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1. Introduction

Polyelectrolytes (PEs) are polymers bearing ionizable groups that dissociate when dissolved in a polar

solvent [1]. The resultant charges on the PE chains are neutralized by released counterions which

distribute in the solution. Both the complex conformation of the PE chains as well as the spatial

arrangement of the counterions is determined by a delicate balance of energy an entropy. In this

connection, the relevant energy scale of the order of thermal energy kBT entails high sensitivity of PE

solutions to weak external perturbations paradigmatic for soft matter systems [2, 3].

PEs are water soluble. Within industrial applications this allows for cheap, non-toxic and envi-

ronment friendly polymer processing. A prominent example illustrating the hydrophilicity of PEs are

supersorbers based on cross-linked polyacrylic acid, a synthetic PE. In baby diapers the liquid uptake

of such polyacrylic acid-based PE networks amounts to 30 times their own weight [4]. Another sample

application is the solubilization of β -carotin using gelatin, a biological PE, as a coating [5]. Suspended

β -carotin particles lend the yellow color to a number of popular soft-drinks. Further industrial appli-

cations use PEs as thickeners, gelling agents, flocculants, glues and coatings, among others [1].

Apart from their industrial importance, PEs play an outstanding role as building blocks of biological

matter. With actin filaments, intermediate filaments, and microtubules, the three major components of

the eukaryotic cytosceleton are protein-based PEs. Their PE character turns out to be essential for non-

specific electrostatic binding of associated proteins, for instance kinesin binding to microtubules [6].

Even more vital in its double sense is the PE nature of DNA [7]. In case of double-stranded DNA,

dissociation of the phosphate groups gives rise to a linear charge density of 1 e/0.17 nm, one of the

highest linear charge densities found in nature! DNA interacts sensitively with its ionic environment. In

contrast to physiological conditions where DNA takes on a random-coil configuration, DNA condenses

into a toroidal shape in the presence of multivalent ions. Electrostatics govern the unspecific binding

of DNA-associated proteins, e.g. repressor proteins, to the DNA backbone, and the wrapping of DNA

around oppositely charged histones.
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1. Introduction

PE dynamics can be controlled by external electric fields. This rather trivial statement conveys

sheer inexhaustible possibilities for the electric manipulation of PE materials. For example, upon

application of an external electric field a PE gel can undergo a more than 100-fold volume change [8],

the wetting properties of a PE coated surface can be varied from hydrophilic to hydrophobic [9], and

the contrast of an electrophoretic display (so called e-paper) can be switched [10]. On a more basic

level, the response of a PE solution under the action of an electric field allows for the characterization

of its constituents. In this connection, two set-ups are of importance: Electrophoresis is a working

horse for the characterization of PEs with respect to their migration speed subject to a static electric

field, with a broad range of applicability in biology, chemistry, medicine, pharmaceutics, physics and

related subjects. For instance, electrophoresis made a decisive contribution to the deciphering of the

human genome [11]. Dielectric spectroscopy permits non-invasive characterization of PE solutions with

respect to their frequency dependent polarizability in an alternating electric field. In principle, from the

dielectric spectrum information about the conformation of individual PE chains as well as the structure

of the PE solution can be obtained.

While the engineering aspect of PE solutions in static or alternating electric fields is highly developed,

understanding is still limited from a theoretical physics point of view. This limitation is due to the long-

range nature of electrostatic and hydrodynamic interactions coupling the dynamics of PE chains and

counterions in an intricate fashion. As a consequence, only partial success can be ascribed to analytical

approaches which, moreover, are restricted to simple model systems. Today, in view of the growing

availability of large-scale computing facilities, computer simulations present a valuable approach to

the response of PE solutions in electric fields, which becomes apparent in an increasing number of

related.

Outline

The aim of the present thesis is to gain new insights into PE dynamics in external electric fields by

means of mesoscale Brownian Dynamics (BD) simulations and analytical calculations. Mesoscale sim-

ulations provide a powerful tool to bridge the gap between microscopic time and length scales covered

by atomistic Molecular Dynamics (MD) simulations and the relevant time and length scales of industrial

and biological processes. With regard to PE solutions, atomistic details of PE chains and counterions

are abandoned in favor of a coarse-grained effective description. Where hydrodynamic interactions are
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important, smart solvent models have to be applied in order to keep the computational cost at reason-

able level. Within BD simulations this can be accomplished using an efficient implicit solvent model

which introduces long-range correlations in the equations of motion [12]. The BD simulations tech-

nique has successfully been applied in connection with static [13–15] and dynamic [16–19] properties

of PE solutions.

Throughout this thesis we address two main subjects: (1) the dielectric response of salt-free PE

solutions in Chapter 3 and (2) the electrophoretic response of salt-free and salt-containing PE solutions

in Chapters 4, 5, and 6. Thereby, special emphasis is put on the counterion dynamics which is crucial for

the understanding of either phenomenon. The so-called counterion condensation at strongly charged

PEs divides the counterion distribution around a PE chain into tightly bound condensed counterions

and loosely bound uncondensed counterions. These two counterion populations not only differ with

respect to their static properties but also with respect to their dynamics. We use a coarse-grained

description for the PE solution, where PE monomers and ions are represented as charged spheres. The

BD simulation technique shortly reviewed in Chapter 2 is our method of choice for the calculation

of PE and ion dynamics. Complementary scaling arguments and analytical calculations are provided,

which add to the interpretation of our simulation results.

To our knowledge, the simulations of the dielectric response of flexible PE chains in salt-free solution

presented in Chapter 3 is the first systematic study of the frequency dependent dielectric susceptibility

over various PE concentrations and lengths by means of computer simulations. Both condensed and

uncondensed counterions are characterized by a different dielectric response, a common assumption

within the interpretation of experimental data, proven by our simulation results. In contrast to experi-

ment we observe two dispersions due to condensed counterions at the largest and smallest relaxation

times. We show that the relaxation process with the smallest relaxation time is due to the relaxation

of condensed counterions at a single PE chain, while the relaxation process with the largest relaxation

time is related to the correlated relaxation of condensed counterions.

Motivation for our study of PE electrophoresis in Chapter 4 is taken from recent experiments [20, 21]

which highlight the important influence of the discrete nature of the charge distribution on PE chains.

We discuss the electrophoretic response of an extended PE segment of varying charge architecture in

the spirit of the cell model of PE solutions [22]. This picture relies on the observation, that PE chains

assume locally straight conformations due to electrostatic repulsion between like-charged monomers.
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1. Introduction

For low electric fields, we show that the influence of the monomer-to-counterion size ratio and the

charge separation indeed can be substantial, where the influence of the charge separation is strongly

anisotropic. If the external electric field is directed parallel to the PE segment, counterions experience

the corrugated potential due to the discrete charge distribution on the PE chain, which effects strong

electrofriction. If the external electric field is directed perpendicular to the PE segment, counterions ex-

perience an effective PE potential where the corrugation is averaged out. In this case, renormalization

of the PE charge due to counterion condensation reduces the electrophoretic response. We emphasize

the importance of hydrodynamic interactions, which increase the electrophoretic response due to the

hydrodynamic entraining effect. In fact, hydrodynamic interactions between PE chain and counterions

may be so strong that counterions are dragged along with the PE chain, albeit at different velocity.

In high electric fields, the PE electrophoretic response increases similar to the Wien effect in simple

strong electrolyte solutions [23]. Under parallel field direction, condensed counterions are found to

evaporate into the bulk.

The calculation of the relaxation effect for counterions at fixed charge distributions in Chapter 5

is intimately connected with some of the simulation results discussed in Chapter 4. We review the

theoretical framework due to Jackson and Coriell [24] which leads to upper and lower bounds to

the counterion mobility as functionals of the equilibrium electrostatic potential. We further present

numerical evaluations of these functionals based on electrostatic potentials from Poisson-Boltzmann

(PB) theory and counterion condensation (CC) theory. By comparison with BD simulations we show,

that for a homogeneous charge distribution the CC theory underestimates the counterion mobility

under parallel field direction, whereas agreement is near-to-perfect for perpendicular field direction.

This shortcoming of CC theory is rooted in the assumption that condensed counterions are immobilized

on the PE chain, irrespective of field direction. At the present state, neither PB nor CC theory are able

to predict charge architecture effects. As a proof of principle, we evaluate upper and lower bounds

to the counterion mobility using the electrostatic potential from strong coupling (SC) theory. PE-

counterion electrofriction is captured nicely within the SC approach under parallel field direction. The

SC theory fails for perpendicular field direction since it overestimates PE-counterion interactions. We

show, that useful approximations to the counterion mobility in high electric fields can be obtained

using an expression similar to Jackson and Coriell’s upper bound.
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Our last project, presented in Chapter 6, dealing with the salt-concentration dependent mobility of

DNA in aqueous salt solution serves two purposes: (1) We proof that choosing the right coarse-graining

parameters experimental salt-dependent DNA mobilities can be reproduced within BD simulations of

the cell model introduced in Chapter 4. (2) We show that the counterion mobility changes sign as

a function of salt concentration. For low salt conditions counterions stick to and move along with

the DNA. For high salt conditions the motion decouples and counterions and DNA move in opposite

directions. This counterion-mobility anomaly is captured by an analytic theory developed here for

weakly charged chains based on the electrostatically screened hydrodynamic interaction tensor.

We give a summary and brief outlook in Chapter 7.
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2. Coarse-grained polyelectrolyte dynamics

In the present Chapter, we shortly review the Brownian Dynamics (BD) simulation technique used in

the subsequent projects.

In our hydrodynamic simulations, monomers and counterions are modeled as charged soft spheres

whose positions ri evolve according to the position Langevin equation [12]

ṙi(t) =−
∑

j

Mi j(ri j) ·∇r j
U
�{rk}, t

�

+ ξi(t) , (2.1)

where ri is the position vector of particle i, and ri j = |ri − r j| is the distance between particles i

and j. The thermal coupling between particles and implicit solvent (characterized by viscosity η and

permittivity ε) is provided through Gaussian white noise as specified by its moments



ξi(t)
�

= 0 and
¬

ξi(t)ξ j(t ′)
¶

= 2kBTδ(t − t ′)Mi j(ri j). Under free-draining dynamics the hydrodynamic coupling of

the dynamics of different particles is neglected. The mobility tensor Mi j(ri j) is diagonal where its

entries are given by the Stokes mobility of a sphere with radius ai ,

Mi j(ri j) =
δi j

6πηai
. (2.2)

Here δi j denotes the Kronecker delta. Under non-draining dynamics the hydrodynamic coupling is

included via the Rotne-Prager-Yamakawa mobility tensor [25, 26]. For non-overlapping particles of

radii ai , a j the mobility tensor reads

Mi j =
1

8πηri j





 

1+
a2

i + a2
j

3r2
i j

!

I+

 

1−
a2

i + a2
j

r2
i j

!

ri jri j

r2
i j



 , ri j > ai + a j (2.3)
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2. Coarse-grained polyelectrolyte dynamics

with ri j = ri −r j and ri j = |ri j |. Whereas Eq. (2.3) also holds for dissimilar sized particles, ai 6= a j , its

counterpart for overlapping particles [25],

Mi j =
1

6πηa





�

1− 9ri j

32a

�

I+

�

3

ri j
32a

�

ri jri j

r2
i j



 , ai = a j = a (2.4)

is only true for particles of equal size. The mobility tensor defined in Eqns. (2.3) and (2.4) is positive

definite which ensures the dynamics to be dissipative.

The interaction potential U = ULJ+UC+US+Uext entering the Langevin equation Eq. (2.1) consists

of: (1) A truncated, shifted Lennard-Jones potential,

ULJ

kBT
=







ε

kB T

∑

〈i j〉

�
�

σi j

ri j

�12

− 2
�

σi j

ri j

�6

+ 1
�

ri j ≤ σi j

0 ri j >σi j

(2.5)

that prevents electrostatic collapse of opposite charges. Here σi j = ai + a j and ε define the soft-core

distance and repulsion. (2) An unscreened Coulomb potential,

UC

kBT
= `B

∑

〈i j〉

qiq j

ri j
, (2.6)

where qi stands for a particle’s charge valency and `B = e2/4πεrε0kBT is the Bjerrum distance at which

two unit charges interact with thermal energy kB T (`B = 7.2 Å in water at 20 ◦C). (3) A harmonic

spring potential,
US

kBT
=

K

2

∑

〈i j〉
(ri j −σi j)

2 , (2.7)

acting between adjacent monomers which ensures chain connectivity, and whose stiffness is controlled

by the spring constant K . (4) A constant external electric potential (cf. Chapters 4, 5, and 6) with field

strength |E0| = E0,
Uext

kBT
=− e

kBT

∑

i

qi ri ·E0 , (2.8)

or a time-periodic external electric potential (cf. Chapter 3) with radial frequency ω and field strength

|E0| = E0,
Uext

kBT
= − e

kBT

∑

i

qi ri ·E0 cos(ωt) . (2.9)
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The numerical integration of the Langevin equation Eq. (2.1) is implemented using a discretization

time step ∆. For convenience, we go over to dimensionless variables by scaling length, charge, energy

and time with counterion radius act, elementary charge e, thermal energy kBT , and a2
ct/µ0kBT , respec-

tively, where µ0 = 1/6πηact denotes the Stokes mobility of a counterion of hydrodynamic radius act.

Accordingly, we have r̃i = ri/act for the position vectors, Ũ = U/kBT for the potential energy, and

∆̃ = (µ0kBT/a2
ct)∆ for the discretization time step. Throughout simulations we use ε/kBT = 5 for

the softcore repulsion, Ka2
ct = 100 for the spring constant, and Ẽ0 = eactE0/kBT = 0.03− 0.05 for the

amplitude of the external electric field. The large value of the spring constant Ka2
ct yields a narrow

bond-length distribution. The electric field strength Ẽ0 is chosen on the one hand small enough to

meet the linear response condition, on the other hand large enough to guarantee adequate configu-

ration space sampling at reasonable computational cost. The scaled discretization time step is set to

∆̃ = 0.002. Production runs cover ∼ 108 − 109 time steps.
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3. Dielectric response in salt-free
polyelectrolyte solutions

In PE solutions, the structure of the counterion atmosphere is determined by the balance of long-

range electrostatic attraction to and entropic repulsion from the PE chain. A convenient measure for

the strength of electrostatic interactions as compared to entropy is provided by the so-called Manning

parameter [27]

ξM =
|qctqm|e2

4πεε0kBT b
, (3.1)

which compares the distance |qctqm|e2/4πεε0kBT at which the electrostatic attraction between a count-

erion of valency qct and a charged monomer of valence qm equals thermal energy kBT with the charge

separation b on the PE chain. (Here we denote the elementary charge by e, the relative solvent permit-

tivity by ε, the vacuum permittivity by ε0, and the Boltzmann constant by kB.) For a weakly charged PE

characterized by ξM < 1 the counterion population forms a diffuse atmosphere. For a strongly charged

PE characterized by ξM > 1 the counterion population breaks up into a fraction accumulating close

to the PE chain and a fraction forming the diffuse atmosphere. The former are commonly referred to

as condensed, the latter as uncondensed counterions. Note that ξM denotes the locus of a true phase

transition in the thermodynamic limit [28, 29].

Application of a time-dependent external electric field E(t) perturbs the equilibrium counterion

distribution, thereby inducing a fluctuating dipole density P (t). For a linear medium the average

time-dependent dipole density follows from the convolution of the external electric field with the time-

dependent dielectric susceptibility χ(t)

〈P (t)〉= ε0

∫ t

−∞
dt ′χ(t − t ′)E(t ′) , (3.2)
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3. Dielectric response in salt-free polyelectrolyte solutions

where 〈 · 〉 denotes an ensemble average. The time-dependent dielectric susceptibility χ(t) is a scalar in

case of an isotropic medium, and a second rank tensor in case of an anisotropic medium. In frequency

space Eq. (3.2) simplifies to

〈P (ω)〉 = ε0χ(ω)E(ω) , (3.3)

by virtue of the convolution theorem. Hereω is the radial frequency, and χ(ω) = χ′(ω)+iχ′′(ω) is the

complex frequency-dependent dielectric susceptibility. Due to causality real part χ′(ω) and imaginary

part χ′′(ω) of the dielectric susceptibility are interrelated via the Kramers-Kronig relations [30, 31].

In general, the induced dipole density in a PE solution can be decomposed into different dielectric

relaxation processes according to

〈P (ω)〉= ε0

∑

i

∆χi(ω)E(ω) , (3.4)

where ∆χi(ω) stands for the incremental frequency-dependent dielectric susceptibility due to the i-th

dielectric relaxation process. (In what follows we drop the label “incremental” for the sake of better

readability.) Each dielectric relaxation process is characterized by its relaxation time τi and its static

dielectric susceptibility or relaxation strength ∆χ (0)i ≡∆χi(ω→ 0) related to the speed of the build-up

and the strength of the induced dipole moment. The analysis of an experimentally recorded dielectric

spectrum is commonly done through fitting of phenomenological relaxation functions. By means of a

suitable model the fit parameters relaxation time τi and strength∆χ (0)i then can be related to dynamics

and structure of the PE solutions.

As compared to simple salt solutions, PE solutions reveal a high dielectric susceptibility. In aqueous

solutions of strongly charged PEs such as DNA, PSS, or PAA, to name but a few, one generally discrim-

inates among three dominating relaxation processes; while one of them is due to water relaxation,

the other two are on account of counterion relaxation. The relaxation of water is observed at about

ω = 17× 109 Hz where the large permittivity (εH2O = 80.1 at 20 ◦C) results from the considerable

permanent dipole moment of individual water molecules. (We note in passing that the presence of PEs

only moderately decreases the water permittivity and shifts the relaxation time.) Processes ascribed to

counterion relaxation divide into a low-frequency (LF) process at frequencies around 103 − 105 Hz and

a high-frequency (HF) process at frequencies around 106 − 108 Hz [32–42]. Under most experimental

12



conditions the relaxation strength ∆χ (0)HF of the HF process is found to be stronger than that of the LF

process ∆χ (0)LF .

In dilute PE solutions, i.e. when the average distance between PEs is larger than the average PE

extension, the HF process as well as the LF process depend on both PE concentration cp and molecular

weight Nm. In detail, the strength of the HF process∆χ (0)HF increases with PE concentration and molecu-

lar weight, while the relaxation time τHF decreases with PE concentration and increases with molecular

weight [33, 34, 36, 39, 42]. Similarly, the strength of the LF relaxation process ∆χ (0)LF increases with

PE concentration and molecular weight, the relaxation time τLF is independent of PE concentration

and increases with molecular weight [34, 37, 39, 43, 44]. The rate of increase of relaxation strength

as well as relaxation time with PE concentration or molecular weight is higher for the LF process than

for the HF process. Regarding the relaxation time, this makes a merger of HF and LF process pos-

sible. When going from dilute to semi-dilute PE solutions a crossover behavior of the HF process is

observed [32, 33, 35]. In this regime, the strength of the HF process ∆χ (0)HF becomes independent of

PE concentration and molecular weight, and the relaxation time τHF decreases with PE concentration

and is similarly independent of molecular weight [33, 35, 36, 42]. For the less extensively studied LF

process no crossover behavior has been observed.

It is largely agreed, that the relaxation of uncondensed counterions correlates with the HF disper-

sion [32–34, 38–41]. This concept is back-upped by comparison of experimental data against scaling

relations for the molecular weight and concentration dependence of relaxation time τHF and strength

∆χ (0)HF [32, 33, 39–41]. Assuming the characteristic length of the HF relaxation process to be given

by the PE correlation length ξp [32, 33, 39–41, 45] these scaling relations for instance capture the

crossover behavior when going from dilute to semi-dilute PE solutions. Additional information gath-

ered from frequency-domain electric birefringence measurements indicates that the HF process is due

to uncondensed counterions relaxing perpendicular to the PE chain [46].

Less consensus prevails on the origin of the LF process. While some authors claim the relaxation

of condensed counterions to constitute the LF process [33, 34, 36], recent publications dispute the

clear-cut discrimination between contributions of condensed and uncondensed counterions in the LF

regime [39–41]. Within the scaling approach, the characteristic length of the LF process is assumed

to be given by the average end-to-end distance R of a PE chain [33, 34, 39], or the length of a PE

correlation blob [39–41]. As opposed to the HF process, it is understood that counterions relax parallel
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3. Dielectric response in salt-free polyelectrolyte solutions

to the PE chain [46]. Since most publications on the dielectric response of PE solutions focus on

the HF process due to intrinsic experimental difficulties when measuring at low frequencies, scaling

expressions for relaxation time τLF and strength ∆χ (0)LF of the LF process derived by Bordi et al. [47]

for both dilute and semi-dilute solutions could only provisionally be verified [34, 47].

To date, most theories address the calculation of the dielectric response of the condensed counterions

parallel to a single PE chain [48–58]. On the one hand this is owing to the fact that the substantial

contribution of the uncondensed counterions simply had been overlooked in the infancy of dielectric

spectroscopy, on the other hand owing to the intimidating complexity of the PE solution which makes

any theoretical description a formidable task. As a matter of fact, we know of only one theory which

holds true for the dielectric response of condensed as well as uncondensed counterions, parallel or

perpendicular to the PE chain [59–61]. Although valuable qualitative insight has been gained from

numerical solutions of this model, an extensive quantitative comparison with experiment has not been

tried. Moreover, long-range electrostatic interactions can be substantial even in dilute PE solutions

which makes the focus on a single PE chain with its counterion atmosphere look questionable [52]. A

first step including interactions between different PE chain-counterion atmosphere complexes indicate

strong quantitative if not qualitative differences as compared to theories considering one single PE

chain with its counterion atmosphere [62]. In order to get a flavor of the current state of the art we

review some of the cornerstones of the theories for the dielectric response of PE solutions below.

The challenges awaiting theoretical models of dielectric relaxation in PE solutions are high. In the

first place, a successful model has to capture the sheer magnitude of the static dielectric response. In

the second place, the scaling with PE concentration, molecular weight, and PE charge density has to

be met, as well as the dependence on the concentration of added salt. In the third place, the fre-

quency dependence of the dielectric response has to be considered. And finally one has to account

for the effect of solvent flow. Within the simplest approach the PE chain is considered as a discretely

or uniformly charged rod, and the dielectric susceptibility is determined from the parallel response of

an effective one-dimensional condensed counterion density along the rod with respect to the external

electric field, or equivalently from the equilibrium fluctuations of the effective one-dimensional con-

densed counterion density. In both cases it is assumed that condensed counterions polarize but do not

conduct, which allows for the application of equilibrium statistical mechanics in the former case. Ne-

glecting counterion-counterion interactions, within Mandel’s theory the condensed counterion density
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results from the association of individual counterions at charged sites on the PE chain [48]. Here the

probability of counterion association at a particular charged site follows from a local free energy which

depends on the external electric field. The resulting dielectric susceptibility is proportional to the PE

length L0 cubed,

χ
(0)
‖ =

q2
cte

2

12ε0kBT b

θ L3
0

V
, (3.5)

where counterions and monomers are assumed to have the same valency |qct| = |qm|, θ denotes the

fraction of condensed counterions, and V the volume accessible to one PE chain of contour length

L0 = bNm, monomer number Nm, and charge spacing b. Note that electrostatic interactions between

the PE chain and its counterions enter Eq. (3.5) only implicitly through the fraction of condensed

counterions, which acts as a free parameter. Under the assumption of diffusive relaxation of condensed

counterions, Mandel complements his theory with a heuristic expression for the relaxation time,

τ‖ =
ζcc L2

0

12kBT
, (3.6)

where ζcc is the friction coefficient of a condensed counterion. In an attempt to explain the two dis-

tinct dispersions in the dielectric spectrum, in a follow-up van der Touw and Mandel considered a PE

chain made up of rod-like subunits as a model for a flexible PE chain [57]. In this case the dielectric

response consists of contributions due to counterion relaxation over a subunit and counterion relax-

ation over the PE extension where the former process is regarded as fast as compared to the latter.

Within this picture, counterion relaxation over a subunit thus correlates with the HF process, whereas

counterion relaxation over the PE extension correlates with the LF process. One salient shortcoming

of Mandel’s model due to the neglect of counterion-counterion interactions is the proportionality of

the dielectric susceptibility χ (0)‖ to the fraction of condensed counterions θ which contrasts with ex-

periment where the dielectric susceptibility saturates with the fraction of condensed counterions. The

relaxation strength as calculated from Eq. (3.5) has been reported to be nearly two orders of magni-

tude too high as compared to experiments, which is ascribed to the neglect of counterion-counterion

repulsion [63, 64].

Including the counterion-counterion interaction potential φ(r) Oosawa [54, 55] calculated the di-

electric response of condensed counterions at a uniformly charged rod from the equilibrium fluctua-

tions of the condensed counterion density by virtue of the fluctuation-dissipation theorem [65]. Within
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3. Dielectric response in salt-free polyelectrolyte solutions

this framework the complex dielectric susceptibility follows from the superposition of different relax-

ation modes as

χ‖(ω) =
∞
∑

k=1

∆χ (0)k

1+ iωτk
. (3.7)

The dielectric susceptibility of the k-th mode is given by

∆χ (0)k =
q2

cte
2

12kBT b

θ L3
0

V

6/π2

k2
�

1+ θ |qct|Nφk/kBT
� , (3.8)

and the corresponding relaxation time reads

τk =
ζcc

kBT

�

L0

2πk

�2
�

1+ θ |qct|Nφk/kBT
�

, (3.9)

where φk =
∫ L0

0
drφ(r) cos(2πkr/L0)/L0 is the Fourier transform of the interaction potential. The

superposition of different relaxation modes in Eq. (3.7) provides a viable explanation for the exper-

imentally observed broad relaxation spectrum. In the absence of counterion-counterion interactions

the static dielectric susceptibility χ (0)‖ calculated from Eq. (3.7) reduces to Mandel’s solution Eq. (3.5).

In the presence of counterion-counterion interactions χ (0)‖ saturates for large fractions of condensed

counterions θ → 1. In addition to the quadratic length dependence, the relaxation times Eq. (3.9)

do also depend on the fraction of condensed counterions θ . Counterion-counterion interactions sup-

press fluctuations of the condensed counterion density and tend to slow down the relaxation. For a

discretely charged rod similar expressions have been derived by Minakata et al. [53] and Warashina

and Minakata [66].

