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H(u) Sum of the convective and diffusive fluxes (u)

H Discrete sum of the convective and diffusive fluxes

J Banwidth of the truncated scalar product of (zk)T

N Special block diagonal matrix used in interface-splitting algorithm

P Sum of pressure fluxes

Q Block diagonal matrix

Re Reynolds number

Reτ Reynolds number based on friction velocity

S1 Absolute speedup of single r.h.s. problem

Sγ Absolute speedup of multiple r.h.s. problem

T Transformation matrix

T Strain rate tensor

T Transfer function

U, V, W Primitive value of the convective velocity in x, y, z direction
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Zusammenfassung

In dieser Dissertation wird ein kompaktes Finite-Volumen-Verfahren vierter Ordnung zur Lö-

sung der Navier-Stokes Gleichung auf versetzten Gittern vorgestellt. Die vierte Ordnung wird

durch eine Korrektur der nichtlinearen Terme und eine neuartige divergenzfreie Interpolation

der Massenflüssen auf die Impulszellen erzielt. Für die Parallelisierung wird ein neuartiger

Interface-Splitting-Algorithmus vorgestellt. Durch eine approximative Projektionsmethode

wird die Lösung der Poissongleichung erheblich beschleunigt ohne an Genauigkeitsordnung

zu verlieren.

Die Genauigkeit und Effizienz des parallelisierten, kompakten Schemas vierter Ord-

nung wird an Hand laminarer Testfälle und direkter numerischer Simulation turbulenter

Kanalströmung mit Reynoldszahlen bis zu Reτ = 950 untersucht. Das benutzte System ist

skalierbar und wesentlich genauer als vergleichbare Löser.
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Abstract

In this dissertation, a compact fourth-order scheme for the solution of the Navier-Stokes

equations on staggered grids is developed. The fourth order is ensured by a correction of the

non-linear terms and a novel interpolation of the mass fluxes onto the momentum cells. The

scheme is parallelised by a new interface splitting algorithm. An approximative projection

method allows for an efficient solution of the pressure Poisson equation without loosing

accuracy.

The accuracy and the efficiency of the parallel compact fourth-order scheme is evaluated

in laminar test cases and a direct numerical simulation of turbulent channel flow up to

Reτ = 950. The proposed scheme is highly scalable and can deliver accurate predictions

of the first- and second-order statistics using the grid spacing twice coarser than the usual

recommended values.
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1 Introduction

1.1 Motivation

Over a half century, Computational Fluid Dynamics (CFD) plays a very important part

helping engineers and scientists to understand the nature of turbulent flows. An accurate

time-dependent numerical simulation of incompressible fluids can be obtained by Direct Nu-

merical Simulations (DNS) which solve the discrete Navier-Stokes equations directly. DNS

can be very accurate but it is extremely expensive. Physical requirement dictates that one

must resolve the flow close to Kolmogorov length scale. This spatial resolution requirement

is roughly rising with O(Re9/4). Taking the number of time integration in to account, a

complexity of O(Re3) is expected. This scaling restricts DNS to a low or moderate Reynolds

number. We can, however, expect an accurate prediction when this grid resolution is used to-

gether with spectral scheme. When second-order scheme are used instead, but the same qual-

ity of the solution is desired, this high complexity must be multiplied by a factor of 16 which

can transform a prohibitively expensive computation into an impossible computation. In

order to reduce this factor, a higher-order scheme is required.

If one wish to learn only the large scale structure of the flow, a promising alternative

approach to DNS is the Large Eddy Simulation (LES), in which the large-scale structures of

the flow are resolved and the small-scale structures are modelled. In an essence of numerical

simulations, these two approaches rely heavily on the accuracy of the spatial discretisations.

A satisfactory simulation can not be obtained if the dynamics of the flow are not described

in a sufficiently accurate way. Modeling effects of the small scales in an LES will not improve

the overall accuracy of the solution when the numerical error was larger than the effects of the

small scales [Gho96]. The numerical accuracy can be improved by increasing the numerical

grid or increasing the accuracy order of the numerical approximations. The latter approach

has become an active field of research recently because in three dimensional simulations, the

cost of higher order is linearly proportional to second-order scheme but the number of grid

point is reduced cubically. This scaling give a tremendous favour to higher-order methods

over a brute force increasing the number of grid points.

Higher order approximations can be computed explicitly using Lagrange polynomial.

The n-th order approximation of the m-order derivative requires at most n + m abscissas.

Alternatively, one can couple unknown values to the abscissas and solve a linear equation



2 1 Introduction

system. These implicit approximations have shorter stencils and have been called com-

pact scheme by Lele and Sanjiva [Lel92]. They demonstrate the superiority of compact

schemes over traditional explicit schemes and show that for intermediate wave numbers,

the compact fourth-order scheme is even better than the explicit sixth-order scheme. They

quantify the resolution characteristics of second and higher-order schemes and point out

that for a relative error of 0.1%, the fourth-order compact differentiation requires 5 points

per half-wave. Fourth-order explicit requires 8 grid points and the second-order requires

50. The explicit fourth-order requires 30% more grid points to achieve the same accu-

racy as the compact schemes. Therefore the compact fourth-order scheme is very attrac-

tive.

The finite-volume methods (FVM) hold a strong position in the CFD community be-

cause of their intrinsic conservation properties. Despite of the popularity of the second-order

FVM, there are only a few papers addressing its developments towards higher-order. The

complicated relationship of volume averaged values and surface fluxes made higher-order

FVM more difficult than the finite difference (FD) counterpart. The first concept that

tries to link compact schemes to FVM is presented by Gaitonde and Shang [GS97]. They

present fourth- and sixth-order compact finite volume methods for linear wave phenomena.

However, the so-called reconstruction procedure is needed to compute the primitive value

and this costs significant computational time. A more economical approach is proposed

by Kobayashi [Kob99]. He directly calculates the surface-averaged from the cell-averaged

values. Explicit and implicit approximations based on the cell-averaged value up to twelfth-

order are analysed. Pereira et al. [PKP01] presented a compact finite volume method for the

two-dimensional Navier-Stokes equations on collocated grids. Piller and Stalio [PS04] pre-

sented a compact finite volume method on staggered grids in two dimensions. Lacor [CSM04]

propose a finite volume method on arbitrary collocated structured grids and perform LES

of turbulent channel flows at Reτ = 180. LES of the same flow with explicit filtering is per-

formed in [EK05] using the spatial discretization proposed in [PKP01]. Fourth-order finite

volume in cylindrical domain is developed in [SW07] and DNS of pipe flow of Reτ = 360 is

performed.

Staggered grids have become a favorable arrangement over collocated grids because

of the pressure decoupling problem. The pressure decoupling is not confined only in the

lower order schemes. This problem is already reported in [PKP01] when using even number

of cells with fourth-order scheme. This problem can be avoided by limiting ourselves to

an odd number of cells which poses an undesirable limitation on grid design. Recently,

staggered grids is shown to be more robust than collocated grids by Nagarajan [NLF03]

in Large-eddy simulations. Thus compact finite volume on staggered grids deserves more

attention.
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1.2 Contribution of this work

Previous works on higher-order methods for finite-volume discretisation of Navier-Stokes

equations have not yet clarified some fundamental questions of the fourth-order scheme

described in the following paragraphs.

(i.) The approximation of convective velocities : On staggered arrangement, momen-

tums and pressure are not located on the same control volumes. It is plausible that we can use

the momentum flux to convect itself and the convective velocities in the other directions can

be interpolated from other momentum cells. However, it is not straight forward to interpo-

late the momentum fluxes to the desired position without violating the mass-conservation.

In second-order context, we do not have this problem because volume-averaged, surface-

averaged and pointwise value are interchangeable via the midpoint rule. This is not the case

in higher-order context. A simple solution to this problem is to use higher-order interpolation

and accept divergence error at the level of truncation error. This approach would be accept-

able in finite-difference where small conservation error is expected. In finite volume method,

it is not acceptable since the conservation property is the most important reason for one to

choose finite volume method over the finite difference. This issue is addressed by Verstap-

pen and Veldman in [VV03] but their approach rely on a relatively large stencil which could

result in a lower resolution characteristic. Thus it is necessary to find a proper higher-order

divergence-free interpolation that is efficient and accurate.

(ii.) the treatment of non-linear terms: In finite-volume method, the approximation of

the nonlinear convective fluxes uu using uu is only second-order accurate unlike in finite-

difference method. This problem was solved by Pereira et al. [PKP01]. Nevertheless, the re-

construction of the non-linear fluxes must be chosen wisely. It has been shown that this term

is necessary to achieve higher-order accuracy in laminar flows. Its effects and importance

in the simulation of the turbulent flow is never studied before. This term is very expensive.

Therefore it is imperative that we must investigate it properly.

(iii.) the discretisation of pressure term: The role of the pressure discretization in

higher-order methods is still a matter of controversy among researchers in this field. It has

been shown in [ARM01] and [WD01] that the approximation of pressure term has to be the

same order as the convective and diffusive ones. When the pressure is approximated using

lower order, the overall accuracy is limited by this approximation. The time-dependent

Stuart problems are used in their works. Piller and Stalio [PS04] argue that the local

truncation error of the pressure is multiplied with the local truncation error of the time

integration and deliver a fourth-order convergence rate, provided that both terms are at least

second-order. They use the decaying Taylor-Green vortex flow to support this argument.

This issue must be clarified because it is crucial to the cost of computations. The solution

of the pressure can easily take more than half of the computation time. If a second-order
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approximation of the Poisson equation for the pressure was sufficient, then the higher-order

accuracy in the velocities can be achieved at a marginal cost. However, if a fourth-order

treatment of the pressure is necessary, a 19-points stencil of the Laplacian operator must be

used instead of the simple 7-point stencil.

(iv.) Efficient iterative solution for pressure: Stencils of the fourth-order Laplacians

given by the projection method are three times wider than the second-order scheme. Such

stencil requires a wider overlapping domains and imposes significant cost on the solution of

pressure. The computation of the residual alone is already three times more expensive than

the second-order projection. Accurate and efficient algorithm solving this Laplacian is needed

to enable the fourth-order method to be useful in practice.

(v.) Parallelisation of tridiagonal systems: The implicitness that gives a higher resolv-

ing power to the compact schemes prevents a simple parallelisation. The compact fourth-

order needs to solve a tridiagonal systems along the direction of approximation. This process

is strictly two-ways sequential, one for the forward elimination and another one on the back-

ward substitution. Therefore when the data along this line are distributed on different

processors, a special implementation are needed. Classical algorithms solving tridiagonal

matrices in parallel are either twice more expensive or requires frequent data transfer. Re-

cent algorithm of Sun [Sun95] allows an efficient algorithm but when the solver are called,

the caller have to had a full knowledge of grid connection which is against the cocept of do-

main decomposition. His algorithm requires two times of a uni-directional communication.

Most of the computer architectures today are able to handle bi-directional communications

and thus we still need more efficient algorithms.

The objective of this work is to answer the mentioned problems by a systematic study.

The first phase of the work is dedicated to the fundamental development of the method where

problem (i.)-(iii.) are solved. The developed algorithm is then evaluated by well known

numerical benchmarks. Once the successful algorithm is developed, we proceed to the second

phase where we are dealing with the problem (iv)&(v.). The code is parallelised and efficient

solver for higher-order discretisation of Poisson is developed.

The main achievement of this work is the highly-accurate fourth-order solver for the

Navier-Stokes equations and the companion novel algorithms namely :

• Arbiatry order divergence-free interpolation

• Divergence-free approximate projection method

• Interface-splitting algorithm for parallel solution of diagonal dominant matrices
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1.3 Outline

In chapter 2, the numerical approximations of each term in the Navier-Stokes equations are

presented and analysed. This chapter is designed to present the development of a fourth-

order method for finite volume discretisation of the Navier-Stokes Equations. A novel in-

terpolation that preserves the discrete divergence-free property of the velocity fields on all

discrete cells is presented. This method is generalised for arbitrary order of accuracy. An-

other fourth-order convective velocity that is not divergence-free is presented for comparison.

Several choices of nonlinear corrections and the role of the pressure term are studied. The

higher resolution properties of the cell-centered deconvolutions for divergence and gradient

calculations are demonstrated.

In chapter 3 , the proposed scheme is evaluated. The necessity of fourth-order approx-

imations of divergence and gradients are numerically verified. Fourier analysis shows that

staggered grids can satisfy the incompressibility constraint better than collocated grids, thus

retaining more accurate information in the flow field. The performance of the fourth-order

scheme is carefully investigated. Despite the fact that higher-order schemes are shown to be

vastly superior to second-order schemes in laminar flows by numerous authors, some recent

papers report disappointing findings in the application of higher-order schemes to turbulent

flows. Gullbrand[Gul00] applies fully-conservative explicit fourth-order scheme of Morinishi

et al.[MLVM98] and Vasilyev[Vas00] to a DNS of turbulent channel flow. Knikker[Kni08] uses

fully-conservative compact fourth-order scheme on the same flows. The grid resolutions used

in their simulations are comparable to those used by the spectral code in [MKM99]. They

both report that differences between second-order and the fourth-order schemes are negli-

gible and significantly differ from the reference solution. Meinke et al.[MSKR02] comment

that the sixth-order compact scheme is comparable with the second-order upwind scheme in

large-eddy simulation of turbulent channel and jet flows. Shishkina and Wagner [SW07] also

note a similar finding in their DNS of turbulent pipe flow but point out that the fourth-order

scheme improve the third- and the fourth-order statistics. In this work we will show that

in a turbulent channel flow, our fourth-order scheme can deliver a comparable result to the

second-order scheme using only eight times less number of cells. The goal of this chapter is to

verify the fourth-order convergence rate and carefully investigate whether those unfavourable

findings will be observed in the proposed scheme.

The interface-splitting presented in Chapter 4 allows an efficient way of solving tridi-

agonal systems in parallel on distributed-memory machines. Factors determining the ac-

curacy and efficiency of the algorithm are presented and the error bound is derived. The

performance and scalability of the algorithm are evaluated on Gigabit cluster and ALTIX

4700.

Chapter 5 presents the divergence-free approximate projection which ensures the fourth-
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order accuracy of the spatial approximations without being excessively expensive. According

to the projection method, we have to solve the 19-point Laplacian in order to preserve the

fourth-order accuracy of the approximation used in the momentum equation. This would

need three ghost cells. In second-order codes, two ghost cells are usually sufficient. Im-

plementation of such Laplacian would need to engineer the whole code. The proposed

approximate projection method presented in this chapter allows the fourth-order scheme

to be added to second-order codes without modifying the number of ghost cells. The de-

veloped algorithm needs to solve only 13-point Laplacian without recomputing the diver-

gence.

The presented numerical algorithms are combined and implemented in the MGLET

code. This code has been developed over several decades and currently belong to Fachge-

biet Hydromechanik, Technische Universität München. Detail information on the numerical

approaches used in this code can be found in [Man04]. In chapter 6, the implementation of

the parallel compact fourth-order scheme is evaluated. The parallel version is first compared

to the sequential version using the turbulent channel flow Reτ = 180. The parallel version

is then used to simulate the turbulent channel flow up to Reτ = 950. The grid resolutions

necessary to achieve good predictions of the first- and second-order statistics are identified.

The scalability of the parallelised fourth-order scheme is finally compared to the parallel

version of the second-order scheme.



2 Finite Volume Discretisation of

Navier-stokes on Staggered Grids

In this chapter we define the governing equations of incompressible fluids we intend to solve

using a finite-volume method. We then describe our staggered grid system. Next, the numer-

ical approximations of each term in the Navier-Stokes equations are discussed, follows by the

projection method. Finally, we close the chapter by the Fourier analyses of the approxima-

tions of convolution, differentiation and the nonlinear terms.

2.1 Navier-Stokes equation

We solve the Navier-Stokes equations for incompressible flows of a Newtonian fluid in absence

of external forces. The integral forms of the conservation laws of mass and momentum used

for finite volume methods read as

∮

A

u ·ndA = 0 (2.1)

∂

∂t

∫

Ω

udΩ +

∮

A

(uu) ·ndA = ν

∮

A

TdA −
1

ρ

∮

A

p ·ndA (2.2)

Here, u defines the velocity vector, p the pressure, T the strain rate tensor, ρ the density

and ν the kinematic viscosity of the fluid while n is the unit vector on dA pointing outside

of the volume Ω.

2.2 Staggered grid system

On Cartesian grids, a system of staggered grids can be set up by putting collocated grid

points along a real line x using a strictly increasing function ξ(i), xi = ξ(i), i = 0, ..., nx+1.

Staggered grid points are defined by xsi = 1
2
(xi + xi+1), i = 0, ..., nx. The control volume

ΩSi of the momentum uis is defined on the closed interval [xi, xi+1], likewise the control

volume of the pressure cells is defined by Ωi = [xsi−1, xsi]. In this setting, half indices mark

the position of the control surface of the corresponding control volumes (full indices) e.g.

xsi+1/2 is the x position of the East face of ΩSi which is corresponding to xi+1. This leads to
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the following mapping between two indices, xsi+1/2 = xi+1 and xi+1/2 = xsi. We explicitly

call the vector of staggered grid point as xs to emphasize that xsi = 1
2
(ξ(i) + ξ(i + 1)) 6=

ξ(i + 1
2
). This setting allows an accurate calculation of the divergence on the pressure

cell because surfaces of pressure cells are placed exactly at the middle of the momentum

cells.

The finite volume method describes the changes of a volume-averaged quantity by

the net fluxes on the surface enclosing that control volume. These fluxes are surface-

averaged quantity. In a second-order context, pointwise, cell-averaged and surface-averaged

values are interchangeable because the second-order local truncation error is acceptable.

In higher-order context, they are not and must be well identified. In this work, a cell-

averaged value of f defined on a collocated control volume Ωi,j,k = △xi△yj△zk is denoted

by

[f ]xyz
i,j,k =

1

Ωi,j,k

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

f(x, y, z)dx dy dz. (2.3)

Accordingly, the cell-averaged value of an x-staggered variable g on ΩSis,j,k = △xsi△yj△zk

is represented by

[g]xyz
is,j,k =

1

ΩSis,j,k

∫ xsi+1/2

xsi−1/2

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

g(x, y, z)dx dy dz. (2.4)

In order to make a distinction of averaged values defined on staggered grid points from the

collocated ones, the s is appended to the indices. Here is stands for the i-th staggered grid

point, x = xs(i). For example [u]xyz
is,j,k is half-a-cell staggered from [p]xyz

i,j,k in the positive

x-direction. Surface and line-averaged values can be defined in a similar way by reducing

the dimension of integration to two and one respectively. For example [p]yz
is,j,k is surfaced-

averaged value of p on the yz-plane located at xsi.

u(is+1,j,k)

w(i,j,ks+1)

u(is,j,k)

w(i,j,ks)

p(i,j,k)

p(i+1,j,k)

Figure 2.1: Arrangement of variables on a nonuniform staggered grids consisting of pressure
cells (solid), u-momentum (dash) and w-momentum (dotted) cells.
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2.3 Discrete form of Navier-Stokes

equations

In this section, we introduce the finite volume discretisation of the Navier-Stokes equations

and explain the necessity of the mass conservation on the momentum cells.

2.3.1 Conservation of mass

In incompressible flows, the conservation of the volume flux is equivalent to the conservation

of the mass flux and they will be used interchangeably. On staggered grids, it is convenient

to enforce the mass conservation on the control volumes of the pressure (Ωi) where the

divergence [div]xyz
i,j,k from these cells is given by

[div]xyz
i,j,k△xi△yj△zk =

(
[u]yz

i+ 1

2
,j,k

− [u]yz

i− 1

2
,j,k

)
△yj△zk

+
(
[v]xz

i,j+ 1

2
,k
− [v]xz

i,j− 1

2
,k

)
△xi△zk

+
(
[w]xy

i,j,k+ 1

2

− [w]xy

i,j,k− 1

2

)
△xi△yj

(2.5)

The mass conservation dictates that this divergence is zero.

2.3.2 Conservation of momentum

Equation (2.2) describes the conservation of the momentum per unit mass. On a staggered

grid, we conserve the three components: [u]xyz
is,j,k, [v]xyz

i,js,k and [w]xyz
i,j,ks for the momentum in x,

y and z respectively. Let us consider the discrete form of the momentum equation for the

first component:

ΩSis,j,k

∂[u]xyz
is,j,k

∂t
= −Cis,j,k + νDis,j,k −

1

ρ
Pis,j,k (2.6)

The terms Cis,j,k, Dis,j,k and Pis,j,k are shorthand notations of the net convective,

diffusive and pressure fluxes, respectively. On a Cartesian grid they are defined as fol-

lows:

Cis,j,k =
(
[uu]yz

is+ 1

2
,j,k

− [uu]yz

is− 1

2
,j,k

)
△yj△zk

+
(
[vu]xz

is,j+ 1

2
,k
− [vu]xz

is,j− 1

2
,k

)
△xsis△zk

+
(
[wu]xy

is,j,k+ 1

2

− [wu]xy

is,j,k− 1

2

)
△xsis△yj,

(2.7)
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Dis,j,k =

([
∂u

∂x

]yz

is+ 1

2
,j,k

−

[
∂u

∂x

]yz

is− 1

2
,j,k

)
△yj△zk

+

([
∂u

∂y

]xz

is,j+ 1

2
,k

−

[
∂u

∂y

]xz

is,j− 1

2
,k

)
△xsis△zk

+

([
∂u

∂z

]xy

is,j,k+ 1

2

−

[
∂u

∂z

]xy

is,j,k− 1

2

)
△xsis△yj,

(2.8)

Pis,j,k =
(
[p]yz

is+ 1

2
,j,k

− [p]yz

is− 1

2
,j,k

)
△yj△zk

+
(
[p]xz

is,j+ 1

2
,k
− [p]xz

is,j− 1

2
,k

)
△xsis△zk

+
(
[p]xy

is,j,k+ 1

2

− [p]xy

is,j,k− 1

2

)
△xsis△yj.

(2.9)

Here we introduce a distinction of the two velocities in the convective term into convective

velocities and the convected velocities. The convective velocities are denoted by Sans-serif

fonts u, v and w. The convected velocities (momentum per unit mass) are denoted by Roman

font u, v and w. It is important to note that the convective velocities have to be conservative,

i.e. the divergence over the momentum cells has to be zero. If the convective velocities were

not mass-conservative, an additional source term,

[s]xyz
is,j,k ≈ [div]xyz

is,j,k[u]xyz
is,j,k (2.10)

will be added to the r.h.s of momentum equation (Eq.(2.6)). Although this source term

does not affect the global conservation of the momentum due to the telescoping property of

FVM, the quality of the local solution is degraded and the Galilean invariant is violated as

well.

All the discrete equations in this section are exact and no simplifications or approxi-

mations have been introduced so far. Approximation errors will be introduced when these

fluxes are approximated from the volume-averaged values.

2.4 Numerical Approximations

In this section, we describe, for each term in the discrete Navier-Stokes equations, how it can

be approximated by a fourth-order method. First the approximation for mass flux is pre-

sented, followed by the cell-centered approximation for the pressure. Then approximations

of convective and diffusive fluxes for the momentum using the compact fourth-order approxi-
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mations of Kobayashi[Kob99] are briefly described. A novel approximation of divergence-free

convective velocities is presented. Finally the nonlinear corrections for staggered grids are

discussed.

2.4.1 Cell-centered deconvolution for the computation of mass

fluxes

The enforcement of the mass conservation in Eq.(2.5) requires the approximation of the

surface-averaged values at the center of the momentum cells from the volume-averaged ones,

which is called deconvolution. The second-order cell-centered deconvolution (the mid-point

rule) can be improved to fourth-order by using this explicit formula:

[u]yz
is,j,k = β1[u]xyz

is−1,j,k + β2[u]xyz
is,j,k + β3[u]xyz

is+1,j,k. (2.11)

The coefficients of this deconvolution can be found by Taylor expansion or the method of

undetermined coefficients. On uniform grids they are β1 = β3 = − 1
24

and β2 = 13
12

. Let

his−1 = △xsis−1, his = △xsis and his+1 = △xsis+1 the coefficients on non-uniform grids are

given by the following formulas:

β1 = −
h2

is

4(his−1 + his)(his−1 + his + his+1)
, β2 = 1 − (β1 + β3),

β3 = −
h2

is

4(his + his+1)(his−1 + his + his+1)
.

Here we do not explicitly compute β2 from the grid spacing, but the consistency crite-

rion is used instead. We call this approximation cell-centered deconvolution because it ap-

proximates the surface-averaged values at the center of the cells from the volume-averaged

ones.

2.4.2 Cell-centered deconvolution for the

pressure

The fourth-order deconvolution of the pressure on the surface of the momentum cells reads

[p]yz
i,j,k = β4[p]xyz

i−1,j,k + β5[p]xyz
i,j,k + β6[p]xyz

i+1,j,k. (2.12)

Note that, even if the stencil is exactly the same as in the previously introduced cell-centered

deconvolution, the coefficients can be different when the grid is not uniform. This is because

the deconvolved values are not lying on the center of the cells and the following coefficients
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must be used :

β4 =
2h2

is + hishis+1 − his−13his − his−1his+1

(his + 2his−1 + his−2)K1
, β5 = 1 − (β4 + β6),

β6 = −
2h2

is−1 + his−1his−2 − his−13his − hishis−2

(his−1 + 2his + his+1)K1

,

K1 = his−2 + 2his−1 + 2his + his+1.

This cell-centered deconvolution is fourth-order on uniform grids and third-order on non-

uniform grids. Nonetheless, it is more accurate than other approximations presented here,

as will be demonstrated later in section 2.7.

