formally the crossing point 

of the two parabolae in Figure 2.3), where the energy conservation law is fulfilled and CT can 

take place (see Section 2.2). Assuming that this term, which is a function of ΔG°, has a 

Gaussian shape distribution, it can be normalized to give:  

 
2

1
exp

44
ET

BB

G
k P

k Tk T





   
   
  

,       (3.1) 

where P is a constant. The latter representation implies that, while the Gaussian shape function 

is responsible for the classical probability to reach the cross-section, the constant P is related to 

the quantum structure of the solute. Consideration of its quantum structure in the two ET states 

is bound to the probability of the solute being found either in the initial or in the final state. 

In the non-adiabatic limit, when nuclear motions are fast compared to the ET time scale, the 

populations of the electronic levels of the solvent and the solute as well as the intramolecular 

vibrational states remain in thermal equilibrium during ET.
94,110,117,118 

Then,  

22
fi

π
P H ,          (3.2) 

where 
fiH  is the ET matrix element which reflects orbital mixing between initial and final 

states. 

In the adiabatic limit, 
fiH  is considerable, leading to tight coupling between electron and 

nuclear coordinates. In the classical approximation, the constant A is then given by the weighted 
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average of the frequencies of the ET-coupled solvent and solute intramolecular vibrational 

modes νk
94,110,119,120

 

2

k k k

k k

A λ ν λ   ,         (3.3) 

where 21
2

 k k k

k

λ f x  is the energy shift of a classical harmonic oscillator due to the change 

Δxk of the equilibrium displacement. There are also other expressions for the constant A relating 

it to the Debye relaxation time.
121,122 

 

In the adiabatic and non-adiabatic cases summarized above, it was assumed that the 

probability for the system to reach the parabolae crossing point and the coupling between the 

quantum states are independent. This means that there are no coupled high (medium) frequency 

modes or that the temperature is high ( 2

k k Bλ << k T ). Actually, modes coupled to ET always 

exist and must be modeled quantum mechanically in order to include transitions from low-lying 

vibrational levels (nuclear tunneling) in the description of the process.  

Moreover, the above treatment of intramolecular reorganization energy leads to problems 

with the explanation of its temperature dependence at low temperatures. The Marcus expression 

predicts that the ET rate constant at the zero temperature limit becomes equal to zero but 

experimental data
123

 at low temperatures demonstrate that the rate constant is essentially 

temperature-independent. Another problem arises for the inverted region. The classical Marcus 

formula predicts a symmetric fall-off of the ET rate constant in both regions. This is the result 

of the Gaussian statistics of the solvent thermal bath that is linearly coupled to ET; this setup 

leads to the picture of intersecting parabolae with equal curvatures. Whether the curvatures of 

the free energy surfaces are parabolic or not, was intensively investigated.
124

 It was found in 

general that free energy dependence has a distorted bell shape with a steeper slope in the normal 

 

Figure 3.1. ET rate dependence. Schematic comparison of Marcus symmetric bell-shape 

(black curve) and asymmetric picture with linear dependence on ΔG° in inverted region (red 

curve).  



Chapter 3 Reorganization Energy within the Quantum Picture of ET 21 

region (see Figure 3.1). The bell shape due to the Marcus picture is observed only in the 

vicinity of the maximum, while away from it in the inverted region the fall-off is linear, in 

accordance with vibronic models.
125,126

 One of the explanations proposed is that in the inverted 

region preferential transitions to excited vibrational states occur, requiring the inclusion of the 

quantum structure of the donor-acceptor complex in addition to taking into account solvent 

fluctuations. 

 

3.1.2 Coupled states  

The ET rate can also be addressed from a more general perspective invoking the “Golden 

Rule” of quantum mechanics, which relates the probability of a change of state per time unit to 

a transition matrix element:  

 
22 ˆ i f

ET i fi fk H E E


            (3.4) 

Here Ψi, Ψf are the wave functions of the initial and final states (with eigenvalues E
i
, E

f
), 

respectively, and ˆ
fiH  is the perturbation that induces the transition. The Dirac delta function 

ensures that the energy is conserved when the transition takes place. This “Golden Rule” is 

applicable only in case of weak coupling where the perturbation is small and the transition 

probability is low. 

Application of the Born-Oppenheimer and Condon approximations leads to a partitioning of 

the total wave functions into an electronic and a nuclear part
102,127,128

 

 
2 22 ˆf i f i i f

ET el fi el vib vibk H E E


      ,      (3.5) 

where ,i f

vib vib   are total vibrational wave functions for the initial and final states and ,i f

el el   

are their electronic counterparts. The former are products of the wave functions of all normal 

modes including collective solvent vibrations
129,130

 

i
k

i i

vib

k


            (3.6) 

f
k

f f

vib

k


            (3.7) 

Here 
k

i

 and 
k

f

 are the wave functions of mode k  in the initial and final states with the 

corresponding quantum numbers νk
i
 = Ek

i
/ħωk and νk 

f
 = Ek

f
/ħωk. 

If one assumes that during ET the characteristic frequencies ωk of the harmonic oscillators 

are preserved and only the quantum numbers are changed from νk
i
 to νk 

f
, the vibrational overlap 

integrals have the form
128,129
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with L being a Laguerre polynomial: 
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kS  is the electron-vibrational coupling constant, also referred to as Huang-Rhys factor:
 129,131 
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         (3.10) 

with the reduced mass kM of the oscillator k and the corresponding characteristic frequency ωk. 

Δxk is the displacement of that mode. The vibrational overlap integrals account for the extent to 

which the final and initial states are similar along a normal coordinate. 

The vibronic levels of a system in the ground state are populated non-uniformly with 

probability 

 
exp

i

k k

Bi

k

k

k T
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Z

 



 
 
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with vibrational partition function  

1
exp

2i
k

i k
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k T




  
    

  
 .        (3.12) 

If ħωk >> kBT, then only the lowest energy level νk
i
 = 0 is populated, allowing a simplified 

form of the overlap integral 
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f i
kk

f i

k k f

k

S S



 


          (3.13) 

Modes, which are coupled to ET, have Sk ≠ 0 or ħωk ≠ ħωk′; in all other cases, i.e. if ħωk = 

ħωk′, these integrals in Eq. (3.13) are equal to 1. As the system moves from the initial to the 

final state, the sum of all possible changes in Δxk reflects the geometrical change of the whole 

solute structure upon ET. These ET-coupled modes are responsible for the electronic absorption 

and emission band shapes, as well as for overcoming the ET energy barrier. All other modes are 

not involved in ET. Quantum energy levels of the solvent modes related to charge transfer are 

normally very closely spaced, i.e. they form a continuum and, hence, the solvent could be 

treated classically. 

Summarizing all these issues concerning the application of the “Golden rule”, one ends up 

with the formula:
94,118,127,132
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which describes ET through a series of vibrational channels from a set of initial levels νk to a set 

of final ones νk′. The solvent is treated classically and included in the exponential distribution 

function. Frequency changes in the solvent modes due to ET and low-frequency vibrations of 

the solute are part of ΔG°.
94,132,133

 

In the classical limit where ħωk << kBT and the partitioning of the reorganization energy λ = 

λs + λi is valid,
94,110

 the expression for the ET rate constant, Eq. (3.14), simplifies to standard 

Marcus expression: 
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.      (3.15) 

If only one medium- or high-frequency mode is coupled to ET, then only the lowest 

vibrational level νk
i
 = 0 is appreciably populated at room temperature, leading to the 

expression:
94,110
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In the latter approximation for the ET rate constant there is no contribution of the vibrational 

channels to the temperature dependence of the process, since the only involved reaction 

channels originate from the ground state νk
i
 = 0, which is always populated. If there are coupled 

low-frequency vibrations, they can be treated classically and included in Eq. (3.16) by replacing 

λs with λs,L defined by:  

,s L s l l

l

S    ,         (3.17) 

where the summation is performed over the coupled modes. 

In the adiabatic limit the frequency factor is controlled by repopulation of a few dominant 

reaction channels at the crossing point rather than by electronic coupling
134

 and the total rate 

constant cannot exceed the rate feasible through the fastest channel.
134

 

If one assumes that only one mode with characteristic frequency ωk = ω and structural factor 

Sk = S is coupled to ET, then one obtains an approximately linear dependence of ln(kET) on ΔG° 

in the inverted region. In this case, the transition is between ground vibrational levels of the 

initial and the final states (ν' = 0) and a thermally induced barrier crossing is not necessary. In 

the limit where –ΔG° >> Sħω and ħω >> kBT, one derives an approximate expression for the 

rate constant of ET:
135,136

  



Chapter 3 Reorganization Energy within the Quantum Picture of ET 24 

 

 

 
2

2ˆ
2 1

exp

f i

el fi el s

ET s B

s

H G
k S k T

G

    


  

     
     

      

,   (3.18) 

with 

ln 1
sG

S






    
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 
,         (3.19) 

This expression indeed yields a linear decrease of ln(kET) with ΔG°. As discussed in Section 

2.2, Eq. (3.15) reveals that the ET rate constant reaches a maximum at ΔG° = –λ and then 

decreases with increasing –ΔG° in the inverted region; see the black line in Figure 3.1. The 

latter phenomenon was predicted by Marcus and also incorporated into the above semi-quantum 

theory.
137,138

 

Nevertheless, theories which combine Gaussian statistics of the solvent nuclear fluctuations 

with Poisson statistics of the quantum skeletal vibrations predict that in a charge separation 

(CS) reaction (when a pair of opposite charges appears) and charge recombination (CR) (when 

a pair of two opposite charges disappears) states the logarithmic dependence of ET rate on the 

energy gap is still symmetric, which is not observed in experiments performed by Mataga.
124c-g

 

Simulation of free energy surfaces taking into account effects of non-linear solvation on the CT 

thermodynamics
4,92,107,139,140

 and dynamics
141

 demonstrated much smaller distortions of the 

parabolic shapes of free energy surfaces than those observed experimentally.
124c-g,142

 To 

rationalize the deviations of the theory from experiment, a new model was introduced which is 

based on the idea that classical ET theories do not consider solute electron density polarization 

effects, which are significantly larger than non-linear solvation effects.
143,144

 In addition, the 

model accounts for the solvent polarization effects.  

 

3.2 Harmonic bath model 

3.2.1 General approach 

The molecular system sometimes has insufficient kinetic energy to reach the transition state, 

i.e. the crossing point of the two parabolic potential energy surfaces in the Marcus‟s picture, 

Figure 2.3. In that case, tunneling effects become of primary importance for ET to take place. 

Tunneling processes occur because there is always a non-zero probability for the electronic 

wave functions to spread beyond the classical turning points. Taking into account nuclear 

tunneling effects can lead to substantial changes in ET rates either at low temperatures or at 

high temperatures in the inverted region.
145 
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Several approaches have been suggested to include nuclear tunneling effects. One of them 

has been demonstrated in Section 3.1, where we split all vibrational modes into two parts and 

treated only a few high-frequency vibrations with the formalism of quantum mechanics. The 

second part, containing low-frequency modes, could also be described but only as a classical 

continuum.
126,127

 

Another more general approach, which incorporates all frequency modes, is usually known 

as „dispersed-polaron‟
4,5

 or „spin-boson model‟.
5
 Warshel first suggested such a scheme

5
 where 

he also demonstrated that the two formulations are identical.
146

 The subsequent discussion 

follows his scheme.
147

 

Consider a system of donor (D) and acceptor (A) molecules surrounded by a solvent. The 

distance between D and A will be kept constant. Assume at the beginning that the molecular 

vibrations of these two entities are frozen. The time-dependent wave function of the system can 

be approximated as a product of donor, acceptor and solvent functions: 

solventD A  i i             (3.20) 

solventD A   f f             (3.21) 

where indices i and f reflect initial and final electronic states of the molecules, respectively. 

The effective electronic Hamiltonian for the relevant states, which neglects charge transfer 

interactions between the solvent and solute molecules, can be written as  

    ˆ ii if

fi ff

U H
H R t , r t

H U

 
  
 

,        (3.22) 

where  R t  and  r t  represents the coordinates of the DA system and the solvent molecules, 

respectively. Uii and Uff  are the zero-order diabatic energies of Ψ
i
 and Ψ

f
. These energies could 

be approximated by semi-empirical potential functions,
148

 which describe the energy of the 

given charged forms of the particular solute state (either DA
+
 or D

+
A) in a specific solvent. 

These potential functions include interactions within the D-A system as well as with solvent-

induced dipoles. The off-diagonal term Hif = Hfi is composed of the mixed matrix elements in 

the absence of the solvent 
D A D A

ˆ
   H    . As an alternative, Ĥ can also be an empirical 

valence bond Hamiltonian from MD simulations. 

For convenience, further on the double subscripts ii and ff of the diagonal elements shall be 

simplified to 

ˆi i

iU H             (3.23) 

ˆf f

fU H             (3.24) 
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To evaluate the rate constant of ET from state i to state f, one has to start from the probability 

of ET during a period of time τ, which is related to the time-dependent wave function. The latter 

can be represented as  

         
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Invoking the time-dependent Schrödinger equation for Ĥ  and substituting the expression for 

the time-dependent wave function into it: 
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one obtains two differential equations for the amplitudes Ci and Cf 
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where ΔUfi = Uf – Ui. In the non-adiabatic approximation, one neglects the terms i f t   , 

f i t   . Assuming the hole initially, at t = 0, to be located at D results in the initial 

conditions Ci (0) = 1, Cf (0) = 0. For the time range where Ci ≈ 1, one obtains 
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exp
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If τ·Hfi/ħ << 1, then Ci changes fast in time. Then one has to invoke the adiabatic 

approximation
149

 which results in an expression for the amplitude in the final state: 
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Finally, one can write an approximate expression for the rate constant: 

 
2

lim
f

ET
τ

C τ
k

τ
 .          (3.31) 

Eq. (3.31) was derived by assuming that at an arbitrarily chosen initial moment t = 0, the 

electron is located at the donor Ci (t) = 1. In order to obtain a rate constant independent of the 

choice of the initial conditions, one has to introduce ensemble averaging over all possible initial 

conditions Ci (t). According to the ergodic hypothesis, one may replace an ensemble average 

over the whole phase space, i.e. over all initial coordinates r and momenta p, by an average 

along a classical MD trajectory. Therefore, one can write 
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where 
0
denotes the ensemble average. 

One may invoke the Wiener-Khintchine theorem
150

 to represent kET through the autocorrelation 

function of the amplitude derivative Ċf as:  
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Using the fact that for ergodic systems the correlation function is given by the corresponding 

ensemble average, one arrives at: 
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Substituting the expression for the coefficients Cf  one obtains:  
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where  

   
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In Appendix A it is shown that the last expression in Eq. (3.35) can be transformed to 
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Finally, one obtains the rate constant kET as 
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This expression dates back to the works of Lax151 and Kubo
152

 in solid-state physics, 

addressing non-radiative transitions of an electron trapped in a crystal lattice. That earlier model 

is based on an exact quantum mechanical formula for the electron transfer in a 

multidimensional harmonic system.
5
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3.2.2 Harmonic approximation 

Let us inspect the parameter γ(t) for the case of a molecular system that comprises several 

harmonic oscillators. The initial and final potentials of the system in semi-classical 

approximation are given as: 

  21

2
i j j

j

U t ω q           (3.40) 

   
21

2
f j j j fi

j

U t ω q x U   0 ,       (3.41) 

where qj is the dimensionless displacement coordinate of oscillator j in an arbitrarily chosen 

moment t of the initial state i. Here, it is assumed that the transfer of an electron to the final 

state f does not distort the frequencies ωj of the harmonic oscillators. The quantity fiU 0
 

represents the potential energy difference between the equilibrium configurations of the 

oscillators. 

To carry out the ensemble average (rhombic brackets) of the potential energy gap between 

two states, one assumes that an available trajectory is long enough to represent an ensemble 

average: 

  2 0 2 0

0 0 0 0 0

1 1

2 2
fi j j j j j fi j j fi

j j j

U t ω q λ ω x U ω x U              (3.42) 

Therefore, according to the earlier definition Eq. (3.36) 
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Introducing the coordinates  2 1cos  j j j jq n ω t θ , where 
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autocorrelation function in the form 
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Then the expression for γ(t) becomes  
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where ñj is the average occupation number of an oscillator at a given temperature 
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Finally, the expression for quantum ET rate is  
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The latter formula, derived after a series of approximations, is close to the exact quantum 

mechanical solution for a harmonic case, obtained by Kubo.
152

 

Next, one evaluates kET for the high-temperature limit, where ñj ~ kBT/ħωj >> 1 and  
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Expansion of the exponential phase (cosine- and sine-containing terms) up to t
2
 yields: 
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Recalling that the integral  
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one arrives at the famous Marcus expression, 
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Comparing to Eq. (3.15), one reads off the reorganization energy as:  

21

2
j j

j

λ = ω x .          (3.52) 

In other words, the reorganization energy is the sum of the energies of the harmonic 

oscillators at average displacements of those modes which are coupled to the ET reaction. If the 

electronic coupling strength Hfi is known, records of ΔUfi (t) from MD trajectories provide all 

the information needed to obtain the rate constant and its temperature dependence. MD 

simulations can supply the frequencies and the displacements in the so-called Huang-Rhys 

factors [see Eq. (3.10)] of the vibrational modes that are coupled to the reaction coordinate.   

In the present thesis one of the methods for calculating the solvent reorganization energy 

employs formalism similar to Eq. (3.52). The methodological part, which describes how 

essentially non-harmonic vibrations of atoms from MD trajectories can be used as a source of a 

harmonic approximation, is given in Chapter 4. The application of that method for a simplified 

solute model is described in Chapter 6.  
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3.3 Q-model  

Relatively recently
153

 an alternative to the Marcus scheme
102,154

 was proposed where the 

quantum part accounts for internal molecular vibrations of the solute.
126,155,156

 According to the 

former Marcus-Levich-Jortner (MLJ) theory, discussed in Section 3.1, one distinguishes two 

regions: the normal one with a parabolic rate constant/energy gap dependence and the inverted 

region with linear-logarithmic variation of kET with the free energy difference between initial 

and final states. The MLJ theory combined Gaussian statistics for molecular fluctuations of the 

solvent and for the vibrational excitations of the solute, but kept the main assumption of Marcus 

theory which claims that solvent and solute vibrations are coupled linearly.  

In the early days of ET theory the linear coupling between solute and solvent was seriously 

questioned and a quadratic dependence was suggested.
152,157,158 

In the following, the latter 

theory is referred to as Q-model (Q for quadratic coupling), where oscillators are coupled to ET 

with different force constants. A general solution to this problem was given by Kubo and 

Toyozawa.
152

 Application of that theory was hindered by the fact that the ET rate is not 

expressed analytically through free energy surfaces Gi,f  as a function of the potential energy 

gap between final and initial states of ET, which can be determined in MD simulations.  

To interpret kinetic data adequately, alternative approaches to non-linear solvation were 

suggested where free energy surfaces with parabolic shapes of different curvatures were 

invoked.
124c-g,159

 The underlying hypothesis, originally introduced by Kakitani and Mataga,
124c-g

 

was that dielectric saturation of the first solvation shell in a charge separated (CS) state makes 

the curvature of the free energy function much larger than in the charged recombined (CR) 

state. However, Tachiya
106,107

 and Warshel
97c,92,160

 refuted those approaches as they were able to 

demonstrate that the free energy surfaces of the final and the initial states are coupled in linear 

fashion  

   f fi i fi fiG U G U U            (3.53) 

through the reaction coordinate ΔUfi which is the potential energy gap between the initial and 

the final states. The result, first obtained by Warshel, is based on the transformation of the 

statistical probability for the instantaneous potential energy difference between two states ΔU, 

picked up along the trajectory, to have a particular value of the reaction coordinate ΔUfi .
160

 

      0expfi fi fi B
f i

U U U U G U k T         .    (3.54) 

Consider two electronic states of the D-A complex which are harmonically coupled to a 

collective solvent coordinate q with the different force constants ki and kf for the initial and final 

states, respectively (see Section 2.1): 
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21

2
i i i iU I C q k q            (3.55) 

21

2
f f f fU I C q k q            (3.56) 

where Ii,f  represent the sum of the electronic energies of the solute in vacuum and the solvation 

free energies.
153

 The parameter Ci defines the strength of linear solute-solvent coupling, similar 

to Marcus assumptions. The collective coordinate q driving the electronic transition can be 

projected out from a microscopic liquid-solvent Hamiltonian or represented as a linear 

combination of harmonic degrees of freedom characterized by spectral density functions.
6b

 

Thus, the reaction coordinate ΔUfi can be defined as  

21

2
fiU I Cq kq      ,        (3.57) 

where, ΔI = If – Ii, ΔC = Cf  – Ci and Δk = kf  – ki, respectively. The δ-function in Eq. (3.61) can 

be represented as a Fourier integral 

   exp
2

fi fi

dξ
U  iξ U

π





    .        (3.58) 

Substituting this expression in Eq. (3.54) and integrating over q (for details see Ref. 153) yields  

   0 ,

2

i fi i B i fiG U G  k T Φ ξ Udξ
e  e

π


   



  .       (3.59) 

where 

2

0
2

  i
i i

i

C
G I

k
           (3.60) 

is the equilibrium energy of state i and  

 
 

 

0 2
fi fi i i

i fi

B B i

iξ U U ξλ α
Φ ξ, U

k T k T ξ - α

 
   .      (3.61) 

is a generating function. The latter formulation is advantageous in Eq. (3.59) because it can 

always be expanded as a series in powers of ξ instead of the common practice to employ 

truncated polynomials for the generation of non-parabolic free energy surfaces.
101,161 

The 

solvent reorganization energy λs
i
 in state i is defined as the second cumulant of the reaction 

coordinate  

 
2

2

2

0

,01

2 2

fiii i
s

B Bξ

UΦ ξ
λ

k T ξ k T



  


,       (3.62) 

where δΔUfi is defined as in Eq. (3.36). 
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The reorganization energy given by Eq. (3.62) is obtained in a straightforward way by 

averaging over the equilibrium configurations from computer simulations. In order to evaluate 

the reorganization energy according to Eq. (3.62) one needs to record only the standard 

deviation of the potential energy gap ΔUfi from its average value along MD trajectories. The 

reorganization energies λs for the initial and final states are not identical as in the standard 

model of Marcus and are related to each other through the following equations: 

3 3i f

i s f sα λ α λ           (3.63) 

1 f iα α ,           (3.64) 

where αi = ki/Δk. Eqs. (3.63)–(3.64) reduce the number of independent parameters to three: 

ΔG0, αi and λs
i
. Compared to the two-parameter model (ΔG0 and λ) of Marcus-Levich-Jortner, 

the present Q-model introduces one variable more, which allows more flexibility in terms of a 

variation of the force constant for the final and initial states, reflecting the difference between 

fluctuations of the solvent molecules in these states. The standard MLJ theory corresponds to 

the case when ki and kf are equal. The parameter 
0

fiU  defined through the equilibrium free 

energy gap ΔG0 = G0f – G0i and the reorganization energy λs
i
 can be written as follows: 

2
0

0

i i
fi s

f

α
U G λ

α
    ,         (3.65) 

It defines limitations of the allowed energy fluctuations. This property follows from the 

asympthotic behavior of the function Φi(ξ,X) and its properties in the complex plane.
153

 In 

contrast, Marcus theory
102,154 

leads to an unrestricted band of energy fluctuations where energy 

gaps of any size can be achieved with non-zero, albeit small, probability.  

According to the Q-model, one has to evaluate the complex integral in Eq. (3.59) for ΔUfi 

values inside the fluctuation band, which includes the essential singularity at iαi . The final 

analytic expression for ET rates is given
153

 by means of the first-order modified Bessel 

function
162

 I1: 

 
3

30 2 0

10
exp 2

i

s i i i

ET i i fi fi s i B i s fi fi B

fi fi

λ α
k A   U - U λ α k T I α λ U - U k T

U - U

               
 (3.66) 

Here, Ai is a normalization factor. The asymptotic expansion
153

 of the Bessel function in Eq. 

(3.66)  leads to the free energy potential surfaces which exhibit a linear dependence with 

respect to the large values of the reaction coordinate ΔUfi. The final free energy surfaces are 

asymmetric with a steeper branch on the side of the fluctuation boundary 
0

fiU  and are linearly 

related to each other as required by the fundamental Eq. (3.60).  

All parameters of the Q-model can be evaluated if the solvent reorganization energies i,f

sλ  

are known. One of the computational methods in the next chapters [see method (II) in Section 

6.4] is dedicated to an accurate evaluation of the potential energy gaps that define the solvent 

reorganization energy according to Eq. (3.62). 
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4 Evaluation of Solvent Reorganization Energy  

 

4.1 Spectral data and methods of simulation 

Any ET reaction causes a change in the electronic configuration of the reacting species. 

According to the Franck-Condon principle, the electronic transition takes place much faster 

than the motion of the nuclei; therefore, the latter could be regarded as effectively frozen during 

the transfer. In the electronic state resulting from the fast transition, the surrounding solvent 

molecules are suddenly subjected to a new electrostatic field and their current configuration 

becomes unstable. Thus, a subsequent slow nuclear reorientation follows in order to reach the 

equilibrium that corresponds to the changed solute electron density distribution. In the present 

chapter a hypothetical solute, which does not undergo any structural changes, as well as only 

vibronic transitions leading to internal energy conversion, are considered. The change of 

solvent free energy from the transition ET state to equilibrium is described by the model of 

Marcus in terms of reorganization energy.
93,99,100

 At the point Uθ along the energy surfaces, 

where the ET takes place (Figure 2.3, Chapter 2), a solvent configuration, which has resulted 

from a series of particular consecutive thermal fluctuations, serves as the driving force for the 

reaction. The electronic transition could also occur while the ET complex is in an equilibrium 

state, but then, in order to facilitate this transition, additional energy must be provided, e.g., 

through the absorption of light. The latter situation can be used as a rather simple model to 

illustrate the methods available for describing the charge transfer. If a molecule undergoes an 

electronic transition through photoexcitation, the subsequent relaxation can be quantified 

spectroscopically by the Stokes shift,
100,163

 which is the difference between the energy of 

absorption and a selected fluorescence maximum. Comparison with the standard ET picture 

demonstrates (e.g. see Figure 2.3, Chapter 2) that the energies ħν1 of absorption and ħν2 of 

emission (Figure 4.1) can be expressed as follows: 

1 0λ G              (4.1) 

2 0  λ G .          (4.2) 

Therefore, the reorganization energy is half of the Stokes shift: 
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St1 2

2 2
λ

  
  .         (4.3) 

This expression for the reorganization energy is based on an assumption introduced by 

Marcus that the solvent response is linear and, moreover, the changes in the dielectric 

polarization of the solvent medium
164

 for back (emission) and forward (absorption) reactions 

are the same. In other words, the reorganization energies for transitions either from the reactant 

to the product or from the product to the reactant are assumed to be equal. 

MD simulations allow one to evaluate the emission and absorption energies in terms of 

differences between the potential energy surfaces which correspond to the product and the 

reactant states. Assume that absorption and emission occur in the initial (reactant) and the final 

(product) states described with the total Hamiltonians Hi and Hf, respectively. Then the 

absorption and emission energies can be expressed as follows 

   abs  f R i RH R H R          (4.4) 

   em  i P f PH R H R ,         (4.5) 

where the vectors RR  and PR  represent the total solvent coordinates in the reactant and the 

product states, respectively. In case of vertical transitions the atomic nuclei are „seen‟ by the 

electrons as “frozen” and therefore, the kinetic energy part of the Hamiltonians before and after 

the transition are equal. Thus, the difference between the full Hamiltonians could be 

approximated by the difference between the (total) potential energies: 

     abs    f R i R RU R U R U R        (4.6) 

 

Figure 4.1. Electron transfer reaction through photoexcitation.  
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     em    i P f P PU R U R U R .       (4.7) 

For simplicity we dropped the lower index of the total potential energy; formally a positive 

sign is ascribed to the potential energy gap ΔU = ΔUfi = Uf – Ui.  