In an alternative approach, Manning incorporates electrostatic interactions into Mandel’s model

within the framework of counterion condensation theory [27, 49–51]. This comprises an explicit

expression for the fraction of condensed counterions

θ = 1− 1

ξM
. (3.10)

Under excess salt conditions, the dielectric susceptibility reads

χ
(0)
‖ =

q2
cte

2

12ε0kBT b

θ

1− 2q2
ctξMθ ln(κb)

L3
0

V
, (3.11)
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where the Debye-Hückel screening length κ−1 scales with the salt concentration cs as κ2 ∝ cs. The

dielectric susceptibility according to Manning resembles the dielectric susceptibilities found within the

Oosawa model Eq. (3.8) except for the contribution from the counterion-counterion interactions. The

dielectric susceptibility is reduced due to Debye-Hückel screening of electrostatic interactions between

condensed counterions. Manning predicts the dielectric susceptibility to increase with salt concentra-

tion, in contrast to experimental observations where the dielectric susceptibility decreases [34, 56, 67,

68]. If we accept Manning’s assumptions to be correct, this failure suggests that the dielectric response

of a PE solution for a greater part is determined by contributions different from the parallel response

of the condensed counterions, which feature the appropriate salt concentration dependence.

We complete our survey over theories for the parallel dielectric response of condensed counterion

with recent work by Mohanty and Zhao [69] within the framework of statistical mechanics of inhomo-

geneous systems. Depending on the direct correlation function of the uniform condensed counterion

phase the dielectric susceptibility interpolates between L2
0 and L3

0 dependence.

As pointed out by Fixman [60], the theoretical description of dielectric relaxation within the frame-

work of equilibrium statistical mechanics is inadequate in so for as it neglects the ionic conductivity.

Setting out from the Smoluchowski equation for the dynamics of co- and counterions at a charged

cylinder, Fixman derives an expression for the parallel dielectric susceptibility in the thin double layer

approximation which accounts for the leakage of counterions through the double layer [59]. This

model predicts a dependence on the PE length that crosses over from L3
0 to L0 depending on param-

eters. For weak screening κL0 < 1 numerical solutions of the model equations for arbitrary double

layer width reveal that parallel and perpendicular dielectric relaxation are of the same order of mag-

nitude [61]. Under the same conditions the contributions from the diffuse counterion atmosphere

outweighs the contribution from the condensed counterions. Fixman is the first to note that convec-

tion of counterions can greatly magnify the dielectric response of a PE solution.

Another work that highlights the importance of the contribution of the diffuse counterion atmo-

sphere is due to Rau and Charney who treat electrostatic interactions on the linear Debye-Hückel

level [70]. They find a parallel dielectric susceptibility whose PE length and salt concentration de-

pendence exhibits a crossover from χ
(0)
‖ ∝ κ−1.2 L1.8

0 for weak screening (κL0 ® 10) to χ (0)‖ ∝ κ−2 L0

for strong screening (κL0 ¦ 10). Experiments by Hogan et al. who report quadratic length and in-

verse Debye-Hückel screening length dependence at low salt concentration support Rau and Charney’s
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3. Dielectric response in salt-free polyelectrolyte solutions

model [71]. In the spirit of a two phase model the Rau and Charney model [72] for the parallel di-

electric response of the diffuse counterion atmosphere is combined with Manning’s model [49–51] for

the parallel dielectric response of the condensed counterions in Ref. [72].

Despite years of considerable effort, from a theoretical physicists point of view our understanding of

dielectric relaxation is still limited. At this point stochastic simulations of model PE solutions can be of

value, both to gain insight into the dynamics of PE solutions on length and time scales inaccessible to

experiment, and as a well-defined testing ground for theory. Every method has its limitation, though.

With regard to simulation studies this means, that due to limited computational resources most studies

on the dielectric response of PE solutions were confined to a single short PE chain and its counterions

with salt added occasionally.

The relaxation of counterions at a rodlike PE following the switching on of an external electric field

is considered by Yoshida and Kikuchi [73] using Monte Carlo simulations. They report relaxation

times estimated from a fit of a single exponential to the build-up of the induced dipole moment which

increase with PE length. these results have to be taken with caution, though, since field strength as

well as monomer concentration are chosen rather high.

A similar simulation protocol is followed by Grycuk et al. and Antosiewicz and Porschke [16, 17]

based on Brownian Dynamics simulations of a rodlike PE with co- and counterions, with or without

hydrodynamic interactions. The outcome of this study underlines the importance of the perpendicular

response which, though smaller than the parallel response, cannot be neglected. The consideration of

hydrodynamic interactions leads to a smaller dielectric response.

In a series of publications Washizu and Kikuchi calculate the dielectric response of a rodlike PE chain

with or without added salt from the equilibrium fluctuations of the dipole density generated by means

of Monte-Carlo simulations [74–77]. Their analysis of the partial dielectric response of condensed or

uncondensed counterions parallel or perpendicular to the PE chain lead to a couple of groundbreaking

statements: (1) Condensed and uncondensed counterion differ significantly in their dielectric response,

where the contribution of the condensed counterions is small as compared to the contribution of the

uncondensed counterions. The latter follows from the volume accessible to the counterions which is

considerably smaller for the condensed counterions. (2) The perpendicular response is small as com-

pared to the parallel response, but of the same order of magnitude. Further, Washizu and Kikuchi

find the partial dielectric susceptibility of the condensed counterions to be independent of PE concen-
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tration and proportional to the second power of the molecular weight, whereas the partial dielectric

susceptibility of the uncondensed counterions decreases with PE concentration and is proportional to

the first to second power of the molecular weight. Upon addition of salt the distribution of uncon-

densed counterions is compressed, the dielectric susceptibility decreases. The dielectric susceptibility

weakly increases with salt concentration, which reflects the decreased resistance to distortion of the

condensed layer already explained by Manning [49].

Brownian Dynamics simulations of the dielectric response of short semiflexible PEs in salt solution

are contributed by Schlagberger and Netz [19]. Hydrodynamic interactions are included, and the

dielectric response of condensed and uncondensed counterions parallel and perpendicular with respect

to the external electric field are calculated. The authors report the dielectric susceptibility to be a non-

monotonous function of the salt concentration. For dilute PE solutions in the limit of strong screening

κL0 � 1 parallel as well as perpendicular dielectric susceptibility rise with the third power of the PE

length in accord with Fixman and Jagannathan [61]. Under the same conditions the parallel dielectric

susceptibility of the condensed counterions grows with the third power of the PE length, while the

perpendicular dielectric susceptibility grows linearly with the PE length.

Outline

In this Chapter we present BD simulations of the cell model of PE solutions in a time-varying external

electric field. For a flexible PE chain in the simulation cell we consider two protocols: (1) varying PE

concentration at fixed PE length and (2) varying PE length at fixed PE concentration. Thereby, the PE

concentrations are always below the overlap concentration, i.e. the PE solution is dilute.

As expected, we observe two relaxation processes, which are analyzed using phenomenological

fitting functions of Cole-Cole type. As opposed to experiment we find the LF response to be stronger

than the HF response. Comparison of the fit parameters with scaling predictions for relaxation strength

and relaxation time due to Ito et al. [33] and Bordi et al. [47], cf. Section 3.1, suggests correlation of the

LF process with the relaxation of uncondensed counterions, whereas the HF process follows the scaling

prediction characteristic for the condensed counterions, in contrast to experiment. We unambiguously

check this assertion by separately measuring the relaxation of condensed and uncondensed counterions

and find near to perfect confirmation. Relaxation strengths and relaxation times obtained from BD

simulations at fixed PE length and varying PE concentration nicely agree with the scaling predictions.
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3. Dielectric response in salt-free polyelectrolyte solutions

At fixed PE concentration and varying PE length deviations from the scaling predictions are visible.

Relaxation parallel to the PE axis is stronger than relaxation perpendicular to the PE axis, in accord

with simulations of the dielectric response of stiff PEs in salt solution [19]. However, for a flexible

PE the difference between parallel and perpendicular relaxation is less pronounced than for a stiff PE.

Moreover, due to chain crumpling on small length scales the PE length dependence of the dielectric

susceptibility of the condensed counterions is independent of directions, in contrast to the scaling

predictions which assume a stiff PE.

In order to explain the apparent interchange of LF and HF process as compared to experiment we

study the dependence of the dielectric susceptibility on the number of PEs in the simulation cell. In

doing so, we keep PE concentration and length fixed. The dielectric susceptibility decreases with PE

number due to overlap of counterion atmospheres. We observe a third dispersion at frequencies lower

than the LF process. This low-low-frequency (LLF) process is connected with the correlated relaxation

of condensed counterions, and corresponds to the low-frequency process observed within experiment.

3.1. Phenomenological description and scaling predictions

3.1.1. Phenomenological description

In the linear response limit the time-dependent dielectric susceptibility can be obtained from the equi-

librium fluctuations of the dipole density [31],

χ(t) =− V

3ε0kBT

¬

P 2
¶

0

dΦP(t)
dt

, (3.12)

where 〈 · 〉0 denotes an equilibrium average at zero field E = 0, and V the sample volume. Here we

introduced the dipole correlation function

ΦP(t) =
〈P (t) ·P (0)〉0



P 2
�

0

, (3.13)

which, in a strict sense, is only defined for times t > 0 owing to causality. In frequency space the

corresponding expression for the complex frequency dependent dielectric susceptibility reads

χ(ω) =
V

3ε0kBT

¬

P 2
¶

0

�

1− iωΦP(ω)
�

, (3.14)
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3.1. Phenomenological description and scaling predictions

with the (one-sided) Fourier transform of the dipole correlation function ΦP(ω) =
∫∞

0
dtΦP(t)e−iωt .

Both Eq. (3.12) and Eq. (3.14) are formulations of the fluctuation-dissipation theorem; the energy dis-

sipation as expressed by the dielectric susceptibility is related to the time derivative of the equilibrium

dipole fluctuations. This becomes more obvious when considering the imaginary part of the dielectric

susceptibility,

χ′′(ω) =− V

3ε0kBT

¬

P 2
¶

0
Re[ωΦP(ω)] , (3.15)

which is proportional to the energy density dissipated during one cycle of the external electric field,

∆W = 4πε0E2
0 χ′′(ω) . (3.16)

Technically speaking, the dipole correlation function determines the dielectric response. In the

simplest case, the dipole correlation function follows an exponential decay,

ΦP(t) = e−t/τ (3.17)

where τ is the relaxation time. The corresponding frequency-dependent dielectric susceptibility Eq. (3.14)

is

χ(ω) =
χ (0)

1+ iωτ
= χ (0)

�

1

1+(ωτ)2
− iω

1+ (ωτ)2

�

(3.18)

with the shorthand notation χ (0) = V
¬

P 2
¶

0
/3ε0kBT for the static dielectric susceptibility. Exponential

relaxation is also known as Debye-relaxation, with Eq. (3.18) being derived in the context of orien-

tational relaxation of permanent molecular dipoles [78]. Upon separation of the complex dielectric

susceptibility into real part χ′(ω) and imaginary part χ′′(ω) we can identify some characteristic fea-

tures pertaining to relaxation spectra in general; (1) The real part χ′(ω) is a monotonically decreasing

function of the radial frequency ω, the charged entities do not have the time to follow the external

electric field once the frequency ω is larger than the characteristic frequency 2π/τ. (2) The imaginary

part χ′′(ω) exhibits a broad peak centered around the characteristic frequency 2π/τ where energy

dissipation is maximum.
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3. Dielectric response in salt-free polyelectrolyte solutions

As a rule, the dielectric response of PE solutions does not obey a single exponential decay with

a single relaxation time, but can be modeled by a superposition of exponentials with a continuous

distribution of relaxation times,

ΦP(t) =

∫ ∞

0

dτ g(τ)e−t/τ . (3.19)

For the relaxation time distribution function g(τ) (as well as for the dipole correlation function ΦP(t)

and ΦP(ω), respectively) a veritable zoo of expressions have been proposed. The essential differences

as compared to Eqns. (3.17) and (3.18) are the introduction of stretched exponential or inverse power-

law decays in the time domain, and the change of broadness and skewness in the frequency domain.

In the frequency domain, the most general expression for the dielectric susceptibility is provided by

the Havriliak-Negami function [79, 80]

χ(ω) =
χ(0)

[1+ (iωτ)α]β
(3.20)

with 0 < α,β < 1. On a logarithmic frequency scale, the exponent α controls the slope of the real

part χ′(ω) and peak width of the imaginary part χ′′(ω) of the dielectric susceptibility, whereas the

exponent β controls the skewness with respect to the characteristic frequency 2π/τ. For α = 1 and β =

1 Eq. (3.20) reduces to the Debye relaxation function Eq. (3.18). In the time domain, the corresponding

dipole relaxation function can be expressed in terms of Fox functions [81]. In our analysis we will adopt

the somewhat simpler, amply used Cole-Cole function [82]

χ(ω) =
χ(0)

1+(iωτ)α
(3.21)

which results from setting β = 1 in the Havriliak-Negami function Eq. (3.20). As compared to

the Havriliak-Negami function Eq. (3.20) on a logarithmic frequency scale the Cole-Cole function

Eq. (3.21) preserves the symmetry of the Debye relaxation function Eq. (3.18). The time domain ex-

pression for the corresponding dipole relaxation function is given by the Mittag-Leffler function [81],

which interpolates between stretched exponential decay at short times t � τ and inverse power-law

decay at long times t � τ. The Mittag-Leffler function is the solution of the fractional relaxation

equation, which arises in systems displaying some form of disorder [83].

While the heuristic modeling of experimental data is well developed, there remains a yawning gap

as to the microscopic origin of the phenomenological expressions. For example the relation of the
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3.1. Phenomenological description and scaling predictions

exponents α and β in the Havriliak-Negami function Eq. (3.20) to microscopic properties of the PE

solution is completely obscure.

3.1.2. Scaling predictions

The scaling approach due to Ito and coworkers [33] rests upon the assumption that counterion re-

laxation proceeds uncorrelatedly and diffusively. Starting point is the fluctuation-dissipation theorem

Eq. (3.14) for the static dielectric susceptibility. If the number of counterions in a volume ∆3 surround-

ing a PE chain is Nct, then counterion number fluctuations of order
p

Nct induce dipole fluctuations of

order
¬

P 2
¶

∝ Ncte
2∆2. In this context ∆ denotes a characteristic length in the PE solution which will

be specified below. With this crude approximation for the dipole fluctuations the scaling relation for

the static dielectric susceptibility reads

∆χ ∝ Nct
`B∆2

V
. (3.22)

Provided counterion relaxation is diffusive, the scaling relation for the relaxation time follows as

τ∝ ζct∆2

kBT
. (3.23)

Where ζct is the friction coefficient of a counterion. What have we gained so far? We traced both

the static dielectric susceptibility and the relaxation time back to some characteristic length ∆ of the

PE solution. In what follows, we identify the characteristic lengths associated with fluctuations of

uncondensed and condensed counterions, and propose corresponding scaling relations. We restrict our

discussion to dilute PE solutions, extensions to semi-dilute PE solutions can be found in Refs. [33, 47].

Uncondensed counterions

We adopt the PE correlation length ∆ ∝
�

V/Np

�1/3
[84] where Np is the number of PEs in the vol-

ume V as the characteristic length linked to the relaxation of uncondensed counterions. The un-

derlying picture is the following: Inter-chain electrostatic repulsion induces liquid-like correlations

among PE chains. Uncondensed counterions consequently explore a spatially periodic electrostatic

potential which inherits its periodicity from PE correlations. (Within scattering experiments the PE

correlation length can be determined from the position of the first peak in the static structure factor.)
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3. Dielectric response in salt-free polyelectrolyte solutions

The number of uncondensed counterions is fixed by the number of charged groups on the PE chain,

Nuc ∝ (1−θ)Nm, with the fraction of condensed counterions θ . Introducing the overlap monomer con-

centration c∗m = Nm/R
3, where R ∝ amNm for PEs of monomer size am whose extension grows linearly

with the monomer number, we obtain from Eq. (3.22)

∆χuc ∝
(1− θ)`B

am
N0

m

�

cm

c∗m

�1/3

(3.24)

for the static dielectric response. Likewise for the relaxation time we get

τuc ∝
ζcta

2
m

kBT
N2

m

�

cm

c∗m

�−2/3

. (3.25)

One comment is in order. We tacitly assumed isotropy of the PE solution on the scale of the correlation

length. Strictly speaking, this holds for very dilute solutions only, where the PE correlation length is

much larger than the PE extension. As the PE concentration approaches the overlap concentration we

accordingly expect deviations from scaling. On the other hand, the range of applicability of the scaling

relations Eqns. (3.24) and (3.25) might as well extend to the case of strong anisotropy of the dielectric

response as known from experiment, as long as it captures the properties of the dominant contribution.

Condensed counterions

The latter comment particularly applies to the relaxation of condensed counterions which are confined

to a strongly anisotropic volume close to the PE chain. Similar as before, the number of condensed

counterions is proportional to the monomer number, Ncc ∝ θ Nm. However we have to consider relax-

ation parallel and perpendicular to the PE chain separately. In the former case the characteristic length

is given by the PE extension ∆ ∝ amNm, leading to the scaling relations [47]

∆χcc,‖ ∝
θ `B

am
N0

m

�

cm

c∗m

�1

(3.26)

and

τcc,‖ ∝
ζcta

2
m

kBT
N2

m

�

cm

c∗m

�0

. (3.27)
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3.1. Phenomenological description and scaling predictions

The relaxation perpendicular to the PE axis is associated with the PE width, ∆ ∝ am, in that case

∆χcc,⊥ ∝
θ `B

am
N−2

m

�

cm

c∗m

�1

(3.28)

and

τcc,⊥ ∝
ζcta

2
m

kBT
N0

m

�

cm

c∗m

�0

. (3.29)

Note that on the scaling level the difference between Eqns. (3.26), (3.27) on the one hand and

Eqns. (3.28), (3.29) on the other hand lies in the PE length dependence alone. While the static

dielectric susceptibility in the parallel case is length independent, it decreases with length in the per-

pendicular case. Conversely, the relaxation time in parallel direction increases with length while it is

length independent in perpendicular direction.

Similar PE concentration and length dependence of the static dielectric susceptibility of condensed

counterions parallel and perpendicular to the PE axis can be extracted from the model due to Schlag-

berger and Netz [19]. For parallel relaxation the scaling relations agree with Ozawa’s models [54].

Critique and perspectives

The experimental verification of the scaling relations derived above faces one major challenge. In order

to ultimately sort out which relaxation mode correlates with uncondensed or condensed counterions

and parallel or perpendicular direction, it is not sufficient to compare measurements with scaling re-

lations. In this respect the correlation of measurements with scaling relations provides evidence, but

no proof, that the assumed physical picture is correct. In case of the relaxation direction, comple-

mentary birefringence experiments allow for the discrimination of different directions (albeit without

gauge). But there is no counterion specific parameter allowing for the discrimination of uncondensed

and condensed counterions.

The scaling predictions derived above do not account for the corrugation of the electrostatic poten-

tial experienced by the counterions on length scales larger than the PE correlation length. In fact, we

expect a relaxation mechanism to be of importance, where counterions cross potential barriers separat-

ing different PE chains. In a bistable potential, this overbarrier relaxation process is known to depend

on the barrier height and dominates the low-frequency response, in contrast to relaxation in the in-

dividual potential wells which is barrier-height independent and characteristic for the high-frequency
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3. Dielectric response in salt-free polyelectrolyte solutions

response [85]. Indeed, within multi-PE simulations we find that the lowest frequency relaxation pro-

cess is obviously related to barrier crossing.

3.2. Model and measurements

We consider Np PE chains of Nm charged monomers of radius am = act, and Nct = Nm counterions of

radius act, confined in a cubic cell of volume V . The overall cell is electroneutral,

qmNmNp + qctNct = 0 (3.30)

where qm = +1 and qct = −1 denote the charge valency of a monomer or counterion, respectively.

Periodic boundary conditions are implemented via the minimum image convention [86].

All particles evolve according to the Langevin equation Eq. (2.1), where the hydrodynamic coupling

is accounted for via the Rotne-Prager-Yamakawa tensor Eqns. (2.3) and (2.4). We apply a time-periodic

external electric potential,
Uext

kBT
= − e

kBT

∑

i

qi ri ·E0 cos(ωt) , (3.31)

where E0 = E0 êz denotes the field strength.

Within simulations, the fluctuating dipole density ∆P (t) due to N particles of charge qi at position

ri(t) in a cell of volume V can be calculated according to

∆P (t) =
1

V

1

N

N
∑

i, j=1

qi

�

ri(t)− r j(t)
�

. (3.32)

The dipole density calculated this way is explicitly independent of the choice of the origin. Likewise,

partial fluctuating dipole densities∆Pcc(t),∆Puc(t) for condensed or uncondensed counterions follow

from Eq. (3.32) by constraining the summation to the respective counterion subpopulation, hence

∆Pcc(t) =
1

V

1

N

Nm+θNc
∑

i, j=1

qi

�

ri(t)− r j(t)
�

(3.33)

and

∆Puc(t) =
1

V

1

N

Nm+(1−θ )Nc
∑

i, j=1

qi

�

ri(t)− r j(t)
�

. (3.34)
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3.2. Model and measurements

We have ∆P (t) = ∆Pcc(t) +∆Puc(t). Note that the partial dipole densities Eqns. (3.33) and (3.34)

are still independent of the choice of the origin.

Specializing to a time-periodic fieldE(t) = E0 cos(ωt) êz the frequency dependent dielectric suscep-

tibility ∆χ(ω) follows as

∆χ(ω) =
2

ε0E0




∆Pz(ω)
�

, (3.35)

where the frequency dependent dipole density



∆Pz(ω)
�

follows from the Fourier-transform




∆Pz(ω)
�

=
1

T

∫ T

0

dt



∆Pz(t)
�

e−iωt . (3.36)

Expressed through dimensionless quantities we find for real part ∆χ′(ω̃) and imaginary part ∆χ′′(ω̃)
of the frequency-dependent dielectric susceptibility

∆χ′(ω̃) = 16πξMεH2O
1

T̃

∫ T̃

0

d t̃
¬

∆P̃z( t̃)
¶

cos(ω̃ t̃) (3.37)

and

∆χ′′(ω̃) = 16πξMεH2O
1

T̃

∫ T̃

0

d t̃
¬

∆P̃z( t̃)
¶

sin(ω̃ t̃) (3.38)

The analysis of the dielectric spectrum obtained from simulations follows the assumption of two dis-

tinct relaxation processes – which we refer to as low-frequency (LF) and high-frequency (HF) process

– as commonly observed in experiment. As discussed in Section 3.1 we model the spectrum via two

Cole-Cole functions

∆χ(ω̃) =
∆χ (0)LF

1+(iω̃τ̃LF)αLF
+

∆χ (0)HF

1+ (iω̃τ̃HF)αHF
, (3.39)

where the parameters ∆χ (0)LF , τ̃LF and αLF (∆χ (0)HF , τ̃HF and αHF ) denote strength, relaxation time, and

stretching exponent of the LF (HF) relaxation process. Fitting of Eq. (3.39) to the simulation data is

done through a weighted non-linear least squares fit. Both real and imaginary part of the dielectric

susceptibility are fitted simultaneously.
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Figure 3.1.: Simulations at fixed monomer number Nm = 16 and various scaled monomer concentra-
tions cm/c

∗
m. (a) Fraction of condensed counterions θ (symbols) as a function of the scaled

monomer concentration cm/c
∗
m, together with the theoretical prediction Eq. (3.40) (line).

(b) Ratio of the average squared end-to-end distance and the average squared radius of
gyration R2/R2

G as a function of the scaled monomer concentration cm/c
∗
m.

3.3. Results and Discussion

3.3.1. Fixed length, variable scaled monomer concentration

We perform simulations of a single PE chain with monomer number Nm = 16 and Nct = Nm neutralizing

counterions. The scaled PE monomer concentration cm/c
∗
m = (2amNm)3/V is varied over the range

cm/c
∗
m = 0.003− 0.1. The Manning parameter is fixed at ξM = 3 as applicable to typical synthetic PEs.

Counterion condensation and PE conformation

Netz [18] presents a Flory-type argument for the fraction of condensed counterions θ in salt-free PE

solutions which accounts for both finite PE length and concentration,

θ = 1− 1

ξM

�

1+
ln(cm/c

∗
m)

ln(L0/am)

�

. (3.40)

In the derivation of Eq. (3.40) the PE chain is assumed to be fully extended. According to Eq. (3.40),

the fraction of condensed counterions θ increases logarithmically with scaled monomer concentration

and decreases inverse-logarithmically with PE contour length. The scaled monomer concentration

dependence of the fraction of condensed counterions θ is stronger than the PE length dependence.

A similar relation has been worked out by Ramanathan and Woodbury [87, 88]. In simulations, the

fraction of condensed counterions θ is defined as the fraction of counterions within a distance 5a from
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3.3. Results and Discussion

the center of a monomer. Comparison of theory Eq. (3.40) and simulation is almost quantitative, cf.

Fig. 3.1, which is remarkable in view of our ad hoc definition of the fraction of condensed counterions.

The variation of the fraction of condensed counterions with scaled monomer concentration has im-

portant consequences for the conformation of a PE chain, as condensed counterions shield the electro-

static repulsion between charged monomers. We characterize the PE conformation via the ratio of the

average squared end-to-end distance and the average squared radius of gyration R2/R2
G. The average

squared end-to-end distance is defined as

R2 =
D
�

rNm
− r1

�2
E

, (3.41)

and the average squared radius of gyration as

R2
G =

*

1

Nm

Nm
∑

i=1

�

ri − rcom
�2

+

, (3.42)

where rcom =
∑Nm

i=1 ri/Nm is the center of mass of a PE chain. For a flexible chain in a theta solvent

one expects R2/R2
G = 6, for a flexible chain in a good solvent R2/R2

G ≈ 6.3, and for rodlike chains

R2/R2
G = 12. In agreement with previous simulations [89, 90] we find 7.8 < R2/R2

G < 8.2 which

corresponds to extended, but not rodlike conformations, cf. Fig. 3.1. The extended PE conformation

arises from electrostatic repulsion between charged monomers, which is regulated by the fraction

of condensed counterions θ . An increasing fraction of condensed counterions with scaled monomer

concentration, cf. Fig. 3.1, mitigates the electrostatic repulsion between charged monomers, eventually

shrinking the PE chain extension as manifest in the variation of the ratio R2/R2
G with scaled monomer

concentration.