2.4.3 Intercell deconvolution for the computation of momentum

fluxes

According to Eq.(2.7), the convected velocities u on the surface enclosing the staggered

control volumes are needed. In contrast to Eq.(2.11) where the deconvoluted quantity is

located at the center of the volume-averaged one, here the desired surface-averaged fluxes

are needed at the interfaces between momentum cells i.e. between the volume-averaged

quantities. We call this an intercell-deconvolution. These surface-averages of the momentum

are positioned at nonstaggered grid points e.g. xi and they can be approximated by the

following fourth-order compact deconvolution [Kob99]:

α1[u]yz
i−1,j,k + [u]yz

i,j,k + α2[u]yz
i+1,j,k = β7[u]xyz

is−1,j,k + β8[u]xyz
is,j,k. (2.13)

The stencil of this approximation is depicted in Fig.2.2. Note that [u]yz
i,j,k here is equivalent

to [u]yz

is− 1

2
,j,k

in Eq.(2.7). On uniform grids, α1 = α2 = 1
4

and β7 = β8 = 3
4
. The coefficients

on non-uniform grids are:

α1 =
h2

is

(his + his−1)2
, α2 =

h2
is−1

(his + his−1)2
,

β7 =
2h2

is(his + 2his−1)

(his + his−1)3
, β8 =

2h2
is(his−1 + 2his)

(his + his−1)3
.

It is possible to tune these coefficients in the Fourier space and obtain a better resolution

for high wave numbers [Lel92, KL96], however, at the expense of the asymptotic conver-

gence rate. In this work, we aim to construct a genuine fourth-order numerical scheme

for the Navier-Stokes equations, therefore only formal fourth-order schemes are studied

here.
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2.4.4 Intercell differentiation for diffusive fluxes

The compact fourth-order approximation of the first derivative, for example [∂u/∂z]yz
is+1/2,j,k

in Eq.(2.8), is approximated based on the same stencil used earlier in Eq.(2.13) and the

differentiation formula is given by

α3

[
∂u

∂x

]yz

i−1,j,k

+

[
∂u

∂x

]yz

i,j,k

+ α4

[
∂u

∂x

]yz

i+1,j,k

= β9[u]xyz
is−1,j,k + β10[u]xyz

is,j,k. (2.14)

The coefficients on non-uniform grids are

α3 =
his(h

2
is−1 + his−1his − h2

is)

K
, α4 =

(h2
is + his−1his − h2

is−1)his−1

K
,

β9 =
−12his−1his

K
, β10 =

12his−1his

K
,

K = (his + his−1)(h
2
is + 3his−1his + h2

is−1).

The fourth-order intercell deconvolution given previously is fourth-order accurate as well on

nonuniform grids but the compact differentiation here is third-order on nonuniform grids.

However, the transfer function of Eq.(2.14) is superior to the one of Eq.(2.13) and therefore

the fourth-order convergence is not compromised as will be shown later.

2.4.5 Convective velocities

The convective fluxes in Eq.(2.7) consist of the product of convective velocity (u, v and

w) with the convected velocity u, v and w. Naturally without being concerned about the

mass conservation over momentum cells, one could use the deconvoluted momentum (per

unit mass) [u]yz
i,j,k, in Eq.(2.13) as the convective velocity [u]yz

i,j,k. The approximation of

the remaining convective velocities e.g. [v]xz
is,js,k and [w]xy

is,j,ks can be done in different ways

using the known cell-averaged and face-averaged velocities. Piller and Stalio [PS04] pro-

pose to use compact interpolations by first approximating the velocities on the surfaces

of the pressure cell e.g. [w]xy
i,j,ks and then apply compact interpolation to shift these ve-

locities to the faces of momentum cells e.g. [w]xy
is,j,ks where they can be used to convect

[u]xyz
is−1,j,k [u]xyz

is,j,k

[u]yz
i−1,j,k [u]yz

i,j,k [u]yz
i+1,j,k

Figure 2.2: The stencil of compact fourth-order intercell deconvolution in Eq.(2.13).
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the momentum fluxes. Here we present a more compact form of a fourth-order approxi-

mation. This approximation only utilizes the information on the two cells enclosing the

interested surface (see Fig.2.3). The compact approximation for the convective velocity

[w]xy
is,j,ks reads

[w]xy
is,j,ks = k1 − k2 − k3 + R(△4) (2.15)

where,

k1 =
6

8

(
[w]xyz

is− 1

2
,j,ks

+ [w]xyz

is+ 1

2
,j,ks

)

k2 =
1

8

(
[w]yz

is+1,j,k − 2[w]yz
is,j,k + [w]yz

is−1,j,k

)

k3 =
1

8

(
[w]xy

is− 1

2
,j,ks− 1

2

+ [w]xy

is+ 1

2
,j,ks− 1

2

+ [w]xy

is+ 1

2
,j,ks+ 1

2

+ [w]xy

is− 1

2
,j,ks+ 1

2

)

The leading remainder terms are

R = −
1

384

∂4w

∂x4
△x4 −

1

192

∂4w

∂x2z2
△x2△z2 −

1

1920

∂4w

∂z4
△z4.

This stencil is as small as the second order stencil thus it does not require extra boundary

closures. The surface-averaged velocities obtained from the two deconvolutions in Eq.(2.13)

and Eq.(2.15) can be used as convective velocities. These convective velocities are fourth-

order accurate but not necessarily mass-conservative. We denote these convective velocities

as T4.

J
J

JJ]

[w]xy

is,j,k+ 1

2

[w]xyz

is− 1

2
,j,ks

[w]xyz

is+ 1

2
,j,ks

[u]xyz
is,j,k

[p]xyz
i,j,k

Figure 2.3: Approximation stencil of [w]xy

is,j,k+ 1

2

in Eq.(2.15). The solid box is the pressure cell,

the dashed box is the u-momentum cell and dotted boxes are the w-momentum
cells.
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2.4.6 Divergence-free convective velocities

The importance of the divergence-free property of the convective velocities has been ad-

dressed by Verstappen and Veldman [VV03]. They show that it is a necessary condition for

the energy conservation. In their work, the fourth-order solution of the convective terms is

not computed from a direct fourth-order approximation, but rather a Richardson extrap-

olation from second-order solutions of a small control volume and a larger one. A direct

computation of fourth-order convective velocities is thus avoided. This approach ensures the

mass and energy conservation on momentum cells but it is using a stencil width of 7-h in

each direction for one momentum cell. This wide stencil can reduce the resolution properties

of the scheme. In this section we propose a new divergence-free interpolation which only

requires a stencil width of 4-h.

Concept

The simplest way of computing divergence-free convective velocities is to use a linear combi-

nation of the volume fluxes that are already divergence-free. This means we should compute

the convective velocities from the volume fluxes over the surface of the pressure cells where

the continuity is enforced. For example, the convective velocity of the u-momentum can

be computed from the volume fluxes on neighbouring pressure cells sharing the same x-

coordinate. The remaining difficulty is that we have to work with two directions of fluxes.

In the first, the fluxes are aligned with the momentum e.g. the approximation of u for the u-

momentum. In the second, the fluxes are normal to the momentum e.g. the approximation of

w for the u-momentum. These fluxes are defined on different positions and when the grid was

not uniform, they would require a different set of coefficients.

Now, we consider the discrete divergence written as a summation of matrix-vector

multiplications:

Dxu + Dyv + Dzw = div. (2.16)

Any linear transformations matrix T applied to this equation will not change the sum-

mation. This means if the same interpolation was used for all three velocities, the mass

conservation will remain unchanged. Using constant coefficient is of course one of the pos-

sibilities, but this does not give a fourth-order convergence. In order to use the same in-

terpolation, we have to convert one of the fluxes into a compatible form with the other

one.

The interpolation of the fluxes aligned with the momentum can be done easily using

Lagrange interpolations. Therefore we choose to convert the fluxes normal to the direction of

the momentum. Inspired by the primitive value reconstruction of Gaitonde and Shang[GS97],

we convert the fluxes normal to the direction of the momentum to line averaged ones such
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that the same interpolation can be used. To this end, we invoke the second fundamental

theorem of Calculus:

∫ b

a

f(x) = F (b) − F (a), (2.17)

F =

∫
f(x). (2.18)

In two dimensions, the surface-averaged value of the volume flux on the top of pressure cell

and the associated line-averaged primitive are related by

[w]xy
i,j,ks =

1

△xi

(
[W ]yis,j,ks − [W ]yis−1,j,ks

)
. (2.19)

The primitive values can be reconstructed at the top of the East and West faces of the

pressure cell using this formula. We can now interpolate these values using the same method

as was used for u. After that, the interpolated primitive values can be converted back

to surface-averaged values using the same relationship. These two conversions are exact.

However, a direct implementation of the above method is expensive. A total floating point

operations of 8m is required for the (2m)th-order interpolation, instead of just 4m− 1. The

novelty of our approach is the elimination of these extra costs.

In what follows, we derive a method to approximate the second-order divergence-free

convective velocities and generalize the method for arbitrary order of accuracy.

Second-order divergence-free convective velocities

To derive an expression for the convective velocities which is divergence-free and second-

order accurate, we start from the mass conservation equation of the u-momentum cell on

ΩSi,j,k:

[div]xyz
is,j,k△xsi△yj△zk =

(
[u]yz

i+1,j,k − [u]yz
i,j,k

)
△yj△zk

+
(
[v]xz

is,js,k − [v]xz
is,js−1,k

)
△xsi△zk

+
(
[w]xy

is,j,ks − [w]xy
is,j,ks−1

)
△xsi△yj

(2.20)

Applying the second fundamental theorem of Calculus to the above equation leads to

[div]xyz
is,j,k△xsi△yj△zk =

(
[u]yz

i+1,j,k − [u]yz
i,j,k

)
△yj△zk+

[(
[V]zi+1,js,k − [V]zi,js,k

)
−
(
[V]zi+1,js−1,k − [V]zi,js−1,k

)]
△zk+[(

[W]yi+1,j,ks − [W]yi,j,ks

)
−
(
[W]yi+1,j,ks−1 − [W]yi,j,ks−1

)]
△yj.

(2.21)
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The divergence of the convective velocities is expressed in terms of variables given at xi and

xi+1. A desired variable f at xi can be obtained by a second-order interpolation using the re-

spective variables from xsi−1 and xsi by the following formula

fi = γi,1fis−1 + γi,2fis, (2.22)

where γi,1 and γi,2 are the respective interpolation coefficients. The reconstruction of the

primitive values of w on the pressure cells can be started by assuming that [W]yis−1,j,k is

known and the subsequent primitive values can be computed using Eq.(2.19) and Eq.(2.22).

Together with Eq.(2.19) and Eq.(2.22) we obtain

[w]xy
is,j,ks △xis =γi+1,1[W]yis,j,ks + γi+1,2[W]yis+1,j,ks

−γi,1[W]yis−1,j,ks − γi,2[W]yis,j,ks.
(2.23)

After regrouping of variables, the convective velocity on the top surface of [u]xyz
is,j,k is given

by

[w]xy
is,j,ks = θ0 [W]yis−1,j,ks + θ1 [w]xy

i,j,ks + θ2 [w]xy
i+1,j,ks , (2.24)

with,

θ0 =
1

△xis

(γi+1,1 + γi+1,2) − (γi,1 + γi,2)),

θ1 =
△xi

△xis
((γi+1,1 + γi+1,2) − γi,2) .

θ2 =
γi+1,2△xi+1

△xis

.

The coefficient of the unknown primitive value, [W]yis−1,j,k is reduced to a difference between

the sum of two sets of the interpolation coefficients. The consistency dictates that the sum of

any set of interpolation coefficients is equal to unity thus θ0 = 0 and [W]yis−1,j,k can be removed

from the interpolation. This leads to a convenient way of computing convective velocities us-

ing the new set of interpolation coefficients, θ. In this formulation, the construction of prim-

itive values and the back transformation are fully avoided.

The net volume flux leaving the control volume of Ωis,j,k under the second-order divergence-

free interpolation is

[div]xyz
is,j,k = γi,1[div]xyz

i,j,k + γi+1,2[div]xyz
i+1,j,k. (2.25)

This equation indicates that the imbalance of mass fluxes at the momentum cell is of the same

order of magnitude as the one enforced at the pressure cells.
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Fourth-order divergence-free convective velocities

A fourth-order Lagrange interpolation formula for the convective velocity [u]yz
i,j,k at the cell

face in x-direction of the u momentum can be obtained by

[u]yz
i,j,k = γi,1[u]yz

is−2,j,k + γi,2[u]yz
is−1,j,k + γi,3[u]yz

is,j,k + γi,4[u]yz
is+1,j,k (2.26)

The coefficients of this interpolation are the same as the ones for a fourth-order Lagrange

interpolation of pointwise values. We can proceed with the similar procedure as in the

second-order divergence-free interpolation and arrive at

[w]xy
is,j,ks = θis,1[w]xy

i−1,j,ks + θis,2[w]xy
i,j,ks + θis,3[w]xy

i+1,j,ks + θis,4[w]xy
i+2,j,ks. (2.27)

We call this convective velocity DF4. On uniform grids, the two sets of interpolating coef-

ficients γi,1−4 and θis,1−4 are [−1
16

, 9
16

, 9
16

, −1
16

], in numerical order. The divergence-free inter-

polation of the convective velocities can be generalised for arbitrary order. Suppose that

a (2m)th-order Lagrange interpolation is used instead of Eq.(2.26), then the (2m)th-order

divergence-free interpolation of the convective velocity on the top surface of the u-momentum

cell is given by

[w]xy
is,j,ks =

2m∑

l=1

(
θis,l [w]xy

i−m+l,j,ks

)
(2.28)

with,

θis,l =

(
2m∑

j=l

γi+1,j −
2m∑

j=l+1

γi,j

)
△xi−m+l

△xis

(2.29)

Identical coefficients are used for v. This higher-order divergence-free interpolation can be

applied for any position in the field.

2.4.7 Nonlinear correction

The convective term [ujui] is the origin of the nonlinearity in the Navier-Stokes equations.

This term is responsible for energy transfer between different scales and wave components

smaller than the Nyquist limit can be created by it. In finite difference methods the product

of uj and ui is the exact value of ujui. On the other hand, the approximation of the

nonlinear term in finite volume methods using [ujui] = [uj][ui] is only second-order accurate.

Additional operations are needed to achieve higher order accuracy in finite volume methods.

In this work we use variants of the nonlinear correction approach proposed by Pereira et

al.[PKP01].
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A fourth-order accurate approximation of a nonlinear term can be obtained by adding

some corrections to the second-order approximation:

[fg]yz = [f ]yz[g]yz +
△y2

12

∂f

∂y

∂g

∂y
+

△z2

12

∂f

∂z

∂g

∂z
+ O

(
△y4,△z4

)
. (2.30)

The original formula of [PKP01] computes the correction term from the cell-averaged values.

First the second-order interpolation is used to compute the face-averaged values then the

computed values are used for the approximation of the first-derivative. Here, we use the

surface-averaged values which are readily available from the approximation of the momentum

fluxes (Eq.(2.13)). The use of the surface-averaged values allows a cheaper computation and

better resolution characteristics. The fourth-order approximation for the convection term

on the East face of u-momentum is given by:

[uu]yz
i+1,j,k = [u]yz

i+1,j,k[u]yz
i+1,j,k +

1

48

(
[u]yz

i+1,j+1,k − [u]yz
i+1,j−1,k

)2

+
1

48

(
[u]yz

i+1,j,k+1 − [u]yz
i+1,j,k−1

)2

.
(2.31)

On the top face we use the following formula

[wu]xy
is,j,ks = [w]xy

is,j,ks[u]xy
is,j,ks

+
1

24

(
[u]xy

is+1,j,ks − [u]xy
is−1,j,ks

)(
[w]xyz

i+1,j,ks − [w]xyz
i,j,ks

)

+
1

24

(
[u]xy

is,j+1,k − [u]xy
is,j−1,k

)(
[w]xz

i,js,k − [w]xz
i,js−1,k

)
.

(2.32)

The proposed forms above are one of many possibilities. In section 2.7.2 we consider some

other possible forms of nonlinear corrections. However, the proposed forms here are the most

accurate.

2.5 Projection method

When the momentum equation is integrated in time, the new velocity fields are not necessar-

ily divergence-free and thus usually called provisional velocities. One of the most successful

approaches ensuring the mass-conservation after the time integration is the fractional time

step method (FTSM) which operates on these provisional velocities. Traditionally there are

two classes of the FTSM namely pressure-Poisson and projection methods[BCM01]. The

pressure-Poisson method does not truly solve for the pressure itself, instead, it solves for

a pressure-like variable φ which is a Lagrange multiplier for a divergence-free velocity field

that is closest to the provisional velocity field. On the other hand, projection methods

solve for the divergence-free field which has the same vorticity as the provisional velocity.



20 2 Finite Volume Discretisation of Navier-stokes on Staggered Grids

Both approaches have to solve a Poisson equation, but with a different form of the discrete

Laplacians.

Consider the explicit Euler time integration of u-momentum. Let un be the velocity

and Hn be the contribution from convective and diffusive terms at time tn. Let u∗ be the

provisional velocity evaluated without the pressure term and un+1 be the divergence-free

velocity field at the new time step when a suitable p is used. The equations for u∗ and un+1

are shown below.

u∗ = un + dtHn (2.33)

un+1 = un + dtHn −
dt

ρ
∇p (2.34)

The divergence of the difference between (2.33) and (2.34) gives the Poisson equation for the

pressure,

∇ ·∇p =
ρ

dt
∇ ·u∗. (2.35)

This equation is identical to the one obtained from taking the divergence of the momen-

tum equation. Thus the pressure found in (2.35) is essentially the pressure at time tn.

Once the solution of pressure is obtained, the divergence-free velocity field can be recovered

by

un+1 = u∗ −
dt

ρ
∇p. (2.36)

The new velocity is divergence free and its vorticity is equal to that of the provisional velocity

because,

∇× un+1 = ∇× u∗ −
dt

ρ
∇×∇p = ∇× u∗ (2.37)

In this derivation, the projection method and the pressure-Poisson method are essentially

the same. They will go separate ways when the approximations of gradient and diver-

gence are introduced. Suppose discrete divergence operators D and G are used to approx-

imate the divergence and gradient, respectively. Then the discrete form of equation (2.35)

is

DGp =
ρ

dt
Du∗. (2.38)

The projection method adheres to this derivation and the discrete Laplacian is given by

L = DG. The Laplacian in a pressure-Poisson formulation represents the minimization

which is not related to the Navier-Stokes equations and thus any discrete Laplacian will
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suffice. Solving Eq.(2.38) by a direct method and correcting the velocity using the respective

discrete gradient will result in a machine accurate divergence. Using a Laplacian operator

other than this one will leave a significant divergence in the velocity fields, even when solved

with a direct method. When the Poisson equation is solved by iterative methods, pressure-

Poisson formulations need to recalculate the divergence and then start the iteration again.

On the other hand, projection methods only need to compute the divergence once. Therefore

the projection method offers a clear computational advantage over the pressure-Poisson

formulation when aiming at small mass-conservation errors. The projection operator deriving

the method’s name is defined as

P = I −G(DG)−1D.

The derivation shown here is equivalent to the Hemholtz-Hodge decomposition in [Den03]

which states that any vector field u∗ can be uniquely decomposed into two orthogonal fields:

u a divergence-free field and ∇p a gradient of a potential field.

However, it should be noted that the projection method does not conserve the L2-norm

of the provisional velocity. Let ( · , · ) be a scalar product of two vectors, the L2-norm of the

Helmholtz-Hodge decomposition is given by

(u∗,u∗) = (u,u) + (∇p,∇p) + 2(∇p,u).

Because the two components are orthogonal, the third term on the r.h.s vanishes and we

have

(u∗,u∗) = (u,u) + (∇p,∇p),

(u∗,u∗) ≥ (u,u).

If the divergence-free field u were to have the same L2-norm as u∗, the ∇p and u can

not be orthogonal which is against the underlying concept of projection methods. This

equation indicates that the energy is strictly decreasing, when the provisional velocity was

not divergence-free. This fact is used by Chorin[Cho68] to show the stability of the projection

method. Therefore the projection method is stable, but not energy-conserving. Even if the

numerical scheme for the momentum equation was energy conserving, a reduction in L2

norm of the momentum can be expected.

In fourth-order context, we have the freedom to use second-order or fourth-order ap-

proximations for D and G. This leads to four possible choices of the Laplacian namely (i)

D2G2, (ii) D2G4, (iii) D4G2 and (iv) D4G4. The first and the fourth Laplacian are formal

second-order and fourth-order, respectively. The other two are non-formal. In an existing

second-order code, the second-order projection method (D2G2) is usually implemented. On
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staggered grids this D2G2 is a well known 7-points Laplacian which can be solved in a very

efficient way. The most important question here is whether D2G2 is sufficient to deliver a

fourth-order accurate solution of the velocities. In this chapter we restrict the study to the

two formal Laplacians. In-depth investigation of these four Laplacians will be presented in

chapter 5.

2.5.1 Discretisation of Poisson equation

On uniform grids, the component in x direction of the fourth-order Laplace operator given

by the projection method reads

∂2 [p]xyz
i,j,k

∂x2
=

[p]xyz
i±3,j,k − 54 [p]xyz

i±2,j,k + 783 [p]xyz
i±1,j,k − 1460 [p]xyz

i,j,k

576
. (2.39)

On nonuniform grids it is convenient to construct the Laplacian from the matrices D4x and

G4x which are the approximations of the cell-averaged values of divergence and gradient,

respectively. They are given by

D4x =
Ic(is) − Ic(is − 1)

xs(is) − xs(is − 1)
and G4x =

I ′
c(i + 1) − I ′

c(i − 1)

x(i + 1) − x(i)
,

where Ic and I ′
c are the cell-centered deconvolutions defined in Eq.(2.11) and Eq.(2.12),

respectively. The consistent Laplacian operator in x-direction is simply given by L4x =

D4xG4x and the three-dimensional Laplacian is

L4 = D4xG4x + D4yG4y + D4zG4z. (2.40)

In our code, we use fast Fourier transformations in the xy-plane and Gaussian elimination

in z direction. After solving the Poisson equation, the divergence-free velocity is recovered

by Eq.(2.36) with the respective discrete gradient.

2.6 Boundary closures

Near the boundary we cannot use all of the formula proposed earlier due to lack of in-

formation outside the domain. Either asymmetric stencils, a certain kind of extrapolation

or lower-order stencils must be used. Carpenter et al.[GA93] pointed out that high-order

closures might be unstable in a finite difference context. For example, the fourth-order

scheme must be closed with third-order closure to ensure stability. In finite volume con-

text, Kobayashi[Kob99] reported that the fourth-order closure is necessary for a fourth-order

global accuracy. Neumann boundary conditions are intensively studied in his work. In this
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section we consider the treatment of the solid surface as a Dirichlet boundary condition

depicted in Fig.2.4. Approximation stencils near solid surfaces should not extend too much

into the inner domain because the strong differences in the velocity gradient near the wall

and in the inner domain decrease the accuracy. The compact fourth-order schemes require

only the two nearest cells at the boundary thus it is less sensitive to this problem compared

to the explicit fourth-order scheme.

(b)(a)

ks

ks+1

k+1

k

ks−1

Figure 2.4: Arrangement of the closure stencils near the Dirichlet boundary condition: (a)
compact differentiation of collocated variables and (b) compact deconvolution
and differentiation of staggered variables. Solid rectangles are the collocated
cells(u) and dashed rectangles are staggered cells (w). Known values are shown
by the circles and the arrows represent the position of the approximated surface-
averaged values.

2.6.1 Closures for collocated variables

For the deconvolution of collocated variables at the boundary (Fig.2.4a), the value given

by the boundary can be used directly in the deconvolution formula of the inner domain

(Eq.(2.13)). The boundary value can be moved to the right-hand-side and the resulting

linear system can be solved by the Thomas algorithm. The only closure needed here is

for the differentiation (Eq.(2.14)). In our work we use a third-order closure at the bound-

ary:

[
∂u

∂z

]xy

is,j,0s

+ 2

[
∂u

∂z

]xy

is,j,1s

=
3

2hz

(
[u]xyz

is,j,1 + [u]xyz
is,j,2

)
−

3

hz
[u]xy

wall (2.41)

This closure has the same convergence rate as the differentiation in the inner domain when

the grid is not uniform. Thus using this third-order differentiation here does not degrade

the global accuracy.

2.6.2 Closures for staggered variables

The first staggered cell in the domain is half-a-cell far from the boundary (Fig.2.4b) and

the inter-cell deconvolution in Eq.(2.13) is closed by the following fourth-order approxima-
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tion

[w]xy
i,j,1 +

19

21
[w]xy

i,j,2 =
11

7
[w]xyz

i,j,1s +
1

7
[w]xyz

i,j,2s +
4

21
[w]xy

wall. (2.42)

The third-order closure for the differentiation in Eq.(2.14) is

[
∂w

∂z

]xy

i,j,1

−
11

13

[
∂w

∂z

]xy

i,j,2

=
36

23h
[w]xyz

i,j,1s −
12

23h
[w]xyz

i,j,2s −
24

23h
[w]xy

i,j,wall. (2.43)

It is noteworthy that using deconvolved values for the differentiation is not recommended

even though its asymptotic errors are fourth-order. The nth order leading truncation term

of the deconvolution transfers into (n− 1)th order for the differentiation thus using them for

the differentiation does not improve the accuracy.

In the cell-centered deconvolution and the approximation of convective velocities, we

simply set the velocity to the wall value, for example zero in the case of a no-slip wall.

The pressure cell within the wall is assumed to be equal to the pressure at the first cell in

the domain. This ensures a second-order accurate enforcement of ∂p
∂n

= 0 at the wall. A

similar extrapolation is also used by Verstaapen and Veldman in [VV03]. These treatments

are sufficient for the fourth-order convergence which will be shown numerically in the next

chapter.

2.7 Analysis

The accuracy of the NSE solver is determined by every single approximation step in the code.