The thermal fluctuations of the coordinates RR  and PR  reflect specific solvent 

configurations. To deal with experimentally measured values, one has to average over all 

possible configurations statistically achieved at a certain temperature according to a Boltzmann 

distribution. These averages   RU R  and   PU R  may be generated by MD simulations 

which yield an ensemble of snapshots along each of the trajectories, which are interpreted to 

span the configurational space for the reactant and product states, respectively. Then the final 

expression for the (solvent) reorganization energy becomes 

   
2

   


P R

f i

s

U R U R

λ ,        (4.8) 

where 
,

...
i f

denotes averaging over the corresponding trajectory. The quantities of Eq. (4.8) 

are determined in two steps: (i) from two trajectories R and P (which reflect different ET states 

of the solute, both in thermal equilibrium with their environment) the corresponding sequences 

of the potential energy values  i RU R  and  f PU R  result, see Eqs. (4.6)-(4.7); (ii) calculation 

of the potential energy difference between two ET states for each snapshot from R and P 

trajectories. Step (ii) is carried out by “twisting” the ET state (reflected in charge distribution of 

solute) to the different one compared to one for which the snapshot was recordered. To span the 

configuration space in the sense that a meaningful statistical ensemble is generated, the 

(classical) MD trajectories have to be run for sufficiently long times. Eq. (4.8) represents the 

main formula for evaluating the reorganization energy according to the classical picture of 

Marcus; in the following this approach will be denoted as method (I). 

The second method, also referred to as method (II) in the following, is based on an 

evaluation of the standard deviations of the potential energy gaps according to Eq. (3.62). 

Method (II) for determining solvent reorganization energies can be derived either from the 

dispersed polaron model of Warshel
5
 or seen as a second cumulant of the reaction coordinate in 

the Q-model, as shown in Eq. (3.62). Yet, it seems preferable to demonstrate its meaning in the 

spirit of Tachiya,
165

 who provided a detailed derivation in a more general fashion.  

The physical origin of Eq. (3.62) also lies in the Marcus approximation of solvent linear 

response. Consider a thermally driven ET reaction, where the transition occurs at some 

potential energy value U
≠
, which is achieved rather frequently due to instantaneous thermal 

fluctuations. Then, the potential energy of the system can be seen as fluctuating around this 

value. The fluctuations of the potential energy ΔU = U
≠
 − U are of a stochastic nature and it is 
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obvious to assume that they follow a linear response model and therefore exhibit a Gaussian 

distribution:  

 
 

2

22

1
exp

22

 
   
 
 

U U
U


,       (4.9) 

where  is the standard deviation of ΔU. 

Comparison with the normalized part of the Marcus formula responsible for the Franck-

Condon factors, e.g. as represented in Eq. (3.1), reveals that the solvent reorganization energy 

can be expressed by Eq. (3.62). If one determines the reorganization energy via the standard 

deviation of the potential energy gap, one does not necessary have to assume that the values of 

λs are equal for the forward and the back reactions.  

A third method for estimating λs, referred to as method (III), is in general tightly related to 

method (II) but provide more information as it yields insight into the structure of the 

fluctuations of the potential energy gap. The method allows one to identify the vibrational 

modes that drive the ET reaction and even to determine their relative contributions. The method 

goes back to the dispersed polaron model,
5
 which relates the non-harmonic vibrations of the 

real system to a system of harmonic oscillators.  

From the viewpoint of molecular dynamics, the fluctuations of the solute-solvent interaction 

potential are caused by the (quasi-random) movements of the point charges assigned to each of 

the solvent atoms. The motion of these point charges could be treated as composed of different 

vibrational, translational and rotational contributions. To get insight into how the quantity λs is 

formed from contributions of the various modes, it is convenient to invoke the formalism of 

time correlation functions (TCF) of the solute-solvent potential. 

The main idea behind the TCF formalism given below is that the fluctuations of the energy 

gap ΔUfi along an MD trajectory of a real system in electronic state i (either charge separation, 

CS, or charge recombination, CR) can be related to the fluctuations of an equivalent harmonic 

system via the autocorrelation function  

     δ δi fi fi i
A t U t U   ,        (4.10) 

where      fi fi fi i
U t U t U t      is the deviation of the energy gap fluctuation from its 

thermal average. The exact expression for the autocorrelation function Ai(t) of a harmonic 

system is given by Eq. (3.44). According to the Wiener-Khintchine theorem,
150

 the magnitude 

of the Fourier transform of the autocorrelation function is the power spectrum  J    of the 

fluctuations 

 
   expi

J
A t i t dt










  .        (4.11) 
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The autocorrelation function of the energy fluctuations of a particle that is coupled linearly 

to a large number of harmonic oscillators is 

     
21

coth cos
2 2

j

i j j j

j B

A t x t
k T


 

 
  

 
        (4.12) 

Here ωj is the frequency of vibrational mode j of the system and Δxj is the dimensionless 

displacement of the normal coordinate. In spite of the fact that some modes could be highly 

non-harmonic, the overall response of a large molecular system, like DNA or proteins, which 

have numerous vibrational modes, is expected to be linear. In other words, it is identical to the 

response of a multidimensional harmonic system.
5,152,166

 While the autocorrelation function 

Ai(t) of Eq. (4.13) differs from the more exact formulation given by Kubo
152

 and Lax,
151 

both 

forms of the autocorrelation function transform at high temperatures into [see Eq.(3.48)]:  

   2 cosi B j j j

j

A t k T x t           (4.13) 

Fourier transformation (FT) given by Eq. (4.12) of the above equation in the high-

temperature limit yields 

 
 2

B j j j

j

J
k T x


   


    .       (4.14) 

The Fourier image of Ai(t) picks out the vibrational modes, which are coupled to the ET 

reaction because they feature significant nuclear displacements Δxj between the reactant and 

product states, which results in a larger contribution to the power spectrum. Integration of the 

power spectrum produces the solvent reorganization energy in the form referred to as method 

(III), 

 21 1

2 2
s j j

j B

J
x d

k T


  

 





    ,        (4.15) 

which is an alternative representation of Eq. (3.52) (see Chapter 3).  

When one evaluates the solvent reorganization energy according to one of the methods just 

described, then the main bottleneck is a careful evaluation of the potential energy gaps between 

the reactants and the products. In order to estimate them, mainly two computational methods 

were applied, namely atomistic MD simulations or calculations invoking a continuum model.    

 

4.2 Continuum model calculations of λs  

Marcus first derived a classical electrostatic model for calculating λs of an intermolecular 

electron transfer.
74,93,163

 To obtain an analytical expression for λs, Eq. (2.34), with this model 

that is based through the Poisson equation, Marcus approximated the donor and the acceptor 

molecules as spherical regions separated at a distance RDA (Section 2.3). The spheres are 
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immersed in a dielectric medium that represents the solvent and is characterized by an optic, ε∞, 

and a static, ε0, dielectric constant. Naturally, this macroscopic scheme lacks atomistic detail. 

Also, it is necessary limited by the spherical shapes assumed for the donor and the acceptor 

species. Despite its simplicity, this model was quite popular for interpretation of experimental 

data in biological systems: it successfully captures the general dependence of λs on the D-A 

separation RDA, the polarizability of the surrounding medium and hence the effect of the solvent 

not only for rather small molecules like hydrocarbons,
167 

but also for estimates of λs even in 

DNA duplexes.
112

  

The original Marcus electrostatic model for λs also invoked a linear response approximation, 

specifically for representating the solvent reorganization as a dielectric response.
74,93,163

 

Linear response models of the electrostatics, including those based on numerical solutions to 

the Poisson-Boltzmann (PB) equation, have proven to be highly successful for modeling many 

equilibrium electrostatic properties of biomolecules having complicated geometry.
112,168-170 

A 

key point of these calculations was the ability to solve the PB equation rapidly and accurately 

essentially for arbitrary charge and dielectric distributions using numerical methods. This 

allowed the explicit incorporation of atomically resolved information provided by X-ray 

crystallography and nuclear magnetic resonance (NMR), including the shape of the 

biomolecule, the positions of charges and counterions, and the accessibility of solvated ions by 

the solvent.  

For many phenomena the advantages of realistically representing the structural detail of the 

molecule outweights any approximations entailed by the use of a linear response dielectric 

model. Another important feature of these models is the inclusion of rational, though implicit, 

solvent and solvent ion screening effects. These advances in modeling the electrostatic 

properties of biomolecules have been made possible by improvements
169,170 

in the numerical 

methods and by the rapid increase in computer power.  

In the continuum model, the starting point for determining the reorganization energy is the 

evaluation of differences in the electrostatic free energies between two states, one of which is 

not at electrostatic equilibrium with the surrounding medium. For further convenience, 

following the abbreviation introduced in Section 2.3 for Marcus two-spheres model, the state 

which is in equilibrium with surrounding medium will be denoted as (AD) and its 

complementary excited analog as (AD)
*
. For both states, the electrostatic potential φ(r) as a 

function of the coordinate r is given as solution of the following equation,
171

 

4 4φ= πρ π   P          (4.17) 

where ρ(r) is the charge distribution of the fixed charges and P(r) is the polarization the of 

medium. This equation is valid irrespective of whether or not the charges and polarization P(r) 

of the medium are at equilibrium. It is assumed that the potential gradient arises from some 

distribution of atomic charges. The latter could represent either a time-averaged equilibrium or 
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an instantaneous non-equilibrium state of the system. The charge density ρ(r) is usually 

composed of two contributions: atomic charges ρat(r) of the main solute, e.g. a biomolecule, 

and mobile charge, i.e. the counterions ρion(r). Following the seminal paper of Marcus,
74

 the 

polarization P(r) is formed by two contributions: Pu(r) reflecting the slow component (atomic 

and orientational) of polarization and Pe(r) corresponding to the fast electronic component (as 

discussed in Section 2.3). 

The polarization P(r) at any point in space is proportional to the electrostatic field and to the 

electric susceptibility α(r): 

= φP .           (4.18) 

The susceptibility, defined in terms of the dielectric constant ε as α(r) = (ε(r) − 1)/4π, can 

have contributions αu(r) and αe(r) from the nuclear and electronic response, respectively, so that  

u e+    .           (4.19) 

In the case of fast ET such as, for example, light absorption (see Figure 4.1) from 

equilibrium state (AD) to non-equilibrium state (AD)
*
, only the fast electronic polarization 

Pe(r) responds to the sudden change in solute electrostatic field [ρat(r) “jumps” to ρat
*
(r)], while 

the slow polarization Pu(r) stays the same for both states. 

Therefore, substituting Eqs. (4.18)–(4.19) into Eq. (4.17) yields for equilibrium state (AD) 

   op 4 at ionε φ= π ρ ρ   r ,        (4.20) 

and for non-equilibrium state (AD)
*
  

   st *4*

at ionε φ = π ρ ρ   r         (4.21) 

where ε
st
(r) = 4παe(r) + 1 and ε

op
(r)  = 4πα(r) + 1, respectively.  

The charge density of the counterions ρat(r) depends on the potential φ for (AD) and φ
*
 for 

(AD)
*
 state, respectively, with the bulk solvent concentration ci of each ion of valence zi:  

 expion i i i B

i

ρ e c z z eφ k T  .        (4.22) 

Evaluation of the electrostatic potentials φ and φ
* 

from Eqs. (4.21) and (4.22) for any given 

spatial combination of charges is an important stepping stone towards calculating the solvent 

reorganization energy λs. Invoking Eq. (2.32) from Section 2.3 by adding and subtracting the 

term that corresponds to the energy of the molecular system in vacuum, it is easy to represent 

expression for λs in a generalized form that is more convenient for the current discussion: 

   
2 2

op st

solv solvop st

1 1
1 1

8 8

c c
s dV E E  

   

   
         

   


E E
.    (4.23) 

Here Ec is the electrostatic field obtained by solving Eqs. (4.21)–(4.22) and Esolv are the free 

energies of solvation. Thus far, the solvent reorganization energy, as can be seen from Eq. 

(4.23), is nothing else than the difference of solvation free energies in two solvents effectively 
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characterized by the static dielectric constant ε
st

 and the high-frequency (optical) dielectric 

constant ε
op

. Considering the complicated case of a biomolecular system, where the change of 

the charges occurs at numerous atomic sites and the dielectric constants vary in space, the 

solvent reorganization energy λs have to be represented in the following form utilized in the 

previous work of our group:
112

 

   op op op st st st

solv 1 2 solv 1 2; ;... ; ; ;... ;s n fi n fiE q E q            ,     (4.24) 

where Δqfi = qf – qi is the difference of the charge distribution in the initial and the final states 

of D and A sites.
167

 In the latter equation the dielectric function, ε = ε(r), in general a quantity 

varying in space, is treated in a piecewise fashion as constant within each of n zones: εj, (j = 1 – 

n). The latter methodology is employed in the program Delphi II,
169,170

 which uses a finite 

difference solver of the Poisson equation for systems composed of multiple zones. It also 

affords an estimate of solvent reorganization energies for such complex systems as DNA 

duplexes.
112

 In these calculations, the average geometry of a DNA duplex was initially obtained 

from MD calculations as a series of snapshots along 1 ns trajectory and then the solvent 

reorganization energy λs for ET between different guanine units was obtained according to Eq. 

(4.24) by solving the Poisson equation, Eqs. (4.20)–(4.21), where the ions were included 

explicitly.
112 

Each system (solute and surrounding medium) was divided into five regions (n = 5) of 

different dielectric constants εj. For the D (donor) and A (acceptor) zones (confined to a single 

guanine G units) static and optic dielectric constants were set equal to st op

1 1 1   ; the next 

two zones were comprised of the bases and the sugar-phosphate backbones (static dielectric 

constants st

2 3.4   and st

3 20.6  , respectively
112,172

) with optic dielectric constants  

op op

2 3 2   .  The water medium was considered to be comprised of two regions: “bound 

water”, a layer of 3 Å around the solute (corresponding to the first hydration shell explored by 

X-ray diffraction
173,174

) and “bulk water” beyond it. The results of Beveridge et al.
174,175 

showed 

that the bound water region has a substantially lower dielectric constant than bulk water. In the 

vicinity of DNA, the local dielectric constant deviates from the bulk value as a consequence of 

the much lower mobility of the water molecules which interact with the charged and polar 

groups of DNA. The picture resulting from X-ray studies shows that the chain of phosphates is 

surrounded by two solvation shells of regular geometry.
174

 The first layer is partially occupied 

by counterions, and, because of site-specific binding of cations, the structure of this “spine” 

depends on the DNA sequence.
174

 The static dielectric constant of the bound water region is not 

precisely defined;
112

 therefore a series of values, varying from 2 to 80, was employed for the 

static dielectric constant st

4 . For the bulk water zone, st

5 80   was assumed and both water 

regions were assigned identical optic dielectric constants op op

4 5 1.8   . 
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The DNA model calculations of the solvent reorganization energy with the parameters just 

described, carried out in our group,
112

 features improvements compared to earlier studies
176,177 

 

in several ways: a larger number of different dielectric zones, more realistic values for the 

dielectric constants, account for geometry fluctuations of DNA etc. Beratan et al.
177

 had 

assumed only two dielectric zones; the calculations of Tavernier and Fayer
176

 may be expected 

to overestimate somewhat the reorganization energy because a rather large value of the static 

dielectric constant, ε = 12.4, was assigned to the base stack zone, in contrast to other 

suggestions which favor the range from 2 to 4.
178

 The possible role of structural fluctuations 

had never been explored before.
176

 Such fluctuations were expected to be significant for the 

interaction of DNA with the surrounding counterions and water molecules.
178

 Despite all these 

issues,
112

 the main outcoming of the studies of our group was to point out that the ambiguity in 

the definition of the dielectric zones and the assignment of their dielectric properties (especially 

dielectric constants for bound water region) lead to a wide variation of the results for λs, but 

with a noticeable difference, by 0.4–0.9 eV, from the values inferred from experiments, 0.4–1.7 

eV, where the lower value corresponds to ET between adjacent guanines and the larger one 

donor and acceptor separated by three base-pairs.
46,179

 Later attempts to bring experimental 

results and theoretical calculations into agreement by means of dielectric continuum model 

used a redefinition of the DNA solute cavity as solvent accessible surface area, resulting in λs = 

0.4–1.0 eV for the same range of ET distances, instead of the conventional van der Waals 

surface which lead to λs = 1.4–2.3 eV. Overall, these latter calculations demonstrated that 

calculated λs results for ET in DNA could be reduced by a factor of 2–3 at a given D-A 

separations, thereby formally reaching the experimental values.
168

  

Thus far, λs has been estimated mainly from dielectric continuum models
112,168,176,177,180

 

dating back to the pioneering work of Marcus
93

 and the results cover a wide range of values, 

depending on the parameterization of the model. A notable drawback of dielectric continuum 

models is the arguable choice of the spatial partitioning with different dielectric constants 

assigned, in particular partitions of the solvent in the vicinity of the donor and the acceptor sites 

of the solute.  

 

4.3 Molecular dynamics calculations of λs  

Atomistic MD simulations with explicit treatment of the aqueous solvent provide an 

alternative to the dielectric continuum models. They allow one to record all atomic positions of 

the molecular system in time (see Chapter 5). For large biological molecules, these calculations 

usually employ non-polarizable water models where molecules are represented by a system of 

fixed (atomic) point charges. The most commonly cited of them are the simple point charge 

(SPC)
181

 water model and three-point transferable intermolecular potential (TIP3P).
182 

These 
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are two rigid 3-site water models which reproduce the basic phase structure of water and its 

thermodynamical properties. There are some further developments of non-polarizable water 

models like TIP4P
182

 (additional fourth site along H-O-H bisector) and TIP5P,
183

 which yield 

better agreement for the density and the radial distribution function at room temperature. One 

common feature of all of them is that the average contribution of the electronic polarization is 

implicitly taken into account by an appropriate choice of charges and a suitable  

parameterization of bonded and non-bonded interactions.
181–183

 These kinds of solvent models 

with omitted electronic polarization have been thoroughly tuned to reproduce well the average 

thermodynamic properties of molecules in solution and of bulk liquid water. A comparison of 

non-polarizable models TIP3P,
182

 TIP4P
182

 with different polarizable analogues like modified 

fluctuating charge TIP3P-FQ,
90

 TIP4P-FQ
247a

 concluded
88–90

 that explicit representation of 

electronic polarization does not deliver any noticeable advantage for solvent reorganization 

energy simulations, yet being significantly more demanding regarding the computational 

resources.  

Few attempts have been made to incorporate explicitly electronic polarization into MD 

calculations of the solvent reorganization energy.
88,90

 They showed either no effect,
89

 a 

negligibly small influence
88,90 

or lower
184

 compared to the theoretical expectations. 

Nevertheless, despite these negative computational results, the general understanding
185,186

 (that 

electronic polarization plays an important role in the determination of solvent reorganization 

energy values) was theoretically well founded and resulted in the common practice to reduce 

these λs values in a posteriori fashion by uniform scaling.
91,187 

Scaling is frequently used to 

bring seemingly overestimated values in accordance with experimental data or with results from 

dielectric continuum models. The choice of a suitalbe scaling factor represents a major 

challenge; it rests on an average optical dielectric constant, but use of such macroscopic 

quantitites itself is not well justified at the atomic scale. This is related to the problem of the 

optical dielectric constant having a spatial variation, which strongly depends on the solute 

cavity shape and the electrostatic field around it (see the discussion in Section 4.2). The 

straightforward transfer of a scaling factor from the simplified two-sphere solute model to 

DNA,
91,187

 as well as incorporation
91,187 

of the optical dielectric constant from experimental data 

for pure water
104

 was not regarded as a reliable method even by the authors themselves.  

In a short note in one of his earlier works, Warshel concluded
92

 that the solvent electronic 

polarization may be important as it may substantially reduce λs in computational approaches. 

Later attempts with polarizable force fields were rather disappointing and gave way to an 

attitude where these effects were put aside.
88–90

 The earlier calculation of Warshel
92

 invoked 

certain approximations to reduce the computational demands and therefore cannot be 

considered as sufficiently accurate to allow an ultimate judgement on these issues. In fact, a 

thorough quantitative treatment of solvent reorganization energies remained an open problem 

till today, for small molecules
88,89

 as well as for complex biomolecular systems.
91

 On the other 
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hand, attempts were made to overcome the failure of the straightforward computations with 

polarizable force fields by invoking more sophisticated theories,
168 

which also ultimately 

required parameterizations that unfortunately were not transparent at a fundamental atomic 

level.  

Therefore, so far, a reliable general procedure for determining solvent reorganization 

energies for complex systems remained an open question. Given this situation, the present work 

revisites the application of MD simulations with polarizable force fields (see Chapter 5) for a 

small model system (Chapter 6) and for large-scale simulations of DNA-related systems 

(Chapters 7 and 8). 
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5 Molecular Dynamics Simulations. Methodological 

Aspects 

5.1 Basic theory of molecular dynamics 

The tremendous progress of computer science in recent years led to a development of fast 

and efficient computational methods for the investigation of structure and dynamics of 

molecular systems.
188,189

 Quantum mechanical and force-field based molecular dynamics 

calculations are probably the two most important tools of computational chemistry.
190 

 

Nowadays, both approaches are proven to reproduce the properties of many materials at least 

with experimental accuracy. Thus theoretical calculations serve as a main source when 

experimental data are to be interpreted. Although quantum mechanical calculations have the 

capacity to describe the electronic structure of molecules, they are still not suitable for studies 

of macromolecules because of limited computational power. In addition, calculations of 

thermodynamic properties and conformational analysis do not necessary require a detailed 

knowledge of the electronic properties. This area is successfully served by (force-field based) 

molecular dynamics simulations, which follow the classical motion of the nuclei (or ions) and 

treat mechanical, van der Waals and electrostatic forces of a complex molecular systems as a 

parameterized function of nuclear positions. The initial atomic coordinates are often provided 

by X-ray or NMR analysis. The parameters of the interatomic forces are selected to reproduce 

pertinent properties of the system or derived from results of quantum mechanical calculations. 

Finally, the Newtonian equations of motions are solved for the nuclei (or ions): 

2

2
 i

i i i i

d
= m m

dt

r
F a ,         (5.1) 

Here Fi is the force acting on atom i with mass mi and acceleration ai (the second derivative of 

the coordinate vector ri with respect to time t). The force exerted on atom i is obtained as 

derivative of the total potential energy of a molecular system with respect to the coordinate 

vector ri: 

 
i

i

dU
= 

d

R
F

r
,          (5.2) 
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where R is a vector encompassing all atomic coordinates of the molecular system. At the core 

of molecular dynamics there commonly is a “force field”, i.e. a parameterized description of the 

potential energy surface for a class of systems.  

  

5.2 Force fields 

The force field or in other words the total potential energy of a system usually is taken to 

consist of various energy contributions. Formally they can be divided into two groups: bonded 

terms (bond stretching, changes of bond angles or torsion angles) and non-bonded terms 

(mainly to represent van der Waals and Coulomb forces). Each of these terms contains 

empirical parameters, which are adjusted to reproduce correctly general molecular properties. 

This fitting is performed in a fragment-by-fragment fashion for families of small molecules or 

their parts which possess similar physical or chemical properties; one compares force-field 

results with results of ab initio quantum mechanical calculations or with experimental data. The 

parameters are collected in libraries and usually automatically assigned to the atomic centers of 

the molecule under study. Given a wide variety of chemical species, especially 

macromolecules, force fields are normally designed for specific classes of molecules. For 

example, AMBER,
191

 CHARMM
192

 and GROMOS
193

 force fields are developed to describe 

proteins and nucleic acids, while the family of MMX
194 

force fields is designed for treating 

mainly small organic compounds.  

The total potential energy of the molecular system is given by the general expression: 

  bond angle torsion nonbondU U U U U   R        (5.3) 

The first term in this formula represents the potential energy associated with the stretching of a 

bond between pairs of chemically bound atoms whose interactions are traditionally 

approximated with harmonic potentials:  

 
2

0

1

2
bond b

bonds

U k r r  ,         (5.4) 

where kb is a force constant specific for each bond and r0 is the corresponding equilibrium bond 

length. 

The second term in Eq. (5.3) is related to the deformations of a bond angles θ between three 

atoms, among which two pairs of atoms are chemically bound. Similar to Eq. (5.4), a harmonic 

potential is employed as a rule: 

 
2

0

1

2
angle θ

angles

U k θ θ  ,         (5.5) 

where kθ is the force constant of the valence angle and θ0 is the angle of the equilibrium 

structure. 
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The third term is responsible for simulating rotational barriers between atoms separated by 

three covalent bonds. The motion associated with this term is a rotation around the bond 

between the two atoms in the middle of a set of four atoms. The torsion potential is assumed to 

be periodic and can be expressed as a truncated cosine series expansion:  

  
1

1 cos
2

torsion n

torsions

U U n    ,        (5.6) 

where Un  is the energy barrier for the torsion rotation, n is the multiplicity constant describing 

the number of minima on the potential energy surface, and ω is the reference torsion angle. The 

phase shift constant γ defines the value at which the torsion angle has its first minimum.  

The last term in Eq. (5.3) represents the non-bonded interactions. The non-bonded term 

usually contains two parts which describe van der Waals and Coulomb interactions:  

12 6

ij ij i j

nonbond pol

i j i i j iij ij ij

A B q q
U U

r r εr 

 
    

 
 

        (5.7) 

In the case of a polarizable force field, an additional term is introduced that represents the 

electronic polarization of a molecular system. The latter term will be discussed in detail in one 

of the following subsections. The van der Waals interaction between two atoms i and j 

separated at distance rij arises from a balance between attractive dispersion and repulsive forces. 

It is often assumed in the form of a Lennard-Jones potential; see the first term in Eq. (5.7). Aij 

and Bij are parameters specific to atom pairs. The Coulomb potential accounts for the 

electrostatic interaction in a medium with dielectric constant ε between pairs of atoms i and j 

with charges qi and qj, respectively. 

 

5.3 Integration algorithms 

In MD simulations one solves the Newtonian equations of motion through integration 

algorithms all of which necessary involve a discretization procedure. Also, one assumes that 

positions, velocities, and accelerations, discretized on a grid, can be approximated by Taylor 

expansions: 

         2 31 1
...

2! 3!
        t t t t t t t t tr r v a b      (5.8) 

         2 31 1
...

2! 3!
        t t t t t t t t tv v a b c      (5.9) 

Here r is the coordinate vector of an atom, v is the corresponding velocity, a is the acceleration; 

b and c are derivatives of r of third and fourth order with respect to time.  

If initial coordinates and velocities of all atoms of a system are defined, then the Newtonian 

principles of dynamics guarantee an evolution of the system with time that can obtained by 
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integrating the equations of motion. Hence, a representation of the motion as a series of discrete 

velocity and coordinate values, instead of a continuum, leaves open the question how the 

discretization procedure has to be implemented in the computations. There are several 

commonly used algorithms, which perform this step in various ways. 

Verlet algorithm. This method
195

 defines new positions r(t+Δt) on the basis of the current 

positions r(t) and those of the previous time step r(t–Δt) and invokes accelerations a(t): 

        22      t t t t t t tr r r a        (5.10) 

The velocities v(t) at current time t are calculated from the coordinate values of the previous 

and the subsequent time steps:  

      2      t t t t t tv r r ,       (5.11) 

where coordinate vector r(t) is determined with respect to the centre of mass of the unit cell 

(Section 5.8). The algorithm requires low computer memory although at the expense of 

precision. 

Leap-frog algorithm. This approach
196

 first calculates the velocities at a half-step t+Δt/2 of 

time from the velocities at time t–Δt/2 and the accelerations at current time t, 

 
1 1

2 2

   
         

   
t t t t t tv v a        (5.12) 

From these velocities the positions at time t+Δt are estimated: 

   
1

2

 
      

 
t t t t + t tr r v         (5.13) 

The main advantage of this method is an explicit calculation of velocities. However, the 

positions and velocities are not synchronized, and, therefore, the calculated kinetic energy does 

not correspond to the positions defined. 

