LEARNING COMPLEX, EXTENDED SEQUENCES USING
THE PRINCIPLE OF HISTORY COMPRESSION

(Neural Computation, 4(2):234-242, 1992)

Jirgen Schmidhuber*
Institut fur Informatik
Technische Universitat Minchen
Arcisstr. 21, 8000 Miinchen 2, Germany

Abstract

Previous neural network learning algorithms for sequence processing are computationally expensive
and perform poorly when it comes to long time lags. This paper first introduces a simple principle
for reducing the descriptions of event sequences without loss of information. A consequence of this
principle is that only unezpected inputs can be relevant. This insight leads to the construction of neural
architectures that learn to ‘divide and conquer’ by recursively decomposing sequences. I describe two
architectures. The first functions as a self-organizing multi-level hierarchy of recurrent networks. The
second, involving only two recurrent networks, tries to collapse a multi-level predictor hierarchy into
a single recurrent net. Experiments show that the system can require less computation per time step
and many fewer training sequences than conventional training algorithms for recurrent nets.

1 INTRODUCTION

Several approaches to on-line supervised sequence learning have been proposed, including back-propagation
through time or BPTT, e.g. (Williams and Peng, 1990), the IID- or RTRL-algorithm (Robinson and
Fallside, 1987)(Williams and Zipser, 1989), and the recent fast-weight algorithm (Schmidhuber, 1991b)).
These approaches are computationally intensive; BPTT is not local in time, RTRL-like algorithms and
also their more efficient recent relatives (Schmidhuber, 1991d) are not local in space (Schmidhuber, 1991c).
Common to all of these approaches is that they do not try to selectively focus on relevant inputs; they waste
efficiency and resources by focussing on every input. With many applications, a second drawback of these
methods is the following: The longer the time lag between an event and the occurrence of a corresponding
error the less information is carried by the corresponding back-propagated error signals. (Mozer, 1990)
and (Rohwer, 1989) have addressed the latter problem but not the former.

How can a system learn to focus on the relevant points in time? What does it mean for a point in time to
be relevant? How can the system learn to reduce the numbers of inputs to be considered over time without
losing information? A major contribution of this work is an adaptive method for removing redundant
information from sequences. The next section shows that the system ought to focus on unerpected inputs
and ignore expected ones.

2 HISTORY COMPRESSION

Consider a deterministic discrete time predictor (not necessarily a neural network) whose state at time ¢ is
described by an environmental input vector i(t), an internal state vector h(t), and an output vector o(t).

*Current address: Dept. of Computer Science, University of Colorado, Campus Box 430, Boulder, CO 80309, USA,
yirgan@cs.colorado.edu

The environment may be non-deterministic. At time 0, the predictor starts with ¢(0) and an internal start
state h(0). At time ¢ > 0, the predictor computes

o(t) = f(i(t), h(?)).

At time ¢ > 0, the predictor furthermore computes
h(t) = g(i(t — 1), h(t — 1)).
All information about the input at a given time ¢, can be reconstructed from the knowledge about
tz, f,9,4(0), h(0), and the pairs (ts,i(ts)) for which 0 < ts < t, and o(ts — 1) # i(ts).

This is because if o(t) = i(t + 1) at a given time ¢, then the predictor is able to predict the next input from
the previous ones. The new input is derivable by means of f and g.

Information about the observed input sequence can be even further compressed beyond just the un-
predicted input vectors i(ts). It suffices to know only those elements of the vectors i(ts) that were not
correctly predicted.

This observation implies that we can discriminate one sequence from another by knowing just the
unpredicted inputs and the corresponding time steps at which they occurred. No information is lost if we
ignore the expected inputs. We do not even have to know f and g. We call this the principle of history
COmpression.

From a theoretical point of view it is important to know at what time an unexpected input occurs;
otherwise there will be a potential for ambiguities: Two different input sequences may lead to the same
shorter sequence of unpredicted inputs. With many practical tasks, however, there is no need for knowing
the critical time steps, as I show later.