Dielectric response

We analyze the complex dielectric susceptibility ∆χ(ω̃) through simultaneously fitting a sum of two

CC-functions Eq. (3.39) to real part ∆χ′(ω̃) and imaginary part ∆χ′′(ω̃) as described above. In

Fig. 3.2 a) and b) where we show real part and imaginary part of the dielectric susceptibility as a

function of the dimensionless radial frequency ω̃ of the external electric field, full fitting results appear

as solid lines, contributions of the individual CC-functions for scaled monomer density cm/c
∗
m = 0.003

as broken lines. Note that the fits are satisfactory albeit not perfect, as the peak height in the imaginary
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Figure 3.2.: Simulations for fixed monomer number Nm = 16 and variable scaled monomer concentra-
tion cm/c

∗
m = 0.003,0.01,0.03,0.1. (a) Real part of the dielectric susceptibility ∆χ′(ω̃)

as a function of the radial frequency ω̃ as obtained from simulations (cm/c
∗
m = 0.1 – dia-

monds, cm/c
∗
m = 0.03 – triangles, cm/c

∗
m = 0.01 – circles, cm/c

∗
m = 0.003 – squares). The

dielectric susceptibility can be modeled by two CC-functions (solid lines: fitting results;
broken lines: individual fitting results for cm/c

∗
m = 0.003). (b) Imaginary part of the di-

electric susceptibility ∆χ′′(ω̃) as a function of the radial frequency ω̃ as obtained from
simulations. (c): Fit parameters. Amplitudes of LF (filled circles) and HF (open circles)
relaxation mode ∆χ (0)LF , ∆χ (0)HF as a function of the scaled monomer concentration cm/c

∗
m.

(d): Fit parameters. Relaxation times of LF (filled circles) and HF (open circles) relaxation
mode τ̃LF, τ̃HF as a function of the scaled monomer concentration cm/c

∗
m.
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3.3. Results and Discussion

part ∆χ′′(ω̃) is systematically underestimated. All in all, agreement gets better with increasing scaled

monomer density.

The fit exponents αLF,αHF are close to unity indicating that both LF and HF relaxation process are

more or less of Debye type. In Fig. 3.2 c) and d) we plot relaxation times τ̃LF, τ̃HF and strengths∆χ (0)LF ,

∆χ (0)HF of the LF and HF relaxation process against the scaled monomer concentration cm/c
∗
m. For the

concentration regime under consideration the LF process clearly dominates the HF process by about an

order of magnitude in strength. The strength of the LF process ∆χ (0)LF grows more slowly with scaled

monomer concentration than the strength of the HF process ∆χ (0)HF . LF and Hf process are separated

by more than an order of magnitude in time, with the separation decreasing with scaled monomer

concentration.

At first glance our simulation results are at variance with experiment, where the relaxation strength

of the LF process increases at higher rate than the relaxation strength of the HF process, and where

the relaxation time of the LF process is independent of the scaled monomer concentration while the

relaxation time of the HF process is not [35–37, 39–41]. Moreover, within experiment the LF relaxation

strength is smaller than the HF relaxation strength. All in all, in our simulations the characteristics of

LF and HF relaxation process appear to be interchanged as compared to experiment. As we will show

in the multi-PE simulations below, this is due to the absence of interactions between different PE-

counterion atmosphere complexes in single-PE simulations.

From the foregoing qualitative considerations we expect the LF process to correlate with scaling

predictions for the relaxation of uncondensed counterions Eqns. (3.24) and (3.25), whereas we expect

the HF process to correlate with scaling predictions for condensed counterions Eqns. (3.26) and (3.27)

or Eqns. (3.28) and (3.29), respectively. (Recall that in case of the relaxation of condensed counterions

no distinction between parallel or perpendicular relaxation can be made based on the dependence on

scaled monomer concentration alone.) We indeed find reasonable agreement, cf. Fig. 3.2 c) and d). We

do not want to conceal small deviations from scaling, though, which we partially ascribe to variations

of the fraction of condensed counterions and the PE conformation with scaled monomer concentration.

Compliance of the relaxation parameters with the scaling predictions provides strong but not defi-

nite evidence, that the theoretical premises reflect the particular physical mechanisms. Within simula-

tions, unambiguous verification as to the origin of LF and HF relaxation process can be accomplished

through separately analyzing the dielectric susceptibilities ∆χcc(ω̃), ∆χuc(ω̃) due to condensed and
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Figure 3.3.: Simulations at fixed monomer number Nm = 16 and scaled monomer concentration
cm/c

∗
m = 0.1. Dielectric response of condensed counterions ∆χcc(ω̃) (open circles) and

uncondensed counterions ∆χuc(ω̃) (filled circles). Lines are fitting results to the dielectric
response of all counterions, cf. Fig. 3.2. (a): Real part∆χcc′(ω̃),∆χuc′(ω̃) of the dielectric
susceptibility. (b): Imaginary part ∆χcc′′(ω̃), ∆χuc′′(ω̃) of the dielectric susceptibility.

uncondensed counterions. The dielectric susceptibilities ∆χcc(ω̃), ∆χuc(ω̃) due to condensed and un-

condensed counterions can be obtained from the respective average dipole density Eqns. (3.33) and

(3.34). As an example we show real part and imaginary part of the dielectric susceptibility due to con-

densed and uncondensed counterions at scaled monomer density cm/c
∗
m = 0.1 in Fig. 3.3. Comparison

with the CC-functions as fitted to the dielectric susceptibility due to all counterions clearly correlates

the relaxation of condensed counterion with the HF process, and the relaxation of uncondensed count-

erions with the LF process. A correlation analysis of the relaxation parameters of condensed and

uncondensed counterions as obtained from fits of a single CC-function to the respective dielectric sus-

ceptibility and the relaxation parameters of LF and HF relaxation process yields excellent agreement

which proves the assignments condensed counterions – HF process and uncondensed counterions –

LF process, consistent with the scaling predictions. In view of our arbitrarily chosen criterion defining

condensed and uncondensed counterions, the near to quantitative agreement between both sets of

relaxation parameters should be taken with a pinch of salt, though.

3.3.2. Variable length, fixed scaled PE concentration

Within the common experimental protocol the PE contour length L0 = 2amNm is varied at fixed

monomer concentration cm. In order to disentangle the influence of PE contour length and monomer

concentration on the dielectric susceptibility, we propose to vary the PE contour length at fixed scaled

monomer concentration cm/c
∗
m = L3

0/V . This amounts to a change of the PE length without changing
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Figure 3.4.: Simulations for variable monomer number Nm and fixed scaled monomer concentration
cm/c

∗
m = 0.10. (a) Fraction of condensed counterions θ (symbols) as a function of the

monomer number Nm, together with the theoretical prediction Eq. (3.40) (line). (b) Aver-
age end-to-end distance R̃ as a function of the monomer number Nm.

the structure of the PE solution. More precisely we perform simulations of a single PE chain with vari-

able monomer number Nm = 8,16,32,64 and Nct = Nm neutralizing counterions at scaled monomer

concentration cm/c
∗
m = 0.1. As before, the Manning parameter is fixed at ξM = 3.

Counterion condensation and PE conformation

From theoretical considerations, cf. Eq. (3.40), the fraction of condensed counterions θ is predicted to

increase with PE length, which we find confirmed in Fig. 3.4 where we plot the fraction of condensed

counterions θ as obtained from simulations. We do see qualitative deviations from the predicted

inverse-logarithmic length dependence, which we ascribe to strong deviations from the extended con-

formation entering theory, plus our ad hoc definition of the fraction of condensed counterions. What

is important here is that changes in the fraction of condensed counterions are marginal such that we

expect no or only little changes in PE conformation due to counterion condensation.

As stated before, in dilute, salt-free solution a PE chain adopts an extended conformation where

the end-to-end distance scales linearly with the monomer number R ∼ amNm [91]. Indeed, we ob-

serve close to linear scaling of the end-to-end distance with the monomer number within simulations,

cf. Fig. 3.4, although the simulated monomer numbers are rather small. However, the end-to-end dis-

tance is much smaller than the contour length L0 = 2amNm hinting at a crumpling of the PE chain on

small scales [89, 90, 92–94].
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3. Dielectric response in salt-free polyelectrolyte solutions

Dielectric response

In Fig. 3.5 a) and b) we show real part ∆χ′(ω̃) and imaginary part ∆χ′′(ω̃) of the dielectric suscep-

tibility as a function of the radial frequency ω̃ of the external electric field. As before, on a double-

logarithmic scale two relaxation processes can be clearly distinguished.

Similar to our simulations with varying scaled monomer concentration we find fit exponents αLF,αHF

close to unity. In Fig. 3.5 c) and d) we plot relaxation time and strength of the LF and HF relaxation

process against the monomer number Nm. Complying with our findings for fixed length and varying

scaled monomer concentration, cf. Fig. 3.2, the LF process clearly dominates the HF process, where the

strength of the LF process ∆χ (0)LF decreases more slowly with the monomer number than the strength

of the HF process∆χ (0)HF . LF and Hf process are separated by about an order of magnitude in time, with

the separation increasing with monomer number.

We compare the monomer number dependence of strength and relaxation time of the LF and HF

relaxation process at fixed scaled monomer concentration with scaling predictions. In contrast to our

findings for fixed length and varying scaled monomer concentration we find poor agreement of the

LF process with the scaling predictions, cf. Fig. 3.5 c) and d). The strength of the LF process ∆χ (0)LF

deviates considerably from the scaling prediction Eq. (3.24), decreasing with monomer number. The LF

relaxation time τ̃LF increases with monomer number as predicted by Eq. (3.25) albeit with a smaller

power. The direction of the deviations towards smaller scaling exponents appears to be similar to

what has been observed in experiments on ss-DNA in salt-free solution [34]. In these experiments the

deviations are not as large, though. Comparison of the HF relaxation strength ∆χ (0)HF and relaxation

time τ̃LF with the scaling predictions for condensed counterions yields fair agreement with Eqns. (3.28)

and (3.29) for perpendicular relaxation, while Eqns. (3.26) and (3.27) for parallel relaxation of the

condensed counterions fail to describe the data. Similar scaling for the perpendicular relaxation of

condensed counterions has been found within simulations of short rodlike PEs in salt solution [19].

Fair agreement between the scaling predictions for perpendicular relaxation of condensed counter-

ions with our fit results fuels our discussion as to the origin of the HF process. Indeed, provided the HF

process we observe within simulations is due to the relaxation of condensed counterions perpendicular

to the PE, then we probably miss the contribution due to the parallel relaxation of condensed count-

erions, which should be larger than the former. In order to get more structural insight, we push our
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Figure 3.5.: Simulations for variable monomer number Nm = 16,32,64,128 and fixed scaled monomer
concentration cm/c

∗
m = 0.10. (a) Real part of the dielectric susceptibility ∆χ′(ω̃) as a

function of the radial frequency ω̃ as obtained from simulations (Nm = 8 – diamonds,
Nm = 16 – triangles, Nm = 32 – circles, Nm = 64 – squares). The dielectric susceptibility
can be modeled by two CC-functions (solid lines: fitting results; broken lines: individual
fitting results for Nm = 64). (b) Imaginary part of the dielectric susceptibility ∆χ′′(ω̃) as
a function of the radial frequency ω̃ as obtained from simulations. (c): Fit parameters.
Amplitudes of LF (filled circles) and HF (open circles) relaxation mode ∆χ (0)LF , ∆χ (0)HF as
a function of monomer number Nm. (d): Fit parameters. Relaxation times of LF (filled
circles) and HF (open circles) relaxation mode τ̃LF, τ̃HF as a function of monomer number
Nm.
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analysis further and try to figure out whether the correlation HF process – perpendicular relaxation of

condensed counterions exists.

Further decomposition of the fluctuating dipole density in contributions parallel or perpendicular

with respect to the direction of the PE principal axis can be done according to

∆P̃‖( t̃) = ∆P̃z( t̃)e‖,z (3.43)

and

∆P̃⊥( t̃) = ∆P̃z( t̃)−∆P̃‖( t̃) , (3.44)

where e‖,z is the z-component of the (normalized) eigenvector corresponding to the largest eigenvalue

of the PE gyration tensor. From the corresponding dielectric susceptibilities ∆χ‖(ω̃) and ∆χ⊥(ω̃), cf.

Fig. 3.6 (a) and (b) we readily see, that parallel and perpendicular relaxation contribute equally to

both HF and LF process, where the parallel relaxation always exceeds the perpendicular relaxation in

accord with previous observations within simulations of rodlike PEs [19, 74–77]. Likewise, the parallel

dielectric susceptibility of condensed counterions is substantially higher than the perpendicular dielec-

tric susceptibility of condensed counterions, cf. Fig. 3.6 (c) and (d) which contradicts our expectations

based on comparison with the scaling predictions. As opposed to the rodlike case, where the parallel

dielectric susceptibility of the condensed counterions ∆χ‖,cc(ω̃) stays constant and the perpendicu-

lar dielectric susceptibility of the condensed counterions ∆χ⊥,cc(ω̃) decreases with the inverse second

power of the monomer number Nm [19] which complies with the scaling predictions Eqns. (3.26) and

(3.28), we find that both parallel and perpendicular dielectric susceptibilities of the condensed count-

erions decrease with the inverse second power of the monomer number (data not shown). The origin

of this strong qualitative deviation of the parallel relaxation of condensed counterions from the scaling

prediction might be found in the flexibility of the PE chain. For flexible PE chains, the gain of confor-

mational entropy might exceed electrostatic repulsion such that the PE chain appears to be crumpled

on short length scales. In this case condensed counterions move in a locally inhomogeneous potential,

as opposed to the case of rodlike PEs where the potential is more or less homogeneous. The charac-

teristic length of the PE chain crumpling is provided by the size of a PE monomer ∆ ∝ am, similar

to the characteristic length entering the scaling predictions for perpendicular relaxation Eqns. (3.28)
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Figure 3.6.: Simulations for monomer number Nm = 32 and scaled monomer concentration cm/c
∗
m =

0.10. Parallel dielectric susceptibility ∆χ‖(ω̃) (open circles) and perpendicular dielectric
susceptibility ∆χ⊥(ω̃) (filled circles) as a function of the radial frequency ω̃ as obtained
from simulations. (a) and (b) Real part and imaginary part of the parallel and perpendic-
ular dielectric susceptibility due to all counterions. (c) and (d) Real part and imaginary
part of the parallel and perpendicular dielectric susceptibility due to condensed counter-
ions. (e) and (f) Real part and imaginary part of the parallel and perpendicular dielectric
susceptibility due to uncondensed counterions.
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Figure 3.7.: Simulations for fixed monomer number Nm = 16, fixed scaled PE concentration cm/c
∗
m =

0.10 and variable PE number Np = 2 (triangles), Np = 3 (circles), Np = 4 (squares).
(a) PE-PE radial distribution function gpp(r) as a function of the PE=PE distance r. (b)
Dimensionless PE-PE potential of mean force Ψpp(r) as a function of the PE-PE distance r.

and (3.29). We note in passing, that the dielectric response of the uncondensed counterions is nearly

isotropic, cf. Fig. 3.6 (e) and (f).

3.3.3. Multi-PE simulations – correlation effects

In this section we study the influence of interactions among different PE-counterion atmosphere com-

plexes in extension to our preceding discussion of the dielectric relaxation of one single PE-counterion

atmosphere complex. From simulations of a minimal model for the dielectric relaxation of PE solutions

we thus take steps towards simulations of more realistic models. This comes at the cost of gradually

increasing the model complexity, not to mention the mounting computational expense. Technically we

include interactions among different PE-counterion atmosphere complexes by varying the number of

PEs in the simulations cell Np = 1,2,3,4 at fixed monomer number per PE Nm = 16 and fixed scaled

monomer concentration cm/c
∗
m = NpN3

m/V = 0.10.
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3.3. Results and Discussion

Structure of the PE solution

Simulations of a single PE with its counterion atmosphere do not allow to make a point concerning the

spatial arrangement of a number of PEs. Here we access the structure of the PE solution by considering

the PE-PE and PE-counterion radial distribution functions gpp(r) and gpc(r), defined as

gpp(r) =
V

N2
p

Np
∑

i=1

Np
∑′

j=1

δ
�

r − |rp,i − rp, j|
�

4πr2 (3.45)

and

gpc(r) =
V

NcNp

Np
∑

i=1

Nc
∑

j=1

δ
�

r − |rp,i − rc, j|
�

4πr2 . (3.46)

In this context rp,i and rc, j denote the center-of-mass positions of the i-th PE and the j-th counterion,

respectively, and the primed sum in Eq. (3.45) excludes terms with index j = i. The radial distribution

functions gpp(r) and gpc(r) capture the local structure of the PE solution surrounding a reference PE

in terms of distance-dependent variations of the PE or counterion density. Simple Boltzmann inversion

relates the PE-PE and PE-counterion radial distribution functions to the dimensionless PE-PE and PE-

counterion potentials of mean force (PMF) Ψpp(r) and Ψpc(r),

Ψpp(r) =− ln
�

gpp(r)
�

(3.47)

and

Ψpc(r) =− ln
�

gpc(r)
�

. (3.48)

The PMFs contain both electrostatic and entropic contributions. Note that in order to avoid cell

geometry-induced artifacts we only consider radial distribution functions and PMFs at distances smaller

than half the cell width.

In Fig. 3.7 we plot the PE-PE radial distribution function gpp(r) Eq. (3.45) and the PE-PE PMF

Eq. (3.47) obtained from simulations as a function of the radial distance r. We notice a correlation

hole at short distances where the PE density is zero followed by an increase of the radial distribution

function. The concept of a correlation hole has been first introduced in connection with solutions of

neutral polymers [91] where it accounts for the exclusion of polymers from the domain of a reference

polymer due to steric repulsion. In this context the size of the correlation hole conforms to the polymer
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Figure 3.8.: Simulations for fixed monomer number Nm = 16, fixed scaled PE concentration cm/c
∗
m =

0.10 and variable PE number Np = 1 (diamonds), Np = 2 (triangles), Np = 3 (circles),
Np = 4 (squares). (a) PE-counterion radial distribution function gpc(r) as a function of the
PE-counterion distance r. (b) Dimensionless PE-counterion potential of mean force Ψpp(r)
as a function of the PE-counterion distance r.

size. Within PE solutions repulsive electrostatic interactions add to the steric repulsion. Here the size

of the correlation hole is identified with the Debye screening length κ−1 rather than the PE size [95].

Owing to our choice of parameters we find the radius of the correlation hole similarly to be in the range

of the average PE end-to-end distance R/a = 17.24 and the Debye screening length 1/κa = 16.48.

This implies that PE chains do not interpenetrate on average. Hence the PE-PE PMF Ψpp(r) is infinitely

repulsive at short distances before decaying at longer distances. The appearance of a correlation hole

at short distances and the subsequent increase of the PE-PE radial distribution function agree with the

outcome of an earlier simulation study of dilute PE solutions [15]. But for the simple reason that the

PE number and correspondingly the system size is still too small we do not observe the broad maximum

at distances close to the PE correlation length r = (V/Np)1/3 reported in Refs. [14, 15, 90].

The PE-counterion radial distribution function gpc(r) is characterized by a high counterion density at

short distances which strongly decreases over the PE-PE correlation hole, cf. Fig. 3.8. For a single PE, at

larger distances the PE-counterion radial distribution function keeps decreasing, albeit at a smaller rate,

reflecting the intrinsic inhomogeneity of the counterion density. For more than one PE the counterion

density becomes homogeneous at larger distances from the reference PE, and the PE-counterion radial

distribution function levels off after passing through a minimum.

Whereas interactions of the reference PE with its counterion atmosphere determine the PE-counterion

radial distribution function inside of the PE-PE correlation hole, overlap of the counterion atmospheres
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3.3. Results and Discussion

of different PEs determine the PE-counterion radial distribution function beyond the PE-PE correlation

hole. This becomes more transparent in the PE-counterion PMF which reveals a potential barrier be-

tween different PEs originating from the overlap of the counterion atmospheres, as already anticipated

in Section 3.1. The distance of the local maximum in the PE-counterion PMF from the reference PE,

where no force acts on the counterions, could provide a measure for the non-overlapping part of the

counterion atmosphere. This distance is significantly smaller than the extension of the counterion at-

mosphere which we define to be given by the distance where the number of counterions surrounding

the reference PE nc =
∫ r

0
d3r ′gpc(r ′)Nc/V equals the monomer number Nm. In our case the distance

where the number of counterions surrounding the reference PE equals the monomer number exactly

coincides with half the PE correlation length r = (V/Np)1/3/2.

Dielectric response

In Fig. 3.9 a) and b) we show real part ∆χ′(ω̃) and imaginary part ∆χ′′(ω̃) of the dielectric suscepti-

bility as a function of the radial frequency ω̃ of the external electric field. (Notice the log-linear scale

in contrast to the log-log scale used in Figs. 3.2 and 3.3.) The dielectric response exhibits a strong

dependence on the PE number Np, with height and shape of the dielectric spectrum equally affected.

In Fig. 3.9 c) and d) we plot relaxation time and strength of the LF and HF relaxation process as

obtained by simultaneously fitting two Cole-Cole functions to real and imaginary part of the dielectric

susceptibility against the scaled monomer concentration cm/c
∗
m. The strength of both LF and HF process

decreases with increasing Np, with decreasing slope. The relaxation time of the LF process increases

with increasing Np before saturation, while the relaxation time of the HF process rests unaffected.

The decrease of the dielectric susceptibility with increasing PE number can be ascribed to the overlap

of the counterion atmospheres discussed above. In the literature we find two scenarios: 1) repulsive

interactions as apparent in the PE-counterion PMF Fig. 3.8 tend to reduce the fluctuations of the dipole

density. This argument is similar to the effect of repulsive interactions among condensed counterions

on a single PE in Oosawa’s theory [54, 55] which reduce the dielectric susceptibility as compared to

Mandel’s theory [48] where counterion-counterion interactions are absent. A recently proposed ex-

tension of Manning’s model to interacting PEs comes to a similar conclusion [62], mutual repulsion of

counterions on different PEs lower the susceptibility. 2) the presence of other PEs lowers the potential
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Figure 3.9.: Simulations at fixed monomer number Nm = 16, fixed scaled monomer concentration
cm/c

∗
m = 0.10, and various PE numbers Np = 1 (diamonds), Np = 2 (triangles), Np = 3

(circles) and Np = 4 (squares). (a) Real part of the dielectric susceptibility ∆χ′ as a
function of the radial frequency ω̃. The solid lines are fitting results of two CC-functions.
(b) Imaginary part of the dielectric susceptibility ∆χ′′ of the condensed counterions as
a function of the radial frequency ω̃. (c) Fit parameters. Relaxation strengths of the HF
process ∆χ (0)HF (open circles) and LF process ∆χ (0)LF (filled circles). (d) Fit parameters.
Relaxation times of the HF process τ̃HF (open circles) and of the LF process τ̃LF (filled
circles).
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3.3. Results and Discussion

barrier for counterions to overcome in order to move from one PE to the other. Consequently the

conductivity increases and the dielectric susceptibility decreases [19].

At this point, a closer look at the contribution to the dielectric susceptibility due to condensed or

uncondensed counterions might be helpful in understanding the origin of the variations of the dielectric

susceptibility with the PE number. For this purpose in Fig. 3.10 a) and b) we plot the real part∆χcc′(ω̃)
and imaginary part∆χcc′′(ω̃) of the dielectric susceptibility due to condensed counterions as a function

of the radial frequency of the external electric field. Depending on the PE number Np in the dielectric

spectrum of the condensed counterions a second dispersion develops centered at frequencies lower

than the LF relaxation frequency. The strength of this low-low frequency (LLF) process increases with

PE number Np, in contrast to the strength of the HF process which decreases.

Although the data quality is not as good as in the case of simulations of a single PE with its counterion

atmosphere we attempt a fit of three Cole-Cole functions to the dielectric spectrum

∆χ(ω̃) =
∆χ (0)LLF

1+(iω̃τ̃LLF)αLLF
+

∆χ (0)LF

1+ (iω̃τ̃LF)αLF
+

∆χ (0)HF

1+ (iω̃τ̃HF)αHF
. (3.49)

(Technically we fit one CC-function to the contribution due to uncondensed counterions, and two CC-

functions to the contribution due to condensed counterions.) The fitting results for the LLF, LF, and HF

strength and relaxation times are shown in Fig. 3.10. The major part of the decrease of the dielectric

susceptibility is in the contribution of the uncondensed counterions, which we expect due to increased

electrostatic screening. Surprising is the emergence of a third relaxation process, the LLF process, in the

dielectric susceptibility of the condensed counterions. The strength of the LLF process grows in favor

of the strength of the HF process. Similar to the fitting results obtained with two Cole-Cole functions,

cf. Fig. 3.9, the LF relaxation time increases with PE number, but at somewhat smaller rate. The LLF

relaxation time seems to be marginally increasing, whereas the HF relaxation time stays unaffected by

the change of PE number.

The observation of a second relaxation process in the low-frequency part of the contribution due

to condensed counterions resolves the apparent disagreement of simulations and experiment. The

LLF process corresponds to the experimentally observed relaxation of condensed counterions. But

in contrast to the interpretation leading to the scaling predictions in Section 3.3, where condensed

counterions relax parallel to the PE chain, the LLF process is connected to a collective effect.