Velocity Verlet algorithm. The handling of the kinetic energy is substantially improved in the 

currently employed velocity Verlet algorithm,
197

 which gives positions, velocities and 

accelerations at the same time step and in addition, is rather accurate. The dynamic quantities 

are computed as follows: 

        21

2
     t t t t t t tr r v a        (5.14) 

       
1

2
        t t t t t t tv v a a        (5.15) 
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5.4 Treatment of electronic polarization  

The last term in the non-bonded interactions of the force field, Eq. (5.7), represents the 

electronic polarization: 

01

2

atoms

pol i i

i

U    μ E ,         (5.16) 

where µi is the dipole moment induced on atom i proportional to the total electric field 0

iE  

acting on atom i with polarizability tensor αi: 

0

i i i μ E            (5.17) 

The polarization in Eq. (5.16) includes mutual induction of the polarizable sites within a 

molecule itself (intramolecular polarization) and the polarization induced by an external field. 

The simplest way to mimic response of electronic polarization is based on isotropic atomic 

polarizabilities assigned to the atoms to represent bond polarization in the environment of a 

condensed phase.  

The force fields augmented with an expression as Eq. (5.16), where the response due to 

electronic polarization of a system depends on the field 0

iE , are in essence non-additive ones, 

because if a single dipole in the system is modified, then it affects the overall electrostatic field, 

hence all other dipoles, which adjust themselves according to the new electrostic field. 

Therefore, it is rather difficult to separate electrostatic contributions of different molecular 

groups from each other and one has to talk about such individual terms with due caution. The 

integration of the equations of motion for non-additive force fields employs at each time step a 

number of other techniques in addition to the computational algorithms shown in the previous 

section. Thus, polarizable force fields are computationally extremely demanding. One of the 

ways out is a Lagrangian method. 

Extended Lagrangian method. The Lagrangian of the molecular system L0 used to describe 

the motions of the nuclei in a standard additive (nonpolarizable) force field is augmented by a 

Lagrangian term, which describes the changes of the dipoles. The total extended Lagrangian L 

has the form: 

2 0 2

0

1 1 1

1 1 1

2 2 2

N N N

i i i i

i i i i

L L M
  

 
     

 
  μ E μ ,      (5.18) 

where M is a fictitious “mass” associated with the time evolution of the dipoles. The second 

term on the right-hand side is a kinetic energy of the additional dipolar degrees of freedom. The 

last two terms correspond to the potential energy of the dipoles and their polarization self-

energy. For each single induced dipole the Lagrangian function yields an equation of motion: 

0
   


i
i i

i i

L
M

μ
μ E

μ 
,         (5.19) 
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This equation of motion is formally that of a harmonic oscillator subjected to a field 0

iE . The 

extended set of equations of motion for both iμ  and ir  is integrated by a standard 

computational method as described above. 

Self-consistent method. At each time step the self-consistent method minimizes the total 

electrostatic energy in an iterative fashion only with respect to electronic polarization degrees of 

freedom represented by the induced dipoles. Since the induced dipoles µi on all other atoms (i = 

1, … N) are also sources of electrostatic field contributions, one arrives at a set of N implicit 

vector equations for the self-consistent field:  

 1; NFμ μ r r ,          (5.20) 

where  1 Nμ μ μ  denotes the set of induced dipoles and the dependence on the 

configuration  1 Nr r . The last equation is adjusted by introducing a relaxation (mixing) 

parameter ω:  

   1 ωF   μ μ μ .         (5.21) 

At each MD time step the configuration of all atomic nuclei in the system is kept fixed, while 

the polarization energy is minimized to fulfill the condition:  

( ) ( 1) ( )

1maxN j j j

i i i C

    μ μ μ         (5.22) 

where C is an arbitrarily chosen constant, which serves as criterion for the convergence of the 

polarization energy associated with the induced dipoles.  

 

5.5 Representation of the solvent  

Conventional non-polarizable models of water such as the simple point charge force field 

(SPC),
181

 or the three-point transferable intermolecular potential (TIP3P)
182

 are based on fixed 

atom-centered charges and have two significant limitations. One of them is that such 

simplification leads to insufficient flexibility of the description of the molecular charge 

distribution and results in an electrostatic potential of limited accuracy.
198 

Another shortcoming 

is related to the fact that such models lack the property of an instantaneous electronic response 

to the molecular environment, in striking disagreement with reality. For example, it is 

experimentally known that the dipole moment of water changes from 1.85 Debye
199

 in the gas 

phase to 2.1 Debye for the water dimer,
200

 to higher values around 2.6 Debye for small water 

clusters,
200

 and finally 2.95 Debye for bulk water.
201

 Molecular dynamics simulations of the 

dielectric properties suggest values of the dipole moment around 2.5 Debye
202,203

 for liquid 

water in order to effectively reproduce bulk thermodynamic properties of water in biomolecular 

simulations.
182

 As non-polarlizable force fields are not sufficiently flexible to reproduce all 
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pertinent properties of water, the latter choice is at the expense of correct electrostatic 

potentials.  

This conflict can be solved by introducing electronic polarization into the point charge water 

models.
204

 Polarizable water models do a better job with reproducing molecular dipoles in 

contexts where the hydrogen bonding network of room-temperature bulk water is either 

partially destroyed or significantly perturbed.
200,205

 Polarizability is essential for obtaining 

accurate energetics in the vicinity of highly polar moieties and small ions.
206,207

 A recent MD 

study demonstrated
208

 that the structure of ideal B-DNA in the polarizable water model 

POL3
209

 (three-point charges per molecule) converges to the experimental structure with a 

much lower RMSD compared to the standard non-polarizable TIP3P.  

The POL3 model treats atoms as isotropically polarizable in the spirit of a shell model where 

the induced dipole is constructed from two point charges connected via an elastic spring located 

at the nucleus.
210

 In addition to reorientations of water molecules with typical experimental 

times of several picoseconds,
76

 this force field captures the fast electronic response and has to 

be adjusted at each integration time step (typically 0.5–2 fs); the latter is essential for ET.
74

 The 

TIP3P model is able to simulate only reorientational polarization. The present study attempts to 

account also for the effect of a quasi-instantaneous electronic polarization on the solvent 

reorganization energy and compares results from the two water models TIP3P (non-polarizable) 

and POL3 (polarizable).  

 

5.6 Assignment of charges  

A key issue of all force fields is the assignment of atomic charges. Non-polarizable force 

fields are commonly employed when one treats biomolecules in MD studies. The success of 

non-polarizable force fields based on the effective two-body additive potentials, see Eqs. (5.3)-

(5.7), is widespread.
191–194

 For instance, the AMBER force field relies on ab initio Hartree-Fock 

6-31G* calculations to derive RESP atomic charges.
191,211,212

 Therefore, it would seem natural 

to derive charges for polarizable models in a related manner. The charges used in non-

polarizable calculations systematically overestimate dipole moments because they implicitly 

include electronic polarization effects.
213,214

 In case of DNA simulations, the scaling of the 

charges of nuclear bases by a factor of 0.9 yields approximately the charges used in polarizable 

force fields.
215

 However, such empirical scaling cannot be a satisfactory solution since scaling 

factors need not be transferable. Therefore, a relatively sophisticated procedure is employed to 

derive atomic charges; see Appendix B for details. At the basis of this procedure lies the 

suggestion of Warshel
216

 to represent the polarization energy with the help of induced dipoles 

with an isotropic polarization, as introduced by Applequist.
210

 In this scheme one first 

calculates the electrostatic potential (ESP) of a molecule in the gas phase at an accurate 

quantum mechanical level, employing DFT (B3LYP)
217

 calculations with the cc-pVTZ basis 
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set;
218

 then one subtracts the contribution to electrostatic potential due to self-polarization of the 

molecule before the potential is used for determining the atomic charges.
219

 As demonstrated,
219

 

organic molecules or fragments of biomolecules can be incorporated into the library of the 

polarizable force field following this procedure.  

The present work used two all-atom force fields (FF) that are implemented in the program 

package AMBER 8:
220

 

(i) ff99, which is the 1999 version of the force field by Cornell et al.,
191

 with the same 

atom types, topologies (except for torsional parameters) and charges as the earlier 

version ff94.
191

 

(ii) ff02, which is a polarizable variant of ff99. The charges are closer to values in the 

gas phase than those in the non-polarizable force fields. Polarizable dipoles based on 

isotropic atomic polarizabilities are assigned to the atoms to represent the bond 

polarization in the environment of a condensed phase. The ff02 force field uses 

interactive polarization, which includes the mutual effects of polarizable sites within 

a molecule (intramolecular polarizability), in addition to the polarization induced by 

the external field. 

 

5.7 Treatment of electrostatics  

The calculation of electrostatic interactions forms the most time-consuming part of a 

molecular dynamics simulation due to the long-range character of Coulomb interactions, which 

fall off as the inverse of the distance between a pair of charges. In consequence, more solvent 

molecules surrounding the solute have to be taken into account to estimate correctly the 

electrostatic interactions in the system. Numerous approximations have been developed in an 

attempt to decrease the computational efforts.
190,221,222

 They can be classified according to two 

categories: truncation methods and Ewald summation methods.   

Truncation methods neglect electrostatic interactions between two atoms at a separation 

beyond a threshold also referred to as “cutoff” distance rcut.
223,224

 The interactions can be 

abruptly truncated at the cutoff distance or smoothed by different schemes.
225

 The truncation 

methods scale as O(N
2
) with the size of the system and become extremely expensive when the 

size of the system increases. In addition to a higher demand of computational ressources, they 

introduce numerous artifacts.
226

 For example, trajectories become unstable and biomolecules 

tend to exhibit unphysical behavior.
87

 Therefore, truncation methods are no longer used in MD 

simulations. 

Instead, the Ewald summation method
227

 is now widely employed to handle the problem of 

long-range interactions. The method was originally developed to treat the interactions of 



Chapter 5 Molecular Dynamics Simulations. Methodological Aspects 53 

particles in a box and with periodic images. Ewald-based methods decompose the electrostatic 

Coulomb interactions of the form 1/r into a sum of two error functions: 

   erfc erf1 r r

r r r
  ,          (5.23) 

where the complementary error function is given by erfc(r) = 1 – erf(r).  

The benefit of this decomposition is that erfc(r)/r, which gives rise to the “direct space sum”, 

decays very fast, and therefore, a short cutoff can be used to compute this term. The other term 

erf(r)/r, gives rise to the “reciprocal sum”; its terms do not decay fast but vary very smoothly 

and therefore can be computed via Fourier transforms. The Particle Mesh Ewald (PME) 

method, introduced by Darden et al.
222

 is a variant where one computes the reciprocal part very 

efficiently using Fast Fourier Transform routines (FFT). The electrostatic forces computed in 

the reciprocal space sum are then interpolated back to real space via B-splines. The PME 

method scales as O(NlnN), which is considerably faster than the O(N
2
) methods with a cutoff. 

PME provides stable DNA simulations up to microseconds
228

 and is mainly used in expensive 

biomolecular simulations with explicit solvent. 

 

5.8 Periodic boundary conditions  

Periodic boundary conditions can be used to simulate bulk properties of large molecular 

systems surrounded by a solvent as they bypass the problem of simulating systems in “water 

droplets” with extremely high surface tensions and artificial densities.
220

 Instead of considering 

a single cell containing the dissolved solute, periodic boundary conditions treat an array of 

replicas, infinite in three dimensions. All these cell images are identical and the molecules 

inside exhibit synchronous movements with their original-cell counterparts. This approach 

leads to a sufficiently realistic representation of systems in a condensed phase; it is the most 

efficient method currently available for such MD simulations. 

 

5.9 Temperature coupling algorithm 

The absolute temperature T of a molecular system that contains N atoms is related to the total 

kinetic energy: 

2

1

1

2 2

i=N

i i
f B

i=

m v
N k T= ,         (5.24) 

where Nf  is the number of degrees of freedom of the molecular system. A popular schemes to 

control the temperature is the Berendsen coupling algorithm,
229

 which is based on a coupling of 

the molecular system to a bath with a reference temperature T0. One invokes: 
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0T TdT

dt τ


 ,          (5.25) 

where τ is a time parameter that controlls the rate of the velocity scaling when the current 

temperature T deviates from T0. This method is convenient for creating a correct initial 

temperature distribution. It was applied in the present work for all calculations of the solvent 

reorganization energy.  

 

5.10 Pressure coupling algorithm 

A real solvated molecular system changes its volume in order to maintain a constant 

pressure. In such NPT simulations the volume of the unit cell, applied with periodic boundary 

conditions, changes according to the pressure-controlling algorithm. This scheme is similar in 

spirit to the temperature coupling algorithm just described.
229

 However, here the volume of the 

unit cell is adjusted in small steps and the positions of all atoms are isotropically scaled. 
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6 Solvent Reorganization Energy in Marcus Two-

spheres Model 

6.1 Challenging electronic polarization 

In recent years much effort was invested in calculations of the solvent reorganization energy 

s, a key parameter of electron transfer (ET) theories ever since the pioneering work of 

Marcus.
93

 The solvent contribution s forms the major part of the overall reorganization energy. 

Systems of increasing complexity have been treated theoretically, from simple ionic solute 

models
92

 to complex systems of biological interest, e.g. proteins
230

 or DNA oligomers.
112, 

168,176,177
 The classic Marcus continuum model

93
 relates the solvent reorganization energy to the 

high-frequency dielectric constant, predicting a strong inverse dependence on the dielectric 

constant in highly polar solvents like water. As the high-frequency dielectric constant is related 

to the molecular polarizability through the Clausius-Mossotti relation,
231,232

 accounting for the 

electronic polarization in a theoretical approach should notably affect s. Incorporation of the 

molecular polarizability of the solvent due to the spatial variation of the electrostatic potential 

in the vicinity of the solute is an essential condition for estimating s.  

Several methods have been employed to tackle this problem, like a dielectric continuum 

model of the solvent
112,168,176,177

 (see Section 4.1) or a more sophisticated description of the 

solvent in terms of a local response function
168,233

 Ambigious aspects of implicit solvent 

(continuum) models are (i) the assignment of dielectric constants to regions
112,176 

in order to 

represent the heterogeneity of the solvent in the vicinity of the solute and (ii) the controversial 

definition of the solute cavity in the dielectric medium.
168,176

 As a result, in case of complicated 

systems like DNA, s values may vary by factors of up to 2–3, depending on the choice of 

parameters.
112,168,176 

Atomistic simulations offer an alternative
88–90

 that affords an explicit 

treatment of the aqueous environment without any ad hoc parameterization. Incorporation of 

non-polarizable force fields for water, which is a common practice to reduce computational 

efforts, leads to the substantial overestimation. of the solvent reorganization energy.
187,233 

Thus, 

the original (unscaled) s value, 1.68 eV, obtained recently
91 

from a simulation of ET in a DNA 

hairpin complex using a non-polarizable force field deviates substantially, almost 0.5 eV, from 
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the experimental estimate, 1.22 eV.
234

 To bring the resulting s values in accordance with 

experimental data or with results from a dielectric continuum model, a rescaling factor has been 

introduced to account for electronic polarization in a global post-hoc fashion.
91,187 

 

Such uniform scaling can be always questioned as an adequate approach for strongly 

inhomogeneous solutes, which comprise regions of different polarizability, e.g. proteins or 

DNA oligomers. In the middle of the 1980s, King and Warshel pointed out
92

 that accounting for 

the electronic polarizability of the solvent substantially reduces s, but the outcome of later 

computational studies contradicted this result.
88,89

  

The present study re-investigates the approach to the solvent reorganization energy svia 

molecular dynamics (MD) simulations, resorting as a first step to a popular simplified model of 

a solute,
89,235 

where the DA complex is chosen to approximate the two-spheres model of 

Marcus.
93

 

 In the present chapter charge separation (CS) and charge recombination (CR) processes are 

explored via MD calculations with an atomistic description of a polarizable aqueous solvent 

and compared with predictions of the Marcus dielectric continuum model. The results from 

polarizable and non-polarizable solvent models for various DA distances reveal that they differ 

by an essentially constant scaling factor,
141b,185,186 

which incorporates the optical dielectric 

constant at a value close to experiment.
104

  

 

6.2 Two-spheres model parameters 

To estimate the solvent reorganization energy s of an electron transfer reaction, Marcus 

introduced a simplified representation of donor and acceptor as spheres of radii aD and aA, 

respectively, with point charges in their centers, at a distance RDA from each other (Figure 6.1). 

With Δe being the charge transferred from the donor to the acceptor, this model yields
74,93

 

 

Figure 6.1. Sketch of a two-spheres model solute immersed in an aqueous medium of 

randomly orientated solvent dipoles. The neutral-pair state (NP) that represents the initial 

state (qA = qD = 0 e) of a charge separation (CS) reaction is depicted. 
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solvent reorganization energy given by Eq. (2.34), which relates s to the static 0 and the high-

frequency (optical) dielectric constant  of the solvent i.e. the relative permittivities at zero and 

very high frequencies, respectively.  

To describe a simplified solute, which does not undergo any structural changes during MD 

runs, K. Ando (KA) had suggested a model.
235

 In a first step, the present study is aimed at 

reproducing those MD model parameters as closely as possible with the available software. 

Therefore, the DA pair, immersed in a solvent box with periodic boundary conditions, was 

represented by two spherical cavities, defined by Lennard-Jones potentials U(r) = D0{(/r}
12

 – 

(/r}
6
}, as implemented in the program package AMBER 8.

220
 The parameters of these two 

spherical “potential wells” were identical to those chosen by KA:
235

 D0 = 2 kcal/mol and  = 7 

Å. All van der Waals interactions of the solute with atoms of the solvent as well as between 

donor and acceptor were treated
220

 as in that previous MD model.
235 

The RDA distance was 

restrained to the desired values by a harmonic potential with a force constant of 10000 

kcal/mol·Å
2
. In the ion-pair (IP) state, the point charges qD = 1 e, qA = –1 e were located at the 

centers of the spheres; in the neutral-pair (NP) state qD = qA = 0 e. The masses of the D and A 

spheres were set equal to those of N,N-dimethylaniline (C8H11N) and anthracene (C14H10), 

respectively, as in the original works on photoinduced intermolecular electron transfer.
235,236

  

 

6.3 Molecular dynamics simulations  

For the non-polarizable representation of the aqueous environment, the standard additive 

AMBER force field ff94
191 

together with the TIP3P model of water
182

 were employed. In case 

of the MD simulations with polarizable description of the medium, the non-additive force field 

ff02, which is the polarizable variant of ff99
191,219,237 

and the POL3 model of water
209

 were used. 

The polarizabilities of the solute, namely the “spheres” D and A, were always set to zero. The 

system was created in module leap of AMBER 8 and then equilibrated with the module 

sander,
220

 following a previously described procedure.
235

 

During the heating stage hydrogen-containing bonds of water were always constrained with 

the SHAKE algorithm
238

 and the temperature was increased from 0 K to 300 K within 50 ps, 

using a NVT ensemble coupled to a heat bath with a Berendsen thermostat.
229

 Here and 

elsewhere the time steps of the MD integration were 0.5 fs, unless explicitly stated otherwise. 

The next step was an equilibration run of 120 ps in a NPT ensemble with rigid solvent 

molecules. After the density had converged, atomic velocities were rescaled to 300
 
K,

89
 

employing an Andersen temperature-coupling scheme.
239

 Subsequently, rescaling to the target 

temperature of 300 K, with a relaxation time parameter of 0.4 ps, took place 15 times, after 

each 2000 steps of 0.25 fs. Then a final equilibration run of 20 ps was performed at 300 K in a 
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NVT ensemble, employing a Berendsen thermostat.
229

 Finally, a NVE production run of total 

length 50 ps was initiated in a NVE ensemble. 

Three types of models were explored, varying the type of the solvent, the number of water 

molecules, and the shape of the unit cell. To study CS and CR processes, for each model two 

trajectories, for the NP and the IP state, respectively, were produced. The three models were: 

(KA') a cubic box with edges of 25.0 Å containing 500 TIP3P water molecules, following 

an earlier setup.
235

 With this choice of parameters, the density equals that determined 

for pure TIP3P water, 0.982 g/cm
3
.
182

  

(TIP3P) a cubic box with edges of 44 Å containing 3000 TIP3P water molecules. The density 

was set to 1.07 g/cm
3
 as obtained from our MD equilibration results on the two-

spheres model, see Figure 6.2.  

(POL3) A rectangular box of 424351 Å
3
 containing 3000 POL3 water molecules. The 

density was set to 1.00 g/cm
3
, as obtained from our MD equilibration results on the 

two-spheres model.  

Simulations (KA') and (TIP3P) were carried out with the package NAMD (Version 2.6b1)
240

 

and a smooth cutoff of 12.0 Å, both for electrostatics and the non-bonded interactions, with the 

switching function activated at a distance of 11.0 Å. Trajectories (POL3) were produced with 

the package AMBER 8,
220

 invoking the particle mesh Ewald method to describe electrostatic 

interactions,
222,241,242

 an iterative scheme for treating the induced dipoles, and an atom-based 

cutoff of 12.0 Å for the non-bonded interactions and the direct part of the particle mesh Ewald 

procedure. These initial trajectories were generated for the NP state of the CS reaction and for 

the IP state of the CR reaction.  

 

Figure 6.2. Convergence in time of the density of water in the unit cell (a) during the 

equilibration stage, shown for the typical donor-acceptor distance RDA = 8 Å. Line (b) 

illustrates the equilibration level obtained by K. Ando with the same setup, see Ref. 235.  
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Along each production trajectory (KA'), (TIP3P), or (POL3), the snapshots were recorded at 

intervals of 2 fs. The root-mean-squares (rms) fluctuations of the resulting kinetic temperatures 

were found in the range of 3–4 K. Conservation of the total energy was monitored via (i) the 

rms deviation of the total energy E(rms), which was always below 0.3 kcal/mol, and (ii) the 

ratio E(rms)/KE(rms), with KE(rms) being the rms deviation of the kinetic energy, which 

was always below 0.005. These thresholds, typical for MD simulations of similar systems,
222,241

 

showed that the total energy was well conserved throughout the production runs. 

 

6.4 Trajectory analysis and evaluation of λs 

Each recorded snapshot was further submitted to a single-point energy calculation, simulated 

as a single MD step of 0.005 fs, with the charges corresponding to the complementary state of 

the ET reaction to be studied. All other parameters were preserved identical to the ones from 

the corresponding production runs of the original MD simulation. The difference U between 

the total solute-solvent interaction energies of final and initial states of the ET reaction, 

evaluated at the same nuclear positions of the solvent, is referred to further on as “potential 

energy gap” (Figure 6.3). For example, in the case of the CS trajectory, the initial and final 

states of each such calculation would be the corresponding NP and IP states of the DA 

complex. During such a short single MD step, the nuclei essentially preserve their positions and 

the kinetic energy remains constant, as can be monitored by a negligibly small change, ~0.001 

U UU U

 

Figure 6.3. Sketch of the parabolic Gibbs free energy curves of the Marcus model, indicating 

the free energy change G° upon charge transfer, the reorganization energy λs, and the 

potential energy gaps 
CS

U  and 
CR

U   along a reaction path from the initial to the final 

state of an electron transfer reaction within the two-spheres model. 



Chapter 6 Solvent Reorganization Energy in Marcus Two-spheres Model 60 

kcal/mol, of the total kinetic energy of all particles in the simulation box. Therefore, one can 

identify this “potential energy gap” as the “vertical” transition between potential energy 

surfaces of donor and acceptor states (Figure 6.3).  

In the (POL3) simulations with a polarizable force field, an iterative method was invoked to 

determine the induced dipole moments.
242

 To ensure good energy conservation during the NVE 

production runs, the dipole convergence criterion was set to 10
-7

 Debye. The same convergence 

threshold was employed in the subsequent single-point calculations, which resulted in 7–12 

iterations per snapshot along each trajectory.  

Recording the potential energy gap (Figure 6.3) is a crucial aspect in the evaluation of the 

solvent reorganization energy via an atomistic simulation that involves a polarizable force 

field.
88,89

 How accurate the gap can be evaluated is intimately related to the method used to 

determine the relaxation of induced dipole moments. The most economical approach is a 

Lagrangian scheme (a modified Car-Parrinello method where fictitious masses are assigned to 

the charges that represent the induced dipole moments),
242,243 

which was employed during the 

initial phase of this work. (The fictitious mass parameter was set to 0.33 kcal/mol·ps
2
/Debye

2
 

and the time step to 0.1 fs.) However, while recording potential energy gaps, it was noted that 

the induced dipole moments oscillated in response to the instantaneous rearrangement of the 

DA charge distribution (Figure 6.4). These oscillations make the evaluation of the solute-

solvent potential energy rather inaccurate. Therefore, despite of its rather high computational 

cost, one had to resort to an iterative scheme,
242

 where at each MD time step the induced 

dipoles were adjusted to minimize the total electrostatic energy of the system.  

(I)  The solvent reorganization energy was calculated by averaging the potential energy gap 

U separately along the equilibrium trajectories for the NP and the IP states (which 

correspond to CS and CR processes, respecively). The following formula was used:
147 

 

UCR , eV¯ UCR , eV¯

 

Figure 6.4. Potential energy gap –ΔUCR calculated for a randomly selected IP snapshot, 

invoking the extended Lagrangian scheme for the induced dipoles (see text).  
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( ) / 2s CR CS
U U       (6.1) 

This equation directly embodies the Marcus picture of two intersecting potential energy 

curves (Figure 6.3).  

(II)  Alternatively, the solvent reorganization energy was calculated by averaging the standard 

deviations  of the potential energy gaps as obtained by method (I):
147

 

2 2( ) / 4s CS CR Bk T      (6.2) 

Method II assumes that (i) the solute-solvent potential fluctuates in the vicinity of its 

average value during MD simulations and (ii) its thermal fluctuations exhibit a Gaussian 

distribution.
165

 The two values for the forward and the backward reaction are averaged in 

order to facilitate a direct comparison with the results obtained by approach (I).  

(III) Finally, the solvent reorganization energy was evaluated through the integration of the 

power spectrum:
5,235

 

 
0

4
s d J   





  . (6.3) 

The spectral density J() is obtained via a cosine transformation of the time correlation 

function of the potential energy gap U:  

       
0

8
0 cosB

cl

k T
U U t d t J   





      (6.4) 

Here,    U t U t U      is the fluctuation of the potential energy gap U from its 

(thermal) average U . It is noteworthy, that Eq. (6.3) is alternative representation of Eq. 

(4.15), with the only difference that it utilizes autocorrelation function in a normalized 

form. This method, along with a separate evaluation of the solvent reorganization energies 

for CS and CR processes, reveals which modes of the solvent contribute to s. We will 

present the spectral density in normalized form:
235

  

     
0

/c  with  .J J c d J    


      (6.5) 

 

6.5 Distance dependence of λs in charge separation (CS) reaction  

Using a charge separation (CS) / charge recombination (CR) reaction, as a first step before 

switching to the model (TIP3P) with a non-polarizable force field for water, the results of 

model (KA') are compared to those of that earlier study.
235

 Subsequently, the effective optical 
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dielectric constant of water that stems from these studies will be discussed; this effective 

dielectric constand would have to be chosen in a Marcus treatment to reproduce these results. 

Finally, the effect of a polarizable force field for water will be addressed by comparing the 

present results from models (TIP3P) and (POL3). 

In an attempt to reproduce the results of KA
235

 for a similar two-spheres model of a CS/CR 

reaction, a set of trajectories for model (KA') with a TIP3P water solvent at density of 0.982 

g/cm
3
, was generated. Inspection of Table 6.1 shows that the present data for model (KA') 

closely reproduces those results reported earlier,
235

 with few minor differences. The present 

average svalues [Table 6.1, model (KA'), method (I)] agree up to 0.1 eV with the earlier 

results,
235

 corroborating that the present model variant and the computational protocol used 

indeed match the original one. The resulting values of the reorganization energy also follow the 

expected trend, namely, they increase with the DA separation.  