It is important to understand how large the errors are being generated in each term. Fourier

analysis provides us with a quantitative error for each wave number. The convective and

diffusive terms used in this work have been studied already in [Kob99] and [PS04]. In this

section we perform a comparative study of numerical errors in the Fourier space. The fourth-

order compact deconvolution, compact differentiation, and cell-centered deconvolution are

compared.

2.7.1 Comparative Fourier analysis of linear

term

In finite difference context, Fourier analysis of the discretisations of convective and diffusive

terms lead to the study of the modified wave number k∗ and the modified k2∗, respectively. In

finite volume context, where the PDEs are integrated, the quantifications of the accuracy in

Fourier space leads to the modified amplitude and modified wave number. These two quan-

tities provide us a great deal of information. However, they can not be directly compared.
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A better measurement for comparison is the transfer function where the approximated value

is normalized by the exact one. In this section we use the concept of transfer function to

compare each approximation in the momentum equation as well as the mass conservation

equation.

In order to perform a Fourier analysis of a periodic function u(x) over the domain

[0, L], the function u(x) is decomposed into its respective Fourier components. We use a

scaled wave number, kh ∈ [0, π], similar to [Lel92] and each Fourier component is given by

ûkexp(ikh). The model equation we consider here is the one-dimensional transport equation

in a periodic domain described by

∂u

∂t
+ c

∂u

∂x
= Γ

∂2u

∂x2
. (2.44)

The finite volume discretisation of the above equation is

1

Ω

∂ui

∂t
+ c
[
ũi+1/2 − ũi−1/2

]
= Γ

[
∂̃u

∂x
|i+1/2 −

∂̃u

∂x
|i−1/2

]
. (2.45)

In this one-dimensional problem we use the overbar to represent cell-averaged values and the

approximations are represented by tilde symbol. Projecting the above equation in the Fourier

space, we obtain the following equation for each wave-number k:

∂ûk

∂t
+ ickTI(k)ûk = −Γk2TD(k)ûk (2.46)

The transfer function of an approximation is defined by the ratio of the approximated value

over the exact value, for example TI(k) = ̂̃uk/ûk defines the transfer function of a decon-

volution. The transfer function of the differentiation is defined equivalently. The overall

accuracy of a numerical solution of the transport equation is determined by TI and TD . For

the purpose of a general analysis, let c = Γ = 1 such that only errors of the approximations

are considered.

The transfer functions of the cell-centered deconvolution Eq.(2.11), inter-cell deconvolu-

tion (Eq.(2.13)) and the differentiation (Eq.(2.14)) are plotted in Fig.2.5. The significant im-

provement of the compact fourth-order deconvolution over the second-order is clearly shown.

During the projection step, the mass fluxes are computed by the cell-centered deconvolution

(Eq.(2.11)). According to Fig.2.5, the second-order cell-centered deconvolution (mid-point

rule) is less accurate than the fourth-order inter-cell deconvolution (Eq.(2.13)), especially for

0.5 < kh < 2. When the mid-point rule was used to enforce the mass conservation, the er-

rors of the wave components in this range will remain in the velocity fields and thus degrade

the level of accuracy that was achieved by the compact fourth-order. The fourth-order cell-

centered deconvolution (Eq.(2.13)) is more accurate than the compact fourth-order inter-cell
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Figure 2.5: Comparison of the transfer function of standard second-order and higher-order
schemes: second-order inter-cell deconvolution (TI2), fourth-order compact inter-
cell deconvolution (TI4), fourth-order compact differentiation (TD4), second-order
cell-centered deconvolution (TC2) and fourth-order cell-centered deconvolution
(TC4)

deconvolution through out the Fourier space. Thus we do not need compact deconvolution

for the approximations of mass and pressure fluxes. This finding has an important conse-

quence because these two explicit stencils( Eq.(2.11) and Eq.(2.12)) lead to a narrow banded

Laplacian operator which can be solved much easier than a full Laplacian operator which

would arise from an implicit scheme for D or G.

The discussed cell-centered deconvolutions are used for the mass conservation and the

pressure gradient in staggered grid arrangement. However, in a collocated grid arrangement,

the inter-cell deconvolution has to be used for these two tasks. According to Fig.2.5, we

could expect a more accurate mass conservation on staggered grids than the collocated ones.

With this analysis, we can explain why the second-order solution of pressure on collocated

grids strictly limits the accuracy to second-order as reported in [ARM01]. This limitation

is, however, less severe on staggered grids. It will be shown later that, on staggered grids a

convergence rate of approximately third-order can be achieved with the second-order solution

of pressure.

2.7.2 Fourier analysis of nonlinear terms

Let us consider the fourth-order approximation of the nonlinear convective flux on the East

surface of the u-momentum :

[uu]yz
i+1,j,k = C2 + Ni (2.47)
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where C2 = [u]yz
i+1,j,k[u]yz

i+1,j,k, the second-order approximation of the nonlinear convective

term. There are several straight forward methods which can be used to compute the nonlinear

correction, Ni. In this study we consider three forms for the correction term △z2

12
∂f
∂z

∂g
∂z

in

Eq.(2.30):

N1 =
1

48

(
[u]yz

i+1,j,k+1 − [u]yz
i+1,j,k−1

)2
(2.48)

N2 =
1

192

((
[u]xyz

is,j,k+1 + [u]xyz
is+1,j,k+1

)
−
(
[u]xyz

is,j,k−1 + [u]xyz
is+1,j,k−1

))2

(2.49)

N3 =
1

192

([
∂u

∂z

]xy

is,j,ks

+

[
∂u

∂z

]xy

is+1,j,ks

+

[
∂u

∂z

]xy

is,j,ks+1

+

[
∂u

∂z

]xy

is+1,j,ks+1

)2

(2.50)

The first correction uses surface-averaged values, the second equation uses cell-averaged

values and the third equation averages the first-derivatives provided by the compact dif-

ferentiation. The nonlinear correction term is analysed using an ansatz function u(x, z) =

exp((i + 0.4)kx + αz). This function mimics an oscillating velocity under an exponential

gradient in z-direction and its amplitude is varied in x-direction. The cell-averaged values

here are treated as exact and surface-averaged values used for C2 are fourth-order accurate.

The interpolated terms are computed by multiplying the analytical value with the modified

amplitude of this ansatz function.

Instead of looking at the whole nonlinear convective term, we consider here just the

transfer function of the correction term. The norm of the error, L2(|1 − T (Ni)|) over kh ∈

[0, π/2] is shown in Tab.2.1. The first row is the norm of the analytical correction, and

at the same time the error when we do not apply any correction. According to the table,

nonlinear corrections improve the accuracy when the gradient is not too high and they are

able to predict roughly two digits of the correction term. The correction using face-averaged

values (N1) is more accurate than the one using cell-average values (N2). This is attributed

to the inferior transfer functions of second-order approximations. The third form (N3) is

slightly more accurate than the second form(N2) at the lowest gradient, but it performs

poorly otherwise. Thus computing the nonlinear correction using face-averaged values is

recommended.

Nonlinear correction form α = 0.5 α = 1.0 α = 1.5
Without correction 2.7E-2 1.1E-1 2.7E-1

N1 2.2E-3 4.4E-2 2.9E-1
N2 3.9E-3 5.3E-2 3.2E-1
N3 3.3E-3 8.4E-2 4.3E-1

Table 2.1: Square root of L2-norm of errors of the correction term (‖Nexact − Ni‖2) over
kh ∈ [0, π/2].
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2.8 A priori testing

A simple Gaussian function u(x) = 0.5exp(−ln(2)
x2

9
) as proposed in [HRT95] is used as our

test function. The domain is set to [−20, 20] such that errors at both ends do not affect the

global accuracy. We initialize the cell-averaged values analytically and numerical approxi-

mations are computed from these cell-averaged values. In this test we consider fourth-order

deconvolutions (Eq. (2.11) and (2.13)), the fourth-order differentiation (Eq.(2.14)) and the

fourth-order nonlinear correction with Eq.(2.48). The errors of these approximations are

investigated and plotted in Fig.2.6 in which second and compact sixth-order deconvolutions

are presented for comparison. In this test case, the error graphs of every scheme are oscil-

lating because they are strongly dependent on the sampling position. Therefore only the

error on even number of cells are plotted for clarity. According to the figure, the error of

the second-order inter-cell deconvolution (I2) is roughly four times larger than that of the

cell-centered(C2). The fourth-order inter-cell approximations (I4, D4) are comparable to

the cell-centered deconvolution (C4) on large number of grid cells. The cell-centered decon-

volution (C4) is the most accurate in general among the fourth-order approximations. The

sixth-order compact scheme (I6) is better than the compact fourth-order scheme (I4). How-

ever, the compact sixth-order scheme(I6) (from [Kob99]) is only significantly better than

C4 only when n > 20. At this resolution, approximately 8 cells are used to represent the

Gaussian bump (x ∈ [−8, 8]).

2.9 Conclusion

We have presented a fourth-order finite volume method using compact schemes for trans-

ported momentum and a divergence-free convective velocity. The accuracy of spatial approx-

imations was studied by Fourier analysis and a priori testing. The deconvolution needed to

approximate the momentum fluxes from the volume-averaged velocities is found to be the

critical part of the whole scheme.
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Figure 2.6: Convergence of numerical approximations applied to a Gaussian function (only
even number of grid cells are plotted). TI2:standard second-order intercell in-
terpolation, TI4:fourth-order compact deconvolution, TI6:sixth-order compact
deconvolution, TD4:fourth-order compact interpolation. TC2:second-order cell-
centered deconvolution (mid-point rule), TC4:fourth-order cell-centered deconvo-
lution.
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3 Validations

In this chapter, we evaluate the proposed scheme using well known benchmark test cases

with increasing complexity. In all simulations, the time-integration is performed by the

third-order Runge-Kutta scheme of [Wil80] and the continuity is enforced at every sub-

step. This time integration is third-order accurate for both velocity and pressure. The

nonlinear correction and fourth-order solution of the pressure are always used except stated

otherwise.

3.1 Taylor-Green vortex flow

A family of Taylor-Green vortex flows (TGV) can be described by

u(x, y, t, Re) = c1 − cos(x − c1t)sin(y)e
−2t
Re (3.1)

v(x, y, t, Re) = c2 + sin(x − c1t)cos(y)e
−2t
Re (3.2)

p(x, y, t, Re) = −
1

4
(cos(2(x − c1t)) + cos(2(y − c2t)))e

−2t
Re . (3.3)

In this study, the domain is set to (x, y) ∈ [0, 2π]2. This test case has been widely used in

literature. The classical TGV (c1 = 0, c2 = 0, Re = 100) is used in [PS04] and [CM04] to

show that second-order solutions of pressure are sufficient to deliver fourth-order accurate

velocities. We add a convection velocity (c1, c2) to the TGV because of the following reason.

If there was no viscosity, the flow is essentially steady which is due to the equilibrium

between convective and pressure terms. This equilibrium is obtained on uniform grids (hx =

hy) for all central approximations, including the second-order. Therefore, a solution of

the TGV with central approximations will reveal the convergence rate of the viscous term

only.

The maximum errors of the velocities obtained by second and fourth-order schemes

applied to the steady inviscid Taylor-Green vortex flow(c1 = 0, c2 = 0, ν = 0) are almost at

machine accuracy (Fig.3.1(a)) which shows that the approximation of the convective term

and the solution of the pressure does not affect the evolution of the momentum. Therefore

the classical TGV can not be used to evaluate the momentum and the pressure terms. The

nonlinear correction also does not affect the result of this flow.

Having ruled out the role of the pressure and continuity enforcement in this specific case,
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Figure 3.1: (a) Maximum errors of the velocity at t = 10 of the fourth-order and the second-
order scheme applied to inviscid TGV with c1 = 0 and c2 = 0. (b) Maximum
error of the fourth-order scheme applied to classical TGV(A) and convective
TGV(B).

we proceed to the validation of the deconvolution and the differentiation. The classical TGV

(c1 = 0, c2 = 0, Re = 100) is used to test the differentiation , denoted by A in Fig3.1(b)).

The convected inviscid TGV is used to test the deconvolution by setting c1 = 1, c2 = 0 and

ν = 0, denoted by B in Fig3.1(b). We keep the CFL number constant at 0.05 and march the

solution to t = 11π where the magnitude of the velocities is reduced to half of its initial value

in case A. The maximum errors at the end of the simulations are shown in Fig.3.1(b) which

clearly indicates that the convergence rates are fourth-order.

3.2 Doubly-Periodic shear layer

In order to expose the role of the pressure, we use a doubly periodic shear layer as the next

test case. This simple 2D flow contains Kelvin-Helmholtz instabilities in which the shear

layer is perturbed by a sinusoidal disturbance that leads to a roll-up of the vortex sheet into

a cone-like shape. The domain Ω = [0, 1]2 is taken for this study and the initial velocities

are given by

u =





tanh(σ(y − 0.25)) for y ≤ 0.5,

tanh(σ(0.75 − y)) for y > 0.5.
(3.4)

v = εsin(2πx). (3.5)
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This flow is governed by three parameters, the shear layer width parameter σ, the pertur-

bation magnitude, ε and the Reynolds number. In this study the Reynolds number based

on the maximum velocity and the length of the computational domain is set to 10, 000, the

shear layer parameter and the perturbation magnitude are 30 and 0.05 respectively. This

setting is similar to a thick shear-layer problem studied in [Bro95]. In order to show that the

proposed scheme converges towards the correct solution, we generate a reference solution

of this case on a 5122 grid using a pseudo-spectral code. In this code, the computation is

performed on the physical space and the derivatives are computed using FFT differentia-

tions while the divergence form is used for the convective term. Authenticity of the solution

is checked by successive refining the grid from 642 to 5122. A smooth solution is already

obtained at a resolution of 1282 and the maximum difference between the solutions on 2562

and 5122 at the end of simulation is 10−9. Further, the amplitudes of the wave numbers

larger than k ≈ 300 are clipped at machine accuracy. These assure the authenticity of the

reference solution.

Comparing a finite volume solution with the one obtain from finite difference requires

some interpolations or integrations in order to relocate and recast these two solutions in

comparable forms. The solutions of finite volume methods can be deconvoluted to the

pointwise values or we can integrate the solution from finite difference method. We chose

the latter approach because interpolations and integrations on the fine grid of the reference

solution is much more accurate than operating on the coarse grids used for the fourth-order

scheme. The reference solution is first interpolated to the integration points using cubic

splines and then the seventh-order integration is applied.

We provide a qualitative overview of the solutions using the contour plots of the vorticity

in Fig.3.2. The improvement of the fourth-order over the second-order scheme is clearly

visible. At the lowest resolution, the fourth-order solution preserves the correct shape of

the vortex sheet while it is already distorted in second-order solution. The fourth-order

has more wiggles but their magnitudes are smaller than those of the second-order. When

the resolution is doubled, numerical wiggles are still disturbing the second-order solution.

On the other hand, the solution of the fourth-order scheme is already smooth and the

numerical wiggles at this resolution are comparable to those on the finest solution (2562)

of the second-order scheme. In this figure we see that even on the coarsest grid which is

heavily under-resolved, the fourth-order scheme still delivers an appreciable solution unlike

the second-order scheme.

The maximum errors of the fourth-order schemes and the convergence rates with respect

to the reference solution are shown in Tab.3.1. Here we compare the two formulations of

the convective velocities. On coarse grids, T4 is slightly more accurate than DF4. This

is because the leading truncation term of T4 is smaller. The convergence rates of these

two formulations approach fourth-order when the grid is sufficiently fine. The differences
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N |ε|∞ of u Convergence Rate
T4 DF4 T4 DF4

642 2.5835E-02 2.7744E-02 — —
962 1.0762E-02 1.1147E-02 2.16 2.25
1282 4.4665E-03 5.0558E-03 3.06 2.75
1962 8.9431E-04 1.2273E-03 3.97 3.49
2562 2.6394E-04 2.5998E-04 4.24 5.39

Table 3.1: Maximum error of the streamwise velocity and its convergence rate of T4 and
DF4 convective velocities using fourth-order solution of pressure at t = 1.2, in
doubly periodic shear layers flow. .

between the solutions using a different convective velocity are very small and the solutions

are visually indistinguishable. For this reason, only the results from DF4 were shown in

Fig.3.2.

We repeat the simulation again, but with second-order solution of pressure, i.e. the di-

vergence and the pressure gradient are computed with second-order schemes and the discrete

Laplacian is D2G2. The result is given in Tab.3.2 for the T4 convective velocity. The effects

of the second-order pressure can be observed at every grid size. The convergence rate of the

L∞-norm falls between second- and third-order. The convergence rate of the L2-norm tends

to third-order. At low resolution, the errors primarily stem from the wiggles inherit in the

approximation of the convective term and therefore we see little differences between second-

order and fourth-order pressure. Once the wiggles have disappeared (N ≥ 1962), the error of

the solution using second-order pressure is significantly larger.

N Error of u Convergence Rate
|ε|∞ |ε|2 L∞ L2

642 3.23E-02 1.36e-01 — —
962 1.22E-02 1.03e-01 2.4 2.7
1282 5.54E-03 8.32e-02 2.7 2.7
1962 2.02E-03 5.93e-02 2.5 2.8
2562 1.02E-03 4.57e-02 2.4 2.9

Table 3.2: Error and the convergence rate of the streamwise velocity at t = 1.2 using DF4
convective velocities and second-order solution of pressure (D2G2).
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Figure 3.2: Contour plot of vorticity from -36 to 36. Left: second-order, Right: fourth-order
(DF4). The resolution are 642, 1282 and 2562 from top to bottom.
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3.3 Instability of plane channel flow

The instability of plane channel flow is a common test case used to validate higher-order

accuracy of numerical schemes. In this test case, the parabolic profile of the channel flow

is disturbed by the most unstable eigenfunction. The solution of the velocity fields can be

described by the Orr-Sommerfeld equation:

u(x, y, t) =(1 − y2) + εReal
(
Ψ(y)ei(αx−ωt)

)
(3.6)

v(x, y, t) = − εReal
(
αiΨ(y)ei(αx−ωt)

)
(3.7)

The energy of the perturbation and its growth-rate is computed by :

Ed(t) =

∫

Ω

(
(u(x, y, t) − u(x, y, 0))2 + (v(x, y, t) − v(x, y, 0))2

)
dxdy (3.8)

Gp(t) =2ωi = 2ln

(
∂Ed(t)

∂t

)
(3.9)

The Orr-Sommerfeld eigenfunction Ψ(y) here is a stream function and only the real

part of the perturbation is taken into the velocities. This test-case is sensitive to the bal-

ance among the terms in the Navier-Stokes equations. The viscous term attenuates the

perturbation while the convective term transfers energy from the main flow to the pertur-

bation. If the approximation of the diffusion term is accurate and the convective term is

under approximated, the growth-rate of the disturbance will be less than the analytical

one. This is a common situation found in finite difference methods applied to this case

[CM04, MZH85, RM91, GPPZ98, DM01]. On the other hand, the growth-rate will be larger

than the analytical one when the situation is reverse. Higher-order convergence can only

be achieved if every approximation is correctly treated. Therefore this is a formidable test

case for numerical schemes and the boundary closures. The conditions of this test are set

to the same conditions used in [MZH85] where Re = 7500, α = 1, ε = 0.0001 and the

only unstable mode is ω = 0.24989154 + 0.00223498i. The expected analytical growth rate

is Gp(t) =4.46996E-03. The computational domain is [Lx, Ly] = [2πH, 2H ] based on the

channel half-width H . The CFL is kept constant at 0.05 such that the errors are dominated

by the spatial approximations. The simulations are calculated using double precision and

the growth-rate of the perturbation is measured at t = 50.29H/uc where uc is the velocity

at the center of the channel.

Several grid systems in the wall-normal directions have been used to simulate this flow.

Chebychev grids are used in [MZH85] and geometric grids are used in [RM91] and [CM04].

The geometric grids deliver better results at a much lower number of grid points. Further, the

Chebychev grid does not offer flexibility in grid placement. Therefore we use the geometric

grid in our code in which the grid spacing is increased or decreased with a constant factor.
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Ny Gp(T4) Gp(DF4) εp(T4) εp(DF4) Ca(T4) Ca(DF4)

32 9.66E-03 1.09E-02 5.19E-03 6.44E-03 — —
64 6.34E-03 6.37E-03 1.88E-03 6.44E-03 1.46 1.76
128 4.66E-03 4.65E-03 1.90E-04 1.78E-04 3.31 3.42
256 4.48E-03 4.47E-03 1.08E-05 1.41E-06 4.13 6.97
512 4.47E-03 4.47E-03 7.37E-07 3.19E-08 3.88 5.47

Table 3.3: Convergence study in y-direction of the instability of plane channel flow on uni-
form grid with Nx = 64. The table shows growth-rates of perturbations (Gp),
their errors (εp) and the corresponding convergence rates (Ca).

Our grid dependency study shows that Nx = 32 is sufficient to conduct a convergence

study in y-direction with the fourth-order scheme. In order to be on the safe side the results

in Tab.3.3 and Tab.3.4 are computed using Nx = 64. Table 3.3 shows a clear convergence

towards fourth-order for both formulations of convective velocities on uniform grids. A

fourth-order convergence rate on nonuniform grids is shown in Tab.3.4. The smallest grid

spacing on these grids is set to 1/Ny ( half-size of the uniform grid ). The predictions of the

growth-rates on nonuniform grid are comparable to those on uniform grids with twice the

number of grid cells. Both formulations of convective velocities deliver a comparable level

of accuracy.

We further use this case to study the role of the nonlinear correction. To this end, we

plot in Fig.3.3(a) the time evolution of the perturbation energy for two grid resolutions with

and without nonlinear correction. The figure shows that the nonlinear correction facilitates

additional energy transfer to the perturbation bringing the growth-rate closer to the analyt-

ical one. On the coarse grid, the nonlinear correction is helpful, but not as impressive as on

the fine grid. It has to be noted that a growth-rate higher than the analytical one does not

imply an instability of the numerical scheme. It means that the perturbation is gaining more

energy from the mean field than what is lost by the dissipation. In fact, the total kinetic

energy of the system is reducing in all cases shown there.

The spatial gradient of the perturbation in this flow varies greatly. The grid cells should

be distributed in a way that the errors over the whole region are comparable. The result

using the same number of grid cells can be significantly different when the grid cells were

distributed differently. In Fig.3.3(b) we plot the perturbation growth rate on four different

grids using the same number of grid cells (Nx = 32 and Ny = 64). The uniform grid

(S = 1.000) and the nonuniform grid with S = 1.046 are the ones reported in Tab.3.3 and

Tab.3.4, respectively. A stronger stretching (S = 1.087) leads to an excellent prediction of

the growth rate while further stretching (S = 1.124) gives worse result. This is because

the grid cells in the center of the channel are too large to capture the velocity variations

accurately.
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Ny Gp(T4) Gp(DF4) εp(T4) εp(DF4) Ca(T4) Ca(DF4)

32 5.919E-03 6.432E-03 1.45E-03 1.96E-03 — —
64 4.628E-03 4.646E-03 1.58E-04 1.76E-04 3.20 3.48
128 4.475E-03 4.485E-03 4.55E-06 1.52E-05 5.12 3.53
256 4.470E-03 4.470E-03 1.91E-07 4.35E-07 4.57 5.06

Table 3.4: Convergence study in y-direction of the instability of plane channel flow on
nonuniform grid with Nx = 64.
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Figure 3.3: Time evolution of the perturbation energy on: (a) two uniform grids and (b)
non-uniform grids with different stretching factor (S). All grids are computed
with Nx = 64. On uniform grid, the resolution in the wall-normal direction of
the two grids are Ny = 64 and 128 and the result with nonlinear correction are
denoted by 64+NC and 128+NC. The result without the nonlinear correction
are denoted by 64 and 128.

In the following, we investigate the effect of a second-order approximation of the pres-

sure gradients by keeping all spatial approximations at fourth-order except the calculation

of the pressure gradient, divergence and the discrete Laplacian, which are now computed

using second-order schemes (D2G2). The accuracy limitation due to second-order pressure

becomes evident in Tab.3.5. The growth rates of the perturbation are much less accurate

here. Previously in Tab.3.3, the growth rate on the finest solution (64X-512Y) was accu-

rately predicted up to the fourth digit and the error was 1.9E-7. Here on the same grid ,

the error of the solution using second-order pressure is 3.1E-4, three orders of magnitude

larger. The saturation of the accuracy due to the approximation error in each direction is

clearly seen in the first row and the first column. This poor accuracy is continued to the

finest grid (Nx = 256 and Ny = 512) which predicts the perturbation growth at 4.428E-03.

Nonetheless, the convergence the convergence rate towards this finest solution seen in the

last row is approximately third-order.

In the previous three test cases, we have evaluated the proposed scheme including the
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NY
NX

32 64 128 160 256

64 6.64e-04 3.18e-04 5.64e-04 5.93e-04 6.26e-04

128 1.43e-03 4.42e-04 1.94e-04 1.65e-04 1.33e-04

256 1.35e-03 3.62e-04 1.15e-04 8.50e-04 5.30e-05

512 1.16e-03 3.10e-04 6.20e-05 3.20e-05 —

Table 3.5: Error of the perturbations growth rate (εp) relative to the growth rate on the
finest grid ( 4.428E-03 ) using second-order approximation of pressure.

boundary closures. A fourth-order convergence rate is obtained in all cases with the fourth-

order approximation of pressure. The overall accuracy falls to third-order if the pressure was

only treated by a second-order scheme. The nonlinear correction plays crucial role in energy

transfer in the instability of plane channel flow. In the next step we investigate the applica-

tion of the fourth-order scheme in a fully turbulent flow.