43



3. Dielectric response in salt-free polyelectrolyte solutions

0.0

0.2

0.4

0.6

0.8

1.0

10−3 10−2 10−1 100

ω̃

∆
χ

cc
′

(a)

0.0

0.2

0.4

0.6

0.8

1.0

10−3 10−2 10−1 100

ω̃

∆
χ

cc
′

(a)

0.0

0.2

0.4

0.6

0.8

1.0

10−3 10−2 10−1 100

ω̃

∆
χ

cc
′

(a)

0.0

0.2

0.4

0.6

0.8

1.0

10−3 10−2 10−1 100

ω̃

∆
χ

cc
′

(a)

0.0

0.2

0.4

0.6

0.8

1.0

10−3 10−2 10−1 100

ω̃

∆
χ

cc
′

(a)

0.0

0.1

0.2

0.3

0.4

0.5

10−3 10−2 10−1 100

ω̃
∆
χ

cc
′
′

(b)

0.0

0.1

0.2

0.3

0.4

0.5

10−3 10−2 10−1 100

ω̃
∆
χ

cc
′
′

(b)

0.0

0.1

0.2

0.3

0.4

0.5

10−3 10−2 10−1 100

ω̃
∆
χ

cc
′
′

(b)

0.0

0.1

0.2

0.3

0.4

0.5

10−3 10−2 10−1 100

ω̃
∆
χ

cc
′
′

(b)

0.0

0.1

0.2

0.3

0.4

0.5

10−3 10−2 10−1 100

ω̃
∆
χ

cc
′
′

(b)

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

Np

∆
χ
(0
)

cc
,
∆
χ
(0
)

u
c

(c)

0

50

100

150

200

250

300

0 1 2 3 4 5

Np

τ̃
cc

,
τ̃

u
c

(d)

Figure 3.10.: Simulations at fixed monomer number Nm = 16, fixed scaled monomer concentration
cm/c

∗
m = 0.10, and various PE numbers Np = 1 (diamonds), Np = 2 (triangles), Np = 3

(circles) and Np = 4 (squares). Contribution of the condensed counterions. (a) Real part
of the dielectric susceptibility ∆χcc′ of the condensed counterions as a function of the
radial frequency ω̃. The solid lines are fitting results of two CC-functions. (b) Imaginary
part of the dielectric susceptibility ∆χcc′′ of the condensed counterions as a function of
the radial frequency ω̃. (c) Fit parameters. Relaxation strengths of the uncondensed
counterions ∆χ (0)uc (open circles) and of the condensed counterions ∆χ (0)cc (LLF process
- filled squares, HF process - filled circles). (d) Fit parameters. Relaxation times of the
uncondensed counterions τ̃uc (open circles) and of the condensed counterions τ̃cc (LLF
process - filled squares, HF process - filled circles).
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Figure 3.11.: Simulations at monomer number Nm = 16 and scaled monomer concentration cm/c
∗
m =

0.10. (a) Autocorrelation function Φθ1θ1
( t̃) Eq. (3.50) of the fluctuations of the fraction

of condensed counterions on a single PE for PE number Np = 1 (diamonds) and Np = 2
(circles). The solid lines are fits of a sum of two exponentials. (b) Crosscorrelation func-
tion Φθ1θ2

( t̃) Eq. (3.51) of the fluctuations of the fraction of condensed counterions on
different PEs for Np = 2 (symbols). The solid lines are fits of a sum of two exponentials.

Evidence for a collective effect

The presence of a second slow relaxation mode in the dielectric response due to condensed counterions

also becomes apparent in the autocorrelation function Φθ1θ1
( t̃) of the fluctuations of the fraction of

condensed counterions θ1 on a single PE chain

Φθ1θ1
( t̃) =


�

θ1( t̃)−



θ1
���

θ1(0)−



θ1
���




θ1 −



θ1
��2 . (3.50)

In Figure 3.11 a) we compare the autocorrelation function Φθ1θ1
( t̃) as obtained from simulations with

PE number Np = 1 and Np = 2. Both autocorrelation functions feature two distinct relaxation regimes,

a fast relaxation regime at short times followed by a slow relaxation regime at long times. In order

to get an estimate for the relaxation times we fit a sum of two exponentials to the autocorrelation

function Φθ1θ1
( t̃). For the relaxation time of the fast process we find τ̃fast

θ1θ1
≈ 12.5 for PE number

Np = 1 and τ̃fast
θ1θ1
≈ 14.3 for PE number Np = 2, for the relaxation time of the slow process we find

τ̃slow
θ1θ1
≈ 140.4 for PE number Np = 1 and τ̃slow

θ1θ1
≈ 213.5 for PE number Np = 2. The magnitude of both

relaxation processes is approximately the same. In the literature a similar autocorrelation function has

been considered for a single PE chain in salt solution, but no explicit discussion of different relaxation

processes has been given [96].
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3. Dielectric response in salt-free polyelectrolyte solutions

That the slow relaxation process might be linked to interactions across multiple PE-counterion com-

plexes can be inferred from the crosscorrelation Φθ1θ2
( t̃) between the fluctuations of the fraction of

condensed counterions θ1, θ2 on different PEs

Φθ1θ2
( t̃) =


�

θ1( t̃)−



θ1
���

θ2(0)−



θ2
���




θ1 −



θ1
��


θ2−



θ2
�� . (3.51)

Here θ1( t̃) and θ2( t̃) denote the fluctuating fraction of condensed counterions on PE 1 and 2, re-

spectively. We find weak anticorrelation, suggesting long-range interactions between different PE-

counterion complexes, cf. Fig. 3.11 b). Hence the relaxation of a single PE is intimately linked to the

relaxation of other PEs, corresponding to a collective relaxation mode. The relaxation time of the

slow relaxation process as obtained from a fit of a sum of two exponentials τ̃slow
θ1θ2
≈ 173 is close to the

relaxation time of the LLF process τ̃LLF ≈ 182.

In the language of counterion condensation theory, anticorrelation of the fluctuations of the fraction

of condensed counterions on different PEs implies different PE effective charges (the effective charge is

the PE bare charge neutralized by the condensed counterions), or to put it casually the PE-condensed

counterion complexes are “ionized”. In some sense this anticorrelation resembles observations con-

cerning asymmetric counterion condensation on two like-charged colloids [97]. In this context, energy

barriers due to correlational energy are thought to stabilize long-lived “ionized states”.

We show, that the slow relaxation process visible in the autocorrelation function Φθ1θ1
( t̃) and the

crosscorrelation function Φθ1θ2
( t̃) underlies the LLF dielectric relaxation process. Evidence is provided

by the relaxation time of the slow relaxation process, which has the right order of magnitude as com-

pared to the relaxation time of the LLF relaxation process. However, we cannot explain the presence

of a similar slow relaxation process – albeit with somewhat shorter relaxation time – for PE number

Np = 1 which has no analogue in the dielectric spectrum.

3.4. Conclusion

While dielectric spectroscopy is a well developed experimental methodology, questions remain open

concerning the interpretation of the dielectric response spectra. Using BD simulations of a coarse-

grained model of PE solutions, we were able to show that the lowest-frequency relaxation process

observed within experiment is due to the relaxation of condensed counterion. Moreover, our results
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3.4. Conclusion

indicate that this relaxation process is related to a collective effect involving condensed counterions

on distant PE chains. This novel relaxation mechanism differs from the classical viewpoint, where no

interactions beyond those between a single PE chain and its counterion atmosphere are taken into

account, and condensed counterions relax parallel to a PE chain.
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4. Electrophoresis beyond the line charge
model

The electrophoretic response of PE solutions is determined by the coupling of hydrodynamic and elec-

trostatic interactions giving rise to a rich phenomenology. Size and charge of the PE chains as well as

their interactions with the solvent and the ionic environment influence the electrophoretic response of

PE solutions enabling numerous applications aiming at electrophoretic separation or electrophoretic

enrichment of PE chains.

The exploration of electrophoresis at the beginning of the 20th century arose from the need to sepa-

rate macromolecules without changing their properties, which is easier said than done. For this, the de-

sign of the moving boundary electrophoresis apparatus due to Nobel laureate Arne Tiselius [98]marks

the advent of electrophoresis as a separation techniques. The separation of serum proteins according to

their charge accomplished by moving boundary electrophoresis impressively demonstrated the power

of this method and presented an important step towards the fractionation of blood plasma [98, 99].

Since then electrophoresis became a working horse for the characterization of macromolecules in biol-

ogy, chemistry, medicine, pharmaceutics, physics and related subjects. Modern electrophoretic meth-

ods comprise free-solution capillary zone electrophoresis [100], end-label free-solution electrophoresis

where a suitable molecule attached to the macromolecule acts as a drag-tag [101], gel-electrophoresis

where cross-linked polymers play the role of a sieving matrix [102], and many more [103]. Needless to

say that the industrial impact of electrophoresis is outstanding. Commercial instruments for capillary-

array electrophoresis which only recently became available made a decisive contribution to the deci-

phering of the human genome [11]. In this connection, the ambitious target of a $1000 Genome put

forth by the National Human Genome Research Institute is expected to inspire the development of

so-called next-generation electrophoresis methods [104].

Free-solution electrophoresis is the simplest experimental set-up to study the fundamental physics of

PE electrophoresis. In a nutshell, two things happen when a PE solution is exposed to a static electric
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4. Electrophoresis beyond the line charge model

field. First, as the PE chain moves through the solvent, the counterion distribution around the PE chain

constantly rebuilds. Since the process of rebuilding the counterion distribution takes a finite amount of

time, equilibrium will never be established, the counterion density decreases in front and increases in

the wake of the moving PE chain. These small field-induced deviations from the equilibrium counterion

distribution effect an internal electric field, the relaxation field, which counteracts the external one. As

a result, the motion of the PE chain is slowed down. This electrostatic effect goes under the name

of relaxation effect. The action of the relaxation effect is particularly relevant for strongly charged

PEs. Second, the motion of the PE chain and counterions is coupled through long-range hydrodynamic

interactions. Under the action of an external electric field the PE chain migrates against the flow field

created by oppositely moving counterions. The increased hydrodynamic friction experienced by the PE

chain retards its mobility. This hydrodynamic effect is called retardation effect.

A large body of literature deals with DNA solutions as a well-characterized model system [105–

110]. Frequently used synthetic model systems are solutions of polystyrene sulfonate (PSS) or poly-

acrylic acid (PAA) [21, 106, 111–113]. A characteristic feature of free-solution electrophoresis is the

length-independence of the electrophoretic mobility observed for long PE chains [105–107, 113–115].

This so-called free-draining behavior renders simple free-solution electrophoresis unsuitable for the

separation of long PE chains. The free-draining electrophoretic mobility decreases approximately log-

arithmically with increasing salt concentration [108, 109, 116–118], where the slope of the decrease

depends on the nature of counterions and added salt [108–110].

In PE solutions, PE-counterion electrostatic interactions critically depend on the linear charge density

eqm/b of the PE chains, where qm denotes the valency of a charged monomer, and b is the charge

separation along the PE chain. Above a certain threshold charge density counterions condense on

the PE chains and thus to reduce the effective charge density (calculated from the PE charge minus

the charge of condensed counterions) to the threshold. This phenomenon is referred to as counterion

condensation in analogy to the liquid-gas transition. Counterion condensation arises from the subtle

balance of electrostatic energy and entropy, expressed through the dimensionless linear charge density

or Manning parameter [27]

ξM =
|qctqm|

4πεε0kBT b
. (4.1)

Here we denote the counterion valency by qct, the relative solvent permittivity by ε, the vacuum

permittivity by ε0, and the Boltzmann constant by kB. The Manning parameter Eq. (4.1) governs
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the PE-counterion electrostatic interactions, its threshold value is ξM = 1. For PE chains with linear

charge densities above the condensation threshold ξM > 1 counterion condensation implies that the

electrophoretic mobility is expected to be independent of PE charge. Thus counterion condensation

can be probed by electrophoresis.

This observation provided the basic motivation for electrophoresis experiments targeting PEs of vari-

able linear charge density. In general, there are two possibilities to change the PE charge. One way to

vary the charge of weakly acidic PEs, for instance polyacrylic acid (PAA), consists in changing the sol-

vent pH [116–119]. An advantage of this method is its obvious simplicity and reversibility. The actual

distribution of charges on the PE chain eludes control, though. Another method varies the PE charge

by copolymerization of charged and uncharged monomers, e.g. acrylic acid and acrylamide [112]. In

principle, this methods allows for full control of the charge distribution on the PE chain [20, 120]. In

practice charged and uncharged monomers are often polymerized in a random fashion [21, 112, 120–

122]. Within a related approach, the PE charge can be modified through chemical reaction such as the

sulfonation of polystyrene [113] or N -acetylation of chitosan [118]. An elegant method to vary the

Manning parameter changes the solvent permittivity. This can be achieved by varying the composition

of water/organic cosolvent mixtures [20, 123]. By this method the charge distribution on the PE chain

is left untouched at the cost of a modified solvent viscosity. Besides, potential changes of the solvation

behavior of PE monomers and counterions have to be accounted for.

In experiment the PE electrophoretic mobility is found to increase with Manning parameter and to

level off above the counterion condensation threshold ξM = 1 [21, 112, 120–122]. But in contrast

to expectation a slight increase of the electrophoretic mobility with Manning parameter is observed

beyond the threshold. The interpretation of this result relates the increase of the electrophoretic mo-

bility to the discrete nature and compositional heterogeneity of the charge distribution on the PE

chains [21, 120]. More recent experiments led to the insight that the PE electrophoretic response is

not satisfactorily described by coarse-grained parameters such as the linear charge density [20, 21]. In-

stead microscopic parameters such as the actual charge distribution on the PE chain might be of impor-

tance, which is corroborated by the different electrophoretic mobility of PE chains of different charge

density but the same Manning parameter [20] and, more pertinent, by the different electrophoretic

mobility of PE chains bearing different charge distributions but the same linear charge density [21].
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4. Electrophoresis beyond the line charge model

Yet a systematic connection between parameters of the discrete charge distribution on the PE chains

and the electrophoretic mobility has to be established.

Outline

At the current state, mesoscale computer simulations of appropriate PE model systems present a vi-

able tool to push forward our understanding of charge distribution effects in PE electrophoresis. In

this respect we intend to go beyond recent publications which focus on the length and field-strength

dependence of the electrophoretic mobility of short-chain PEs with homogeneous charge distribu-

tion [124, 125].

Using the BD simulation technique, we investigate the electrophoretic response of an infinitely long

PE chain and its neutralizing counterions within the framework of the cell model for PE solutions [22].

In order to bring out the consequences of the local charge distribution we consider five PE mod-

els which differ in monomer-to-counterion size-ratio and charge separation along the PE chain. We

separately determine the electrophoretic response with respect to the external electric field applied

either parallel or perpendicular to the PE axis, and calculate the orientationally average as proposed in

Refs. [126–128]. Thereby, special emphasis is put on the counterion dynamics. In order to distinguish

hydrodynamic from electrostatic effects we study both free-draining dynamics where the hydrodynamic

coupling between the particle motion is neglected and non-draining dynamics.

In the linear response limit, that is for weak external electric field, we measure the electrophoretic

response as a function of the strength of the PE-counterion electrostatic interactions characterized

by the Manning parameter ξM. Our simulation results satisfactorily show the strong impact of the

chain architecture on the ectrophoretic mobility as both monomer-to-counterion size ratio and charge

separation reduce the electrophoretic mobility at fixed Manning parameter. As might be expected,

the electrophoretic response in parallel field is quite different from the electrophoretic response in

perpendicular field. Under free-draining dynamics the parallel electrophoretic mobility is governed by

PE model dependent electrofriction between condensed counterions and the corrugated electrostatic

potential set up by the charged monomers. In contrast to this the perpendicular mobility is largely

determined by counterion condensation, only marginally dependent on the chain architecture, and, to

a certain extent, can be modeled by simple renormalization of the monomer charge.
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4.1. A cell model for polyelectrolyte electrophoresis

The inclusion of the hydrodynamic coupling between the particle motion within non-draining dy-

namics dramatically changes the electrophoretic response of both PE chain and counterions. As a result

of the hydrodynamic entraining effect the PE electrophoretic mobility is increased as compared to the

free-draining case, and already at low Manning parameter differentiated according to monomer-to-

counterion size ratio. Qualitatively this can be understood in terms of the hydrodynamic mobility of a

cylinder whose length is of the order of the Debye-Hückel screening length. In parallel field condensed

counterions may be dragged along by the PE chain moving against the default direction prescribed by

the external electric field. Yet we stress that in parallel field the condensed counterions do not move

as an entity with the PE chain, as opposed to a common model assumption [129]

In order to study the non-linear response, we fix the Manning parameter to ξM = 4 and vary the

strength of the external electric field. Since for high field strength preferential orientation of the PE

chain is to be expected [124] we abstain from performing the orientational average and settle for a

discussion of parallel and perpendicular field. The observed increase of the PE electrophoretic mobility

corresponds to the Wien effect in simple strong electrolytes [23]. Under free-draining dynamics the

electrophoretic mobility saturates for high field strength, the non-linear effect of the chain architecture

is wiped out. This is accompanied by stripping off condensed counterions from the PE chain due

to the action of the perpendicular external electric field. In contrast, under non-draining dynamics

the PE electrophoretic mobility increases without bounds preserving the PE model dependence. In

parallel field, due to the high drag experienced by counterions close to the PE chain with increasing

field strength condensed counterions tend to move into the bulk. They evaporate in order to minimize

dissipation.

4.1. A cell model for polyelectrolyte electrophoresis

Below we introduce an adaption of the cell model for PE solutions for the simulation of the elec-

trophoretic response of long extended PE chains. Throughout we use dimensionless parameters fol-

lowing the definitions in chapter 2 and indicated by a tilde.
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4. Electrophoresis beyond the line charge model

(a) (b)

H̃0

W̃0

z̃

x̃

ỹ H̃

W̃

Figure 4.1.: Cell model for a flexible PE chain (red spheres) with neutralizing counterions (green
spheres). Periodic boundary conditions apply along the projected end-to-end distance of
the PE chain. (a) Initially the chain is fully extended. Cell height and width are given by

the contour length H̃0 = 2ãmNm and W̃0 =
p

Ṽ/H̃0, respectively. (b) The cell height H̃
which is coupled to the vertical PE extension fluctuates over the course of the simulation.

At fixed volume the corresponding cell width is adjusted according to W̃ =
p

Ṽ/H̃0.

Cell model

We consider a PE chain of Nm monomers of radius ãm a fraction f of which is charged with charge

valency q̃m = 1, and Nct counterions of radius ãct with charge valency q̃ct =−1, confined in a cubic cell

of height H̃ and width W̃ . The overall cell is electroneutral,

f q̃mNm + q̃ctNct = 0 . (4.2)

In the spirit of the cell model for PE solutions [22, 130], periodic boundary conditions along the vertical

axis are implemented by coupling the cell height H̃ to the vertical PE extension, and replicating the

simulation cell infinite times, cf. Fig. 4.1. As a result, height and width are freely fluctuating while the

volume Ṽ = H̃× W̃2 is fixed. The observed height and width fluctuations are small as compared to the

average cell dimensions.

Long-range Coulomb interactions among cell replicas are accounted for through a resummation

scheme proposed by Lekner and Sperb [131, 132]. Our implementation closely follows Naji and

Netz [28]. Hydrodynamic interactions, if included, are treated on the level of the minimum-image

convention [86]. Since under electrophoresis the opposite motion of positively and negatively charged

entities entails partial screening of hydrodynamic interactions [133], this truncation presents a mi-
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4.1. A cell model for polyelectrolyte electrophoresis

nor shortcoming given sufficiently large cell dimensions. A discussion of related finite-size effects

is provided in Appendix A. (Note that in principle, inter-replica hydrodynamic interactions could

be included based on Hasimoto’s Green’s function for the Stokes equation under periodic boundary

conditions [134, 135].) Perpendicular to the chain the minimum-image convention applies for all

interactions.

Polyelectrolyte models

In order to elucidate the influence of the PE local structure on the electrophoretic response of the cell

model we consider five PE models characterized by monomer radius ãm and charge fraction f . Given

the distance between adjacent monomers along the PE contour, 2ãm, the distance between adjacent

charged monomers along the PE contour, the charge separation, follows as

b̃ = 2ãm/ f . (4.3)

In Figure 4.2 we show simulation snapshots of five PE models: model A, a PE chain where every single

monomer of radius ãm = 1 is charged (charge fraction f = 1 and charge separation b = 2); model

B1, a PE chain where every second monomer of radius ãm = 1 is charged (charge fraction f = 1/2

and charge separation b = 4); model B2, a PE chain where every single monomer of radius ãm = 2 is

charged (charge fraction f = 1 and charge separation b = 4); model C1, a PE chain where every third

monomer of radius ãm = 1 is charged (charge fraction f = 1/3 and charge separation b = 6); model

C2, a PE chain where every single monomer of radius ãm = 3 is charged (charge fraction f = 1 and

charge separation b = 6). These PE models group into two sets. The PE models A, B1, and C1 share the

same monomer radius ãm = 1 but have different numbers of interspersed neutral monomers; model

A has no interspersed neutral monomer per charged monomer, model B1 has one interspersed neutral

monomer, and model C1 has two interspersed neutral monomers. The PE models A, B2, and C2 share

the same charge fraction f = 1 but have different monomer radii; model A has monomers of the same

size as the counterions, model B2 has monomers that are twice as large, and model C2 has monomers

that are tree times as large. The counterion radius is fixed at ãct = 1 for all PE models.

The number of charged monomers is fixed at f Nm = 24 for all PE models. Accordingly, the initial

height of the simulation cell is H̃0 = 48 for model A, H̃0 = 96 for model B1 and B2, and H̃0 = 144 for
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4. Electrophoresis beyond the line charge model

A B1 B2 C1 C2

Figure 4.2.: Simulation snapshots of five PE models differing in monomer radius ãm and charge sep-
aration b̃ as explained in the main text. Charged monomers are shown in red, neutral
monomers in light grey, and counterions in green. Since charged monomers share the
same charge q̃m irrespective of PE model the Manning parameter ξM Eq. (4.4) is adjusted
via the solvent permittivity. Here the Manning parameter is ξM = 4.

model C1 and C2. The initial width is W̃0 = 56.72 ensuring equal monomer concentrations over all PE

models.

Polyelectrolyte-counterion interactions

In solution, PE-counterion interactions are characterized by the Manning parameter [27]

ξM =
|qctqm|

4πεε0kBT b
, (4.4)

which compares the distance |qctqm|/4πεε0kBT beyond which thermal energy exceeds counterion-

monomer electrostatic interactions with the charge separation b. For small Manning parameter ξM < 1

the counterion distribution around the PE chain is diffuse. For large Manning parameter ξM > 1 the

counterion distribution breaks up into two parts: a fraction θ of counterions confined to a small volume

in the immediate vicinity of the PE chain and a fraction 1− θ of counterions diffusely distributed at

larger distance from the PE chain. We refer to θ as the fraction of condensed counterions.

Comparability of the electrophoretic response of different PE models requires equal Manning pa-

rameter ξM irrespective of charge separation b. This can be achieved by adjusting the solvent per-

mittivity ε, in close analogy to experiments in water/organic cosolvent mixtures of varying composi-

tion [20, 123, 136, 137].
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4.2. Linear Response

Dynamics

Monomers and counterions evolve according to the position Langevin equation Eq. (2.1) introduced in

Chapter 2. The dynamics are either free-draining or non-draining neglecting or including the hydrody-

namic coupling of the particle dynamics, respectively. In the former case the mobility tensor Mi j(ri j)

is given by Eq. (2.2), in the latter case the Rotne-Prager Yamakawa tensor Eqns. (2.3) and (2.4) is ap-

plied. The static external electric field Eq. (2.8) is directed either parallel, E‖ = Ẽêz, or perpendicular

to the PE axis, Ẽ⊥ = Ẽêx .

4.2. Linear Response

Electrophoresis experiments commonly are performed at low field strength in order to avoid Joule

heating of the sample. The electrophoretic response is linear in this regime, i.e. the electrophoretic

mobility defined below is strictly independent of the field strength. Within BD simulations of the cell

model we find a dimensionless field strength of the order of Ẽ = 0.05 − 0.2 to be sufficiently low to

probe the linear response regime. The Manning parameter is varied over two decades, ξM = 0.1 . . . 10,

including the the counterion condensation threshold ξM = 1.

4.2.1. Counterion distribution

The counterion distribution around the PE chain is determined by the balance of electrostatic attraction

towards and entropic repulsion away from the PE chain, as characterized by the Manning parameter

ξM. The structure of the counterion distribution is crucial for static and dynamic properties of PE

solutions. In Figure 4.3 (a) we show the fraction of condensed counterions θ which we define as the

fraction of counterions within a distance r̃∗ = ãm + 4ãct from the center of a monomer. For small

Manning parameter ξM < 1 the counterion distribution is diffuse, there are almost no counterions

in the immediate vicinity of the PE chain. At about ξM = 1 counterion condensation sets in and the

fraction of condensed counterions increases with Manning parameter ξM. Deviations from Manning’s

limiting law for the fraction of condensed counterions [27]

θ = 1− 1

ξM
(4.5)
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Figure 4.3.: Free-draining simulations under parallel field. (a) Fraction of condensed counterions θ as
a function of the Manning parameter ξM (model A – circles, model B1 – squares, model B2
– diamonds, model C1 – triangles up, model C2 – triangles down). The dashed line corre-
sponds to Manning’s limiting law Eq. (4.5). (b) Cumulative counterion density nct,⊥(r̃⊥)
Eq. (4.6) as a function of lateral distance r̃⊥ from the PE axis for Manning parameter
ξM = 4 (model A – solid line, model B1 – long-dashed line, model B2 – short-dashed line,
model C1 – dotted line, model C2 – dash-dotted line).

visible in Fig. 4.3 (a) are due to finite cell volume and finite counterion number effects. A thorough

discussion of finite size effects can be found in Ref. [18].

The influence of the architecture of a PE model on the fraction of condensed counterions θ becomes

apparent at large Manning parameter ξM > 1 where the fraction of condensed counterions increases

with charge separation b̃. This finding is illustrated by the cumulative radial counterion density,

nct,⊥(r̃⊥) = 2π

∫ +H̃/2

−H̃/2

∫ r̃⊥

0

dr̃ ′⊥dz̃′ r̃ ′⊥ρ̃ct(r̃
′
⊥, z̃′) . (4.6)

Here ρ̃ct(r̃⊥, z̃) =
∑Nct

i=1 δ(r̃⊥ − r̃⊥,i)δ(z̃ − z̃i)/2πr̃⊥ denotes the counterion density integrated over the

polar angle, and r̃⊥ the radial distance from the PE axis. In Figure 4.3 (b) we show the cumulative

radial counterion density nct,⊥(r̃⊥) for Manning parameter ξM = 4. While the steep increase at short

radial distances r̃⊥ up to a shoulder in the graph attributes to the compact layer of condensed count-

erions, the shallow gradient at large radial distances is due to the rapidly decaying counterion density

in the diffuse counterion atmosphere. For models with the same monomer radius ãm (A, B1, and C1)

the height of the shoulder increases with increasing charge separation b̃. (Note that the fraction of

condensed counterions θ is defined with respect to the distance of a counterion from a monomer and
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Figure 4.4.: Free-draining simulations under parallel field. Axial counterion density ρ̃ct,‖ as a function
of the scaled vertical coordinate z̃/ b̃ for Manning parameter (a) ξM = 0.4 and (b) ξM = 4
(model A – solid line, model B1 – long-dashed line, model C1 – dotted line). (c) Simulation
snapshot of model C1 at Manning parameter ξM = 0.4. (d) Simulation snapshot of model
C1 at Manning parameter ξM = 4.

not with respect to the distance from the PE axis. Therefore no one-to-one mapping between the

fraction of condensed counterions and the cumulative radial counterion density exists.) An increased

counterion density at short distances from discretely charged planes and rods has been found within

Monte-Carlo simulations [138, 139] and Poisson-Boltzmann theory [138, 140].

