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The real-time recurrent learning (RTRL) algorithm (Robinson and Fall- 
side 1987; Williams and Zipser 1989) requires O(n4) computations per 
time step, where n is the number of noninput units. I describe a 
method suited for on-line learning that computes exactly the same 
gradient and requires fixed-size storage of the same order but has an 
average time complexity per time step of O(n3). 

1 Introduction 

There are two basic methods for performing steepest descent in fully 
recurrent networks with n noninput units and m = O(n)  input units. 
Backpropagation through time (BPTT) [e.g., Williams and Peng (1990)l 
requires potentially unlimited storage in proportion to the length of the 
longest training sequence but needs only O(n’) computations per time 
step. BPTT is the method of choice if training sequences are known to 
have less than O(n) time steps. For training sequences involving many 
more time steps than n, for training sequences of unknown length, and 
for on-line learning in general one would like to have an algorithm with 
upper bounds for storage and for computations required per time step. 
Such an algorithm is the RTRL algorithm (Robinson and .Fallside 1987; 
Williams and Zipser 1989). It requires only fixed-size storage of the or- 
der O(n3) but is computationally expensive: It requires O(n4) operations 
per time step.’ The algorithm described herein2 requires O(n3) storage, 
too. Every O(n)  time steps it requires O(n4) operations, but on all other 
time steps it requires only O(n2) operations. This cuts the average time 
complexity per time step to o(n3). 

’Pineda has described another recurrent net algorithm that, as he states, “has some 
of the worst features of both algorithms” (Pineda 1990). His algorithm requires 1 0(n4) 
memory and 2 O(n4) computations per time step, if the number of time steps exceeds n. 

2Since the acceptance of this paper for publication it has come to my attention that 
the same algorithm was derived by Ron Williams (Williams 1989; Williams and Zipser 
1992). 
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2 The Algorithm 

The notation will be similar to the notation of Williams and Peng (1990). 
U is the set of indices k such that at the discrete time step t the quantity 
xk(t) is the output of a noninput unit k in the network. 1 is the set of 
indices k such that xk(t) is an external input for input unit k at time t. 
T(t) denotes the set of indices k E LI for which there exists a specified 
target value d k ( t )  at time t. Each input unit has a directed connection 
to each noninput unit. Each noninput unit has a directed connection to 
each noninput unit. The weight of the connection from unit j to unit 
i is denoted by wij. To distinguish between different “instances” of wij 
at different times, we let wq(t) denote a variable for the weight of the 
connection from unit j to unit i at time t .  This is just for notational con- 
venience: wij(t) = wij for all t to be considered. One way to visualize the 
wq(f) is to consider them as weights of connections to the fth noninput 
layer of a feedforward network constructed by “unfolding” the recurrent 
network in time [e.g., Williams and Peng (1990)l. A training sequence 
with s + 1 time steps starts at time step 0 and ends at time step s. The 
algorithm below is of interest if s >> n (otherwise it is preferable to use 
BPTT). 

For k E U we define 

netk(0) = 0, Vf 2 0 : xk(t) = fk[netk(t)], 
Vt > o : netk(t + 1) = C wkl(t + l ) x l ( t )  (2.1) 

where fk is a differentiable (usually semilinear) function. For all wq and 
for all I E U ,  t 2 0 we define 

I E U U l  

r dnetljf) = dnetlff) 
qij( t)  = ~ awq 7=1 aWij(7) 

Furthermore we define 

e k ( t )  = d k ( t )  - X k ( t )  if k E T ( t )  and 0 otherwise 
t 1 

E ( t )  = 5 C[ek(t)]’, Etotal(t’, t )  = C E ( 7 )  
kEU T=f ’ f l  

The algorithm is a cross between the BPTT and the RTRL algorithm. 
The description of the algorithm will be interleaved with its derivation 
and some comments concerning complexity. The basic idea is: Decom- 
pose the calculation of the gradient into blocks, each covering O(n)  time 
steps. For each block perform n + 1 BPTT-like passes, one pass for cal- 
culating error derivatives, and n passes for calculating derivatives of the 
net-inputs to the n noninput units at the end of each block. Perform 
n + 1 RTRL-like calculations for integrating the results of these BPTT-like 
passes into the results obtained from previous blocks. 
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The algorithm starts by setting the variable t o  c 0. t o  represents the 
beginning of the current block. Note that for all possible f ,  wv : 9k(O) = 0, 
dEtotal(O, O)/dwij = 0. The main loop of the algorithm consists of five steps. 

