
Communicated by Fernando Pineda

A Fixed Size Storage O(n3) Time Complexity Learning
Algorithm for Fully Recurrent Continually Running
Networks

Jurgen Schmidhuber
Department of Computer Science, University of Colorado,
Campus Box 430, Boulder, CO 80309 U S A

The real-time recurrent learning (RTRL) algorithm (Robinson and Fall-
side 1987; Williams and Zipser 1989) requires O(n4) computations per
time step, where n is the number of noninput units. I describe a
method suited for on-line learning that computes exactly the same
gradient and requires fixed-size storage of the same order but has an
average time complexity per time step of O(n3).

1 Introduction

There are two basic methods for performing steepest descent in fully
recurrent networks with n noninput units and m = O(n) input units.
Backpropagation through time (BPTT) [e.g., Williams and Peng (1990)l
requires potentially unlimited storage in proportion to the length of the
longest training sequence but needs only O(n’) computations per time
step. BPTT is the method of choice if training sequences are known to
have less than O(n) time steps. For training sequences involving many
more time steps than n, for training sequences of unknown length, and
for on-line learning in general one would like to have an algorithm with
upper bounds for storage and for computations required per time step.
Such an algorithm is the RTRL algorithm (Robinson and .Fallside 1987;
Williams and Zipser 1989). It requires only fixed-size storage of the or-
der O(n3) but is computationally expensive: It requires O(n4) operations
per time step.’ The algorithm described herein2 requires O(n3) storage,
too. Every O(n) time steps it requires O(n4) operations, but on all other
time steps it requires only O(n2) operations. This cuts the average time
complexity per time step to o(n3).

’Pineda has described another recurrent net algorithm that, as he states, “has some
of the worst features of both algorithms” (Pineda 1990). His algorithm requires 1 0(n4)
memory and 2 O(n4) computations per time step, if the number of time steps exceeds n.

2Since the acceptance of this paper for publication it has come to my attention that
the same algorithm was derived by Ron Williams (Williams 1989; Williams and Zipser
1992).

Neural Computation 4,243-248 (1992) @ 1992 Massachusetts Institute of Technology

244 Jiirgen Schmidhuber

2 The Algorithm

The notation will be similar to the notation of Williams and Peng (1990).
U is the set of indices k such that at the discrete time step t the quantity
xk(t) is the output of a noninput unit k in the network. 1 is the set of
indices k such that xk(t) is an external input for input unit k at time t.
T(t) denotes the set of indices k E LI for which there exists a specified
target value d k (t) at time t. Each input unit has a directed connection
to each noninput unit. Each noninput unit has a directed connection to
each noninput unit. The weight of the connection from unit j to unit
i is denoted by wij. To distinguish between different “instances” of wij
at different times, we let wq(t) denote a variable for the weight of the
connection from unit j to unit i at time t . This is just for notational con-
venience: wij(t) = wij for all t to be considered. One way to visualize the
wq(f) is to consider them as weights of connections to the fth noninput
layer of a feedforward network constructed by “unfolding” the recurrent
network in time [e.g., Williams and Peng (1990)l. A training sequence
with s + 1 time steps starts at time step 0 and ends at time step s. The
algorithm below is of interest if s >> n (otherwise it is preferable to use
BPTT).

For k E U we define

netk(0) = 0, Vf 2 0 : xk(t) = fk[netk(t)],
Vt > o : netk(t + 1) = C wkl(t + l) x l (t) (2.1)

where fk is a differentiable (usually semilinear) function. For all wq and
for all I E U , t 2 0 we define

I E U U l

r dnetljf) = dnetlff)
qij(t) = ~ awq 7=1 aWij(7)

Furthermore we define

e k (t) = d k (t) - X k (t) if k E T (t) and 0 otherwise
t 1

E (t) = 5 C[ek(t)]’, Etotal(t’, t) = C E (7)
kEU T=f ’ f l

The algorithm is a cross between the BPTT and the RTRL algorithm.
The description of the algorithm will be interleaved with its derivation
and some comments concerning complexity. The basic idea is: Decom-
pose the calculation of the gradient into blocks, each covering O(n) time
steps. For each block perform n + 1 BPTT-like passes, one pass for cal-
culating error derivatives, and n passes for calculating derivatives of the
net-inputs to the n noninput units at the end of each block. Perform
n + 1 RTRL-like calculations for integrating the results of these BPTT-like
passes into the results obtained from previous blocks.