Of similar interest as the cumulative radial counterion density nct,⊥(r̃⊥) Eq. (4.6) is the axial count-

erion density

ρ̃ct,‖(z̃) = 2π

∫ +W̃/
p

2

0

dr̃ ′⊥ r̃ ′⊥ρ̃ct(r̃
′
⊥, z̃) , (4.7)

which we plot as a function of the scaled vertical coordinate z̃/ b̃ in Figure 4.4. For small Manning

parameter ξM < 1 the axial counterion density is homogeneous across the scaled vertical coordinate,
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4. Electrophoresis beyond the line charge model

cf. Fig. 4.4 (a). Counterions do not localize close to charged monomers (positioned at scaled vertical

coordinate z/b = −2,−1,0,1,2 in Fig 4.4 (a) and (b)), as supported by simulation snapshot Fig. 4.4

(c). Conversely, for large Manning parameter ξM > 1 the axial counterion density varies periodically,

cf. Fig. 4.4 (b), where the amplitude increases with charge separation b̃. In this cases counterions

do localize close to charged monomers, as supported by simulation snapshot Fig. 4.4 (d). Counterion

localization has a strong impact on the electrophoretic response under parallel field as will become

apparent below.

4.2.2. Free-draining dynamics – electrofriction and relaxation

Two important effects originating from electrostatic interactions in PE solutions can be studied within

free-draining simulations, i.e. neglecting the hydrodynamic coupling between particle dynamics. The

relaxation effect in PE electrophoresis describes the development of a counteracting internal electric

field, the relaxation field, due to the induced asymmetry of the counterion distribution around the

PE chain under the action of the external electric field [141, 142].1 Electrofriction arises when a

counterion is driven across an inhomogeneous electrostatic potential [18, 143–145]. In the present

case the inhomogeneity of the electrostatic potential is due to the charged PE monomers [18]. The

concepts of the relaxation effect and electrofriction are helpful in connection with the interpretation of

electrophoresis experiments. They cannot be regarded as independent, though.

Parallel field – electrofriction

Within BD simulations we measure the monomer electrophoretic mobility according to

µ̃m,‖ =



ṽm( t̃)
�

Ẽ
, (4.8)

where



ṽm( t̃)
�

=
D

∑Nm

i=1 ṽm,i( t̃)/Nm

E

is the average monomer velocity, and 〈 · 〉 denotes an ensemble av-

erage. In the limit of vanishing PE-counterion electrostatic interactions, ξM→ 0, the average monomer

velocity is given by the average electric force f qmE acting on a monomer divided by its Stokes friction

1The interested reader may refer to the vivid description of the relaxation effect in Falkenhagen’s book [141].
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Figure 4.5.: Free-draining simulations under parallel field (model A – circles, model B1 – squares,
model B2 – diamonds, model C1 – triangles up, model C2 – triangles down). (a) Scaled
monomer mobility µ̃m,‖/µ̃(0)m (open symbols) and counterion mobility µ̃ct,‖ (filled symbols)
as a function of Manning parameter ξM. (b) Monomer mobility µ̃m,‖ (open symbols) and
condensed counterion mobility µ̃cc,‖ (filled symbols) as a function of Manning parameter
ξM.

coefficient 6πηam, in dimensionless units
¬

ṽ(0)m

¶

= f q̃m Ẽ/ãm. Consequently the monomer mobility in

the limit of vanishing PE-counterion electrostatic interactions is

µ̃(0)m =
f q̃m

ãm
. (4.9)

In Figure 4.5 (a) we show the scaled monomer mobility µ̃m,‖/µ̃(0)m as a function of the Manning

parameter ξM. For small Manning parameter ξm < 1 PE-counterion electrofriction is negligible and the

scaled monomer mobility is given by its limiting value µ̃m,‖/µ̃(0)m = 1 regardless of the PE model. For

large Manning parameter ξM > 1 the scaled monomer mobility decreases from its limiting value, where

the magnitude of the decrease is model dependent. In case of PE models A, B1, and C1 with the same
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4. Electrophoresis beyond the line charge model

monomer radius ãm the scaled monomer mobility µ̃m,‖/µ̃(0)m decreases with charge separation b̃. This is

due to potential barriers of increasing height a counterion close to the PE chain has to overcome when

traveling along the PE chain, cf. the axial counterion density shown in Fig. 4.4 (b). At fixed charge

separation b̃ the barrier height decreases with monomer radius ãm or monomer-counterion distance of

closest approach, respectively. Accordingly, the scaled monomer mobility is higher for models B2 and

C2 as compared to models B1 and C1.

Along with the scaled monomer mobility in Fig. 4.5(a) we show the counterion mobility

µ̃ct,‖ =



ṽct( t̃)
�

Ẽ
, (4.10)

where



ṽct( t̃)
�

=
D

∑Nct

i=1 ṽct,i( t̃)/Nct

E

is the average counterion velocity. As a rule, counterions move

against the external electric field, the counterion mobility is negative, µ̃ct,‖ < 0. Neglecting the hy-

drodynamic coupling between different particles, the counterion mobility approximately equals the

negative scaled monomer mobility, µ̃ct,‖ ≈ −µ̃m,‖/µ̃(0)m . In other words, under free-draining dynamics

the internal forces balance on average. (Recall that the external forces acting on charged monomers

and counterions balance due to the electroneutrality of the cell model.)

In Figure 4.5(b) we show the monomer mobility µ̃m,‖ together with the condensed counterion mo-

bility

µ̃cc,‖ =



ṽcc( t̃)
�

Ẽ
(4.11)

where



ṽcc( t̃)
�

=
D

∑θNct

i=1 ṽcc,i( t̃)/θNct

E

is the average condensed counterion velocity, and θNct is the

number of condensed counterions. Over the Manning parameter range considered, condensed count-

erions do not move with the PE chain, µ̃cc,‖ 6= µ̃m,‖, in contrast to the assumption entering Manning’s

PE electrophoresis theory [129]. PE-counterion electrofriction nearly exclusively takes place in the

small volume occupied by condensed counterions, which can be inferred from the almost quantitative

coincidence of the condensed counterion mobility and the counterion mobility, µ̃cc,‖ ≈ µ̃ct,‖. Further

support comes from the uncondensed counterion mobility which is almost unaffected by the presence

of the PE chain (data not shown).
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Figure 4.6.: Free-draining simulations under perpendicular field (model A – circles, model C1 – tri-
angles up, model C2 – triangles down). (a) Scaled monomer mobility µ̃m,⊥/µ̃(0)m (open
symbols) and counterion mobility µ̃ct,⊥ (filled symbols) as a function of Manning param-
eter ξM. The solid line is the scaled effective monomer mobility in the limit of vanishing
PE-counterion electrostatic interactions µ̃(0)m,∗/µ̃

(0)
m Eq. (4.12). (b) Monomer mobility µ̃m,⊥

(open symbols) and condensed counterion mobility µ̃cc,⊥ (filled symbols) as a function of
Manning parameter ξM.
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Perpendicular field – relaxation and charge renormalization

In Figure 4.6 (a) we show the scaled monomer mobility under perpendicular field µ̃m,⊥/µ̃(0)m together

with the counterion mobility µ̃ct,⊥. Starting out from its limiting value µ̃m,⊥/µ̃(0)m = 1 for small Manning

parameter ξM → 0 the scaled monomer mobility under perpendicular field decreases gradually for

intermediate Manning parameter 0.7 ≤ ξM ≤ 1 and strongly for large Manning parameter ξM > 1.

The scaled monomer mobility shows very little PE model dependence. This is due to variations of

the vertically averaged electrostatic potential with charge distance b̃ or monomer radius ãm at short

distances from the PE chain, cf. the cumulative counterion density Fig. 4.3 (b), being relatively small as

compared to variations of the radially averaged electrostatic potential, cf. the axial counterion density

Fig. 4.4 (b). The decrease of the perpendicular scaled monomer mobility µ̃m,⊥/µ̃(0)m with Manning

parameter is stronger than the decrease of the parallel scaled monomer mobility µ̃m,‖/µ̃(0)m . As under

parallel field, a symmetry-relation between counterion mobility and scaled monomer mobility holds

under perpendicular field, µ̃ct⊥ ≈−µ̃m⊥/µ̃(0)m .

A non-monotonic Manning parameter dependence is observed by the perpendicular condensed

counterion mobility µ̃cc,⊥ which we show together with the perpendicular monomer mobility µ̃m,⊥

in Fig. 4.6 (b). The perpendicular condensed counterion mobility increases from its limiting value

µ̃cc,⊥ = −1 and changes sign for Manning parameter ξM ≈ 1. The condensed counterions move in the

direction of the PE chain. For large Manning parameter ξM > 1 the perpendicular condensed count-

erion mobility assumes the value of the perpendicular monomer mobility, µ̃cc,⊥ = µ̃m,⊥ and condensed

counterions move as an entity with the PE chain. As a consequence, the perpendicular condensed

counterion mobility decreases for large Manning parameter.

Effective charge model

The observed decrease of the scaled monomer mobility for large Manning parameter ξM > 1 can be

qualitatively explained within a simple model, where the decrease of the monomer mobility is ascribed

to the reduction of the monomer charge due to counterion condensation. In the expression for the

monomer electrophoretic mobility in the limit of vanishing PE-counterion electrostatic interactions

Eq. (4.9) we replace the monomer charge q̃m by the effective monomer charge q̃∗m = (1 − θ) q̃m –

the monomer charge minus the condensed counterion charge per monomer. Upon substitution of the
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limiting expression for the fraction of condensed counterions θ Eq. (4.5) we obtain for the effective

monomer mobility in the limit of vanishing PE-counterion electrostatic interactions

µ̃(0)m,∗ =
f q̃m

ξMãm
(4.12)

which obeys an inverse Manning parameter dependence. As compared to simulations, Fig. 4.6 (a),

Eq. (4.12) overestimates the monomer mobility which is due to the neglect of PE-counterion elec-

trostatic interactions. A more sophisticated approach due to Manning [129, 146] accounts for the

electrostatic interactions between uncondensed counterions and the charge renormalized PE chain,

which results in a shift of the monomer mobility to somewhat smaller values.

Summarizing we observe two mechanisms underlying the decrease of the scaled monomer mobility

with Manning parameter. The relaxation effect due to uncondensed counterions and charge renormal-

ization due to condensed counterions.

Orientational average

The electrophoretic response of a long PE chain can be calculated from the electrophoretic response of

a straight PE segment oriented parallel or perpendicular with respect to the external electric field Ẽ.

In the absence of curvature, inter-chain and end effects, and if orientation effects are negligible (i.e.

for small field strength), the average monomer electrophoretic mobility µ̃m follows from the parallel

and perpendicular mobilities as [126, 127]

µ̃m =
1

3

�

µ̃m,‖+ 2µ̃m,⊥
�

. (4.13)

Similar orientational averages follow for the counterion mobility µ̃ct and condensed counterion mobil-

ity µ̃ct.

In Figure 4.7 we plot the scaled monomer mobility µ̃m/µ̃
(0)
m , the counterion mobility µ̃ct, the monomer

mobility µ̃m and the condensed counterion mobility µ̃cc, averaged over orientations according to

Eq. (4.13). The contribution of the perpendicular mobility µ̃m,⊥/µ̃(0)m dominates over the contribu-

tion of the parallel mobility µ̃m,‖/µ̃(0)m as a consequence of the orientational average. This entails, that

the dependence of the scaled monomer mobility µ̃m/µ̃
(0)
m on charge separation b̃ and monomer radius
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4. Electrophoresis beyond the line charge model
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Figure 4.7.: Free-draining simulations. Orientationally averaged mobilities (model A – circles, model
C1 – triangles up, model C2 – triangles down). (a) Scaled monomer mobility µ̃m/µ̃

(0)
m (open

symbols) and counterion mobility µ̃ct (filled symbols) as a function of Manning parameter
ξM. (b) Monomer mobility µ̃m (open symbols) and condensed counterion mobility and µ̃cc
(filled symbols) as a function of Manning parameter ξM.

ãm is partially wiped out as compared to the parallel scaled monomer mobility µ̃m,‖/µ̃(0)m . Nevertheless

the PE model dependence is still present for large Manning parameter ξM > 1.

Conversely the non-monotonic Manning parameter dependence of the condensed counterion mobil-

ity µ̃cc is decreased as compared to the perpendicular condensed counterion mobility µ̃cc,⊥ shown in

Fig. 4.6. The condensed counterions do not move as an entity with the PE chain. Trivially, the inverse

Manning parameter dependence of the perpendicular scaled monomer mobility µ̃m,⊥/µ̃(0)m explained on

the basis of the effective monomer charge Eq. (4.12) does not pertain to the orientationally averaged

scaled monomer mobility µ̃m/µ̃
(0)
m .
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4.2. Linear Response

4.2.3. Non-draining dynamics – hydrodynamic friction

Under non-draining dynamics a moving particle exerts a drag force on all other particles. The conse-

quences are twofold. On the one hand, for particles moving in opposite direction the drag force leads

to enhanced hydrodynamic friction and retarded particle motion. This entails the hydrodynamic screen-

ing effect in PE electrophoresis, where long-range hydrodynamic interactions are (partially) screened

due to oppositely moving particles. On the other hand, for particles moving in the same direction the

drag force leads to reduced hydrodynamic friction and accelerated particle motion. The latter effect is

known as the hydrodynamic entraining effect.

In order to bring out these two effects we consider the electrophoretic response of the cell model

under parallel and perpendicular field using non-draining BD simulations. As for the free-draining

case, we consequently calculate and discuss the orientational average.

Parallel field

In Figure 4.8 we show the scaled monomer mobility µ̃m,‖/µ̃(0)m , the counterion mobility µ̃c,‖, the

monomer mobility µ̃m,‖, and the condensed counterion mobility µ̃cc,‖. In the limit of vanishing PE-

counterion electrostatic interactions ξM → 0 the parallel scaled monomer mobility µ̃m,‖/µ̃(0)m under

non-draining dynamics is substantially higher than the parallel scaled monomer mobility under free-

draining dynamics, cf. Fig. 4.5 (a). In this limit, the parallel scaled monomer mobility decreases

non-linearly with monomer radius ãm. Also, we note a weak increase with charge separation b̃. The

parallel scaled monomer mobility under non-draining dynamics µ̃m,‖/µ̃(0)m already decreases for small

Manning parameter ξM < 1, in contrast to the parallel scaled monomer mobility under free-draining

dynamics. Similar to the parallel scaled monomer mobility under free-draining dynamics, the parallel

scaled monomer mobility under non-draining dynamics shows a strong charge separation dependence

for large Manning parameter ξM > 1. Summarizing the PE model dependence, for small Manning

parameter ξM < 1 the parallel scaled monomer mobility under non-draining dynamics differentiates

according to monomer radius ãm, whereas for large Manning parameter ξM > 1 the parallel scaled

monomer mobility differentiates according to charge separation b̃.

In the limit of vanishing PE-counterion electrostatic interactions the parallel counterion mobility

µ̃ct,‖ under non-draining dynamics assumes the same value as the parallel counterion mobility under

free-draining dynamics, cf. Fig. 4.5. However, under non-draining dynamics the parallel counterion
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4. Electrophoresis beyond the line charge model

mobility already increases for small Manning parameter ξM < 1. The increase of the counterion

mobility is strongest for model A with the smallest monomer radius ãm and weakest for model C2 with

the largest monomer radius, in stark contrast to the counterion mobility under free-draining dynamics.

Due to the locally varying solvent velocity induced by the motion of distant counterions and monomers,

under non-draining dynamics the approximate equality between the counterion mobility µ̃ct,‖ and the

scaled monomer mobility µ̃m,‖/µ̃(0)m no longer holds.

The parallel condensed counterion mobility µ̃cc,‖ under non-draining dynamics changes dramatically

as compared to parallel condensed counterion mobility under free-draining dynamics, cf. Fig. 4.5 (b).

In the limit of vanishing PE-counterion electrostatic interactions the parallel counterion mobility µ̃cc,‖ is

substantially increased, PE model dependent, and even positive for the PE models with small and inter-

mediate charge separation b̃, namely models A, B1, and B2! For these models, the hydrodynamic drag

force due to the PE chain overcomes the external electric force acting on a condensed counterion. The

parallel condensed counterion mobility µ̃cc,‖ is still different from the parallel monomer mobility µ̃m,‖,

though. For PE models A, B1, and B2 the parallel condensed counterion mobility under non-draining

dynamics decreases with Manning parameter, as opposed to the parallel condensed counterion mobil-

ity under free-draining dynamics. For PE models C1 and C2 the parallel condensed counterion mobility

increases with Manning parameter after passing through a shallow minimum. This non-monotonic

behavior can be understood in terms of a crossover from hydrodynamics dominated PE-counterion

interactions for small Manning parameter ξM < 1 to electrostatics dominated PE-counterion interac-

tions for high Manning parameter ξM > 1. Within this picture, the shallow minimum for intermediate

Manning parameter arises from decreasing hydrodynamic and increasing electrostatic interactions.

Perpendicular field

For perpendicular field, changes of the scaled monomer mobility µ̃m,⊥/µ̃(0)m under non-draining dy-

namics, cf. Fig. 4.9 (a), as compared to the scaled monomer mobility under free-draining dynamics, cf.

Fig. 4.7 (a), are similar to the changes observed for parallel field. For small Manning parameter ξM < 1

the perpendicular scaled monomer mobility under non-draining dynamics is higher than the perpen-

dicular scaled monomer mobility under free-draining dynamics. The increase is not as large as for

parallel field, though. For a given Manning parameter, the perpendicular scaled monomer mobility de-

creases non-linearly with monomer radius ãm. The decrease of the scaled monomer mobility µ̃m,⊥/µ̃(0)m
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Figure 4.8.: Non-draining simulations under parallel field (model A – circles, model B1 – squares, model
B2 – diamonds, model C1 – triangles up, model C2 – triangles down). (a) Scaled monomer
mobility µ̃m/µ̃

(0)
m (open symbols) and counterion mobility µ̃ct (filled symbols) as a function

of Manning parameter ξM. (b) Monomer mobility mum (open symbols) and condensed
counterion mobility µ̃cc (filled symbols) as a function of Manning parameter ξM.
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4. Electrophoresis beyond the line charge model

with Manning parameter follows the same characteristics as under free-draining dynamics. The ap-

proximate inverse Manning parameter dependence for large Manning parameter ξM > 1 is preserved,

albeit with a prefactor that depends on the monomer radius. The charge separation dependence of the

perpendicular scaled monomer mobility is negligibly small.

Similar to the situation for parallel field, PE-counterion hydrodynamic interactions are stronger the

smaller the monomer radius ãm,⊥ and the smaller the charge separation b̃. This becomes apparent in

the perpendicular counterion mobility µ̃ct,⊥ under non-draining dynamics Fig. 4.9 (a) where the per-

pendicular counterion mobility of model A increases more strongly than the perpendicular counterion

mobility of model C1 and model C2. Further evidence is provided by the perpendicular condensed

counterion mobility µ̃cc,⊥ under non-draining dynamics, cf. Fig. 4.9 (b), where PE-counterion hydro-

dynamic interactions are strongest for model A, resulting in a positive condensed counterion mobility

over the Manning parameter range considered. For large Manning parameter ξM > 1 PE-counterion

electrostatic interactions dominate and condensed counterions move as an entity with the PE chain,

similar to the perpendicular condensed counterion mobility under free-draining dynamics.

A heuristic model

The effect of hydrodynamic interactions on the monomer mobility can be understood in terms of a

simple argument. The opposite motion of negatively charged counterions and positively charged PE

chain effects a partial cancellation of the induced flowfields – hydrodynamic interactions are screened

over large distances. The length scale associated with the screening of hydrodynamic interactions

is given by the Debye-Hückel screening length κ̃−1 = 8πξM b̃|q̃ct|/|q̃m|Ṽ )−1/2. (Note that within this

definition of the screening length the PE chain does not contribute to the electrostatic screening.)

Consequently, the electrophoretic mobility of an infinitely long cylindrical PE chain can be estimated

by the mobility of a cylinder of finite length κ̃−1. Provided the aspect ratio of the cylinder is large,

1/κ̃ãm� 1 within slender body theory the parallel monomer mobility follows as

µ̃m,‖ ≈
3 f q̃m

4ãm

�

2| ln �κ̃ãm
� | − 1

�

, (4.14)

and the perpendicular monomer mobility as

µ̃m,‖ ≈
3 f q̃m

8ãm

�

2| ln �κ̃ãm
� |+ 1

�

, (4.15)
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Figure 4.9.: Non-draining simulations under perpendicular field (model A – circles, model C1 – trian-
gles up, model C2 – triangles down). (a) Scaled monomer mobility µ̃m/µ̃

(0)
m (open symbols)

and counterion mobility µ̃ct (filled symbols) as a function of Manning parameter ξM. (b)
Monomer mobility µ̃m (open symbols) and condensed counterion mobility and µ̃cc (filled
symbols) as a function of Manning parameter ξM.
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4. Electrophoresis beyond the line charge model

where the cylinder radius is ãm and the cylinder line charge density is f q̃m/2ãm. Through the Debye-

Hückel screening length both parallel and perpendicular mobility depend logarithmically on the Man-

ning parameter, κ̃−1 ∝ ξ−1/2
M . The estimates Eq. (4.14) and Eq. (4.15) explain the small Manning

parameter characteristics of the parallel and the perpendicular monomer mobility under non-draining

dynamics. First, the high monomer mobility µ̃m/µ̃
(0)
m > 1 due to hydrodynamic entrainment. Second,

the non-linear monomer radius dependence and the decrease of the monomer mobility with Manning

parameter due to hydrodynamic screening. Although for small Manning parameter the estimates give

the right order of magnitude for parallel and perpendicular monomer mobility, the comparison should

not be pushed too far in view of the crude approximations involved.

Orientational average

From the modeling point of view, the orientational average of parallel and perpendicular mobilities

under non-draining dynamics shown in Fig. 4.10 is most relevant, since it presents our closest con-

nection to electrophoresis experiments. At this point it seems appropriate to round up and summarize

the insights gained from the analysis of BD simulations for parallel and perpendicular field direction,

under free-draining and non-draining dynamics.

Based on the dominant PE-counterion interactions we can distinguish two regimes for the monomer

mobility Fig. 4.10 (b): For small Manning parameter ξM < 1, PE-counterion hydrodynamic interac-

tions are dominant. For a given Manning parameter, the monomer mobility µ̃m increases non-linearly

with inverse monomer radius 1/ãm, and increases with the inverse charge separation 1/ b̃. For fixed

Manning parameter and fixed monomer radius, PE chains with small charge separation move faster

than PE chains with large charge separation. For large Manning parameter ξM > 1 PE-counterion elec-

trostatic interactions are dominant. For a given Manning parameter, the monomer mobility depends

non-linearly on both inverse monomer radius 1/ãm and inverse charge separation 1/ b̃.

The condensed counterion mobility µ̃cc Fig. 4.10 (b) is strongly affected by the presence of the PE

chain. For small Manning parameter ξM < 1 PE-counterion hydrodynamic interactions drastically in-

crease the condensed counterion mobility. In case of model A with the smallest monomer radius and

the smallest charge separation the condensed counterion mobility is positive over the Manning param-

eter range considered. Yet the condensed counterion mobility is always different from the monomer
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4.3. Non-Linear Response

mobility, even for large Manning parameter ξM > 1. Condensed counterions do not move as an entity

with the PE chain.

Finally we want to comment on a central assumption entering Manning’s electrophoresis theory [129].

Within this approach condensed counterions are assumed to move as an entity with the PE chain, as

in the simple model introduced above 4.2.2. For perpendicular field, for free-draining as well as non-

draining dynamics, it is correct to assume that condensed counterions move as an entity with the PE

chain. Conversely, this assumption fails for parallel field, where condensed counterions assume a mo-

bility different from the monomer mobility. Hence assuming that condensed counterions move as an

entity with the PE chain for parallel field inevitably leads to an underestimate of the monomer mobility.

Our statement is rooted in the cell model for a PE solution as described above. In the case of real sys-

tems one could think of other mechanisms immobilizing condensed counterions on the PE chain, such

as chemical binding and solvation effects. Further, crumpling of a flexible PE chain on small length

scales effects a locally inhomogeneous electrostatic potential in which condensed counterions could be

trapped.

4.3. Non-Linear Response

In what follows we discuss the electrophoretic response of the cell model for a PE solution for high

field strength Ẽ. In this case deviations from equilibrium of the counterion distribution function and

consequent non-linear effects are to be expected. Here we consider the non-linear response of strongly

charged PE models setting the Manning parameter to ξM = 4 and varying the electric field strengths

over two decades according to 0.1 ≤ Ẽ ≤ 10.

A criterion for the threshold field strength Ẽ∗ where non-linear field effects become apparent can

be obtained by comparing the characteristic time-scales of diffusive and electric field driven transport.

The time-scale of diffusive transport is given by τD = ζ
(0)
ct l2/kBT , the time it takes for a counterion

to diffuse over a characteristic distance l. Here ζ(0)ct denotes the friction coefficient of a counterion.

The characteristic time-scale of the field driven transport is given by τE = lζ(0)ct /|q̃ct Ẽ|, the time it takes

for a counterion to travel over a characteristic distance l subject to the external electric field Ẽ. If the

time-scale of field driven transport τE falls below the time-scale of diffusive transport τD we expect
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Figure 4.10.: Non-draining simulations. Orientationally averaged mobilities (model A – circles, model
C1 – triangles up, model C2 – triangles down). (a) Scaled monomer mobility µ̃m/µ̃

(0)
m

(open symbols) and counterion mobility µ̃ct (filled symbols) as a function of Manning
parameter ξM. (b) Monomer mobility µ̃m (open symbols) and condensed counterion
mobility and µ̃cc (filled symbols) as a function of Manning parameter ξM.
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non-linear field effects to set in. Equating both time-scales and solving for the threshold field strength

Ẽ∗ yields a simple criterion for the threshold field strength

|q̃ct Ẽ|
kBT

>
1

l
. (4.16)

The characteristic length l is related to the width of the electrostatic potential experienced by the

counterions. For parallel field the characteristic length is given by the charge spacing, l‖ ∼ b, PE

models with large charge separation b̃ are more prone to non-linear effects than PE models with

small charge separation. For perpendicular field the characteristic length is given by the Debye-Hückel

screening length, l⊥ ∼ κ−1, and we expect weakly screened PE solutions to be more prone to non-linear

effects than strongly screened PE solutions. Within our simulations the dimensionless screening length

is fixed at κ̃−1 = 8.