3.4 Turbulent channel flow

In this section we investigate the accuracy and the performance of the newly developed

scheme in turbulent channel flow at Reτ = 180, based on the friction velocity uτ . This test

case has been employed to study turbulence and its modelling for the past two decades. Re-

sults of numerical simulations using spectral codes from several authors [MKM99, KMM87,

Hu06] are publicly available for comparison. Numerical simulations using other classes of

approximation should converge to these data.

The parameters of the numerical grids and the computational domain used in this study

are listed in Tab.3.6 along with the three spectral simulations which are used for comparison.

In our simulations, the streamwise, spanwise and wall-normal directions are set to x, y and

z accordingly. The computational box is [Lx, Ly, Lz] = [12.57H, 4.20H, H ] which is the same

domain used in [MKM99]. Homogeneity is assumed in streamwise and spanwise directions

and thus periodic boundary conditions are applied. The top and the bottom walls are treated

by no-slip boundary conditions. All spatial dimensions in this section are normalized by

channel half-width if not stated otherwise. The flow is driven by a constant pressure gradient

which is added as a source term in the momentum equation of the streamwise velocity. There

is no control of mass flow within the simulations. The driving pressure gradient is balanced

only by the shear force on the top and bottom walls. The initial velocity field is obtained

from imposing a random perturbation on the logarithmic velocity profile. The criterion of a

statistically steady state is assumed when the bulk flow velocity is not changed more than

0.5%ub over a period of 10Lx/ub. After the statistically steady state is reached, the flow is

further advanced for 10Lx/ub. The sampling is then performed for 100Lx/ub together with
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the averaging in the homogeneous directions.

This study is organized into four parts. In the first part, we rule out the T4 convective

velocity. The accuracy of the proposed scheme with the DF4 convective velocity is demon-

strated in the second part, the grid dependency study. In the third part, we evaluate the

efficiency of the fourth-order scheme. Its computational cost and accuracy are compared

against the second-order scheme. Having identified accuracy and performance of the full

scheme, we discuss the necessity of the fourth-order solution of pressure and the influence of

the nonlinear correction in the fourth part.

Grid NX NY NZ △x+ △y+ △z+
min △z+

max

A 48 42 64 47.2 18.0 5.6 5.6
B 96 64 128 23.6 11.8 2.8 2.8
C 32 32 32 70.7 23.6 5.4 18.6

M1 64 64 64 35.4 11.8 2.7 9.7
M2 96 80 96 23.6 9.4 1.1 5.8
F 128 128 128 17.7 5.9 0.72 4.4

MKM1999,[MKM99] 128 129 128 17.7 5.9 0.054 4.4
KMM1987,[KMM87] 192 129 160 11.9 7.1 0.054 4.4

H2006,[Hu06] 256 256 121 16.9 8.4 0.062 4.7

Table 3.6: Specification of numerical grids used in the grid dependency study.

3.4.1 Choice of the approximation of the convective

velocities

In laminar flows, the flow fields are usually smooth which was also the case for the flows

presented earlier. In all previous simulations, the cell-averaged divergence of the convective

velocities was always smaller than 10−6uref/L for the respective characteristic length (L) and

velocity (uref) in those cases. Consequently, the differences between the two alternatives

for the convective velocities were negligible. In this section we investigate the behaviour

of the two alternatives for the convective velocity, T4 and DF4 in a turbulent channel

flow. In order to exclude other effects, we use uniform grids in every direction and turn

off the nonlinear correction. Here, grid A and grid B listed in Tab.3.6 are considered. The

convective velocities T4 and DF4 perform significantly different on the coarse grid but they

are comparable on the fine grid (Fig.3.4a&b). According to this graph, the T4 convective

velocity should not be used in LES and is probably equivalent to DF4 when the grid is DNS-

like. However, the absolute values of the cell-averaged divergence on the u-momentum cell

shown in Fig.3.4 shifts our favour entirely to DF4. The divergence-free convective velocity

conserves mass close to machine accuracy on the momentum cell while the T4 formulation

creates the maximum cell-averaged divergences of approximately 0.045ub/H . This means
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that an artificial momentum of the comparable amount are being removed or added per

unit-momentum (see Eq.(2.10)). Therefore we choose DF4 to approximate the convective

velocities for the remaining tests.
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Figure 3.4: Mean profiles of streamwise velocity along wall-normal direction on grid A (a)
and grid B (b). Averaged mass imbalance per unit volume on u-momentum cells
of T4 (c) and DF4 (d).

3.4.2 Grid dependency study

In this part, the accuracy of the fourth-order compact scheme is evaluated using Grid C to F

listed in Tab.3.6. These four grids mimic different situations one may encounter in numerical

simulations of turbulent flows. Grid C is on the extreme end of the resolution where one can

perform a reasonable LES. M1 is too coarse for DNS simulations but an excellent resolution

for LES. M2 is a reasonable and F is a good resolution for DNS. The grid spacings of grid F

match the ones used in [MKM99] in the center of the channel.

The mean flow variables shown in Tab.3.7 demonstrate a convergence towards the spec-

tral solution. The mean bulk and center line velocities clearly converge towards the spectral
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Grid uc/uτ ub/uτ Cf

C 16.68 14.55 9.35E-3
M1 17.62 15.20 8.57E-3
M2 18.19 15.63 8.20E-3
F 18.34 15.77 8.16E-3
KMM1987,[KMM87] 18.20 15.63 8.18E-3
MKM1999,[MKM99] 18.30 15.52 8.18E-3

Table 3.7: Mean flow variables

solution. On the grid(C), the bulk flow is underestimated by 6.4% and the error is reduced

to 2.3% on M1. Results of grid M2 and grid F are very close and comparable to the reference

solutions.

Qualitative convergence of the scheme is shown in Fig.3.5(a). Amiri and Hanami[EK05]

incorporated LES into Pereira’s fourth-order scheme and found that the result without ex-

plicit filtering is poor on the 643 grid which is equivalent to M1. Here we can obtain a

satisfactory result on the same resolution without any filtering or modelling. Increasing res-

olution from grid M1 to grid M2 places the profile almost on top of the spectral solution.

When this profile is plotted together with two spectral solutions in Fig.3.5(b), we see that

it is lying between these two. The mean streamwise velocity on grid F is not plotted here

because it is lying between the two spectral solutions as well

In Fig.3.5(c) the square-roots of the surfaced-averaged values of the Reynolds nor-

mal stresses e.g. [uu]yz
i,j,k extracted from the momentum equation are plotted against the

two reference spectral solutions. It confirms that the grid M2 is sufficient to capture all

scales of engineering interest. The Reynolds normal stresses of the fourth-order scheme do

not differ from the reference solutions more than the difference between those two. This

level of difference is much smaller compared to uncertainties occurring in physical experi-

ments.

Next we consider the higher-order statistics, the skewness and the flatness factors. The

Skewness factor shown in Fig.3.6(a) confirms the consistency and convergence of the scheme.

The profiles of grid M2 are satisfactory close to the spectral solution. The profile of S(u)

is on top of the reference solution almost everywhere and the profile of S(w) is satisfactory.

The value of 0.06 is obtained near the wall compared to −1.3 when the second-order scheme

was used (not shown). To the best of our knowledge, all second-order codes predict negative

S(w) near the wall when the grid resolution is not finer than those used in [MKM99] and

[KMM87]. Increasing the solution to grid F clearly improves the accuracy of the solutions and

brings S(w) on top of the spectral solution. The flatness factors, are plotted in Fig.3.6(b).

The profiles on both grids are highly satisfactory for the streamwise velocity but notable

shortcomings are observed in F (w). The deviations we see here in the skewness and flatness
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factors can be attributed to small scale structures at the far end of the spectrum. In order

to reveal how much the fourth-order scheme is behind the spectral scheme, one-dimensional

spectra of the cell-averaged values are investigated and plotted in Fig.3.7(a) and 3.7(b). In

these figures, the Fourier spectra are normalised by the value of the first mode. The energy

spectrum Euu in the y-direction on grid C is far from the spectral solution, but the spectra on

the other grids follow the one of the spectral code nicely. In the streamwise direction, where

the convection is much stronger, the energy spectra on all grids follow the spectral solution

up to about 60% of the Nyquist limit and then start to fall sharply. This is consistent with

the sharp drop of the transfer function of the fourth-order compact deconvolution used for

the convective fluxes shown in Fig.2.5.

3.4.3 Comparison with the second-order

scheme

The improvement of the compact fourth-order over the second-order scheme is illustrated in

Fig.3.8(a). The profile of the mean streamwise velocity of the fourth-order scheme is closer

to the spectral solution at the same number of grid points. The second-order scheme requires

twice number of grid cells in each direction to have a result comparable with the fourth-order

scheme. It was shown earlier that the fourth-order scheme only requires 0.7M grid cells to

match the solution of spectral codes up to the second-order statistics. The second-order

scheme cannot match the first-order statistics even at 2.1M i.e. three-times more cells than

the fourth-order. The energy spectra Euu in x-direction show an interesting result. The

second-order drops sharply at kx ≈ 25. This means the second-order scheme can accurately

capture only 40% of the whole energy spectrum while the fourth-order can capture up to

60%.

In order to provide a clear picture of the efficiency of the fourth-order scheme, we

document the CPU seconds used to advance the momentum equation (Eq.(2.6)) per time

step in Tab.3.8. The runtimes are broken down into the computation of the momentum

equation (M) and the solution of pressure (P) which includes the calculation of divergence,

solution of Poisson equation and velocity correction. The computations are performed using

double precision on an AMD Opteron 8216. The compiler is Intel FORTRAN and the

optimization is set to -O3. Due to the logarithmic complexity of the FFT, the CPU-time

of the pressure solver increases fastest. It occupies 50% of the total time on the finest grid

in the fourth-order scheme. At the same number of grid cells, the fourth-order is 2.4-times

more expensive in average. If one considers that the fourth-order scheme requires only half

of the grid cells in each direction, this means the compact fourth-order scheme can deliver

a result 5-times faster than the second-order scheme per time integration. A larger grid

size allows a larger time step, therefore the compact fourth-order scheme can be effectively
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10-times more efficient than the second-order scheme. This luxury efficiency can be spent

to get a more accurate solution in a shorter time.

Grid
Fourth-order Second-order Ratio

M P sum M P sum
C-323 0.11 0.05 0.16 0.03 0.032 0.06 2.73

M1-643 1.08 0.73 1.89 0.19 0.621 0.81 2.34
M2-962 × 80 4.22 3.55 7.77 0.58 2.343 2.92 2.66

F–1283 9.72 9.80 19.52 1.56 8.716 10.28 1.90

Table 3.8: CPU-seconds per time step spent in momentum equation(M) and the enforcement
of continuity(P) on an Opteron 8216.

3.4.4 Effects of second-order solution of pressure and nonlinear

correction

In what follows the effects of the second-order approximation of the pressure and the non-

linear correction for convective term are investigated. The first effect is studied by keep-

ing the approximation of the momentum and the diffusive terms at fourth-order but com-

pute the pressure gradient and the divergence by second-order approximations. The second

effect is investigated by using the fourth-order scheme but turn off the nonlinear correc-

tion.

Numerical simulations are performed again on grid C, M1 and M2. In Fig.3.9(a)-(c),

the mean streamwise velocity profiles are compared. The second-order solution of pressure

leads to a strange behaviour. On the coarsest grid, it overestimates the velocity profile in

the center of the channel. However on the M1 grid, the profile is underestimated and, by

chance, collapses on the full fourth-order solution. However, later on grid M2 it departs

from the full fourth-order and again overpredicts the velocity. The fourth-order solution of

pressure is therefore essential to obtain accurate solutions and a convergent scheme. The

nonlinear correction, on the other hand, does not strongly affect the solution. Turning it on

and off does not significantly change the streamwise velocity profiles on the coarse grids (C

and M1). The nonlinear correction slightly improves the mean streamwise velocity profile

on grid M2. The nonlinear correction takes care of the small variations on the surfaces of

the momentum cells. It will not improve the accuracy of the convective term on coarse grids

when the error in the approximations of momentum and convective velocities are relatively

large. This effect is similar to the relationship between the truncation errors and the subgrid-

scale model mentioned by Ghosal[Gho96]. The nonlinear correction costs roughly 30% of

the time used in the computation of the momentum equation. Thus when we knew a priori

that the grid spacing is not DNS-like, the nonlinear correction can be turned off for a better
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cost/performance ratio. The remaining question is whether the nonlinear correction pays

off on very fine grids. This is answered in Fig.3.9(c)&(d). The thin solid line of the fourth-

order with nonlinear correction (4M-4P-wNON) is absorbed into the thick solid line of the

reference solution while the plus symbols of the fourth-order without nonlinear correction

(4M-4P-woNON) are slightly lower. Also, the solution without the nonlinear correction

predicts the wrong value of the Reynolds shear stress (Fig.3.9(d)). Therefore if we do not

use the nonlinear correction, the turbulence interactions may not be captured accurately.

In summary, the nonlinear correction should be turned off when performing LES and let

the subgrid-scale handle small scale interactions. In DNS, the nonlinear correction would be

necessary when highly accurate solutions (comparable to spectral code) are sought and the

grid was sufficiently fine.

3.5 Conclusion

We studied two formulations for the fourth-order convective velocities, a conservative (DF4)

and non-conservative (T4). A difference between them can hardly be observed in laminar

flows because of the smoothness of the field. On staggered grids the second-order solution

of the pressure limits the accuracy of the solver but not as strong as observed in [WD01] for

collocated grids. A convergence rate of third-order can be achieved on staggered grids when

the pressure is only treated with second-order approximations. This finding is supported by a

comparative error analysis in Fourier space in the chapter.2. The cell-centered deconvolution

used to enforce the continuity on staggered grids has higher resolving power than the inter-

cell deconvolution on collocated grids. Thus more information is preserved in the velocity

field. A third-order convergence rate can be obtained whilst it is capped at second-order on

collocated grids. Nevertheless, a fourth-order solution of pressure is required to reach overall

fourth-order convergence.

In turbulent flows the two convective velocities give significantly different results on

coarse grids. Therefore divergence-free formulations should be used for the convective veloc-

ity to maintain the underlying conservation properties of the Navier-Stokes equations.

The high resolution property and the efficiency of the proposed scheme is demonstrated

using a turbulent channel flow in which the convergence towards the spectral solution is

demonstrated. The proposed scheme is robust and can give a reasonable solution using

only 323 grid cells. Actually, our code can deliver a stable DNS solution even on 203 cells.

The solution using 0.7M grid points is in excellent agreement with spectral solutions up to

second-order statistics although it is only one-third and one-sixth of the grid cells used by

spectral solutions in [MKM99] and [KMM87], respectively. Small deviations near the wall

are observed in third and fourth-order statistics. Increasing the grid resolution improves

these higher-order statistics. We have quantified the efficiency of the proposed scheme. It
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only requires half of the resolution per coordinate direction to have a comparable result with

the second-order scheme. Effectively, the fourth-order scheme can be ten-times faster than

the second-order scheme in advancing the momentum per one dimensionless time unit, at a

comparable accuracy.

The fourth-order solution of pressure is essential, physically and numerically. The

second-order pressure will only give, at best, a third-order convergence rate for the velocities

and it delivers poor solutions in turbulent channel flows. The nonlinear correction is found

to be useful on a very fine grid and unimportant otherwise. It could be turned off when

performing LES for a better cost/performance ratio.
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grid M2 compared with other two spectral solutions from [KMM87] (dashed line)
and [MKM99] (solid line). (c) Square root of Reynolds normal stresses on grid
M2.
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Figure 3.6: Skewness factor (a) and Flatness factor (b).
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Figure 3.9: Mean streamwise velocity on grid C(a), M1(b) and M2(c) and the Reynolds shear
stress on grid M2 (d). The thin solid line is the full fourth-order scheme (4M-4P-
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scheme for convective and diffusive terms but second-order approximation of
divergence and pressure gradient. The plus symbol (4M-4P-woNON)is the full
fourth-order schemes without the nonlinear correction.



4 Parallel Solution to Tridiagonal

Systems

4.1 Introduction

In order to parallelised the compact scheme, we need an algorithm solving tridiagonal sys-

tems in parallel. Solving tridiagonal systems is one of the important kernels of scientific

computing. These systems appear in many approximation problems such as spline interpo-

lations, wavelets or numerical solutions to differential equations. These systems are usually

solved repeatedly for an enormous number of right-hand sides. In three-dimensional prob-

lems, this number can easily reach 232 which may not fit on a memory of a single processor

machine. Efficient parallelisation of these systems is thus critical for scientific computing

and our compact fourth-order scheme.

Modern parallel computers are mostly categorised into massive parallel processing

(MPP) type which consists of a large number of powerful nodes. The right-hand-side of

the system can be distributed among the processor, and thus a processor holding a certain

subsystem may not have explicit access to the subsystems own by other processors. Despite

the availability of NUMA architecture which allows a processor to access the memory of the

other processors, this nonlocal access is much more expensive than the local one. This prob-

lem is more pronounce when the number of processor does not fit on a single partition where

the computational nodes are connected by special interconnection networks. Therefore an

efficient and scalable algorithm solving tridiagonal matrices in parallel should minimise the

number of communications and synchronisations. Divide and conquer algorithms [Wan81],

[Bon91], [Sun95], [AG96] and [Heg96] are well suited for the current trend in supercomputer

architecture. Bondeli [Bon91] and Sun [Sun95] independently present the algorithm spe-

cialised for diagonal dominant tridiagonal matrix. The reduced parallel diagonal dominant

algorithm in [Sun95] can solve a tridiagonal system of n equations for γ right-hand sides

using (5n/p + 4J + 1)γ operations on p processors, for some small number of J which will

be described later. His algorithm is among the most efficient algorithms for this problem.

This algorithm requires two times a unidirectional communication at two stages of the com-

putation. The bidirectional communication links of modern computers are thus left unused.

This shortcoming and problem of load-balancing among the processors can double the cost
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of the communication.

In the present work, we develop a novel interface-splitting algorithm with a complexity

of (5n/p + 4J − 4)γ. This algorithm is designed for diagonal dominant tridiagonal matri-

ces. The idea is to decrease the communication and reduce the data dependency. This is

achieved by computing the solution at the interface between two processors before comput-

ing the solution on the inner points. This algorithm exploits an exponential decay of the

inverse of diagonal dominant matrices demonstrated in [Nab99]. The proposed scheme is

competitive. It has less complexity than the algorithm presented in [Sun95] and requires

one less synchronisation phase. Therefore the proposed algorithm is less sensitive to load

balancing and network congestion problems. This scheme is applicable for non-Toeplitz as

well as periodic systems.

This chapter is organised as follows. First the interface-splitting algorithm is derived.

Then, similarities and differences with existing divide-and-conquer algorithms are discussed

and the complexity of the proposed algorithm is presented. Finally, accuracy and perfor-

mance on workstations, an Ethernet cluster and a supercomputer of the proposed scheme

are presented compared to ScaLAPACK.

4.2 Parallel algorithm solving tridiagonal

systems

In this section we classify the parallel algorithm solving tridiagonal systems by two ways

namely, (i) pre-processing and (ii) post-processing algorithms and point out that for a specific

algorithm of each type, it is possible to formulate an equivalent algorithm belong to the other

one.

4.2.1 Pre and post-processing parallel

algorithms

We consider tridiagonal systems of size n:

Ax = b, (4.1)

where A is a strictly diagonal dominant matrix: A = [li, di, ri], |di| > |li|+|ri| and l1 = rn=0.

In order to solve this system in parallel, one can assume that there is a simpler matrix Q

and a perturbed right-hand side v with the accompanied transformation matrix T such
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that

Tv = b, (4.2a)

Qx = v. (4.2b)

This means that the original tridiagonal matrix is decomposed in the form A = TQ.

The structure of the algorithm depends on the choice of the matrix Q. Wang’s parti-

tioning algorithm [Wan81] and parallel line solver [ABM04] belongs to this type of fac-

torisation. This factorisation can be considered as pre-processing schemes where the r.h.s

is perturbed such that the solution of the simpler block matrix gives the desired solu-

tion.

On the other hand, one can assume a decomposition in the form A = Q′S and

solve

Q′w = b, (4.3a)

Sx = w. (4.3b)

The earliest algorithm of this type applied to tridiagonal matrices is the SPIKE algorithm

[SK78], [LPJN93]. The subsequent algorithms are the parallel partition algorithm (PPT )

of Sun [SSN89] and the divide and conquer algorithm (DAC) of Bondeli [Bon91]. Even

though all of these algorithms are derived differently, their implementations can be identical.

In practice, these three algorithms solve Eq.(4.3b) by two substeps, and the solution x is

obtained by

x = w −△w, (4.4)

using the correction vector △w. Sun further exploits the decay of the correction vector and

derives the Reduced PDD in [Sun95]. These algorithms can be considered as post-processing

schemes where the first solution w is corrected by solving Eq.(4.3b). All of these algorithms

use the block subdiagonal matrix of A as Q′.

A parallel algorithm solving the tridiagonal system will be efficient if the preprocessing

step (Eq.(4.2a) ) and the post-processing step (Eq.(4.3b) ) are easy to solve in parallel. The

post-processing step of the algorithms in the previous paragraph solves a block tridiagonal

system of p subsystems where each block is 4 × 4 matrix. In case of a strictly diagonal

dominant system, and if the subsystem size is sufficiently large, the matrix S can be reduced

to a p-block diagonal matrix and solved by nearest neighbour communications. For the

preprocessing scheme, an equivalent algorithm with the same advantages can be formulated

for the solution of Eq.(4.2a). The preprocessing matrix is given by T = ST and it is straight

forward to show that for any algorithm of the post-processing type, there is an equivalent
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variant in the pre-processing type, using the same block matrix, Q = Q′. There will be small

differences between these two variants of the equivalent algorithm due to floating point

operations, but it can make significant differences in the programming of the application

using these algorithms. For example, if the post-processing algorithm is called from a certain

subroutine, the calling routine must have knowledge of the global topology or at least its

nearest neighbours. On the contrary when the pre-processing algorithm is used, knowledge

of the topology is not necessary and the calling routine can proceed as if it was working alone

because solving Q does not require information of the neighbours unlike solving S. The pre-

processing operations can be done in a higher level subroutine which has the knowledge of the

topology. Therefore the pre-processing algorithm is more suitable for numerical programs

adopting the domain decomposition concept.

4.2.2 The algorithm

The interface-splitting algorithm proposed here belongs to the pre-processing type. For

simplicity, we assume that A is a tridiagonal matrix of size n = pm where p is the number

of processors and m is some integer which will be the size of our subsystems. The k-th

processor is holding the r.h.s. bl, (k − 1)m + 1 ≤ l ≤ km. Let Dk be the k-th block

subdiagonal matrix of A, i.e. Dk = { aij | (k − 1)m + 1 ≤ i, j ≤ km} and Nk be the matrix

Dk except the last row being replaced by that of the identity matrix. Instead of using the

block diagonal matrix of Dk as the independent subproblem like previous algorithms, the

interface splitting algorithm uses Nk. The matrix Q and the matrix Nk are illustrated in

Fig.4.1 below.

Q =




N1

N2

. . .

Np




Nk =




dc+1 rc+1

lc+2 dc+2 rc+2

. . .
. . .

. . .

lc+m−1 dc+m−1 rc+m−1

1




Figure 4.1: Matrix Q of the interface splitting algorithm and its Nk subdiagonal where c =
(k − 1)m.

The matrix Q is accompanied by the transformation matrix T which is just the identity

matrix whose km-th rows are replaced by a vector (yk)T . T can be inverted easily thus

allowing to solve (4.2a) by

v = T−1b. (4.5)



4.2 Parallel algorithm solving tridiagonal systems 55

It can be shown that the matrix T−1 has exactly the same structure as T but the km-

th row are changed to (zk)T and
(
zk

j

)T
= ckm,j, 1 ≤ j ≤ n with C = A−1. This is

equivalent to computing the solution xkm explicitly using the row inverse of A. The solution

vector v can be obtained by manipulating b only at the interface i.e. v = b − f using a

sparse vector f whose component is non-zero only in the neighbourhood of the interface.

The application of this approach for a general matrix is of course expensive and prone

to numerical instability. However when A is strictly diagonal dominant, the calculations

of (zk)T and (zk)T ·b are stable and accurate. Nabben has shown in [Nab99] that the

components of matrix C decay exponentially away from the diagonal. The key to the

efficiency of the proposed algorithm is based on the truncation of the scalar product (zk)T ·b

to a certain bandwidth 2J which introduces an approximation error ek for the r.h.s. of (4.5)

(see later).

Thus the interface-splitting algorithm partitions the whole system of Eq.(4.1) into p

smaller independent subsystems. Each subsystem, xk, xk
j = x(k−1)m+j , 1 ≤ j ≤ m, is

separated from the others by the interface xk
m. This solution at the interface is explicitly

computed by a truncated scalar product x̃k
m = (zk)T ·b. The dependencies between the

subsystems are replaced by these precomputed solutions. Then the k-th subsystem of A

takes the following form

Nkxk = bk − fk − ek. (4.6)

The components of the vector fk are zero except the first and the last component which

are given by fk
1 = −lk−1

m x̃k−1
m and fk

m = −x̃k
m − bk

m. The vector ek contains the error of

the approximation which is a result of the approximations introduced to the top and the

bottom interfaces. Note that ek are non-zero only in the first and the last components. The

above equation is exact, however due the error term ek will be omitted thus we solve for the

following approximate solution

Nkx̃k = ṽ = b − f . (4.7)

The interface-splitting algorithm consists of the following four steps:

1. Setting up the subsystems: The k-th processor takes Dk from A and the xk is

distributed to its respective owner. The last row of Dk is replaced by that of the identity

matrix to obtain Nk

2. Computation of zk : Each processor obtains zk by solving ATzk = ekm where ekm is

the vector whose km-th component is one and zero otherwise. Assign the coefficient vector

sk
j = zk

j , (km − J + 1) ≤ j ≤ km and send zk
j , (km + 1) ≤ j ≤ (km + J) to processor pi+1

where it will be stored as tk. These two new vectors will be used to compute the solution

at the bottom interfaces.
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3. Computation of the solution at the interfaces: Compute ak
0 = tT vl and ak

1 = sT vr

where vl and vr are the first and the last J component of ṽk, respectively. The impact of

J on the accuracy of the algorithm will be explained later. For even processors, send ak
0 to

pk−1 and receive ak−1
1 from pk−1. For odd processors, send ak

1 to pk+1 and receive ak+1
0 from

it. The solutions x̃k
m at the lower interfaces is given by x̃k

m = ak
1 + ak+1

0 . The right-hand side

vk
1 of the upper interface is thus vk

1 = bk
1 − (ak

0 − ak−1
1 )lk1 .