RTRL Algorithm 245

The algorithm starts by setting the variable t o c 0. t o represents the
beginning of the current block. Note that for all possible f , wv : 9k(O) = 0,
dEtotal(O, O)/dwij = 0. The main loop of the algorithm consists of five steps.

Step 1: Set h t O(n) (I recommend: k +- n).
The quantity dEtota’(O, to)/awij for all wij is already known and qfj(to)

is known for all appropriate 1, i , j . There is an efficient way of computing
the contribution of Etotal(O, t o + h) to the change in wq, Awq(t0 + k):

dEtotal(O, to + k)
= -a c dEtotal(O, to + k)

Awjj(to + k) = --(Y
8Wij T=1 awij(7)

where Q is a learning rate constant.
Step 2: Let the network run from time step to to time step to + k

according to the activation dynamics specified in equation 2.1. If it turns
out that the current training sequence has less than t o + k time steps (i.e.,
k > s - to) then k + s - to. If h = 0 then EXIT.

Step 3: Perform a combination of a BPTT-like phase with an RTRL-
like calculation for computing error derivatives as described next. We
write

dEtotal(O, to + k) - 8Etota’(0, t o) + aEtotal(tO, to + k) -
awl, awi, aw,

- -

- - dEtota’(O, to) (to , to + k)
aw, 7=1

(2.2)

The first term of equation 2.2 is already known. Consider the third
term:

where

dEtota’(to, to + k)
S j (7) = -

anet, (r)

For a given to, Si(.) can be computed for all i E LI, to 5 r 5 t o + k with a
single h step BPTT-pass of the order O(kn2) operations:

Si(r) = f:[neti(r)]e,(r) if r = t o + k
r 1

246 Jiirgen Schmidhuber

What remains is the computation of the second term of equation 2.2 for
all wij, which requires O(n3) operations:

(t o , t o + h) aEtota’(to, to + h) anetk(to)
T=1 5 aEtot;wij(7) T=l k e u dnetk(t0) awij(7)

Step 4: To compute 9f(to + h) for all possible I , i , j , perform n com-
binations of a BPTT-like phase with an RTRL-like calculation (one such
combination for each I) for computing as follows:

anetl(to + h)

- 5 dnetl(to + h)

f o + h anetl(to + h) =c
dWij T = l dwij(7)

q$o + h) =

-

T=l dwij(7)

+ c anetI(t0 + h)
7=f0+1 awij(7)

(2.3)

o+h anetI(t0 + h) aneti(.) + ‘ c T=to+l aneti(7) d ~ i j (7)

t o f k
1 c Ylk(to)h:(tO) + c ~i(.)xj(7 - 1)

kEU 7=to+1

where
anetr(to + h)

anetk(7) Ylk(T) =

For a given to, a given I E U and for all i E U, to I 7 I to + h the quantity
Tli(7) can be computed with a single h step BPTT-like operation of the
order O(hn2):

if 7 = to + h : if I = i then Y I , (T) = 1 else TI , (T) = 0

For a given 1, the computation of equation 2.3 for all wi, requires
O(n3 + hn2) operations. Therefore Step 3 and Step 4 together require
(n + 1)O(hn2 + n 3) operations spread over h time steps. Since h = O(n), O(n4)
computations are spread over O(n) time steps. This implies un average of
o(n3) computations per time step.

The final step of the algorithm’s main loop is

RTRL Algorithm 247

Step 5: Set to e to + h and go to Step 1.