Subject to elevetated field strength the isotropy of the PE orientation is not necessarily preserved [124].

As detected within birefringence experiments PE chains commonly tend to orient parallel to the exter-

nal electric field. However, depending on PE and added salt concentration perpendicular PE orientation

is also possible. The latter phenomenon is known to result in an anomalous birefringence signal, which

is a subject of vivid debate. Since within our approach we cannot assess the orientational distribution

of the PE chain we abstain from calculating the orientationally averaged response and restrict our

discussion to parallel and perpendicular PE orientation.

4.3.1. Free-draining dynamics – electrofriction

Parallel field

We perform free-draining BD simulations of PE models A, B1, C1, and C2. The Manning parameter is

fixed at ξM = 4, and the field strength is varied over two decades from Ẽ = 0.1 to Ẽ = 10.

That our estimate for the threshold field strength where non-linear effects become important makes

sense can be inferred from Fig. 4.11, where we plot scaled monomer mobility µ̃m,‖/µ̃(0)m , counterion

mobility µ̃ct,‖, monomer mobility µ̃m,‖, and condensed counterion mobility µ̃cc,‖ as a function of the

field strength Ẽ. The scaled monomer mobility µ̃m,‖/µ̃(0)m increases with field strength Ẽ, where the

sensitivity of the PE models to the field strength increases with charge separation b̃. For instance,

model C1 with charge separation b = 6 already increases at field strengths as low as Ẽ ≈ 1/6. The
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4. Electrophoresis beyond the line charge model

increase of the scaled monomer mobility with the field strength is analogous to the Wien effect for

simple strong electrolytes [23]. For high field strengths Ẽ > 1, the scaled monomer mobility converges

to its limiting value µ̃m,‖/µ̃(0)m → 1.

For free-draining dynamics the counterion mobility is approximately equal to the negative scaled

monomer mobility, µ̃ct,‖ ≈ −µ̃m,‖/µ̃(0)m , for the same reason as discussed in connection with the linear

response, cf. Section 4.2. As before, PE-counterion electrofriction is confined to the small volume

occupied by condensed counterions, which we conclude from comparison of the parallel counterion

mobility µ̃ct,‖ Fig. 4.11 (a) and the parallel condensed counterion mobility µ̃ct,‖ Fig. 4.11 (b).

The explanation of the decreasing PE-counterion electrofriction is simple. The external electric

potential tilts and thus effectively flattens the potential barriers a counterion close to the PE chain

has to overcome when traveling along the PE chain. This is illustrated in Fig. 4.12 where we show

the axial counterion density nct(z) Eq. (4.7) as a function of the scaled vertical coordinate z/b for

two different field strengths Ẽ. At low field strength Ẽ = 0.4 counterions are strongly localized near

charged monomers, cf. Fig. 4.12 (a), and electrofriction is high. Conversely, at high field strength Ẽ = 4

counterion are weakly localized, cf. Fig. 4.12 (b), and electrofriction is low.

We note in passing that the radial counterion density nct(r⊥) Eq. (4.6) as well as the fraction of

condensed counterions θ are not significantly affected by the field (data not shown).

Perpendicular field

For perpendicular field the characteristic length scale entering the estimate for the threshold field

strength Eq. (4.16) is given by the Debye-Hückel screening length. In the present case κ̃−1 = 8 and we

expect the electrophoretic response to be sensitive to non-linear field effects for field strengths as low

as Ẽ = 1/8. Indeed, the electrophoretic response is non-linear at low field strength Ẽ < 1, cf. Fig. 4.13

where we plot scaled monomer mobility µ̃m,⊥/µ̃(0)m , counterion mobility µ̃ct,⊥, monomer mobility µ̃ct,⊥,

and condensed counterion mobility µ̃cc,⊥ as a function of the field strength Ẽ.

Qualitatively the non-linear field dependence of the perpendicular scaled monomer mobility µ̃m,⊥/µ̃(0)m

and the perpendicular counterion mobility shown in Fig. 4.13 (a) is similar to the parallel scaled

monomer mobility and the parallel counterion mobility, cf. Fig. 4.11. Interestingly, the dependence of

the perpendicular scaled monomer mobility µ̃m,⊥/µ̃(0)m on monomer radius ãm and charge separation b̃

is most pronounced for intermediate field strength.
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Figure 4.11.: Free-draining simulations under parallel field (model A – circles, model B1 – squares,
model C1 – triangles up, model C2 – triangles down). (a) Scaled monomer mobility
µ̃m,‖/µ̃(0)m (open symbols) and counterion mobility µ̃ct,‖ (filled symbols) as a function of
field strength Ẽ. (b) Monomer mobility µ̃m,‖ (open symbols) and condensed counterion
mobility µ̃cc,‖ (filled symbols) as a function of field strength Ẽ.
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Figure 4.12.: Free-draining simulations under parallel field. Scaled radially integrated counterion den-
sity nct(z) × bW 2 as a function of the scaled vertical coordinate z/b. (a) At low field
strength Ẽ = 0.4 counterions are strongly localized near charged monomers. (b) At high
field strength Ẽ = 4 counterions are weakly localized.

For low field strength Ẽ < 1 condensed counterions move as an entity with the PE chain, the per-

pendicular condensed counterion mobility is positive and approximately equal to the perpendicular

monomer mobility, µ̃cc,⊥ ≈ µ̃m,⊥, cf. Fig. 4.13 (b). For high field strength Ẽ > 1, the condensed count-

erion mobility decreases after passing through a maximum, and finally saturates at the free counterion

mobility µ̃cc,⊥ =−1.

The field dependence of the perpendicular monomer mobility can be explained by a similar argument

as for the parallel monomer mobility. Application of the external electric potential effectively decreases

the depth of the PE electrostatic potential such that counterions can escape more easily from the

vicinity of the PE chain. In contrast to the parallel field case, this entails that the fraction of condensed

counterions θ decreases with the field strength. This behavior is illustrated in Fig. 4.14 where we plot

the fraction of condensed counterions θ as a function of the field strength Ẽ for model A, C1, and

C2, along with the cumulative radial counterion density nct for model A and various field strengths

Ẽ = 0.2,0.4,0.7, 1.0, 1.4, 2.0. The fraction of condensed counterions θ decreases with field strength,

cf. Fig. 4.14 (a), condensed counterions are stripped off the PE chain. As a consequence, the shoulder

in the cumulative radial counterion density nct flattens with field strength, cf. Fig. 4.14 (b).
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Figure 4.13.: Free-draining simulations under perpendicular field (model A – circles, model C1 – tri-
angles up, model C2 – triangles down). (a) Scaled monomer mobility µ̃m,⊥/µ̃

(0)
m,⊥ (open

symbols) and counterion mobility µ̃ct,⊥ (filled symbols) as a function of field strength Ẽ.
(b) Monomer mobility µ̃m,⊥ (open symbols) and condensed counterion mobility and µ̃cc,⊥
(filled symbols) as a function of field strength Ẽ.
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Figure 4.14.: Free-draining simulations under perpendicular field. (a) Fraction of condensed counter-
ions θ as a function of the field strength Ẽ (model A – circles, model C1 – triangles up,
model C2 – triangles down). (b) Cumulative counterion density nct as a function of the
radial distance r⊥ from the polymer for model A. The field strengths are (from top to
bottom) Ẽ = 0.2,0.4,0.7, 1.0, 1.4, 2.0.

4.3.2. Non-draining dynamics – hydrodynamic friction

We perform non-draining BD simulations using the mobility tensor as defined in Eq. (2.3) and Eq. (2.4).

As before, the Manning parameter is fixed at ξM = 4, and the field strength is varied in the range

0.1 ≤ Ẽ ≤ 10.

Parallel field

Scaled monomer mobility, counterion mobility, monomer mobility, and condensed counterion mobility

as a function of the strength of the parallel applied field are shown in Fig. 4.15.

The parallel scaled monomer mobility µ̃m,‖/µ̃(0)m under non-draining dynamics increases with field

strength, similar to the free-draining case Fig. 4.11, where the threshold field strength is approximately

given by Eq. (4.16) with the characteristic length scale given by the charge separation b̃. But in

contrast to the free-draining case, the parallel scaled monomer mobility does not saturate for high

field strength Ẽ > 1 within the parameter range considered. For given monomer radius ãm the slope of

the perpendicular scaled monomer mobility increases with charge separation b̃, cf. model A and model

C1. For given charge separation b̃ the slope of the perpendicular scaled monomer mobility decreases

with monomer radius ãm, cf. model C1 and model C2. (Note that the equality of the scaled monomer
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4.3. Non-Linear Response

mobility of model C1 and model C2 with different monomer radius ãm and same charge separation b̃

is mere coincidence, cf. Fig. 4.8.)

The parallel counterion mobility µ̃ct,‖ under non-draining dynamics decreases with field strength Ẽ,

similar to the free-draining case. Within the parameter range considered no saturation of the parallel

counterion mobility is observed.

PE-counterion hydrodynamic interactions are strongest for model A with the smallest monomer ra-

dius and charge separation, which can be inferred from the parallel condensed counterion mobility

µ̃cc,‖ under non-draining dynamics in Fig. 4.15 (b). For model A the parallel condensed counterion mo-

bility is positive and increases gradually with field strength, whereas for model C1 and C2 the parallel

condensed counterion mobility is negative and gradually decreasing.

An important difference as compared to the free-draining parallel field case is the decrease of the

fraction of condensed counterions θ with field strength, cf. Fig. 4.16. The hydrodynamic coupling

between counterions close to the PE chain causes a weak effective repulsion, condensed counterions

evaporate from the PE chain. This effect is also visible in the cumulative radial counterion density

nct shown for model A and various field strengths Ẽ = 0.2,0.4,0.7, 1.0, 1.4, 2.0 in Fig. 4.16 (b). The

shoulder in the cumulative radial counterion density decreases with field strength as counterions are

repelled from the PE chain.

Perpendicular field

For low to intermediate perpendicular field strength non-draining dynamics yield qualitatively simi-

lar results as free-draining dynamics, cf. Fig. 4.17, with the perpendicular scaled monomer mobility

µ̃m,⊥/µ̃(0)m increasing already for low field strength. The perpendicular scaled monomer mobility in-

creases strongly with field strength for intermediate field strength and gradually for high field strength.

A likewise crossover from strong to gradual decrease can be seen in the perpendicular counterion mo-

bility µ̃ct,⊥ In contrast to the free-draining case there is no saturation of the perpendicular scaled

monomer mobility and the perpendicular counterion mobility within the parameter range considered.

In the high field regime, for fixed charge separation b̃ the perpendicular scaled monomer mobility

decreases with monomer radius ãm. Apparently the anisotropy of the PE chain plays a minor role at el-

evated field strength as can be seen by comparing parallel scaled monomer mobility µ̃m,‖/µ̃(0)m Fig. 4.15

(a) and perpendicular scaled monomer mobility µ̃m,⊥/µ̃(0)m Fig. 4.17 (a).
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Figure 4.15.: Non-draining simulations under parallel field (model A – circles, model C1 – triangles up,
model C2 – triangles down). (a) Scaled monomer mobility µ̃m,‖/µ̃(0)m (open symbols) and
counterion mobility µ̃ct,‖ (filled symbols) as a function of field strength Ẽ. (b) Monomer
mobility µ̃m,‖ (open symbols) and condensed counterion mobility and µ̃cc,‖ (filled sym-
bols) as a function of field strength Ẽ.
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Figure 4.16.: Non-draining simulations under parallel field. (a) Fraction of condensed counterions θ
as a function of the field strength Ẽ. (b) Cumulative counterion density nct as a function
of the radial distance r⊥ from the PE chain for model A. The field strengths are (from top
to bottom) Ẽ = 1.0,1.4,2.0, 3.0, 4.0, 7.0, 10.0.

Condensed counterions move as an entity with the PE chain for small field strength Ẽ < 1 and rela-

tive to the PE chain for high field strength Ẽ > 1, cf. Fig. 4.17 (b), as for the free-draining case. Due to

strong PE-counterion hydrodynamic interactions for model A the perpendicular condensed counterion

mobility µ̃cc,⊥ is positive over the parameter range considered.

Under non-draining dynamics, the fraction of condensed counterions θ (data not shown) agrees

nearly quantitatively with that found in the free-draining case, cf. Fig. 4.14, decreasing with field

strength Ẽ. By comparison with Fig. 4.17 (a) we find that the crossover from strong to gradual increase

of the perpendicular scaled monomer mobility µ̃m,⊥/µ̃(0)m coincides with the saturation of the fraction

of condensed counterions θ at around Ẽ ≈ 2.

4.4. Conclusion

The BD simulations of PE chains differing in monomer-to-counterion size ratio and charge separation

discussed in this Chapter clearly emphasize the influence of the PE charge architecture on the elec-

trophoretic mobility. This is especially true for strongly charged PEs. Small PE chains with variable

charge distribution ranging from random copolymers of charged and uncharged monomers to diblock

copolymers present an interesting subject for further investigations.
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Ẽ

µ̃
m

,⊥
/
µ̃
(0
)

m
,
µ̃

c
t,
⊥

(a)

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

0.1 1 10

Ẽ
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Figure 4.17.: Non-draining simulations under perpendicular field (model A – circles, model C1 – tri-
angles up, model C2 – triangles down). (a) Scaled monomer mobility µ̃m,⊥/µ̃(0)m (open
symbols) and counterion mobility µ̃ct,⊥ (filled symbols) as a function of the field strength
Ẽ. (b) Monomer mobility µ̃m,⊥ (open symbols) and condensed counterion mobility and
µ̃cc,⊥ (filled symbols) as a function of field strength Ẽ.

84



5. Counterion dynamics at fixed charge
distributions

An important method to probe PE-counterion interactions in PE solutions is provided by tracer diffu-

sion [147–159], where the counterion mobility is obtained from the spread of radioactively labeled

counterions over time. Within tracer diffusion experiments the variation of the counterion mobility

with the strength of the PE-counterion electrostatic interactions as characterized by the Manning pa-

rameter ξM has been of special interest. As elaborated in Chapter 4, the Manning parameter can be

varied by changing the linear charge density of the PE chain via solvent pH or copolymerization of

charged and uncharged monomers [149, 150, 153, 157, 158, 158].

Experiments agree that for weakly charged PEs or low Manning parameter ξM < 1 the counterion

mobility stays close to the limiting counterion mobility, that is the counterion mobility in the absence

of the PE chains and at infinite dilution, independent of Manning parameter. Conversely for strongly

charged PEs or high Manning parameter ξM > 1 the counterion mobility decreases with Manning

parameter. More often than not the decrease of the counterion mobility has been observed to scale

with the inverse Manning parameter 1/ξM [148–150, 152, 154–156, 159, 160]. The qualitatively

different behavior for low and high Manning parameter has been interpreted as a signature of the

counterion condensation transition [27]. From this observation it was only a small step to deduce the

fraction of condensed counterions assuming the reduction of the counterion mobility to be exclusively

due to counterion condensation [148, 149, 153, 156]. In this connection a vigorous debate emerged

over whether or not condensed counterions are free to move along the PE chain.

Theoretical modeling approaches considered the counterion mobility within the framework of the

cell-model for PE solutions [22]. This approach places an immobile, rigid PE chain in a periodically

replicated cell and calculates the mobility of the neutralizing counterions from the free or driven dif-

fusion of the counterions in the periodic electrostatic potential set up by the PE chain [24, 161–166].

No interactions other than electrostatic interactions are included, i.e. the dynamics is assumed to be
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5. Counterion dynamics at fixed charge distributions

free-draining. For counterion diffusion in periodic potentials solution strategies have been worked out

in seminal publications by Lifson and Jackson [161] for one dimension, and Jackson and Coriell [24]

for arbitrary dimensions. (Also note the instructive derivation of the one dimensional solution in

Ref. [167].) Whereas the one dimensional diffusion problem can be solved in closed form [161, 167],

diffusion in arbitrary dimensions requires the solution of a complicated boundary value problem. For

this case simple expressions for upper and lower bounds of the counterion mobility have been devel-

oped, which obtain the counterion mobility from a functional of the equilibrium electrostatic poten-

tial [24, 168]. The validity of further simplifications based on linearized electrostatic interactions was

restricted to low Manning parameters and hence proved to be of limited applicability [162].

A breakthrough with respect to the calculation of the counterion mobility was accomplished by

Manning including nonlinear electrostatics within the framework of the counterion condensation (CC)

model [27, 163]. As a crucial assumption of CC theory, the fraction of condensed counterions is as-

sumed to be immobilized on the PE chain. For a line charge representation of the PE chain Manning

analytically obtained the counterion mobility averaged over orientations of the PE chain with respect

to the external electric field under no-salt and added-salt conditions. For high Manning parameter

CC theory reproduces the inverse Manning parameter decrease of the counterion mobility observed in

experiment. Because of its favorable agreement with experimental observations, but not least because

of its appealing simplicity, Manning’s solution was highly embraced by the experimental community.

However, on the basis of analytical and numerical solutions for the counterion mobility calculating

electrostatic interactions from the non-linear Poisson-Boltzmann (PB) equation [164, 165], Manning

was criticized to systematically underestimate the counterion mobility. The origin of this shortcoming

is contained in the immobility assumption for condensed counterions; in the absence of interactions

other than electrostatic ones condensed counterion move unhindered along the line charge, in contrast

to Manning’s assumption. While mobile condensed counterion are consistent with the modeling ap-

proach, we cannot exclude that in real systems interactions exist such that condensed counterions are

indeed trapped on the PE chain. Nevertheless, the scaling of the decrease of the counterion mobility

with inverse Manning parameter is confirmed within PB theory, which can be understood as a partial

and a posteriori justification of Manning’s assumption.

Currently neither PB nor the CC approach handles the discrete nature of the charge distribution on

PE chains in an appropriate way. While in case of PB theory this shortcoming is due to the lack of
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analytical solutions of the PB equation for in homogeneously charged cylinders or linear charge arrays,

in the case of CC theory the reason is more fundamental since there inhomogeneities of the charge

distribution are treated on the linear level only.

Outline

We start this chapter with a review of the linear response framework for the counterion mobility

developed by Jackson and Coriell [24]. Within the scope of this approach upper and lower bounds

of the counterion mobility are expressed as a functional of the equilibrium electrostatic potential. We

numerically calculate upper and lower bound of the counterion mobility from the PB electrostatic

potential of a charged cylinder. Likewise we calculate the counterion mobility at a linear array of

charged spheres within CC theory. For comparison we perform free-draining BD simulations of a cell

model, cf. Chapter 4, where, in contrast to Chapter 4, the PE chain is immobile and rigid. From

simulations of PE models A, C1 and C2 defined in Chapter 4 varying in monomer-to-counterion size

ratio and charge separation we obtain the counterion mobility in the linear-response limit, as well as

the field-dependent counterion mobility.

We show that within both PB and CC theory the general features of the perpendicular counterion

mobility at homogeneously charged PE chains can be reproduced. For the parallel counterion mobility

the applicability of both approaches is limited. Whereas the PB theory overestimates the parallel

counterion mobility at inhomogeneously charged PEs, the CC theory underestimates the counterion

mobility at homogeneously charged PEs. In case of the CC theory the immobility assumption for

condensed counterions at the PE chain is wrong for homogeneously and weakly inhomogeneously

charged cylinders in the absence of other interactions than electrostatic ones.

As a first step towards the inclusion of the effect of an inhomogeneous charge distribution we calcu-

late the counterion mobility from the strong coupling (SC) potential. This approach is promising for

counterions at strongly inhomogeneous charge distributions where correlations between counterions

and discrete charges on the PE chain become important. For the parallel counterion mobility nice

agreement between BD simulations and SC theory is found. In contrast, for the perpendicular count-

erion mobility the SC approach fails due to an overestimation of correlations between counterions and

charged monomers.
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5. Counterion dynamics at fixed charge distributions

We calculate an approximation of the counterion mobility at high field strength which is similar to

the upper bound due to Jackson and Coriell. Substitution of the SC potential for the equilibrium poten-

tial yields good agreement for the parallel counterion mobility and strongly inhomogeneous potentials,

and less good agreement for the perpendicular case.

5.1. The mobility ratio in the linear response limit

In the following we discuss a general solution strategy for the counterion mobility ratio fµ = µct/µ
(0)
ct

at an immobile, rigid PE chain, valid in the linear response worked out by Jackson and Coriell [24].

We consider the microscopic counterion current

j(r) =−qctkBT

ζct

�

∇nct(r)+
qctnct(r)

kBT
∇
�

φ(r)− r ·E
�

�

, (5.1)

where nct(r) denotes the local counterion density. The microscopic counterion current Eq. (5.1) is

determined by counterion diffusion against a local concentration gradient ∇nct(r) and the electric

force −qct∇
�

φ(r)+ r ·E
�

due to the electrostatic potential of the fixed PE charge density φ(r) and

the external electric field E. In equilibrium, the local counterion density is given by a Boltzmann

distribution

n(0)ct (r) = nct,0 exp

�

−qctφ
(0)(r)

kBT

�

, (5.2)

where φ(0)(r) is the equilibrium potential, and

nct,0 =
1

V

∫

d3r n(0)ct (r) (5.3)

is a normalization constant. (Commonly the equilibrium potential is shifted such that nct,0 is the bulk

counterion density.)

For small field strength E we can linearize the local counterion density and the electrostatic potential

according to

nct(r) = n(0)ct (r)
�

1+ g1(r)E
�

(5.4)

and

φ(r) = φ(0)(r)
�

1+ g2(r)E
�

. (5.5)
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5.1. The mobility ratio in the linear response limit

Here we introduced two auxiliary functions g1(r) and g2(r). Inserting the linearized local counterion

density Eq. (5.4) and the linearized electrostatic potential Eq. (5.5) into the microscopic counterion

current Eq. (5.1) we obtain to linear order in the field strength

j(r) =−q2
ctn
(0)
ct (r)E
ζct

�

∇g(r)+ n̂E

�

. (5.6)

In this context n̂E = E/E denotes a unit vector in the direction of the external electric field, and the

auxiliary function g(r) is defined as

g(r) = −kBT

qct

�

g1(r)+
qct

kBT
φ(0)(r)g2(r)

�

. (5.7)

The macroscopic current in the direction of the external electric field follows from the projected mi-

croscopic current n̂E · j(r) averaged over a macroscopic volume according to J =
∫

V
d3r n̂E ·j(r)/V

which results in

J = −q2
ctnct,0E

ζct

�

1+
1

V

∫

V

d3r e−qctφ
(0)(r)/kB T �n̂E ·∇

�

g(r)

�

(5.8)

where we applied the normalization condition of the equilibrium counterion density Eq. (5.3). Con-

nection to the mobility ratio can be made by recalling that J = qctnct,0



vct
�

= qctnct,0µctE. Hence we

find

fµ = 1+
1

V

∫

V

d3r e−qctφ
(0)(r)/kB T �n̂E ·∇

�

g(r) . (5.9)

The mobility ratio Eq. (5.9) depends on the equilibrium electrostatic potential through the Boltzmann

factor exp
�

−qctφ
(0)(r)/kBT

�

and the auxiliary function g(r). The latter can be determined by taking

the divergence of the local current Eq. (5.6), ∇ ·j(r) = 0, from which it follows that

∇
2 g(r)−∇

qctφ
(0)(r)

kBT
·∇g(r) =

�

n̂E ·∇
� qctφ

(0)(r)
kBT

. (5.10)

Equation (5.10) is a three-dimensional second order inhomogeneous differential equation which is

prohibitively difficult to solve analytically. A viable approximation scheme is derived in the seminal

publication of Jackson and Coriell [24]. Accordingly an upper bound to the mobility ratio Eq. (5.9)
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5. Counterion dynamics at fixed charge distributions

can be obtained by averaging the equilibrium potential φ(0)(r) over directions perpendicular to the

external electric field. Let E = Eez, then the one-dimensional effective potential φ(0)(z) is defined by

e−qctφ
(0)(z)/kB T =

1

lx l y

∫

lx

∫

l y

dxdy e−qctφ
(0)(r)/kB T , (5.11)

where lx and l y denote the dimensions perpendicular to the external electric field. The now one-

dimensional Eq. (5.10) can be solved easily leading to the estimate

f upp
µ =





1

l2
z

∫

lz

dz e−qctφ
(0)(z)/kB T

∫

lz

dz eqctφ
(0)(z)/kB T





−1

. (5.12)

A lower bound to the mobility ratio Eq. (5.9) is given by

f low
µ =

�

1

V 2

∫

V

d3re−qctφ
(0)(r)/kB T

∫

V

d3reqctφ
(0)(r)/kB T

�−1

. (5.13)

Equations (5.12) and (5.13) are exact bounds for the counterion mobility ratio that follow from a

variational calculation [24]. The upper bound Eq. (5.12) depends on the direction of the external

electric field, whereas the lower bound Eq. (5.13) does not. Given the equilibrium potential φ(0)(r)

both upper bound Eq. (5.12) and lower bound Eq. (5.13) to the mobility ratio can be numerically

evaluated at reasonable expenditure.