4. Parallel solution of xk: Each processor can solve its own independent subsys-

tem: Nkxk = bk. Note that the solution at the last line can be skipped as it is already

known.

Step 1 and 2 are only performed once for each matrix A, therefore when we are solving

multiple right-hand sides the cost in these two step can be neglected. However, computing

z this way requires the knowledge of the global topology. This can be problematic for a

complex code where many grid blocks of different sizes can be connected together. Because

the components of zk are exponentially decays , it is implied that the components of A far

away from the k-th interface only have small influences on zk and thus can be neglected,

for example aij ∈ {aij | |i − km| > J + θ, 1 ≤ j ≤ n, ∃θ < J}. Therefore it is sufficient to

solve for a portion of zk from a smaller matrix Ak, a diagonal block submatrix enclosing

the desired k-th interface. This simplification of step 2 significantly reduces the complexity

of a coding and makes the interface-splitting algorithm much more efficient in the case of

single right-hand side problem. The selection of safety boundary width θ will be described

later.

The interface-splitting algorithm will be equivalent to a direct method up to a small

factor of machine accuracy (ǫ) if zk decays below ǫ within the subsystem i.e. zk
i < ǫ for

|i − km| > J and J ≤ m. The theory for the exponential decay of the component of zk,

for non-symmetric banded matrices is well established in [Nab99]. The Accuracy of the

interface splitting algorithm depends on how accurate the xk
m. The factors determining the

accuracy of xk
m are (i) the row diagonal dominance factor σi = di/(|li| + |ri|) and (ii) the

approximation bandwidth J used for the computation of xk
m . The relationship of these two

factors to the accuracy of the algorithm will be described later in section 4.4. In the next

section we discuss the accuracy of the interface-splitting algorithm and an estimation for the

bandwidth J necessary for a desired truncation threshold εc.

4.3 Accuracy Analysis

Solving Eq.(4.6) for xk is equivalent to solving the following (m+1)×(m+1) system

Fkuk = z (4.8)
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for u = [xk−1
m xkT

xk
m]T with

F =




1 0T

w Nk


 , z = [xk−1

m b1 b2 · · · bn−1 xk
m]T and w = [lk1 0 · · · 0]T . (4.9)

Due to the structure of Nk, it follows that

Fk =




1 0T 0

w Gk y

0 0T 1




. (4.10)

The interface splitting algorithm introduces an approximation to xk−1
m and xk

m and the system

Fũk = z̃k is solved instead using z = [x̃k−1
m b1 b2 · · · bn−1 x̃k

m]T . These approximations

create errors which can be written as follows

hk = ũk − uk (4.11)

Fhk = z̃k − zk (4.12)

Fhk =




ek−1
m

0


+




0

ek
m


 (4.13)

The error at the inner indices (hk
i , 1 < i < m + 1) is thus a sum of the error propagated

from both interfaces. The position of the maximum error is given by the following proposi-

tion.

Proposition 1. Errors of the interface-splitting algorithm for diagonal-dominant tridiagonal

matrix are maximal at the interfaces.

Proof. The errors of the interface-splitting algorithm hk
i satisfy

hk
i = −lih

k
i−1 − ri+1h

k
i+1.

The error of the inner indices i.e. hk
i−1, 1 < i < m is not larger than the maximum error

introduced at the interface because

∣∣hk
i

∣∣ ≤
∣∣lihk

i−1

∣∣+
∣∣rih

k
i+1

∣∣
∣∣hk

i

∣∣ ≤ (|li| + |ri|) max(hk
i−1, h

k
i+1)∣∣hk

i

∣∣ < max(hk
i−1, h

k
i+1) < max(ek−1

m , ek
m).
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In what follows we assumes that the threshold εc was used to truncate the vector zk and

J is the minimum j > 0 satisfying zk
i±j > εc. The maximum error of the interface-splitting

algorithm thus consists of the truncated terms and the round-off error in the calculation of

the dot product in step 3. These errors are however bounded by a small factor of the cut-off

threshold.

Theorem 1. Let A be the matrix of size n = pm mentioned in Eq.(4.1) and
(
zk
)T

be the

km-th row of the inverse of A, which can be used to compute the m-th solution of the k-th

subsystem. Then the maximum error of the interface-splitting algorithm is bounded by

emax =

(
2L +

1

2

)
ǫ +

(
L −

1

2

)
εc|b|∞, (4.14)

where εc is the threshold for the cut-off coefficient, ǫ is the machine accuracy and L is the

bandwidth in which the magnitude of the coefficients is reduced by one significant digit. Note

that |b|∞ is the maximum norm of b.

Proof. Assuming that the right-hand-side vector can be represented exactly by machine

number and let µk be the error of representing the exact zk by ẑk, i.e. m̂u
k

= ẑk−zk. The hat

here represents the exact numerical value that only differ from the exact one due to machine

operations. Let fl(x) be the floating point operation on x, the numerical computation of x̂k
m

by bT ẑk is given by

x̂k
m = fl

(
n∑

j=1

(
zk

j + µk
j

)
bk
j

)
(4.15)

x̂k
m = fl

(
km∑

j=1

(
zk

j + µk
j

)
bk
j

)
+ fl

(
n∑

j=km+1

(
zk

j + µk
j

)
bk
j

)
+ δ, (4.16)

with |δ| < 2ǫ. Because zk decays exponentially, there is a smallest number L such that

zk
j−L < 1

10
zk

j for j < km and zk
j+L < 1

10
zk

j for j > km. This means that if the machine

accuracy ǫ is in (10−η+1, 10−η) then Eq.(4.16) is equivalent to

x̂k
m = fl

(
km∑

j=km−ηL

(
zk

j + µk
j

)
bk
j

)
+ fl

(
km+ηL+1∑

j=km+1

(
zk

j + µk
j

)
bk
j

)
+ δ. (4.17)

Let âk
0 and âk

1 be the first and the second sum in Eq.(4.17). Again, due to the decaying

nature of zk, the round-off errors only affect the scalar product on the first L largest terms,

thus the first sum is reduced to
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âk
0 = fl

(
km∑

j=km−ηL

(
zk

j + µk
j

)
bk
j

)
(4.18)

âk
0 = fl

(
km∑

j=km−ηL

zk
j b

k
j

)
+ fl

(
km∑

j=km−L

µk
j b

k
j

)
(4.19)

and because the exponential decay is bounded by a linear decay, we arrive at the following

error bound

ĥk
m = x̂k

m −
(
âk

0 + âk
1

)
(4.20)

< fl

(
km∑

j=km−ηL

zk
j b

k
j

)
+ fl

(
km+ηL+1∑

j=km+1

zk
j bk

j

)
+

(
L −

1

2

)
ǫ + δ (4.21)

<

(
2L +

1

2

)
ǫ. (4.22)

Now, we have a bound in case of using the full bTzk. It is now straight forward that error

of the truncated scalar product is bounded by

hk
m = x̃k

m − xk
m (4.23)

= ĥk
m − fl

(
km−J∑

j=1

zk
j b

k
j

)
− fl

(
n∑

j=km+J+2

zk
j bk

j

)
(4.24)

<

(
2L +

1

2

)
ǫ +

(
L −

1

2

)
εc|b|∞. (4.25)

If one aims to apply the interface-splitting algorithm in simulation-based applications,

the cut-off threshold εc can be kept at certain digits below the truncation error. These

truncated terms are usually far larger than the machine accuracy thus εc can be much larger

than the machine accuracy. In such a case, the maximum error of the algorithm is bounded

by Lεc.

4.4 Complexity and performance

The complexity of interface-splitting algorithm depends on the magnitude of the cut-off

threshold which reflects upon two parameters, the 1-digit decays bandwidth L and the

necessary bandwidth J achieving the cut-off threshold. The numbers J and L only depend

on two factors, the cut-off threshold and the degree of diagonal dominance of the system
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( |di|/(|li| + |ri|) ). For Toeplitz system T = [1, λ, 1], the entry of the matrices of the

LU-decomposition of this system converges to certain values and the bandwidth J can be

deduced from these values. The necessary bandwidth J achieving the cut-off threshold εc

can be approximated for this special system by :

J = −
ln εc

ln
(

1
2

(
|λ| +

√
(λ2 − 4)

)) . (4.26)

For instance, J equal to 7 and 27 for 10−4 and 10−15 when λ = 4. These two numbers

are much smaller than the usual size of the subsystem used in scientific computing. The

inter-face splitting algorithm is an approximate method but it can be made equivalent to

other direct methods by setting εc to machine accuracy.

In step 2, we have to solve a linear system for the km-th row of the C. This system

has to be larger than 2J such that the coefficients of (zk)T are sufficiently accurate. In this

work we solve a system of size 2J + 4L which gives a 2-digits accurate representation of the

smallest coefficient of the truncated (zk)T . It would be rare that one would satisfy with the

error larger than 10−4. It is thus safe to assume that L = J/4. This value of L is substituted

in to the operation counts of the interface-splitting algorithm and the results are shown in

Tab.4.1. Note that the error threshold smaller than this will lead to a smaller L for the

same level of the accuracy of the coefficient vector and consequently a smaller number of

operations relative to J . In this table we list also the communication time for N which can

be expressed by a simple model as τcom = α + βQ where α is the fixed latency and β is the

transmission time per datum. For the single r.h.s systems, we assume that the system is so

large (otherwise we would not need a parallelisation) such that each processor only knows

their own r.h.s and the submatrix Ak. This leads to a higher communication compared

to [Bon91] and [Sun95] in which the global matrix is known to all processors. If the same

assumption is taken here, the communication will be reduced to α + 2β. For multiple right-

hand side system, we do not count the computation in the first two steps. This leads to

the absolute speedup of single r.h.s. problem (S1) and multiple r.h.s. problem (Sγ) given

in Eq.(4.27) and Eq.(4.28) when n is much greater than p and the communication cost is

small.

S1 =
p

1 + 3 J
m

(4.27)

Sγ =
p

1 + 0.8 J
m

(4.28)

The key number determining the performance of the interface-splitting algorithm is the

ratio J/m. When this ratio is small, an excellent speedup can be expected otherwise the

algorithm suffers a penalty. For example, the efficiency will drop from 92% to 56% when J
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is increased from 0.1m to m on multiple right-hand side system. According to Tab.4.1, the

interface-splitting algorithm is slightly faster than the reduced-PDD algorithm [Sun95] for

multiple right-hand side problems. Our algorithm is also faster for a single right-hand side

system, when J < 0.375m. Therefore the interface splitting algorithm is competitive both as

approximate and direct methods (close to machine accuracy).

It is a common practice that the subsystem size should be reasonably large such that

the speedup from load distribution justifies the communications and other overhead. This

algorithm assumed that J ≤ m, if this does not hold the program adopting this algorithm

should issue a warning or an error to the user.

System Matrix Sequential
Interface-Splitting Algorithm

Computation Communication (τcom)

Single r.h.s
Nonperiodic 8n − 7 8n

p
+ 24J − 17 α + 9βJ/2 + 2

Periodic 14n − 16 8n
p

+ 24J − 17 α + 9βJ/2 + 2

Multiple r.h.s
Nonperiodic (5n − 3)γ

(
5n

p
+ 4J − 4

)
γ α + 2γβ

Periodic (7n − 1)γ
(
5n

p
+ 4J − 4

)
γ α + 2γβ

Table 4.1: Computation and communication costs of the interface-splitting algorithm for
solving a linear system of order n on p processors with single and γ right-hand
sides.

4.5 Results

In this section, we present results of the interface-splitting algorithm applied to single and

multiple r.h.s. on two parallel computers. First the accuracy of the interface-splitting al-

gorithm is studied for a simple matrix in an approximation problem. In the second step,

we evaluate its performance on a Linux cluster. Finally, performance and the scalabil-

ity of the interface-splitting algorithm is presented and compared with ScaLAPACK pack-

age.

Table 4.2 shows the error of the inter-face splitting algorithm applied to a matrix [1, 4, 1]

encountered in approximation problem such as spline interpolation, compact differentiation

[Lel92] and compact deconvolution [Kob99]. In this table we consider the case of differentia-

tion of f = sin(20πx) on x = [0, 1]. The unknown are placed at xi = ih, 0 ≤ i ≤ 251. This

problem is solved using three partitions. The table shows that the bound given in Eq.(4.14)

is not so far from the actual error as seen in the first and the last row. Sometimes the

error can be much smaller than the bound due to the cancellation of the neglected terms.

The error of the algorithm using the smallest J = 7 is already much smaller than the error
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of the local truncation error of the differentiation. If one consider the fact that there are

25 grid points per wavelength in this problem which is already very fine, we expect that

the smallest J here should be adequate for most simulation-based applications. If higher

accuracy is required, the band can be expanded as necessary. Note that the bandwidth J

here is dependent only on the diagonal-dominance of the matrix surrounding the interface

and the choice of cut-off threshold εc. The number of unknowns has no influence on this

bandwidth.

In what follows, we demonstrate the accuracy of the proposed algorithm when applied

to a matrix with non-constant coefficient. In order to have a reproducible test, we solve

the test matrix A = [sin(i), 2(|sin(i)| + |cos(i)|), cos(i)] of order 1000 with bi = 1 on 4

processors. The off diagonal coefficients of this matrix vary relatively fast. Their signs

change approximately once every three rows. The numerical error of the algorithm shown

in Tab.4.3 indicates the non-constant coefficients of the matrix do not have adverse effects

on the algorithm.

J εc
1

|b|∞
|f̃ ′

seq − f̃ ′
par|∞ |f ′

exact − f̃ ′
seq|∞

7 9.9167e-05 7.1325e-06

1.7394e-0315 2.6350e-09 7.2559e-11

27 3.6092e-16 3.8095e-17

Table 4.2: Normalised error of the interface-splitting algorithm (column 2) subjected to dif-
ferent cut-off threshold (εc). The error of the differentiation (column 3) is shown
for a comparison.

J 1
|b|∞

|xseq − xpar|∞

7 1.41E-005

15 2.06E-011

18 4.66E-014

20 4.44E-016

27 4.44E-016

Table 4.3: Normalised error of the interface-splitting algorithm applied to system with non-
constant coefficients using different bandwidth.

Fixed size speedup of the algorithm is studied by solving a multiple r.h.s. system of

order 25600 and 104 right-hand sides. In all following tests, the interface bandwidth J is

set to 9. The absolute fixed size speedup of the interface-splitting algorithm on a Linux

cluster in Fig.4.2 showing an almost ideal speedup. Here the absolute speedup is defined

by the solution time on a single processor using the fastest sequential algorithm (Gaussian



4.5 Results 63

elimination) divided by the time used by the interface splitting algorithm. Because the

algorithm only communicates to the nearest neighbour, it is therefore highly scalable. When

the subsystem size is sufficiently large i.e. J/m ≪ 1 , the overhead will be small and the

ideal absolute speed up can be achieved. At p = 64 the speedup is even slightly better than

the ideal one, which could be attributed to a better caching.
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Figure 4.2: Absolute speedup (Sγ) of multiple right-hand side problem on Linux cluster.

The scalability of the algorithm is studied by measuring runtimes on Altix4700 for two

types of problem, a single r.h.s and a multiple r.h.s.. Here we consider a scaled problem where

the total system size grows linearly with the number of processors i.e. ntot = pnsub. The

subsystem size is set to 106 in a single r.h.s problem. For multiple right-hand side problems,

it is set to 100 with 104 right-hand-sides. The results of the test are shown in Fig.4.3(a). The

runtime of the interface-splitting algorithm grows approximately linear with the logarithm

of the number of processors in both types of problem. This can be attributed to the fat-

tree topology of the interconnection of the machine. Note that the number of unknowns

in both problems are equal i.e. 106. The difference in CPU-time seen here is solely the

communication time. Here we can not achieved an ideal speedup unlike on the cluster. This

is of course a limitation imposed by the hardware. It is obvious that, the ScaLAPACK is not

scaled well as the our algorithm. The CPU-time is approximately doubled when increased the

number of processor from one to two. This is in accordance to the increase in complexity of

the parallel algorithm used by ScaLAPACK. Interestingly the differences in the CPU-time of

the multiple right-hand side problems are increasing sharply when the number of processors

is increased. This indicates that the ScaLAPACK is very sensitive to the characteristics of

the interconnection network unlike the proposed algorithm.

In Fig.4.3(b) efficiencies of the inter-face splitting algorithm and the ScaLAPACK are

presented. On a single r.h.s., the efficiency of the proposed algorithm falls to 50% at p = 64

because the increase in communication time that occupies 50% of the CPU-time there.
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Figure 4.3: Running time (a) and the scaled-efficiency (b) of the interface-splitting algorithm
on Altix4700 compared to ScaLAPACK: .

Interestingly, the increased communication time does not affect the solving time of the

SCALAPCK (thin dash line) much, especially the single right-hand side problem. This is

because the increase in the cost of computation is dominated. In the multiple r.h.s problem,

both algorithms enjoy better efficiencies. At p = 64, the interface-splitting algorithm deliver

an 85% efficiency compared to 30% of the ScaLAPACK. On both problems, the interface-

splitting is at least four-times faster than the ScaLAPACK.

4.6 Conclusion

We have presented the inter-face splitting algorithm solving diagonal dominant tridiagonal

systems. The accuracy of the algorithm depends on the diagonal dominance of the matrix
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and not the order of the matrix. This algorithm is an approximate algorithm but the user

have full control over the accuracy. It can be used equivalently to the direct method if desired,

provided that the subsystem size is sufficiently large. This algorithm is highly efficient and

scalable, especially for multiple right-hand side problems. Excellent efficiencies are obtained

on two parallel computers. The algorithm is at least four-times faster than the ScaLAPACK

which used a direct algorithm. Unlike the existing algorithms, this algorithm fully utilise

the bidirectional link which allows these communications to overlap and thus a low commu-

nication overhead can be expected from this algorithm.
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5 Approximate Projection Method

In chapter 3, we have numerically verified that the fourth-order solution of pressure is essen-

tial for a fourth-order convergence rate of the velocities. Despite the fact that the fourth-

order projection method used earlier can deliver excellent results and ultimately leads to a

reduction of computational time. This was partially due to the cost of the direct solver of the

fourth-order projection was not fully revealed. Because, the FFT were used in the xy-plane,

the cost of the fourth-order and the second-order projection are approximately the same in

this plane. We only had to solve the seven-banded system in the wall-normal direction for

each wave number. The major cost in this process was the FFT and thus the cost of the

fourth-order projection came at marginal cost (see Tab.3.8). In a general situations, the

flow may not have any homogeneous directions and thus the FFT cannot be used. In these

situations, we have to deal directly with the 19-banded matrix given by the fourth-order

projection.

At first glance, it would seem that this is a simple task. One can just construct a

sparse matrix out of this discrete Laplacian and use a certain type of preconditioned Krylov

subspace algorithm to solve it. This approach has been tried and convergence of the iterative

solution is obtained. However, the performance was not satisfactory due to two reasons, the

matrix is singular and the precondition step is too expensive. Since the matrix is singular,

we have to use BiCGSTAB or GMRES with restart which are quite expensive. Due to the

fact that turbulent flows consist of a wide range of length scale, preconditioning is necessary.

However, the matrix of the fourth-order projection method is new and thus there are no

specialized preconditioner for it. The incomplete LU decomposition have been tried for the

preconditioner, but a truncating threshold that can give a reasonable convergence rate leads

to a large number of non-zero entry. Consequently, the memory requirement is too much to

be used for large scale computing.

In the fourth-order projection method, one has to solve the special 19-point stencils.

Comparing the size of this stencil to that of the standard fourth-order approximation of the

Laplacian which is a 13. This 19-point stencil is expensive. The number of operation count

is increased by 46% just in the computation of the residual alone (div−Lp), compared to the

13-points stencil. Even though this wide stencil has certain advantages due to the property

of the projection method, this wide stencil spans over 3 cells in each direction which leads

to a need of 3 ghost cells. This can be a big problem in the implementation, especially when



68 5 Approximate Projection Method

one wish to upgrade an existing second-order code to a fourth-order scheme. In second-order

codes, 1 or 2 ghost cells are usually used. These second-order codes, especially those with

capability in solving different problems, such as particulate flow, scalar transport, chemical

reactions and so forth, can be continuously developed over several decades and the code can

be an assemble of a thousand of subroutines. This ghost cells parameter can be explicitly

hard-wired anywhere in the code. Re-engineering them to allow other number of ghost cells

is very difficult, time consuming and prone to errors. Therefore, it is preferable to deal with

the 13-points stencil.

In this chapter we present the divergence-free approximate projection method which

solves a 13-points stencil without compromising the fourth-order convergence rate of the

spatial approximations. .

5.1 Background

A unique feature of the projection method is that the residual given by the corresponding

discrete Laplacian of the projection method is the mass imbalance that will reside in the

velocity fields after the velocity correction. This means when the discrete Poisson equation

is solved by a direct method, the divergence of the velocity field after the correction is

close to machine accuracy. During the solution process, only the pressure and the residual

are needed. In pressure-Poisson formulation, this is not the case. The residual in the

Poisson equation reflects the discrete mass-imbalance only up to the local truncation error.

If one wish to achieve a certain value of mass conservation, it is necessary to correct the

velocity and then recompute the divergence. If the result is unsatisfactory, then the Poisson

equation must be solved again. In general cases, discrete Poisson equations are solved by

iterative methods. This leads to a dual iteration in which the inner loop solves for the

pressure and the outer loop check for the discrete mass imbalance. This inner-outer iteration

must be repeated until the desired divergence is obtained. It is obvious that the pressure-

Poisson formulations are at disadvantage because six variables (pressure, divergence, residual

and the three velocities) must be continuously accessed instead of just two variables in the

projection method. Memory bandwidth and cache misses can increase the computational

time significantly.

On the other hand, projection methods only allow a unique form of the discrete Lapla-

cian given by L = DG where D and G are the discrete divergence and gradient, respectively

(see section 2.5 for the derivation). On collocated grids, this restriction give rise to discrete

Laplacians that are wider than usual and thereby increases the costs of computation. In

second-order projection method, the number of the stencil point of the discrete Laplacian

in 3D is 13 instead of 7. This is however a performance problem. In fact, a more serious

problem of the projection method on collocated grids is the local-decoupling problem of the
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pressure. Here, the local-decoupling here means that the solution on odd cells are inde-

pendent from the solution on even cells. This decoupling allows an unphysical oscillation

pattern in the pressure field. Approximate projection method [ABS96] [ABC00] have been

proposed to overcome these two specific problems. However the approximate projection

methods proposed so far do not satisfy the discrete divergence exactly but only up to the

local truncation errors. Loosing the perfect mass-conservation property, these approximate

projection methods become similar to the pressure-Poisson formulations and do not offer

any significant advantages.

On staggered grids, the situation is simpler. The Laplacian given by the projection

method has a minimum number of stencil point and it does not suffer from the local-

decoupling problem. Therefore, approximate projection for staggered grids does not exist in

the second-order context. The situation is however changed when we move to fourth-order

scheme. As mentioned earlier that the fourth-order projection method needs to solve the

19-points Laplacian while the 13-points stencil is sufficient to reach a formal fourth-order

convergence rate. Therefore, if we solved the 13-points stencil and correct the velocity by

fourth-order gradient, we can expect a fourth-order convergence rate in the velocity and

an improvement in the performance can be gained here. However, the corrected velocity

will not be divergence-free. Nevertheless, this shed some light on the possibility that, there

could be some 13-points stencil which lead to a divergence-free velocity after the correc-

tion.

Recent developments in higher-order scheme for Navier-Stokes Equation such as those

in [ARM01] and [Kni08] including our investigations require that the divergence and gradient

approximations are as accurate as those of the convective and diffusive terms, in order to

achieve the full potential of higher-order schemes. This requirement widen the Laplacian

stencil and in some cases, the discrete Laplacian becomes a full matrix. For example, when

the implicit schemes were used to approximate the divergence or the pressure, the Laplacian

will become a full matrix. However, on staggered grids, the explicit approximations of

divergence and gradient on staggered grids is accurate enough and can accommodate compact

schemes without compromising the accuracy. The full matrix of the discrete Laplacian such

as the one used in [ARM01] is thus not needed. Nagarajan et al. [NLF03] comment that

staggered grids have better conservation property and it is more robust than the collocated

counterpart. Therefore efficient projection method for higher-order schemes on staggered

grids deserves more attention.

This chapter is organised as follows. First we outline advantages and disadvantages of

projection methods then the Helmholtz-Hodge decomposition is introduced follows by the

definition of consistent projection method. Effects of the choices in the discretisations of the

pressure and the divergence are analysed. After that, the approximate projection method

is presented and its local truncation error analysis is performed. Convergence and accuracy
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of the proposed method is then evaluated using numerical simulations of laminar flow. Fi-

nally, the applicability to realistic flows is demonstrated by direct numerical simulations of

a turbulent channel flow.