Step 1: Set h t O(n) (I recommend: k +- n). 
The quantity dEtota’(O, to)/awij for all wij is already known and qfj(to) 

is known for all appropriate 1, i , j .  There is an efficient way of computing 
the contribution of Etotal(O, t o  + h )  to the change in wq, Awq(t0 + k): 

dEtotal(O, to + k) 
= -a c dEtotal(O, to + k) 

Awjj(to + k)  = --(Y 
8Wij T=1 awij(7) 

where Q is a learning rate constant. 
Step 2: Let the network run from time step to to time step to + k 

according to the activation dynamics specified in equation 2.1. If it turns 
out that the current training sequence has less than t o  + k time steps (i.e., 
k > s - to)  then k + s - to. If h = 0 then EXIT. 

Step 3: Perform a combination of a BPTT-like phase with an RTRL- 
like calculation for computing error derivatives as described next. We 
write 

dEtotal(O, to + k)  - 8Etota’(0, t o )  + aEtotal(tO, to + k) - 
awl, awi, aw, 

- - 

- - dEtota’(O, to) ( to ,  to + k) 
aw, 7=1 

(2.2) 

The first term of equation 2.2 is already known. Consider the third 
term: 

where 

dEtota’(to, to + k) 
S j ( 7 )  = - 

anet, ( r )  

For a given to, Si(.) can be computed for all i E LI, to 5 r 5 t o  + k with a 
single h step BPTT-pass of the order O(kn2) operations: 

Si(r) = f:[neti(r)]e,(r) if r = t o  + k 
r 1 
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What remains is the computation of the second term of equation 2.2 for 
all wij, which requires O(n3) operations: 

( t o ,  t o  + h )  aEtota’(to, to + h )  anetk(to) 
T=1 5 aEtot;wij(7) T=l k e u  dnetk(t0) awij(7) 

Step 4: To compute 9f(to + h )  for all possible I ,  i , j ,  perform n com- 
binations of a BPTT-like phase with an RTRL-like calculation (one such 
combination for each I )  for computing as follows: 

anetl(to + h )  

- 5 dnetl(to + h )  

f o + h  anetl(to + h )  =c  
dWij T = l  dwij(7) 

q$o + h )  = 

- 

T=l  dwij(7) 

+ c  anetI(t0 + h )  
7=f0+1 awij(7) 

(2.3) 

o+h anetI(t0 + h )  aneti(.) + ‘ c  T=to+l aneti(7) d ~ i j ( 7 )  

t o f k  
1 c Ylk(to)h:(tO) + c ~i(.)xj(7 - 1) 

kEU 7=to+1 

where 
anetr(to + h )  

anetk(7) Ylk(T) = 

For a given to, a given I E U and for all i E U, to I 7 I to + h  the quantity 
Tli(7) can be computed with a single h step BPTT-like operation of the 
order O(hn2): 

if 7 = to + h : if I = i then Y I , ( T )  = 1 else TI , (T )  = 0 

For a given 1, the computation of equation 2.3 for all wi, requires 
O(n3 + hn2) operations. Therefore Step 3 and Step 4 together require 
( n  + 1)O(hn2 + n 3 )  operations spread over h time steps. Since h = O(n),  O(n4) 
computations are spread over O(n)  time steps. This implies un average of 
o(n3) computations per time step. 

The final step of the algorithm’s main loop is 
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Step 5: Set to e to + h and go to Step 1. 

The off-line version of the algorithm waits until the end of an episode 
(which needs not be known in advance) before performing weight 
changes. An on-line version performs weight changes each time Step 4 
is completed. 

As formulated above, the algorithm needs O(n4) computations at its 
peak, every nth time step. Nothing prevents us, however, from distribut- 
ing these O(n4) computations more evenly over n time steps. One way 
of achieving this is to perform one of the n BMT-like phases of Step 4 at 
each time step of the next “block” of n time steps. 

3 Concluding Remarks 

Like the RTRL-algorithm the method needs a fixed amount of storage 
of the order O(n3). Like the RTRL-algorithm [but unlike the methods 
described in Williams and Peng (1990) and Zipser (1989)l the algorithm 
computes the exact gradient. Since it is O(n)  times faster than RTRL, it 
should be preferred. 

Following the argumentation in Williams and Peng (19901, continuous 
time versions of BPTT and RTRL (Pearlmutter 1989; Gherrity 1989) can 
serve as a basis for a correspondingly efficient continuous time version 
of the algorithm presented here (by means of Euler discretization). 

Many typical environments produce input sequences that have both 
local and more global temporal structure. For instance, input sequences 
are often hierarchically organized (e.g., speech). In such cases, sequence- 
composing algorithms (Schmidhuber 1991a,b) can provide superior alter- 
natives to pure gradient-based algorithms. 
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