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Chapter 1

Challenges of managing human

resources in IT–projects

1.1 Introduction

Assigning human resources to work (also known as “staffing”, cf. Barreto
et al. [9]) taking into account resource–specific skills and efficiencies is a
general planning task which has to be performed in any organization.1 It is
of particular importance for service firms where, compared to manufacturing
firms, the labour intensity is high (cf. e.g. Brusco [20]). The emphasis of this
thesis is on the context of IT–projects. Nevertheless the problem is common
in many other project environments as well.

The problem in focus arose at the departments of information technology
(IT) of a major semiconductor manufacturer (cf. Heimerl [42]) and of a large
telecommunication company. There, multiple projects such as the selection,
development, installation and configuration of new IT–systems for different
departments have to be done on a recurrent basis. Projects arrive dynami-
cally over time and have then to be accomplished within a given time span.
For the processing of the projects internal human resources with different
skills and different unit costs have to be used (cf. Figure 1.1). Furthermore,
fractions of the projects may be processed by (usually more expensive) ex-
ternal human resources, i.e. project work can be outsourced. Some examples
for skills required in IT–projects are programming, software architecture, se-
curity, or hardware skills. Note that resources can have multiple skills, e.g. as
depicted in Figure 1.1 one resource has programming and architecture skills,

1Since only human resources will be considered in this thesis, the expression “resources”
will be used equivalently to “human resources” henceforth.

1
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programming

external

projects

internal

skills

architecture

security

hardware

human resources

Figure 1.1: Example of the basic problem setting

another has architecture, security and hardware skills while a third resource
only has hardware skills.

Projects consist of several work packages. Each work package can only
be processed by resources having (at least) the skill defined by the work
package. E.g. in Figure 1.1 a work package requiring the programming skill
can be processed by the first internal resource while a work package requir-
ing the architecture skill can be processed by the first and second internal
resource. Alternatively, external resources may be assigned to the work pack-
ages. Furthermore, resources usually work at different performance levels (i.e.
efficiencies) w.r.t. a skill. Performance levels determine the time required to
process a work package. If an internal resource is very efficient in performing
a certain skill it can do more work requiring this skill in the same amount
of time. This reduces the need to outsource work packages. The goal pur-
sued throughout this thesis is to assign project work packages to resources
efficiently such that total assignment costs of internal and external resources
are minimized. In the course of the thesis this basic problem setting will be
extended w.r.t. several aspects.
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1.2 Aspects treated in this thesis

Optimization goal This thesis introduces several mathematical optimiza-
tion models for the management of human resources in IT–projects. Mathe-
matical optimization models can represent real decision problems using sev-
eral variables, parameters, constraints, and (usually) a single objective func-
tion. The problem is to find the values of the decision variables that optimize
(i.e. minimize or maximize) a goal expressed in terms of the objective func-
tion. At the same time one or more constraints need to be taken into account.

When solving staffing problems previous research pursued company– as
well as resource–specific goals: Company–specific goals can be the maximiza-
tion of the company’s revenue (cf. Abboud et al. [1], Kwak et al. [55]), the
maximization of the company’s utility (cf. Campbell and Diaby [23], Sayin
and Karabati [65]), the maximization of the company’s performance or pro-
ductivity (cf. Chu and Lin [25], Kwak et al. [55], Nembhard and Osothsilp
[57]), the minimization of costs for (external) resources (cf. Bassett [10], Bhat-
nagar et al. [16], Cai and Li [21], Eiselt and Marianov [32], Wu and Sun
[76], Wu [77]) and/or overtime (cf. Bhatnagar et al. [16], Eiselt and Mari-
anov [32]), the minimization of project duration (cf. Bellenguez-Morineau and
Néron [15], Vairaktarakis [69]) or the optimization of other performance indi-
cators such as the so–called project scatter factor or the resource dedication
profile (cf. Hendriks et al. [48]). Typical resource–specific goals are the maxi-
mization of the resources’ satisfaction (cf. Abboud et al. [1], Yoshimura et al.
[79]), the maximization of preferences or priorities for a task (cf. Coromi-
nas et al. [27]), the maximization of appropriateness for a task (cf. Ballou
and Tayi [8]), the minimization of the resources’ boredom (cf. Eiselt and
Marianov [32]), the maximization of skill improvement (cf. Gutjahr et al.
[40], Sayin and Karabati [65]), equalizing workload among resources (cf. Cai
and Li [21], Eiselt and Marianov [32]) or compliance with soft–constraints like
a limit on the maximum number of similar tasks per resource (cf. Corominas
et al. [28]).

This thesis concentrates on the company–specific goal of cost minimiza-
tion. Costs accrue from staffing projects with internal and external human
resources. More specifically the costs are caused by a human resource for the
time spent on processing a project work package. Each time unit spent on
project work is charged according to a resource specific cost rate.

Next to the goal of cost minimization an additional rather strategic goal
will be considered in Chapter 4. There the goal is to qualify internal human
resources according to requirements on the company’s skill portfolio.
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Planning levels Usually not only a single project but multiple projects
raise demand for resources. Multi–project–environments can be found partic-
ularly in software development (cf. Wu and Sun [76]), software maintenance
(cf. Ballou and Tayi [8]) as well as research and development (cf. Bassett
[10], Yoshimura et al. [79]). Compared to ongoing operations, project envi-
ronments imply additional complexity w.r.t. the staffing problem. In the case
of ongoing operations such as in health care, call centers or many manufac-
turing environments the planning task can be done in two steps: First, the
number of resources required per skill and period (demand) is determined.
Second, staffing is done by assigning human resources to the demand. Typi-
cally, this is done based on shifts (cf. Brunner et al. [19], Ernst et al. [33]). In
a project–context, the two levels cannot be separated as easily because the
demand for resources in one period depends on the schedules of the projects.

Within a multi–project–context human resource allocation is usually em-
bedded in the following three consecutive planning levels (cf. Figure 1.2,
Heimerl and Kolisch [45]): project selection, project scheduling, and project
staffing. The decisions on these planning levels are intertwined in both di-
rections, e.g. optimal decisions on the project staffing level depend on the
decisions on the project scheduling level and vice versa. By scheduling the
projects in a smart manner the demand for skills can be aligned with the
supply reducing the need for external resources and the associated assign-
ment costs. Thus, an integrating multi–project–perspective of more than
one planning level offers advantages w.r.t. to objective function value. This
observations holds no matter what the overall goal is (e.g. minimization of
costs, maximization of revenue, minimization of project duration). How-
ever, complexity grows extraordinarily with the number of planning levels
involved. Furthermore, goals might be very heterogeneous on the considered
planning levels and, thus, hard to be integrated.

This thesis will focus on an integrated view to the planning levels of
scheduling and staffing. The evaluation of the potential for cost reductions
that is achievable by the combination of these planning levels will be part
of this thesis. The cost savings that can be obtained by adding flexibility
regarding the project start period will be analysed, too.

Staffing Whether resources need to be assigned completely to one task or
project within one period of time or whether the assignment can be spread
across multiple tasks/projects has been treated differently in previous re-
search: Several authors (e.g. [1, 15, 16, 20, 21, 23, 25, 27, 56, 57, 68–70, 76])
assume a discrete 0–1 assignment of resources to tasks. This approach is
appropriate if e.g. transfer times between tasks (e.g. due to travelling) are
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Project Selection

?

Project Scheduling

?

Project Staffing

Scope of this thesis

Figure 1.2: Consecutive planning levels of human resource allocation within
a project–context

relatively high and cannot be neglected (cf. Krüger and Scholl [54]), the
lengths of the periods are relatively short, or the transfer between tasks
must occur concurrently (e.g. due to a minimum number of resources per
task constraint). Other publications (cf. e.g. [3, 8, 39–41, 45, 51, 79]) allow
fractional assignments of resources to tasks. Fractional assignments allow
to model multi–tasking of resources within a period. This is a realistic as-
sumption for longer period lengths of e.g. months or weeks. While discrete
fractional assignments only allow predefined assignment shares (e.g. 0.0, 0.5,
1.0), in the case of continuous fractional assignments every real number be-
tween 0 and 1 describes a valid assignment. In the aforementioned practical
problem settings the use of continuous fractional assignments is a require-
ment. While from a mathematical point of view, the continuous fractional
problem is easier to solve than the discrete problems, the interpretation of
the fractional assignment results within a period remains as a subsequent
problem in practice.

Skills With respect to the ability of human resources to perform different
types of work, three different assumptions are made in the literature: i)
Single–skilled resources possess exactly one skill out of a set of different skills
which are required (within the organizational unit and the time horizon of
relevance). ii) On the contrary, completely–skilled resources possess each of
the skills required. iii) A multi–skilled resource possesses a subset of the
relevant skills. The multi–skill case is the most general one and includes the
two other ones as special cases.

Classical project planning models (e.g. the resource–constrained project
scheduling problem (RCPSP), cf. Brucker et al. [18]) implicitly assume the
single–skill case. I.e. each resource has one specific skill and for each skill
and each period the capacity of all resources can be aggregated to an overall
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capacity. This does not take into account that human resources usually have
multiple skills, i.e. are capable of doing different types of work (cf. Heimerl
and Kolisch [45]). However, the multi–skill case is of particular importance
in the IT. In the IT–departments where this problem arose, a few dozens of
skills were identified and the vast majority of the resources had more than
one skill (cf. Heimerl [42]).

Efficiencies, Learning, and Forgetting When considering multi–skilled
resources it can be of particular importance to take efficiencies into account.
The efficiency of a human resource is defined as the amount of work that can
be accomplished by a human resource in a given time span (cf. Heimerl and
Kolisch [45]). Efficiencies have a direct impact on the overall amount of work
that can be performed and, hence, an indirect impact on costs. Furthermore,
a resource’s qualification level can also be described by its efficiencies. If ef-
ficiencies are equal for all resources they are called homogeneous. However,
efficiencies can also differ w.r.t. the person and the skill performed (heteroge-
neous) as each person has different strengths and weaknesses. If efficiencies
are constant over time they are called static. Due to time–dependent effects
they may also float over time (dynamic). A prominent efficiency–increasing
effect is learning. Amongst others learning is caused by the repetition of sim-
ilar tasks, i.e. in a project context by the assignment of similar work packages
to the same resource. As a consequence subsequent tasks can be processed
more quickly. The inverse effect is forgetting. It is usually caused by breaks
when a skill is not used for a certain period of time. Furthermore, technologi-
cal progress is extremely rapid especially in IT–environments. If a resource is
not keeping up to date with evolving technologies its efficiency will decrease.
Obviously, time–varying efficiencies must be considered when making cost–
optimal assignment decisions. Aspects of time–dependent efficiencies will be
treated in more detail in Chapter 4.

Outsourcing Classical project planning approaches (cf. Brucker et al. [18])
usually rely on the assumption that resources are scarce. However, especially
in the IT sector outsourcing is a commonly used option to supplement the
internal workforce. Against this background scarcity of resources is often no
hard constraint. Nevertheless, the degree of outsourcing is often limited by
other (soft) constraints. E.g. risks of not achieving the deliverables might
increase if outsourcing is exaggerated. About 25% of all IT–projects are can-
celled before completion and one of the reasons for failing is outsourcing (cf.
Asay [7]). Thus, a restriction on the amount of outsourced work is necessary.
Limited budgets are an indirect boundary for the degree of outsourced work



CHAPTER 1. MANAGING HUMAN RESOURCES IN IT–PROJECTS 7

since costs of short–term external resources are usually higher than those of
internal resources. However, depending on the project type (e.g. complexity,
size) a more explicit limit on the amount of outsourced work is required. In
the IT–department of the semiconductor manufacturer the ratio of internally
and externally performed project work acts as a limit for the maximum de-
gree of outsourcing (cf. Heimerl [42]). This ratio was also adapted in this
thesis as outsourcing limit.

1.3 Outline

The thesis is organized as follows. In Chapter 2 the integrated project
scheduling and staffing problem is addressed. The assumption in this prob-
lem is that only the project start can be scheduled. The project itself is
already scheduled and only shifts with the project start. A detailed problem
description, the mathematical optimization model, a computational study
and managerial insights regarding this type of problem will be presented.

The problem is generalized in Chapter 3 as each project will be modelled
as a serial stream of activities. Hence, not only the project start but each of
the serially linked activities has to be scheduled. Next to the mathematical
optimization model an efficient solution algorithm will be presented. It will
be compared with standard solution procedures via a computational study.

Chapter 4 will focus on the staffing problem and will assume the project
schedules as given. The goal is to staff the projects considering learning
and depreciation of knowledge. Under the goal of cost–minimization it is
required to qualify human resources towards a desired skill portfolio. This
problem is modelled as a non–linear mathematical optimization model. A
computational study and managerial insights will be presented.

This thesis concludes with a summary and an outlook in Chapter 5.



Chapter 2

Staffing and scheduling

aggregated IT–projects

2.1 Introduction

The assignment of human resources to work is a common but complex task. It
is particularly complex if it has to be done in a project environment since the
temporal distribution of the demand relies on the schedules of the projects.
Furthermore, especially in IT–projects resources are multi–skilled and out-
sourcing is very common. As stated in the introductory chapter the con-
sideration of more than one planning level promises better results than a
separated (hierarchic) view. Thus, in this chapter an optimization model for
simultaneous scheduling and staffing multiple projects will be presented (cf.
Heimerl [42], Heimerl and Kolisch [43, 45]).

The optimization models in this chapter will assume that only the start of
each project can be scheduled. The remainder of the project, i.e. subsequent
work packages, is already scheduled w.r.t. the project start and only depends
on and shifts with the project start. The human workforce is assumed to
be multi–skilled with heterogeneous but static efficiencies. Outsourcing by
means of assigning external human resources to project work is allowed but
limited.

In the following Section 2.2 the relevant literature will be reviewed. A
detailed problem description and the optimization model will be presented
afterwards in Section 2.3. Section 2.4 will provide results of a computational
study. Managerial insights, e.g. advantages and disadvantages of central
vs. decentral planning, will be given in Section 2.5. The advantages of an
integrated optimization of project scheduling and staffing will be evaluated
there, too. Finally, the chapter concludes with a summary in Section 2.6.

8
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2.2 Literature Review

A number of papers have treated assignment decisions in a multi–skill envi-
ronment explicitly. In what follows the literature will be reviewed following
a grouping according to the considered planning levels.

Project staffing. Papers which only consider the project staffing problem
assume a project schedule as given. The latter defines for each period how
many units of each skill are required. Cai and Li [21] treat the assignment of
days–off schedules to multi–skilled resources with two skills in order to cover
the given resource demand within a service setting. Skill efficiencies are
assumed to be static and homogeneous. Campbell [22] as well as Campbell
and Diaby [23] consider the assignment of multi–skilled human resources with
heterogeneous efficiencies to given demand in a health care service setting for
a single period (static case). Corominas et al. [27] assume a single period
where demand for different skills has to be covered by human resources with
multiple skills as well as homogeneous and static efficiencies. The objective
function, next to minimizing shortage and surplus assignments, maximizes
the sum of the priorities arising from the assignment. Corominas et al. [28]
relate to a service setting where multi–skilled human resources with homo-
geneous efficiencies have to be assigned to activities over the periods of the
planning horizon such that different objectives are met in the best way. A
heuristic is proposed which solves a sequence of assignment problems where
the elements of the assignment matrix take into account the different objec-
tives. Valls et al. [70] propose a model for the assignment of multi–skilled
human resources with homogeneous efficiencies to operate a set of machines
for the periods of a planning horizon. Each machine requires a specific skill
and has to be operated by one human resource. The objective is to minimize
the number of human resources deployed. The problem is modeled as a re-
stricted vertex coloring problem which is solved with a branch–and–bound
procedure.

Project scheduling and staffing. One of the most thoroughly discussed
project planning problems in literature is the resource–constrained project
scheduling problem (RCPSP) (cf. e.g. Brucker et al. [18]). There a project is
modelled as a set of activities linked by precedence relationships. Each activ-
ity has a demand for one or more resource types and each resource type has
a limited capacity. A resource type represents an aggregated view of several
resources with equal properties (e.g. the same skill). The problem consists of
scheduling the activities while matching resource demand and supply. The
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RCPSP implicitly assumes the single–skill case with homogeneous efficiencies
of all resources and discrete 0–1 assignments of resources to activities.

The extension of the RCPSP, the multi–mode RCPSP (MMRCPSP)
is, in general, capable to depict the multi–skill case. But, as Bellenguez-
Morineau and Néron [15] point out, the large number of emerging modes
make the MMRCPSP not a viable option to model multiple skills. Hence,
they developed a proprietary multi–skill model (cf. Bellenguez and Néron
[12, 13, 14], Bellenguez-Morineau and Néron [15]). Project activities demand
specific skills (and not resources as in the RCPSP) and human resources own
multiple skills. The problem is then to schedule activities and match skill de-
mand and skill supply. Skill efficiencies are assumed to be homogeneous and
static. As the classical RCPSP the model assumes discrete 0–1 assignments
of resources to activities.

Alfares and Bailey [4] consider construction projects where they minimize
project duration and staffing costs. Only one type of resource, where each
resource has the same single skill with homogeneous and static efficiency,
is considered. An integer linear program is proposed which simultaneously
schedules activities and determines two–days–off tours for the human re-
sources. Bassett [10] considers R&D–projects in the chemical industry where
independent activities have to be scheduled within time windows and inter-
nal as well as external human resources have to be assigned to the activities.
Efficiencies are assumed to be homogeneous and static. Valls et al. [71] con-
sider the scheduling of tasks and their assignment to a multi–skilled workforce
with heterogeneous efficiencies in a service center under multiple criteria. Wu
and Sun [76] present a mixed–integer non–linear program for multi–project
scheduling and staffing. The work of the activities has to be allocated within
the respective time windows (whereas precedence relations between activi-
ties are not taken into account). Efficiencies are assumed to be heterogeneous
and dynamic and it is further assumed that each human resource can only
be assigned to one project per period. The problem is solved with a genetic
algorithm. Vairaktarakis [69] defines a measure for the amount resources are
capable of doing multi–skill work (with the extremes single– and completely–
skilled). Based on an MIP and heuristics he investigates how the increase
of multi–skill capability improves the project performance measure project
duration. Efficiencies are assumed to be homogeneous and static. Drexl [31]
considers the completely–skilled case where each resource (with homogeneous
and static efficiency) has an overall capacity for the entire planning horizon
and cannot process more than one activity within each period. A number of
papers treat the audit scheduling problem (see e.g. Dodin and Elimam [30]
and the literature cited there) which can be categorized as multi–skill case
with static and homogeneous efficiencies. Alba and Chicano [3] present a
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project scheduling problem which is similar to an RCPSP. However, multiple
objectives (time, cost, quality) are considered, resources can be assigned frac-
tionally, resources are multi–skilled with homogeneous efficiencies, and tasks
require multiple skills. The time required for completing a task depends on
the number and fractions of assigned resources. The problem is not explic-
itly modelled as a mathematical program but only qualitatively described.
A genetic algorithm is proposed for solving the problem.

Project selection and staffing Taylor et al. [68] and Yoshimura et al.
[79] assume a single period and thus consider project selection and staffing
with static efficiencies. Taylor et al. [68] consider the single–skill case with
homogeneous efficiencies. Project performance measures such as project suc-
cess and project duration depend on the amount of resources assigned to a
project. A goal programming model takes the different success measures for
the project portfolio into account. Yoshimura et al. [79] propose a three step
approach within an R&D–context (where only the following two steps are, in
the context of this paper, relevant): First, projects are selected taking into
account the availability of different skills. Afterwards, human resources are
assigned to the project work by considering heterogeneous efficiencies.