3 A SELF-ORGANIZING MULTI-LEVEL PREDICTOR HIER-
ARCHY

Using the principle of history compression we can build a self-organizing hierarchical neural ‘chunking’
system. The system detects causal dependencies in the temporal input stream and learns to attend to
unexpected inputs instead of focussing on every input. It learns to reflect both the relatively local and the
relatively global temporal regularities contained in the input stream.

The basic task can be formulated as a prediction task. At a given time step the goal is to predict the
next input from previous inputs. If there are external target vectors at certain time steps then they are
simply treated as another part of the input to be predicted.

The architecture is a hierarchy of predictors, the input to each level of the hierarchy is coming from
the previous level. P; denotes the ith level network which is trained to predict its own next input from
its previous inputs'. We take P; to be a conventional dynamic recurrent neural network (Robinson and
Fallside, 1987)(Williams and Zipser, 1989)(Williams and Peng, 1990)(Schmidhuber, 1991d); however, it
might be some other adaptive sequence processing device as well?.

At each time step the input of the lowest-level recurrent predictor Py is the current external input. We
create a new higher-level adaptive predictor P,;1 whenever the adaptive predictor at the previous level,
Pq, stops improving its predictions. When this happens the weight-changing mechanism of P; is switched
off (to exclude potential instabilities caused by ongoing modifications of the lower-level predictors). If at a
given time step P, (s > 0) fails to predict its next input (or if we are at the beginning of a training sequence
which usually is not predictable either) then P,,; will receive as input the concatenation of this next input
of Py plus a unique representation of the corresponding time step®; the activations of P;;;’s hidden and

!Recently I became aware that Don Mathis had some related ideas (personal communication). A hierarchical approach to
sequence generation was pursued by (Miyata, 1988).

2For instance, we might employ the more limited feedforward networks and a ‘time window’ approach. In this case, the
number of previous inputs to be considered as a basis for the next prediction will remain fixed.

3A unique time representation is theoretically necessary to provide Pst+1 with unambiguous information about when the
failure occurred (see also the last paragraph of section 2). A unique representation of the time that went by since the last
unpredicted input occurred will do as well.

output units will be updated. Otherwise Psy; will not perform an activation update. This procedure
ensures that P, is fed with an unambiguous reduced description? of the input sequence observed by P;.
This is theoretically justified by the principle of history compression.

In general, P;y; will receive fewer inputs over time than P;. With existing learning algorithms, the
higher-level predictor should have less difficulties in learning to predict the critical inputs than the lower-
level predictor. This is because Psy;’s ‘credit assignment paths’ will often be short compared to those
of P,. This will happen if the incoming inputs carry global temporal structure which has not yet been
discovered by P.

This method is a simplification and an improvement of the recent chunking method described by
(Schmidhuber, 1991a).

Often a multi-level predictor hierarchy will be the fastest way of learning to deal with sequences with
multi-level temporal structure (e.g speech). Experiments have shown that multi-level predictors can quickly
learn tasks which are practically unlearnable by conventional recurrent networks, e.g. (Hochreiter, 1991).
One disadvantage of a predictor hierarchy, however, is that it is not known in advance how many levels
will be needed. Another disadvantage is that levels are explicitly separated from each other. It can be
possible, however, to collapse the hierarchy into a single network as described next.

4 COLLAPSING THE HIERARCHY INTO A SINGLE RE-
CURRENT NET

4.1 OUTLINE

I now describe an architecture consisting of two conventional recurrent networks: The automatizer A and
the chunker C. At each time step A receives the current external input. A’s error function is threefold: One
term forces it to emit certain desired target outputs at certain times. If there is a target, then it becomes
part of the next input. The second term forces A at every time step to predict its own next non-target
input. The third (crucial) term will be explained below.

If and only if A makes an error concerning the first and second term of its error function, the unpredicted
input (including a potentially available teaching vector) along with a unique representation of the current
time step will become the new input to C. Before this new input can be processed, C (whose last input
may have occurred many time steps earlier) is trained to predict this higher-level input from its current
internal state and its last input (employing a conventional recurrent net algorithm). After this, C performs
an activation update which contributes to a higher level internal representation of the input history. Note
that according to the principle of history compression C is fed with an unambiguous reduced description of
the input history. The information deducable by means of A’s predictions can be considered as redundant.
(The beginning of an episode usually is not predictable, therefore it has to be fed to the chunking level,
t00.)