Note, however, that the standard deviations (SD) of the svalues of model (KA') are about 

an order of magnitude larger (Table 6.1) than those reported previously.
235

 Nevertheless, one 

notes that the present notably larger SD values are in full agreement with the physical picture 

underlying method (II) where the SD value defines the curvature of potential surfaces of states 

NP and IP in the vicinity of the minima. Unlike the earlier results,
235

 the present svalues for 

 

Figure 6.5. Solvent reorganization energy λs for a charge separation process represented by a 

two-spheres model and calculated with method (II). Comparison of various model results and the 

corresponding linear relationships, fitted to the inverse RDA
–1

 of the donor-acceptor distance (see 

text): (a) (TIP3P) model, (b) Marcus model, Eq. (2.34), with dielectric constant ε∞ = 1, (c) 

(POL3) model, (d) Marcus model with dielectric constant ε∞ = 2. To the accuracy of the plot, the 

linear relationship fitted to the (TIP3P) results, scaled with <  >I,II = 1.80, coincides with curve 

(c). Note, that methods (I) (Fig. 6.6) and (II) (Fig. 6.5) deliver almost identical results for λs 

(Table 6.1). The corresponding slopes (see Table 6.4, next section) are hardly distinguishable in 

corresponding figures. 
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model (KA') calculated with method (II) based on standard deviations of the energy gap, are 

consistent within 0.2–0.3 eV with the solvent reorganization energies obtained by method (I). In 

contrast, if one applied method (II) to SD results of the original KA set, the resulting svalues 

would be two orders of magnitude smaller than the corresponding values determined by method 

(I); this casts some doubt on the standard deviations reported previously.
235 

 

It is noteworthy, that standard deviations obtained by method (I) [Table 6.1, models (KA') to 

(POL3)] were calculated as average SD values for the CS and CR gaps,  = (CS
2
 + CR

2
)
1/2 

/ 2. 

The results obtained from thermodynamic integration show
92

 that despite the different 

amplitudes of the potential energy gap fluctuations for the CS and CR processes, the free 

energy surfaces of the corresponding processes exhibit similar curvatures. Therefore method (I) 

yields reliable average values of the solvent reorganization energy.  

In Table 6.1 we chose to characterize the uncertainty of the average s values of method (II) 

not by the standard error, but rather by the range  = |s
CS

 – s
CR

|/2 , that results from the fact 

that forward and backward ET processes are not symmetric, s
CS

  s
CR

. Individual values of 

potential energy gaps, as well as the solvent reorganization energies s
CS

 and s
CR

 are provided 

in Table 6.2. Both methods (I) and (II) may further be corrected to account for the non-linear 

response of the solvent to an instantaneous charge transfer.
101

 Such corrections, which are 

beyond the assumptions of Marcus theory considered in this work, would not alter the values 

presented in Table 6.1, because they change s
CS

 and s
CR

 in opposite directions, by about 0.1 

eV each.
101

  

Table 6.1. Solvent reorganization energy s (eV) of a charge separation/recombination reaction 

for the range 5–10 Å donor-acceptor distances RDA, calculated with methods (I) and (II) from 

MD trajectories for three models: (KA'), (TIP3P), and (POL3) (see text).  

 KA
a
 (KA')    (TIP3P)    (POL3)   

RDA (I) (I) (II) Δ
b
  (I) (II) Δ

b
  (I) (II) Δ

b
 

5 1.84±0.03 1.86±0.23 2.15 0.48  1.98±0.24 2.21 0.31  1.10±0.18 1.19 0.16 

6 2.27±0.03 2.31±0.25 2.43 0.29  2.47±0.26 2.65 0.31  1.38±0.19 1.41 0.14 

7 2.62±0.04 2.73±0.27 2.84 0.15  2.85±0.28 3.00 0.32  1.59±0.20 1.61 0.13 

8 3.00±0.04 3.05±0.29 3.23 0.32  3.19±0.29 3.19 0.31  1.72±0.22 1.81 0.18 

9 3.21±0.04 3.30±0.30 3.48 0.26  3.41±0.30 3.39 0.32  1.83±0.22 1.84 0.16 

10 3.42±0.04 3.41±0.31 3.69 0.39  3.49±0.30 3.54 0.28  1.98±0.23 1.99 0.15 

a 
Ref. 235. 

b 
The range  = |s

CS
 – s

CR
|/2 characterizes the difference of the s values of charge 

separation and recombination processes that are averaged for obtaining the result of method 

(II). 
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With regard to model (KA') it has to be noted that at DA separation of RDA = 10 Å, the 

periodic box affords only one solvation shell along the direction from donor to acceptor, 

because with a box length L = 25 Å, RDA = 10 Å, and radius a = 3.5 Å of donor and acceptor 

spheres (see subsequent section of the text), one has (L – RDA – 2a) / 2   4 Å left to opposite 

sides of the box. Therefore, model (TIP3P), which features a significantly larger unit cell (44 Å, 

Table 6.3. Solvent reorganization energy s (eV) of a charge separation/recombination reaction 

for the range 5–10 Å donor-acceptor distances RDA, calculated with method (III) from MD 

trajectories for three models: (KA'), (TIP3P), and (POL3) (see text).  

 (KA')   (TIP3P)   (POL3)  

RDA III Δ
a
  III Δ

a
  III Δ

a
 

5 2.13 0.46  2.21 0.30  1.20 0.13 

6 2.44 0.30  2.65 0.32  1.42 0.14 

7 2.82 0.16  3.00 0.33  1.62 0.14 

8 3.25 0.31  3.19 0.32  1.80 0.15 

9 3.49 0.25  3.39 0.33  1.84 0.16 

10 3.70 0.39  3.54 0.31  2.02 0.16 
 

a 
The range  = |s

CS
 – s

CR
|/2 characterizes the difference of the s values of charge 

separation and recombination processes that are averaged for obtaining the result of method 

(III).
 

Table 6.2. Potential energy gaps of ion-pair (IP) and neutral-pair (NP) trajectories forming 

solvent reorganization energy values for models (TIP3P) and (POL3). Solvent reorganization 

energies CR

s   and CS

s were calculated as σ
2
/2kBT where σ is the standard deviation of the 

corresponding potential energy gap. All values are in eV.  

 (TIP3P)  (POL3) 

 IP NP  IP NP 

RDA 
CR

U   CR

s  CS
U  CS

s  
 

CR
U   CR

s  CS
U  CS

s  

5 3.99±0.36 2.53 -0.02±0.31 1.90  2.48±0.27 1.39 -0.27±0.23 0.98 

6 4.92±0.40 2.96 0.01±0.34 2.21  3.06±0.28 1.55 -0.29±0.26 1.27 

7 5.74±0.41 3.32 -0.03±0.37 2.68  3.55±0.30 1.77 -0.38±0.27 1.41 

8 6.39±0.42 3.47 0.00±0.40 2.89  3.98±0.32 1.98 -0.52±0.29 1.63 

9 6.84±0.44 3.72 -0.03±0.40 3.07  4.29±0.32 2.01 -0.59±0.29 1.68 

10 6.93±0.43 3.82 0.02±0.41 3.26  4.59±0.33 2.14 -0.63±0.31 1.84 
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see above) was employed; for that two-spheres model system, the density converged to 1.07 

g/cm
3
 during equilibration (Figure 6.2). Comparison of the results (KA') and (TIP3P) from 

method (I) shows on average the latter s values to be larger at all distances studied, by about 

0.1–0.15 eV (Table 6.1). Not unexpectedly, the improved solvation in model (TIP3P) increased 

the potential energy gaps calculated both for NP and IP states. The s values of model (TIP3P) 

from method (II) showed a slightly flatter distance dependence, with values higher at 

separations RDA up to 7 Å and lower beyond (Table 6.1). The latter observation may be 

rationalized as follows: for states which are not adequately solvated, as for model (KA') at 

larger DA separation, the fluctuations of the solute-solvent potential energy due to thermal 

motion will be larger, resulting in an artificially increased potential energy gap. This seems to 

be especially noticeable for the svalues of method (II) from model (KA') at DA separations of 

8 Å and beyond, where the local potential gradients from the two charges are higher. 

The calculations with model (POL3) using the polarizable force field ff02 followed the same 

protocol as for model (TIP3P). Further on, only the results of the two models (TIP3P) and 

(POL3) will be discussed. When the effect of electronic polarization is represented with a 

polarizable force field for water, the resulting values of the solvent reorganization energy from 

model (POL3) are substantially reduced, to almost half of those from the model (TIP3P), for the 

whole range of DA separations RDA considered (Table 6.1, Figure 6.5 and Figure 6.6). It is 

 

Figure 6.6. Solvent reorganization energy λs (eV) for a charge separation process represented 

by a two-spheres model and calculated with method (I). Comparison of various model results 

and the corresponding linear relationships, fitted to the inverse RDA
–1

 (Å
–1

) of the donor-

acceptor distance (see text): (a) model (TIP3P), (b) Marcus model, Eq. (2.34), with optical 

dielectric constant ε∞ = 1, (c) model (POL3), (d) Marcus model with optical dielectric constant 

ε∞ = 2. To the accuracy of the plot, the linear relationship fitted to the (TIP3P) results, scaled 

with < >I,II = 1.80, coincides with curve (c). 
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gratifying to note that the s results of model (POL3) from methods (I) and (II) agree within 0.1 

eV.  

Method (III) yields the values of the solvent reorganization energy (Table 6.3) via 

integration of the spectral density function (see above), which agree within a few percents with 

the corresponding results of method (II) (Table 6.1). The rather negligible differences likely are 

related to details of the numerical procedure, where the cosine transform of the TCF was 

calculated from the first 5000 points (20 % of the full data set, representing 10 ps). After a 

symmetrization of the data set, a discrete Fourier transform was employed in combination with 

a Blackman window to reduce the bias of the truncation. The resolution of the resulting spectral 

density was 1.67 cm
–1

. 

 

Figure 6.7. (a) Time correlation functions of the deviation  U t  of the potential energy gap 

from its average for charge separation and recombination processes: comparison of neutral-pair 

(NP) state (blue line) and ion-pair (IP) state (purple line) obtained with model (POL3) at the 

donor-acceptor separation RDA = 5Å; (b) the corresponding normalized spectral density 

functions  J  . The scale was chosen to facilitate comparison with the results of Ref. 235 (see 

text). 
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Whereas the solvent reorganization energies calculated with the present polarizable water 

model POL3 differ from those reported earlier with the TIP3P-FQ force field,
89

 the time 

correlation functions from both computational approaches in general are quite similar, for both 

the NP and the IP states. The time correlation function for RDA = 5Å shows a slightly slower 

relaxation in the IP than in the NP state (Figure 6.7), as found earlier.
89

 This trend is preserved 

for larger donor-acceptor distances RDA (Figure 6.8).
89

  

The spectral density functions  J   of the NP and IP states clearly illustrate the qualitative 

differences between the CS and CR processes (Figure 6.7), which do not seem to have been 

reported earlier. The curvatures of the potential energy surfaces are very similar, as is reflected 

by the fact that differences  between the solvent reorganization energies s
CS

 and s
CR

 are 

almost constant, ~0.15 eV, in the range of RDA distances studied [Table 6.1, method (II), model 

(POL3)]. At larger RDA separations, entropic differences, reflected in the differences between 

the spectra of the NP and IP states, become more important, hence imply larger deviations from 

the situation of uniform curvatures of the corresponding “parabolae” that are assumed in the 

 

Figure 6.8. Time correlation functions of the deviation  U t  of the potential energy gap 

from its average for charge separation and recombination processes. Comparison of (a) neutral-

pair (NP) and (b) ion-pair (IP) states for different donor-acceptor separations RDA (Å) obtained 

with model (POL3).  
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Marcus model.
93

 The fact that entropic differences between NP and IP states increase with 

distance RDA was not discussed in the context of earlier work,
92

 where the equality of curvatures 

of free energy parabolae was tested for relatively small separation distance of 5 Å within the 

two-spheres model. Indeed, the electrostatic field of two closely located charges of A and D 

spheres in the IP state is negligibly small above mid-range distances. The latter results in 

relatively small differences between the electrostatic fields of the NP and IP states and a similar 

mobility of the surrounding water molecules; note the similarity of the spectra of Figure 6.7. At 

large donor-acceptor separations RDA in the IP state stronger gradients of the electrostatic field 

in the vicinity of the solute reduce the mobility of the surrounding water molecules, which leads 

to increasing deviations from the Marcus picture of parabolae of equal curvature; see Ref. 244 

and references therein. 

 

6.6 Electronic polarization and effective optical dielectric constant in a CS 

reaction  

The distance dependence of the solvent reorganization energy is one of the crucial aspects of 

ET.
245,246

 Figures 6.5 and 6.6 compare results of methods (I) and (II) for various computational 

strategies. The s values from both the (TIP3P) and the (POL3) models vary linearly with RDA
–1

 

as predicted by the dielectric continuum model of Marcus.
74,93

 The results for both methods (I) 

and (II) are very similar; cf. Figures 6.5 and 6.6. Details of the various least-squares fits are 

provided in Table 6.4. In Figures 6.5 and 6.6, for comparison, are shown the results of the 

Marcus model, Eq. (2.34), for the same two-spheres solute, calculated for the high-frequency 

dielectric constants  = 1 and  = 2, respectively; see Table 6.5. Here, the error bars are due to 

the uncertainty with which the radii aD = aA = 3.18±0.10 Å could be determined from the radial 

distribution functions, calculated as the distance between the center of each sphere, A or D, and 

the oxygen atoms of the surrounding water molecules. These results of the Marcus model show 

Table 6.4. Coefficients A and B of linear fits y = A + Bx of the solvent reorganization energy 

λs (eV) as function of the inverse x = RDA
−1

(Å
–1

) of the donor-acceptor distance.  

Method Model A, eV B, eV·Å R
a
 SD

b
 

(I) (TIP3P) 5.11±0.48 -15.68±3.17 0.998 0.148 

 (POL3) 2.80±0.36 -8.51±2.38 0.999 0.096 

(II) (TIP3P) 4.87±0.52 -13.26±3.63 0.999 0.055 

 (POL3) 2.77±0.27 -7.99±1.87 0.995 0.222 
 

a
  Correlation coefficient of the linear fit of the solvent reorganization energy as function of 

the inverse RDA
–1

 (Å
–1

) of the donor-acceptor distance. 
b
  Standard deviation of the linear fit of the solvent reorganization energy as function of the 

inverse RDA
–1

 (Å
–1

) of the donor-acceptor distance.
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essentially a linear variation with RDA
–1

. The least-squares fit to the (KA) data
235

 on the basis of 

Eq. (2.34) results in an effective optical dielectric constant  = 0.90±0.02 (Table 6.6). This 

value, obtained by means of method (I), underestimates the optical dielectric constant  = 1 

that one expects for a non-polarizable force field.
221

 As the standard deviation of the s values 

of model set (KA)
235

 is too small, method (II) does not lead to meaningful results. Setup (KA') 

respresents our attempt to reproduce the original model.
235

 It resulted in the values  = 

0.89±0.17 for methods (I) and  = 0.83±0.22 for method (II); see Table 6.6. These results are 

still below the expected value,  = 1, but the results of method (I) for models (KA) and (KA') 

are in accordance with each other. Also, taking into account the determined standard deviations, 

both results (KA'), for methods (I) and (II), agree very well with each other and, within the 

reported standard deviations, reproduce the value of the optical dielectric constant for a non-

polarizable force field.  

Similar to previous findings,
235

 the (TIP3P) results for s are uniformly ~0.5 eV larger than 

those of the Marcus model for  = 1; see Figures 6.5 and 6.6. The corresponding effective 

optical dielectric constants,  = 0.91±0.18 for method (I) and 1.07±0.29 for method (II) (Table 

6.6) show similar trends as the values from model (KA'), but now almost symmetrically bracket 

the target  = 1.  

To examine the influence of electronic polarization of the solvent on s, Ando carried out 

MD simulations with the TIP3P-FQ force field of water
247

 where the atomic charges are 

allowed to vary in response to the local electrostatic field. In these simulations, the TIP3P-FQ 

library was slightly modified for technical reasons.
89

 When fitted to the Marcus model, Eq. 

(2.34), the distance dependence of solvent reorganization energies obtained from this 

Table 6.5. Solvent reorganization energy λs (eV) calculated for the Marcus two-spheres model 

(sphere radii aD = aA = 3.18±0.10 Å) in a dielectric continuum medium with optical dielectric 

constants  = 1 and  = 2.  

 λs 

RDA  = 1  = 2 

5 1.63±0.14 0.81±0.07 

6 2.10±0.14 1.04±0.07 

7 2.44±0.14 1.21±0.07 

8 2.70±0.14 1.33±0.07 

9 2.89±0.14 1.43±0.07 

10 3.05±0.14 1.51±0.07 
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polarizable solvent treatment translates into the effective optical dielectric constant   = 

1.11±0.07 (Table 6.6).  

The computational strategy elaborated for model (TIP3P) was further employed but 

accounted for electronic polarization with the polarizable water model POL3, which features 

fixed charges and induced dipoles on each atom. The latter model yielded   = 1.66±0.45 for 

methods (I) and   = 1.76±0.40 for method (II) (Table 6.6) from the distance dependence of 

the solvent reorganization energy. Both values of the present study are substantially closer to 

the conventional experimental estimate of the high-frequency dielectric constant for water, 

1.79,
104

 than the value   = 1.11±0.07 previously derived from the TIP3P-FQ calculations. In 

this context, it is noteworthy to emphasize once again that the present improved results for the 

effective optical dielectric constant are likely a consequence of the computational procedure 

that was chosen for estimating the potential energy gap, rather than an argument for the 

superiority of one solvent model over the other.  

When the solvent reorganization energy was determined from MD simulations with a 

(standard) non-polarizable force field,
89,187

 then in various cases the effect of the electronic 

polarization of the solvent has been introduced in an a posteriori fashion
141b,185,186 

by applying a 

scaling factor, derived from the Marcus model:  

Table 6.6. Effective high-frequency dielectric constants   and   derived for charge 

separation and recombination from calculated results for the solvent reorganization energy s 

of various solvent models, applying methods (I) and (II). 

 Model (I) (II) 

a  KA
b
 0.90±0.02 – 

 (KA') 0.89±0.17 0.83±0.22 

 (TIP3P) 0.91±0.18 1.07±0.29 

 TIP3P-FQ
c
 1.11±0.07 – 

 (POL3) 1.66±0.45 1.76±0.40 

d   1.79±0.29 1.81±0.25 
 

a
   From fits of the distance dependence of s to the Marcus model, Eq. (2.34).  

b
   TIP3P (non-polarizable force field). Standard deviation calculated from the original data of 

Ref. 235.  
c
   TIP3P-FQ (polarizable force field). Standard deviation calculated from the original data of 

Ref. 235. 

d
   From scaling the result for s from model (TIP3P) (non-polarizable force field) to the result 

obtained with model (POL3) (polarizable force field).
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   1 1 1

0 01     

            (6.6) 

Here,   denotes yet another effective high-frequency (optical) dielectric constant, that 

differs from   which was derived from fitting the distance dependence of the solvent 

reorganization energy (see above). The scaling factor  can be derived from quantum 

mechanical considerations with model Hamiltonians, where one separates slow orientational 

and fast electronic polarizations of the solvent.
141b,185,186 

In a more straightforward fashion, one 

can also obtain  from Eq. (2.34) when one relates s values obtained with polarizable and non-

polarizable solvent models. Various scaling factors have been suggested to bring theoretical 

results closer to experiment, (exp.)   = 1.79
91,187

 or    = 1.11
91

 (see above). In these 

cases, as in the present work, the experimental value 0  = 78.4 (water at 298 K) was used.
91,187

 

However, rather than introducing such scaling ad hoc, it seems more consistent to derive a 

scaling factor  by relating two s values from corresponding simulations with polarizable and 

non-polarizable force fields, e.g. as in models (POL3) and (TIP3P) of the present work (Table 

6.1). The scaling factors  obtained in this fashion translate to effective optical dielectric 

constants   = 1.790.29 for method (I) and 1.810.25 for method (II), Table 6.5. These latter 

results are in excellent agreement with the standard experimental value   = 1.79 for water.
104

 

Figures 6.5 and 6.6 also show the results of model (TIP3P) [method (II)], rescaled with the 

average effective high-frequency dielectric constant I,II   = 1.800.27 as obtained with 

methods (I) and (II). In both cases, the rescaled (TIP3P) data sets essentially coincide (to the 

accuracy of the plot) with the corresponding results obtained for model (POL3) [linear fit (c) of  

either figure]; for details see Table 6.7. 

Ultimately, one would like to derive an average effective high-frequency dielectric constant 

by relating results of classical MD calculations with a non-polarizable force field to those of ab 

initio MD calculations instead of classical MD with a polarizable force field. For some time, 

this likely may not be achievable for realistic models due to the computational effort needed. 

Nevertheless, a rough estimate of the optical dielectric constant, obtained for a charge 

separation reaction in a photosynthetic reaction center (Rps. viridis) in the latter way, yielded a 

value   = 1.9,
141b

 in fair agreement with our estimate of the average effective high-frequency 

dielectric constant I,II   = 1.800.27 for water.  

Overall, the present findings on the solvent reorganization energy seem to corroborate the 

quality of the POL3 water model, which tends to underestimate the electronic polarization. The 

latter property has been related
213

 to the neglect of mutual induction of atoms in 1-2 and 1-3 

positions in the AMBER force field ff02.
191,219,237

 In consequence, the resulting effective high-

frequency dielectric constant may slightly underestimate the experimental optical dielectric 

constant.  
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The appreciable reduction of the solvent reorganization energy, by ~45 %, found when the 

polarization of the solvent is properly accounted for, nicely agrees with the dielectric continuum 

model of Marcus.
93

 The present results are at variance with those of quite a few earlier 

simulations, which either resulted in smaller (~30%)
184 

or almost negligible (6%)
88

 changes 

from those of reference calculations with non-polarizable force fields. In the former case,
184

 

Monte-Carlo simulations, aiming at a generic solvent, modeled electronic polarization by Drude 

oscillators.
248

 The latter studies
88

 used the polarizable TIP4P-FQ water model,
247

 which 

employs adjustable atomic charges, as mentioned above.
89

  

King and Warshel were the first to demonstrate and analyze the effect of electronic 

polarization on values s of the solvent reorganization energy that were obtained from MD 

simulations.
92

 In contrast to the present work, the simpler model of that earlier study did not 

afford a quantitative reproduction of the dielectric continuum model which requires a reduction 

by ~45 %. King and Warshel simulated the polarizability of water via induced dipoles
249

 and, 

probing the two-spheres donor-acceptor model at a single distance RDA, found a reduction by 

~35 %. This discrepancy may be related either to the choice of a solvent model
249

 or the 

screening parameter introduced in order to reduce computational efforts.
92

 Indeed, the 

computations with the earlier model
92

 are substantially less demanding than the present iterative 

method (see above).  

The response of the surrounding solvent to an instantaneous transfer of charge from the 

donor to the acceptor site comprises two contributions: fast electronic polarization on the 

timescale of femtoseconds and slow orientation polarization on the timescale of ten 

Table 6.7. Solvent reorganization energies λs (eV) obtained for the model (POL3) as well as 

for the model (TIP3P) scaled with the factor < >I,II = 1.80. Results from both methods (I) 

and (II) are shown.  

 (I)  (II)
a
 

RDA (POL3) (TIP3P)
scaled

  (POL3) (TIP3P)
scaled

 

5 1.10±0.18 1.09±0.13  1.19±0.16 1.22±0.17 

6 1.38±0.19 1.36±0.14  1.41±0.14 1.46±0.17 

7 1.59±0.20 1.57±0.15  1.61±0.13 1.65±0.18 

8 1.72±0.22 1.76±0.16  1.81±0.18 1.75±0.17 

9 1.83±0.22 1.87±0.17  1.84±0.16 1.86±0.18 

10 1.98±0.23 1.92±0.17  1.99±0.15 1.95±0.16 

 

a 
The range  = |s

CS
 – s

CR
|/2 characterizes the difference of the s values of charge 

separation and recombination processes that are averaged for obtaining the result of method 

(II).
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picoseconds.
250

 The latter contribution is reproduced in MD simulations with both polarizable 

and non-polarizable force fields. In polarizable force fields, electronic contributions are 

commonly simulated by assigning induced dipoles to atomic centers which effectively reduce 

fixed atomic charges of the force field. The parameters of either type of solvent model are 

adjusted to accurately reproduce static properties. In this way, a non-polarizable force field may 

implicitly account for some aspects of the electronic polarization. However, as demonstrated by 

the present systematic study, such simpler force fields result in a significant overestimation of 

solute-solvent potential energy gap between final and initial states of an ET process, as 

recorded along an MD trajectory. 

It does not seem possible to rationalize here why earlier simulations
88,89 

using the polarizable 

water TIPnP-FQ models lead to results for the effective optical dielectric constant substantially 

different from those of the present work. Both force fields describe the electronic polarization, 

albeit by different mechanisms, via the propagation of induced dipole moments, similar to the 

POL3 polarizable force field
209

 used here. One possibility may be instabilities due to 

oscillations of the polarization contribution (Figure 6.4). After all, the FQ approach
247

 is similar 

in spirit (Lagrangian constraints, fictitious masses) to the “Car-Parrinello” treatment of induced 

dipoles built into AMBER
242,243 

which did not seem to afford the same stability for evaluating 

potential energy gaps (Figure 6.4) as the computationally more elaborate iterative method
242 

ultimately chosen for the present work. The latter method ensures full, stable adjustment of the 

induced dipoles to the new electrostatic field.  

 

6.7 Solvent reorganization energy in a Charge Shift (CSh) reaction  

The present two-spheres model, embedded in an environment described by the water models 

TIP3P and POL3, can be adapted to afford a rough comparison with results of earlier 

computational efforts from our group on the reorganization energy of hole transfer in DNA.
112

 

To estimate the solvent reorganization energy in DNA, a charge shift reaction within the two-

spheres model was employed. The earlier treatment relied on a dielectric continuum 

method.
112,167 

The size of the spheres and range of distances RDA used in the present work will 

furnish an estimate of s for the shift of an electron hole along the π-stack of DNA. The 

currently employed radii of the spheres, 3.18±0.10 Å, are close to the estimate ~3Å for guanine 

bases as obtained from fitting the solvent reorganization energies in those earlier studies on 

DNA.
112

 The range RDA = 5–10 Å covers donor-acceptor distances between guanine units in 

DNA separated by one (6.8 Å) or two (10.1 Å) intervening base-pairs. Nevertheless, despite the 

general similarities between the descriptive geometric parameters of the system (which enter 

the expression for solvent reorganization energy in Marcus two-spheres model), one should 

note that the latter one could serve as a source of preliminary estimates, but require further 

justification. 



Chapter 6 Solvent Reorganization Energy in Marcus Two-spheres Model 74 

Table 6.8 displays the resulting solvent reorganization energies s. The values for model 

(TIP3P) lie in the range from 1.5 eV to 3.1 eV, depending on the separation RDA. In contrast, 

the results of model (POL3) are just about half as large, ranging from 0.8 eV to 1.6 eV. These 

values are 0.3–0.5 eV smaller than the corresponding two-spheres results of the CS and CR 

reactions for the analogous water model (Table 6.1). Method (II) yields slightly higher values of 

s (by ~ 0.2 eV) than method (I). The rather good agreement of the results of model (TIP3P) 

between the two methods in the case of the CS/CR reactions was due to some error 

compensation; the values s
CR 

and s
CS

 of the individual half reactions differ notably (Table 

6.2). In case of a charge shift, the evaluation of the reorganization energy is based only on one 

trajectory and such error compensation will not occur. In contrast, the results of methods (I) and 

(II) for model (POL3) agree substantially better, within 0.06 eV for the whole range of 

distances studied (Table 6.8). This may be due to the specifics of the iterative adjustment of the 

Table 6.8. Solvent reorganization energy s (eV) of a charge shift reaction for various donor-

acceptor distances RDA (Å) from a two-spheres model embedded in TIP3P or POL3 water 

models, determined with methods (I) and (II).  