Project selection, scheduling, and staffing Ballou and Tayi [8], Gut-
jahr and Reiter [39] as well as Gutjahr et al. [40, 41] treat the problem of
project selection, scheduling, and staffing. All of them decompose the entire
problem into cascaded subproblems which are then solved separately. Ballou
and Tayi [8] solve the project selection and scheduling with a binary pro-
gram where columns relate to predefined schedules. Afterwards, they solve
a sequence of transportation problems, each for one period of the planning
horizon, in order to assign human resources to capacity demand of projects.
Thereby, heterogeneous and dynamic efficiencies are considered implicitly by
setting the cost–parameter of the transportation problem for each combina-
tion of project and resource accordingly. The cost–parameter reflects how
good the human resource can accomplish the project work. Learning and
forgetting is considered by altering the cost–parameter from one period to
the next. Gutjahr et al. [40] propose a mixed–integer non–linear program
where the work of selected projects is allocated within pre–specified time
windows and human resources are assigned to the work. Again, heteroge-
neous and dynamic efficiencies are considered. The problem is decomposed
by applying a metaheuristic for project selection and, subsequently, a greedy
priority–based heuristic for project scheduling and staffing. Gutjahr et al.
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[41] consider a multi-objective generalization of the problem while Gutjahr
and Reiter [39] consider a bi–objective stochastic generalization.

The approach presented in this chapter differs from the reviewed pa-
pers as follows: Other than Wu and Sun [76] the problem is modelled as a
mixed–integer linear program which, due to a tight LP–relaxation, can be
solved close to optimality with standard MIP–solvers even for large real–
world problems (results will be presented in Section 2.4). In contrast to Al-
fares and Bailey [4], Bassett [10] as well as Bellenguez-Morineau and Néron
[15] this model assumes heterogeneous efficiencies. Neither address project
selection (cf. Ballou and Tayi [8], Yoshimura et al. [79]) nor learning and
forgetting (i.e. dynamic efficiencies) are considered in contrast to Gutjahr
and Reiter [39] as well as Gutjahr et al. [40, 41]. Opposed to [39–41] projects
are discretely scheduled but as in Alfares and Bailey [4], Bassett [10], and
Wu and Sun [76] internal and external resources (outsourcing) are explicitly
considered. A fundamental assumption of the following model is that each
human resource can work in each period at multiple projects, possibly using
different skills (continuous fractional assignments, cf. e.g. Alba and Chicano
[3], Ballou and Tayi [8], Bassett [10], Gutjahr and Reiter [39], Gutjahr et al.
[40, 41], and Yoshimura et al. [79]). This assumption differs from those of
e.g. Valls et al. [71] as well as Wu and Sun [76].

2.3 Model

2.3.1 Model description

Projects. Let P be a set of projects which have to be processed. In total
the projects require the set of skills S. In the context of IT–projects skills are
for example programming, architecture, security, or hardware. The schedule
but not the start of each project is assumed to be given. More precisely, for
each project p ∈ P a duration dp is given and in project period q = 1, . . . , dp

project p requests rpsq work units of skill s. The amount of skill s requested
in the q–th period of project p, rpsq, is termed as work package. Project p
must start within the time window [ES p,LS p] where ES p denotes the earliest
and LS p denotes the latest start period of project p. The latest finish period
LF p of project p can then be calculated as LF p = LS p + dp − 1. The time
line goes from period t = 1 to period t = T where T denotes the planning
horizon. Time period t is defined as the time span between the points in
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time t− 1 and t, i.e. [t− 1, t[ for t = 1, . . . , T . W.l.o.g. for the remainder of
this chapter a period length of one month is assumed.

Resources. As stated above, the projects do in total require skills out of
the set S in order to be processed. The source of skills are human resources
within the company (internal resources Ri) and outside of the company (ex-
ternal resources Re). R = Ri ∪Re denotes the total set of human resources.
The subset of skills that resource k ∈ R is capable of is denoted with Sk ⊆ S.
From the skill point of view Rs = Ri

s∪R
e
s denotes the set of resources which

do have skill s ∈ S.
Even if two resources have the same skill they might differ w.r.t. the level

the skill is performed. In order to depict this the concept of efficiency is
employed. The efficiency that resource k ∈ Rs performs work which requires
skill s is denoted by ηsk > 0. The reciprocal 1

ηsk
is the time needed by

resource k ∈ Rs when performing one unit of work requiring skill s. The
efficiencies are static across the planning horizon (cf. Chapter 4 for time–
varying efficiencies due to learning and forgetting). For performing work
an internal human resource k ∈ Ri has a regular capacity of Rr

kt and an
overtime capacity of Ro

kt time units in period t. The cost per time unit of
internal resource k ∈ Ri working in regular– and overtime–mode is cr

k and
co
k, respectively.

External resources depict resources which are hired on a temporarily basis
or who perform outsourced work. It is assumed that for each skill s ∈ S
external resources can be acquired in an unlimited amount for a cost of
ce
s per time unit. External resources will henceforth be aggregated and not

considered individually. An obvious assumption is ce
s > co

k > cr
k,∀s, k because

otherwise, in the case of cost minimization, all work would be assigned to
external resources.

The use of external resources is limited in each project. A minimum ratio
ep ≥ 0 of the work performed by internal resources to the work performed
by external resources in project p has to be maintained. The reason for
these constraints are manifold: Core competencies shall be kept within the
company, the management of the project shall be performed internally, and
a minimum of internal knowledge shall be employed.

Variables. The following decision variables are employed: xr
ptsk ≥ 0 is the

amount of work (typically measured in full time equivalents) that internal
resource k performs during regular hours in period t on the work packages
of project p which require skill s. Accordingly, xo

ptsk ≥ 0 is the amount of
overtime work of the internal resource k. ypts ≥ 0 is the amount of work of
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project p requiring skill s performed by external resources in period t. These
decision variables are continuous. The aggregation of resource demand to
periods justifies the use of continuous assignment decisions where in each
period a fraction of the resource capacity may be assigned to a work package.
This approach is common practice in IT–projects (cf. e.g. Alba and Chicano
[3], Ballou and Tayi [8]). Finally, the binary decision variables zpt ∈ {0, 1}
are required for setting project start times: zpt equals 1 if project p is started
at the beginning of period t and 0 otherwise. Table A.1 in the Appendix
provides a summary of the notation.

The question is how the start times of the projects should be scheduled
and which human resources should be assigned to each work package such
that the different requirements are met and costs are minimized.

2.3.2 MIP Formulation

The following mixed–binary linear program MIP1 represents the aforemen-
tioned problem.

Min
∑

p∈P

LFp∑

t=ESp

∑

s∈S



ce
sypts +

∑

k∈Ri
s

1

ηsk

(
cr
kx

r
ptsk + co

kx
o
ptsk

)



 (2.1)

subject to

LSp∑

t=ESp

zpt = 1 p ∈ P (2.2)

rpsqzpτ ≤ ypts +
∑

k∈Ri
s

(
xr

ptsk + xo
ptsk

)

p ∈ P
τ = ES p, . . . ,LS p

q = 1, . . . , dp

t = τ + q − 1
s ∈ S

(2.3)

∑

p∈P

∑

s∈S

1

ηsk

xr
ptsk ≤ Rr

kt

t = 1, . . . , T
k ∈ Ri (2.4)

∑

p∈P

∑

s∈S

1

ηsk

xo
ptsk ≤ Ro

kt

t = 1, . . . , T
k ∈ Ri (2.5)



CHAPTER 2. STAFFING AND SCHEDULING PROJECTS 15

LFp∑

t=ESp

∑

s∈S

∑

k∈Ri
s

(
xr

ptsk + xo
ptsk

)
≥ ep

LFp∑

t=ESp

∑

s∈S

ypts p ∈ P (2.6)

xr
ptsk, x

o
ptsk ≥ 0

p ∈ P
t = ES p, . . . ,LF p

s ∈ S
k ∈ Ri

s

(2.7)

ypts ≥ 0
p ∈ P
t = ES p, . . . ,LF p

s ∈ S
(2.8)

zpt ∈ {0, 1}
p ∈ P
t = ES p, . . . ,LS p

(2.9)

The objective function (2.1) minimizes the labor costs of internal and ex-
ternal resources which accrue by processing the work packages of the projects.
Note that the time required by the internal resource k to perform xptsk work
units depends on the efficiency ηsk. I.e. in case of a high efficiency (ηsk > 1)
less time is needed while in case of a low efficiency (ηsk < 1) more time is
needed. For all external resources an efficiency of η = 1 is assumed. Due to
constraints (2.2) each project p is forced to start exactly once within its start
time window [ES p,LS p]. Constraints (2.3) ensure that the work packages of
project p are performed by internal and external resources. More precisely,
for each period t = ES p, . . . , (LS p + dp − 1) the required work of skill s has
to be covered by internal or external resources. The work requiring skill s
which has to be performed in period t depends on the start time zpt and
the schedule rpsq of the projects. The available capacities of the internal re-
sources for regular time and overtime are considered by constraints (2.4) and
(2.5), respectively. Constraints (2.6) ensure for each project p a minimum
ratio ep of the work performed by internal resources to the work performed
by external resources. Finally, the constraints (2.7), (2.8) and (2.9) define
the decision variables.

Proposition 1. The problem of simultaneous scheduling and staffing multi-
ple projects is NP–hard.

Proof. The considered problem can be restricted to a multiprocessor schedul-
ing problem by allowing only instances with T = 2, ES p = 1, LS p = 2,
dp = |Ri| = |S| = |Sk| = ηsk = 1, ce

s > 0, cr
k = ep = Ro

kt = 0, and Rr
kt =

1
T

∑

p,s,q rpsq. Figure 2.1 depicts the correspondence between the restricted
scheduling and staffing problem (left) and the multiprocessor scheduling
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Figure 2.1: Analogy to the multiprocessor scheduling problem

problem (right): Periods correspond to machines, projects correspond to
jobs, and resource demands correspond to the jobs’ lengths. The objective of
minimizing costs corresponds to minimizing makespan of the multiprocessor
scheduling problem. Since the multiprocessor scheduling problem is known
to be NP–hard (cf. SS8 in Garey and Johnson [34]), the considered problem
as a generalization of the multiprocessor scheduling problem must also be
NP–hard.

2.3.3 Model extensions

A possible extension of MIP1 are the following budget–constraints for each
project p where Bp denotes the budget of project p:

LFp∑

t=ESp

∑

s∈S



ce
sypts +

∑

k∈Ri
s

1

ηsk

(
cr
kx

r
ptsk + co

kx
o
ptsk

)



 ≤ Bp p ∈ P (2.10)

If external resources are considered to be scarce, MIP1 could be extended
with the following constraints, where Re

ts denotes the external capacity of
skill s in period t.

∑

p∈P

ypts ≤ Re
ts

t = 1, . . . , T
s ∈ S

(2.11)

Finally, labor contracts might require, that external resources may only be
hired in discrete quantities, e.g. multiples of u. To ensure this requirement
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non–negative integer decision variables yi
pts need to be added for project

p, period t and skill s. Additionally, the following constraints have to be
appended to MIP1.

ypts = yi
ptsu

p ∈ P
t = 1, . . . , T
s ∈ S

(2.12)

yi
pts ∈ Z

+
0

p ∈ P
t = 1, . . . , T
s ∈ S

(2.13)

2.3.4 Improved MIP Formulation

MIP1 has the drawback that its LP–relaxation (LP1) is not very tight due to
the constraints (2.3). The latter ensure for each project p and skill s that the
work scheduled in period t = ES p, . . . , (LS p+dp−1) is assigned to internal or
external resources. Note that in the case of strictly positive cost coefficients
c the constraints (2.3) are always binding in LP1. It is now shown that LP1
does assign less than the total demand of project p to the resources if the
size of the start time window is positive and the solution is non–integer. For
this let γpts denote the right hand side (rhs) of constraints (2.3), i.e.

γpts := ypts +
∑

k∈Ri
s

(
xr

ptsk + xo
ptsk

)
. (2.14)

Without loss of generality only a single project p and a single skill s is
considered such that the indices p and s can be omitted, i.e. γt ≡ γpts. Then,
the following proposition can be stated.

Proposition 2. For LS −ES > 0, d > 1 and e = 0, LP1 with a non–integer
solution, i.e. ∃ t : 0 < zt < 1, assigns less than the total demand

∑d

q=1 rq to

the resources. I.e.
∑d

q=1 rq >
∑LF

t=ES γt holds.

Proof. The proposition is proved by contradiction: Let d = 2, 0 < r1 < r2,
ES = 1, LS = 2, and hence t = 1, . . . , 3. Using matrix notation the following
constraints (2.3) are then obtained.







r1 0
0 r1

r2 0
0 r2







(
z1

z2

)

≤







γ1

γ2

γ2

γ3







(2.15)
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Each row of (2.15) represents a combination of a project start period τ and
a project period q which results in at least one resource demand for each
calendar period t. The number of constraints that are obtained for one
project p and calendar period t is bounded from above by min(d,LS−ES+1).
For a MIP–solution not more than one of these constraints will have a non–
zero left hand side (lhs) where the resource demand has to be assigned to a
resource. However, for an LP–relaxation usually 0 < zt < 1 holds. Hence up
to min(d,LS − ES + 1) constraints will have a non–zero lhs where only the
constraints with maximum lhs will hold whereas for the remaining constraints
no resources will be assigned to demand.

Assume for the example an LP–solution z1 = z2 = 0.5. Since r1 < r2 for
period 2 the third constraint will hold while the second constraint becomes
redundant. The total capacity allocated to demand is then

∑LF

t=ES γt =

0.5r1 + 0.5r2 + 0.5r2 which is less than total demand
∑d

q=1 rq = r1 + r2.

Note that for some e > 0 constraints (2.6) eventually force
∑d

q=1 rq ≤
∑LF

t=ES γt even for LP1. In what follows a modification of constraints (2.3) is
proposed which gives a tighter LP–relaxation for any value of e. Let

Tpt = {(τ, q) ∈ {ES p, . . . ,LS p} × {1, . . . , dp} | τ + q − 1 = t} (2.16)

be a set which consists of all combinations (τ, q) of project start periods τ
and project periods q of project p that lead to a resource demand in calendar
period t. Figure 2.2 visualizes the four sets which exist for [ES p,LS p] = [2, 3]
and dp = 3. Employing Tpt the new assignment–constraints can be formulated
as follows.

∑

(τ,q)∈Tpt

rpsqzpτ ≤ ypts +
∑

k∈Ri
s

(
xr

ptsk + xo
ptsk

)
p ∈ P
t = ES p, . . . ,LF p

s ∈ S
(2.17)

The improved MIP2 is then (2.1)–(2.2), (2.17), and (2.4)–(2.9). It is now
shown that MIP2 gives a tighter LP–relaxation LP2 for the problem.

Proposition 3. LP2 always assigns the total demand
∑d

q=1 rq to the re-

sources. I.e.
∑d

q=1 rq ≤
∑LF

t=ES γt holds.
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Figure 2.2: Visualization of Tpt for dp = 3, ES p = 2, and LS p = 3

Proof. To prove this proposition the matrix formulation of constraints (2.17)
is analysed for one arbitrary combination of project p and skill s:

LF − ES + 1
























r1 0 0 · · · 0

r2 r1 0
...

... r2 r1
. . .

...

rd

... r2
. . . 0

0 rd

...
. . . r1

0 0 rd r2
...

...
...

. . .
...

0 0 0 · · · rd

























zES

zES+1
...

zLS







≤








γES

γES+1
...

γLF








︸ ︷︷ ︸

LS − ES + 1
(2.18)

Since each rq (q = 1, . . . , d) appears in all elements of exactly one secondary
diagonal (and nowhere else), each rq is multiplied exactly once with a different
zt (t = ES, . . . , LS). Summing up the lhs of (2.18) gives

LS∑

t=ES

d∑

q=1

(rqzt) =

LSp∑

t=ESp

zt

d∑

q=1

rq = 1
d∑

q=1

rq =
d∑

q=1

rq (2.19)

Summing up the rhs side of (2.18) gives
∑LF

t=ES γt. Thus,
∑d

q=1 rq ≤
∑LF

t=ES γt

holds which proves the proposition.
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2.4 Computational study

2.4.1 Test instances

Test instances were generated inspired by data of the IT–department of a
large semiconductor manufacturer (cf. Heimerl [42]). In Table 2.1 parameters
for a base case are defined which is varied using a factorial ceteris paribus
design with four factors.

|P| = 20
TWS p = 0

ES p ∼ U(1, 7)
dp = 6
T = 12

|S| per period and project = 3
|S| per project ≤ 4

ep = 0.2
Bp = ∞

|S| = 25
|Sk| = 4
|Ri| = 100
Rr

kt = 20 (t = 6, . . . , 12)
Ro

kt = 0.3Rr
kt = 6 (t = 6, . . . , 12)

ηsk ∼ TN 0.5,1.5(1, 0.25)
cr
k = 500

co
k = 1.2cr

k = 600
ce
s ∼ TN 600,1000(800, 100)
ρ = 2.0

Table 2.1: Parameters for the base case

The time window size of project p is defined as

TWS p = LS p − ES p . (2.20)

The earliest start periods ES p of the projects were drawn from a discrete
uniform distribution between period 1 and 7. Together with a deterministic
project length of dp = 6 this leads to a planning horizon of T = 12. The
skills required by the projects and owned by the internal resources were
chosen randomly. The efficiencies of the internal resources were drawn from
a truncated normal distribution TN a,b(µ, σ) with the expected value µ = 1,
a standard deviation of σ = 0.25, a minimum efficiency of a = 0.5, and a
maximum efficiency of b = 1.5. The cost rates for external resources were
also drawn from a truncated normal distribution TN a,b(µ, σ) with µ = 800,
σ = 100, a = 600, and b =1,000.

To mimic a dynamic situation, where projects arrive with a constant
arrival rate and where work packages of projects which have been started in
the past have already been assigned to resources, the availability of internal
resources was modelled according to the function depicted in Figure 2.3.
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Figure 2.3: Normalized availability of an internal resource as a step function

Thus in period t = 0, which is directly preceding the planning horizon,
internal resources do have no left–over capacity for projects with ES p ≥ 0.
Since the duration of all projects is dp = 6 the available capacity increases in
a step–wise fashion until the full capacity is provided in period t = 6.

The workload ρ is defined by the ratio of the expected resource demand to
the availability of internal resources in period t = dp = 6 (when all projects
which have been started before the planning horizon are finished) as

ρ =

∑

p∈P

∑

s∈S E (rpsq|t = dp)
∑

k∈Ri(Rr
kdp

+ Ro
kdp

)
. (2.21)

E (rpsq|t = dp) denotes the expected demand of project p for skill s in period
t = dp. With rpsq = 0 for all q < 1 and q > dp the expected demand can be
calculated according to

E (rpsq|t = dp) =
1

TWS p + 1

dp−ESp+1
∑

q=dp−LSp+1

rpsq. (2.22)

Given a workload level ρ and resource supply Rr and Ro the required expected
resource demand E (rpsq) of the work packages is calculated according to
Equation (2.21). The actual demand of the individual work packages was
then drawn from a normal distribution with µ = E (rpsq) and a coefficient of
variation COV = 0.1 (i.e. σ = 0.1E (rpsq)).
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For the ceteris paribus design the base case was altered by varying the fol-
lowing four factors one at a time: The expected time window size E(TWS p),
the number of projects |P|, the number of skills per resource |Sk|, and the
workload ρ.

Table 2.2 lists the factors and their employed levels. For each factor level
10 instances were generated which led to a total of 10 · (5 + 5 + 6 + 5) = 210
test instances.

Factors Experimental levels
E(TWS p) 0.0, 0.5, 1.0, 1.5, 2.0
|P| 10, 20, 30, 40, 50
|Sk| 1, 2, 4, 6, 8, 10
ρ 1.0, 1.5, 2.0, 2.5, 3.0

Table 2.2: Factors and levels for the experimental test design

The time window sizes were generated using minimum variance, i.e. for
E(TWS p) = 1.0 all projects had TWS p = 1 and if E(TWS p) = 1.5, one
half of the projects had TWS p = 1 and the other half had TWS p = 2.
Furthermore, to keep T = 12 even with larger time window sizes, LS p ≤ 7
holds.