Since C’s ‘credit assignment paths’ will often be short compared to those of A, C will often be able
to develop useful internal representations of previous unexpected input events. Due to the final term of
its error function, A will be forced to reproduce these internal representations, by predicting C’s state.
Therefore A will be able to create useful internal representations by itself in an early stage of processing a
given sequence; it will often receive meaningful error signals long before errors of the first or second kind
occur. These internal representations in turn must carry the discriminating information for enabling A to
improve its low-level predictions. Therefore the chunker will receive fewer and fewer inputs, since more and
more inputs become predictable by the automatizer. This is the collapsing operation. Ideally, the chunker
will become obsolete after some time.

It must be emphasized that unlike with the incremental creation of a multi-level predictor hierarchy
described in section 3 there is no formal proof that the 2-net on-line version is free of instabilities. For
instance, one can imagine situations where A unlearns previously learned predictions because of the third
term of its error function. Relative weighting of the different terms in A’s error function represents an

4In contrast, the reduced descriptions referred to by (Mozer, 1990) are not unambiguous.

| vector | description (referring to time t) | dimension

z(t) ‘normal’ environmental input ny
d(t) teacher-defined target np
ia(t) = x(t) o d(t) A’s input nr +np

ha(t) A’s hidden activations N,

da(t) A’s prediction of d(t) np

pa(t) A’s prediction of z(t) nr

time(t) unique representation of ¢ Ntime

he(t) C’s hidden activations N,

dc(t) C’s prediction of C’s next target input np

pc(t) C’s prediction of C’s next ‘normal’ input nr

sc(t) C’s prediction of C’s next ‘time’ input Niime

oc(t) dc(t) opo(t) o sc(t) Nog = ND + N1 + Ntime
qa(t) A’s prediction of h¢o(t) o oo (t) nH. + Noe

0a(t) da(t)opa(t) ogqal(t) nNo, =Nnp +ny+nNg, +no,

Table 1: Definitions of symbols representing time-dependent activation vectors. ‘o’ is the concatenation
operator. ha(t) and oa(t) are based on previous inputs and are computed without knowledge about d(t) and

z(t).

ad-hoc remedy for this potential problem. In the experiments (presented in section 5) relative weighting
was not necessary.

4.2 DETAILS OF THE 2-NET CHUNKING ARCHITECTURE

The system described below is the on-line version of a representative of a number of variations of the basic
principle described in 4.1. See (Schmidhuber, 1991c¢) for various modifications.

Table 1 gives an overview of various time-dependent activation vectors relevant for the description of
the algorithm. Additional notation: ‘o’ is the concatenation operator; d4(t) = 1 if the teacher provides a
target vector d(t) at time ¢ and d4(¢) = 0 otherwise. If §4(¢) = 0 then d(t) takes on some default value, e.g.
the zero vector.

INSERT TABLE 1 HERE -

A has ny+np input units, ng, hidden units, and no, output units (see table 1). With pure prediction
tasks np = 0. C has ng, hidden units, and no, output units. All of A’s input and hidden units have
directed connections to all of A’s hidden and output units. All input units of A have directed connections
to all hidden and output units of C. This is because A’s input units serve as input units for C at certain
time steps. There are additional n;m,e input units for C for providing unique representations of the current
time step. These additional input units also have directed connections to all hidden and output units of
C. All hidden units of C have directed connections to all hidden and output units of C.

A will try to make d4(t) equal to d(t) if 04(t) = 1, and it will try to make pa(t) equal to z(t), thus trying
to predict z(t). Here again the target prediction problem is defined as a special case of an input prediction
problem. C will try to make do(t) equal to the externally provided teaching vector d(t) if §4(t) = 1 and if
A failed to emit d(t). Furthermore, it will always try to make pc(t) o s¢(t) equal to the next non-teaching
input to be processed by C. This input may be many time steps ahead. Finally, and most importantly, A
will try to make ga(t) equal to he(t) o oc(t), thus trying to predict the state of C. The activations of C’s
output units are considered as part of its state.