  (TIP3P)   (POL3)  

 RDA (I) (II)  (I) (II) 

 5 1.52±0.28 1.54  0.81±0.21 0.85 

 6 1.87±0.33 2.03  0.99±0.23 1.02 

 7 2.23±0.36 2.50  1.23±0.25 1.21 

 8 2.52±0.36 2.46  1.35±0.26 1.34 

 9 2.85±0.40 3.07  1.48±0.28 1.54 

 10 3.06±0.41 3.27  1.56±0.29 1.57 

a   0.94±0.24 0.85±0.10  1.85±0.68 1.84±0.14 

SD
b
  0.270 0.166  0.139 0.048 

R
c
  0.990 0.973  0.995 0.989 

d   – –  1.87±0.48 1.94±0.11 
 

a
  From fitting the distance dependence of s to the Marcus model, Eq. (2.34). 

b   
Standard deviation of the linear fit of the solvent reorganization energy as function of the 

inverse RDA
–1

 (Å
–1

) of the donor-acceptor distance.  
c   

Correlation coefficient of the linear fit of the solvent reorganization energy as function of 

the inverse RDA
–1

 (Å
–1

) of the donor-acceptor distance. 

d 
  From scaling the result for s from model (TIP3P) (non-polarizable force field) to the result 

obtained with model (POL3) (polarizable force field).
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electrostatic field in the case of water model POL3, where the reduction of electrostatic energy 

fluctuations caused by thermal motions of nuclei is expected.  

The results of both models, (POL3) and (TIP3P), show the anticipated linear behavior with 

RDA
–1

; for the quality of the least-squares fits see Table 6.8. From the slopes of these linear 

relationships one derives effective optical dielectric constants  , which agree with the 

appropriate theoretical results (1 and 1.79, respectively) within the standard deviations, just as 

for the CS/CR reactions (Table 6.5). If one relates s values from the two water models in a 

point-by-point fashion, one obtains scaling factors , Eq. (6.6), which also give rise to the 

values of the effective optical dielectric constant,   1.9 [methods (I), (II); Table 6.8] that are 

slightly larger than for the CS/CR reaction (Table 6.6).  

Solvent reorganization energies of two particular points, namely for the RDA distances of 7 Å 

(1.23±0.25 eV) and 10 Å (1.56±0.29 eV) [method (I), model (POL3), Table 6.8], may be 

helpful for further comparison with solvent reorganization energies of a charge shift reactions 

in DNA-related systems.
46,112,176,251

 Before doing this, a caveat is in order. The present solute 

model does not undergo any geometrical changes during the MD runs. However, the internal 

reorganization energy of a DNA-derived solute (nucleotides, backbone vibrations) is known to 

contribute to the total reorganization energy several tenths of an electron volt.
46

 From quantum 

chemical calculations,
112

 this internal reorganization energy was estimated at ~0.7 eV for a 

charge shift between two GC base-pairs. On the other hand, the two-spheres model is notably 

more compact than donor and acceptor in a DNA-derived system. Therefore, in the present 

model, donor and acceptor are more exposed to interactions with the nearby solvent than, for 

instance, a cationic guanine unit between adjacent base-pairs in a π-stack. Thus, a larger 

polarization of the neighboring solvent, hence a higher solvent reorganization energy can be 

expected in the two-spheres model. These two effects, missing internal reorganization energy 

and overestimated solvent reorganization energy, partially compensate each other in the two-

spheres model, as the following discussion suggests. 

Experimental reorganization energies for hole transfer between guanines in DNA duplexes 

containing the sequences GAnG or GTnG (n = 1, 2) fall into the ranges 0.72–1.4 eV for n = 1 

and 1.7–2.0 eV for n = 2;
251

 for each n, the lower value corresponds to the sequence GAnG. 

These values indeed are rather similar to the corresponding results of our two-spheres model 

(Table 6.8). For another approximate comparison with experimental data one may refer to the 

(non-symmetric) shift of an electron hole from 9-amino-6-chloro-2-methoxyacridine to a 

guanine unit in the DNA stack.
46

 Those experimental values for the reorganization energy of 

hole transfer from the dye to a guanine, separated by one (AT) base-pair, fell into the range 

0.85–1.20 eV,
46

 which again is close to our estimate for RDA = 7 Å.  

Finally, we compare the present MD results obtained with a polarizable force field for a 

charge shift reaction to results of dielectric continuum models for hole transfer between guanine 
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units in the DNA stack employed.
112,168,176 

As this latter type of modeling relies on a space 

partitioning associated with suitably assigned dielectric constants, results often depend notably 

on this parameterization. This is nicely illustrated in a study
112

 where the dielectric constant εbw 

assigned to the “bound water” region around the DNA stack was varied from 2 to 32. The 

smallest results, 1.21±0.03 eV at RDA = 6.8 Å and 1.46±0.04 eV at RDA = 10.1 Å, obtained with 

εbw = 2, agree well with those of the present two-spheres model (Table 6.8), which in turn are 

expected to overestimate the solvent reorganization energies of DNA systems (see above). 

Thus, results of that dielectric continuum model
112

 seem to overestimate somewhat solvent 

reorganization energies of hole transfer in DNA. Indeed, other studies using dielectric 

continuum models suggested slightly
176

 or notably smaller values.
168

 The latter low values show 

the desired agreement with some experiments
234

 and results derived from a method that relies 

on approximate “polarization structure factors”.
168

 

 

6.8 Conclusion  

In the present chapter a computational protocol for determining solvent reorganization 

energies for complex systems from atomistic simulations was established. The approach relies 

on the use of a force field, which adequately accounts for electronic polarization. While this 

issue has long been understood in principle,
92

 the present results appear to be the first that agree 

quantitatively with the predictions of the two-spheres donor-acceptor model of Marcus.
93

 

According to the present study, it is of primary importance to choose a computational method 

that quantifies the potential energy gap, namely the dipole contribution to the solvent 

polarization at the atomistic level in a reliable fashion. For this purpose, a self-consistent 

iterative treatment of polarization
242

 was successfully employed despite its relatively high 

computational cost.  

Current results for charge separation and recombination reactions demonstrate a strictly 

linear dependence of the solvent reorganization energy s on the inverse of the donor-acceptor 

distance RDA. Unlike other earlier studies discussed in this chapter, the present results for s 

agreed quantitatively with the predictions of the Marcus dielectric continuum model, yielding 

the theoretically expected reduction by ~45% due to electronic polarization effects. The 

distance dependence of s from the present MD simulations with a polarizable water model 

suggests a scaling which is fully consistent with an experimental value of 1.79 for the effective 

optical dielectric constant of water. Thus, it was possible to clarify the situation of controversial 

choices between scaling factors that had been suggested in the literature to facilitate a 

consistency between the results of polarizable and non-polarizable simulations. Overall, a 

computational procedure was established that allows one to determine scaling factors for 

families of related molecular systems. 
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Preliminary results on a charge shift reaction for a two-spheres model yielded estimates of s 

that suggest a substantial reduction of the values of published DNA-related systems. These 

results encourage further applications of the computational strategy elaborated here to estimate 

solvent reorganization energies in complex, heterogeneous systems that involve biomolecules, 

particularly DNA-based donor-acceptor complexes. A fully atomistic modeling avoids the 

ambiguities of continuum methods and the uncertainties when setting parameters for both the 

spatial partitioning and the corresponding dielectric constants. However, such studies put strict 

requirements on the quality of the polarizable force field used. The present model study probed 

(almost exclusively) the polarizable force field POL3 for water, which seems to serve well for 

that purpose. 
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7 Solvent Reorganization Energy in A-DNA and B-

DNA Duplexes 

7.1 State of the art 

In recent years many efforts have been invested into studies of electron transfer (ET) in 

DNA because of its importance for oxidative damage and photorepair processes.
252,253

 Expected 

benefits from possible applications of DNA in nanoelectronic devices are also of current 

interest.
254,255

 As shown by experiments,
48

 electron holes generated in DNA can propagate 

along the π-stack over long distances. The rates of such non-adiabatic hole transfer processes 

were found to depend on the structure of DNA, both on the base-pair sequence and the helical 

conformation.
31,34,35

 Another important source controlling the rate constants is the structural 

relaxation of the solvent that surrounds the donor (D) and the acceptor (A) involved in the 

electron transfer.
94,126

 This relaxation is taken into account through an exponential Franck-

Condon factor (Eq. 3.1) via two key quantities, namely, the free energy difference ΔG° between 

D and A states and the reorganization energy λ.
94,256

  

The contribution of the solvent to the reorganization energy is one order of magnitude larger 

than the contribution of the solute and is usually estimated by dielectric continuum 

models,
112,176,180

 which exhibit serious drawbacks and limitations as discussed in Chapter 4. 

Despite well-known disadvantages, these models still represent the most popular simulation 

method, which, however, delivers contradicting results within a wide range: either a modest 

(less than 0.1 eV) distance dependence of the reorganization energy of ET in DNA,
180

 or a 

prominent change of λs with the D-A distance.
112,168,176

 Experimental results being contradictory 

themselves, e.g. yielding essentially distance-independent values
234,257

 of λs or a notable 

distance dependence,
46,251

 cannot be used to resolve the discrepancies between various 

predictions from dielectric continuum models. 

In Chapter 6, it has been demonstrated
258

 that electronic polarization is key for obtaining 

correct solvent reorganization energies and the procedure on the example of the two-spheres 

model of Marcus was elucidated. The current Chapter 7 describes the application of this 

protocol to evaluate λs of electron transfer in ideal A-DNA and B-DNA duplexes. The 
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following Chapter 8 illustrates MD results on solvent reorganization energies for ET processes 

in experimentally studied chromophore-DNA complexes and represents the first report of large-

scale MD simulations on such systems where an atomistic treatment of water and a polarizable 

force field are applied.  

 

7.2 Ideal A-DNA and B-DNA models 

The MD simulations were carried out with two force field versions: polarizable ff02
219,237,259

 

and non-polarizable ff99
260

 as implemented in the package AMBER 8.
220

 The initial structures 

of the DNA duplexes were created with modules nucgen and leap. The appropriate number of 

Na
+
 ions was added to neutralize the negative charges of the DNA phosphates; terminal ribose 

moieties were left without external phosphates and were capped by O5'H and O3'H groups. In 

all cases studied, the electrostatic interactions for fixed charges and induced dipoles were 

determined with the particle mesh Ewald (PME) method.
222,241,242

 Four groups of DNA 

duplexes were treated in the MD simulations: 

(i) The first group dealt with a symmetric ET reaction (ΔG° = 0) between the 2nd and the 

5th guanine (in italic font) of the 6-mer duplex 5'-GG
+
GGGG-3', embedded in a periodic box of 

3500 water molecules. For this system several model variants were explored: (a) force field 

(additive ff99 vs. non-additive ff02), (b) water model (non-polarizable TIP3P
182

 vs. polarizable 

POL3
209

), (c) ensemble (NVE vs. NPT), (d) absence or presence of electronic polarization 

simulated by induced dipoles for various molecular groups. 

(ii) The second group included simulations of an ET reaction between guanines separated 

by AT-bridges of different length, which were modeled by a set of seven duplexes 5'-

GG
+
GTnGGG-3' (n = 0–6), in A-DNA and B-DNA conformations (Figure 7.1a), each 

embedded in a periodic box filled with water molecules. For each of these systems two 

simulations were carried out: with polarizable (ff02, POL3) and non-polarizable force fields 

(ff99, TIP3P). For each AT base-pair, 250 water molecules were added to the amount used in 

model (i). Separate atomic charges were derived to describe the guanine radical-cation G
+
 with 

ff02 and ff99; details are provided in Appendix B (Table B1, Figures B1, B2).  

(iii)  The third group of simulations addressed four B-DNA duplexes of nucleotide sequence 

5'-GAG
+
X

(k)
GAG-3' (X

(1)
 = A, X

(2)
 = AA, X

(3)
 = T, X

(4)
 = TT; k = 1–4; Figure 7.1b), with the 

polarizable force field ff02. In these calculations we used the same number of POL3 water 

molecules as in the analogous models of group (ii).  
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7.3 MD simulations and evaluation of λs  

The previously described equilibration procedure
261

 was applied (Chapter 6), which 

employed an atom-based cutoff of 12 Å for the Lennard-Jones interactions and a heating stage 

of 50 ps where the temperature was increased from 0 K to 300 K. After heating the system to 

300K, additional pre-production runs of 150 ps in an NPT ensemble for models (i) to (iii) were 

carried out. Throughout all stages of the simulation with a "rigid" solute geometry, the atoms of 

the solute were restricted to the coordinates of the ideal DNA structure by harmonic constraints 

with force constants of 500 kcal mol
–1

 Å
–2

. 

For the NVE simulations of model (i) we introduced an additional stage after the NPT pre-

production run.
235

 First, an NVT ensemble was invoked for 20 ps with an Andersen temperature 

coupling scheme (relaxation time of 0.4 ps).
239

 After each of 15 cycles containing 2000 MD 

steps of 0.25 fs, the velocities were rescaled to the target temperature of 300 K. Finally, before 

beginning production runs in an NVE ensemble, an equilibration run of 20 ps at 300 K in a 

NVT ensemble was carried out, employing a Berendsen thermostat.
229

  

Model (ii) aimed at a thorough evaluation of the D-A distance dependence of λs. Therefore, 

in an NPT ensemble with Berendsen thermostat at 300 K, a series of production runs of lengths 

 

Figure 7.1. (a) Ideal structures of the hexamer duplex 5'-GG
+
GGGG-3' as A-DNA (left 

panel) and B-DNA (right panel). (b) Schematic representation of model duplexes 

constructed in B-DNA form to simulate structures studied experimentally in Ref. 251. 
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50 ps, 100 ps, or 150 ps for duplexes with 0, 1 to 3, and 4 to 6 intervening AT base-pairs, 

respectively, were conducted. The same atom-based cutoff of 12 Å for the Lennard-Jones 

interactions was applied. These simulations demonstrated that reorganization energies are rather 

stable and that an extension of a trajectory by 50 ps shifted the average λs value at most by 0.15 

eV. Therefore, in all other cases, only trajectories of 50 ps were used.  

All production runs were carried out with "frozen" hydrogen-containing bonds. For this 

purpose the SHAKE
238

 algorithm with an integration time step of 0.5 fs was employed. The 

induced dipoles that simulated the electronic polarization were determined with an iterative 

procedure.
242,258

 The convergence criterion for the minimization of the potential energy of the 

induced dipoles, which simulate the electronic polarization in the electrostatic field of the 

nuclei, was set to 10
–7

 Debye for the iterative procedure performed at each time step.  

Snapshots from the trajectories were recorded every 2 fs during all production runs. For the 

analysis of the potential energy gap between the initial and final hole states of ET "single-point" 

energy calculations were performed. The analysis procedure was identical to the one described 

in Chapter 6: the nuclei were fixed at the positions of the snapshot, but the charge distribution 

was adjusted to represent the final state of the ET process during a single MD step of 0.005 fs, 

accompanied by the iterative procedure to determine the induced dipoles of the final state.
242

 

For ET between chemically different donor and acceptor moieties, the reorganization energy 

can be obtained by averaging the potential energy gaps U of forward (i) and backward (f) 

processes [see method (I) in Chapter 6)], s = (<U>i – <U>f)/2. Here, ΔU is the difference 

between the two potential energies, calculated at the same solvent configuration, but with the 

hole located at the initial or final states of each of the two reactions. For such non-symmetric 

ET at the shortest distances, 3.4 Å and 6.8 Å, the standard deviations Si and Sf of the 

corresponding potential energy gaps were averaged according to S
2
 = (Si

2
 + Sf

2
)
1/2

/2. Further 

details of the procedure have been discussed in Chapter 6.
258 

 

7.4 Polarization effects of DNA molecular groups 

7.4.1 Computational strategy 

 Despite the fact that the following discussion will deal with polarization in the framework of 

non-additive force fields, the polarization contributions will still be discussed in terms of 

additivity because this approach offers a convenient, albeit approximate way of interpreting the 

various energy contributions in such a complex system as DNA.  
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The simplification of keeping the DNA rigid permitted to leave aside the internal 

reorganization energy. Furthermore, the partial polarization contributions of various atomic 

groups were probed by setting to zero their pertinent induced dipoles. Comparison of the 

Table 7.1. Solvent reorganization energy λs (eV) of hole transfer between G2 and G5 in the rigid 

ideal B-DNA duplex 5'-GG
+
GGGG-3' from calculations with polarizable (ff02) and non-

polarizable (ff99) force fields (FF) of DNA and the corresponding water models POL3 and 

TIP3P, respectively. In the model (ff02, POL3), the electronic polarization was also partially 

switched off for various groups: guanosines G2 and G5, all backbone phosphates (PO4
–
), or the 

whole DNA duplex. Results from experiment and a dielectric continuum model (DCM) shown 

for comparison. 

Setup FF 
a
 Pol. DNA

b
 Pol. G2,5 

c
 Solvent Ensemble λs

np
 
d
 λs

pol
 
e
 

1 ff99 off off TIP3P NVE 2.230.29 2.180.33 

2  off off  NPT 2.210.34 2.190.32 

3 ff02 on on   1.750.29 1.730.30 

4  on off   1.720.28 1.730.30 

5 ff99 off off POL3  1.950.29 1.930.28 

6 ff02 on on   1.440.26 1.430.24 

7  on off   1.440.25 1.430.26 

8  on, PO4
–
 off  on   − 1.540.24 

9  off off    − 1.770.27 

DCM 
f
 ff99 off off εbw = 2  1.460.03 − 

    εbw = 4  1.640.02 − 

    εbw = 80  2.040.07 − 

Exp.
g
      1.600.10  

 

a
  Force field assigned to DNA, except for the charges of the guanine units G2 and G5.  

b
 Polarizabilities assigned to DNA within corresponding force fields except for the units G2 and 

G5. 
c
 Polarizabilities assigned to the units G2 and G5. 

d
 Reorganization energy λs

np
 from a simulation with the charges of the units G2 and G5 derived 

for the non-polarizable force field ff99; see section 7.2. 
e  

Reorganization energy λs
pol

 from simulations with the charges of the units G2 and G5 derived 

for the polarizable force field ff02; see section 7.2. 
f 

Results for a dielectric continuum model (DCM); εbw is the dielectric constant of the region of 

bound water. See Ref. 112.  

g
 Experimental total reorganization energy λ, Ref. 46.
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resulting reorganization energy to those of the completely polarized system provided indirect 

access to the polarization effects of specific groups of atoms.  

Set (i) of the simulations aimed at a study of the overall influence of electronic polarization 

on the reorganization energy and at separating the effects of solute and solvent polarizations. In 

addition, an attempt was made to identify the effect of specific groups in the systems of interest. 

Two sets of simulations with charges assigned to guanines G2 and G5 that had been derived for 

non-polarizable ff99 and polarizable ff02 force fields for different setups of B-DNA were 

conducted; see Table 7.1 where the corresponding reorganization energies are denoted as λs
np

 

and λs
pol

. The absolute differences |λs
np

 – λs
pol

| between two corresponding values ranged up to 

0.05 eV (Table 7.1, Setups 1–7), which is significantly lower than the typical standard deviation 

of the method (~0.3 eV). Therefore, we refrained from interpreting these differences. Thus, 

only the overall charge transferred between the two guanine sites, but not the individual atomic 

charge distribution, is essential for the reorganization energy. Later on, we will discuss only 

λs
pol

 values, unless stated otherwise (Table 7.1). 

 

7.4.2 Sensitivity of λs to force field parameters in TIP3P water 

 In the following three subsections, the effects of polarizable force fields, for the example of 

a 6-mer B-DNA duplex with a donor-acceptor distance RDA = 10.1 Å will be discussed in detail; 

see model (i) of section 7.2.  

The calculations of reorganization energies of B-DNA were started from the completely non-

polarizable setup (ff99, TIP3P) in NVE and NPT ensembles. These results, derived with the 

same force field, were the largest among all values of our study: (2.18±0.33) eV and 

(2.190.32) eV, respectively (Table 7.1). The results for the two ensembles for both sets of 

charges on G2 and G5 are identical to the accuracy of the method. In the following, only the 

results from NPT ensembles will be discussed, as they are the most straightforward to compare 

to experimental data.  

As a next step the internal electronic polarization in the DNA solute by means of the 

polarizable force field ff02 in the presence of a non-polarizable TIP3P solvent (Table 7.1, Setup 

3) was introduced. The resulting reorganization energies, 1.73–1.75 eV, were 0.4–0.5 eV 

smaller than the values from completely non-polarizable setups (ff99, TIP3P). Setup 4 (ff02, 

TIP3P) allows one to examine the partial contributions due to the polarization of the guanines 

G2 and G5, where induced dipoles on the two bases were switched off. The results obtained with 

either set of atomic charges demonstrate that the induced dipoles on the guanine moieties 

contribute very little (0.01–0.02 eV) to the overall reorganization energies. Thus the 

reorganization energy of the ET process in the DNA related systems under study is 

overwhelmingly dominated by the cooperative effect of the induced dipoles of the whole DNA 

molecule (and the contribution due to the reorientation of the water molecules). 
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7.4.3 Sensitivity of λs to force field parameters in POL3 water  

The simulations with the polarizable solvent model POL3 permit one to elucidate in more 

detail the effect of the atomic charges and the electronic polarization of the nucleobases (Table 

7.1, Setups 5–9). The solvent reorganization energy is lowered by 0.5 eV, from 1.93±0.28 eV to 

1.43±0.24 eV, when stepping from model (ff99, POL3) to the fully polarized model (ff02, 

POL3); cf. Setups 5 and 6. The latter model yields the lowest value among all setups studied. 

Interestingly, the reduction of the solvent reorganization energy due to electronic polarization 

of the entire DNA is independent of the choice of the solvent model: it is 0.5 eV in both POL3 

(Table 7.1, Setups 5 and 6) and TIP3P solvents (Table 7.1, Setups 2 and 3). From this finding 

one concludes that the electrostatic field patterns generated by non-polarizable TIP3P water and 

polarizable POL3 water are similar; after all, the atomic descriptors of the ff99 force field are 

intended to represent simultaneously atomic charges and electronic polarizations. As in the case 

of TIP3P water, the local polarization of G2 and G5 in POL3 water does not seem to exert a 

notable effect; cf. Setups 6 and 7.  

Also, in the simulation with the force fields ff02 and POL3, the polarizability of the PO4
–
 

groups of the entire DNA backbone was switched off (Table 7.1, Setup 8); these groups mainly 

carry the negative charge of the system. Apparently, the polarization of the phosphate groups 

reduces the reorganization energy by 0.11 eV; cf. Setups 6 and 8. This rather modest 

perturbation corroborates previous results.
262

 Finally, the effect of the electronic polarization of 

the entire DNA duplex was examined; for this purpose, all induced dipoles of the solute (Setup 

9) were switched off. The result, 1.77±0.27 eV, of this latter setup should be treated with 

caution because the DNA solute is artificially underpolarized. Therefore, this perturbation 

cannot be considered as small, as the energetics is notably affected. Comparison with the fully 

polarized model (ff02, POL3) (Setup 6) shows that the (intrinsic) electronic polarization of the 

duplex reduces s by 0.34 eV; this reduction is twice as large as the effect of the charge set of 

the DNA, 0.16 eV; cf. Setups 5 and 9. 

 

7.4.4 Comparison to dielectric continuum models of the solvent  

Recently our group reported a computational study on solvent reorganization energies of 

charge shift reaction in rigid duplexes of B-DNA structure where a dielectric continuum model 

(DCM) had been used.
112

 A notable ambiguity of that computational approach, in addition to 

the spatial partitioning itself, was the uncertainty in assigning dielectric properties to the various 

regions of the solvent. In particular, λs values of a hexamer duplex varied from 1.46±0.03 eV to 

2.04±0.07 eV as the dielectric constant εbw of the bound water region changed from 2 to 80;
112
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see also Table 7.1, Setup DCM). Note that the charges of the force field ff94
191

 used in that 

earlier work were the same as those of the force field ff99
260

 used in the present study. 

In the DCM calculations,
112

 various regions of the DNA duplex (bases, sugar-phosphate 

backbone) were assigned different dielectric screening properties to mimic the electronic 

response of the solute. Therefore, those results of the reorganization energies are compared to 

those of the fully polarizable model (ff02, POL3), rather than to model (ff99, POL3). The bare 

correction due to the changes of charge sets is the difference of 0.16 eV between the s values 

of models (ff99, POL3) (Setup 5) and (ff02(off), POL3) (Setup 9). With this correction added to 

the result of (ff02, POL3), the reorganization energy, 1.59 eV, falls between the two lowest s 

values of the DCM model that correspond to εbw = 2 and εbw = 4 (Setup DCM). This remarkable 

consistency between results of the parameterized DCM model and the “parameter-free” explicit 

polarizable force field calculations of the present work does not guarantee adequate s values 

because of the systematic, though small underestimation of the induced polarization that is 

intrinsic to the force field ff02.
213

 The latter does not fully account for self-polarization because 

mutual induction arising from 1-2 and 1-3 atomic interactions is neglected.
213

  

This underestimation of the polarization is expected to cause s values to be too large. This 

tendency for DNA as solute will be estimated by comparison with similar effects in the water 

model POL3 where 1-2 and 1-3 interactions are missing as well. Water model POL3 yields a 

polarizability of water, 0.87 Å
3
, that is only ~60% of the gas phase value, ~1.46 Å

3
,
263

 which is 

also obtained in the simulations when those interactions are included.
213

 MD simulations with a 

reduced molecular polarizability of 1.0 Å
3
 reproduced properties of bulk liquid water, including 

the static polarizability, in an excellent fashion.
250

 Further support for a reduced value comes 

from ab initio calculations on small water clusters,
264,265

 where the polarizability was 

determined 7–9% below the experimental value for a single molecule in the gas phase.
263

 

Modeling of s for a Marcus two-spheres model (Chapter 6) suggested
258

 that the POL3 force 

field satisfactorily reproduces the dielectric properties of water as solvent despite this slight 

underestimation of the polarizability, 0.87
213

 vs. 1.0 Å
3
.
250

 The fact that the polarizability of 

bulk water is notably lower than that of a water molecule in the gas phase was attributed to 

Pauli repulsion between neighboring solvent molecules.
266

 Therefore, assuming that Pauli 

repulsion plays a similar role when modeling DNA as solute (without 1-2 and 1-3 interactions), 

it seems appropriate to scale the resulting s values by a factor κ = 0.87/1.0 before comparing 

with experiment (see below). Such scaling should be valid if the change of the polarization 

contribution induces a small perturbation of the total energy of the system. Therefore, the 

response is expected to be linear, even though the formal expressions of the polarizable force 

field are not.
213
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7.5 Comparison of λs with experimental studies on hole transfer in DNA  

To facilitate a direct comparison of calculated reorganization energies with experimental 

data, a series of simulations with a polarizable force field was carried out for some recently 

studied DNA duplexes.
251

 In these duplexes of 14 or 15 base-pairs (with tethered naphthalimide 

and phenotiazine), hole transfer occurs between two guanine bases separated by various bridges 

(Table 7.2). For the simulations, the experimentally studied systems were reduced to the models 

5'-GAGX
(k)

GAG-3' (X
(1)

 = A, X
(2)

 = AA, X
(3)

 = T, X
(4)

 = TT) by simplifying the terminal units 

to 5'-GA and AG-3' (Figure 7.1, Table 7.2). The two base-pairs GA and AG were left as termini 

of the strands to limit edge effects. Edge effects were found to be negligible. For instance, the 

reorganization energy s = 1.23±0.24 eV was obtained for the sequence 5'-GG
+
GGGG-3' (RDA = 

6.8 Å) and 1.43±0.24 eV for the sequence 5'-GG
+
GGGG-3' (RDA = 10.1 Å), both for B-DNA. 

The terminal sequences are different from the standard cases of the present work (Table 7.3), 

but the s values are essentially the same within standard deviations: 1.17±0.22 eV (RDA = 6.8 

Å, X
(3)

 = T) and 1.51±0.25 eV (RDA = 6.8 Å, X
(4)

 = TT). 

Simulations of rigid as well as flexible duplexes showed a slight increase of the 

reorganization energies by 0.1 eV (A-bridges) and 0.2 eV (T-bridges) due to vibrations of the 

DNA backbone; one should recall that solvent reorganization energies are overestimated 

because 1-2 and 1-3 electrostatic interactions are missing in the force field.  

For an adequate comparison with experimental results, (i) the calculated solvent 

reorganization energies λs were scaled by κ  = 0.87 to account for the missing 1-2 and 1-3 

Table 7.2. Reorganization energies (eV) of hole transfer in the rigid B-DNA duplexes 5'-

GAG
+
X

(k)
GAG-3'. 