The tests were performed on an Intel P4 with 2.4 GHz and 512 MB RAM
using ILOG CPLEX 10.1.

2.4.2 Solution gaps

The solution gaps of the LP–Relaxations for MIP1 and MIP2 were compared.
The solution gaps are defined as ∆ = Opt−LB

Opt
, where Opt is the objective

function value of the optimal solution of the MIP and LB is the lower bound
which is calculated by solving the LP–Relaxation to optimality. Table 2.3
shows the mean µ and the standard deviation σ of the gap for both MIP–
formulations and different time window sizes.

LP1 LP2
E(TWS p) µ σ µ σ

0.0 0.00% 0.00% 0.00% 0.00%
0.5 17.77% 0.84% 0.11% 0.06%
1.0 36.90% 1.47% 0.28% 0.13%
1.5 44.48% 1.45% 0.30% 0.15%
2.0 51.64% 1.22% 0.34% 0.15%

Table 2.3: Solution gaps ∆ of the two LP–Relaxations
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For a time window size of 0 project p has exactly one feasible start period
ES p = LS p and hence both LP–relaxations give the optimal value of the
MIP. For an increasing time window size it can be seen that the gaps of both
MIPs increase, but that the size of the gap and the increase of the gap are
much smaller for MIP2. A close look at the parameters explains why the
gaps of MIP2 are surprisingly small. The cost rates for internal resources
are cr

k = 500 < co
k < ce

s. Since all work packages must be processed, there
is a lower bound Cmin of considerable size for the costs which are inevitable
regardless of the scheduling and assignment decisions. The latter distorts the
results in favour of the solution gaps of both MIPs. The modified solution
gap

∆′ =
(Opt− Cmin)− (LB − Cmin)

Opt− Cmin

=
Opt− LB

Opt− Cmin

(2.23)

takes into account the lower bound Cmin in order to correct the distortion.
The lower bound

Cmin =
∑

s∈S

(

Xr
s min

k∈Ri

(
cr
k

ηsk

)

+ Xo
s min

k∈Ri

(
co
k

ηsk

)

+ Ysc
e
s

)

(2.24)

is calculated using

Xr
s = min







∑

p∈P

dp∑

q=1

rpsq,
∑

k∈Ri
s

T∑

t=1

ηskR
r
kt






(2.25)

Xo
s = min







∑

p∈P

dp∑

q=1

rpsq −Xr
s ,
∑

k∈Ri
s

T∑

t=1

ηskR
o
kt






(2.26)

and

Ys =
∑

p∈P

dp∑

q=1

rpsq −Xr
s −Xo

s . (2.27)

Xr
s as calculated in Equation (2.25) is an upper bound for the amount of work

which can be performed by the internal resources in regular time. Taking
into account Xr

s , Equation (2.26) calculates an upper bound for the amount
of work which can be performed by the internal resources in overtime. Equa-
tion (2.27) assigns the remaining work to be done by external resources.

Table 2.4 provides the values for the adjusted gap ∆′. Much more clearly
than in the case of ∆ it can be seen that MIP1 performs rather poor while
MIP2 generates extremely sharp bounds.
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LP1 LP2
E(TWS p) µ σ µ σ

0.0 0.00% 0.00% 0.00% 0.00%
0.5 124.11% 21.28% 0.78% 0.48%
1.0 282.50% 48.79% 2.21% 1.42%
1.5 341.38% 57.29% 2.46% 1.55%
2.0 387.79% 62.94% 2.74% 1.57%

Table 2.4: Adjusted solution gaps ∆′ of the two LP–Relaxations

2.4.3 Computation time

In what follows the results regarding the computation time needed for cal-
culating the optimal solution of MIP2 are presented. The size of the time
window and the relative MIP gap tolerances of CPLEX was altered accord-
ing to the values given in Table 2.5. For increasing time windows and hence
an increasing number of binary variables a sharp increase of computation
times is observed. However, a solution gap of 1% leads to sufficiently good
solutions in less than 3 seconds.

relative MIP gap tolerances
0.01% 0.1% 1% 5% 10%

E(TWSp) µ σ µ σ µ σ µ σ µ σ
0.5 2.6 0.9 1.4 1.0 0.8 0.1 0.8 0.1 0.8 0.1
1.0 14.1 16.6 10.9 13.9 1.5 0.4 1.5 0.4 1.5 0.4
1.5 26.2 33.2 22.2 33.9 2.2 0.6 2.1 0.6 2.1 0.7
2.0 62.2 121.6 49.3 92.4 2.8 1.1 2.7 0.9 2.7 0.9

Table 2.5: Solution times (seconds) for different time window sizes and rela-
tive MIP gap tolerances

The results for the other factors are shown in Table 2.6: The number
of projects |P| and the number of skills per internal resource |Sk| have, due
to the growing number of continuous variables, a linear influence on the
computation times. The impact of the workload–level on the computation
time is not linear. It can only be observed that instances with a workload of
ρ = 1 are faster to solve than those with higher workloads.
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|P| µ σ |Sk| µ σ ρ µ σ
10 0.20 0.02 1 0.10 0.02 1.0 0.44 0.05
20 0.48 0.06 2 0.22 0.02 1.5 0.68 0.04
30 0.84 0.07 4 0.55 0.07 2.0 0.67 0.09
40 1.30 0.13 6 0.81 0.15 2.5 0.66 0.04
50 1.76 0.18 8 1.07 0.17 3.0 0.60 0.05

10 1.37 0.15
25 4.32 0.85

Total 0.91 0.58 1.20 1.39 0.61 0.11

Table 2.6: Solution times (in seconds) for different factors

2.5 Managerial insight

2.5.1 Influences of the factors on the costs

In what follows the impact of the systematically varied factors on the optimal
costs will be analysed. Table 2.7 provides the results in a compact form. In
addition Figures 2.4 – 2.7 visualize the results by providing the mean and
the range of ±1 standard deviation of the optimal objective function value
for each level of the varied factor, respectively.

Time window size. The time window size is expected to have a negative
influence on the costs. I.e. increasing time window sizes of the projects are
used by MIP2 for levelling the demand profile to avoid excess of demand and
thus the use of expensive overtime and external resources. As can be seen
in Figure 2.4 and Table 2.7, the latter holds when increasing the average
time window size from 0 to 1. The costs decrease by 3.2%. But a further
increase of the time window size does not show significant effects. The latter
observation is not expected. The explanation for this is as follows: Since
ES p has been distributed uniformly and dp has been set to be constant, the
demand profile is, by the way the data has been generated, already levelled
to a large amount. Hence, a small increase of the start time window suffices
to level the demand profile almost to optimality. A further increase of the
time window size will not be of any use. Applying an analysis of variance
(ANOVA) a significance level of α = 0.07 is obtained for the whole range of
time window sizes.

Number of projects. Figure 2.5 displays the influence of the number of
projects on the optimal costs. The observed level of significance is α < 0.001.
An explanation of this effect is as follows: The level of the number of projects
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Figure 2.4: Impact of the time window size on the costs

was altered while keeping the total resource demand constant. An increasing
number of projects is then equivalent to a decrease in the resource demand
per project. This opens for MIP2 more planning flexibility which leads to
less costs.

Number of skills of internal resources. Since the test data does not
account costs for different skill levels of the internal resources (higher cost
rates for employees with more skills) decreasing costs are expected for an
increase in the average number of skills per resource. This is affirmed in Fig-
ure 2.6 with an α < 0.001 level of significance. The costs decrease monoton-
ically with increasing number of skills per resource. Note that the marginal
decrease of costs is diminishing and hence one could determine an “cost–
optimal qualification level” for internal resources if the costs of qualification
would be considered. The dashed line represents the costs if each resource
possesses all skills.

Workload. The workload level ρ shows an α < 0.001 level of significance.
Since the capacity of internal resources is fixed, external resources have to be
assigned to the resource demand which exceeds the capacity of the internal
resources. This leads to a linear increase of the costs.
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Figure 2.5: Impact of the number of projects on the costs

Figure 2.6: Impact of the average number of skills per resource on the costs
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Figure 2.7: Impact of the workload on the costs

E(TWS p) µ σ |P| µ σ
0.0 21.29 0.75 10 22.64 0.70
0.5 20.93 0.67 20 21.82 0.76
1.0 20.61 0.58 30 21.57 0.55
1.5 20.60 0.57 40 21.25 0.56
2.0 20.59 0.58 50 21.14 0.40

Total 20.80 0.66 21.68 0.80

|Sk| µ σ ρ µ σ
1 25.45 0.37 1.0 8.10 0.24
2 23.65 0.44 1.5 13.87 0.53
4 21.93 0.36 2.0 20.41 0.68
6 21.21 0.50 2.5 27.28 0.81
8 20.76 0.52 3.0 34.28 0.92

10 20.41 0.53
25 19.08 0.62

Total 21.78 2.05 20.79 9.42

Table 2.7: Optimal costs (in millions) for the different factor levels
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2.5.2 Optimal vs. heuristic planning

The vast majority of firms performs the allocation of human resources and the
scheduling of projects, if at all, not with an optimization–based approach such
as MIP2 but manually, maybe with the help of spreadsheet– and database–
programs. In what follows the results of the MIP are compared with two
heuristic approaches which are currently applied in the IT–department of the
semiconductor manufacturer where the problem was encountered: Random
Assignment (RND) (cf. Algorithm 1) and Maximum Cost First Assignment
(MCF) (cf. Algorithm 2).

Algorithm 1 Random Assignment

1: Set RetryCounter := 5 and WP = ∅. For all p ∈ P set project start to
ES p

2: Add all work packages rpst to the set WP in an arbitrary order.
3: for all rpst in WP (sequentially) do

4: for all internal resources k ∈ Ri
s (in arbitrary order) do

5: Set xr
ptsk := min(Rr

kt, rpst).
6: Set Rr

kt := Rr
kt − xr

ptsk and rpst := rpst − xr
ptsk.

7: end for

8: for all internal resources k ∈ Ri
s (in arbitrary order) do

9: Set xo
ptsk := min(Ro

kt, rpst).
10: Set Ro

kt := Ro
kt − xo

ptsk and rpst := rpst − xo
ptsk.

11: end for

12: Set ypts := ypts + rpst.
13: end for

14: if any of constraints (2.10) or (2.6) is violated by the assignments then

15: Set RetryCounter := RetryCounter− 1.
16: if RetryCounter == 0 then

17: Mark instance as infeasible.
18: else

19: Goto Line 1
20: end if

21: end if

Both heuristics staff the work packages in the order of a list. For the
next work package on the list the cost minimal assignment of internal and
external resources is done by taking into account the left over capacity of
the resources. RND and MCF mainly differ in the way the list is generated.
While RND orders the work packages in random order, MCF orders the work
packages in the order of decreasing costs of external resources. Due to the
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Algorithm 2 Maximum Cost First Assignment

1: Set RetryCounter := 5 and WP = ∅. For all p ∈ P set project start to
ES p

2: Add all work packages rpst to the ordered setWP. Order the set according
to descending values of ce

s, such that externally expensive work packages
appear first.

3: ...

minimum–ratio–of–internal–work constraints (2.6) a solution of each of the
heuristics might be infeasible. In the latter case the heuristic starts anew.
Since the human resources which are assigned to a work package are selected
in arbitrary order (cf. line 4 and 8), a new start might lead to a feasible
solution. As soon as a feasible solution has been determined the heuristic
stops. The number of restarts allowed has been set to 5.

% feasible avg. % deviation avg. % deviation
Heuristic solutions from opt. (DEV1) from opt. (DEV2)

RND 58.09 15.57 16.55
MCF 33.81 13.29 13.46

Table 2.8: Comparison of heuristics

Table 2.8 gives the percentage of feasible solutions, the average devia-
tion from the optimum of the feasible solutions obtained by each heuristic
(DEV1), and the average deviation from the optimum of the instances solved
by both heuristics (DEV2). Table 2.9 provides further details on the ratio of
feasible solutions for different factors. It can be seen that the drawback of
the heuristic approaches is not only the higher costs when compared to the
optimum solution but the fact that no feasible solution could be generated
for many instances. This holds especially for MCF where the order of the
work package list is identical for each retry. If MCF finds a solution, the
latter is, on average, superior to the one found by RND. The results clearly
show that the use of the proposed MIP is advisable.

2.5.3 Central vs. decentral planning

Contingent to their formal organization, companies usually practise a de-
central planning where the project scheduling and staff assignment is done
within the departments but not across department borders. This approach
lowers the complexity of the planning task and thus enables the application
of manual planning. In what follows the drawback of the decentral planning
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E(TWS p) RND MCF ρ RND MCF
0.0 50% 60% 1.0 100% 100%
0.5 60% 50% 1.5 100% 100%
1.0 50% 50% 2.0 100% 100%
1.5 60% 20% 2.5 100% 50%
2.0 10% 10% 3.0 90% 20%

avg. 46% 38% 98% 74%

|P| RND MCF |Sk| RND MCF
10 80% 60% 1 0% 10%
20 70% 0% 2 30% 20%
30 50% 0% 4 50% 30%
40 40% 0% 6 50% 10%
50 20% 0% 8 50% 10%

10 60% 10%
avg. 52% 12% 40% 15%

Table 2.9: Ratio of feasible solutions with heuristics RND and MCF

approach is assessed from the cost–based perspective. More precisely, the
influence of the number of departments and the level of specialization on the
staffing costs for central and decentral planning is evaluated.

The company is divided into a set D of distinct departments. This is done
by assuming that the company’s set of projects P and internal resources
Ri can feasibly be partitioned into disjoint subsets PD

d and RD
d , d ∈ D,

respectively, with the following properties:

(i) The skills that are required by the projects of each department d

SD
d =

{
s ∈ S | rpsq > 0 : p ∈ PD

d , q = 1, . . . , dp

}
(2.28)

are disjoint, i.e. SD
i ∩ S

D
j = ∅ ∀i, j ∈ D, i 6= j.

(ii) The cardinalities of the sets PD
d are as equal as possible, i.e.

max
d∈D
|PD

d | ≤ 1 + min
d∈D
|PD

d | (2.29)

holds. Analogously, (2.29) holds for RD
d and SD

d .

(iii) With

δkd =

∣
∣Sk ∩ S

D
d

∣
∣

|SD
d |

(2.30)
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the degree is measured to which the skills Sk of resource k ∈ RD
d are

required by projects assigned to department d. For δkd = 1 there is a
perfect match, i.e. all skills of resource k are required by the projects
of department d. For δkd = 0 resource k does have none of the skills
required by the projects of department d. For 0 < δkd < 1 only a
subset of the resource’s skills Sk is required by projects of department
d and the resource’s other skills are required by some projects of other
departments d′ 6= d.

In what follows decentral planning is defined as solving MIP2 for the
internal resources and projects of each department d ∈ D separately and
merging the separate plans afterwards. Contrary, central planning solves
MIP2 once by including the resources and projects of all departments at
once. In the latter case it is possible to utilize the skills of resources which are
required by projects of other departments. Zd denotes the optimal objective
function value obtained by decentral planning while Zc represents the optimal
objective function value of the central planning approach. Thus, κ = Zd−Zc

Zd

is the cost improvement which can be leveraged by central vs. decentral
planning. Note that Zc ≤ Zd and hence κ ≥ 0 always holds.

Using the parameters of the base case (cf. Table 2.1) the number of depart-
ments |D| and the specialization measure δ is systematically varied according
to Table 2.10. Ten instances were generated for each factor combination of
|D| and δ which lead to (2 + 2 + 3 + 3) · 10 = 100 instances in total.

Factors Experimental levels
|D| 2, 3, 4, 5

δ
0.5, 0.75 for |D| ∈ {2, 3}
0.25, 0.5, 0.75 for |D| ∈ {4, 5}

Table 2.10: Factors and levels for the experimental test design

Table 2.11 and Figure 2.8 provide κ for the different combinations of |D|
and δ. The influence of δ on the cost improvement is with α < 0.001 highly
significant while the influence of |D| has only a influence at the α > 0.14 level
of significance. The interaction between δ and |D| cannot be considered to
be significant (α > 0.45). From the results it can be concluded that the more
specialized the internal resources are (i.e. the higher the values of δ are) the
smaller is the gap between central and decentral planning. This is caused by
the fact that the central planning process cannot derive a big benefit from
cross–utilization of departmental resources.
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δ = 0.25 δ = 0.50 δ = 0.75 Total
|D| µ σ µ σ µ σ µ σ

2 6.97% 1.04% 3.05% 0.42% 5.01% 2.20%
3 6.30% 1.32% 3.29% 0.61% 4.79% 1.86%
4 13.91% 1.32% 7.40% 0.55% 3.38% 0.26% 8.23% 4.56%
5 13.66% 1.86% 8.19% 1.21% 3.63% 0.87% 8.49% 4.43%

Total 13.78% 1.53% 7.21% 1.21% 3.34% 0.58% 6.98% 4.00%

Table 2.11: Cost improvement κ by central planning depending on the num-
ber of departments |D| and their specialization δ

2.6 Summary

In this chapter the simultaneous scheduling of multiple projects and their
staffing with a multi–skilled human workforce with heterogeneous and static
efficiencies has been addressed. Only the start of each project is scheduled
while the remainder of the project is assumed to be scheduled w.r.t. the
project start already. The problem is typical for development and mainte-
nance of IT–systems and IT–services as well as research and development
projects. A mixed–integer linear program with a sharp LP–bound has been
proposed. The latter enables the optimal solution of real–world problems
with the standard–solver CPLEX as long as the size of the project start time
windows is moderate. It has been shown how overall costs decrease with in-
creasing start time windows of the projects, decreasing project size (keeping
the total amount of work constant) and increasing number of skills per re-
source. For a constant size of the internal workforce an increasing workload
leads to higher cost due to an increased use of external resources. Comparing
the MIP–solution with the ones derived by simple heuristics currently used
in an IT–service company it can be observed that costs can be decreased sub-
stantially. Moreover, if there are minimum ratios for the amount of project
work which has to be done by internal resources the heuristics often fail to
derive feasible solutions while the MIP generates the latter as long as they
do exist. Finally, the benefit of using the MIP for central planning compared
to decentral planning has been demonstrated. In the case of central planning
resources can be deployed across department borders which leads to higher
utilization of internal resources and thus substantial cost savings. This effect
increases as more as the assignment of human resources to departments is
arbitrary and does not reflect specific skills.

Up to now projects have been aggregated and scheduled as a block of work
packages. Only the project start times have been subject to optimization.
This limit is going to be relaxed in the following chapter. There, projects



CHAPTER 2. STAFFING AND SCHEDULING PROJECTS 34

0%

2%

4%

6%

8%

10%

12%

14%

0.25 0.50 0.75

Specialization of internal hum an resources

R
el

at
iv

e 
co

st
 im

p
ro

ve
m

en
t 

b
y 

ce
n

tr
al

 p
la

n
n

in
g

5 Departments

4 Departments

3 Departments

2 Departments

Figure 2.8: Cost improvement κ by central planning depending on the num-
ber of departments |D| and their specialization δ

will be modelled as a serial stream of phases or activities and the starting
time of each phase can be optimized individually.