In what follows we analyze the approximations to the mobility ratio f upp
µ Eq. (5.12) and f low

µ

Eq. (5.13) for equilibrium electrostatic potentials from Poisson-Boltzmann (PB) mean field theory [169,

170], counterion condensation (CC) theory [27], and strong-coupling (SC) theory [171, 172]. For this

purpose we consider a cell model, where the PE is modeled as a homogeneous or inhomogeneous

linear charge density and the external electric field is applied either parallel or perpendicular with

respect to the PE main axis. Our special attention will be turned towards the influence of an inhomo-

geneous charge distribution on the mobility ratio. In the course of this, for both numerical evaluation

and graphical representation it will prove useful to introduce a dimensionless equilibrium electrostatic

potential φ̃(0)(r̃) = qctφ
(0)(r)/kBT and to rescale all lengths by some characteristic length a according

to r̃ = r/a. Using dimensionless variables the upper bound then follows as

f upp
µ =





1

l̃2
z̃

∫

l̃z̃

dz̃ e−φ̃
(0)(z̃)

∫

l̃z̃

dz̃ eφ̃
(0)(z̃)





−1

, (5.14)
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5.2. Cell model for homogeneous or inhomogeneous PE charge density
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Figure 5.1.: (a) Cell model for a homogeneously charged cylinder. (b) Cell model for a linear array of
charged spheres. Periodic boundary conditions apply in the vertical direction.

and the lower bound as

f low
µ =

�

1

Ṽ 2

∫

Ṽ

d3 r̃e−φ̃
(0)(r̃)

∫

Ṽ

d3 r̃eφ̃
(0)(r̃)

�−1

. (5.15)

5.2. Cell model for homogeneous or inhomogeneous PE charge
density

For the numerical evaluation of Eqns. (5.14) and (5.15) we consider a cell model where the PE is mod-

eled either as a homogeneous or inhomogeneous linear charge density, cf. Fig. 5.1. In the former case,

a cylindrical surface charge density qmnm(r) = qmδ(r⊥ − am)/2πbr⊥, where r⊥ is the radial distance

from the vertical axis and am the cylinder radius, centered around the vertical axis and embedded

in a cylindrical cell of height b and radius D is chosen. In the latter case a spherical surface charge

density qmnm(r) = qmδ(r − am)/4πr2, where r denotes the radial distance from the origin of the cell

and am the sphere radius, embedded in a rectangular cell of height b and width D. In both cases

the cell geometry is highly anisotropic, with dimensions D perpendicular to the extension of the PE

charge density exceeding the parallel dimension b. The latter defines the line charge density qm/b of a

homogeneous charge density and equals the charge separation b of an inhomogeneous charge density.

Periodic boundary conditions apply along the vertical direction.
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5. Counterion dynamics at fixed charge distributions

The external electric field E is applied either parallel or perpendicular to the linear charge density.

From the resulting parallel and perpendicular mobility ratio fµ,‖ and fµ,⊥, respectively, the orientation-

ally averaged mobility ratio can be obtained according to

fµ =
1

3

�

fµ,‖ + 2 fµ,⊥
�

. (5.16)

5.3. Comparison with simulations

For comparison we perform free-draining BD simulations of a cell model, cf. Chapter 4, where, in

contrast to Chapter 4, the PE chain is immobile and rigid. We calculate the counterion mobility from

the counterion electrophoretic response with respect to an external electric field directed parallel or

perpendicular to the PE axis. Different PE models are considered, varying in monomer-to-counterion

size ratio and charge separation, in order to bring out the effect of the chain architecture on the

counterion mobility. For simplicity we reiterate the specification of the three PE models studied here:

model A is a PE chain where every single monomer of radius ãm = 1 is charged (charge fraction f = 1

and charge separation b = 2); model C1 is a PE chain where every third monomer of radius ãm = 1 is

charged (charge fraction f = 1/3 and charge separation b = 6); model C2 is a PE chain where every

single monomer of radius ãm = 3 is charged (charge fraction f = 1 and charge separation b = 6).

Snapshots of the PE models can be found in Fig. 4.2.

5.4. The equilibrium potential within mean-field theory

The mean-field equation for the equilibrium electrostatic potential φ(0)(r) is given by the Poisson-

Boltzmann (PB) equation,

∇
2φ(r) =−qmnm(r)

εε0
− qctnct,0

εε0
exp
�−qctφ(r)

kBT

�

, (5.17)

where the first term accounts for the fixed charge density nm(r) (charges on the PE chain) and the sec-

ond term accounts for the counterion density nct(r) which obeys the Boltzmann distribution Eq. (5.2).

The Poisson-Boltzmann equation Eq. (5.17) is a second order non-linear partial differential equation

whose solutions are known in a limited number of cases only [173].
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5.4. The equilibrium potential within mean-field theory

5.4.1. Potential of a homogeneously charged cylinder

In case of an infinitely long homogeneously charged cylinder of radius am embedded in a cylindrical

cell of radius D, cf. Fig. 5.1 a solution of the Poisson-Boltzmann equation Eq. (5.17) has been worked

out by Alfrey et al. [169] and Fuoss et al. [170]. Depending on the threshold

Λ =
ln(D/am)

1+ ln(D/am)
(5.18)

the equilibrium electrostatic potential takes on different functional forms, namely

qctφ(r)
kBT

=







ln
n

κ2 r2
⊥

2β2 sinh2
h

β ln
�

r⊥
am

�

+ arccoth
�

ξM−1
β

�io

ξM ≤ Λ

ln
n

κ2 r2
⊥

2β2 sin2
h

β ln
�

r⊥
am

�

+ arccot
�

ξM−1
β

�io

ξM ≥ Λ .
(5.19)

Here κ2 = q2
ctnct,0/εε0kBT is the Debye-Hückel screening parameter, r⊥ the perpendicular distance

from the cylinder axis, and the parameter β follows from the transcendental equation

ξM =







1−β2

1−β coth[−β ln(D/am)]
ξM ≤ Λ

1+β2

1−β cot[−β ln(D/am)]
ξM ≥ Λ .

(5.20)

In Figure 5.2 we plot upper bound f upp
µ,⊥ Eq. (5.14) and lower bound f low

µ,⊥ Eq. (5.15) to the perpendic-

ular mobility ratio calculated using the PB potential of a homogeneously charged cylinder Eq. (5.19) as

a function of the Manning parameter ξM. The cylinder radius is ãm =
p

3 while the cell radius is fixed

at D̃ = 30. We notice that the difference between upper and lower bound to the mobility ratio is small,

i.e. the approximations are quite good. The mobility ratio reflects the expected behavior starting out at

fµ,⊥ = 1 for low Manning parameter ξM � 1, decreasing gently for ξM ≤ 1 and steeply for ξM ≥ 1 be

for leveling off to fµ,⊥ = 0 for high Manning parameter ξM � 1. Increasing the cylinder radius ãM re-

duces the slope of the decrease, but only marginally so. Needless to say, for a homogeneously charged

cylinder the parallel mobility ratio is fµ,‖ = 1, independent on Manning parameter ξM. Comparison of

the perpendicular counterion mobility ratio with free-draining BD simulations yields good agreement

with model A over nearly the entire Manning parameter range. The overestimate of the mobility ratio

can partially be ascribed to additional friction due to the repulsive soft-sphere potential applied within

simulations. Agreement is less good for model C1 with larger charge separation b.
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5. Counterion dynamics at fixed charge distributions
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Figure 5.2.: Parallel and perpendicular mobility ratio of counterions at a homogeneously charged cylin-
der calculated within PB theory as a function of the Manning parameter ξM. Lines are
numerical solutions of Eqns. (5.14) (upper bound) and (5.15) (lower bound) using the
PB potential Eq. (5.19) with cylinder radius ãm =

p
3 and cell radius D̃ = 30. Open sym-

bols correspond to simulation results for model A, filled symbols to simulations results for
model C1. a) Parallel mobility ratio f PB

µ,‖ . b) Perpendicular mobility ratio f PB
µ,⊥.

5.5. The equilibrium potential within counterion condensation
theory

Unfortunately, for an inhomogeneously charged cylinder to date no closed-form solution of the PB

equation Eq. (5.17) has been published. This is regrettable, since numerical solutions of the PB equa-

tion for counterions at an inhomogeneously charged cylinder report enhanced counterion localization

at the cylinder surface as compared to solutions of the PB equation for counterions at homogeneously

charged cylinders [140], which consequently should decrease both perpendicular and parallel mobility

ratio in accord with simulations. In this connection an extension of the perturbative solution procedure

introduced by Lukatsky et al. [138] for the PB equation of an inhomogeneously charged plane to the

PB equation of an inhomogeneously charged cylinder could be promising.

A way out of this dilemma is offered by counterion condensation theory [27]. The central idea is that

renormalization of the PE charge qm by the Manning parameter ξM allows for the linearization of the

PB equation which in turn considerably facilitates solution finding. In so doing, the short-range non-

linear behavior of the PB equation is subsumed in the PE charge renormalization, while the long-range

linear behavior is calculated from the linearized PB equation. More detailed, one distinguishes weakly

charged PEs characterized by Manning parameter ξM < 1 and strongly charged PEs characterized by

Manning parameter ξM > 1. For weakly charged PEs the linearized PB equation is solved with the
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5.5. The equilibrium potential within counterion condensation theory

bare PE charge qm and the total counterion density nct,0. For strongly charged PEs the linearized PB

equation is solved with the effective PE charge q∗m = qm/ξM – the bare PE charge reduced by the charge

of the condensed counterions – and the effective counterion density n∗ct,0 = nct,0/ξM – the density of

the UN condensed counterions.

5.5.1. Solution of the linearized Poisson-Boltzmann equation

For weakly charged PEs, i.e. for |qctφ(r)/kBT | < 1, the Boltzmann factor entering the PB equation

Eq. (5.17) can be linearized,

∇
2φ(r) =−qmnm(r)

εε0
− qctnct,0

εε0

�

1− qctφ(r)
kBT

�

. (5.21)

Expanding the electrostatic potential and the fixed charge density in Fourier series according to φ(r) =
∑

k
φk exp(ik ·r) and nm(r) =

∑

k
nm,k exp(ik ·r), where the summation runs over lattice vectors

k = (2πl/W, 2πm/W, 2πn/b) of the rectangular Wigner-Seitz cell, and solving for the electrostatic

potential results in

φk =
qm

εε0

1

k2 +κ2 nm,k , k 6= 0 . (5.22)

Note that we omit a uniform background charge by excluding solutions for wavelength k = 0. All that

remains is the calculation of the Fourier coefficients of the fixed charge density defined as

nm,k =
1

V

∫

V

d3r nm(r)exp(−ik ·r) . (5.23)

We evaluate the fixed charge density within the cell model of a linear charge array considering the

charge density of a sphere of radius am centered at the origin of the cell

nm(r) =
δ
�

r − am
�

4πr2 . (5.24)

The corresponding Fourier coefficients read

nm,k =
1

V
sin(kam)

kam
, (5.25)
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5. Counterion dynamics at fixed charge distributions

and the electrostatic potential Eq. (5.22) becomes

qct

kBT
φk =−

κ2 sin(kam)
kam(k2+ κ2)

, k 6= 0 . (5.26)

As a matter of fact we require the electrostatic potential in position space for the calculation of upper

bound Eq. (5.12) and lower bound Eq. (5.13) to the mobility ratio. But in this case the weak equi-

librium potential φ(0)(r) allows for further simplification of the mobility ratio fµ Eq. (5.9) and the

auxiliary function g(r) Eq. (5.10) which is conveniently done in Fourier space as we will presently see.

5.5.2. A linearized solution for the mobility ratio

Following Manning [162, 163] we introduce a dummy parameter λ into the equilibrium potential

replacing φ(0)(r)→ λφ(0)(r) and expand the auxiliary function g(r) in powers of the parameter λ,

g(r) = λg1(r)+λ
2 g2(r)+ . . . . (5.27)

Inserting the expansion of the auxiliary function Eq. (5.27) into Eq. (5.10) and retaining only terms up

to linear order in the parameter λ we get

∇
2 g1(r) =

�

n̂E ·∇
� qct

kBT
φ(0)(r) (5.28)

which can easily be solved in Fourier space. Accordingly we introduce Fourier expansions for the

equilibrium potential φ(r) =
∑

k
φk exp(ik ·r) and the auxiliary function g1(r) =

∑

k
g1,k exp(ik ·r)

to obtain the Fourier coefficients of the auxiliary function

g1,k =−i
k · n̂E

k2 φ
(0)
k

, k 6= 0 . (5.29)

Finally we linearize the Boltzmann factor and the auxiliary function g(r) in the mobility ratio Eq. (5.9)

and once again expand the equilibrium potential φ(0)(r) and the auxiliary function g1(r) in Fourier

series. To leading order we arrive at

fµ = 1−
∑

k6=0

(n̂E ·k)2|qctφk/kBT |2
k2 , (5.30)
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5.5. The equilibrium potential within counterion condensation theory

where we set the dummy parameter to λ = 1. Hence for low equilibrium potential the mobility ratio

is expressed as a sum over the squared absolute values of the Fourier coefficients of the equilibrium

potential φ(0)(r).

The mobility ratio below the counterion condensation threshold ξM < 1

Below the counterion condensation threshold all we need to do is to insert the Fourier coefficients of

the equilibrium potential as obtained from the linearized Poisson-Boltzmann equation Eq. (5.26) in the

mobility ratio Eq. (5.30),

f CC
µ = 1−

∑

k6=0

κ4 (n̂E ·k)2 sin(kam)2

a2
mk4 (k2 +κ2)2

. (5.31)

As before the summation runs over lattice vectors k = (2πl/W, 2πm/W, 2πn/b) of the rectangular

cell. The magnitude of the mobility ratio f CC
µ Eq. (5.31) is regulated by the bulk counterion density

and the strength of the electrostatic interactions through the Debye-Hückel screening length κ−1. A

substantial decrease becomes apparent only for high screening.

The mobility ratio above the counterion condensation threshold ξm > 1

Above the counterion condensation threshold ξm > 1 the mobility ratio fµ is obtained from a weighted

average of the mobility ratio of condensed counterions fµ,cc and uncondensed counterions fµ,uc,

fµ = θ fµ,cc + (1− θ) fµ,uc . (5.32)

Here θ = 1−1/ξM denotes the fraction of condensed counterions. As stated before, when considering

the mobility ratio of the uncondensed counterions CC theory involves the following replacements:

(1) the PE charge qm is replaced by the effective PE charge q∗m = qm/ξM, (2) the counterion density

nct,0 is replaced by the effective counterion density n∗ct,0 = nct,0/ξM. In the present case this amounts

to replacing the Debye-Hückel screening parameter κ in Eq. (5.31) according to κ2
∗ → κ2/ξM. The

resulting mobility ratio for uncondensed counterions reads

fµ,uc = 1−
∑

k6=0

(κ4/ξ2
M) (n̂E ·k)2 sin(kam)2

a2
mk4

�

k2 + κ2/ξM
�2 . (5.33)
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Figure 5.3.: Mobility ratio of counterions at an array of charged spheres calculated within CC theory
as a function of the Manning parameter ξM. Lines are numerical solutions of Eqns. (5.31)
and (5.35) with sphere radius ãm =

p
3, cell height b̃ = 2, and cell width W̃ = 60. Open

symbols correspond to simulation results for model A, filled symbols to simulations results
for model C1. a) Parallel mobility ratio f CC

µ,‖ . b) Perpendicular mobility ratio f CC
µ,⊥.

For condensed counterions it is assumed that condensed counterions move as an entity with the PE chain,

fµ,cc ≡ 0 . (5.34)

This is a key assumption within Manning’s theory. The total mobility ratio fµ for Manning parameter

ξM > 1 follows from Eq. (5.32) as

f CC
µ =

1

ξM



1−
∑

k6=0

(κ4/ξ2
M) (n̂E ·k)2 sin(kam)2

a2
mk4

�

k2 +κ2/ξM
�2



 . (5.35)

Rewriting the Debye-Hückel screening parameter as κ2 = 4πξM b/V we clearly see that the Man-

ning parameter dependence of the mobility ratio f CC
µ Eq. (5.35) is solely contained in the prefactor

(1− θ) = 1/ξM, the fraction of uncondensed counterions. Put differently, for ξM > 1 the electrofric-

tion between uncondensed counterions and the fixed charges, that is the term in square brackets in

Eq. (5.35), remains constant, whereas the mobility ratio f CC
µ decreases due to the decreasing fraction

of uncondensed counterions.

In Figure 5.3 we plot the mobility ratio of counterions at an array of charged spheres calculated

within CC theory as a function of the Manning parameter ξM. In accord with our previous observation,

the parallel mobility ratio rests f CC
µ,‖ = 1 for low Manning parameter ξM ≤ 1 before decreasing as
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5.6. The equilibrium potential within strong coupling theory

f CC
µ,‖ = 1/ξM for high Manning parameter ξM > 1. The perpendicular mobility ratio f CC

µ,⊥ is weakly

decreasing for low Manning parameter ξM ≤ 1 and decreasing as f CC
µ,‖ ∝ 1/ξM for high Manning

parameter ξM > 1. Neither direction shows a pronounced dependence on the sphere radius ãm or

the cell height b̃. Comparison with simulation results clearly reveals the failure of the CC theory

for the parallel mobility ratio where the mobility ratio is grossly underestimated for high Manning

parameter. In contrast to this, agreement between theory and simulation results is excellent in case of

the perpendicular mobility ratio.

Two comments are in order. First, the ad hoc assumption for the mobility ratio of the condensed

counterions Eq. (5.34) is disputable. In order for the condensed counterions to move with the PE

chain the electrostatic potential ought to be strongly inhomogeneous. But generally speaking this is

the case in perpendicular direction only. In parallel direction the charge spacing b has to be larger than

the monomer radius am for the mobility ratio to be affected. Second, the influence of sphere radius

and cell height cannot be brought out within CC theory since they are included on the linear level only.

5.6. The equilibrium potential within strong coupling theory

Within the asymptotic strong-coupling (SC) theory valid for strongly charged soft matter the elec-

trostatic potential takes on a particularly simple form; in fact the SC potential is determined by the

interaction of a single counterion with the fixed charge density [171, 172, 174, 175]. Although

for homogeneously charged systems the crossover from the PB regime to the SC regime is found to

be quite slow [28, 171, 175], in light of strong correlation effects in inhomogeneously charged sys-

tems [139, 140] we think the calculation of the mobility ratio from the SC potential is worth trying.

The more so since at the present state it is the only possibility to include the effect of an inhomogeneous

charge distribution into the mobility ratio on a non-linear level.

5.6.1. Strong coupling potential for a linear charge array

For the present discussion we simplify the cell model for the inhomogeneous charge distribution by

considering a linear array of point charges. We abstain from the application of periodic boundary

99



5. Counterion dynamics at fixed charge distributions

conditions in all but one direction which we choose to be the z-direction. The electrostatic potential

due to the charge array is given by the infinite sum

φ(r) =
qm

4πεε0

+∞
∑

m=−∞

1
p

r2
⊥ +(z −mb)2

(5.36)

which is clearly divergent. Convergence can be enforced, though, by introducing a constant reference

potential into Eq. (5.36) according to

φ(r) =
qm

4πεε0

+∞
∑

m=−∞







1
p

r2
⊥+ (z−mb)2

− 1
Æ

r2
⊥,0+ (z0 −mb)2






. (5.37)

The potential Eq. (5.37) is now convergent and equates to Eq. (5.36) up to an irrelevant constant,

which depends on the choice of the reference state r0 = (r⊥,0, z0). Applying methods developed in

Ref. [131] Eq. (5.37) can be cast into a rapidly convergent series,

qctφ(r)
kBT

= 2ξM ln
� r⊥

b

�

− 4ξM

+∞
∑

m=1

K0

�

2πm
r⊥
b

�

cos
�

2πm
z

b

�

, (5.38)

which again equates to Eq. (5.36) up to an irrelevant constant. Here K0(x) stands for a modified

Bessel function of the second kind, characterized by faster than exponential decay for not too small

arguments, K0(x) ∝ e−x/
p

x for x � 1/4 [176]. From the asymptotic form of the modified Bessel

function we can infer that the perpendicular range of the charge inhomogeneity is given by the charge

spacing b, as might have been expected. At large perpendicular separation from the linear charge

array r⊥ > b the charge inhomogeneity appears to be smeared out and the logarithmic potential of a

line charge is recovered. Conversely, at small perpendicular separation from the linear charge array

r⊥ < b the charge inhomogeneity becomes noticeable and the line charge potential is modified by

sinusoidal contributions. Due to the short range of the potential inhomogeneity we expect mostly the

contribution of condensed counterions to the mobility ratio to be affected.

As a side effect of the rapid decay of the modified Bessel function in Eq. (5.38) discarding all but the

m = 1 contribution of the sum already provides a quite good approximation to the SC potential,

qctφ(r)
kBT

= 2ξM ln
� r⊥

b

�

− 4ξMK0

�

2π
r⊥
b

�

cos
�

2π
z
b

�

. (5.39)
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Figure 5.4.: Mobility ratio of counterions at an array of point charges calculated within SC theory as
a function of the Manning parameter ξM. Lines are numerical solutions of Eqns. (5.14)
and (5.15) using the SC potential Eq. (5.39) with a cylindrical cut-off radius ãm =

p
3, cell

height b̃ = 2 (dotted line) or cell height b̃ = 6 (dashed line), and cell width D̃ = 60. The
solid lines denotes the lower bounds Eq. (5.15). Open symbols correspond to simulation
results for model A, filled symbols to simulations results for model C1. a) Parallel mobility
ratio f SC

µ,‖ . b) Perpendicular mobility ratio f SC
µ,⊥.

In Figure 5.4 we plot upper bound f upp
µ,⊥ , f upp

µ,‖ Eq. (5.14) and lower bound f low
µ,⊥ , f low

µ,‖ Eq. (5.15) to

the perpendicular and parallel mobility ratio calculated using the SC potential of a linear charge array

Eq. (5.39) as a function of the Manning parameter ξM. In the upper panel the radius of the enclosing

cylinder is ãm =
p

3 and the charge spacing is varied from b̃ = 2 over b̃ = 4 to b̃ = 6. In Figure 5.5 the

radius of the enclosing cylinder is varied simultaneously with the charge spacing as (ãm =
p

3, b̃ = 2)

and (ãm =
p

7, b̃ = 6). The cell radius is fixed at D̃ = 30. As before, in case of the perpendicular

mobility ratio the difference between upper and lower bound to the mobility ratio is small, whereas it

is large in case of the parallel mobility ratio. (Remember that the lower bound to the mobility ratio is

the same, regardless of the direction of the external electric field.) The perpendicular mobility ratio is

independent of the charge separation b, and only marginally dependent on the radius of the enclosing

cylinder am. As compared to the PB and CC theories, its decrease starts out earlier and proceeds more

steeply, already converging to zero at ξM > 2. Clearly, this property is due to the increased attraction

of counterions towards the fixed charges within SC theory. Conversely, the parallel mobility ratio (to

be precise, the upper bound to the parallel mobility ratio) exhibits a pronounced dependence on the

charge spacing b and the radius of the enclosing cylinder am. At fixed radius am the parallel mobility

ratio decreases with increasing charge spacing b. Likewise at fixed charge spacing the parallel mobility

ratio increases with increasing radius.
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Figure 5.5.: Mobility ratio of counterions at an array of point charges calculated within SC theory as
a function of the Manning parameter ξM. Lines are numerical solutions of Eqns. (5.14)
and (5.15) using the SC potential Eq. (5.39) with a cylindrical cut-off radius ãm =

p
3

and cell height b̃ = 2 (dotted line) or a cylindrical cut-off radius ãm =
p

7 and cell height
b̃ = 6 (dashed line). The solid lines denotes the lower bounds Eq. (5.15). The cell width
is W̃ = 60. Open symbols correspond to simulation results for model A, filled symbols to
simulations results for model C2. a) Parallel mobility ratio f SC

µ,‖ . b) Perpendicular mobility

ratio f SC
µ,⊥.

5.7. Non-linear response – solution in one dimension

If we reconsider the expression for the microscopic counterion current j(r) Eq. (5.1) we note, that

in one dimension the microscopic counterion current is actually constant. Taking advantage of the

periodicity of the local counterion density nct(r) Eq. (5.1) hence can easily be integrated [177]. To

this end we introduce an effective one dimensional potential V (z) defined by

e−qctV (z) =
1

lx l y

∫

lx

∫

l y

dxdy e−qctV (r) , (5.40)

that is we average the potential V (r) = φ(r)−zE over directions perpendicular to the external electric

field E = E êz. With the effective one dimensional potential V (z) Eq. (5.40) the solution for the

mobility ratio becomes

fµ =
kBT

qctlz E

l2
z

�

1− e−qct lz E/kB T
�

∫ lz
0

dz e−qctV (z)/kB T
h
∫ lz

0
dz eqctV (z)/kB T −

�

1− e−qct lz E/kB T
�∫ z

0
dz eqctV (z)/kB T

i . (5.41)

The mobility ratio depends on the external electric field through the dimensionless combination qctlz E/kBT

which compares the potential drop over one period of the electrostatic potential lz with thermal en-
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Ẽ

f
S
C
µ

,⊥

(b)

Figure 5.6.: Mobility ratio of counterions at an array of point charges calculated within SC theory as
a function of the rescaled field strength Ẽ. Lines are numerical solutions of Eq. (5.41) or
Eq. (5.42) using the SC potential Eq. (5.39) with a cylindrical cut-off radius ãm =

p
3, cell

height b̃ = 2 (dotted line) or cell height b̃ = 6 (dashed line), and cell width W̃ = 60. Open
symbols correspond to simulation results for model A, filled symbols to simulations results
for model C1. a) Parallel mobility ratio f SC

µ,‖ . b) Perpendicular mobility ratio f SC
µ,⊥.

ergy. In the limit of low field strength qctlz E/kBT � 1 the mobility ratio Eq. (5.41) reduces to the

upper bound to the mobility ratio Eq. (5.12). In the opposite limit qctlz E/kBT � 1 the mobility ratio

simplifies to [177]

fµ =
kBT

qctlz E





1

lz

∫ lz

0

dz
1

−qct∂zV (z)/kBT





−1

. (5.42)

which ultimately tends to fµ = 1.

In Fig. 5.6 we plot parallel and perpendicular mobility ratio calculated using the SC potential of a

linear charge array Eq. (5.39) at Manning parameter ξM = 4 as a function of the dimensionless field

strength Ẽ. The radius of the enclosing cylinder is ãm =
p

3 and the charge spacing is varied from

b̃ = 2 over b̃ = 4 to b̃ = 6. The cell radius is fixed at D̃ = 30. In both cases the mobility ratio for

low field strength Ẽ � 1 starts out at its linear response value and increases with the field at Ẽ ≈ 1

before saturating at one for high field strength Ẽ � 1. In case of the parallel mobility ratio onset and

slope of the increase strongly depend on the charge separation b̃ and the cylinder radius ãm. For a

given Manning parameter ξM the onset of the increase is at lower field strength and the slope of the

increase is steeper for larger charge separation b̃ and smaller radius am. These differences are less

pronounced in case of the perpendicular mobility ratio. Similar to the linear response case, we find

the parallel mobility ratio to be satisfactorily described within SC theory, especially at large charge

103



5. Counterion dynamics at fixed charge distributions

separation. SC theory fails to describe the perpendicular mobility ratio except for at high field strength

when the mobility ratio has almost saturated.