G
+
X

(k)
G λs λ's 

a
 (λs

κ
) 

b
 λ 

c
 λexp 

d
 

G
+
AG 1.32±0.24 1.41±0.25 1.15±0.21 1.49±0.21 0.72±0.14 

G
+
TG 1.17±0.22 1.40±0.30 1.02±0.19 1.36±0.19 1.40±0.28 

G
+
AAG 1.53±0.25 1.62±0.28 1.33±0.22 1.67±0.22 1.70±0.34 

G
+
TTG 1.51±0.25 1.73±0.26 1.31±0.22 1.67±0.22 2.00±0.40 

 

a
  Solvent reorganization energy calculated for a flexible duplex, reflecting the partial 

contribution from the internal reorganization energy due to DNA backbone vibrations. 
b
  Scaled solvent reorganization energy λs

κ
 = 0.87 λs to account for the reduced polarization in 

the force fields ff02 and POL3 solvent due to lack of 1-2 and 1-3 interactions (see text). 
c
  Estimated total reorganization energy λ = λs

κ
 + λi where λi = 0.34 eV is the internal 

reorganization energy of a GC pair of the hexamer duplex (GC)6, calculated at the UB3P86/6-

311+G
*
 level, Ref. 116.  

d
 Experimental errors estimated according to the reported value of 20%; Ref. 251. 
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polarization, and (ii) the internal reorganization energy λi was added. There was no account for 

quantum effects,
267

 because it was assumed that in the rigid model duplexes ET occurs only 

through one vibronic channel. For correction (ii) one should note that although the hole seems 

to be confined to a single base-pair due to solvation effects,
53,54,268

 the estimate λi = 0.72 eV for 

the (GC) base-pair at the B3LYP/6-31G(d) level
112

 is probably too high because it was 

determined for an isolated base-pair. Yet, the structure relaxation of a base-pair inside a DNA 

duplex should be sterically hindered from adjacent base-pairs and solvent, thereby leading to a 

lower value. A recent DFT study on λi in DNA duplexes supports this expectation: λi was 

shown to decrease with the length of the (GC)n duplexes from 0.72 eV (n = 1) to 0.34 eV (n = 

6).
116

 This model study did not account for solvent stabilization on the geometry relaxation. 

Therefore, one may consider the estimate of λi, 0.34 eV as an upper limit for hexamer DNA 

duplexes.  

Scaling the four s values of rigid DNA duplexes by κ and subsequent addition of λi = 0.34 

eV resulted in total reorganization energies for the duplexes GAGX
(k)

GAG-3' from 1.36±0.19 

eV (X
(3)

 = T) to 1.67±0.22 eV (X
(2,4)

 = AA, TT) (Table 7.2). Two of these adjusted 

computational results agree remarkably well with the corresponding experimental values:
251

 

1.40±0.28 eV (X
(3)

 = T) and 1.70±0.34 eV (X
(2)

 = AA). The computed result 1.67±0.22 eV for 

the duplex with X
(4)

 = TT agrees with the corresponding experimental estimate, (2.00±0.40) eV, 

within standard deviations.
251

 Only one MD result, 1.49±0.21 eV, for the oligomer 5'-

GAGAGAG-3' (X
(1)

 = A), is more than twice larger than the corresponding experimental value, 

0.72 eV. On the one hand, the calculated result is fully consistent with the other calculated 

results of the series; on the other hand, the experimental result seems to be an outlier among the 

reported experimental data.
251

  

From this success one can conclude that solvent reorganization energies λs, calculated for 

rigid duplexes with the polarizable force fields (ff02, POL3) and scaled by a factor κ = 0.87 for 

the missing 1-2 and 1-3 polarization effects in ff02,
213

 ultimately yield sufficiently accurate 

estimates of total reorganization energies λ for ET in DNA-related systems when combined 

with recently reported values of λi for base-pairs in DNA duplexes.
116

 In the following sections 

the main aim will be to relate solvent reorganization energies λs obtained by means of 

polarizable and non-polarizable force fields; therefore, the scaling factor  = 0.87 will not be 

applied further on.  

 

7.6 Distance dependence of λs in ideal A-DNA and B-DNA 

Computer experiments
261,269

 showed that A-DNA is able to change its conformation into B-

form within several hundred picoseconds, given an appropriate nucleotide sequence and 

suitable simulation conditions. Before comparing calculated reorganization energies with 
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experimental results for systems where the macromolecule may undergo a conformational 

transformation, the influence of the DNA conformation on λs for hole transfer via a range of D-

A distances RDA was tested. For the two setups, (ff02, POL3) and (ff99, TIP3P), fully 

polarizable and fully non-polarizable, respectively, MD simulations on the ideal rigid duplexes 

5'-GG
+
GTnGGG-3' (n = 0–6) were carried out, both in A- and B-DNA conformations (Figure 

7.1a). Hole transfer was assumed to occur between the moieties G2 and G5, separated by (TA) 

bridges. In Table 7.3 the distance-dependent results are represented together with a formal RDA 

parameter, defined as the distance between the molecular planes of the two pertinent (GC) base-

pairs. 

Inspection of Table 7.3 reveals that, within standard deviations, corresponding rigid models 

of duplexes in A- and B-forms exhibit essentially equal solvent reorganization energy at all D-

A separations studied. Yet, λs values of the three shortest distances, RDA = 3.4–10.1 Å, tend to 

be slightly lower for the B-form (by ~0.10.2 eV) for either setup, i.e. with non-polarizable and 

polarizable force fields. This observation is consistent with the 3D shape of A and B duplexes 

(Figure 7.1a) possessing different widths: the bases G2 and G5 are slightly farther apart in the A-

Table 7.3. Solvent reorganization energies s
np

 and s
pol

 (eV) from simulations with non-

polarizable
a
 and polarizable

b
 force fields, respectively, for hole transfer between guanine units 

(G) in the rigid duplexes 5'-GG
+
GTnGGG-3' of A- and B-DNA. Donor-acceptor distances RDA 

(Å) and available experimental reorganization energies are also shown.  

  A-DNA    B-DNA    

RDA n s
np

 s
pol

  
c
 

  s
np

 s
pol

 
c
 

 exp 
d
 

3.4 
e
 0 1.10±0.20 0.72±0.20 1.52±0.49  0.94±0.20 0.66±0.14 1.42±0.42 0.6±0.1 

6.8 
f
 0 2.00±0.33 1.39±0.23 1.43±0.33  1.92±0.27 1.23±0.24 1.55±0.37 1.2±0.1 

10.1 0 2.34±0.32 1.58±0.27 1.47±0.32  2.21±0.34 1.43±0.24 1.54±0.34 1.6±0.1 

13.5 1 2.53±0.33 1.68±0.31 1.50±0.33  2.46±0.34 1.71±0.28 1.43±0.30  

16.9 2 2.63±0.34 1.84±0.30 1.42±0.29  2.78±0.34 1.82±0.28 1.52±0.29  

20.3 3 2.75±0.37 1.96±0.31 1.40±0.29  2.82±0.38 2.00±0.29 1.40±0.27  

23.7 4 2.85±0.35 2.02±0.30 1.40±0.27  2.94±0.38 2.05±0.28 1.43±0.26  

27.0 5 2.98±0.37 2.06±0.29 1.44±0.27  3.04±0.37 2.07±0.31 1.46±0.28  

30.4 6 3.00±0.37 2.08±0.30 1.43±0.25  3.14±0.34 2.12±0.30 1.47±0.26  

a
 Setup (ff99, TIP3P).   

b   
Setup (ff02,POL3).  

c
 Effective optical dielectric constant, Eq. (4). Averages over the whole range of RDA distances 

  = 1.45±0.32 for A-DNA and   = 1.47±0.31 for B-DNA. 

d
 Experimental values of the total reorganization energy, Ref. 251.  

e
 Hole transfer G3→G4.     

f 
Hole transfer G2→G4. 
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form, with its wider loop, than in the B-form. As these small differences between 

reorganization energies of A and B forms are of the same order as the standard deviations, they 

will be not treated as meaningful; rather, both sets of values will be considered as essentially 

identical.   

The solvent reorganization energies from the simulations on the three flexible duplexes are 

similar to those of the analogous rigid duplexes of both forms of DNA also with respect to their 

distance dependence (Table 7.4). Comparison with the experimental data
46

 listed in Table 7.3 

for the three shortest distances RDA = 3.4 Å–10.1 Å demonstrates that the theoretically obtained 

average values are slightly higher (~0.1–0.2 eV). Still, calculated and experimental results agree 

within the standard deviations. 

It is also interesting to compare the present results from the polarizable force fields (ff02, 

POL3) to those obtained earlier by our group with a DCM approach (see above).
112

 For large D-

A separations, the λs values from both theoretical procedures are very similar (Figure 7.2a). A 

more detailed inspection shows that for RDA > 13.5 Å λs values for both A- and B-DNA from 

the (ff02, POL3) setup agree best with the DCM results obtained with εbw = 4. Recall that the 

present MD approach on the basis of the polarizable force fields (ff02, POL3) avoids 

ambiguities of a DC model that are associated with the various parameters,
168

 e.g., the spatial 

partitioning and the assignment of the corresponding dielectric constants. 

Table 7.4. Variation of the solvent reorganization energy s (eV) for hole transfer between 

guanines (G) in flexible duplexes 5'-GG
+
GTnGGG-3' of A- and B-DNA type with the donor-

acceptor distance RDA (Å). Comparison of results from MD simulations with the solute flexible 

or kept rigid.
a
  

  A-DNA   B-DNA  

RDA n λs
b
  λs

c
   λs

b
  λs

c
  

3.4 
d
 0 0.72±0.20 0.95±0.20  0.66±0.14 0.84±0.20 

6.8 
e
 0 1.39±0.23   1.23±0.24  

10.1 0 1.58±0.27 1.74±0.27  1.43±0.24 1.75±0.27 

13.5 1 1.68±0.31   1.71±0.28  

16.9 2 1.84±0.30 1.94±0.31  1.82±0.28 1.95±0.30 
 

a
 The simulations were carried out in an NPT ensemble with the AMBER force field ff02 and 

the POL3 water model. n designates the number of A-T base pairs between donor and 

acceptor. 
b
  Solvent reorganization energy for rigid DNA duplexes. 

c
  Solvent reorganization energy for flexible DNA duplexes. 

d
  Hole transfer G3→G4.    

e  
Hole Transfer G2→G4.
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Plots of the reorganization energies of A- and B-DNA forms from the polarizable force 

fields as a function of the reverse distance RDA
–1

 clearly demonstrate two ranges of linear 

behavior, below and above RDA = 10.1 Å (Figure 7.2b; for details of the linear fits, see Table 

7.5).  

The two-spheres model of Marcus
93

 predicts a strictly linear dependence of λs as function of 

RDA
–1

 and this behavior can be expected to hold even for systems which strongly depart from 

that idealized geometry.
167,270

 A plausible rationalization attributes the unusual behavior of λs, 

determined in the present MD simulations, to artifacts due to an insufficient representation of 

the polarization (or electronic screening) if donor and acceptor moieties are located too closely. 

In this context, one has to recall the inadequate self-polarization due to missing 1-2 and 1-3 

inductions of the induced dipoles.
213

  

Experimental studies
47,176,251 

of charge transport in DNA duplexes noted an exponential 

 

 

Figure 7.2. (a) Solvent reorganization energies (eV) for A-DNA and B-DNA duplexes 5'-

GG
+
GTnGGG-3' (n = 0–6) from the MD simulations of this work and, for B-DNA, from the 

dielectric continuum model (DCM) approach for different choices εbw of the optical dielectric 

constants assigned to the region of bound water; see Ref. 112. (b) For the same model systems, 

dependence of the reorganization energy (eV) on the inverse of the donor-acceptor distance RDA.  
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decay of the rate of ET with the donor-acceptor separation RDA: 

   DA 0 DAexpETk R k βR          (7.1) 

With the Marcus expression for non-adiabatic ET in mind,
94,256

 

   
    
 

2

2 DA DA

DA DA DA

DA

2
exp

4
ET

B

G R λ R
k R H R

λ R k T

   
  
 
 

   (7.2) 

one distinguishes two contributions to the falloff parameter β: βe originating from the decay of 

the electronic coupling |HDA|
2
 and βs steming from the distance dependence of ΔG° together 

with that of the reorganization energy λ. In the present case of ET between equivalent sites, 

ΔG° = 0. If one neglects the distance dependence of the internal reorganization energy λi, then 

the expression for the falloff parameter βs simplifies to 

DA

1

4

s
s

B

λ
β

k T R





         (7.3) 

Here, kB is the Boltzmann constant and T is the temperature. The present results for A- and 

B-forms of DNA duplexes yield falloff parameters βs (The derivative is approximated as finite 

Table 7.5. Coefficients A and B of linear fits y = A + Bx of the solvent reorganization energy 

λs (eV) as a function of the inverse x = RDA
−1

 (Å
–1

) of the donor-acceptor distance RDA.  

Model Setup RDA (Å) A (eV) B (eV·Å) R
a
 SD

b
 

A-DNA (ff99,TIP3P)  10.1 2.95±0.41 -6.29±1.74 0.999 0.084 

  10.1 3.37±0.53 -11.89±10.0 0.980 0.122 

  All 3.10±0.17 -6.91±1.00 0.995 0.261 

 (ff02,POL3)  10.1 2.03±0.35 -4.45±1.77 0.999 0.070 

  10.1 2.43±0.45 -9.95±8.84 0.995 0.056 

  All 2.18±0.15 -5.11±1.10 0.989 0.267 

B-DNA (ff99,TIP3P)  10.1 2.88±0.40 -6.57±1.73 0.999 0.061 

  10.1 3.62±0.52 -15.35±10.0 0.985 0.134 

  All 3.20±0.17 -7.88±1.00 0.989 0.448 

 (ff02,POL3)  10.1 1.81±0.33 -3.92±1.33 0.999 0.033 

  10.1 2.47±0.43 -10.33±8.39 0.986 0.105 

  All 2.17±0.14 -5.26±0.74 0.983 0.506 
 

a
  Correlation coefficient of the linear fit of the solvent reorganization energy as function of 

the inverse x = RDA
–1

 (Å
–1

) of the donor-acceptor distance. 
b
  Standard deviation of the linear fit of the solvent reorganization energy as function of the 

inverse RDA
–1

 (Å
–1

) of the donor-acceptor distance.
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difference, ∂λs/∂RDA ≈ (λi+1–λi)/RDA with RDA = 3.4 Å in all cases.) that change fast with 

donor-acceptor separation, from 1.6–1.9 Å
–1

 for RDA = 3.4 Å via 0.6 Å
–1

 at RDA = 6.8 Å to ~0.1 

Å
–1

 at the largest separations RDA ~ 25–30 Å. This distance dependence of βs is slightly stronger 

than that determined at the DCM level.
112

 Before comparing to experimental values of β, one 

has to add the electronic contribution βe which can be obtained from quantum chemical 

calculations of the coupling |HDA|
2
, usually estimated in the range 0.7–1.7 Å

–1
.
73,271

 Thus, with 

βs  0.5 Å
–1

 for RDA  6–10 Å, one estimates β  1.2–2.2 Å
–1

, similar to other theoretical 

studies.
168

 These values corroborate fairly well the experimental results, 0.6–1.8 Å
–1

, of Takada 

et al.,
251

 but are notably larger than those reported
272

 by Lewis et al.,
75,234

 0.7–0.9 Å
–1

. 

 

7.7 Scaling factors for λs in DNA hole transfer 

Simulations of the solvent reorganization energy with a polarizable force field, especially of 

extended DNA-derived systems, require a notably larger computational effort than those with a 

non-polarizable force field. Therefore, attempts have been reported
91,187 

to capture the effect of 

electronic screening via a posteriori scaling of solvent reorganization energies s
np

 determined 

with a non-polarizable force field. Such a scaling factor may be derived from the Marcus two-

spheres model
93

 by relating solvent reorganization energies for polarizable and non-polarizable 

solvents; see the corresponding discussion in Chapter 6. Thus, one has:
 91,187,258

 

s
pol

 / s
np

 =    1 1 1

0 01    

          (7.4) 

Here ε0 = 78.4 is the static dielectric constant of water at the temperature 298 K and   is an 

effective optical dielectric constant; results of a non-polarizable force field are associated with 

  = 1. One of the scaling factors recently applied to scale down λs in ET for dye-DNA hairpin 

complexes relied on the optical dielectric constant   = 1.11.
91 

This value arises from a study 

on the Marcus two-spheres model
89

 and is considerably lower compared to our estimate 1.80 

for polarizable water solvent.
258

 Given the dissimilarity of the two-spheres model and a DNA 

duplex, before transferring
91

 the scaling factors derived for a two-spheres model to DNA a 

thorough justification is expected.  

Therefore, it is more reliable to use directly the data for calculated solvent reorganization 

energies for rigid A- and B-DNA duplexes from simulations with non-polarizable (ff99, TIP3P) 

and polarizable setups (ff02, POL3) to estimate the values of such a scaling factor and to judge 

their uniformity for different DNA duplexes and donor-acceptor distances. In Table 7.3 the 

resulting effective optical dielectric constants   are listed. Averaging performed over the 

range of distances RDA = 3.4–30.4 Å studied yields   = 1.45±0.32 for A-DNA and   = 

1.47±0.31 for B-DNA. Detailed inspection of Table 7.3 shows that there is no other apparent 

trend: neither related to donor-acceptor distance, nor to the type of DNA (A or B). This allows 
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us to suggest an overall average value   = 1.46±0.32 for all data represented in Table 7.3. 

The latter result is significantly larger than the value mentioned above,   = 1.11,
89

 but it is 

also notably smaller than the estimate, 1.800.27, derived via MD simulations on models that 

reproduced quantitatively the classical Marcus two-spheres model
258

 and corresponded well to 

the experimentally established effective optical dielectric constant 1.78 of pure water.
104

 From 

the present results (Table 7.3), one may suggest that the difference between the estimates of   

for the Marcus two-spheres model
258

 and DNA reflects mainly the reduced effective 

polarizability within DNA. The region of the DNA stack is usually characterized by an optical 

dielectric constant close to 2,
112,176

 which, in combination with static dielectric constants that 

vary from 3.4 to 20
 
for different DNA regions,

172,176
 results in scaling factors close to that of the 

solvent water. In the present study the decay in the dielectric response, observed in the MD 

calculations and reflected in a scaling factor of ~1.5, is attributed to the reduced screening effect 

of induced dipoles within the guanine units G involved in the ET, where the effect of missing 1-

2 and 1-3 interaction has to be most prominent.  

This finding demands a thourough evaluation of the strategy, which suggests to transfer the 

scaling of a simple two-spheres model in aqueous solvent to a biomolecule, a practice that 

seems to be very effective for reducing the computational effort when modeling DNA-derived 

systems.
91 

Another argument is that ET donor and acceptor sites of biomolecules are hardly 

ever fully accessible to the aqueous solvent, but rather surrounded by organic matter. 

Nevertheless, the idea of scaling reorganization energies obtained with non-polarizable force 

field to account for electronic polarization effects remains attractive. The question then arises: 

how to determine suitable scaling factors and to what extent they are transferable? It is tempting 

to assume that such transferability exists at least within a “family” of structurally similar 

biomolecules. In the following chapter this idea is explored by extending the study to 

chromophore-DNA complexes where the chromophore is semi-capped on top of DNA. 

 

7.8 Conclusion 

The solvent reorganization energy λs for hole transfer in a variety of DNA duplexes was 

estimated from MD simulations which employed the polarizable force field ff02 in combination 

with the explicit water model POL3. The distance dependence of λs for A- and B-DNA 

duplexes (donor-acceptor distances 3.4–30.4 Å), the choice of the solvent model and the force 

field (including the influence of charge sets), and various molecular groups affecting the results, 

were discussed in detail. Results from MD simulations with the standard non-polarizable force 

field ff99 and the TIP3P water model were used as reference to account for electronic 

polarization effect. It was demonstrated that values of λs are reduced by about 30% compared to 

those derived with the non-polarizable setup when one includes the electronic polarization with 
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a polarizable force field. The results from these atomistic calculations with a polarizable force 

field, which do not demand any “re-parameterization”, are consistent with the lowest values of 

λs from earlier elaborations that employed an implicit solvent model.
112

  

The λs from MD simulations performed according to the procedure established
258

 (see 

Chapter 6) for calculations with a polarizable force field, were compared with recently reported 

experimental values. Simulations of ET between guanines G in experimentally studied 

duplexes
251

 G
+
X

(k)
G (X

(1)
 = A, X

(2)
 = AA, X

(3)
 = T, X

(4)
 = TT) agreed satisfactorily within the 

standard deviations of the method. A slight overestimation of λs was attributed to an intrinsic 

property of the force field used, which tends to be underpolarized.
213
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8 Solvent Reorganization Energy in Chromophore-

DNA Complexes 

8.1 Experimental study on Rhodamine 6G-DNA complexes 

DNA complexes with chromophores have been studied
47,71,234,273,274

 very intensively due to 

their potential application in the context of nano-electronic devices.
24,275

 A chromophore 

attached to a duplex can act either as electron acceptor or electron donor
276

 enhancing ET along 

the DNA π-stack.
277

 The chromophore is usually covalently bound to one of the DNA strands 

 

Figure 8.1. (a) Nucleotide sequence and designations of the R6G-DNA complexes studied. The 

NMR structure was resolved for the complex labeled R6G-CAA where Rhodamine 6G is 

tethered via a C6 linker to the 5'-end cytosine (R6G-CAA, upper panel); Ref. 279b. Dashed 

lines indicate where the experimentally studied duplex was shortened to create models R6G-

CAA and R6G-GAA for the MD simulations. (b) Schematic structure of Rhodamine 6G and its 

tether connection to the 5'-end of DNA.  
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through -conjugated or aliphatic linker.
46,278

 The rate of electron transfer strongly depends on 

the mutual alignment of the dye and DNA base-pair adjacent to it, influencing the degree of 

electronic overlap between them. The structure of dye-DNA hairpins with potential for 

effective hole transfer was studied by several groups.
58,70,71,279

 Therefore, the structural 

characteristics of such complexes was also explored computationally.
280 

  

One of the chromophores studied both experimentally
279,281,282

 and theoretically
280,283,284

 was 

Rhodamine 6G (R6G) capping the DNA duplex (Figure 8.1a). The dye possesses zwitterionic 

properties due to a positively charged xanthene and negatively charged benzene rings lying in 

different planes; although bonded, these moieties are connected in a flexible fashion (Figure 

8.1b). The xanthene ring acts as a source for electron holes in the DNA duplex. Recently two 

models of modified R6G-DNA duplexes (Figure 8.1a) were the subjects of MD studies in our 

group. For one of these complexes (Figure 8.1a, complex R6G-CAA), where the chromophore 

(Figure 8.1b) is attached to the 5' end of the DNA duplex, a fully resolved NMR structure
279a,282

 

suggested two distinct conformations of the dye. From experiments these two alignments of 

R6G with respect to the adjacent base-pair were estimated to occur with 20% and 80% 

population in R6G-CAA;
279

 see Figure 8.2. The corresponding ratio was estimated to be 1:1 in 

R6G-GAA.
279a,282

  

 

8.2 Model characterization of Rhodamine 6G-DNA complexes with MD 

refinement 

To have more insight into the molecular structure and the dynamics of the R6G-DNA 

complexes, 10 ns molecular dynamics simulations were performed in our group
280

 for two 

model R6G-DNA hairpin complexes that resembled those studied experimentally. The models 

were truncated along the dashed lines, shown in Figure 8.1a. With this MD study the presence 

 

Figure 8.2. Top view of NMR resolved sub-structures of the R6G-CAA complex shown on 

Fig. 8.1a (upper panel). The relative population in the sample is: (a) 80 %; (b) 20 % 

(Adapted from Ref. 279a). 
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of two alignments and their transformation into each other on a timescale of several 

nanoseconds was confirmed.
280

 Their geometry was quantified by standard base-pair step 

parameters
285

 (three distances and three angles) redesigned for the system R6G base-pair.
280 

This set of six parameters, three distances (Shift, Slide, Rise) and three angles (Tilt, Roll, 

Twist), delivers a detailed description of the mutual orientation of two stacked moieties (Figure 

8.3). 

In terms of these base-step parameters the realignment of R6G on top of DNA was analyzed 

during the course of MD simulations (Figure 8.4).
280

 

From this MD trajectories
280

 of length 10 ns four snapshots were selected (Figure 8.5) that 

reflect different alignments of the dye. These snapshots also differed from the experimentally 

studied structures by a short truncated segment at the end far from the dye (Figure 8.1a). Two 

snapshots (at 3.25 ns and 5.75 ns) were taken from the trajectory of R6G connected to the 5'-

end of an adjacent cytosine (Figure 8.1a upper panel and Figure 8.5, upper panel) and two 

snapshots (at 4.25 ns and 8.50 ns) were taken from the trajectory for the complex with R6G 

connected to 5'-end of guanosine (Figure 8.1a, lower panel; Figure 8.5, lower panel). For the 

present work, these R6G-DNA complexes were embedded into POL3 water and equilibrated 
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Figure 8.3. Coordinate system and designation of the six base-step parameters illustrated on 

the example of last GC pair of DNA capped with R6G; arrowheads indicate positive direction 

of translation (rotation); positive direction of Shift is away from the reader. 
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with ff02, but subsequently kept rigid in their original geometries. The number of POL3 water 

molecules in the periodic box was set to 8000. To prevent any transformation of the dye 

alignment with respect to DNA during equilibration and production runs, the solute structures 

was kept fixed throughout the simulations. The atomic charges of the neutral and charged forms 

of R6G as well as those for the linker were derived separately for the force fields ff02 and ff99 

(see Table B2, Figures B3a, b of Appendix B) to form the R6G-linker moiety (Figure 8.1b, 

Figure B3c of Appendix B). 

 

8.3 Dependence of λs on Rhodamine 6G-DNA conformational alignment  

First the influence of the dye alignment on the value of solvent reorganization energy was 

addressed. The most prominent effect of the R6G-DNA conformation on λs was expected for 

the shortest hole transfer distance, namely that to the first G unit; for the numbering see Figure 

8.1a. There the strong local electrostatic interactions, reflecting the specificity of charge 

 

 

Figure 8.4. Evolution of the base-step parameters between Rhodamine 6G and adjacent GC 

base pair during 10 ns MD trajectory of R6G-CAA (top) and R6G-GAA (bottom). 
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distributions of the dye and the base-pair, should play the most prominent role. These effects 

will be discussed in terms of two parameters: the distance RDA and the step parameter Twist 

(Tables 8.1 and 8.2), which were defined via a standard procedure.
280,285

  

Estimates of λs for hole transfer along the shortest distance of 3.4 Å (Table 8.1) show that the 

most significant differences between the two configurations are observed for the R6G-CAA 

duplex (Figure 8.1a, upper panel), where the average values 0.61±0.16 eV (3.25 ns) and 

0.79±0.19 eV (5.75 ns) differ by almost 0.2 eV. The latter difference, as anticipated, is mainly 

the result of a drastic change in the Twist angle (~75°, Table 8.1), whereas the RDA parameters 

are rather similar, 4.20 Å and 3.97 Å, for the two selected configurations of R6G-CAA. The 

duplex R6G-GAA, which does not undergo such drastic conformational changes as the other 

one,
280

 has identical values of λs for both snapshots: 1.04±0.19 eV (4.25 ns) and 0.97±0.23 eV 

(8.50 ns). The latter two snapshots are characterized by similar values of RDA and Twist, 

respectively; the corresponding differences are 0.44 Å and 17°. The observed larger difference 

between the two configurations in R6G-CAA, as compared to R6G-GAA, can be rationalized in 

terms of the more significant change in the rotational parameters of R6G
280

 (Table 8.2) rather 

than in the translational parameter RDA (Table 8.1).  

 

Figure 8.5. Upper panel: structure snapshots of the chromophore-DNA complex R6G-CAA, 

taken at  = 3.25 ns and  = 5.75 ns of a previously recorded MD trajectory (see text and Ref. 

280); lower panel: similarly for the chromophore-DNA complex R6G-GAA, taken at  = 4.25 

ns and  = 8.50 ns. The R6G-linker, cytosine (C), and guanosine (G) are marked in black, blue 

and red color, respectively. 
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8.4 Scaling factors and effective optical dielectric constants 

The values of the effective optical dielectric constants  derived from the scaling factors, 

Eq. (7.4), demonstrate a low sensitivity to the alignment of R6G on top of DNA (Table 8.1). 