Both C and A simultaneously are trained by a conventional algorithm for recurrent networks in an
on-line fashion. Both the IID-Algorithm and BPTT are appropriate. In particular, computationally
inexpensive variants of BPTT (Williams and Peng, 1990) are interesting: There are tasks with hierarchical
temporal structure where only a few iterations of ‘back-propagation back into time’ per time step are in
principle sufficient to bridge arbitrary time lags (see section 5).

I now describe the (quite familiar) procedure for updating activations in a net.

Repeat for a constant number of iterations (typically one or two):

1. For each non-input unit j of N compute a; = f;(3_, a;wsj), where aj is the current
activation of unit j, f; is a semilinear differentiable function and w;; is the weight on the
directed connection from unit © to unit j.

2. For all non-input units j: Set a; equal to a;.

I now specify the input-output behavior of the chunker and the automatizer as well as the details of error
injection:

INITIALIZATION: All weights are initialized randomly. In the beginning, at time step 0,
make ho(0) and h4(0) equal to zero, and make i4(0) equal d(0) o 2(0). Represent time step
0 in time(0). Update C to obtain ho(1) and oc(1).

FOR ALL TIMES t >0 UNTIL INTERRUPTION DO:
1. Update A to obtain ha(t) and oa(t). A’s error ea(t) is defined as

2ea(t) = (pa(t) 0 qa(t) — z(t) o ho(t) 0 oc ()T (pa(t) 0 qa(t) — x(t) 0 he(t) 0 oc(t))+
da(t)(da(t) — d(t))" (da(t) — d(2)).

Use a gradient descent algorithm for dynamic recurrent nets to change each weight w;; of A
in proportion to (the approzimation of) —%ﬁ_@. Setia(t) to d(t)ox(t). Uniquely represent
t in time(t). ’

2. If A’s low-level error

2ep(t) = (pa(t) — ()" (pa(t) — 2(2) + a(t)(da(t) — d(t))" (da(t) — d(t)

is less or equal to a small constant B > 0, then set ha(t + 1) = he(t), oc(t +1) = oc(t).
Else define C’s prediction error ec(t) as

2ec(t) = (po(t) — z(t))" (po(t) — =(t)) + da(t)(dc (t) — d(t))" (de (t) — d(t))+
(sc(t) — time(t))" (sc(t) — time(t)),

use a gradient descent algorithm for dynamic recurrent nets to change each weight w;; of

C in proportion to (the approrimation of) —agfu'i(:), and update C to obtain ho(t + 1) and
oc(t+1).

5 AN EXPERIMENT

Josef Hochreiter (a student at TUM) tested a chunking system against a conventional recurrent net al-
gorithm. See (Hochreiter, 1991) and (Schmidhuber, 1991c) for details. A prediction task with a 20-step
time lag was constructed. There were 22 possible input symbols a,z, b1, ba,...,by. The learning sys-
tems observed one input symbol at a time. There were only two possible input sequences: ab; . ..byo and
xby . .. byg. These were presented to the learning systems in random order. At a given time step, one goal
was to predict the next input (note that in general it was not possible to predict the first symbol of each
sequence due to the random occurrence of x and a). The second (and more difficult) goal was to make the
activation of a particular output unit (the ‘target unit’) equal to 1 whenever the last 21 processed input
symbols were a,by,...,bs0 and to make this activation 0 whenever the last 21 processed input symbols
were x,by1,...,b2. No episode boundaries were used: Input sequences were fed to the learning systems
without providing information about their beginnings and their ends. Therefore there was a continuous
stream of input events.

With the conventional algorithm, with various learning rates, and with more than 1,000,000 training

sequences it was not possible to obtain a significant performance improvement concerning the target unit.
A similar task involving time lags of as few as 5 steps required many hundreds of thousands of training
sequences.