5.2 Consistent Projection methods

We solve the incompressible Navier-Stokes equations (NSE) for Newtonian fluid. For conve-

nience, we rewrite the NSE below

∂u

∂t
= (u ·∇)u + ν△u −

1

ρ
∇p (5.1)

∇ ·u = 0 (5.2)

These equations are non-linearly coupled and difficult to solve. Projections methods allow

a simpler numerical procedure to be used. Projection methods are based on the Helmholtz-

Hodge decomposition theorem which can be defined as follows

Theorem 2. (Helmholtz-Hodge decomposition) A vector field u∗ on a simple connected do-

main Ω with smooth boundary ∂Ω can be uniquely decomposed in the following form [BCM01]

u∗ = u + ∇φ (5.3)

with ∇ ·u = 0 in Ω and
∮
Ω
u ·ndS = 0

This theorem states that any vector fields can be decomposed into two components, the

divergence-free vector field u and the curl-free vector field ∇φ. When apply this theorem to

NSE, one can integrate Eq.(5.1) without enforcing the mass conservation and then project

these provisional velocities back to the divergence-free space.

The momentum equation can be integrated in time in different ways. In this work

the low storage third-order Runge-Kutta (RK) time integration of Williamson [Wil80] is

considered. Let H(uk) be the contribution of convective and diffusive terms at the k-th

substep of the time tn = n△t. Each substep k, 1 ≤ k ≤ 3 of the third-order Runge-Kutta

time integration for the time step n is given by

qk = akq
k−1 +

(
H(uk−1) −

1

ρ
Gpk−1

)
△t (5.4)

uk∗ = u(k−1) + bkq
k (5.5)

where the variables of the zeroth substep are those of the n-th time integration i.e. p0 = pn

except for q0 which is set to zero. The usage of the numerical superscript in this chapter

e.g. p0 is referred to the corresponding RK-substep. There will not be a reference to other
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step of the time integration. Therefore, the notation p1, pn and pk will be clear in the

context.

The provisional velocity uk∗ above is usually not divergence-free and the mass imbalance

can be accumulated from each substep and degrade the quality of the final solution. This

problem can be cured by applying the projection operator P = I − G(DG)−1D to uk∗.

This projection operator requires a solution of Poisson equation Lp = △tDuk∗/ρ under the

consistent Laplacian operator L = DG. The projection method appended after Eq.(5.5) is

given below

DGφ =
ρ

△t
Duk∗ (5.6)

uk = uk∗ −
△t

ρ
Gφ (5.7)

pk = pk−1 + φ (5.8)

The resulting uk will have the divergence exactly as the values of the residual ρ
△t

Duk∗−DGφ

in Eq.(5.6), when solve analytically. The above projection method obeys the Helmholtz-

Hodge decomposition exactly in a discrete sense i.e. u satisfies the discrete divergence

operator close to to machine accuracy and essentially the same for the conservation of the

vorticity. This projection method is thus called exact projection method by Almgren, Bell

and Crutchfield [ABC00]. It must be emphasised that the term exact here does not mean

that the projection leads to the exact solution of p and u.

In the context of fourth-order, D and G in equations (5.4), (5.6) and (5.7) can be ap-

proximated by second-order or fourth-order schemes. This leads to four possible choices of

the Laplacian namely (i) D2G2, (ii) D2G4, (iii) D4G2 and (iv) D4G4. They are called

here composite Laplacians for an obvious reason. We call the projection method solv-

ing one of these Laplacians and correcting the velocity using the respective discrete gra-

dient consistent projection method. The consistent projection methods solving (i) and

(iv) are the second-order and fourth-order exact projection methods, because they obeys

the Helmholtz-Hodge decomposition up to their corresponding order of accuracy. The

consistent projection methods solving (ii) and (iii) are thus called mixed-order projection

method.

In [ARM01], [Kni08] and earlier in chapter 3 the two exact projection methods(i&iv)

are studied (D2G2 and D4G4). The conclusions from these works indicate that the second-

order exact projection method is unable to deliver the fourth-order convergent rate in

both velocity and pressure and the fourth-order projection method is necessary. We have

not found the investigation of mixed-order consistent projection methods in the litera-

ture.
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5.3 Analysis of consistent Projection

methods

Projections methods consist of three steps: (i) approximation of divergence, (ii) solution

of pressure and (iii) correction of pressure and velocities. In this section we analyse how

the approximations of divergence and pressure gradient affect the accuracy of the solutions.

5.3.1 Effect of the divergence approximation

Let us consider a two dimensional case. Assuming that velocity field u = u(x, y)i + v(x, y)j

can be decomposed in to a Fourier series. The u-velocity on the physical space can then be

written as u(x, y) =
∑kmax

k=0 û(kx,ky)exp(i(kxx+kyy)) and equivalently for v(x, y). Suppose the

initial velocity is divergence free, that is the velocity field satisfies :

∂u

∂x
+

∂v

∂y
= 0. (5.9)

Applying the Fourier transform to the above equation gives the following relation for each

wave number pair:

ikxû(kx,ky) + iky v̂(kx,ky) = 0. (5.10)

When a polynomial-based differentiations was used to approximate the divergence in Eq.(5.9),

the resulting divergence may not be equal to zero because of the truncation error of the ap-

proximation. Consider below, the Fourier transform of a polynomial-based approximation

to Eq.(5.9) :

ikxTx(kx)û(kx,ky) + ikyTy(ky)v̂(kx,ky) = q̂(kx, ky), (5.11)

where q̂(kx, ky) is the Fourier components of the divergence with respect to Tx(kx) and Ty(ky),

the transfer function of the differentiation in x-direction and y-direction. One can make use

of continuity equation and arrive at

(Ty(ky) − Tx(kx)) iky v̂(kx,ky) = q̂(kx, ky), (5.12)

Suppose that the two transfer functions, Tx(kx) and Ty(ky), belong to scheme A having

DA and GA as its discrete gradient and the divergence operators, respectively. Projection

methods search for a suitable field φ(x, y) such that

DA · (u−
1

ρ
GAφ) = 0 (5.13)



5.3 Analysis of consistent Projection methods 73

Then the velocities are corrected to

ũ(x, y) =

kmax∑

k=0

(
û(kx,ky) − ikxTA(kx)φ̂(kx,ky)

)
exp(i(kxx + kyy)) (5.14)

ṽ(x, y) =
kmax∑

k=0

(
v̂(kx,ky) − ikyTA(ky)φ̂(kx,ky)

)
exp(i(kxx + kyy)) (5.15)

When compute the divergence of this corrected velocity analytically, the divergence is of

course equal to the negative of the source term, div = −q(x, y) = −
∑

q̂(kx,ky)exp(i(kxx +

kyy). This function q(x, y) converges towards zero at the same rate as the convergence rate

of scheme A (see Eq.(5.12)). It is evident that when the m-th order scheme was used for

the divergence approximation, the velocity field satisfy the mass conservation at m-th order

of accuracy. Thus when a second-order scheme was used to approximate the divergence,

the error introduced into the velocity is O(△x2). When the solution is integrated in time

from t0 to t1, these errors will be accumulated to (t1 − t0)(O(△x2)) Therefore fourth-order

approximation of the divergence is essential to achieve fourth-order convergence rate in the

velocity.

The contour plots of the relative divergence introduced to the velocity field (‖Ty(ky)−

Tx(kx)‖∞ in Eq.(5.11)) by the second- and fourth-order schemes are shown in Fig.5.1. In

all figures, the most unreliable regions are the top-left and the bottom-right corners. In

these regions, the approximation in one direction is very accurate while that of the other

direction is poorly determined. This unbalanced leads to a larger value of q. According to the

figures, the accuracy of the second-order and fourth-order approximation of the divergence on

staggered grids are impressive. For a relative error of 0.1, the second-order approximation

on staggered grid is comparable to the fourth-order on collocated grids (Fig.5.1(b) and

Fig.5.1(c)). They can represent approximately 20% of all the modes within the Nyquist

limit. On this level of relative error, the fourth-order can capture at least 60% of the whole

wave space. For more accurate result, at a relative error of 0.001, the fourth-order scheme on

collocated grids is much better than the second-order scheme on staggered grids. However,

the fourth-order scheme on staggered grids is the most accurate in all levels of relative

error.

5.3.2 Effect of pressure gradient approximation

In what follows, we consider how the approximation of the pressure gradient affects the

accuracy of the velocity using Fourier analysis in 3D.
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The velocity field in the vector form on the Fourier series can be written as

u(x, t) =
∑

k

eik ·xû(x, t). (5.16)

The divergence of the velocity on the physical space translates to the following relationship

on the Fourier space

k · û = 0. (5.17)

This means the divergence-free condition of a vector field u on the physical space translate

into the orthogonality between the Fourier mode (k) and the Fourier component vector

û.

In the momentum equation there are only two terms that can generate a divergence,

namely (i) the convection and (ii) the pressure terms. Let the nonlinear term be w(x, t),

one can apply the Helmholtz-Hodge decomposition to this term and arrive at the following

relationship of nonlinear convective and the pressure terms

k · ŵ = k · p̂ (5.18)

This is similar to the situation we saw earlier in Eq.(5.10). The only difference is that

the pressure must cancel out the image of the nonlinear convection in the direction of k.

Therefore when we approximate the convective term with higher-order schemes but kept the

approximation of the pressure gradient at second-order, parts of the nonlinear term parallel

to k will be cancelled out at second-order rate. Consequently, the accuracy of the con-

vective term is effectively degraded to second-order. When the momentum equation

is integrated in time the second-order errors is multiplied with △t and thus the errors of

O(△t△x2) will be added to the momentum in each time integration. This first-order in time

will be accumulated over time and eventually leads to the global error of O(△x2). It should

be noted that, if the second-order scheme are used for the divergence approximation, the

error of O(△x2) will be added at each RK substep. The error introduced by the second-order

approximation of the pressure term, in a time-dependent problem, is thus less severe than

the effect of second-order approximation of the divergence.

According to the above analysis, the approximations of divergence and pressure gradient

must be fourth-order accurate, if one wish to achieve fourth-order convergence rate for the ve-

locity. The result from the analysis in this section indicates that, within the framework of the

consistent projection method, the fourth-order convergence rate can only be achieved through

the consistent fourth-order projection method solving D4G4.
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Figure 5.1: Contour plot of the divergence introduced by numerical approximations
‖Ty(ky) − Tx(kx)‖ from Eq.(5.12): (a) second-order on collocated grids, (b)
second-order on staggered grids, (c) fourth-order on collocated grids and (d)
fourth-order on staggered grids. Horizontal and vertical axis are the components
of the Fourier mode in x and y respectively. See (a) for numerical values of the
contours.
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5.4 Approximate projection method

The key concept of approximate projection methods is to solve another discrete Lapla-

cian that is close to D4G4 but simpler to solve. The two most obvious choices are the

explicit second-order and fourth-order Laplacian which are the standard 7-point and 13-

point stencils, respectively. The residuals display by these two Laplacians are not ex-

actly the discrete mass imbalance and thus require dual-iteration mentioned previously are

needed.

A close observation on Eq.(5.6) and Eq.(5.7) reveals that it is possible to fully sat-

isfy the discrete mass conservation regardless of the discrete gradient used in Eq.(5.4).

This can be achieved only when the discrete Laplacian is composite and the correspond-

ing discrete gradient is used in Eq.(5.6) and Eq.(5.7). The divergence-free approximate

projection method for the Runge-Kutta time-integration considered in this work is defined

below:

Qk = akQ
k−1 +

(
H(uk−1) −

1

ρ
G4p

k−1

)
△t (5.19)

uk∗ = u(k−1) + bkQ
k (5.20)

D4G2φ =
ρ

△t
D4u

k∗ (5.21)

uk = uk∗ −
△t

ρ
G2φ (5.22)

pk = pk−1 + φ (5.23)

This projection ensures that the velocity is divergence-free because Eq.(5.22) is consistent

with Eq.(5.21). However, it is not consistent with Eq.(5.19) and thus called approximate

projection method. On uniform grid, we have to solve D4G2 whose component in x-direction

reads

D4xG2xp =
1

24△x2
(−pi±2,j,k + 28pi±1,j,k − 54pi,j,k). (5.24)

The component in y and z-direction can be found by switching the running index to j and

k, respectively. On nonuniform grid, the method described in section 2.5.1 can be used to

construct the discrete Laplacian.

It is clear that in steady state problems, this approximate projection method converges

to that of the exact fourth-order projection method. This is because the velocities will cease

to change only when either the momentum equation is in balance or the divergence of the pro-

visional velocity is zero. If one these conditions is reached, the projection step will not change

the velocity field. The remaining question is how will it perform in time-dependent problems

which will be investigated in the subsequent sections.
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5.5 Analysis of the approximate projection

method

In this section, we analyse the local truncation error of the approximate projection method.

First the local truncation error is analysed by following through each RK sub steps. The self-

correction mechanism of the approximate projection method which improves the accuracy

of the pressure term is presented. We then point out the form of the error in the velocity

introduced by the approximate projection method.

5.5.1 Local truncation errors

In what follows the accuracy of the approximate projection method is analysed by comparing

to the exact projection method (D4G4). Assuming that the initial velocity and the pressure

are prescribed exactly. The k-th substep of the RK time integration in Eq.(5.7) gives out

a provisional velocity uk∗
1 . The consistent fourth-order projection and the approximate pro-

jection operate on this provisional velocity. The consistent fourth-order projection corrects

the velocity and the pressure by the following steps:

D4G4φ
k
1 =

ρ

△t
D4u

k∗
1 (5.25)

uk
1 = uk∗

1 −
△t

ρ
G4φ

k
1 (5.26)

pk
1 = pk−1 + φk

1 (5.27)

Similarly, the approximate projection performs:

D4G2φ
k
2 =

ρ

△t
D4u

k∗
1 (5.28)

uk
2 = uk∗

1 −
△t

ρ
G2φ

k
2 (5.29)

pk
2 = pk−1 + φk

2 (5.30)

The subscript 1 and 2 denote the solutions of the exact projection and approximate projection

methods, respectively. These two projection methods are called incremental projection

method [BCM01] because the initial pressure is used in the momentum equation and it

is then corrected by the solution of the Poisson equation. On the other hand, one can

omit the pressure in the momentum equation and solve for the whole pressure itself. Such

strategy is called pressure-free projection method [BCM01]. A work of Kim and Moin in

[KM85] is an example of this type. In consistent projection methods, if the Poisson equation

was solved by a direct solver, these two type of projection methods will be essentially the
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same. However, if an iterative solver was used instead, different results will be obtained

because the magnitude of the solution is different. For example if the stopping criterion

is set to 1E − 3, the incremental projection method will have φ up to 3 digits but the

pressure-free projection method will have pk accurate up to the same digit. Since to φ < pk

in general, the final solution of pk will be more accurate under the incremental projection

method.

Let us first consider the error in the first RK substep. The error between these two pro-

jection method in velocity field after the first substep is simply

e1
apx = ‖u1

1 − u1
2‖∞ =

△t

ρ
‖G2φ2 − G4φ1‖∞

= ‖
(
G2 (D4G2)

−1 − G4 (D4G4)
−1)

D4u
1∗
1 ‖∞

= ‖
(
G2 (D4G2)

−1 − G4 (D4G4)
−1) ‖∞‖D4u

1∗
1 ‖∞

= O(△x2)‖D4u
1∗
1 ‖∞

The numerical superscript–“1” of u and φ in the above equation denote that they are belong

to first RK substep and it should not be confused with the power. The inverse of the

Laplacian is denoted by “-1”. According to the above error, it would be straight forward to

approximate the bound of eapx if we can find a bound of the initial divergence ‖D4u
k∗
1 ‖∞.

Since we assume the exact initial conditions, ‖D4u
k∗
1 ‖∞ naturally converges to zero at fourth-

order rate. The error e1
apx is thus in the order of O(△x6) because we solved a second-

order Laplacian. Likewise, the error in the pressure term is sixth-order i.e. p1
2 − p2

1 =

O(△x6)

In the second substep, the velocity of both projections have now been changed and the

Poisson equations in this substep for the exact projection becomes

D4G4φ
2
1 =

ρ

△t
D4u

2∗
1 = D4

(
b2

(
ρH(u1

1) − G4p
1
1

)
+

a2b2

△t
q1

1

)
(5.31)

and that of the approximate projection is given by

D4G2φ
2
2 =

ρ

△t
D4u

2∗
2 = D4

(
b2

(
ρH(u1

2) − G4p
1
2

)
+

a2b2

△t
q1

2

)
. (5.32)

Apply the corresponding inverse of the discrete Laplacian to equations (5.32) and (5.31),

then compute the difference gives the equation for the error in the incremental pressure at

this step. Follows from the errors obtained in the previous paragraph, the right hand side of

this error equation (source term), the keys determining the error of the incremental pressure

in this substep are thus the difference in the order of accuracy and the magnitude of the

source term. Consider Eq.(5.31), since the p1
1 is responsible for cancelling the divergence
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part of H(un), the only contributor to the divergence in the second substep is thus the added

velocity given by du1 = u2
1 − u1

1. In order quantify how large is this added velocity, let us

consider the divergence of the momentum equation.

Recall that, taking the divergence of the momentum equation leads to the following

relationship

△p = −ρ
∂ui

∂xj

∂uj

∂xi
, (5.33)

where i and j here are the Einstein summation indices. Use this relation together with

u2
1 = u2

2 + O(△x6), Eq.(5.31) is equivalent to

D4G4φ
2
1 = −

(
∂duj

∂xi

∂ui

∂xj

+
∂uj

∂xi

∂dui

∂xj

+
∂duj

∂xi

∂dui

∂xj

)
+ O(△x4), (5.34)

Note that in this equation, we try to keep the equation simple therefore the r.h.s of Eq.(5.33)

is left at analytic form and the error of the approximation is put to the big-O in the above

equation. This means the r.h.s of the above equation is in the order of O(△t). The Poisson

equation for the approximate projection method takes the same r.h.s. Therefore, the error

bound for the increment pressure term (φ) of the approximate projection method (relative to

the exact projection method) at the second RK substep is given by

‖φ2
1 − φ2

2‖∞ = ‖
[
(D4G4)

−1 − (D4G2)
−1]

D4u
2∗
1 ‖∞ = O(△t△x2) (5.35)

This incremental pressure is used to correct the velocity in Eq.(5.29) which leads to the local

truncation error of O (△t2△x2) in the velocity.

At this point, it would seem that the approximate projection method deliver fourth-

order accurate velocity but a third-order accurate pressure. When integrate the NSE for

a long time, the time-error may be accumulated and leads to third-order and second-order

global errors in the velocity and the pressure, respectively. Actually, this accumulation of

error in the pressure does not occur due to the self-correction property which can be describe

in the following paragraphs.

The provisional velocity at the third RK substep is given by

u3∗
2 = u2

2 + b3△t

(
H(u2

2) −
1

ρ
G4p

2
2

)
+ a3b3q

2
2 (5.36)

= u2
2 + b3△t

(
H(u1

2 + du2
2) −

1

ρ
G4

(
p1

2 + φ2
2

))
+ a3b3q

2
2 (5.37)

Before we continue further, let us consider an extreme case where the time step size is

close to the machine accuracy i.e. △t ≈ ǫ. When we perform the time integration in
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this case, the velocity will stay constant and only the pressure will be changed. Since

q ≈ 0, each i-th RK substep is having the same amount of convection and diffusion i.e.

H(u1
2) = H(u2

2) = H(u3
2) = H(un). We simply perform an iteration for the pressure field

p̌ satisfying D4G4p̌ = ρ
△t

D4H (un). Since pn = p̌ + O(△x4) and we solve D4G2 which is

a second-order approximation instead of D4G4, the pressure after the first RK substep is

given by p1
2 = p̌+O(△x6). Substitute this pressure into Eq.(5.31), the source term obviously

becomes O(△x6). The solution p2
2 is thus equal to p̌ + O(△x8). This convergence continues

until p2 − p̌ ≈ ǫ.

Now, let us come back to a general case where △t is in the same order of magnitude

as the grid size. We define Θ to be a function of the difference of the net diffusive and the

convective fluxes of two velocities: (w1 + w2) and w1, i.e.

Θ(w1,w2) = H(w1 + w2) −H(w1). (5.38)

Apply this relationship to Eq.(5.37), we have

u3∗
2 = u2

2 + b3△t

(
H(u1

2) −
1

ρ
G4

(
p1

2 + φ2
2

))
+ a3b3q

2
2 + b3△tΘ(u1

2,du2
2) (5.39)

Applying the fourth-order divergence approximation to the above equation leads to

D4u
3∗
2 = b3△tD4

[
H(u1

2) −
1

ρ
G4

(
p1

2 + φ2
2

)]
+ D4

[
a3b3q

2
2 + b3△tΘ(u1

2,du2
2)
]
. (5.40)

The first square bracket would be zero if we had solved D4G4 and the second square bracket

would be our source term for φ3
2. Since we actually solved D4G2, the first bracket leads to a

divergence in the order of O(△t△x2). For clarity, we write the divergence of the provisional

velocity at this substep for the exact projection below

D4u
3∗
1 = D4

[
a3b3q

2
1 + b3△tΘ(u1

1,du2
1)
]
. (5.41)

Apply the respective inverse of the Laplacian operator to Eq.(5.41) and Eq.(5.40), then cor-

rect the pressure leads to the following difference in pressure

p3
2 − p3

1 = (D4G2)
−1

D4

[
H(u1

2) −
1

ρ
G4

(
p1

2 + φ2
2

)]
+ O(△t△x2)

(φ1
2 − φ1

1) + (φ2
2 − φ2

1) + (φ3
2 − φ3

1) =

(D4G2)
−1

D4

[
H(u1

2) −
1

ρ
G4

(
p1

2 + φ2
2

)]
+ O(△t△x2)

Since we are not interested in the solution attributed to D4

[
a3b3q

2
2 + b3△tΘ(u1

2,du2
2)
]

and
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D4

[
a3b3q

2
1 + b3△tΘ(u1

1,du2
1)
]
, we simply bound the error due to these terms to third-order.

The first bracket on the l.h.s. of the above equation can be neglected and only the following

equation determines the leading truncation error

(φ2
2 − φ2

1) + (φ3
2 − φ3

1) = (D4G2)
−1

D4

[
H(u1

2) −
1

ρ
G4

(
p1

2 + φ2
2

)]
+ O(△t△x2) (5.42)

It follows that,

(
φ2

2 − φ2
1 − (D4G2)

−1
D4

[
H(u1

2) −
1

ρ
G4

(
p1

2 + φ2
2

)])
+ (φ3

2 − φ3
1) = O(△t△x2)

(5.43)

Since p1
1 = p1

2 + O(△x6) and u1
1 = u1

2 + O(△x6), the above equation can be written

as

(
φ2

2 − φ2
1 − (D4G2)

−1
D4

[
H(u1

1) −
1

ρ
G4

(
p1

1 + φ2
2

)])
+ (φ3

2 − φ3
1) = O(△t△x2)

(5.44)

The solution of the Poisson equation in the above equation is thus only a correction for φ2
2,

that is

(D4G2)
−1

D4

[
H(u1

1) −
1

ρ
G4

(
p1

1 + φ2
2

)]
= −

(
φ2

2 − φ2
1

)
+ O(△t△x4). (5.45)

Therefore the error in computing φ2
2 at the second RK substep is damped in the third substep.

We call this error cancellation the self-correction mechanism. Similar to the extreme case

discussed earlier, this self-correction will be saturated at the same magnitude of changes

introduced to the velocity field. In our case, the limit is given by the error introduced to the

velocity field at the second substep which is O(△t2△x2).

In summary, the local truncation error of the approximate projection method relative to

the exact projection method is O(△t2△x2) for the velocity and O(△t△x2) for the pressure.

Since △t ≈ △x in explicit time-integrations, the approximate projection does not compro-

mise the accuracy of the third-order time integration or the fourth-order spatial approxi-

mation because O(△t2△x2) = O(△t4) = O(△x4) for explicit time integrations. This local

truncation error leads to O(△t△x2) global error in the velocity. The local truncation error of

the pressure term in the approximate projection method is O(△t△x2). This local truncation

error is not accumulated due to the self-correction mechanism of the approximate projec-

tion method and therefore the global error is also O(△t△x2).
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5.5.2 Conservation of mass and vorticity

The resulting velocities from both approaches are divergence-free with respect to the fourth-

order divergence approximation (D4). This can be shown by applying D4 to Eq.(5.26) and

Eq.(5.29). The resulting equation is exactly the corresponding Poisson equations. However,

the difference in the vorticity of these two velocities is :

G4 × uk
1 − G4 × uk

2 = −
△t

ρ

(
G4 × G4φ

k
1 − G4 × G2φ

k
2

)
(5.46)

= −
φk

2△t

ρ
((G4yG2z − G4zG2y)i + (G4zG2x − G4xG2z)j

+ (G4xG2y − G4yG2x)k)

(5.47)

In analytical operations, ∇×∇ ·φ = 0 for all scalar field φ. This property is not automatically

inherited to discrete operators. However, for a uniform grid with periodic domain, this

property is inherited if the same operator was used for both computations. For example,

G4 × G4φ is equal to zero because there is no order in the application of the operators.

Therefore, the first cross product is zero in these conditions.

The second cross product, on the other hand, is not equal to zero and the error is

the commutative error between the second and the fourth-order operators. Consider the

value of the i-component. Here the second-order and the fourth-order approximations for

the first derivative are applied in a different order. Since these approximations are not

exact and some information will be lost after applying the approximations. Two different

approximations applied in different order will give different results. It can be shown by

the Fourier analysis using a similar procedure done in section 5.3.1, that this cross-product

will be equal to zero if kx = ky and otherwise it convergences to zero at second-order rate.

Therefore the error of the approximate projection method lies in the conservation of the

vorticity.