The values vary from   = 1.41±0.25 (R6G-GAA, snapshot 4.25 ns) to   = 1.63±0.37 (R6G-

CAA, snapshot 3.25 ns). Therefore, they may be considered as identical within the standard 

deviations of the method (~0.3); the resulting average value is    = 1.52±0.32 for all four 

R6G-DNA conformations considered (see Footnote f of Table 8.1). 

To confirm our assumption about the weak influence of the R6G-DNA conformation on the 

reorganization energy for the next-nearest G situated at the fifth base-pair (16.9 Å from R6G), 

an additional simulation was carried out for the conformation of the R6G-CAA duplex taken at 

3.25 ns (Table 8.3, Footnote d). The reorganization energy values for hole transfer to G5 

obtained for the snapshots at 3.25 ns and 5.75 ns were found to be identical, 1.73±0.26 eV and 

1.72±0.25 eV, respectively (see Footnote d in Table 8.3).  

Table 8.1. Solvent reorganization energy s (eV) of hole transfer to the adjacent guanine unit of 

a rigid complex R6G-DNA for different orientations of the chromophore R6G relative to the 

DNA duplex.
a
 Also shown is the time  (ns) of the simulation at which the snapshot was taken 

to generate the structure used. 

Duplex  RDA 
b
 Twist 

c
 s

np
 
d
 s

pol
 
e
 f

  

R6G-GAA 4.25 4.96 -43.9 1.47±0.18 1.04±0.14 1.41±0.25 

 8.50 4.52 -61.0 1.45±0.17 0.97±0.16 1.51±0.31 

R6G-CAA 3.25 4.20 -42.3 1.00±0.14 0.61±0.11 1.63±0.37 

 5.75 3.97 -116.9 1.20±0.16 0.79±0.13 1.53±0.33 
 

a
 For the structures of  the chromophore-DNA complexes see text and Figs. 8.1, 8.5.  

b
 Distance RDA = (Shift

2
+Slide

2
+Rize

2
)
1/2

 (Å) defined here via standard DNA base-step 

parameters; for details see Table 8.2. 
c
 Standard angular base step parameter (degree); see Table 8.2. 

d
 Solvent reorganization energy calculated with the non-polarizable setup (ff99,TIP3P). 

e
 Solvent reorganization energy calculated with the polarizable setup (ff02,POL3).  

f
 Effective optical dielectric constant, Eq. (7.4); the average over R6G-DNA conformations is 

 = 1.52±0.32. 
 



Chapter 8 Solvent Reorganization Energy in Chromophore-DNA Complexes 103 

In view of the negligibly small differences between reorganization energies at separation 

distances larger than 3.4 Å, we investigated the distance dependence of λs only for the R6G-

CAA duplex (snapshot at 5.75 ns). It has a similar trend (Table 8.3) as the one observed for the 

pure A- and B-DNA duplexes 5'-GG
+
GTnGGG-3' (Table 7.3) and asymptotically becomes 

independent of distance beyond 17 Å with the values of 2.0 eV [setup (ff02, POL3)] and 3.0 eV 

[setup (ff99, TIP3P)]. The calculated distance dependence of the hole transfer rate with the 

approximation that the driving force
279a

 ΔG° = 0 for hole transfer to the first guanine results in 

Table 8.2. Standard base step parameters
a
 Roll, Tilt, Twist (degree) and Shift, Slide, Rise, RDA 

(Å) of four different R6G-DNA configurations. Also shown is the time  (ns) of the simulation 

at which the snapshot was taken to generate the structure used. 

Duplex τ Roll Tilt Twist Shift Slide Rize RDA
b
 

R6G-GAA 4.25 -12.89 -9.88 -43.93 -1.87 2.45 3.88 4.96 

 8.50 -10.04 -4.62 -60.98 -1.55 1.94 3.78 4.52 

R6G-CAA 3.25 -20.22 0.48 -42.30 -1.67 0.59 3.80 4.20 

 5.75 -2.80 -10.18 -116.86 -0.48 -2.00 3.40 3.97 
 

a
 Base step parameters calculated according to Refs. 280, 285. 

b
 Parameter RDA defined here as (Shift

2
+Slide

2
+Rize

2
)
1/2

.
 

Table 8.3. Distance dependence of the solvent reorganization energy s (eV) and the resulting 

effective optical dielectric constant  , Eq. (7.4), for hole transfer from the chromophore R6G 

to various guanine units of the rigid complex R6G-CAA.
a
  

RDA(Å) n 
b
 s

np
 
c
 s

pol
 
d
 e  

3.4 1 1.20±0.16 0.79±0.14 1.52±0.32 

16.9 5 2.42±0.22 1.72±0.18 1.40±0.19 

23.7 7 2.51±0.24 1.86±0.19 1.34±0.18 

47.6 14 2.84±0.25 1.98±0.21 1.42±0.19 

50.0 15 2.96±0.27 1.99±0.24 1.54±0.23 
 

a
  Snapshot taken at   = 5.75 ns; for details see text and Figs. 8.1a and 8.5 (upper panels each).  

b
  For the numbering of the G bases in the chromophore-DNA complex R6G-CAA see Fig. 

8.1a, upper panel.  
c
 Solvent reorganization energy from the non-polarizable setup (ff99,TIP3P). 

d
 Solvent reorganization energy from the polarizable setup (ff02,POL3). A simulation for the 

conformation at   = 3.25 ns and the distance RDA = 16.9 Å yielded s
pol

 = (1.73±0.26) eV. 

e
 Effective optical dielectric constant, Eq. (7.4); average over all distances RDA listed   = 

1.45±0.31 eV.
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βs = 0.7±0.1 Å
−1

 (n = 1–5) and to a substantially lower value βs ~ 0.1 Å
−1

 (n = 5–7, 14, 15) for 

the setup (ff02, POL3). The linear fits of the λs dependence on RDA
–1

 for both setups are 

provided in Table 8.4. 

 In the case of the non-polarizable setup (ff99, TIP3P), the parameter βs varies in a similar 

range: 0.9±0.1 Å
−1

 (n = 1–5) to βs ~ 0.1 Å
−1

 (n = 5–7, 14, 15). Optical dielectric constants 

derived from the scaling factors, Eq. (7.4), for different ET distances (Table 8.3) show almost 

no variation with the distance: from   = 1.34±0.18 (n = 7) to   = 1.54±0.23 (n = 15) with an 

average    = 1.45±0.31 (Table 8.3) over the range RDA = 3.4–50.0 Å. The latter average of 

the optical dielectric constant is identical (within the standard deviation) to the values derived 

above for A-DNA, 1.45±0.32, and B-DNA, 1.47±0.31, as well as for the R6G-DNA conformers 

studied, 1.52±0.32, evaluated from the polarizable setup. This suggests that the value    = 

1.5, which accounts for electronic polarization effects, can be used to scale solvent 

reorganization energy values that were obtained from non-polarizable force field simulations of 

similar DNA-related systems. 

 

8.5 Conclusion 

We applied the computational procedure developed within the present work to determine the 

distance dependence of λs upon charge transfer between Rhodamine 6G and guanine units in 

Rhodamine 6G-DNA complexes (donor-acceptor distances 3.4–51.0 Å). Comparison of 

simulations for four distinctly different R6G-DNA conformations and A- and B-DNA forms for 

the wide range of studied donor-acceptor distances suggested a uniform scaling factor of λs that 

relates results from MD simulations with non-polarizable and polarizable force fields, 

independent of conformation and donor-acceptor distances. With the corresponding average 

effective optical dielectric constant    = 1.5, one obtains a computationally economic 

scaling approach to solvent reorganization energies for DNA-related systems from MD 

simulations with a non-polarizable force field. 

 

Table 8.4. Coefficients A and B of linear fits y = A+Bx of the solvent reorganization energy λs 

(eV) as a function of the inverse x = RDA
−1

 of the donor-acceptor distance RDA in R6G-CAA 

complex.  

Model Setup RDA (Å) A (eV) B (eV·Å) R
a
 SD

b
 

R6G-CAA
a
 (ff99,TIP3P) All 2.87±0.14 -5.72±0.78 0.989 0.639 

 (ff02,POL3) All 2.02±0.12 -4.18±0.65 0.998 0.247 
 

a
 Distance dependence of R6G-CAA (5.75 ns) conformation is considered. 

 



 Summary 105 

 

 

 

 

 

 

9 Summary 

 

Electron transfer (ET) along the π-stack of DNA and practical benefits expected from its 

potential utilization in nano-wires for electronics or as a source of genetic information in 

medical diagnostics inspired research interest in many scientific groups all over the world. 

While the physical principles of ET have been understood quite some time ago, contradictive 

experimental data about the conductivity of DNA necessitated its quantitative examination. 

Numerous theoretical descriptions attempting to approach the complexity of real processes in 

DNA were trying to provide definite answers to the question about ET rates, which are the main 

observables. Theories predict the values of rates based on three parameters: the free energy 

difference ΔG between final and initial ET states, the quantum electronic coupling Hfi between 

them, and the energy associated with the structural reorganization of the surrounding medium. 

The latter phenomenon takes place in DNA as a response of atoms to the change of electrostatic 

field which is almost instantaneous compared to the thermal motion of atoms. Bridging the gap 

between theory and experiment in solutions unavoidably has to deal with the solvent facilitating 

electron transport along the π-stack of DNA, where its role is described in terms of the solvent 

reorganization energy s. Being a corner stone of classical Marcus theory dating back to some 

50 years, this parameter also is incorporated in numerous modern theories and its evaluation 

represents a serious challenge that resulted in a broad range of values. The reorganization 

energy enters the formal expression for ET rates through a quadratic form in an exponential 

factor, thereby making the values of ET rates extremely sensitive to its variation. The latter fact 

leaves much room for the interpretation of experimental kinetic data. Theoretical methods 

commonly used to evaluate solvent reorganization energies as a rule overestimate its values. To 

corroborate experimental data, somewhat ad-hoc parametrizations have been introduced. This 

parametrization is related to partitioning of the system into regions possesing distinctively 

different spatial and dielectric properties. The questionable definition of the size of the solute 

cavity and the artificial partitioning of the surrounding solvent medium into arbitrarily chosen 

regions of different dielectric constants lead to a broad range of solvent reorganization energies 

covering the entire spectrum of experimental data. Such computational practices in combination 
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with contradicting experimental data help very little for a consistent picture of the actual values 

of solvent reorganization energies. 

The present work based on an atomistic treatment of DNA in aqueous solution by means of 

molecular dynamics simulations advances to close the existing gap in the field of electron 

transfer and to establish a thorough account of the role of solvent without invoking any ad hoc 

parametrization. For the first time, molecular dynamics studies incorporating polarizable force 

field with an explicit treatment of the solvent are employed to evaluate the solvent 

reorganization energy of a large biomolecular system. The work establishes a straightforward 

path and discusses complications which for some time prevented the application of polarizable 

force fields for evaluating solvent reorganization energies. The method was successfully tested 

on the original classical two-spheres model of Marcus and is then transferred to large-scale 

simulations of experimentally studied DNA duplexes and their complexes with the dye 

Rhodamine 6G.  

The work started with establishing the computational method by considering the classic two-

spheres solute model of Marcus, where the surrounding solvent is treated as a dielectric 

continuum. Despite the fact that this model served experimentalists for decades as a main tool 

of  interpretation, its validity had never been successfully proved in computational experiments, 

which consider the atomistic nature of the solvent. Few attempts have addressed the 

microscopic characteristics of the solvent by representing it with existing water models that 

reproduce its thermodynamic properties and seems to serve well for other molecular dynamics 

simulations. Yet these attempts were not successful thus far when targeting solvent 

reorganization energies. The main conclusion, arising from those simulations with respect to the 

Marcus model, was that the experimental dielectric constant of water assumed in the 

mathematical expression for solvent reorganization energy cannot be reproduced. That 

conclusion brought up a more general question about the extent to which the electronic 

polarization expressed through the static dielectric constant affects the solvent reorganization 

energy.  

The present work revisited the role of electronic polarization predicted by Marcus theory. In 

the current study it was shown that molecular dynamics simulations incorporating a polarizable 

force field fully reproduce the experimental (high-frequency) dielectric constant of water and 

reveal excellent agreement with the outcome of the Marcus two-sphere model, which predicts 

that accounting for the electronic polarization leads to a strong reduction of the solvent 

reorganization energy. According to the present methodological findings, it is of primary 

importance to choose a computational method that quantifies correctly the donor-acceptor 

potential energy gaps that lead to the solvent reorganization energy. For this purpose, a self-

consistent iterative treatment of electronic polarization
 
was successfully employed despite its 

relatively high computational cost. Full agreement was achieved between the results from three 
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approaches, existing in the literature, to evaluate solvent reorganization energy via MD 

simulations.  

The present results for charge separation and recombination reactions in the two-spheres 

model show a strictly linear dependence of the solvent reorganization energy s on the inverse 

of the donor-acceptor distance RDA, in accordance with the classical results of Marcus. Unlike 

other studies, the present results for s agree quantitatively with the predictions of the Marcus 

dielectric continuum model, yielding the theoretically expected reduction by ~45% due to 

electronic polarization effects. The evaluation of the distance dependent character of s from 

MD simulations with a polarizable water model suggests a scaling which is fully consistent 

with the experimental value of 1.79 for the effective optical dielectric constant of water. Thus, it 

was possible to clarify the situation of controversial choices between scaling factors that had 

been suggested in the literature to achieve agreement between the results of polarizable and 

non-polarizable simulations. Preliminary results on a charge shift reaction for a two-spheres 

model fully confirmed the same reduction as obtained for charge separation and recombination 

reactions. 

The estimates based on results for the charge shift reaction suggested substantial reduction of 

the values of s of DNA-related systems compared to existing ones in the literature; thus further 

applications of this computational strategy for complex biomolecular systems were elaborated.  

Particularly, DNA-based donor-acceptor complexes with experimentally known solvent 

reorganization energies were studied by molecular dynamics simulations. The solvent 

reorganization energy λs for hole transfer between guanine units was calculated in a variety of 

DNA duplexes with a polarizable force field. These results are among the lowest reported in the 

literature. The dependence of λs on the inverse donor-acceptor distance for a series of model A- 

and B-DNA duplexes (donor-acceptor distances 3.4–30.4 Å) shows a linear decay similar to the 

one expected from the Marcus two-spheres model. For the long range ET (RDA > 10 Å) the 

solvent reorganization energies of these DNA related systems are independent of whether DNA 

is in A- or B-form. It was shown that vibrations of the DNA backbone have a rather small effect 

on λs values. Besides that, the choice of the solvent model and the force field (including the 

influence of charge sets) and various molecular groups affecting the results were investigated. 

Results from MD simulations with the standard non-polarizable force field were used as 

reference to account for electronic polarization effects. It was demonstrated that the values of λs 

were reduced by about 30% compared to those derived with the non-polarizable setup when one 

accounts for the electronic polarization with a polarizable force field. The results from these 

atomistic calculations with a polarizable force field, which do not demand any “re-

parameterization”, are consistent with the lowest values of λs from earlier elaborations that 

employed an implicit solvent model. The current reduction of about 30% of λs due to electronic 

polarization observed for DNA duplexes casts some doubt on the common practice to transfer 
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scaling factors from simplified solute models to biomolecular systems in order to achieve 

agreement with experimental data. 

Besides a series of DNA model systems, MD simulations with a polarizable force field were 

conducted also on fragments of DNA duplexes where experimental values of λs recently had 

been obtained from kinetic studies.
251

 Solvent reorganization energies of ET between guanines 

G from the present simulations for the fragments G
+
X

(k)
G (X

(1)
 = A, X

(2)
 = AA, X

(3)
 = T, X

(4)
 = 

TT)  agreed well within the standard deviations of the method.  

As a next step, this procedure to determine solvent reorganization energies was applied to 

large-scale systems, namely to 15 base-pair DNA duplexes with the dye Rhodamine 6G 

attached; the structure of these sytems had previously been resolved by NMR. The geometries 

from MD refinement of these complexes with several distinctly different conformational 

alignments of the dye were used for evaluating λs. The distance dependence of λs obtained upon 

charge transfer between Rhodamine 6G and guanine units in Rhodamine 6G-DNA complexes 

was studied for donor-acceptor distances from 3.4 Å to ~50 Å. Comparison of the simulations 

for four considerably different R6G-DNA conformations and the wide range of studied donor-

acceptor distances suggested a uniform scaling factor for λs that relates results from MD 

simulations with non-polarizable and polarizable force fields, independent of conformation and 

donor-acceptor distances. With the corresponding average effective optical dielectric constant 

   = 1.5, one obtains a computationally economic scaling approach to solvent 

reorganization energies for these DNA-related systems from MD simulations even with a non-

polarizable force field. 

As shown by the present results, improved polarizable force fields for water and biological 

molecules are highly desirable. However, even now, the procedure established in this thesis 

holds great promise for further applications to large-scale applications in the area of biophysical 

chemistry. 
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Appendix A  − Cumulant Expansion for γ(t) 

 

Denoting the second exponential term in Eq. (3.35) as  

   
0

exp

t
i

t U t dt
 

   
 
 ,        (A.1) 

one can use the cumulant series expansion to represent it as 

     
0 1 2 n 1n t t t t

1 2 3 n 1 n c
0 0 0 0 0

i
t dt dt dt dt U t U t


 

   
 

     ,    (A.2) 

where 
c
 is the cumulant average. 

The second-order approximation for γ(t) gives  

       
1

1 1 1 2 1 22c c
0 0 0

1
tt t

i
t U t dt dt dt U t U t

 
     
 

   ,     (A.3) 

where 

   1 1c 0
0U t U t            (A.4) 

           1 2 1 2 1 2c 0 0 0
U t U t U t U t U t U t        .   (A.5) 

Finally one obtains an equation for γ(t) 

           
1

1 2 1 22 20 0
0 0 0

1 1
0

tt t

γ t dt dt U t U t dt' t t' U U t'            (A.6) 
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Appendix B  − Derivation of Charges for G, G
+
 

R6G and R6G
−
 

When deriving atomic charges for the singly positively charged guanosine (G
+
) and 

Rhodamine 6G (R6G) in case of the polarizable force field ff02, a previously described 

procedure was applied.
219

 Here, a more detailed overview of some specific parameters of this 

procedure shall be given. All quantum mechanical calculations were carried out with the 

program Gaussian 03.
286

 

The geometry of charged guanosine was optimized at the UHF/6-31G* level. For this 

geometry an initial electrostatic potential (ESP) was generated at the UB3LYP/cc-pVTZ level 

and RESP atomic charges
211,212,287

 were fitted to this initial ESP. They were then used to 

Table B1. Permanent, perm, induced, ind, and total, tot, dipole moments (Debye) calculated 

with the polarizable version of the AMBER force field ff02 after one MD step for the 

optimized geometry of a singly charged guanosine radical G
+
, the linker (Fig. B3a), 

negatively charged Rhodamine R6G
–
, and neutral R6G.

a
 

 

N  G
+
    Linker    R6G

–
    R6G  

 perm ind tot  perm ind tot  perm ind tot  perm ind tot 

0 6.744 1.305 5.757  12.235 1.374 11.374  13.791 1.056 12.833  14.359 1.551 12.947 

1 7.213 1.379 6.140  12.610 1.534 11.642  14.222 1.130 13.206  15.032 1.586 13.593 

2 7.257 1.385 6.179  12.633 1.541 11.664  14.242 1.134 13.221  15.090 1.591 13.646 

3 7.260 1.385 6.181  12.638 1.542 11.668  14.241 1.134 13.221  15.093 1.592 13.649 

4 7.260 1.385 6.181  12.637 1.542 11.668  – – –  15.093 1.592 13.648 
 

a
 Dipole moments from single step MD calculations with the polarizable ff02 force field, 

where charges were derived from the electrostatic potential obtained at the B3LYP/cc-pVTZ 

level for subsequent iterations N of the procedure described in the text. For comparison note 

the initial values of the total dipole moment at the B3LYP/cc-pVTZ level after geometry 

optimization (in absence of any external point-charge field): G
+
 – 6.849 Debye, linker – 

12.606 Debye, R6G
–
 – 14.094 Debye, and R6G – 14.029 Debye.
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generate induced dipoles on the optimized geometry through one MD step of 0.05 fs in the 

module sander of AMBER 8, treating the induced dipoles iteratively
243

 without periodic 

boundary conditions. As initial guess, atomic polarizabilities were automatically invoked in the 

module leap from the polarizable force field ff02. In response to the charges present on the 

atoms, these induced dipoles, reflecting the atomic polarizations, adjusted their positions during 

a single MD step with the module sander. As for normal production MD runs, we used the 

iterative procedure
242

 built into AMBER 8.
220

 After relaxation of the induced dipoles, their 

positions and magnitudes were recorded and introduced as a point-charge field surrounding the 

optimized structure in a B3LYP/cc-pVTZ single-point calculation where the ESP for the next 

iteration was generated. The obtained ESP corresponds to the potential field without self-

polarization of the molecule. The newly obtained charge set was used for the subsequent step 

where the induced dipoles were adjusted. After three to four cycles, the induced dipole 

moments converged (Table B1). The corresponding ff02 RESP charges for neutral and charged 

guanosine are given in Figures B1 and B2. The charge set for neutral guanosine, shown in 

Figure B2 for comparison, is the one built into the ff02 force field; it was not obtained by the 

current iterative procedure. 

The charges for the force field ff02 for neutral and negatively charged R6G were obtained in 

an analogous iterative procedure. The B3LYP/6-31G* geometry optimization with a PCM 

water model
288

 and the subsequent iterative procedure for generating the ESP at the B3LYP/cc-

pVTZ level were carried out separately for the two modified fragments of the dye (Figures B3a, 

b): the R6G unit and the linker with methylated phosphate. Then the fragments with their 

corresponding charges were merged (based on common atoms in both fragments, the final set 

of charges was derived automatically in antechamber package) to deliver the final charges 

listed for the neutral and the negatively charged systems R6G-linker (Table B2), along with the 

charges for the non-polarizable force field ff99. The optimization was carried out with the PCM 

approach because the structure corresponding to the zwitterionic form cannot be generated in 

vacuum where the structure always converges to the lactone isomer.
289
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Table B2. Charges (e) for the polarizable (ff02) and the non-polarizable (ff99) version of the 

AMBER force field for neutral (R6G) and negatively charged Rhodamine 6G (R6G

). See 

Fig. B3c for the atom labels. 

Atoms R6G   R6G

   Atoms R6G   R6G


  

 ff99 ff02  ff99 ff02   ff99 ff02  ff99 ff02 

C1 -0.455 -0.310  -0.324 -0.313  H22 0.189 0.159  0.183 0.173 

H1 0.163 0.126  0.126 0.104  C18 -0.416 -0.261  -0.103 -0.020 

C2 0.252 0.105  0.214 0.140  C19 0.721 0.521  0.238 0.059 

N1 -0.435 -0.311  -0.676 -0.507  C20 -0.221 -0.004  -0.033 0.064 

C3 0.043 0.101  0.233 0.240  C26 -0.185 -0.195  -0.209 -0.154 

C4 -0.286 -0.278  -0.377 -0.337  C25 -0.190 -0.108  -0.145 -0.171 

H2,H3,H4 0.089 0.083  0.093 0.078  H24 0.170 0.115  0.119 0.102 

H5,H6 0.088 0.060  0.040 0.022  H25 0.116 0.089  0.100 0.077 

H7 0.325 0.280  0.362 0.307  C21 0.196 -0.027  0.039 -0.040 

C5 0.034 0.126  0.068 0.079  C22 0.607 0.586  0.757 0.677 

C6 -0.271 -0.267  -0.164 -0.147  O2, O3 -0.684 -0.608  -0.767 -0.700 

H8,H9,H10 0.086 0.084  0.044 0.041  C23 -0.209 -0.112  -0.187 -0.151 

C7 -0.097 -0.192  -0.268 -0.307  H23 0.162 0.114  0.136 0.107 

H11 0.189 0.159  0.183 0.173  C24 -0.041 -0.131  -0.176 -0.124 

C8 -0.416 -0.261  -0.103 -0.020  C27 0.691 0.566  0.749 0.573 

C9 0.508 0.361  0.293 0.247  O4 -0.559 -0.551  -0.559 -0.544 

O1 -0.335 -0.266  -0.342 -0.262  N3 -0.692 -0.507  -0.692 -0.500 

C10 0.508 0.361  0.293 0.247  H26 0.321 0.262  0.321 0.262 

C11 -0.455 -0.310  -0.324 -0.310  C28 0.097 0.156  0.097 0.156 

H12 0.163 0.126  0.126 0.104  H27, H28 0.078 0.016  0.078 0.016 

C12 0.252 0.105  0.214 0.140  C29 -0.114 -0.038  -0.114 -0.038 

N2 -0.435 -0.311  -0.676 -0.507  H29, H30 0.044 0.011  0.044 0.011 

C13 0.043 0.101  0.233 0.240  C30 0.005 0.042  0.005 0.042 

C14 -0.286 -0.278  -0.377 -0.337  H31, H32 0.053 0.021  0.053 0.021 

H13,H14,H15 0.089 0.083  0.092 0.078  C31 -0.263 -0.132  -0.263 -0.131 

H16,H17 0.088 0.060  0.040 0.022  H33, H34 0.096 0.034  0.096 0.034 

H18 0.325 0.280  0.362 0.307  C32 -0.034 0.013  -0.034 0.013 

C15 0.034 0.126  0.068 0.079  H35, H36 -0.023 -0.012  -0.023 -0.012 

C16 -0.271 -0.267  -0.164 -0.147  C33 0.396 0.268  0.396 0.211 

H19,H20,H21 0.086 0.084  0.044 0.041  H37, H38 -0.024 -0.013  -0.024 -0.013 

C17 -0.097 -0.192  -0.268 -0.307  O5 -0.539 -0.382  -0.539 -0.367 
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Atomic Charges for the Non-Polarizable Force Field. In the case of the non-polarizable 

ff99 the atomic charge set for positively charged guanosine was obtained for a geometry 

optimized at the B3LYP/6-31G* level with a subsequent generation of the ESP with the 

UHF/6-31G* method. The geometries of the modified linker and of R6G (both in neutral and 

negatively charged forms) were optimized separately at the B3LYP/6-31G* level (Figure B3a, 

b). Then these optimized structures of the linker and the R6G unit were merged (based on 

common atoms in both fragments the final set of charges was derived automatically in 

antechamber package) to generate the ESP either at the RHF/6-31G* level (neutral R6G) or the 

UHF/6-31G* level (negatively charged R6G). In all cases the generated ESP was submitted to 

further RESP calculations as suggested for acquiring appropriate atomic charges for non-

polarizable AMBER force fields (Table B2).
 211,212,287

 

 

Figure B1. RESP atomic charges (e) of singly positively charged guanosine for use with the 

polarizable force field ff02. 