Chapter 3

Staffing and scheduling

disaggregated IT–projects

3.1 Introduction

In this chapter the focus is still on the problem of simultaneous scheduling
and staffing multiple projects as it has been considered in Chapter 2. How-
ever, the model of the preceding chapter is extended w.r.t. the structure of
the projects (cf. Heimerl and Kolisch [47]). IT–projects usually have a serial
network structure consisting of 5 to 7 activities (phases) where each activ-
ity has a duration of a few weeks. Instead of treating each project as one
aggregated block of work packages as in Chapter 2, each project will be dis-
aggregated into these activities and the starting times of the activities will be
subject to optimization. The resource demand of each activity is given and
consists of several work packages. Each work package defines the demand
for a certain skill in each period the activity is performed. The period in
which the demand actually arises depends on the schedule of each project.
Often, activities of a project directly succeed each other. However, they may
also be separated by breaks of limited length or overlap each other partially.
Thus, activities are linked with its predecessor by minimum and maximum
time–lags (cf. e.g. Neumann et al. [61]). The question is how the projects’
activities are scheduled and resources are assigned to project work such that
costs are minimized.

One of the results of the preceding chapter was that the aggregated prob-
lem is NP–hard. Furthermore, the computation time for obtaining optimal
solutions increases rapidly with the number of projects (objects to be sched-
uled) and the time window size. Due to the disaggregation of projects to
activities the number of objects to be scheduled increases and the period

35
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length usually needs to be reduced, too. Hence, time window sizes of the
activities of disaggregated projects are often larger. Obviously, for disag-
gregated projects the development of a heuristic solution method becomes
inevitable.

The remainder of this chapter is organized as follows: In order to address
the aforementioned problem a model for simultaneous scheduling and staffing
multiple projects with serial structures is proposed in Section 3.2. The model
is a generalization of the problem treated in Chapter 2. Thus, the literature
reviewed in Chapter 2 is also relevant for the problem presented in this chap-
ter. In Section 3.3 several generalized network flow representations of the
staffing subproblem will be presented. Afterwards, in Section 3.4 a hybrid
metaheuristic is proposed which employs these network representations to
solve the optimization problem efficiently. The experimental investigation
will be presented in Section 3.5. Finally, the chapter concludes with a sum-
mary in Section 3.6.

3.2 Model

3.2.1 Model description

Projects. Let P be a set of projects which have to be processed. Each
project p ∈ P consists of activities Ap ⊆ A with Ap ∩ Ap′ = ∅ for p, p′ ∈
P , p 6= p′ and

⋃

p∈P Ap = A. The projects have serial network structures, i.e.
each activity a ∈ Ap of project p is assumed to have exactly one preceding
activity pred(a). The predecessor of the first activity of each project is a
dummy activity a0 /∈ A. The successor of activity a is denoted by succ(a).
Each activity a is linked with its predecessor by maximum and minimum
start–to–start time–lags δmax

a and δmin
a (δmax

a ≥ δmin
a ≥ 0), respectively (cf.

e.g. Neumann et al. [61]). Activities are assumed to be non–preemptive.
The time line is divided into periods of length one. Time period t is

defined as the time span between the points in time t − 1 and t, i.e. [t −
1, t[ for t = 1, . . . , T where T denotes the planning horizon. W.l.o.g. for
the remainder of this chapter a period length of one week is assumed. An
activity always starts at the beginning of the start period and ends at the
end of the finish period. These definitions were chosen in order to ease the
notation of the upcoming models. In general network structures the earliest
and latest start periods ES a and LS a of each activity a can be calculated
using the Floyd–Warshall algorithm (cf. Ahuja et al. [2]). For serial project
structures the calculation is far easier by initializing ESa0 = 1 and calculating
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recursively
ES a = ES pred(a) + δmin

a (a ∈ A) (3.1)

as well as
LS a = LS pred(a) + δmax

a (a ∈ A). (3.2)

Given the duration da ≥ 1 of each activity a the earliest and latest finish
periods are then EF a = ES a +da−1 and LF a = LS a +da−1. The planning
horizon is defined by T = maxa∈A LF a.

In total the activities require the set of skills S. In the context of IT–
projects skills are for example programming, architecture, security, or hard-
ware. More precisely each activity a requires rasq work units of skill s in
executing period q = 1, . . . , da. The amount of skill s requested in the q–th
period of activity a, rasq, can be seen as a work package and will henceforth
be termed as such.

Resources. The definitions and notation concerning internal and external
resources, skills and minimum internal work ratios are equivalent to those of
Section 2.3.

Variables. The following decision variables are employed: xr
atsk ≥ 0 is the

amount of work (typically measured in full time equivalents) that internal
resource k performs during regular hours in period t on the work packages
of activity a which require skill s. Accordingly, xo

atsk ≥ 0 is the amount of
overtime work of the internal resource k. yats ≥ 0 is the amount of work
of activity a requiring skill s performed by external resources in period t.
Both decision variables are continuous. Finally, the binary decision variables
zat ∈ {0, 1} are required for setting activity start times. zat equals 1 if activity
a is started at the beginning of period t and 0 otherwise. Table A.1 in the
Appendix provides a summary of the notation.

The question is how the projects’ activities should be scheduled and which
human resources should be assigned to each work package such that the
different requirements are met and costs are minimized.

3.2.2 MIP Formulation

The following mixed–binary linear program MIP3 represents the problem.
Its LP–relaxation is denoted with LP3.

Min
∑

a∈A

LFa∑

t=ESa

∑

s∈S



ce
syats +

∑

k∈Ri
s

1

ηsk

(cr
kx

r
atsk + co

kx
o
atsk)



 (3.3)
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subject to

LSa∑

t=ESa

zat = 1 a ∈ A (3.4)

δmin
a ≤

LSa∑

t=ESa

t · zat −

LSpred(a)
∑

t=ESpred(a)

t · zpred(a)t ≤ δmax
a a ∈ A (3.5)

∑

(τ,q)∈Tat

rasq · zaτ ≤ yats +
∑

k∈Ri
s

xr
atsk + xo

atsk

a ∈ A
t = ES a, . . . ,LF a

s ∈ S
(3.6)

∑

a∈A

∑

s∈S

1

ηsk

xr
atsk ≤ Rr

kt

t = 1, . . . , T
k ∈ Ri (3.7)

∑

a∈A

∑

s∈S

1

ηsk

xo
atsk ≤ Ro

kt

t = 1, . . . , T
k ∈ Ri (3.8)

∑

a∈Ap

LFa∑

t=ESa

∑

s∈S

∑

k∈Ri
s

xr
atsk + xo

atsk ≥

ep

∑

a∈Ap

LFa∑

t=ESa

∑

s∈S

yats p ∈ P (3.9)

xr
atsk, x

o
atsk ≥ 0

a ∈ A
t = ES a, . . . ,LF a

s ∈ S
k ∈ Ri

s

(3.10)

yats ≥ 0
a ∈ A
t = ES a, . . . ,LF a

s ∈ S
(3.11)

zat ∈ {0, 1}
a ∈ A
t = ES a, . . . ,LS a

(3.12)

The objective function (3.3) minimizes the labor costs of internal and
external resources which accrue by processing the work packages of the ac-
tivities. Note that the time required by the internal resource k to perform
xatsk work units depends on the efficiency ηsk. I.e. in case of a high efficiency
(ηsk > 1) less time is needed while in case of a low efficiency (ηsk < 1) more
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time is needed. For all external resources an efficiency of η = 1 is assumed.
Due to constraints (3.4) each activity a is forced to start exactly once within
its absolute start time window [ES a,LS a]. Constraints (3.5) ensure that each
activity a is started within its start time window [δmin

a , δmax
a ] relative to the

start time of its predecessor pred(a). Constraints (3.6) ensure that the work
packages of activity a are performed by internal and external resources. More
precisely, for each period t = ES a, . . . ,LF a the required work of skill s has
to be covered by internal or external resources. The work requiring skill s
which has to be performed in period t depends on the start time variable zat

and the demand profile rasq of the activities. The set

Tat = {(τ, q) ∈ {ES a, . . . ,LS a} × {1, . . . , da} | τ + q − 1 = t} (3.13)

consists of all combinations (τ, q) of activity start periods τ and executing
periods q of activity a that lead to a resource demand in calendar period t (cf.
Heimerl and Kolisch [45]). To illustrate this with an example let ES a = 1,
LS a = 2, and da = 2. Then Ta1 = {(1, 1)}, Ta2 = {(1, 2), (2, 1)}, and
Ta3 = {(2, 2)}.

The available capacities of the internal resources for regular time and
overtime are considered by constraints (3.7) and (3.8), respectively. For
each project p constraints (3.9) ensure a minimum ratio ep ≥ 0 of the work
performed by internal resources to the work performed by external resources.
Finally, the constraints (3.10), (3.11) and (3.12) define the decision variables.

Note that constraints (3.6) are formulated as inequalities. This allows
oversupply of work packages by internal resources in order to obtain feasible
solutions w.r.t. constraints (3.9). Oversupply can be used to improve the
quality of deliverables by e.g. additional code reviews in IT–projects or to
further qualify resources for existing or additional skills (cf. Heimerl and
Kolisch [46]).

Proposition 4. The problem of simultaneous scheduling and staffing serial
projects is NP–hard.

Proof. MIP3 is a generalization of the NP–hard problem depicted in Chap-
ter 2 as it can be restricted to that case by allowing only instances with
|Ap| = 1 for all p ∈ P. Hence, the considered problem must also be NP–
hard.

3.2.3 Additional cuts

Additional constraints proposed by Zhu et al. [80] for the multi–mode re-
source–constrained project scheduling problem are employed in order to tight-
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en the formulation MIP3. The binary decision variables zat for the deter-
mination of activity start periods need to be defined for all periods t =
ES a, . . . ,LS a. It is easy to see that LS a−ES a ≥ LS pred(a)−ES pred(a) holds,
i.e. the time window size of an activity increases (not strictly) with the ac-
tivity’s rank (i.e. the number of predecessor activities, cf. Davis [29] and
Kløvstad [53]). Thus, for activities with high rank the number of binary
decision variable can be large. However, some combinations of the starting
times of an activity and its predecessor are invalid which can be exploited by
the following cuts. After having derived start time windows [ES a,LS a] for
each activity a according to (3.1) and (3.2) and setting the start period of
its predecessor pred(a) to some τ ∈ [ES pred(a),LS pred(a)] then it follows that
activity a cannot start after period τ + δmax

a . Analogously, activity a cannot
start before period τ + δmin

a . In general the two cuts can be formulated as
follows.

t∑

τ=ESpred(a)

zpred(a)τ +
LSa∑

τ=t+δmax
a +1

zaτ ≤ 1
a ∈ A
t = ES pred(a), . . . ,LS pred(a) − 1

(3.14)

LSpred(a)
∑

τ=t

zpred(a)τ +

t+δmin
a −1
∑

τ=ESa

zaτ ≤ 1
a ∈ A
t = ES pred(a) + 1, . . . ,LS pred(a)

(3.15)

To give a short example for cut (3.14) consider the case that δmax
a = 2 for

activity a. Thus, if pred(a) starts in period t = 5 or earlier, activity a may
not start in period 8 or later, i.e.

5∑

τ=ESpred(a)

zpred(a)τ +
LSa∑

τ=8

zaτ ≤ 1.

As proved in Zhu et al. [80] only the direct predecessor of an activity needs
to be considered for each cut. Additional cuts for all indirect predecessors
will not further tighten MIP3. In preliminary tests the effectiveness of the
cuts (3.14) and (3.15) was verified and hence they were used in the experimen-
tal investigation. The tightened formulation (3.3)—(3.12) and (3.14)—(3.15)
is denoted MIP4 and its LP–relaxation is denoted LP4.

3.3 Staffing subproblem

The hybrid metaheuristic that will be presented in Section 3.4 depends on
an efficient evaluation of intermediate solutions. This requires to solve the
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staffing subproblem which arises in MIP3 if the activities’ starting times
are fixed. In this section a generalized minimum cost flow formulation of
the staffing subproblem is proposed. A linear program formulation of the
staffing subproblem is given in Section 3.3.1. Corresponding network flow
formulations are presented in Section 3.3.2. Finally, the generalized network
simplex algorithm that can solve generalized network flow problems faster
than standard solvers is described in Section 3.3.3.

3.3.1 LP Formulation

Let the values of the variables zat be binary and valid (i.e. obeying constraints
(3.4) and (3.5)), then the starting period of activity a can be calculated by
Sa =

∑LSa

t=ESa
tza (cf. Pritsker et al. [63]). The vectors of starting and finishing

periods are denoted by S = (Sa) and F = (Fa) = (Sa + da − 1), respectively.
With

r′ast =
∑

(τ,q)∈Tat

rasqzaτ = ras(q+Sa−1) (3.16)

T ′ = min
a∈A

Sa (3.17)

and
T ′′ = max

a∈A
Fa (3.18)

MIP3 then reduces to the following linear program that minimizes costs while
assigning resources to work packages.

Min
∑

a∈A

Fa∑

t=Sa

∑

s∈S



ce
syats +

∑

k∈Ri
s

1

ηsk

(cr
kx

r
atsk + co

kx
o
atsk)



 (3.19)

subject to

r′ast ≤ yats +
∑

k∈Ri
s

xr
atsk + xo

atsk

a ∈ A
t = Sa, . . . , Fa

s ∈ S
(3.20)

∑

a∈A

∑

s∈S

1

ηsk

xr
atsk ≤ Rr

kt

t = T ′, . . . , T ′′

k ∈ Ri (3.21)

∑

a∈A

∑

s∈S

1

ηsk

xo
atsk ≤ Ro

kt

t = T ′, . . . , T ′′

k ∈ Ri (3.22)
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∑

a∈Ap

Fa∑

t=Sa

∑

s∈S

∑

k∈Ri
s

xr
atsk + xo

atsk ≥ ep

∑

a∈Ap

Fa∑

t=Sa

∑

s∈S

yats p ∈ P (3.23)

xr
atsk, x

o
atsk ≥ 0

a ∈ A
t = Sa, . . . , Fa

s ∈ S
k ∈ Ri

s

(3.24)

yats ≥ 0
a ∈ A
t = Sa, . . . , Fa

s ∈ S
(3.25)

The linear program (3.19)—(3.22), (3.24)—(3.25) eliminating constraints
(3.23) is denoted LP5. Note that LP5 can be decomposed into T indepen-
dent linear programs for each period t. The linear program (3.19)—(3.25) is
denoted LP6.

3.3.2 Generalized minimum cost flow formulations

Both LP5 and LP6 can be modelled as generalized minimum cost flow prob-
lems. First a generalized minimum cost flow formulation for LP5 will be
presented. Then this network will be expanded in order to obtain a gener-
alized minimum cost flow formulation for LP6. Finally, a modified network
formulation for LP6 will be presented which is advantageous especially when
repeatedly evaluating similar solutions in the course of a metaheuristic.

A generalized network G(N,A) consists of nodes i ∈ N with supply bi ≥ 0
or demand bi < 0 and directed arcs (i, j) ∈ A with upper bounds uij, gains
µij > 0, and unit costs cij (cf. Ahuja et al. [2]). The networks presented
in this chapter will only contain unbounded arcs, i.e. uij = ∞. Figure 3.1
provides the notation where entries for the following default values will be
omitted: bi = 0, cij = 0, and µij = 1.

i

bi

j

bj

(µij, cij)

Figure 3.1: Notation for graphs

Decomposed single–period network representation of LP5. Graph
G1 represents the decomposed problem LP5 for period t (cf. Figure 3.2). On
the internal supply side the graph consists of overtime and regular working
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time nodes ko and kr for each internal resource k ∈ Ri, respectively. The
supply of these nodes is bko = Ro

kt and bkr = Rr
kt, respectively. Arcs (ko, kr)

connect overtime and regular work time with unit costs ckokr = co
k−cr

k. Since
constraints (3.21) and (3.22) are inequalities, excess supply does not need to
be used and, thus, can be consumed by zero–cost loops (ko, ko) and (kr, kr)
with gains µkoko < 1 and µkrkr < 1, respectively. An arc with µij < 1 is called
lossy since the flow leaving the arc is smaller than the flow entering the arc.
The demand of activities requiring skill s in period t can be aggregated and
depicted by node s such that bs = −

∑

a∈A r′ast. An arc (kr, s) with gain
µks = ηsk and unit costs ckrs = cr

k is added to the graph, if k ∈ Ri
s. Finally,

external supply can be modelled by loops (s, s) with gain µss = 2 and unit
costs css = ce

s. An arc with µij > 1 is called gainy since the flow leaving the
arc is greater than the flow entering the arc. The supply created by a loop
with µij = 2 equals the flow xij over the loop (cf. Ahuja et al. [2]): One unit
of flow over the loop creates two units of supply at the node. One of these
two units is required to flow over the loop in order to hold the mass–balance
constraints.

ko
1

Ro
k1

ko
2

Ro
k2

kr
1

Rr
k1

kr
2

Rr
k2

s1

bs1

s2

bs2

(0.5, 0)

(0.5, 0)

(0.5, 0)

(0.5, 0)

(2, ce
s1

)

(2, ce
s2

)

(1, co
k1
− cr

k1
)

(1, co
k2
− cr

k2
)

(ηsk, c
r
k)

Figure 3.2: Graph G1 for relaxed single–period problem LP5 with Ri =
{k1, k2} and S = {s1, s2}. Indices for period t have been omitted.

For each period t = T ′, . . . , T ′′ the network contains

2 · |Ri|+ |S| (3.26)

nodes and
3 · |Ri|+ |S|+

∑

s∈S

|Ri
s| (3.27)

arcs. Of course, the network can be reduced if e.g. overtime capacity Ro
kt = 0.

LP5 can be used if ep = 0 ∀ p ∈ P or to obtain a lower bound on LP6. This
lower bound can even be tightened by incorporating constraints (3.23) into
Graph G1 using Lagrangian relaxation.
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Network representation of LP6. For LP6 the corresponding Graph G2

is given in Figure 3.3. The structure of the network for the internal sup-
ply side is the same as in G1 except for the fact that it is repeated for
each period t. Thus, the indices of t have to be taken into account and
the nodes are denoted kot, krt, and st, respectively. Since constraints (3.23)
are project–specific, the demand cannot be aggregated over all projects such
that the demand bpst = −

∑

a∈Ap
r′ast arises in node pst. Nodes st only act

as transshipment nodes reducing the number of arcs in the network. Con-
straints (3.23) limit the ratio of external work within a project. Thus, only

a limited capacity bp = − 1
1+ep

∑

s∈S

∑T ′′

t=T ′ bpst is available as external sup-

ply in each node p. If constraints (3.20) were equalities the graph described
up to this point would already represent the linear program. However, since
the constraints (3.20) are inequalities it is valid to oversupply a work package
with internal resources in order to use more external resources for other work
packages of the same project and concurrently hold constraints (3.23). Hence,
oversupply by internal resources allows further external resources such that
additional arcs (pst, p) with gains µpst,p = 1

1+ep
need to be added. These arcs

depict that one unit of oversupply by internal resources in a work package
of project p allows the use of 1

1+ep
additional units of external resources for

this project. Note that the cycle P along the nodes p, pst, and p is not gainy
since µpst,p ≤ 1, µp,pst = 1 and the gain µP along a path P is defined as
µP =

∏

(i,j)∈P µij (cf. Ahuja et al. [2]). Hence, external supply cannot create
additional external supply. In order to keep the figure simple only two out
of eight arcs (pst, p) are depicted in Figure 3.3.

Let
T̂ = T ′′ − T ′ + 1 (3.28)

denote the number of periods. Then the network contains

|P|+ T̂ · (2|Ri|+ |S| · (1 + |P|)) (3.29)

nodes and

|P|+ T̂ ·

(

3 · |Ri|+ 3 · |S| · |P|+
∑

s∈S

|Ri
s|

)

(3.30)

arcs. Again, the network can be reduced if e.g. overtime capacity Ro
kt = 0 or

demand bpst = 0 holds.