Before we proceed with the result section, first let us summarize the projection methods

discussed so far. The fourth-order exact projection (P44), the consistent mixed-order(P42),

and the approximate projection method (P42a) are summarized in Alg.1, Alg.2 and Alg.3

respectively.
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Algorithm 1 Exact projection method (P44)

Input: u∗, D4, G4, D4G4, pn, △t, ε1

Output: un+1 and pn+1 with |D4u
n+1|∞ ≤ ε1

Require: G4 was used for the pressure term in the momentum equation
1: div = D4u

2: solve: D4G4φ = ρ
△t

div until |D4G4φ − div|∞ ≤ ε1

3: u = u − △t
ρ
G4φ

4: p = p + φ

Algorithm 2 Mixed-order projection method (P42)

Input: u∗, D4, G2, D4G2, pn, △t, ε1

Output: un+1 and pn+1 with |D4u
n+1|∞ ≤ ε1

Require: “G2” was used for the pressure term in the momentum equation
1: g = D4u

2: solve: D4G2φ = ρ
△t

div until |D4G2φ − div|∞ ≤ ε1

3: u = u − △t
ρ
G2φ

4: p = p + φ

Algorithm 3 Divergence-free approximate projection method (P42a)

Input: u∗, D4, G2, G4, D2G4, pn,△t, ε1

Output: un+1 and pn+1 with |D4u
n+1|∞ ≤ ε1

Require: “G4” was used for the pressure term in the momentum equation
1: div = D4u

2: solve: D4G2φ = ρ
△t

div until |D4G2φ − g|∞ ≤ ε1

3: u = u − △t
ρ
G2φ

4: p = p + φ

Algorithm 4 Second-order projection method (P22)

Input: u∗, D2, G4, D2G2, pn, △t, ε1

Output: un+1 and pn+1 with |D2u
n+1|∞ ≤ ε1

Require: G2 was used for the pressure term in the momentum equation
1: div = D2u

2: solve: D2G2φ = ρ
△t

div until |D2G2φ − div|∞ ≤ ε1

3: u = u − △t
ρ
G2φ

4: p = p + φ
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5.6 Results

In this section we evaluate the accuracy of the approximate projection in comparison with

mixed order projection and the second-order projection methods using the Doubly periodic

shear layer flow and the turbulent channel flows used earlier in chapter 3.

5.6.1 Doubly periodic shear layer

In this test, the approximate projection method (P42a) and the mixed-order projection

method (P42) are applied to the doubly periodic shear layer. The approximations of the

convective and the diffusive terms are fourth-order accurate. The pressure gradient and

the discretisation of the Laplacian are used according to the respective algorithms. The

Poisson equations are solved by direct method. The results are compared with the reference

solution used earlier. The convergence rates of the streamwise velocity are shown in Tab.5.1

with surprising findings. The accuracy of P42 is not bad at all. At low resolutions, it is

comparable to the exact projection (P44) and the convergence rate is definitely higher than

three. Compared to the result of the second-order projection(P22), the errors of P42 are three

times smaller on the two finest grids (N = 1922 and 2562). Nonetheless, the approximate

projection method is much better. The numerical errors differ from the exact projection at

the fourth digit! If we consider that P42a only requires three more floating point operations

per direction compared to P42, the gain in the accuracy is extraordinary. The convergence

rate is also plotted in in Fig.5.2 which shows clearly fourth-order convergence rate in every

variables.

Grid
Maximum Error Convergence rate

P44 P42 P42a P22 P44 P42 P42a P22

64 2.5835E-02 2.68E-02 2.5834E-02 3.23E-02 — — — —

96 1.0762E-02 1.16E-02 1.0762E-02 1.22E-02 2.16 2.07 2.16 2.4

128 4.4665E-02 5.03E-03 4.4661E-02 5.54E-03 3.06 2.90 3.06 2.7

192 8.9431E-04 1.20E-03 8.9429E-04 2.02E-03 3.97 3.53 3.97 2.5

256 2.6394E-04 4.54E-04 2.6399E-04 1.02E-03 4.24 3.39 4.24 2.4

Table 5.1: Maximum error and convergence rate of the streamwise velocity at t = 1.2 sub-
jected to different projection methods. Extra digits are given to P44 and P42.
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Figure 5.2: Convergence of the approximate projection method compared to the solution
interpolated from pseudo spectral method.
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The results in this test can can easily mislead us to believe that the convergence rate

of the proposed projection method (P42a) is fourth-order. In the analysis section we found

that the global convergence rate, compared to P44 is in fact O(△t△x2). It is possible that

the errors of the projection method are so small and hidden under the local truncation er-

ror of other spatial approximations. In order to verify this, the errors in each time step

are monitored. The solution from the full fourth-order scheme with the exact projection

method at time t=0.8 is used as the initial condition and then the solution is integrated

in time using fixed CFL = 0.032 such that the error of the time integration is negligible.

The mean streamwise velocity and the pressure from P42 and P42a are compared with P44

and the maximum errors are plotted in Fig.5.3(a) and 5.3(b). The error in the streamwise

velocity of the mixed-order projection (P42) is linearly accumulated in time while that of the

approximate projection (P42a) is relatively constant. This can be explained by Fig.5.3(b)

which shows that the level of pressure error is constant in P42. However, with the approx-

imate projection, the error of the pressure is decreased by approximately a constant factor

(one order of magnitude per time step in this case) for several time steps and then saturated

at the level comparable to the error of the velocity. Therefore P42a does not lead to error

accumulation in the velocity, unlike P42.
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Figure 5.3: Error of the streamwise velocity (a) and pressure (b) of the approximate projec-
tion method (P42a) compared to the exact projection method (P44).

The convergence of the flow variables from P42 and P42a towards the approximate pro-

jection method are plotted in Fig5.4(a). It shows clearly that the convergence rate of P42 and

P42a are second- and third-order, respectively. The extra convergence rate of the approxi-

mate projection method comes from the first-order convergence in time shown in Fig.5.4(b).

These findings agree well with the analysis. The errors of both projection algorithms are

smaller than that of the convective and diffusive terms and thus the comparable errors were

observed in Tab.5.1 up to N=192. At the finest solution, error of P42 becomes larger than

the error of the approximations of convective and diffusive terms. However, the error of the
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approximate projection method is well below those errors.
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Figure 5.4: (a) Convergence of flow variables under a spatial grid refinement with fixed CFL
of mixed-order projection method (Alg.2) and approximate projection method
(Al.g3) towards the exact projection method (Alg.1). (b) Convergence of the
pressure under a time-step refinement on N = 642 grid.

5.6.2 Turbulent channel flow

In this section we investigate the accuracy of the mixed-order projection (P42) and approx-

imate projection methods (P42a) by investigating turbulent channel flow. Since it is not

obvious how to choose the grid resolution to evaluate the projection method because the

grid too coarse would not reveal any difference since the errors are mainly attributed to the

approximations of convective and diffusive terms. The grid too fine would also not helpful

because all both algorithms may be very close to the exact projection. It would be, how-

ever, too exhaustive to repeat all the grids used earlier in chapter 3. Therefore only Grid

M1 is used in this test since it is not too coarse and not too fine. We use the solution

obtained on grid M1 in chapter 3 as the initial condition. The solution is then integrated

in time using fourth-order approximations for convective and diffusive terms but with the

different approximation of the pressure gradient as required by the respective projection

method.

First the correlations of the streamwise velocity between non-exact projection meth-

ods and the exact projection method are investigated. The cross correlation between two

momentums is computed by

ρ12(u) =
∑ (u1 − u1) (u2 − u2)

σ1σ2

, (5.48)

where u1 is the streamwise velocity from Alg.1(P44), and the overbar denote an averaging

on the streamwise-spanwise plane. σ1 and σ2 are the standard deviation of u1 and u2 respec-
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tively. The simulations are performed for 60H/ub with CFL=0.51. The results are shown

in Fig.5.5(a) and Fig.5.5(b) for two positions. Near the wall, the cross-correlation of the

streamwise velocity from the approximate projection method is approximately one up to

t = 20H/ub while that of the mixed-order projection method drops already at t ≈ 10H/ub.

The cross-correlation of P42 drops to approximately zero at t = 30H/ub while that of P42a

lasts twice longer. Near the center of the channel, both algorithms have a better correlation

with the exact projection method. This is because, at the center of the channel, large scale

structures are dominant and thus it takes longer time before they start to be affected by the

errors introduced in the projection step. These two figures show that the approximate pro-

jection is closer to the exact project since it can produce the streamwise velocity field that

has higher, and longer correlation with the one provided by the exact projection method.

The one-dimensional spectra were investigated at the end of the simulation (not shown

here), the spectra from the exact projection method and the exact projection method are

virtually identical. However, the ones from mixed-order projection method are significantly

different.
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Figure 5.5: Cross-correlation of streamwise velocity near the wall (a) and near the center of
the channel (b).

In Tab.5.2, the bulk flow parameters are listed. On the rightmost column, the imposed

parameters are shown. Note that the flow conditions used here are slightly different from

what used earlier. In chapter 3, the flow conditions were set to match the conditions in

[MKM99]. Here, the conditions are set to the one used in [KMM87]. This leads to small

differences in τwall and ub. According to previous analysis, one would expect that P42

arrives at different time-averaged profile due to second-order approximation of pressure in

the momentum equation. This is indeed true because the bulk velocity from P42 is slightly

lower than the ones seen obtained from P44 and P42a. Similar to what have seen earlier

with the doubly periodic shear layers flow, the global parameter of the solutions from P44

and P42a are identical in the first three digits. The first- and second-order statistics of the
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flow shown in Fig.5.6(a) and Fig.5.6(b). The profile of the mean streamwise velocity of the

approximate projection (P42a) is passing through the circle symbols of the exact projection

while the one of the mixed-order projection (P42) follows the bottom of the circle symbols

from z+ = 30 onwards. Similar situation is seen in the r.m.s of the streamwise velocity

but the other two r.m.s profiles are collapsing. This level of differences was expected since

the maximum differences seen in the global flow parameter was only 1% (in the bulk flow

velocity). Similar study on grid 323 grid was also performed and came the same conclusion

and thus are not reported here. When compare the second-order projection to the P42 and

P42a, the bulk flow velocity normalized by the shear stress velocity is significantly higher.

In the mean streamwise velocity profile, the differences are insignificant. However, the level

of the velocity fluctuations of P22 are notably lower than the others. It should be emphasize

that at this resolution P22 is accidentally collapse on the profile of P44 (see Fig.3.9(b)).

Perhaps the difference between these projection methods can be seen better in the mean

streamwise profile on some other grids.

P44 P42 P42a P22 Nominal

ub 0.9786 0.9698 0.9790 1.0519 —

ub/uτ 15.296 15.142 15.302 16.443 15.631

Reτ 180.005 180.192 180.000 179.992 179.996

τwall 11.516 11.540 11.516 11.515 11.515

Table 5.2: Global flow parameters of the turbulent channel flow under different projection
methods.

5.7 Conclusion

The mixed-order projection method (P42) is much better than using second-order projection

(P22) which was shown to be unacceptable in chapter 3. Here, the solutions from P42

are hardly distinguished from the ones obtained from the exact projection method, when

plotted together. Nevertheless, the approximate projection which solves the same discrete

Laplacian gives even better result. Further, it was shown that the errors introduced by

the approximate projection at each substep of Runge-Kutta time-integration are in the

order of O(△x4) when △x ≈ △t. Therefore it does not degrade the overall accuracy of

the spatial approximations nor the time integration. It was evident that the mixed-order

projection method (P42) reaches the point where the projection error becomes dominant

and its solution discorrelates from the exact projection method faster than the approximate

projection method(P42a). Since the complexities of both projections are comparable, the

approximate projection method is thus preferred.
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Figure 5.6: Time-averaged streamwise velocity profile (a) and r.m.s. of velocity (b) with the
approximate projection and mixed-order projection methods. Results from the
second-order projection method (P22) from chapter 3 are shown for comparison.



6 Application to Massive-scaled

Simulations

A Direct Numerical Simulation (DNS) is a useful tool in turbulent investigation. When the

flow field is sufficiently resolved, DNS can be very accurate and it provides us with a great

detail of dynamics and time history of the whole flow field. The quality of different simula-

tions of the same flow can be slightly different due to numerical methods, grid resolutions,

and boundary conditions used to simulate them. Among the wide range of DNS in the liter-

ature, turbulent channel flow is one of the most studied. This is because the simplicity of the

geometry and the well-defined boundary conditions. The forcing of the flow is usually done

by assuming a constant pressure gradient which is added as a body force in the streamwise

momentum equation. These conditions allow the simulations to be repeated with a great

precision. A large number of publications have shown that the statistics of turbulent channel

flow Reτ = 180 converge the one reported in [KMM87]. This code is subsequently used to

simulate the flow at higher Reynolds number up to Reτ = 590 in 1999 [MKM99]. Later in

2003, the simulation of turbulent channel flow at Reτ = 2003 [HJ08] is made public. This

database is the highest Reynolds number in the literature at the time of this work. This

simulation was performed on the MareNostrum at the Barcelona supercomputing center.

According to amount of CPU hours and specification of the MareNosturm at that time,

we can estimate that the simulation had occupied half of the MareNostrum for about six

months. Disregarding the cost of the computer itself and only take the operation budget

of the supercomputing center alone, this simulation costs roughly 1.5 million euro. If the

performance of the code was 50% poorer, this run would take a year and the cost would

have been doubled. This fact emphasizes that the code solving the Navier-Stokes equation

must be parallelised with excellent scalability if one aims at attacking high Reynolds number

flows.

It is relatively straight forward to parallelise the compact scheme on shared memory

computer because the approximation problem is just a one-dimensional. For example, if

the total number of grid cells is Nx × Ny × Nz, the deconvolution in x-direction will have

Ny × Nz independent systems. Processors can shared this work load and the programming

can be easily implemented by OpenMP directive. However, this shared memory paradigm

is not as scalable as the distributed one. We addressed already how to solve tridiagonal
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systems on distributed memory machine in chapter 4. The proposed algorithm is expected

to be very efficient when the subsystem size is chosen wisely. In this section, all the de-

veloped algorithms are combined in to the MGLET. The accuracy and the scalability of

this parallelised version of the fourth-order compact scheme are evaluated First the accu-

racy and the performance of the parallelised version is compared to the sequential one using

the turbulent channel flow at Reτ = 180. The accuracy of the code is further tested with

higher Reynolds numbers up to Reτ = 950. We proposed new grid resolutions which al-

low direct numerical simulations using the compact fourth-order scheme to deliver the first

and the second-order statistics accurately. Finally, the scalability of the proposed scheme is

evaluated.

6.1 Configuration of numerical

simulations

The computational box in this section is set to [Lx, Ly, Lz] = [2πH, π, 2H ], except for the

grid G1 which is twice and one-third larger in the streamwise and the spanwise, respectively.

The numerical grids used in this chapter are listed in Tab.6.1. The simulations are first

started on a coarse grid (grid F in chapter 3) and the result are interpolated to other grids in

the table. The ub is monitored until it fluctuates within 0.1Ubulk for 2 through flow before the

sampling is begun. The pressure gradient and the viscosity are changed according to Dean’s

correlation Reτ ≈ 0.09Re0.88 such that the mean bulk velocity remain close to unity. The

simulations are run without further control of the mass flow.

Grid Nx Ny Nz Ntotal × 106 zwall(H) zcenter(H)

G1 128 128 128 2.1 0.00400 0.024685

G2 256 192 192 9.4 0.00220 0.016538

G3 384 384 256 37.7 0.00110 0.016113

G4 480 400 320 61.4 0.00082 0.010197

Table 6.1: Numerical grid used in this study and the grid spacings at the wall and the center
of the channel in term of channel half-width(H).

6.2 Accuracy and performance of parallel compact

fourth-order

The parallelisation of the compact fourth-order introduces two approximation procedures

namely (i) the interface splitting algorithm and (ii) the approximate projection method. The
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first approximation opts for a performance by trading off some negligible errors. Otherwise

the calculations of convective and diffusive terms could be four times more expensive if the

direct method from the ScaLAPACK was used. The approximate projection method offers

a convenient implementation to existing second-order codes. The use of three ghost cell

required by the fourth-order projection method has been avoided. It also reduces the cost

of the projection step significantly. In what follows, the parallelised version is compared to

the sequential one in term of accuracy and performance.

6.2.1 Performance of Approximate projection method with strongly

implicit procedure

The approximate projection method requires solutions of Poisson equation. In the previ-

ous chapters, we have avoided this problem by simply using the direct solver. In general

computational domains which we may not have homogeneous directions, iterative solver is

a better choice. We choose the strongly implicit procedure (SIP) [Sto73] as the iterative

kernel.

The algorithm of the projection method has the same structure as Alg.3 in chapter 5 ex-

cept that the Poisson equation is solved by iterative method using SIP as the smoother. SIP

is claimed to be a second-order approximation [Sto73] of the second-order discrete Lapla-

cian. Therefore it is a reasonable approximation to the discrete Laplacian D4G2 used in

the approximate projection method. In order to solve the Poisson equation, the residual is

first computed using D4G2 and the error in the pressure is smoothened out by the special

incomplete LU-decomposition. Once the desired residual is reached, the velocities are then

corrected by the second-order approximation of the pressure gradient. This iteration is re-

peated until the residual (div − D4G4(p + φ)) reaches the desired value or the maximum

number of iteration is exceeded.

The performance of SIP in solving D4G2 is compared with the direct solver in Tab.6.2.

In this table, the number of iteration was set to 16 for the SIP and the threshold for stopping

criteria is set very small such that the algorithm went through every iteration. The results

were produced using INTEL Fortran compiler on AMD Opteron 8216. The direct solver

is faster when the number of grid cells are small. At the highest number of cells, the

SIP is slightly faster, but with a non-machine-accuracy divergence. The second-order SIP

works well with the approximate projection method. In fact, it works as well with the

exact projection method but this combination does not fit well with the parallelisation

because of the incompatibility of the ghost cell. In summary, the iterative solver for the

approximate projection method works correctly and efficiently. It should be noted that the

CPU times is different from Tab.3.8 reported earlier because several factors such as storage

of the coefficients, the calculation of the velocity correction and the version of the compiler.
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However, the results reported in this table are performed under identical conditions which

allow a direct comparison.

Grid
Time Divergence

DIRECT SIP DIRECT SIP

32 × 32 × 32 0.16 0.24 5.76E-15 9.93E-6

64 × 64 × 64 2.77 3.21 2.56E-14 8.37E-5

96 × 80 × 96 6.79 6.60 1.56E-14 2.17E-5

128 × 128 × 128 22.86 18.84 2.25E-14 4.47E-5

Table 6.2: CPU-seconds per time integration on AMD opteron 8216 of the sequential fourth-
order scheme with direct and iterative solvers for the pressure.

6.2.2 Accuracy of the parallel fourth-order compact

scheme

The most important requirement of parallel algorithms is that it gives a correct answer.

Performance of the algorithm is then the next property to consider. To verify the accuracy of

the parallelised version of the compact fourth-order scheme, the previous turbulent channel

flow on grid F is used. The posteriori testing is performed and the statistics of the flow

fields are compared. The computational domain is decomposed into four equal parts by two

slicing, one in the streamwise and the other in the spanwise direction. These domains are

distributed to four processors. The initial solution is taken from the result of the sequential

version. The flow is then let to evolve for 600H/ub which is equivalent to 48 through flow.

During this time, the bulk velocity fluctuates within 0.4% which suggests that the flow does

not go in to a different equilibrium. This means the transition phase can be skipped and the

statistics sampled during this period can be used directly. The mean streamwise velocity

and the r.m.s. of the velocity fluctuations from the second-half of the sampling differ from

the first half not more than 0.7%.

The statistics of the cell-average values of this simulation are plotted in Fig.6.1 together

with another simulation obtained from the sequential version, sampled in the same way. The

profiles of the mean streamwise velocity and r.m.s. of the velocities fluctuations from both

version are collapsing. Note that the cell-averaged of the r.m.s of the velocities fluctuations

shown here are not the Reynolds normal stresses shown earlier in Fig3.5(c) due to a reason

which will be described later. The skewness factors close to the wall are in excellent agree-

ment. There are small deviations near the center of the channel which can be attributed

to incomplete convergence of the statistics or minor differences in the distribution of the

velocity.
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The most notable deviation can be seen in the flatness factor F (w) at the first cell next

to the wall. Here, the sequential version predicts a smaller flatness than the one predicted

from the spectral scheme in [MKM99] but the parallelised version predicts a higher value (

≈ 47), a comparable deviation from the spectral scheme. This difference between the two

versions is only seen at the first cell of the wall-normal velocity. This should not be an

effect of the interface splitting algorithm. The error of the interface splitting algorithm is

set to be five order of magnitude smaller than the maximum velocities (the approximate

bandwidth J was set to 9) and the velocity there is much smaller than the maximum ve-

locity. Therefore, the difference in the first cell here should come from the treatment of the

pressure term. Recall that we use the third-order approximation for the pressure term in

the momentum equation for both versions. The only difference here is the velocity correc-

tion and the discrete Laplacian. Due to the velocity close to the war has a steep gradient

and the level of fluctuation changes rapidly, the difference between the exact projection

and the approximate projection become notable in the fourth-order statistics, close to the

wall.
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Figure 6.1: Comparison of statistics from the solutions of parallel and sequential versions of
the fourth-order scheme on 1283 grid cells.
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Another factor that can affect accuracy of the interpretation of the statistics are the

type of average values being sampled. When the grids are staggered, one can store the

statistics on their original positions or averages them to the pressure cells. MGLET samples

the second-order statistics at the pressure cells by simply averaging the two cells sharing the

same pressure cell. The third- and the fourth-order statistics, however, are stored at their

original positions. The averaging procedures, of course, introduce a filter to the velocity field

and thus the information on small scale are less accurate. This would imply that we need

even higher-order approximations to process the statistics.

The effect of using lower-order approximation statistics can be highlighted using the

Reynolds shear stress profiles shown in Fig. 6.2. When the cell-averaged values are used to

compute < u′w′ >, u and w are averaged to the pressure cell where < uu >, < ww > and

< uw > are computed and stored. The profile of the cell-averaged < u′w′ > close to the

wall of both versions significantly deviate from the theoretical predictions of the Reynolds

shear stress. Post-processing by de convolving the stored cell-averaged < u′w′ > (not shown)

reduce the deviation by half. However, when < u′w′ > is taken directly from the surface-

averaged at the top of the u-momentum cell, the profile follows the theoretical prediction

perfectly. Another effect that one must take in to account when interpret the statistics
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Figure 6.2: Effect of the sampling procedures to the Reynolds shear stress in turbulent chan-
nel flow.

of a solution of the finite volume discretisation is the nonlinear correction. Previously in

chapter 3, we report the r.m.s of the velocities using fourth-order approximation of < u′
iu

′
i >

extracted from the momentum equation using a sequential code. In Fig.6.1(b), we use the

cell-averaged values because we do not yet have the infrastructure to gather these special
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statistics from different processors. In Fig.6.3, the cell-averaged and the surface-averaged

values (with nonlinear correction) of the r.m.s. of the velocity fluctuations are compared.

Actually, the contribution of the nonlinear-correction is small. When the solution is solved

using the full fourth-order scheme, but sample the surface-averaged < u′
iu

′
i > without the

nonlinear correction gives the r.m.s. profiles in between the two profiles plotted in Fig.6.3.

This is not unexpected because the magnitude of the nonlinear correction is second-order.

Since, we are dealing with < u′
iu

′
i > which is already a second-order quantity. We could only

expect a small differences in the profile. Nevertheless, this correction is necessary for a fine

comparison with the spectral scheme. If this correction is neglected, the level of the r.m.s

will be notable lower than the spectral solution.

In practice, one can deconvolve the cell-average values to pointwise ones but it would

involve a triple deconvolution. A very high order approximation would be needed to avoid

a damping of high wave component. At this moment, there are no infrastructures to sample

face-averaged values or pointwise values in the parallel version of the code and therefore the

results in the rest of the chapter will be reported using the cell-average values. This should

be noted for future improvement.
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The probability density functions (PDF) are investigated in Fig.6.4. At first it was

difficult to make a comparison of the fourth-order results with the reference [MKM99] . This

is due to the normalisation, which can bring a different scaling when the cumulative density

functions are computed with different intervals. This results in a different weighting and the
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PDF curve can be scaled up or down. In Fig. 6.4(a) , PDF(u) at z+ = 5 are shown. The

number of interval and the range are set to 201 similar to the reference. The right figure

shows a similar plot at the center of the channel. Here, the number of interval is set to 160.

In both figures, all the distributions are comparable. The distribution of the fourth-order at

the center of the channel is slightly broader than that of the spectral scheme. Nonetheless,

there are no notable differences between the parallel and the sequential versions. According

to these results, we can conclude that the parallelisation of the compact fourth-order is

implemented correctly and the parallel algorithms used here do not have negative effects on

the quality of the solution.

6.3 DNS of turbulent channel flow on fine

grids

Ideally, numerical grids used in DNS should be able to represents all active structures of the

flows. The Kolmogorov length scale, η = (ν3/ǫ)4, is commonly accepted as the smallest scale

that is dynamically significant. This requirement is perhaps too severe to fulfil. Another

argument on grid resolution is that the grid should be sufficient to accurately capture the

viscous dissipation mechanism which is the sink of energy in turbulent flows. It is possible

to use model spectrum of isotropic turbulent flow to show that the viscous dissipation is

taken place in the range 0.1 ≤ kη ≤ 1 which is corresponding to 6η to 60η [WHS07]. In

the same reference, the recommended resolution for wall bounded flow is given in Tab.6.3.

In the center of the channel, one can assume that the turbulence structures are similar to

isotropic turbulent and use the corresponding grid resolution. In this section, the parallel

compact fourth-order scheme is applied to turbulent channel flows using the grid resolution

close to those recommended resolution. Note that this grid resolution is coarser than those

given in [MM98] which are [7.5+, 4.4+, 0.33+] for the streamwise, spanwise and wall-normal

directions, respectively.