 

Figure B2. RESP atomic charges (e) of neutral guanosine used with the polarizable force 

field ff02. The numbers are taken directly from the ff02 library implemented in AMBER 8.  
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Appendix C  − How to Record Potential Energy 

Gaps  

 

To estimate MD parameters needed for recording the potential energy gaps that are required 

one evaluates the solvent reorganization energy, consider a typical spectral density of an ET 

reaction coordinate coupled simultaneously to nuclear degrees of freedom of the solute and the 

solvent. The spectral density decays exponentially with the frequency ω:
5
  

 
exp

J  




 
  

 
,         (C.1) 

where Λ is some constant referred to as the highest frequency cutoff and η is a friction 

coefficient. From a typical spectral density calculated for DNA (Figure C.1) one notes that the 

estimated value for Λ is about 750–1000 cm
–1

. Eq. (C.1) arises from an approximate solution of 

the equations of motion for a system of harmonic oscillators coupled to one reaction 

coordinate.
5 

 

Figure C1. Typical falloff character of the spectral density function of the sovent calculated 

from a time correlation function of 250 ps for a rigid DNA duplex (MD simulations).  
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Despite an essentially non-harmonic character, in case of large systems one can regard such 

a spectrum (Figure C1) as being produced by an array of harmonic oscillators.
5,152,166

 Their 

evolution in time can be approximated by a model function:  

     exp cos 2i i

i

tf t g t  
  ,        (C.2) 

where gi [eV
2
] is the relative contribution of the oscillator with frequency νi (cm

–1
). From MD 

simulations it had been shown that for pure water,
187

 DNA,
91

 and other biomolecular systems,
 

5,97c,145
 the decay in Eq. (C.2) has an approximately exponential character with Γ estimated at 

~500 fs. The spectrum covers the range 0–4000 cm
–1

 where the highest frequency peaks around 

3500 cm
–1 

correspond to vibrations involving H (Figure C1). In order to evaluate their 

contribution to the reorganization energy, it is important to record properly these high-

frequency vibrations. Thus, using the upper limit of 4000 cm
–1

 one can estimate the lowest 

limiting frequency νlim for dumping the snapshots from MD simulations: 

1 1 12

lim 4000 cm 120 ps 120 10 Hz             (C.3) 

The limiting frequency νlim corresponds to a vibration period Tlim = 1/νlim ≈ 10 fs, therefore 

MD sampling has to be performed with a time step substantially less than the latter value. The 

value usually chosen
235,244 

is around 1 fs. To reduce the computational cost in the present work 

by a factor of two, the trajectory snapshots were dumped each 2 fs.  
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Appendix D  − Calculation of the Time Correlation 

Function (TCF)  

According to the mathematical formalism the time correlation function (Eq. 4.11) is defined 

for an infinitely long period of time T: 

     
0

1
lim

T

fi fi
T

A U t U t dt
T

 


    .       (D.1) 

On the other hand, data from MD trajectories are recorded during a finite period of time Tfinit 

< ∞; thus, the autocorrelation function A(τ) is accurate only for lags τ << Tfinit. As a rule of 

thumb, only the first 10–20% of the calculated TCF data can be subjected to further Fourier 

transform.
290,291  

From Figure D1 one can see that the TCFs calculated for the data sets of different lengths 

 

Figure D1. Convergence of TCF as a function of the trajectory length for ET between 

guanine units (in italics) in a model duplex 5'-GG
+
GTTTGGG-3'. The trajectory was 

recordered each 2 fs. 
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converge for the lag τ ≈ 25–30 ps, where they remain positive. Only the latter part, which 

empirically corresponds to the first 10–20%, is useful for a subsequent FT. The the first 2.5 ps 

of one of the decaying TCFs is shown in Figure D2 at high resolution. 

Increase of the lag τ reduces the quality of the information recorded as can clearly be seen 

from the discrete representation of the TCF:  

       
00

1 1
T N n

fi fi fi k fi k

k

U t U t dt U t U t n t t
T N t n t






        
  

 ,    (D.2) 

where the lag τ = nΔt in the denominator decreases the useful length NΔt – nΔt  of the data set.  

 

U UU U

 

Figure D2. High resolution (first 2.5 ps) of the typical falloff character of a TCF calculated 

for the donor-acceptor energy gap.  
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Appendix E  – Fourier Transform (FT) of TCF 

 

Continuous cosine FT. According to Eq. (6.4) (Chapter 6), the spectral density function and 

the autocorrelation function are related through a cosine Fourier transform. In order to find the 

spectral density function from the known time correlation correlation, one has to extend it 

artificially in a symmetric way into the area t < 0.  

Consider an arbitrary function f(t) defined on  ;t   . Then one has: 

         
0

cos sin



     f t a t b t d     ,      (E.1) 

where 

     
1

cos





 a f t t dt 


          (E.2) 

     
1

sin





 b f t t dt 


 .        (E.3) 

In order to represent it as an integral of cosines, one needs to have the second coefficient 

b(ω) = 0, too. Assuming now that f(t) corresponds to the time correlation function defined for 

 0;t  , the latter can be done if it would be extended into the negative region of t in an 

even way: 

   
 

 
, 0

ˆ :
, 0

f t t
f t f t

f t t


 



        (E.4) 

In this case the coefficients b(ω) become identical to zero and only a(ω) remains: 

         
0

1 2
cos cos

 



    a f t t dt f t t dt  
 

  .     (E.5) 

Thus, if the correlation function is formally extended to negative values of t, even if 

originally defined only for positive  0;t  , then Eq. (E.1) with b(ω) = 0 and a(ω) according 

to Eq. (E.5) are also valid only for positive  0;t  . 

Assume a TCF similar to one shown in Figure D2 that contains only one of the harmonic 

contributions which comprise the spectral density function Eq. (C.2), namely the one with the 

highest frequency νlim at relative weight glim: 
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     lim limexp cos 2tf t g t  


       (E.6) 

The corresponding cosine FT according to Eq. (E.5) results in: 

 
   

   

lim

lim 2 2
2 2lim 0

lim lim

2 1 1 1 1
cos

2 21 1
i i

J
f t t dt g g




 
   



  
    

      
    

 ,  (E.7) 

where ωlim = 2πνlim. The redundant part of Eq. (E.7), corresponding to the negative values of the 

frequency ω, should be omitted. From Eq. (E.6) one notices that the decay parameter Γ of the 

TCF defines the width of the FT peaks, which is independent of frequency ωlim.  

Discrete cosine FT. The discrete FT g'(k) of the function f(tn) defined on a series of values 

0;nt T for the arbitrary k is given by: 

   
1

0

2
exp

N

n n

n

k
g k f t i t

T





 
    

 
 .       (E.8) 

Here, k corresponds to the frequency according to ωk = 2πk/T. To relate continuous and discrete 

FT, the sum in Eq. (E.8) has to be rearranged multiplying and dividing the expression by Δτ: 

   
1

0

1 2
exp

N

n n

n

k
g k f t i t

T










 
      

  
       (E.9) 

Choosing Δτ to be rather small, one obtains the integral as limit of the sum g'(k) at 0  : 

   
0

1 2
' exp

T
k

g k f t i t dt
T





 
    
  

                  (E.10) 

Recalling that the index k numerates frequencies ωk, the integral can be expressed for a 

continous range of ω: 

     
0

1
exp

T

g f t i t dt 


    
                    (E.11) 

Thus, discrete and continuous Fourier transforms are related through the constant multiplier 

1/Δτ. The limit of the errors when stepping from a discrete summation to the integration can be 

estimated by the “trapezoid formula”: 

    2

0

2 0
exp

12

T

k

kt T
I f t i dt M

T


 

 
      

 
 ,                (E.12) 

where  
  2

max ' ;0M f t T   . 
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Appendix F  – Estimate of Leakage Artifacts  

 

When taking a FT in approximate, discretized form, often artifacts can be observed that are 

known as leakage errors. When data are not sampled long enough and a truncation occurs, the 

intensities (peaks) resulting from the numerical procedure differ from the exact analytical 

solutions. One of the reasons is that the quality of the TCF decreases at larger values of the 

righthand side of Figures D1 and D2; see also the discussion in Appendix D. Truncation of 

TCFs around the first 10–20% of the collected data series and application of different “window 

functions”, which reduce the relative contribution of the values at the ends of data series, 

improves the quality of FT, but still disrete FT unavoidably introduces a representation through 

a finite set of frequencies instead of a continuum. The number of data points collected results in 

the same number of discrete frequencies Eq. (E.8). The deviation from the theoretical peak 

intensity can be obtained for a particular implementation of the FT and the length of the 

recorded TCF data set in a straightforward way: 

   

 
100%

FT continuum FT discrete
Error

FT continuum


  ,     (F.1) 

where FT is the Fourier transform of an arbitrary analytical function. 

In the present work the FTs were calculated using the program xmgrace.
292

 Assume a data 

set of 25000 points, recorded with a time step Δτ = 4 fs to represent the function given in Eq. 

(E.6) with parameters Γ = 500 fs and νlim = 1000 cm
–1

, and invoke the definition of cosine FT 

similar to Eq. (E.5). Then integration of the function yields a peak height at ω > 0:  

     cos

0
lim

cos
2

FT f t f t t dt







     ,       (F.2) 

where ω = 2πν. Note that the height of the peak is independent of the frequency ω of the 

assumed TCF.   

Data (with a precision of 10 digits after the comma) for the TCF function, Eq. (E.6), with the 

latter parameters, have been imported into the program xmgrace, where the cosine FT is 

implemented as follows 
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   
1

0

2
cos

N

n n

n

k
g k f t t

T





 
    

 
 .        (F.3) 

This results in a peak height of 63.00158 (dimensionless units). To connect continuous and 

discrete transforms, one has to recall Eq. (E.11), which relates them through the parameter Δτ. 

Finally, one estimates the relative leakage error according to Eq. (E.1): 

1 250 1 63.00158 4
100% 0.8%

1 250

fs fs
Error

fs

 
        (F.4) 

This is a rather small value compared to experimental standard deviations. 
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Appendix G  − Integration of the Spectral Density 

Function  

The accuracy when one calculates reorganization energies depends not only on leakage 

artifacts that arise from the discrete FT, but also on the subsequent numerical integration of the 

spectral density function obtained from a FT,  

 max

0

4 i

i

J 
 

 
  ,          (G.1) 

which is a discrete representation of Eq. (6.3). The integrand consists of sharp peaks (see Figure 

C1); therefore, the resolution of the frequency grid Δω must be high enough, so that the area is 

estimated precisely. The required grid resolution can be estimated from the “width” of the 

peaks of the assumed TCF, see Eq. (E.6). As seen from the resulting FT in Eq. (E.7), the 

characteristic width of the peak is  

1
 


.           (G.2) 

It is noteworthy, that the grid resolution Δω depends only on the decay constant  of the 

TCF. 

Assuming one needs at least 10 points to estimate the area under a single peak at a 

reasonable accuracy, one derives a grid resolution: 

11 1
7

100
cm   


 .         (G.3) 

Given the latter condition, the total data length of a TCF submitted to FT can be estimated as 

1
5T ps


 


 ,          (G.4) 

which directly follows from the definition of the discrete FT, Eq. (E.8). Recall that the useful 

length of a TCF comprises only 10–20% of the total sampling time (see Appendix D). Then one 

estimates that data have to be collected at least for about 25–50 ps. 
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Appendix H  − Bash Scripts for MD Calculations  

H.1  General operations of the Bash scripts for energy gap calculations 

The currently developed system of the bash scripts assists with analyzing the trajectory 

simultaneously with its production. The resulting data is generated in standard AMBER 8
220

 

energy output format as two files: MD.out and AN.out which correspond to the same series of 

snapshots with initial and final ET states, respectively.  

The trajectory is produced with a parallel version of module sander
220

 that invokes program 

mpirun and operationally is controlled by the script cycles.sh. Due to extremely voluminous 

data to be operated by analysis scripts the main trajectory is partitioined into 25 sections with a 

length of 2 ps each. The script ghost.sh ensures that the last snapshot of previous trajectory 

piece becomes the starting snapshot for the next subsequent section of the trajectory.  

The analysis is done as recommended (Appendices C–G) each 2 fs at every fourth snapshot 

produced with a timestep 0.5 fs in accordance with the input parameters of sander (enlisted in 

the command files AN.in and MD.in). The analysis is carried out as a set of single step MD 

calculations (0.005 fs), also performed by sander. This analysis can be carried out in “parallel” 

by invoking simultaneously several independent single processes; the number of simultaneous 

runs on single processors depends on the current load of the available compute platform. Its 

maximum target number NUM_PROC is preset in the script analysis.sh, which controls the 

single-step calculations. The two data streams, production and analysis, can be balanced with 

the script bg_sander.sh which controls the load of the processors by adjusting the number of 

simultaneous analysis runs relative to a target number NUM_PROC. The best speed of 

calculations is achieved on machines that feature a shared memory, where the total number of 

sander executables (invoked in production and analysis runs together) does not exceed the 

number of physically available processors by a factor of 2. 

 

 

H.2  Main controlling script MD.sh  

The system of communicating scripts operates is described in the following. The main script 

MD.sh is supposed to be submitted to the machine queue of waiting tasks with the command:  

> qsub ./MD.sh 
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It copies all start files (command files *.in, topology files *.prmtop, pre-equilibrated DNA 

structure in a form of restart file 6equil_md.restrt) needed for standard sander runs from 

the (variable) directory STARTDIR. In MD.sh script represented below the latter variable has 

the value /bigstuff/vladimirov/DNA/. 

The script creates two directories 

/scratch/vladimirov/R6G-GNP6_to_GNP0_MD 

/scratch/vladimirov/R6G-GNP6_to_GNP0_AN 

in directory /scratch. The topology files (R6Gminus1-GNP6_6CAA.prmtop,with a 

negative charge located on R6G) and (R6G-GNP0_6CAA.prmtop,with a positive charge 

located on R6G) are assigned to environment variable names that correspond to the initial 

(TOPOLOGY) and final (TOPOLOGYII) ET states, respectively. 

Then the script assigns environmental variables for parallelizing sander via mpirun, which 

depend on the available software version and the architecture of the machine (for more 

instructive commands, see the manual of AMBER). After the environmental variables are 

assigned, script MD.sh invokes all other scripts which control the execution of simulations.  

The scripts are designed such that no other parameter except those represented in MD.sh 

have to be changed.  

 

#!/bin/tcsh 

#$ -cwd 

#$ -pe * 4 

#$ -q opt34,opt35,opt36,opt37,opt38,opt39,quad1,quad2 

setenv dirI /scratch/vladimirov/R6G-GNP6_to_GNP0_MD 

setenv dirII /scratch/vladimirov/R6G-GNP6_to_GNP0_AN 

rm -rf $dirI 

rm -rf $dirII 

mkdir -p /scratch/vladimirov/ 

mkdir -p $dirI 

mkdir -p $dirII 

############################################################## 

setenv TOPOLOGY R6Gminus1-GNP6_6CAA.prmtop 

setenv TOPOLOGYII R6G-GNP0_6CAA.prmtop 

setenv STARTDIR /bigstuff/vladimirov/DNA/ 

cd $STARTDIR 

############################################################## 

cp 6equil_md.restrt $dirI/8equil_md.restrt 

############################################################## 
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cp *.in  *.prmtop ENERGY.dat ghost.sh egor.host cycles.sh  

analysis.sh bg_sander.sh  $dirI 

cp ZERO_VEL.restrt $dirII  

cd $dirI 

source /home/vladimirov/.cshrc 

################# mpirun  variables ########################## 

echo '+++++++++++++ ENV ++++++++++++++' 

setenv 

echo '+++++++++ HOSTFILE +++++++++++++' 

cat $PE_HOSTFILE 

setenv TTFS_HOSTFILE $PE_HOSTFILE 

/home/ttfs/bin/pvmconf.pl -g -m > egor.host 

echo '+++++++++ HOSTFILE:N +++++++++++' 

cat egor.host 

######### Don't use this command for analysis runs!!! ######## 

setenv PARAL "mpirun -v -np 4 -machinefile egor.host 

$AMBERHOME/exe/sander " 

############################################################## 

./ghost.sh & 

./analysis.sh & 

./cycles.sh  

############################################################## 

 

H.3  Trajectory production script cycles.sh  

#!/bin/bash 

#$ -cwd 

cd $dirI 

####### The number of trajectory pieces    ####### 

maxi=25 

####### The number of steps in each trajectory piece   ####### 

####### should be always of format e00+1 and the same ####### 

####### as in "MD.in" file         ####### 

nstlim=4001 

########################## CYCLES ########################### 

ntwr=4  

let prenstlim=$nstlim-1 

let maxsnap=$prenstlim/$ntwr 

############################################################# 

cp 8equil_md.restrt MD_1.restrt 
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cp ENERGY.dat MD_ENERGY_0.dat  

############################################################# 

for ((i=1;i<=maxi;i++)) 

do 

############################################################# 

let k=$i+1 

############################################################# 

$PARAL -O -i MD.in -o MD_$i.out -p $TOPOLOGY  -c MD_$i.restrt 

-ref MD_$i.restrt -r MDf_$i.restrt -x MDf_$i.mdcrd  

grep -v writing MD_$i.out | grep -v COM > temp_$i.out  

let nlines=184+$nstlim*12 

##### here 

let plines=$prenstlim*12 

##### here 

mv temp_$i.out MD_$i.out   

head -$nlines  MD_$i.out | tail -$plines > MD_ENERGY_$i.dat 

cp ENERGY.dat MD_snapshot_0.dat 

for ((j=1;j<=maxsnap;j++)) 

do 

let snapshot=$j*$ntwr 

let snapline=$snapshot*12 

##### here 

head -$snapline MD_ENERGY_$i.dat | tail -12 > 

MD_snapshot_$j.dat 

#### here 

let jp=$j-1   

cat MD_snapshot_$jp.dat MD_snapshot_$j.dat > intermediate.dat 

mv intermediate.dat MD_snapshot_$j.dat  

done 

mv MD_snapshot_$maxsnap.dat MD_ENERGY_$i.dat  

rm -f MD_snapshot_*.dat    

######## Prepare files for the next MD cycle in dirI ######## 

cp MDf_$i.restrt_$prenstlim MD_$k.restrt  

rm -f MDf_$i.restrt_$nstlim  

done 

##########  archive and  copy to "home" directory  ########## 

tar -cvf MD.restrt.tar MD_*.restrt  

tar -cvf MD.mdcrd.tar MDf_*.mdcrd    

gzip MD.*.tar 

for ((i=1;i<=maxi;i++)) 
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do 

let ip=$i-1 

cat MD_ENERGY_$ip.dat  MD_ENERGY_$i.dat > intermediate.dat 

mv intermediate.dat MD_ENERGY_$i.dat 

done 

mv MD_ENERGY_$maxi.dat MD_ENERGY.dat 

rm -f MD_ENERGY_*.dat 

cp *.gz MD_ENERGY.dat $STARTDIR 

################### kill background job ###################### 

cd $dirII 

while [ ! -f AN_ENERGY.dat ] ; do 

wait 

done 

kill -9 analysis.sh  

############################################################## 

 

H.4  Trajectory analysis script analysis.sh 

#!/bin/bash 

#$ -cwd 

cd $dirI 

################### Parameter to change #################### 

NUM_PROC=3 

############  The number of trajectory pieces ################ 

maxi=25 

####### The number of the xyz lines in restart files   ####### 

####### to be analyzed         ####### 

atomlines=12532 

####### The number of snapshots analyzed in each   ####### 

####### trajectory piece        ####### 

####### It should be always:  maxl=(nstlim-1)/ntwr   ####### 

####### where nstlim corresponds to nstlim     ####### 

####### in "MD.in" file        ####### 

maxl=1000 

######################## Cycles ############################# 

ntwr=4 

############################################################# 

cp egor.host $dirII  

mv AN.in $TOPOLOGYII bg_sander.sh $dirII 

cp ENERGY.dat $dirII/AN_ENERGY_1.0.dat 
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cp ENERGY.dat $dirII/bgPID.dat 

############################################################# 

for ((i=1;i<=maxi;i++)) 

do 

############################################################# 

for ((l=1;l<=maxl;l++)) 

do 

let p=$ntwr*$l-$ntwr 

let m=$ntwr*$l 

let o=$ntwr*$l+$ntwr 

############################################################# 

let maxm=$maxl*$ntwr 

############################################################# 

while [ ! -f MDf_$i.restrt_$o ] ; 

do 

wait 

done 

while [ ! -f rstdip_$o ] ; 

do 

wait 

done 

############################################################# 

if [ -f MDf_$i.restrt_$m ] 

then 

cp MDf_$i.restrt_$m $dirII 

fi 

############################################################# 

cd $dirII 

############# Prepare zero velocities file ################## 

head -$atomlines MDf_$i.restrt_$m  > MDf_XYZ.restrt 

tail -1    MDf_$i.restrt_$m  > MDf_BOX.restrt 

cat MDf_XYZ.restrt ZERO_VEL.restrt MDf_BOX.restrt > 

MDf_$i.restrt_$m  

############################################################# 

cd $dirI 

if [ -f MDf_$i.restrt_$o ] 

then  

cd $dirII 

##### The control of the number of background processes ##### 

num_proc=(`ls -l bgPID*.dat | wc -l `) 
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echo $num_proc >> num_procI.dat 

while [ $num_proc -gt $NUM_PROC ]; do  

sleep 5s  

num_proc=(`ls -l bgPID*.dat | wc -l `) 

echo $num_proc >> num_procF.dat  

done 

############################################################# 

echo $i  $p  $m  $maxm > ipm.dat  

./bg_sander.sh $TOPOLOGYII  $dirI & 

sleep 2s 

cd $dirI  

else 

cd $dirII 

sander  -O -i AN.in -o AN_$m.out -p $TOPOLOGYII -c 

MDf_$i.restrt_$m -ref MDf_$i.restrt_$m  

head -186 AN_$m.out | tail -9 > AN_$m.mdinfo 

cat AN_$m.mdinfo > AN_ENERGY_$i.$m.dat 

rm -f AN_$m.mdinfo  

rm -f MDf_$i.restrt_$m  MDf_$i.rstdip_$m  

cd $dirI 

############# Clean MD directory from used files ############ 

if [ $m -lt $maxm ] 

then 

rm -f  MDf_$i.restrt_$m  MDf_$i.rstdip_$m 

fi 

############################################################# 

fi 

done 

######### Concatenate all the AN_ENERGY*.dat files ########## 

cd $dirII 

##### Check that all analysis's sander RUNS are complete #### 

complete=(`ls -l AN_ENERGY_$i.*.dat | wc -l`) 

if [ $complete -eq $maxl ] 

then  

echo "complete" $i >> complete.dat 

for ((l=1;l<maxl;l++)) 

do 

let m=$ntwr*$l 

rm -f $dirI/MDf_$i.restrt_$m 

rm -f $dirII/MDf_$i.restrt_$m 
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done 

fi 

while [ $complete -lt $maxl ]; do 

sleep 30s  

complete=(`ls -l AN_ENERGY_$i.*.dat | wc -l`) 

echo $complete >> complete.dat 

for ((l=1;l<=maxl;l++)) 

do 

let m=$ntwr*$l 

let maxm=$ntwr*$maxl 

if [ -f AN_ENERGY_$i.$m.dat ] && [ $m -lt $maxm ] 

then  

rm -f $dirI/MDf_$i.restrt_$m 

rm -f $dirII/MDf_$i.restrt_$m 

else  

sander -O -i AN.in -o AN_$m.out -p $TOPOLOGYII -c 

MDf_$i.restrt_$m -ref MDf_$i.restrt_$m   

head -186 AN_$m.out | tail -9  > AN_$m.mdinfo 

cat AN_$m.mdinfo > AN_ENERGY_$i.$m.dat 

rm -f AN_$m.mdinfo 

rm -f $dirI/MDf_$i.restrt_$m 

rm -f $dirII/MDf_$i.restrt_$m 

fi  

done 

let complete=$maxl 

echo "complete checked" $i >> complete.dat 

done 

###### Concatenate the data of the current set of runs ######  

for ((l=1;l<=maxl;l++)) 

do 

let p=$ntwr*$l-$ntwr 

let m=$ntwr*$l 

cat AN_ENERGY_$i.$p.dat AN_ENERGY_$i.$m.dat > intermediate.dat 

mv intermediate.dat AN_ENERGY_$i.$m.dat 

done 

let maxm=$maxl*$ntwr  

echo $maxm > TEST.dat 

mv AN_ENERGY_$i.$maxm.dat AN_ENERGY_$i.dat 

rm -f AN_ENERGY_$i.*.dat 

cp $dirI/ENERGY.dat AN_ENERGY_1.0.dat 
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cd $dirI 

########## Copy result to "home" directory   ############### 

done  

############## Concatenate the data of all sets ############ 

cd $dirII 

cp $dirI/ENERGY.dat AN_ENERGY_0.dat 

for ((i=1;i<=maxi;i++)) 

do 

let ip=$i-1 

cp AN_ENERGY_$i.dat AN_ENERGYT_$i.dat 

cat AN_ENERGY_$ip.dat  AN_ENERGY_$i.dat > intermediate.dat 

mv intermediate.dat AN_ENERGY_$i.dat 

done 

mv AN_ENERGY_$maxi.dat AN_ENERGY.dat  

rm -f AN_ENERGY_0.dat AN_ENERGY_*.dat 

############################################################ 

cp AN_ENERGY.dat $STARTDIR 

tar -cvf AN_ENERGY.tar AN_ENERGYT_*.dat 

gzip AN_ENERGY.tar 

cp AN_ENERGY.tar.gz $STARTDIR 

############################################################ 

 

H.5  Single step calculation script bg_sander.sh  

#!/bin/bash 

bgPID=$$ 

touch bgPID.$bgPID.dat  

############################################################ 

exec 3<> ipm.dat # Open file "ipm.dat" and assign fd 3 to it. 

read i p m maxm <&3  # Read only var1 var2 var3 

exec 3>&- 

############################################################ 

sander -O -i AN.in -o ANbg_$m.out -p $TOPOLOGYII -c  

MDf_$i.restrt_$m -ref MDf_$i.restrt_$m  

### calculate how many sanders from analysis.sh are run #### 

rm -f bgPID.$bgPID.dat  

############################################################ 

head -186 ANbg_$m.out | tail -9  > ANbg_$m.mdinfo  

cat ANbg_$m.mdinfo > AN_ENERGY_$i.$m.dat 

rm -f ANbg_$m.mdinfo  
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###### rm -f MDf_$i.restrt_$m  MDf_$i.rstdip_$m ############ 

cd $dirI 

############ Clean MD directory from used files ############ 

if [ $m -lt $maxm ] 

then 

rm -f  MDf_$i.restrt_$m  MDf_$i.rstdip_$m 

fi 

############################################################ 

 

Trajectory concatenation script ghost.sh  

 

#!/bin/bash 

#$ -cwd 

ghostPID=$$ 

maxi=25 

for ((i=1;i<=maxi;i++)) 

do 

while [ ! -f MDf_$i.restrt_3996 ] ; 

do 

wait 

done 

if [ -f MDf_$i.restrt_3996 ] 

then 

cp MDf_$i.restrt_3996 MDf_$i.restrt_4004 

cp rstdip_4 rstdip_4004 

fi 

done  

kill -9 $ghostPID 

############################################################ 

 

H.6  Sander command file MD.in for trajectory production 

Production RUN 10ps, NVE,H-bons are free  

&cntrl 

 

ipol = 0, 

ntx  = 5,  irest = 1, ntrx = 1,  ntxo = 1, 

ntpr = 1,  ntwx  = 400, ntwv = 5,  ntwe = 5, 

ntwr = -4, 
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ntf  = 2,  ntb   = 2, ntr  = 1, 

cut  = 12.0, nsnb  = 5, nscm = 4, tol = 0.0000001, 

 

nstlim = 4001, 

t  = 0.0, dt  = 0.0005, 

 

ig  = 71277, 

ntt  = 1,  temp0 = 300.0, tautp = 5.0, 

vlimit = 20.0, 

 

ntp   = 1, pres0 = 1.0, comp  = 44.6, 

taup  = 2.0, npscal = 1, 

 

ntc   = 2, 

 

&end 

&ewald 

dsum_tol = 0.000001, 

indmeth = 2, maxiter = 50, 

irstdip = 1, diptol = 0.0000001, 

&end 

Constraints 

500.0 

RES 1  31 

END 

END 

 

H.7  Sander command file AN.in for trajectory analysis 

Input file for Analysis  

&cntrl 

 

ipol = 0, 

ntx  = 5,  irest = 1, ntrx = 1,  ntxo = 1, 

ntpr = 1,  ntwx  = 1, ntwv = 1,  ntwe = 1, 

ntwr = 1, 

 

ntf  = 2,  ntb  = 1, ntr = 1, 

cut  = 12.0, nsnb  = 4, nscm = 4, tol = 0.0000001, 
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nstlim  = 1, 

t   = 0.0, dt  = 0.00005, 

 

ig   = 71277, 

ntt   = 0, 

vlimit  = 20.0, 

ntc   = 2, 

&end 

&ewald 

dsum_tol = 0.000001, 

indmeth = 2, maxiter = 50, 

irstdip = 1, diptol = 0.0000001  

&end 

Constraints 

500.0 

RES 1  31 

END 

END 
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