Modified network representation of LP6. The hybrid metaheuristic
described in Section 3.4 has to solve the minimum cost flow problem for
many different vectors of starting periods S. The values of bpst for the Graph
G2 have to be changed for each evaluated vector of starting periods. As a
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Figure 3.3: Graph G2 for LP6 with Ri = {k1, k2}, S = {s1, s2}, P = {p1, p2},
and t = {t1, t2}

consequence the (primal) generalized network simplex algorithm described
in Section 3.3.3 always needs to be started from scratch. However, the vec-
tors of starting periods S are often similar. E.g. when the neighbourhood
defined in the tabu search procedure in Section 3.4.2 is evaluated, starting
periods of two arbitrary solutions of the neighbourhood only differ for a few
activities. Hence, the evaluation procedure can be expedited by constructing
and solving Graph G3 (cf. Figure 3.4). Every vector of starting periods S

can be represented in G3 by modifying only the cost parameters of at most
2·|S|·

∑

a∈A da arcs. Modifying the cost parameters keeps the solution primal
feasible. The (feasible) solution for an evaluated vector of starting periods S

can act as an initial (feasible) basis for the next vector of starting periods S′

to be evaluated.
In contrast to Graph G2 the demand nodes asq in Graph G3 need to be

defined for each activity a, skill s, and executing period q. The demand of
node asq is basq = −rasq. For each t = ESa + q − 1, . . . , LSa + q − 1 an arc
(st, asq) connects the node with the internal supply. The unit costs cst,asq

will be zero if Sa = t− q + 1 and sufficiently large otherwise.
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To illustrate the network structure consider the example depicted in Fig-
ure 3.4 where a single activity a1 with da1 = 2, ES a1 = 1, LS a1 = 2, and
requiring two skills needs to be staffed. If a solution with Sa1 = 1 needs
to be evaluated then the costs of the arcs with t = q, i.e. (s1t1, a1s1q1),
(s2t1, a1s2q1), (s1t2, a1s1q2), (s1t2, a1s1q2), will be set to zero and the costs
of the arcs with t 6= q, i.e. (s1t2, a1s1q1), (s2t2, a1s2q1), (s1t3, a1s1q2),
(s1t3, a1s1q2), are set to a sufficiently high value. If Sa1 = 2 then the cost
parameters are set vice versa.

s1t1

s2t1

s1t2

s2t2

s1t3

s2t3

a1s1q1

ba1s1q1

a1s2q1

ba1s2q1

a1s1q2

ba1s1q2

a1s2q2

ba1s2q2

p1

bp1

(ηsk, c
r
k)

(ηsk, c
r
k)

(ηsk, c
r
k)

(1, ce
s1

)

(1, ce
s2

)

(0.5, 0)

( 1
1+ep1

, 0)

( 1
1+ep1

, 0)

Figure 3.4: Relevant part of Graph G3 for LP6 with S = {s1, s2}, P = {p1},
Ap1 = {a1}, da = 2, ESa1 = t1, LSa1 = t2, and t = {t1, t2, t3}

The Graph G3 contains

|P|+ T · (2|Ri|+ |S|) + |S| ·
∑

a∈A

da (3.31)

nodes and

|P|+ T ·

(

3|Ri|+
∑

s∈S

|Ri
s|

)

+ |S| ·
∑

a∈A

(da · (3 + LSa − ESa)) (3.32)
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arcs. Again, the size of the network can be reduced for certain parameter
constellations. Despite the fact that Graph G3 has an increased number
of nodes and arcs compared to Graph G2, the generalized network simplex
algorithm can find the optimal solution faster when repeatedly evaluating
similar solutions. Results regarding this point will be reported in Section 3.5.

3.3.3 Generalized network simplex algorithm

To solve LP6 the (primal) generalized network simplex algorithm (cf. e.g.
Ahuja et al. [2], Bazaraa et al. [11], Kennington and Helgason [52]) is applied
on the networks G2 and G3. The generalized network simplex algorithm
is closely related to the network simplex algorithm. The network simplex
algorithm assumes gains µij = 1 and generates integer solutions (flows) if
all input data is integer. The primal version maintains feasible solutions in
a spanning tree structure and improves the solutions by moving from one
feasible spanning tree structure to the next.

The (primal) generalized network simplex algorithm maintains feasible
solutions in an augmented forest structure which is a set of augmented trees.
An augmented tree (or 1–tree) is a connected subgraph of a network contain-
ing only a subset of nodes and arcs. An augmented tree is basically a tree
but contains one additional arc forming a cycle. Hence, each augmented tree
contains as many nodes as arcs. The (primal) generalized network simplex
algorithm improves the solutions by moving from one feasible augmented
forest structure to the next.

The initial feasible augmented forest structure can be obtained by adding
artificial loops (i, i) (if not already existing) with high unit costs cii for each
node i with bi 6= 0. The artificial loop is defined to be gainy (lossy), i.e.
µii = 2 (µii = 0.5), if the node has non–zero demand (supply), i.e. bi < 0
(bi > 0). The initial augmented forest then consists of augmented trees each
with one node and its artificial loop. The initial flow xii on the artificial
loop is xii = bi

1−µii
. When an artificial loop is removed from the augmented

forest structure during the algorithm it is no longer needed and permanently
removed from the network.

The network simplex algorithm as well as the generalized network simplex
algorithm both rely on efficient representations and updates of the spanning
tree and augmented forest, respectively, and on an efficient pivoting strategy.
For the augmented forest the representation of Bazaraa et al. [11] and Ken-
nington and Helgason [52] with five indices per node (predecessor, thread,
final node, number of subnodes, and arc orientation) was chosen. Further-
more, the efficient candidate list pivot rule described by Ahuja et al. [2] is
used. Preliminary tests for the given graphs revealed that the algorithm
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performs best when the maximum length of the candidate list is 6% of the
number of eligible arcs and that the candidate list should be recreated after
at most 10% of the length of the candidate list.

3.4 Hybrid metaheuristic

Since the proposed mixed–binary linear program MIP3 is NP–hard (cf. Sec-
tion 3.2) an exact solution of the problem might no longer be possible even for
small problem instances due to the vast amount of binary variables. There-
fore, a hybrid metaheuristic is proposed in order to solve the problem in
reasonable time. The hybrid metaheuristic will first try to find the best solu-
tion using a genetic algorithm (cf. Section 3.4.1). Afterwards a tabu search
based post–optimization will be applied on the best solution found by the
genetic algorithm (cf. Section 3.4.2).

3.4.1 Genetic algorithm

The proposed hybrid metaheuristic will first try to find a good solution using
a genetic algorithm (GA). The GA is a well–known metaheuristic based on
concepts of evolution theory. The GA maintains a population Pop consist-
ing of individuals (or chromosomes) i ∈ Pop. Each individual is coded by
its genotype and represents a solution. A new generation is created by re-
production (also known as crossover), mutation, and selection. Crossover is
the primary operator that creates children based on the parents. Mutation
randomly changes individuals in order to obtain diversity. Selection ensures
that fitter (i.e. better) solutions survive with higher probability. The stan-
dard genetic algorithm scheme presented in Glover and Kochenberger [36] is
adapted (cf. Algorithm 3).

Algorithm 3 Genetic algorithm scheme

1: Choose and evaluate initial population Pop
2: while termination condition not satisfied do

3: Do crossover on the population to obtain children
4: Mutate children
5: Evaluate children
6: Select new population out of parents and children
7: end while

As solution representation integer vectors δ = (δa) are used. Each integer
value δa = Sa−Spred(a) of the vector depicts the realized start–to–start time–
lag between activity a and its immediate predecessor pred(a). The solutions
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are always precedence feasible as long as δmin
a ≤ δa ≤ δmax

a . Given δ the
starting periods Sa of all activities a ∈ A can be calculated recursively by
setting Sa0 = 1 and employing

Sa = Spred(a) + δa (3.33)

Note that the change of δa affects the starting period of activity a and all of
its direct and indirect successors.

Given δ the objective function value of a solution can be evaluated by
applying the generalized network simplex algorithm on LP2. Of course, lower
objective function values must correspond to higher fitness values. Further-
more, objective function values might include inevitable costs, since e.g. the
cumulative demand exceeds the capacities of internal resources. To handle
these two issues linear ranking of the solutions i ∈ Pop is applied according
to their objective function value in order to obtain fitness values (cf. Glover
and Kochenberger [36]). If a solution is infeasible due to constraints (3.9)
the solution of the network flow problem will have positive flows on artifi-
cial loops with high unit costs. Thus, the level of infeasibility is implicitly
included in the objective function value, such that infeasible solutions will
automatically be ranked lower than feasible solutions and amongst infeasible
solutions the ones with a greater extend of infeasibility will be ranked lower.

For selection the standard roulette–wheel selection procedure is applied
based on the rank of a solution. To keep promising solutions within the
population (elitism), a new population is not only selected from the children
but also from the parent generation. A single–point crossover operator is
applied. Mutation of a gene occurs with probability p and sets δa to a
random integer value within the interval [δmin

a , δmax
a ].

The initial population is built with two types of individuals where equal
individuals are prohibited. The time–lags δa of individuals of type 1 are
completely random integer values within [δmin

a , δmax
a ]. The time–lags δa of in-

dividuals of type 2 have random values δa for the first activity of each project
(i.e. activities with pred(a) = a0) while the time–lags of all other (succeed-
ing) activities are set to δa = δmax

a . Individuals of type 2 were included due
to the fact that MIP3 basically resembles a resource–levelling problem (cf.
e.g. Neumann and Zimmermann [60]) and that spreading activities as much
as possible is an intuitive way of obtaining good solutions.

3.4.2 Tabu search

The proposed hybrid metaheuristic will apply tabu search (TS) as a post–
processing optimization on the best solution found by the GA. TS is an
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expansion of local search in order to find global optima. A steepest descent
TS algorithm on a well–defined neighbourhood was chosen and the standard
tabu search scheme presented in Glover and Kochenberger [36] was adapted
(cf. Algorithm 4). A neighbourhood is a set of adjacent solutions reachable
with simple moves (changes) from the current solution. The neighbourhood
excludes solutions maintained in a tabu list of recently visited solutions or
performed moves. These solutions may not be revisited for some iterations
in order to avoid cycling.

A solution representation differing from the one employed by the GA was
chosen for the TS. For the TS the integer vectors S = (Sa) of starting periods
are used. Each integer value of the vector depicts the realized starting period
of activity a. This solution representation was chosen for the TS because
two arbitrary solutions within the subsequently described neighbourhood are
very similar and hence can be evaluated very efficiently using Graph G3 (cf.
Section 3.3.2).

The construction of the neighbourhood N(S) works according to Algo-
rithm 5: For each neighbourhood solution S′ ∈ N(S) the starting period
S ′

a of exactly one activity a is increased or decreased by one period rel-
ative to the current solution Sa, i.e. for one activity either S ′

a = Sa − 1
(lines 2–11) or S ′

a = Sa + 1 (lines 13–22) holds. However, each neigh-
bourhood solution S′ ∈ N(S) is required to be precedence–feasible, i.e.
δmin
a ≤ S ′

a − S ′

pred(a) ≤ δmax
a ∀ a ∈ A. Hence, after modifying the starting pe-

riod of an activity the starting period of the successor is checked and repaired
if necessary. As long as a repair is necessary for activity a also the successor
succ(a) of activity a is checked and repaired if necessary (lines 5–9 and 16–20,
respectively). The vector S and an arbitrary solution S′ ∈ N(S) of the neigh-
bourhood differ in at most maxp∈P |Ap| elements since the starting period of
the modified activity and (in the worst case) of all succeeding activities might
have changed. Two arbitrary vectors S′,S′′ ∈ N(S) of a neighbourhood dif-
fer in at most 2 maxp∈P |Ap| elements. Hence, two neighbourhood solutions
can be efficiently evaluated using Graph G3 which is suited for repeatedly
evaluating similar solutions (cf. Section 3.3.2). The maximum size of the
neighbourhood is 2|A| since for each activity at most two modifications are
obtained. Each solution of the neighbourhood is evaluated and the best one
is selected as next current solution.
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Algorithm 4 Tabu search scheme

Require: Initial solution S

1: Create empty tabu list TL← ∅
2: while termination condition is not satisfied do

3: Construct and evaluate neighbourhood N(S)
4: Ignore solutions in tabu list: N(S)← N(S)\TL
5: Choose best neighbour S′ ∈ N(S) to be the new current solution:

S← S′

6: if |TL| > maxsize then

7: Remove oldest entry from the tabu list
8: end if

9: TL← TL ∪ S

10: end while

Algorithm 5 Construction of the neighbourhood N(S)

1: for a ∈ A do

2: if Sa − Spred(a) > δmin
a then

3: S′ ← S

4: S ′
a ← S ′

a − 1
5: â← succ(a)
6: while â 6= ∅ and Sâ − Spred(â) > δmax

â do

7: S ′
â ← S ′

â − 1
8: â← succ(a)
9: end while

10: N(S)← N(S) ∪ S′

11: end if

12:

13: if Sa − Spred(a) < δmax
a then

14: S′ ← S

15: S ′
a ← S ′

a + 1
16: â← succ(a)
17: while â 6= ∅ and Sâ − Spred(â) < δmin

â do

18: S ′
â ← S ′

â + 1
19: â← succ(a)
20: end while

21: N(S)← N(S) ∪ S′

22: end if

23: end for
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3.5 Experimental investigation

3.5.1 Experimental setup

Test instances. Test instances were created according to Table 3.1. One
set of instances is generated with 5 projects and 5 resources, and another
set with 10 projects and 10 resources, respectively. The demands rasq are
normally distributed with a coefficient of variation COV = 0.1 such that the
expected average workload

ρ =

∑

a∈A

∑

s∈S

∑da

q=1 E(rasq)
∑T

t=mina∈A ESa

∑

r∈Ri Rr
kt

(3.34)

is equal to 1.5. The expected average workload ρ is the ratio of the total ex-
pected demand of all work packages and the total availability of all internal
resources over the planning horizon. The number of activities per project
|Ap| = 6 stems from the waterfall model (cf. Royce [64]) which is a very com-
mon software development process. The cost rates for external resources are
drawn from a truncated normal distribution TN a,b(µ, σ) with the expected
value µ = 800, a standard deviation of σ = 100, a minimum value of a = 600,
and a maximum value of b = 1,000.

(|P|, |Ri|) ∈ {(5, 5),
(10, 10)}

|Ap| = 6
|S| = 4
|Sr| = 2

|S| per period and activity = 2
|S| per activity ≤ 3

ρ = 1.5

da = 4 (weeks)
Rr

kt = 5 (days)
Ro

kt = 1.5 (days)
cr
kt = 0

co
kt = 600
ce
s ∼ TN 600,1000(800, 100)

ep = 0.2

Table 3.1: Parameters of the test instances

The minimum and maximum time–lags δmin
a and δmax

a are equal for all
activities of one instance. For the instances with 5 projects all possible
variations within the range 1 ≤ δmin

a < δmax
a ≤ 6 were considered resulting in

∑5
i=1 i = 15 variations. For each combination of δmin

a and δmax
a five instances

yielding a total of 75 instances were generated. For the instances with 10
projects δmin

a = 1 holds and δmax
a is varied within the range [2, 6]. By this

5 variations with 5 instances each were obtained and hence 25 instances in
total.
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Solution method time limit [sec]
CPLEX (LP) none
CPLEX (3,600s) 3,600
CPLEX (100s) 100
CPLEX (300s) 300
GA (80s) 80
HMH (100s) 80+20

Table 3.2: Solution methods applied

Solution methods. For the experimental investigation all instances were
solved using an Intel Pentium 4 with 2.4 GHz and 1.5 GB RAM. The hybrid
metaheuristic (HMH) and the generalized network simplex based evalua-
tion function were implemented in Java 6.0. The solution methods given
in Table 3.2 were applied. First of all CPLEX 10.1 with default param-
eters was employed to solve LP4 (LP–relaxation of MIP4) (CPLEX LP).
Next CPLEX with an optimality gap of 0% and a time limit of 3,600 seconds
(CPLEX 3,600s) was used to solve MIP4. With these limits optimal or near–
optimal benchmark solutions can be found. Finally, MIP4 was solved with
CPLEX and a time limit of 100 seconds (CPLEX 100s) for the 5 projects
instances and 300 seconds (CPLEX 300s) for the 10 projects instances, re-
spectively, to have a fair comparison with HMH described in Section 3.4.
The computation time of HMH was set to 100 seconds where 80 seconds
were allocated to the genetic algorithm and the remaining 20 seconds to the
tabu search. The intermediate results after the GA part of HMH (GA 80s)
were captured as well as the final results after 100 seconds (HMH 100s). For
the GA the population size was set to 10 and was equally initialized with
individuals of type 1 and 2. Four individuals of the parent generation and
six individuals of the offsprings are selected for the next generation. The
mutation probability p per gene was set to 0.05. For the TS a maximum
tabu list length of 20 was chosen.

3.5.2 Computation times

Evaluation functions. In Section 3.3 two different graphs G2 and G3 and
the generalized network simplex algorithm (GNS) were proposed in order
to evaluate solutions with fixed starting periods. In order to identify the
best suited network representation for each metaheuristic and to compare
the proposed evaluation procedure with CPLEX a full–factorial comparison
of the computation times required to evaluate a solution was conducted. The



CHAPTER 3. STAFFING AND SCHEDULING SERIAL PROJECTS 54

Metaheuristic Evaluation method |P| = 5 |P| = 10

TS
GNS on G2 58.4 147.1
GNS on G3 31.1 68.6
CPLEX 108.0 518.7

GA
GNS on G2 56.6 151.4
GNS on G3 90.2 277.0
CPLEX 113.5 494.5

Table 3.3: Average evaluation times for instances with TWS = 5 in millisec-
onds

instances with 5 projects and 10 projects and with a time window size

TWS = δmax
a − δmin

a (3.35)

of 5 were tested. The first factor of the full–factorial comparison was the size
of the problem, i.e. the number of projects and resources. The second factor
was the applied metaheuristic where the TS with a limit of 50 iterations is
opposed to the GA with a limit of 100 generations. In order to compute
the evaluation time per solution the number of evaluations as well as the
total computation time were measured. The final factor was the evaluation
function. The three evaluation functions considered were the generalized
network simplex (GNS) algorithm using the network representations G2 vs.
G3 and CPLEX 10.1 applied on LP6.

Table 3.3 provides the mean evaluation times per solution in milliseconds
for this full–factorial comparison. The results show that CPLEX is clearly
outperformed by GNS up to a factor of 7. Despite its larger network size
Graph G3 outperforms G2 in the course of the TS where consecutively eval-
uated solutions are rather similar. However, in the course of the GA the
evaluation times are considerably lower for Graph G2. This is due to the fact
that consecutively evaluated solutions are not similar enough to apply Graph
G3 efficiently. However, it was observed that for instances with smaller TWS
the GA can benefit from Graph G3, too.

The results confirm the efficiency of the proposed evaluation function and
the proposed network representations. Which of the two network representa-
tions is better suited clearly depends on the sequence of evaluated solutions
defined by the applied metaheuristic. Hence, for the subsequent results of
HMH the GA with GNS on G2 and TS with GNS on G3 were used.

CPLEX. The following results provide the mean computation times when
solving MIP4 and its LP–relaxation with CPLEX. Table 3.4 shows the mean
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δmax
a

δmin
a 2 3 4 5 6 avg.