But, a chunking system was able to solve the 20-step task rather quickly, using an efficient approximation
of the BPTT-method where error was propagated a maximum of 3 steps into the past (although there was
a 20 step time lag!). No unique representations of time steps were necessary for this task. 13 out of 17
test runs required fewer than 5000 training sequences. The remaining test runs required fewer than 35000
training sequences.

Typically, A quickly learned to predict the ‘easy’ symbols bs,...,by. This led to a greatly reduced
input sequence for C which now did not have many problems in learning to predict the target values at
the end of the sequences. After a while A was able to mimic C’s internal representations, which in turn
allowed it to learn correct target predictions by itself. A’s final weight matrix often looked like one one
would hope to get from the conventional algorithm: There were hidden units which learned to bridge the
20-step time lags by means of strong self-connections. The chunking system needed less computation per
time step than the conventional method. Still it required many fewer training sequences.

6 CONCLUDING REMARKS

It seems that people tend to memorize and focus on atypical or unexpected events and that they often try
to explain new atypical events in terms of previous atypical events. In the light of the principle of history
compression this makes a lot of sense.

Once events become expected, they tend to become ‘subconscious’. There is an obvious analogy to
the chunking algorithm: The chunker’s attention is removed from events that become expected; they
become ‘subconscious’ (automatized) and give rise to even higher-level ‘abstractions’ of the chunker’s
‘consciousness’.

The chunking systems described in (Schmidhuber, 1991a), (Schmidhuber, 1991¢) and the current paper
try to detect temporal regularities and learn to use them for identifying relevant points in time. A general
criticism of more conventional algorithms can be formulated as follows: These algorithms do not try to
selectively focus on relevant inputs, they waste efficiency and resources by focussing on every input.

Speech is a good example of a domain involving multi-level temporal structure. Ongoing research will
explore the application of chunking systems to speech recognition.

The principle of history compression is not limited to neural networks. Any adaptive sequence processing
device could make use of it.

7 ACKNOWLEDGEMENTS

Thanks to Josef Hochreiter for conducting the experiments. Thanks to Mike Mozer for useful comments
on an earlier draft of this paper.

References

Hochreiter, J. (1991). Diploma thesis. Institut fiir Informatik, Technische Universitit Miinchen.

Miyata, Y. (1988). An unsupervised PDP learning model for action planning. In Proc. of the Tenth Annual
Conference of the Cognitive Science Society, Hillsdale, NJ, pages 223—-229. Erlbaum.

Mozer, M. C. (1990). Connectionist music composition based on melodic, stylistic, and psychophysical
constraints. Technical Report CU-CS-495-90, University of Colorado at Boulder.

Robinson, A. J. and Fallside, F. (1987). The utility driven dynamic error propagation network. Technical
Report CUED /F-INFENG/TR.1, Cambridge University Engineering Department.

Rohwer, R. (1989). The ‘moving targets’ training method. In Kindermann, J. and Linden, A., editors, Pro-
ceedings of ‘Distributed Adaptive Neural Information Processing’, St.Augustin, 24.-25.5,. Oldenbourg.

Schmidhuber, J. H. (1991a). Adaptive decomposition of time. In Kohonen, T., Miakisara, K., Simula, O.,
and Kangas, J., editors, Artificial Neural Networks, pages 909-914. Elsevier Science Publishers B.V.,
North-Holland.

Schmidhuber, J. H. (1991b). Learning to control fast-weight memories: An alternative to recurrent nets.
Technical Report FKI-147-91, Institut fiir Informatik, Technische Universitit Miinchen.

Schmidhuber, J. H. (1991c). Neural sequence chunkers. Technical Report FKI-148-91, Institut fiir Infor-
matik, Technische Universitat Miinchen.

Schmidhuber, J. H. (1991d). An O(n®) learning algorithm for fully recurrent networks. Technical Report
FKI-151-91, Institut fiir Informatik, Technische Universitat Miinchen.

Williams, R. J. and Peng, J. (1990). An efficient gradient-based algorithm for on-line training of recurrent
network trajectories. Neural Computation, 4:491-501.

Williams, R. J. and Zipser, D. (1989). Experimental analysis of the real-time recurrent learning algorithm.
Connection Science, 1(1):87-111.