The off-line version of the algorithm waits until the end of an episode
(which needs not be known in advance) before performing weight
changes. An on-line version performs weight changes each time Step 4
is completed.

As formulated above, the algorithm needs O(n4) computations at its
peak, every nth time step. Nothing prevents us, however, from distribut-
ing these O(n4) computations more evenly over n time steps. One way
of achieving this is to perform one of the n BMT-like phases of Step 4 at
each time step of the next “block” of n time steps.

3 Concluding Remarks

Like the RTRL-algorithm the method needs a fixed amount of storage
of the order O(n3). Like the RTRL-algorithm [but unlike the methods
described in Williams and Peng (1990) and Zipser (1989)l the algorithm
computes the exact gradient. Since it is O(n) times faster than RTRL, it
should be preferred.

Following the argumentation in Williams and Peng (19901, continuous
time versions of BPTT and RTRL (Pearlmutter 1989; Gherrity 1989) can
serve as a basis for a correspondingly efficient continuous time version
of the algorithm presented here (by means of Euler discretization).

Many typical environments produce input sequences that have both
local and more global temporal structure. For instance, input sequences
are often hierarchically organized (e.g., speech). In such cases, sequence-
composing algorithms (Schmidhuber 1991a,b) can provide superior alter-
natives to pure gradient-based algorithms.

Acknowledgments

Thanks to Mike Mozer, Bernd Schiirmann, and Daniel Prelinger for pro-
viding useful comments on an earlier draft of this paper.

This research was supported by NSF PYI award IRI-9058450, grant 90-
21 from the James S. McDonnell Foundation, and DEC external research
grant 1250 to Michael C. Mozer.

References

Gherrity, M. 1989. A learning algorithm for analog fully recurrent neural net-
works. 1EEEIlNNS lnt. Joint Conf. Neural Networks, San Diego 1, 643-644.

Pearlmutter, B. A. 1989. Learning state space trajectories in recurrent neural
networks. Neural Comp. 1, 263-269.

248 Jiirgen Schmidhuber

Pineda, F. J. 1990. Time dependent adaptive neural networks. In Advances in
Neural Information Processing Systems 2, D. S. Touretzky, ed., pp. 710-718.
Morgan Kaufmann, San Mateo, CA.

Robinson, A. J., and Fallside, F. 1987. The utility driven dynamic error propagation
network. Tech. Rep. CUED/F-INFENG/TR.l, Cambridge University Engi-
neering Department.

Schmidhuber, J. H. 1991a. Adaptive decomposition of time. In Artificial Neural
Networks, T. Kohonen, K. Makisara, 0. Simula, and J. Kangas, eds., pp. 909-
914. Elsevier Science Publishers B.V., North-Holland.

Schmidhuber, J. H. 1991b. Learning complex, extended sequences using the
principle of history compression. Neural Comp. 4, 234-242.

Williams, R J. 1989. Complexity of exact gradient computation algorithms for
recurrent neural networks. Tech. Rep. NU-CCS-89-27, Boston: Northeastern
University, College of Computer Science.

Williams, R. J., and Peng, J. 1990. An efficient gradient-based algorithm for
on-line training of recurrent network trajectories. Neural Comp. 4, 491-501.

Williams, R. J., and Zipser, D. 1989. Experimental analysis of the real-time
recurrent learning algorithm. Connection Sci. l U) , 87-111.

Williams, R. J., and Zipser, D. 1992. Gradient-based learning algorithms for
recurrent networks and their computational complexity. In Backpropagation:
Theory, Architectures and Applications, Y. Chauvin and D. E. Rumelhart, eds.
Hillsdale, NJ: Erlbaum.

Zipser, D. 1989. A subgrouping strategy that reduces learning complexity and
speeds up learning in recurrent networks. Neural Comp. 1, 552-558.

-~ ~

Received 16 May 1991; accepted 20 September 1991.