1 CPLEX (LP) 2.9 7.0 10.7 19.9 94.0 26.9
CPLEX (100s) 6.6 74.2 100.1 100.2 100.1 76.3
CPLEX (3,600s) 7.3 81.1 723.6 3,578.9 3,599.5 1,598.1

2 CPLEX (LP) 2.3 9.5 10.8 24.4 11.7
CPLEX (100s) 11.7 100.1 100.1 100.1 78.0
CPLEX (3,600s) 11.9 240.9 2,951.2 3,599.6 1,700.9

3 CPLEX (LP) 3.2 6.9 13.0 7.7
CPLEX (100s) 16.3 100.3 100.1 72.2
CPLEX (3,600s) 17.4 1,535.9 3,600.0 1,717.8

4 CPLEX (LP) 2.3 6.5 4.4
CPLEX (100s) 69.0 100.1 84.6
CPLEX (3,600s) 56.6 1,986.5 1,021.5

5 CPLEX (LP) 4.0 4.0
CPLEX (100s) 83.8 83.8
CPLEX (3,600s) 139.6 139.6

avg. CPLEX (LP) 2.9 4.6 7.8 10.0 28.4 14.5
CPLEX (100s) 6.6 42.9 72.2 92.4 96.9 77.5
CPLEX (3,600s) 7.3 46.5 327.3 2,030.7 2,585.0 1,475.3

Table 3.4: Average computation times for combinations of δmin
a and δmax

a and
(|P|, |Ri|) = (5, 5) in seconds

computation times for all instance with 5 projects and all combinations of
δmin
a and δmax

a . Table 3.5 aggregates the data to the time window size TWS .
Instances with the same TWS correspond to the diagonals in Table 3.4. Note
that the number of instances per TWS for the 5 projects instances is not
equal due to the constraint δmax

a > δmin
a applied during test data generation.

Hence, only 5 instances have TWS = 5 while 25 instances have TWS = 1.
Table 3.5 also contains results for the 10 projects instances.

For the 5 projects instances the Branch&Cut–algorithm of CPLEX re-
quires the entire time span of 3,600 seconds searching for an optimal solution
for the instances with TWS = 5. CPLEX hits the time limit of 100 seconds
and cannot prove optimality for any instance with TWS = 3 or higher. The
LP–relaxation is solved relatively fast. However, note that it takes almost 100
seconds on average to solve the LP–relaxation of instances with TWS = 5
and 5 projects.

An obvious observation is that the computation times are growing with
TWS since TWS determines the number of binary variables. Furthermore,
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TWS

(P,Ri) method 1 2 3 4 5

(5,5)
CPLEX (LP) 3.0 7.5 11.5 22.1 94.0
CPLEX (100s) 37.5 93.7 100.1 100.1 100.1
CPLEX (3,600s) 46.6 961.1 2,425.0 3,589.2 3,599.5

(10,10)
(δmin

a = 1)

CPLEX (LP) 30.9 137.7 322.8 567.6 1,152.0
CPLEX (300s) 299.9 300.2 300.1 300.1 300.3
CPLEX (3,600s) 3,600.1 3,600.1 3,600.1 3,600.3 3,600.4

Table 3.5: Average computation times for different time window sizes TWS
in seconds

the computation times are increasing with δmax
a even if considering the same

value of TWS , i.e. in Table 3.4 the computation times increase from the upper
left to the lower right. This is due to the fact that the planning horizon T
depends on δmax

a and this results in more constraints (e.g. Constraints (3.7))
and variables. Although not explicitly shown here this observation is also
true for the hybrid metaheuristic due to the increased size of the generalized
minimum cost flow problems (cf. Section 3.3).

For the 10 projects instances the time limit is always hit. Note that
the LP–relaxation takes almost 20 minutes on average for the 10 projects
instances with δmax

a = 6.

3.5.3 Solution gaps

Table 3.6 reports the mean solution gaps

∆ =
z − LP

z
(3.36)

of the four solution methods for the 5 projects instances with all combina-
tions of δmin

a and δmax
a . The objective function value obtained by the cor-

responding solution method is denoted z while LP is the optimal value of
the LP–relaxation of MIP4. For two instances marked with a plus sign (+)
CPLEX could not find a feasible solution within 100 seconds. In Table 3.7
solution gaps for instances with 5 and 10 projects are aggregated to the time
window size TWS . Finally, Table 3.8 shows the percentage of instances with
5 projects proved to be optimal. A table for the 10 projects instances is
omitted since optimality could not be proved for any of them.

CPLEX performs very well on instances with small time window sizes,
especially on TWS = 1. However, for the 5 projects instances beginning
with TWS ≥ 4 the hybrid metaheuristic clearly outperforms CPLEX (100s).
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δmax
a

δmin
a 2 3 4 5 6

1 CPLEX (3,600s) 0.70% 1.62% 4.03% 5.95% 8.35%
CPLEX (100s) 0.70% 1.62% 4.51% 9.89% +18.76%
GA (80s) 0.86% 2.26% 6.84% 8.64% 12.16%
HMH (100s) 0.86% 2.20% 6.53% 7.63% 10.78%

2 CPLEX (3,600s) 2.32% 3.67% 7.71% 9.00%
CPLEX (100s) 2.32% 4.00% 8.44% +17.30%
GA (80s) 2.56% 4.53% 11.12% 14.01%
HMH (100s) 2.56% 4.06% 9.55% 11.34%

3 CPLEX (3,600s) 2.95% 6.29% 10.57%
CPLEX (100s) 2.95% 6.83% 11.36%
GA (80s) 3.06% 8.64% 14.62%
HMH (100s) 3.06% 7.62% 13.50%

4 CPLEX (3,600s) 4.81% 5.56%
CPLEX (100s) 4.81% 6.00%
GA (80s) 7.12% 8.34%
HMH (100s) 6.53% 7.68%

5 CPLEX (3,600s) 6.19%
CPLEX (100s) 6.21%
GA (80s) 8.68%
HMH (100s) 8.24%

Table 3.6: Average solution gaps ∆ for combinations of δmin
a and δmax

a and
(|P|, |Ri|) = (5, 5) (+ indicates one unsolved instance)



CHAPTER 3. STAFFING AND SCHEDULING SERIAL PROJECTS 58

245,000

250,000

255,000

260,000

265,000

270,000

275,000

280,000

285,000

0 10 20 30 40 50 60 70 80

time (s)

o
b

je
ct

iv
e 

fu
n

ct
io

n
 v

al
u

e

Figure 3.5: Typical evolution of the objective function value during the GA
over time. The dotted line represents the optimal solution.

For one instance with 5 projects the solution found by HMH was even better
than the one found by CPLEX (3,600s). The use of the tabu search post–
optimization reduces the gap by about 0.5% for TWS = 2 and up to 2.7% for
TWS ≥ 3. In preliminary tests it could be seen that it is more beneficial to
allot the final 20 seconds of the runtime to the TS post–optimization instead
of using the entire 100 seconds for the GA. Figure 3.5 shows a typical example
for the evolution of the objective function value over time when applying the
GA to a 5 projects instance.

For the 10 projects instances and TWS ≤ 2 (corresponding to δmax
a ≤ 3)

CPLEX (300s) provides better results than HMH. Note that the CPLEX
time limit had to be increased to 300 seconds in order to obtain feasible
solutions. However, even CPLEX (300s) fails to generate any feasible solution
for TWS ≥ 3. HMH performs very well for larger TWS as the gap to
CPLEX (3,600s) decreases. For one instance with 10 projects the solution
found by HMH was even better than the one found by CPLEX (3,600s).

As a conclusion standard solution procedures fail to solve small problem
instances with 5 projects and 5 resources optimally and cannot derive feasible
solutions for TWS ≥ 4 in reasonable time. For the 10 projects instances and
TWS ≥ 3 they cannot even find feasible solutions within 5 minutes. On
the contrary HMH provides feasible and good results throughout the tested
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TWS

(P,Ri) 1 2 3 4 5

(5,5)

CPLEX (3,600s) 3.40% 4.29% 7.44% 7.47% 8.35%
CPLEX (100s) 3.40% 4.61% 8.10% +13.18% +18.76%
GA (80s) 4.46% 5.94% 10.86% 11.32% 12.16%
HMH (100s) 4.25% 5.39% 9.86% 9.48% 10.78%

(10,10)

CPLEX (3,600s) 1.58% 3.03% 3.14% 4.22% 6.44%
CPLEX (300s) 1.68% 4.01% ∗3.19% — —
GA (80s) 5.87% 9.39% 9.48% 11.85% 11.39%
HMH (100s) 3.91% 6.70% 6.82% 8.94% 9.83%

Table 3.7: Average solution gaps compared to the LP–relaxation for different
time windows sizes TWS (+ indicates one unsolved instance, ∗ indicates four
unsolved instances)

problem instances. It is supposed that HMH is the more advantageous the
larger the problem instances become.

3.6 Summary

In this chapter simultaneous scheduling and staffing multiple IT–projects
with serial structures with a multi–skilled human workforce that has hetero-
geneous and static efficiencies has been addressed. The considered problem
is typical for development and maintenance projects of IT–systems and IT–
services as well as research and development projects. A mixed–binary linear
program has been proposed and a hybrid metaheuristic consisting of a ge-
netic algorithm and a tabu search has been developed in order to tackle the
problem. The hybrid metaheuristic relies on a very efficient network represen-
tation of the staffing subproblem. In the experimental study it was demon-
strated that the generalized network simplex algorithm can solve the network
representation of the staffing subproblem up to 7 times faster than standard
solvers like CPLEX. CPLEX often fails to solve the MIP–formulation of small
size instances optimally within 100 seconds. Especially for larger instances,
e.g. 10 projects, 10 resources and a time window size per activity of 3, CPLEX
cannot even find any feasible solution within 5 minutes. Especially regarding
these instances the proposed hybrid metaheuristic performs clearly better
than CPLEX and finds feasible solutions within seconds.

This chapter has focused on a network representation of the staffing sub-
problem for resources with static efficiencies. However, in practice efficiencies
are not static at all. Hence, the following chapter will concentrate on the
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δmax
a

δmin
a 2 3 4 5 6

1 CPLEX (3,600s) 100% 100% 100% 20% 0%
CPLEX (100s) 100% 80% 0% 0% 0%
HMH (100s) 60% 20% 0% 0% 0%

2 CPLEX (3,600s) 100% 100% 40% 0%
CPLEX (100s) 100% 0% 0% 0%
HMH (100s) 40% 20% 0% 0%

3 CPLEX (3,600s) 100% 100% 0%
CPLEX (100s) 100% 0% 0%
HMH (100s) 60% 0% 0%

4 CPLEX (3,600s) 100% 80%
CPLEX (100s) 100% 0%
HMH (100s) 20% 0%

5 CPLEX (3,600s) 100%
CPLEX (100s) 60%
HMH (100s) 0%

Table 3.8: Percentage of optimally solved instances with (|P|, |Ri|) = (5, 5)

staffing subproblem w.r.t. learning, knowledge depreciation and skill devel-
opment requirements.



Chapter 4

Qualification of human

resources

4.1 Introduction

In practice the human resources’ efficiencies are often not static but change
over time due to e.g. learning and forgetting. The type of work the resources
are assigned to strongly influences whether a skill improves or deteriorates
and determines the resources’ qualification profile. Thus, in this chapter
the problem of assigning project work to resources considering learning and
depreciation of knowledge is addressed (cf. Heimerl and Kolisch [44, 46]). It
is assumed that the project schedules are given and that project work can
be aggregated resulting in a resource demand of a certain skill in a period of
e.g. one month length. Learning and depreciation of knowledge of resources
will be taken into account explicitly. In this context two company–specific
goals need to be achieved: The operative goal — also pursued in Chapters 2
and 3 — is to minimize costs for performing a given amount of project work
during the planning horizon. On a strategic level, however, a decision has to
be made who is applying and improving which skills. The strategic goal is to
obtain given skill level targets for the organizational unit at the end of the
planning horizon. The skill level of an organizational unit is defined as the
aggregation of the efficiencies of all individual resources having that skill. Of
course, assignment problems can be applied to arbitrary–sized organizational
units, e.g. the whole company, departments, or groups. W.l.o.g. it will be
referred to the organizational unit of a company for the remainder of this
chapter.

This chapter is organized as follows: An overview on relevant literature
is given in the upcoming Section 4.2. The optimization model will be in-

61
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troduced in Section 4.3. Section 4.4 will show details on the solution im-
plementation and the analysed test data. Results regarding computational
performance and managerial insight will be presented in Section 4.5. Finally,
the chapter will conclude with a summary in Section 4.6.

4.2 Literature Review

Effects causing time–dependent efficiencies can be split up in endogenous
effects (caused and influenced by properties of the person) and exogenous
effects (caused by the environment). Endogenous effects are e.g. learning
(efficiency increasing) and forgetting (efficiency decreasing). There is a large
amount of scientific work on the description of learning and forgetting in gen-
eral (cf. e.g. Arzi and Shtub [6], Jaber and Bonney [50], Yelle [78]). However,
only few assignment models consider learning or training of human resources
(cf. Gutjahr et al. [40], Wu and Sun [76]). Efficiency decreasing effects are
considered by even fewer assignment models (cf. Gutjahr et al. [40], Nem-
bhard [56], Süer and Tummaluri [67]). Instead, most assignment models
assume static and often homogeneous efficiencies for all resources. However,
staffing decisions directly influence which type of skill is used and, thus,
determine whether knowledge for a skill is used and built up or forgotten.

The process of gaining experience by accomplishing real tasks and learn-
ing from successes and failures is often also called training–on–the–job. Train-
ing is defined as “the systematic acquisition of skills, rules, concepts or at-
titudes that result in improved performance” (cf. Goldstein [37, p. 230]).
Learning effects have been studied and observed extensively for repetitive
physical tasks, often called “blue collar work” (cf. Hopp et al. [49]). How-
ever, they have also been measured for cognitive and knowledge–based work
(cf. e.g. Arzi and Shtub [6], Nembhard and Uzumeri [59]). The empirical
results of Boh et al. [17] show that learning effects are present even in special
project environments with knowledge–based work. Their finding is based on
software maintenance projects. This non–manual and often creative work
(“white collar work”, cf. Hopp et al. [49] for definitions) is getting more and
more important. In 2006 already 72% of Germany’s labour force worked in
the service sector and this rising trend still continues (cf. Statistisches Bun-
desamt Deutschland [66]). A large amount of the employees in this sector
have to do cognitive and knowledge–based work as “information technology
(IT) has given virtually every job an element of knowledge work” (cf. Hopp
et al. [49, p. 2]).

An elegant way to describe learning processes has been proposed by
Wright [75]. He introduces learning curves which describe how unit pro-



CHAPTER 4. QUALIFICATION OF HUMAN RESOURCES 63

duction time decreases with the amount of cumulative produced units. An
extensive amount of literature deals with different types of learning curves
for different types of work (cf. e.g. Nembhard and Uzumeri [58], Yelle [78]
for an overview). Learning curves have been applied primarily to physical
work (cf. Hopp et al. [49]). However, the aforementioned empirical results of
Boh et al. [17] for knowledge based project work encourage to apply learning
curves to project work, too. Furthermore, Amor [5] applies learning curves
when scheduling programs with repetitive projects. Finally, Hopp et al. [49,
p. 26] propose to “extend the learning curve approach [...] to knowledge–
intensive work environments”.

Forgetting as the counterpart to learning is usually caused by breaks (cf.
Globerson et al. [35]). The degree of forgetting is based on “how recently an
individual’s practice was obtained” (cf. Nembhard [56, p. 1959]). Obviously,
staffing decisions have direct impact on the future efficiency of a human
resource due to learning and forgetting.

An example for an exogenous effect on efficiency is technological progress.
It is known to be extremely rapid in the IT–sector and requires the adop-
tion of new knowledge in order to stay competitive. Furthermore it renders
fractions of old knowledge useless (cf. Chen and Edgington [24]) and often
increases complexity (cf. Vanhoucke [72]). This can lead to a relative de-
terioration of efficiency. On the other hand after having adopted to new
technologies resources’ efficiency is usually higher. To illustrate the relative
deterioration of efficiency imagine the example of computer programming
skills. Over the past years and decades several new programming languages
(e.g. C++, Java, and C#) have been developed and have now become state of
the art. The importance of other older languages (FORTRAN, Pascal, or C)
dropped rapidly because they are hardly able to support and take advantage
of current technologies like e.g. the internet, 3D–graphics or service–oriented
architectures. Hence, nowadays a human resource would not be considered
a highly efficient programmer if he or she had only expert knowledge in
FORTRAN and Pascal. It cannot be said that this human resource had no
programming skills at all since basic concepts are similar in every program-
ming language. However, this particular human resource would have had to
gain knowledge in evolving programming languages in order to stay compet-
itive. Hence, it would take much more time to perform today’s work with
his meanwhile obsolete knowledge. His efficiency has deteriorated compared
to a state of the art benchmark programmer.

The approach presented in this chapter has only been scarcely discussed
in the literature. Nembhard [56] solves the problem of assigning resources to
skills with assignment policies but does not consider depreciation of knowl-
edge or strategic goals. Wu and Sun [76] apply a meta–heuristic to the
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scheduling and staffing problem of projects w.r.t. learning but they neglect
depreciation of knowledge and strategic goals as well. Strategic goals and
the topic of skill development have been treated by Gutjahr [38]. He de-
rives analytical results concerning the optimal distribution of efforts from a
mathematical optimization model. However, in the approach presented by
Gutjahr [38] projects are aggregated to project classes and resources are not
distinguished in detail.

The approach proposed in the following section has many similarities with
Gutjahr et al. [40]. Both models use multi–skilled resources and apply the
concept of training–on–the–job and an additive forgetting model. However,
Gutjahr et al. [40] employ a multi–objective function maximizing strategic
goals and project portfolio value while the model proposed in this chapter
has a single–objective function which minimizes costs while the strategic goal
of company skill level targets will be taken into account by constraints. Fur-
thermore, neither project selection nor scheduling will be considered. Instead
only staffing and outsourcing decisions are taken into account.

4.3 Model

A work package (s, t) is defined as the aggregated demand rst of project work
requiring skill s ∈ S in period t = 1, . . . , T , where T denotes the planning
horizon. The pool of resources consists of internal resources Ri and external
resources Re, i.e. R = Ri ∪ Re. The demand of work packages requiring
skill s can be assigned to resources k ∈ Rs = Ri

s ∪ R
e
s with cost rates ckt in

period t. Rs is the set of resources capable of performing project work which
requires skill s. The set of skills that resource k possesses is denoted with
Sk. Working times of resources are limited by time–dependent availabilities
Rkt.

The projects are broken up into skill–specific work packages (s, t), which
— in contrast to the projects itself — are expected to have a repetitive
character. Thus, the related learning process is well–suited to be described
by learning curves (cf. Wright [75]).

Learning curves are usually monotonically decreasing and convex func-
tions. An extensive amount of literature deals with different types of learning
curves for different types of work (cf. e.g. Nembhard and Uzumeri [58], Yelle
[78] for an overview). A learning curve fks(zks) describes the unit production
time, i.e. the amount of time that resource k requires to produce one addi-
tional unit after having produced zks units using skill s. The number of units
zks produced by resource k in skill s can be interpreted as the experience
of the resource w.r.t. the particular skill. The function fks is indexed with
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resource k and skill s since the learning process depends on the type of work
s and the abilities of resource k to adapt new knowledge. Furthermore, the
argument zks is also indexed with k and s, i.e. cross–skill or team learning
effects are neglected.

The time Fks(zks) that resource k requires to produce the first zks units
using skill s can be expressed by the integral Fks(zks) =

∫ zks

z′=0
fks(z

′)dz′. The
time τks required to produce xks units after having produced zks − xks units
can then be calculated by τks = Fks(zks)− Fks(zks − xks).

The experience level of resource k in skill s at the end of period t is defined
by zkst. Resource k’s amount of project work performed using skill s in period
t is represented by xkst. Resource k’s amount of depreciated knowledge βkst in
skill s is modelled as a loss of experience at the beginning of period t. Given
an initial experience level zks0 of resource k in skill s at the end of period t = 0,
zkst can be calculated by zkst = zks(t−1) − βkst + xkst. As stated earlier βkst

can depict e.g. forgetting and/or technological progress: For example release
dates of new technologies which are known in advance can be modelled due to
the index t. Using index s the impact on experience can be modelled skill–
dependent. E.g. the release of a new programming language might affect
programming skills but not database skills. With index k resources can be
discriminated w.r.t. their forgetting properties. Note that zkst can become
negative. However, w.l.o.g. zkst ≥ 0 can be assured by shifting the learning
curve

∑T

t=1 βkst units to the right by and setting zks0 := zks0 +
∑T

t=1 βkst.
This approach is similar to dynamic inventory models (cf. e.g. Zipkin [81])

with zkst being the current inventory of knowledge, βkst being the demand or
loss of knowledge and xkst being the ordered and instantaneously delivered
(or produced) knowledge.