5.8. Conclusion

In this Chapter we focused on the free-draining electrophoretic mobility of counterions at immobile

charge distributions as a model system for the relaxation effect. By combination of a classic approxima-

tion which calculates the counterion mobility from the equilibrium electrostatic potential [24] with a

recent theory for the electrostatics of strongly interacting soft matter systems, the SC theory [174], we

were able to calculate the Manning parameter dependent decrease of the parallel counterion mobility

at a linear charge array, where the classical CC approach fails. In case of the perpendicular mobility,

where the discrete nature of the charge distribution plays a minor role, CC theory outweighs SC theory

which overestimates correlations. While the failure of CC theory in case of the parallel mobility is sys-

tematic, the development of approximative solutions of the PB equation at a linear charge array could

be promising for both parallel and perpendicular counterion mobility.
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6. Salt-induced counterion mobility anomaly
in polyelectrolyte electrophoresis

We study the electrokinetics of a single polyelectrolyte chain in salt solution using hydrodynamic sim-

ulations. The salt-dependent chain mobility compares well with experimental DNA data. The mobility

of condensed counterions exhibits a salt-dependent change of sign, an anomaly that is also reflected

in the counterion excess conductivity. Using Green’s function techniques this anomaly is explained by

electrostatic screening of the hydrodynamic interactions between chain and counterions.

Previous theoretical approaches combined mean-field electrostatics with low Reynolds number hy-

drodynamics. Solutions of the electrokinetic equations were obtained numerically [178] or analyti-

cally using counterion-condensation theory [129] and account for the experimentally measured salt

dependent electrophoretic mobilities of biopolymers such as DNA or synthetic PEs. Counterions in

the immediate vicinity of the PE chain were assumed to stick to and move along with the PE under

the action of the applied electric field. This assumption becomes crucial for the conductivity of PE

solutions, and indeed inconsistencies between experimental mobility and conductivity studies are doc-

umented in literature, pointing to some basic riddles in the coupling of PE and counterion dynamics

in electric fields [179]. Pioneering explicit-water all-atomistic simulations of PEs in electric fields have

been performed [180]. Due to the immense computational demand they are restricted to elevated

field strengths, short PEs, and short simulation times. Implicit-solvent simulations have quite recently

addressed the molecular-weight-dependent PE mobility in the salt-free case [124, 125] and yielded

good agreement with experiments.

Outline

In the present Chapter we use coarse-grained implicit-solvent hydrodynamic simulations, cf. Chapter 2

and study the salt-dependent electrophoretic response of a single PE. By replicating the PE periodi-
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E⊥

E‖

H

D

Figure 6.1.: Simulation cell for a DNA segment with counterions (dark grey) and coions (light grey).
Periodic boundary conditions are applied along the projected end-to-end distance H of the
DNA segment. The external electric field is applied either parallel (E||) or perpendicular
(E⊥) to the PE axis.

cally we eliminate finite-chain-length effects. We concentrate on the salt-dependent interplay of PE

versus counterion mobility in the infinite chain limit and show that the condensed counterion mobility

changes sign as a function of salt concentration. For low salt, counterions stick to the PE and move

along in the electric field in agreement with the canonic viewpoint. For high salt, on the other hand, the

motion decouples and counterions move opposite to the PE. This anomaly is captured by an analytic

theory developed here for weakly charged chains based on the electrostatically screened hydrodynamic

interaction tensor. For DNA our simulations reproduce experimental salt-dependent mobilities without

fitting parameters and predict an experimentally measurable anomaly of the counterion excess conduc-

tivity. The counterion anomaly is also directly accessible by NMR experiments [181] or PE conductivity

studies in nanopores or nanochannels [182].

6.1. Modeling DNA electrophoresis

In our hydrodynamic simulations we consider a PE consisting of charged beads together with neu-

tralizing counterions and added symmetric salt, cf. Fig. 6.1. The vertical box height H and lateral

width D are fluctuating while keeping the volume HD2 and thus the concentration of monomers cm,

neutralizing counterions cnct and salt ion pairs cs fixed.

The PE electrophoretic mobility µm =



vm
�

/E follows from the average monomer velocity along the

electric field direction. In the absence of curvature, inter-chain and end effects (i.e. for high enough salt

concentrations) and if orientation effects are negligible (i.e. for small electric fields), µm follows from
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6.2. Counterion mobility anomaly

the parallel and perpendicular mobilities as µm = (µ||m + 2µm,⊥)/3. In the simulations we accordingly

determine µ||m and µm,⊥ separately by applying electric fields parallel and perpendicular to the PE axis

and measuring the corresponding velocities. Possible non-linear effects have been carefully checked,

cf. Appendix A. The ionic strength includes contributions from the neutralizing counterions and is

defined as I = (cnctq
2
ct+ csq

2
ct+ csq

2
co)/2.

In order to model DNA in aqueous NaCl solution at 20 ◦C we use Stokes radii of Na+ and Cl- as

act = 1.84 Å and aco = 1.29 Å as obtained from limiting conductivities, an estimate of am = 10.47 Å

for the DNA radius and valencies qct = 1, qco = −1 and qm = −6. The choice of monomer separation

b = am ensures a linear charge density of qm/b ' 0.57 Å
−1

. Although no bending rigidity is present in

the model, the segment is sufficiently straight due to electrostatic repulsions, as appropriate for DNA

(cf. Fig. 6.1). The simulation cell comprises 10 DNA monomers, 60 neutralizing counterions and 24

salt pairs. The ionic strength is varied over the range I = 19− 468 mM by adjusting the cell width D.

The field strengths applied are E|| = 27.5× 106 V/m and E⊥ = 5.5× 106 V/m. We use ε = 5 for the LJ

strength, K/a2
ct = 100 for the bond stiffness, and η = 1.003× 10−3 Pas for the viscosity of water. The

Langevin time-step is 0.06− 0.12 ps and simulations are typically run for 0.3− 4.1 µs.

6.2. Counterion mobility anomaly

DNA electrophoretic mobility

In Fig. 6.2a we plot the DNA electrophoretic mobility µm as a function of the ionic strength, I , together

with experimental data for long DNA from Refs. [106, 183]. Noting that there are no free fitting

parameters and given the substantial scatter in the experimental data, we conclude that our coarse-

grained DNA model is quite accurate. The mobility µm decreases with increasing I which will be

rationalized in terms of hydrodynamic screening effects below. We additionally show theoretical results

from Stigter [178] and Manning [129].

Counterion mobility

Theoretically, only little attention has been paid to electric field-induced counterion dynamics in PE

solutions. In this context the phenomenon of counterion condensation at highly charged PEs that are

characterized by a Manning parameter ξM = qctqm`B/b > 1 has to be taken into account. For highly
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Figure 6.2.: Hydrodynamic simulations of DNA in aqueous NaCl solution of various ionic strengths I at
20 ◦C. a) Electrophoretic DNA mobility µm as obtained from simulations (filled symbols)
and experiments (Ref. [183] - open squares; Ref. [106] - open circles) as a function of I ,
compared to theories by Stigter [178] (dashed line) and Manning [129] (dotted line). b)
Mobility of neutralizing counterions µnc, and condensed counterions µcc.

charged PEs such as DNA (ξM = 4.17) electrostatic attraction of counterions towards the PE over-

comes entropic repulsion giving rise to increased accumulation of counterions in the very vicinity of

the PE [27, 28]. In particular, the assumption that condensed counterions stick to the PE [129, 178]

has not been scrutinized, despite experimental evidence that condensed counterions are not immobi-

lized on the PE surface [184]. In Fig. 6.2b we show the electrophoretic mobility of two counterion

ensembles, first condensed counterions within a distance r∗⊥ = am + 4act = 17.8 Å from the DNA axis

(µcct) and secondly the set of counterions closest to the DNA axis that neutralize the DNA charge (µnct).

At low ionic strength the hydrodynamic drag exerted by the DNA on the counterions exceeds the exter-

nal electric force and the mobility for both sets is negative, i.e. the counterions are dragged along by the

PE. At high ionic strength the hydrodynamic interactions are sufficiently screened so that the electric

field dominates and the counterions move opposite to the DNA. In fact, a salt and PE charge density

dependent sign reversal of the electrophoretic counterion mobility has been inferred from transference

experiments some time ago [184]. Direct measurements of counterion electrophoretic mobilities can

in principle be performed with pulsed field gradient NMR [181].
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Figure 6.3.: Hydrodynamic simulations of DNA in aqueous NaCl solution of various ionic strengths I
at 20 ◦C. Counterion excess conductivity Anc according to Eq. (6.1).

Conductivity increment

We define the excess contribution of the counterions to the conductivity of a PE solution as

Anct = (σ− qmecmµm−σ0
s )/cnct (6.1)

where σ and σ0
s denote the specific conductivities of the salt solution with and without the PE chain,

respectively. In our simulations, σ results from the separate electrophoretic contributions as σ/e =

qctcnctµnct − qmcmµm + qctcsµct − qcocsµco, while the pure electrolyte conductivity σ0 is obtained from

separate simulations as σ0
s = qctcsµ

0
ct−qcocsµ

0
co. As seen in Fig. 6.3, the counterion excess conductivity

Anct increases with increasing salt concentration and changes sign, and thus directly reflects the salt-

dependent counterion mobility anomaly for the experimentally easily accessible conductivity.

6.3. Linear theory for the retardation effect

6.3.1. Solution of the Stokes equations with Debye-Hückel force distribution

To gain further insight, we now shift to weakly charged PEs (Manning parameter ξM < 1), where

the ion distribution around a PE is correctly described by linear Debye-Hückel (DH) theory and the

electrophoretic mobilities of PE and ions can be constructed using Green’s functions [92]. The DH
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6. Salt-induced counterion mobility anomaly in polyelectrolyte electrophoresis

ionic charge distribution around a sphere of radius a and surface charge density qe/4πa2 is for κa < 1

given by

n(r) = qe
δ(r − a)

4πa2 −







qe κ2e−κ(r−a)

4πr(1+κa)
, r ≥ a ,

0 , r < a ,
(6.2)

where κ−1 = (8π`BI)−1/2 is the Debye screening length. At vanishing Reynolds number the stationary

flow field u(r) originating from a force density f(r) acting on a viscous incompressible solvent follows

from the Stokes equations,

η∆u−∇p+ f = 0 , (6.3)

∇ ·u= 0 ,

where η denotes the solvent viscosity, and p the pressure. In the case of a force density f(r) = n(r)E

due to an external electric field E acting on the Debye-Hückel charge distribution Eq. (6.2), the Stokes

equations Eq. (6.3) can be solved in closed form. With the definition u(r) =: G(r)qeE we find for

the tensor elements Gαβ(r) (α,β = x , y, z) at distance r < a from the center of the force distribution

G<αβ =
δαβ

6πηa(1+κa)
, (6.4)

and at distance r > a

Gαβ (r) =
e−κ(r−a)

4πηr(1+ κa)

�

1+ κr +κ2r2

κ2r2 − 6+ 6κa+ 2κ2a2

6κ2r2 eκ(r−a)
�

×
�

δαβ − 3
xαxβ

r2

�

+
e−κ(r−a)

2πηr(1+ κa)

xαxβ
r2 . (6.5)

Note that the no-slip boundary condition on the sphere surface is automatically satisfied. The corre-

sponding pressure p(r) at distance r < a is given by

p<(r) = 0 , (6.6)

and at distance r > a

p(r) = qe
(1+κr)e−κ(r−a)

4πr3(1+κa)
xαEα . (6.7)
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6.3. Linear theory for the retardation effect

In the limit of zero salt κ → 0, the Stokes solution for a translating sphere is recovered [185]. For

vanishing radius a → 0, Eq. (6.5) reduces to a previously derived expression [133]. Noting that

Eq. (6.5) fulfills the no-slip condition on the sphere’s surface, its electrophoretic mobility follows from

µs = qe Gx x(r = a) as
µs

qeµ0
=

1

1+ κa
, (6.8)

which is the classical result derived by Debye and Hückel [185]. Here µ0 = 1/6πηa is the Stokes

mobility.

6.3.2. Electrophoretic mobility of a linear chain of weakly charged spheres

To leading order in the ratio of sphere radius a and distance r the hydrodynamic coupling tensor

between two spheres of charge qe and radius a located at r and at r′ both moving under the influence

of an external electric field E can be obtained from a multipole expansion [185] as

µαβss (r) = qe

�

1+
a2

6
∇2

r′

�

Gαβ(r− r′) . (6.9)

The electrophoretic mobility of a charged sphere including the coupling to an arbitrary assembly of

charged spheres subject to an external electric field can be calculated using Eq. (6.9) by summa-

tion over contributions from individual spheres. We proceed by using Eq. (6.9) to calculate the elec-

trophoretic mobility of a linear chain of charged spheres extending along the z-axis under parallel or

perpendicular orientation of the external electric field according to

µm,‖ = µs + 2
∞
∑

j=1

µzz
ss (r⊥ = 0, b j) , (6.10)

and

µm,⊥ = µs + 2
∞
∑

j=1

µx x
ss (r⊥ = 0, b j) (6.11)
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6. Salt-induced counterion mobility anomaly in polyelectrolyte electrophoresis

where µs = qe G<αβ is the electrophoretic mobility of a single sphere, b denotes the distance between

the centers of adjacent spheres, and r⊥ the lateral distance from the chain axis. Within this approach

closed-form expressions for the electrophoretic mobilities µm,‖ and µm,⊥ can be given according to

µm,‖ = µs +
1

6πηκ2 b3(1+κa)

�

�

6+ 6κa+ 2κ2a2�ζ(3)

− eκa
�

6+κ2a2
� �

κb Li2
�

e−κb
�

+ Li3
�

e−κb
��

�

(6.12)

and

µm,⊥ =
1

2

�

3µs −µm,‖
�

− eκa
�

6+ κ2a2
�

ln
�

1− e−κb
�

12πηb (1+ κa)
, (6.13)

where Lis(z) =
∑∞

k=1 zk/ks is the polylogarithm function, and ζ(s) =
∑∞

n=1 1/ns the Riemann zeta

function. Performing the orientational average µm = (µm,‖+ 2µm,⊥)/3 we finally get

µm

qeµ0
=

µs

qeµ0
− a(6+κ2a2)

3b (1+ κa)
eκa ln

�

1− e−κb
�

. (6.14)

In the limit of low screening, κa→ 0, Eq. (6.14) decays logarithmically with increasing ionic strength

as µm/qeµ0 = −2(a/b) ln(κb), in accord with previous results for weakly charged PEs [92, 129]. In

the same fashion the perpendicular and parallel distance-dependent ion mobilities follow as

µ⊥co/ct(r⊥, z) = µs ±
+∞
∑

j=−∞
µx x

ss (r⊥, z + b j) (6.15)

and

µ
‖
co/ct(r⊥, z) = µs ±

+∞
∑

j=−∞
µzz

ss (r⊥, z + b j) , (6.16)

respectively; the plus/minus sign applies to coions/counterions.

In Fig. 6.4 we compare the foregoing theoretically predicted electrophoretic mobilities of monomers

and ions (obtained by summing over contributions from 23 spheres) to the hydrodynamic simulations

of a weakly charged PE with Manning parameter ξM = 0.4 in a field of strength aqeE/kBT = 0.2.

The simulation cell comprises 24 PE monomers, 24 neutralizing counterions and 24 salt pairs with

equal radii am = aco = act ≡ a, valencies qm = qco = −qct ≡ q and monomer spacing b = 2a. For

intrinsically flexible PEs, the straight PE conformation in our simulations and theory is realistic only
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Figure 6.4.: Results for a weakly charged PE with Manning parameter ξM = qctqm`B/b = 0.4. a) Coion
mobility µco(r⊥, 0) for various fixed distances r⊥ from the PE as a function of (κa)2. The
hydrodynamic drag exerted by the PE on the coions increases their mobility as compared
to the case without PE, Eq. (6.14) (r⊥/a → ∞, solid line). The latter compares well
with hydrodynamic simulations of a simple salt solution (filled symbols). b) Counterion
mobility µct(r⊥, 0) at distance r⊥ from the PE which exhibits a sign change. For small r⊥
and low salt, counterions are dragged along with the PE (µct(r⊥, 0) < 0). c) Comparison of
theoretical predictions (solid lines) and hydrodynamic simulations (filled symbols) for the
PE mobility µm, neutralizing counterion mobility µnct and condensed counterion mobility
µcct. The condensed counterion mobility changes sign. We also show the parallel and
perpendicular PE mobilities µ‖m (dotted line) and µ⊥m (short dashed line).
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6. Salt-induced counterion mobility anomaly in polyelectrolyte electrophoresis

for low enough salt concentration as long as the effective persistence length is larger than the screening

length. In Fig. 6.4a,b we show the orientationally averaged coion and counterion mobilities

µco/ct(r⊥, 0) =
1

3

h

2µ⊥co/ct(r⊥, 0) +µ‖co/ct(r⊥, 0)
i

(6.17)

for fixed vertical coordinate z = 0 and various fixed distances r⊥ from the PE as a function of the

rescaled salt concentration (κa)2 ∼ cs. The mobilities of coions are increased and those of counterions

are decreased by the presence of the PE. This entraining effect is larger for smaller salt concentration

and smaller r⊥. The ion mobilities for r⊥ =∞ reflect pure electrolyte friction effects and in Fig. 6.4a

compare very well with simulation results for a simple salt solution. In Fig. 6.4c we compare analyt-

ical predictions for the PE mobility µm, the neutralizing counterion mobility µnct, and the condensed

counterion mobility µcct (obtained from counterions within a shell of r∗⊥ = 5a around the PE) with

the simulations. Here µnct and µcct are obtained from µct(r⊥, 0) by spatially averaging over the DH

counterion distribution around a straight chain of charged spheres at fixed vertical coordinate z = 0.

With increasing salt concentration, µcct changes its sign, similar to the DNA results (cf. Fig. 6.2b). This

shows that the salt-induced counterion mobility anomaly is not restricted to the non-linear regime and

is fully explained by screening effects of the hydrodynamic coupling tensor.

Our simulation method neglects local solvation and DNA structural effects. The good agreement

between experimental and simulation results could imply that those effects are of minor importance

for the electrokinetic behavior. Nevertheless, an extension of the model to more realistic charge distri-

butions is should be pursued.
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7. Summary

The physics of PE solutions is a fascinating subject with still many open questions to answer. The aim

of the present thesis is to contribute to the understanding of PE dynamics in electric fields using coarse

grained BD simulations and complementary analytical calculations.

In Chapter 3 we studied the frequency dependent dielectric susceptibility for various PE concentra-

tions and lengths. As an exiting result, we could show that the relaxation process with the smallest

relaxation time is due to the relaxation of condensed counterions at a single PE chain, while the re-

laxation process with the largest relaxation time is related to the correlated relaxation of condensed

counterions. A detailed analysis of the scaling behavior of this relaxation process has to be left for

future investigations.

In close analogy to experiments which highlight the important influence of the discrete nature of the

charge distribution on PE chains [20, 21] we discussed the electrophoretic response of an extended PE

segment of varying charge architecture in the spirit of the cell model of PE solutions [22] in Chapter 4.

In the experimentally relevant linear-response limit, we showed that the influence of the monomer-

to-counterion size ratio and the charge separation indeed can be substantial, where the influence of

the charge separation is strongly anisotropic. A thorough discussion of electrostatic and hydrodynamic

effects was given.

The calculation of the relaxation effect for counterions at fixed charge distributions was central to

Chapter 5. Electrofriction experienced by counterions moving parallel to the corrugated potential due

to charged monomers could be explained using an approximation of the diffusion problem and the SC

electrostatic potential.

By choosing appropriate coarse-graining parameters experimental salt-dependent DNA mobilities

could be reproduced within BD simulations of the cell model in Chapter 6. The observed counterion-

mobility anomaly was captured by an analytic theory developed for weakly charged chains based on

the electrostatically screened hydrodynamic interaction tensor.
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7. Summary

Parts of this thesis have been published in peer-reviewed journals, or manuscripts for such contribu-

tions are in preparation. These contributions include:

• S. Fischer, A. Naji, and R. R. Netz. Salt-Induced Counterion-Mobility Anomaly in Polyelectrolyte

Electrophoresis, Phys. Rev. Lett. 101, 176103 (2008).

• S. Fischer, A. Naji, and R. R. Netz. Electrophoresis beyond the line charge model,

in preparation (2009)

• S. Fischer, and R. R. Netz. Dielectric response in salt-free polyelectrolyte solutions,

in preparation (2009)
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A. Finite-size and non-linear field effects

Finite-size effects

Here we check for the finite-size scaling of the DNA electrophoretic mobility by varying the cell height

H or its width D separately, while keeping the total particle concentration and hence the ionic strength

I = (cnctq
2
ct+ csq

2
ct + csq

2
co)/2 fixed.

Changing the cell height H at constant cell width D leads to changes in the hydrodynamic cut-off

in the field direction. Increasing H could potentially enhance the effect of hydrodynamic entrainment

and hence the DNA electrophoretic mobility, as can be inferred from Fig. A.1 where we plot the DNA

electrophoretic mobility µm as a function of the inverse cell height H−1. At low ionic strength I =

75 mM (filled symbols) the DNA electrophoretic mobility slightly increases with decreasing inverse

height. No such increase can be seen at high ionic strength I = 299 mM (open symbols) due to

screening of hydrodynamic interactions over distances much smaller than the cell height. The vertical

height H ' 105 Å used for data production in this work is shown as a vertical broken line in Fig. A.1

and is thus much larger than the typical screening length (which for the salt concentrations used is

typically smaller than 20 Å) and thus gives rise to very little cell height dependence in the final data.

Varying the cell width D while keeping the cell height H fixed amounts to variations in the DNA

monomer concentration cm = Nm/V , where Nm is the number of DNA monomers in the simulation cell

and V denotes its volume. In Fig. A.2 we show the DNA electrophoretic mobility µm as a function of

the DNA monomer concentration cm normalized by the concentration c∗m = Nm/H
3 at ionic strength

I = 75 mM and I = 299 mM. The DNA electrophoretic mobility is largely unaffected by variations of

the monomer concentration, even though at high ionic strength the monomer concentration is quite

high.
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Figure A.1.: DNA electrophoretic mobility µm as a function of the inverse cell height H−1 at ionic
strength I = 75 mM (filled symbols) and I = 299 mM (open symbols). At low ionic
strength the DNA electrophoretic mobility decreases with increasing inverse cell height,
whereas at high ionic strength the DNA electrophoretic mobility stays constant within
errorbars. The vertical line at H−1 = 0.0095 Å

−1
denotes the cell height chosen for pro-

duction runs.

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0.8 1.0 1.2 1.4 1.6 1.8

µ
m

/
1
0
−

4
cm

2
V
−

1
s−

1

(cm/c?
m)1/3

Figure A.2.: DNA electrophoretic mobility µm as a function of the DNA monomer concentration cm in
units of the concentration c∗m = Nm/H

3 at ionic strength I = 75 mM (solid symbols) and
I = 299 mM (open symbols). The DNA concentration is varied through changing the cell
width D at constant cell height H. In the concentration range presented here the DNA
mobility is independent of the DNA concentration within errorbars at both low and high
ionic strength. The vertical lines at cm/c
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m = 0.96 and cm/c

∗
m = 3.83 mark the monomer

concentrations chosen for production runs.
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Figure A.3.: DNA electrophoretic mobility µm at ionic strength I = 75 mM as a function of parallel
(filled symbols) or perpendicular (open symbols) external electric field E. For parallel field
orientation the electrophoretic mobility µ||m stays constant within errorbars, for perpendic-
ular orientation the mobility µ⊥m increases with increasing field strength for E ¦ 107 V/m.
The vertical lines correspond to E = 5.5× 106 V/m and E = 27.5× 106 V/m, which are
the field strengths used for data acquisition in this work.

Non-linear field effects

In our simulations the strength of the external electric field E on the one hand has to be chosen small

enough to meet the requirement of data acquisition in the linear response regime v ∝ E, and on the

other hand large enough to guarantee sufficient sampling of the configuration space at reasonable

computational cost. In order to motivate our choice we show the DNA electrophoretic mobility µm

as gathered from Brownian Dynamics simulations at ionic strength I = 75 mM as a function of the

electric field strength E in Fig. A.3. The sensitivity of the electrophoretic mobility depends strongly

on the orientation of the external electric field. Within the investigated range of field strengths the

electrophoretic mobility under parallel orientation µ||m (filled symbols) is constant within errorbars,

whereas the electrophoretic mobility under perpendicular orientation µ⊥m (open symbols) increases

with increasing field strength for E ¦ 107 V/m, i.e. the field dependence of the velocity becomes non-

linear.

Similar behavior can be seen in Fig. A.4 where we plot the lateral radius of gyration of the neutral-

izing counterions

Rg,nct =
1

Nnct

È

∑

i< j

(r⊥,i − r⊥, j)2 , (A.1)

where r⊥,i denotes the lateral position of a counterion, and the double sum runs over the number

Nnct of counterions closest to any DNA monomer neutralizing the DNA charge. In the linear response

regime the radius of gyration of the neutralizing counterions Rg,nct is independent of field strength
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Figure A.4.: Lateral radius of gyration of neutralizing counterions Rg,nct Eq. (A.1) at ionic strength I =
75 mM as a function of parallel (filled symbols) or perpendicular (open symbols) external
electric field E. Rg,nct stays constant under parallel field orientation, for perpendicular
orientation Rg,nct increases with increasing field strength for E ¦ 107 V/m. The vertical
lines correspond to E = 5.5× 106 V/m and E = 27.5× 106 V/m.

and orientation. For perpendicular orientation and E ¦ 107 V/m the radius of gyration increases with

increasing field strength, that is the counterions become less tightly bound to the PE.

Concluding from the above, a convenient choice for the strength of the external electric field, which

ensures the data may be gathered in the linear response regime at fair computational cost, is presented

by E⊥ = 5.5× 106 V/m and E‖ = 27.5× 106 V/m as denoted by the vertical broken lines in Figs. A.3

and A.4, which are the field strengths used for data acquisition in this work.
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