Another criterion one should be careful when performing a numerical simulation of

turbulence flow is the computational domain. It should be large enough to contain all signif-

icant structures of the flow. When there is a homogeneous direction and periodic boundary

conditions are used, the domain length in that direction must be large enough such that

the correlations drops to zero. Further, Kim and Adrian [KA99] have shown that in high

Reynolds number flows, the small structures can interact in accumulated ways and become

a very large structure. This phenomenon can be important in the numerical simulation of

turbulent channel flow in which the homogeneity is assumed on the streamwise-spanwise

plane. In their work, they explain that the large structures of the channel flow can be a

result of interaction among the small hairpin structures. They uses premultiplied spectra
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to show that larger structures (low wave number) are created when the Reynolds number

was increased. When the computational box is not large enough to allow these large-scaled

structure to formed, statistics and turbulence mechanisms may not represent the correct

physics. If they contain enough energy, the numerical simulations of turbulent channel flow

on different domain (with the same grid resolutions) may deliver different results. However it

is not yet known at what Reynolds number these large-scaled structures become significant

and how much they affect the flow statistics. To get rid of this uncertainty, three DNS of tur-

bulent channel flows up to Reτ = 590 are performed using the same computational box and

comparable resolutions as those used in [MKM99] which will be used as the reference. Com-

putational domain, grid resolutions, nominal flow conditions which are used to enforce the

flows and the resulting Reynolds number are listed in Tab.6.4.

In the next step, we extend the study to a higher Reynolds number, the turbulent

channel flow Reτ = 950. In order to avoid excessive use of resources, we scaled down the

computational domain and perform a simulation using the recommended grid resolutions.

It will be explain later that this domain is sufficiently large for this simulation. All of

the simulations in this section are run on ALTIX 4700. The number of processors in each

simulation spans from 8 to 128.

Flow direction DNS Wall-resolved LES

△x+ (streamwise) 10-15 50-100

△y+ (spanwise) 5 10-20

△z+ (wall-normal) 1 1

Number of points in 0 < z+ < 10 3 3

Table 6.3: Recommended grid resolutions for DNS and LES from [WHS07].

6.3.1 Comparison with spectral scheme on the same computational

domain

Table 6.4 lists the Reynolds numbers and the resulting resolution of the respective grid

used to simulate the flows. The nominal Reynolds number based on the friction velocity

is given by the pressure gradient and the dynamic viscosity imposed to the flow. The

corresponding effective Reynolds number is computed from the mean shear stress obtained

from the simulations.

The mean streamwise velocity profiles of the fourth-order scheme in Fig.6.5 collapse on

those of the spectral scheme. The r.m.s. of the cell-averaged fluctuations in the spanwise

and wall-normal velocities are in excellent agreement with the spectral scheme. The peaks

of u-r.m.s. are correctly predicted. Away from the wall, the predictions of r.m.s. of the
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Case Nominal Reτ Effective Reτ △x+ △y+ △z+
w △z+

c
tub

LxH

T180-G1 180.0 179.7 17.7 5.90 0.72 4.4 100

T395-G2 392.2 391.9 9.61 4.81 0.86 6.5 41.1

T590-G3 587.2 575.1 9.45 4.70 0.63 9.3 17.3

T950-G4 943.1 943.6 12.41 6.21 0.78 9.7 21.0

Table 6.4: Summay of turbulent channel flow simulations on fine grids..

streamwise velocity are slightly lower than what predicted by the spectral scheme. This

difference is due to the averaging procedure mentioned earlier which explicitly filters the

field and remove the small scale from the statistics. This shortcoming can be improved by

deconvolve the field to pointwise value before the taking the sampling or deconvolve the

field to the surface or adding nonlinear correction into it such that uiui represent the true

Reynolds normal stresses in the momentum equation like what we did earlier in chapter

3.

The profiles of the skewness factor of the wall-normal velocity at higher Reynolds num-

bers (Fig.6.6) agree with the spectral scheme better than what seen on the lowest Reynolds

number (Reτ = 180). The flatness factors are also correctly predicted. At the center of

the channel, the spectral code predicts [F (u), F (v), F (w)] = [3.58, 3.73, 3.92] and the fourth-

order predicts [3.57, 3.40, 3.76].

One-dimensional energy spectra are investigated in Fig.6.7 which shows some interesting

results. Near the wall, Euu of the fourth-order scheme in T180-G1 drops near the end of the

spectrum while that of the other Reynolds number follows the profile of the spectrum almost

to the end of the Nyquist limit. On the other hand, the spectrum on T180-G1 follows that of

the spectral scheme up to 75% of the resolvable frequency but the profiles on higher Reynolds

number follows the predictions of spectral scheme up to only 60%. This opposite trend can

be attributed to the grid spacing in the streamwise and the wall normal direction including

the profile of the energy spectrum itself. The grid spacing in the streamwise direction of

T180-G1 is approximately twice larger than those used in the other two cases. Therefore,

near the wall it is not as accurate as the other cases. At the center of the channel, the grid

spacing of T180-G1 in the wall-normal direction is two-third of the others and the slope of

the reference spectrum is steeper which means the small scale structures is less significant

than the other two cases. These two factors lead to a better prediction of energy cascade

and in turn predicts an accurate energy spectrum there.
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6.3.2 Comparison with spectral scheme using a smaller computational

domain

In what follows, the turbulent channel flows at Reτ = 950 is investigated. The results in

this section are compared with results obtained using spectral code in [HJ08]. Here the

numerical simulations are performed on the same physical domain as used previously on

T395-G2 and T590-G3. This domain is 12-times smaller than that used in the reference—

a factor of four and three in the streamwise and spanwise directions respectively. It can

be expected that if there were very large scale structures in the flow which exceed the

computational domain used in this simulation, physics of the flow cannot be accurately

represented. It is a common practice to justify the size of computational domain by taking

the length that the autocorrelations of the velocity become zero. However, it can not be

done prior to the simulation. Further, the autocorrelation goes in the opposite direction

with the onset of the large scale structures. The higher the Reynolds number, the shorter

length the velocities are correlated. Investigation of the autocorrelation reported in [Hu06]

reveals that the autocorrelation Ruu drops to zero at approximately lx = 3.98 and 2.76 for

Reτ = 360 and 720, respectively. Linear interpolation shows that, for Reτ = 590, Ruu should

reach zero at lx = 3.22 which is larger than the domain used in [MKM99]. It is indeed result

in a significant Ruu in their simulation. Our earlier simulations at this Reynolds number

inherit this deficiency as well. According this findings, the domain used here for Reτ = 950

is large enough to be free from the error of periodic boundary conditions. However, it may

not be large enough to capture large scale structures, if they are at all present. The purpose

of this section is to investigate how the fourth-order will perform in an even higher Reynolds

number using a comparable solution, assuming that the large-scale structures do not yet

affect the flow.

The first- and second-order statistics in Fig.6.8 shows a similar agreement seen pre-

viously. Near the wall, the one-dimensional energy spectrum Euu collapse on that of the

reference solution (Fig6.9(a)). At the center of the channel, the profile of Euu from the

fourth-order is highly satisfactory over 60% of the whole spectrum (6.9(b)). According to

the energy spectrum from the spectral code, 99% of the fluctuations energy is stored within

the first 40 mode. Similarly, 99.9% and 99.99% of the fluctuations energy are stored in

the first 76 and 120 modes, respectively. The fourth-order delivers the same number of

mode for 99% but 74 and 106 modes for the other two predictions. The wavelength of the

wave corresponding to 74-th mode is about 0.085H and it is resolved by approximately 6.5

cells per wavelength. This means over 99.9% of fluctuations energy are resolved by more

than 6 cells. At this resolution, the error of the approximation of the 74-th wave number

is less than 0.1%. This resolving power of the fourth-order scheme is thus highly satisfac-

tory.
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Figure 6.4: Comparison of probability density functions of the streamwise velocity between
parallel and sequential versions of the fourth-order scheme at two positions: (a)
close the wall at z+ = 5 and (b) at the center of the channel.
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Figure 6.5: Mean streamwise velocity profile (left) and r.m.s. of velocity fluctuations (right)
of turbulent channel flow on the domain and the grids comparable with those used
by spectral code[MKM99]. Top:Reτ = 180 ; middle:Reτ = 395 ; bottom:Reτ =
590. Plus symbol: u-component ; square symbol: v-component; triangle symbol:
w-component.
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Figure 6.6: Skewness factor (left) and flatness factor (right) of turbulent channel flow.
Top:Reτ = 180. Middle:Reτ = 395. Bottom:Reτ = 590.
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Figure 6.7: One-dimensional spectra of the streamwise velocity at z+ = 5 (left) and at the
center of the channel (right) of turbulent channel flow. Top: Reτ = 180. Middle:
Reτ = 395. Bottom: Reτ = 590.
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Figure 6.8: Mean streamwise velocity (a) and r.m.s. of velocities fluctuations(b) of T950-G4
(every two grid cells are shown).
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Figure 6.9: One-dimensional energy spectra of the streamwise velocity of T950-G4. at z+ = 5
(a) and at the center of the channel (b).
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6.4 DNS of turbulent channel flow on coarse

grids

In general, the main reason for using non-spectral schemes is to simulate fluid flows with

complex geometry. In such cases, it may not be possible to represent the geometries and

boundary conditions perfectly. The verification of the DNS solutions by physical experiments

is therefore limited to certain accuracy. Taking the current computational resources into

account, it is more practical for a DNS of non-spectral schemes to aim for correct predictions

of the first- and second-order statistics. It is, perhaps, a philosophical question to defined the

word correct statistics. Here it only means that the solution has reached grid independent

solution for the first- and second-order statistics. We borrow the term grid independent

solution from RANS which usually means that the first-order statistics are unchanged when

the grid is significantly refined. Example of such solutions are the solutions on grid M2 and

grid F seen in chapter 3. Here we extend it to the second-order statistics as well. For most

engineering applications, these two statistics are the most important quantities. Therefore

it is valuable to verify a necessary grid resolution that can deliver such solutions using the

compact fourth-order scheme.

Earlier in chapter 3, grid M2 delivered the excellent result up to the second-order

statistics. Third- and fourth-order statics were in good agreement. The number of cells

on this grid was about one-third of the one used by the spectral scheme. This can not be

interpreted as a superiority of the fourth-order scheme. It only means that the error in the

approximation of the small scales missed by the fourth-order scheme are very small and do

not appear in the first- and second-order statistics. It is seen from the previous sections that

the energy spectra can be represented up to roughly 60% of the Nyquist limit before starting

to experience a sharp drop. The energy spectrum depends on the balance of the terms in

the momentum equation, more precisely, the balance between the productions that feeds the

energy to small scales and the dissipation which drains the energy. This balance depends

as well on the profile of the energy spectrum. These interactions are nonlinear and difficult

to analyse. In this section, the turbulent channel flows are performed again but using the

grid that was used earlier for the Reynolds number one step lower. Summary of the cases

and the respective resolutions based on wall-unit are listed in Tab.6.5. Note that all the grid

spacings here exceed the recommended values.

The mean streamwise velocity profile in Fig.6.10 shows that grid spacing twice coarser

than the recommended values in some directions, does not affect the mean streamwise veloc-

ity. However, there are some noteworthy observations can be made here. The r.m.s. of the

streamwise fluctuation near the peak is least accurate on the lowest Reynolds number. At

this Reynolds number the grid spacing in the streamwise direction is also the coarsest (38z+).

The profile of the streamwise fluctuations approaches that of the spectral scheme again close
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Case Effective Reτ △x+ △y+ △z+
w △z+

c
tub

LxH

T395-G1 390.3 38.33 12.81 1.56 9.63 35

T590-G2 579.5 14.22 9.47 1.27 9.58 68

T950-G3 965.9 15.96 7.98 2.13 15.97 59

Table 6.5: Summay of turbulent channel flow simulations on coarse grids..

to the center of the channel. On the other hand, the profile of the r.m.s. of the velocity

fluctuations of T950-G3 is very good close to the peak, but the fluctuations are slightly

over predicted the center. This indicates that the grid spacing near the channel is relatively

coarse. Here the grid spacing in the wall-normal direction is the coarsest among other cases.

According to the grid resolutions used in this study, it could be possible that the first- and

second-order statistics of the turbulent channel flows can be predicted accurately using grid

spacings twice larger than the recommended values in Tab.6.3.

6.4.1 DNS of turbulent channel flow on very coarse

grids

In order to verify whether the grid resolution resolutions twice coarser than the recommended

values can be used to produce an excellent prediction of the first- and second-order statistics,

the turbulent channel flows are investigated for two Reynolds numbers, 180 and 950 using

[△x+,△y+, z+] = [30, 10, 2] at the wall. The maximum grid spacing in the wall-normal

direction is set to 10+ and 16+ for Reτ = 180 and 950 , respectively. This leads to the total

number of cells of 0.37M and 9.2M. A factor of 5.7 and 6.7 smaller than the grid conforming

to the respective reference resolution.

The results of the mean streamwise velocity and the second-order statistics in Fig.6.11

are very encouraging. The mean streamwise velocity profiles are almost collapsing on the

reference profiles. The level of fluctuations in Reτ = 180 is lower than the reference solution

as expected. In case of Reτ = 950, the r.m.s. is higher than the reference solution starting

from z+ = 100 up to the center of the channel. The mean streamwise profile is also notably

lower than the that of the spectral scheme. This can be attributed to a relatively coarse

grid in the wall-normal direction, away from the wall. At the center of the channel we used

z+
max = 16, compared to 10 in Reτ = 180. One-dimensional energy spectra of the streamwise

velocity also behave nicely, even though a slight overshoot in the energy spectrum on the

lower Reynolds number is observed.

According to the result in this section, we can conclude that , for a turbulent channel

flow, the grid resolutions [△x+,△y+,△z+
wall] = [30, 10, 2] are sufficient to deliver a satisfac-

tory result up to the second-order statistics.
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6.5 Efficiency and scalability

In this section, the performance of the parallel compact scheme is evaluated on two types

of parallel machine, a low cost workstation and a supercomputer. The workstation used

in this test is a four-processors of dual core AMD 8216. The supercomputer where the

benchmarking of large-scaled simulation is performed is ALTIX 4700 located at Leibniz-

Rechenzentrum.

The result from the workstation is presented in Tab.6.6. This table documents the result

of the parallelisation of T180-G1. The domain is sliced first in the streamwise direction, then

the spanwise direction and repeated in this order for each time the number of processors is

doubled. According to the table, there is a significant overhead going from a single processor

to two processors. This overhead is as high as one-third of the total work. The overhead

is attributed to three factors, the communications, domain decomposition of the SIP and

the interface splitting algorithm. All simulations in this section use 16 iterations of SIP.

The absolute efficiency which is defined by Ea = 100T1

pTp
, relative to the time used on a single

processor (T1), is not reflecting the overhead of the parallelsation. It is thus a pessimistic

indicator for the scalability. A more practical indicator, named here incremental efficiency,

measures the performance gain when the number of processor is increased. It is defined by

Ei =
100Tp1

(p2/p1)Tp2

for p2 > p1. This indicator says clearly how much the increased processors

are being used, relatively to the simulation on p1 processors.

In this table, Ei is measured between the two consecutive number of processors. On

the workstation, roughly 75% of the added processors helps in speeding up the solution

process. The performance on ALTIX 4700 in Tab.6.7 shows a similar finding. Performance

on a single processor is slightly lower than what seen on the workstation. The values of

absolute efficiency are also lower. For the incremental efficiency the ALTIX 4700 shows

an interesting behaviour. At lower number of processors, the incremental efficiencies are

lower than what seen on the workstation but on eighth and sixteen processors the value

are higher. This mean that the overhead on ALTIX 4700 increased sharply up to four

processors and then become almost saturated. Incremental efficiency of 92% is the evident

of this saturation. There are three factors contribute to this behaviour. First, when we

increase the number of processor from one to two, we introduce communication overheads in

the streamwise direction. Increasing the number of processor from two to four, overheads are

added again in the spanwise direction. After this, no extra direction is added. The increased

overheads at eight and sixteen processors are therefore not as high. This contribute to a

higher incremental efficiency. This behaviour also seen on the cluster as well. The second

contributor is the architectural design. ALTIX 4700 is composed of building blocks which

are blade systems consisting of two dual core Intel Itanium2 Montecito per blade. These four

cores share the same 8.5 GB/s memory bus. This blade is then linked to the other blades
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via 6.4Gb/s NUMAlink4. The peak performance of the blade is 25.6 GFlops and therefore

204.8 GB/s must be fed to each processor to achieve their full potential. Unfortunately, the

bus is only 4% of this value and thus results in a sharp drop of performance in the first

four processors. This effect is clearly shown in the speedup value of 1.76 at four processors,

compared to 2.21 on the workstation.

p CPU-seconds Speedup
Efficiency (%)

Ea Ei

1 12.47 — — —

2 8.47 1.47 74 74

4 5.65 2.21 55 75

8 3.54 3.52 44 80

Table 6.6: Scalability of parallel compact scheme of T180-G1 case on commodity worksta-
tion..

p CPU-seconds Speedup
Efficiency (%)

Ea Ei

1 13.61 — —

2 9.87 1.38 69 69

4 7.75 1.76 43 64

8 4.21 3.23 40 92

16 2.38 5.72 35 88

Table 6.7: CPU-time per time step used in T180-G1 and the scalability of the fourth-order
scheme on ALTIX 4700.

The comparison of the performance between the second-order and the fourth-order

on ALTIX 4700 using a turbulent channel flow on T395-G2 is shown in Tab.6.8. On four

and eighth processors, the fourth-order is slower than the second-order by a factor of 2.7.

This factor is reduced to 2.1 on thirty two processors. Both schemes achieve almost ideal

scalability, relatively to performance on four processors. In these regions, the incremental

efficiency is free from the memory bottle neck mentioned earlier. The amount of memory per

variable on 4 and 8 are 17.9MB and 8.96MB, respectively. Thus on eighth processor a single

variable fits perfectly on the processor’s cache. This better data locality is compensated with

the increased communications and results in excellent scalability in both schemes. The part

of the code which is the most communication intensive is the solution of pressure where the

SIP is used. There, the subroutine must access two variables, the pressure and the residual.

On sixteen processors, both data can be stored entirely in the cache which gives a super-linear

relative speedup, shown by 101% incremental efficiency.
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Another reason that made the fourth-order scheme less sensitive to the communication

is the pattern of communication in the SIP. The original second-order code, first solve the

L-system then synchronise the residual. It then solves U-system and synchronises again.

The modified version for the fourth-order scheme only synchronises once after both systems

are solved. This halves the number of the communications. Even though, the second-

order scheme needs to synchronise just one ghost cell compared to two ghost cells in the

fourth-order scheme, the lower number of communication helps avoiding the idle time of

the processor in which they must wait for the mismatched send-receive to be complete.

According to the result form chapter 2, the second-order needs twice more grid point per

direction to have the same accuracy as the fourth-order scheme. Taking this resolution

requirement and the time integration in to account, we can expect that the fourth-order is

6−8 times more expensive than the second-order code. Comparing to the factor of 10 found

earlier in chapter 2, the advantages of the fourth-order scheme is reduced slightly in the

parallel version. This can be attributed to the overhead in the interface-splitting algorithm

and the SIP solver. Nevertheless, the parallel version of the fourth-order scheme is still much

more efficient than the second-order scheme.

p
CPU-seconds

time-ratio
Incremental efficiency (%)

second-order fourth-order second-order fourth-order

4 9.60 25.80 2.69 — —

8 5.00 13.60 2.72 96 95

16 2.70 6.70 2.48 93 101

32 1.70 3.65 2.15 80 92

Table 6.8: Comparison of CPU-time per time integration and the scalability of the fourth-
and the second-order schemes in T390-G2 on ALTIX 4700.

6.6 Conclusion

The results shown in this chapter highlights the desirable properties of the parallelised com-

pact fourth-order scheme. It is highly accurate and can matched up with the spectral scheme

with great accuracy. It can recreate the one-dimensional energy spectra up to 99.9% of the

fluctuation energy using the same grid as the spectral scheme. If one satisfied with the grid

independent solution of the first- and the second order statistics, a grid twice coarser than the

usually recommended values can also be used. This is made possible by the fact that the small

scales do not contribute much to the large scale structures.

In general, it is relatively difficult to obtain a good scalability in fixed size speed up.

Here we obtain approximately linear scalability which is a nice property thanks to the linear
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complexity of the algorithms we used. In every algorithms presented in this work, the

complexity does not depends on the number of processor. Therefore the proposed scheme

should be scalable for any number of processors, provided that the interconnection fabric of

the parallel machine is scalable.
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Figure 6.10: Mean streamwise velocity profile (left) and r.m.s. of velocity fluctuations (right)
of turbulent channel flow on coarse grid. Top: Reτ = 395 ; middle: Reτ =
590 ; bottom: Reτ = 950. Plus symbol: u-component ; square: symbol: v-
component; triangle symbol: w-component.
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Figure 6.11: Mean streamwise velocity (left) and velocity fluctuations (right) normalised by
the nominal parameters of Reτ = 180 (top) and 950 (bottom) on the grids twice
larger than the recommended resolutions.
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Figure 6.12: One-dimensional spectra Euu of the streamwise velocity for Reτ = 180 (a) and
950 (b)on very coarse grids.



7 Conclusion and outlook

On the course of this work, the compact fourth-order scheme for numerical solutions of the

Navier-Stokes equations (NSE) tailored specially for staggered grids have been developed.

The scheme is efficiently parallelised and can be conveniently applied to any existing second-

order code having two ghost cells. This development is a complete fourth-order scheme for

finite volume discretisation on staggered grids which ensures a perfect mass conservation on

every control volumes. Compared to earlier works on higher-order method for Navier-Stokes

equations, we have considered many aspects of the numerical scheme such as accuracy, effi-

ciency, scalability including compatibility for existing CFD code. The outcome of the work is

a highly efficient algorithm solving Navier-Stokes equations which outperforms the standard

second order schemes in both accuracy and performance. Careful evaluations have been

carried out for laminar and turbulent flows. The approximations for the momentum term

is the least accurate among the spatial approximations used in the NSE. The role and the

importance of the pressure term have been investigated. Improving all other approximations

to fourth-order but keeping that of the the pressure term at second-order will prevent the

convergence rate to reach fourth-order. We also found an evident suggesting that the en-

forcement of continuity may be more accurate on staggered grids than on collocated ones.

When the approximation of the pressure gradient and divergence is kept at second-order,

the overall convergence rate of third-order can be achieved while it is limited to second-order

on the collocated grids. This could be the reason why previous developments of higher-order

scheme on collocated grids deliver disappointed results for turbulence flows, despite the fact

that higher-order schemes were shown to be much more accurate than the second-order

scheme on laminar flows.

Tridiagonal matrices of the compact scheme has been parallelised efficiently by the

interface-splitting algorithm. This algorithm is an approximate method, but the accuracy

of the approximation is predetermined by the cut-off threshold of the coefficients vector.

The overhead of the algorithm is small when the size of the subsystem is properly chosen.

The proposed algorithm has a minimum communication and the least number of floating

point operations. The algorithm is designed in a way that the the additional computation

and the bidirectional communication can be overlapped. This algorithm is shown to be at

least four-times faster than the ScaLAPACK library. In optimal conditions, ideal absolute

speedup can be obtained.
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The developed NSE solver uses the novel divergence-free interpolation for the convective

velocities. This interpolation ensures the divergence-free property of the convective velocities

on all control volumes inside the computational domain. This divergence-free property of the

convective velocity is a necessary condition for Galilean invariant of the numerical solution

of the NSE and it can be very important in numerical simulations of turbulent flows on

coarse grids. The divergence-free approximate projection method is developed to enforce

the mass conservation using a narrow banded matrix. This method has a very good data

locality and does not need to recompute the divergence during the solution process. The

proposed approximate projection method shows an excellent correlation with the fourth-

order projection method and it is fully divergence-free with third-order global convergence

rate.

These pieces, when they are put together, create a highly efficient and scalable codes.

To the best of the author knowledge, this scheme is the only non-spectral scheme that can

produce a collapsing profile of the first- and second-order statistics of turbulent channel flows

up to Reτ = 950 using approximately one-third of the total grid used by the spectral code.

This reduction in number of cells is allowed by the fact that the small scales structures

contribute very little to the large scale structures. Ultimately, we expect that the fourth-

order scheme can use the grid resolution twice larger than the usual recommended values

for turbulent channel flow, and yet deliver accurate results for the first- and second-order

statistics.

The current code can easily be used to simulate some classic turbulent flows such as

flows over mounted cube, backward/forward facing step, flow over rectangular cavity, mixing

layers etc. Due to the excellent scalability of the parallelised version of proposed scheme, we

can expect that direct numerical simulations of these classic test cases can be performed by

the proposed scheme at higher Reynolds number and expand our understanding of Turbulent

flows.

In order for the proposed scheme to be applicable for complex geometries, further

developments are needed. This can be in a form of higher-order immersed boundary method

or conformal matching grid of Cartesian and curvilinear grids or Cartesian and unstructured

grids. This topic could be a very interesting research. The invention of fourth-order scheme

could be beneficiary for large-eddy simulations (LES). We have seen clearly that the one-

dimensional energy spectra of the fourth-order scheme follows that of the spectral scheme

50% longer than that of the second-order. The local truncation errors are now small. For a

well known turbulent channel flow at Reτ = 180, the DNS of the fourth-order scheme using

323 grid cells delivers 5% error in the mean flows profile. What sub-grid scale modelling

will improve the solution ? How to adjust the modelling parameter, in comparison to the

second-order ? These questions must be answered in order to enable the fourth-order scheme

for industrial applications.
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