Strategic goals might require to keep or develop certain skills across the
company. A company’s skill level is defined as the aggregation of the efficien-
cies of all individual resources having that skill. To define strategic goals the
production possibility frontier (PPF, also known as transformation curve)
is employed. The PPF is a concave curve describing maximum production
quantities for different skills given several (but limited) resources (cf. Varian
[73]). Note that in the described assignment problem the PPF is not static or
given in advance but depends on the actual assignments as it is transformed
over time by learning and depreciation of knowledge of human resources. In
the following model no requirements on the shape of the complete PPF are
supposed but only on the values of its intercept points at the axes at the
end of the planning horizon. The intercept point at axis s is required to be
at least φs. Thus, the level φs is the guaranteed total amount of work per
time unit requiring skill s that internal human resources could perform at
the end of the planning horizon T if they all used that skill. Figure 4.1 gives



CHAPTER 4. QUALIFICATION OF HUMAN RESOURCES 66

an example for the possible result of the PPF at the end of the planning
horizon. A different assignment decision would yield a different PPF. W.r.t.
the given values of φ1 and φ2 this solution is feasible, since production rates
for both skills could attain level φs independently (but not concurrently).

0
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2

2.5

3
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s=1

s=
2

Figure 4.1: Production possibility frontier

The intercept points of the PPF can be calculated as the sum of produc-
tion rates of the internal resources with skill s at the end of the planning
horizon T defined by

∑

k∈Ri
s

1

fks(zksT )
. (4.1)

Note that the production rate is the reciprocal of the unit production time
calculated by fks(·).

The outlined problem is modelled as a non–linear program by employing
the following decision variables: The amount of work done by resource k
with skill s in period t is denoted with xkst. Resource k’s experience in skill
s cumulated up to period t considering depreciation of knowledge is depicted
with zkst. Finally, τkst is the time that resource k requires to process the
amount of work xkst of skill s in period t.

Z = Min
∑

s∈S

∑

k∈Rs

T∑

t=1

ckt · τkst (4.2)
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subject to

zkst = zks(t−1) − βkst + xkst

k ∈ Rs

s ∈ S
t = 1, . . . , T

(4.3)

τkst = Fks (zkst)− Fks (zkst − xkst)
k ∈ Rs

s ∈ S
t = 1, . . . , T

(4.4)

∑

k∈Ri
s

1

fks(zksT )
≥ φs s ∈ S (4.5)

∑

k∈Rs

xkst ≥ rst
s ∈ S
t = 1, . . . , T

(4.6)

∑

s∈S

τkst ≤ Rkt
k ∈ R
t = 1, . . . , T

(4.7)

xkst, τkst ≥ 0
k ∈ Rs

s ∈ S
t = 1, . . . , T

(4.8)

zkst ∈ R

k ∈ Rs

s ∈ S
t = 1, . . . , T

(4.9)

The objective function (4.2) minimizes the costs for performing the work
packages (s, t). Constraints (4.3) are the dynamic experience level con-
straints, where the experience level zkst of resource k in skill s at the end
of period t is the experience level of the preceding period (t−1) decreased by
depreciation of knowledge βkst and increased by the acquisition of knowledge
xkst due to work assignments in period t. Constraints (4.4) calculate the time
τkst required to perform xkst units of work package (s, t). Constraints (4.5)
enforce the company skill level targets φs at the end of the planning hori-
zon. Constraints (4.6) ensure that the demand rst of work package (s, t) is
assigned to the resources. Continuous fractional assignment of work pack-
ages to resources is allowed. Constraints (4.7) restrict the availability of the
resources. Constraints (4.8) and (4.9) define the decision variables.

If there is no learning and no forgetting, model (4.2)–(4.9) becomes linear
with the learning function fks(zks) = 1

ηks
, where ηks is the static efficiency of

resource k w.r.t. skill s (cf. e.g. Heimerl and Kolisch [45]).
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Although the learning functions fks(zks) are assumed to be decreasing
and Fks(zks) is therefore concave, the model is neither a convex nor a concave
optimization problem since constraints (4.4) calculate the difference of two
concave functions resulting in an unclassifiable function.

As stated in Section 4.2 this model is similar to the one of Gutjahr et al.
[40], especially concerning constraints (4.3). However, in Gutjahr et al. [40]
the experience (called “competence score” in [40]) of resources increases due
to the amount of time invested into a skill. In contrast, the amount of work
done by a resource is assumed to drive its experience in the proposed model.
The strategic goal of the proposed model is formulated in constraints (4.5)
enforcing minimum cumulative production rates per skill while Gutjahr et al.
[40] maximize the sum of final competence scores in a multi–objective func-
tion. For the conversion of experience to production rates (“efficiency values”
in [40]) in the experimental studies of the following section non–linear learn-
ing curves are used as opposed to their linear approximations.

4.4 Implementation and Test setup

For the experimental study an adaptation of the exponential learning func-
tion (cf. Nembhard and Uzumeri [58], Pendharkar and Subramanian [62]) is
employed, i.e.

fks(zks) = akse
−λkszks + bks (4.10)

and therefore
Fks(zks) =

aks

λks

(
1− e−λkszks

)
+ bkszks. (4.11)

bks > 0 represents the steady state unit production time, λks ≥ 0 is the
learning rate and aks ≥ 0 the learning potential of resource k in skill s. Note
that knowledge depreciation is depicted by βkst in constraints (4.3) and is
therefore implicitly included in the learning curve. This type of learning
function was chosen due to the ability to depict steady state unit production
times and its mathematical tractability. However, the implementation can
easily be adapted to other learning functions.

The model was implemented in C++ using Ipopt 3.3.2 of the COIN–OR
library (cf. [26]). Ipopt uses a primal–dual interior point filter line search
algorithm (cf. Wächter and Biegler [74]) to return an (at least locally) optimal
solution. The model was solved 50 times using random starting points in
order to partially overcome the lack of only local optimality.

Test instances were generated using the base case depicted in Table 4.1.
The values are chosen to obtain realistic small size instances with period
lengths of one month and efforts measured in man days. A set of external



CHAPTER 4. QUALIFICATION OF HUMAN RESOURCES 69

resources Re
s was taken into account by adding one additional resource with

unlimited availabilities for each skill, i.e. |Re
s| = 1 ∀s and Rkt =∞ ∀t, k ∈ Re

s.
External resources will not be subject to learning nor forgetting and their unit
production time is 1, i.e. aks = 0 and bks = 1 ∀s, k ∈ Re

s. These numbers are
based on the assumption that there will always be enough qualified external
resources with state–of–the–art knowledge. The costs of external resources
depend on the requested skill, and it is referred to skill 1 as the cheapest and
skill 4 as the most expensive skill.

All six internal resources are capable of performing two out of four skills
and each resource has a unique combination of skills. A learning rate of
λks = 0.012 together with aks = 0.2 and bks = 0.9 leads to a unit production
time of 1 after approximately 60 work units. The parameters of |Ri|, |Sk|,
rst, Rkt were chosen such that the utilization of internal resources is 150% if
no external resources are employed and all internal resources had static unit
production times of 1, i.e. fks(·) ≡ 1. Furthermore, despite learning effects,
the utilization will always be higher than 100%.

T = 6
|S| = 4
|Ri| = 6
Rkt = 20 ∀t, k ∈ Ri

rst = 45 ∀s, t
aks = 0.2 ∀s, k ∈ Ri

s

bks = 0.9 ∀s, k ∈ Ri
s

zks0 = 0 ∀s, k ∈ Ri
s

Skill
1 2 3 4

ce
s 400 500 600 700

R
es

ou
rc

e

1 x x
2 x x
3 x x
4 x x
5 x x
6 x x

Table 4.1: Parameters and skill matrix of the base case

Four parameters were varied to generate the 16 instances given in Ta-
ble 4.2. The first group of instances (1–8) uses a flat learning curve (λks =
0.012), the other group (9–16) uses a steeper learning curve (λks = 0.02).
The shape of the learning curve affects the speed of learning in the sense
that resources with a steeper learning curve learn faster. Figure 4.2 depicts
the plots of the learning curves. Within each group some instances (1–4, 9–
12) neglect forgetting (βkst = 0), the remaining instances impose forgetting
(βkst = 10). Some instances (1–2, 5–6, 9–10, 13–14) do not demand com-
pany skill level targets (φs = 0), while all the other instances do (φs > 0).
Furthermore, cases with internal costs ci

k = 0 (odd instance numbers) and
ci
k = 500 (even instance numbers) are compared. For the latter instances
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internal resources are more expensive than external resources w.r.t. skill 1
(ci

k = 500 vs. ce
1 = 400) in case both internal and external resources had

equal and horizontal learning curves (i.e. fks(·) ≡ 1).
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f(
z) λ=0.012

λ=0.02

Figure 4.2: Plots of the flat (λ = 0.012) and the steep (λ = 0.02) learning
curve f(z)

4.5 Results

4.5.1 Computational study

The test instances led to a model with 96 variables and 70 constraints. They
were solved on a Pentium 4 with 2.4 GHz and 1.5 GB RAM. The required
time to solve 50 random starting point problems was recorded (cf. Table 4.3).
For the instances given in Table 4.2 the solution time is 21 seconds on average
and always less than 33 seconds. The instances with internal costs ci

k = 500
are harder to solve than those with ci

k = 0 (24.6 vs. 17.0 seconds). This is
probably due to the fact that the full utilization of internal resources is not
always an optimal solution in cases where ci

k = 500 and thus constraints (4.7)
are not always binding.

The benefit of using random starting points is measured using the aver-
age and maximum deviation of different starting point solutions to the best
solution found. For 5 out of 16 instances (31%) the use of random starting
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# λks βkst φs ci
k

1 0.012 0 0 0
2 0.012 0 0 500
3 0.012 0 2.8 0
4 0.012 0 2.8 500
5 0.012 10 0 0
6 0.012 10 0 500
7 0.012 10 2.5 0
8 0.012 10 2.5 500
9 0.02 0 0 0

10 0.02 0 0 500
11 0.02 0 3.0 0
12 0.02 0 3.0 500
13 0.02 10 0 0
14 0.02 10 0 500
15 0.02 10 2.25 0
16 0.02 10 2.25 500

Table 4.2: Variations of the base case

points led to no improvements. On the other hand, the average distance
from the locally optimal solutions to the best solutions found was 0.24% and
the maximum distance was 8.3%. Thus, for some instances choosing a good
starting point matters and random starting points are a straight–forward
strategy to find a good solution.

Additionally, in order to analyse the limits of Ipopt–algorithm some larger
instances as given in Table 4.4 were tested. The instances are based on
instance #1 given in Table 4.2, where the number of resources |Ri| and skills
|S| has been increased and two random skills were assigned to each resource.
For each combination of |Ri| and |S| five test instances were generated. The
results are given in Table 4.4. Obviously, even large instances with 100
resources and 50 skills can be solved within minutes using the 50 random
starting points approach. However, the instances did not benefit from the
use of random starting points.

4.5.2 Managerial insights

4.5.2.1 Analysis methods

To gain managerial insights the results are analysed on the individual level
of a resource and on the aggregate level of the company, in which the values
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# time [sec] best avg dev % max dev %
1 13.5 159,164 0.00 0.00
2 21.8 516,994 0.06 0.18
3 18.1 163,787 0.00 0.00
4 24.9 523,407 0.00 0.02
5 17.9 177,638 0.06 1.38
6 32.7 531,690 0.00 0.00
7 18.7 191,577 0.35 2.07
8 23.6 551,577 0.11 0.55
9 14.8 147,619 0.13 0.14

10 18.1 506,487 0.18 0.26
11 14.0 168,480 0.00 0.00
12 17.4 528,480 0.00 0.00
13 18.5 173,990 0.60 8.30
14 30.6 527,117 0.72 1.85
15 20.3 182,632 1.45 3.52
16 27.7 542,631 0.23 0.91

mean 20.8 349,579 0.24 1.20

Table 4.3: Computational results

|Ri| |S| avg. time [sec] max dev %
25 10 45.5 0.00
50 25 110.7 0.00

100 50 494.5 0.00

Table 4.4: Additional computational results



CHAPTER 4. QUALIFICATION OF HUMAN RESOURCES 73

of all internal resources are summed up. Let

xR

ks =
∑

t

xkst (4.12)

be the amount of work done by resource k for skill s during the entire planning
horizon and let

xC

s =
∑

k∈Ri

xR

ks (4.13)

be the amount of work done by internal (company) resources for skill s during
the planning horizon, then

ρs =
xC

s
∑

t rst

(4.14)

is the fraction of work ρs done by internal resources for skill s during the
planning horizon. To analyse the outsourcing decisions the value of ρs is
used. Further let

XR

k = {xR

k1, x
R

k2, x
R

k3, . . .} (4.15)

and
XC = {xC

1 , x
C

2 , x
C

3 , . . .} (4.16)

be sets that combine the data points of the different skills. The coefficient of
variation

CV(XC) =

√

VAR (XC)

E (XC)
(4.17)

gives an indication about the specialization of the company : A high coefficient
of variation indicates high specialization of the company, since the assignment
of internal resources to work packages of different skills is very unequal, i.e.
high for some skills, low for others. The values of ρs and CV(XC) for the
solutions of the instances are listed in Table 4.5.

The specialization of individual resource k ∈ Ri can be measured with

σk =
σk

σmax
k

(4.18)

which uses the standard deviation

σk =
√

VAR(XR
k ) =

√

E
(

(XR
k )

2
)

− (E (XR
k ))2 =

√
∑

s (xR
ks)

2

|Sk|
−

(∑

s xR
ks

|Sk|

)2

(4.19)
and is normalized with the maximum possible standard deviation σmax

k . σmax
k

can be determined by calculating σk if only one skill is used as much as
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# ρ1 ρ2 ρ3 ρ4 CV(XC) σ1 σ2 σ3 σ4 σ5 σ6 avg.
1 0.00 0.62 1.00 1.00 0.156 1.00 1.00 1.00 1.00 0.37 0.48 0.81
2 0.00 0.44 1.00 1.00 0.172 1.00 1.00 1.00 1.00 1.00 0.17 0.86
3 0.16 0.46 1.00 1.00 0.138 1.00 1.00 0.40 1.00 0.92 0.48 0.80
4 0.16 0.16 1.00 1.00 0.180 0.03 1.00 1.00 1.00 1.00 0.17 0.70
5 0.00 0.48 1.00 1.00 0.167 1.00 1.00 1.00 0.68 1.00 0.21 0.82
6 0.00 0.00 1.00 1.00 0.250 0.00 1.00 1.00 1.00 1.00 0.11 0.68
7 0.31 0.36 0.81 1.00 0.117 0.84 0.91 0.21 1.00 1.00 1.00 0.83
8 0.31 0.36 0.81 1.00 0.117 0.84 0.91 0.21 1.00 1.00 1.00 0.83
9 0.00 0.81 0.91 1.00 0.146 1.00 1.00 1.00 1.00 0.64 1.00 0.94

10 0.00 0.46 1.00 1.00 0.170 1.00 1.00 1.00 1.00 1.00 0.20 0.87
11 0.39 0.47 0.81 1.00 0.092 0.22 0.56 0.41 1.00 0.15 1.00 0.56
12 0.39 0.47 0.81 1.00 0.092 0.33 0.57 0.41 1.00 0.15 1.00 0.58
13 0.00 0.68 0.86 1.00 0.151 1.00 1.00 1.00 1.00 0.30 1.00 0.88
14 0.00 0.00 0.98 1.00 0.250 0.00 1.00 1.00 1.00 1.00 0.24 0.71
15 0.28 0.40 0.86 1.00 0.120 0.91 1.00 0.30 1.00 1.00 1.00 0.87
16 0.27 0.30 0.86 1.00 0.134 0.83 1.00 0.27 1.00 1.00 1.00 0.85

Table 4.5: Fraction ρs of work done internally, specialization of the company
CV(XC) and specialization σk of internal resources

possible. If all skills are used equally by resource k, i.e. xR
ks = xR

ks′ ∀s, s
′, a

value of σk = 0 is obtained. If only one skill is used, σk = 1 holds. The
values for the specialization σk are also listed in Table 4.5.

Additionally the assignment of work packages to internal resources over
time on the company level are visualized as in Figure 4.3(a). The work done
by all internal resources (

∑

k∈Ri xkst) is shown on the ordinate while the time
line is on the abscissa. The four skills are represented by four different curves.
For example in Figure 4.3(a) skill 1 is not done internally at all while the
amount of work that is done internally for skill 2 increases with each period.
Note that the curves for skill 3 and 4 are super–imposed at a maximum of
∑

k∈Ri xk3t =
∑

k∈Ri xk4t = 45.
Figure 4.3(b) depicts the assignments on an individual level. Each sub-

diagram shows the assignments of work requiring one skill to the resources.
The work done by internal resources is shown as stacked bars on the ordinate
while the time line is on the abscissa. For example in Figure 4.3(b) the top
right subdiagram depicts skill 2. The work requiring that skill is done by
resource 1 and furthermore by resource 5 in a growing amount. The height
of the stacked bars correspond to the strictly monotone increasing curve for
skill 2 in Figure 4.3(a).

4.5.2.2 Outsourcing decisions

As stated in Section 4.4, due to the chosen problem parameters, the average
utilization of the internal resources is higher than 100%. Therefore, it is
not possible to do all the work internally. From Table 4.5 it can be observed
that, in general, those work packages are outsourced (low values of ρ1 and ρ2)
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which require cheap skills, i.e. a skill s that can be outsourced at relatively
low costs ce

s. On the other hand work packages which require expensive skills
are (almost) completely done internally (ρ3 and ρ4 close or equal to 1). As
expected, the inequality ρs ≥ ρs′ holds if ce

s > ce
s′ .

4.5.2.3 Impact of the learning curve

Impact on the company When comparing instances 1 and 5 with its
counterparts 9 and 13 that have a steeper learning curve, it can be seen that
a steeper learning curve leads to a broader qualification of the company, since
CV(XC) in Table 4.6 is lower for instances 9 and 13. This holds regardless
of the depreciation of knowledge.

# λks βkst ρ1 ρ2 ρ3 ρ4 CV(XC)
1 0.012 0 0.00 0.62 1.00 1.00 0.156
5 0.012 10 0.00 0.48 1.00 1.00 0.167
9 0.02 0 0.00 0.81 0.91 1.00 0.146

13 0.02 10 0.00 0.68 0.86 1.00 0.151

Table 4.6: Fraction ρs of work done internally and specialization of the com-
pany CV(XC) for instances 1, 5, 9 and 13

Figure 4.3(a) which graphically shows the solution for instance 1 illus-
trates this finding. Skill 3 and 4 are completely done by internal resources
(
∑

k∈Ri xkst = rst = 45), skill 1 is completely outsourced (
∑

k∈Ri xkst = 0)
and the amount of work that is done internally for skill 2 increases over time.
The increase of internal work for skill 2 can be explained with the four dia-
grams shown in Figure 4.3(b). It stems from the efficiency gains of resources
3 and 6, that enable resource 5 to use more of its capacity performing skill
2. Furthermore, resources 5 and 1 are becoming more efficient in doing skill
2 as well.

At first sight it seems that the following greedy heuristic would provide
optimal results: i) Order work packages in decreasing order of external skill
costs. ii) Beginning with the work package requiring the most expensive
external skill, assign work packages to available internal resources as long as
possible. iii) Outsource the remaining work. However, Figure 4.4(a) gives
a counterexample. The figure shows the solution for instance 9 which, com-
pared to instance 1, has a steeper learning curve. The difference compared
to instance 1 is that some of the work for the more expensive skill 3 has
been outsourced (

∑

k∈Ri xkst < rst = 45) in favour of skill 2 which is now
done more intensively by internal resources and less outsourced. The reason
for this phenomenon can be examined using Figure 4.4(b) which reveals that



CHAPTER 4. QUALIFICATION OF HUMAN RESOURCES 76

∑k xkst

(a) company level (b) individual level

Figure 4.3: Solution of instance 1 with λks = 0.012, φs = 0, βkst = 0, and
ci
k = 0

the full dedication of resources 2 and 4 to skill 3 and resource’s 5 higher
dedication to skill 2 leads to lower overall costs.

Impact on individual resources The impact of the learning curve’s
shape on the individual resources can be examined with a comparison of
σk for instances 1 and 5 with its counterparts 9 and 13 in Table 4.7. Re-
garding these four instances a steeper learning curve seems to lead to more
specialized individual resources since σk is higher on average. These numbers
are supported by the fact that there are 4 fully specialized resources (σk = 1)
in instance 1 while there are 5 of them in instance 9. Resource 5 (with skills
2 and 4) and resource 6 (with skills 3 and 4) are both capable of performing
skill 4, while skill 2 (the other skill of resource 5) is cheaper than skill 3 (the
other skill of resource 6) (cf. Table 4.1). Therefore, one would expect that
resource 5 (with the cheaper other skill) is devoted to perform skill 4 rather
than resource 6 (with the more expensive other skill). However, in instance
9 resource 5 is qualified for both skills while resource 6 is fully specialized
for skill 4. This contradicts the intuition that a higher difference of skill
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∑k xkst

(a) company level (b) individual level

Figure 4.4: Solution of instance 9 with λks = 0.02, φs = 0, βkst = 0, and
ci
k = 0

values (as for resource 5) should lead to a stricter specialization for the more
expensive skill.

# λks βkst σ1 σ2 σ3 σ4 σ5 σ6 avg.
1 0.012 0 1.00 1.00 1.00 1.00 0.37 0.48 0.81
5 0.012 10 1.00 1.00 1.00 0.68 1.00 0.21 0.82
9 0.02 0 1.00 1.00 1.00 1.00 0.64 1.00 0.94

13 0.02 10 1.00 1.00 1.00 1.00 0.30 1.00 0.88

Table 4.7: Specialization σk of internal resources for instances 1, 5, 9 and 13

The numbers disclose that the specialization measures on the individual
and company level diverge. A steeper learning curve leads to more specialized
individual resources in terms of σk but a broader qualified company in terms
of CV(XC).

4.5.2.4 Impact of company skill level targets

Company skill level targets broaden the company’s qualification. This can
be seen by comparing the coefficients of variation CV(XC) of instances 1 and
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3 (0.156 vs. 0.138), 5 and 7 (0.167 vs. 0.117), 9 and 11 (0.146 vs. 0.092), as
well as 13 and 15 (0.151 vs. 0.120) in Table 4.5, respectively. The proposition
is also supported by comparison of Figures 4.3(a) and 4.5(a). It can clearly
be seen that in the latter figure the cheapest skill 1 is used and trained to
reach the required company skill level targets of φs = 2.8 for all skills, while
it is completely outsourced in Figure 4.3(a). In order to reach this goal less
work of skill 2 is done by internal resources which in turn leads to a higher
amount of outsourced work demanding this skill.

∑k xkst

(a) company level (b) individual level

Figure 4.5: Solution of instance 3 with λks = 0.012, φs = 2.5, βkst = 0, and
ci
k = 0

Of course, increasing company skill level targets φs lead to higher overall
costs since the solution space is reduced due to constraints (4.5). Due to the
different shapes of the learning curves the company skill level targets φs are
hardly comparable in a quantitative manner. Therefore, Figure 4.6 depicts
the dependence of the costs on the company skill level targets for further
variations of instance 1 with a flat learning curve. For φs ≥ 3 no feasible
solutions could be found.
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Figure 4.6: Influence of company skill level targets φs on costs

4.5.2.5 Impact of knowledge depreciation

Basically similar results were observed comparing instances 1 and 5 as well as
9 and 13. No structural difference on the company level between the solutions
of different levels of knowledge depreciation can be identified for instances
with company skill level targets φs = 0: As can be seen in Figure 4.3(a) and
Figure 4.7(a), expensive skills are done completely internally while cheap
skills are outsourced. On the individual level, however, the assignments
of work to resources shift. Of course, the fraction of work ρs that can be
done internally decreases with the amount of knowledge depreciation. As a
consequence costs increase by more than 10% (cf. Table 4.3). No particular
impact of the influence of knowledge depreciation on specialization measures
CV(XC) and σk can be observed.

The combined effects of knowledge depreciation and synchronously im-
posed company skill level targets φs = 2.5 are illustrated by Figure 4.8(a)
which shows the results for instance 7. As before, assignment in decreasing
order of external skill costs is basically still reasonable. But as it has been
observed for the case of company skill level targets without knowledge de-
preciation, the amount of work for skill 1 done by internal resources must be
non–zero.

It is noteworthy that, in order to reach a company skill level target in
constraints (4.5), only the cumulated amount of work done in that skill is im-
portant. This is due to constraints (4.3) in which depreciation of knowledge
is a subtractive term. Thus, it is a constant at the end of planning horizon
regardless of the assignment decisions. Therefore, scheduling of work pack-
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∑k xkst

(a) company level (b) individual level

Figure 4.7: Solution of instance 5 with λks = 0.012, φs = 0, βkst = 10, and
ci
k = 0

age assignments is irrelevant for reaching company skill level targets φs. In
fact, scheduling of the work package assignments is only important for the
objective function (4.2). In case of knowledge depreciation and company skill
level targets the solutions do not only depend on the assignment decisions
(i.e. who does what) alone but on the time line of assignments (i.e. schedul-
ing, who does what in which period) as well. The decision of doing a skill
rather in the beginning or in the end of the planning horizon in order to
reach company skill level targets at minimum costs is obviously important.
If an amount rs of work has to be done in one single period t by resource k
subject to knowledge depreciation, it can be done in less time in period t = 1
(when fks(·) = fks(zks0)) than in period t = T (when fks(·)≫ fks(zks0) due to
knowledge depreciation). In this context, it makes sense that in Figure 4.8(b)
resource 3 is completely dedicated to skill 1 during the entire planning hori-
zon while resources 1 and 2 perform skill 1 only in the first periods to reach
the company skill level targets.
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∑k xkst

(a) company level (b) individual level

Figure 4.8: Solution of instance 7 with λks = 0.012, φs = 2.5, βkst = 10, and
ci
k = 0

4.5.2.6 Impact of internal costs

With costs of ci
k = 500 the allocation of internal resources to cheap skills (ce

1 =
400) is avoided, even if internal resources are not completely utilized. For the
parameters of the relevant test instances internal resources cannot compete
with external resources in terms of costs for skill 1 and 2 despite learning
effects. This can be seen in the results when comparing ρs of odd instance
numbers (ci

k = 0) with the values of even instance numbers (ci
k = 500).

However, in order to reach company skill level targets φs > 0 in instances
4, 8, 12 and 16 the assignment of relatively expensive internal resources for
these skills is mandatory.

4.6 Summary

In this chapter a constrained non–linear continuous optimization model was
presented in order to address the problem of cost–minimal assignment of
project work to internal and external multi–skilled human resources. The ef-
fects of learning and depreciation of knowledge as well as the goal of reaching
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company skill level targets at the end of the planning horizon are taken into
account.

The results show that the heuristic implementation has a promising com-
putational performance. The use of random starting points improved the
quality of the solutions significantly for some instances. The solutions were
analysed w.r.t. the influence of problem parameters. For selected param-
eter combinations the intuition is supported that work packages requiring
externally expensive skills should be done by internal resources while work
packages requiring cheaper skills should be outsourced. However, several ob-
servations showed that an implementation of this policy as a greedy assign-
ment heuristic will not provide optimal results. Furthermore, it was shown
that the shape of the learning curve leads to different qualification strategies
which depend on the level of analysis: Faster learning makes human re-
sources more specialized which paradoxically leads to a broader qualification
of the company. Company skill level targets are an effective tool to broaden
the qualification of the company but they can induce high costs. Due to
the objective of cost–minimization, depreciation of knowledge together with
company skill level targets cause assignment decisions to depend on the time
line (i.e. scheduling): Work packages requiring less expensive skills when out-
sourced are done more intensively by internal resources in the beginning than
in the end of the planning horizon in order to minimize costs.



Chapter 5

Conclusion and Outlook

The problems treated in this thesis arose in the IT–departments of a large
semiconductor manufacturer and of a large telecommunication company.
There, multiple projects such as the selection, development, installation, and
configuration of new IT–systems for different departments have to be done
on a recurrent basis. For the processing of the projects external and internal
human resources with different skills and different unit costs have to be used.
The question is how human resources are assigned to project work such that
different requirements are met and costs are minimized.

Several properties of human resources and projects in an IT–environment
that are different from other environments have been introduced. One char-
acteristic property of human resources working in IT–projects is that they are
multi–skilled. Hence, resources cannot be aggregated to disjoint groups and
this adds further complexity to the decision problem. Furthermore, learning
and depreciation of knowledge have considerable impact on the efficiencies
of individual human resources in an IT environment. Due to these effects
assignment decisions strongly determine the development of human resources
and the whole company in terms of their skill portfolio. Thus, requirements
on the required skill portfolio in the future should guide assignment decisions.
Finally, outsourcing is a very common and popular option in IT–projects due
to lack of either skill or availability of internal human resources. Hence, out-
sourcing needs to be considered in IT–specific optimization models. One
requirement is that e.g. bounds on the degree of outsourcing must be im-
posed; otherwise the success of the projects is at risk. All these properties
render the use of many existing project staffing models inappropriate.

In Chapter 2 of the thesis the focus was on the integrated multi–skill
project staffing and scheduling problem. Projects were strongly aggregated
and were only allowed to shifted en bloc, i.e. only the starting time of the
whole project and not of single activities was subject to optimization. The

83
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results point out that from a mathematical point of view scheduling and
staffing IT–projects is a very complex and challenging task. The problem
is NP–hard even if the projects are strongly aggregated. Hence, large in-
stances can hardly be solved to optimality using standard solution methods
implemented in commercial software. Nevertheless they have been applied to
test data inspired by real data of a semiconductor manufacturer. A sophisti-
cated problem formulation has been proposed which clearly outperforms the
straightforward formulation. Using the sophisticated formulation even stan-
dard solution methods can find optimal solutions in a reasonable amount of
time for problem sizes relevant in practice. Based on the test data the depen-
dency of costs on different problem parameters has been shown. One of the
findings is that marginal cost savings are high at a low qualification level but
decrease rapidly with higher qualification levels. In this context qualification
level is measured in terms of the number of skills per resource. Together with
costs for training one can find optimal qualification levels for the resources. A
similar effect has been observed regarding the temporal flexibility of project
start times. Allowing a temporal flexibility of one period reduced costs by
about 3% compared to no flexibility at all. However, additional flexibility
could hardly contribute to further cost savings.

Regarding the staffing problem it has been demonstrated that assignment
heuristics that are often applied in practice perform clearly worse than an
optimization based approach. When considering outsourcing constraints the
heuristics have significant problems to find feasible solutions at all. Fur-
thermore, it has been shown to which extent a centralised staff assignment
approach is advantageous compared to decentralised and separate planning.
Depending on the heterogeneity of the human resources’ skills cost savings
have been measured up to 14%.

In a subsequent step the project scheduling problem was generalized in
Chapter 3. There, projects were defined as a stream of project phases. These
phases may either overlap or succeed each other with no or some lag. The
generalized problem is NP–hard as well. For problem sizes relevant in practice
standard solution methods cannot find optimal or even any feasible solution
in reasonable time at all; even if applying the sophisticated problem formu-
lation. Thus, a generalized minimum cost flow based hybrid metaheuristic
has been proposed. Starting times of the project phases are chosen and opti-
mized using a hybrid genetic and tabu search algorithm. For the evaluation
of intermediate solutions the staffing subproblem has to be solved. This sub-
problem can be formulated as a generalized minimum cost flow problem and
can then be solved by the generalized network simplex algorithm. It has been
shown that the subproblem can be solved much faster by this network flow
approach than by standard solution methods. The solutions of large problem
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instances of the staffing and scheduling problem that have been found by the
metaheuristic are better than those found by standard solution methods. Es-
pecially when imposing time limits the metaheuristic outperforms standard
solution methods also for smaller problem instances.

Finally, in Chapter 4 the focus was on the staffing subproblem considering
learning and depreciation of knowledge. Furthermore, the goal of reaching
company target skill levels at the end of the planning horizon has been in-
troduced. To tackle the problem a non–linear optimization model has been
developed. It can be solved by a primal–dual interior point filter line search
algorithm. A public library implementing this algorithm has been adapted
to the given problem. Some test data was generated with different param-
eters regarding the problem size, learning and knowledge depreciation rate
(technological progress) and target skill levels. It has been shown that small
problem instances can be solved within seconds. Larger problems with 100
human resources can still be solved within five minutes. One of the key find-
ings was that the learning rate has opposite impacts on the specialization
of the company and of individual human resources. The higher the learning
rate the more specialized the human resources tend to get. In contrast the
company’s skill portfolio will not be specialized but broadened. Furthermore,
the costs of broadening a company’s skill portfolio have been analysed. For
the chosen test instances they can increase costs up to 20%. Finally, it has
been demonstrated that depreciation of knowledge do have structural impact
on the results especially when imposing company skill level targets. In that
case the temporal assignment of resources to project work, i.e. the order in
which skills should be used, is of particular importance.

This thesis demonstrated the benefit of quantitative approaches to the
management of human resources in IT–projects. Of course, due to the com-
plexity of the proposed optimization models some of the aspects treated in
other publications or relevant in practice needed to be simplified and ne-
glected. E.g. aspects of fairness, satisfaction and adequacy of project staffing
decisions had to be neglected in favour of a single goal of cost minimiza-
tion. General project network structures or the prolongation (stretching) of
projects were beyond the scope of this thesis, too. Finally, all values and
data were assumed to be deterministic.

Based on the results of this thesis an interesting field for further research
is the stepwise consideration of stochastics within the optimization models.
The highest uncertainty in IT–projects is imposed by the size of the work
packages as scope changes in the course of a project are quite common and
technologies change rapidly. Furthermore, the size of the work packages
for implementation is often determined only after some preliminary analysis
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phases. Hence, it is of particular importance to embed the optimization
models in a dynamic and repeated planning process.

On the topic of learning and depreciation of knowledge efforts should
be spent on the combination of the proposed project staffing model and
the metaheuristic framework used for project scheduling. On the field of
algorithms a more sophisticated selection of starting points for the nonlinear
optimization problem could provide better results. Furthermore, other global
search techniques like e.g. genetic algorithms might also be well–suited to
solve the nonlinear problem.



Appendix A

Notation

a ∈ A = set of activities
a0 /∈ A = dummy start activity
Ap = set of activities of project p
Bp = budget of project p
ce
s = cost rate for external resources performing skill s

co
k = cost rate for internal resource k during overtime

cr
k = cost rate for internal resource k during regular work time

dp, da = duration of project p / activity a
δmax
a = maximum start–to–start time–lag between activity pred(a)

and a
δmin
a = minimum start–to–start time–lag between activity pred(a)

and a
ep = minimum relative amount of project p’s work to be per-

formed by internal resources
ES p, ESa = earliest start period of project p / activity a
ηsk = efficiency of resource k when working in skill s
R = Ri ∪Re = set of (internal and external) human resources
LF p, LF a = latest finish period of project p / activity a
LS p, LSa = latest start period of project p / activity a
p ∈ P = set of projects
pred(a) = predecessor of activity a
q = 1, . . . , d = index of the executing period of project p (project periods)

/ activity a
rpsq = amount of work that is required for skill s by project p in

period t

Table A.1: Notation for the MIP (continued on following page)
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Re
ts = availability of external resources with skill s in period t

Ro
kt = availability of resource k in period t during overtime

Rr
kt = availability of resource k in period t during regular work

time
Rs = Ri

s ∪R
e
s = set of resources, capable to work in skill s

s ∈ S = set of skills
Sk = set of skills, which can be performed by resource k
succ(a) = successor of activity a
t = 1, . . . , T = index of the (calendar) periods
T = index of the last period of the planning horizon
Tpt, Tat = set of tupels (τ, q) of project/activity start period τ and

executing period q which lead to a demand of project p /
activity a in calendar period t

u = size of work units
xo

ptsk, xo
atsk = amount of work done by internal resource k for project p

/ activity a using skill s in period t during overtime
xr

ptsk, xr
atsk = amount of work done by internal resource k for project p

/ activity a using skill s in period t during regular work
time

ypts, yats = amount of work done by external resources for project p /
activity a using skill s in period t

yi
pts = discrete number of work units done by external resources

for project p using skill s in period t
zpt, zat = 1, if project p / activity a is started at the beginning of

period t, 0 otherwise

Table A.2: Notation for the MIP (continued)
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[54] D. Krüger and A. Scholl. Managing and modelling general resource
transfers in (multi–)project scheduling. OR Spectrum, online first, 2008.

[55] W. Kwak, Y. Shi, and K. Jung. Human resource allocation in a CPA
firm: A fuzzy set approach. Review of Quantitative Finance & Account-
ing, 20(3):277–290, May 2003.



BIBLIOGRAPHY xiv

[56] D. A. Nembhard. Heuristic approach for assigning workers to tasks
based on individual learning rates. International Journal of Production
Research, 39(9):1955–1968, 2001.

[57] D. A. Nembhard and N. Osothsilp. Learning and forgetting–based
worker selection for tasks of varying complexity. Journal of the Op-
erational Research Society, 56(5):576–587, 2005.

[58] D. A. Nembhard and M. V. Uzumeri. An individual–based description
of learning within an organization. IEEE Transactions on Engineering
Management, 47(3):370–378, 2000.

[59] D. A. Nembhard and M. V. Uzumeri. Experiential learning and forget-
ting for manual and cognitive tasks. International Journal of Industrial
Ergonomics, 25(4):315–326, 2000.

[60] K. Neumann and J. Zimmermann. Resource levelling for projects with
schedule–dependent time windows. European Journal of Operational
Research, 117(3):591–605, Sept. 1999.

[61] K. Neumann, C. Schwindt, and J. Zimmermann. Project scheduling
with time windows and scare resources. Springer, Berlin, Heidelberg,
2nd edition, 2003.

[62] P. C. Pendharkar and G. H. Subramanian. An empirical study of ICASE
learning curves and probability bounds for software development effort.
European Journal of Operational Research, 183(3):1086–1096, Dec. 2007.

[63] A. Pritsker, L. Watters, and P. Wolfe. Multiproject scheduling with
limited resources : A zero–one programming approach. Management
Science, 16(1):93–108, Sept. 1969.

[64] W. W. Royce. Managing the development of large software systems:
Concepts and techniques. In Technical Papers of Western Electronic
Show and Convention (WesCon), Los Angeles, USA, Aug. 1970.

[65] S. Sayin and S. Karabati. Assigning cross–trained workers to depart-
ments: A two–stage optimization model to maximize utility and skill
improvement. European Journal of Operational Research, 176(3):1643–
1658, Feb. 2007.

[66] Statistisches Bundesamt Deutschland. Dienstleistungen und Finanzdi-
enstleistungen — Strukturwandel in Deutschland. World Wide Web
electronic publication, June 2009. http://www.destatis.de/.



BIBLIOGRAPHY xv
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